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         By the End of This Chapter, Readers Should Be Able to:  

     Understand the role of conceptual knowledge collections in terms of informing the 
design and use of reasoning systems for the purpose of in silico hypothesis discovery  
•   Select appropriate evaluation methodologies that can be used the assess the per-

formance of in silico hypothesis discovery tools and platforms  
•   Identify open research questions related to the future of high-throughput hypoth-

esis generation and the impact of such innovations on current and future scien-
tifi c and healthcare delivery paradigms.     

8.1     Introduction 

 As noted in the preceding chapters, the fundamental methods needed to conduct 
basic science, and clinical and translational research are very complex, involving a 
multitude of actors, workfl ows and data types. For example, the translational research 
paradigm focuses on cyclical fl ow of data, information and knowledge between 
laboratory researchers, clinical investigators and clinical or public health practitio-
ners, and is predicated on systems-level approaches that involve diverse information 
needs, sources and management requirements [ 1 ]. A variety of reports and schol-
arly works have enumerated challenges that may prevent the effective conduct of 
translational research. As introduced in Chap.   1    , one such challenge is commonly 
known as the “T1 block” and is concerned with issues that impact the ability to 
move data, information and knowledge between basic science and clinical research 
settings. Similarly, a second challenge, often known as the “T2 block”, focuses upon 
impediments affecting the movement of data, information and knowledge between 
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the clinical research environment and clinical or public health practice [ 2 ]. For both 
of these categories of challenges, the methods required to address them are extremely 
reliant on the provision of tools and methods that can facilitate the collection, formal-
ization, analysis and dissemination of large-scale and integrative data sets [ 3 ]. The 
potential impact of informatics-based approaches in terms of addressing such infor-
mation needs has been well established; yet those same tools and methods remain 
largely under-utilized by the research and practice communities [ 4 – 12 ]. 

  Within this broad context, one major area of concern is the way in which we 
formulate and test hypotheses relative to “big” biomedical data . This concern is 
amplifi ed by the fact that the volume, velocity and variability of biomedical data 
continue to expand at a rapid rate. This growth is in large part a function of the 
proliferation of computerized sources of biomedical data, such as Electronic Health 
Records (EHRs), Personal Health Records (PHRs), Clinical Trial or Research 
Management Systems (CTMS/CRMS), high-throughput bio-molecular instrumen-
tation, and ubiquitous sensor technologies. While computational methods continue 
to be devised and applied to support or enable the capture, storage and transaction 
of these data sets, there has not been a corresponding focus on improvements in the 
ways in which we ask and answer important questions utilizing this data. In fact, 
the traditional, reductionist approach to intuitive hypothesis generation based on the 
expertise or insights of an individual or small number of investigators remains the 
norm (Fig.  8.1 ). However, this approach is highly linear, and limited by the cogni-
tive capacities of such investigators or teams, leading to an underutilization of avail-
able and costly to assemble data sets.

   In effect, we continue to create and maintain bigger and more complex data sets 
at great expense, while we ask and answer small numbers of questions regarding the 
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  Fig. 8.1    Overview of traditional, investigator-driven approach to asking and answering questions 
regarding complex and large scale data sets. In this model, the investigator (or research team) 
serves as the primary integration of various sources of knowledge and expertise, formulating and 
asking questions concerning available data using a combination of their domain knowledge, expe-
riential knowledge from prior studies, and heuristics that they may have formulated relative to an 
application domain       
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contents of those data sets using methods that are not far removed from those used 
around the time of the dawn of modern science [ 13 ]. This concerning juxtaposition 
is the driver for an emerging body of research that seeks to couple high-throughput 
data generation with new and similarly high-throughput hypothesis generation tech-
niques, which can at a high level be referred to as  in silico hypothesis discovery 
methods  (Fig.  8.2 ).

   Such high-throughput approaches to asking and answering questions corre-
sponding to “big data” resources are essential to the synthesis of novel biomedical 
knowledge, such as that required to support personalized medicine paradigms. Such 
precision approaches to wellness promotion and care delivery aim to improve quality, 
outcomes and cost of care [ 2 ,  3 ,  14 – 16 ]. Acting upon this vision of  high- throughput 
in silico hypothesis discovery requires:

    1.    An understanding of the design and appropriate use of domain-specifi c concep-
tual knowledge collections;   

   2.    The application of intelligent agents that are informed by such knowledge col-
lections and based upon formal computational methods; and   

   3.    The evaluation of ensuing hypothesis using appropriate metrics and measures.    
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  Fig. 8.2    Alternative, high-throughput approach to asking and answering questions regarding “big 
data” resources, using in silico hypothesis discovery methods. In this model, intelligent computa-
tional agents draw upon a variety of domain knowledge collections, using formally represented 
variants of those collections, in order to identify potential relationships of interest between ele-
ments or collections of elements in an integrated repository. These relationships are then presented, 
along with corresponding evaluation metrics that serve to characterize their potential accuracy and 
novelty, to both investigators and their teams as well as broader groups of interested community 
members, who can then discover, interact with, and prioritize such hypotheses concerning data- 
level interactions for subsequent investigation       
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  In the following sections, we will explore critical aspects of all three of the afore-
mentioned foundational dimensions that underpin the design and use of in silico 
hypothesis discovery tools and platforms.  

