
Chapter 10
RGBD-HuDaAct: A Color-Depth Video
Database for Human Daily Activity Recognition

Bingbing Ni, Gang Wang, and Pierre Moulin

Abstract In this chapter, we present a home-monitoring oriented human activ-
ity recognition benchmark database, based on the combination of a color video
camera and a depth sensor. Our contributions are two-fold: (1) We have created
a human activity video database named RGBD-HuDaAct, which contains synchro-
nized color-depth video streams, for the task of human daily activity recognition.
This database aims at encouraging research in human activity recognition based
on multi-modal video data (color plus depth). (2) We have designed two multi-
modality fusion schemes which naturally combine color and depth information from
two state-of-the-art feature representation methods for action recognition, namely,
spatio-temporal interest points (STIPs) and motion history images (MHIs). These
depth-extended feature representation methods are evaluated comprehensively, and
superior recognition performance related to their uni-modal (color only) counter-
parts is demonstrated.

10.1 Introduction

Automatic recognition and analysis of human daily activities (e.g., go to bed, mop
the floor, eat meal, etc.) is helpful in a variety of applications, e.g., to facilitate
effective delivery of health and medical services to isolated, elderly people. In gen-
eral, video-based human activity recognition has been an active research topic in
computer vision over the last decade. However, the inherent limitations of standard
sensing devices restrict previous methods [2, 4, 10, 23] to recognition and analy-
sis of lateral motions. However, human bodies and motions are 3-dimensional, and
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so the information loss in the depth channel could cause significant degradation in
recognition performance. The recent emergence of Microsoft Kinect depth sensors
has made it feasible and economically sound to capture in real-time not only the
color images, but also depth maps with appropriate spatial resolution (640 × 480 in
pixel) and amplitude accuracy (≤1 cm accuracy). Both 3-dimensional scene struc-
ture information and the 3-dimensional motion information can be extracted. There-
fore the motion ambiguity of the color camera resulting from the projection of the
3-dimensional motion onto the 2-dimensional image plane can be circumvented.

To date, very few databases provide joint color and depth data for human activ-
ity recognition. To encourage such research, we have constructed a video database
named RGBD-HuDaAct for human activities captured with a RGB-D (i.e., color
plus depth) sensor. This database is available upon request to the first author. Though
the database is developed under the application scenario of daily activity recogni-
tion, it could be used as a common test bed for general activity recognition.

Although it is widely believed that combining color and depth provides comple-
mentary information, to our knowledge, no studies have yet shown how much gain
(in terms of recognition accuracy) could be obtained by exploring the additional
depth modality. To demonstrate the capability of the depth information, we develop
two color-depth fusion schemes for feature representation from the most represen-
tative feature representation methods in human action recognition. Specifically, we
first extend the spatio-temporal interest points methods (STIPs) into a depth-layered
multi-channel representation; then, we augment the motion history images (MHIs)
with two depth-change induced motion history channels. Extensive experimental
results demonstrate the superior performance gained by fusing color and depth in-
formation for human activity recognition.

The rest of this chapter is organized as follows: Sect. 10.2 gives a brief re-
view of feature representation methods in activity recognition literature. A detailed
introduction to the color-depth human daily activity video database is given in
Sect. 10.3. The proposed color-depth fusion schemes for activity feature representa-
tion are described in Sect. 10.4. Comprehensive experimental evaluations are given
in Sect. 10.5 and Sect. 10.6 draws the conclusion and presents possible directions
for future work.

10.2 Related Works

Many feature representation methods have been developed for recognizing activi-
ties (actions) from video sequences based on color cameras. Sequences of human
silhouettes are utilized to model both spatial and temporal characteristics of hu-
man actions. In [4], silhouettes are temporally accumulated to form motion en-
ergy images (MEIs) and motion history images (MHIs). Seven Hu moments [14]
are extracted from both MEIs and MHIs to serve as action descriptors. Davis and
Tyagi [8] use Gaussian mixture models (GMM) to capture the distribution of the
moments of silhouette sequences. Several other approaches utilize motion flow pat-
terns to represent human actions. Typically, optical flows [11] are calculated for the
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entire image by matching consecutive video frames. Then the motion patterns [10]
or the estimated motion parameters [2] are used for action representation. However,
ambiguity arises when the real-world 3-dimensional motion is projected onto the
2-dimensional image plane.

