
Chapter 9
RGB-D Object Recognition: Features,
Algorithms, and a Large Scale Benchmark

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox

Abstract Over the last decade, the availability of public image repositories and
recognition benchmarks has enabled rapid progress in visual object category and
instance detection. Today we are witnessing the birth of a new generation of sensing
technologies capable of providing high quality synchronized videos of both color
and depth, the RGB-D (Kinect-style) camera. With its advanced sensing capabili-
ties and the potential for mass adoption, this technology represents an opportunity
to dramatically increase robotic object recognition, manipulation, navigation, and
interaction capabilities. We introduce a large-scale, hierarchical multi-view object
dataset collected using an RGB-D camera. The dataset consists of two parts: The
RGB-D Object Dataset containing views of 300 objects organized into 51 cate-
gories, and the RGB-D Scenes Dataset containing 8 video sequences of office and
kitchen environments. The dataset has been made publicly available to the research
community so as to enable rapid progress based on this promising technology. We
describe the dataset collection procedure and present techniques for RGB-D ob-
ject recognition and detection of objects in scenes recorded using RGB-D videos,
demonstrating that combining color and depth information substantially improves
quality of results.
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9.1 Introduction

The availability of public image repositories on the Web, such as Google Images,
and visual recognition benchmarks like Caltech 101 [11], LabelMe [36], and Ima-
geNet [9] has enabled rapid progress in visual object recognition in the past decade.
Today we are witnessing the birth of a new generation of sensing technologies ca-
pable of providing high quality synchronized videos of both color and depth, the
RGB-D (Kinect-style) camera [22, 35]. This technology represents an opportunity
to dramatically increase the capabilities of robotics object recognition, manipula-
tion, navigation, and interaction. We describe the RGB-D Object Dataset, a large-
scale, multi-view object data set collected using an RGB-D camera that was first
introduced in [23]. The dataset and its accompanying software has been made pub-
licly available to the research community to enable rapid progress based on this
promising technology. The dataset and accompanying software tools are available
at http://www.cs.washington.edu/rgbd-dataset.

Unlike many existing recognition benchmarks that are constructed using Internet
photos, where it is impossible to keep track of whether objects in different images
are physically the same object, our dataset consists of multiple views of a set of
objects. This is similar to the 3D Object Category Dataset presented by Savarese
et al. [37], which eight object categories, 10 objects in each category, and 24 distinct
views of each object. The RGB-D Object Dataset presented here is at a much larger
scale, with RGB and depth video sequences of 300 common everyday objects from
multiple view angles totaling 250,000 RGB-D images. The objects are organized
into a hierarchical category structure using WordNet hyponym/hypernym relations.
The dataset also includes the RGB-D Scenes Dataset, which eight RGB-D video
sequences of office and kitchen environments.

In addition to introducing a large RGB-D object and scene dataset, we also
present techniques for object recognition in RGB-D data and detection of objects
in scenes recorded using RGB-D videos. We demonstrate that combining color
and depth information can substantially improve results on three object recognition
tasks: (1) Category-level recognition involves classifying previously unseen objects
as belonging in the same category as objects that have previously been seen (e.g.,
coffee mug). (2) Instance-level recognition is identifying whether an object is phys-
ically the same object that has previously been seen. We use the word instance to
refer to an object with a particular appearance. (3) Pose-level recognition is estimat-
ing the orientation of the object relative to the camera. The ability to solve all three
recognition tasks is important for applications such as service robotics. For exam-
ple, identifying an object as a generic “coffee mug” or as “Amelia’s coffee mug”
can have different implications depending on the context of the task. Determining
the accurate pose of an object is necessary for manipulation.

9.2 RGB-D Object Dataset Collection

The RGB-D Object Dataset contains visual and depth images of 300 physically dis-
tinct objects taken from multiple views. The chosen objects are commonly found

http://www.cs.washington.edu/rgbd-dataset


9 RGB-D Object Recognition: Features, Algorithms, and a Large Scale Benchmark 169

in home and office environments, where personal robots are expected to operate.
Objects are organized into a hierarchy taken from WordNet hypernym/hyponym
relations and are a subset of the categories in ImageNet [9]. Figure 9.1 shows sev-
eral subtrees in the object category hierarchy. Fruit and Vegetable are both top-level
subtrees in the hierarchy. Device and Container are both subtrees under the Instru-
mentation category that covers a very broad range of man-made objects. Each of
the 300 objects in the dataset belongs to one of the 51 leaf nodes in this hierarchy,
with between 3 to 14 instances in each category. The leaf nodes are shaded blue in
Fig. 9.1 and the number of object instances in each category is given in parentheses.
Figure 9.2 shows some example objects from the dataset. Each shown object comes
from one of the 51 object categories. Although the background is visible in these im-
ages, the dataset also provides segmentation masks (see Fig. 9.4). The segmentation
procedure using combined visual and depth cues is described in Sect. 9.3.

The dataset is collected using a RGB-D camera manufactured by Prime-
Sense [35], whose optical hardware is identical to the Microsoft Kinect [22]. The
RGB-D camera simultaneously records both color and depth images at 640 × 480
resolution. In other words, each ‘pixel’ in an RGB-D frame contains four channels:
red, green, blue and depth. The 3D location of each pixel in physical space can be
computed using known sensor parameters. The RGB-D camera creates depth im-
ages by continuously projecting an invisible infrared structured light pattern and
performing stereo triangulation. Compared to passive multi-camera stereo technol-
ogy, this active projection approach results in much more reliable depth readings,
particularly in textureless regions. Figure 9.3 (top) shows a single RGB-D frame
which consists of both an RGB image and a depth image. Driver software provided
with the RGB-D camera ensures that the RGB and depth images are aligned and
time-synchronous.

Using this camera setup, we record video sequences of each object as it is spun
around on a turntable at constant speed. The camera is placed around one meter
from the turntable. We found this to be the minimum distance required for the
RGB-D camera to return reliable depth readings. Data was recorded with the cam-
era mounted at three different heights relative to the turntable, at approximately 30◦,
45◦ and 60◦ above the horizon. One revolution of each object was recorded at each
height. Each video sequence is recorded at 20 Hz and contains around 250 frames,
giving a total of 250,000 RGB + Depth frames in the RGB-D Object Dataset. The
video sequences are all annotated with ground truth object pose angles between
[0,360◦] by tracking the red markers on the turntable. A reference pose is chosen
for each category so that pose angles are consistent across video sequences of ob-
jects in a category. For example, all videos of coffee mugs are labeled such that the
image where the handle is on the right is 0◦.

