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Preface

This book describes a variety of recent research into time-of-flight imaging.
Time-of-flight cameras are used to estimate 3D scene structure directly, in a way
that complements traditional multiple-view reconstruction methods. The first two
chapters of the book explain the underlying measurement principle, and examine
the associated sources of error and ambiguity. Chapters 3 and 4 are concerned with
the geometric calibration of time-of-flight cameras, particularly when used in
combination with ordinary color cameras. The final chapter shows how to use
time-of-flight data in conjunction with traditional stereo matching techniques.
The five chapters, together, describe a complete depth and color 3D reconstruction
pipeline. This book will be useful to new researchers in the field of depth imaging,
as well as to those who are working on systems that combine color and time-of-
flight cameras.
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Chapter 1
Characterization of Time-of-Flight Data

Abstract This chapter introduces the principles and difficulties of time-of-flight
depth measurement. The depth images that are produced by time-of-flight cam-
eras suffer from characteristic problems, which are divided into the following two
classes. First, there are systematic errors, such as noise and ambiguity, which are
directly related to the sensor. Second, there are nonsystematic errors, such as scat-
tering and motion blur, which are more strongly related to the scene content. It is
shown that these errors are often quite different from those observed in ordinary color
images. The case of motion blur, which is particularly problematic, is examined in
detail. A practical methodology for investigating the performance of depth cameras
is presented. Time-of-flight devices are compared to structured-light systems, and
the problems posed by specular and translucent materials are investigated.

Keywords Depth-cameras · Time-of-Flight principle ·Motion blur · Depth errors

1.1 Introduction

Time-of-Flight (tof) cameras produce a depth image, each pixel of which encodes
the distance to the corresponding point in the scene. These cameras can be used
to estimate 3D structure directly, without the help of traditional computer-vision
algorithms. There are many practical applications for this new sensing modality,
including robot navigation [31, 37, 50], 3D reconstruction [17], and human–machine
interaction [9, 45]. Tof cameras work by measuring the phase delay of reflected
infrared (IR) light. This is not the only way to estimate depth; for example, an
IR structured-light pattern can be projected onto the scene, in order to facilitate
visual triangulation [44]. Devices of this type, such as the Kinect [12], share many
applications with tof cameras [8, 33, 34, 36, 43].

M. Hansard et al., Time-of-Flight Cameras, SpringerBriefs in Computer Science, 1
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2 1 Characterization of Time-of-Flight Data

The unique sensing architecture of the tof camera means that a raw depth image
contains both systematic and nonsystematic bias that has to be resolved for robust
depth imaging [11]. Specifically, there are problems of low depth precision and low
spatial resolution, as well as errors caused by radiometric, geometric, and illumina-
tion variations. For example, measurement accuracy is limited by the power of the
emitted IR signal, which is usually rather low compared to daylight, such that the
latter contaminates the reflected signal. The amplitude of the reflected IR also varies
according to the material and color of the object surface.

Another critical problem with tof depth images is motion blur, caused by either
camera or object motion. The motion blur of tof data shows unique characteristics,
compared to that of conventional color cameras. Both the depth accuracy and the
frame rate are limited by the required integration time of the depth camera. Longer
integration time usually allows higher accuracy of depth measurement. For static
objects, we may therefore want to decrease the frame rate in order to obtain higher
measurement accuracies from longer integration times. On the other hand, capturing
a moving object at fixed frame rate imposes a limit on the integration time.

In this chapter, we discuss depth-image noise and error sources, and perform
a comparative analysis of tof and structured-light systems. First, the tof depth-
measurement principle will be reviewed.

1.2 Principles of Depth Measurement

Figure 1.1 illustrates the principle of tof depth sensing. An IR wave indicated in
red is directed to the target object, and the sensor detects the reflected IR component.
By measuring the phase difference between the radiated and reflected IR waves, we
can calculate the distance to the object. The phase difference is calculated from the
relation between four different electric charge values as shown in Fig. 1.2. The four
phase control signals have 90 degree phase delays from each other. They determine
the collection of electrons from the accepted IR. The four resulting electric charge
values are used to estimate the phase difference td as

td = arctan

(
Q3 − Q4

Q1 − Q2

)
(1.1)

where Q1 to Q4 represent the amount of electric charge for the control signals C1 to
C4, respectively [11, 20, 23]. The corresponding distance d can then be calculated,
using c the speed of light and f the signal frequency:

d = c

2 f

td
2π

. (1.2)
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Fig. 1.1 The principle of tof depth camera [11, 20, 23]: the phase delay between emitted and
reflected IR signals are measured to calculate the distance from each sensor pixel to target objects

Fig. 1.2 Depth can be calculated by measuring the phase delay between radiated and reflected IR
signals. The quantities Q1 to Q4 represent the amount of electric charge for control signals C1 to
C4 respectively

Here, the quantity c/(2 f ) is the maximum distance that can be measured without
ambiguity, as will be explained in Chap. 2.

1.3 Depth-Image Enhancement

This section describes the characteristic sources of error in tof imaging. Some meth-
ods for reducing these errors are discussed. The case of motion blur, which is partic-
ularly problematic, is considered in detail.

http://dx.doi.org/10.1007/978-1-4471-4658-2_2
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Fig. 1.3 Systematic noise and error: these errors come from the tof principle of depth measurement.
a Integration time error: longer integration time shows higher depth accuracy (right) than shorter
integration time (left). b IR amplitude error: 3D points of the same depth (chessboard on the
left) show different IR amplitudes (chessboard on the right) according to the color of the target
object

1.3.1 Systematic Depth Error

From the principle and architecture of tof sensing, depth cameras suffer from several
systematic errors such as IR demodulation error, integration time error, amplitude
ambiguity, and temperature error [11]. As shown in Fig. 1.3a, longer integration
increases signal-to-noise ratio, which, however, is also related to the frame rate.
Figure 1.3b shows that the amplitude of the reflected IR signal varies according to
the color of the target object as well as the distance from the camera. The ambiguity
of IR amplitude introduces noise into the depth calculation.
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1.3.2 Nonsystematic Depth Error

Light scattering [32] gives rise to artifacts in the depth image, due to the low sensitivity
of the device. As shown in Fig. 1.4a, close objects (causing IR saturation) in the lower
right part of the depth image introduce depth distortion in other regions, as indicated
by dashed circles. Multipath error [13] occurs when a depth calculation in a sensor
pixel is an superposition of multiple reflected IR signals. This effect becomes serious
around the concave corner region as shown in Fig. 1.4b. Object boundary ambiguity
[35] becomes serious when we want to reconstruct a 3D scene based on the depth
image. Depth pixels near boundaries fall in between foreground and background,
giving rise to 3D structure distortion.

1.3.3 Motion Blur

Motion blur, caused by camera or target object motions, is a critical error source
for online 3D capturing and reconstruction with tof cameras. Because the 3D depth
measurement is used to reconstruct the 3D geometry of scene, blurred regions in
a depth image lead to serious distortions in the subsequent 3D reconstruction. In
this section, we study the theory of tof depth sensors and analyze how motion blur
occurs, and what it looks like. Due the its unique sensing architecture, motion blur
in the tof depth camera is quite different from that of color cameras, which means
that existing deblurring methods are inapplicable.

The motion blur observed in a depth image has a different appearance from that
in a color image. Color motion blur shows smooth color transitions between fore-
ground and background regions [46, 47, 51]. On the other hand, depth motion blur
tends to present overshoot or undershoot in depth-transition regions. This is due to
the different sensing architecture in tof cameras, as opposed to conventional color
cameras. The tof depth camera emits an IR signal of a specific frequency, and mea-
sures the phase difference between the emitted and reflected IR signals to obtain
the depth from the camera to objects. While calculating the depth value from the
IR measurements, we need to perform a nonlinear transformation. Due to this archi-
tectural difference, the smooth error in phase measurement can cause uneven error
terms, such as overshoot or undershoot. As a result, such an architectural differ-
ence between depth and color cameras makes the previous color image deblurring
algorithms inapplicable to depth images.

Special cases of this problem have been studied elsewhere. Hussmann et al. [19]
introduce a motion blur detection technique on a conveyor belt, in the presence of
a single directional motion. Lottner et al. [28] propose an internal sensor control
signal based blur detection method that is inappropriate in general settings. Lindner
et al. [26] model the tof motion blur in the depth image, to compensate for the
artifact. However, they introduce a simple blur case without considering the tof
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Fig. 1.4 Nonsystematic noise and error: based on the depth-sensing principle, scene structure may
cause characteristic errors. a Light scattering: IR saturation in the lower right part of the depth
image causes depth distortion in other parts, as indicated by dashed circles. b Multipath error: the
region inside the concave corner is affected, and shows distorted depth measurements. c Object
boundary ambiguity: several depth points on an object boundary are located in between foreground
and background, resulting in 3D structure distortion
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Fig. 1.5 tof depth motion-blur due to movement of the target object

principle of depth sensing. Lee et al. [24, 25] examine the principle of tof depth
blur artifacts, and propose systematic blur detection and deblurring methods.

Based on the depth-sensing principle, we will investigate how motion blur occurs,
and what are its characteristics. Let us assume that any motion from camera or object
occurs during the integration time, which changes the phase difference of the reflected
IR as indicated by the gray color in Fig. 1.2. In order to collect enough electric charge
Q1 to Q4 to calculate depth (1.1), we have to maintain a sufficient integration time.
According to the architecture type, integration time can vary, but the integration time
is the major portion of the processing time. Suppose that n cycles are used for the
depth calculation. In general, we repeat the calculation n times during the integration
time to increase the signal-to-noise ratio, and so

td = arctan

(
nQ3 − nQ4

nQ1 − nQ2

)
(1.3)

where Q1 to Q4 represent the amount of electric charge for the control signals C1
to C4, respectively (cf. Eq. 1.1 and Fig. 1.2). The depth calculation formulation (1.3)
expects that the reflected IR during the integration time comes from a single 3D point
of the scene. However, if there is any camera or object motion during the integration
time, the calculated depth will be corrupted. Figure 1.5 shows an example of this
situation. The red dot represents a sensor pixel of the same location. Due the motion
of the chair, the red dot sees both foreground and background sequentially within
its integration time, causing a false depth calculation as shown in the third image
in Fig. 1.5. The spatial collection of these false-depth points looks like blur around
moving object boundaries, where significant depth changes are present.

Figure 1.6 illustrates what occurs at motion blur pixels in the ‘2-tab’ architecture,
where only two electric charge values are available. In other words, only Q1 − Q2
and Q3 − Q4 values are stored, instead of all separate Q values. Figure 1.6a is the
case where no motion blur occurs. In the plot of Q1 − Q2 versus Q3 − Q4 in the
third column, all possible regular depth values are indicated by blue points, making a
diamond shape. If there is a point deviating from it, as an example shown in Fig. 1.6b,
it means that their is a problem in between the charge values Q1 to Q4. As we already
explained in Fig. 1.2, this happens when there exist multiple reflected signals with
different phase values. Let us assume that a new reflected signal, of a different phase
value, comes in from the mth cycle out of a total of n cycles during the first half or
second half of the integration time. A new depth is then obtained as
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(a)

(b)

Fig. 1.6 tof depth-sensing and temporal integration

td(m) = arctan

(
nQ̂3 − nQ̂4

(m Q1 + (n − m)Q̂1)− (m Q2 + (n − m)Q̂2)

)
(1.4)

td(m) = arctan

(
(m Q3 + (n − m)Q̂3)− (m Q4 + (n − m)Q̂4)

nQ̂1 − nQ̂2

)
(1.5)

in the first or second half of the integration time, respectively. Using the depth calcula-
tion formulation Eq. (1.1), we simulate all possible blur models. Figure 1.7 illustrates
several examples of depth images taken by tof cameras, having depth value tran-
sitions in motion blur regions. Actual depth values along the blue and red cuts in
each image are presented in the following plots. The motion blurs of depth images in
the middle show unusual peaks (blue cut) which cannot be observed in conventional
color motion blur. Figure 1.8 shows how motion blur appears in 2-tap case. In the
second phase where control signals C3 and C4 collect electric charges, the reflected
IR signal is a mixture of background and foreground. Unlike color motion blurs,
depth motion blurs often show overshoot or undershoot in their transition between
foreground and background regions. This means that motion blurs result in higher
or lower calculated depth than all near foreground and background depth values, as
demonstrated in Fig. 1.9.

In order to verify this characteristic situation, we further investigate the depth
calculation formulation in Eq. 1.5. First, we re-express Eq. 1.4 as
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Fig. 1.7 Sample depth value transitions from depth motion blur images captured by an SR4000
tof camera

Fig. 1.8 Depth motion blur in 2-tap case

td(m) = arctan

(
nQ̂3 − nQ̂4

m(Q1 − Q̂1 − Q2 + Q̂2)+ n(Q̂1 − Q̂2)

)
(1.6)

The first derivative of the Eq. 1.6 is zero, meaning local maxima or local minima,
under the following conditions:
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Fig. 1.9 tof depth motion blur simulation results

t ′d(m) = 1

1+
(

nQ̂3−nQ̂4

m(Q1−Q̂1−Q2+Q̂2)+n(Q̂1−Q̂2)

)2 (1.7)

= (m(Q1 − Q̂1 − Q2 + Q̂2)+ n(Q̂1 − Q̂2))
2

(nQ̂3 − nQ̂4)2 + (m(Q1 − Q̂1 − Q2 + Q̂2)+ n(Q̂1 − Q̂2))2
= 0

m = n
Q̂2 − Q̂1

Q1 − Q̂1 − Q2 + Q̂2
= n

1− 2Q̂1

2Q1 − 2Q̂1
(1.8)

Figure 1.10 shows that statistically half of all cases have overshoots or under-
shoots. In a similar manner, the motion blur model of 1-tap (Eq. 1.9) and 4-tap
(Eq. 1.10) cases can be derived. Because a single memory is assigned for recording
the electric charge value of four control signals, the 1-tap case has four different
formulations upon each phase transition:
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Fig. 1.10 Half of the all motion blur cases make local peaks

td(m) = arctan

(
nQ̂3 − nQ̂4

(m Q1 + (n − m)Q̂1)− nQ̂2

)

td(m) = arctan

(
nQ̂3 − nQ̂4

nQ1 − (m Q2 + (n − m)Q̂2

)

td(m) = arctan

(
(m Q3 + (n − m)Q̂3)− nQ̂4

nQ̂1 − nQ̂2

)

td(m) = arctan

(
nQ3 − (m Q4 + (n − m)Q̂4

nQ̂1 − nQ̂2

)
(1.9)

On the other hand, the 4-tap case only requires a single formulation, which is:

td(m) = arctan

(
(m Q3 + (n − m)Q̂3)− (m Q4 + (n − m)Q̂4)

(m Q1 + (n − m)Q̂1)− (m Q2 + (n − m)Q̂2)

)
(1.10)

Now, by investigating the relation between control signals, any corrupted depth easily
can be identified. From the relation between Q1 and Q4, we find the following
relation:

Q1 + Q2 = Q3 + Q4 = K . (1.11)

Let us call this the Plus Rule, where K is the total amount of charged electrons.
Another relation is the following formulation, called the Minus Rule:

|Q1 − Q2| + |Q3 − Q4| = K . (1.12)

In fact, neither formulation exclusively represents motion blur. Any other event that
can break the relation between the control signals, and can be detected by one of the
rules, is an error which must be detected and corrected. We conclude that tof motion
blur can be detected by one or more of these rules.
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(a)

(b)

Fig. 1.11 Depth-image motion blur detection results by the proposed method. a Depth images with
motion blur. b Intensity images with detected motion blur regions (indicated by white color)

Figure 1.11a shows depth-image samples with motion blur artifacts due to various
object motions such as rigid body, multiple body, and deforming body motions,
respectively. Motion blur occurs not just around object boundaries; inside an object,
any depth differences that are observed within the integration time will also cause
motion blur. Figure 1.11b shows detected motion blur regions indicated by white
color on respective depth and intensity images, by the method proposed in [24].
This is very straightforward but effective and fast method, which is fit for hardware
implementation without any additional frame memory or processing time.

1.4 Evaluation of Time-of-Flight and Structured-Light Data

The enhancement of tof and structured-light (e.g., Kinect [44]) data is an important
topic, owing to the physical limitations of these devices (as described in Sect. 1.3).
The characterization of depth noise, in relation to the particular sensing architecture,
is a major issue. This can be addressed using bilateral [49] or nonlocal [18] filters,
or in wavelet space [10], using prior knowledge of the spatial noise distribution.
Temporal filtering [30] and video-based [8] methods have also been proposed.
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The upsampling of low-resolution depth images is another critical issue. One
approach is to apply color super-resolution methods on tof depth images directly
[40]. Alternatively, a high-resolution color image can be used as a reference for
depth super resolution [1, 48]. The denoising and upsampling problems can also be
addressed together [2], and in conjunction with high-resolution monocular [34] or
binocular [7] color images.

It is also important to consider the motion artifacts [28] and multipath [13] prob-
lems which are characteristic of tof sensors. The related problem of tof depth
confidence has been addressed using random-forest methods [35]. Other issues with
tof sensors include internal and external calibration [14, 16, 27], as well as range
ambiguity [4]. In the case of Kinect, a unified framework of dense depth data extrac-
tion and 3D reconstruction has been proposed [33].

Despite the increasing interest in active depth sensors, there are many unresolved
issues regarding the data produced by these devices, as outlined above. Furthermore,
the lack of any standardized data sets, with ground truth, makes it difficult to make
quantitative comparisons between different algorithms.

The Middlebury stereo [38], multiview [41], and Stanford 3D scan [6] data set
have been used for the evaluation of depth-image denoising, upsampling, and 3D
reconstruction methods. However, these data sets do not provide real depth images
taken by either tof or structured-light depth sensors, and consist of illumination con-
trolled diffuse material objects. While previous depth accuracy enhancement methods
demonstrate their experimental results on their own data set, our understanding of the
performance and limitations of existing algorithms will remain partial without any
quantitative evaluation against a standard data set. This situation hinders the wider
adoption and evolution of depth-sensor systems.

In this section, we propose a performance evaluation framework for both tof
and structured-light depth images, based on carefully collected depth maps and their
ground truth images. First, we build a standard depth data set; calibrated depth images
captured by a tof depth camera and a structured-light system. Ground truth depth is
acquired from a commercial 3D scanner. The data set spans a wide range of objects,
organized according to geometric complexity (from smooth to rough), as well as
radiometric complexity (diffuse, specular, translucent, and subsurface scattering).
We analyze systematic and nonsystematic error sources, including the accuracy and
sensitivity with respect to material properties. We also compare the characteristics
and performance of the two different types of depth sensors, based on extensive
experiments and evaluations. Finally, to justify the usefulness of the data set, we use
it to evaluate simple denoising, super resolution, and inpainting algorithms.

1.4.1 Depth Sensors

As described in Sect. 1.2, the tof depth sensor emits IR waves to target objects, and
measures the phase delay of reflected IR waves at each sensor pixel, to calculate the
distance traveled. According to the color, reflectivity, and geometric structure of the
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target object, the reflected IR light shows amplitude and phase variations, causing
depth errors. Moreover, the amount of IR is limited by the power consumption of the
device, and therefore the reflected IR suffers from low signal-to-noise ratio (SNR).
To increase the SNR, tof sensors bind multiple sensor pixels to calculate a single
depth pixel value, which decreases the effective image size. Structured-light depth
sensors project an IR pattern onto target objects, which provides a unique illumination
code for each surface point observed at by a calibrated IR imaging sensor. Once the
correspondence between IR projector and IR sensor is identified by stereo matching
methods, the 3D position of each surface point can be calculated by triangulation.

