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Foreword

Kinect for Xbox 360 launched worldwide in November 2010. This was a ground-
breaking moment: for the first time you could control your entertainment devices
with voice and full-body markerless motion capture; for the first time, computer
vision had played a pivotal role in a mass-market and highly publicized consumer
product. But perhaps Kinect will come to be remembered most for this: for the first
time you could buy a high-resolution depth-sensing camera at a consumer price
point. As the examples in this book testify, Kinect, as the first consumer depth
camera, has excited thousands of people around the world, both enthusiasts and
academics, to start tinkering away and creating an incredible variety of amazing
experiences.

Why is depth sensing important? It bypasses many of the traditional problems
that have plagued practical applications of computer vision for decades: widely
varying foreground and background colors and textures, unknown object scales,
and variable lighting conditions. Depth cameras overcome these obstacles by de-
sign, and are starting to allow real-world applications of computer vision that work
robustly outside the lab.

Several varieties of depth sensing technology have been in development for many
years. Dense stereo is a “passive” technique that uses two or more standard RGB
cameras, and attempts to find correspondences between image points in order to tri-
angulate depth. Stereo has advanced considerably, though still struggles with large
textureless surfaces and in low light levels. “Active” approaches for measuring depth
instead have their own light sources and thus can potentially overcome the limita-
tions of passive stereo. There are two main varieties of active depth sensing: time of
flight, and structured light. Time of flight cameras send out a pulse of light and mea-
sure the time taken for the light to bounce back to the sensor. Structured light sensors
instead use a pattern projector to emit a known spatially (and sometimes temporally)
varying pattern of light, and triangulate based on the image of the reflected light to
find the depth.
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Working on Human Pose Estimation for Kinect

The Kinect sensor is a structured light device. Bringing it to market at a consumer
price point involved substantial advances in structured light pattern projection, cali-
bration, and manufacturing technologies. But for all these advances in the hardware,
we would not have had a viable commercial product without a compelling reason
for consumers to buy it. So far, the most compelling consumer scenario for Kinect
is that you can play games without holding a controller. I was lucky enough to have
been involved with the research and development of the pose estimation software
that makes this possible. I would like to take this opportunity to briefly share my
behind-the-scenes story and thank a few people along the way.

Any history of Kinect must begin with Alex Kipman, the leader of the Kinect
project within Xbox. Alex had the bold vision of making an immersive experience
in which technology disappears. Like many people before, he could foresee the
fantastic value in interacting with games without a hand-held controller. But unlike
anyone else, he had the ambition and tenacity to actually bring the right people
together to build the hardware and software platforms needed to turn Kinect for
Xbox 360 into a real product and to make it such a success.

It was mid-summer 2008, when Mark Finocchio, one of Alex’s team approached
me and my colleagues Andrew Fitzgibbon and Andrew Blake, to help with the hu-
man pose estimation software for Kinect. We were, as you might expect, initially
rather skeptical. Not only did Alex want us to solve human pose estimation, he
wanted us to do it in under two years, and for the whole system to consume less
than 10 % of the Xbox 360’s resources leaving enough room for the games them-
selves to run concurrently. How could we hope to succeed with such an ambitious
goal where so many others had failed?

But two things got us very excited: firstly the depth camera itself, which produced
depth images of a quality that far surpassed anything that we had seen before in
a consumer device; and secondly a prototype skeletal tracking algorithm, called
Bones, that Alex’s team had put together. In fact, Bones was so good that we were
unsure initially why they needed our help at all! But the limitations of Bones soon
became apparent: it relied on frame-to-frame tracking of a fixed-size model. We
needed Kinect to be robust—never to lose track of the player catastrophically—and
we also wanted to avoid any calibration step, so that any user could just jump in and
play. Bones could not quite meet these requirements, and so the challenge was clear.

The first thing we realized was that we would need to look at a single frame at a
time in order to avoid potential loss of track. This idea went somewhat against the
grain of the established human pose estimation literature which had largely focused
on frame-to-frame tracking. Of course, a considerable concern with a single frame at
a time approach was that the search space of human poses is enormous, and without
an estimate of where to start looking, search might be slow.

Our second decision was to have the algorithm try to learn invariance to body
shape and size. If this worked, then we could hope to avoid the calibration step.
We realized that, because simulating depth images is considerably easier than sim-
ulating real photographs, we could get the large quantities of training images we
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would need relatively cheaply by using computer graphics. As long as these images
matched real camera images closely enough, and the data contained sufficiently
varied poses, shapes and sizes, we should be able to achieve invariance to all these
factors.

Now, what to do with these training data? We prototyped a template matching
approach, but this did not look like it would scale to the accuracy and speed we
needed. We brainstormed various other ideas, and then one morning it hit me that
we could revisit some of the semantic segmentation work from my Ph.D. Instead
of inferring at each pixel a distribution over object categories (sheep, grass, sky,
etc.), we could infer instead a distribution over parts of the body (left hand, right
hand, head, etc.) based on a local window in the depth image. I put together a quick
implementation trained from around 100 images. This gave remarkably encouraging
results, and some considerable hope that this body parts approach might be able to
reach our goals.

My conviction was that “all” we really needed to do next was to scale up: to de-
sign a pattern of body parts that would allow us to localize the body joints of interest;
to improve the realism, variety, and number of training images; to build software
that could train from millions of images in a reasonable period of time; to speed
up the inference to super real-time; and to integrate this per-pixel machine learn-
ing algorithm with the Bones algorithm to get a final output skeleton that enforced
kinematic and temporal constraints. This we did, with substantial help, notably from
Toby Sharp, Mat Cook, Mihai Budiu, Mark Finocchio, and Richard Moore, among
many others too numerous to thank individually. And we were perhaps a little too
successful! Robert Craig, who led the team in Redmond that was now in charge of
the end-to-end tracking pipeline, decided the signal from the body parts classifier
was so reliable that the original Bones algorithm could be replaced with a much
lighter-weight alternative which became known as “ST” (Skeletal Tracking). ST is
now what Kinect uses to track your body, both for Xbox 360 and for Windows.

Beyond Entertainment

Entertainment and gaming turned out to be the “killer app” that took depth cameras
out of the lab. But entertainment is really just a first stride. Soon after the launch of
Kinect, an amazing thing happened. A host of enthusiast “Kinect hacks” started to
appear, including many we had not envisioned. Some were simple but useful, such
as measuring the distance between two points in space; others built impressive inter-
action scenarios, such as virtual pianos and browsing the web. Depth cameras have
also opened up wide-ranging opportunities for scientific research in vision, robotics,
interaction, and several other fields. The academic community has thus been quick to
get involved, for example using Kinect to reconstruct detailed 3D models of indoor
environments, to navigate quadcopters autonomously, or even (something that we
are investigating at Microsoft Research Cambridge) to allow surgeons to navigate
through a patient’s CT and MRI scans mid-surgery without touching a potentially
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non-sterile keyboard or mouse. The chapters in this book, based on the eponymous
workshop at ICCV 2011 in Barcelona, contain a fascinating cross-section of this re-
search. Finally, with the launch of Kinect for Windows and the Kinect Accelerator
initiative, real-world commercial applications are being developed, including virtual
fitting rooms, training for athletes, and assistance for the elderly.

Looking to the Future

Depth camera technology is maturing, yet has a long way to go to reach the frame
rates and resolutions possible with traditional sensors, and as yet does not work
well outdoors. Camera technology is sure to advance in these respects, while also
dropping in price, weight and power consumption. Just imagine the applications that
small, lightweight, wireless depth sensors could enable. But even with today’s depth
sensors, I believe we are just scratching the surface of a world of new applications.
I hope that this book gives you some inspiration, and I for one cannot wait to see
what you come up with next.

Jamie ShottonMicrosoft Research
Cambridge



Preface

The Workshop on Consumer Depth Cameras for Computer Vision (CDC4CV)
brought together researchers from around the world, to explore the latest ideas about
using a revolutionary consumer-priced depth camera, Microsoft’s Kinect. This book
is an outgrowth of that workshop, with the workshop organizers (Andrea Fossati,
Juergen Gall, and Helmut Grabner from ETH Zürich; Xiaofeng Ren from Intel Labs
Seattle; and Kurt Konolige from Willow Garage) inviting expanded contributions
from the workshop participants.

The Kinect appeared as a consumer device in late 2010, and developer versions of
the PrimeSense technology were available to some researchers up to a year earlier,
Kurt Konolige at Willow Garage, and Xiaofeng Ren at Intel Labs in Seattle among
them. Prior to this, Kurt Konolige had pursued a stereo system at Willow Garage
that projected a texture onto a scene, and so allowed stereo to work on untextured
objects. It worked great, and the limitation of “stereo dropouts”, the lack of depth
information on untextured surfaces, could finally be overcome. This system was in-
corporated into Willow Garage’s PR2 robot platform, and was a primary enabler
for many robot tasks. Along with colleagues Gary Bradski in vision, Sachin Chitta
in manipulation, and many others both at Willow Garage and elsewhere, he im-
plemented applications such as obstacle avoidance for robot arms, segmentation of
planes, simple object recognition and pickup, discovery and modeling of articulated
objects, and automatic plug-in to standard sockets, to name a few. With the advent
of PrimeSense devices, however, he realized that the Willow Garage development
of textured projection stereo could not compete in price, robustness, or convenience,
and quickly abandoned it in favor of the former.

The Intel Seattle lab actively pursued the use of prototype PrimeSense devices as
a major research thrust between 2010–2011, in collaboration with the University of
Washington. The Intel-UW team promoted the name RGB-D, to emphasize the syn-
ergy of jointly using depth and color, and completed a number of successful projects
on 3D mapping and modeling, object and gesture recognition, as well as interactive
toy playing using projected display. Much of the RGB-D research transitioned to
the newly founded Intel Science and Technology Center for Pervasive Computing.

ix
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Due to its low cost, once the sensor became publicly available, many research
groups around the world began to exploit it. In the early 2011, the team at ETH
Zürich started exploring several potential applications for RGB-D cameras, includ-
ing action recognition, head pose estimation, physics-based tracking and human-
computer interfaces. In fact it turned out that many very challenging vision tasks
had great benefits from the addition of real-time reliable depth data.

Since that time, the field has progressed rapidly, to the point where it made sense
to have a workshop in the autumn of 2011, to exchange ideas on the now widely
available Kinect device, both its functioning and applications. The response to the
call for participation was overwhelming—over 60 submissions, with 10 accepted
oral presentations, and an equal number of posters. This book contains a selection
of papers originating from the workshop, expanded and revised to full-length expo-
sitions, taking advantage of the book format to present results in more detail. It is
divided into three main categories.

Part I, 3D Registration and Reconstruction, addresses the classic vision prob-
lem of multi-view geometry: how to correlate images from different viewpoints to
simultaneously estimate camera poses and world points. The addition of depth in-
formation, as well as the constraint of real-time performance on a video stream,
offer opportunities as well as difficulties that are addressed in these contributions.

Part 2, Human Body Analysis, offers a set of studies on human pose estimation,
perhaps the most-researched area using video-rate depth images. The studies range
from pose estimation for gaming and motion capture, through 3D human body scans
for individuals, to recognition of hand pose and its application to sign language
parsing.

Part 3, RGB-D Datasets, gives an overview of approaches to various recognition
problems: category and instance learning of objects, human activity recognition. In
computer vision, much progress has been made in these areas by having commonly
available databases to test against; here we see the first steps towards the same ap-
proach using depth information as well.

As Jamie Shotton so aptly explained in the Forward, the Kinect, based on
structured-light technology developed by PrimeSense, Ltd., has extraordinary depth
quality, especially considering its cost. In the 1990s, Kurt Konolige witnessed and
participated in amazing advances in mapping and navigation for robotics that were
made possible by accurate depth information in a single plane from scanning laser
rangefinders; we can only expect that PrimeSense-class devices, with precise depth
over a full-field view, at video rates, will similarly help to advance applications in a
much larger variety of fields.

We would like to thank all our collaborators at our respective institutions—at
the Computer Vision Laboratory of the Swiss Federal Institute of Technology in
Zürich, at the Computer Science and Engineering Department of the University of
Washington, and at Willow Garage, Inc. in Menlo Park. Further thanks go to the
heads of our groups for providing financial support and setting up constructive and
fruitful working environments. To the workshop participants and presenters, as well
as Gary Bradski and Jamie Shotton, the invited speakers, we extend our gratitude for
their efforts at making it a great experience. Finally we would like to acknowledge
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all the contributors of this book, especially Pushmeet Kohli and Jamie Shotton for
preparing a very interesting invited chapter.

Andrea Fossati
Juergen Gall

Helmut Grabner
Xiaofeng Ren
Kurt Konolige

Zürich, Switzerland

Seattle, USA
Menlo Park, USA
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Part I
3D Registration and Reconstruction

Depth cameras are, first and foremost, 3D measuring devices. A lot of early research
efforts using consumer depth cameras have been devoted to 3D registration and re-
construction: (1) to quantify the 3D measuring capabilities of Kinect and Prime-
Sense cameras; and (2) to register continuous streams of RGB-D (color+depth)
frames in real-time and to model objects and environments in 3D.

The chapter on 3D with Kinect from Smisek et al. presents an in-depth study
of Kinect cameras as 3D measuring devices. They develop a geometric for Kinect
as a multi-view system with IR, RGB and depth channels. They analyze optical
centers, distortions, and effective resolutions of the Kinect sensor. Accordingly, they
propose a calibration technique for Kinect that outperforms methods in open source
software. Depth data from Kinect are compared to a stereo system (using high-
quality SLR cameras) and a time-of-flight system (SwissRanger SR-4000), where
Kinect performs similar to SLR stereo on a calibration pattern and much better than
the SwissRanger. Depth data from Kinect are combined with RGB-based Structure-
from-Motion to greatly improve the quality of 3D surface reconstruction.

Once we have a solid understanding of the data captured in a single Kinect frame,
the next step is to compute 3D registrations of multiple frames so that they can be
aligned in a global coordinate system. The RGB-D mapping work of Henry et al.
(RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor En-
vironments, IJRR, 2012) shows that established algorithms for 3D registration, in-
cluding both the Iterative Closest Point (ICP) and the Bundle Adjustment (BA) algo-
rithms, can adapt to and play an important role in the alignment of RGB-D data. One
interesting aspect of Kinect data is the frame rate (30 Hz): as shown in the Kinect-
Fusion work of Newcombe et al. (KinectFusion: Real-Time Dense Surface Mapping
and Tracking, ISMAR, 2011), 3D registration can run in real-time, utilizing all the
data coming in, when using modern hardware such as GPUs.

The two following chapters both address real-time 3D registration on GPUs: the
use of random ball cover (RBC) for correspondence in ICP matching, and the use of
semi-sparse features. The work of Bauer et al. adapts the RBC data structure, typi-
cally used for high dimensional data, to the Kinect case. This allows a direct nearest-
neighbor search in 6-dimensional RGB-D data, avoiding the approximations needed
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in projective data association schemes. The RBC algorithm is extensively evaluated,
qualitatively and quantitatively, on scene and object reconstruction scenarios. An ef-
ficient implementation of RBC on the GPU leads to frame-to-frame registrations of
less than 20 ms. On the other hand, the work of Israël and Plyer develops a regis-
tration approach using semi-sparse features: instead of using point clouds or sparse
features (e.g. SIFT), they pursue a middle path where depth edges are extracted and
registered in 3D. Their approach reduces the number of points to be registered by or-
ders of magnitude, enabling a brute-force approach where incoming Kinect frames
can be matched in real-time on a GPU to a large number of stored exemplars.

3D reconstruction is an area where consumer depth cameras are making a break-
through. With a consumer price tag and a compact form factor, Kinect-style cameras
make 3D modeling feasible for large environments and accessible to a large commu-
nity of enthusiasts. It is conceivable that compact, portable systems can be built soon
to robustly and interactively scan everyday environments into accurate 3D models.



Chapter 1
3D with Kinect

Jan Smisek, Michal Jancosek, and Tomas Pajdla

Abstract We analyze Kinect as a 3D measuring device, experimentally investigate
depth measurement resolution and error properties, and make a quantitative com-
parison of Kinect accuracy with stereo reconstruction from SLR cameras and a 3D-
TOF camera. We propose a Kinect geometrical model and its calibration procedure
providing an accurate calibration of Kinect 3D measurement and Kinect cameras.
We compare our Kinect calibration procedure with its alternatives available on In-
ternet, and integrate it into an SfM pipeline where 3D measurements from a moving
Kinect are transformed into a common coordinate system, by computing relative
poses from matches in its color camera.

1.1 Introduction

Kinect [4, 14, 22] has become an important 3D sensor. It has received a lot of at-
tention thanks to the rapid human pose recognition system developed on top of 3D
measurement [17]. Its low cost, reliability and speed of the measurement promise
to make Kinect the primary 3D measuring device in indoor robotics [25], 3D scene
reconstruction [7], and object recognition [12].

In this chapter we provide a geometrical analysis of Kinect, design its geomet-
rical model, propose a calibration procedure and demonstrate its performance. We
extend here our preliminary results presented in [18].

Approaches to modeling Kinect geometry, which have appeared recently, provide
a good basis for understanding the sensor. There exists the following most relevant
work: The authors of [2] combined OpenCV camera calibration [24] with Kinect
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Fig. 1.1 Kinect consists of infrared (IR) projector, IR camera and RGB camera (illustration
from [11])

inverse disparity measurement model [3] to obtain the basic Kinect calibration pro-
cedure. The project did not study particular features of Kinect sensors and did not
correct for them. An almost identical procedure [11] is implemented in ROS, where
an apparent shift between the infrared and depth images is corrected. Another vari-
ation of that approach appeared in [8], where OpenCV calibration is replaced by
Bouguet’s [1] calibration toolbox. We build on top of previous work and design an
accurate calibration procedure based on considering geometrical models as well as
on “learning” of an additional correction procedure accounting for remaining non-
modeled errors. We use the full camera models and their calibration procedures as
implemented in [1], the relationship between Kinect inverse disparity and depth as
in [3], correct for depth and infrared image displacement as in [11], and add addi-
tional corrections trained on examples of calibration boards. We demonstrate that
a calibrated Kinect can be combined with Structure from Motion to get 3D data
in a consistent coordinate system allowing to construct the surface of the observed
scene by Multiview Stereo. Our comparison shows that Kinect is superior in accu-
racy to SwissRanger SR-4000 3D-TOF camera and close to a medium resolution
SLR Stereo rig. Our results are in accordance with [10] that mentions compatible
observations about the Kinect depth quantization.

1.2 Kinect as a 3D Measuring Device

Kinect is a composite device consisting of a near-infrared laser pattern projector, an
IR camera and a color (RGB) camera, Fig. 1.1. The IR camera and projector are
used as a stereo pair to triangulate points in 3D space. The RGB camera can be then
used to texture the 3D points or to recognize the image content. As a measuring
device Kinect delivers three outputs: IR image, RGB image, and an (inverse) depth
image.
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Fig. 1.2 A rig with a Kinect and two Nikon D60 SLR cameras

Fig. 1.3 Example of Kinect output images

1.2.1 IR Image

The IR camera, Fig. 1.3(b), (1280 × 1024 pixels for 57 × 45 degrees FOV, 6.1 mm
focal length, 5.2 µm pixel size) is used to observe and decode the IR projection pat-
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tern to triangulate the 3D scene. If suitably illuminated by a halogen lamp [19, 23]
and with the IR projector blocked, Fig. 1.7(c, d), it can be reliably calibrated by [1]
using the same checkerboard pattern used for the RGB camera calibration. The cam-
era exhibits non-negligible radial and tangential distortions, see Sect. 1.4.

1.2.2 RGB Image

The RGB camera, Fig. 1.3(a), (1280×1024 pixels for 63×50 degrees FOV, 2.9 mm
focal length, 2.8 µm pixel size) delivers medium quality images. It can be calibrated
by [1] and used to track relative poses between subsequent images by using an SfM
system, e.g. [6, 20].

1.2.3 Depth Image

The main raw output of Kinect is an 11-bit image, Fig. 1.3(c), which corresponds to
the depth in the scene. Rather than providing the actual depth z, Kinect returns “in-
verse depth” 1/z, as shown in Fig. 1.4(a). Taking into account the depth resolution
achievable with a Kinect (Sect. 1.2.4), we adopted the model suggested in [11]. The
depth image is constructed by triangulation from the IR image and the projector and
hence it is “carried” by the IR image, as shown in Eq. 1.5.

The depth image has a vertical stripe of pixels on the right (8 pixels wide) where
no depth is calculated, see Fig. 1.3(c). This is probably due the windowing effect of
block correlation used in calculating the disparity [11]. We have estimated the size
of the correlation window (see Sect. 1.3.1) to be 9 × 7 pixels.

1.2.4 Depth Resolution

Figure 1.4(b, c) shows the resolution of the measured depth as a function of the true
depth. The depth resolution was measured by moving Kinect away (0.5 m–15 m)
from a planar target in sufficiently fine steps to record all the values returned in a
view field of approximately 5° around the image center.

The size of the quantization step q [mm], which is the distance between two
consecutive recorded values, was found to be the following function of the depth
z [m]:

q(z) = 2.73 z2 + 0.74 z − 0.58. (1.1)

This is in accordance with the expected quadratic depth resolution for triangula-
tion-based devices. The values of q at the beginning, resp. at the end, of the opera-
tional range were q(0.50 m) = 0.65 mm, resp. q(15.7 m) = 685 mm. These findings
are in accordance with [10].
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Fig. 1.4 The estimated size
of the Kinect quantization
step q as a function of target
distance for 0–5 m
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Fig. 1.5 Geometrical model of Kinect

1.3 Kinect Geometrical Model

We model Kinect as a multi-view system consisting of RGB, IR and Depth cameras.
A Geometrical model of RGB and IR cameras, which project a 3D point X into an
image point [u,v]�, is given by [1]:

⎡
⎣

u

v

1

⎤
⎦ = K

⎡
⎣

s

t

1

⎤
⎦ (1.2)

⎡
⎣

s

t

1

⎤
⎦ = (

1 + k1r
2 + k2r

4 + k5r
6)
⎡
⎣

p

q

0

⎤
⎦

︸ ︷︷ ︸
radial distortion

+
⎡
⎣

2 k3 p q + k4 (r2 + 2p2)

2 k4 p q + k3 (r2 + 2q2)

1

⎤
⎦

︸ ︷︷ ︸
tangential distortion

(1.3)

r2 = p2 + q2,

⎡
⎣

p z

q z

z

⎤
⎦= R (X− C) (1.4)

with distortion parameters k = [k1, k2, . . . , k5], camera calibration matrix K, rota-
tion R and camera center C [5].

The Depth camera of Kinect is associated to the geometry of the IR camera. It
returns the inverse depth d along the z-axis, as visible in Fig. 1.5, for every pixel
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Table 1.1 IR to
Depth-camera pixel position
shift

Circle 1 2 3 4 5 6 7 Mean

u0 4.1 4.3 4.0 4.0 3.9 4.2 4.1 4.1

v0 3.0 2.9 3.5 3.1 3.0 3.3 2.8 3.1

[u,v]� of the IR cameras as

⎡
⎣

x

y

d

⎤
⎦=

⎡
⎣

u − u0
v − v0

1
c1

1
z

− c0
c1

⎤
⎦ , (1.5)

where u, v are given by Eq. 1.3, true depth z by Eq. 1.4, [u0, v0]� by Table 1.1,
X stands for 3D coordinates of a 3D point, and c1, c0 are parameters of the model.
We associate the Kinect coordinate system with the IR camera and hence get RIR =
I and CIR = 0. A 3D point XIR is constructed from the measurement [x, y, d] in the
depth image by

XIR = 1

c1d + c0
dis−1

⎛
⎝K−1

IR

⎡
⎣

x + u0
y + v0

1

⎤
⎦ ,kIR

⎞
⎠ (1.6)

and projected to the RGB images as

uRGB = KRGB dis
(
RRGB(XIR − CRGB),kRGB

)
(1.7)

where dis is the distortion function given by Eq. 1.3, kIR, kRGB are the respective
distortion parameters of the IR and RGB cameras, KIR is the IR camera calibration
matrix and KRGB,RRGB,CRGB are the calibration matrix, the rotation matrix and the
center of the RGB camera, respectively.

1.3.1 Shift Between IR Image and Depth Image

IR and Depth images were found to be shifted. To determine the shift [u0, v0]�,
circular targets spanning the field of view were captured from different distances
in the IR and Depth images, Fig. 1.8(a). Edges of the targets were computed in the
IR and Depth images using the Sobel edge detector. In order to mitigate the effect
of the unstable Depth image edges, reconstruction circles were fit to the measured
data, Fig. 1.8(b). The pixel distances between centers of the fitted circles are shown
in Table 1.1. The shift was estimated as the mean value of the distances over all the
experiments. We conclude that there is a shift of about 4 pixels in the u direction
and of 3 pixels in the v direction.
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Fig. 1.6 Estimated distortions of the Kinect cameras. The red numbers denote the sizes and the
arrows denote the directions of pixel displacements induced by the lens distortion. The cross indi-
cates the image center, the circle marks the location of the principal point

1.3.2 Identification of the IR Projector Geometrical Center

We have first acquired seven IR and Depth images of a plane positioned at differ-
ent distances. The projected pattern contains nine brighter and easily identifiable
speckle dots, Fig. 1.9(a). These points were formed by r = 1, . . . ,9 rays lr transmit-
ted from the IR projector. Each point was reconstructed in the 3D space and grouped
by its ray of origin XIRi,r

. The IR projector center CP is located in the common inter-
section of the nine rays. We formulated a nonlinear optimization problem to find the
projector center CP by minimizing the perpendicular distances of the reconstructed
points XIRi,r

from a bundle of rays passing through CP. Figure 1.9(b) shows the re-
sulting ray bundle next to the IR cameras frame. Figure 1.9(c) shows the residual
distances from the points XIRi,r

to their corresponding rays of the optimal ray bun-
dle. All residual distances are smaller than 2 mm. The estimated projector center
has coordinates CP = [74.6,1.1,1.3]� [mm] in the IR camera reference frame.
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Fig. 1.7 The calibration board in the IR, RGB and Depth images

Fig. 1.8 Illustration of the IR to Depth image shift
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Fig. 1.9 Identification of the
geometrical model
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Fig. 1.10 Kinect IR camera
(blue) and projector (green)
view fields and ray
distribution in the x–y plane
estimated in Sect. 1.3.3. For
clarity, we plot only every
64th camera ray, i.e. there are
11 rays for the IR camera,
and every 150th projector ray,
i.e. there are 32 projector
rays. Red dots illustrate the
sampling of the space by
points that can be
reconstructed. The bold blue
line marks the center ray of
the IR camera where the
distance resolution shown in
Fig. 1.11 was estimated. Note
that the closest point, which
is actually measured by the
real device, is at a depth of
about 40 cm

1.3.3 Identification of Effective Depth Resolutions of the IR
Camera and Projector Stereo Pair

In this section the view fields of the Kinect IR camera and of the Kinect projector
and their effective resolution, which determines the distribution of the resolution in
3D measurement, will be investigated.

The size of the IR image and of the depth image is known to be 640 × 480
pixels with 10.4 µm pixel size, spanning approx. 60◦ × 45◦ view angle. This gives
an angular resolution of 0.0938◦/pixel in the IR camera.

Counting the speckle dots on the projected pattern yields about 800 dots along
the central horizontal line across the projector field of view. Projector FOV and
IR camera FOV are approximately the same. Hence we get 800 dots per 60° and an
angular resolution of 0.0750◦/ray for the projector rays. The green curve in Fig. 1.11
shows the simulated depth quantization along the central IR camera ray (the blue
line in Fig. 1.10) for the camera and projector resolution described above. It clearly
does not correspond to the red curve measured on a real Kinect.

To get our simulation closer to reality, we assume that ray detection is done with
higher accuracy by interpolating rays from the projected patterns. The blue curve
in Fig. 1.11 corresponds to detecting rays with 1/8 pixel accuracy, as was hypothe-
sized in [11]. Hence we get the effective resolution of 5120 = 640 × 8 rays per 60°,
i.e. 0.00938◦/ray, in the projector. This corresponds to our measurement on a real
Kinect.
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Fig. 1.11 Comparison of
stereo reconstruction
uncertainty measured with
Kinect and simulated using
identified parameters of the
stereo system

Figure 1.10 illustrates view fields and ray arrangements for Kinect IR camera
(blue) and projector (green). The bold blue line marks the center of the IR camera
view where the distance resolution was evaluated. For clarity, we show only every
64th camera ray and every 150th projector ray and their intersections as red dots.

1.4 Kinect Calibration

We calibrate, as proposed in [1], Kinect cameras together by showing the same
calibration target to the IR and RGB cameras, Fig. 1.7(c). This allows to calibrate
both cameras w.r.t. the same 3D points and hence the poses of the cameras w.r.t.
the points can be chained to give their relative pose, Fig. 1.12. Taking the Cartesian
coordinate system of the IR camera as the global Kinect coordinate system makes
the camera relative pose equal to RRGB,CRGB.

Tables 1.2 and 1.3 show the internal parameters and Fig. 1.6 shows the effect
of distortions in the cameras. We included the tangential distortion since it non-
negligibly increased the overall accuracy of 3D measurements. Figure 1.7(a) shows
the IR image of the calibration board under the normal Kinect operation when it
is illuminated by its IR projector. A better image is obtained by blocking the IR
projector and illuminating the target by a halogen lamp Fig. 1.7(b).

Parameters c0, c1 of the Depth camera are calibrated as follows: We get n mea-
surements XDi

= [xi, yi, di]�, i = 1, . . . , n, of all the calibration points from the
depth images, Fig. 1.7(d). The Cartesian coordinates XIRi

of the same calibration
points were measured in the IR Cartesian system by intersecting the rays projecting
the points into IR images with the best plane fits to the reconstructed calibration
points. Parameters c0, c1 were optimized to best fit XDi

to XIRi
using Eq. 1.6.
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Fig. 1.12 Position and orientation of Kinect IR and RGB cameras and the SLR stereo pair (Left,
Right) altogether with 3D calibration points reconstructed on planar calibration targets

Table 1.2 Intrinsic parameters of the Kinect IR camera

Focal length Principal point Distortion coefficients

f [px] f [mm] x0 [px] y0 [px] kc1 kc2 kc3 kc4

585.6 6.1 316 247.6 −0.1296 0.45 −0.0005 −0.002

Table 1.3 Intrinsic parameters of the Kinect RGB camera

Focal length Principal point Distortion coefficients

f [px] f [mm] x0 [px] y0 [px] kc1 kc2 kc3 kc4

524 2.9 316.7 238.5 0.2402 −0.6861 −0.0015 0.0003

1.4.1 Learning Complex Residual Errors

It has been observed that a Kinect calibrated with the above procedure still exhibited
small but relatively complex residual errors for the close range measurements. Fig-
ure 1.13 shows residuals after fitting the plane to the calibrated Kinect measurement
of a plane spanning the field of view. The target has been captured from 18 dif-
ferent distances ranging from 0.7 to 1.3 meters. Highly correlated residuals were
accounted.



16 J. Smisek et al.

Fig. 1.13 Residuals of the plane fitting showing the fixed-pattern noise on depth images from
different distances

Table 1.4 Evaluation of the
z-correction. The standard
deviation of the residuals of
the plane fit to the
measurement of a planar
target has been reduced

Data-set Standard deviation [mm]

Original σ Corrected σ

Even images 2.18 1.54

Odd images 1.98 1.34

Residuals along the 250th horizontal Depth image row are shown in Fig. 1.14(a).
Note that the residual values do not depend on the actual distance to the target
plane (in this limited range). The values are consistently positive in the center
and negative at the periphery. To compensate for this residual error, we form a z-
correction image of z values constructed as the pixel-wise mean of all residual im-
ages. The z-correction image is subtracted from the z coordinate of XIR computed
by Eq. 1.6.

To evaluate this correction method, the z-correction image was constructed from
residuals of even images and then applied to odd (the first row of Table 1.4) and to
even (the second row of Table 1.4) depth images. The standard deviation of residuals
decreased.

After applying the z-correction to Kinect measurements from the experiment
described in Sect. 1.5.2, the mean of the residual errors decreased by approximately
0.25 mm, Fig. 1.14(b). The residuals were evaluated on 4410 points spanning the
field of view.

1.5 Validation

In this section, different publicly available Kinect depth models are tested and com-
pared to our method on a 3D calibration object. Furthermore, we provide a com-
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Fig. 1.14 Correcting complex residual errors
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Fig. 1.15 Kinect accuracy
evaluation on a 3D reference
object with five flat targets
mounted on a rigid bench

parison of the accuracy of Kinect measurements against stereo triangulation and 3D
measurements based on Time-of-Flight. Finally,we demonstrate the functionality of
our Kinect calibration procedure by integrating it into an SfM pipeline.
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Table 1.5 Accuracy evaluation of different reconstruction methods on a reference 3D object.
Kinect 1 is the device for which we made complete calibration as described in this chapter. Kinect 2
was evaluated with the calibration from Kinect 1

Device Method Distance difference d [mm] μ(d) σ(d)

Kinect 1 Our 1.17 3.52 −1.98 −2.56 1.73 −7.09 −1.31 5.21 −0.16 3.89

ROS 2.69 5.69 1.22 1.91 4.21 −3.33 3.44 11.33 3.39 4.17

Burrus 10.64 15.29 12.03 13.41 9.84 3.28 10.49 18.28 11.66 4.41

Tangent 3.15 6.19 1.95 3.35 5.30 −1.45 6.02 15.00 4.94 4.78

OpenNI −3.08 9.37 −0.69 −12.12 2.55 −5.85 0.59 11.99 0.34 7.82

Kinect SDK N.A.a N.A. −2.62 −6.98 7.10 −12.22 5.98 1.99 −1.12 7.58

Kinect 2 Our 2.09 9.90 −6.49 −11.82 2.81 2.58 0.47 −7.31 −0.97 7.02

ROS 3.16 11.32 −4.32 −8.82 4.38 4.73 3.37 −3.38 1.30 6.38

Burrus 10.97 20.56 6.33 2.38 9.68 11.04 9.85 2.86 9.21 5.75

Tangent 3.47 11.77 −3.58 −7.10 5.58 6.55 6.19 0.96 2.98 6.05

OpenNI −1.14 12.22 −9.12 −11.45 5.24 6.09 −7.40 2.68 −0.36 8.37

Kinect SDK N.A. N.A. −2.36 −7.83 7.00 −0.47 −2.97 12.22 0.93 7.34

aKinect SDK currently limits the measurement range to 0.8–4 m

1.5.1 Kinect Depth Models Evaluation on a 3D Calibration Object

We evaluate the accuracy of the calibration by measuring a reference 3D object. The
3D object consisted of five flat targets that were rigidly mounted together along a
straight line on a rigid bench, Fig. 1.15(a). As ground truth, the distances between
centers of the targets were carefully measured by a measure tape with accuracy
better than 1 mm.

The object was then captured using Kinect from two different distances to get
measurements in the range between 0.7 m to 2 m, Fig. 1.15(b). After extracting the
central points of the targets in the IR image, Fig. 1.15(a), several different recon-
struction methods were used to get their 3-dimensional positions, Fig. 1.15(b).

Our Kinect calibration model, which was described in Sect. 1.4, was compared to
the ROS calibration [11], Burrus calibration [2], Magnenat calibration [21], OpenNi
calibration [16] and Microsoft Kinect SDK calibration [15].

Distances between the reconstructed target points were compared to the ground
truth measurements in Table 1.5 and in Fig. 1.16. The experiment was performed
on two Kinect devices. Kinect 1 is the device for which the complete calibration,
as described in this chapter, was made. Kinect 2 was evaluated with the calibration
from Kinect 1, to determine whether it is possible to transfer calibration parameters
of one device to another. We see that our method is the best for Kinect 1 and among
the best three for Kinect 2.
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Fig. 1.16 Accuracy evaluation of different reconstruction methods on a 3D calibration object

1.5.2 Comparison of Kinect, SLR Stereo and 3D TOF

We have compared the accuracy of Kinect, SLR Stereo and 3D TOF cameras on the
measurements of planar targets: Kinect and SLR Stereo (image size 2304 × 1536



1 3D with Kinect 21

Table 1.6 Comparison of
SLR Stereo triangulation,
Kinect and SR-4000 3D TOF
depth sensing

Method Geometrical error e [mm]

μ(e) σ (e) max(e)

SLR Stereo 1.57 1.15 7.38

Kinect 2.39 1.67 8.64

SR-4000 27.62 18.20 133.85

Fig. 1.17 Example of images from Kinect RGB cameras and the corresponding depth that were
used for scene reconstruction

pixels) were rigidly mounted (Fig. 1.2) and calibrated (Fig. 1.12) together. SLR
Stereo was performed by reconstructing calibration points extracted by [1] and tri-
angulated by the linear least squares triangulation [5]. They measured the same
planar targets in 315 control calibration points on each of the 14 targets. SR-4000
3D TOF [13] measured different planar targets but in a comparable range of dis-
tances 0.9–1.4 meters from the sensor in 88 control calibration points on each of the
11 calibration targets. The error e, Table 1.6, corresponds to the Euclidean distance
between the points returned by the sensors and points reconstructed in the process
of calibration of the cameras of the sensors. SLR Stereo is the most accurate, Kinect
follows and SR-4000 is the least accurate.

1.5.3 Combining Kinect and Structure from Motion

Figure 1.17 shows a pair of 1/2-resolution (640 × 480) Kinect RGB and depth
images (where the original depth image was reprojected using Eq. 1.7 to corre-
spond with the RGB image pixels). A sequence of 50 RGB-Depth image pairs has
been acquired and the relative poses of the RGB cameras have been computed by a
SfM pipeline [6, 20]. Figure 1.18(a) shows a surface reconstructed from 3D points
obtained by mere Multiview stereo [9] using only Kinect RGB images. Utilizing
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Fig. 1.18 Scene reconstruction from Kinect RGB camera. The figure shows a comparison of re-
construction quality when the scene is reconstructed only using Multiview stereo and the case when
the 3D data from Kinect are also available

retrieved relative poses, depth data were registered together and used in the same
method to provide improved reconstruction, Fig. 1.18(b).

Figure 1.19 compares a 3D surface reconstruction from point cloud computed
by plane sweeping [9] with 70 Kinect 3D data processed by surface reconstruction
of [9] (2304 × 1536 pixels). Kinect 3D data were registered into a common coordi-
nate system via SfM [6, 20] applied to Kinect image data. We see that when multiple
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Fig. 1.19 Comparison of Kinect with Multiview reconstruction [9]
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measurements are used, the Kinect result is quite comparable to more accurate Mul-
tiview stereo reconstruction.

1.6 Conclusion

We have provided an analysis of Kinect 3D measurement capabilities and its calibra-
tion procedure allowing to combine Kinect with SfM and Multiview Stereo, which
opens a new area of applications for Kinect. It was interesting to observe that in
the quality of the multi-view reconstruction, Kinect over-performed SwissRanger
SR-4000 and was close to 3.5 M pixel SLR Stereo.
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Chapter 2
Real-Time RGB-D Mapping and 3-D Modeling
on the GPU Using the Random Ball Cover

Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann,
and Joachim Hornegger

Abstract In this chapter, we present a system for real-time point cloud mapping
and scene reconstruction based on an efficient implementation of the iterative clos-
est point (ICP) algorithm on the graphics processing unit (GPU). Compared to state-
of-the-art approaches that achieve real-time performance using projective data asso-
ciation schemes which operate on the 3-D scene geometry solely, our method allows
to incorporate additional complementary information to guide the registration pro-
cess. In this work, the ICP’s nearest neighbor search evaluates both geometric and
photometric information in a direct manner, achieving robust mappings in real-time.
In order to overcome the performance bottleneck in nearest neighbor search space
traversal, we exploit the inherent computation parallelism of GPUs. In particular, we
have adapted the random ball cover (RBC) data structure and search algorithm, orig-
inally proposed for high-dimensional problems, to low-dimensional RGB-D data.
The system is validated on scene and object reconstruction scenarios. Our imple-
mentation achieves frame-to-frame registration runtimes of less than 20 ms on an
off-the-shelf consumer GPU.
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2.1 Introduction

In the past, the acquisition of dense 3-D range data was both tedious, time consum-
ing and expensive. Lately, advances in RGB-D sensor design have rendered metric
3-D surface acquisition at convenient resolutions (up to 300k points) and frame-
rates (up to 40 Hz) possible, holding potential for a variety of applications where
real-time demands form a key aspect. The advent of Microsoft’s Kinect [14], with
more than 10 million sales within a few months, has caused a furor in the field of
consumer electronics. In fact, the device has attracted the attention of various re-
search communities.

This chapter addresses the field of 3-D scene and model reconstruction that pro-
vides the basis for many practical applications. Among others, 3-D modeling is
a key component for the acquisition of virtual 3-D models from real objects, the
digitalization of archaeological buildings or sculptures for restoration planning or
archival storage [11], and the construction of environment maps in robot or vehi-
cle navigation [19, 28]. In particular, in the field of robotics, there is an increasing
interest in both 3-D environment reconstruction and simultaneous localization and
mapping (SLAM) solutions [2, 6, 32].

We present a framework that is capable of mapping RGB-D point cloud data
streams on-the-fly, enabling real-time 3-D scene modeling. We have implemented
a hybrid 6-D ICP variant that performs the alignment by considering both photo-
metric appearance and geometric shape [24]. Photometric (color) data may be an
essential source of information to guide the registration process in cases when geo-
metric surface information is not discriminative enough to achieve a correct align-
ment, see Fig. 2.1 for an example. Without loss of generality, we have designed the
framework in a manner that allows to incorporate further complementary informa-
tion into an n-dimensional point signature. In order to enable on-the-fly processing,
the corpus of the framework is implemented on the GPU. For the nearest neighbor
search, being the performance bottleneck in the majority of previous ICP imple-
mentations, we use a data structure that is specifically designed to benefit from the
parallel architecture of modern GPUs. In this work, we investigated the fitness of
the random ball cover (RBC) data structure and search algorithm [7, 8] for low-
dimensional 6-D data. Trading accuracy against runtime, we propose a modified
approximate RBC variant that is optimized in terms of performance. Please note
that this chapter is a substantial extension of previous work by the authors [30]. In
particular, we further enhanced the GPU implementation and achieved significant
speedups.