8.2     Conceptual Knowledge in Biomedicine 

  Conceptual knowledge  has been defi ned in the computational, psychology, and edu-
cation literature as being comprised of a combination of atomic units of information 
 and  the meaningful relationships between those units. The same literature goes on 
to defi ne two additional types of complementary knowledge, known as procedural 
and strategic knowledge respectively.  Procedural knowledge  is a process-oriented 
understanding of a given problem domain [ 17 – 20 ], effectively concerned with the 
methods and approaches used to solve a given problem or address a task.  Strategic 
knowledge  is that which is used by individuals in order to translate conceptual 
knowledge into procedural knowledge [ 19 ] (Fig.  8.3 ).

   Of note, these defi nitions are based upon a wide-ranging collection of empirical 
research on learning and problem-solving in complex scientifi c and quantitative 
domains such as mathematics and engineering [ 18 ,  20 ]. The cognitive science lit-
erature provides a very similar and confi rmatory differentiation of knowledge types, 
making the distinction between procedural and declarative knowledge. Declarative 
knowledge in this context is synonymous with conceptual knowledge as defi ned 
previously [ 21 ]. 

 Conceptual knowledge collections in the biomedical domain include a variety 
of constructs such as ontologies, controlled terminologies, semantic networks and 
database schemas. A common theme when considering the existing state-of-the-art 
relative to the design and use of conceptual knowledge collections in the biomedical 
domain is the need for systematic and rigorous processes for representing concep-
tual knowledge in a computable form. It is also important to note when consid-
ering the need for such knowledge representation best practices that conceptual 
knowledge collections rarely exist in isolation. Instead, they usually occur within 
structures that contain multiple types of knowledge. For example, a modern clinical 
decision support system (CDSS) might include: (1) a database of potential fi nd-
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  Fig. 8.3    Spectrum of knowledge types, spanning from conceptual to strategic to procedural 
knowledge, where conceptual knowledge is the most abstract form of understanding a domain, and 
procedural knowledge is the most application- or problem-oriented understanding of a given need 
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ings, diagnoses and the relationships between them ( conceptual knowledge ); (2) a 
set of guidelines or algorithms used to reason upon the preceding database ( proce-
dural knowledge ); and (3) a formal defi nition of the logic used to operationalize the 
 preceding two knowledge collections ( strategic knowledge ) (Fig.  8.4 ).

   It is only when these three types of knowledge are combined that it is possible 
to realize a functional decision support system [ 22 ]. Given the close similarities 
between such CDSS and the previously introduced framework for in silico hypoth-
esis discovery methods or tools (as is illustrated in Fig.  8.2 ), this phenomenon is 
important to keep in mind for the remainder of this chapter. 

8.2.1      Knowledge Engineering 

 The core theories and methods that underlie the ability to systematically and rigor-
ously represent conceptual knowledge inform a set of application-level techniques 
known as knowledge engineering (KE). The KE process (Fig.  8.5 ) incorporates four 
major steps:

     1.    Acquisition of knowledge (KA)   
   2.    Representation of that knowledge (KR) in a computable form   
   3.    Implementation or refi nement of intelligent agents (e.g., applications that use 

formally represented knowledge to reason upon data sets and generate results of 
interest to end-users) or applications   

   4.    Verifi cation and validation of the output of those knowledge-based agents or 
applications against one or more reference standards.    

Defining Actions
Based on
Context

Connecting
Information and

Actions To Create
Actionable
Knowledge

Contextualizing
Patient Data
(Information)

Knowledge Base

Guidelines or Algorithms
(Procedural Knowledge)

Application
Logic

(strategic Konwledge)

Findings and Diagnoses
(Conceptual Knowledge)

Execution Engine User Interface

Patient-derived
Data

  Fig. 8.4    Overview of a prototypical CDSS platform, incorporating conceptual, procedural, and 
strategic knowledge types in order to generate actionable knowledge from patient-derived data       
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  With regards to the fi nal step of the KE process (verifi cation and valida-
tion), the reference standards used to evaluate the performance of an intelligent 
agent can include expert performance measures, requirements acquired before 
designing the knowledge-based system and/or requirements that were realized 
upon implementation of the knowledge-based system. In this context, verifi ca-
tion is the process of ensuring that the knowledge-based system meets the initial 
requirements of the potential end-user community. In comparison, validation 
is the process of ensuring that the knowledge-based system meets the realized 
requirements of the end-user community once a knowledge-based system has 
been implemented [ 23 ].  