In both sensor types, reflected IR is not a reliable cue for all surface materials. For
example, specular materials cause mirror reflection, while translucent materials cause
IR refraction. Global illumination also interferes with the IR sensing mechanism,
because multiple reflections cannot be handled by either sensor type.

1.4.2 Standard Depth Data Set

A range of commercial tof depth cameras have been launched in the market, such
as PMD, PrimeSense, Fotonic, ZCam, SwissRanger, 3D MLI, and others. Kinect
is the first widely successful commercial product to adopt the IR structured-light
principle. Among many possibilities, we specifically investigate two depth cameras:
a tof type SR4000 from MESA Imaging [29], and a structured-light type Microsoft
Kinect [43]. We select these two cameras to represent each sensor since they are the
most popular depth cameras in the research community, accessible in the market and
reliable in performance.

Heterogeneous Camera Set

We collect the depth maps of various real objects using the SR4000 and Kinect
sensors. To obtain the ground truth depth information, we use a commercial 3D
scanning device. As shown in Fig. 1.12, we place the camera set approximately
1.2 m away from the object of interest. The wall behind the object is located about
1.5 m away from the camera set. The specification of each device is as follows.

Mesa SR4000. This is a tof type depth sensor producing a depth map and amplitude
image at the resolution of 176× 144 with 16 bit floating-point precision. The ampli-
tude image contains the reflected IR light corresponding to the depth map. In addition
to the depth map, it provides {x, y, z} coordinates, which correspond to each pixel in
the depth map. The operating range of the SR4000 is 0.8–10.0 m, depending on the
modulation frequency. The field of view (FOV) of this device is 43× 34 degrees.

Kinect. This is a structured IR light type depth sensor, composed of an IR emitter, IR
sensor, and color sensor, providing the IR amplitude image, the depth map, and the
color image at the resolution of 640× 480 (maximum resolution for amplitude and
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Fig. 1.12 Heterogeneous camera setup for depth sensing

depth image) or 1600× 1200 (maximum resolution for RGB image). The operating
range is between 0.8 and 3.5 m, the spatial resolution is 3 mm at 2 m distance, and
the depth resolution is 10 mm at 2 m distance. The FOV is 57× 43 degrees.

FlexScan3D. We use a structured-light 3D scanning system for obtaining ground
truth depth. It consists of an LCD projector and two color cameras. The LCD projector
illuminates coded pattern at 1024 × 768 resolution, and each color camera records
the illuminated object at 2560× 1920 resolution.

Capturing Procedure for Test Images

The important property of the data set is that the measured depth data is aligned with
ground truth information, and with that of the other sensor. Each depth sensor has to
be fully calibrated internally and externally. We employ a conventional camera cali-
bration method [52] for both depth sensors and the 3D scanner. Intrinsic calibration
parameters for the tof sensors are known. Given the calibration parameters, we can
transform ground truth depth maps onto each depth sensor space. Once the system is
calibrated, we proceed to capture the objects of interest. For each object, we record
depth (ToFD) and intensity (ToFI) images from the SR4000, plus depth (SLD) and
color (SLC) from the Kinect. Depth captured by the FlexScan3D is used as ground
truth (GTD), as explained in more detail below (Fig. 1.13).

Data Set

We select objects that show radiometric variations (diffuse, specular, and translucent),
as well as geometric variations (smooth or rough). The total 36-item test set is divided
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Fig. 1.13 Sample raw image set of depth and ground truth. a GTD, b ToFD, c SLD, d Object,
e ToFI, f SLC

into three subcategories: diffuse material objects (class A), specular material objects
(class B), and translucent objects with subsurface scattering (class C), as in Fig. 1.15.
Each class demonstrates geometric variation from smooth to rough surfaces (a smaller
label number means a smoother surface).

From diffuse, through specular to translucent materials, the radiometric represen-
tation becomes more complex, requiring a high-dimensional model to predict the
appearance. In fact, the radiometric complexity also increases the level of challenges
in recovering its depth map. This is because the complex illumination interferes with
the sensing mechanism of most depth devices. Hence, we categorize the radiometric
complexity by three classes, representing the level of challenges posed by material
variation. From smooth to rough surfaces, the geometric complexity is increased,
especially due to mesostructure scale variation.

Ground Truth

We use a 3D scanner for ground truth depth acquisition. The principle of this sys-
tem is similar to [39]; using illumination patterns and solving correspondences and
triangulating between matching points to compute the 3D position of each surface
point. Simple gray illumination patterns are used, which gives robust performance
in practice. However, the patterns cannot be seen clearly enough to provide corre-
spondences for non-Lambertian objects [3]. Recent approaches [15] suggest new
high-frequency patterns, and present improvement in recovering depth in the pres-



1.4 Evaluation of Time-of-Flight and Structured-Light Data 17

Original objects After matt spray

Fig. 1.14 We apply white matt spray on top of non-Lambertian objects for ground truth depth
acquisition. Original objects after matt spray

Fig. 1.15 Test images categorized by their radiometric and geometric characteristics: class A diffuse
material objects (13 images), class B specular material objects (11 images), and class C translucent
objects with subsurface scattering (12 images)

ence of global illumination. Among all surfaces, the performance of structured-light
scanning systems is best for Lambertian materials.

The data set includes non-Lambertian materials presenting various illumination
effects; specular, translucent, and subsurface scattering. To employ the 3D scanner
system for ground truth depth acquisition of the data set, we apply white matt spray
on top of each object surface, so that we can give each object a Lambertian surface



18 1 Characterization of Time-of-Flight Data

while we take ground truth depth Fig. 1.14. To make it clear that the spray particles
do not change the surface geometry, we have compared the depth maps captured by
the 3D scanner before and after the spray on a Lambertian object. We observe that
the thickness of spray particles is below the level of the depth-sensing precision,
meaning that the spray particles do not affect on the accuracy of the depth map in
practice. Using this methodology, we are able to obtain ground truth depth for non-
Lambertian objects. To ensure the level of ground truth depth, we capture the depth
map of a white board. Then, we apply RANSAC to fit a plane to the depth map and
measure the variation of scan data from the plane. We observe that the variation is
less than 200µm, which is negligible compared to depth sensor errors. Finally, we
adopt the depth map from the 3D scanner as the ground truth depth, for quantitative
evaluation and analysis.

1.4.3 Experiments and Analysis

In this section, we investigate the depth accuracy, the sensitivity to various different
materials, and the characteristics of the two types of sensors.

Depth Accuracy and Sensitivity

Given the calibration parameters, we project the ground truth depth map onto each
sensor space, in order to achieve viewpoint alignment (Fig. 1.12). Due to the res-
olution difference, multiple pixels of the ground truth depth fall into each sensor
pixel. We perform a bilinear interpolation to find corresponding ground truth depth
for each sensor pixel. Due to the difference of field of view and occluded regions,
not all sensor pixels get corresponding ground truth depth. We exclude these pixels
and occlusion boundaries from the evaluation.

According to previous work [21, 42] and manufacturer reports on the accuracy
of depth sensors, the root-mean-square error (RMSE) of depth measurements is
approximately 5–20 mm at the distance of 1.5 m. These figures cannot be generalized
for all materials, illumination effects, complex geometry, and other factors. The use
of more general objects and environmental conditions invariably results in higher
RMSE of depth measurement than reported numbers. When we tested with a white
wall, which is similar to the calibration object used in previous work [42], we obtain
approximately 10.15 mm at the distance of 1.5 m. This is comparable to the previous
empirical study and reported numbers.

Because only foreground objects are controlled, the white background is seg-
mented out for the evaluation. The foreground segmentation is straightforward
because the background depth is clearly separated from that of foreground. In
Figs. 1.16, 1.17 and 1.18, we plot depth errors (RMSE) and show difference maps
(8 bit) between the ground truth and depth measurement. In the difference maps,
gray indicates zero difference, whereas a darker (or brighter) value indicates that the
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Fig. 1.16 Tof depth accuracy in RMSE (root mean square) for class A. The RMSE values and their
corresponding difference maps are illustrated. 128 in difference map represents zero difference
while 129 represents the ground truth is 1 mm larger than the measurement. Likewise, 127 indicates
that the ground truth is 1 mm smaller than the measurement

ground truth is smaller (or larger) than the estimated depth. The range of difference
map, [0, 255], spans [−128 mm, 128 mm] in RMSE.

Several interesting observations can be made from the experiments. First, we
observe that the accuracy of depth values varies substantially according to the mate-
rial property. As shown in Fig. 1.16, the average RMSE of class A is 26.80 mm
with 12.81 mm of standard deviation, which is significantly smaller than the overall
RMSE. This is expected, because class A has relatively simple properties, which
are well approximated by the Lambertian model. From Fig. 1.17 for class B, we are
unable to obtain the depth measurements on specular highlights. These highlights
either prevent the IR reflection back to the sensor, or cause the reflected IR to satu-
rate the sensor. As a result, the measured depth map shows holes, introducing a large
amount of errors. The RMSE for class B is 110.79 mm with 89.07 mm of standard
deviation. Class C is the most challenging subset, since it presents the subsurface
scattering and translucency. As expected, upon the increase in the level of translu-
cency, the measurement error is dramatically elevated as illustrated in Fig. 1.18.
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Fig. 1.17 Tof depth accuracy in RMSE (root mean square) for class B. The RMSE values and their
corresponding difference maps are illustrated

One thing to note is that the error associated with translucent materials differs
from that associated with specular materials. We still observe some depth values
for translucent materials, whereas the specular materials show holes in the depth
map. The measurement on translucent materials is incorrect, often producing larger
depth than the ground truth. Such a drift appears because the depth measurements
on translucent materials are the result of both translucent foreground surface and the
background behind. As a result, the corresponding measurement points lie some-
where between the foreground and the background surfaces.

Finally, the RMSE for class C is 148.51 mm with 72.19 mm of standard devia-
tion. These experimental results are summarized in Table 1.1. Interestingly, the accu-
racy is not so much dependent on the geometric complexity of the object. Focusing
on class A, although A-11, A-12, and A-13 possess complicated and uneven sur-
face geometry, the actual accuracy is relatively good. Instead, we find that the error
increases as the surface normal deviates from the optical axis of the sensor. In fact,
a similar problem has been addressed by [22], in that the orientation is the source



1.4 Evaluation of Time-of-Flight and Structured-Light Data 21

Fig. 1.18 Tof depth accuracy in RMSE (root mean square) for class C. The RMSE values and their
corresponding difference maps are illustrated

of systematic error in sensor measurement. In addition, surfaces where the global
illumination occurs due to multipath IR transport (such as the concave surfaces on
A-5, A-6, A-10 of Class A) exhibit erroneous measurements.

Due to its popular application in games and human computer interaction, many
researchers have tested and reported the result of Kinect applications. One of common
observation is that the Kinect presents some systematic error with respect to distance.
However, there has been no in-depth study on how the Kinect works on various
surface materials. We measure the depth accuracy of Kinect using the data set, and
illustrate the results in Figs. 1.16, 1.17 and 1.18.

Overall RMSE is 191.69 mm, with 262.19 mm of standard deviation. Although the
overall performance is worse than that of tof sensor, it provides quite accurate results
for class A. From the experiments, it is clear that material properties are strongly
correlated with depth accuracy. The RMSE for class A is 13.67 mm with 9.25 mm
of standard deviation. This is much smaller than the overall RMSE, 212.56 mm.
However, the error dramatically increases in class B (303.58 mm with 249.26 mm of
deviation). This is because the depth values for specular materials cause holes in the
depth map, similar to the behavior of the tof sensor.

From the experiments on class C, we observe that the depth accuracy drops sig-
nificantly upon increasing the level of translucency, especially starting at the object
C-8. In the graph shown in Fig. 1.18, one can observe that the RMSE is reduced with
a completely transparent object (C-12, a pure water). It is because caustic effects
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Table 1.1 Depth accuracy upon material properties. Class A: diffuse, Class B: specular, Class C:
translucent. See Fig. 1.15 for illustration

Overall Class A Class B Class C

ToF 83.10 29.68 93.91 131.07
(76.25) (10.95) (87.41) (73.65)

Kinect 170.153 13.67 235.30 279.96
(282.25) (9.25) (346.44) (312.97)

Root-mean-square error (standard deviation) in mm

Table 1.2 Depth accuracy before/after bilateral filtering and superresolution for class A. See
Fig. 1.19 for illustration

Original RMSE Bilateral filtering Bilinear interpolation

ToF 29.68 27.78 31.93
(10.95) (10.37) (23.34)

Kinect 13.67 13.30 15.02
(9.25) (9.05) (12.61)

Root-mean-square error (standard deviation) in mm

appear along the object, sending back unexpected IR signals to the sensor. Since the
sensor receives the reflected IR, RMSE improves in this case. However, this does
not always stand for a qualitative improvement. The overall RMSE for class C is
279.96 mm with 312.97 mm of standard deviation. For comparison, see Table 1.1.

ToF Versus Kinect Depth

In previous sections, we have demonstrated the performance of tof and structured-
light sensors. We now characterize the error patterns of each sensor, based on the
experimental results. For both sensors, we observe two major errors; data drift and
data loss. It is hard to state which kind of error is most serious, but it is clear that both
must be addressed. In general, the tof sensor tends to show data drift, whereas the
structured-light sensor suffers from data loss. In particular, the tof sensor produces
a large offset in depth values along boundary pixels and transparent pixels, which
correspond to data drift. Under the same conditions, the structured-light sensor tends
to produce holes, in which the depth cannot be estimated. For both sensors, specular
highlights lead to data loss.

1.4.4 Enhancement

In this section, we apply simple denoising, super resolution and inpainting algorithms
on the data set, and report their performance. For denoising and super resolution, we
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Table 1.3 Depth accuracy before/after inpainting for class B. See Fig. 1.20 for illustration

Original RMSE Example-based inpainting

ToF 93.91 71.62
(87.41) (71.80)

Kinect 235.30 125.73
(346.44) (208.66)

Root-mean-square error (standard deviation) in mm

test only on class A, because class B and C often suffer from significant data drift or
data loss, which neither denoising nor super resolution alone can address.

By excluding class B and C, it is possible to precisely evaluate the quality gain
due to each algorithm. On the other hand, we adopt the image inpainting algorithm
on class B, because in this case the typical errors are holes, regardless of sensor type.
Although the characteristics of depth images differ from those of color images, we
apply color inpainting algorithms on depth images, to compensate for the data loss
in class B. We then report the accuracy gain, after filling in the depth holes. Note
that the aim of this study is not to claim any state-of-the art technique, but to provide
baseline test results on the data set.

We choose a bilateral filter for denoising the depth measurements. The bilateral
filter size is set to 3 × 3 (for tof, 174 × 144 resolution) or 10 × 10 (for Kinect,
640 × 480 resolution). The standard deviation of the filter is set to 2 in both cases.
We compute the RMSE after denoising and obtain 27.78 mm using tof, and 13.30 mm
using Kinect as demonstrated in Tables 1.2 and 1.3. On average, the bilateral filter
provides an improvement in depth accuracy; 1.98 mm gain for tof and 0.37 mm for
Kinect. Figure 1.19 shows the noise-removed results, with input depth.

We perform bilinear interpolation for super resolution, increasing the resolution
twice per dimension (upsampling by a factor of four). We compute the RMSE before
and after the super resolution process from the identical ground truth depth map.
The depth accuracy is decreased after super resolution by 2.25 mm (tof) or 1.35 mm
(Kinect). The loss of depth accuracy is expected, because the recovery of surface
details from a single low-resolution image is an ill-posed problem. The quantitative
evaluation results for denoising and super resolution are summarized in Tables 1.2
and 1.3.

For inpainting, we employ an exemplar-based algorithm [5]. Criminisi et al.
designed a fill order to retain the linear structure of scene, and so their method
is well suited for depth images. For hole filling, we set the patch size to 3×3 for tof
and to 9×9 for Kinect, in order to account for the difference in resolution. Finally, we
compute the RMSE after inpainting, which is 75.71 mm for tof and 125.73 mm for
Kinect. The overall accuracy has been improved by 22.30 mm for tof and 109.57 mm
for Kinect. The improvement for Kinect is more significant than tof, because the
data loss appears more frequently in Kinect than tof. After the inpainting process,
we obtain a reasonable quality improvement for class B.



24 1 Characterization of Time-of-Flight Data

.

ToF Kinect

Fig. 1.19 Results before and after bilateral filtering (top) and bilinear interpolation (bottom)

.

ToF Kinect

Fig. 1.20 Before and after inpainting

Based on the experimental study, we confirm that both depth sensors provide
relatively accurate depth measurements for diffuse materials (class A). For specular
materials (class B), both sensors exhibit data loss appearing as holes in the measured
depth. Such a data loss causes a large amount of error in the depth images in Fig. 1.21.
For translucent materials (class C), the tof sensor shows nonlinear data drift toward
the background. On the other hand, the Kinect sensor shows data loss on translucent
materials. Upon the increase of translucency, the performance of both sensors is
degraded accordingly.
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Fig. 1.21 Sample depth images and difference maps from the test image set

1.5 Conclusions

This chapter has reported both quantitative and qualitative experimental results for
the evaluation of each sensor type. Moreover, we provide a well-structured standard
data set of depth images from real world objects, with accompanying ground truth
depth. The data set spans a wide variety of radiometric and geometric complexity,
which is well suited to the evaluation of depth processing algorithms. The analysis
has revealed important problems in depth acquisition and processing, especially
measurement errors due to material properties. The data set will provide a standard
framework for the evaluation of other denoising, super resolution, interpolation, and
related depth-processing algorithms.
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Chapter 2
Disambiguation of Time-of-Flight Data

Abstract The maximum range of a time-of-flight camera is limited by the peri-
odicity of the measured signal. Beyond a certain range, which is determined by
the signal frequency, the measurements are confounded by phase wrapping. This
effect is demonstrated in real examples. Several phase-unwrapping methods, which
can be used to extend the range of time-of-flight cameras, are discussed. Simple
methods can be based on the measured amplitude of the reflected signal, which is
itself related to the depth of objects in the scene. More sophisticated unwrapping
methods are based on zero-curl constraints, which enforce spatial consistency on the
phase measurements. Alternatively, if more than one depth camera is used, then the
data can be unwrapped by enforcing consistency among different views of the same
scene point. The relative merits and shortcomings of these methods are evaluated,
and the prospects for hardware-based approaches, involving frequency modulation
are discussed.

Keywords Time-of-Flight principle · Depth ambiguity · Phase unwrapping ·
Multiple depth cameras

2.1 Introduction

Time-of-Flight cameras emit modulated infrared light and detect its reflection from
the illuminated scene points. According to the tof principle described in Chap. 1, the
detected signal is gated and integrated using internal reference signals, to form the
tangent of the phase φ of the detected signal. Since the tangent of φ is a periodic
function with a period of 2π , the value φ+2nπ gives exactly the same tangent value
for any nonnegative integer n.