The remainder of this chapter is organized as follows. In Sect. 2.2, we review
relevant literature. We present our method for RGB-D mapping and 3-D modeling
in Sect. 2.3. Implementation details are given in Sect. 2.4. In Sect. 2.5, we evaluate
the proposed framework and discuss experimental results. Eventually, we draw a
conclusion in Sect. 2.6.
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Fig. 2.1 Illustration of the benefit of incorporating photometric information into the point cloud
alignment process in situations of non-salient surface geometry. The top row (a, b) depicts the
first and last frame of an RGB-D sequence capturing a colored poster stuck to a plane wall from
changing perspectives. Using scene geometry as the only source of information for the registra-
tion algorithm results in an erroneous alignment (c). Instead, by considering both geometric and
photometric information, the correct alignment is found using the proposed framework (d)

2.2 Related Work

The iterative closest point (ICP) algorithm is state-of-the-art for the rigid alignment
of 3-D point clouds [4, 9, 36], and the vast majority of related work builds upon
this established scheme. However, in the field of 3-D environment and model re-
construction, only few existing approaches have achieved interactive frame-rates
so far [12, 13, 19, 22]. Huhle et al. proposed a system for on-the-fly 3-D scene
modeling using a low resolution Time-of-Flight camera (160 × 120 px), typically
achieving per-frame runtimes of >2 s [22]. Engelhard et al. presented similar run-
times on Microsoft Kinect data (640 × 480 px) for an ICP-based RGB-D SLAM
framework [12]. The RGB-D mapping framework of Henry et al. performs ICP reg-
istration in an average of 500 ms [19].

Only recently, real-time frame-rates were reported for geometric ICP vari-
ants [13, 23, 31]. In particular, the KinectFusion framework [23, 31] has gained
popularity in the field of 3-D reconstruction. The fundamental core of this frame-
work is based on the work of Rusinkiewicz et al. [35], combining projective data
association [5] and a point-to-plane metric [9] for rigid ICP surface registration
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and sensor pose estimation, respectively. While the original work was limited to a
frame-to-frame alignment [35], KinectFusion tracks the depth frame against a glob-
ally fused implicit surface model of the observed scene [10]. This limits the drift
behavior and results in an increased robustness and reconstruction accuracy, respec-
tively. Real-time capability is achieved using a parallelized implementation on the
GPU.

Compared to related methods based on projective data association [5] that pri-
marily consider the surface geometry for finding corresponding points, our approach
allows to incorporate multiple complementary sources of information (in our case
geometry and photometry) into the nearest neighbor search. Furthermore, explicitly
performing a nearest neighbor search according to a point signature potentially al-
lows one to extend the framework to handle large misalignments by a feature-based
initial pre-alignment [3].

More than a decade ago, Johnson and Kang presented the first approach to in-
corporate photometric information into the ICP framework (Color-ICP) in order to
improve its robustness [24]. The basic idea is that photometric information can com-
pensate for regions with non-salient topologies, whereas geometric information can
guide the pose estimation for faintly textured regions. In experiments, Johnson and
Kang observed that the additional use of color information decreased the registration
error by one order of magnitude. Recently, modifications have been proposed that
try to accelerate the color ICP’s nearest neighbor search by pruning the search space
w.r.t. photometrically dissimilar points [11, 25]. However, this reduction typically
comes with a loss in robustness.

Since modern RGB-D devices produce and propagate an immense data stream,
efficient implementations are inevitable in order to fulfill real-time constraints. For
the ICP algorithm in general, a comprehensive survey of efficient implementation
variants was given by Rusinkiewicz and Levoy [36]. However, their survey did not
include hardware acceleration techniques.

For the nearest neighbor search, being a major bottleneck in terms of runtime,
CPU architectures have shown to benefit from space-partitioning data structures like
k-d trees [1]. In contrast to algorithmic improvements, hardware acceleration tech-
niques are increasingly attracting the attention of the community. Garcia et al. have
shown that a GPU-based brute-force implementation outperforms a CPU-based k-d
tree [15]. The reason for this lies in the fact that the brute-force primitive can be
implemented efficiently using techniques known from the well understood problem
of GPU-based matrix–matrix multiplication. Implementations of traditional nearest
neighbor search acceleration strategies on the GPU are challenging due to the non-
parallel and recursive nature of construction and/or traversal of the underlying data
structures. For instance, Qiu et al. [33] achieved excellent frame-rates for GPU-
based k-d tree queries. However, the construction of the tree is performed on the
CPU, thus limiting performance when the tree must be constructed on a per-frame
basis as in the application scenarios considered in this chapter. Recently, space-
partitioning strategies that are specifically designed for GPU architectures have been
addressed. A promising approach is the random ball cover (RBC) proposed by Cay-
ton [7, 8]. The basic principle behind the RBC is a two-tier nearest neighbor search,
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Fig. 2.2 Flowchart of the proposed 3-D scene reconstruction framework. Apart from the camera
hardware interface and the ICP control flow management, the corpus of the computational load of
both data preprocessing and photogeometric ICP alignment using RBC is outsourced to the GPU

building on the brute-force primitive, to prune the search space. In this work, we
adapted the random ball cover data structure and search algorithm, originally pro-
posed for high-dimensional problems, to low-dimensional RGB-D data for acceler-
ating the ICP alignment.

2.3 Methods

The proposed RGB-D mapping and modeling framework is composed of three
stages, as depicted in Fig. 2.2. In an initial stage, the sensor data consisting of or-
thogonal distance measurements and photometric color information are transferred
to the GPU where the corpus of the pipeline is executed. On the GPU, first, data
preprocessing and the transformation from orthogonal range measurements in the
2-D sensor domain to 3-D world coordinates are performed (Sect. 2.3.1). Second,
based on a set of extracted landmarks, the proposed color ICP variant is applied
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(Sect. 2.3.2). Our method exploits the arithmetic power of modern GPUs for effi-
cient nearest neighbor search with an inherently parallel data structure and query
framework (RBC, Sect. 2.3.3). Third and last, the instantaneous point cloud is at-
tached to the global reconstructed model based on the estimated transformation. We
point out that the rigid body transformation is estimated in a frame-to-frame man-
ner, i.e. the pose of the instantaneous frame is estimated by registration against the
previous frame. In the remainder of this section, we outline the essential steps of the
proposed ICP framework. GPU implementation details are discussed in Sect. 2.4.

2.3.1 Data Preprocessing on the GPU

The Microsoft Kinect device acquires RGB-D data with VGA resolution (640 ×
480 px) at 30 Hz. With respect to real-time constraints and regardless of the spe-
cific application, this spatial and temporal data density poses a challenge to data
processing solutions. Hence, in addition to the actual point cloud alignment, we
perform RGB-D data preprocessing on-the-fly on the GPU. First, we apply edge-
preserving denoising (e.g. guided image filtering [18, 37]) on the raw depth and
RGB data, respectively, as acquired by the Microsoft Kinect sensors. Next, the en-
hanced depth measurements are transformed to the 3-D world coordinate system.
Indeed, for each point xc ∈R

2 in the camera plane, its depth value z(xc) describes a
world coordinate position vector xw ∈ R

3. The transformation can be computed in-
dependently for each pixel, thus fitting perfectly for parallel processing on the GPU
(see Sect. 2.5.2).

Nomenclature Let us introduce the notation for this chapter. Let M̃ denote a
moving set of template points M̃ = {m}, where m ∈R

6 concatenates a point’s geo-
metric and photometric information mg ∈ R

3 and mp ∈ R
3:

m =
(

mg

mp

)
. (2.1)

The indices g and p denote that only the geometric and photometric part is con-
sidered, respectively. In order to compensate for inconsistencies due to changes in
illumination and viewpoint direction, the photometric information is transformed to
the normalized RGB space [16]:

mp = (ir + ig + ib)
−1

⎛
⎝

ir
ig
ib

⎞
⎠ , (2.2)

where ir, ig, ib denote the intensities of the red, green and blue photometric channel.
In analogy to the moving set of template points M̃, let F̃ = {f} denote a fixed set

of |F̃ | reference points f ∈R
6, where f� = (f�g , f�p ).



2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 33

Landmark Extraction Considering the application of 3-D scene or object mod-
eling using a real-time, hand-held and steadily moved RGB-D device implies that a
portion of the scene that was captured in the previous frame F̃ is no longer visible in
the instantaneous data M̃ and vice versa. Facing these issues, we heuristically dis-
card the set of points that correspond to range measurements at the edge of the 2-D
sensor domain in order to improve the robustness of ICP alignment. This clipping
is performed in conjunction with the extraction of the sparse sets of ICP landmarks,
denoted by M ⊂ M̃ and F ⊂ F̃ . In practice, the landmark extraction is performed
by sub-sampling the clipped point set.

For the case of 3-D object reconstruction, we apply a dedicated scheme for land-
mark extraction. Instead of considering the entire scene, we segment the foreground
using a depth threshold. From the set of foreground pixels, we then select a set of
landmarks.

2.3.2 Photogeometric ICP Framework

Being the state-of-the-art in rigid point cloud alignment [4, 9, 36], the ICP estimates
the optimal rigid transformation (R, t) that brings M in congruence with F , where
R ∈R

3×3 denotes a rotation matrix with R� = R−1,det(R) = 1 and t ∈R
3 denotes

a translation vector. Based on an initial guess (R0, t0), the ICP scheme iteratively
estimates this transformation by minimizing an error metric assigned to repeatedly
generated pairs of corresponding landmarks (m,y) where m ∈ M and y ∈ F . In
terms of correspondence search, our photogeometric ICP variant incorporates both
geometric and photometric information. Let us note that competing strategies, in-
cluding projective data association, typically rely on the pure geometry and cannot
incorporate additional information in a straightforward manner. We now outline the
essential steps of our photogeometric ICP variant.

In the geometric case, the distance d between an individual moving landmark mg

and the set of reference landmarks Fg = {fg} is defined as

d(mg,Fg) = min
fg∈Fg

‖fg − mg‖2
2, (2.3)

where ‖ · ‖2 denotes the Euclidean norm. In order to incorporate the additional pho-
tometric information available with modern RGB-D sensors, let us modify the dis-
tance metric d :

d(m,F) = min
f∈F

(
(1 − α)‖fg − mg‖2

2 + α‖fp − mp‖2
2

)
, (2.4)

where α ∈ [0,1] is a non-negative constant weighting the influence of the photomet-
ric information. The benefit of this hybrid approach is that photometric information
compensates for regions with non-salient surface topology, and geometric informa-
tion compensates for faintly textured regions or photometric inconsistencies due to
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changes in illumination and viewpoint direction. The landmark y ∈ F yielding the
minimum distance to m is then given by

y = arg min
f∈F

(
(1 − α)‖fg − mg‖2

2 + α‖fp − mp‖2
2

)
. (2.5)

By assigning a nearest neighbor y to all m ∈ M, a set of nearest neighbors Y is
given as Y = {y}, y ∈ F , |Y| = |M|, and the landmark correspondences can be
denoted by (M,Y). The GPU-based nearest neighbor search framework that we
use to establish these landmark correspondences is described in Sect. 2.3.3. Next,
based on the landmark correspondences (Mk,Yk) found in the kth ICP iteration,
the transformation (R̂k, t̂k) is estimated by either minimizing a point-to-point error
metric in a least-squares sense using a unit quaternion optimizer [21],

(
R̂k, t̂k

)= arg min
Rk,tk

1

|Mk
g|

∑

Mk
g,Yk

g

∥∥(Rkmk
g + tk

)− yk
g

∥∥2
2, (2.6)

or by minimizing a point-to-plane distance metric [9] using a nonlinear solver,

(
R̂k, t̂k

)= arg min
Rk,tk

1

|Mk
g|

∑

Mk
g,Yk

g

(((
Rkmk

g + tk
)− yk

g

)�nyk
g

)2
. (2.7)

Here, nyk
g

denotes the surface normal associated with the point yk
g ∈ F . After each

iteration, the global solution (R, t) is accumulated:

R = R̂kR, t = R̂kt + t̂k, (2.8)

and Mk
g is updated according to mk

g = Rmg + t. The two stages of first finding the
set of nearest neighbors Yk and then estimating the optimal transformation for the
correspondences (Mk,Yk) are repeated iteratively until a convergence criterion is
fulfilled, see Fig. 2.2 and Sect. 2.4.1.

2.3.3 6-D Nearest Neighbor Search Using RBC

The Random Ball Cover (RBC) is a novel data structure for efficient nearest neigh-
bor (NN) search on the GPU proposed by Cayton [7, 8]. By design, it exploits the
parallel architecture of modern graphics cards hardware. In particular, both the con-
struction of the RBC and dataset queries are performed using brute-force (BF) prim-
itives. Using techniques known from matrix–matrix multiplication, the BF search
can be performed in a highly efficient manner on the GPU. The RBC data structure
relies on randomly selected points r ∈F , called representatives. Each of them man-
ages a local subset of F . This indirection creates a hierarchy in the database such
that a nearest neighbor query is processed by (i) searching the nearest neighbor r
among the set of representatives and (ii) performing another search for the subset of
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Fig. 2.3 Illustration of the RBC construction (a–c) and the two-tier nearest neighbor query scheme
(d–f) for the simplified case of 2-D data. (a) Selection of a set of representatives R (labeled in dark
blue) out of the set of database entries F (light blue). (b) Nearest representative search over the
set of database entries, to establish a landmark-to-representative mapping. (c) Nearest neighbor
set of each representative (shaded in blue). (d) Query data (orange) and set of representatives
R (dark blue). (e) Identification of the closest representative r, in a first brute-force (BF) run.
(f) Identification of the nearest neighbor (green) in the subset of entries managed by r (shaded in
blue), in a second BF run

entries managed by r. This two-tier approach outperforms a global BF search due
to the fact that each of the two successive stages explore a heavily pruned search
space.

In this work, we have investigated the fitness of the RBC for acceleration of the
6-D nearest neighbor search of our photogeometric ICP. Optimizing this particular
ICP stage is motivated by the fact that it is a major performance bottleneck—see
Sect. 2.5.2 and [30].

Cayton proposed two alternative RBC search strategies [8]. The exact search is
the appropriate choice when the exact nearest neighbor is required. Otherwise, if
a small error may be tolerated, the approximate one-shot search is typically faster.
Originally, in order to set up the one-shot data structure, the representatives are
chosen at random, and each r manages its s closest database elements. Depending
on s, points typically belong to more than one representative. However, this implies
a sorting of all database entries for each representative—hindering a high degree
of parallelization for implementation on the GPU—or the need for multiple BF
runs [7]. Hence, we introduce a modified version of the one-shot approach that is
even further optimized in terms of performance. In particular, we simplified the RBC
construction, trading off accuracy against runtime, see Fig. 2.3 (a–c). First, we select
a random set of representatives R = {r} out of the set of fixed points F . Second,
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each representative r is assigned a local subset of F . This is done in an inverse
manner by simply computing the nearest representative r for each point f ∈ F . The
query scheme of our modified one-shot RBC variant is basically consistent with
the original approach and can be performed efficiently using two subsequent BF
runs [8], see Fig. 2.3 (d–f). First, the closest representative is identified among R.
Second, based on the associated subset of entries managed by r, the nearest neighbor
is located.

Please note that this modified RBC construction scheme results in an approx-
imate nearest neighbor search being error-prone from a theoretical point of view.
In practice, facing the trade-off between accuracy and runtime, we tolerate this ap-
proximation, cf. Sect. 2.5.2. Let us further remark that the scheme is not limited
to 6-D data but can be applied to data of any dimension. For application in 3-D
reconstruction, this potentially allows us to extend the point signature from 6-D to
higher dimensions, e.g. appending additional complementary information or local
feature descriptors to the raw geometric and photometric measurements acquired by
the sensor, cf. [19].

2.4 Implementation Details

In this section, we discuss implementation details and comment on practical issues.
In particular, we address the RBC implementation on the GPU.

2.4.1 Details Regarding the ICP Framework

Regarding the quality and robustness of point cloud alignment, we observed a strong
impact of outliers that occur in RGB-D data particularly due to sensor noise, quanti-
zation, occlusion, and changes in viewpoint direction. Sensor noise and quantization
issues are reduced using edge-preserving denoising filters in the preprocessing stage
of the framework, recall Fig. 2.2. We typically apply the concept of guided image
filtering [18] or median filtering that both can be parallelized in an efficient manner
on the GPU [29, 37].

The remaining set of outliers arise from a change in viewpoint direction or occlu-
sion and cannot be eliminated by denoising. To take them into account, we option-
ally reject low-grade correspondences in the transformation estimation stage. The
term low-grade is quantified by comparing the distance of a corresponding pair of
landmarks (Eq. 2.4) w.r.t. an empirically set threshold δ. The set of low-grade cor-
respondences is re-computed for each ICP iteration and discarded in the subsequent
transformation estimation step.

As initialization for the ICP alignment, we incorporate the estimated global trans-
formation (R0, t0) from the previously aligned frame, see Fig. 2.2, assuming a
smooth trajectory of the hand-guided acquisition device. In practice, this speeds
up convergence and reconstruction, respectively.
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In our implementation, the ICP transformation is estimated by minimizing the
point-to-point distance metric (Eq. 2.6). The estimation of the transformation ma-
trix according to Horn [21] is performed on the GPU. Both the computation of the
centroids of F and M and the summation of the intermediate M-matrix are imple-
mented using the established parallel reduction technique [17]. For details on Horn’s
scheme we refer to [21]. Note that low-grade correspondences may have been re-
moved from F and M at this stage. The resulting eigenvalue problem is solved
using the iterative Jacobi scheme on the GPU. This is motivated by practical ex-
perience: on the one hand, using a CPU-based implementation of Jacobi’s scheme
would result in notable host-device and device-host transfer times, depending on the
number of ICP iterations. On the other hand, solving the eigenvalue problem on the
GPU using Ferrari’s closed form solution [26] as proposed by Loop and Blinn [27]
would imply a non-negligible number of branches and root calculations that are also
performed iteratively in hardware [34].

As ICP convergence criterion we analyze the variation of the estimated transfor-
mation over the iterations. In particular, we evaluate the change in translation mag-
nitude and rotation angle w.r.t. heuristically set thresholds of 0.01 mm and 0.001◦,
respectively.

2.4.2 RBC Construction and Queries on the GPU

Originally designed for offline and high-dimensional data queries, utilizing the RBC
for real-time low-dimensional RGB-D mapping requires certain adaptations. We
found that the originally proposed RBC construction routine does not satisfy run-
time constraints imposed by the frame-rate of modern RGB-D imaging devices. We
therefore employ a different RBC construction routine as introduced in Sect. 2.3.3.
As a consequence, this implies a query approach that slightly differs from the origi-
nal proposal. Below, we describe the details and hardware related considerations of
our RBC implementation. An illustration of the workflow for RBC construction and
query, as well as data interaction, is depicted in Fig. 2.4.

RBC Construction As a first step in the RBC construction, we extract the
set of representatives R = {r} from the given fixed landmarks F . For each land-
mark f ∈ F , we then compute the nearest representative r by a brute-force search
strategy. This can be done efficiently in parallel over the landmarks using block-
decomposition techniques known from matrix–matrix multiplication on the GPU.
These landmark-to-representative (LR) mappings are subsequently used to (i) set
up the RBC meta information and (ii) to generate a compact and cache friendly
permuted database of the original landmarks F for RBC queries. An illustration
is given in Fig. 2.5. For meta information generation, let us note that the number
of managed landmarks for each representative can be derived in the LR mapping
computation directly by using synchronized counters employing atomic operations.
We found this approach more performant compared to a separate approach. Next,
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Fig. 2.4 Flowchart describing the GPU workflow and data interaction for RBC construction (left)
and queries (right). Note the high degree of parallelism for both construction and queries. For
details on the landmark-to-representative (LR) mapping see Fig. 2.5

Fig. 2.5 Data structures for RBC construction and queries. Note the differentiation between meta
information (left) and the permuted database (right) to improve cache hit ratio for queries

we compute an offset table by performing a parallel scan [17] on the number of
managed entries. This offset table ultimately defines the unique position for each
representative’s first managed entry in the permuted database. To re-arrange the
original data into a cache friendly layout for RBC queries, we perform a key-and-
value sort [20] on the LR mappings. Here, a landmark ID denotes the value and the
associated representative ID defines the key. By using such a database layout, a rep-
resentative’s managed entries are located in contiguous memory regions, improving
cache hit ratio for RBC queries. We note that our approach still requires sorting,
however, sorting breaks down to |F | elements in contrast to |F | · |R| entries as
originally described [8].
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RBC Nearest Neighbor Queries As described in Sect. 2.3.3, RBC queries rely
on a two-tier approach—each employing a brute-force search—to prune the search
space. The first tier consists of finding the nearest representative r for each query
element by a BF search. This is basically the same procedure as for deriving the
LR mappings during RBC construction and can be performed efficiently in parallel
over the query elements by using a block-decomposition scheme. The second tier
consists of finding the nearest entry managed by the representative r identified in the
first tier. Again, this is done by utilizing a BF search, however, an efficient block-
decomposition scheme is not a performant option here. In the first tier this scheme
is efficient and possible due to the prior knowledge that all query elements have to
visit exactly the same representatives. However, in the second tier, each query el-
ement must examine (i) different entries and/or (ii) a different number of entries.
Both are given by the entry’s nearest representative which in general is not consis-
tent across different query elements. Though sophisticated techniques to implement
a block-decomposition-like scheme can be used, in most cases they are counterpro-
ductive. We found that due to the computational overhead a potential performance
gain is lost. Instead, we employ a simple BF search over a representative’s contigu-
ous memory region in the permuted database which allows to increase the cache hit
ratio and results in lower runtimes.

2.5 Experiments and Results

We have evaluated the proposed framework for on-the-fly 3-D reconstruction and
modeling of real data (640 × 480 px, 30 Hz) from a hand-held Microsoft Kinect
sensor. Below, first, we present qualitative results for both indoor scene mapping
and object reconstruction scenarios, and investigate the influence of the parameter
settings (Sect. 2.5.1). Second, being a major focus of this system, we demonstrate its
real-time capability in a comprehensive performance study (Sect. 2.5.2). Third, we
compare our approximate RBC variant to an exact nearest neighbor search in terms
of accuracy (Sect. 2.5.3). For all experiments, the number of representatives was
set to |R| = √|F | according to Cayton’s rule of thumb [8], if not stated otherwise.
The ICP transformation was estimated by minimizing the point-to-point distance
metric, see Eq. 2.6. The performance study was conducted on an off-the-shelf con-
sumer desktop computer equipped with an NVIDIA GeForce GTX 460 GPU and a
2.8 GHz Intel Core 2 Quad Q9550 CPU. The GPU framework is implemented using
CUDA.

2.5.1 Qualitative Results

Qualitative results for a scene reconstruction scenario in indoor environments are
depicted in Fig. 2.6. The three point cloud sequences were acquired from a static
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Fig. 2.6 On-the-fly 3-D scene reconstruction for different types of room. First row: bedroom
(295 frames). Second row: lounge (526 frames). Third row: family room (380 frames). For each
sequence, the left column depicts a bird-eye view of the respective room layout. The remaining
columns provide a zoom-in for selected regions. All reconstructions were performed using our
default parameter settings as stated in Sect. 2.5.1. Note that for visualization of the reconstructed
scenes, we rendered a subset of the global model point cloud

observer location by rotating the hand-held sensor around the observer’s body axis.
RGB-D data were aligned on-the-fly. The different rooms were reconstructed us-
ing identical preprocessing pipeline and ICP/RBC parameter settings (default con-
figuration): Edge-preserving denoising (geometric median, geometric and photo-
metric guided image filter), |F | = |M| = 16,384 ICP landmarks, 10 % edge clip-
ping, photogeometric weight α = 0.8, no elimination of low-grade correspondences
(δ → ∞).

In order to demonstrate the effectiveness of our system for reconstruction of
scenes with non-salient 3-D geometry, we refer to Fig. 2.1. Facing a colored poster
stuck to a plane wall, the reconstruction could benefit significantly from incorporat-
ing the photometric domain as a complementary source of information.

In addition to scene reconstruction, the proposed framework can also be em-
ployed for 3-D model digitalization scenarios. Here, the hand-held acquisition de-
vice is moved around an object to acquire RGB-D data from different perspectives
while continuously merging the data into a global model using the proposed frame-
work. As stated in Sect. 2.3.1, for the case of 3-D object reconstruction, we select
the set of landmarks from a defined foreground region only. Background data points
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Fig. 2.7 3-D reconstruction of a female torso model, where the hand-held acquisition device was
moved around the model in a 360◦-fashion in order to cover the entire object. RGB-D data from
different perspectives (525 frames) were merged into a global model on-the-fly. For visualization
of the reconstructed model, we rendered a subset of the global model point cloud

Fig. 2.8 Influence of parameter settings, again for the reconstruction of the female torso model,
cf. Fig. 2.7(b). Subfigure (a) depicts the reconstruction result when edge-preserving denoising was
disabled. In subfigures (b, c), we increased the low-grade correspondence threshold to δ = 10 mm
(b) and δ → ∞ (c), leading to decreasing reconstruction quality. For instance, please note the
labeled issues regarding loop closure

that are located beyond a certain depth level are ignored within the ICP alignment
procedure. For object reconstruction, our default settings are: Edge-preserving de-
noising (geometric guided image filter), |F | = |M| = 16,384 ICP landmarks, α = 0
(invariance to illumination issues), δ = 3 mm.

Qualitative results for model reconstruction are depicted in Fig. 2.7. Note that by
setting a rather rigorous threshold for discarding low-grade correspondences (δ =
3 mm), our framework is able to achieve a sufficient degree of loop closure although
it relies on a frame-to-frame alignment.

The influence of different parameter settings is investigated in Fig. 2.8. As a base-
line, we refer to the reconstruction results in Fig. 2.7(b) using our default settings
(guided image filter denoising, δ = 3 mm). Disabling edge-preserving denoising
increases issues regarding loop closure, see Fig. 2.8(a). Relaxing the low-grade cor-
respondence threshold δ results in similar effects (Fig. 2.8(b), δ = 10 mm) and can
eventually lead to model reconstruction failures (Fig. 2.8(c), δ → ∞).
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Fig. 2.9 Comparison of the average runtime for a single ICP iteration based on a GPU brute-force
primitive, the exact RBC and our optimized approximate RBC variant as described in Sect. 2.3.3,
for increasing number of landmarks. The number of representatives is chosen according to Cay-
ton’s rule of thumb, |R| = √|F |. Note that our modified approximate RBC approach outperforms
the exact RBC up to a factor of 3. The BF primitive scales quadratically w.r.t. the number of land-
marks

2.5.2 Performance Study

The corpus of the proposed framework including both preprocessing and RGB-D
mapping is executed on the GPU, recall Fig. 2.2. This section presents quantitative
results for individual modules of the framework.

Preprocessing Pipeline Edge-preserving image filtering is parallelized in an effi-
cient manner on the GPU [29, 37]. The computation of 3-D world coordinates from
the measured depth values requires less than 1 ms for Microsoft Kinect data of VGA
resolution, including CPU-GPU memory transfer of the RGB-D data. The subse-
quent edge clipping and landmark extraction for M and F in scene reconstruction
scenarios depends on |M| = |F |, denoting the number of landmarks (LMs), with
typical runtimes of less than 0.3 ms. Let us conclude that runtimes for data prepro-
cessing assume a minor role. As we target scene reconstruction in the first place,
landmark extraction for object reconstruction scenarios including foreground seg-
mentation and random landmark selection was implemented on the CPU with a
runtime of about 5 ms, as proof-of-concept.

ICP Using RBC Being the cornerstone of our framework, we have investigated
the performance of our GPU-based ICP/RBC implementation in detail. A single ICP
iteration consists of three steps: (i) nearest neighbor search using RBC, (ii) trans-
formation estimation and (iii) application of the transformation. With an increasing
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Table 2.1 Runtimes [ms] for the construction of the RBC data structure (tRBC,C) and ICP execu-
tion for reconstructing a typical indoor scene, for varying number of landmarks. In the first rows,
average runtimes for our default setting |R| = √|F | are given. In the second rows, we state perfor-
mance numbers for |R| being optimized in terms of runtime. Note that optimizing runtime comes
with a loss in accuracy, cf. Fig. 2.10. We state both the runtime for a single ICP iteration (tICP) and
typical total ICP runtimes ttot (including RBC construction) for 10 and 20 iterations, respectively

# Landmarks |R| tRBC,C [ms] tICP [ms] ttot (10 its) [ms] ttot (20 its) [ms]

1,024
√|F | = 32 0.58 0.25 3.13 5.68

1,024 128 0.59 0.12 1.79 3.00

2,048
√|F | = 45 0.60 0.27 3.31 6.03

2,048 128 0.60 0.14 2.02 3.44

4,096
√|F | = 64 0.63 0.32 3.80 6.97

4,096 128 0.67 0.21 2.76 4.86

8,192
√|F | = 91 0.76 0.50 5.80 10.82

8,192 256 1.22 0.40 5.22 9.22

16,384
√|F | = 128 0.90 0.91 9.96 19.07

16,384 256 1.49 0.78 9.25 17.04

number of landmarks, the nearest neighbor search dominates the runtime consider-
ably [30]. Hence, we have put emphasis on optimizing the RBC construction and
query performance. Note that for all subsequent performance evaluations, runtimes
where averaged over several successive runs.

A comparison of absolute runtimes for a single ICP iteration is presented in
Fig. 2.9. Our modified approximate RBC outperforms both a BF search and our
reference implementation of Cayton’s exact RBC. Note that the BF search scales
quadratically with the number of landmarks. Our approximate RBC variant outper-
forms the exact RBC implementation up to a factor of 3. Compared to previous work
by the authors [30], significant runtime speedups were achieved using the permuted
database and its cache friendly layout as detailed in Sect. 2.4.2.

Typical scene reconstruction runtimes of the method are given in Table 2.1. From
our experiments in indoor scene mapping, we observed the ICP to converge after
10–20 iterations using the stopping criterion described in Sect. 2.4.1. Hence, as an
overall performance indicator, let us refer to the runtime of 19.1 ms for 16,384
landmarks, |R| = √|F |, for 20 iterations.

2.5.3 Approximate RBC

As motivated in Sect. 2.3.3, our approximate RBC construction and nearest neighbor
search trades exactness for runtime speedup. We quantitatively investigated the error
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Fig. 2.10 Evaluation of the influence of |R| on mapping accuracy, compared to an exact BF
search, for varying number of landmarks. Given is the mean Euclidean distance [mm] between the
mapped points m̂RBC and m̂BF. Increasing the number of landmarks decreases the error. The graph
shows both discretized measurements and a trendline for each setting. Note the semi-log scale

that results from our approximate nearest neighbor search compared to an exact BF
scheme, considering the aligned point clouds M̂RBC and M̂BF, see Fig. 2.10. The
error measures the mean pointwise Euclidean distance [mm] between the points
m̂RBC and m̂BF, being transformed w.r.t. different estimations for (R, t). With an
increasing number of representatives |R|, the mapping error rises increasingly un-
til dropping sharply when approaching |R| = |F |. In general, increasing the num-
ber of landmarks decreases the error. Please note that both situations of |R| = 1
and |R| = |F | correspond to a BF search, hence yielding an identical transforma-
tion/mapping estimate and a mean error of zero.

In order to further illustrate the impact of the relation between the number of
landmarks and representatives on reconstruction accuracy, we refer to Fig. 2.11. For
|R| 
 |F |, decreasing |R| with a fixed number of landmarks reduces the error. This
results from our approximate RBC construction scheme, where the probability of
erroneous nearest neighbor assignments increases with the number of representa-
tives. Again, increasing the number of landmarks decreases the error. We remark
that by using our default configuration (16,384 LMs, |R| = √|F |), the mapping er-
ror is less than 0.25 mm. This is an acceptable scale for the applications considered
in this work.

Furthermore, we have related the runtime per ICP iteration to |R|, see Fig. 2.12.
Apart from the runtime minimum that is located around |R| = 2

√|F |, the com-
putational load rises when increasing or decreasing the number of representatives.
Simultaneously, the error decreases, recall Fig. 2.10. Hence, the application-related
requirements in terms of runtime and accuracy motivates the choice of |R|. To-
gether, Figs. 2.10–2.12 illustrate the trade-off between error and runtime.
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Fig. 2.11 Investigation of the mean mapping error vs. number of landmarks, for varying |R|. Here,
the analysis is restricted to |R| 
 |F |. Note that decreasing |R| with a fixed number of landmarks
reduces the error

Fig. 2.12 Runtimes of a single ICP iteration, for varying number of landmarks and representatives.
The runtime minimum is located around |R| = 2

√|F |. Note the logarithmic scale

2.6 Discussion and Conclusions

In this chapter, we have proposed a GPU framework for real-time mapping and
modeling of textured point cloud streams enabling on-the-fly 3-D reconstruction
with modern RGB-D imaging devices. Our quantitative RBC experiments demon-
strate that using a data structure which is specifically designed to exploit the parallel
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computing power of GPUs is beneficial even for low-dimensional (6-D) data. Using
our optimized approximate RBC for the photogeometric nearest neighbor search,
our system achieves reconstruction runtimes of less than 20 ms on an off-the-shelf
consumer GPU in a frame-to-frame scenario.

The proposed framework was evaluated using a point-to-point metric for estimat-
ing the transformation within ICP. In general, minimizing a point-to-plane distance
metric holds advantages over the point-to-point approach as it allows the surfaces
described by M and F to slide over each other [9], avoiding snap-to-grid effects.
However, solving the corresponding optimization problem as denoted in Eq. 2.7
would require an iterative scheme. We did not observe a negative impact on the
reconstruction results using the point-to-point approach in our experiments.

Compared to a conventional ICP that relies on the pure 3-D geometry [4, 9], in-
corporating photometric appearance as a complementary source of information is
advantageous in cases of non-salient surface topology, recall Fig. 2.1 and the ex-
perimental results in related work [24]. Approaches that combine dense geometric
point associations with a sparse set of correspondences derived from local photo-
metric features are limited to interactive frame-rates, as feature extraction is compu-
tationally expensive even if performed on the GPU [19]. In contrast, our approach
evaluates both geometric and photometric information in a direct and dense man-
ner, cf. [11, 24, 25]. We found that incorporating photometric appearance in such
an elementary manner gives the best compromise between reconstruction robust-
ness and runtime performance. Nonetheless, the proposed scheme using the RBC
for efficient nearest neighbor queries on the GPU can be potentially extended to
higher-dimensional point signatures.

Ongoing work includes the implementation of a multi-resolution ICP alignment
scheme in order to improve the convergence behavior, and the transition from frame-
to-frame to frame-to-model registration using an implicit surface model [10]. Fur-
thermore, an automatic scene-dependent weighting of the photogeometric weight α

by low-level analysis of the depth image as part of the preprocessing stage will be
subject of our upcoming research.
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Chapter 3
A Brute Force Approach to Depth Camera
Odometry

Jonathan Israël and Aurélien Plyer

Abstract By providing direct access to 3D information of the environment, depth
cameras are particularly useful for perception applications such as Simultaneous Lo-
calization And Mapping or object recognition. With the introduction of the Kinect
in 2010, Microsoft released a low cost depth camera that is now intensively used
by researchers, especially in the field of indoor robotics. This chapter introduces a
new 3D registration algorithm that can deal with considerable sensor motion. The
proposed approach is designed to take advantage of the powerful computational
scalability of Graphics Processing Units (GPUs).

3.1 Introduction

Frame registration is one of the primary processing stages that requires to be exe-
cuted in many 3D video applications. When a 3D sensor such as the Kinect is robot-
mounted or hand-moved, its attitude variation can show significant movements, es-
pecially large rotations, which may lead a local registration method such as Iterative
Closest Point (ICP) to fail. Furthermore, in the case of the Kinect, the temporal reg-
istration of the huge amount of data captured by the sensor (640×480 16-bits pixels
at 30 Hz) can hardly be fully processed in real-time applications. The method pre-
sented in this chapter relies on a probabilistic framework where a global matching
criterion applied to extracted features can be evaluated in parallel in the projective
plane defined by the sensor camera. We show that most steps of this algorithm are
particularly well suitable for a real-time GPU-based implementation since they rely
mostly on vector and matrix multiplications or element-wise operations.

This chapter is organized as follows. We give a brief overview of 3D registration
methods in Sect. 3.2. The general framework and the key steps of the proposed
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method are described in Sect. 3.3. We demonstrate experimentally in Sect. 3.4 the
suitability of our approach for real-time processing. Conclusions and perspectives
are given in Sect. 3.5.

3.2 Related Work

The objective of 3D registration is to find the Euclidean motion between two 3D
data sets such as range images or point clouds. When a good estimate of the relative
transformation is available, the registration problem can be efficiently solved using
local registration methods. Since its introduction by Besl and McKay [2], the ICP
technique has been widely used by the community. As they are based on the under-
lying assumption that a good initialization is known, ICP-like techniques can easily
get trapped in a local minimum. Even in the presence of small displacements, the
Euclidean distance used in ICP suffers from its difficulty to capture the sensor ro-
tation. In [1], the authors overcome this limitation by introducing a new metric that
can be used for point-to-surface distance estimation in the matching phase. The ro-
bustness of this modified ICP comes at a cost of a higher computational complexity,
which is already another drawback of local and iterative registration methods. For
instance, the most time-consuming stage of the ICP is the determination of the clos-
est point, which is basically of O(n2) for 3D scans containing n points. Optimized
search structures like k − d trees or box decomposition trees are used in numerous
publications such as [8] or [16] to reach a complexity of O(n logn).

Reduced search spaces can also be used during the correspondence stage. For
instance, approximation of the nearest neighbor search can be done directly on the
GPU using the Random Ball Cover Data Structure, [14], as also proposed in the
previous chapter. In [1] the authors use a sliding window which limits candidates
for each point within an angular window. In [10], the neighborhood relationships
in both frames are used to restrict recursively the nearest neighbor search. Several
approximation techniques such as the latter allow us to reach O(n) complexity but
are not necessarily convenient for a massively parallel implementation, mainly due
to their recursive nature.

In order to further decrease the computational complexity of the registration,
several authors reduce directly the number of points that are processed. In [15], the
authors perform point reduction and generate approximate k − d trees by subsam-
pling the data depending on their distance to the sensor. A Frustrum ICP is used
in [13] to remove iteratively 3D points from non-overlapping areas. The registra-
tion precision of subsampling techniques that dismiss or approximate some of the
original data depend strongly on the subsampling scheme. Nevertheless, those tech-
niques remain fast and efficient and real-time processing has even been recently
reported on subsampled RGB-D data [7]. Finally, reduction of the computational
payload can also be achieved while preserving efficiency with estimations based on
feature matching. Registration is then performed directly on selected points with
low-dimension features [5, 20] or on extracted 3D contours [9, 17]. Those kinds of
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approach can be extended to a multi-resolution framework where details are intro-
duced incrementally to increase the solution resolution while controlling the com-
putational payload [21].

While optimization techniques tried mostly to reduce the data size or to approx-
imate the nearest neighbor search stage, several implementations of recent algo-
rithms were adapted to take advantage of the computational power of the GPU. Dif-
ferent variants of the ICP such as Modified Iterative Closest Point [11], Expectation-
Maximization ICP and soft-assign [22] or ICP based on k − d tree priority search
[19] allowed a huge reduction of the processing time while preserving robustness
and precision. [18] presents a CUDA-based implementation of a point-to-plane 3D
registration technique where the costly corresponding point search is replaced with
a direct estimation based on a point to plane projection. In [6], exhaustive search in
a reduced dimension space is performed.

By computing in a projective space a matching criterion based on extracted 3D
features, the method proposed in this chapter allows a fast and exhaustive search
through the full 6 degree-of-freedom space. As opposed to most ICP-derivated tech-
niques, it does not rely on any one-to-one point correspondence assumption or any
reweighting scheme whose parameters are often hard to tune automatically.

3.3 Proposed Method

We propose in this chapter an approach that takes advantage of the particular ge-
ometry of the depth image, contrary to many ICP-like techniques that are designed
for the general registration of two unstructured 3D point clouds. In our case, a 3D
point cloud computed from a depth image is associated with the inverse projection
of pixel depth measurements. This implies that the sensor depth image plane has a
coherent projective geometry that can be used to compute approximate neighbor-
hoods and distances. A matching criterion can be computed very efficiently in this
projective space and thus evaluated in parallel in the full 6D transformation space.
To achieve fast computation on recent and massively parallel processors, we comply
with the two following rules:

• the algorithm will have a Single Process, Multiple Data scheme for parallel scal-
ability,

• the criterion and projective operations will rely as much as possible on vector and
matrix multiplications or element-wise operations.