Recently, a series of spatio-temporal interest points (STIPs)-based methods have
been proposed, which achieve state-of-the-art performances in activity recognition.
These methods include Harris3D [18], HOG3D [15] and Cuboid [9]. Although
slightly different from each other, these methods share the common feature ex-
traction and representation framework, which involves detecting local extrema of
the image gradients and describing the point using histogram of oriented gradients
(HOG) [7] and histogram of optic flows (HOF).

The first work using RGB-D sensor for activity recognition is [20]. In [20], a
bag of 3D points (BOPs) are efficiently sampled from the depth map and Gaussian
mixture models are used to model the human postures. This method yields superior
results over the conventional method which uses 2D silhouettes. However, it has
several limitations: (1) Instead of direct utilization of the 3-dimensional motion in-
formation, it uses 2-dimensional projections of key poses, which could essentially
lead to sub-optimal feature representations; (2) only depth information is used for
recognition while color information is completely ignored; however, color and depth
information are rather complementary than exclusive.

More recently, Sung et al. [26] directly use skeleton motion data extracted from
Kinect SDK for activity representation; however, this method cannot be applied
when skeleton data cannot be reliably obtained.

10.3 RGBD-HuDaAct: Color-Depth Human Daily Activity
Database

10.3.1 Related Video Databases

A summarization of the existing video activity benchmark databases is given in Ta-
ble 10.1. KTH [25] and Weizmann [3] Databases: These databases aim at simple
action recognition, including: walking, jogging, running, hand-waving, etc. How-
ever, the simplicity of the action categories as well as the clean backgrounds make
the recognition tasks easy. As the reported accuracies on both databases approach
94.53 % [16] and 100 % [3, 12], respectively, they are no longer considered as good
benchmarks. Instead, the RGBD-HuDaAct aims at realistic human daily activities,
which are challenging for recognition tasks. Movie Action Database [22]: This
database is widely used for activity recognition in movies. Given the large varia-
tions of the visual contents and the camera movements, this database is challenging.
Note that although some of its activity categories overlap with the RGBD-HuDaAct
database, the two databases focus on different applications, i.e., the former deals
with movie actions under uncontrolled environment with moving cameras, while
the latter is for daily activity monitoring under fixed environment and camera set-
tings. Sports Event Databases [21, 24]: The UCF sports event database [24] and
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Table 10.1 Comparisons of the RGBD-HuDaAct database over other benchmark activity
databases

Database Modality Resolution Sample # Category descriptions

KTH [25] RGB 160 × 120 2391 6 classes: walking, jogging,
running, etc.

Weizmann [3] RGB 180 × 144 90 10 classes: run, walk, skip,
jumping-jack, side, etc.

Hollywood2 [22] RGB 600 × 450 3669 12 classes: answering the
phone, driving car, eating, etc.

UCF Sports [24] RGB 720 × 480 184 10 classes: swinging, golf
swinging, walking, etc.

UCF YouTube [21] RGB 320 × 240 3040 11 classes: basketball shooting,
biking, diving, etc.

MSR Action3D [20] Depth 320 × 240 4020 20 classes: high arm wave, hand
catch, forward punch, etc.

Indoor Activity [26] RGB-Depth 640 × 480 NA 12 classes: cooking, writing,
working on computer, etc.

RGBD-HuDaAct RGB-Depth 640 × 480 1189 12 classes (plus background
activity): drink water, eat meal,
phone call, etc.

the UCF YouTube sports database [21] consist of a set of actions collected for vari-
ous sports events which are typically obtained from websites including BBC Motion
gallery, GettyImages, and YouTube.com. These two databases are very challenging
due to large variations in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, and illumination condition, etc. While these two
databases consider only outdoor sports, the daily activities in the RGBD-HuDaAct
database are all indoor. MSR Action3D Database [20]: The only existing depth
sensor-based action database is collected by Li et al. [20], which aims at recog-
nizing actions (gestures) in game interaction. However, this database only contains
depth maps without corresponding color images. In contrast, the RGBD-HuDaAct
database contains synchronized and registered color-depth videos. Used for gesture
recognition, this database contains only atomic actions such as hand wave, punch,
etc. In contrast, our database aims at higher level human behavior such as mopping
the floor, eating meal, etc. Indoor Kinect Activity Database [26]: Very recently,
Sung et al. [26] use Kinect sensor to construct and indoor (e.g., office, kitchen, bed-
room, bathroom, and living room) activity dataset for the task of activity detection,
which includes four subjects and 12 activity categories. In addition to RGB-D im-
ages, the database also provides skeleton motion data. Most of their categories do
not overlap with ours. To have more inter-personal variations, the number of sub-
jects participating our data collection (i.e., 30) is much larger than theirs.