9.3 Segmentation

Without any post-processing, a substantial portion of the RGB-D video frames is
occupied by the background. We use visual cues, depth cues, and rough knowledge
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Fig. 9.2 Objects from the RGB-D Object Dataset. Each object shown here is in a different category

Fig. 9.3 Each RGB-D frame
consists of an RGB image
(left) and a depth image
(right)

of the configuration between the turntable and camera to produce fully segmented
objects from the video sequences.

The first step in segmentation is to remove most of the background by taking
only the points within a 3D bounding box where we expect to find the turntable
and object, based on the known distance between the turntable and the camera. This
prunes most pixels that are far in the background, leaving only the turntable and the
object. Using the fact that the object lies above the turntable surface, we can perform
RANSAC plane fitting [13] to find the table plane and take points that lie above it
to be the object. This procedure gives very good segmentation for many objects in
the dataset, but is still problematic for small, dark, transparent, and reflective ob-
jects. Due to noise in the depth image, parts of small and thin objects like rubber
erasers and markers may get merged into the table during RANSAC plane fitting.
Dark, transparent, and reflective objects cause the depth estimation to fail, resulting
in pixels that contain only RGB but no depth data. These pixels would be left out
of the segmentation if we only used depth cues. Thus, we also apply vision-based
background subtraction to generate another segmentation. The top row of Fig. 9.4
shows several examples of segmentation based on depth. Several objects are cor-
rectly segmented, but missing depth readings cause substantial portions of the water
bottle, jar and the marker cap to be excluded.

To perform vision-based background subtraction, we applied the adaptive gaus-
sian mixture model of KaewTraKulPong and Bowden [21], using the implementa-
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Fig. 9.4 Segmentation examples, from left to right: bag of chips, water bottle, eraser, leaf veg-
etable, jar, marker and peach. Segmentation using depth only (top row), visual segmentation via
background subtraction (middle row), and combined depth and visual segmentation (bottom row)

tion provided by the OpenCV library. Each pixel in the scene is modeled with a
mixture of K gaussians that is updated as the video sequence is played frame-by-
frame. The model is adaptive and only depends on a window W of the most recent
frames. A pixel in the current frame is classified as foreground if its value is beyond
σ standard deviations from all gaussians in the mixture. For our object segmentation
we used K = 2, W = 200, and σ = 2.5. The middle row of Fig. 9.4 shows several
examples of visual background subtraction. The method is very good at segmenting
out the edges of objects and can segment out parts of objects where depth failed
to do so. However, it tends to miss the centers of objects that are uniform in color,
such as the peach in Fig. 9.4, and pick up the moving shadows and markers on the
turntable.

Since depth-based and vision-based segmentation each excel at segmenting ob-
jects under different conditions, we combine the two to generate our final object
segmentation. We take the segmentation from depth as the starting point. We then
add pixels from the visual segmentation that are not in the background nor on the
turntable by checking their depth values. Finally an image erosion filter is run on this
segmentation mask to remove isolated pixels. The bottom row of Fig. 9.4 shows the
resulting segmentation using combined depth and visual segmentation. The com-
bined procedure provides high quality segmentations for all the objects.

9.4 Video Scene Annotation

In addition to the views of objects recorded using the turntable (the RGB-D Ob-
ject Dataset), we also eight video sequences of natural scenes, which we call the
RGB-D Scenes Dataset. The scenes cover common indoor environments, including
office workspaces, meeting rooms, and kitchen areas. The video sequences were
recorded by holding the RGB-D camera at approximately human eye-level while
walking around in each scene. Each video sequence contains several objects from
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Table 9.1 Number of frames and objects in the eight annotated videos of natural scenes in the
RGB-D Scenes Dataset

Video sequence # of frames # of objects

Desk_1 1748 3

Desk_2 1949 3

Desk_3 2328 4

Kitchen_small_1 2359 8

Meeting_small_1 3530 13

Table_1 2662 8

Table_small_1 2037 4

Table_small_2 1776 3

Fig. 9.5 (Left) 3D scene reconstruction of a kitchen scene with a cap highlighted in blue and a
soda can in red using the labeling tool. (Right) Ground truth bounding boxes of the cap (top) and
soda can (bottom) obtained by labeling the reconstruction

the RGB-D Object Dataset. The objects are visible from different viewpoints and
distances and may be partially or completely occluded in some frames. Table 9.1
summarizes the number of frames and number of objects in each video sequence.
In Sect. 9.6 we demonstrate that the RGB-D Object Dataset can be used as training
data for performing object detection in these natural scenes. Here we will first de-
scribe how we annotated these natural scenes with the ground truth bounding boxes
of objects in the RGB-D Object Dataset. Traditionally, the computer vision commu-
nity has annotated video sequences one frame at a time. A human must tediously
segment out objects in each image using annotation software like the LabelMe an-
notation tool [36] and more recently, vatic [39]. Temporal interpolation across video
frames can somewhat alleviate this, but is only effective across a small sequence of
frames if the camera trajectory is complex. Crowd-sourcing (e.g. Amazon Mechan-
ical Turk) can also shorten annotation time, but does so merely by distributing the
work across a larger number of people. We propose an alternative approach. Instead
of labeling each video frame, we first stitch together the video sequence to create
a 3D reconstruction of the entire scene, while keeping track of the camera pose of
each video frame. We label the objects in this 3D reconstruction by hand. Figure 9.5
(left) shows the reconstruction of a kitchen scene with a cap labeled in blue and
a soda can labeled in red. Finally, the labeled 3D points are projected back into
the known camera poses in each video frame and this segmentation can be used to
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compute an object bounding box. Figure 9.5 (right) shows some bounding boxes
obtained by projecting the labeled 3D points into several video frames.