Commercially available tof cameras compute φ on the assumption that φ is within
the range of [0, 2π). For this reason, each modulation frequency f has its maximum
range dmax corresponding to 2π , encoded without ambiguity:
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dmax = c

2 f
, (2.1)

where c is the speed of light. For any scene points farther than dmax, the measured
distance d is much shorter than its actual distance d + ndmax. This phenomenon is
called phase wrapping, and estimating the unknown number of wrappings n is called
phase unwrapping.

For example, the Mesa SR4000 [16] camera records a 3D point Xp at each pixel p,
where the measured distance dp equals ‖Xp‖. In this case, the unwrapped 3D point
Xp(n p) with number of wrappings n p can be written as

Xp(n p) = dp + n pdmax

dp
Xp. (2.2)

Figure 2.1a shows a typical depth map acquired by the SR4000 [16], and Fig. 2.1b
shows its unwrapped depth map. As shown in Fig. 2.1e, phase unwrapping is crucial
for recovering large-scale scene structure.

To increase the usable range of tof cameras, it is also possible to extend the
maximum range dmax by decreasing the modulation frequency f . In this case, the
integration time should also be extended, to acquire a high quality depth map,
since the depth noise is inversely proportional to f . With extended integration time,
moving objects are more likely to result in motion artifacts. In addition, we do not
know at which modulation frequency phase wrapping does not occur, without exact
knowledge regarding the scale of the scene.

If we can accurately unwrap a depth map acquired at a high modulation frequency,
then the unwrapped depth map will suffer less from noise than a depth map acquired
at a lower modulation frequency, integrated for the same time. Also, if a phase-
unwrapping method does not require exact knowledge on the scale of the scene, then
the method will be applicable in more large-scale environments.

There exist a number of phase-unwrapping methods [4–8, 14, 17, 21] that have
been developed for tof cameras. According to the number of input depth maps, the
methods are categorized into two groups: those using a single depth map [5, 7, 14,
17, 21] and those using multiple depth maps [4, 6, 8, 20]. The following subsections
introduce their principles, advantages and limitations.

2.2 Phase Unwrapping from a Single Depth Map

tof cameras such as the SR4000 [16] provide an amplitude image along with its
corresponding depth map. The amplitude image is encoded with the strength of the
detected signal, which is inversely proportional to the squared distance. To obtain
corrected amplitude A′ [19], which is proportional to the reflectivity of a scene surface
with respect to the infrared light, we can multiply amplitude A and its corresponding
squared distance d2:
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Fig. 2.1 Structure recovery through phase unwrapping. a Wrapped tof depth map. b Unwrapped
depth map corresponding to (a). Only the distance values are displayed in (a) and (b), to aid visibility.
The intensity is proportional to the distance. c Amplitude image associated with (a). d and e display
the 3D points corresponding to (a) and (b), respectively. d The wrapped points are displayed in
red. e Their unwrapped points are displayed in blue. The remaining points are textured using the
original amplitude image (c)

A′ = Ad2. (2.3)

Figure 2.2 shows an example of amplitude correction. It can be observed from
Fig. 2.2c that the corrected amplitude is low in the wrapped region. Based on the
assumption that the reflectivity is constant over the scene, the corrected amplitude
values can play an important role in detecting wrapped regions [5, 17, 21].

Poppinga and Birk [21] use the following inequality for testing if the depth of
pixel p has been wrapped:

A′p ≤ Aref
p T, (2.4)

where T is a manually chosen threshold, and Aref
p is the reference amplitude of

pixel p when viewing a white wall at 1 m, approximated by
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Fig. 2.2 Amplitude correction example. a Amplitude image. b tof depth map. c Corrected ampli-
tude image. The intensity in (b) is proportional to the distance. The lower left part of (b) has been
wrapped. Images courtesy of Choi et al. [5]

Aref
p = B − (

(x p − cx )
2 + (yp − cy)

2), (2.5)

where B is a constant. The image coordinates of p are (x p, yp), and (cx , cy) is approx-
imately the image center, which is usually better illuminated than the periphery. Aref

p

compensates this effect by decreasing Aref
p T if pixel p is in the periphery.

After the detection of wrapped pixels, it is possible to directly obtain an unwrapped
depth map by setting the number of wrappings of the wrapped pixels to one on the
assumption that the maximum number of wrappings is 1.

The assumption on the constant reflectivity tends to be broken when the scene
is composed of different objects with varying reflectivity. This assumption cannot
be fully relaxed without detailed knowledge of scene reflectivity, which is hard to
obtain in practice. To robustly handle varying reflectivity, it is possible to adaptively
set the threshold for each image and to enforce spatial smoothness on the detection
results.

Choi et al. [5] model the distribution of corrected amplitude values in an image
using a mixture of Gaussians with two components, and apply expectation maxi-
mization [1] to learn the model:

p(A′p) = αH p(A′p|μH , σ 2
H )+ αL p(A′p|μL , σ 2

L), (2.6)

where p(A′p|μ, σ 2) denotes a Gaussian distribution with mean μ and variance σ 2,
and α is the coefficient for each distribution. The components p(A′p|μH , σ 2

H ) and
p(A′p|μL , σ 2

L) describe the distributions of high and low corrected amplitude values,
respectively. Similarly, the subscripts H and L denote labels high and low, respec-
tively. Using the learned distribution, it is possible to write a probabilistic version of
Eq. (2.4) as

P(H |A′p) < 0.5, (2.7)

where P(H |A′p) = αH p(A′p|μH , σ 2
H )/p(A′p).

To enforce spatial smoothness on the detection results, Choi et al. [5] use a seg-
mentation method [22] based on Markov random fields (MRFs). The method finds
the binary labels n ∈ {H, L} or {0, 1} that minimize the following energy:
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Fig. 2.3 Detection of wrapped regions. a Result obtained by expectation maximization. b Result
obtained by MRF optimization. The pixels with labels L and H are colored in black and white,
respectively. The red pixels are those with extremely high or low amplitude values, which are
not processed during the classification. c Unwrapped depth map corresponding to Fig. 2.2(b). The
intensity is proportional to the distance. Images courtesy of Choi et al. [5]

E =
∑

p

Dp(n p)+
∑
(p,q)

V (n p, nq), (2.8)

where Dp(n p) is a data cost that is defined as 1 − P(n p|A′p), and V (n p, nq) is a
discontinuity cost that penalizes a pair of adjacent pixels p and q if their labels n p

and nq are different. V (n p, nq) is defined in a manner of increasing the penalty if a
pair of adjacent pixels have similar corrected amplitude values:

V (n p, nq) = λ exp
(−β(A′p − A′q)2) δ(n p �= nq), (2.9)

where λ and β are constants, which are either manually chosen or adaptively deter-
mined. δ(x) is a function that evaluates to 1 if its argument is true and evaluates to
zero otherwise.

Figure 2.3 shows the classification results obtained by Choi et al. [5] Because of
varying reflectivity of the scene, the result in Fig. 2.3a exhibits misclassified pixels in
the lower left part. The misclassification is reduced by applying the MRF optimization
as shown in Fig. 2.3b. Figure 2.3c shows the unwrapped depth map obtained by Choi
et al. [5], corresponding to Fig. 2.2b.

McClure et al. [17] also use a segmentation-based approach, in which the depth
map is segmented into regions by applying the watershed transform [18]. In their
method, wrapped regions are detected by checking the average corrected amplitude
of each region.

On the other hand, depth values tend to be highly discontinuous across the wrap-
ping boundaries, where there are transitions in the number of wrappings. For exam-
ple, the depth maps in Figs. 2.1a, 2.2b shows such discontinuities. On the assumption
that the illuminated surface is smooth, the depth difference between adjacent pixels
should be small. If the difference between measured distances is greater than 0.5dmax
for any adjacent pixels, say dp − dq > 0.5dmax, we can set the number of relative
wrappings, or, briefly, the shift nq − n p to 1 so that the unwrapped difference will
satisfy −0.5dmax ≤ dp − dq − (nq − n p)dmax < 0, minimizing the discontinuity.
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Fig. 2.4 One-dimensional phase-unwrapping example. a Measured phase image. b Unwrapped
phase image where the phase difference between p and q is now less than 0.5. In (a) and (b), all the
phase values have been divided by 2π . For example, the displayed value 0.1 corresponds to 0.2π

Fig. 2.5 Two-dimensional
phase-unwrapping example. a
Measured phase image. (b–d)
Sequentially unwrapped phase
images where the phase differ-
ence across the red dotted line
has been minimized. From
a to d, all the phase values
have been divided by 2π . For
example, the displayed value
0.1 corresponds to 0.2π

Figure 2.4 shows a one-dimensional phase-unwrapping example. In Fig. 2.4a, the
phase difference between pixels p and q is greater than 0.5 (or π ). The shifts that
minimize the difference between adjacent pixels are 1 (or, nq −n p = 1) for p and q,
and 0 for the other pairs of adjacent pixels. On the assumption that n p equals 0, we
can integrate the shifts from left to right to obtain the unwrapped phase image in
Fig. 2.4b.

Figure 2.5 shows a two-dimensional phase-unwrapping example. From Fig. 2.5a
to d, the phase values are unwrapped in a manner of minimizing the phase difference
across the red dotted line. In this two-dimensional case, the phase differences greater
than 0.5 never vanish, and the red dotted line cycles around the image center infinitely.
This is because of the local phase error that causes the violation of the zero-curl
constraint [9, 12].

Figure 2.6 illustrates the zero-curl constraint. Given four neighboring pixel loca-
tions (x, y), (x + 1, y), (x, y+ 1), and (x + 1, y+ 1), let a(x, y) and b(x, y) denote
the shifts n(x+1, y)−n(x, y) and n(x, y+1)−n(x, y), respectively, where n(x, y)

denotes the number of wrappings at (x, y). Then, the shift n(x+1, y+1)−n(x, y) can
be calculated in two different ways: either a(x, y)+b(x+1, y) or b(x, y)+a(x, y+1)
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Fig. 2.6 Zero-curl constraint: a(x, y) + b(x + 1, y) = b(x, y) + a(x, y + 1). a The number of
relative wrappings between (x+1, y+1) and (x, y) should be consistent regardless of its integrating
paths. For example, two different paths (red and blue) are shown. b shows an example in which the
constraint is not satisfied. The four pixels correspond to the four pixels in the middle of Fig. 2.5a

following one of the two different paths shown in Fig. 2.6a. For any phase-unwrapping
results to be consistent, the two values should be the same, satisfying the following
equality:

a(x, y)+ b(x + 1, y) = b(x, y)+ a(x, y + 1). (2.10)

Because of noise or discontinuities in the scene, the zero-curl constraint may not
be satisfied locally, and the local error is propagated to the entire image during
the integration. There exist classical phase-unwrapping methods [9, 12] applied in
magnetic resonance imaging [15] and interferometric synthetic aperture radar (SAR)
[13], which rely on detecting [12] or fixing [9] broken zero-curl constraints. Indeed,
these classical methods [9, 12] have been applied to phase unwrapping for tof
cameras [7, 14].

2.2.1 Deterministic Methods

Goldstein et al. [12] assume that the shift is either 1 or -1 between adjacent pixels if
their phase difference is greater than π , and assume that it is 0 otherwise. They detect
cycles of four neighboring pixels, referred to as plus and minus residues, which do
not satisfy the zero-curl constraint.

If any integration path encloses an unequal number of plus and minus residue,
the integrated phase values on the path suffer from global errors. In contrast, if any
integration path encloses an equal number of plus and minus residues, the global error
is balanced out. To prevent global errors from being generated, Goldstein et al. [12]
connect nearby plus and minus residues with cuts, which interdict the integration
paths, such that no net residues can be encircled.

After constructing the cuts, the integration starts from a pixel p, and each neigh-
boring pixel q is unwrapped relatively to p in a greedy and sequential manner if q
has not been unwrapped and if p and q are on the same side of the cuts.
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Fig. 2.7 Graphical model that describes the zero-curl constraints (black discs) between neighboring
shift variables (white discs). 3-element probability vectors (μ’s) on the shifts between adjacent nodes
(−1, 0, or 1) are propagated across the network. The x marks denote pixels [9]

2.2.2 Probabilistic Methods

Frey et al. [9] propose a very loopy belief propagation method for estimating the
shift that satisfies the zero-curl constraints. Let the set of shifts, and a measured
phase image, be denoted by

S =
{

a(x, y), b(x, y) : x = 1, . . . , N − 1; y = 1, . . . , M − 1
}

and

Φ =
{
φ(x, y) : 0 ≤ φ(x, y) < 1, x = 1, . . . , N ; y = 1, . . . , M

}
,

respectively, where the phase values have been divided by 2π . The estimation is then
recast as finding the solution that maximizes the following joint distribution:

p(S, Φ) ∝
N−1∏
x=1

M−1∏
y=1

δ(a(x, y)+ b(x + 1, y)− a(x, y + 1)− b(x, y))

×
N−1∏
x=1

M∏
y=1

e− (φ(x + 1,y)−φ(x,y)+ a(x,y))2/2σ 2

×
N∏

x=1

M−1∏
y=1

e−(φ(x,y+1)−φ(x,y)+b(x,y))2/2σ 2

where δ(x) evaluates to 1 if x = 0 and to 0 otherwise. The variance σ 2 is estimated
directly from the wrapped phase image [9].
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Fig. 2.8 a Constraint-to-shift vectors are computed from incoming shift-to-constraint vectors.
b Shift-to-constraint vectors are computed from incoming constraint-to-shift vectors. c Estimates
of the marginal probabilities of the shifts given the data are computed by combining incoming
constraint-to-shift vectors [9]

Frey et al. [9] construct a graphical model describing the factorization of p(S, Φ),
as shown in Fig. 2.7. In the graph, each shift node (white disc) is located between
two pixels, and corresponds to either an x-directional shift (a’s) or a y-directional
shift (b’s). Each constraint node (black disc) corresponds to a zero-curl constraint,
and is connected to its four neighboring shift nodes. Every node passes a message to
its neighboring node, and each message is a 3-vector denoted by μ, whose elements
correspond to the allowed values of shifts, −1, 0, and 1. Each element of μ can be
considered as a probability distribution over the three possible values [9].

Figure 2.8a illustrates the computation of a message μ4 from a constraint node to
one of its neighboring shift nodes. The constraint node receives messages μ1, μ2,
and μ3 from the rest of its neighboring shift nodes, and filters out the joint message
elements that do not satisfy the zero-curl constraint:

μ4i =
1∑

j=−1

1∑
k=−1

1∑
l=−1

δ(k + l − i − j)μ1 jμ2kμ3l , (2.11)

where μ4i denotes the element of μ4, corresponding to shift value i ∈ {−1, 0, 1}.
Figure 2.8b illustrates the computation of a message μ2 from a shift node to one

of its neighboring constraint node. Among the elements of the message μ1 from the
other neighboring constraint node, the element, which is consistent with the measured
shift φ(x, y)− φ(x + 1, y), is amplified:

μ2i = μ1i exp
(
−(

φ(x + 1, y)− φ(x, y)+ i
)2/2σ 2

)
. (2.12)

After the messages converge (or, after a fixed number of iterations), an estimate of
the marginal probability of a shift is computed by using the messages passed into its
corresponding shift node, as illustrated in Fig. 2.8c:
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P̂
(
a(x, y) = i |Φ) = μ1iμ2i∑

j
μ1 jμ2 j

. (2.13)

Given the estimates of the marginal probabilities, the most probable value of each shift
node is selected. If some zero-curl constraints remain violated, a robust integration
technique, such as least-squares integration [10] should be used [9].

2.2.3 Discussion

The aforementioned phase-unwrapping methods using a single depth map [5, 7, 14,
17, 21] have an advantage that the acquisition time is not extended, keeping the
motion artifacts at a minimum. The methods, however, rely on strong assumptions
that are fragile in real world situations. For example, the reflectivity of the scene
surface may vary in a wide range. In this case, it is hard to detect wrapped regions
based on the corrected amplitude values. In addition, the scene may be discontinuous
if it contains multiple objects that occlude one another. In this case, the wrapping
boundaries tend to coincide with object boundaries, and it is often hard to observe
large depth discontinuities across the boundaries, which play an important role in
determining the number of relative wrappings.

The assumptions can be relaxed by using multiple depth maps at a possible exten-
sion of acquisition time. The next subsection introduces phase-unwrapping methods
using multiple depth maps.

2.3 Phase Unwrapping from Multiple Depth Maps

Suppose that a pair of depth maps M1 and M2 of a static scene are given, which have
been taken at different modulation frequencies f1 and f2 from the same viewpoint.
In this case, pixel p in M1 corresponds to pixel p in M2, since the corresponding
region of the scene is projected onto the same location of M1 and M2. Thus, the
unwrapped distances at those corresponding pixels should be consistent within the
noise level.

Without prior knowledge, the noise in the unwrapped distance can be assumed
to follow a zero-mean distribution. Under this assumption, the maximum likelihood
estimates of the numbers of wrappings at the corresponding pixels should minimize
the difference between their unwrapped distances. Let m p and n p be the numbers of
wrappings at pixel p in M1 and M2, respectively. Then, we can choose m p and n p

that minimize g(m p, n p) such that

g(m p, n p) =
∣∣dp( f1)+ m pdmax( f1)− dp( f2)− n pdmax( f2)

∣∣, (2.14)
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Fig. 2.9 Frequency modu-
lation within an integration
period. The first half is modu-
lated at f1, and the other half
is modulated at f2

where dp( f1) and dp( f2) denote the measured distances at pixel p in M1 and M2
respectively, and dmax( f ) denotes the maximum range of f .

The depth consistency constraint has been mentioned by Göktürk et al. [11] and
used by Falie and Buzuloiu [8] for phase unwrapping of tof cameras. The illuminat-
ing power of tof cameras is, however, limited due to the eye-safety problem, and the
reflectivity of the scene may be very low. In this situation, the amount of noise may
be too large for accurate numbers of wrappings to minimize g(m p, n p). For robust
estimation against noise, Droeschel et al. [6] incorporate the depth consistency con-
straint into their earlier work [7] for a single depth map, using an auxiliary depth
map of a different modulation frequency.

If we acquire a pair of depth maps of a dynamic scene sequentially and indepen-
dently, the pixels at the same location may not correspond to each other. To deal with
such dynamic situations, several approaches [4, 20] acquire a pair of depth maps
simultaneously. These can be divided into single-camera and multicamera methods,
as described below.

2.3.1 Single-Camera Methods

For obtaining a pair of depth maps sequentially, four samples of integrated electric
charge are required per each integration period, resulting in eight samples within a
pair of two different integration periods. Payne et al. [20] propose a special hardware
system that enables simultaneous acquisition of a pair of depth maps at different fre-
quencies by dividing the integration period into two, switching between frequencies
f1 and f2, as shown in Fig. 2.9.

Payne et al. [20] also shows that it is possible to obtain a pair of depth maps with
only five or six samples within a combined integration period, using their system.
By using fewer samples, the total readout time is reduced and the integration period
for each sample can be extended, resulting in an improved signal-to-noise ratio.
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Fig. 2.10 a Stereo tof camera system. (b, c) Depth maps acquired by the system. d Amplitude
image corresponding to (b). (e, f) Unwrapped depth maps, corresponding to (b) and (c), respectively.
The intensity in (b, c, e, f) is proportional to the depth. The maximum intensity (255) in (b, c) and
(e, f) correspond to 5.2 and 15.6 m, respectively. Images courtesy of Choi and Lee [4]

2.3.2 Multicamera Methods

Choi and Lee [4] use a pair of commercially available tof cameras to simultaneously
acquire a pair of depth maps from different viewpoints. The two cameras C1 and C2
are fixed to each other, and the mapping of a 3D point X from C1 to its corresponding
point X′ from C2 is given by (R, T), where R is a 3 × 3 rotation matrix, and T is
a 3 × 1 translation vector. In [4], the extrinsic parameters R and T are assumed to
have been estimated. Figure 2.10a shows the stereo tof camera system.