Differently from these databases, our motivation is driven by the application of
assisted living in health-care. Monitoring the daily activities of senior citizens has
recently become an urgent demand due to the aging population problem. There only
exists a very recent video database for senior home monitoring [6], however, it does
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Fig. 10.1 The Kinect camera setup. (Left) The video capture environment. (Right) The geometric
configuration of the Kinect camera

not utilize the depth modality. In contrast, the RGBD-HuDaAct database contains
synchronized color and depth videos, which are more suitable for 24 hours moni-
toring, since the depth sensor also works without visible lighting.

10.3.2 Database Construction

We utilize the recently released Microsoft Kinect sensor to construct the RGBD-
HuDaAct video database, collected in a lab environment, which is illustrated in
Fig. 10.1. There are minor variations in the camera position and orientation due
to repeated mountings of the camera. From Fig. 10.1, it can be noted that the
horizontal and vertical distances from the camera to the center of the scene un-
der capture are about 2 and 2 meters, respectively and the average depth of the
human subject in the scene is about 3 meters (i.e., which is the optimal opera-
tion range of the depth camera). This geometric setting is appropriate for home
or hospital ward monitoring. The resolutions of both color image and depth map
are 640 × 480 in pixel. The color image is of 24-bit RGB values; and each
depth pixel is a 16-bit integer. Both sequences are synchronized and the frame
rates are 30 frames per second (fps). The color and depth frames are stereo-
calibrated using the standard stereo-calibration method with a chessboard pat-
tern object available in OpenCV (four corners of the chessboard object are used
as corresponding points for depth calibration, as in [1]). We repeat the cam-
era calibration procedure at the beginning of each video capture session and
the camera is fixed throughout the session. The database can be downloaded at:
http://adsc.illinois.edu/research/ADSC-RGBD-dataset-download-instructions.pdf.

10.3.3 Database Statistics

We are interested in 12 categories of human daily activities motivated by the defini-
tions provided by health-care professionals [17] for Activity of Daily Living (ADL),

http://adsc.illinois.edu/research/ADSC-RGBD-dataset-download-instructions.pdf
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which includes: make a phone call, mop the floor, enter the room, exit the room,
go to bed, get up, eat meal, drink water, sit down, stand up, take off the jacket and
put on the jacket. These defined activities are directly corresponding to the ADL
category: using the telephone, maintaining the home, eating, transferring, dressing,
respectively (note that other ADL categories such as toileting, bathing, managing
finances, shopping are not suitable for visual recognition). We also have a category
named as background activity that contains different types of random activity. We
invited 30 student volunteers to perform these daily activities, which are organized
into 14 video capture sessions. The subjects were asked to perform each activity 2–4
times. Finally, we captured about 5,000,000 frames (approximately 46 hours long)
for a total of 1189 labeled video samples. Each video sample spans about 30–150
seconds. Note that the size of our database is still growing to include more activity
classes and video samples.

Two example frames from each activity category are illustrated in Fig. 10.2, in
terms of both color (left) and depth (right) frames. We can make two observations
from Fig. 10.2: (1) There exist distinctive depth layers for the moving human body
parts in different activities, which implies that incorporating the depth layer infor-
mation could bring additional discriminating capability for activity feature repre-
sentation; (2) there exist rich intra-class variations for each activity category.

For example, for the activities make a phone call and drink water, the subject
could be either standing still or sitting on the chair and either hand could be used for
phone answering and water drinking. As another example, for the activities put on
the jacket and take off the jacket, different persons have their own styles of perform-
ing these actions and they might be facing or not facing the camera. These variations
make our database more realistic and challenging.