Our labeling tool uses the technique proposed by Henry et al. [19] to recon-
struct 3D scenes from the RGB-D video frames. The RGB-D mapping technique
consists of two key components: (1) spatial alignment of consecutive video frames,
and (2) globally consistent alignment of the complete video sequence. Successive
frames are aligned by jointly optimizing over both appearance and shape matching.
Appearance-based alignment is done with RANSAC over SIFT features annotated
with 3D position (3D SIFT). Shape-based alignment is performed through Iterative
Closest Point (ICP) using a point-to-plane error metric [7]. The initial alignment
from 3D SIFT matching is used to initialize ICP-based alignment. Henry et al. [19]
show that this allows the system to handle situations in which only vision or shape
alone would fail to generate good alignments. Loop closures are performed by
matching video frames against a subset of previously collected frames using 3D
SIFT. Globally consistent alignments are generated with TORO, a pose-graph opti-
mization tool developed for robotics SLAM [17].

The overall scene is built using small colored surface patches called surfels [34]
as opposed to keeping all the raw 3D points. This representation enables efficient
reasoning about occlusions and color for each part of the environment, and provides
good visualizations of the resulting model. The labeling tool displays the scene in
this surfel representation. When the user selects a set of surfels to be labeled as an
object, they are projected back into each video frame using transformations com-
puted during the scene reconstruction process. Surfels allow efficient occlusion rea-
soning to determine whether the labeled object is visible in the frame and if so,
a bounding box is generated.

9.5 RGB-D Object Recognition

In object recognition the task is to assign a label (or class) to each query image. The
possible labels that can be assigned are known ahead of time. State-of-the-art ap-
proaches to tackling this problem are usually supervised learning systems. A set of
images are annotated with their ground truth labels and given to a classifier, which
learns a model for distinguishing between the different classes. We evaluate object
recognition performance on two tasks: category recognition and instance recogni-
tion. In category recognition, the system is trained on a set of objects. At test time,
the system is presented with an RGB and depth image pair containing an object that
was not present in training and the task is to assign a category label to the image (e.g.
coffee mug or soda can). In instance recognition, the system is trained on a subset of
views of each object. The task here is to distinguish between object instances (e.g.
Pepsi can, Mountain Dew can, or Aquafina water bottle). At test time, the system
is presented with an RGB and depth image pair that contains a previously unseen
view of one of the objects and must assign an instance label to the image.

Two important problems to address for object recognition using RGB-D cameras
are designing the appropriate feature representation for RGB-D data, and devising
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the appropriate classification method. In Sect. 9.5.1 we describe the experimental
setup for using the RGB-D Object Dataset to evaluate recognition techniques. We
then describe our work on distance learning in Sect. 9.5.2, demonstrating that it
outperforms existing state-of-the-art classifiers. In Sect. 9.5.3, we present Kernel
Descriptors, a novel family of features for RGB-D Object Recognition, and show
that it outperforms existing state-of-the-art features for image and 3D point cloud
recognition. Finally, in Sect. 9.5.4 we present a technique for efficiently performing
RGB-D object recognition and pose estimation jointly.

9.5.1 Experimental Setup

The experiments performed in this section use the turntable data containing cropped
and segmented views of objects in the RGB-D Object Dataset. The video sequences
in the RGB-D Scenes Dataset are not used. We subsampled the turntable data by
taking every fifth video frame, giving around 45000 RGB-D images. For category
recognition, we randomly leave one object out from each category for testing and
train the classifiers on all views of the remaining objects. For instance recognition,
we consider two scenarios:

• Alternating contiguous frames: Divide each video three contiguous sequences of
equal length. There are three heights (videos) for each object, so this gives nine
video sequences for each instance. We randomly select seven of these for training
and test on the remaining two.

• Leave-sequence-out: Train on the video sequences of each object where the cam-
era is mounted 30◦ and 60◦ above the horizon and evaluate on the 45◦ video
sequence.

We do not make use of the WordNet organization of the dataset in our experiments.
We average accuracies across 10 trials for category recognition and instance recog-
nition with alternating contiguous frames. There is no randomness in the data split
for leave-sequence-out instance recognition so we report numbers for a single trial.

9.5.2 Distance Learning for RGB-D Object Recognition

In its simplest form, nearest neighbor classifiers place a set of examples with known
labels in a euclidean feature space and a test example is classified based on the labels
of the k nearest known examples (the k-nearest neighbor classifier). The idea behind
distance learning is that nearest neighbor classification can be improved by learning
a distance function because euclidean feature distances may not be the best measure
of similarity, particularly when different types of feature are combined [40, 41]. In-
stead of learning a single global distance metric, recently researchers have looked
into local distance learning, which learns different distance functions for different



176 K. Lai et al.

regions of the feature space [38]. Local distance learning has been extensively stud-
ied and demonstrated for object recognition, both for color images [15, 16, 31] and
3D shapes [27]. A key property of these approaches is that they are non-parametric,
meaning that they can learn decision boundaries whose shape and complexity is
determined by the data.

9.5.2.1 Instance Distance Learning

We proposed instance distance learning in [25]. Many existing distance learning ap-
proaches for image classification are designed for recognition of image collections
on the web, such as Flickr and Google Images. In these applications it is impos-
sible to tell whether two images in the collection are of the exact same object. In
contrast, there are applications, particularly in robotics, where the data come from a
known set of objects and consist of a collection of views taken from different cam-
era positions, as is the case in the RGB-D Object Dataset. Our proposed approach
exploits this structure by learning a distance function for each object instance. An
object instance is an object with a particular appearance, and we assume that we
have a collection of views of each object. We learn view-to-instance distances that
measure the similarity between a query view of an object and each of the 300 object
instances in the RGB-D Object Dataset.

Given a set of M features, let d(x, y) be the M-dimensional vector of L2 dis-
tances between two views x and y computed for each feature separately. We define
the distance between a view x and an instance Y as the weighted average of feature
distances from x to all the views y that constitute instance Y :

f (x,Y ) = 1

|Y |
∑

y∈Y

w�
y d(x, y) + b (9.1)

where wy , the vector of weights for y, and b, the bias term, are learned parameters.
Classification of a test view is performed by computing the above distance to every
object instance in the training set and taking the label of the nearest neighbor.