8.2.2     Theoretical Frameworks for KE 

 Underlying the KE process is a set of theories concerning the ability to acquire and 
represent knowledge in a computable format, which is known as the physical sym-
bol hypothesis. First proposed by Newell and Simon [ 24 ], and expanded upon by 
Compton and Jansen [ 25 ], the physical symbol hypothesis argues that knowledge 
consists of both symbols of reality, and relationships between those symbols. This 
defi nition of knowledge thus allows for the creation of “physical symbol systems” 
(e.g., conceptual knowledge collections), which are defi ned as:

  …a set of entities, called symbols, which are physical patterns that can occur as compo-
nents of another type of entity called an expression (or symbol structure). Thus, a symbol 
structure is composed of a number of instances (or tokens) of symbols related in some 
physical way (such as one token being next to another). At any instant of time the system 
will contain a collection of these symbol structures. [ 26 ] 
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  Fig. 8.5    Overview of the Knowledge Engineering ( KE ) process, consisting of knowledge acquisi-
tion ( KA ), knowledge representation ( KR ), system implementation and refi nement, and the verifi -
cation and validation of those systems (numbered per the steps enumerated in Sect.  8.2.1 ). Of note, 
there is an optional feedback mechanism from the verifi cation and validation results back to the 
initial KA component, which helps to inform subsequent KA activities and the refi nement of exist-
ing knowledge bases       
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   In a similar manner, it has been argued within the KE literature that the 
 psychological constructs used by experts can be used as the basis for informing the 
design and composition of conceptual knowledge collections [ 27 ]. This argument 
is based on a framework for expertise transfer known as Kelly’s Personal Construct 
Theory (PCT). PCT defi nes humans as “anticipatory systems”, where individuals 
create templates, or constructs that allow them to recognize situations or patterns 
in the “information world” surrounding them. These templates are then used to 
anticipate the outcome of a potential action given knowledge of similar previous 
experiences [ 28 ]. Kelly views all people as “personal scientists” who make sense 
of the world around them through the use of a hypothetico-deductive reasoning 
system. The details of PCT help to explain how experts create and use such con-
structs. Specifi cally, Kelly’s fundamental postulate is that “ a person’s processes are 
psychologically channelized by the way in which he anticipated events ” [ 28 ]. This 
is complemented by the theory’s fi rst corollary, which is summarized by his state-
ment that [ 28 ]:

  Man looks at his world through transparent templates which he creates and then attempts to 
fi t over the realities of which the world is composed… Constructs are used for predictions 
of things to come… The construct is a basis for making a distinction… not a class of 
objects, or an abstraction of a class, but a dichotomous reference axis. 

 Building upon these basic concepts, Kelly goes on to state in his Dichotomy 
Corollary that “ a person’s construction system is composed of a fi nite number of 
dichotomous constructs ” [ 28 ]. Finally, the parallel nature of personal constructs 
and conceptual knowledge is illustrated in Kelly’s Organization Corollary, which 
states, “ each person characteristically evolves, for his convenience of anticipating 
events, a construction system embracing ordinal relationships between constructs ” 
[ 27 ,  28 ]. 

 When taken as a whole, the two preceding theoretical frameworks provide the 
basic premises for arguing that:

    1.    Domain experts (e.g., humans) use personal constructs that roughly approximate 
those constructs that defi ne formal knowledge (e.g., conceptual, strategic, and 
procedural knowledge), so as to make sense of the “information world” sur-
rounding them;   

   2.    Formal knowledge can be represented in a computationally tractable format, 
based upon the physical symbol hypothesis, and again, such symbolic systems 
closely approximate the defi nitions of conceptual knowledge; and   

   3.    Knowledge engineering methods, and in particular, knowledge acquisition tech-
niques, provide a set of tools for the elicitation and representation (in computable 
formats) of domain expert knowledge, helping to bridge the two preceding and 
complementary postulates.     

 Thus, it is possible to systematically and rigorously collect, formalize, and 
represent domain knowledge in a manner such that computers can reason upon 
those knowledge collections in a high throughput manner, thus replicating expert 
hypothesis generation processes in a way that is not constrained by innate human 
cognitive limitations and/or potential biases. Such a conclusion “opens the door” 
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for an  exploration of ensuing in silico hypothesis discovery methods, as will be 
introduced in Sect.  8.3 . Additionally, Payne et al. [ 29 ] provide a more comprehen-
sive review of the theories, frameworks, and methods that make up the biomedical 
KE domain.   