Sparse structures (3D contours corresponding to a list of edges) are extracted
from the depth image and used in a pose score evaluation for different movement
hypotheses. A likelihood function is defined on the set of all possible transforma-
tions and used in the final decision process. In the following section, we will develop
our approach from the abstract mathematical framework to the implementation de-
tails.
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Fig. 3.1 Global
decomposition of the
algorithm. The processing
which is executed at each
data acquisition from a video
stream is encircled in orange

3.3.1 Algorithm Overview

The proposed algorithm includes two main stages, see Fig. 3.1. In a first step, a
set of features F1 = {F1

i }i=1...N1 (resp. F2 = {F2
i }i=1...N2 ) is extracted from the

reference depth image d1 (resp. the current depth image d2). These 3D features are
derived from a 2D criterion map which is defined on the projective plane of each
depth image. In our experiment, we choose the depth image gradient to obtain 3D
contours as shown in Fig. 3.4(b). In a second step, we evaluate simultaneously the
likelihood function L(θ |d1,d2) over a large set of hypotheses with displacement
parameters belonging to the 6D space Θ = {θl}l=1...M . This likelihood is defined
as a normalized score function computed on the set of features extracted from both
frames under the hypothesis θ :

L(θ |d1,d2) = 1

L

N2∑
i=1

g
(
F2

i , Sθ

(
F2

i ,F1)), (3.1)

where L is a normalization factor and g is a score functional. The score function Sθ

is the average value of the integrated pseudo-distance from a feature F2
i extracted

from the current frame to the nearest features of the reference frame under the trans-
formation hypothesis θ :

Sθ

(
F2

i ,F1)= 1

‖F2
i ‖
∫

F2
i

∥∥N1
(
P1
(
φθ (X)

))− φθ (X)
∥∥dX. (3.2)

In Eq. 3.2, X ∈ R
3 belongs to the feature F2

i and φθ : R3 → R
3 is the 3D Euclidean

transformation corresponding to the current parameter θ . ‖F2
i ‖ is the arc length of

the 3D contour F2
i . P1 : R3 → R

2 is the projection from R
3 to the reference depth

image plane. Its computation supposes that the sensor calibration has been done
previously. N1 : R2 → R

3 is the function that gives for every 3D point projected
in the reference depth image plane the nearest 3D point that belongs to a feature
extracted from the reference data. In the score evaluation, the nearest point is not
found directly in R

3. Instead, its approximation is given by the N1 function applied
to the projection of the feature F2

i in the reference plane under the current hypothesis
with transformation parameter θ . This allows a very fast processing as we will see
in the implementation details of Sect. 3.3.3.
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3.3.2 Practical Issues

In this section we present the chosen instantiations of the feature extraction and the
score evaluation used in the proposed approach.

Feature Extraction The depth image gradient is computed with a Sobel mask.
We use a classical edge linking scheme based on the thresholded gradient norm
image and the gradient orientation. The features are 3D contours corresponding to
the reprojection in R

3 of the detected edges (see Fig. 3.4). This approach can be
easily extended to any kind of features such as segments, curvature-based salient
keypoints for instance or even any kind of RGB-D features like textured spin images
[4] could be used.

Score Evaluation In order to favor long edges that are projected close to edges
from the reference frame, we will choose a functional g defined by

g
(
Fk

i , Sθ

)= ∥∥Fk
i

∥∥e−αSθ (3.3)

In all our experiments, α was set to 1.

3.3.3 Implementation Details

The proposed approach is tightly linked with implementation possibilities given on
recent computer architectures.

Two important processing blocks are detailed here:

• the computing of the Nk function based on extracted features,
• the evaluation of the likelihood L(θ |d1,d2).

The N1 function aims at providing a fast access to the nearest 3D points belong-
ing to a feature in the reference image projective plane. First, a gradient convolution
algorithm is used to compute the norm gradient image. Then, based on two suc-
cessive scans of the thresholded gradient image, we compute a Chebyshev distance
map that keeps track of the coordinates of the nearest feature. The first scan (resp.
the second scan) is a direct scan (resp. an inverse scan) of the thresholded gradient
image where the computation of each block is performed after the computation of
the up and left (resp. down and right) blocks. This stage is the main sequential part
of our implementation but remains very fast for our depth images (taking around
20 ms in practice). As we show in Fig. 3.2, this algorithm can be easily parallelized
with a tiled strategy. For instance, a theoretical speed-up factor of 3 (which corre-
sponds roughly to the 36

11 gain factor) can be reached on the basis of a 6 processor
core working on 36 tiles of a binary contour image. For access efficiency, N1 has
been put in texture memory.

The likelihood hypothesis test has been totally implemented in CUDA and per-
formed on the GPU. Special attention has been paid to the mapping between data
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Fig. 3.2 Tiled parallel version of the causal filter used during the first scan in the distance map
computation. The processor ID associated with each tile is indicated. Time dependencies between
tile processing are represented by arrows. Since the blocks in each diagonal can be executed si-
multaneously, the basic execution time will be dominated by the time corresponding to 11 block
executions instead of 36 in a fully sequential approach

Fig. 3.3 CUDA
implementation of the
likelihood function. Green
blocks are CUDA
computation blocks and red
circles are CUDA threads

and the computing hierarchy (grid, blocks, threads). We assigned one hypothesis
to each CUDA block and map the different threads of each block to features, as
illustrated in Fig. 3.3.

Each thread computes a feature score g(F2
i , Sθk

(F2
i ,F1)) with the help of a fast

Bresenham line-drawing algorithm [3]. After the reduction of threads, each block
computes the likelihood L(θk|d1,d2) under the hypothesis θk .

3.4 Experimental Results

3.4.1 Qualitative Evaluation

We tested our approach on a depth image sequence of several minutes that was cap-
tured with a hand-moved Kinect. Several tests have been conducted, with a time sep-
aration ranging from 0.1 s to 1 s between the reference frame and the current one.
The search space parameters {Tx,Ty, Tz, θ,φ,ψ} were defined accordingly, rang-
ing from {0.1 m,0.1 m,0.1 m,5◦,5◦,5◦} to {0.5 m,0.5 m,0.5 m,15◦,15◦,15◦}.
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Fig. 3.4 (a) The RGB image of a conference room. (b) The Kinect depth image. Extracted features
are superimposed in red. (c) A view of the reference frame (red) and the current frame before
registration (blue). (d) The reference frame (red) and the current frame after registration (green)

The number of steps in each dimension was chosen from 6 to 13, thus the computa-
tion time ranged from a few dozen ms to a few seconds. As can be seen in Fig. 3.4
and in Fig. 3.5, good results were obtained on structured environments. As expected,
results are insensitive to large sensor motions as long as the search space bounds are
large enough to include the solution.

3.4.2 Precision Analysis

We followed the methodology proposed in [1] to evaluate the precision of our
method. We matched each of 30 scans against itself with random initial sensor lo-
cation. All the scans were taken in the conference room shown in Fig. 3.4(a). The
sensor initial translation varied from 0 m to 0.5 m while its rotation on all axes
(roll, pitch, yaw) varied from 0◦ to 15◦. We evaluated separately the translation and
rotation effects.

The residual rotations and translations are given in Fig. 3.6. Since rotation resid-
uals are mostly related to roll angles, we represent only roll angle residuals w.r.t.
initial roll angles. The mean registration error remains quite low even if it shows a
significant quantization effect (due to the search space quantization and to approx-
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Fig. 3.5 (Left) A view of the reference frame (red) and the current frame before registration (blue).
(Middle) The reference frame (red) and the current frame after registration (green). (Right) The
corresponding RGB image

Fig. 3.6 (Left) Translation residuals w.r.t. the initial translation (in meters). (Right) Rotation resid-
uals w.r.t. initial rotation (in degrees)

imations in the nearest neighbor search). In practice, the quantization step should
be chosen accordingly with the desired precision. The average processing time per
hypothesis ranged from 0.5 µs to 1.5 µs depending on the total number of hypothe-
ses. Evaluation was performed on a computer whose specifications are given in
Table 3.1. We emphasize the fact that in practice and due to prior constraints or pose
prediction, the search space will never be isotropic and will focus around specific
values.

The quantization step has a direct effect on the precision, as can be seen in
Fig. 3.7. As we reduce the quantization steps, the precision is increased and tends to
be comparable with the sensor precision. The computation time grows almost lin-



3 A Brute Force Approach to Depth Camera Odometry 57

Table 3.1 Hardware
specifications CPU Intel Core i7 @ 2.67 GHz

Memory 8 Go

GPU nVidia GeForce GTX 460

OS Linux 2.6

Fig. 3.7 (Left) Translation residuals w.r.t. the quantization step (in meters). (Right) Rotation resid-
uals w.r.t. the quantization step (in degrees)

Fig. 3.8 Computing time
(in s) w.r.t. the number of
hypotheses (in millions)

early with the number of hypotheses (see Fig. 3.8). Ultimately, the computation will
be limited by the CPU-GPU bandwidth and by memory restrictions.

Except for the limitations mentioned previously, related to the quantization ef-
fects, the registration showed heterogeneous quality in “3D textureless” environ-
ments with low geometric saliency like corridors.
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Fig. 3.9 Left: EM-ICP matching in the conference room. Right: EMICP applied to edges extracted
from the conference room

3.4.3 Comparison with the ICP Method

The CUDA-based implementation of EM-ICP , described in [22] and available
at home.hiroshimau.ac.jp/tamaki/study/cuda_softassign_emicp/ has been tested on
our conference room data set, in order to provide a qualitative comparison with our
method. EM-ICP is a variant of the classical Iterative Closest Point algorithm where
soft correspondences are used instead of hard ones in order to prevent convergence
to local minima. Given two point sets X and Y, it aims at finding the rotation R and
the translation t that minimize the error function:

E =
nx∑

j=1

ny∑
i=1

αij d
2
ij , where dij = ∥∥xj − (Ryi + t)

∥∥. (3.4)

αij are the parameters of the soft correspondence. The iterative procedure depends
on four parameters. Three of them are related to the annealing scheme and the fourth
one is an outliers control parameter.

Due to memory and time constraints, we have applied the EM-ICP procedure
to decimated point clouds (10 % of the total amount of 3D data). We have also
applied the EM-ICP to points sampled from the extracted features. Generally, the
result precision is good and residuals are linked to noise due to the sensor or to the
sampling process (see Fig. 3.9).

Since we have not tried to finely tune the EM-ICP parameters, no performance
assessment on our data set has been done and we indicate only in Table 3.2 the
computing time w.r.t. the number of points to be registered.

Even with this GPU-based approach, several dozens of iterations are necessary
and lead to a non negligible processing time. We believe that our approach could
be used as a preliminary step in order to reduce the computation payload of a fine
matching procedure such as this EM-ICP algorithm.

http://home.hiroshimau.ac.jp/tamaki/study/cuda_softassign_emicp/
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Table 3.2 Computation time

Data set Number of points
per data set

Time
(EM-ICP, in s)

Time
(our approach, in s)

10 % downsampled 30,720 27 6.4

Points from features 2,120 1.9 0.7

3.5 Conclusion and Future Work

In this chapter, we described and presented an experimental validation of a new reg-
istration method based on a similarity metric defined in the camera projective plane.
The focus was on the derivation of the likelihood used in the matching process.
Experimental results have shown that this brute force algorithm can be used to pro-
vide real-time registration of depth camera data. The computational payload could
be significantly reduced by avoiding the likelihood estimation near areas with low
scores (see [12]) and that are unlikely to give high scores due to the continuity of
the likelihood function. Future work will focus on coupling the pose estimation with
a particle filtering approach and its embedding in a global and multi-scale SLAM
framework.
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Part II
Human Body Analysis

The commercial breakthrough of depth cameras required a killer application. This
application came with the launch of Kinect that allows to control computer games
by body movements without additional controllers. This has been achieved by es-
timating the human skeleton of a user from the depth data in a fraction of time.
Human body analysis, however, is more than body pose estimation. It also includes
the analysis of body shapes, facial expressions, gestures, and much more.

While, as shown by Moeslund et al. (Visual Analysis of Humans, Springer,
2011), human body analysis from image data has been studied thoroughly, depth
sensors changed the game in two ways: (1) depth is a very important perception
cue that resolves many pose ambiguities present in image data; and (2) it is rela-
tively easy to synthesize millions of depth images for training. While the Foreword
by Shotton describes the story behind the development of the pose estimation al-
gorithm for Kinect, Human Body Analysis contains four chapters and looks at the
development on human body analysis with depth sensors after the launch of Kinect.

The chapter of Kohli and Shotton summarizes the key ideas of the original body
part classification system (Real-time human pose recognition in parts from single
depth images, CVPR, 2011) and presents further improvements. For instance, in-
stead of estimating which body part each pixel in the depth image belongs to, and
then using this information to reason about the location of the body joints, the joint
locations can be directly estimated from the depth data by a voting approach. An ap-
proach for real-time human pose tracking is presented in the chapter by Baak et al.
Instead of all body parts, the approach only detects the body parts that can be easily
localized, namely hands, feet, and head. The localized body parts are then matched
against a large motion capture dataset using an efficient retrieval technique. Both
approaches have in common that they rely on a large motion capture dataset. How-
ever, Shotton et al. use the data to synthesize depth images of humans with various
poses and shapes, whereas Baak et al. require a person specific body model and
map the motion capture data to the skeleton of the body model. How such a person
specific body model can be acquired is shown in the chapter of Weiss et al. They
describe an inexpensive body scanning system. Such a system could be used for re-
mote health care services or help customers of online shops to find the apparel that
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fits. The fourth chapter by Keskin et al. shows how the approach of Shotton et al.
can be applied to hand pose estimation. The hand pose is then used to recognize
hand gestures, which is demonstrated for digit recognition of the American Sign
Language (ASL).

Although the presented approaches already achieve impressive results, they
scratch only the surface of human body analysis. While more works are appear-
ing, for instance, the work on face analysis by Fanelli et al. (Random Forests for
Real Time 3D Face Analysis, IJCV, 2012) or the work on face animation by Weise
et al. (Realtime Performance-based Facial Animation, SIGGRAPH, 2011), many
aspects of the human body like hair, apparel, emotions, or gestures are still widely
unexplored.



Chapter 4
Key Developments in Human Pose Estimation
for Kinect

Pushmeet Kohli and Jamie Shotton

Abstract The last few years have seen a surge in the development of natural user
interfaces. These interfaces do not require devices such as keyboards and mice that
have been the dominant modes of interaction over the last few decades. An important
milestone in the progress of natural user interfaces was the recent launch of Kinect
with its unique ability to reliably estimate the pose of the human user in real time.
Human pose estimation has been the subject of much research in Computer Vision,
but only recently with the introduction of depth cameras and algorithmic advances
has pose estimation made it out of the lab and into the living room. In this chapter we
briefly summarize the work on human pose estimation for Kinect that has been un-
dertaken at Microsoft Research Cambridge, and discuss some of the remaining open
challenges. Due to the summary nature of this chapter, we limit our description to the
key insights and refer the reader to the original publications for the technical details.

4.1 Introduction: The Challenge

In the summer of 2008, computer vision researchers at Microsoft Research Cam-
bridge received a call from an Xbox team who were working on a top-secret project
code-named Project Natal.1 The Xbox team, headed by Alex Kipman, told re-
searchers that they were building a system for human pose estimation that would
work using the output of a depth sensor. The team demonstrated a tracking-based
system for pose estimation which, once initialized to the correct pose, could track
the pose of the human from one frame to the next. However, the system suffered
from two critical problems: (i) it required the user to adopt an initialization pose, and
(ii) it would typically lose track after a few frames. The Xbox team wanted the re-
searchers to help build a system that avoided the initialization pose, that looked at a

1This project would eventually be launched as Kinect.
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single frame at a time to avoid possible loss-of-track, and that was super efficient—it
had to use just a fraction of the computational power of the Xbox 360.2

In this chapter, we summarize the publications that have resulted from working
on this challenge of efficient pose estimation from single depth images. We start in
Sect. 4.2 by describing the key ideas and intuitions that led to the development of the
body part classification system as described fully in Shotton et al. [13]. This system
works by first estimating which body part each pixel in the depth image belongs to,
and then using this information to reason about the location of different body joints.
We then move in Sect. 4.3 to discuss the offset vote regression approach [6] where
instead of predicting their own body part labels, pixels vote for where they think the
different body joints are located in 3D. In Sect. 4.4 we discuss [15], which shows
how pose estimates can be improved by using a conditional random forest model
that uses a latent variable to incorporate dependencies between joint positions. This
latent variable encodes some global property of the image, such as the person’s
height or the direction they are facing. Section 4.5 gives an overview of the recently
proposed Vitruvian Manifold model [16] that predicts at each pixel an estimate of
the correspondence to an articulated mesh model. An energy function can then be
optimized to efficiently fit the model to the observed data. Finally in Sect. 4.6 we
briefly discuss some of the remaining open challenges.

4.2 Body Part Classification—The Natural Markers Approach

Human pose estimation is a well studied problem in the computer vision commu-
nity (see [8, 10] for a survey of the literature). Certain variants of the problem, for
instance, estimation of the pose of a human from a single RGB image remain un-
solved. Early commercial systems for human pose estimation worked by tracking
easily localizable markers that were pre-attached on the body of the human sub-
ject. Marker-based systems for human pose estimation are usually quite reliable and
highly accurate, but suffer from the limitation that markers need to be worn. Fur-
ther, the approach also requires a calibration step where the relationship between
the position of the markers and that of the body parts needs to be defined.

A natural approach motivated by the success of the marker-based pose estimation
systems is to use classifiers that are be able to identify and thus localize different
parts of the body. Variants of this approach have been explored in a number of
research studies [1, 17]. For instance, a prominent approach for recognition and pose
estimation is the Pictorial Structures model [4] that tries to estimate the location of
different human body parts while maintaining certain spatial relationships between
them. In light of these observations, Shotton et al. [13] decided to formulate the
pose estimation problem as a body part labeling problem where the human body is
divided into 31 body parts that were naturally associated with certain skeletal joint
positions that needed to be estimated.

2For more detail on the story behind Kinect, please see the Foreword.
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4.2.1 Generating the Training Data

The datasets used for training machine learning systems need to cover the varia-
tions the system would observe when it is deployed. Creating such a dataset is an
expensive and time consuming process. Researchers have used computer graphics
to overcome this problem [11] but this approach has its own set of problems. Syn-
thetic body pose renderers use, out of necessity, real motion capture (mocap) data.
Although techniques exist to simulate human motion they do not yet produce a
full range of volitional poses or motions of a human subject that the system may
encounter in the real world. The team at Microsoft overcame this problem by col-
lecting a very large and diverse set of motion capture [13]. Rendering realistic in-
tensity images is also hampered by the huge color and texture variability induced by
clothing, hair, and skin. However, as the Kinect skeletal tracking system works with
depth images, which are invariant to factors such as color or texture, this issue does
not create a problem. Other factors which do affect the depth image, such as body
shape, were varied as much as possible when creating the dataset. The result was a
dataset of a million synthetic pairs of images of people of varied shapes in varied
poses. Each image pair contained the depth image expected from the camera, and
the body part label image that we were to train the system to recognize.

4.2.2 Randomized Forests for Classification

The body part classification problem is similar to many image labeling problems
encountered in computer vision. These problems are generally formulated using
Markov random field (MRF) models that have produced impressive results for vari-
ous problems [3]. However, MRFs are currently too computationally expensive for
real time human pose estimation. Shotton et al.[14] had proposed a decision forest-
based method to overcome this problem which avoided the need for sophisticated
and computationally expensive inference algorithms. This decision forest frame-
work is not only simple and efficient but also allows for parallelization and could
be implemented on a GPU [12]. These properties made decision forests a natural
choice for solving the body part classification problem.

Shotton et al. [13] used a family of features that involved computing the differ-
ences between just a few depth image pixels. These were thus very inexpensive to
compute. The decision trees were learned by employing the standard entropy min-
imization based objective and greedy tree learning schedule. The final processing
pipeline involved computing features on every pixel and depending on the response
traversing down the left or right side of the decision tree. This process is repeated
until a leaf node is reached which contained a learned histogram. This histogram
represents the posterior distribution over the body part label that the pixel should be
assigned. These per-pixel body part distributions could then be clustered together to
produce reliable hypotheses about the positions of the various joints in the body.
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Fig. 4.1 The basic pipeline of the Kinect skeletal tracking system

Figure 4.1 illustrates the full skeleton tracking pipeline as used for Kinect. This
pipeline takes the depth image, removes the background, applies the body part
recognition and clustering algorithm described above, and finally applies a model
fitting stage which exploits kinematic and temporal constraints to output a full skele-
ton.

4.3 Random Forest Regression—The Voting Approach

The body part classification algorithm allowed us to solve the hard challenges we
needed to ship Kinect. However, it of course did not work perfectly in all scenar-
ios, and so we set out to fix some of its limitations. Because body part classification
works by labeling pixels, it cannot estimate the location of joints whose surrounding
body parts are not visible in the image due to occlusion or field of view of the sensor.
Furthermore, its two-step procedure comprising of pixel labeling followed by clus-
tering may introduce errors. To overcome these problems we decided to investigate
an offset regression approach [6] where pixels vote directly for the position of the
different body joints, without going through the intermediate body part representa-
tion.

Similar voting approaches have been used in the literature for solving object
localization problems. For example, in the implicit shape model (ISM) [7], visual
words are used to learn voting offsets to predict 2D object centers. In an extension,
Müller et al. [9] apply ISM to body tracking by learning separate offsets for each
body joint.

In [6], we use a random regression forest to learn to predict how pixels vote
for 3D locations of the various joints in the body. The regression forest shares the
same structure and features as the body part classification approach [13]. However,
as illustrated in Fig. 4.2, at each leaf node of a regression tree we instead store a
distribution over the relative 3D offset from the re-projected 3D pixel coordinate to
each body joint of interest. Representing these leaf node distributions efficiently is
very important given the large size of our decision trees. Approximating the distri-
bution over offsets as a Gaussian would be inappropriate, because even for fairly
deep trees, we have observed highly multi-modal empirical offset distributions at
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Fig. 4.2 The regression forest model for body joint position estimation

the leaves. One alternative, Hough forests [5], is to represent the distribution non-
parametrically as the set of all offsets seen at training time. However, Hough forests
trained on our large training sets would require vast amounts of memory and be
prohibitively slow for a realtime system. Therefore, we instead represent the dis-
tribution using a compact set of 3D relative vote vectors learned by clustering the
training offsets. The result is a system that can, in super real time, cast votes from
each pixel to potentially all joints in the body, whether they are visible or not. Fur-
thermore, these votes can directly predict interior body joint positions rather than the
positions on the body surface predicted by [13]. Overall this was seen to improve
body joint prediction accuracy significantly over [13].

4.4 Context-Sensitive Pose Estimation—Conditional Regression
Forests

Even with the improvements in [6], there are some remaining limitations. The model
does not encode dependency relationships between positions of different joint posi-
tions explicitly; the predictions for each body joint are made independently. Further,
the model is not able to exploit prior knowledge that might be available during pre-
diction in certain application scenarios. For instance, while estimating the pose of a
person playing a golf game, information about the player’s height or torso orienta-
tion might be available and potentially useful. Similarly, in a surveillance applica-
tion, we might know the walking directions of pedestrians.

In [15], we show how both these limitations can be simultaneously overcome by
incorporating a latent variable in the regression forest prediction model that encodes
some global property of the image. In particular, we show that by conditioning on
the players height or torso orientation, we can outperform [6] in terms of joint pre-
diction accuracy, and as a by-product, make predictions about the conditioned-upon
properties. The relationships encoded by different models are depicted in Fig. 4.3.
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Fig. 4.3 The figure shows the relationships encoded by different regression forest models. The
basic model (left) makes predictions for each body joint independently. The conditional model
(center) encodes dependency relationships between the body joint positions and a global variable.
The temporal conditional regression forest model (right) incorporates the prior that the value of
the global variables associated with multiple image frames should be consistent. For instance, the
height of a human subject remains constant through the video sequence

4.5 One-Shot Model Fitting: The Vitruvian Manifold

All the work presented above estimates zero, one, or more hypotheses for the posi-
tions of each body joint. However, the work above cannot enforce kinematic con-
straints such as limb lengths, and is not able to disambiguate which hypotheses to
stitch together into a coherent skeleton. In the Vitruvian Manifold paper [16] we
attempt to address these concerns by fitting an articulated skeleton model to the ob-
served data. A standard way to represent such an articulated skeleton is a global
transformation (rotation, translation, scale) and then a hierarchical kinematic tree of
relative transformations. In these transformations, the translation relative to the par-
ent might be fixed (representing fixed limb lengths) but the rotation is parameterized
(representing bending joints). Given the kinematic hierarchy of transformations, one
can use, for example, linear blend skinning to generate a surface mesh of the body.

A standard way to fit the parameters of such a mesh model to the data is called
Iterated Closest Point (ICP) [2]. Starting from an initialization, ICP alternates be-
tween finding the closest corresponding point on the model for each observed data
point, and optimizing the parameters of the model (e.g. joint rotations) to minimize
the sum of squared distances between the corresponding model and observed points.
Unfortunately, ICP requires a good initialization, and can take many iterations to
converge. In the Vitruvian Manifold paper [16] we decided to address ‘One-Shot’
pose estimation: we could achieve a good model fit by inferring these correspon-
dences directly from the test image, and then performing only a single optimization
of the model parameters. To investigate this, we took our body part classification
forests from [13] and extended them to predict at each pixel the corresponding ver-
tex on the surface of the mesh model in a canonical pose (the so-called Vitruvian
Manifold). The forests effectively become regression forests over this manifold, and
allow a dense estimate of correspondence across the test image, without any initial-
ization. Taking these correspondences and optimizing the model parameters resulted
in most cases in a very accurate fit of the articulated skeleton to the observed data at
low computational cost. An illustration of the algorithm is given in Fig. 4.4.
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Fig. 4.4 The pose estimation pipeline in the Vitruvian Manifold algorithm

4.6 Directions for Future Work

The contributions summarized above represent a considerable advance in the state
of the art in single image human pose estimation. But there remain open questions.
How can we fix the remaining inaccuracies to achieve a reliable pose estimation
for everyone, all the time, no matter what pose they adopt and no matter their body
shape? How can we make such a system work from standard RGB cameras as well
as depth cameras? How can we reliably map out the fine detail of the body, face,
clothing, hair, etc.? How can we achieve a level of detail that means that instru-
menting the body for motion capture becomes redundant? We believe that these and
many other questions will mean that human pose estimation remains an active area
of research for years to come.

Acknowledgements This chapter is a summary of existing published work, and we would like
to highlight the contributions of all the original authors.
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Chapter 5
A Data-Driven Approach for Real-Time Full
Body Pose Reconstruction from a Depth Camera

Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel,
and Christian Theobalt

Abstract The 3D reconstruction of complex human motions from 2D color images
is a challenging and sometimes intractable problem. The pose estimation problem
becomes more feasible when using streams of 2.5D monocular depth images as pro-
vided by a depth camera. However, due to low resolution of and challenging noise
characteristics in depth camera images as well as self-occlusions in the movements,
the pose estimation task is still far from being simple. Furthermore, in real-time
scenarios, the reconstruction task becomes even more challenging since global opti-
mization strategies are prohibitive. To facilitate tracking of full-body human motions
from a single depth-image stream, we introduce a data-driven hybrid strategy that
combines local pose optimization with global retrieval techniques. Here, the final
pose estimate at each frame is determined from the tracked and retrieved pose hy-
potheses which are fused using a fast selection scheme. Our algorithm reconstructs
complex full-body poses in real time and effectively prevents temporal drifting, thus
making it suitable for various real-time interaction scenarios.
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5.1 Introduction

In recent years, several approaches for marker-less human pose estimation from
multiple video streams have been presented [5, 9, 13, 17, 51]. While multi-view
tracking already requires solving challenging non-linear optimization problems,
monocular pose estimation puts current technology to its limits since, with intensity
images alone, the problem is considerably underconstrained [8, 31, 37]. In order to
have a chance to reconstruct human movements, non-trivial inference or optimiza-
tion steps are needed in combination with strong priors. In general, real-time recon-
struction of complex human motions from monocular intensity-image sequences
can still be considered an open problem.

New depth sensors, such as time-of-flight (ToF) cameras or the Microsoft Kinect
sensor, provide depth images at video frame rates. In such images, each pixel stores
a depth value instead of a color value. Since this representation of a scene stands
somewhere in the middle between a pure 2D color-based representation and full
3D scene geometry, depth images are also referred to as 2.5D data [25]. It turns
out that with depth cameras the 3D pose reconstruction of human poses from a
single viewpoint becomes more feasible as shown in [7, 15, 18, 24, 35, 48, 56], see
also Sect. 5.2. In this chapter, we present a tracking framework that yields robust
pose estimates from monocular depth-image sequences. Moreover, our framework
enables significant speed-ups of an order of magnitude compared to most of the
previous approaches. In fact, we reach similar run time behavior as the algorithm
implemented in the Microsoft Kinect [48], whereas we do not need multicore or
GPU implementations.

Our procedure follows a hybrid strategy combining generative and discriminative
methods, which is an established paradigm for pose estimation and tracking prob-
lems. While local optimization strategies [24] have proven to yield high frame rates,
such techniques tend to fail for fast motions. Algorithms using global optimiza-
tion provide more reliable pose estimates, but are typically slow and prohibitive
for real-time scenarios. Various data-driven approaches have also been suggested
to overcome some of these issues, enabling fast yet robust tracking from intensity-
image streams, see [34, 40, 46, 52]. These approaches rely on databases that densely
cover the range of poses to be tracked, and fail on poses that are not contained in
the database. Moreover, due to the high variability of general human motion, con-
structing such a database might become intractable. Hybrid strategies that combine
generative and discriminative methods have proven to be a suitable methodology
for pose estimation and tracking procedures, see [4, 12, 18, 41, 43, 50, 55]. In this
work, the main idea is to stabilize generative optimization algorithms by a discrim-
inative component based on a database lookup or a classification scheme. Using
this strategy, the risk of getting stuck in local minima is significantly reduced, while
time-consuming global optimization methods are avoided.

In our approach, we employ a data-driven hybrid strategy conceptually similar
to [12], where local optimization is combined with global retrieval techniques, see
Fig. 5.1 for an overview. In our scenario, an actor may perform even complex and
fast motions in a natural environment facing a single depth camera at a reasonable
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Fig. 5.1 Overview of our proposed pose estimation framework. Using features extracted from the
depth data, we retrieve a pose candidate using a database lookup scheme. An additional candidate
is obtained by running a local optimization algorithm that is initialized with the final pose of the
previous frame. Then, a hypothesis selection decides for the either of the candidates

distance. Similar to [12], we retrieve a pose hypothesis from a large database of
3D poses using sparse features extracted from the depth input data. Additionally, a
further hypothesis is generated based on the previously tracked frame. After a lo-
cal optimization of both hypotheses, a late-fusion selection approach combines the
hypotheses to yield the final pose. While the overall procedure is inspired by previ-
ous work [12, 18], we explain a number of novel techniques which add robustness
and significantly speed up computations at various stages including efficient feature
computation, efficient database lookup, and efficient hypothesis selection. In our
experiments, we also compare our pose estimation results to previous work using
the publicly available benchmark data set [18]. We gain significant improvements in
accuracy and robustness (even for noisy ToF data and fast motions) while achieving
frame rates of up to 100 fps (as opposed to 4 fps reported in [18]).

Contributions In this chapter, we present a system for full-body pose estima-
tion from monocular depth images that requires only 10 to 16 milliseconds per
frame on a standard single-core desktop PC, while being able to track even fast
and complex full-body motions. Following a data-driven hybrid strategy that com-
bines local pose estimation with global retrieval techniques, we introduce several
technical improvements. Firstly, in the feature extraction step, we introduce a vari-
ant of Dijkstra’s algorithm that allows for efficiently computing a large number of
geodesic extrema. Secondly, in the retrieval step, we employ an efficient database
lookup scheme where semantic labels of the extrema are not required. Thirdly, we
describe a novel late-fusion scheme based on an efficiently computable sparse and



74 A. Baak et al.

symmetric distance measure. It is the combination of all these techniques that avoids
computational bottlenecks while providing robust tracking results.

The remainder of this chapter is organized as follows. After giving an overview
about related work in Sect. 5.2, we describe the input data and preprocessing steps
in Sect. 5.3. The steps of the pose reconstruction framework are defined in Sect. 5.4.
We describe our extensive experiments in Sect. 5.5, before we conclude in Sect. 5.6.

5.2 Related Work

Intensity-Image-Based Tracking Monocular 3D human pose tracking from in-
tensity images has become an important research topic. In order to deal with chal-
lenges coming from occlusions and missing 3D information, different approaches
have been pursued making use of statistical body models [21], physical con-
straints [53], object interaction [39], or motion capture data [41]. For example, Guan
et al. [21] fit a statistical model of human body pose and shape to a single image us-
ing cues such as silhouettes, edges, and smooth shading. In a similar vein, Hasler
et al. [22] present a method for estimating human body pose and shape from sin-
gle images using a bilinear statistical model. Physics-based constraints are used in
Brubaker et al. [10], where a physically based modeling of the lower body helps
to track walking motions from monocular images. In [53], the authors propose to
annotate parts of image sequences with 2D joint positions, bone directions, and
environmental contacts. From such annotations and the image data, they compute
physically realistic human motion. As a different type of constraint, the interaction
with objects can be exploited as demonstrated in [39]. Having a database of admis-
sible poses, approaches such as [33, 34, 40, 46, 52] compute a mapping from image
features to database poses. With such discriminative approaches, poses that are not
contained in the database are difficult to recover. By combining generative and dis-
criminative approaches, robust and smooth pose estimates from a single view can
be achieved [14, 41, 43, 50].

Depth-Image-Based Tracking 3D human pose tracking based on a single depth-
image stream has received increasing attention in the last years. While it appears like
a simpler problem at first sight, one still has to deal with noise in the input data, low
resolution sensors, lack of color information, and occlusion problems. Nowadays,
commercial packages [7] or software libraries exist that can compute joint positions
from depth images for multiple people in real time (Microsoft Kinect SDK [30],
Primesense NITE middleware [38]). While the algorithm behind the NITE middle-
ware is not revealed to the public, Microsoft published the approach that is imple-
mented in the Kinect SDK in [48]. As explained in the previous chapter, the authors
use randomized decision forests trained on a huge set of various body poses and
shapes in order to hypothesize joint locations from features on the raw depth input
data. The approach was recently combined with a regression scheme to predict joint
locations more accurately [19]. Also, positions of occluded joints can be estimated.
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Some pose reconstruction approaches use global optimization methods in order
to solve the pose reconstruction task. For example, Friborg et al. [15] use a GPU-
accelerated particle filter to fit a surface mesh consisting of rigidly connected gen-
eralized cylinders to stereo depth data. However, even with GPU implementations,
such approaches are often not real-time capable. Pure local optimization strategies
have also been explored, which are implemented as variants of the iterative closest
points (ICP) method [6]. For example, Pekelny and Gotsman [35] simultaneously
track and reconstruct the shape of limbs through depth images. Knoop et al. [24]
show that a combination of ToF and stereo data enables full-body pose estimation
at real-time frame rates. Also using ICP, Grest et al. [20] combine depth and sil-
houette data to capture articulated motion with ten degrees of freedom in real time.
Although yielding high frame rates, such methods often fail due to noise and mo-
tion blur present in the depth data. In particular with fast motions, local optimization
easily gets stuck in erroneous poses which are hard to recover from.

In order to yield a more robust tracking, many approaches stabilize the opti-
mization algorithms using additional prior knowledge. For example, Schwarz et
al. [44] include a database of motions as prior knowledge for a particle filter op-
timization method. However, motions not present in the database cannot be tracked.
As a complementary technique for stabilization, many approaches detect features in
a bottom-up fashion directly from the depth input data. Here, geodesic distances are
used in some work in order to detect anatomic landmarks. Following such a scheme,
Ganapathi et al. [18] classify geodesic extrema features extracted from depth images
according to the class labels ‘hand’, ‘foot’, and ‘head’. With these detections, the
search space of a particle filter is constrained. Integrating constraints into similar
optimization techniques, anatomical landmarks are identified using feature tracking
or heuristics in [1, 28, 49]. Using object detectors to estimate the position of the
head and the hands, Gall et al. [16] stabilize a local optimization-based algorithm
for tracking the upper body from depth data. Also, constrained inverse kinematics
has been used on anatomical landmarks in [45, 57]. In our approach, we also make
use of bottom-up detected features in order to stabilize a local optimization ap-
proach. As for the feature extraction, we build on the idea of accumulative geodesic
extrema [36] and contribute with an efficient feature computation strategy.

Depth cameras seem to be an ideal type of sensor to facilitate intuitive human
computer interaction based on full-body motion input. Therefore, many approaches
focus on achieving real-time performance and try to find efficient algorithms for
the pose reconstruction task. Although efficiency is clearly one of the key aspects
to make pose estimation applicable for home use, most approaches with a focus
on robustness reach only interactive run times around 10 fps [18, 20, 57]. Only re-
cently, methods have been published that perform robust pose estimation within just
a couple of milliseconds per frame [19, 48], see also the previous chapter. Such ap-
proaches for pose estimation are interesting from a practical point of view since they
leave enough CPU cycles free for applications or games that use the reconstructed
pose as input. Exceeding the performance of most published methods, we can re-
port nearly 100 fps for full body pose estimation. Apart from the methodology of
combining discriminative and generative models, the key to our efficient and stable
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Fig. 5.2 Point cloud
obtained by a ToF camera (a)
without and (b) including a
method for removing lens
distortion effects. Note the
straightening effect on the left
edge of the door

pose estimation procedure is a compound of efficient feature computation, efficient
database lookup, and an efficient selection strategy.

5.3 Acquisition and Data Preparation

5.3.1 Depth Data

Before ToF cameras and the Kinect sensor became popular, stereo cameras were
predominantly used to obtain depth data in real time. In order to compute depth
values, such passive stereo systems need to identify corresponding features in the
two images captured at every time step. However, computing and matching such
features is computationally expensive and often fails for objects without texture.

Current depth cameras based on active illumination with infrared light overcome
these limitations. Moreover, current ToF cameras are robust to background illumina-
tion and yield stable distance values independent of the observed textures. In princi-
ple, ToF cameras capture depth/distance data at video frame rates by measuring the
round trip time of infrared light emitted into and reflected from the scene. Several
successive measurements have to be made in order to estimate the phase shift of
the infrared light from which the round trip time is derived [25]. Moreover, further
measurements are taken over a longer period of time in order to reduce the amount
of noise. For static scenes, this process leads to measurements with high accura-
cies in the range of millimeters. For dynamic scenes with moving objects, however,
this process can lead to errors in the estimation of depth values. Problematic are
edges that separate an object from another, more distant object, resulting in strongly
corrupted depth measurements, also called mixed pixels. Furthermore, low resolu-
tion, strong random noise and a systematic bias [25] lead to data that is difficult to
handle.

A depth camera returns a distance image I := Z
2 → R with Z

2 being the pixel
domain. Since the camera also produces an amplitude image in the infrared domain,
we use a standard pattern-based camera calibration [29] to recover the camera ma-
trix and parameters for the lens distortion. To remove lens distortion effects, we
apply the method of [23] which yields stable and accurate metric distance values,
see Fig. 5.2 as an example. We do not calibrate for systematic bias of the camera,
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Fig. 5.3 (a) Original depth
point cloud. (b) Point cloud
after background subtraction
and filtering. Some mixed
pixel artifacts remain, see,
e.g., the left leg

since for full-body pose estimation slight constant deviations in the measurements
do not play an important role. For a recent method that calibrates for systematic bias
using an intensity-based approach we refer to [27]. Using the calibration informa-
tion, we transform the per-pixel distances into a metric 3D point cloud MI ⊆ R

3

for every input frame of our online pose estimation framework, see Fig. 5.3(a). We
then perform background subtraction using a static prerecorded background model
and delete contour pixels to remove the influence of mixed pixels. Finally, a 3 × 3
median filter is used to reduce noise in the measurements, see Fig. 5.3(b).

In contrast to a ToF camera, the Microsoft Kinect depth sensor uses an active
stereo approach. More specifically, a camera records an image of a projected struc-
tured light pattern in the infrared domain. Then, from the recorded pattern, a depth
map is derived. In contrast to a ToF camera, only one image is analyzed in every
time step. Thus, the Kinect camera is less susceptible to mixed pixels in dynamic
scenes. However, the data also exhibits significant noise. In particular, artifacts like
holes in the data appear when the projected pattern cannot be recognized. Moreover,
the coarse depth quantization limits the accuracy in the far field from the camera,
where, for example, a 2.5 cm quantization gap occurs at 3 meters distance to the
camera. The presented algorithms in this chapter have been applied to depth data
coming from ToF cameras as well as data coming from the Microsoft Kinect. With-
out changing or tuning the proposed algorithms, the final pose estimates with each of
the cameras are qualitatively very similar as shown in the accompanying video [2].

5.3.2 Model of the Actor

The body of the actor is modeled as a kinematic chain [32]. We use J = 20 joints
that are connected by rigid bones, where one distinguished joint is defined as the
root of the kinematic chain, see Fig. 5.4(a). A pose is fully determined by the con-
figuration of a kinematic chain specified by a pose parameter vector χ containing
the position and orientation of the root joint as well as a set of joint angles. Through
forward kinematics [32] using χ , 3D joint positions represented by a stacked vector
Pχ ∈ R

3J×1 can be computed. Using linear blend skinning [26], we attach a surface
mesh with a set of 1170 vertices Mχ to the kinematic chain to model the deforming
body geometry, see Fig. 5.4(b). Initializing the body model to the shape of a spe-
cific actor is beyond the scope of this chapter. Methods exist to solve this task using
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Fig. 5.4 (a) Skeletal kinematic chain. (b) Rigged mesh. (c) Highlighted end effectors (hands, feet,
and head)

image data and a large database of scanned humans, see, e.g., [21, 22]. Recently,
Weiss et al. [54] have shown that the body shape of a person can be determined
using depth images from four different views, see also the following chapter for de-
tails. As shown in our experiments (Sect. 5.5), even with a fixed body model we can
track people for a range of different body sizes.