Parameter learning is formulated as a convex optimization problem with a
margin-based loss function. Group-Lasso regularization [33] is used to encourage
sparsity across views by encouraging wy to not be the zero vector for only a small
subset of y ∈ Y . In other words, the approach can, via supervised learning, choose to
retain a small subset of views that provide good coverage of the visual variation of
each object. On the RGB-D Object Dataset, instance distance learning can learn dis-
tance functions that depend only on 30 % of the views in the training data without
compromising classification accuracy, outperforming uniform random downsam-
pling at equal levels of data sparsification [25].

9.5.2.2 RGB-D Feature Set

To evaluate Instance Distance Learning we used existing state-of-the-art features
developed separately for RGB images and 3D point clouds.
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Shape features are extracted from 3D point clouds of each view. The 3D point
cloud is obtained from the depth image using known camera intrinsic parameters.
We first compute spin images [20] for a randomly subsampled set of 3D points.
We generate a feature vector for the view using this collection of local descrip-
tors using efficient match kernels (EMK) [4]. To incorporate spatial information,
we divide each view using a 3 × 3 × 3 axis-aligned bounding cube. We compute a
1000-dimensional EMK features in each of the 27 cells separately. We perform prin-
cipal component analysis (PCA) on the EMK features in each cell and take the first
100 components. We also include as shape features the width, depth and height of
the bounding cube. For SVM and random forest classifiers, we concatenate these
features to yield a 2703-dimensional shape descriptor. For distance learning ap-
proaches, we compute euclidean feature distances for each of the 27 spin image
cells, as well as each dimension of the bounding box separately, meaning we learn
weighted distances over 30 shape features.

Visual features are extracted from the RGB image to capture the appearance of
a view. We extract SIFT descriptors [30] densely on an 8 × 8 grid. To generate
image-level features we use EMK on a two-level spatial pyramid: First we compute
a 1000-dimensional EMK feature from the entire image. Then we divide the image
into 2×2 blocks and extract EMK features in each block. We perform PCA on each
block and take the first 300 components, giving a 1500-dimensional EMK SIFT de-
scriptor. We also extract texton histogram [28] features. We used 100 textons learned
from images on LabelMe and computed histograms five image regions, as was done
in [31]. We also include a color histogram (11 bins three color channels) and the
mean and standard deviation color. For SVM and random forest classifiers, we con-
catenate all the features to yield a 2039-dimensional visual descriptor. For distance
learning approaches, we compute euclidean feature distances for each of five spatial
pyramid blocks of SIFT features, five image regions of texton histograms, the color
histogram, the mean color, and the color standard deviation separately. Hence, we
learn weighted distances over 13 visual features.

9.5.2.3 Evaluation

We compared instance distance learning with the exemplar-based distance learning
approach of [31]. This approach learns a distance function independently for each
view of an object, i.e. an exemplar. Classification of a test view is performed by
computing distances to every view in the training set and taking the label of the near-
est neighbor. We also compared with three standard classifiers including linear and
gaussian kernel support vector machine (LinSVM and kSVM) [6, 10], and random
forests(RF) [5, 14]. We compared the performance of the proposed instance distance
learning approach and alternative classification methods on two recognition tasks:
Table 9.2 shows the classification accuracy on category recognition, and Table 9.3
for shows the accuracy on instance recognition with alternating contiguous frames
(refer to Sect. 9.5.1 for a description of the different experimental setups). We re-
port classification accuracies when using only shape features, only visual features,



178 K. Lai et al.

Table 9.2 Category recognition on leave-out objects. Performance of various classification meth-
ods on the RGB-D Object Dataset using shape features, visual features, and with all features

Method Category recognition

Shape Vision All

LinSVM 53.1 ± 1.7 74.3 ± 3.3 81.9 ± 2.8

kSVM 64.7 ± 2.2 74.5 ± 3.1 83.8 ± 3.5

RF 66.8 ± 2.5 74.7 ± 3.6 79.6 ± 4.0

EBLocal [31] 58.9 ± 2.1 70.1 ± 3.4 78.4 ± 2.8

IDL [25] 70.2 ± 2.0 78.6 ± 3.1 85.4 ± 3.2

Table 9.3 Instance recognition on alternating contiguous frames. Performance of various classi-
fiers on the RGB-D Object Dataset using shape features, visual features, and with all features

Method Instance recognition (alternating contiguous frames)

Shape Vision All

LinSVM 32.4 ± 0.5 90.9 ± 0.5 90.2 ± 0.6

kSVM 51.2 ± 0.8 91.0 ± 0.5 90.6 ± 0.6

RF 52.7 ± 1.0 90.1 ± 0.8 90.5 ± 0.4

EBLocal [31] 41.2 ± 0.6 81.2 ± 0.6 84.5 ± 0.5

IDL [25] 54.8 ± 0.6 89.8 ± 0.2 91.3 ± 0.3

Table 9.4 Instance recognition on left-out sequence. Performance of various classifiers on the
RGB-D Object Dataset using shape features, visual features, and with all features

Method Instance recognition (leave-sequence-out)

Shape Vision All

LinSVM 32.3 59.3 73.9

kSVM 46.2 60.7 74.8

RF 45.5 59.9 73.1

and using both shape and visual features. From the results, we see that the proposed
instance distance learning outperforms per-exemplar distance learning and the three
standard classifiers on both category and instance recognition.

Aside from comparing the instance distance learning with existing classification
methods, we also investigated the usefulness of shape and visual features for cate-
gory and instance recognition. For this we also report in Table 9.4 the performance
of the three standard classifiers on instance recognition on left-out video sequences.
We find that regardless of the classification technique used, the chosen visual fea-
tures are more useful than shape features for both category and instance recognition
(see Tables 9.2, 9.3, and 9.4). However, shape features are relatively more useful
in category recognition, while visual features are relatively more effective in in-
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stance recognition. This is because a particular object instance has a fairly constant
visual appearance across views, while objects in the same category can have differ-
ent texture and color. On the other hand, shape tends to be stable across a category
in many cases. The most interesting and significant conclusion is that combining
both shape and visual features gives higher overall performance regardless of clas-
sification technique. The features complement each other, which demonstrates the
value of a large-scale dataset that can provide both shape and visual information.
For alternating contiguous frames instance recognition, using visual features alone
already gives very high accuracy, so including shape features does not increase per-
formance. The leave-sequence-out evaluation is much more challenging, and here
combining shape and visual features significantly improves accuracy.