Denoting by M1 and M2 a pair of depth maps acquired by the system, a pixel p
in M1 and its corresponding pixel q in M2 should satisfy:

X′q(nq) = RXp(m p)+ T, (2.15)

where Xp(m p) and X′q(nq) denote the unwrapped 3D points of p and q with their
numbers of wrappings m p and nq , respectively.

Based on the relation in Eq. (2.15), Choi and Lee [4] generalize the depth con-
sistency constraint in Eq. (2.14) for a single camera to those for the stereo camera
system:

Dp(m p) = min
nq
∈{0,...,N }

(∥∥X′q
 (nq
 )− RXp(m p)− T
∥∥)

, (2.16)

Dq(nq) = min
m p
∈{0,...,N }

(∥∥Xp
 (m p
 )− RT (X′q(nq)− T)
∥∥)

,
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Table 2.1 Summary of phase-unwrapping methods

Methods # Depth maps Cues Approach Maximum range

Poppinga and Birk [21] 1 CAa Thresholding 2dmax

Choi et al. [5] 1 CA, DDb Segmentation, MRF (N d + 1)dmax

McClure et al. [17] 1 CA Segmentation, thresholding 2dmax

Jutzi [14] 1 DD Branch cuts, integration ∞
Droeschel et al. [7] 1 DD MRF, integration ∞
Droeschel et al. [6] 2 (Multi-freq.) DD, DCc MRF, integration ∞
Payne et al. [20] 2 (Multi-freq.) DC Hardware c

2| f1− f2|
Choi and Lee [4] 2 (Stereo) DC Stereo ToF, MRF (N + 1)dmax
a Corrected amplitude. b Depth discontinuity. c Depth consistency. d The maximum number of
wrappings determined by the user.

where pixels q
 and p
 are the projections of RXp(m p)+ T and RT (X′q(nq)− T)

onto M2 and M1, respectively. The integer N is the maximum number of wrappings,
determined by approximate knowledge on the scale of the scene.

To robustly handle with noise and occlusion, Choi and Lee [4] minimize the
following MRF energy functions E1 and E2, instead of independently minimizing
Dp(m p) and Dq(mq) at each pixel:

E1 =
∑

p∈M1

D̂p(m p)+
∑
(p,u)

V (m p, mu), (2.17)

E2 =
∑

q∈M2

D̂q(nq)+
∑
(q,v)

V (nq , nv),

where D̂p(m p) and D̂q(nq) are the data cost of assigning m p and nq to pixels p and
q, respectively. Functions V (m p, mu) and V (nq , nv) determine the discontinuity
cost of assigning (m p,mu) and (nq ,nv) to pairs of adjacent pixels (p,u) and (q,v),
respectively.

The data costs D̂p(m p) and D̂q(nq) are defined by truncating Dp(m p) and Dq(nq)

to prevent their values from becoming too large, due to noise and occlusion:

D̂p(m p) = τε

(
Dp(m p)

)
, D̂q(nq) = τε

(
Dq(nq)

)
, (2.18)

τε(x) =
{

x, if x < ε,

ε, otherwise,
(2.19)

where ε is a threshold proportional to the extrinsic calibration error of the system.
The function V (m p, mu) is defined in a manner that preserves depth continuity

between adjacent pixels. Choi and Lee [4] assume a pair of measured 3D points Xp

and Xu to have been projected from close surface points if they are close to each
other and have similar corrected amplitude values. The proximity is preserved by
penalizing the pair of pixels if they have different numbers of wrappings:
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V (m p, mu) =

⎧⎪⎨
⎪⎩

λ
rpu

exp
(
−ΔX2

pu

2σ 2
X

)
exp

(
−ΔA′2pu

2σ 2
A′

)
if

{
m p �= mu and
ΔXpu < 0.5 dmax( f1)

0 otherwise.

where λ is a constant, ΔX2
pu = ‖Xp − Xu‖2, and ΔA′2pu = ‖A′p − A′u‖2. The

variances σ 2
X and σ 2

A′ are adaptively determined. The positive scalar rpu is the image
coordinate distance between p and u for attenuation of the effect of less adjacent
pixels. The function V (nq , nv) is defined by analogy with V (m p, mu).

Choi and Lee [4] minimize the MRF energies via the α-expansion algorithm [2],
obtaining a pair of unwrapped depth maps. To enforce further consistency between
the unwrapped depth maps, they iteratively update the MRF energy corresponding
to a depth map, using the unwrapped depth of the other map, and perform the min-
imization until the consistency no longer increases. Figure 2.10e, f shows examples
of unwrapped depth maps, as obtained by the iterative optimizations. An alternative
method for improving the depth accuracy using two tof cameras is described in [3].

2.3.3 Discussion

Table 2.1 summarizes the phase-unwrapping methods [4–7, 14, 17, 20, 21] for tof
cameras. The last column of the table shows the extended maximum range, which
can be theoretically achieved by the methods. The methods [6, 7, 14] based on
the classical phase-unwrapping methods [9, 12] deliver the widest maximum range.
In [4, 5], the maximum number of wrappings can be determined by the user. It
follows that the maximum range of the methods can also become sufficiently wide,
by setting N to a large value. In practice, however, the limited illuminating power
of commercially available tof cameras prevents distant objects from being precisely
measured. This means that the phase values may be invalid, even if they can be
unwrapped. In addition, the working environment may be physically confined. For
the latter reason, Droeschel et al. [6, 7] limit the maximum range to 2dmax.

2.4 Conclusions

Although the hardware system in [20] has not yet been established in commercially
available tof cameras, we believe that future tof cameras will use such a frequency
modulation technique for accurate and precise depth measurement. In addition, the
phase-unwrapping methods in [4, 6] are ready to be applied to a pair of depth maps
acquired by such future tof cameras, for robust estimation of the unwrapped depth
values. We believe that a suitable combination of hardware and software systems
will extend the maximum tof range, up to a limit imposed by the illuminating power
of the device.
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Chapter 3
Calibration of Time-of-Flight Cameras

Abstract This chapter describes the metric calibration of a time-of-flight camera
including the internal parameters, and lens distortion. Once the camera has been
calibrated, the 2D depth image can be transformed into a range map, which encodes
the distance to the scene along each optical ray. It is convenient to use established
calibration methods, which are based on images of a chequerboard pattern. The
low resolution of the amplitude image, however, makes it difficult to detect the
board reliably. Heuristic detection methods, based on connected image compo-
nents, perform very poorly on this data. An alternative, geometrically principled
method is introduced here, based on the Hough transform. The Hough method is
compared to the standard OpenCV board-detection routine, by application to several
hundred time-of-flight images. It is shown that the new method detects significantly
more calibration boards, over a greater variety of poses, without any significant loss
of accuracy.

Keywords Time-of-Flight cameras · Low-resolution camera calibration · Hough
transform · Chessboard detection

3.1 Introduction

Time-of-Flight (tof) cameras can, in principle, be modeled and calibrated as pinhole
devices. For example, if a known chequerboard pattern is detected in a sufficient
variety of poses, then the internal and external camera parameters can be estimated by
standard routines [10, 19]. This chapter will briefly review the underlying calibration
model, before addressing the problem of chequerboard detection in detail. The latter
is the chief obstacle to the use of existing calibration software, owing to the low
resolution of the tof images.

M. Hansard et al., Time-of-Flight Cameras, SpringerBriefs in Computer Science, 45
DOI: 10.1007/978-1-4471-4658-2_3, © Miles Hansard 2013



46 3 Calibration of Time-of-Flight Cameras

3.2 Camera Model

If the scene coordinates of a point are (X, Y, Z)�, then the pinhole projection can
be expressed as (x p, yp, 1)� � R(X, Y, Z)�+ T where the rotation matrix R and
translation T account for the pose of the camera. The observed pixel coordinates of
the point are then modeled as

⎛
⎝ x

y
1

⎞
⎠ =

⎛
⎝ f sx f sθ x0

0 f sy y0
0 0 1

⎞
⎠

⎛
⎝ xd

yd

1

⎞
⎠ (3.1)

where (xd , yd)� results from lens distortion of (x p, yp)
�. The parameter f is the

focal length, (sx , sy) are the pixel scales, and sθ is the skew factor [10], which is
assumed to be zero here. The lens distortion may be modeled by a radial part d1 and
tangential part d2, so that

(
xd

yd

)
= d1(r)

(
x p

yp

)
+ d2

(
x p, yp

)
where r =

√
x2

p + y2
p (3.2)

is the radial coordinate. The actual distortion functions are polynomials of the form

d1(r) = 1+ a1r2 + a2r4 and d2(x, y) =
(

2xy r2 + 2x2

r2 + 2y2 2xy

) (
a3
a4

)
. (3.3)

The coefficients (a1, a2, a3, a4) must be estimated along with the other internal para-
meters ( f, sx , sy) and (x0, y0) in (3.1). The standard estimation procedure is based on
the projection of a known chequerboard pattern, which is viewed in many different
positions and orientations. The external parameters (R, T), as well as the internal
parameters can then be estimated as described by Zhang [1, 19], for example.

3.3 Board Detection

It is possible to find the chequerboard vertices, in ordinary images, by first detecting
image corners [9], and subsequently imposing global constraints on their arrangement
[1, 14, 18]. This approach, however, is not reliable for low-resolution images (e.g.,
in the range 100–500px2) because the local image structure is disrupted by sampling
artifacts, as shown in Fig. 3.1. Furthermore, these artifacts become worse as the
board is viewed in distant and slanted positions, which are essential for high-quality
calibration [2]. This is a serious obstacle for the application of existing calibration
methods to new types of camera. For example, the amplitude signal from a typical
tof camera [15] resembles an ordinary grayscale image, but is of very low spatial
resolution (e.g., 176×144), as well as being noisy. It is, nonetheless, necessary to
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Fig. 3.1 Left Example chequers from a tof amplitude image. Note the variable appearance of the
four junctions at this resolution, e.g., ‘×’ at lower-left versus ‘+’ at top-right. Middle A perspective
image of a calibration grid is represented by line pencils L and M , which intersect at the �×m = 20
internal vertices of this board. Strong image gradients are detected along the dashed lines. Right
The Hough transform H of the image points associated with M . Each high-gradient point maps
to a line, such that there is a pencil in H for each set of edge points. The line L �, which passes
through the � = 4 Hough vertices, is the Hough representation of the image pencil L

calibrate these devices, in order to combine them with ordinary color cameras, for
3-D modeling and rendering [4, 7, 8, 12, 13, 16, 20].

The method described here is based on the Hough transform [11], and effectively
fits a global model to the lines in the chequerboard pattern. This process is much less
sensitive to the resolution of the data, for two reasons. First, information is integrated
across the source image, because each vertex is obtained from the intersection of two
fitted lines. Second, the structure of a straight edge is inherently simpler than that of
a corner feature. However, for this approach to be viable, it is assumed that any lens
distortion has been precalibrated, so that the images of the pattern contain straight
lines. This is not a serious restriction, for two reasons. First, it is relatively easy to find
enough boards (by any heuristic method) to get adequate estimates of the internal and
lens parameters. Indeed, this can be done from a single image, in principle [5]. The
harder problems of reconstruction and relative orientation can then be addressed after
adding the newly detected boards, ending with a bundle adjustment that also refines
the initial internal parameters. Second, the tof devices used here have fixed lenses,
which are sealed inside the camera body. This means that the internal parameters
from previous calibrations can be reused.

Another Hough method for chequerboard detection has been presented by de la
Escalera and Armingol [3]. Their algorithm involves a polar Hough transform of all
high-gradient points in the image. This results in an array that contains a peak for
each line in the pattern. It is not, however, straightforward to extract these peaks,
because their location depends strongly on the unknown orientation of the image
lines. Hence, all local maxima are detected by morphological operations, and a
second Hough transform is applied to the resulting data in [3]. The true peaks will
form two collinear sets in the first transform (cf. Sect. 3.3.5), and so the final task is
to detect two peaks in the second Hough transform [17].
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The method described in this chapter is quite different. It makes use of the gradient
orientation as well as magnitude at each point, in order to establish an axis-aligned
coordinate system for each image of the pattern. Separate Hough transforms are then
performed in the x- and y-directions of the local coordinate system. By construction,
the slope coordinate of any line is close to zero in the corresponding Cartesian Hough
transform. This means that, on average, the peaks occur along a fixed axis of each
transform, and can be detected by a simple sweep-line procedure. Furthermore, the
known �×m structure of the grid makes it easy to identify the optimal sweep line in
each transform. Finally, the two optimal sweep lines map directly back to pencils of
� and m lines in the original image, owing to the Cartesian nature of the transform.
The principle of the method is shown in Fig. 3.1.

It should be noted that the method presented here was designed specifically for
use with tof cameras. For this reason, the range, as well as intensity data is used to
help segment the image in Sect. 3.3.2. However, this step could easily be replaced
with an appropriate background subtraction procedure [1], in which case the new
method could be applied to ordinary rgb images. Camera calibration is typically
performed under controlled illumination conditions, and so there would be no need
for a dynamic background model.

3.3.1 Overview

The new method is described in Sect. 3.3; preprocessing and segmentation are
explained in Sects. 3.3.2 and 3.3.3, respectively, while Sect. 3.3.4 describes the geo-
metric representation of the data. The necessary Hough transforms are defined in
Sect. 3.3.5, and analyzed in Sect. 3.3.6.

Matrices and vectors will be written in bold, e.g., M, v, and the Euclidean length
of v will be written |v|. Equality up to an overall nonzero scaling will be written
v � u. Image points and lines will be represented in homogeneous coordinates [10],
with p � (x, y, 1)� and l � (α, β, γ ), such that lp = 0 if l passes through p. The
intersection point of two lines can be obtained from the cross-product (l × m)�.
An assignment from variable a to variable b will be written b ← a. It will be
convenient, for consistency with the pseudocode listings, to use the notation (m : n)

for the sequence of integers from m to n inclusive. The ‘null’ symbol ∅ will be used
to denote undefined or unused variables.

The method described here refers to a chequerboard of (�+1)× (m+1) squares,
with � < m. It follows that the internal vertices of the pattern are imaged as the �m
intersection points

vij = li ×m j where li ∈ L for i = 1 : � and m j ∈M for j = 1 : m.

(3.4)
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The sets L and M are pencils, meaning that li all intersect at a point p, while m j

all intersect at a point q. Note that p and q are the vanishing points of the gridlines,
which may be at infinity in the images.

It is assumed that the imaging device, such as a tof camera, provides a range
map Dij, containing distances from the optical center, as well as a luminance-like
amplitude map Aij. The images D and A are both of size I × J . All images must be
undistorted, as described in the Sect. 3.3.

3.3.2 Preprocessing

The amplitude image A is roughly segmented, by discarding all pixels that correspond
to very near or far points. This gives a new image B, which typically contains the
board, plus the person holding it:

Bij ← Aij if d0 < Dij < d1, Bij ← ∅ otherwise. (3.5)

The near-limit d0 is determined by the closest position for which the board remains
fully inside the field-of-view of the camera. The far-limit d1 is typically set to a
value just closer than the far wall of the scene. These parameters need only to be set
approximately, provided that the interval d1−d0 covers the possible positions of the
calibration board.

It is useful to perform a morphologic erosion operation at this stage, in order to
partially remove the perimeter of the board. In particular, if the physical edge of the
board is not white, then it will give rise to irrelevant image gradients. The erosion
radius need only be set approximately, assuming that there is a reasonable amount of
white space around the chessboard pattern. The gradient of the remaining amplitude
image is now computed, using the simple kernel Δ = (−1/2, 0, 1/2). The horizontal
and vertical components are

ξij ← (Δ � B)ij

= ρ cos θ
and

ηij ← (Δ�� B)ij

= ρ sin θ
(3.6)

where � indicates convolution. No presmoothing of the image is performed, owing
to the low spatial resolution of the data.

3.3.3 Gradient Clustering

The objective of this section is to assign each gradient vector (ξij, ηij) to one of three
classes, with labels κij ∈ {λ, μ, ∅}. If κij = λ then pixel (i, j) is on one of the lines in
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Fig. 3.2 Left the cruciform distribution of image gradients, due to black/white and white/black
transitions at each orientation, would be difficult to segment in terms of horizontal and vertical
components (ξ, η). Right the same distribution is easily segmented, by eigenanalysis, in the double-
angle representation (3.7). The red and green labels are applied to the corresponding points in the
original distribution, on the left

L , and (ξij, ηij) is perpendicular to that line. If κij = μ, then the analogous relations
hold with respect to M . If κij = ∅ then pixel (i, j) does not lie on any of the lines.

The gradient distribution, after the initial segmentation, will contain two elongated
clusters through the origin, which will be approximately orthogonal. Each cluster
corresponds to a gradient orientation (mod π ), while each end of a cluster corresponds
to a gradient polarity (black/white vs. white/black). The distribution is best analyzed
after a double-angle mapping [6], which will be expressed as (ξ, η) �→ (σ, τ ). This
mapping results in a single elongated cluster, each end of which corresponds to a
gradient orientation (mod π ), as shown in Fig. 3.2. The double-angle coordinates
are obtained by applying the trigonometric identities cos(2θ) = cos2 θ − sin2 θ and
sin(2θ) = 2 sin θ cos θ to the gradients (3.6), so that

σij ← 1

ρij

(
ξ2

ij − η2
ij

)
and τij ← 2

ρij
ξijηij where ρij =

√
ξ2

ij + η2
ij (3.7)

for all points at which the magnitude ρij is above machine precision. Let the first unit
eigenvector of the (σ, τ ) covariance matrix be

(
cos(2φ), sin(2φ)

)
, which is written

in this way so that the angle φ can be interpreted in the original image. The cluster
membership is now defined by the projection

πij =
(
σij, τij

) · (cos(2φ), sin(2φ)
)

(3.8)

of the data onto this axis. The gradient vectors (ξij, ηij) that project to either end of
the axis are labeled as follows:
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κij ←

⎧⎪⎨
⎪⎩

λ if πij ≥ ρmin

μ if πij ≤ −ρmin

∅ otherwise.

(3.9)

Strong gradients that are not aligned with either axis of the board are assigned to ∅,
as are all weak gradients. It should be noted that the respective identity of classes λ

and μ has not yet been determined; the correspondence {λ,μ} ⇔ {L ,M } between
labels and pencils will be resolved in Sect. 3.3.6.