5.3.3 Pose Database

Pose reconstruction approaches based on local optimization update the model pa-
rameters (in our case the joint angles) by optimizing a specified cost function, where
convergence only to a near local minimum can be guaranteed. Although such meth-
ods typically run very fast, they fail when the initialization is too far away from the
actual pose. For such a failure case we say that the algorithm loses track. This is
often the case for fast motions where body parts can move far from frame to frame.
One strategy to overcome such limitations is to reinitialize the local optimization
when the track is lost. In the proposed algorithm, we use global pose estimates de-
rived from database knowledge for such reinitializations. To this end, we create a
database of human full body poses obtained with a marker-based motion capture
system. The actor performs a variety of motions including hand gestures and foot
motions to span a large range of different poses. To enable invariance under global
transformations, the obtained poses χi are then normalized according to the po-
sitions of the root joint and the viewing direction. Furthermore, to maximize the
variety and minimize the number of poses in the database, we select a subset of the
recorded poses using a greedy sampling algorithm [52]. In this algorithm, the dis-
tance of two poses specified by χ1 and χ2 is measured by taking the distance of the
corresponding joint positions into account:

dP (χ1, χ2) := 1

J
· ‖Pχ1 − Pχ2‖2. (5.1)

In contrast to [52], we truncate the sampling as soon as the minimal distance be-
tween all pairs of selected poses reaches a certain threshold. Using the truncated
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sampling, we obtain roughly 25 000 poses in which any two selected poses have a
pose distance dP larger than 1.8 cm. For each selected pose, we then consider end
effector positions of the left/right hand, the left/right foot, and the head, modeled as
E5

χ := (e1
χ , . . . , e5

χ ) ∈ (Mχ )5, see Fig. 5.4(c).
The following three reasons motivate the use of end effector positions as features.

Firstly, end effector positions can be efficiently estimated for a large set of different
poses even from depth data alone, see Sect. 5.4.2. Secondly, for many poses these
positions are characteristic, thus yielding a suitable representation for cutting down
the search space. Thirdly, they lead to low-dimensional feature vectors which facili-
tates the usage of efficient indexing methods. Thus, end effector positions constitute
a suitable mid-level representation for full-body poses that on the one hand abstract
away most of the details of the noisy input data, yet on the other hand retain the
discriminative power needed to cut down the search space in the pose estimation
procedure.

For indexing, we use a kd-tree [11] on the 15-dimensional stacked vectors E5
χ

since they provide logarithmic search time in the size of the database and have
turned out to be an efficient search structure for low-dimensional feature vectors.
Since the size of the skeleton (e.g., body height or arm span) varies with different
actors, the pose database has to be adapted to the actor. While not implemented in
the presented system, this task can be solved using a retargeting framework. Even
without retargeting, by manipulating the depth input point cloud MI we are able to
track motions of people if body proportions are not too far off the database skeleton,
see Sect. 5.5.

5.3.4 Normalization

In the proposed tracking framework, we allow the actor to move freely within the
field of view of the camera, while we restrict variations of the viewing direction
to the range of about ±45◦ rotation around the vertical axis with respect to the
frontal viewing direction. Recall that in our database all poses have been normalized
with regard to the position of the root joint and the viewing direction. Thus, in
order to query the database in a semantically meaningful way, we need to cope with
variations in global position and orientation of the actor. We normalize MI with
respect to global position by means of a 3D ellipsoid fit around MI using a mean-
shift algorithm similar to [52]. To cope with global rotations, one could augment
the database to contain pose representations from several viewing directions [12,
46, 52]. In this case, the retrieval time as well as the risk of obtaining unwanted
poses would increase. Instead, in our framework, we normalize the depth input point
cloud according to an estimated viewing direction. To this end, we compute a least-
squares plane fit to points corresponding to the torso, which we assume to be the
points that are closer than 0.15 m to the center of MI , see Fig. 5.5. The normal
to the plane, as indicated by the cyan arrow in Fig. 5.5, corresponds to the eigen-
vector with the smallest eigen-value of the covariance matrix of the points. The
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Fig. 5.5 Normalization of the geodesic extrema with respect to a computed viewing direction

viewing direction is its projection onto an imagined horizontal ground plane. We
then rotate the positions of the geodesic extrema about the vertical axis through
the center such that the normal of the rotated plane points to front. To cope with
frames in which the viewing direction cannot be estimated because, e.g., the torso
is occluded, we adaptively smooth the estimated directions over time. We detect
whether the torso is occluded by inspecting the eigen-values of the above mentioned
covariance matrix. Here, occluding body parts often lead to a stronger curvature
in the regarded points (smallest eigen-value is relatively large) or a less circular
fit (largest eigen-values are not similar). Then, we minimize the influence of the
estimated normal. As a consequence, the detected viewing direction remains stable
even if the arms occlude the torso or the center of MI does not correspond to the
torso. The proposed strategy might yield inaccurate viewing directions for persons
with a very roundish belly, where the regarded points might always posses a strong
curvature and thus the influence of the estimated normals might be continuously
down-weighted. Moreover, the depth data of a side view of such a belly might appear
similar to the depth data of a front view which could lead to invalid normals.

5.4 Pose Reconstruction Framework

As explained in the previous section, in the offline preprocessing phase, the cam-
era matrix is obtained and the background model is created. We now describe our
proposed online framework, see also Fig. 5.1. At a given frame t , the first steps are
to compute the point cloud MI from the distance image I , to perform background
subtraction, to filter out noise and to normalize according to the viewing direction.
Let χ∗

t−1 be the final pose estimate of the previous frame t − 1. From χ∗
t−1, we ob-

tain a pose hypothesis χ
LocOpt
t by refining χ∗

t−1 with a local optimization procedure
that takes the input depth data into account (Sect. 5.4.1). A second pose hypothesis
is obtained as follows. We extract a 15-dimensional feature vector from MI , rep-
resenting the 3D coordinates of the first five geodesic extrema (Sect. 5.4.2). Being
a low-dimensional yet characteristic pose representation, the features permit rapid
retrieval of similar full-body poses from a large pose database (Sect. 5.4.3). From
the set of retrieved poses we choose a single pose hypothesis χDB

t using a distance
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Fig. 5.6 (a) Subset of vertices Cχ ⊆ Mχ . (b) From pose χ (left), correspondences for mesh ver-
tices in Cχ are estimated (middle). Local optimization using the correspondences yields an updated
pose χ ′ (right)

function which takes the influence of the estimated pose of the previous frame χ∗
t−1

into account. Based on a late-fusion selection scheme that combines two sparse dis-
tances measures, our algorithm decides between χDB

t and χ
LocOpt
t to find the final

pose χ∗
t , see Sect. 5.4.4.

5.4.1 Local Optimization

In our local pose optimization, we follow a standard procedure as described in,
e.g., [42]. Here, the goal is to modify an initial pose χ such that the modified pose
χ ′ fits to the point cloud MI more accurately. To this end, we seek correspondences
between vertices in Mχ and points in MI .

Finding correspondences for all v ∈ Mχ is not meaningful for three reasons.
Firstly, many vertices do not have semantically meaningful correspondences in MI ,
e.g., the vertices of the back of the person. Secondly, the number of correspon-
dences for the torso would be much higher than the number of correspondences in
the limbs, which would disregard the importance of the limbs for pose estimation.
Thirdly, the computation time of local optimization increases with the number of
correspondences.

Therefore, we use a predefined set Cχ ⊆ Mχ of mesh vertices as defined in
Fig. 5.6(a). Here, we make sure that we select a couple of vertices for each body
part. Using a local kd-tree built up in every frame, we efficiently obtain the 
 near-
est neighbors in MI of each vertex v ∈ Cχ and claim correspondence of v to the
median of its 
 nearest neighbors to reduce the influence of noise. Using these cor-
respondences, we obtain updated pose parameters χ ′ by applying an optimization
framework similar to the one in [42].

5.4.2 Feature Computation

To obtain a sparse yet expressive feature representation for the input point cloud
MI , we revert to the concept of geodesic extrema as introduced in [36]. Such ex-
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Fig. 5.7 Graph obtained from the depth image (black lines) and a zoom-in from a more lateral
viewpoint for two poses with self-occlusions. The initially disconnected graph is automatically
connected using edges indicated by the red dashed lines, respectively

trema often correspond to end effector positions, yielding characteristic features for
many poses as indicated by Fig. 5.10. Following [36], we now summarize how one
obtains such features. Furthermore, we introduce a novel variant of Dijkstra’s algo-
rithm that allows for efficiently computing a large number of geodesic extrema. We
model the tuple of the first n geodesic extremal points as

En
I := (

e1
I , . . . , e

n
I

) ∈ (MI )
n. (5.2)

To compute En
I , the point cloud data is modeled as a weighted graph where each

point in {p1, . . . , pL} := MI represents a node in the graph. We refer to a node
by its index 
 ∈ [1 : L]. To efficiently build up the edge structure of the graph, we
exploit the neighborhood structure in the pixel domain Z

2 of the underlying distance
image. For a given p
 ∈ MI , we consider the 8-neighborhood in the domain of
the underlying image. For each such neighboring pixel pm ∈ MI , we add an edge
between m and 
 of weight w = ‖pm − p
‖2 if w is less than a distance threshold
τ . This way, we obtain a weighted edge structure in form of an adjacency list

E(
) := {
(m,w) ∈ [1 : L] ×R+ | pm and p
 share an edge of weight w

}
(5.3)

for 
 ∈ [1 : L]. Here, note that when building up the edge structure, the distance
between any two points in MI has to be evaluated only once.

In our approach, in contrast to the method in [36], we need to obtain a fully
connected graph with only one connected component in order to obtain meaningful
geodesic extrema. In practice, however, the graph computed as described above is
not fully connected if, for example, the depth sensor misses parts of the thin limbs,
or due to occlusions, see Fig. 5.7. To cope with such situations, we use an effi-
cient union-find algorithm [47] in order to compute the connected components. To
reduce small artifacts and noise pixels, we discard all components that occupy a
low number of nodes. Furthermore, we assume that the torso is the component with
the largest number of nodes. All remaining components are then connected to the
torso by adding an edge between the respective closest pair of pixels if the edge
weight is less than 0.5 m, see the red dotted lines in Fig. 5.7. This allows us to find
meaningful geodesic extrema even if the initial graph splits into separate connected
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Fig. 5.8 Computation of geodesic extrema using a variant of Dijkstra’s algorithm. (a) Graph struc-
ture and source node (cyan circle). (b) Geodesic distances and first geodesic extremum. (c) Updated
geodesic distances and second geodesic extremum. (d) The first ten geodesic extrema

components, see Fig. 5.10(b)–(h) for the resulting geodesic extrema of the graphs
shown in Fig. 5.7. Still, the estimated connections might lead to unwanted geodesic
extrema in some poses. In this case, the database lookup (as will be explained in
Sect. 5.4.3) might yield an inaccurate pose hypothesis. However, the influence of
such a pose on the final pose estimate will be minimized by means of a hypothesis
selection, as will be explained in Sect. 5.4.4.

We now show how a large number of extrema can be computed efficiently. Ba-
sically, we follow an iterative computation strategy. In each iteration, we use Di-
jkstra’s algorithm [11] to compute the geodesic distances from a centroid node 
0
(referred to as source node) to all other nodes in the graph. We then pick the node
with the maximal distance as the corresponding extremal point. The efficiency of
our algorithm is based on the observation that only in the first iteration of our al-
gorithm, a full pass of Dijkstra has to be computed. In all remaining iterations one
needs to consider only a small fraction of the nodes. As another observation, we
only need to obtain the geodesic distances of each node and do not need to store
the actual shortest path information which is usually saved in a predecessor array
in Dijkstra’s algorithm [11]. Therefore, we save additional time in each iteration by
omitting the predecessor array.

As input to Algorithm 1, we use the graph structure with nodes, edges, and the
designated source node 
0, see Fig. 5.8(a). Additionally, we use a priority queue Q

that stores tuples (m,w) ∈ [1 : L] × R+ of nodes and weights sorted by increasing
weight. The priority queue allows us to extract the tuple with the minimal weight
by the Q.getMin() operation. To keep track of the distance values of each node, we
use an auxiliary array � having L entries.

We start the algorithm by initializing �, see Lines 1–3. Then, we insert the source
node into the previously empty priority queue Q in Line 4. We then iterate over all
geodesic extrema to be computed. The first pass of Dijkstra (Lines 6 to 13) stores
the shortest geodesic distances from the source node to any other node in the graph
in the array �, see Fig. 5.8(b). Then, the point corresponding to the node 
∗ with
the largest distance in � is taken as the first geodesic extremum e1

I (Lines 14 to 15).
Note that if there are still nodes which are not reachable from the source node 
0,
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Algorithm 1 Geodesic Extrema Computation

Input: {p1 . . . pL} :=MI : 3D point cloud with points p
 ∈R
3 and nodes 
 ∈ [1 : L]

E(
) := {(m,w) ∈ [1 : L] ×R|pm and p
 share an edge of weight w}:
edge adjacency list defined on MI


0 ∈ [1 : L]: index of the designated source node
Q: priority queue for elements (m,w) ∈ [1 : L] ×R

n: number of geodesic extrema to be computed
Output: (e1

I
, . . . , en

I
) ∈ (MI )n: the n first geodesic extrema of G

1: for 
 ← 1 to L do
2: �[
] ← ∞ � Initialize distance array

3: �[
0] ← 0 � Distance to source
4: Q.insert((
0,0))

5: for i ← 1 to n do � Compute the first n extrema
6: while Q �= ∅ do
7: 
 ← Q.getMin() � Get entry with minimal weight
8: Q.removeMin() � Remove the entry from Q

9: for each (m,w) ∈ E(
) do � For all nodes connected by an edge to p


10: if �[
] + w < �[m] then
11: �[m] = �[
] + w � A shorter path has been found
12: Q.insert((m,�[m]))
13: end while � � now contains the geodesic distances
14: 
∗ ← arg max
∈[1:L] �[
] � Note: the arg max must ignore nodes that were not

reached
15: ei

I
← p
∗ � Store ith extremum

16: �[
∗] ← 0 � Simulates edge insertion between p
0 and p
∗
17: Q.insert((
∗,0)) � Let 
∗ act as new source

18: end for

they bear the same distance values ∞ as set in the initialization. Of course, such
unreachable nodes should not be considered as geodesic extrema. Therefore, the
arg max operator in Line 14 must ignore these nodes in order to recover the true
geodesic extremum. In Fig. 5.8(b), the detected extremum e1

I is indicated by the
gray sphere on the left foot. According to [36], the next step is to add a zero-cost
edge between 
0 and 
∗ and then to restart Dijkstra’s algorithm to find e2

I , and so
on. This leads to a run time of O(n · D) for n extrema with D being the run time of
Dijkstra’s algorithm for the full graph.

Note that the second run of Dijkstra’s algorithm shows a high amount of redun-
dancy: the entries in the array � corresponding to all nodes in the graph that are
geodesically closer to 
0 than to the node of e1

I will not change in the second run.
For example, in Fig. 5.8(c), only the distance values of the nodes within the high-
lighted area have changed.

Therefore, to compute the second pass, we keep the distance values of the first
pass and let the node 
∗ corresponding to e1

I act as the new source, see Lines 16
and 17. This way, the second iteration will be by an order of magnitude faster than
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Fig. 5.9 (a) Number of nodes visited and (b) run time in milliseconds to find the nth geodesic
extremal point for the baseline (black) and our optimized algorithm (green). Average values and
standard deviation bars for a sequence of 400 frames from the data set of [18] are reported

the first iteration, as also confirmed by our experiments described in the subsequent
paragraphs. Using 
∗ as the new source, we update � with a pass of Dijkstra’s
algorithm and pick e2

I as the point with the maximal distance in the updated �, see
Fig. 5.8(c). For the third pass we let the node corresponding to e2

I act as the new
source by setting the corresponding value in � to 0, and run Dijkstra again. This
way, in the third pass, only nodes in the graph that are closer to the node of e2

I

than to all other previously used source nodes are touched. We proceed iteratively
to compute the subsequent extremal points, see Fig. 5.8(d) for the resulting distance
values and extrema after 10 iterations.

Our computational strategy leads to drastic improvements in the run time for
each pass. To experimentally verify this, we evaluated the algorithm on a depth in-
put sequence of 400 frames taken from the data set of [18]. We computed the first
20 geodesic extrema for each of the 400 frames using both a baseline algorithm that
runs a full Dijkstra pass in each iteration and our optimized algorithm. We traced
the number of nodes visited in each iteration as well as the actual run time for each
iteration. Figure 5.9 shows that in the first iteration all reachable nodes in MI (on
average there were more than 6000 nodes in the graph) were visited. In the second
iteration, only 413 ± 61 nodes (average ± standard deviation over all frames) were
visited. This substantial reduction is also reflected by the run time of the algorithm,
which drops from 1 millisecond in the first iteration to about 0.058 ± 0.0085 mil-
liseconds in the second iteration, see Fig. 5.9(b). As a result, the overall run time
for computing the first 20 geodesic extrema is only slightly higher than the run
time of the original Dijkstra algorithm for computing the first geodesic extremum.
Thus, the algorithm allows us to efficiently compute a large number of geodesic
extrema.

The overall approach enables the detection of semantically meaningful end effec-
tor positions even in difficult scenarios. Figure 5.10 shows a number of challenging
examples, where legs occlude each other (b)–(c), multiple body parts occlude each
other (d)–(f), a fast punching motion with occlusions is performed (g)–(k), a leg is
bent to the back (l), and the hands are outstretched to the camera (m). However, in
poses where the end effectors are very close to other parts of the body, the topology
of the graph may change and the detected extrema may differ from the actual set of
end effectors, see Fig. 5.11(a)–(c). In these poses, the left elbow, the left shoulder,
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Fig. 5.10 Example poses with the first five geodesic extrema drawn as big spheres, and extrema 6
to 20 drawn as smaller blobs. For many poses, the first five extrema correspond to the end effectors,
even when self-occlusions are present.

Fig. 5.11 (a)–(c) Problematic example poses. In particular when the hands come close to the body,
end effector detection becomes difficult. (d)–(e) Flying mixed pixels lead to deviations in the end
effector detection

and the left hip are selected as e5
I , respectively. Also, flying mixed pixels can cause

the topology of the graph to change, as depicted in Fig. 5.11(d), where we show a
pose once from a frontal view and once from a side view. Note that although the left
hand keeps a reasonable distance from the head, mixed pixels build a bridge in the
graph from the hand to the head. Thus, the fifth extremum is located at the elbow.
Figure 5.11(e) shows a similar situation in which the head is not detected due to
mixed pixels. Instead, the fifth extremum is located at the hip.

In the subsequent section, we will explain the discriminative component of our
framework, where pose candidates are obtained from the database by using the po-
sitions of the first five geodesic extrema as a query. If the end effectors are not
revealed by these extrema, however, the obtained pose candidates are often mean-
ingless. As will be explained later, the influence of such meaningless poses on the
final pose estimates can be minimized with our combined generative and discrimi-
native framework.
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5.4.3 Database Lookup

As for the database lookup component, the goal is to identify a suitable full-body
pose χDB

t from our pose database using the extracted geodesic extrema E5
I as the

query input. However, as opposed to the database motions where the semantics of
the end effector positions are known, the semantic labels of the extrema on the
query side are not known. To partially solve for missing semantics, the method [18]
uses a classifier trained on ‘hand’, ‘head’, and ‘foot’ patches of distance images.
This process, however, is relatively expensive (taking 60 ms per frame according
to [36]) and is thus not directly suitable in real-time scenarios. Also, when using
depth data alone, misclassification of patches might occur because of missing color
information, strong noise, and the low resolution of the measurements. In order to
circumvent the classification problem, we propose a query strategy that does not
rely on having a-priori semantic labels for the extracted geodesic extrema. Intu-
itively speaking, we use different queries that reflect different label assignments. As
explained in the following, from the retrieved poses, we then choose a candidate
pose that most likely corresponds to the correct labeling.

Let S5 be the symmetric group of all five-permutations. For a permutation σ

and a five-tuple E, we denote the permuted tuple by σE. Now, let S ⊆ S5 be a
subset containing permutations σ such that the positions in σE5

I are close to the end
effectors of the previous frame χ∗

t−1. More specifically, we define

S := {
σ ∈ S5

∣∣ ∀n ∈ [1 : 5] : ∥∥eσ(n)
I − en

χ∗
t−1

∥∥< μ
}
. (5.4)

In our experiments, we use a distance threshold of μ = 0.5 meters to effectively
and conservatively prune the search space while still allowing for large jumps in
the end effector positions which may be present in fast motions. In frames with
clear geodesic extrema, the number of considered permutations |S| typically drops
to one. To further increase robustness to false estimations in the previous frame, we
add additional permutations to S if we detect jumps in the positions of the geodesic
extrema. To compute the additional permutations, we assume that the two lowest
extrema w.r.t. the vertical axis, say e1

I and e2
I , correspond to the feet. This leads to

two possible label assignments where the label ‘left foot’ is assigned to either e1
I or

e2
I . For each of the two assignments, the remaining three extrema can receive 3! = 6

different labellings. This leads to 2 · 6 = 12 additional permutations added to S .
By querying the kd-tree of the pose database for K nearest neighbors for each

permutation in S , we obtain K · |S| pose candidates χk,σ with k ∈ [1 : K] and σ ∈ S .
For each (k, σ ), we define a distance value between the pose candidate χk,σ and the
permuted E5

I by

δ
(
χk,σ ,E5

I

) := 1

5
· ‖Eχk,σ

− σE5
I ‖2. (5.5)

Note that to compute the distance δ(χk,σ ,E5
I ), we stack the tuples Eχk,σ

and σE5
I

into 15-dimensional vectors, respectively. The result of the database lookup χk∗,σ ∗
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for frame t is then chosen by also considering temporal consistency using
(
k∗, σ ∗)= arg min

(k,σ )

λ · δ(χk,σ ,E5
I

)+ (1 − λ) · dP

(
χk,σ ,χ∗

t−1

)
(5.6)

with a weighting factor λ that balances out the influence of dP (defined in Eq. 5.1)
and δ. In our experiments, we use λ = 0.5. Finally, we refine χk∗,σ ∗ to the hypothesis
χDB

t using local optimization as described in Sect. 5.4.1.

5.4.4 Hypothesis Selection

At this stage, two alternative pose hypotheses have been derived, namely χ
LocOpt
t

from the generative and χDB
t from the discriminative component. In the next step,

we need to create a single, final pose χ∗
t taking both hypotheses into account. Recall

that the pose hypothesis χDB
t might be inaccurate when the end effectors are not

revealed. Therefore, it is not meaningful to take the average pose of χ
LocOpt
t and

χDB
t as final pose. Instead, for this late-fusion step, we propose a novel selection

scheme that decides for either χ
LocOpt
t or χDB

t as the final pose χ∗
t based on an

efficiently computable sparse and symmetric distance measure. With the proposed
selection strategy, the local optimization and database lookup schemes benefit from
each other. On the one hand, if the database lookup component fails, then the local
optimization component can continue to track the motion. On the other hand, the
local optimization might fail to track fast and abrupt motions. In such situations, the
database lookup can reinitialize the tracking.

In the proposed selection scheme, we want to avoid a dominant influence of
potential errors coming from the feature extraction or from the database lookup.
Therefore, we use distance measures that revert to the original input point cloud
MI rather than to derived data. One possible distance measure could be defined by
projecting Mχ into a synthetic distance image and comparing it to I . In practice,
however, because of the relatively low number of pixels in the thin limbs, such a
distance measure is dominated by the torso. For this reason, we propose a novel
distance metric that can be computed efficiently and accounts for the importance of
the limbs for pose estimation.

To this end, we combine two sparse distances measures. The first distance ex-
presses how well the mesh is explained by the input data:

dMχ→MI
:= 1

|Cχ |
∑
v∈Cχ

min
p∈MI

‖p − v‖2. (5.7)

Here, we revert to only the subset Cχ ⊆ Mχ of vertices as defined in Sect. 5.4.1.
Likewise, the second distance measure expresses how well MI is explained
by Mχ :

dMI →Mχ
:= 1

20

∑
n∈[1:20]

min
v∈Mχ

∥∥en
I − v

∥∥
2. (5.8)
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To emphasize the importance of the limbs, we take only the first 20 geodesic ex-
trema of the input depth data, which largely correspond to points on the limbs rather
than the torso, see Fig. 5.10. Since also for the mesh we take only a subset of ver-
tices, see Fig. 5.6(a), the distance measures are sparse. Both distance measures can
be computed efficiently because firstly, geodesic extrema can be extracted very ef-
ficiently (Sect. 5.4.2), and secondly, only a small number of points are taken into
account. The final pose χ∗

t is then given through

χ∗
t := arg min

χ∈{χDB
t , χ

LocOpt
t }

(dMχ→MI
+ dMI →Mχ

). (5.9)

5.5 Experiments

We implemented the proposed hybrid tracking strategy in C++ and ran our experi-
ments on a standard off-the-shelf desktop PC with a 2.6 GHz CPU. To numerically
evaluate and to compare our hybrid strategy with previous work, we used the pub-
licly available benchmark data set of [18]. In this data set, 28 sequences of ToF
data (obtained from a Mesa Imaging SwissRanger SR 4000 ToF camera) aligned
with ground truth marker positions (obtained from a marker-based motion capture
system) are provided. This data set comprises 7900 frames in total. In addition to
numerically evaluating on this data set, we demonstrate the effectiveness of the pro-
posed algorithm in a real-time scenario with fast and complex motions captured
from a PMD Camcube 2 in a natural and unconstrained environment, see Fig. 5.13
and Fig. 5.14. In the accompanying video [2], we show that the same framework
also works with the Microsoft Kinect depth sensor without any further adjustments.

5.5.1 Feature Extraction

First, we evaluate the effectiveness of the proposed feature extractor on the bench-
mark data set. Not all ground truth markers in all frames are visible, thus, for this
evaluation, we use only the 3992 frames in which all five end effector markers are
visible. A good recognition performance of the feature extractor is needed for a
successful subsequent database lookup. In 86.1 % of the 3992 frames, each of the
found five geodesic extrema E5

I is less than 0.2 meters away from its correspond-
ing ground truth marker position. This shows that we can effectively detect the end
effector positions for most motions contained in the test data set.

5.5.2 Quantitative Evaluation

We run our pose reconstruction algorithm on the benchmark data set. Since the sur-
face mesh of the actor is not part of that data set, we scale the input point cloud data
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Fig. 5.12 Average pose error and standard deviation of sequences 27 to 0 of the data set of [18].
Bars left to right: Using only local optimization, using only the database lookup, results using the
proposed fusion scheme, and values reported by [18] (without std. dev.)

so that it roughly fits the proportions of our actor. We manually fix correspondences
between each motion capture marker and a mesh vertex. For a test sequence with
T frames, let Mt be the number of visible motion capture markers in frame t , let
mt,i be the 3D position of the ith visible marker in frame t and m̃t,i the position of
the corresponding mesh vertex of the reconstructed pose. As also used in [18], the
average pose error for a sequence is computed as

ε̄avg := 1∑T
t=1 Mt

T∑
t=1

Mt∑
i=1

‖mt,i − m̃t,i‖2. (5.10)

Whereas the overall accuracy of the tracking algorithm is expressed by means of
Eq. 5.10, potential local tracking errors can be averaged out. Therefore, we use
this evaluation measure to show tendencies in the accuracy by comparing differ-
ent pose estimation strategies for all benchmark sequences, see Fig. 5.12. To this
end, we report how the local optimization component (Sect. 5.4.1) and the database
lookup component (Sect. 5.4.3) perform individually, without being combined with
the late-fusion hypothesis selection. When using only local optimization (first bar)
the method often gets stuck in local minima and loses track. When using only a
database lookup (second bar), poses where the end effectors are not revealed by the
first five geodesic extrema may cause a false lookup result. Thus, in terms of the
average pose error, both methods in isolation do not perform well on all sequences.
The third bar shows the result of the proposed hybrid strategy which leads to sub-
stantial improvements. Also in comparison to [18] (last bar, std. dev. values were
not available), we achieve comparable results for basic motions and perform sig-
nificantly better in the more complex sequences 20 to 27. Only for sequence 24,
the method [18] performs better than our approach. The reason for this is that this
sequence contains a 360◦ rotation around the vertical axis, which cannot be han-
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Table 5.1 Average run times in milliseconds over all frames of the benchmark data set

Total Preparation Local optim. E20
I Lookup Selection

Full resolution 16.6 ms 1.2 ms 5.7 ms 6.2 ms 1.2 ms 0.9 ms

100 % 7 % 34 % 37 % 7 % 5 %

Half resolution 10.0 ms 1.1 ms 4.6 ms 1.5 ms 1.2 ms 0.9 ms

100 % 11 % 46 % 15 % 12 % 9 %

dled by our framework. However, our system can cope with rotations in the range of
±45◦ since we normalize the input data based on the estimated viewing direction.
For the benchmark data set, the hypothesis selection component decided in 22.5 %
of the frames for the retrieval component, and in 77.5 % for the local optimization
from the previous frame. With our hypothesis selection, we significantly reduced
the average pose error of the final pose estimate in comparison to either method ran
individually.

5.5.3 Run Time

In Table 5.1, we report the average run time of our pose estimation framework
in milliseconds per frame. In [18], the authors report a performance of 4 fps on
downsampled input data. By contrast, with our proposed algorithm, we achieve
60.4 fps (16.6 ms per frame) on average on the full resolution input data, and 100 fps
(10.0 ms per frame) with half of the resolution which we track with nearly the same
accuracy. The run times are in the same order of magnitude than other state-of-the-
art approaches like [48] where the authors report 200 fps on a different dataset and
“at least 10×” speedup with respect to [18]. As for a more detailed analysis, we also
give the run time of each algorithmic component, namely the data preparation phase
(Sect. 5.3), the local optimization component (Sect. 5.4.1), the feature extraction
(Sect. 5.4.2), the database lookup (Sect. 5.4.3), and the selection (Sect. 5.4.4). Note
that our efficient algorithms lead to run times that are well distributed among the
different components, such that no clear bottleneck is present. For the full resolu-
tion, the run time of local optimization and the feature extraction are approximately
the same. The latter benefits most from downsampling the data.

5.5.4 Qualitative Evaluation

In Fig. 5.13, we show example results of fast and complex motions captured in an
unconstrained environment. The considered motions are much faster and contain
more challenging poses than the ones used in [18]. The leftmost image in each
subfigure shows a video frame of the pose captured from a separate video camera
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Fig. 5.13 Snapshots of our results on fast and complex motions on data captured with the PMD
camera. For every motion we show a video frame of the actor (not used for tracking), ToF data
overlaid with the reconstructed skeleton, and a rendering of the corresponding mesh

not used for tracking. In the room where we recorded the data, the video camera
was standing to the left of the depth camera. The middle image shows the depth data
overlaid with the estimated skeleton of the pose χ∗

t . The rightmost image depicts a
rendering of the surface mesh in the corresponding pose.
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The first row (Fig. 5.13(a)) shows some frames of a successfully tracked motion
sequence. Even though the left foot is bent to the back and is nearly hidden from
the depth camera, the 3D geometry of the legs has been recovered correctly. Fig-
ure 5.13(b) depicts difficult bending motions. Despite the fact that such poses were
not part of our pose database, the motions were tracked successfully. For such mo-
tions, the result χDB

t of the lookup step does not reflect the true pose of the actor.
Thus, our selection scheme decided in each frame correctly for the local optimiza-
tion component which successfully tracked the motions. Figure 5.13(c) contains
typical failure cases. The first two images show poses with severe self-occlusion
which are still a challenge for pose reconstruction. Nonetheless, the overall pose
is reliably captured and arm tracking quickly recovered once the occlusion was re-
solved. The rightmost image shows a case where the right arm was not visible in
the depth input data. Since the proposed method assumes that at least parts of all
limbs are still visible in the depth data, the pose of the right arm is not correctly
recovered. Figure 5.13(d) shows examples of fast jumping, punching, and kicking
motions where the first two motions are additionally rotated to more than ±45◦
around the vertical axis with respect to the frontal viewing direction. The poses
in this row are roughly recovered. However, small misalignments of some limbs
might occur as visible in the right leg and the right arm, respectively. Also note the
inaccuracy in the left leg (third pose). Such minor inaccuracies can locally occur
and are typically resolved after a few frames. Figure 5.13(e) shows some poses of
a successful tracking of a sequence with fast and complex kicking motions. Note
that in the second pose of Fig. 5.13(e) it is difficult to distinguish the left leg from
the right leg when having only the depth data of a single frame. However, since
the local optimization and the database lookup components use temporal continu-
ity priors, the legs can be tracked successfully. Finally, Fig. 5.13(f) contains a very
fast arm rotation motion in a pose where the arms are close to being outstretched
to the camera (first image), and a jumping motion in a similar pose (second image).
Although only a small part of the arm is visible to the depth camera due to self-
occlusions, the 3D geometry of the arm is successfully recovered. The last image
shows a pose where the hands touch different parts of the body. Despite the fact
that in such poses not all geodesic extrema in E5

I correspond to the end effectors,
the motion has been tracked successfully since the hypothesis selection decided for
the local optimization component. In the accompanying video [2] we show the per-
formance of our prototype implementation also with the Microsoft Kinect depth
camera.

First experiments showed that actors with different body proportions can be
tracked if they are not too different from our body model. Therefore, we scaled
the input data to roughly match the proportions of the model, see Fig. 5.14 and
the accompanying video for examples. By scaling the input data, we avoid the re-
computation of the pose database for a different model.
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Fig. 5.14 Experimental results with a different person (ToF data from a PMD camera)

5.5.5 Limitations

In the proposed framework, we rely on certain model assumptions in several stages
of the framework. For example, we use a rigged surface mesh that is assumed to fit
the respective actor to be tracked. Therefore, we cannot directly track persons with
substantially different body proportions than the ones reflected by the surface mesh.
However, as shown in [54], the depth input can be used to estimate the body shape of
the actual person. First experiments have shown that one can use the same tracking
pipeline after applying a preprocessing step where the pose database is retargeted to
correspond to the estimated body shape.

A second limitation arises in situations where only parts of the actor are visible
in the field of view of the depth camera. Two assumptions within our framework
lead to false pose estimates in these situations. Firstly, in the local optimization
component, correspondences between the mesh and the depth data for all body parts
of the mesh are established. If some limbs are not visible in the depth data, then the
correspondences will inherently be semantically incorrect. Secondly, the geodesic
extrema will not correspond to the limbs anymore and retrieved database poses can
no longer stabilize the pose estimation. Therefore, the full body of the actor should
always be visible in the depth data.

Another problematic situation can occur when the end effectors are not revealed
for a longer period of time. Although we run two pose estimation components in par-
allel, each component in isolation does not give satisfying pose estimates as shown
in the accompanying video—it is the combination that facilitates stable and accurate
results. Therefore, if one of the components fails for an extended period of time, the
results might become unstable. For example, if the end effectors are not revealed
by the geodesic extrema for many successive frames, our algorithm continues to
track using only local optimization. Then, fast motions lead to unstable pose esti-
mation results, which are resolved as soon as the end effectors are detected again.
To overcome this limitation, additional techniques for detecting end effectors could
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be employed. For example, a fast method for detecting body parts similar to [48]
could be used to identify the end effectors and supplement the geodesic extrema
detections.

Finally, we expect the user to face the camera and rotate the body only within
a typical range for interaction (±45◦). We make use of this assumption in the nor-
malization step in Sect. 5.3.4. By normalizing the depth data with respect to the
estimated viewing direction, we can use a comparatively small pose database that
contains each pose only in one normalized orientation. However, with our pro-
posed method, the estimates for the viewing direction become unstable once the
user leaves the admissible range of rotations. Since the database lookup component
relies on a correct normalization of the input data, the retrieved pose hypotheses
will not reflect the true pose in such cases. Another problem with strong rotations
of the body is that then limbs are more likely hidden behind the body. To meliorate
pose estimates in these situations, one could employ a dynamic model for simulating
hidden limbs.

5.6 Conclusions

In this chapter, we introduced a combined generative and discriminative framework
that facilitates robust as well as efficient full-body pose estimation from noisy depth-
image streams. As one main ingredient, we described an efficient algorithm for com-
puting robust and characteristic features based on geodesic extrema. These extracted
geodesic extrema are used as query to retrieve semantically meaningful pose candi-
dates from a 3D pose database, where no a-priori semantic labels of the extrema are
necessary. Finally, a stable fusion of local optimization and global database lookup
is achieved with a novel sparse distance measure that also accounts for the impor-
tance of the limbs. For all components of the pipeline, we have described efficient
algorithms that facilitate real-time performance of the whole framework. In our ex-
periments we improved on the results of previous work, both in terms of efficiency
and robustness of the algorithm, as well as complexity of the tracked motions. As
for future work, we plan to integrate a dynamic model for achieving stable pose esti-
mates also for 360◦-rotations and for occluded limbs. Furthermore, the fast run time
of our method is one main ingredient that could spur further research for capturing
several interacting people. Finally, we aim to integrate a method for automatically
estimating the surface mesh of the person from depth data only.
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Chapter 6
Home 3D Body Scans from a Single Kinect

Alexander Weiss, David Hirshberg, and Michael J. Black

Abstract The 3D shape of the human body is useful for applications in fitness,
games, and apparel. Accurate body scanners, however, are expensive, limiting the
availability of 3D body models. Although there has been a great deal of interest
recently in the use of active depth sensing cameras, such as the Microsoft Kinect,
for human pose tracking, little has been said about the related problem of human
shape estimation. We present a method for human shape reconstruction from noisy
monocular image and range data using a single inexpensive commodity sensor. The
approach combines low-resolution image silhouettes with coarse range data to esti-
mate a parametric model of the body. Accurate 3D shape estimates are obtained by
combining multiple monocular views of a person moving in front of the sensor. To
cope with varying body pose, we use a SCAPE body model which factors 3D body
shape and pose variations. This enables the estimation of a single consistent shape,
while allowing pose to vary. Additionally, we describe a novel method to minimize
the distance between the projected 3D body contour and the image silhouette that
uses analytic derivatives of the objective function. We use a simple method to esti-
mate standard body measurements from the recovered SCAPE model and show that
the accuracy of our method is competitive with commercial body scanning systems
costing orders of magnitude more.
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Fig. 6.1 Overview. (a) 3D point cloud of a human in a cluttered home environment. (b) Recovered
shape transformed into a new pose

6.1 Introduction

For many applications an accurate 3D model of the human body is needed. The
standard approach involves scanning the body using a commercial system such as
a laser range scanner or special-purpose structured light system. Several such body
scanners exist, costing anywhere from $35,000 to $500,000. The size and cost of
such scanners limit the applications for 3D body models. Many computer vision
solutions suffer the same problems and require calibrated multi-camera capture sys-
tems. Here we describe a solution that produces accurate body scans using consumer
hardware that can work in a person’s living room (Fig. 6.1). This opens the door to
a wide range of new applications.

Recently there have been several approaches to capturing 3D body shape from
a monocular image [13, 16, 17, 29], a small number of synchronized camera im-
ages [4], or from several unsynchronized cameras [14]. As requiring multiple cam-
eras or synchronization would limit many interesting applications, we restrict our
attention to the monocular case, where the common approach is to segment the per-
son from the background and to estimate the 3D shape of the body such that the
silhouette of the body matches the image silhouette. The wide variation in body
shape, the articulated nature of the body, and self occlusions in a single view, how-
ever, all limit the usefulness of image silhouettes alone. To cope with these issues we
combine image silhouettes with coarse monocular range data captured by a single
Microsoft Kinect sensor [21].

Although the Kinect sensor itself, an IR structured light system, is not a partic-
ularly new idea, its low cost and mass distribution has the potential to bring depth



6 Home 3D Body Scans from a Single Kinect 101

Fig. 6.2 Overview. (a) Four views of the body in different poses are captured from a single Kinect.
(b) 3D point cloud and segmented 3D point cloud with ground plane for four frames (one shown).
(c) Recovered pose and shape (4 frames). (d) Recovered shape reposed using the SCAPE model

sensing cameras to a level of ubiquity previously only enjoyed by visible light cam-
eras. This makes the choice of a depth sensing camera reasonable for a much broader
and more interesting range of applications then ever before.

The resolution and accuracy of the sensor are relatively poor and our key contri-
bution is a method to accurately estimate human body pose and shape from a set of
monocular low-resolution images with aligned but noisy depth information. To be
scanned, a person moves in front of a single sensor to capture a sequence of monoc-
ular images and depth maps that show the body from multiple angles (Fig. 6.2).
As the person moves, the body shape changes making rigid 3D alignment impossi-
ble. Such non-rigid motions make scanning the body different from scanning rigid
scenes with a Kinect [22].

Rather than causing problems, changes in body pose can actually help us to
isolate the person’s intrinsic body shape if we model their shape in such a way
that we can separate body shape from the articulated pose and posture which con-
founds it. Humans are often asymmetric, so a single view, which–even with depth
information–leaves half the body unconstrained, is insufficient to our purposes. We
are not seeking to solve a shape completion problem (as in [2]), where the unob-
served side of the body is hallucinated, but to accurately recover the actual shape.
Although our method will perform shape completion if it is given only a single view,
we formulate it in terms of multiple frames sampled from a video sequence, show-
ing the body from various directions. We solve for the pose in each frame and for
a single common shape across all frames. To do so, we use the SCAPE model [2]
which is a parametric 3D model that factors the complex non-rigid deformations
induced by both pose and shape variation and is learned from a database of several
thousand laser scans.
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We estimate model parameters in a generative framework using an objective
function that combines a silhouette overlap term, the difference between the ob-
served range data and the depth predicted by our model, and an optional pose prior
that favors similarity of poses between frames. The silhouette term uses a novel
symmetric shape dissimilarity function that we locally minimize using a standard
quasi-Newton method. Our silhouette formulation has significant advantages over
previous methods as it allows the distance from the parametric model to the im-
age silhouette to be explicitly differentiated, enabling accurate optimization of body
shape and pose in a very high-dimensional space without resorting to ICP-based
methods which are unstable for complex articulated and non-rigid objects under
projection.