9.5.3 Kernel Descriptors for RGB-D Object Recognition

The core of building a robust object recognition system is to extract underlying rep-
resentations (features) from high-dimensional sensor data such as images, depths
and 3D point clouds. Given the wide availability of RGB-D cameras, it is an open
question what is the best way to extract features over RGB-D images. The stan-
dard approach to object recognition is to compute pixel attributes in small windows
around (a subset of) pixels. For example, in SIFT [29], gradient orientation and
magnitude attributes are computed from 5 × 5 image windows. Another example
is Spin Images [20] over local 3D point clouds. A key question for object recogni-
tion is then how to measure the similarity of local patches based on the attributes
of pixels within them, because this similarity measure is used in classifiers such
as linear support vector machines (SVM). Techniques based on histogram features,
such as SIFT and Spin Images, discretize individual pixel attribute values into bins
and then compute a histogram over the discrete attribute values within a patch. The
similarity between two patches can then be computed based on their histograms.
Unfortunately, the binning restricts the similarity measure and introduces quantiza-
tion errors, which limit the accuracy of recognition.

9.5.3.1 Kernel Descriptors

Kernel descriptors, which we proposed in [1–3], aim to discover underlying repre-
sentations of RGB-D sensor data using machine learning methodology. We high-
light the kernel view of SIFT and Spin Images, and show that histogram features
are a special, rather restricted case of efficient match kernels. This novel insight al-
lows us to design a family of kernel descriptors. Kernel descriptors avoid the need
for pixel attribute discretization and are able to turn any pixel attribute into com-
pact patch-level features. Here, the similarity between two patches is based on a
kernel function, called the match kernel, that averages over continuous similarities
between all pairs of pixel attributes in the two patches. Match kernels are extremely
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flexible and it is easy to incorporate domain knowledge, since the similarity mea-
sure between pixel attributes can be any positive definite kernel, such as the popular
Gaussian kernel function. While match kernels provide a natural similarity measure
for image patches, evaluating these kernels can be computationally expensive, in
particular for large image patches. To compute kernel descriptors, one has to move
to the feature space forming the kernel function. Unfortunately, the dimensionality
of these feature vectors is high, or even infinite, if for instance a Gaussian kernel is
used. Thus, for computational efficiency and for representational convenience, we
reduce the dimensionality by projecting the high/infinite dimensional feature vec-
tor to a set of finite basis vectors using kernel principal component analysis. This
procedure can approximate the original match kernels very well, as shown in [1–3].

As an example, we briefly describe the gradient kernel descriptors over depth
patches. We treat depth images as grayscale images and compute gradients at pixels.
The gradient kernel descriptors Fgrad is constructed from the pixel gradient similar-
ity function ko

F t
grad(Z) =

do∑

i=1

ds∑

j=1

αt
ij

{∑

z∈Z

m̃zko(θ̃z,pi)ks(z, qj )

}
(9.2)

where Z is a depth patch, and z ∈ Z are the 2D relative position of a pixel in a
depth patch (normalized to [0,1]). θ̃z and m̃z are the normalized orientation and
magnitude of the depth gradient at a pixel z. The orientation kernel ko(θ̃z, θ̃x) =
exp(−γo‖θ̃z − θ̃x‖2) computes the similarity of gradient orientations. The position
Gaussian kernel ks(z, x) = exp(−γs‖z − x‖2) measures how close two pixels are
spatially. {pi}do

i=1 and {qj }ds

j=1 are uniformly sampled from their support region, do

and ds are the numbers of sampled basis vectors for the orientation and position
kernels. αt

ij are projection coefficients computed using kernel principal component
analysis. Other kernel descriptors are constructed in a similar fashion from pixel-
level similarity functions (see [2] and [3] for details).

To summarize, extracting kernel descriptors involves the following steps: (1) de-
fine pixel attributes; (2) design match kernels to measure the similarities of im-
age patches based on these pixel attributes; (3) determine approximate, low di-
mensional match kernels. While the third step is done automatically by learn-
ing low dimensional representations and the defined kernels, while the first two
steps allow the user to tune the approach for specific scenarios and application.
Thus, kernel descriptors provides a unified and principled framework for extract-
ing rich features from sensor data. We have developed eight types of kernel de-
scriptor [1–3] for RGB-D images; a relatively complete feature set to capture
rich cues for robust object recognition. Kernel descriptors outperform state-of-
the-art recognition algorithms on many benchmarks, including USPS, extended
Yaleface, Scene-15, Caltech-101, CIFAR-10, CIFAR-10-ImageNet, and the RGB-
D Object Dataset. More importantly, the features have exhibited very robust per-
formance in several real-world recognition systems, including the autonomous
chess playing manipulator robot [32] and the object-aware situated interactive sys-
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tem (OASIS) [24]. The source code for RGB-D kernel descriptors is available at
http://www.cs.washington.edu/rgbd-dataset/software.html.

9.5.3.2 Evaluation

We evaluated the proposed kernel descriptors on the RGB-D Object Dataset for
both category and instance recognition (leave-sequence-out). For each RGB-D im-
age, we compute seven kernel descriptors on dense regular grids: gradient kernel
descriptors (GradKDES) over image and depth patches, local binary pattern kernel
descriptors (LBPKDES) over image and depth patches, normalized RGB kernel de-
scriptors (NRGBKDES) over image patches, spin kernel descriptors (SpinKDES)
and size kernel descriptors (SizeKDES) over 3D point clouds. NRGBKDES is a
variant of RGB kernel descriptors [2] that normalizes RGB values by subtracting
the mean and dividing by the standard deviation in order to be robust to lighting
condition changes. We extract gradient, local binary patten, and normalized RGB
kernel descriptors on 16 × 16 depth or image patches with spacing of eight pixels.
For size kernel descriptors, we consider the whole point cloud and subsample the
number of 3D points to be no more than 200 for each interest point. For spin kernel
descriptors, we set the radius of the local region around interest points to be 4 cm
and again subsample the number of neighboring points to be no larger than 200. We
consider 1 × 1, 2 × 2 and 4 × 4 pyramid sub-regions and form object-level features
using EMK [4] with 1000 basis vectors learned by K-means on about 500,000 kernel
descriptors sampled from training data. The dimensionality per kernel descriptor is
(1+4+16)×1000 = 21000. The total feature extraction time per kernel descriptor
is around 0.2 seconds using unoptimized MATLAB code. We train linear SVMs for
recognition, which our experiments suggest are sufficient for good accuracy when
using kernel descriptors.