Note that although the background of the current database is of limited variations
and only a single subject is present (i.e., compared to the movie action or YouTube
databases), we must emphasize that for the application of indoor home monitoring,
using a fixed camera and the current background environment are very typical. One
limitation of the current sensor is that the operation range is fixed at about 3 meters
and the camera view angle is also fixed. However, in real applications, the actions
can occur at any distance with different view angles. Therefore, we are currently
collecting more data with various distance ranges and view angles. Also the effective
range of the Kinect is limited within 6 meters, and we are currently investigating a
multiple-Kinect setup to cover the whole space.

10.4 Color-Depth Fusion for Activity Recognition

In this section, we introduce two feature representation methods for fusing color
and depth information for activity recognition, which are straightforwardly devel-
oped from two state-of-the-art action representation methods, i.e., spatial-temporal
interest points (STIPs) and motion history images (MHIs). On the one hand, we
derive a Depth-Layered Multi-Channel STIPs (DLMC-STIPs) framework which
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Fig. 10.2 Example color and depth frames from each activity category. Note for the depth map,
brighter pixels mean larger depth values. Some black regions correspond to depth measurement
errors due to surface reflections, i.e., the PC screen

divides the spatio-temporal interest points into several depth-layered channels, and
then STIPs within different channels are pooled independently, resulting in a mul-
tiple depth-channel histogram representation. On the other hand, we propose a 3-
Dimensional Motion History Images (3D-MHIs) approach which equips the con-
ventional motion history images (MHIs) with two additional channels encoding the
motion recency history in the depth-changing directions. In the experiments, these
two color-depth-based feature representation methods are comprehensively evalu-
ated over their color-only counterparts. It is demonstrated that by modeling the 3-
dimensional spatial structure of the detected spatio-temporal feature points as well
as the 3-dimensional motion history of the human subjects, the discriminating capa-
bilities of the features are boosted.

10.4.1 Depth-Layered Multi-channel STIPs (DLMC-STIPs)

Spatio-temporal interest points (STIPs) are widely used for action recognition. The
most representative versions of STIPs employ the Harris3D detector, which was
proposed by Laptev and Lindeberg in [18]. The Harris3D detector is a space-time
extension of the 2-dimensional Harris detector [13]. At each space-time video point,
a spatio-temporal second-moment matrix is computed as μ(.;σ, τ) = g(.; sσ, sτ ) ∗
(�V (.;σ, τ))(�V (.;σ, τ))T (i.e., V is the video volume), in terms of different
spatial and temporal scale values sσ, sτ . Namely, space-time gradients �V are
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computed and smoothed by a separate Gaussian smoothing function g(.; sσ, sτ ).
The detected locations of space-time interest points are given by local extrema of
H = det(μ) − κ trace3(μ), in terms of both spatial and scale space. To characterize
local shapes and motions, histograms of oriented gradients (HOG) and histograms
of optic flows (HOF) are calculated within the space-time neighborhoods of the
detected interest points, see [18]. The HOG and HOF feature descriptors are first
quantized into visual words and then each video sequence is represented as a bag of
such visual words [27] (i.e., as a histogram vector over the visual word vocabulary).

However, the human subject is in essence a 3-dimensional structure and the
detected spatio-temporal feature points are associated with local motions taking
place at different 3-dimensional locations; however, the previous pooling methods
of STIPs can only utilize this spatial information up to 2-dimensional, i.e., feature
poolings are performed within each x–y–t sub-volume, and the spatial information
along the depth direction is totally lost. The availability of depth map enables us
to recover this lost information. The most straightforward way to utilize the spatial
information along the depth direction is to perform the feature pooling by divid-
ing the entire scene into different depth layers, and form a multi-channel STIPs
histogram. This basic idea is similar with the space partition in [18], where STIPs
are spatially pooled within each x–y–t sub-volume, i.e., the entire 3-dimensional
space-time video volume is divided into several x–y–t sub-volumes. Our proposed
framework is named as Depth-Layered Multi-Channel STIPs (DLMC-STIPs),
which is formulated as follows.

Each video sample V could be represented as a set of (N ) STIP feature de-
scriptors (i.e., HOG and HOF), which is denoted V = {x1,x2, . . . ,xN }. Each STIP
feature descriptor is denoted xi = (x, y, z, t, σ,xT

HOG,xT
HOF)T . Here, x, y, z, t , σ

represent the 3D coordinate (x, y, z), temporal index and the scale of the detected
feature point, respectively. xHOG and xHOF are the 72D HOG and 90D HOF feature
vectors, respectively. We first perform unsupervised clustering on the set of HOG
and HOF feature descriptors to construct a visual word vocabulary (codebook). We
denote the visual codebook encoded vector (by nearest visual word assignment ac-
cording to the Euclidean distance) of the feature descriptor xi as vi , i.e., vi is a
K-dimensional (K is the codebook size) assignment vector with one of the element
as 1 and the others as 0s. Then the histogram representation h for the video sample
V is given by

h = 1

N

N∑

i=1

vi . (10.1)

This aggregation process is usually referred as feature pooling, i.e., aggregating the
set of local features into a global representation vector.