8.3      Design and Use of Intelligent Agents for In Silico 
Hypothesis Generation 

 While there exist a broad variety of methods that can be used for the purposes 
of in silico hypothesis discovery, spanning a spectrum from machine learning 
and data mining to iterative human-computer interaction in order to discovery 
high level patterns within complex data sets, for the purposes of this chapter, we 
will focus on a specifi c and exemplar type of methodology known as  knowledge 
discovery in databases  (KDD). This specifi c method has been selected in order 
to highlight the generalizable features of a much broad class of knowledge-based 
software and intelligent agents that can be used for in silico hypothesis genera-
tion. At a high level KDD is concerned with the utilization of intelligent agents, 
which are software applications that are designed to replicate human problem 
solving through the leverage of conceptual knowledge collections as an integral 
part of their architecture and function. In KDD, intelligent agents are used spe-
cifi cally to derive knowledge from the contents of databases, including database 
metadata. The use of domain-specifi c conceptual knowledge collections, such as 
ontologies, is central to the KDD induction process since commonly used data-
base modeling approaches do not incorporate semantic knowledge corresponding 
to the database contents. This overall approach is the basis for a specifi c KDD 
methodology known as  constructive induction  (CI). In CI, data elements defi ned 
by a database schema are mapped to concepts defi ned by one or more ontologies 
or equivalent conceptual knowledge collections. Subsequently, the relationships 
included in the mapped ontologies are used to induce semantically meaningful 
relationships between the mapped data elements. The induction process gener-
ates what are known as “facts” concerning the contents of the database, which are 
defi ned in terms of data elements and semantic relationships that signifi cantly link 
those elements together (Fig.  8.6 ).

   These “facts” (which are a type of conceptual knowledge) can then be used 
to support higher level reasoning about the data defi ned by the targeted database 
schema. It is important to note that such “facts” can exploit the transitive closure 
principles associated with the graph-like representation of most ontologies, and 
therefore may include intermediate concepts that do not map to a database element 
but serve to create a semantically related concept triplet or high-order relationship 
that begins and terminates with concepts that do map to database elements. 

 The implementation of an intelligent agent that utilizes the preceding CI method-
ology often follows the multi-step process illustrated in Fig.  8.7  (which each phase 
numbered to refl ect the following description) and outlined below:
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•      Phase 1 – Metadata to Conceptual Knowledge Entity Mapping : In the fi rst 
phase of implementing a CI-based agent, the metadata that serves to defi ne a 
knowledge source of interest (e.g., a data dictionary or equivalent description of 
the contents of a data set or sets) must be mapped using either manual or auto-
mated processes to the entities that comprise one or more conceptual knowledge 
collections (e.g., syntactic or semantic matching of metadata defi nitions to enti-
ties in a terminology, ontology, or equivalent construct). This process usually 
results in one-to-many mappings, in which each metadata items corresponds to 
more than one conceptual knowledge entity. For example, if mapping a clinical 
data set with the specifi c variable corresponding to a “White Blood Cell Count”, 
depending on the mapping approach being used and the intent of the KE initia-
tive, that variable could be linked to multiple ontology-anchored concepts, such 
as the molecular entity “White Blood Cell”, the laboratory procedure “White 
Blood Cell Count”, as well as the clinical fi ndings of “White Blood Cell Count 
Normal”, “White Blood Cell Count High”, and “White Blood Cell Low.” This 
process generates a “knowledge map” that resolves individual variables of 
 interest in the metadata being utilized to a corresponding set of atomic concep-
tual knowledge entities.  

  Fig. 8.6    Overview of constructive induction process whereby mapping between database ele-
ments as described via their metadata and corresponding ontology concepts are used to induce new 
“facts” concerning the contents of the database. In this general case, concepts 6–8, which is 
included in the ontology but does not map to the database construct, is used as an intermediate 
concept to defi ne a concept triplet or higher order construct involving multiple intermediate enti-
ties that begins and terminates with data elements that map to concepts in the ontology construct       
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•    Phase 2 – Subset Selection from Knowledge Collection(s) : Given that many 
conceptual knowledge collections contain thousands, if not hundreds of thou-
sands, of distinct atomic entities and corresponding hierarchical or semantic 
relationships, such constructs can present computational challenges, such as the 
tractability, computational cost, or timeliness of computational tasks applied to 
such knowledge collections, which can be addressed through a process known as 
 search space reduction . Effectively, once Phase 1 (Metadata to Conceptual 
Knowledge Entity Mapping) is complete, we can select a subset of those concep-
tual knowledge collections that directly correspond to: (1) the atomic elements 
mapped to the targeted metadata; (2) the hierarchical and/or semantic relation-
ships that serve to link those atoms together; and (3) any additional atoms neces-
sary to complete the linking paths identifi ed via [ 2 ]. This allows refi nement of 
the initial knowledge collections to one that is constrained to the problem- solving 
task at hand.  