We report the results of RGB-D kernel descriptors in Table 9.5. Results from us-
ing the existing shape and visual feature set (FeaSet, see Sect. 9.5.2) is also repeated
here for comparison. First of all, we observe that combining all kernel descriptors
performs much better than the best single kernel descriptors for both category and
instance recognition. There are two reasons at least. Firstly, RGB-D kernel descrip-
tors capture different recognition cues of objects including shape, color and size,
which are strong in their own right and complement each other. The weights learned
by the linear SVM using label information can automatically balance the contribu-
tion of each kernel descriptors for a specific task. The results in Table 9.5 show that
RGB-D kernel descriptors significantly outperform the set of existing shape and
visual features used in Sect. 9.5.2.

For category recognition, we observe in Table 9.5 that the best single kernel de-
scriptor is gradient over RGB images, achieving 77.7 % accuracy. Combining depth
and image kernel descriptors achieves 86.3 %, much higher than that obtained by
gradient kernel descriptors only. We observe that the performance of depth kernel
descriptors is comparable with image kernel descriptors, indicating that depth infor-
mation is as important as visual information for category recognition. For instance

http://www.cs.washington.edu/rgbd-dataset/software.html


182 K. Lai et al.

Table 9.5 Category recognition (leave-objects-out) and instance recognition (leave-sequence-
out). Performance of each kernel descriptor and their combination is reported. Results using the
feature set in Sect. 9.5.2 is repeated here for comparison. The classifier is linear SVM in all cases

Features Category Instance

FeaSet (RGB) 74.3 ± 3.3 59.3

FeaSet (Cloud) 53.1 ± 1.7 32.3

FeaSet Combination 81.9 ± 2.8 73.9

GradKDES (RGB) 77.7 ± 2.7 82.2

LBPKDES (RGB) 77.5 ± 2.5 80.9

NRGBKDES (RGB) 64.7 ± 3.3 83.4

GradKDES (Depth) 72.8 ± 2.4 40.1

LBPKDES (Depth) 72.1 ± 2.1 33.5

SpinKDES (Cloud) 60.2 ± 2.5 33.1

SizeKDES (Cloud) 56.3 ± 3.5 25.2

Combination of all KDES 86.5 ± 1.0 91.2

recognition, we observe in Table 9.5 that the best single feature is the normalized
RGB kernel descriptor (83.4 %). Combining depth and image kernel descriptors
achieves 91.2 %, substantially better than that obtained by normalized RGB kernel
descriptors. We also notice that depth features are much worse than image features
in the context of instance recognition. This is not very surprising since the different
instances in the same category could share very similar shape.

9.5.4 Joint Object Category, Instance, and Pose Recognition

Object perception has multiple levels of semantics. When an autonomous robot en-
counters an object, we may want it to answer any or all of the following questions:
Is this a coffee mug or a plate? (category recognition); Is this Alice’s coffee mug or
Bob’s coffee mug? (instance recognition); Am I looking at the mug with the handle
facing left or right? (pose recognition or approximate pose estimation). Although
it is clear that category, instance, and pose recognition are closely connected and
multiple facets of a single object perception problem, they have traditionally been
studied in different contexts and solved using different techniques.

9.5.4.1 Object-Pose Tree

We investigated a technique, called the Object-Pose Tree, for simultaneously ad-
dressing three object recognition tasks: category recognition, instance recognition,
and pose estimation [24]. These three object recognition tasks form a tree as natu-
rally defined by the semantic structures: a category covers multiple object instances,
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Fig. 9.6 Recognition of a
box of Bran Flakes cereal
using the Object-Pose Tree.
The system labels the test
image by starting with the
category level at the top and
traversing down the tree to
the instance, view, and finally
pose level at the bottom. The
system finds the most similar
(but not identical) pose in the
training set

an instance covers multiple (discrete) “views”, and each view is a collection of (con-
tinuous) object poses (see Fig. 9.6). Each node in the tree is a linear decision func-
tion. Given a test image containing a cropped and segmented view of an object, the
system first evaluates the score that each node at the first (category) layer assigns to
the image using the corresponding linear functions. The test image proceeds down
the node with the highest score, and scores are computed for nodes in the second
(instance) layer under that subtree. This process is repeated until the image reaches
a leaf node, which represents one example in the training set (a view of an object in
a particular pose). The system then assigns the category, instance, and pose based
on the path traced by the test image.

Parameter learning of the entire Object-Pose Tree is formulated as structured
SVM learning, where the path traced by the test image is the structured output of
the system. A single convex objective function is defined that takes into account a
margin-based loss on all three recognition tasks. This objective function is optimized
using stochastic gradient descent. The learning procedure is detailed in [24].

9.5.4.2 Evaluation

We evaluated the Object-Pose Tree on the RGB-D Object Dataset, which annotates
the pose of every view of every object as the angle about the vertical axis. Each
object category has a canonical pose that is labeled as 0◦, and every image in the
dataset is labeled with a pose in [0,360◦]. As features, we use gradient and shape
(local binary pattern) kernel descriptors [2] extracted over both RGB and depth im-
ages. We use the leave-sequence-out procedure for train/test data split: the tree is
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Table 9.6 Category, instance, and pose recognition results using the SVM Tree and the Object-
Pose Tree

Approach Category accuracy Instance accuracy Pose error

SVM Tree 92.0 77.4 44.6◦

Object-Pose Tree 94.3 78.4 30.2◦

Fig. 9.7 Recognition results
from the Object-Pose Tree for
two objects: Red Mug (top
left), and Ultrabrite
Toothpaste (top right).
(Bottom) From left to right,
the top five objects with the
highest classifier response at
the instance level and at the
pose level for Red Mug and
Ultrabrite toothpaste

trained on views of all 300 objects at 30◦ and 60◦ with the horizon (not to be con-
fused with the pose angle about the vertical axis that the system is to estimate), and
evaluated on views taken at 45◦ with the horizon.