3.3.4 Local Coordinates

A coordinate system will now be constructed for each image of the board. The very
low amplitudes Bij ≈ 0 of the black squares tend to be characteristic of the board
(i.e., Bij � 0 for both the white squares and for the rest of B). Hence, a good estimate
of the center can be obtained by normalizing the amplitude image to the range [0, 1]
and then computing a centroid using weights (1− Bij). The centroid, together with
the angle φ from (3.8) defines the Euclidean transformation (x, y, 1)� = E ( j, i, 1)�

into local coordinates, centered on and aligned with the board.
Let (xκ , yκ , 1)� be the coordinates of point (i, j), after transformation by E, with

the label κ inherited from κij, and let L ′ and M ′ correspond to L and M in the
new coordinate system. Now, by construction, any labeled point is hypothesized to
be part of L ′ or M ′, such that l′(xλ, yλ, 1)� = 0 or m′(xμ, yμ, 1)� = 0, where l′
and m′ are the local coordinates of the relevant lines l and m, respectively. These
lines can be expressed as

l′ � (−1, βλ, αλ) and m′ � (βμ, −1, αμ) (3.10)

with inhomogeneous forms xλ = αλ + βλyλ and yμ = αμ + βμxμ, such that the
slopes |βκ | � 1 are bounded. In other words, the board is axis aligned in local
coordinates, and the perspective-induced deviation of any line is less than 45◦.

3.3.5 Hough Transform

The Hough transform, in the form used here, maps points from the image to lines in
the transform. In particular, points along a line are mapped to lines through a point.
This duality between collinearity and concurrency suggests that a pencil of n image
lines will be mapped to a line of n transform points, as in Fig. 3.1.

The transform is implemented as a 2-D histogram H(u, v), with horizontal and
vertical coordinates u ∈ [0, u1] and v ∈ [0, v1]. The point (u0, v0) = 1

2 (u1, v1) is
the center of the transform array. Two transforms, Hλ and Hμ, will be performed, for



52 3 Calibration of Time-of-Flight Cameras

Fig. 3.3 Hough transform. Each gradient pixel (x, y) labeledκ ∈ {λ,μ}maps to a line uκ (x, y, v) in
transform Hκ . The operators H⊕p and interpα(p, q) perform accumulation and linear interpolation,
respectively. See Sect. 3.3.5 for details

points labeled λ and μ, respectively. The Hough variables are related to the image
coordinates in the following way:

uκ(x, y, v) =
{

u(x, y, v) if κ = λ

u(y, x, v) if κ = μ
where u(x, y, v) = u0 + x − y(v − v0).

(3.11)

Here, u(x, y, v) is the u-coordinate of a line (parameterized by v), which is the Hough
transform of an image point (x, y). The Hough intersection point (u�

κ , v�
κ ) is found

by taking two points (x, y) and (x ′, y′), and solving uλ(x, y, v) = uλ(x ′, y′, v), with
xλ and x ′λ substituted according to (3.10). The same coordinates are obtained by
solving uμ(x, y, v) = uμ(x ′, y′, v), and so the result can be expressed as

u�
κ = u0 + ακ and v�

κ = v0 + βκ (3.12)

with labels κ ∈ {λ,μ} as usual. A peak at (u�
κ , v�

κ ) evidently maps to a line of intercept
u�

κ − u0 and slope v�
κ − v0. Note that if the perspective distortion in the images is

small, then βκ ≈ 0, and all intersection points lie along the horizontal midline (u, v0)

of the corresponding transform. The Hough intersection point (u�
κ , v�

κ ) can be used
to construct an image line l′ or m′, by combining (3.12) with (3.10), resulting in

l′ ← (−1, v�
λ − v0, u�

λ − u0
)

and m′ ← (
v�
μ − v0, −1, u�

μ − u0
)
. (3.13)

The transformation of these line vectors, back to the original image coordinates, is
given by the inverse transpose of the matrix E, described in Sect. 3.3.4.

The two Hough transforms are computed by the procedure in Fig. 3.3. Let Hκ

refer to Hλ or Hμ, according to the label κ of the ij-th point (x, y). For each accepted
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Fig. 3.4 A line hst
κ (w), with endpoints (0, s) and (u1, t), is swept through each Hough transform

Hκ . A total of v1 × v1 1-D histograms hst
κ (w) are computed in this way. See Sect. 3.3.6 for details

point, the corresponding line (3.11) intersects the top and bottom of the (u, v) array at
points (s, 0) and (t, v1), respectively. The resulting segment, of length w1, is evenly
sampled, and Hκ is incremented at each of the constituent points. The procedure in
Fig. 3.3 makes use of the following functions. First, interpα(p, q), with α ∈ [0, 1],
returns the affine combination (1−α)p+αq. Second, the ‘accumulation’ H⊕ (u, v)
is equal to H(u, v) ← H(u, v) + 1 if u and v are integers. In the general case,
however, the four pixels closest to (u, v) are updated by the corresponding bilinear-
interpolation weights (which sum to one).

3.3.6 Hough Analysis

The local coordinates defined in Sect. 3.3.4 ensure that the two Hough transforms Hλ

and Hμ have the same characteristic structure. Hence, the subscripts λ and μ will be
suppressed for the moment. Recall that each Hough cluster corresponds to a line in
the image space, and that a collinear set of Hough clusters corresponds to a pencil
of lines in the image space, as in Fig. 3.1. It follows that all lines in a pencil can be
detected simultaneously, by sweeping the Hough space H with a line that cuts a 1-D
slice through the histogram.

Recall from Sect. 3.3.5 that the Hough peaks are most likely to lie along a hori-
zontal axis (corresponding to a fronto-parallel pose of the board). Hence, a suitable
parameterization of the sweep line is to vary one endpoint (0, s) along the left edge,
while varying the other endpoint (u1, t) along the right edge, as in Fig. 3.4. This
scheme has the desirable property of sampling more densely around the midline
(u, v0). It is also useful to note that the sweep-line parameters s and t can be used to
represent the apex of the corresponding pencil. The local coordinates p′ and q′ are
p′ � (

l′s × l′t
)� and q′ � (

m′s × m′t
)� where l′s and l′t are obtained from (3.10) by

setting (u�
λ, v�

λ) to (0, s) and (u1, t) respectively, and similarly for m′s and m′t .
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The procedure shown in Fig. 3.4 is used to analyze the Hough transform. The
sweep line with parameters s and t has the form of a 1-D histogram hst

κ (w). The
integer index w ∈ (0 : w1) is equal to the Euclidean distance |(u, v)− (0, s)| along
the sweep line. The procedure shown in Fig. 3.4 makes further use of the interpolation
operator that was defined in Sect. 3.3.5. Each sweep line hst

κ (w), constructed by the
above process, will contain a number of isolated clusters: count(hst

κ ) ≥ 1. The
clusters are simply defined as runs of nonzero values in hst

κ (w). The existence of
separating zeros is, in practice, highly reliable when the sweep line is close to the
true solution. This is simply because the Hough data was thresholded in (3.9), and
strong gradients are not found inside the chessboard squares. The representation of
the clusters, and subsequent evaluation of each sweep line, will now be described.

The label κ and endpoint parameters s and t will be suppressed, in the following
analysis of a single sweep line, for clarity. Hence, let w ∈ (ac : bc) be the interval that
contains the c-th cluster in h(w). The score and location of this cluster are defined
as the mean value and centroid, respectively:

score
c

(h) =
∑bc

w=ac
h(w)

1+ bc − ac
and wc = ac +

∑bc
w=ac

h(w)w∑bc
w=ac

h(w)
(3.14)

More sophisticated definitions are possible, based on quadratic interpolation around
each peak. However, the mean and centroid give similar results in practice. A total
score must now be assigned to the sweep line, based on the scores of the constituent
clusters. If n peaks are sought, then the total score is the sum of the highest n cluster
scores. But if there are fewer than n clusters in h(w), then this cannot be a solution,
and the score is zero:

�n(h) =
⎧⎨
⎩

∑n
i=1score

c(i)
(h) if n ≤ count(h)

0 otherwise
(3.15)

where c(i) is the index of the i-th highest-scoring cluster. The optimal clusters are
those in the sweep line that maximizes (3.15). Now, restoring the full notation, the
score of the optimal sweep line in the transform Hκ is

�n
κ ← max

s, t
score

n
(hst

κ ). (3.16)

One problem remains: it is not known in advance whether there should be � peaks
in Hλ and m in Hμ, or vice versa. Hence all four combinations, ��

λ, �m
μ , ��

μ, �m
λ

are computed. The ambiguity between pencils (L ,M ) and labels (λ, μ) can then
be resolved, by picking the solution with the highest total score:

(
L ,M

)⇔
{

(λ, μ) if ��
λ +�m

μ > ��
μ +�m

λ

(μ, λ) otherwise.
(3.17)
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Here, for example,
(
L ,M

)⇔ (λ, μ) means that there is a pencil of � lines in Hλ

and a pencil of m lines in Hμ. The procedure in (3.17) is based on the fact that the
complete solution must consist of � + m clusters. Suppose, for example, that there
are � good clusters in Hλ, and m good clusters in Hμ. Of course, there are also �

good clusters in Hμ, because � < m by definition. However, if only � clusters are
taken from Hμ, then an additional m− � weak or nonexistent clusters must be found
in Hλ, and so the total score ��

μ +�m
λ would not be maximal.

It is straightforward, for each centroid wc in the optimal sweep line hst
κ , to compute

the 2-D Hough coordinates

(
u�

κ , v�
κ

)← interp
wc/w1

(
(0, s), (u1, t)

)
(3.18)

where w1 is the length of the sweep line, as in Fig. 3.4. Each of the resulting �m
points are mapped to image lines, according to (3.13). The vertices vij are then be
computed from (3.4). The order of intersections along each line is preserved by the
Hough transform, and so the ij indexing is automatically consistent.

The final decision function is based on the observation that cross-ratios of dis-
tances between consecutive vertices should be near unity (because the images are
projectively related to a regular grid). In practice, it suffices to consider simple ratios,
taken along the first and last edge of each pencil. If all ratios are below a given thresh-
old, then the estimate is accepted. This threshold was fixed once and for all, such that
no false-positive detections (which are unacceptable for calibration purposes) were
made, across all data sets.

3.3.7 Example Results

The method was tested on five multicamera data sets, and compared to the standard
OpenCV detector. Both the OpenCV and Hough detections were refined by the
OpenCV subpixel routine, which adjusts the given point to minimize the discrepancy
with the image gradient around the chequerboard corner [1, 2]. Table 3.1 shows
the number of true-positive detections by each method, as well as the number of
detections common to both methods. The geometric error is the discrepancy from
the ‘ideal’ board, after fitting the latter by the optimal (DLT+LM) homography [10].
This is by far the most useful measure, as it is directly related to the role of the detected
vertices in subsequent calibration algorithms (and also has a simple interpretation in
pixel units). The photometric error is the gradient residual, as described in Sect. 3.3.6.
This measure is worth considering, because it is the criterion minimized by the
subpixel optimization, but it is less interesting than the geometric error.

The Hough method detects 35 % more boards than the OpenCV method, on aver-
age. There is also a slight reduction in average geometric error, even though the addi-
tional boards were more problematic to detect. The results should not be surprising,
because the new method uses a very strong model of the global board geometry
(in fairness, it also benefits from the depth thresholding in 3.3.2). There were zero
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Table 3.1 Results over six multi-tof camera setups

Number detected Geometric error Photometric error
Set / Camera OCV HT Both OCV HT OCV HT

1 / 1 19 34 13 0.2263 0.1506 0.0610 0.0782
1 / 2 22 34 14 0.1819 0.1448 0.0294 0.0360
1 / 3 46 33 20 0.1016 0.0968 0.0578 0.0695
1 / 4 26 42 20 0.2044 0.1593 0.0583 0.0705
2 / 1 15 27 09 0.0681 0.0800 0.0422 0.0372
2 / 2 26 21 16 0.0939 0.0979 0.0579 0.0523
2 / 3 25 37 20 0.0874 0.0882 0.0271 0.0254
3 / 1 14 26 11 0.1003 0.0983 0.0525 0.0956
3 / 2 10 38 10 0.0832 0.1011 0.0952 0.1057
3 / 3 25 41 21 0.1345 0.1366 0.0569 0.0454
3 / 4 18 23 10 0.1071 0.1053 0.0532 0.0656
4 / 1 16 21 14 0.0841 0.0874 0.0458 0.0526
4 / 2 45 53 29 0.0748 0.0750 0.0729 0.0743
4 / 3 26 42 15 0.0954 0.0988 0.0528 0.0918
5 / 1 25 37 18 0.0903 0.0876 0.0391 0.0567
5 / 2 20 20 08 0.2125 0.1666 0.0472 0.0759
5 / 3 39 36 24 0.0699 0.0771 0.0713 0.0785
5 / 4 34 35 19 0.1057 0.1015 0.0519 0.0528
6 / 1 29 36 20 0.1130 0.1203 0.0421 0.0472
6 / 2 35 60 26 0.0798 0.0803 0.0785 0.1067
Mean: 25.75 34.8 16.85 0.1157 0.1077 0.0547 0.0659

Total detections for the OpenCV (515) versus Hough Transform (696) method are shown, as well
as the accuracy of the estimates. Geometric error is in pixels. The chief conclusion is that the HT
method detects 35 % more boards, and slightly reduces the average geometric error

false-positive detections (100 % precision), as explained in Sect. 3.3.6. The number
of true negatives is not useful here, because it depends largely on the configura-
tion of the cameras (i.e., how many images show the back of the board). The false
negatives do not provide a very useful measure either, because they depend on an
arbitrary judgement about which of the very foreshortened boards ‘ought’ to have
been detected (i.e., whether an edge-on board is ‘in’ the image or not). Some example
detections are shown in Figs. 3.5–3.7, including some difficult cases.

3.4 Conclusions

A new method for the automatic detection of calibration grids in tof images has
been described. The method is based on careful reasoning about the global geomet-
ric structure of the board, before and after perspective projection. The method detects
many more boards than existing heuristic approaches, which results in a larger and
more complete data set for subsequent calibration algorithms. Future work will inves-
tigate the possibility of making a global refinement of the pencils, in the geometric
parameterization, by minimizing a photometric cost function.



3.4 Conclusions 57

Fig. 3.5 Example detections in 176×144 tof amplitude images. The yellow dot (1-pixel radius) is
the estimated centroid of the board, and the attached thick translucent lines are the estimated axes.
The board on the right, which is relatively distant and slanted, was not detected by OpenCV

Fig. 3.6 Example detections (cf. Fig. 3.5) showing significant perspective effects

Fig. 3.7 Example detections (cf. Fig. 3.5) showing significant scale changes. The board on the
right, which is in an image that shows background clutter and lens distortion, was not detected by
OpenCV
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Chapter 4
Alignment of Time-of-Flight and Stereoscopic
Data

Abstract An approximately Euclidean representation of the visible scene can be
obtained directly from a time-of-flight camera. An uncalibrated binocular system,
in contrast, gives only a projective reconstruction of the scene. This chapter ana-
lyzes the geometric mapping between the two representations, without requiring
an intermediate calibration of the binocular system. The mapping can be found by
either of two new methods, one of which requires point correspondences between
the range and color cameras, and one of which does not. It is shown that these
methods can be used to reproject the range data into the binocular images, which
makes it possible to associate high-resolution color and texture with each point in the
Euclidean representation. The extension of these methods to multiple time-of-flight
system is demonstrated, and the associated problems are examined. An evaluation
metric, which distinguishes calibration error from combined calibration and depth
error, is developed. This metric is used to evaluate a system that is based on three
time-of-flight cameras.

Keywords Depth and color combination · Projective alignment · Time-of-Flight
camera calibration ·Multicamera systems

4.1 Introduction

It was shown in the preceding chapter that time-of-flight (tof) cameras can be geo-
metrically calibrated by standard methods. This means that each pixel records an
estimate of the scene distance (range) along the corresponding ray, according to the
principles described in Chap. 1. The 3-D structure of a scene can also be recon-
structed from two or more ordinary images, via the parallax between corresponding
image points. There are many advantages to be gained by combining the range and
parallax data. Most obviously, each point in a parallax-based reconstruction can be
mapped back into the original images, from which color and texture can be obtained.
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Fig. 4.1 The central panel shows a range image, color-coded according to depth (the blue region is
beyond the far limit of the device). The left and right cameras were aligned to the tof system, using
the methods described here. Each 3-D range pixel is reprojected into the high-resolution left and
right images (untinted regions were occluded, or otherwise missing, from the range images). Note
the large difference between the binocular views, which would be problematic for dense stereo-
matching algorithms. It can also be seen that the tof information is noisy, and of low resolution

Parallax-based reconstructions are, however, difficult to obtain, owing to the difficulty
of putting the image points into correspondence. Indeed, it may be impossible to find
any correspondences in untextured regions. Furthermore, if a Euclidean reconstruc-
tion is required, then the cameras must be calibrated. The accuracy of the resulting
reconstruction will also tend to decrease with the distance of the scene from the
cameras [23].

The range data, on the other hand, are often very noisy (and, for very scattering
surfaces, incomplete), as described in Chap. 1. The spatial resolution of current tof
sensors is relatively low, the depth range is limited, and the luminance signal may be
unusable for rendering. It should also be recalled that tof cameras of the type used
here [19] cannot be used in outdoor lighting conditions. These considerations lead
to the idea of a mixed color and tof system [18] as shown in Figs. 4.1 and 4.2. Such
a system could, in principle, be used to make high-resolution Euclidean reconstruc-
tions, with full photometric information [17]. The task of camera calibration would
be simplified by the tof camera, while the visual quality of the reconstruction would
be ensured by the color cameras.

In order to make full use of a mixed range/parallax system, it is necessary to
find the exact geometric relationship between the different devices. In particular, the
reprojection of the tof data, into the color images, must be obtained. This chapter
is concerned with the estimation of these geometric relationships. Specifically, the
aim is to align the range and parallax reconstructions, by a suitable 3-D transforma-
tion. The alignment problem has been addressed previously, by fully calibrating the
binocular system, and then aligning the two reconstructions by a rigid transformation
[6, 12, 27, 28]. This approach can be extended in two ways. First, it is possible to
optimize over an explicit parameterization of the camera matrices, as in the work of
Beder et al. [3] and Koch et al. [16]. The relative position and orientation of all cam-
eras can be estimated by this method. Second, it is possible to minimize an intensity
cost between the images and the luminance signal of the tof camera. This method
estimates the photometric, as well as geometric, relationships between the different

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
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Fig. 4.2 A single tof+2rgb system, as used in this chapter, with the tof camera in the center of
the rail

cameras [13, 22, 25]. A complete calibration method, which incorporates all of these
considerations, is described by Lindner et al. [18].

The approaches described above, while capable of producing good results, have
some limitations. First, there may be residual distortions in the range data, that make
a rigid alignment impossible [15]. Second, these approaches require the binocular
system to be fully calibrated, and recalibrated after any movement of the cameras.
This requires, for best results, many views of a known calibration object. Typical
view-synthesis applications, in contrast, require only a weak calibration of the cam-
eras. One way to remove the calibration requirement is to perform an essentially
2-D registration of the different images [1, 4]. This, however, can only provide an
instantaneous solution, because changes in the scene structure produce correspond-
ing changes in the image-to-image mapping.

An alternative approach is proposed here. It is hypothesized that the tof recon-
struction is approximately Euclidean. This means that an uncalibrated binocular
reconstruction can be mapped directly into the Euclidean frame, by a suitable 3-D
projective transformation. This is a great advantage for many applications, because
automatic uncalibrated reconstruction is relatively easy. Furthermore, although the
projective model is much more general than the rigid model, it preserves many
important relationships between the images and the scene (e.g., epipolar geometry
and incidence of points on planes). Finally, if required, the projective alignment can
be upgraded to a fully calibrated solution, as in the methods described above.