•    Phase 3 – Depth-based Annotation : Once we have reduced the overall search 
space (Phase 2), an additional computational challenge must be addressed, 
concerned with the granularity of concepts being used for reasoning purposes. 
If we extend our prior example of “White Blood Cell Count” and its mapping 

  Fig. 8.7    Overview of major steps, resources, and outputs associated with the design and use of a 
CI-based agent       
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to an ontology-anchored concept of the laboratory procedure that has that same 
name, such a mapping could be used, when traversing the atomic units of infor-
mation and relationships that comprise an ontology, to assert a relationship 
between “White Blood Cell Count” and the broad category of “Laboratory 
Procedures”, which then in turn allows for the resolution of relationships with 
every other known laboratory procedures subsumed by that concept. This 
would be a factually accurate relationship to assert, but one that is functionally 
useless for hypothesis discovery, as it is overly broad and general. Why is this 
the case? Simply put, the concepts of “White Blood Cell Count” and 
“Laboratory Procedure” are not of an equivalent level of granularity (e.g., the 
former is much more specifi c than the latter). One approach that can serve as a 
surrogate for concept granularity in the source ontologies employed by a 
CI-based agent is the relative depth from the ontology root of those concepts 
(Fig.  8.8 ). Using such measurements, we can then constrain “fact induction” 
(Phase 4) to include only relationships between conceptual entities that exist at 
a similar or deeper depth from the ontology root and therefore can be expected 
to express useful and not overly generic hypothetical relationships. Doing so, 
however, requires us to fi rst calculate the depth to the ontology root (or roots) 
for every conceptual entity selected in Phase 2 of this process, usually using 
the shortest such path as the preferred measurement when there exist more than 
one path from the concept to the root of the source ontology or equivalent con-
ceptual knowledge construct.

  Fig. 8.8    Illustration of depth-based annotation and its implications for the induction of useable vs. 
unusable (e.g., overly general) “facts” or hypotheses       
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•       Phase 4 – “Fact” Induction : Once we have completed Phase 1–3, we can begin 
the “fact” induction process. In this phase we begin with a collection of variables 
contained within the target metadata of interest. For example, we could select all 
of the clinical measurements available that might serve to characterize how a 
patient would response to a therapy (such as laboratory fi ndings or disease- 
specifi c performance or functional status indicators). Now, beginning with those 
variables, we can select a second set of variables that might serve as biomarkers 
of interest for predicting such treatment outcome, for example, indicators of 
genomic expression. Then, using the conceptual knowledge collection(s) that are 
mapped and sub-selected due to their connections to such variables, we can 
begin to explore the graph like representation of that knowledge to identify path-
ways that may link together variables in those two respective target “sets”, being 
mindful of the granularity controls introduced in Phase 3. It is important to note 
in this process that such pathways are often “higher order” and can include mul-
tiple “intermediate” concepts and relationships that serve to link together an ini-
tial and terminal concept. For example, using our favorite case of “White Blood 
Cell Count”, we might fi nd that it is linked to the molecular entity “White Blood 
Cell” via a relationship labeled as “measures”, and that “White Blood Cell” in 
turn has a relationship labeled as “expressed in” that connects it to the entity 
“Lymphatic Tissue.” Subsequently “Lymphatic Tissue” could be linked via mul-
tiple “site of” relationships to a variety of bio-molecular processes that in turn 
may have relationships to certain genes or gene products that serve to mea-
sure the function or outcomes of those processes. Thus, we can then assert a 
“fact” that may infer a testable hypothesis linking our initial and terminal con-
cepts and that could be tested using information contained in the source data 
sets(s) characterized by the metadata fi rst identifi ed in Phase 1 of this process (as 
illustrated in Fig.  8.9 ).

•       Phase 5 – Prioritization via Support Analyses : In this nearly fi nal step, it is 
often necessary to prioritize the hypotheses (or “facts”) generated in Phase 4, 

  Fig. 8.9    Example of “fact” induction for prototypical example, in this case, creating testable 
hypotheses linking the initial and terminal concepts via multiple intermediate concepts and rela-
tionships (please note, this example assumes satisfaction of the depth based granularity controls 
associated with Phase 3 of the overall CI process)       
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using some sort of quantifi able metric. This is necessary as CI-based agents can 
often generate thousands of hypotheses when reasoning over even a hundred or 
more initial and terminal variables. It is unlikely that human beings will take the 
time and expense (or have the energy and focus) to review and test all possible 
hypotheses. In response to this need, we often go back to the source data or alter-
natively, look at published literature and the knowledge that can be extracted 
from that literature (for example, the statistical distributions or co-occurrence of 
two variables of interest in the data or literature respectively) to calculate a sup-
port metric. Such support metrics tell us how common or uncommon those data 
or concepts are, and can be used to judge either the likelihood of the hypothesis 
being testable and/or novel. Then, depending on our use case, we can apply such 
metrics to prioritize or rank hypotheses for exploration and testing.  

•    Phase 6 – Evaluation : Finally (and perhaps most importantly), we must evaluate 
the output of CI-based agents using a variety of verifi cation and validation meth-
odologies. Such evaluations must incorporate multiple dimensions, include the 
factual accuracy or validity of system output, its likelihood in terms of informing 
novel hypotheses, and its overall utility as judged by the targeted end users. 
Further details on specifi c approaches to addressing this particular need are pro-
vided in Sect.  8.4 .     