Table 9.6 shows results from using the Object-Pose Tree and from using a tree of
SVM classifiers. The SVM Tree has the same structure as the Object-Pose Tree, but
the parameters are learned differently. For the SVM Tree, we first train a multi-class
linear SVM for the category layer. Then we train SVMs for distinguishing instances
within each category separately. We repeat this procedure down to the view and
pose layers. We report category and instance recognition accuracies, as well as the
median pose error for cases where the object instance is correctly identified. The
results show that the Object-Pose Tree outperforms the SVM Tree, demonstrating
that learning the parameters of the entire tree jointly through a single objective func-
tion is better than learning for each task independently. Figure 9.7 shows recogni-
tion results on two images using the Object-Pose Tree, a red mug and an Ultrabrite
toothpaste. For each image, the top five matching instances and poses are shown.

9.6 Object Detection in Scenes Using RGB-D Cameras

In Sect. 9.5 we demonstrated how to perform RGB-D object recognition, where im-
ages are already cropped and segmented so that they contain only one object. In
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some applications such segmentations may not be easy to obtain. In this section,
we demonstrate how to use the RGB-D Object Dataset to perform object detection
in real-world scenes that can contain multiple objects. Given an image, the object
detection task is to identify and localize all objects of interest. Like in object recog-
nition, the objects belong to a fixed set of class labels. The object detection task can
also be performed at both the category and the instance level. Existing work gener-
ally localizes objects to one of two levels of granularity: (1) localize the object to a
rectangular subregion of the image (bounding box), and (2) assign an object label to
every pixel or 3D point, leading to a pixel/point-level segmentation of the scene.

We present approaches for detecting objects at both levels of granularity. Exper-
iments are performed where object detectors are trained using views of objects in
the RGB-D Object Dataset, and evaluated on scenes in the RGB-D Scenes Dataset.
During training, videos in the RGB-D Scenes Dataset that contain the objects are
not used. A set of videos of taken in similar office and kitchen environments but
without the presence of objects in the RGB-D Object Dataset are used for sampling
negative training examples. These videos are available as “background” scenes in
the RGB-D Scenes Dataset.

9.6.1 RGB-D Object Detection

Our RGB-D object detection system uses sliding window detectors [8, 12, 18],
where the system evaluates a score function for all positions and scales in an image,
and thresholds the scores to obtain object bounding boxes. Each detector window is
of a fixed size and we search across 20 scales on an image pyramid. For efficiency,
we here consider a linear score function (so convolution can be applied for fast eval-
uation on the image pyramid). We perform non-maximum suppression to remove
multiple overlapping detections.

Let H be the feature pyramid and p the position of a subwindow. p is a three-
dimensional vector: the first two dimensions is the top-left position of the subwin-
dow and the third one is the scale of the image. Our score function is

sw(p) = w�φ(H,p) + b (9.3)

where w is the filter (weights), b the bias term, and φ(H,p) the feature vector at
position p. We train the filter w using a linear support vector machine (SVM):

L(w) = w�w

2
+ C

N∑

i=1

max
(
0,1 − yi

(
w�xi + b

))
(9.4)

where N is the training set size, yi ∈ {−1,1} the labels, xi the feature vector over a
cropped image, and C the trade-off parameter.

The performance of the classifier heavily depends on the data used to train it. For
object detection, there are many potential negative examples. A single image can be
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Fig. 9.8 Original depth
image (left) and filtered depth
image using a recursive
median filter (right). The
black pixels in the left image
are missing depth values

used to generate 105 negative examples for a sliding window classifier. Therefore,
we follow a bootstrapping hard negative mining procedure. The positive examples
are object windows we are interested in. The initial negative examples are randomly
chosen from background images and object images from other categories/instances.
The trained classifier is used to search images and select the false positives with the
highest scores (hard negatives). These hard negatives are then added to the negative
set and the classifier is retrained. This procedure is five times to obtain the final
classifier.

As features we use a variant of histogram of oriented gradients (HOG) proposed
in [12]. The gradient orientations in each cell (8 × 8 pixel grid) are encoded using
two different quantization levels into 18 (0◦–360◦) and nine orientation bins (0◦–
180◦), respectively. This yields a 4 × (18 + 9) = 108-dimensional feature vector.
A 31-D analytic projection of the full 108-D feature vectors is used [12].

Aside from HOG over RGB image, we also compute HOG over depth image
where each pixel value is the object-to-camera distance. Before extracting HOG
features, we need to fill up missing values in the depth image. Since missing values
tend to be grouped together, we use a recursive median filter. Instead of considering
all neighboring pixel values, we take the median of the non-missing values in a 5×5
grid centered on the current pixel. We apply this median filter recursively until all
missing values are filled. An example original depth image and the filtered depth
image are shown in Fig. 9.8.

Finally, we also compute a feature capturing the scale (true size) of the object.
Observe that the distance d of an object from the camera is inversely proportional
to its scale, o. For an image at a particular scale s, we have c = o

s
d , where c is

constant. For sliding window detection the detector window is fixed, meaning that o

is fixed. Hence, d
s

, which we call the normalized depth, is constant. Since the depth
is noisy, we use a histogram of normalized depths over 8 × 8 grid to capture scale
information. For each pixel in a given image, d is fixed, so the normalized depth
histogram can choose the correct image scale from the image pyramid. We used a
histogram of 20 bins with each bin having a range of 0.15 m. Helmer et al. [18] also
used depth information, but they used it as a prior in their probabilistic model while
we construct a scale histogram feature from normalized depth values.

We evaluated RGB-D object detection on eight natural scene video sequences
described in Sect. 9.4. Since consecutive frames are very similar, we subsample the
video data and run our detection algorithm on every 5th frame. We constructed four
category detectors (bowl, cap, coffee mug,and soda can) and 20 instance detectors
from the same categories. We follow the PASCAL Visual Object Challenge (VOC)
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Fig. 9.9 Precision-recall curves comparing performance with image features only (red), depth
features only (green), and both (blue). The top row shows category-level results. From left to right,
the first two plots show precision-recall curves for two binary category detectors, while the last plot
shows precision-recall curves for the multi-category detector. The bottom row shows instance-level
results. From left to right, the first two plots show precision-recall curves for two binary instance
detectors, while the last plot shows precision-recall curves for the multi-instance detector

evaluation metric. A candidate detection is considered correct if the size of the in-
tersection of the predicted bounding box and the ground truth bounding box is more
than half the size of their union. Only one of multiple successful detections for the
same ground truth is considered correct, the rest are considered as false positives.
We report precision-recall curves and average precision, which is computed from
the precision-recall curve and is an approximation of the area under this curve. For
multiple category/instance detections, we pool all candidate detection across cate-
gories/instances and images to generate a single precision-recall curve.