We can also incorporate the spatial information in the feature pooling process.
In [18], the entire 3-dimensional space-time volumes are divided into several x–y–t

sub-volumes and pooling is performed within each sub-volume. Then the pooled
histogram vectors from all the sub-volumes are concatenated to form a multi-
channel representation. When the depth value of each detected STIP point is avail-
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able, we can also form depth-layered multi-channel representations. Namely, we in-
troduce a set of (M) depth layers Lz

1 = [zl
1, z

u
1],Lz

2 = [zl
2, z

u
2], . . . ,Lz

M = [zl
M, zu

M ],
with lower and upper boundaries denoted as zl

m and zu
m for the mth depth layer.

Then, we form multi-channel histograms h1,h2, . . . ,hM , as

hm = 1

N

∑

z(xi )∈Lz
m

vi , ∀m = 1,2, . . . ,M. (10.2)

These multiple channel histograms could be concatenated into an M × K-
dimensional feature vector h = (hT

1 ,hT
2 , . . . ,hT

M)T , as the input to the classification
framework, e.g., support vector machines. The distance metric for calculating the
kernel matrix could be χ2 distance. Moreover, we can also use the spatial pyramid
matching kernel (SPM) proposed in [19] to better explore the spatial information
given in the depth axis. An illustration of the DLMC-STIPs generation process is
given in Fig. 10.3. Note the following. (1) The DLMC-STIPs method is not fully
4D representation, since the interest point detection and local volume representation
are both performed in the x–y–t space. However, improvement has been observed
when the local features are not distinctive with this naive extension (see Sect. 10.5).
We believe this trial idea (together with the database) will inspire the research com-
munity to develop more sophisticated approaches which represent activities in a
fully 4D manner. (2) The DLMC-STIPs framework does not explicitly model the
motion along the depth axis, and a 3D-MHIs approach which explicitly models the
3-dimensional motion is introduced in the next subsection.

10.4.2 3-Dimensional Motion History Images (3D-MHIs)

Another widely used feature representation method for action classification is mo-
tion history images (MHIs) developed by Bobick and Davis [4], which is capable of
encoding the dynamics of a sequence of moving human silhouettes. In an MHI, each
pixel intensity is a function of the motion recency at that location, where brighter
value corresponds to more recent motion. This single image contains the discrimina-
tive information for determining how a person has moved (spatially and temporally)
during the action. Denoting I (x,y, t) as an image sequence, each pixel intensity
value in an MHI is a function HI of the temporal history of motion at that point,
namely:

HI
τ (x, y, t) =

{
τ, if |I (x, y, t) − I (x, y, t − 1)| > δIth

max(0,HI
τ (x, y, t − 1) − 1), else.

(10.3)

Here τ is the longest time window we want the system to consider and δIth is the
threshold value for generating the mask for the region of motion. The result is a
scalar-valued image where brighter pixels indicate more recent motion. Statistical
descriptions of the motion history images are then computed based on seven Hu
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Fig. 10.3 A diagram of the generation process of DLMC-STIPs representation

moment-based features [14], which are known to yield reasonable shape discrimi-
nation in a translation- and scale-invariant manner.

However, using only RGB camera, MHIs can only encode the history of motion
induced by the lateral component of the scene motion parallel to the image plane.
With the additional depth sensor, we can now develop an extended framework which
is capable of encoding the motion history along the depth-changing directions. In
particular, we propose two depth-change induced motion history images named as
DMHIs. DMHIs contain forward-DMHIs (fDMHIs) which encode the forward mo-
tion history (increase of depth) and backward-DMHIs (bDMHIs) which encode the
backward motion history (decrease of depth). To generate fDMHIs, the following
process is adopted:

Hf D
τ (x, y, t) =

{
τ, if (D(x, y, t) − D(x,y, t − 1)) > δDth

max(0,H
f D
τ (x, y, t − 1) − 1), else.