In summary our contributions are: (1) a system for body scanning at home; (2) the
combination of multiple low-resolution, noisy, monocular views (range and/or sil-
houettes) to estimate a consistent 3D body shape with varying pose; (3) a new
method for matching 3D models to silhouettes using an objective function that is
correspondence-free, bidirectional, and can be optimized with standard methods re-
quiring derivatives of the objective function; (4) a quantitative comparison with a
commercial state-of-the-art solution for scanning and measuring the body.

6.2 Related Work

The Microsoft Kinect provides one of the first inexpensive and widely available
range sensors. As discussed in the first chapter of this part of the book, existing
commercial and research systems solve the problem of rough body pose estimation
from this type of sensor data [10, 25] but, to date, there are no methods for accurate
body shape estimation from a single Kinect.

Tong et al. [28] estimate body shape using multiple Kinect cameras. They let
the body rotate on a platform and capture multiple images. To deal with body sway
and small pose variations, they have a non-rigid alignment method. Because they
use multiple Kinects and require calibration and a dedicated capture space, their
method is more like a traditional body scanner, and is not applicable to the home
scanning scenario we consider.

To estimate body shape accurately from a single Kinect, we must deal with data
that are monocular, low-resolution, and noisy. Anguelov et al. [2] describe a partial
solution. They show that, given a high resolution range image from a single view,
the SCAPE model can be fit to the observed data. The observed data constrain the
full 3D shape, enabling to hallucinate unseen parts of the body (shape completion).
For our purposes, this is not sufficient since we seek an accurate model of the full
body shape. We must therefore combine multiple views of the person and several
low-resolution scans to obtain an accurate representation.

If the person remained rigid, or we used multiple synchronized sensors, then it
would be straightforward to rigidly align multiple views to recover a composite 3D
body [22]. In our case, people move relative to a single sensor and, even if they
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try to maintain the same pose, there will be non-rigid variations in their shape. To
cope with this we need to integrate the consistent 3D body shape information across
views and poses. To do so we use the SCAPE model [2] which factors body shape
and pose information.

Balan and Black [5] use a similar idea to solve for body shape under cloth-
ing. They capture dressed people in multiple poses with a multi-camera system
and a green-screen background. Like us, they assume that body shape is consistent
across pose variations and combine information from multiple poses to estimate
body shape. Our work is different in that we use monocular data. Every time instant
captures the person in a different pose, so we never see the same pose from multiple
views.

There have been several recent methods that estimate body shape from monoc-
ular images. For example, image contours have been used in several graphics ap-
plications [17, 29] where the metric accuracy of the body shape is not important.
The recovered shapes are used for animation purposes to change the shape of peo-
ple in images or videos. To achieve metrically accurate results, more information is
required. Guan et al. [13] show that silhouettes alone are not sufficient for this task
and introduce two innovations. First they provide a height- and weight-constrained
subspace of body shape variation to constrain the problem. Second, and more im-
portantly, they integrate a shape from shading cue into the body shape optimization
(similar to [20]). The shading cue gives information about the shape inside the body
contour and they show that adding this improves the recovered shape accuracy.

Shading is a relatively weak cue and if range data are available, it can provide
more information about shape. In early work on body shape estimation, Plänckers
and Fua [24] use depth information from a stereo camera to estimate rough body
shape in a frontal view. Grest et al. [12] fit parameters of a simplified body model to
silhouettes and then use these parameters to improve pose tracking from range data.

Single frame, monocular methods, whether using silhouettes, shading, depth im-
agery, or other cues, suffer from the problem of occlusion, where the method is
forced to hallucinate unobserved surfaces. We describe a method for combining
multiple frames from a single monocular sensor to obtain a pose estimate for each
frame and a combined, coherent pose-independent body shape from all frames.
A Kinect is used to image the body from several directions (Sect. 6.3) in potentially
widely varying poses and a SCAPE model is fit to the data under the constraint
that all frames, though they may have varying poses, have the same intrinsic body
shape (Sect. 6.4). In a preliminary study, this estimate of body shape is then used
to predict measurements with an accuracy that is competitive with a state of the art,
commercial laser scan measurement system (Sect. 6.5).

6.3 Sensor and Preprocessing

The Microsoft Kinect sensor consists of an IR camera, an RGB camera, and an IR
projector that casts a fixed speckle pattern. Conversion of the pattern, as seen by



104 A. Weiss et al.

the IR camera, to a depth map happens on the device. It has a USB interface and
images can be captured using one of several libraries. We use libfreenect, a library
developed by the OpenKinect project [23], but other options include OpenNI and
the Microsoft Kinect for Windows SDK, both of which provide additional features
including segmentation and ground plane estimation as well as skeleton tracking.
The libfreenect library provides access to both the depth map and the raw IR video,
as well as to the RGB video and data from a built in accelerometer. The video
streams are VGA resolution and both the RGB and IR (either raw or the depth map)
can be captured together at 30 fps.

Intrinsic Calibration Intrinsic calibration of the RGB camera is carried out with
a checkerboard and standard calibration techniques [6]. To calibrate the IR camera
we cover the projector so that the calibration grid is not corrupted by the projected
pattern; otherwise calibration is identical to that of the RGB camera. We correct for
a known offset between the raw IR image and the depth map; see [19]. As the core
of our method is a process of synthesizing candidate 3D bodies and testing how well
they match the data from the sensor, we need this calibration to project candidate
bodies into the depth image scene.

Stereo Calibration Stereo calibration between the depth and RGB cameras can
be achieved with standard stereo calibration methods [6]. We use this only for visu-
alization to map the color image onto the point cloud.

Depth Calibration The Kinect reports depth discretized into 2047 levels, with a
final value reserved to mark pixels for which no depth can be calculated. These dis-
crete levels are not uniformly distributed, but are much denser close to the device.
We calibrate the depth by lining up a planar target parallel to the Kinect such that
the depth values are as uniform as possible across its surface; the distance is then
measured and the process repeated with depths ranging from 0.5 m to 3 m in 0.1 m
increments. A curve of the form: d(x) = 1

ax+b
is fit to these data, yielding the dis-

tance d(x) in meters given the discrete depth level x. The resulting depth maps can
be visualized either as a range image or as a point cloud, see Fig. 6.2. It is important
to note that these are the distances projected onto the viewing vector of the camera,
not distances from the camera center, that is, they are distances from a plane not
from a point.

Ground Plane We obtain an estimate of the ground plane in the camera coordinate
frame by robustly fitting a plane to the bottom of the point cloud, using the Kinect’s
on board accelerometer to initialize such that we locate the floor and not one of the
walls.

Segmentation We segment the body from the surrounding environment using
background subtraction on the depth map. Given a depth map Dbg taken without
the subject present and a depth map Df associated with a frame f , we take the
foreground to be Dbg − Df > ε, where ε is a few mm. We then apply a morpho-
logical opening operation to remove small isolated false positives. Segmentations
produced by the Microsoft Kinect for Windows SDK could be substituted here.
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Fig. 6.3 SCAPE body model. (a) Template mesh. (b) With articulated rigid deformation applied.
(c) With non-rigid pose deformation applied. (d) With body shape deformation applied. (Image
credit: Alexandru Balan [3])

6.4 Body Model and Fitting

We model body shape such that we can estimate a single consistent body shape
across multiple monocular frames while allowing pose to vary in each frame. Start-
ing with a coarse initialization, we optimize an objective function that combines
distance between foreground and model contours with depth error and an optional
pose prior. These steps are described below.

6.4.1 SCAPE Body Model

In order to estimate a body shape that is invariant to pose, we need a model that
accurately represents non-rigid shape deformations while factoring deformations
caused by changes in intrinsic shape (height, weight, body type, etc.) from defor-
mations caused by changes in pose. We use a SCAPE model, which was originally
described by Anguelov et al. [2]. It is a data-driven graphics model of the human
body that allows new body shapes to be synthesized with pose and intrinsic body
shape independently controlled. The model is learned offline from high resolution
whole body laser scans and captures the statistics of human shape variation both as
an individual changes pose and intrinsically across the population.

The SCAPE model is learned from two datasets of laser scans. The first, the
“pose dataset”, consists of many scans of one individual in widely varying poses.
The second, the “shape dataset”, consists of many scans of different individuals
all the same pose. In our case the pose dataset consists of approximately 70 scans
and the shape dataset of approximately 1000 scans for each gender. We construct
separate SCAPE models for each gender as we find a combined shape space to be
distinctly multi-modal. A template mesh (Fig. 6.3(a)) is non-rigidly registered with
each scan in both datasets to give a consistent topology.
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Pose, in our SCAPE model, is puppeteered with a kinematic tree of 15 body parts
with 3 degrees of freedom between each part; the pose parameter vector θ is the
concatenation of the Rodrigues vectors for all 15 parts with a global 3D translation.
Synthesis of a body in a new pose involves first rigidly rotating each part of the
template (Fig. 6.3(b)) and then applying a non-rigid deformation to each triangle
which both corrects collapses at the joints caused by the rigid rotation and provides
muscle bulging and other pose dependent changes in body shape (Fig. 6.3(c)). The
non-rigid deformation of each triangle is a linear function of the pose of nearby
joints. This function is estimated using the registered pose dataset.

When subjects were scanned for the shape dataset they were directed to take a
particular pose, but humans are not good at exactly replicating a pose, so there is
significant pose variation in the shape dataset. Because of this, if we were simply
to run Principle Component Analysis (PCA) over the registered shape dataset, we
would have pose artifacts in the shape space. To mitigate this effect, the pose model
is learned first and used to pose normalize the registered shape dataset, then the
shape space is learned by PCA from the pose normalized, registered shape dataset.
The intrinsic body shape parameter vector β is the coefficients of the 60 PCA basis
vectors accounting for the most variance (Fig. 6.3(d)).

In order to allow the shape change due to pose and the shape change due to
intrinsic body shape to be composed, the SCAPE model operates on triangle de-
formations rather than directly on the triangles [27]. This means that each triangle
is effectively rotated, scaled, and sheared in place, giving inconsistent locations for
vertices shared by triangles. The final consistent mesh is reconstructed from this
inconsistent mesh by least squares with the global 3D translation applied as a con-
straint to make the problem well posed. For more details, see [2].

We use the method described in [13] to constrain body shape to a subspace that
is roughly orthogonal to height variation, allowing us to freely optimize within the
subspace of bodies with the subject’s reported height. Our model has 48 pose pa-
rameters per frame and 60 shape parameters (i.e. 252 parameters for 4 frames).

6.4.2 Pose Initialization

As Shotton et al. [25] have demonstrated, the Kinect can be used to obtain coarse
pose estimates. In contrast, we are focused on the problem of shape estimation.
To this end, we assume a gross initial pose estimate; a complete, end to end sys-
tem would be obtained by combining the method we describe here with an existing
coarse pose tracking algorithm [10, 25]. The subject provides his or her height and
the initial body shape is taken to be the average shape for the subject’s height and
gender [13]; gender could be automatically detected as described in [5]. We initial-
ize the body model in the scene using the ground plane and the centroid of the point
cloud. Examples of initializations for three trials can be seen in Fig. 6.5.
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6.4.3 Depth Objective

For a body model represented as a triangulated 3D mesh with pose parameters θ

and shape parameters β , we associate a triangle tx(θ,β) with every pixel x in the
overlap between the model silhouette S(θ,β) and observed silhouette S̃ by finding
the front most triangle that projects into x. Let U(θ,β) = {(x1, tx1(θ,β)), . . .} for
all x in S(θ,β) ∩ S̃. For each pixel we have the observed depth D̃x , and for the
corresponding triangle t we find the depth, Dt(θ,β), along a ray through the pixel
center to the plane of the triangle. Taking ρ to be a robust error function (here,
Geman-McClure [11]), our depth objective is

Ed(θ,β; D̃,U) = 1

|U |
∑

(x,t)∈U

ρ
(
Dt(θ,β) − D̃x

)
. (6.1)

6.4.4 Silhouette Objective

Methods for fitting 3D models to silhouettes usually approximate one of these two
integrals

∫
x∈A

min
y∈B

ρ
(‖x − y‖) (6.2)

∫
x∈∂A

min
y∈∂B

ρ
(‖x − y‖). (6.3)

Here A and B are silhouettes, ∂A and ∂B are their boundaries, and ρ is a non-
decreasing function (e.g. Geman-McClure [11]). Frequently, approximations to
Eq. 6.2 use a discrete distance map [4, 26] and approximations to Eq. 6.3 use a
discrete distance map or a correspondence-based scheme like ICP [8, 14]. The in-
tegrand of the latter is illustrated in Fig. 6.4. Integrals like these are often used to
define shape distances [7], but are not widely used with parametric 3D models under
projection.

Accurately fitting a body to the image evidence benefits from bi-directional shape
distance functions [26] that compute the distance from the model to the image con-
tour and vice versa. Minimizing the distance from the image to the model ensures
that all image measurements are explained while minimizing the distance from the
model to the image ensures that visible body parts are entirely explained by im-
age evidence. Modeling the distance from the model to the image is straightforward
using the Euclidean distance transform to approximate the distance function to the
image silhouette, as this does not change during optimization. Modeling the dis-
tance from image to the model is more difficult because the distance function to
the model’s silhouette changes with the parameters being optimized; this makes an
explicit computation of the derivatives difficult.
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Fig. 6.4 Silhouette distance. On the left, the silhouette of the body model is colored by squared
distance to the gray observed silhouette. On the right, the implicit point and line correspondence
on an arc of the left leg’s silhouette is shown by coloring the arc to match the colors of points
and lines on the observed silhouette. The squared distance function along this arc as a function of
the y-coordinate is overlaid in gray to illustrate the effects of changes in correspondence. Colored
dashed lines are used to indicate the boundary of the region where a segment’s point-line distance
applies

Consequently, many methods that use distance maps either use uni-directional
distance, from model silhouette to static, observed silhouette [18, 26] or use
a derivative-free optimizer [4]. Problems with the uni-directional application of
Eq. 6.2 have been discussed and addressed [26]. Similar problems arise with the
use of Eq. 6.3 but are not often mentioned. The use of derivative-free methods for a
high-dimensional problem like ours is impractical, so we seek a method admitting
explicit computation of the derivative.

ICP methods are frequently used to minimize Eq. 6.3 for 2D to 2D and 3D to
3D shape registration problems. They can be used bidirectionally and optimization
is straightforward because the average point-to-shape distance is bounded by the
average distance between corresponding points, which is a smooth function of the
vertices of both shapes. Under projection we lose this bound because points on
the silhouette boundary no longer have a stable relationship to the 3D geometry.
Without this, the use of ICP is problematic, especially with complex articulated and
non-rigid objects.

If we have a set of correspondences between 3D model vertices on the silhouette
boundary and points on the observed silhouette, as we minimize the average dis-
tance of the projected vertices to their corresponding 2D points, some vertices will
disappear from the silhouette boundary and new vertices will appear. Since these
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newly visible vertices will not influence the objective function until we recompute
correspondences, the optimizer may move them anywhere without penalty. When
this happens, the parameters being optimized may jump away from low-error fixed
points to a solution from which ICP cannot recover.

We address this problem with a well-behaved new formulation that uses implicit
rather than explicit correspondences. We compute the line integral in Eq. 6.3 di-
rectly, replacing the explicit correspondences of ICP with the continuously chang-
ing ones implied by the min function. Symmetrizing this yields an objective function
that is correspondence-free and bidirectional.

To compute this integral, we must know, for each point on the integration sil-
houette, the distance to the nearest point on the other (reference) silhouette. Each
segment of the integration silhouette is broken up into pieces that are nearest to the
same geometric primitive (vertex or line segment interior) in the reference silhou-
ette. These breaks, illustrated in Fig. 6.4, occur in two circumstances: First, they
can occur along lines emanating from a segment’s vertices and perpendicular to the
segment. These lines define the region where perpendicular distance to the segment
is defined (dashed lines in Fig. 6.4). Second, these breaks can occur on linear or
quadratic arcs where two points (quadratic), two segment interiors (linear), or a seg-
ment interior and a point (quadratic) are equidistant (arrows of equal distance d in
Fig. 6.4).

The derivative of this integral is easily computed in terms of the derivative of
the path of integration and the derivative of the integrand [9]. There is, however,
a small problem. At the breaks the integrand is not differentiable with respect to
the reference silhouette, as the distance functions to the two equidistant primitives
vary independently. Nor is it differentiable with respect to the point of evaluation
x, as variation in one direction is dictated by one primitive’s distance function and
variation in another will be dictated by the other’s. If these breaks occur only at
points, as they do for almost every pair of silhouettes, they do not matter. There are
finitely many such breaks, and the value of the integrand at finitely many points, so
long as it is bounded, does not effect the value of an integral. But if a segment on the
integration silhouette lies along one of the arcs where two primitives are equidistant,
the non-differentiability of the integrand is inherited by the integral. Despite this,
in practice we optimize using a method intended for smooth functions and do not
encounter problems.

De la Gorce et al. [20] use a similar integration-based approach in the context
of articulated hand tracking with a generative model and formulate a differentiable
objective function. Their objective focuses on a generative model of image appear-
ance across the interior of the object. They compute a 2D integral, which allows
them differentiability despite a 1D discontinuity along the occluding contour of the
body. We could similarly compute a differentiable version of the area integral in
Eq. 6.2, but it would require us to compute arg miny∈S̃

‖x − y‖ inside a 2D region,
which amounts, in our setting, to computing the Voronoi diagram for a set of line
segments.
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Our silhouette objective function is a symmetrized and scaled version of Eq. 6.3,
averaging distance over each silhouette boundary to the other:

Euni(A,B) = 1

|∂A|
∫

x∈∂A

min
y∈∂B

ρ
(‖x − y‖) (6.4)

Es

(
S(θ,β); S̃) = 1

2
Euni

(
S(θ,β), S̃

)+ 1

2
Euni

(
S̃, S(θ,β)

)
(6.5)

where S(θ,β) is the silhouette of the model with pose parameters θ and shape pa-
rameters β and S̃ is the image silhouette.

6.4.5 Optimization

To estimate the pose parameters θf in each frame f (for clarity, let Θ = {θ1, θ2, . . .}
be the set of separate pose parameters for each frame) and the single consis-
tent pose β for all frames, we alternately compute pixel-triangle correspondences
U(θf,i−1, βi−1) for each frame f and new model parameters (Θi,βi) by local min-
imization of

Θi,βi = argmin
Θ,β

E(Θ,β;Θi−1, βi−1) (6.6)

where the combined error term E is

E(Θ,β;Θi−1, βi−1) =
∑
f

Ed

(
θf ,β; D̃f ,U(θf,i−1, βi−1)

)

+ λ1

∑
f

Es

(
S(θf ,β); S̃f

)+ λ2Epose(Θ). (6.7)

A simple pose prior, Epose(Θ), penalizes variation in pose between frames (ignoring
global rotation) and is used in cases where the subject is directed to stand in similar
poses for each frame (e.g. Fig. 6.5). For local minimization, we use a symmetric
rank 1 (SR1) trust region method with exact solution of the trust region subproblem.

6.5 Results

We scanned four subjects, having each stand in a T pose four times: facing the
camera, in profile, facing away from the camera, and rotated 45°, halfway between
frontal and profile. As demonstrated in Fig. 6.6, the choice of the four poses is
relatively arbitrary; we found that more than four poses did not significantly improve
the results and fewer made them worse.

Fitting results for three subjects are shown in Fig. 6.5. It is important to remember
that these images are not multi-camera synchronous captures. Because these images
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Fig. 6.5 Results. (Rows 1–2) Male subject. (Rows 3–4) Female subject 1. (Rows 5–6) Female
subject 2. The Grey mesh is the initialization. The Green mesh shows the fitted result
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Fig. 6.6 Widely varying poses. (a) Initialization. (b, c) Result. (d) Result reposed into novel pose

are not captured simultaneously, and the subjects move from frame to frame, the
pose cannot be assumed constant between frames. Consequently we let pose vary
between frames and use a simple pose prior that penalizes frame-to-frame variation
in the orientation of each body part independently. This helps keep the pose rea-
sonable in cases like the third frame (profile view) for female subject 1, where the
right leg is not visible from the camera and is thus otherwise unconstrained. The
foot pose of female subject 1 shown here is problematic, with portions of the feet
incorrectly segmented as background and a large region of floor nearby incorrectly
segmented as foreground inducing incorrect ankle rotation. Despite that, the fit to
the remainder of the body is quite good. With the coarse range and silhouette data
used here, any individual view may not be very accurate, but the robust combination
of body shape across views provides sufficient constraints to recover shape well.

Figure 6.6 shows a subject scanned in several widely varying poses and fit with-
out the pose constancy prior to highlight the ability of the method to integrate shape
across multiple disparate poses. The pose error in the second frame, where the lower
legs are pulled tightly up to the upper legs, is due to a segmentation error; the lower
legs were incorrectly segmented as background, so there was no image evidence to
drive the lower legs to remain visible.

Optimization takes approximately 65 minutes per body. This may seem excessive
but recall that the optimization involves estimating 252 parameters.
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Fig. 6.7 Comparison to laser
scan. (a) Laser scan.
(b) SCAPE model fit to laser
scan; pose and shape
recovered. (c) Contour +
depth fit to 4 views, reposed
to match pose of laser scan of
same subject. (d) Difference
map showing areas of
similarity (blue) and
difference (purple)
between (b) and (c) (scale
in mm)

From Bodies to Measurements One of the reasons to fit a 3D body model is to
extract standard measurements of the body (arm length, chest circumference, etc.)
that are useful in many applications. Like Hasler et al. [15], we calculate measure-
ments from shape parameters using a method that follows Allen et al. [1] in spirit,
but is the inverse of the problem they describe. Allen et al. learn a linear function
from a set of measurements to shape parameters, allowing them to synthesize new
people with specified measurements. We take the same data–shape parameters and
hand measurements for the several thousand subjects of the CAESAR dataset–and
perform linear regression to learn a function from shape parameters to measure-
ments (with the exception of weight, where we find it more accurate to regress from
the shape parameters to the cube root of weight).

Accuracy Relative to Laser Scans We evaluate the metric accuracy of fitting
body shape using just image contours and using both image contours and depth. To
do so we captured reference scans of the subjects using a Vitus Smart XXL laser
scanner (VITRONIC GmbH, Germany) (Fig. 6.7(a)). To test the accuracy of using
the Kinect sensor versus a commercial laser scanner, we first fit the SCAPE model
to the laser scans using a standard ICP method (Fig. 6.7(b)); we also fit to Kinect
data as described above (Fig. 6.7(c)). This allows us to evaluate the accuracy of the
fitting method and sensor data independent of the smoothing effect introduced by the
SCAPE model which represents body shapes in a low-dimensional linear subspace.
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Fig. 6.8 Measurement accuracy. Error of measurements found by regression from fitted shape
parameters using contour cost only (blue, 4 subjects), using contour and depth costs (green, 4 sub-
jects), and of SCAPE fit to laser scan (red, 3 subjects), with respect to ground truth obtained via
hand measurement. For comparison, we also show measurement error between hand measurement
and measurements calculated from the laser scans by a commercial scan measurement system
(Human Solutions Anthroscan) (magenta, 3 subjects)

The SCAPE fit to the laser scan represents a “best case scenario” since the data
are high resolution and highly accurate. The difference between a model fit to laser
data and Kinect data is illustrated in Fig. 6.7(d); the vertex to vertex distances are
0.53 mm (minimum), 22.23 mm (maximum), 10.17 (mean), 9.91 (median).
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Fig. 6.9 With and without
Ed . (a) Fit with contour and
depth terms. (b) Fit with only
contour term. (c) Same as (b)
but seen from the camera,
showing the quality of the
contour match, despite the
pose being wildly wrong

Linear Measurement Accuracy The second source of ground truth we use to
evaluate accuracy is hand measurements, taken by a professional with both tailoring
and anthropometric measurement experience. These are compared to measurements
calculated from the optimized shape parameters using the linear predictors described
above.

Figure 6.8 compares the measurement accuracy from SCAPE bodies fit to silhou-
ettes alone, silhouettes and range, and laser data. We find that range and silhouettes
together are more accurate than silhouettes alone. The reason for this is that both
shape and pose are poorly constrained by a monocular silhouette (Fig. 6.9). The
measurement accuracy using the Kinect-based fits is only slightly worse than with
the high resolution full-body laser scans; median errors generally are within 1 cm
of the laser scan measurements.

Additionally, we compare our accuracy with that of a commercially available
laser scan measurement system, Human Solutions Anthroscan (Human Solutions
GmbH, Germany). This system works on the raw laser scan and, consequently, fac-
tors out the effect of the SCAPE model. It is interesting to note that our inexpensive
system is competitive and even outperforms the commercial system on all the cir-
cumference measurements.

6.6 Conclusions

Three-dimensional body scanning has so far had a limited range of applications due
to the expense, complexity, and space requirements of existing scanning systems.
All these systems are based on multiple calibrated cameras and structured light
sources (including lasers). New scanners, constructed from multiple Kinects, are
appearing in the marketplace for clothing applications, but like previous systems,
they require a fixed installation and are not appropriate for home use.

Here we show that we can achieve accuracy similar to a state of the art laser
scanner-based measurement system with a single inexpensive commodity sensor.
We have demonstrated the feasibility of a body scanner that could work in a person’s
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living room by combining information about body shape over several noisy frames.
The key idea is to use the shape constancy of the body across frames to accurately
estimate a single shape and varying pose. The approach combines silhouettes and
depth with a novel silhouette dissimilarity term that overcomes problems of previous
approaches. We show that measurements of the body can be reliably predicted using
a simple linear regression approach and compare favorably to expensive commercial
systems.

Future work should address the estimation of shape under clothing. This has been
demonstrated in a synchronized multi-camera capture scenario with silhouettes [5]
and with laser scans [15]. We believe that it should work with the Kinect sensor. We
would also like to improve the optimization speed to make it interactive. An inter-
active system could provide the user with feedback about how to move to improve
their body model.
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Chapter 7
Real Time Hand Pose Estimation Using Depth
Sensors

Cem Keskin, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun

Abstract Real-time hand posture capture has been a difficult goal in computer vi-
sion. The extraction of hand skeleton parameters would be an important milestone
for sign language recognition, since it would make classification of hand shapes and
gestures possible. The recent introduction of the Kinect depth sensor has accelerated
research in human body pose capture. This chapter describes a real-time hand pose
estimation method employing an object recognition by parts approach, and the use
of this method for hand shape classification. First, a realistic 3D hand model is used
to represent the hand with 21 different parts. Then, a random decision forest (RDF)
is trained on synthetic depth images generated by animating the hand model, which
is used to perform per pixel classification and to assign each pixel to a hand part.
The classification results are fed into a local mode finding algorithm to estimate the
joint locations for the hand skeleton. The system can process depth images retrieved
from Kinect in real time, and does not rely on temporal information. As a simple
application of the system, we also describe a support vector machine (SVM)-based
recognition module for the ten digits of American Sign Language (ASL) based on
our method, which attains a recognition rate of 99.9 % on live depth images in real
time.

7.1 Introduction

After the release of multi-touch enabled smart phones and operating systems, there
has been a renewed interest in natural interfaces and particularly in hand gestures.
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Hand gestures are used in these systems to interact with programs such as games,
browsers, e-mail readers and a diverse set of tools. Immersive 3D displays will also
depend heavily on the use of hand gestures for interaction.

Vision-based hand gesture recognition, and particularly, sign language recogni-
tion has attracted the interest of researchers for more than 20 years. Yet, a framework
that robustly detects the naked hand and recognizes hand poses and gestures from
color images has continued to be elusive. This can be attributed mostly to the large
variance of the retrieved images, caused by changing light conditions, and to the
difficulty of distinguishing the hand from other body parts.

Two developments have recently accelerated implementations of human–com-
puter interaction using human body and hand gestures: The first is the release and
widespread acceptance of the Kinect depth sensor [1]. With its ability to generate
depth images in very low illumination conditions, this sensor makes the human body
and hand detection and segmentation a simple task. The second development is the
use of fast discriminative approaches using simple depth features coupled with GPU
implementation; enabling real-time human body pose extraction [2, 3].

Recently, Kinect has been used to achieve real-time body tracking capabilities,
which has triggered a new era of natural interface-based applications. In their rev-
olutionary work, Shotton et al. fit a skeleton to the human body using their object
recognition-based approach [2]. They use a large amount of labeled real and syn-
thetic images to train a randomized decision forest (RDF) [20] for the task of body
part recognition. In a later study, Girschick et al. [3] use the same methodology with
a regression forest, and let each pixel vote for joint coordinates. Detailed explanation
of both frameworks can be found in the first chapter of this part of the book.

The object recognition by parts approach is applicable to the hand pose estima-
tion problem as well, but there are some notable differences between the human
body and hand: (i) The projected depth image of a hand is much smaller than that
of a body; (ii) a body can be assumed to be upright but a hand can take any orien-
tation; (iii) in the case of hands, the number of possible meaningful configurations
is much higher and the problem of self-occlusion is severe. On the other hand, the
inter-personal variance of the shape of hands is much smaller compared to the huge
differences between fully clothed human bodies.

In this work, we largely follow the approach in [2]. Adopting the idea of an
intermediate representation for the object whose pose is to be estimated, we generate
synthetic hand images and label their parts, such that each skeleton joint is at the
center of one of the labeled parts. We form large datasets created from random
and manually set skeleton parameters, and train several randomized decision trees
(RDT) [20], which are then used to classify each pixel of the retrieved depth image.
Finally, we apply the mean shift algorithm to estimate the joint centers as in [2]. The
resulting framework can estimate hand poses in real time.

As a proof of concept, we demonstrate the system by using it to recognize ASL
digits. In our approach, we first train an RDF for ASL digits using synthetic images.
Then, we evaluate real depth images of ASL and fit a skeleton to each image. Finally,
we classify the skeleton configuration parameters using SVM, which can then be
used to infer the hand shape class for a given real hand depth image, by fitting
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a skeleton to it first. We demonstrate that this technique achieves a 99.9 % test
accuracy on a dataset of size 15k, collected from five users. Note that there are other
simpler approaches to classify ASL digits. However, using the skeletal configuration
to classify hand shapes is a powerful method, since the appearance of the hand is
entirely determined by the skeleton. This is reflected in the high success rate the
framework achieves. More importantly, this approach does not rely on class- or
application-specific heuristics and is directly applicable to all types of hand shape.

7.1.1 Related Work

With the release of Kinect, libraries for basic hand gesture recognition tasks have
been developed. However, these only consider hand movement, and not hand pose.
The estimation of the hand skeleton configuration has largely remained unsolved.

7.1.1.1 Hand Pose Estimation

Most approaches to hand pose estimation problem make use of regular RGB cam-
eras. Erol et al. [4] divide the pose estimation methods into two main groups in
their review: partial and full pose estimation methods. They further divide the full
pose estimation methods into single frame pose estimation and model-based track-
ing methods. Athitsos et al. [5] estimate 3D hand pose from a cluttered image. They
create a large database of synthetic hand poses using an articulated model and find
the closest match from this database. Similarly, Romero et al. [6] propose a non-
parametric, nearest neighbor-based search in a large database to estimate articulated
hand poses. De Campos and Murray [7] use a relevance vector machine-based learn-
ing method [8] for single frame hand pose recovery. They combine multiple views
to overcome the self-occlusion problem. They also report single and multiple view
performances for both synthetic and real images. Rosales et al. [9] use monocular
color sequences for recovering 3D hand poses. Their system maps image features to
3D hand poses using specialized mappings. Stergiopoulou and Papamarkos [10] fit a
neural network into the detected hand region. They recognize the hand gesture using
the grid of the produced neurons. De La Gorce et al. [11] use model-based track-
ing of the hand pose in monocular videos. Stenger et al. [13] apply model-based
tracking using an articulated hand model and estimate the pose with an unscented
Kalman filter. Bray et al. [14] propose an algorithm that wraps a particle filter around
multiple stochastic meta-descent-based trackers to form a smart particle filter that
can track an articulated hand pose. However, the resulting framework does not run
in real time. Heap et al. [15] describe a 3D deformable point distribution model of
the hand, which is used to track hands using a single RGB camera.

A number of approaches have been reported to estimate the hand pose from depth
images. Mo and Neumann [16] use a laser-based camera to produce low-resolution
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depth images. They interpolate hand pose using basic sets of finger poses and inter-
relations. Malassiotis and Strintzis [17] extract PCA features from depth images of
synthetic 3D hand models for training.

In a recent study Oikonomidis et al. [12] present a solution that makes use of both
depth and color images. They propose a generative single hypothesis model-based
pose estimation method. They use particle swarm optimization for solving the 3D
hand pose recovery problem, and report accurate and robust tracking in near real
time (15 fps), with a GPU-based implementation.

7.1.1.2 Hand Shape Recognition from Depth

Uebersax et al. propose a system that segments the hand and estimates the hand
orientation from captured depth data. Their letter classification method is based on
average neighborhood margin maximization. Liu and Fujimura [18] recognize hand
gestures using depth images acquired by a time-of-flight camera. The authors detect
hands by thresholding the depth data and use Chamfer distance to measure shape
similarity. Then, they analyze the trajectory of the hand and classify gestures using
shape, location, trajectory, orientation and speed features. Suryanarayan et al. [19]
use depth information and recognize scale and rotation invariant poses dynamically.
They classify six signature hand poses using a volumetric shape descriptor which
they form by augmenting 2D image data with depth information. They use SVM for
classification. Uebersax et al. [21] provide a thorough review of ASL letter recogni-
tion on depth data.

In Sect. 7.2 we describe the methodology used for fitting the skeleton. Section 7.3
lists the details of conducted experiments and presents our results on ASL digit
recognition. Finally, we conclude the chapter in Sect. 7.4.

7.2 Methodology

The flowchart of the system can be viewed in Fig. 7.1. The training phase is given in
the upper row, and the evaluation phase in the lower row. As there is no practical way
of labeling real depth images, only synthetic images are used for training. To this
end, the system employs a realistic 3D hand model that can be configured to form
new poses. Our framework handles automatic generation and labeling of synthetic
training images by manually setting or randomizing each skeleton parameter. It can
then form large datasets by interpolating poses and perturbing joints via addition
of Gaussian noise to each joint angle without violating skeleton constraints. These
synthetic datasets contain depth-label image pairs for each configuration. Typically,
datasets consisting of 40k to 200k image pairs are generated, which are used to train
the models. Each tree learns to map the pixels in a depth image to their correspond-
ing labels in the ground truth image. Multiple decision trees are trained that form
small ensembles, i.e. forests.
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Fig. 7.1 Flowchart of the system. The top image depicts the training phase, and the bottom image
depicts the evaluation phase

In the evaluation phase, an input depth image is fed into the trained RDF without
the ground truth labels. The trees in the RDF classify each depth pixel into a hand
part by assigning a set of posterior probabilities to it. The posterior probabilities
of each tree are averaged over all the trees in the forest. Finally, the mean shift
algorithm is used to estimate the 3D coordinates of the centroids of each hand part.
The skeleton is formed by connecting the joint coordinates according to the model
hierarchy.

The overall accuracy of the system depends on a variety of factors, such as the
number of trees, the depth of individual trees, the degree of variation in the training
set and other training parameters. In particular, if the training images do not reflect
the variety of hand poses encountered in real life, the trees cannot generalize well to
unseen poses.

By synthesizing training images, it is possible to automatically create a very large
set of configurations. First, a smaller set of plausible and common hand poses is
manually created, from which new poses are generated by extrapolating and ran-
domizing these configurations.

7.2.1 Data

To generate the synthetic images, we use a 3D skinned mesh model with a hierar-
chical skeleton, consisting of 19 bones, 15 joints and 21 different parts as viewed in
Fig. 7.2. Hand parts are defined such that all significant skeleton joints are located
near the centroids of corresponding parts. Hence, the thumb contains three parts and
all the other fingers contain four parts that signify each bone tip. The palm is divided
into two different parts, so that the deformations are better captured.

The model is animated and rendered with the texture depicting the hand parts,
without shading. The final color image is the label image, and the content of the
Z-buffer, which contains the depth map of the rendered pixels, is the depth image.
The magnitudes of the depth pixels are mapped to the interval [0,255] to minimize
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Fig. 7.2 The 3D hand model
with a hierarchical skeleton
and 21 labeled parts that is
used to generate a synthetic
training set. (a) The skeleton
is depicted with yellow parts
indicating the joint locations.
Image (b) shows the parts,
each of which correspond to a
joint or bone tip in the
skeleton

memory cost. To retain compatibility with the incoming Kinect data, the input depth
images are also normalized to the same interval.

The training sets are designed with target applications in mind, so that the trained
trees can generalize well to previously unseen hand poses that can be encountered
during common tasks, such as hand poses used for games, natural interfaces and
sign languages, all of which are manually modeled using a tool. The animator tool
can interpolate between these poses using the hierarchical skeleton model, and add
slight variations to each frame by perturbing joint locations, while changing the
camera pose. Skeletal constraints are applied to each interpolated pose, ensuring
that the resulting configurations are feasible. A data glove, which measures the joint
angles of the hand in real time, can also be used to manipulate the digital model
and create realistic hand poses. It can also be used to estimate and better model the
inter-personal variations in hand shape, such as size, finger lengths and thickness.
However, the models trained on a synthetic dataset formed by manipulating a single
hand shape has been found to be sufficient for all types of hand, as inter-personal
variance is low for the hands, and the trained models can easily be adapted to dif-
ferent hand sizes by scaling feature parameters if necessary.

7.2.2 Decision Trees

Decision trees consist of split nodes, which are the internal nodes used to test the
input; and leaf nodes, which are the terminal nodes used to infer a set of posterior
probabilities for the input, based on statistics collected from training data. Each split
node sends the incoming input to one of its children, according to the test result. The
test associated with a split node is usually of the form

fn(Fn) < Tn (7.1)

where fn(Fn) is a function of a subset of features and Tn is a threshold, at split
node n. The input is injected at the root node, which is forwarded by the split nodes
according to the test results; and the posterior probabilities associated with the leaf
node that is reached are used to infer the class label. Hence, the training of a deci-
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Fig. 7.3 A decision tree. The
input pixels are tested at each
node and guided down the
tree, finally reaching a leaf
node that is associated with a
set of posterior probabilities,
which is estimated from the
label histogram of data
collected during the training

sion tree involves determining the tests and collecting statistics from a training set.
A decision tree is depicted in Fig. 7.3.

In the case of an RDT, the features do not need to be determined beforehand.
Instead, the feature parameters are randomly sampled several times, and the test
that provides the best split, i.e. the maximum amount of information gain, is chosen.
This approach is particularly useful if the feature space is very large.

7.2.3 Randomized Decision Forest for Hand Pose Estimation

An RDF is an ensemble of RDTs trained on the same or slightly different datasets.
The input to an RDF is a depth image I , and a pixel location x. The output is a set
of posterior probabilities for each hand part label ci .

We use the same features as in [2]. Given a depth image I (x), where x denotes
location, we define a feature Fu,v(I,x) as follows:

Fu,v(I,x) = I

(
x + u

I (x)

)
− I

(
x + v

I (x)

)
. (7.2)

The offsets u and v are relative to the pixel in question, and normalized according
to the depth at x. This ensures that the features are 3D translation invariant. Note
that they are neither rotation nor scale invariant, and the training images should be
generated accordingly. The depth of background pixels and the exterior of the image
are taken to be a large constant.

Each split node is associated with the offsets u and v and a depth threshold τ .
The data is split into two sets as follows:

CL(u,v, τ ) = {
(I,x)|Fu,v(I,x) < τ

}
(7.3)

CR(u,v, τ ) = {
(I,x)|Fu,v(I,x) ≥ τ

}
. (7.4)

Here, CL and CR are the mutually exclusive sets of pixels assigned to the left and
right children of the split node, respectively.

In the training phase, each split node randomly selects a set of features, partitions
the data accordingly and chooses the feature that splits the data best. Each split is
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scored by the total decrease in the entropy of the label distribution of the data:

S(u,v, τ ) = H(C) −
∑

s∈{L,R}

|Cs(u,v, τ )|
|C| H

(
Cs(u,v, τ )

)
(7.5)

where H(K) is the Shannon entropy estimated using the normalized histogram of
the labels in the sample set K . The process ends when the leaf nodes are reached.
Each leaf node is then associated with the normalized histogram of the labels esti-
mated from the pixels reaching it.

Starting at the root node of each RDF, each pixel (I,x) is assigned either to the
left or the right child until a leaf node is reached. There, each pixel is assigned a
set of posterior probabilities P(ci |I,x) for each hand part class ci . For the final
decision, the posterior probabilities estimated by all the trees in the ensemble are
averaged:

P(ci |I,x) = 1

N

N∑
n=1

Pn(ci |I,x) (7.6)

where N is the number of trees in the ensemble, and Pn(ci |I,x) is the posterior
probability of the pixel estimated by the tree with index n. Another option is to
multiply the posteriors. However, the trees are correlated, and multiplication is more
prone to the effects of noise.

The RDF assigns each leaf node a set of posterior probabilities by counting the
number of training pixels from every label that reach that node. This approach poses
a balance problem if the number of training pixels significantly differ for labels.
Indeed, the number of training pixels for the palm is several orders of magnitude
larger than that of the finger tips. Hence, even a small portion of pixels from the palm
area dominates the posterior likelihoods of the leaf nodes it reaches. One solution is
to increase tree depth until all the leaves are pure. However, this causes overtraining
or over-confident posteriors, and reduces performance on test set. To prevent this,
(i) we stratify the sampling process and ensure that an almost equal number of pixels
from each label are used for training; (ii) we stop the splitting process if fewer than a
certain number of pixels are assigned to a node. This prevents overfitting and allows
better generalization.