8.4      Evaluating the Output of In Silico Hypothesis 
Generation Tools and Methods 

 The verifi cation and validation of conceptual knowledge collections and the results 
of intelligent agents that leverage such knowledge to reason over data sets is ide-
ally approached as an iterative and multi-method evaluation approach. First and 
foremost, when designing and applying such evaluation plans, it is very important 
to recognize and understand what types of process or outcomes measures are being 
targeted. Attaining such an understanding, in the context of intelligent agent design, 
requires us to differentiate between verifi cation and validation. To summarize the 
defi nitions provided earlier,  verifi cation  is the evaluation of whether an intelligent 
agent meets the perceived requirements of end-users, and  validation  is the evalua-
tion of whether that same agent meets the realized (i.e., “real-world”) requirements 
of the end-users. The only difference between these techniques is that during veri-
fi cation, results are compared to initial design requirements, whereas during valida-
tion the results are compared to the requirements for the system that are realized 
after its implementation. 

 Examples of verifi cation and validation criteria include the degree of interre-
latedness of the relationships discovered by the intelligent agent, the logical con-
sistency of those relationships, and multiple-source or expert agreement with the 
results generated therein. Often, the degree of interrelatedness between relation-
ships generated by an intelligent agent for hypothesis discovery purposes is used 
as a measure of its “quality”, with such “quality” being defi ned by the degree to 
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which possible relationships between entities are enumerated or otherwise defi ned 
within the underlying knowledge collections. The logical, or axiomatic consis-
tency of the relationships that comprise a hypothesis is often used as a measure 
of the accuracy of the output of the agent, again as defi ned by the correspondence 
of axioms that may be derived from the source knowledge collection(s) with 
the hierarchical and semantic assertions that make up such conceptual knowl-
edge. Finally, multiple- source or expert agreement is most commonly used to 
validate the utility or impact of the output of the intelligent agent in “real world” 
application-oriented scenarios. This later set of measures is a critical criterion 
when attempting to measure the likely utility or impact of results generated by an 
intelligent agent. Unfortunately, there is not a single approach for measuring mul-
tiple-source, or expert agreement – since most evaluation methods corresponding 
to this type of metric involve the engagement of multiple (human) subject matter 
experts (SMEs). Instead, metrics must be chosen based upon variables such as 
data type as well as the number and types of knowledge sources being used. Most 
importantly, such analyses must be formulated in a manner consistent with the 
relative importance of four different types of agreement: (1) consensus; (2) cor-
respondence; (3) confl ict; and (4) contrast. Defi nitions of each of these types of 
agreement are provided in Table  8.1 . A detailed discussion of the techniques that 
may be applied to measure agreement can be found in the reviews provided by 
Hripcsak et al. [ 30 ,  31 ].

   At the highest level, the specifi c methods that can be used to satisfy the types of 
evaluation measures introduced above can be organized into a taxonomy consist-
ing of the following major categories: heuristic, quantitative, information theoretic, 
graph theoretic and logical (Fig.  8.10 ). Brief descriptions of the techniques included 
in each category are provided below:

   Table 8.1    Differentiation of types of agreement in multi-expert KA studies. In this model, the use 
of the “same” nomenclature or distinctions refers to the sources or experts using semantically 
similar or compatible means of describing or classifying concepts in a domain. Similarly, the use 
of “different” nomenclature or distinctions refers to the sources or experts using semantically 
dissimilar or incompatible means of describing or classifying concepts in a domain       
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8.4.1       Heuristic Methods 

 Heuristic metrics are probably the most common approach to verifying or validat-
ing the output of intelligent agents such as in silico hypothesis discovery tools. In 
this case, we use the term heuristic to refer to “rules of thumb” or more formally, 
rules that are informed by the expertise or commonly held knowledge of human 
SMEs. The advantages of using heuristics are the ability to incorporate domain-
specifi c knowledge or conventions, and their simplicity (i.e., knowledge engineers 
or experts manually review the knowledge collection to determine if the contents 
are consistent with the heuristics). However, since such measures are diffi cult to 
automate or scale to larger data sets, such heuristic techniques are limited in their 
tractability when applied to “big data” contexts. Furthermore, heuristically compar-
ing “quality” across multiple hypotheses or underlying knowledge collections is 
diffi cult, as a result of the relative and qualitative nature of the evaluation. Specifi c 
heuristic criteria for verifying or validating the output of intelligent agents have 
previously been proposed by Gruber [ 32 ] and include the following factors:

•    Clarity  
•   Coherence  
•   Extendibility  
•   Minimal encoding bias  
•   Minimal deviation from ontological commitment, where ontological commit-

ment refers to the situation were all observable actions of a knowledge-based 
system utilizing the given ontology are consistent with the relationships and 
 defi nitions contained within that ontology.     

8.4.2     Quantitative Methods 

 Quantitative methods of evaluating the results generated by intelligent agents are 
best suited for measuring both multi-source agreement and the degree of interre-
latedness of ensuing hypotheses. Such measures can include simple statistics such 
as the precision, accuracy and chance-corrected agreement of the multiple sources 

Verification & Validation Metrics

Heuristic Quantitative Information Theoretic Graph Theoretic Logic (Consistency)

  Fig. 8.10    Taxonomy of verifi cation and validation metrics for the results generated by intelligent 
agents that leverage conceptual knowledge collections       
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used during reasoning processes [ 31 – 36 ]. Using frequency-based measures (e.g., 
measuring the frequency with which a given entity is related to other entities within 
the knowledge collection) in addition to simple statistics can allow for the assess-
ment of the degree of interrelatedness of a set of multiple hypotheses [ 37 ].  