(10.4)

Here, H
f D
τ denotes the forward motion history image and D(x,y, t) denotes the

depth sequence. δDth is the threshold value for generating the mask for the region
of forward motion. The backward-DMHI (i.e., HbD

τ ) is generated in a similar way
with the thresholding function replaced by (D(x, y, t) − D(x,y, t − 1)) < −δDth.
The conventional MHIs are combined with fDMHIs and bDMHIs to represent 3-
dimensional motion history and we denote the combined feature representation as
3D-MHIs. To represent each action video, similar to MHIs, Hu moments are cal-
culated for all three channels (i.e., MHIs, fDMHIs and bDMHIs) and are concate-
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Fig. 10.4 Illustration of the MHI, fDMHI and bDMHI in a sit down sequence

nated to form a representation vector. An example 3D-MHI is illustrated in Fig. 10.4
in the context of a sit down sequence. From Fig. 10.4, we notice obvious motion
patterns in fDMHI in contrast to bDMHI, which indicates the subject is moving
away from the camera. This example implies that by using fDMHIs and bDMHIs,
we can distinguish different actions which present similar motion patterns in the
x–y directions but with distinctive motion patterns in the depth-changing direc-
tions.

10.5 Experimental Evaluations

10.5.1 Evaluation Schemes

In this work, we use 59 % (i.e., by random sampling a fixed number of samples
from each category) of the video samples in the RGBD-HuDaAct database for ex-
periment. The subset we use in the experiments include 18 subjects with nine cap-
ture sessions, yielding a total of 702 video samples belonging to 13 activity classes,
including the background activity videos which are added to the existing 12 activ-
ity classes to test how algorithms can recognize the specified activities from some
random daily activities such as walk around, stand still, pick-up some object, etc.

To test the generalization capability of the methods for novel input, we use
the leave-one-subject-out (LOSO) scheme for algorithmic evaluations. In each run,
we choose the samples from one subject as the testing samples, and the remain-
ing samples from the database serve as the training samples. The overall recog-
nition performance is calculated by gathering the results from all training-testing
runs.

The evaluation results are reported in terms of classification accuracy as well
as class confusion matrix. We regard our human daily activity recognition problem
as a multi-class classification problem and each video sample has one and only
one activity label (i.e., out of 13 classes). For the LOSO scheme, the classification
accuracy is given by the ratio of the correctly classified testing samples over the total
number of testing samples, by gathering the classification results from all testing
runs. In our experiments, the class confusion matrix C is a 13 × 13 matrix where
each element Cij denotes how many testing samples of the ith class are classified
into the j th class. Larger values for the diagonal elements and smaller values for the
off-diagonal elements indicate better discriminating capability.
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Table 10.2 Comparisons of
the classification accuracies
(%) for STIPs and
DLMC-STIPs under different
experimental settings

Setting K = 128 K = 256 K = 512

STIPs (χ2) 68.95 76.78 79.77

DLMC-STIPs (χ2, M = 2) 72.43 77.10 79.91

DLMC-STIPs (χ2, M = 4) 74.22 77.91 79.23

DLMC-STIPs (χ2, M = 8) 76.64 79.49 79.49

DLMC-STIPs (SPM) 77.64 81.05 81.48

Prior to feature extraction, we down-sample the original color and depth video se-
quences in both spatial and temporal dimensions by a factor of 2, yielding 320×240
pixels and 15 fps video samples (i.e., this setting is similar with [20]). We use sup-
port vector machines (SVM) [5] (one-against-one scheme for multi-class classifica-
tion) for all classification tasks with different kernels. The penalty parameter C of
SVM is optimized by cross-validation. The bandwidth parameters for χ2 and RBF
kernels are set as the average of the squared distances (χ2 and Euclidean, respec-
tively) of the training sample pairs.