It is emphasized that the goal of this work is not to achieve the best possible
photogrammetric reconstruction of the scene. Rather, the goal is to develop a practical
way to associate color and texture information to each range point, as in Fig. 4.1. This
output is intended to use in view-synthesis applications.

This chapter is organized as follows. Section 4.2.1 briefly reviews some standard
material on projective reconstruction, while Sect. 4.2.2 describes the representation
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of range data in the present work. The chief contributions of the subsequent sections
are as follows: Sect. 4.2.3 describes a point-based method that maps an ordinary
projective reconstruction of the scene onto the corresponding range representation.
This does not require the color cameras to be calibrated (although it may be necessary
to correct for lens distortion). Any planar object can be used to find the alignment,
provided that image features can be matched across all views (including that of the
tof camera). Section 4.2.4 describes a dual plane-based method, which performs
the same projective alignment, but that does not require any point matches between
the views. Any planar object can be used, provided that it has a simple polygonal
boundary that can be segmented in the color and range data. This is a great advantage,
owing to the very low resolution of the luminance data provided by the tof camera
(176 × 144 here). This makes it difficult to automatically extract and match point
descriptors from these images, as described in Chap. 3. Furthermore, there are tof
devices that do not provide a luminance signal at all. Section 4.2.5 addresses the
problem of multisystem alignment. Finally, Sect. 4.3 describes the accuracy than can
be achieved with a three tof+2rgb system, including a new error metric for tof data
in Sect. 4.3.2. Conclusions and future directions are discussed in Sect. 4.4.

4.2 Methods

This section describes the theory of projective alignment, using the following nota-
tion. Bold type will be used for vectors and matrices. In particular, points P , Q and
planes U ,V in the 3-D scene will be represented by column vectors of homogeneous
coordinates, e.g.,

P =
(

P�
P4

)
and U =

(
U�
U4

)
(4.1)

where P� = (P1, P2, P3)
� and U� = (U1, U2, U3)

�. The homogeneous coordi-
nates are defined up to a nonzero scaling; for example, P � (P�/P4, 1)�. In par-
ticular, if P4 = 1, then P� contains the ordinary space coordinates of the point P .
Furthermore, if |U�| = 1, then U4 is the signed perpendicular distance of the plane
U from the origin, and U� is the unit normal. The point P is on the plane U if
U�P = 0. The cross-product u × v is often expressed as (u)×v, where (u)× is a
3× 3 antisymmetric matrix. The column vector of N zeros is written 0N .

Projective cameras are represented by 3 × 4 matrices. For example, the range
projection is

q � CQ where C = (
A3×3 | b3×1

)
. (4.2)

The left and right color cameras C� and Cr are similarly defined, e.g., p� � C� P .
Table 4.1 summarizes the geometric objects that will be aligned.

Points and planes in the two systems are related by the unknown 4 × 4 space
homography H , so that

http://dx.doi.org/10.1007/978-1-4471-4658-2_3
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Table 4.1 Summary of
notations in the left, right, and
range systems

Observed Reconstructed
Points Points Planes

Binocular C�,Cr p�, pr P U
Range C (q, ρ) Q V

Q � HP and V � H−�U . (4.3)

This model encompasses all rigid, similarity, and affine transformations in 3-D. It
preserves collinearity and flatness, and is linear in homogeneous coordinates. Note
that, in the reprojection process, H can be interpreted as a modification of the camera
matrices, e.g., p� �

(
C� H−1

)
Q, where H−1 Q � P .

4.2.1 Projective Reconstruction

A projective reconstruction of the scene can be obtained from matched points p�k and
prk , together with the fundamental matrix F, where p�rk Fp�k = 0. The fundamental
matrix can be estimated automatically, using the well-established ransac method.
The camera matrices can then be determined, up to a four-parameter projective
ambiguity [10]. In particular, from F and the epipole er , the cameras can be defined as

C� �
(
I | 03) and Cr �

(
(er )×F + er g�

∣∣ γ er
)
. (4.4)

where γ �= 0 and g = (g1, g2, g3)
� can be used to bring the cameras into a

plausible form. This makes it easier to visualize the projective reconstruction and,
more importantly, can improve the numerical conditioning of subsequent procedures.

4.2.2 Range Fitting

The tof camera C provides the distance ρ of each scene point from the camera
center, as well as its image coordinates q = (x, y, 1). The back projection of this
point into the scene is

Q� = A−1((ρ/α) q − b
)

where α = ∣∣A−1 q
∣∣. (4.5)

Hence, the point ( Q�, 1)� is at distance ρ from the optical center −A−1b, in the
direction A−1q. The scalar α serves to normalize the direction vector. This is the
standard pinhole model, as used in [2].
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The range data are noisy and incomplete, owing to illumination and scattering
effects. This means that, given a sparse set of features in the intensity image (of the
tof device), it is not advisable to use the back-projected point (4.5) directly. A better
approach is to segment the image of the plane in each tof camera (using the range
and/or intensity data). It is then possible to back project all of the enclosed points,
and to robustly fit a plane V j to the enclosed points Qi j , so that V�j Qi j ≈ 0 if
point i lies on plane j . Now, the back projection Qπ of each sparse feature point q
can be obtained by intersecting the corresponding ray with the plane V , so that the
new range estimate ρπ is

ρπ = V�� A−1b− V4

(1/α) V�� A−1q
(4.6)

where |V4| is the distance of the plane to the camera center, and V� is the unit normal
of the range plane. The new point Qπ is obtained by substituting ρπ into (4.5).

The choice of plane-fitting method is affected by two issues. First, there may be
very severe outliers in the data, due to the photometric and geometric errors described
in Chap. 1. Second, the noise-model should be based on the pinhole model, which
means that perturbations occur radially along visual directions, which are not (in
general) perpendicular to the observed plane [11, 24]. Several plane-fitting methods,
both iterative [14] and noniterative [20], have been proposed for the pinhole model.
The outlier problem, however, is often more significant. Hence, in practice, a ransac-
based method is often the most effective.

4.2.3 Point-Based Alignment

It is straightforward to show that the transformation H in (4.3) could be estimated
from five binocular points Pk , together with the corresponding range points Qk .
This would provide 5 × 3 equations, which determine the 4 × 4 entries of H , sub-
ject to an overall projective scaling. It is better, however, to use the ‘Direct Linear
Transformation’ method [10], which fits H to all of the data. This method is based
on the fact that if

P ′ = HP (4.7)

is a perfect match for Q, then μ Q = λP ′, and the scalars λ and μ can be eliminated
between pairs of the four implied equations [5]. This results in

(4
2

) = 6 interdependent
constraints per point. It is convenient to write these homogeneous equations as

(
Q4 P ′� − P ′4 Q�

Q� × P ′�

)
= 06. (4.8)

Note that if P ′ and Q are normalized so that P ′4 = 1 and Q4 = 1, then the
magnitude of the top half of (4.8) is simply the distance between the points.

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
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Following Förstner [7], the left-hand side of (4.8) can be expressed as
(

Q
)
∧P ′

where (
Q

)
∧ =

(
Q4 I3 −Q�(
Q�

)
× 03

)
(4.9)

is a 6 × 4 matrix, and
(

Q�
)
×P� = Q� × P�, as usual. The Eq. (4.8) can now be

written in terms of (4.7) and (4.9) as

(
Q

)
∧HP = 06. (4.10)

This system of equations is linear in the unknown entries of H , the columns of which
can be stacked into the 16×1 vector h. The Kronecker product identity vec(XY Z) =
(Z�⊗ X) vec(Y) can now be applied, to give

(
P� ⊗ (

Q
)
∧
)

h = 06 where h = vec
(
H

)
. (4.11)

If M points are observed on each of N planes, then there are k = 1, . . . , M N
observed pairs of points, Pk from the projective reconstruction and Qk from the
range back projection. The M N corresponding 6× 16 matrices

(
P�k ⊗ ( Qk)∧

)
are

stacked together, to give the complete system

⎛
⎜⎝

P�1 ⊗
(

Q1
)
∧

...

P�M N ⊗
(

QM N

)
∧

⎞
⎟⎠ h = 06M N (4.12)

subject to the constraint |h| = 1, which excludes the trivial solution h = 016. It
is straightforward to obtain an estimate of h from the SVD of the the 6MN × 16
matrix on the left of (4.12). This solution, which minimizes an algebraic error [10],
is the singular vector corresponding to the smallest singular value of the matrix. In
the minimal case, M = 1, N = 5, the matrix would be 30 × 16. Note that, the
point coordinates should be transformed, to ensure that (4.12) is numerically well
conditioned [10]. In this case, the transformation ensures that

∑
k Pk� = 03 and

1
M N

∑
k |Pk�| =

√
3, where Pk4 = 1. The analogous transformation is applied to

the range points Qk .
The DLT method, in practice, gives a good approximation HDLT of the homog-

raphy (4.3). This can be used as a starting point for the iterative minimization of a
more appropriate error measure. In particular, consider the reprojection error in the
left image,

E�(C�) =
M N∑
k=1

D
(
C� Qk, p�k

)2 (4.13)

where D( p, q) = | p�/p3−q�/q3|. A 12-parameter optimization of (4.13), starting
with C�← C� H−1

DLT, can be performed by the Levenberg-Marquardt algorithm [21].
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The result will be the camera matrix C�
� that best reprojects the range data into the left

image (C�
r is similarly obtained). The solution, provided that the calibration points

adequately covered the scene volume, will remain valid for subsequent depth and
range data.

Alternatively, it is possible to minimize the joint reprojection error, defined as the
sum of left and right contributions,

E
(
H−1) = E�

(
C� H−1)+ Er

(
Cr H−1) (4.14)

over the (inverse) homography H−1. The 16 parameters are again minimized by the
Levenberg-Marquardt algorithm, starting from the DLT solution H−1

DLT.
The difference between the separate (4.13) and joint (4.14) minimizations is that

the latter preserves the original epipolar geometry, whereas the former does not.
Recall that C� Cr , H and F are all defined up to scale, and that F satisfies an
additional rank-two constraint [10]. Hence, the underlying parameters can be counted
as (12− 1)+ (12− 1) = 22 in the separate minimizations, and as (16− 1) = 15
in the joint minimization. The fixed epipolar geometry accounts for the (9 − 2)

missing parameters in the joint minimization. If F is known to be very accurate (or
must be preserved) then the joint minimization (4.14) should be performed. This will
also preserve the original binocular triangulation, provided that a projective-invariant
method was used [9]. However, if minimal reprojection error is the objective, then
the cameras should be treated separately. This will lead to a new fundamental matrix
F� = (e�

r )×C�
r (C�

�)
+, where (C�

�)
+ is the generalized inverse. The right epipole is

obtained from e�
r = C�

r d�
�, where d�

� represents the nullspace C�
�d�

� = 03.

4.2.4 Plane-Based Alignment

The DLT algorithm of Sect. 4.2.3 can also be used to recover H from matched planes,
rather than matched points. Equation (4.10) becomes

(
V )∧ H−�U = 06 (4.15)

where U and V represent the estimated coordinates of the same plane in the parallax
and range reconstructions, respectively. The estimation procedure is identical to that
in Sect. 4.2.3, but with vec(H−�) as the vector of unknowns.

This method, in practice, produces very poor results. The chief reason that
obliquely viewed planes are foreshortened, and therefore hard to detect/estimate,
in the low-resolution tof images. It follows that the calibration data set is biased
towards fronto-parallel planes.1 This bias allows the registration to slip sideways,
perpendicular to the primary direction of the tof camera. The situation is greatly

1 The point-based algorithm is unaffected by this bias, because the scene is ultimately ‘filled’ with
points, regardless of the contributing planes.
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improved by assuming that the boundaries of the planes can be detected. For example,
if the calibration object is rectangular, then the range projection of the plane V is
bounded by four edges vi , where i = 1, . . . 4. Note that, these are detected as depth
edges, and so no luminance data are required. The edges, represented as lines vi ,
back project as the faces of a pyramid,

Vi = C�vi =
(

Vi�
0

)
, i = 1, . . . , L (4.16)

where L = 4 in the case of a quadrilateral projection. These planes are linearly
dependent, because they pass through the center of projection; hence, the fourth
coordinates are all zero if, as here, the tof camera is at the origin. Next, if the
corresponding edges u�i and uri can be detected in the binocular system, using both
color and parallax information, then the planes Ui can easily be constructed. Each
calibration plane now contributes an additional 6L equations

(
Vi )∧ H−�Ui = 06 (4.17)

to the DLT system (4.12). Although these equations are quite redundant (any two
planes span all possibilities), they lead to a much better DLT estimate. This is because
they represent exactly those planes that are most likely to be missed in the calibration
data, owing to the difficulty of feature detection over surfaces that are extremely
foreshortened in the image.

As in the point-based method, the plane coordinates should be suitably trans-
formed, in order to make the numerical system (4.12) well conditioned. The trans-
formed coordinates satisfy the location constraint

∑
k Uk� = 03, as well as the scale

constraint
∑

k |Uk�|2 = 3
∑

k U 2
k4, where Uk� = (Uk1, Uk2, Uk3)

�, as usual. A final
renormalization |Uk | = 1 is also performed. This procedure, which is also applied
to the V k , is analogous to the treatment of line coordinates in DLT methods [26].

The remaining problem is that the original reprojection error (4.13) cannot be used
to optimize the solution, because no luminance features q have been detected in the
range images (and so no 3-D points Q have been distinguished). This can be solved
by reprojecting the physical edges of the calibration planes, after reconstructing
them as follows. Each edge plane V i intersects the range plane V in a space-line,
represented by the 4× 4 Plücker matrix

W i = V V �
i − Vi V�. (4.18)

The line W i reprojects to a 3× 3 antisymmetric matrix [10]; for example

W�i � C�Wi C�� (4.19)

in the left image, and similarly in the right. Note that W �i p� = 0 if the point p� is
on the reprojected line [10]. The line-reprojection error can therefore be written as
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E×� (C�) =
L∑

i=1

N∑
j=1

D×
(
C�Wi C�� , u�i j

)2
. (4.20)

The function D×
(
M, n

)
compares image lines, by computing the sine of the angle

between the two coordinate vectors,

D×(M, n) =
√

2
∣∣Mn

∣∣
|M| |n| =

|m × n|
|m| |n| , (4.21)

where M = (m)×, and |M| is the Frobenius norm. It is emphasized that the coor-
dinates must be normalized by a suitable transformations G� and Gr , as in the case
of the DLT. For example, the line n should be fitted to points of the form Gp, and
then M should be transformed as G−�M, before computing (4.21). The reprojection
error (4.20) is numerically unreliable without this normalization.

The line reprojection (4.21) can either be minimized separately for each camera,
or jointly as

E×
(
H−1) = E×�

(
C� H−1)+ E×r

(
Cr H−1) (4.22)

by analogy with (4.14). Finally, it should be noted that although (4.21) is defined in
the image, it is an algebraic error. However, because the errors in question are small,
this measure behaves predictably (see Fig. 4.2).

4.2.5 Multisystem Alignment

The point-based and plane-based procedures, described in Sects. 4.2.3 and 4.2.4
respectively, can be used to calibrate a single tof+2rgb system. Related methods
can be used for the joint calibration of several such systems, as will now be explained,
using the point-based representation. In this section, the notation P i will be used
for the binocular coordinates (with respect to the left camera) of a point in the i-th
system, and likewise Qi for the tof coordinates of a point in the same system. Hence,
the i-th tof, left and right rgb cameras have the form

C i � (Ai | 03), C�i � (A�i | 03) and Cri � (Ari | bri ) (4.23)

where Ai and A�i contain only intrinsic parameters, whereas Ari also encodes the
relative orientation of Cri with respect to C�i . Each system has a transformation
H−1

i that maps tof points Qi into the corresponding rgb coordinate system of C�i .
Furthermore, let the 4×4 matrix Gi j be the transformation from system j , mapping
back to system i . This matrix, in the calibrated case, would be a rigid 3-D transfor-
mation. However, by analogy with the tof-to-rgb matrices, each Gi j is generalized
here to a projective transformation, thereby allowing for spatial distortions in the
data. The left and right cameras that project a scene point P j in coordinate system j
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Fig. 4.3 Example of a three tof+2rgb setup, with tof cameras labeled 1,2,3. Each ellipse represents
a separate system, with system 2 chosen as the reference. The arrows (with camera-labels) show
some possible tof-to-rgb projections. For example, a point P2 � H−1

2 Q2 in the center projects
directly to rgb view �2 via C�2, whereas the same point projects to �3 via C�32 = C�3G32

to image points p�i and pri in system i are

C�i j = C�i Gi j and Cri j = Cri Gi j . (4.24)

Note that if a single global coordinate system is chosen to coincide with the k-th
rgb system, then a point Pk projects via C�ik and Crik . These two cameras are
respectively equal to C�i and Cri in (4.23) only when i = k, such that Gi j = I
in (4.24). A typical three-system configuration is shown in Fig. 4.3.

The transformation Gi j can only be estimated directly if there is a region of
common visibility between systems i and j . If this is not the case (as when the systems
face each other, such that the front of the calibration board is not simultaneously
visible), then Gi j can be computed indirectly. For example, G02 = G01 G12 where
P2 = G−1

12 G−1
01 P0. Note that, the stereo-reconstructed points P are used to estimate

these transformations, as they are more reliable than the tof points Q.

4.3 Evaluation

The following sections will describe the accuracy of a nine-camera setup, calibrated
by the methods described above. Section 4.3.1 will evaluate calibration error, whereas
Sect. 4.3.2 will evaluate total error. The former is essentially a fixed function of the
estimated camera matrices, for a given scene. The latter also includes the range noise
from the tof cameras, which varies from moment to moment. The importance of
this distinction will be discussed.



70 4 Alignment of Time-of-Flight and Stereoscopic Data

The setup consists of three rail-mounted tof+2rgb systems, i = 1 . . . 3, as in
Fig. 4.3. The stereo baselines are 17 cm on average, and the tof cameras are sepa-
rated by 107 cm on average. The rgb images are 1624 × 1224, whereas the Mesa
Imaging SR4000 tof images are 176×144, with a depth range of 500 cm. The three
stereo systems are first calibrated by standard methods, returning a full Euclidean
decomposition of C�i and Cri , as well as the associated lens parameters. It was estab-
lished in [8] that projective alignment is generally superior to similarity alignment,
and so the transformations Gi j and H−1

j will be 4 × 4 homographies. These trans-
formations were estimated by the DLT method, and refined by LM-minimization of
the joint geometric error, as in (4.14).

4.3.1 Calibration Error

The calibration error is measured by first taking tof points Qπ
j corresponding to ver-

tices on the reconstructed calibration plane π j in system j , as described in Sect. 4.2.2.
These can then be projected into a pair of rgb images in system i , so that the error
Ecal

i j = 1
2

(
Ecal

�i j + Ecal
ri j

)
can be computed, where

Ecal
�i j =

1

|π |
∑
Qπ

j

D
(

C�i j H−1
j Qπ

j , p�i

)
(4.25)

and Ecal
ri j is similarly defined. The function D(·, ·) computes the image distance

between inhomogenized points, as in (4.13), and the denominator corresponds to
the number of vertices on the board, with |π | = 35 in the present experiments. The
measure (4.25) can of course be averaged over all images in which the board is
visible. The calibration procedure has an accuracy of around 1 pixel, as shown in
Fig. 4.4.