Since only synthetic images are used for training, the RDFs must also general-
ize to real data as retrieved by the depth sensor. To ensure this, and to prevent the
RDF from memorizing artifacts or patterns associated with synthetic images, we
perturb both the skeletal configurations and the generated depth maps. In particular,
Gaussian noise is applied to each angle in the skeleton as well as to the depth infor-
mation. The Gaussian noise is applied to each depth pixel separately. The effect of
the resulting depth noise is depicted in Fig. 7.4. The image on the left is a synthetic
depth image. Here, the contrast is maximized to make the artifacts visible. Note
that the actual noise model of Kinect is very complex due to underlying algorithms.
Here, Gaussian noise is not applied to imitate the Kinect sensor, but rather to prevent
the RDF from memorizing the very precise depth information provided by a single
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Fig. 7.4 The effect of added
depth noise. The image on the
left is the original synthetic
depth image. The image on
the right is the same image
with added Gaussian noise
(σ = 3)

digital hand model, and to better generalize to the slightly different hand shapes of
actual people.

7.2.4 Joint Position Estimation

After each pixel is assigned posterior probabilities, the result is used to estimate the
joint positions. To locate the actual joint coordinates, a number of approaches can
be employed, such as calculating the centroid of all the pixels belonging to a hand
part. However, finding the centroid is not robust against outliers, which is especially
a greater problem for smaller hand parts.

To reduce the effect of outliers, the mean shift local mode finding algorithm [22]
is preferred over finding the global centroid of the points belonging to the same
class. The mean shift algorithm estimates the probability density of each class label
with weighted Gaussian kernels placed on each sample. Each weight is set to be the
pixel’s posterior probability P(ci |I,x) corresponding to the class label ci , times the
square of the depth of the pixel, which is an estimate of the area the pixel covers,
indicating its importance. The joint locations estimated using this method are on the
surface of the hand and need to be pushed back to find an exact match for the actual
skeleton.

Starting from a point estimate, or seed, the mean shift algorithm uses a gradient
ascent approach to locate the nearest mode of the distribution. As the maxima are
local, several different starting points are used and the one converging to the maxi-
mum score is selected. Finally, a decision regarding the visibility of the joint is made
by thresholding the highest score reached during the mean shift phase. The joint po-
sitions estimated in this manner are then connected according to their configuration
in the hand skeleton, forming the final pose estimate.

At this point, it is possible to make use of temporal or spatial information to infer
a better skeleton estimate. For instance, a particle filter can be used to eliminate
sudden jumps in joint locations, and skeletal constraints can be used to disregard
some of the local maxima reached by the mean shift phase. An important constraint
is that the joints on a finger lie on a 3D plane, which can also be used to detect
occluded joints.
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7.3 Experiments

Here, we report quantitative results for the hand pose estimation and hand shape
classification methods. First, we introduce the synthetic and real datasets used in
experiments.

7.3.1 Datasets

7.3.1.1 Synthetic Dataset

Performance of RDFs on previously unseen poses depends heavily on the training
set provided. Ideally, we want the trained RDF to generalize to all possible hand
poses. However, the number of images that need to be synthesized for this ambi-
tious task is immense. A static hand pose is a single configuration of the 22-dof
skeleton. The number of possible configurations, even with a modest step size for
each angle, is huge. Moreover, simply rotating a single static pose in 3D to generate
all possible views with a step size of 15 degrees, produces 15k images per pose.
This suggests that the target application should determine the extent of the dataset.
Here, we choose the 24 static ASL letters, the 10 ASL digits, and six hand poses
that are widely known and used, such as the sign for OK. For the 40 poses selected
and manually synthesized with the hand model, we rotate the camera in 3D, perturb
the angles, and interpolate between the poses to generate 200k synthetic images.
The offline learning method of Sect. 7.2 can be used to train an RDF on this dataset.
However, to incorporate a larger dataset, incremental learning methods should be
preferred [23].

7.3.1.2 Real Dataset

For the hand shape classification task, both synthetic and real images can be used.
However, only the accuracy on a real set is of importance. Therefore, a dataset con-
sisting of real depth images retrieved from a Kinect depth camera is collected. Data
collection is simple; one needs to perform the sign for several seconds in front of the
sensor, while slightly moving and rotating the hand. We collected a dataset for the
ten ASL digits from five different people. Each shot takes ten seconds, amounting
to a total of 300 frames for each digit per person. Hence, the dataset consists of 15k
images.

7.3.2 Effect of Model Parameters

The RDF parameters that have an effect on the classification accuracy are as follows:
(i) The number of trees; (ii) the tree depth; (iii) the limits of u, v and τ ; (iv) the num-
ber of feature samples tried at each node; (v) mean shift weight threshold; (vi) the
number of mean shift seeds.
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Fig. 7.5 The effect of the
forest size on the test
accuracy

7.3.2.1 The Effect of the Forest Size

Training a large RDT by maximizing information gain is likely to produce over-
confident posteriors. Since posterior probabilities are averaged over all trees, in-
creasing the forest size produces smoother posteriors, alleviates overtraining, and
allows better generalization, while monotonously increasing test accuracy. This is
illustrated in Fig. 7.5. The trade-off is the linear increase in memory and the time
it takes to test. We typically use one to four trees, as real-time performance is of
importance in most application areas.

7.3.2.2 The Effect of the Tree Depth

The depth of a tree determines the number of tests to apply to the input. If the
depth is too large, noisy training data will be isolated by the tests, causing overtrain-
ing. Likewise, a shallow tree will produce low-confidence, high entropy posteriors.
Therefore, it is important to optimize the tree depth.

The effect of the tree depth is illustrated in Fig. 7.6. Overtraining starts at around
depth 22, and the gain from increasing depth over 20 is minimal. As the need for
memory increases exponentially, we prefer setting the depth to 20.

In our implementation, a tree of depth D evaluates pixels using exactly D binary
comparisons. The number of internal nodes is 2D − 1, and the number of leaves
is 2D .

7.3.2.3 The Effect of the Feature Space

The feature space is determined by the maximum range of the offset parameters
u, v and τ . We use a single limit for both x and y coordinates of the u and the v

parameters, and a separate limit for the τ parameter. This defines the spatial con-
text that can be used for tests in the form of a cube around the pixel. Intuitively,
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Fig. 7.6 The effect of the
tree depth on the test accuracy

Fig. 7.7 The effect of the
limits of the offset parameters
u and v on the test accuracy

taking a larger context into account should increase the test accuracy. However, a
fixed number of parameter values are sampled at each node. Hence, incorporating a
larger context may reduce the probability of selecting good features that maximize
information gain for a split. Moreover, the training dataset must be large enough to
prevent the RDT from overtraining, if it uses a large spatial context. This effect is
visible for different values of u and v limits in Fig. 7.7. The optimum value for the
limit of u and v is estimated to be 23 pixel meters, i.e. 23 pixels if the hand is 1 m
away, 46 pixels if the hand is 50 cm away, or 11.5 pixels if the hand is 2 m away
from the camera. In our tests, we estimated the optimum value of τ to be 60 mm.

7.3.2.4 The Effect of the Sample Size

The sample size is the number of parameter values sampled from the feature space
for each internal node. Increasing the sample size increases the test accuracy, as it
is more likely to sample features that increase the information gain with a larger
sample size. The trade-off is the increase in training time. Since forest size must
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Fig. 7.8 The effect of the
sample size on the test
accuracy

be small due to memory constraints, the RDTs must produce confident posteriors.
However, as we are sampling from a fixed feature space, the effect of the sample size
levels off after some value. This is illustrated in Fig. 7.8. For the fixed limit of 23
pixel meters for u and v, the gain from increasing the number of trials is negligible
after sample size reaches 5000.

7.3.2.5 The Effect of the Mean Shift Parameters

Since hands are highly articulate and flexible objects, self-occlusion of entire hand
parts is natural and happens frequently. In the ideal case, there should be no pixel
assigned to the hidden hand part. However, it is common that some pixels are mis-
classified. In such cases, the mean shift algorithm determines the joint location for
the hidden hand part based on the misclassified pixels only. Therefore, such spurious
joint estimates need to be eliminated.

A decision regarding the visibility of the joint is made by thresholding the highest
score reached during the mean shift phase. The effect of the thresholding process is
shown in Fig. 7.9. Here, the images on the first column are the original pixel classi-
fication results, with colors assigned according to the highest posterior. The images
in the second column are the same images, with the corresponding joint locations
as estimated by the mean shift algorithm. The images on the third column are pro-
duced by eliminating joints that have low confidence values. Here, the confidence
is defined as the value of the peak reached during the mean shift phase, which is
evaluated using a combination of the pixel posteriors, joint bandwidth, which is a
measure of the spread of the joint, and the importance of the pixel, which is the
square of its depth, i.e. a measure of its area. The range of values depends on the
implementation, and we empirically estimated it to be around 0.4. In the upper row
of Fig. 7.9, the threshold is set to 0.5, which eliminates legitimate joints. In the mid-
dle row, the threshold is set to 0.4, and only spurious joints are eliminated. In the
lower row, the threshold is set to 0.2, leaving one spurious joint intact.

Mean shift is a local mode finding method that only finds the closest maximum.
To increase the likelihood of converging to the global maximum, we start multiple
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Fig. 7.9 In the upper row,
the confidence score
threshold is set too high (0.5),
eliminating true joints. In the
middle row, the threshold is
set correctly (0.4) and only
the spurious joints are
eliminated. In the lower row,
the threshold is set too low
(0.2), leaving one spurious
joint intact

times from different seed points. The maximum with the highest score is selected,
once all iterations converge. Seeds are randomly selected from the list of pixels with
posterior probabilities higher than a certain value. We empirically determined this
likelihood to be 0.35. The effect of the number of seeds is illustrated in Fig. 7.10.
Here, the rows depict two examples, and the columns correspond to seed numbers
1, 2, 3 and 4, respectively. The higher this number, the more likely it is to converge
to the correct joint locations. The trade-off is the increase in joint estimation time.
In practice, we start from up to 20 different seeds.

7.3.3 Hand Pose Estimation Results

A synthetic dataset of size 200k formed with 40 hand poses is used to conduct
hand pose estimation experiments. First, 5 × 2 cross-validation strategy is used to
determine the best parameters. In this method, the dataset is randomly divided into
two sets. In the first run, the model is trained on the first set and tested on the
second set. In the second run, the model is trained on the second set and tested
on the first set. This procedure is repeated on five randomly created pairs, and the
average accuracy is regarded as a robust estimation of the success rate. The optimal
forests are achieved with the parameters reported in Sect. 7.2: (i) Forest size = 4;
(ii) Tree depth = 20; (iii) Offset limit = 23 pixel-meters; (iv) Sample size = 5000;
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Fig. 7.10 The effect of the number of starting points for the mean shift algorithm. The columns
correspond to number of seeds 1, 2, 3 and 4, respectively

(v) Mean shift seed posterior threshold = 0.35; (vi) Number of seeds = 20. The test
accuracy of the resulting RDF is also determined with 5 × 2 cross-validation. The
per-pixel classification accuracy (using hard labels) on this dataset is 67.5 %.

Another important measure of error is the average distance between the esti-
mated joint coordinates and the ground truth. However, spurious joints, especially
misplaced finger tips, have a large effect on this type of error. Therefore, we esti-
mate the number of spurious or missing joints as an indicator of the error instead.
Hence, we count the number of correct joints in the test dataset, and divide it over
the number of visible joints. The visibility of the joints is determined automatically,
and correctness of a joint estimation is determined by thresholding the projected dis-
tance between the estimated and actual joint coordinates. For the synthetic dataset
of size 200k, with 40 poses, 82.1 % of the visible joints are estimated correctly. For
a smaller dataset of size 20k, formed by ASL digits only, the method is able to find
97.3 % of the joints correctly. Most of the error in the latter case is attributable to
misplaced finger tips.

7.3.4 Proof of Concept: American Sign Language Digit
Recognizer

To test the system on a real world application, we developed a framework for clas-
sifying ASL digits in real time. The method described in Sect. 7.2 gives estimates
of the hand skeleton as output. The pose classifier uses these estimates to recognize
the digits by mapping the estimated joint coordinates to known hand poses.

First, the RDF is trained on a synthetic ASL digit dataset of size 20k, so that it
learns to extract the skeleton from poses that closely resemble ASL digits. Then,
this RDF is used to evaluate the real depth images acquired from the Kinect, while a
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Table 7.1 Classification
rates and evaluation times of
each classifier on the ASL
digit dataset consisting of 20k
synthetic images

Method name Accuracy Classification duration (ms)

ANN 99.89 0.0045

SVM 99.96 0.3

user is performing ASL digits. A training set is formed using the extracted skeleton
parameters by properly labeling each hand skeleton according to its corresponding
hand shape. Such a training set can be used to train classifiers in a supervised man-
ner. These shape classifiers can then be used to map the extracted hand skeletons
into ASL digits in real time.

7.3.4.1 Hand Shape Classifiers

As the intended usage of the system is real-time recognition of ASL digits, speed
is as important as the recognition rate. We choose artificial neural networks (ANN),
since they are fast, and SVMs, since they are accurate. We use 5×2 cross-validation
strategy for both model selection and to test accuracy. Model selection for the RDF
is done only on the synthetic dataset.

7.3.4.2 Model Selection on the Synthetic Dataset

Both the RDFs and the skeleton classifiers need to be optimized. To select an RDF
model, a synthetic dataset needs to be used, since there is no ground truth labels
that are associated with real data. We optimized ANN and SVM separately for both
synthetic and real datasets. The synthetic dataset consists of 20k samples, formed by
2k synthetic images for each of the ASL digits. The RDF parameters are as reported
in Sect. 7.3.3. For the ANN, the optimum number of hidden nodes is estimated to
be 20. For SVMs, the optimal parameters are found to be 26 for the cost parameter
and 2−4 for the Gaussian spread (γ ).

The test accuracies and evaluation times are listed in Table 7.1. The first column
gives the average accuracies achieved by the cross-validation tests. The second col-
umn gives the evaluation times. Evidently, ANN is significantly faster than SVM.
However, SVM performs slightly better on the test data. The intermediate phases
and the final skeletons for several examples are given in Fig. 7.11.

7.3.4.3 ASL Digit Classification Results on Real Data

We conducted 5 × 2 cross-validation and grid search to estimate the optimal param-
eters of ANN and SVM again for the real dataset. Table 7.2 shows the parameters
tested.
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Fig. 7.11 Examples of
extracted skeletons on
synthetic ASL images. Upper
row lists the depth images.
Middle row shows the per
pixel classification results.
Third row displays the
estimated joint locations on
top of the labeled images.
The finalized skeleton is
shown in the bottom row

Table 7.3 lists the optimal parameters and recognition rates on training and val-
idation sets for ANNs and SVMs for real data. SVMs outperform ANNs and reach
nearly perfect accuracy on the validation set, indicating that the descriptive power
of the estimated skeleton is sufficient for the task of hand shape classification on
real depth images.

7.4 Conclusion

In this study, we described a depth image-based real-time skeleton fitting algorithm
for the hand, using RDFs to classify depth image pixels into hand parts. To produce
the huge amount of samples that are needed to train the decision trees, we devel-
oped a tool to generate realistic synthetic hand images. Our experiments showed
that the system can generalize well when trained on synthetic data, backing up the
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Table 7.2 Tested parameter
values (H : hidden nodes,
C: SVM cost, γ : Gaussian
spread)

Method name Parameter values

ANN H = {5,10,15,20,25,30,35,40,45,50,55}
SVM C = {2−1,20,21,22,23,24,25,26,27}
SVM γ = {2−5,2−4,2−3,2−2,2−1,20,21}

Table 7.3 Optimal parameters, average training and validation accuracies

Method name Optimal parameters Training accuracy Validation accuracy

ANN Hidden nodes = 40 99.27 98.81

SVM Cost = 25, � = 2−2 100 99.90

claims of Shotton et al. in [2]. In particular, just by feeding manually designed hand
poses corresponding to ASL digits to the RDFs, the system learned how to correctly
classify the hand parts for real depth images of hand poses that are close enough.
This in turn enabled us to collect real data labeled by the RDFs that can be used for
further pose classification tasks. We demonstrated the efficiency of this approach by
reaching a recognition rate of 99.9 % using SVMs on real depth images retrieved
with Kinect. The features used by SVMs are the mean shift-based joint estimates
calculated in real time from the per pixel classification results.

We focused on optimizing the speed and accuracy of the system, in particular by
performing grid search over all model parameters. The resulting framework is capa-
ble of retrieving images from Kinect, applying per pixel classification using RDFs,
estimating the joint locations from several hypotheses in the mean shift phase, and
finally using these locations for pose classification in real time. The system is opti-
mized for multicore systems and is capable of running on high end notebook PCs
without experiencing frame drops. Further enhancement is possible through the uti-
lization of the GPU, as described in [24], and this framework can be used along with
more CPU intensive applications such as games and modeling tools. This method is
one of the first to retrieve the full hand skeleton in real time using a standard PC and
a depth sensor, and has the extra benefit of not being affected by illumination.

The main focus of this study is skeleton fitting to the hands from a single frame.
Consequently, temporal information is ignored, which can certainly be used to en-
hance the quality of the fitted skeleton, via methods such as Kalman [25] or particle
filtering [26].
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Part III
RGB-D Datasets

In recent years, there has been significant progress on methods for visual recogni-
tion and categorization. Besides novel methods for image representations, a lot of
research effort has been put in advanced machine learning methods. Critical to this
success has been the creation of large datasets. Examples are the Pascal VOC Chal-
lenge, LabelMe, and ImageNet, just to mention a few ones. Furthermore, with the
help of Amazon Mechanical Turk or other crowd-sourcing platforms the labeling
process has been sped up tremendously and many new applications have become
feasible.

However, the design and acquisition of a dataset is not always trivial. A good
dataset should contain a fair representation of all the sub-categories. As datasets
contain labeled instances (e.g., a particular image contains a face) they are impor-
tant for at least two reasons: First of all, the data can be used to build the models.
As mentioned above, and demonstrated in the previous parts of the book, machine
learning methods usually have the need for a lot of training data. Secondly, the
dataset together with a proper evaluation metric can be used to evaluate the avail-
able methods and make fair comparisons among them.

In this part three newly built datasets for consumer depth cameras are introduced.
Synchronized images or videos of both color (RGB) and depth are acquired. In the
first chapter by Janoch et al. (A Category-Level 3D Dataset: Putting the Kinect to
Work) the main target applications are object class detection and recognition. The
second chapter by Lai et al. (RGB-D Object Recognition: Features, Algorithms,
and a Large Scale Benchmark) arranges objects in a hierarchical manner and also
aims for detection and recognition and even pose recognition of a particular object
instance. Finally, the chapter by Ni et al. (RGB-HuDaAct: A Color-Depth Video
Database For Human Daily Activity Recognition) focuses on human activity recog-
nition in videos. In addition to setting up the database, all three chapters discuss
proper RGB-D features and modeling techniques.



Chapter 8
A Category-Level 3D Object Dataset:
Putting the Kinect to Work

Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron,
Mario Fritz, Kate Saenko, and Trevor Darrell

Abstract The recent proliferation of the Microsoft Kinect, a cheap but quality depth
sensor, has brought the need for a challenging category-level 3D object detection
dataset to the forefront. Such a dataset can be used for object recognition in a spirit
usually reserved for the large collections of intensity images typically collected from
the Internet. Here, we will review current 3D datasets and find them lacking in vari-
ation of scene, category, instance, and viewpoint. The Berkeley 3D Object Dataset
(B3DO), which contains color and depth image pairs gathered in read domestic and
office environments will be presented. Baseline object recognition performance in a
PASCAL VOC-style detection task is established, and two ways that inferred world
size of the object van be used to improve detection are suggested. In an effort to
make more significant performance progress, the problem of extracting useful fea-
tures from range images is addressed. There has been much success in using the
histogram of oriented gradients (HOG) as a global descriptor for object detection
in intensity images. There are also many proposed descriptors designed specifically
for depth data (spin images, shape context, etc.), but these are often focused on the
local, not global descriptor paradigm. We explore the failures of gradient-based de-
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scriptors when applied to depth, and propose that the proper global descriptor in the
realm of 3D should be based on curvature, not gradients.

8.1 Introduction

The task of object recognition has made significant advances in the past decade and
crucial to this success has been the creation of large datasets as well as simple but
effective features. Unfortunately, these successes have been limited to the use of in-
tensity images and have chosen to ignore the very important cue of depth. Depth has
long been thought to be an essential part of successful object recognition, but the re-
liance on large datasets has minimized the importance of depth. Collection of large
datasets of intensity images is no longer difficult with the wide spread availability
of images on the web and the relative ease of annotating datasets using Amazon
Mechanical Turk. Recently, there has been a resurgence of interest in available 3D
sensing techniques due to advances in active depth sensing, including techniques
based on LIDAR, time-of-flight (Canesta), and projected texture stereo (PR2). The
Primesense sensor used on the Microsoft Kinect [4] gaming interface offers a par-
ticularly attractive set of capabilities, and is quite likely the most common depth
sensor available worldwide due to its rapid market acceptance (8 million Kinects
were sold in just the first two months).

There is a large body of literature on instance recognition using 3D scans from
the computer vision and robotics communities. However, there are surprisingly few
existing datasets for category-level 3D recognition, or for recognition in cluttered
indoor scenes, despite the obvious importance of this application to both communi-
ties. As reviewed below, published 3D datasets have been limited to instance tasks,
or to a very small numbers of categories. Described here is the Berkeley 3D Object
dataset (B3DO) [21], a dataset for category level recognition, collected using the
Kinect sensor in domestic and office environments. Figure 8.1 shows images rep-
resentative of B3DO. The dataset has an order of magnitude more variation than
previously published datasets.

Since B3DO was collected using Kinect hardware, which uses active stereo sens-
ing, the quality of the depth scans is much higher than in datasets based on pas-
sive stereo or sparsely sampled LIDAR. The full dataset can be downloaded at
http://www.kinectdata.com.

As with existing 2D challenge datasets such as the Pascal VOC [12], B3DO has
considerable variation in pose and object size, with objects covering a range of sizes
from nearly 5 % to almost 75 % of image width. An important observation the
dataset enables is that the actual world size distribution of objects has less variance
than the image-projected, apparent size distribution. The statistics of these and other
quantities for categories in the dataset are reported in Sect. 8.3.4.

A key question is what value do depth data offer for category level recognition?
Conventional wisdom is that ideal 3D observations provide strong shape cues for
recognition, but in practice even the cleanest 3D scans may reveal less about an

http://www.kinectdata.com
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Fig. 8.1 Typical scenes found in the B3DO. The intensity image is shown on the left, the depth
image on the right

object than available 2D intensity data. Numerous schemes for defining 3D features
analogous to popular 2D features for category-level recognition have been proposed
and can perform in uncluttered domains. Section 8.4 evaluates the application of
histogram of gradients (HOG) descriptors on 3D data and evaluates the benefit of
such a scheme on our dataset. Observations about world size distribution can also be
used to place a size prior on detections, which can improve detection performance
as evaluated by average precision, as well as provide a potential benefit for detection
efficiency.

For more significant performance improvements, features besides HOG must be
explored. Much of the recent success of object recognition based solely on inten-
sity images begins with the use of features derived from histograms of gradients.
Detectors such as the deformable parts model proposed by Felzenszwalb et al. [14]
begin with feature inspired by the HOG features described by Dalal and Triggs
[10]. Such features have been demonstrated to have some success when used on
range images [23] as shown in Sect. 8.4, but the feature was not originally designed
to be used as a depth descriptor. In fact, a gradient-based descriptor tends to identify
discontinuities in depth, which in many cases is very similar to the representation
that is learned by computing HOG features on intensity images. There will be some
differences in the features computed using gradients on intensity and range images
and both will be useful at times. For example, in Fig. 8.2 the back of the office chair
would be easier to identify using HOG on the depth image.
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Fig. 8.2 The office chair on
top illustrates an example
where the depth
discontinuities identified by
HOG on a depth image would
offer additional information
not as easily identified from
the intensity image. The bowl
on the bottom shows an
example where gradients on
the depth image would not be
expected to yield much that
could not be understood from
the intensity image

Merely identifying discontinuities in depth does not capture much of the signal
provided by depth. For example, an important characteristic of a bowl, like the one
in Fig. 8.2, is that it is concave on the inside, something that will not be captured by
HOG on range images. There have been a number of features proposed for depth as
described in Sect. 8.2.2, including both local features such as spin images [22], 3D
shape context [16], the VFH model [25] and the features used for pose estimation
in the Microsoft Kinect [26].

We propose that the proper feature to use in coordination with HOG should be
similar, but instead of being based on first-order statistics and gradients, should be
based on second-order statistics or curvature. Curvature is an appealing concept
because the same surface in a range image will have the same Gaussian and mean
curvature from any viewpoint under orthographic projection. This is because both
Gaussian and mean curvature encode the first and second principal curvature in
a way that is invariant to rotation, translations and changes in parameterization [6].
The curvature-based feature, which we call a histogram of curvature or HOC, would
be able to capture the fact that a bowl is concave on the inside, while maintaining
the spatial binning that is appealing in HOG.



8 A Category-Level 3D Object Dataset: Putting the Kinect to Work 145

8.2 Related Work

There have been numerous previous efforts in collecting datasets with aligned 2D
and 3D observations for object recognition and localization. Below is a review of the
most pertinent ones, and a brief highlight of how B3DO is different. Also included
in this section is an overview of previous work highlighting the integration of 2D
appearance and depth modalities.

8.2.1 3D Datasets for Detection

We present an overview of previously published datasets that combine 2D and 3D
observation and contrast our dataset from those previous efforts:

RGBD-Dataset of [23] This dataset from Intel Research and University of Wash-
ington features 300 objects in 51 categories. The category count refers to nodes in
a hierarchy, with, for example, coffee mug having mug as parent. Each category is
represented by four to six instances, which are densely photographed on a turntable.
For testing object eight short video clips of distinct scenes are available, which lend
themselves to evaluation of four categories (bowl, cap, coffee mug, and soda can)
and 20 instances. There does not appear to be significant viewpoint variation in the
detection test set. This dataset will be presented in detail in the following chapter.

UBC Visual Robot Survey [3, 20] This dataset from University of British
Columbia provides training data four categories (mug, bottle, bowl, and shoe) and
30 cluttered scenes for testing. Each scene is photographed in a controlled setting
from multiple viewpoints.

3D Table Top Object Dataset [28] This dataset from University of Michigan
three categories (mouse, mug and stapler) and provides 200 test images with clut-
tered backgrounds. There is no significant viewpoint variation in the test set.

Solutions in Perception Challenge [2] This dataset from Willow Garage forms
the challenge which took place in conjunction with International Conference on
Robotics and Automation 2011, and is instance-only. It consists of 35 distinct ob-
jects such as branded boxes and household cleaner bottles that are presented in iso-
lation for training and in 27 scenes for test.

Max Plank Institute Kinect Dataset [8] This dataset was designed for category
level recognition and contains 82 objects for training and 72 objects for testing
across 14 different categories. Objects were photographed densely in isolation for
both training and testing. The same object (but at a different viewing angle) was
included in both the training and test sets.
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Fig. 8.3 A random sample of instances of the “chair” class in B3DO. There is significant variety
amongst the examples in the model of chair, the viewpoint, the level of occlusion and illumination

Indoor Scene Segmentation Dataset [27] This dataset from NYU includes
videos of 64 different scenes seven different types of room. Approximately 2300
of the 100,000 frames are segmented into regions.
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Other Datasets Beyond these, other datasets have been made available which
do include simultaneous capture of image and depth but serve more specialized
purposes like autonomous driving [1], pedestrian detection [11] and driver assis-
tance [29]. Their specialized nature means that they cannot be leveraged for the
multi-object category localization task that is our goal.

In contrast to all of these datasets, B3DO contains both a large number of cate-
gories and many different instances per category. Both training and testing data are
photographed “in the wild” instead of in a controlled turntable setting, and images
contain significant variation in lighting and viewpoint throughout the dataset. For
an illustration, consider Fig. 8.3, which presents examples of the “chair” category
in B3DO. These qualities make B3DO more representative of the kind of data that
can actually be seen in people’s homes; data that a domestic service robot would be
required to deal with and use for online training.

8.2.2 3D and 2D/3D Recognition

There have been a number of 3D features proposed for object recognition as well
as a number of systems that combine intensity images with depth for object recog-
nition. Although this is by no means an inclusive list, some local 3D features that
have been proposed include spin images [22], 3D shape context [16], and the VFH
model [25]. Both spin images and 3D shape context define a support region around
interest points and then compute a histogram centered at that point. The support
region is oriented with the surface normal in both cases, but for spin images the
support region is a cylinder and for 3D shape context it is a sphere. For spin images
the cylinder is broken up into bins radially and with the cylinders height. In contrast,
3D shape context breaks up the sphere into bins in the azimuth, elevation and radial
dimensions, thus unlike spin images, 3D shape context is not rotationally invariant.
Recently, Shotton et al. [26] proposed a pose detector based on a random forest of
decision trees. The features used in the trees examine a specific point and compare
its depth to two other random points to traverse the tree.

A number of 2D/3D hybrid approaches have been recently proposed, and B3DO
should be a relevant testbed for these methods. A multi-modal object detector
in which 2D and 3D are traded off in a logistic classifier is proposed by Gould
et al. [17]. The method leverages additional handcrafted features derived from the
3D observation such as “height above ground” and “surface normal”, which pro-
vide contextual information. Sun et al. [28] show how to benefit from 3D training
data in a voting-based method. Fritz et al. [15] extend branch and bound’s efficient
detection to 3D and add size and support surface constraints derived from the 3D
observation.

Most prominently, a set of methods have been proposed for fusing 2D and 3D
information for the task of pedestrian detection. The popular HOG detector [10]
to disparity-based features is extended by Hattori et al. [19]. A late integration ap-
proach is proposed by Rohrbach et al. [24] for combining detectors on the appear-
ance as well as the depth image for pedestrian detection. Instead of directly learning



148 A. Janoch et al.

on the depth map, Walk et al. [29] use a depth statistic that learns to enforce height
constraints of pedestrians. Ess et al. [11] explore pedestrian detection by using stereo
and temporal information in a hough voting framework also using scene constraints.
Recently, Lai et al. [23] evaluated object detection on a challenging dataset collected
with the Kinect, as shown in the following chapter. They combined three features:
HOG on intensity images, HOG on depth images and a histogram calculated based
on the estimated scale of an object. They found the combination of the three fea-
tures yields significantly improved results over a detector based solely on intensity
images.

8.3 The Berkeley 3D Object Dataset

The Berkeley 3D Object Dataset is a large-scale dataset of images taken in domestic
and office settings with the commonly available Kinect sensor. The sensor provides
a color and depth image pair, and is processed for alignment and inpainting (see
Sect. 8.3.3). The data were collected by many members of the research community,
as well as an Amazon Mechanical Turk (AMT) worker, providing an impressive va-
riety in scene and object appearance. As such, the dataset is intended for evaluating
approaches to category-level object recognition and localization.

The dataset was collected with ten different Kinects that were taken to the homes
and offices of 19 different volunteers who collected 849 images from 75 different
scenes or rooms. Volunteers were given a list of objects that would be labeled and
were told to take images that did not looked staged containing one or more of these
objects. Simple instructions should enable the dataset to grow more easily in the
future.

Over 50 different object classes are represented in the dataset by crowd-sourced
labels. The annotation was done by AMT workers in the form of bounding boxes on
the color image, which are automatically transferred to the depth image.

8.3.1 Data Annotation

Crowd sourcing on AMT was used to label the data collected. AMT is a well-known
service for “Human Intelligence Tasks” (HITs), which are typically small tasks that
are too difficult for current machine intelligence. Our labeling HIT gives workers a
list of eight objects to draw bounding boxes around in a color image. Each image is
labeled by five workers for each set of labels in order to provide sufficient evidence
to determine the validity of a bounding box. A proposed annotation or bounding box
is only deemed valid if at least one similarly overlapping bounding box is drawn
by another worker. The criteria for similarity of bounding boxes is based on the
PASCAL VOC [12] overlap criterion (described in more detail in Sect. 8.4.1), with
the acceptance threshold set to 0.3. If only two bounding boxes are found to be
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similar, the larger one is chosen. If more than two are deemed similar, the bounding
box which overlaps the most with the other bounding boxes is kept and rest are
discarded.

8.3.2 The Kinect Sensor

The Microsoft Xbox Kinect [4] was originally designed as a video game peripheral
for controller-free gaming through human pose estimation and gesture recognition.
The sensor consists of a horizontal bar with cameras, a structured-light projector,
an accelerometer and an array of microphones mounted on a motorized pivoting
foot. Across the horizontal bar are three sensors: two infrared laser depth sensors
with a depth range of approximately 0.6 to 6 meters, and one RGB camera (640 ×
480 pixels) [4]. Depth reconstruction uses proprietary technology from Primesense,
consisting of continuous infrared structured-light projection onto the scene. Since its
release in November 2010, much open source software has been released allowing
the use of the Kinect as a depth sensor [9].

The Kinect color and infrared cameras are a few centimeters apart horizontally,
and have different intrinsic and extrinsic camera parameters, necessitating their cali-
bration for proper registration of the depth and color images. Calibration parameters
differ significantly from unit to unit, which poses a problem to totally indiscriminate
data collection. Fortunately, the calibration procedure is made easy and automatic
due to efforts of the open source community [7, 9].

8.3.3 Smoothing Depth Images

The structured-light method used for recovering ground-truth depth-maps necessar-
ily creates areas of the image that lack an estimate of depth. In particular, glass
surfaces and infrared-absorbing surfaces can be missing in depth data. In addition,
“shadows” may occur along the edge of some objects. Tasks such as getting the
average depth of a bounding box, or applying a global descriptor to a part of the
depth image therefore benefit from some method for “inpainting” these missing
data.

This work assumes that proper inpainting of the depth image requires some
assumption of the behavior of natural shapes and that objects have second-order
smoothness (that curvature is minimized)—a classic prior on natural shapes [18, 31].
In short, the inpainting algorithm minimizes

‖h ∗ Z‖2
F + ∥∥hT ∗ Z

∥∥2
F

(8.1)

with the constraints Zx,y = Ẑx,y for all (x, y) ∈ Ẑ, the measured depth, and where
h = [−1,+2,−1], is an oriented 1D discrete Laplacian filter, ∗ is a convolution
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Fig. 8.4 Illustration of our depth smoothing method. The original depth image is shown on the
left where black pixels demonstrate missing depth data. The smoothed image is shown on the right

Fig. 8.5 Object frequency for the 39 classes with 20 or more examples. A heavy tail can be
observed, which is common in other vision datasets

operation, and ‖·‖2
F is the squared Frobenius norm. The solution to this optimization

problem is a depth-map Z in which all observed pixels in Ẑ are preserved, and all
missing pixels have been filled in with values that minimize curvature in a least-
squares sense. This problem is occasionally ill-conditioned near the boundaries of
the image, so a small additional regularization term is introduced for first-order
smoothness. For speed considerations, the hard constraints in the problem above
are relaxed to heavily penalized soft constraints to solve the induced least-square
problem. Figure 8.4 illustrates this algorithm operating on a typical input image
from B3DO with missing depth to produce the smoothed output.

8.3.4 Data Statistics

The distribution of objects in household and office scenes as represented in B3DO
is shown in Fig. 8.5. The typical long tail of unconstrained datasets is present, and
suggests directions for targeted data collection. There are 12 classes with more than
70 examples, 27 classes with more than 30 examples, and over 39 classes with 20
or more examples.
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Fig. 8.6 Statistics of object size. For each object class, the top histogram is inferred world object
size, obtained as the product of the bounding box diagonal and the average depth of points in
the bounding box. The bottom histogram is the distribution of the length of the diagonal of the
bounding box. (Note the difference in scale on the x-axis for these histograms)

Unlike other 3D datasets for object recognition, B3DO features large variability
in the appearance of object class instances. This can be seen in Fig. 8.3, presenting
random examples of the chair class in the dataset; the variation in viewpoint, dis-
tance to object, frequent presence of partial occlusion, and diversity of appearance
in this sample poses a challenging detection problem.

The apparent size of the objects in the image, as measured by the bounding box
containing them, can vary significantly across the dataset. The real-world size of the
objects in the same class varies far less, as can be seen in Fig. 8.6. As a proxy for
the real-world object size, the product of the diagonal of the bounding box l and
the distance to the object from the camera D is used, which is roughly proportional
to the world object size by similar triangles (of course, viewpoint variation slightly
scatters this distribution–but less so than for the bounding box size).

We found that mean smoothed depth is roughly equivalent to the median depth of
the depth image ignoring missing data, and so this is used to measure distance. The
Gaussian was found to be a close fit to these size distributions, allowing estimation
of the size likelihood of a bounding box as N (x|μ,σ), where μ and σ are estimated
on the training data. This result will be used further in Sect. 8.4.3.
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8.4 Detection Baselines

The cluttered scenes of B3DO provide for a challenging object detection task, where
the task is to localize all objects of interest in an image. Here, the task is constrained
to finding eight different object classes: chairs, monitors, cups, bottles, bowls, key-
boards, computer mice, and phones. These object classes were among the most well-
represented in our dataset.1

8.4.1 Sliding Window Detector

The baseline system is based on a standard detection approach of sliding window
classifiers operating on a gradient representation of the image [10, 14, 30]. Such
detectors are currently the state of the art on cluttered scene datasets of varied view-
points and instance types, such as the PASCAL-VOC challenge [12]. The detector
considers windows of a fixed aspect ratio across locations and scales of an image
pyramid and evaluates them with a score function, outputting detections that score
above some threshold.

Specifically, the implementation of the Deformable Part Model detector [14] is
followed. This uses the LatentSVM formulation

fβ(x) = max
z

β · �(x, z) (8.2)

for scoring candidate windows, where β is a vector of model parameters and z are
latent values (allowing for part deformations). Optimizing the LatentSVM objective
function is a semi-convex problem, and so the detector can be trained even though
the latent information is absent for negative examples.

Since finding good negative examples to train on is of paramount importance
in a large dataset, the system performs rounds of data mining for small samples
of hard negatives, providing a provably exact solution to training on the entire
dataset.

To featurize the image, HOG with both contrast-sensitive and contrast-insensitive
orientation bins, four different normalization factors, and 8-pixel wide cells is used.
The descriptor is analytically projected to just 31 dimensions, motivated by the anal-
ysis in Felzenszwalb et al. [14].

Two feature channels for the detector are explored. One consists of featurizing
the color image, as is standard. For the other, we apply HOG to the depth image
(Depth HOG), where the intensity value of a pixel corresponds to the depth to that
point in space, measured in meters. This application of a gradient feature to depth

1We chose not to include a couple of other well-represented classes in this test set because of
extreme variation in interpretation of instances of object by the annotators, such as the classes of
“table” and “book.”
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images has little theoretical justification, since first-order statistics do not matter as
much for depth data (this is why we use second-order smoothing in Sect. 8.3.3).
Yet this is an expected first baseline that also forms the detection approach on some
other 3D object detection tasks, such as in [23]. Section 8.5 will explore features
based on second-order statistics.

Detections are pruned by non-maximum suppression, which greedily takes the
highest-scoring bounding boxes and rejects boxes that sufficiently overlap with an
already selected detection. This procedure results in a reduction of detections on
the order of ten, and is important for the evaluation metric, which penalizes repeat
detections.

8.4.2 Evaluation

Evaluation of detection is done in the widely adopted style of the PASCAL detection
challenge, where a detection is considered correct if

area(B ∩ G)

area(B ∪ G)
> 0.5, (8.3)

where B is the bounding box of the detection and G is the ground-truth bounding
box of the same class. Only one detection can be considered correct for a given
ground-truth box, with the rest considered false positives. Detection performance is
represented by precision-recall (PR) curves, and summarized by the area under the
curve, the average precision (AP). Evaluation is done on six different splits of the
dataset, averaging the AP numbers across splits.

The goal of this work is category, not instance-level recognition. As such, it is
important to keep instances of a category confined to either training or test set. This
makes the recognition task much harder than if training on the same instances of
a category as exists in the test set was allowed (but not necessarily the same views
of them). To enforce this constraint, images from the same scene or room are never
in both the training and test sets. This is a harder constraint than needed, and is
not necessarily perfect (for example many different offices might contain the same
model laptop). As there is no scalable way to provide per-instance labeling of a
large, crowd-sourced dataset of cluttered scenes, this method is settled upon, and
the problem is kept open for future research.

Figure 8.7 shows the detector performance eight different classes. Note, depth
HOG is never better than HOG on the 2D image. This can be attributed to the in-
appropriateness of a gradient feature on depth data, as mentioned earlier, and to
the fact that due to the limitations of the infrared structured-light depth reconstruc-
tion, particular objects (such as monitors) tend to have significant missing depth
data. Figure 8.8 provides an illustration of cases in which objects are missing depth
data, along with objects from the same class which are missing much fewer depth
data.
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Fig. 8.7 Performance of the
baseline detector on our
dataset, as measured by the
average precision. The darker
gray bars represent the
detector which extracted
features from the color image,
and the light gray bars
represent the detector which
extracted features from the
depth map. Average results
over six different splits of the
data are shown with error
bars. Depth HOG fails
completely on some
categories, for reasons
explained in the text

Fig. 8.8 The top two rows of images show examples of good depth data for various objects. The
bottom two rows show examples of missing depth data for objects of the same classes as shown in
the top two rows. All examples illustrate depth after smoothing as described in Sect. 8.3.3
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Fig. 8.9 The gain (or loss) in average precision from using depth data to prune or rescore detec-
tions. Average precision was averaged across six different splits of the data, and error bars are
shown. In all cases the rescoring strategy is superior to the pruning strategy. In all but the case of
the monitor, both pruning and rescoring improved performance over the baseline

8.4.3 Pruning and Rescoring by Size

In Sect. 8.3.4, the distributions of object size demonstrated that true object size, even
as approximated by the product of object projection in the image and median depth
of its bounding box, varies less than bounding box size. In the following, two ways
of using approximated object size as an additional source of discriminative signal to
the detector are investigated.