10.5.2 DLMC-STIPs vs. STIPs

We compare the classification performances between the proposed DLMC-STIPs
and the conventional STIPs. We perform K-means clustering to the set of HOG
+ HOF descriptors, which yields codebooks with size K . We vary the value of
K as 128, 256 and 512 for more comprehensive evaluations. For the conventional
STIPs, a K-dimensional histogram vector is calculated for representing each video
sequence. Note that in order to better reveal the discriminating capability gained
by depth-layered multi-channel representation, we fix the setting of other config-
urations as simple as possible, i.e., we do not partition the STIPs into different
x–y–t sub-volume as in [18]. Obviously, space partition in terms of x–y–t for
both methods could bring more discriminative information on an equal basis. For
DLMC-STIPs, we divide the depth axis into M = 2,4,8 equally spaced layers ac-
cording to the depth value distributions of the SITPs. As both DLMC-STIPs and
STIPs are histogram-based representations, we use χ2 distance for calculating the
kernel matrix. We also explore the spatial pyramid matching kernel (SPM) [19] for
DLMC-STIPs representations with l = 3 depth spatial levels. Various classification
accuracies under different parameter combinations are given in Table 10.2. We also
illustrate the class confusion matrices for both methods in Fig. 10.5, at the setting
of K = 256.

It can be observed from Table 10.2 that by using depth-layered multi-channel his-
togram representation, the classification accuracies can be improved consistently;
also, by using the spatial pyramid matching kernel (SPM), the classification perfor-
mances can be further boosted.
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Fig. 10.5 Class confusion matrices for STIPs (left) and DLMC-STIPs (right, SPM kernel) under
the setting of K = 256. For better view, we use two characters to represent each activity category,
i.e., PJ: put on the jacket, TJ: take off the jacket, EN:enter the room, EX: exit the room, SD: sit
down, SU: stand up, DW: drink water, EM: eat meal, MF: mop the floor, MP: make a phone call,
GB: go to bed, GU: get up and BG: background activity

Table 10.3 Comparisons of
the classification accuracies
(%) for MHIs and 3D-MHIs
under different experimental
settings

Kernel MHIs fDMHIs + bDMHIs 3D-MHIs

Linear 34.19 68.66 70.51

RBF 37.18 66.81 69.66

10.5.3 3D-MHIs vs. MHIs

We also compare the classification performances between the proposed 3D-MHIs
and the conventional MHIs. For both methods, the τ value is chosen by cross-
validations. We further normalize the 3D-MHIs and MHIs by multiplying a scale
factor 1

τ
to achieve scale invariance. Note that the original implementation of MHIs

as in [4] uses a multiple view configuration. In this work, however, we use a single
view instead. For SVM classification, we explore both the linear kernel and the RBF
kernel, and the classification results are given in Table 10.3. We again show the class
confusion matrices for both methods in Fig. 10.6, for the case of linear SVM.

From Table 10.3 and Fig. 10.6, it is noted obviously that by adding the two depth-
changing induced motion history images, the discriminating capability of the fea-
ture representation is significantly boosted (by nearly 30 %). Furthermore, from
Fig. 10.6, we see that the activity enter the room is quite easy to confuse with the
activities exit the room and mop the floor due to their similar lateral motion pat-
terns; however, by using 3D-MHIs, these ambiguities are significantly eliminated,
since both enter the room and exit the room include abundant and distinctive depth-
changing information.

We also compare the best results obtained from our RGB-D-based methods,
i.e., 3D-MHIs and DLMC-STIPs (SPM) with the state-of-the-art action recognition
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Fig. 10.6 Class confusion matrices for MHIs (left) and 3D-MHIs (right), at the setting of linear
SVM

Fig. 10.7 Comparison of
recognition accuracies using
DT, B3D, 3D-MHIs and
DLMC-STIPs (SPM)

methods using RGB images, e.g., dense trajectories (DT) [28] and depth images,
e.g., bag of 3D points (B3D) [20]. The related parameters for these comparing meth-
ods (e.g., trajectory length, number of visual words of trajectory descriptors, number
of mixtures and number of states for bag of 3D points method, the 3D points sam-
pling rate) are tuned optimally on a validation subset. The comparison is illustrated
in Fig. 10.7. We can see that fusion RGB and depth information (DLMC-STIPs
(SPM)) outperforms single modality-based methods.

10.6 Conclusions

In this work, we introduced a publicly available color-depth video database for hu-
man daily activity recognition. We also presented two fusion schemes combining
color and depth modalities for action representation, which have shown superior
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recognition performances over their color-only counterparts. We hope this database
could serve as a benchmark test bed of color-depth-based algorithms for home moni-
toring oriented activity recognition. In the future, we will extend the current database
with actions captured from different distance ranges and view angles.
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