In Fig. 9.9 we show precision-recall curves comparing detection performance
with a classifier trained using image features only (red), depth features only (green),
and both (blue). We found that depth features (HOG over depth image and nor-
malized depth histograms) are much better than HOG over RGB image. The main
reason for this is that in depth images strong gradients are mostly from true ob-
ject boundaries (see Fig. 9.8), which leads to much less false positives compared to
HOG over RGB image, where color change can also lead to strong gradients. The
best performance is attained by combining image and depth features. The combina-
tion gives higher precision across all recall levels than image only and depth only,
if not comparable. In particular, combining image and depth features gives much
higher precision when high recall is desired.

Figure 9.10 shows multi-object detection results in three scenes. The leftmost
scene contains three objects observed from a viewpoint significantly different from
what was seen in the training data. The multi-category detector is able to correctly
detect all three objects, including a bowl that is partially occluded by a cereal box.
The middle scene shows category detections in a very cluttered scene with many
distracting objects. The system is able to correctly detect all objects except the par-
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Fig. 9.10 Three detection results in multi-object scenes. From left to right, the first two images
show multi-category detection results, while the last image shows multi-instance detection results

tially occluded white bowl that is far away from the camera. Notice that the detector
is able to identify multiple instances of the same category (caps and soda cans). The
rightmost scene shows instance detections in a cluttered scene. Here the system was
able to correctly detect both the bowl and the cap, even though the cap is partially
occluded by the bowl. Our current single-threaded implementation takes approxi-
mately 4 seconds to run the four object detectors to label each scene. Both feature
extraction over a regular grid and evaluating a sliding window detector are easily
parallelizable. We are confident that a GPU-based implementation of the described
approach can perform multi-object detection in real-time.

9.6.2 Scene Labeling

For robotics applications such as object grasping, localizing objects with a bounding
box is not enough. Instead, a pixel-level classification is needed, which provides
both recognition and segmentation of objects in the scene. In [26], we presented a
technique for pixel-level object labeling in 3D scenes reconstructed from RGB-D
videos. To do this, we used sliding window detectors to assign a class probability to
every pixel. Evidence is aggregated over multiple video frames by transforming the
pixels into points in a 3D scene. The transformation is computed based on camera
poses estimated using the RGB-D Mapping algorithm [19]. The scene is voxelized
and a Markov Random Field (MRF) over the voxels that combines cues from view-
based detection and 3D geometry is used to obtain the final object labeling.

We evaluated our object labeling approach on labeling five object categories in
the RGB-D Scenes Dataset, bowls, caps, cereal boxes, coffee mugs, and soda cans.
We achieve an overall F-score of 89.8 % when evaluated on all eight scenes in the
dataset, where equal weight is assigned to each of the five object categories and
to the background class. Table 9.7 shows the per-category and overall precisions
and recalls of the proposed approach (Det3DMRF), as well as picking the label of
each point uniformly at random (Random). The precisions for Random is 16.7 %
for each of the six classes as expected, while the recalls show that the vast majority
(87.5 %) of points in our scenes is background. The proposed approach performs
consistently well for six classes, achieving close to overall 90 % precision and recall.
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Table 9.7 Per-category and overall (macro-averaged across categories) precisions and recalls for
the proposed detection-based 3D scene labeling approach and for random labeling. Our approach
works very well for all object categories in the RGB-D Scene Dataset

Technique Precision/recall

Bowl Cap Cereal box Coffee mug Soda can Background Overall

Random 16.7/2.9 16.7/2.2 16.7/6.5 16.7/1.0 16.7/0.9 16.7/87.5 16.7/16.7

Det3DMRF 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8

Fig. 9.11 3D scene labeling results for three complex scenes in the RGB-D Scenes Dataset. 3D re-
construction (top), our detection-based scene labeling (bottom). Objects colored by their category:
bowl is red, cap is green, cereal box is blue, coffee mug is yellow, and soda can is cyan

In Fig. 9.11 we we show three complex scenes that were labeled by our 3D scene
labeling technique (Det3DMRF). The top row shows the reconstructed 3D scene
and the bottom row shows results obtained by Det3DMRF. Objects are colored by
their category label, where bowl is red, cap is green, cereal box is blue, coffee mug is
yellow, and soda can is cyan. More detailed comparisons with alternative approaches
are presented in [26].

If the desired output is bounding boxes in the original RGB-D video frames, it is
possible to use the labeled 3D scene to validate object detections. We do this by run-
ning object detectors with a low threshold and pruning out bounding box candidates
whose labels do not agree with the majority label of points in a central sub-rectangle
of the bounding box. Figure 9.12 shows precision-recall curves obtained from both
the individual frame-by-frame object detections (red) and detections validated by 3D
scene labeling (blue). Each point along the curve is generated by ranking detections
from all five category detectors together and thresholding on the detection score. It
is clear that 3D scene labeling can significantly reduce false positives by aggregating
evidence across the entire video sequence. While the precision of frame-by-frame
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Fig. 9.12 Precision–recall curves comparing the performance of labeling images with bounding
boxes of detected objects. Each plot shows results on one of the eight video sequences in the
RGB-D Scenes Dataset, aggregated over all five category detectors. Frame-by-frame object detec-
tion is drawn in red, while 3D scene labeling (our approach) is drawn in blue

detection rapidly decreases beyond 60 % recall for all eight scenes, using 3D scene
labeling it is possible to obtain 80 % recall and 80 % precision in a majority of them.

9.7 Discussion

We presented a large-scale, hierarchical multi-view object dataset collected using
an RGB-D camera. We demonstrated methods for doing segmentation by com-
bining depth and visual background subtraction and video ground truth annota-
tion via 3D reconstruction. We also presented and evaluated state-of-the-art fea-
tures and classification techniques for doing object recognition, object detection,
and 3D scene labeling in RGB-D data. The RGB-D Object Dataset, the RGB-
D Scenes Dataset, and accompanying software tools are publicly available at
http://www.cs.washington.edu/rgbd-dataset.
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