The first way of using size information consists of pruning candidate detections
that are sufficiently unlikely given the size distribution of that object class. The
object size distribution is modeled with a Gaussian, which is a close fit to the under-
lying distribution; the Gaussian parameters are estimated on the training data only.
Boxes that are more than σ = 3 standard deviations away from the mean of the
distribution are pruned.

Figure 8.9 shows that the pruning results provide a slight increase in detection
performance, while Fig. 8.10 shows that 12 % to 68 % of the suggested bounding
boxes are pruned (on average across the classes, 32 % of candidate detections are
rejected). This observation can be leveraged as part of an “objectness” filter or as a
thresholding step in a cascaded implementation of this detector for a gain in detec-
tion speed [5, 13]. The classes chair and mouse are the two classes most helped by
size pruning, while monitors and bottle are the least helped (likely because many
bottles and monitors have significant missing depth data). Using bounding box size
of the detection (as measured by its diagonal) instead of inferred world size results
in no improvement to AP performance on average.



156 A. Janoch et al.

Fig. 8.10 Average
percentage of past-threshold
detections pruned by
considering the size of the
object. The light gray
rectangle reaching to 32 % is
the average across classes. In
both cases, error bars show
standard deviation across six
different splits of the data

The second way we use size information consists of learning a rescoring function
for detections, given their SVM score and size likelihood. A simple combination of
the two values is learned:

s(x) = exp
(
α log

(
w(x)

)+ (1 − α) log
(
N (x|μ,σ)

))
, (8.4)

where w(x) = 1/(1 + exp(−2fβ(x))) is the normalized SVM score, N (x|μ,σ) is
the likelihood of the inferred world size of the detection under the size distribution
of the object class, and α is a parameter learned on the training set. This corresponds
to unnormalized Naïve Bayes combination of the SVM model likelihood and object
size likelihood. Since what matters for the precision-recall evaluation is the ordering
of confidences and whether they are normalized is irrelevant, s(x) can be evaluated
directly.

As Fig. 8.9 demonstrates, the rescoring method works better than pruning. This
method is able to slightly increase recall as well as precision by assigning a higher
score to likely detections in addition to lowering the score (which is, in effect, prun-
ing) of unlikely detections.

8.5 A Histogram of Curvature (HOC)

The previous section demonstrated how HOG could be used to featurize range im-
ages. As mentioned earlier, this is not the ideal use of HOG since it is designed to
be used on intensity images. We seek to define a feature representation analogous to
HOG that is more appropriate for range images. Curvature is an appealing feature
to work with when range data are available because it is potentially less sensitive
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to changes in viewpoint than gradient-based descriptors (such as HOG). As men-
tioned in the introduction, a surface in a range image will have the same Gaussian
and mean curvature from any viewpoint under orthographic projection.

8.5.1 Curvature

Curvature is a measurement of the rate of change of the orientation of the tangent
vector to a curve. The principal curvatures for a point P is the maximum (K1)
and minimum (K2) curvature for all curves passing through P . To further reduce
curvature to a single measurement one can either calculate the Gaussian curvature,

Kgauss = K1K2 (8.5)

or mean curvature,

Kmean = (K1 + K2)/2. (8.6)

The sign of the Gaussian and mean curvature are enough to characterize the surface
at a point P into one of eight fundamental surface types: peak, pit, ridge, valley,
saddle ridge, saddle valley, flat or minimal [6].

8.5.2 HOC

The first step to compute a histogram of curvature is to compute curvature at every
pixel. A simple computation of curvature using second derivatives is very sensitive
to noise and the Kinect sensor is by no means a noiseless sensor. As a first attempt
to remove noise, range images are smoothed using a simple convolution with an
averaging filter. In order to further overcome the obstacle of noise, Besl describes
how Gaussian and mean curvature can be computed robustly for points on a surface
[6]. We follow this method to compute Gaussian and mean curvature with the only
modification being that the following 3 × 3 filter windows are used instead of 7 × 7
windows.

Fu = 1/8

⎛
⎝

1 0 −1
2 0 −2
1 0 −1

⎞
⎠

Fv = 1/8

⎛
⎝

1 2 1
0 0 0

−1 −2 −1

⎞
⎠

Fuu = 1/4

⎛
⎝

1 −2 1
2 −4 2
1 −2 1

⎞
⎠
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Fvv = 1/4

⎛
⎝

1 2 1
−2 −4 −2
1 2 1

⎞
⎠

Fuv = 1/4

⎛
⎝

1 0 −1
0 0 0

−1 0 1

⎞
⎠ .

Just as in [6], these filters are then convolved (denoted by ∗) with the depth
Z to produce intermediate values that can be used to compute mean and gaussian
curvatures in Eqs. 8.8 and 8.9:

gu(i, j) = Fu ∗ Z(i, j) gv(i, j) = Fv ∗ Z(i, j)

guu(i, j) = Fuu ∗ Z(i, j) gvv(i, j) = Fvv ∗ Z(i, j) (8.7)

guv(i, j) = Fuv ∗ Z(i, j)

Kmean(i, j)

= (1 + g2
v(i, j))guu(i, j) + (1 + g2

u(i, j))gvv(i, j) − 2gu(i, j)gv(i, j)guv(i, j)

2(
√

1 + g2
u(i, j) + g2

v(i, j))3

(8.8)

Kgauss(i, j) = guu(i, j)gvv(i, j) − g2
uv(i, j)

(1 + g2
u(i, j) + g2

v(i, j))2
. (8.9)

After computing both Gaussian and mean curvature at every point in the range
image, the goal is to compute some sort of histogram over a window of the image
based on curvature. Below are the results for with four different types of feature
with varying number of bins.

The feature vector for each window is computed for a pyramid of different res-
olution windows similarly to [14]. Windows are divided into spatial bins or cells,
more specifically the number of cells in the horizontal direction is equal to w/k,
where w is the width of the window and k is some constant, in this case k = 8. The
number of cells in the vertical direction is equal to h/k, where h is the height of the
window. A histogram is then computed for each cell and the resulting histograms for
each cell and each level of the pyramid are concatenated to create a feature vector
for the entire window.

The first HOC methods are inspired by the fact that mean curvature might be a
sufficient feature because if the boundary of a curve is specified, mean curvature
uniquely determines the shape of the surface [6]. Since noise is such a concern
when computing curvature the first two HOC features are not actually histograms,
but simply averages over a spatial area. For each spatial cell (i, j), the average mean
curvature is denoted acurv(i, j).



8 A Category-Level 3D Object Dataset: Putting the Kinect to Work 159

A single number is assigned for that cell based on the average:

HOC1(i, j) =

⎧⎪⎨
⎪⎩

−1 if acurv(i, j) < −t

0 if − t < acurv(i, j) < t

1 if acurv(i, j) > t.

(8.10)

Experiments were also conducted using two thresholds instead of just one. Using
one threshold approximately assigns negative, zero and positive curvature to differ-
ent values (or in the case of the histograms below, different bins). Using two thresh-
olds assigns strongly negative, weakly negative, zero, weakly positive and strongly
positive curvature to different values. This is an intuitively desirable effect because
we might bin depth discontinuities (strong curvature) into different bins than small
changes in curvature that can be seen within the edges of an object. This intuition
leads to the hypothesis that without two thresholds the features would be dominated
by the strong curvature at depth discontinuities, thus making HOC similar to HOG
on a range image. Obviously, this should be avoided so the second HOC feature is
assigned using two thresholds:

HOC2(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2 if acurv(i, j) < −t2

−1 if − t2 < acurv(i, j) < −t1

0 if − t1 < acurv(i, j) < t1

1 if t1 < acurv(i, j) < t2

2 if acurv(i, j) > t2.

(8.11)

Since the features described in Eqs. 8.10 and 8.11 are not actually histograms,
the following similar features are actually histograms of the average curvature in a
spatial bin:

HOC3(i, j,1) =
{

1 if acurv(i, j) < −t

0 otherwise

HOC3(i, j,2) =
{

1 if − t < acurv(i, j) < t

0 otherwise
(8.12)

HOC3(i, j,3) =
{

1 if acurv(i, j) > t

0 otherwise.

As before a fourth feature that uses two thresholds instead of one can be defined:

HOC4(i, j,1) =
{

1 if acurv(i, j) < −t2

0 otherwise

HOC4(i, j,2) =
{

1 if − t2 < acurv(i, j) < −t1

0 otherwise
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HOC4(i, j,3) =
{

1 if − t1 < acurv(i, j) < t1

0 otherwise
(8.13)

HOC4(i, j,4) =
{

1 if t1 < acurv(i, j) < t2

0 otherwise

HOC4(i, j,5) =
{

1 if acurv(i, j) > t2

0 otherwise.

Of course, averaging might not be the right solution, a lot of signal might be lost
in attempts to denoise. As mentioned before, Gaussian curvature may or may not be
useful, so the following HOC features continue to use just mean curvature (Kmean).
(Gaussian curvature will be used later.) In the following feature descriptor, instead
of averaging, a true histogram is computed by counting the number of pixels in each
cell that fall into each of the three bins of the histogram:

HOC5(i, j,1) =
∑

pixel(x,y)∈cell(i,j)

(
Kmean(x, y) < −t

)

HOC5(i, j,2) =
∑

pixel(x,y)∈cell(i,j)

(−t < Kmean(x, y) < t
)

(8.14)

HOC5(i, j,3) =
∑

pixel(x,y)∈cell(i,j)

(
Kmean(x, y) > t

)
.

As before, a 5-bin version of the feature vector can also be formulated:

HOC6(i, j,1) =
∑

pixel(x,y)∈cell(i,j)

(
Kmean(x, y) < −t2

)

HOC6(i, j,2) =
∑

pixel(x,y)∈cell(i,j)

(−t2 < Kmean(x, y) < −t1
)

HOC6(i, j,3) =
∑

pixel(x,y)∈cell(i,j)

(−t1 < Kmean(x, y) < t1
)

(8.15)

HOC6(i, j,4) =
∑

pixel(x,y)∈cell(i,j)

(
t1 < Kmean(x, y) < t2

)

HOC6(i, j,5) =
∑

pixel(x,y)∈cell(i,j)

(
Kmean(x, y) > t2

)
.

After experimenting with different thresholds, we found empirically that t = t1 =
0.005 and t2 = 0.05 worked best.

Finally, it is necessary to evaluate feature descriptors that use Gaussian curvature
as well as mean curvature. To do this additional bins must be added to either HOC5
or HOC6. A six bin histogram of mean and gaussian curvature (Kgauss) is computed
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as follows:

HOC7(i, j, k) = HOC5(i, j, k) for k = 1,2,3

HOC7(i, j,4) =
∑

pixel(x,y)∈cell(i,j)

(
Kgauss(x, y) < −tg

)

HOC7(i, j,5) =
∑

pixel(x,y)∈cell(i,j)

(−tg < Kgauss(x, y) < tg
)

HOC7(i, j,6) =
∑

pixel(x,y)∈cell(i,j)

(
Kgauss(x, y) > tg

)
.

(8.16)

A similar feature descriptor (HOC8) can be computed for an eight-bin histogram
using two thresholds for mean curvature:

HOC8(i, j, k) = HOC6(i, j, k) for k = 1,2,3,4,5 (8.17)

HOC8(i, j, k) = HOC7(i, j, k − 2) for k = 6,7,8. (8.18)

We found empirically that tg = 0.00005 worked well.

8.5.3 Experimental Setup and Baselines

All the experiments in this section are based on a sliding window linear SVM clas-
sifier trained in two phases, one using random negative examples and one using
“hard” negatives generated using the code from Felzenszwalb et al. [14]. Two mir-
rored models are trained for each class and windows are constrained to a fixed aspect
ratio but varying position and scale. All features are evaluated as a pyramid of scales.
In contrast to the experiments in Sect. 8.4, the models computed in this section were
not based on the deformable parts model. As in Sect. 8.4, nonmaximal suppression
is used at test time and the same evaluation paradigm (Eq. 8.3) is used.

Two baselines were performed, both based on the use of a HOG feature descrip-
tor that uses both contrast-sensitive and contrast-insensitive bins, and four different
normalization schemes [14]. The first baseline simply ignores depth and just com-
putes HOG features for the color image. The second baseline concatenates HOG
features for both color and depth images.

Experimental results were computed for 16 different feature vectors. The first
eight consist of a HOG feature descriptor for intensity image concatenated with
one of the eight different HOC features. The second eight features consist of the
concatenation of HOG on the intensity image, HOG on the range image and one of
the eight HOC features.
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Fig. 8.11 Average precision for all 16 different feature vectors as well as the two baselines. Per-
formance is averaged by six different splits of the data

8.5.4 Results

Figure 8.11 shows average precision, eight different classes of objects and all 16 fea-
ture vectors in addition to the two baselines (Intensity HOG and Intensity HOG +
Depth HOG). For most categories, using HOG on intensity images and depth images
in conjunction with HOC performed better than leaving out HOG on the depth im-
ages. The biggest exception to this is for computer monitors. Most of the monitors
in B3DO are turned off and are thus completely black. The structured-light sen-
sor used by the Kinect does not always work well for black objects, and monitors
are an example of a surface that often has significant missing data. Thus, increased
performance by adding a depth channel should not be expected.

In order to visualize results more clearly, Fig. 8.12 shows results for only the
features that combine HOG on intensity and depth images with HOC, as well as the
baselines. The most noticeable result is that the best performance for bottle, chair,
keyboard, monitor, computer mouse and phone occurs when depth is ignored. There
are positive results for the categories of cup and bowl. For bowls, both HOC4 and
HOC7 outperform the baseline that ignores depth by approximately 5 % and the
baseline that uses HOG on depth and no curvature by approximately 10 %. Similar
results can be observed for cups, but for cups the best performing features are HOC6

and HOC7. This result is somewhat intuitive, the shape of cups and bowls is very
simple, and likely easier to learn than the shape of more complicated objects like
chairs and telephones.
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Fig. 8.12 Similar to Fig. 8.11, the chart shows performance just for the features that combine
HOG on the intensity image and depth image with a HOC feature

8.6 Discussion

The Berkeley 3D Object Dataset provides a challenging dataset on which to test the
ability of object detectors to take advantage of 3D signal. This dataset provides a
unique opportunity for researchers to test their methods in the face of large variation
in pose and viewpoint. In addition, the lack of dense training data (for example on a
turntable) and the simple collection process enables this dataset to continue to grow
with contributions from the world outside the research community.

Section 8.4 demonstrated that techniques based on estimating the size of objects
can be used to slightly improve performance. Simple solutions such as computing a
histogram of gradient for range images can extract some of the information present
in the range image but not all. In order to extract all the available information from
depth signal, features that can learn the shape of the objects that one wishes to
recognize must be used. To this end, this work proposes the histogram of curvature,
or HOC. Performance could be improved in a number of ways. It is possible that
linear classifiers are not powerful enough. HOG has been hand tuned with various
normalization factors in order to work well with linear classifiers, but as HOC is
missing this, it may require nonlinear kernels. In addition, by simply concatenating
feature vectors, the fact that the three feature vectors were obtained by different
processes is lost. A multiple kernel learning framework may be better able to handle
the fact that there are in fact three feature vectors without simply concatenating
them.
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Chapter 9
RGB-D Object Recognition: Features,
Algorithms, and a Large Scale Benchmark

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox

Abstract Over the last decade, the availability of public image repositories and
recognition benchmarks has enabled rapid progress in visual object category and
instance detection. Today we are witnessing the birth of a new generation of sensing
technologies capable of providing high quality synchronized videos of both color
and depth, the RGB-D (Kinect-style) camera. With its advanced sensing capabili-
ties and the potential for mass adoption, this technology represents an opportunity
to dramatically increase robotic object recognition, manipulation, navigation, and
interaction capabilities. We introduce a large-scale, hierarchical multi-view object
dataset collected using an RGB-D camera. The dataset consists of two parts: The
RGB-D Object Dataset containing views of 300 objects organized into 51 cate-
gories, and the RGB-D Scenes Dataset containing 8 video sequences of office and
kitchen environments. The dataset has been made publicly available to the research
community so as to enable rapid progress based on this promising technology. We
describe the dataset collection procedure and present techniques for RGB-D ob-
ject recognition and detection of objects in scenes recorded using RGB-D videos,
demonstrating that combining color and depth information substantially improves
quality of results.
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9.1 Introduction

The availability of public image repositories on the Web, such as Google Images,
and visual recognition benchmarks like Caltech 101 [11], LabelMe [36], and Ima-
geNet [9] has enabled rapid progress in visual object recognition in the past decade.
Today we are witnessing the birth of a new generation of sensing technologies ca-
pable of providing high quality synchronized videos of both color and depth, the
RGB-D (Kinect-style) camera [22, 35]. This technology represents an opportunity
to dramatically increase the capabilities of robotics object recognition, manipula-
tion, navigation, and interaction. We describe the RGB-D Object Dataset, a large-
scale, multi-view object data set collected using an RGB-D camera that was first
introduced in [23]. The dataset and its accompanying software has been made pub-
licly available to the research community to enable rapid progress based on this
promising technology. The dataset and accompanying software tools are available
at http://www.cs.washington.edu/rgbd-dataset.

Unlike many existing recognition benchmarks that are constructed using Internet
photos, where it is impossible to keep track of whether objects in different images
are physically the same object, our dataset consists of multiple views of a set of
objects. This is similar to the 3D Object Category Dataset presented by Savarese
et al. [37], which eight object categories, 10 objects in each category, and 24 distinct
views of each object. The RGB-D Object Dataset presented here is at a much larger
scale, with RGB and depth video sequences of 300 common everyday objects from
multiple view angles totaling 250,000 RGB-D images. The objects are organized
into a hierarchical category structure using WordNet hyponym/hypernym relations.
The dataset also includes the RGB-D Scenes Dataset, which eight RGB-D video
sequences of office and kitchen environments.

In addition to introducing a large RGB-D object and scene dataset, we also
present techniques for object recognition in RGB-D data and detection of objects
in scenes recorded using RGB-D videos. We demonstrate that combining color
and depth information can substantially improve results on three object recognition
tasks: (1) Category-level recognition involves classifying previously unseen objects
as belonging in the same category as objects that have previously been seen (e.g.,
coffee mug). (2) Instance-level recognition is identifying whether an object is phys-
ically the same object that has previously been seen. We use the word instance to
refer to an object with a particular appearance. (3) Pose-level recognition is estimat-
ing the orientation of the object relative to the camera. The ability to solve all three
recognition tasks is important for applications such as service robotics. For exam-
ple, identifying an object as a generic “coffee mug” or as “Amelia’s coffee mug”
can have different implications depending on the context of the task. Determining
the accurate pose of an object is necessary for manipulation.

9.2 RGB-D Object Dataset Collection

The RGB-D Object Dataset contains visual and depth images of 300 physically dis-
tinct objects taken from multiple views. The chosen objects are commonly found

http://www.cs.washington.edu/rgbd-dataset
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in home and office environments, where personal robots are expected to operate.
Objects are organized into a hierarchy taken from WordNet hypernym/hyponym
relations and are a subset of the categories in ImageNet [9]. Figure 9.1 shows sev-
eral subtrees in the object category hierarchy. Fruit and Vegetable are both top-level
subtrees in the hierarchy. Device and Container are both subtrees under the Instru-
mentation category that covers a very broad range of man-made objects. Each of
the 300 objects in the dataset belongs to one of the 51 leaf nodes in this hierarchy,
with between 3 to 14 instances in each category. The leaf nodes are shaded blue in
Fig. 9.1 and the number of object instances in each category is given in parentheses.
Figure 9.2 shows some example objects from the dataset. Each shown object comes
from one of the 51 object categories. Although the background is visible in these im-
ages, the dataset also provides segmentation masks (see Fig. 9.4). The segmentation
procedure using combined visual and depth cues is described in Sect. 9.3.

The dataset is collected using a RGB-D camera manufactured by Prime-
Sense [35], whose optical hardware is identical to the Microsoft Kinect [22]. The
RGB-D camera simultaneously records both color and depth images at 640 × 480
resolution. In other words, each ‘pixel’ in an RGB-D frame contains four channels:
red, green, blue and depth. The 3D location of each pixel in physical space can be
computed using known sensor parameters. The RGB-D camera creates depth im-
ages by continuously projecting an invisible infrared structured light pattern and
performing stereo triangulation. Compared to passive multi-camera stereo technol-
ogy, this active projection approach results in much more reliable depth readings,
particularly in textureless regions. Figure 9.3 (top) shows a single RGB-D frame
which consists of both an RGB image and a depth image. Driver software provided
with the RGB-D camera ensures that the RGB and depth images are aligned and
time-synchronous.

Using this camera setup, we record video sequences of each object as it is spun
around on a turntable at constant speed. The camera is placed around one meter
from the turntable. We found this to be the minimum distance required for the
RGB-D camera to return reliable depth readings. Data was recorded with the cam-
era mounted at three different heights relative to the turntable, at approximately 30◦,
45◦ and 60◦ above the horizon. One revolution of each object was recorded at each
height. Each video sequence is recorded at 20 Hz and contains around 250 frames,
giving a total of 250,000 RGB + Depth frames in the RGB-D Object Dataset. The
video sequences are all annotated with ground truth object pose angles between
[0,360◦] by tracking the red markers on the turntable. A reference pose is chosen
for each category so that pose angles are consistent across video sequences of ob-
jects in a category. For example, all videos of coffee mugs are labeled such that the
image where the handle is on the right is 0◦.

9.3 Segmentation

Without any post-processing, a substantial portion of the RGB-D video frames is
occupied by the background. We use visual cues, depth cues, and rough knowledge
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Fig. 9.2 Objects from the RGB-D Object Dataset. Each object shown here is in a different category

Fig. 9.3 Each RGB-D frame
consists of an RGB image
(left) and a depth image
(right)

of the configuration between the turntable and camera to produce fully segmented
objects from the video sequences.

The first step in segmentation is to remove most of the background by taking
only the points within a 3D bounding box where we expect to find the turntable
and object, based on the known distance between the turntable and the camera. This
prunes most pixels that are far in the background, leaving only the turntable and the
object. Using the fact that the object lies above the turntable surface, we can perform
RANSAC plane fitting [13] to find the table plane and take points that lie above it
to be the object. This procedure gives very good segmentation for many objects in
the dataset, but is still problematic for small, dark, transparent, and reflective ob-
jects. Due to noise in the depth image, parts of small and thin objects like rubber
erasers and markers may get merged into the table during RANSAC plane fitting.
Dark, transparent, and reflective objects cause the depth estimation to fail, resulting
in pixels that contain only RGB but no depth data. These pixels would be left out
of the segmentation if we only used depth cues. Thus, we also apply vision-based
background subtraction to generate another segmentation. The top row of Fig. 9.4
shows several examples of segmentation based on depth. Several objects are cor-
rectly segmented, but missing depth readings cause substantial portions of the water
bottle, jar and the marker cap to be excluded.

To perform vision-based background subtraction, we applied the adaptive gaus-
sian mixture model of KaewTraKulPong and Bowden [21], using the implementa-
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Fig. 9.4 Segmentation examples, from left to right: bag of chips, water bottle, eraser, leaf veg-
etable, jar, marker and peach. Segmentation using depth only (top row), visual segmentation via
background subtraction (middle row), and combined depth and visual segmentation (bottom row)

tion provided by the OpenCV library. Each pixel in the scene is modeled with a
mixture of K gaussians that is updated as the video sequence is played frame-by-
frame. The model is adaptive and only depends on a window W of the most recent
frames. A pixel in the current frame is classified as foreground if its value is beyond
σ standard deviations from all gaussians in the mixture. For our object segmentation
we used K = 2, W = 200, and σ = 2.5. The middle row of Fig. 9.4 shows several
examples of visual background subtraction. The method is very good at segmenting
out the edges of objects and can segment out parts of objects where depth failed
to do so. However, it tends to miss the centers of objects that are uniform in color,
such as the peach in Fig. 9.4, and pick up the moving shadows and markers on the
turntable.

Since depth-based and vision-based segmentation each excel at segmenting ob-
jects under different conditions, we combine the two to generate our final object
segmentation. We take the segmentation from depth as the starting point. We then
add pixels from the visual segmentation that are not in the background nor on the
turntable by checking their depth values. Finally an image erosion filter is run on this
segmentation mask to remove isolated pixels. The bottom row of Fig. 9.4 shows the
resulting segmentation using combined depth and visual segmentation. The com-
bined procedure provides high quality segmentations for all the objects.

9.4 Video Scene Annotation

In addition to the views of objects recorded using the turntable (the RGB-D Ob-
ject Dataset), we also eight video sequences of natural scenes, which we call the
RGB-D Scenes Dataset. The scenes cover common indoor environments, including
office workspaces, meeting rooms, and kitchen areas. The video sequences were
recorded by holding the RGB-D camera at approximately human eye-level while
walking around in each scene. Each video sequence contains several objects from
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Table 9.1 Number of frames and objects in the eight annotated videos of natural scenes in the
RGB-D Scenes Dataset

Video sequence # of frames # of objects

Desk_1 1748 3

Desk_2 1949 3

Desk_3 2328 4

Kitchen_small_1 2359 8

Meeting_small_1 3530 13

Table_1 2662 8

Table_small_1 2037 4

Table_small_2 1776 3

Fig. 9.5 (Left) 3D scene reconstruction of a kitchen scene with a cap highlighted in blue and a
soda can in red using the labeling tool. (Right) Ground truth bounding boxes of the cap (top) and
soda can (bottom) obtained by labeling the reconstruction

the RGB-D Object Dataset. The objects are visible from different viewpoints and
distances and may be partially or completely occluded in some frames. Table 9.1
summarizes the number of frames and number of objects in each video sequence.
In Sect. 9.6 we demonstrate that the RGB-D Object Dataset can be used as training
data for performing object detection in these natural scenes. Here we will first de-
scribe how we annotated these natural scenes with the ground truth bounding boxes
of objects in the RGB-D Object Dataset. Traditionally, the computer vision commu-
nity has annotated video sequences one frame at a time. A human must tediously
segment out objects in each image using annotation software like the LabelMe an-
notation tool [36] and more recently, vatic [39]. Temporal interpolation across video
frames can somewhat alleviate this, but is only effective across a small sequence of
frames if the camera trajectory is complex. Crowd-sourcing (e.g. Amazon Mechan-
ical Turk) can also shorten annotation time, but does so merely by distributing the
work across a larger number of people. We propose an alternative approach. Instead
of labeling each video frame, we first stitch together the video sequence to create
a 3D reconstruction of the entire scene, while keeping track of the camera pose of
each video frame. We label the objects in this 3D reconstruction by hand. Figure 9.5
(left) shows the reconstruction of a kitchen scene with a cap labeled in blue and
a soda can labeled in red. Finally, the labeled 3D points are projected back into
the known camera poses in each video frame and this segmentation can be used to
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compute an object bounding box. Figure 9.5 (right) shows some bounding boxes
obtained by projecting the labeled 3D points into several video frames.

Our labeling tool uses the technique proposed by Henry et al. [19] to recon-
struct 3D scenes from the RGB-D video frames. The RGB-D mapping technique
consists of two key components: (1) spatial alignment of consecutive video frames,
and (2) globally consistent alignment of the complete video sequence. Successive
frames are aligned by jointly optimizing over both appearance and shape matching.
Appearance-based alignment is done with RANSAC over SIFT features annotated
with 3D position (3D SIFT). Shape-based alignment is performed through Iterative
Closest Point (ICP) using a point-to-plane error metric [7]. The initial alignment
from 3D SIFT matching is used to initialize ICP-based alignment. Henry et al. [19]
show that this allows the system to handle situations in which only vision or shape
alone would fail to generate good alignments. Loop closures are performed by
matching video frames against a subset of previously collected frames using 3D
SIFT. Globally consistent alignments are generated with TORO, a pose-graph opti-
mization tool developed for robotics SLAM [17].

The overall scene is built using small colored surface patches called surfels [34]
as opposed to keeping all the raw 3D points. This representation enables efficient
reasoning about occlusions and color for each part of the environment, and provides
good visualizations of the resulting model. The labeling tool displays the scene in
this surfel representation. When the user selects a set of surfels to be labeled as an
object, they are projected back into each video frame using transformations com-
puted during the scene reconstruction process. Surfels allow efficient occlusion rea-
soning to determine whether the labeled object is visible in the frame and if so,
a bounding box is generated.

9.5 RGB-D Object Recognition

In object recognition the task is to assign a label (or class) to each query image. The
possible labels that can be assigned are known ahead of time. State-of-the-art ap-
proaches to tackling this problem are usually supervised learning systems. A set of
images are annotated with their ground truth labels and given to a classifier, which
learns a model for distinguishing between the different classes. We evaluate object
recognition performance on two tasks: category recognition and instance recogni-
tion. In category recognition, the system is trained on a set of objects. At test time,
the system is presented with an RGB and depth image pair containing an object that
was not present in training and the task is to assign a category label to the image (e.g.
coffee mug or soda can). In instance recognition, the system is trained on a subset of
views of each object. The task here is to distinguish between object instances (e.g.
Pepsi can, Mountain Dew can, or Aquafina water bottle). At test time, the system
is presented with an RGB and depth image pair that contains a previously unseen
view of one of the objects and must assign an instance label to the image.

Two important problems to address for object recognition using RGB-D cameras
are designing the appropriate feature representation for RGB-D data, and devising
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the appropriate classification method. In Sect. 9.5.1 we describe the experimental
setup for using the RGB-D Object Dataset to evaluate recognition techniques. We
then describe our work on distance learning in Sect. 9.5.2, demonstrating that it
outperforms existing state-of-the-art classifiers. In Sect. 9.5.3, we present Kernel
Descriptors, a novel family of features for RGB-D Object Recognition, and show
that it outperforms existing state-of-the-art features for image and 3D point cloud
recognition. Finally, in Sect. 9.5.4 we present a technique for efficiently performing
RGB-D object recognition and pose estimation jointly.

9.5.1 Experimental Setup

The experiments performed in this section use the turntable data containing cropped
and segmented views of objects in the RGB-D Object Dataset. The video sequences
in the RGB-D Scenes Dataset are not used. We subsampled the turntable data by
taking every fifth video frame, giving around 45000 RGB-D images. For category
recognition, we randomly leave one object out from each category for testing and
train the classifiers on all views of the remaining objects. For instance recognition,
we consider two scenarios:

• Alternating contiguous frames: Divide each video three contiguous sequences of
equal length. There are three heights (videos) for each object, so this gives nine
video sequences for each instance. We randomly select seven of these for training
and test on the remaining two.

• Leave-sequence-out: Train on the video sequences of each object where the cam-
era is mounted 30◦ and 60◦ above the horizon and evaluate on the 45◦ video
sequence.

We do not make use of the WordNet organization of the dataset in our experiments.
We average accuracies across 10 trials for category recognition and instance recog-
nition with alternating contiguous frames. There is no randomness in the data split
for leave-sequence-out instance recognition so we report numbers for a single trial.

9.5.2 Distance Learning for RGB-D Object Recognition

In its simplest form, nearest neighbor classifiers place a set of examples with known
labels in a euclidean feature space and a test example is classified based on the labels
of the k nearest known examples (the k-nearest neighbor classifier). The idea behind
distance learning is that nearest neighbor classification can be improved by learning
a distance function because euclidean feature distances may not be the best measure
of similarity, particularly when different types of feature are combined [40, 41]. In-
stead of learning a single global distance metric, recently researchers have looked
into local distance learning, which learns different distance functions for different
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regions of the feature space [38]. Local distance learning has been extensively stud-
ied and demonstrated for object recognition, both for color images [15, 16, 31] and
3D shapes [27]. A key property of these approaches is that they are non-parametric,
meaning that they can learn decision boundaries whose shape and complexity is
determined by the data.

9.5.2.1 Instance Distance Learning

We proposed instance distance learning in [25]. Many existing distance learning ap-
proaches for image classification are designed for recognition of image collections
on the web, such as Flickr and Google Images. In these applications it is impos-
sible to tell whether two images in the collection are of the exact same object. In
contrast, there are applications, particularly in robotics, where the data come from a
known set of objects and consist of a collection of views taken from different cam-
era positions, as is the case in the RGB-D Object Dataset. Our proposed approach
exploits this structure by learning a distance function for each object instance. An
object instance is an object with a particular appearance, and we assume that we
have a collection of views of each object. We learn view-to-instance distances that
measure the similarity between a query view of an object and each of the 300 object
instances in the RGB-D Object Dataset.

Given a set of M features, let d(x, y) be the M-dimensional vector of L2 dis-
tances between two views x and y computed for each feature separately. We define
the distance between a view x and an instance Y as the weighted average of feature
distances from x to all the views y that constitute instance Y :

f (x,Y ) = 1

|Y |
∑
y∈Y

w�
y d(x, y) + b (9.1)

where wy , the vector of weights for y, and b, the bias term, are learned parameters.
Classification of a test view is performed by computing the above distance to every
object instance in the training set and taking the label of the nearest neighbor.

Parameter learning is formulated as a convex optimization problem with a
margin-based loss function. Group-Lasso regularization [33] is used to encourage
sparsity across views by encouraging wy to not be the zero vector for only a small
subset of y ∈ Y . In other words, the approach can, via supervised learning, choose to
retain a small subset of views that provide good coverage of the visual variation of
each object. On the RGB-D Object Dataset, instance distance learning can learn dis-
tance functions that depend only on 30 % of the views in the training data without
compromising classification accuracy, outperforming uniform random downsam-
pling at equal levels of data sparsification [25].

9.5.2.2 RGB-D Feature Set

To evaluate Instance Distance Learning we used existing state-of-the-art features
developed separately for RGB images and 3D point clouds.
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Shape features are extracted from 3D point clouds of each view. The 3D point
cloud is obtained from the depth image using known camera intrinsic parameters.
We first compute spin images [20] for a randomly subsampled set of 3D points.
We generate a feature vector for the view using this collection of local descrip-
tors using efficient match kernels (EMK) [4]. To incorporate spatial information,
we divide each view using a 3 × 3 × 3 axis-aligned bounding cube. We compute a
1000-dimensional EMK features in each of the 27 cells separately. We perform prin-
cipal component analysis (PCA) on the EMK features in each cell and take the first
100 components. We also include as shape features the width, depth and height of
the bounding cube. For SVM and random forest classifiers, we concatenate these
features to yield a 2703-dimensional shape descriptor. For distance learning ap-
proaches, we compute euclidean feature distances for each of the 27 spin image
cells, as well as each dimension of the bounding box separately, meaning we learn
weighted distances over 30 shape features.

Visual features are extracted from the RGB image to capture the appearance of
a view. We extract SIFT descriptors [30] densely on an 8 × 8 grid. To generate
image-level features we use EMK on a two-level spatial pyramid: First we compute
a 1000-dimensional EMK feature from the entire image. Then we divide the image
into 2×2 blocks and extract EMK features in each block. We perform PCA on each
block and take the first 300 components, giving a 1500-dimensional EMK SIFT de-
scriptor. We also extract texton histogram [28] features. We used 100 textons learned
from images on LabelMe and computed histograms five image regions, as was done
in [31]. We also include a color histogram (11 bins three color channels) and the
mean and standard deviation color. For SVM and random forest classifiers, we con-
catenate all the features to yield a 2039-dimensional visual descriptor. For distance
learning approaches, we compute euclidean feature distances for each of five spatial
pyramid blocks of SIFT features, five image regions of texton histograms, the color
histogram, the mean color, and the color standard deviation separately. Hence, we
learn weighted distances over 13 visual features.

9.5.2.3 Evaluation

We compared instance distance learning with the exemplar-based distance learning
approach of [31]. This approach learns a distance function independently for each
view of an object, i.e. an exemplar. Classification of a test view is performed by
computing distances to every view in the training set and taking the label of the near-
est neighbor. We also compared with three standard classifiers including linear and
gaussian kernel support vector machine (LinSVM and kSVM) [6, 10], and random
forests(RF) [5, 14]. We compared the performance of the proposed instance distance
learning approach and alternative classification methods on two recognition tasks:
Table 9.2 shows the classification accuracy on category recognition, and Table 9.3
for shows the accuracy on instance recognition with alternating contiguous frames
(refer to Sect. 9.5.1 for a description of the different experimental setups). We re-
port classification accuracies when using only shape features, only visual features,



178 K. Lai et al.

Table 9.2 Category recognition on leave-out objects. Performance of various classification meth-
ods on the RGB-D Object Dataset using shape features, visual features, and with all features

Method Category recognition

Shape Vision All

LinSVM 53.1 ± 1.7 74.3 ± 3.3 81.9 ± 2.8

kSVM 64.7 ± 2.2 74.5 ± 3.1 83.8 ± 3.5

RF 66.8 ± 2.5 74.7 ± 3.6 79.6 ± 4.0

EBLocal [31] 58.9 ± 2.1 70.1 ± 3.4 78.4 ± 2.8

IDL [25] 70.2 ± 2.0 78.6 ± 3.1 85.4 ± 3.2

Table 9.3 Instance recognition on alternating contiguous frames. Performance of various classi-
fiers on the RGB-D Object Dataset using shape features, visual features, and with all features

Method Instance recognition (alternating contiguous frames)

Shape Vision All

LinSVM 32.4 ± 0.5 90.9 ± 0.5 90.2 ± 0.6

kSVM 51.2 ± 0.8 91.0 ± 0.5 90.6 ± 0.6

RF 52.7 ± 1.0 90.1 ± 0.8 90.5 ± 0.4

EBLocal [31] 41.2 ± 0.6 81.2 ± 0.6 84.5 ± 0.5

IDL [25] 54.8 ± 0.6 89.8 ± 0.2 91.3 ± 0.3

Table 9.4 Instance recognition on left-out sequence. Performance of various classifiers on the
RGB-D Object Dataset using shape features, visual features, and with all features

Method Instance recognition (leave-sequence-out)

Shape Vision All

LinSVM 32.3 59.3 73.9

kSVM 46.2 60.7 74.8

RF 45.5 59.9 73.1

and using both shape and visual features. From the results, we see that the proposed
instance distance learning outperforms per-exemplar distance learning and the three
standard classifiers on both category and instance recognition.

Aside from comparing the instance distance learning with existing classification
methods, we also investigated the usefulness of shape and visual features for cate-
gory and instance recognition. For this we also report in Table 9.4 the performance
of the three standard classifiers on instance recognition on left-out video sequences.
We find that regardless of the classification technique used, the chosen visual fea-
tures are more useful than shape features for both category and instance recognition
(see Tables 9.2, 9.3, and 9.4). However, shape features are relatively more useful
in category recognition, while visual features are relatively more effective in in-
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stance recognition. This is because a particular object instance has a fairly constant
visual appearance across views, while objects in the same category can have differ-
ent texture and color. On the other hand, shape tends to be stable across a category
in many cases. The most interesting and significant conclusion is that combining
both shape and visual features gives higher overall performance regardless of clas-
sification technique. The features complement each other, which demonstrates the
value of a large-scale dataset that can provide both shape and visual information.
For alternating contiguous frames instance recognition, using visual features alone
already gives very high accuracy, so including shape features does not increase per-
formance. The leave-sequence-out evaluation is much more challenging, and here
combining shape and visual features significantly improves accuracy.

9.5.3 Kernel Descriptors for RGB-D Object Recognition

The core of building a robust object recognition system is to extract underlying rep-
resentations (features) from high-dimensional sensor data such as images, depths
and 3D point clouds. Given the wide availability of RGB-D cameras, it is an open
question what is the best way to extract features over RGB-D images. The stan-
dard approach to object recognition is to compute pixel attributes in small windows
around (a subset of) pixels. For example, in SIFT [29], gradient orientation and
magnitude attributes are computed from 5 × 5 image windows. Another example
is Spin Images [20] over local 3D point clouds. A key question for object recogni-
tion is then how to measure the similarity of local patches based on the attributes
of pixels within them, because this similarity measure is used in classifiers such
as linear support vector machines (SVM). Techniques based on histogram features,
such as SIFT and Spin Images, discretize individual pixel attribute values into bins
and then compute a histogram over the discrete attribute values within a patch. The
similarity between two patches can then be computed based on their histograms.
Unfortunately, the binning restricts the similarity measure and introduces quantiza-
tion errors, which limit the accuracy of recognition.

9.5.3.1 Kernel Descriptors

Kernel descriptors, which we proposed in [1–3], aim to discover underlying repre-
sentations of RGB-D sensor data using machine learning methodology. We high-
light the kernel view of SIFT and Spin Images, and show that histogram features
are a special, rather restricted case of efficient match kernels. This novel insight al-
lows us to design a family of kernel descriptors. Kernel descriptors avoid the need
for pixel attribute discretization and are able to turn any pixel attribute into com-
pact patch-level features. Here, the similarity between two patches is based on a
kernel function, called the match kernel, that averages over continuous similarities
between all pairs of pixel attributes in the two patches. Match kernels are extremely
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flexible and it is easy to incorporate domain knowledge, since the similarity mea-
sure between pixel attributes can be any positive definite kernel, such as the popular
Gaussian kernel function. While match kernels provide a natural similarity measure
for image patches, evaluating these kernels can be computationally expensive, in
particular for large image patches. To compute kernel descriptors, one has to move
to the feature space forming the kernel function. Unfortunately, the dimensionality
of these feature vectors is high, or even infinite, if for instance a Gaussian kernel is
used. Thus, for computational efficiency and for representational convenience, we
reduce the dimensionality by projecting the high/infinite dimensional feature vec-
tor to a set of finite basis vectors using kernel principal component analysis. This
procedure can approximate the original match kernels very well, as shown in [1–3].