4.3.2 Total Error

The calibration error, as reported in the preceding section, is the natural way to eval-
uate the estimated cameras and homographies. It is not, however, truly representative
of the ‘live’ performance of the complete setup. This is because the calibration error
uses each estimated plane π j to replace all vertices Q j with the fitted versions Qπ

j .
In general, however, no surface model is available, and so the raw points Q j must
be used as input for meshing and rendering processes.

The total error, which combines the calibration and range errors, can be measured
as follows. The i-th rgb views of plane π j must be related to the tof image points
qj by the 2-D transfer homographies T �i j and T ri j , where
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Fig. 4.4 Calibration error (4.25), measured by projecting the fitted tof points Qπ to the left and
right rgb images (1624×1224) in three separate systems. Each histogram combines left-camera and
right-camera measurements from 15 views of the calibration board. Subpixel accuracy is obtained

p�i � T �i j q j and pri � T ri j q j . (4.26)

These 3 × 3 matrices can be estimated accurately, because the range data itself
is not required. Furthermore, let Π j be the hull (i.e., bounding polygon) of plane
π j as it appears in the tof image. Any pixel q j in the hull (including the original
calibration vertices) can now be reprojected to the i-th rgb views via the 3-D point
Q j , or transferred directly by T �i j and T ri j in (4.26). The total error is the average

difference between the reprojections and the transfers, E tot
i j = 1

2

(
E tot

�i j+E tot
ri j

)
, where

E tot
�i j =

1

|Π j |
∑

q j∈Π j

D
(

C�i j H−1
j Q j , T �i j q j

)
(4.27)

and E tot
ri j is similarly defined. The view-dependent denominator |Π j | � |π | is the

number of pixels in the hull Π j . Hence, E tot
i j is the total error, including range noise,

of tof plane π j as it appears in the i-th rgb cameras.
If the rgb cameras are not too far from the tof camera, then the range errors

tend to be canceled in the reprojection. This is evident in Fig. 4.5, although it is clear
that the tail of each distribution is increased by the range error. However, if the rgb
cameras belong to another system, with a substantially different location, then the
range errors can be very large in the reprojection. This is clear from Fig. 4.6, which
shows that a substantial proportion of the tof points reproject to the other systems
with a total error in excess of 10 pixels.

It is possible to understand these results more fully by examining the distribution
of the total error across individual boards. Figure 4.7 shows the distribution for a
board reprojected to the same system (i.e., part of the data from Fig. 4.5). There is a
relatively smooth gradient of error across the board, which is attributable to errors
in the fitting of plane π j , and in the estimation of the camera parameters. The pixels
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0.0           1.0            2.0             3.0
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Fig. 4.5 Total error (4.27), measured by projecting the raw tof points Q to the left and right rgb
images (1624× 1224) in three separate systems. These distributions have longer and heavier tails
than those of the corresponding calibration errors, shown in Fig. 4.4

0 5 10 15 20

2 → 1, r1

pixel error
0 5 10 15 20

2 → 3, r3

pixel error

Fig. 4.6 Total error when reprojecting raw tof points from system 2 to rgb cameras in systems 1
and 3 (left and right, respectively). The range errors are emphasized by the difference in viewpoints
between the two systems. Average error is now around 5 pixels in the 1624× 1224 images, and the
noisiest tof points reproject with tens of pixels of error

can be divided into sets from the black and white squares, using the known board
geometry and detected vertices. It can be seen in Fig. 4.7 (right) that the total error for
each set is comparable. However, when reprojecting to a different system, Fig. 4.8
shows that the total error is correlated with the black and white squares on the board.
This is due to significant absorption of the infrared signal by the black squares.

4.4 Conclusions

It has been shown that there is a projective relationship between the data provided by
a tof camera, and an uncalibrated binocular reconstruction. Two practical methods
for computing the projective transformation have been introduced; one that requires
luminance point correspondences between the tof and color cameras, and one that
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Fig. 4.7 Left 3-D tof pixels (|Π | = 3216), on a calibration board, reprojected to an rgb image in
the same tof+2rgb system. Each pixel is color coded by the total error (4.27). Black crosses are
the detected vertices in the rgb image. Right histograms of total error, split into pixels on black or
white squares
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Fig. 4.8 Left 3-D tof pixels, as in Fig. 4.7, reprojected to an rgb image in a different tof+2rgb
system. Right histograms of total error, split into pixels on black or white squares. The depth of the
black squares is much less reliable, which leads to inaccurate reprojection into the target system

does not. Either of these methods can be used to associate binocular color and texture
with each 3-D point in the range reconstruction. It has been shown that the point-
based method can easily be extended to multiple-tof systems, with calibrated or
uncalibrated rgb cameras.

The problem of tof noise, especially when reprojecting 3-D points to a very
different viewpoint, has been emphasized. This source of error can be reduced by
application of the denoising methods described in Chap. 1. Alternatively, having
aligned the tof and rgb systems, it is possible to refine the 3-D representation by
image matching, as explained in Chap. 5.

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
http://dx.doi.org/10.1007/978-1-4471-4658-2_5
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Chapter 5
A Mixed Time-of-Flight and Stereoscopic
Camera System

Abstract Several methods that combine range and color data have been investigated
and successfully used in various applications. Most of these systems suffer from the
problems of noise in the range data and resolution mismatch between the range sen-
sor and the color cameras. High-resolution depth maps can be obtained using stereo
matching, but this often fails to construct accurate depth maps of weakly/repetitively
textured scenes. Range sensors provide coarse depth information regardless of pres-
ence/absence of texture. We propose a novel tof-stereo fusion method based on an
efficient seed-growing algorithm which uses the tof data projected onto the stereo
image pair as an initial set of correspondences. These initial “seeds” are then prop-
agated to nearby pixels using a matching score that combines an image similarity
criterion with rough depth priors computed from the low-resolution range data. The
overall result is a dense and accurate depth map at the resolution of the color cameras
at hand. We show that the proposed algorithm outperforms 2D image-based stereo
algorithms and that the results are of higher resolution than off-the-shelf RGB-D
sensors, e.g., Kinect.

Keywords Mixed-camera systems · Stereo seed-growing · Time-of-Flight sensor
fusion · Depth and color combination

5.1 Introduction

Advanced computer vision applications require both depth and color information.
Hence, a system composed of tof and color cameras should be able to provide
accurate color and depth information for each pixel and at high resolution. Such
a mixed system can be very useful for a large variety of vision problems, e.g., for
building dense 3D maps of indoor environments.

The 3D structure of a scene can be reconstructed from two or more 2D views
via a parallax between corresponding image points. However, it is difficult to obtain
accurate pixel-to-pixel matches for scenes of objects without textured surfaces, with
repetitive patterns, or in the presence of occlusions. The main drawback is that

M. Hansard et al., Time-of-Flight Cameras, SpringerBriefs in Computer Science, 77
DOI: 10.1007/978-1-4471-4658-2_5, © Miles Hansard 2013
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stereo matching algorithms frequently fail to reconstruct indoor scenes composed of
untextured surfaces, e.g., walls, repetitive patterns and surface discontinuities, which
are typical in man-made environments.

Alternatively, active-light range sensors, such as time-of-flight (tof) or structured-
light cameras (see Chap. 1), can be used to directly measure the 3D structure of a
scene at video frame rates. However, the spatial resolution of currently available
range sensors is lower than high-definition (HD) color cameras, the luminance sen-
sitivity is poorer and the depth range is limited. The range-sensor data are often noisy
and incomplete over extremely scattering parts of the scene, e.g., non-Lambertian
surfaces. Therefore, it is not judicious to rely solely on range-sensor estimates for
obtaining 3D maps of complete scenes. Nevertheless, range cameras provide good
initial estimates independently of whether the scene is textured or not, which is not
the case with stereo matching algorithms. These considerations show that it is useful
to combine the active-range and the passive-parallax approaches, in a mixed system.
Such a system can overcome the limitations of both the active- and passive-range
(stereo) approaches, when considered separately, and provides accurate and fast 3D
reconstruction of a scene at high resolution, e.g., 1200× 1600 pixels, as in Fig. 5.1.

5.1.1 Related Work

The combination of a depth sensor with a color camera has been exploited in sev-
eral applications such as object recognition [2, 15, 24], person awareness, gesture
recognition [11], simultaneous localization and mapping (SLAM) [3, 17], robotized
plant-growth measurement [1], etc. These methods mainly deal with the problem
of noise in depth measurement, as examined in Chap. 1, as well as with the low
resolution of range data as compared to the color data. Also, most of these meth-
ods are limited to RGB-D, i.e., a single color image combined with a range sensor.
Interestingly enough, the recently commercialized Kinect [13] camera falls in the
RGB-D family of sensors. We believe that extending the RGB-D sensor model to
RGB-D-RGB sensors is extremely promising and advantageous because, unlike the
former type of sensor, the latter type can combine active depth measurement with
stereoscopic matching and hence better deal with the problems mentioned above.

Stereo matching has been one of the most studied paradigms in computer vision.
There are several papers, e.g., [22, 23] that overview existing techniques and that
highlight recent progress in stereo matching and stereo reconstruction. While a
detailed description of existing techniques is beyond the scope of this section, we
note that algorithms based on greedy local search techniques are typically fast
but frequently fail to reconstruct the poorly textured regions or ambiguous sur-
faces. Alternatively, global methods formulate the matching task as an optimization
problem which leads the minimization of a Markov random field (MRF) energy
function of the image similarity likelihood and a prior on the surface smoothness.

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
http://dx.doi.org/10.1007/978-1-4471-4658-2_1
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(a)

(b)

(c)

Fig. 5.1 a Two high-resolution color cameras (2.0 MP at 30 FPS) are combined with a single low-
resolution tof camera (0.03 MP at 30 FPS). b The 144×177 tof image (upper left corner) and two
1224× 1624 color images are shown at the true scale. c The depth map obtained with our method.
The technology used by both these camera types allows simultaneous range and photometric data
acquisition with an extremely accurate temporal synchronization, which may not be the case with
other types of range cameras such as the current version of Kinect
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These algorithms solve some of the aforementioned problems of local methods but
are very complex and computationally expensive since optimizing an MRF-based
energy function is an NP-hard problem in the general case.

A practical tradeoff between the local and the global methods in stereo is the seed-
growing class of algorithms [4–6]. The correspondences are grown from a small set of
initial correspondence seeds. Interestingly, they are not particularly sensitive to bad
input seeds. They are significantly faster than the global approaches, but they have
difficulties in presence of nontextured surfaces; Moreover, in these cases they yield
depth maps which are relatively sparse. Denser maps can be obtained by relaxing the
matching threshold but this leads to erroneous growth, so there is a natural tradeoff
between the accuracy and density of the solution. Some form of regularization is
necessary in order to take full advantage of these methods.

Recently, external prior-based generative probabilistic models for stereo matching
were proposed [14, 20] for reducing the matching ambiguities. The priors used were
based on surface triangulation obtained from an initially matched distinctive interest
points in the two color images. Again, in the absence of textured regions, such support
points are only sparsely available, and are not reliable enough or are not available at
all in some image regions, hence the priors are erroneous. Consequently, such prior-
based methods produce artifacts where the priors win over the data, and the solution
is biased toward such incorrect priors. This clearly shows the need for more accurate
prior models. Wang et al. [25] integrate a regularization term based on the depth
values of initially matched ground control points in a global energy minimization
framework. The ground control points are gathered using an accurate laser scanner.
The use of a laser scanner is tedious because it is difficult to operate and because it
cannot provide depth measurements fast enough such that it can be used in a practical
computer vision application.

Tof cameras are based on an active sensor principle1 that allows 3D data acqui-
sition at video frame rates, e.g., 30 FPS as well as accurate synchronization with any
number of color cameras.2 A modulated infrared light is emitted from the camera’s
internal lighting source, is reflected by objects in the scene and eventually travels
back to the sensor, where the time of flight between sensor and object is measured
independently at each of the sensor’s pixel by calculating the precise phase delay
between the emitted and the detected waves. A complete depth map of the scene
can thus be obtained using this sensor at the cost of very low spatial resolution and
coarse depth accuracy (see Chap. 1 for details).

The fusion of tof data with stereo data has been recently studied. For example,
[8] obtained a higher quality depth map, by a probabilistic ad hoc fusion of tof and
stereo data. Work in [26] merges the depth probability distribution function obtained
from tof and stereo. However, both these methods are meant for improvement over
the initial data gathered with the tof camera and the final depth-map result is still
limited to the resolution of the tof sensor. The method proposed in this chapter

1 All experiments described in this chapter use the Mesa SR4000 camera [18].
2 http://www.4dviews.com

http://dx.doi.org/10.1007/978-1-4471-4658-2_1
http://www.4dviews.com
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increases the resolution from 0.03 MP to the full resolution of the color cameras
being used, e.g., 2 MP.

The problem of depth-map upsampling has been also addressed in the recent past.
In [7] a noise-aware filter for adaptive multilateral upsampling of tof depth maps
is presented. The work described in [15, 21] extends the model of [9], and [15]
demonstrates that the object detection accuracy can be significantly improved by
combining a state-of-the-art 2D object detector with 3D depth cues. The approach
deals with the problem of resolution mismatch between range and color data using an
MRF-based superresolution technique in order to infer the depth at every pixel. The
proposed method is slow: It takes around 10 s to produce a 320× 240 depth image.
All of these methods are limited to depth-map upsampling using only a single color
image and do not exploit the added advantage offered by stereo matching, which
can highly enhance the depth map both qualitatively and quantitatively. Recently,
[12] proposed a method which combines tof estimates with stereo in a semiglobal
matching framework. However, at pixels where tof disparity estimates are available,
the image similarity term is ignored. This make the method quite susceptible to errors
in regions where tof estimates are not precise, especially in textured regions where
stereo itself is reliable.

5.1.2 Chapter Contributions

In this chapter, we propose a novel method for incorporating range data within a
robust seed-growing algorithm for stereoscopic matching [4]. A calibrated system
composed of an active-range sensor and a stereoscopic color camera pair, as described
in Chap. 4 and [16], allows the range data to be aligned and then projected onto each
one of the two images, thus providing an initial sparse set of point-to-point correspon-
dences (seeds) between the two images. This initial seed set is used in conjunction
with the seed-growing algorithm proposed in [4]. The projected tof points are used
as the vertices of a mesh-based surface representation which, in turn, is used as
a prior to regularize the image-based matching procedure. The novel probabilistic
fusion model proposed here (between the mesh-based surface initialized from the
sparse tof data and the seed-growing stereo matching algorithm itself) combines the
merits of the two 3D sensing methods (active and passive) and overcomes some of
the limitations outlined above. Notice that the proposed fusion model can be incor-
porated within virtually any stereo algorithm that is based on energy minimization
and which requires some form initialization. It is, however, particularly efficient and
accurate when used in combination with match-propagation methods.

The remainder of this chapter is structured as follows: Sect. 5.2 describes the
proposed range-stereo fusion algorithm. The growing algorithm is summarized
in Sect. 5.2.1. The processing of the tof correspondence seeds is explained in
Sect. 5.2.2, and the sensor fusion based similarity statistic is described in Sect. 5.2.3.
Experimental results on a real data set and evaluation of the method, are presented
in Sect. 5.3. Finally, Sect. 5.4 draws some conclusions.

http://dx.doi.org/10.1007/978-1-4471-4658-2_4
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5.2 The Proposed ToF-Stereo Algorithm

As outlined above, the tof camera provides a low-resolution depth map of a scene.
This map can be projected onto the left and right images associated with the
stereoscopic pair, using the projection matrices estimated by the calibration method
described in Chap. 4. Projecting a single 3D point (x, y, z) gathered by the tof cam-
era onto the rectified images provides us with a pair of corresponding points (u, v)
and (u′, v′) with v′ = v in the respective images. Each element (u, u′, v) denotes a
point in the disparity space.3 Hence, projecting all the points obtained with the tof
camera gives us a sparse set of 2D point correspondences. This set is termed as the
set of initial support points or tof seeds.

These initial support points are used in a variant of the seed-growing stereo algo-
rithm [4, 6] which further grows them into a denser and higher resolution disparity
map. The seed-growing stereo algorithms propagate the correspondences by search-
ing in the small neighborhoods of the seed correspondences. Notice that this growing
process limits the disparity space to be visited to only a small fraction, which makes
the algorithm extremely efficient from a computational point-of-view. The limited
neighborhood also gives a kind of implicit regularization, nevertheless the solution
can be arbitrarily complex, since multiple seeds are provided.

The integration of range data within the seed-growing algorithm requires two
major modifications: (1) The algorithm is using tof seeds instead of the seeds
obtained by matching distinctive image features, such as interest points, between
the two images, and (2) the growing procedure is regularized using a similarity
statistic which takes into account the photometric consistency as well as the depth
likelihood based on disparity estimate by interpolating the rough triangulated tof
surface. This can be viewed as a prior cast over the disparity space.

5.2.1 The Growing Procedure

The growing algorithm is sketched in pseudocode as Algorithm 1. The input is a pair
of rectified images (IL , IR), a set of refined tof seeds S (see below), and a parameter
τ which directly controls a tradeoff between matching accuracy and matching den-
sity. The output is a disparity map D which relates pixel correspondences between
the input images.

First, the algorithm computes the prior disparity map Dp by interpolating tof
seeds. Map Dp is of the same size as the input images and the output disparity map,
Step 1. Then, a similarity statistic simil (s|IL , IR, Dp) of the correspondence, which
measures both the photometric consistency of the potential correspondence as well as
its consistency with the prior, is computed for all seeds s = (u, u′, v) ∈ S , Step 2.
Recall that the seed s stands for a pixel-to-pixel correspondence (u, v) ↔ (u′, v)

3 The disparity space is a space of all potential correspondences [22].

http://dx.doi.org/10.1007/978-1-4471-4658-2_4
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Algorithm 1 Growing algorithm for tof-stereo fusion
Require: Rectified images (IL , IR),

initial correspondence seeds S ,
image similarity threshold τ .

1: Compute the prior disparity map Dp by interpolating seeds S .
2: Compute simil(s|IL , IR, Dp) for every seed s ∈ S .
3: Initialize an empty disparity map D of size IL (and Dp).
4: repeat
5: Draw seed s ∈ S of the best simil(s|IL , IR, Dp) value.
6: for each of the four best neighbors i ∈{1, 2, 3, 4}

q∗i = (u, u′, v) = argmax
q∈Ni (s)

simil(q|IL , IR, Dp)

do
7: c := simil(q∗i |IL , IR, Dp)

8: if c ≥ τ and pixels not matched yet then
9: Update the seed queue S := S ∪ {q∗i }.
10: Update the output map D(u, v) = u − u′.
11: end if
12: end for
13: until S is empty
14: return disparity map D.

between the left and the right images. For each seed, the algorithm searches other
correspondences in the surroundings of the seeds by maximizing the similarity statis-
tic. This is done in a 4-neighborhood {N1,N2,N3,N4} of the pixel correspondence,
such that in each respective direction (left, right, up, down) the algorithm searches the
disparity in a range of±1 pixel from the disparity of the seed, Step 6. If the similarity
statistic of a candidate exceeds the threshold value τ , then a new correspondence is
found, Step 8. This new correspondence becomes itself a new seed, and the output
disparity map D is updated accordingly. The process repeats until there are no more
seeds to be grown.