8.4.3     Information Theoretic Methods 

 Information theoretic methods are most commonly applied to measure multi-source 
agreement in an aggregate collection of multiple hypotheses. The use of informa-
tion theory to evaluate the agreement between multiple sources is based on the 
argument that if such agreement exists, it will be manifested as repetitive patterns 
within the resulting information constructs. To utilize this verifi cation and validation 
approach, the relationships between units of knowledge that make up each constitu-
ent hypothesis must be represented as a numerical matrix, where each cell contains 
a numerical indication of the strength of the relationship between the two units of 
knowledge identifi ed by the corresponding row and column indices. Given such a 
matrix, repeating patterns can be quantifi ed based on their effect on information 
content or complexity. Matrix complexity is determined by calculating the number 
of repeating patterns within the matrix less the contribution of the overall envi-
ronment within which the matrix is constructed. The probability of each repeating 
pattern detected in the actual matrix occurring randomly or as a result of the envi-
ronmental contribution can be computed by generating multiple random matrices. 
As matrix complexity decreases, the degree of multi-source agreement increases 
[ 35 ]. This type of evaluation method is summarized in Fig.  8.11 , and further detail 
can be found in the work reported on by Kudikyala et al. [ 35 ].

8.4.4        Graph Theoretic Methods 

 Graph theoretic methods are based on the ability to represent knowledge-based 
formulations, such as the output of intelligent agents, as graph constructs, where 
individual units of information or knowledge are represented as nodes, and the rela-
tionships between these units as arcs. Such graph representation of knowledge col-
lections has been described in a number of areas, including ontologies [ 32 ,  38 ], 
taxonomies [ 39 ,  40 ], controlled terminologies [ 41 ] and semantic networks [ 40 ,  42 ]. 
Given a particular graph representation of a hypothesis or set of hypotheses, the 
degree of interrelatedness of those knowledge-based products can be assessed using 
a group of graph-theoretic techniques known as class cohesion measures. Such 
metrics are used to assess the degree of cohesion, a property representative of con-
nectivity within a graph. Specifi c class cohesion measurement algorithms include 
the Lack of Cohesion of Methods (LCOM), Confi gurational-Bias Monte Carlo 
(CBMC), Improved Confi gurational-Bias Monte Carlo (ICBMC) and Geometrical 
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Design Rule Checking (DRC) algorithms [ 43 ]. All of these algorithms use some 
combination of the number of and distance between interrelated vertices within the 
graph as the basis for determining cohesion. Most cohesive graphs generally pos-
sess more interrelated vertices with relatively short edges between them. However, 
it is important to note that a precise defi nition of what constitutes “cohesion” in a 
graph is not necessarily universally agreed upon. Due to this lack of agreement, 
class cohesion algorithms tend to utilize different measures for cohesion. The appli-
cability of these metrics varies depending on the specifi c evaluation context. As 
a result, the selection of an appropriate cohesion measure is highly dependent on 
the specifi c nature of the data set and application scenario being evaluated. Further 
details concerning the theoretical basis and application of graph theory-based cohe-
sion measures can be found in the review provided by Zhou et al. [ 43 ].  

8.4.5     Logical Methods 

 The application of logic-based verifi cation and validation techniques for the out-
put of intelligent agents focuses on the detection of axiomatic consistency. These 
techniques require the extraction of logical axioms from the knowledge collection 
that has informed such in silico hypothesis discovery operations. Once axioms have 
been extracted, they are then applied within the targeted domain in order to evaluate 
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  Fig. 8.11    Overview of information theoretic evaluation method for determining the degree of 
multi-source or expert agreement within a knowledge collection or system       
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their consistency and performance. In addition, logical methods can be utilized to 
examine axioms and assess the existence of unnecessary or redundant relationships 
within the knowledge collection. One of the most common approaches to imple-
menting this type of evaluation is the representation of the individual hypothesis 
generated by the agent as formal ontological constructs within the Protegé knowl-
edge editor [ 44 ]. Once such hypotheses have been represented in Protégé, logical 
axioms can be extracted and evaluated using the Protegé Axiom Language (PAL) 
extension [ 45 ]. An example of this method can be found in the formal evaluation of 
the logical consistency of the Gene Ontology (GO) [ 46 ] reported by Yeh et al. [ 45 ].  

8.4.6     Hybrid Methods 

 As described earlier, hybrid methods for verifying or validating knowledge col-
lections involve the use of techniques belonging to two or more of the classes of 
measures as described above. An example of such a hybrid method is the novel 
computational simulation approach to validating the results of multi-expert cat-
egorical sorting studies as proposed by Payne and Starren [ 47 ]. This approach 
measures multi-source agreement using a combination of quantitative and graph 
theoretic methods. Another example of a hybrid technique is the use of hypothesis 
discovery methods, such as hierarchical clustering [ 48 ] to determine the degree of 
interrelatedness of a knowledge collection. Such evaluative methods combine sta-
tistical, heuristic and graph theoretic techniques.   

8.5     Implications for Stakeholders 

 It can be seen that each of the different stakeholders described in Chap.   1     benefi ts 
realizing the vision of a Translational Informatics model that enables and facilitates 
knowledge-driven healthcare. With specifi c regard to the concepts associated with 
in silico hypothesis discovery, these benefi ts are multi-fold, and largely focus upon 
the accelerated pace and ease with which new diagnostic and therapeutic discover-
ies can be generated from existing or new data sets. Specifi c benefi ts at all of the 
levels introduced in Chap.   1     include: 

8.5.1     Evidence and Policy Generators 

•      Investments in the creation of large-scale and multi-dimensional data sets 
can exhibit much higher returns on investment  owing to the ability to gener-
ate a larger number of testable and potentially clinically actionable hypotheses 
from those resources;  
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•    Novel evidence and/or policy frameworks can be inferred based upon 
 previously undiscovered patterns or motifs in historical data sets , thus allow-
ing such knowledge or decision making to be informed by the best possible 
information.     

8.5.2     Providers and Healthcare Organizations 

•     Providers are able to  engage in the delivery of evidence-based and precision 
medicine informed by a full spectrum of scientifi c knowledge  that has been 
formulated by identifying and testing large numbers of hypotheses against all 
available data types and resources  

•    Healthcare organizations can leverage their investments in EHR technolo-
gies and bio-molecular instrumentation  so as to rapidly learn from all patient- 
centered data being created during the course of normal clinical operations; that 
is, achieving the vision of a “learning healthcare system” wherein every patient 
encounter is an opportunity to both create new knowledge and improve care for 
that patient, their family, and their community.     

8.5.3     Patients and Their Communities 

•      Patients are able to be part of the “learning healthcare system”  such that they 
both become an integral component of research processes and benefi t from the 
knowledge generated therein  

•    Interested community members can begin to identify novel or interesting 
associations between disparate data that spans healthcare providers and the 
world-at-large , thus becoming part of the research enterprise. For example, 
community members could use in silico hypothesis discovery tools to identify 
relationships between healthcare outcomes and socio-demographic factors that 
could inform advocacy and/or community development activities intended to 
promote wellness.      

8.6     Conclusions 

 As has been discussed in a variety of ways throughout this book, the ongoing 
growth and increasing complexity of biomedical data presents a wealth of chal-
lenges and opportunities relative to informing a Translational Informatics vision 
for knowledge- drive healthcare. In this chapter, we have discussed a specifi c aspect 
of those challenges and opportunities, concerned with the disconnect between the 
volume of data being generated in numerous settings and the current state-of-the-art 
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in terms of hypothesis formulation and testing relative to such resources, which 
remains extremely basic. As has been illustrated, most if not all hypotheses that are 
evaluated in the modern scientifi c setting are generated in a low-throughput manner 
based upon the intuition or belief systems of an individual or team of investiga-
tors. Despite historical precedence for such approaches, they are discordant with 
the modern, high-throughput data types we regularly encounter, and that are being 
generated by EHRs, PHRs, sensor technologies and bio-molecular instrumentation 
(to name a few of innumerable examples). In response to this challenge, we can look 
to a set of core concepts that underlie alternative and high-throughput approaches 
that can lead to in silico hypothesis discovery paradigms. These types of methods 
employ domain-specifi c conceptual knowledge collections, such as ontologies or 
knowledge that can be extracted from the domain literature using machine learn-
ing or natural language processing methods, in order to reason upon and generate 
hypothesis corresponding to a data set or data sets in an extremely high throughput 
manner, usually realized via the implementation of knowledge-based and intelligent 
software agents. While these types of in silico hypothesis discovery methods remain 
very early in their development, they also hold great promise in terms of accelerat-
ing the pace, breadth and depth of scientifi c discovery in the “big data” era, and thus 
represent a critical dimension of the vision for Translational Informatics. 

  Discussion Points    

•     What are the major barriers to the generation and testing of hypotheses in large- 
scale and/or heterogeneous data sets?  

•   What differentiates procedural, strategic, and conceptual knowledge? How are 
these knowledge types related across a continuum of operationalization?  

•   What role can conceptual knowledge collections play in overcoming the preced-
ing barriers?  

•   As an example of an in silico hypothesis discovery method, what considerations 
must be addressed when employing Constructive Induction (CI) relative to con-
cept granularity and/or the evaluation of ensuing hypotheses?  

•   When evaluating the output of knowledge-based intelligent agents used for in 
silico hypothesis generation, what is the fundamental difference between the 
verifi cation versus validation of such constructs?         
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