The algorithm is robust to a fair percentage of wrong initial seeds. Indeed, since
the seeds compete to be matched based on a best-first strategy, the wrong seeds
typically have low score simil(s) associated with them and therefore when they are
evaluated in Step 5, it is likely that the involved pixels been already matched. For
more details on the growing algorithm, we refer the reader to [4, 6].

5.2.2 ToF Seeds and Their Refinement

The original version of the seed-growing stereo algorithm [6] uses an initial set of
seeds S obtained by detecting interest points in both images and matching them.
Here, we propose to use tof seeds. As already outlined, these seeds are obtained
by projecting the low-resolution depth map associated with the tof camera onto the
high-resolution images. Likewise the case of interest points, this yields a sparse set
of seeds, e.g., approximately 25,000 seeds in the case of the tof camera used in



84 5 Time-of-flight and stereoscopic cameras

Fig. 5.2 This figure shows an example of the projection of the tof points onto the left and right
images. The projected points are color coded such that the color represents the disparity: cold
colors correspond to large disparity values. Notice that there are many wrong correspondences on
the computer monitor due to the screen reflectance and to artifacts along the occlusion boundaries

Fig. 5.3 The effect of occlusions. A tof point P that belongs to a background (BG) objects is only
observed in the left image (IL), while it is occluded by a foreground object (FG), and hence not
seen in the right image (IR). When the tof point P is projected onto the left and right images, an
incorrect correspondence (PI L ↔ P ′I R) is established

our experiments. Nevertheless, one of the main advantages of the tof seeds over
the interest points is that they are regularly distributed across the images regardless
of the presence/absence of texture. This is not the case with interest points whose
distribution strongly depends on texture as well as lighting conditions, etc. Regularly
distributed seeds will provide a better coverage of the observed scene, i.e., even in
the absence of textured areas.

However, tof seeds are not always reliable. Some of the depth values associated
with the tof sensor are inaccurate. Moreover, whenever a tof point is projected onto
the left and onto the right images, it does not always yield a valid stereo match.
There may be several sources of error which make the tof seeds less reliable than
one would have expected, as in Figs. 5.2 and 5.3. In detail:

1. Imprecision due to the calibration process. The transformations allowing to
project the 3D tof points onto the 2D images are obtained via a complex sensor
calibration process, i.e., Chap. 4. This introduces localization errors in the image
planes of up to 2 pixels.

http://dx.doi.org/10.1007/978-1-4471-4658-2_4


5.2 The Proposed Tof-Stereo Algorithm 85

Fig. 5.4 An example of the effect of correcting the set of seeds on the basis that they should be
regularly distributed. a Original set of seeds. b Refined set of seeds

2. Outliers due to the physical/geometric properties of the scene. Range sensors are
based on active light and on the assumption that the light beams travel from the
sensor and back to it. There are a number of situations where the beam is lost, such
as specular surfaces, absorbing surfaces (such as fabric), scattering surfaces (such
as hair), slanted surfaces, bright surfaces (computer monitors), faraway surfaces
(limited range), or when the beam travels in an unpredictable way, such a multiple
reflections.

3. The tof camera and the 2D cameras observe the scene from slightly different
points of view. Therefore, it may occur that a 3D point that is present in the tof
data is only seen into the left or right image, as in Fig. 5.3, or is not seen at all.

Therefore, a fair percentage of the tof seeds are outliers. Although the seed-
growing stereo matching algorithm is robust to the presence of outliers in the initial
set of seeds, as already explained in Sect. 5.2.1, we implemented a straightforward
refinement step in order to detect and eliminate incorrect seed data, prior to applying
Algorithm 1. First, the seeds that lie in low-intensity (very dark) regions are discarded
since the tof data are not reliable in these cases. Second, in order to handle the
background-to-foreground occlusion effect just outlined, we detect seeds which are
not uniformly distributed across image regions. Indeed, projected 3D points lying
on smooth fronto-parallel surfaces form a regular image pattern of seeds, while
projected 3D points that belong to a background surface and which project onto a
foreground image region do not form a regular pattern, e.g., occlusion boundaries in
Fig. 5.4a.

Nonregular seed patterns are detected by counting the seed occupancy within small
5×5 pixel windows around every seed point in both images. If there is more than one
seed point in a window, the seeds are classified as belonging to the background and
hence they are discarded. A refined set of seeds is shown in Fig. 5.4b. The refinement
procedure typically filters 10–15 % of all seed points.
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5.2.3 Similarity Statistic Based on Sensor Fusion

The original seed-growing matching algorithm [6] uses Moravec’s normalized cross-
correlation [19] (MNCC),

simil(s) = MNCC(wL , wR) = 2cov(wL , wR)

var(wL)+ var(wR)+ ε
(5.1)

as the similarity statistic to measure the photometric consistency of a correspondence
s : (u, v) ↔ (u′, v). We denote by wL and wR the feature vectors which collect
image intensities in small windows of size n × n pixels centered at (u, v) and (u′v)
in the left and right image, respectively. The parameter ε prevents instability of the
statistic in cases of low-intensity variance. This is set as the machine floating point
epsilon. The statistic has low response in textureless regions and therefore the growing
algorithm does not propagate the correspondences across these regions. Since the
tof sensor can provide seeds without the presence of any texture, we propose a novel
similarity statistic, simil(s|IL , IR, Dp). This similarity measure uses a different score
for photometric consistency as well as an initial high-resolution disparity map Dp,
both incorporated into the Bayesian model explained in detail below.

The initial disparity map Dp is computed as follows. A 3D meshed surface is built
from a 2D triangulation applied to the tof image. The disparity map Dp is obtained
via interpolation from this surface such that it has the same (high) resolution as of
the left and right images. Figure 5.5a, b show the meshed surface projected onto
the left high-resolution image and built from the tof data, before and after the seed
refinement step, which makes the Dp map more precise.

Let us now consider the task of finding an optimal high-resolution disparity map.
For each correspondence (u, v) ↔ (u′, v) and associated disparity d = u − u′ we
seek an optimal disparity d∗ such that:

d∗ = argmax
d

P(d|IL , IR, Dp). (5.2)

By applying the Bayes’ rule, neglecting constant terms, assuming that the distribution
P(d) is uniform in a local neighborhood where it is sought (Step. 6), and considering
conditional independence P(Il , Ir , D|d) = P(IL , IR |d)P(Dp|d), we obtain:

d∗ = argmax
d

P(IL , IR |d)P(Dp|d), (5.3)

where the first term is the color-image likelihood and the second term is the range-
sensor likelihood. We define the color-image and range-sensor likelihoods as:

P(IL , IR |d) ∝ EXPSSD(wL , wR)

= exp

(
−

∑n×n
i=1 (wL(i)− wR(i))2

σ 2
s

∑n×n
i=1 (wL(i)2 + wR(i)2)

)
, (5.4)
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Fig. 5.5 Triangulation and prior disparity map Dp . These are shown using both raw seeds a, c and
refined seeds b, d. A positive impact of the refinement procedure is clearly visible

and as:

P(Dp|d) ∝ exp

(
− (d − dp)

2

2σ 2
p

)
(5.5)

respectively, where σs are σp two normalization parameters. Therefore, the new
similarity statistic becomes:

simil(s|IL , IR, Dp) = EPC(wL , wR, Dp)

= exp

(
−

∑n×n
i=1 (wL(i)− wR(i))2

σ 2
s

∑n×n
i=1 (wL(i)2 + wR(i)2)

− (d − dp)
2

2σ 2
p

)
. (5.6)

Notice that the proposed image likelihood has a high response for correspondences
associated with textureless regions. However, in such regions, all possible matches
have similar image likelihoods. The proposed range-sensor likelihood regularizes the
solution and forces it toward the one closest to the prior disparity map Dp. A tradeoff
between these two terms can be obtained by tuning the parameters σs and σp. We
refer to this similarity statistic as the exponential prior correlation (EPC) score.
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5.3 Experiments

Our experimental setup comprises one Mesa Imaging SR4000 tof camera [18] and a
pair of high-resolution Point Grey4 color cameras, as shown in Fig. 5.1. The two color
cameras are mounted on a rail with a baseline of about 49 cm and the tof camera
is approximately midway between them. All three optical axes are approximately
parallel. The resolution of the tof image is of 144×176 pixels and the color cameras
have a resolution of 1224×1624 pixels. Recall that Fig. 5.1b highlights the resolution
differences between the tof and color images. This camera system was calibrated
using the alignment method of Chap. 4.

In all our experiments, we set the parameters of the method as follows: Windows
of 5×5 pixels were used for matching (n = 5), the matching threshold in Algorithm 1
is set to τ = 0.5, the balance between the photometric and range-sensor likelihoods is
governed by two parameters in (5.6), which were set to σ 2

s = 0.1 and to σ 2
p = 0.001.

We show both qualitatively and quantitatively (using data sets with ground truth)
the benefits of the range sensor and an impact of particular variants of the proposed
fusion model integrated in the growing algorithm. Namely, we compare results of
(i) the original stereo algorithm [6] with MNCC correlation and Harris seeds (MNCC-
Harris), (ii) the same algorithm with tof seeds (MNCC-TOF), (iii) the algorithm
which uses EXPSSD similarity statistic instead with both Harris (EXPSSD-Harris)
and tof seeds (EXPSSD-TOF), and (iv) the full sensor fusion model of the regu-
larized growth (EPC). Finally, small gaps of unassigned disparity in the disparity
maps were filled by a primitive procedure which assigns median disparity in the
5 × 5 window around the gap (EPC—gaps filled). These small gaps usually occur
in slanted surfaces, since Algorithm 1 in Step. 8 enforces one-to-one pixel matching.
Nevertheless this way, they can be filled easily, if needed.

5.3.1 Real-Data Experiments

We captured two real-world data sets using the camera setup described above, SET-1
in Fig. 5.6 and SET-2 in Fig. 5.7. Notice that in both of these examples the scene sur-
faces are weakly textured. Results shown as disparity maps are color coded, such that
warmer colors are further away from the cameras and unmatched pixels are dark blue.

In Fig. 5.6d, we can see that the original algorithm [6] has difficulties in weakly
textured regions which results in large unmatched regions due to the MNCC statistic
(5.1), and it produces several mismatches over repetitive structures on the back-
ground curtain, due to erroneous (mismatched) Harris seeds. In Fig. 5.6e, we can see
that after replacing the sparse and somehow erratic Harris seeds with uniformly dis-
tributed (mostly correct) tof seeds, the results have significantly been improved.
There are no more mismatches on the background, but unmatched regions are
still large. In Fig. 5.6f, the EXPSSD statistic (5.4) was used instead of MNCC which

4 http://www.ptgrey.com/

http://dx.doi.org/10.1007/978-1-4471-4658-2_4
http://www.ptgrey.com/
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Fig. 5.6 SET-1: a left image, b tof image and c right image. The tof image has been zoomed
at the resolution of the color images for visualization purposes. Results obtained d using the seed-
growing stereo algorithm [6] combining Harris seeds and MNCC statistic, e using tof seeds and
MNCC statistic , f using Harris seeds and EXPSSD statistic, g using tof seeds with EXPSSD
statistics. Results obtained with the proposed stereo-tof fusion model using the EPC (exponential
prior correlation) similarity statistic h, and EPC after filling small gaps i

causes similar mismatches as in Fig. 5.6d, but unlike MNCC there are matches in
textureless regions, nevertheless mostly erratic. The reason is that unlike MNCC
statistic the EXPSSD statistic has high response in low-textured regions. However,
since all disparity candidates have equal (high) response inside such regions, the
unregularized growth is random, and produces mismatches. The situation does not
improve much using the tof seeds, as shown in Fig. 5.6g. Significantly better results
are finally shown in Fig. 5.6h which uses the proposed EPC fusion model EPC from
Eq. (5.6). The EPC statistic, unlike EXPSSD, has the additional regularizing range-
sensor likelihood term which guides the growth in ambiguous regions and attracts
the solution toward the initial depth estimates of the tof camera. Results are further
refined by filling small gaps, as shown in Fig. 5.6i. Similar observations can be made
in Fig. 5.7. The proposed model clearly outperforms the other discussed approaches.
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Fig. 5.7 SET-2. Please refer to the caption of Fig. 5.6 for explanations. a Left image. b tof image
(zoomed). c Right image. d MNCC-Harris. e MNCC-TOF. f EXPSSD-Harris. g EXPSSD-TOF.
h EPC (proposed). i EPC (gaps filled)

5.3.2 Comparison Between ToF Map and Estimated
Disparity Map

For the proper analysis of a stereo matching algorithm, it is important to inspect the
reconstructed 3D surfaces. Indeed, the visualization of the disparity/depth maps can
sometimes be misleading. Surface reconstruction reveals fine details in the quality
of the results. This is in order to qualitatively show the gain of the high-resolution
depth map produced by the proposed algorithm with respect to the low-resolution
depth map of the tof sensor.

In order to provide a fair comparison, we show the reconstructed surfaces associ-
ated with the dense disparity maps Dp obtained after 2D triangulation of the tof data
points, Fig. 5.8a, as well as the reconstructed surfaces associated with the disparity
map obtained with the proposed method, Fig. 5.8b. Clearly, much more of the sur-
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Fig. 5.8 The reconstructed surfaces are shown as relighted 3D meshes for a the prior disparity
map Dp (2D triangulation on projected and refined tof seeds), and b for the disparity map obtained
using the proposed algorithm. Notice the fine surface details which were recovered by the proposed
method

face details are recovered by the proposed method. Notice precise object boundaries
and fine details, like the cushion on the sofa chair and a collar of the T-shirt, which
appear in Fig. 5.8b. This qualitatively corroborates the precision of the proposed
method compared to the tof data.

5.3.3 Ground-Truth Evaluation

To quantitatively demonstrate the validity of the proposed algorithm, we carried out
an experiment on data sets with associated ground-truth results. Similarly to [8] we
used the Middlebury data set [22] and simulated the tof camera by sampling the
ground-truth disparity map.

The following results are based on the Middlebury-2006 data set.5 On purpose,
we selected three challenging scenes with weakly textured surfaces: Lampshade-1,
Monopoly, Plastic. The input images are of size 1330× 1110 pixels. We took every
10th pixel in a regular grid to simulate the tof camera. This gives us about 14k of
tof points, which is roughly the same ratio to color images as for the real sensors.
We are aware that simulation tof sensor this way is naive, since we do not simulate

5 http://vision.middlebury.edu/stereo/data/scenes2006/

http://vision.middlebury.edu/stereo/data/scenes2006/
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any noise or artifacts, but we believe that for validating the proposed method this is
satisfactory.

Results are shown in Fig. 5.9 and Table 5.1. We show the left input image, results of
the same algorithms as in the previous section with the real sensor, and the ground-
truth disparity map. For each disparity, we compute the percentage of correctly
matched pixels in nonoccluded regions. This error statistic is computed as the number
of pixels for which the estimated disparity differs from the ground-truth disparity by
less than one pixel, divided by number of all pixels in nonoccluded regions. Notice
that, unmatched pixels are considered as errors of the same kind as mismatches. This
is in order to allow a strict but fair comparison between algorithms which deliver
solutions of different densities. The quantitative evaluation confirms the previous
observations regarding the real-world setup. The proposed algorithm, which uses the
full sensor fusion model, significantly outperforms all other tested variants.

For the sake of completeness, we also report error statistics for the prior disparity
map Dp which is computed by interpolating tof seeds, see step 1 of Algorithm 1.
These are 92.9, 92.1, 96.0 % for Lampshade-1, Monopoly, Plastic scene, respec-
tively. These results are already quite good, which means the interpolation we use
to construct the prior disparity map is appropriate. These scenes are mostly piece-
wise planar, which the interpolation captures well. On the other hand, recall that in
the real case, not all the seeds are correct due to various artifacts of the range data.
Nevertheless in all three scenes, the proposed algorithm (EPC with gaps filled) was
able to further improve the precision up to 96.4, 95.3, 98.2 % for the respective
scenes. This is again consistent with the experiments with the real tof sensor, where
higher surface details were recovered, see Fig. 5.8.

5.3.4 Computational Costs

The original growing algorithm [6] has low computational complexity due to intrinsic
search space reduction. Assuming the input stereo images are of size n × n pixels,
the algorithm has the complexity of O(n2), while any exhaustive algorithm has
the complexity at least O(n3) as noted in [5]. The factor n3 is the size of the search
space in which the correspondences are sought, i.e., the disparity space. The growing
algorithm does not compute similarity statistics of all possible correspondences, but
efficiently traces out components of high similarity score around the seeds. This low
complexity is beneficial especially for high-resolution imagery, which allows precise
surface reconstruction.

The proposed algorithm with all presented modifications does not represent
any significant extra cost. Triangulation of tof seeds and the prior disparity map
computation is not very costly, and nor is computation of the new EPC statistic
(instead of MNCC).

For our experiments, we use an “academic”, i.e., a combined Matlab/C imple-
mentation which takes approximately 5 s on two million pixel color images. An
efficient implementation of the seed-growing algorithm [6] which runs in real time
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Lampshade 1 MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Monopoly MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Plastic MNCC-Harris MNCC-TOF EXPSSD-Harris

EXPSSD-TOF EPC EPC (gaps filled) Ground-truth

Fig. 5.9 Middlebury data set. Left-right and top-bottom: the left images, results obtained with the
same algorithms as in Figs. 5.6 and 5.7, and the ground-truth disparity maps. This evaluation shows
that the combination of the proposed seed-growing stereo algorithm with a prior disparity map,
obtained from a sparse and regularly distributed set of 3D points, yields excellent dense matching
results
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Table 5.1 The error statistics (percentage of correctly matched pixels) associated with the tested
algorithms and for three test image pairs from the Middlebury data set

Left image MNCC- MNCC- EXPSSD- EXPSSD- EPC (%) EPC
Harris (%) TOF (%) Harris (%) TOF (%) (gaps filled) (%)

Lampshade-1 61.5 64.3 44.9 49.5 88.8 96.4
Monopoly 51.2 53.4 29.4 32.1 85.2 95.3
Plastic 25.2 28.2 13.5 20.6 88.7 98.2

on a standard CPU was recently proposed [10]. This indicates that a real-time imple-
mentation of the proposed algorithm is feasible. Indeed, the modification of the
growing algorithm and integration with the tof data does not bring any significant
extra computational costs. The algorithmic complexity remains the same, since we
have only slightly modified the similarity score used inside the growing procedure.
It is true that prior to the growing process, the tof data must be triangulated. Nev-
ertheless, this can be done extremely efficiently using computer graphics techniques
and associated software libraries.

5.4 Conclusions

We have proposed a novel correspondence growing algorithm, performing fusion
of a range sensor and a pair of passive color cameras, to obtain an accurate and
dense 3D reconstruction of a given scene. The proposed algorithm is robust, and
performs well on both textured and textureless surfaces, as well as on ambiguous
repetitive patterns. The algorithm exploits the strengths of the tof sensor and those of
stereo matching between color cameras, in order to compensate for their individual
weaknesses. The algorithm has shown promising results on difficult real-world data,
as well as on challenging standard data sets which quantitatively corroborates its
favorable properties. Together with the strong potential for real-time performance
that has been discussed, the algorithm would be practically very useful in many
computer vision and robotic applications.
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