As an example, we briefly describe the gradient kernel descriptors over depth
patches. We treat depth images as grayscale images and compute gradients at pixels.
The gradient kernel descriptors Fgrad is constructed from the pixel gradient similar-
ity function ko

F t
grad(Z) =

do∑
i=1

ds∑
j=1

αt
ij

{∑
z∈Z

m̃zko(θ̃z,pi)ks(z, qj )

}
(9.2)

where Z is a depth patch, and z ∈ Z are the 2D relative position of a pixel in a
depth patch (normalized to [0,1]). θ̃z and m̃z are the normalized orientation and
magnitude of the depth gradient at a pixel z. The orientation kernel ko(θ̃z, θ̃x) =
exp(−γo‖θ̃z − θ̃x‖2) computes the similarity of gradient orientations. The position
Gaussian kernel ks(z, x) = exp(−γs‖z − x‖2) measures how close two pixels are
spatially. {pi}do

i=1 and {qj }ds

j=1 are uniformly sampled from their support region, do

and ds are the numbers of sampled basis vectors for the orientation and position
kernels. αt

ij are projection coefficients computed using kernel principal component
analysis. Other kernel descriptors are constructed in a similar fashion from pixel-
level similarity functions (see [2] and [3] for details).

To summarize, extracting kernel descriptors involves the following steps: (1) de-
fine pixel attributes; (2) design match kernels to measure the similarities of im-
age patches based on these pixel attributes; (3) determine approximate, low di-
mensional match kernels. While the third step is done automatically by learn-
ing low dimensional representations and the defined kernels, while the first two
steps allow the user to tune the approach for specific scenarios and application.
Thus, kernel descriptors provides a unified and principled framework for extract-
ing rich features from sensor data. We have developed eight types of kernel de-
scriptor [1–3] for RGB-D images; a relatively complete feature set to capture
rich cues for robust object recognition. Kernel descriptors outperform state-of-
the-art recognition algorithms on many benchmarks, including USPS, extended
Yaleface, Scene-15, Caltech-101, CIFAR-10, CIFAR-10-ImageNet, and the RGB-
D Object Dataset. More importantly, the features have exhibited very robust per-
formance in several real-world recognition systems, including the autonomous
chess playing manipulator robot [32] and the object-aware situated interactive sys-
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tem (OASIS) [24]. The source code for RGB-D kernel descriptors is available at
http://www.cs.washington.edu/rgbd-dataset/software.html.

9.5.3.2 Evaluation

We evaluated the proposed kernel descriptors on the RGB-D Object Dataset for
both category and instance recognition (leave-sequence-out). For each RGB-D im-
age, we compute seven kernel descriptors on dense regular grids: gradient kernel
descriptors (GradKDES) over image and depth patches, local binary pattern kernel
descriptors (LBPKDES) over image and depth patches, normalized RGB kernel de-
scriptors (NRGBKDES) over image patches, spin kernel descriptors (SpinKDES)
and size kernel descriptors (SizeKDES) over 3D point clouds. NRGBKDES is a
variant of RGB kernel descriptors [2] that normalizes RGB values by subtracting
the mean and dividing by the standard deviation in order to be robust to lighting
condition changes. We extract gradient, local binary patten, and normalized RGB
kernel descriptors on 16 × 16 depth or image patches with spacing of eight pixels.
For size kernel descriptors, we consider the whole point cloud and subsample the
number of 3D points to be no more than 200 for each interest point. For spin kernel
descriptors, we set the radius of the local region around interest points to be 4 cm
and again subsample the number of neighboring points to be no larger than 200. We
consider 1 × 1, 2 × 2 and 4 × 4 pyramid sub-regions and form object-level features
using EMK [4] with 1000 basis vectors learned by K-means on about 500,000 kernel
descriptors sampled from training data. The dimensionality per kernel descriptor is
(1+4+16)×1000 = 21000. The total feature extraction time per kernel descriptor
is around 0.2 seconds using unoptimized MATLAB code. We train linear SVMs for
recognition, which our experiments suggest are sufficient for good accuracy when
using kernel descriptors.

We report the results of RGB-D kernel descriptors in Table 9.5. Results from us-
ing the existing shape and visual feature set (FeaSet, see Sect. 9.5.2) is also repeated
here for comparison. First of all, we observe that combining all kernel descriptors
performs much better than the best single kernel descriptors for both category and
instance recognition. There are two reasons at least. Firstly, RGB-D kernel descrip-
tors capture different recognition cues of objects including shape, color and size,
which are strong in their own right and complement each other. The weights learned
by the linear SVM using label information can automatically balance the contribu-
tion of each kernel descriptors for a specific task. The results in Table 9.5 show that
RGB-D kernel descriptors significantly outperform the set of existing shape and
visual features used in Sect. 9.5.2.

For category recognition, we observe in Table 9.5 that the best single kernel de-
scriptor is gradient over RGB images, achieving 77.7 % accuracy. Combining depth
and image kernel descriptors achieves 86.3 %, much higher than that obtained by
gradient kernel descriptors only. We observe that the performance of depth kernel
descriptors is comparable with image kernel descriptors, indicating that depth infor-
mation is as important as visual information for category recognition. For instance

http://www.cs.washington.edu/rgbd-dataset/software.html
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Table 9.5 Category recognition (leave-objects-out) and instance recognition (leave-sequence-
out). Performance of each kernel descriptor and their combination is reported. Results using the
feature set in Sect. 9.5.2 is repeated here for comparison. The classifier is linear SVM in all cases

Features Category Instance

FeaSet (RGB) 74.3 ± 3.3 59.3

FeaSet (Cloud) 53.1 ± 1.7 32.3

FeaSet Combination 81.9 ± 2.8 73.9

GradKDES (RGB) 77.7 ± 2.7 82.2

LBPKDES (RGB) 77.5 ± 2.5 80.9

NRGBKDES (RGB) 64.7 ± 3.3 83.4

GradKDES (Depth) 72.8 ± 2.4 40.1

LBPKDES (Depth) 72.1 ± 2.1 33.5

SpinKDES (Cloud) 60.2 ± 2.5 33.1

SizeKDES (Cloud) 56.3 ± 3.5 25.2

Combination of all KDES 86.5 ± 1.0 91.2

recognition, we observe in Table 9.5 that the best single feature is the normalized
RGB kernel descriptor (83.4 %). Combining depth and image kernel descriptors
achieves 91.2 %, substantially better than that obtained by normalized RGB kernel
descriptors. We also notice that depth features are much worse than image features
in the context of instance recognition. This is not very surprising since the different
instances in the same category could share very similar shape.

9.5.4 Joint Object Category, Instance, and Pose Recognition

Object perception has multiple levels of semantics. When an autonomous robot en-
counters an object, we may want it to answer any or all of the following questions:
Is this a coffee mug or a plate? (category recognition); Is this Alice’s coffee mug or
Bob’s coffee mug? (instance recognition); Am I looking at the mug with the handle
facing left or right? (pose recognition or approximate pose estimation). Although
it is clear that category, instance, and pose recognition are closely connected and
multiple facets of a single object perception problem, they have traditionally been
studied in different contexts and solved using different techniques.

9.5.4.1 Object-Pose Tree

We investigated a technique, called the Object-Pose Tree, for simultaneously ad-
dressing three object recognition tasks: category recognition, instance recognition,
and pose estimation [24]. These three object recognition tasks form a tree as natu-
rally defined by the semantic structures: a category covers multiple object instances,
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Fig. 9.6 Recognition of a
box of Bran Flakes cereal
using the Object-Pose Tree.
The system labels the test
image by starting with the
category level at the top and
traversing down the tree to
the instance, view, and finally
pose level at the bottom. The
system finds the most similar
(but not identical) pose in the
training set

an instance covers multiple (discrete) “views”, and each view is a collection of (con-
tinuous) object poses (see Fig. 9.6). Each node in the tree is a linear decision func-
tion. Given a test image containing a cropped and segmented view of an object, the
system first evaluates the score that each node at the first (category) layer assigns to
the image using the corresponding linear functions. The test image proceeds down
the node with the highest score, and scores are computed for nodes in the second
(instance) layer under that subtree. This process is repeated until the image reaches
a leaf node, which represents one example in the training set (a view of an object in
a particular pose). The system then assigns the category, instance, and pose based
on the path traced by the test image.

Parameter learning of the entire Object-Pose Tree is formulated as structured
SVM learning, where the path traced by the test image is the structured output of
the system. A single convex objective function is defined that takes into account a
margin-based loss on all three recognition tasks. This objective function is optimized
using stochastic gradient descent. The learning procedure is detailed in [24].

9.5.4.2 Evaluation

We evaluated the Object-Pose Tree on the RGB-D Object Dataset, which annotates
the pose of every view of every object as the angle about the vertical axis. Each
object category has a canonical pose that is labeled as 0◦, and every image in the
dataset is labeled with a pose in [0,360◦]. As features, we use gradient and shape
(local binary pattern) kernel descriptors [2] extracted over both RGB and depth im-
ages. We use the leave-sequence-out procedure for train/test data split: the tree is
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Table 9.6 Category, instance, and pose recognition results using the SVM Tree and the Object-
Pose Tree

Approach Category accuracy Instance accuracy Pose error

SVM Tree 92.0 77.4 44.6◦

Object-Pose Tree 94.3 78.4 30.2◦

Fig. 9.7 Recognition results
from the Object-Pose Tree for
two objects: Red Mug (top
left), and Ultrabrite
Toothpaste (top right).
(Bottom) From left to right,
the top five objects with the
highest classifier response at
the instance level and at the
pose level for Red Mug and
Ultrabrite toothpaste

trained on views of all 300 objects at 30◦ and 60◦ with the horizon (not to be con-
fused with the pose angle about the vertical axis that the system is to estimate), and
evaluated on views taken at 45◦ with the horizon.

Table 9.6 shows results from using the Object-Pose Tree and from using a tree of
SVM classifiers. The SVM Tree has the same structure as the Object-Pose Tree, but
the parameters are learned differently. For the SVM Tree, we first train a multi-class
linear SVM for the category layer. Then we train SVMs for distinguishing instances
within each category separately. We repeat this procedure down to the view and
pose layers. We report category and instance recognition accuracies, as well as the
median pose error for cases where the object instance is correctly identified. The
results show that the Object-Pose Tree outperforms the SVM Tree, demonstrating
that learning the parameters of the entire tree jointly through a single objective func-
tion is better than learning for each task independently. Figure 9.7 shows recogni-
tion results on two images using the Object-Pose Tree, a red mug and an Ultrabrite
toothpaste. For each image, the top five matching instances and poses are shown.

9.6 Object Detection in Scenes Using RGB-D Cameras

In Sect. 9.5 we demonstrated how to perform RGB-D object recognition, where im-
ages are already cropped and segmented so that they contain only one object. In
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some applications such segmentations may not be easy to obtain. In this section,
we demonstrate how to use the RGB-D Object Dataset to perform object detection
in real-world scenes that can contain multiple objects. Given an image, the object
detection task is to identify and localize all objects of interest. Like in object recog-
nition, the objects belong to a fixed set of class labels. The object detection task can
also be performed at both the category and the instance level. Existing work gener-
ally localizes objects to one of two levels of granularity: (1) localize the object to a
rectangular subregion of the image (bounding box), and (2) assign an object label to
every pixel or 3D point, leading to a pixel/point-level segmentation of the scene.

We present approaches for detecting objects at both levels of granularity. Exper-
iments are performed where object detectors are trained using views of objects in
the RGB-D Object Dataset, and evaluated on scenes in the RGB-D Scenes Dataset.
During training, videos in the RGB-D Scenes Dataset that contain the objects are
not used. A set of videos of taken in similar office and kitchen environments but
without the presence of objects in the RGB-D Object Dataset are used for sampling
negative training examples. These videos are available as “background” scenes in
the RGB-D Scenes Dataset.

9.6.1 RGB-D Object Detection

Our RGB-D object detection system uses sliding window detectors [8, 12, 18],
where the system evaluates a score function for all positions and scales in an image,
and thresholds the scores to obtain object bounding boxes. Each detector window is
of a fixed size and we search across 20 scales on an image pyramid. For efficiency,
we here consider a linear score function (so convolution can be applied for fast eval-
uation on the image pyramid). We perform non-maximum suppression to remove
multiple overlapping detections.

Let H be the feature pyramid and p the position of a subwindow. p is a three-
dimensional vector: the first two dimensions is the top-left position of the subwin-
dow and the third one is the scale of the image. Our score function is

sw(p) = w�φ(H,p) + b (9.3)

where w is the filter (weights), b the bias term, and φ(H,p) the feature vector at
position p. We train the filter w using a linear support vector machine (SVM):

L(w) = w�w

2
+ C

N∑
i=1

max
(
0,1 − yi

(
w�xi + b

))
(9.4)

where N is the training set size, yi ∈ {−1,1} the labels, xi the feature vector over a
cropped image, and C the trade-off parameter.

The performance of the classifier heavily depends on the data used to train it. For
object detection, there are many potential negative examples. A single image can be
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Fig. 9.8 Original depth
image (left) and filtered depth
image using a recursive
median filter (right). The
black pixels in the left image
are missing depth values

used to generate 105 negative examples for a sliding window classifier. Therefore,
we follow a bootstrapping hard negative mining procedure. The positive examples
are object windows we are interested in. The initial negative examples are randomly
chosen from background images and object images from other categories/instances.
The trained classifier is used to search images and select the false positives with the
highest scores (hard negatives). These hard negatives are then added to the negative
set and the classifier is retrained. This procedure is five times to obtain the final
classifier.

As features we use a variant of histogram of oriented gradients (HOG) proposed
in [12]. The gradient orientations in each cell (8 × 8 pixel grid) are encoded using
two different quantization levels into 18 (0◦–360◦) and nine orientation bins (0◦–
180◦), respectively. This yields a 4 × (18 + 9) = 108-dimensional feature vector.
A 31-D analytic projection of the full 108-D feature vectors is used [12].

Aside from HOG over RGB image, we also compute HOG over depth image
where each pixel value is the object-to-camera distance. Before extracting HOG
features, we need to fill up missing values in the depth image. Since missing values
tend to be grouped together, we use a recursive median filter. Instead of considering
all neighboring pixel values, we take the median of the non-missing values in a 5×5
grid centered on the current pixel. We apply this median filter recursively until all
missing values are filled. An example original depth image and the filtered depth
image are shown in Fig. 9.8.

Finally, we also compute a feature capturing the scale (true size) of the object.
Observe that the distance d of an object from the camera is inversely proportional
to its scale, o. For an image at a particular scale s, we have c = o

s
d , where c is

constant. For sliding window detection the detector window is fixed, meaning that o

is fixed. Hence, d
s

, which we call the normalized depth, is constant. Since the depth
is noisy, we use a histogram of normalized depths over 8 × 8 grid to capture scale
information. For each pixel in a given image, d is fixed, so the normalized depth
histogram can choose the correct image scale from the image pyramid. We used a
histogram of 20 bins with each bin having a range of 0.15 m. Helmer et al. [18] also
used depth information, but they used it as a prior in their probabilistic model while
we construct a scale histogram feature from normalized depth values.

We evaluated RGB-D object detection on eight natural scene video sequences
described in Sect. 9.4. Since consecutive frames are very similar, we subsample the
video data and run our detection algorithm on every 5th frame. We constructed four
category detectors (bowl, cap, coffee mug,and soda can) and 20 instance detectors
from the same categories. We follow the PASCAL Visual Object Challenge (VOC)
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Fig. 9.9 Precision-recall curves comparing performance with image features only (red), depth
features only (green), and both (blue). The top row shows category-level results. From left to right,
the first two plots show precision-recall curves for two binary category detectors, while the last plot
shows precision-recall curves for the multi-category detector. The bottom row shows instance-level
results. From left to right, the first two plots show precision-recall curves for two binary instance
detectors, while the last plot shows precision-recall curves for the multi-instance detector

evaluation metric. A candidate detection is considered correct if the size of the in-
tersection of the predicted bounding box and the ground truth bounding box is more
than half the size of their union. Only one of multiple successful detections for the
same ground truth is considered correct, the rest are considered as false positives.
We report precision-recall curves and average precision, which is computed from
the precision-recall curve and is an approximation of the area under this curve. For
multiple category/instance detections, we pool all candidate detection across cate-
gories/instances and images to generate a single precision-recall curve.

In Fig. 9.9 we show precision-recall curves comparing detection performance
with a classifier trained using image features only (red), depth features only (green),
and both (blue). We found that depth features (HOG over depth image and nor-
malized depth histograms) are much better than HOG over RGB image. The main
reason for this is that in depth images strong gradients are mostly from true ob-
ject boundaries (see Fig. 9.8), which leads to much less false positives compared to
HOG over RGB image, where color change can also lead to strong gradients. The
best performance is attained by combining image and depth features. The combina-
tion gives higher precision across all recall levels than image only and depth only,
if not comparable. In particular, combining image and depth features gives much
higher precision when high recall is desired.

Figure 9.10 shows multi-object detection results in three scenes. The leftmost
scene contains three objects observed from a viewpoint significantly different from
what was seen in the training data. The multi-category detector is able to correctly
detect all three objects, including a bowl that is partially occluded by a cereal box.
The middle scene shows category detections in a very cluttered scene with many
distracting objects. The system is able to correctly detect all objects except the par-
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Fig. 9.10 Three detection results in multi-object scenes. From left to right, the first two images
show multi-category detection results, while the last image shows multi-instance detection results

tially occluded white bowl that is far away from the camera. Notice that the detector
is able to identify multiple instances of the same category (caps and soda cans). The
rightmost scene shows instance detections in a cluttered scene. Here the system was
able to correctly detect both the bowl and the cap, even though the cap is partially
occluded by the bowl. Our current single-threaded implementation takes approxi-
mately 4 seconds to run the four object detectors to label each scene. Both feature
extraction over a regular grid and evaluating a sliding window detector are easily
parallelizable. We are confident that a GPU-based implementation of the described
approach can perform multi-object detection in real-time.

9.6.2 Scene Labeling

For robotics applications such as object grasping, localizing objects with a bounding
box is not enough. Instead, a pixel-level classification is needed, which provides
both recognition and segmentation of objects in the scene. In [26], we presented a
technique for pixel-level object labeling in 3D scenes reconstructed from RGB-D
videos. To do this, we used sliding window detectors to assign a class probability to
every pixel. Evidence is aggregated over multiple video frames by transforming the
pixels into points in a 3D scene. The transformation is computed based on camera
poses estimated using the RGB-D Mapping algorithm [19]. The scene is voxelized
and a Markov Random Field (MRF) over the voxels that combines cues from view-
based detection and 3D geometry is used to obtain the final object labeling.

We evaluated our object labeling approach on labeling five object categories in
the RGB-D Scenes Dataset, bowls, caps, cereal boxes, coffee mugs, and soda cans.
We achieve an overall F-score of 89.8 % when evaluated on all eight scenes in the
dataset, where equal weight is assigned to each of the five object categories and
to the background class. Table 9.7 shows the per-category and overall precisions
and recalls of the proposed approach (Det3DMRF), as well as picking the label of
each point uniformly at random (Random). The precisions for Random is 16.7 %
for each of the six classes as expected, while the recalls show that the vast majority
(87.5 %) of points in our scenes is background. The proposed approach performs
consistently well for six classes, achieving close to overall 90 % precision and recall.
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Table 9.7 Per-category and overall (macro-averaged across categories) precisions and recalls for
the proposed detection-based 3D scene labeling approach and for random labeling. Our approach
works very well for all object categories in the RGB-D Scene Dataset

Technique Precision/recall

Bowl Cap Cereal box Coffee mug Soda can Background Overall

Random 16.7/2.9 16.7/2.2 16.7/6.5 16.7/1.0 16.7/0.9 16.7/87.5 16.7/16.7

Det3DMRF 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8

Fig. 9.11 3D scene labeling results for three complex scenes in the RGB-D Scenes Dataset. 3D re-
construction (top), our detection-based scene labeling (bottom). Objects colored by their category:
bowl is red, cap is green, cereal box is blue, coffee mug is yellow, and soda can is cyan

In Fig. 9.11 we we show three complex scenes that were labeled by our 3D scene
labeling technique (Det3DMRF). The top row shows the reconstructed 3D scene
and the bottom row shows results obtained by Det3DMRF. Objects are colored by
their category label, where bowl is red, cap is green, cereal box is blue, coffee mug is
yellow, and soda can is cyan. More detailed comparisons with alternative approaches
are presented in [26].

If the desired output is bounding boxes in the original RGB-D video frames, it is
possible to use the labeled 3D scene to validate object detections. We do this by run-
ning object detectors with a low threshold and pruning out bounding box candidates
whose labels do not agree with the majority label of points in a central sub-rectangle
of the bounding box. Figure 9.12 shows precision-recall curves obtained from both
the individual frame-by-frame object detections (red) and detections validated by 3D
scene labeling (blue). Each point along the curve is generated by ranking detections
from all five category detectors together and thresholding on the detection score. It
is clear that 3D scene labeling can significantly reduce false positives by aggregating
evidence across the entire video sequence. While the precision of frame-by-frame
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Fig. 9.12 Precision–recall curves comparing the performance of labeling images with bounding
boxes of detected objects. Each plot shows results on one of the eight video sequences in the
RGB-D Scenes Dataset, aggregated over all five category detectors. Frame-by-frame object detec-
tion is drawn in red, while 3D scene labeling (our approach) is drawn in blue

detection rapidly decreases beyond 60 % recall for all eight scenes, using 3D scene
labeling it is possible to obtain 80 % recall and 80 % precision in a majority of them.

9.7 Discussion

We presented a large-scale, hierarchical multi-view object dataset collected using
an RGB-D camera. We demonstrated methods for doing segmentation by com-
bining depth and visual background subtraction and video ground truth annota-
tion via 3D reconstruction. We also presented and evaluated state-of-the-art fea-
tures and classification techniques for doing object recognition, object detection,
and 3D scene labeling in RGB-D data. The RGB-D Object Dataset, the RGB-
D Scenes Dataset, and accompanying software tools are publicly available at
http://www.cs.washington.edu/rgbd-dataset.
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Chapter 10
RGBD-HuDaAct: A Color-Depth Video
Database for Human Daily Activity Recognition

Bingbing Ni, Gang Wang, and Pierre Moulin

Abstract In this chapter, we present a home-monitoring oriented human activ-
ity recognition benchmark database, based on the combination of a color video
camera and a depth sensor. Our contributions are two-fold: (1) We have created
a human activity video database named RGBD-HuDaAct, which contains synchro-
nized color-depth video streams, for the task of human daily activity recognition.
This database aims at encouraging research in human activity recognition based
on multi-modal video data (color plus depth). (2) We have designed two multi-
modality fusion schemes which naturally combine color and depth information from
two state-of-the-art feature representation methods for action recognition, namely,
spatio-temporal interest points (STIPs) and motion history images (MHIs). These
depth-extended feature representation methods are evaluated comprehensively, and
superior recognition performance related to their uni-modal (color only) counter-
parts is demonstrated.

10.1 Introduction

Automatic recognition and analysis of human daily activities (e.g., go to bed, mop
the floor, eat meal, etc.) is helpful in a variety of applications, e.g., to facilitate
effective delivery of health and medical services to isolated, elderly people. In gen-
eral, video-based human activity recognition has been an active research topic in
computer vision over the last decade. However, the inherent limitations of standard
sensing devices restrict previous methods [2, 4, 10, 23] to recognition and analy-
sis of lateral motions. However, human bodies and motions are 3-dimensional, and
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so the information loss in the depth channel could cause significant degradation in
recognition performance. The recent emergence of Microsoft Kinect depth sensors
has made it feasible and economically sound to capture in real-time not only the
color images, but also depth maps with appropriate spatial resolution (640 × 480 in
pixel) and amplitude accuracy (≤1 cm accuracy). Both 3-dimensional scene struc-
ture information and the 3-dimensional motion information can be extracted. There-
fore the motion ambiguity of the color camera resulting from the projection of the
3-dimensional motion onto the 2-dimensional image plane can be circumvented.

To date, very few databases provide joint color and depth data for human activ-
ity recognition. To encourage such research, we have constructed a video database
named RGBD-HuDaAct for human activities captured with a RGB-D (i.e., color
plus depth) sensor. This database is available upon request to the first author. Though
the database is developed under the application scenario of daily activity recogni-
tion, it could be used as a common test bed for general activity recognition.

Although it is widely believed that combining color and depth provides comple-
mentary information, to our knowledge, no studies have yet shown how much gain
(in terms of recognition accuracy) could be obtained by exploring the additional
depth modality. To demonstrate the capability of the depth information, we develop
two color-depth fusion schemes for feature representation from the most represen-
tative feature representation methods in human action recognition. Specifically, we
first extend the spatio-temporal interest points methods (STIPs) into a depth-layered
multi-channel representation; then, we augment the motion history images (MHIs)
with two depth-change induced motion history channels. Extensive experimental
results demonstrate the superior performance gained by fusing color and depth in-
formation for human activity recognition.

The rest of this chapter is organized as follows: Sect. 10.2 gives a brief re-
view of feature representation methods in activity recognition literature. A detailed
introduction to the color-depth human daily activity video database is given in
Sect. 10.3. The proposed color-depth fusion schemes for activity feature representa-
tion are described in Sect. 10.4. Comprehensive experimental evaluations are given
in Sect. 10.5 and Sect. 10.6 draws the conclusion and presents possible directions
for future work.

10.2 Related Works

Many feature representation methods have been developed for recognizing activi-
ties (actions) from video sequences based on color cameras. Sequences of human
silhouettes are utilized to model both spatial and temporal characteristics of hu-
man actions. In [4], silhouettes are temporally accumulated to form motion en-
ergy images (MEIs) and motion history images (MHIs). Seven Hu moments [14]
are extracted from both MEIs and MHIs to serve as action descriptors. Davis and
Tyagi [8] use Gaussian mixture models (GMM) to capture the distribution of the
moments of silhouette sequences. Several other approaches utilize motion flow pat-
terns to represent human actions. Typically, optical flows [11] are calculated for the
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entire image by matching consecutive video frames. Then the motion patterns [10]
or the estimated motion parameters [2] are used for action representation. However,
ambiguity arises when the real-world 3-dimensional motion is projected onto the
2-dimensional image plane.

Recently, a series of spatio-temporal interest points (STIPs)-based methods have
been proposed, which achieve state-of-the-art performances in activity recognition.
These methods include Harris3D [18], HOG3D [15] and Cuboid [9]. Although
slightly different from each other, these methods share the common feature ex-
traction and representation framework, which involves detecting local extrema of
the image gradients and describing the point using histogram of oriented gradients
(HOG) [7] and histogram of optic flows (HOF).

The first work using RGB-D sensor for activity recognition is [20]. In [20], a
bag of 3D points (BOPs) are efficiently sampled from the depth map and Gaussian
mixture models are used to model the human postures. This method yields superior
results over the conventional method which uses 2D silhouettes. However, it has
several limitations: (1) Instead of direct utilization of the 3-dimensional motion in-
formation, it uses 2-dimensional projections of key poses, which could essentially
lead to sub-optimal feature representations; (2) only depth information is used for
recognition while color information is completely ignored; however, color and depth
information are rather complementary than exclusive.

More recently, Sung et al. [26] directly use skeleton motion data extracted from
Kinect SDK for activity representation; however, this method cannot be applied
when skeleton data cannot be reliably obtained.

10.3 RGBD-HuDaAct: Color-Depth Human Daily Activity
Database

10.3.1 Related Video Databases

A summarization of the existing video activity benchmark databases is given in Ta-
ble 10.1. KTH [25] and Weizmann [3] Databases: These databases aim at simple
action recognition, including: walking, jogging, running, hand-waving, etc. How-
ever, the simplicity of the action categories as well as the clean backgrounds make
the recognition tasks easy. As the reported accuracies on both databases approach
94.53 % [16] and 100 % [3, 12], respectively, they are no longer considered as good
benchmarks. Instead, the RGBD-HuDaAct aims at realistic human daily activities,
which are challenging for recognition tasks. Movie Action Database [22]: This
database is widely used for activity recognition in movies. Given the large varia-
tions of the visual contents and the camera movements, this database is challenging.
Note that although some of its activity categories overlap with the RGBD-HuDaAct
database, the two databases focus on different applications, i.e., the former deals
with movie actions under uncontrolled environment with moving cameras, while
the latter is for daily activity monitoring under fixed environment and camera set-
tings. Sports Event Databases [21, 24]: The UCF sports event database [24] and
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Table 10.1 Comparisons of the RGBD-HuDaAct database over other benchmark activity
databases

Database Modality Resolution Sample # Category descriptions

KTH [25] RGB 160 × 120 2391 6 classes: walking, jogging,
running, etc.

Weizmann [3] RGB 180 × 144 90 10 classes: run, walk, skip,
jumping-jack, side, etc.

Hollywood2 [22] RGB 600 × 450 3669 12 classes: answering the
phone, driving car, eating, etc.

UCF Sports [24] RGB 720 × 480 184 10 classes: swinging, golf
swinging, walking, etc.

UCF YouTube [21] RGB 320 × 240 3040 11 classes: basketball shooting,
biking, diving, etc.

MSR Action3D [20] Depth 320 × 240 4020 20 classes: high arm wave, hand
catch, forward punch, etc.

Indoor Activity [26] RGB-Depth 640 × 480 NA 12 classes: cooking, writing,
working on computer, etc.

RGBD-HuDaAct RGB-Depth 640 × 480 1189 12 classes (plus background
activity): drink water, eat meal,
phone call, etc.

the UCF YouTube sports database [21] consist of a set of actions collected for vari-
ous sports events which are typically obtained from websites including BBC Motion
gallery, GettyImages, and YouTube.com. These two databases are very challenging
due to large variations in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, and illumination condition, etc. While these two
databases consider only outdoor sports, the daily activities in the RGBD-HuDaAct
database are all indoor. MSR Action3D Database [20]: The only existing depth
sensor-based action database is collected by Li et al. [20], which aims at recog-
nizing actions (gestures) in game interaction. However, this database only contains
depth maps without corresponding color images. In contrast, the RGBD-HuDaAct
database contains synchronized and registered color-depth videos. Used for gesture
recognition, this database contains only atomic actions such as hand wave, punch,
etc. In contrast, our database aims at higher level human behavior such as mopping
the floor, eating meal, etc. Indoor Kinect Activity Database [26]: Very recently,
Sung et al. [26] use Kinect sensor to construct and indoor (e.g., office, kitchen, bed-
room, bathroom, and living room) activity dataset for the task of activity detection,
which includes four subjects and 12 activity categories. In addition to RGB-D im-
ages, the database also provides skeleton motion data. Most of their categories do
not overlap with ours. To have more inter-personal variations, the number of sub-
jects participating our data collection (i.e., 30) is much larger than theirs.

Differently from these databases, our motivation is driven by the application of
assisted living in health-care. Monitoring the daily activities of senior citizens has
recently become an urgent demand due to the aging population problem. There only
exists a very recent video database for senior home monitoring [6], however, it does
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Fig. 10.1 The Kinect camera setup. (Left) The video capture environment. (Right) The geometric
configuration of the Kinect camera

not utilize the depth modality. In contrast, the RGBD-HuDaAct database contains
synchronized color and depth videos, which are more suitable for 24 hours moni-
toring, since the depth sensor also works without visible lighting.

10.3.2 Database Construction

We utilize the recently released Microsoft Kinect sensor to construct the RGBD-
HuDaAct video database, collected in a lab environment, which is illustrated in
Fig. 10.1. There are minor variations in the camera position and orientation due
to repeated mountings of the camera. From Fig. 10.1, it can be noted that the
horizontal and vertical distances from the camera to the center of the scene un-
der capture are about 2 and 2 meters, respectively and the average depth of the
human subject in the scene is about 3 meters (i.e., which is the optimal opera-
tion range of the depth camera). This geometric setting is appropriate for home
or hospital ward monitoring. The resolutions of both color image and depth map
are 640 × 480 in pixel. The color image is of 24-bit RGB values; and each
depth pixel is a 16-bit integer. Both sequences are synchronized and the frame
rates are 30 frames per second (fps). The color and depth frames are stereo-
calibrated using the standard stereo-calibration method with a chessboard pat-
tern object available in OpenCV (four corners of the chessboard object are used
as corresponding points for depth calibration, as in [1]). We repeat the cam-
era calibration procedure at the beginning of each video capture session and
the camera is fixed throughout the session. The database can be downloaded at:
http://adsc.illinois.edu/research/ADSC-RGBD-dataset-download-instructions.pdf.

10.3.3 Database Statistics

We are interested in 12 categories of human daily activities motivated by the defini-
tions provided by health-care professionals [17] for Activity of Daily Living (ADL),

http://adsc.illinois.edu/research/ADSC-RGBD-dataset-download-instructions.pdf
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which includes: make a phone call, mop the floor, enter the room, exit the room,
go to bed, get up, eat meal, drink water, sit down, stand up, take off the jacket and
put on the jacket. These defined activities are directly corresponding to the ADL
category: using the telephone, maintaining the home, eating, transferring, dressing,
respectively (note that other ADL categories such as toileting, bathing, managing
finances, shopping are not suitable for visual recognition). We also have a category
named as background activity that contains different types of random activity. We
invited 30 student volunteers to perform these daily activities, which are organized
into 14 video capture sessions. The subjects were asked to perform each activity 2–4
times. Finally, we captured about 5,000,000 frames (approximately 46 hours long)
for a total of 1189 labeled video samples. Each video sample spans about 30–150
seconds. Note that the size of our database is still growing to include more activity
classes and video samples.

Two example frames from each activity category are illustrated in Fig. 10.2, in
terms of both color (left) and depth (right) frames. We can make two observations
from Fig. 10.2: (1) There exist distinctive depth layers for the moving human body
parts in different activities, which implies that incorporating the depth layer infor-
mation could bring additional discriminating capability for activity feature repre-
sentation; (2) there exist rich intra-class variations for each activity category.

For example, for the activities make a phone call and drink water, the subject
could be either standing still or sitting on the chair and either hand could be used for
phone answering and water drinking. As another example, for the activities put on
the jacket and take off the jacket, different persons have their own styles of perform-
ing these actions and they might be facing or not facing the camera. These variations
make our database more realistic and challenging.

Note that although the background of the current database is of limited variations
and only a single subject is present (i.e., compared to the movie action or YouTube
databases), we must emphasize that for the application of indoor home monitoring,
using a fixed camera and the current background environment are very typical. One
limitation of the current sensor is that the operation range is fixed at about 3 meters
and the camera view angle is also fixed. However, in real applications, the actions
can occur at any distance with different view angles. Therefore, we are currently
collecting more data with various distance ranges and view angles. Also the effective
range of the Kinect is limited within 6 meters, and we are currently investigating a
multiple-Kinect setup to cover the whole space.

10.4 Color-Depth Fusion for Activity Recognition

In this section, we introduce two feature representation methods for fusing color
and depth information for activity recognition, which are straightforwardly devel-
oped from two state-of-the-art action representation methods, i.e., spatial-temporal
interest points (STIPs) and motion history images (MHIs). On the one hand, we
derive a Depth-Layered Multi-Channel STIPs (DLMC-STIPs) framework which
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Fig. 10.2 Example color and depth frames from each activity category. Note for the depth map,
brighter pixels mean larger depth values. Some black regions correspond to depth measurement
errors due to surface reflections, i.e., the PC screen

divides the spatio-temporal interest points into several depth-layered channels, and
then STIPs within different channels are pooled independently, resulting in a mul-
tiple depth-channel histogram representation. On the other hand, we propose a 3-
Dimensional Motion History Images (3D-MHIs) approach which equips the con-
ventional motion history images (MHIs) with two additional channels encoding the
motion recency history in the depth-changing directions. In the experiments, these
two color-depth-based feature representation methods are comprehensively evalu-
ated over their color-only counterparts. It is demonstrated that by modeling the 3-
dimensional spatial structure of the detected spatio-temporal feature points as well
as the 3-dimensional motion history of the human subjects, the discriminating capa-
bilities of the features are boosted.

10.4.1 Depth-Layered Multi-channel STIPs (DLMC-STIPs)

Spatio-temporal interest points (STIPs) are widely used for action recognition. The
most representative versions of STIPs employ the Harris3D detector, which was
proposed by Laptev and Lindeberg in [18]. The Harris3D detector is a space-time
extension of the 2-dimensional Harris detector [13]. At each space-time video point,
a spatio-temporal second-moment matrix is computed as μ(.;σ, τ) = g(.; sσ, sτ ) ∗
(�V (.;σ, τ))(�V (.;σ, τ))T (i.e., V is the video volume), in terms of different
spatial and temporal scale values sσ, sτ . Namely, space-time gradients �V are
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computed and smoothed by a separate Gaussian smoothing function g(.; sσ, sτ ).
The detected locations of space-time interest points are given by local extrema of
H = det(μ) − κ trace3(μ), in terms of both spatial and scale space. To characterize
local shapes and motions, histograms of oriented gradients (HOG) and histograms
of optic flows (HOF) are calculated within the space-time neighborhoods of the
detected interest points, see [18]. The HOG and HOF feature descriptors are first
quantized into visual words and then each video sequence is represented as a bag of
such visual words [27] (i.e., as a histogram vector over the visual word vocabulary).

However, the human subject is in essence a 3-dimensional structure and the
detected spatio-temporal feature points are associated with local motions taking
place at different 3-dimensional locations; however, the previous pooling methods
of STIPs can only utilize this spatial information up to 2-dimensional, i.e., feature
poolings are performed within each x–y–t sub-volume, and the spatial information
along the depth direction is totally lost. The availability of depth map enables us
to recover this lost information. The most straightforward way to utilize the spatial
information along the depth direction is to perform the feature pooling by divid-
ing the entire scene into different depth layers, and form a multi-channel STIPs
histogram. This basic idea is similar with the space partition in [18], where STIPs
are spatially pooled within each x–y–t sub-volume, i.e., the entire 3-dimensional
space-time video volume is divided into several x–y–t sub-volumes. Our proposed
framework is named as Depth-Layered Multi-Channel STIPs (DLMC-STIPs),
which is formulated as follows.

Each video sample V could be represented as a set of (N ) STIP feature de-
scriptors (i.e., HOG and HOF), which is denoted V = {x1,x2, . . . ,xN }. Each STIP
feature descriptor is denoted xi = (x, y, z, t, σ,xT

HOG,xT
HOF)T . Here, x, y, z, t , σ

represent the 3D coordinate (x, y, z), temporal index and the scale of the detected
feature point, respectively. xHOG and xHOF are the 72D HOG and 90D HOF feature
vectors, respectively. We first perform unsupervised clustering on the set of HOG
and HOF feature descriptors to construct a visual word vocabulary (codebook). We
denote the visual codebook encoded vector (by nearest visual word assignment ac-
cording to the Euclidean distance) of the feature descriptor xi as vi , i.e., vi is a
K-dimensional (K is the codebook size) assignment vector with one of the element
as 1 and the others as 0s. Then the histogram representation h for the video sample
V is given by

h = 1

N

N∑
i=1

vi . (10.1)

This aggregation process is usually referred as feature pooling, i.e., aggregating the
set of local features into a global representation vector.

We can also incorporate the spatial information in the feature pooling process.
In [18], the entire 3-dimensional space-time volumes are divided into several x–y–t

sub-volumes and pooling is performed within each sub-volume. Then the pooled
histogram vectors from all the sub-volumes are concatenated to form a multi-
channel representation. When the depth value of each detected STIP point is avail-
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able, we can also form depth-layered multi-channel representations. Namely, we in-
troduce a set of (M) depth layers Lz

1 = [zl
1, z

u
1],Lz

2 = [zl
2, z

u
2], . . . ,Lz

M = [zl
M, zu

M ],
with lower and upper boundaries denoted as zl

m and zu
m for the mth depth layer.

Then, we form multi-channel histograms h1,h2, . . . ,hM , as

hm = 1

N

∑

z(xi )∈Lz
m

vi , ∀m = 1,2, . . . ,M. (10.2)

These multiple channel histograms could be concatenated into an M × K-
dimensional feature vector h = (hT

1 ,hT
2 , . . . ,hT

M)T , as the input to the classification
framework, e.g., support vector machines. The distance metric for calculating the
kernel matrix could be χ2 distance. Moreover, we can also use the spatial pyramid
matching kernel (SPM) proposed in [19] to better explore the spatial information
given in the depth axis. An illustration of the DLMC-STIPs generation process is
given in Fig. 10.3. Note the following. (1) The DLMC-STIPs method is not fully
4D representation, since the interest point detection and local volume representation
are both performed in the x–y–t space. However, improvement has been observed
when the local features are not distinctive with this naive extension (see Sect. 10.5).
We believe this trial idea (together with the database) will inspire the research com-
munity to develop more sophisticated approaches which represent activities in a
fully 4D manner. (2) The DLMC-STIPs framework does not explicitly model the
motion along the depth axis, and a 3D-MHIs approach which explicitly models the
3-dimensional motion is introduced in the next subsection.

10.4.2 3-Dimensional Motion History Images (3D-MHIs)

Another widely used feature representation method for action classification is mo-
tion history images (MHIs) developed by Bobick and Davis [4], which is capable of
encoding the dynamics of a sequence of moving human silhouettes. In an MHI, each
pixel intensity is a function of the motion recency at that location, where brighter
value corresponds to more recent motion. This single image contains the discrimina-
tive information for determining how a person has moved (spatially and temporally)
during the action. Denoting I (x,y, t) as an image sequence, each pixel intensity
value in an MHI is a function HI of the temporal history of motion at that point,
namely:

HI
τ (x, y, t) =

{
τ, if |I (x, y, t) − I (x, y, t − 1)| > δIth

max(0,HI
τ (x, y, t − 1) − 1), else.

(10.3)

Here τ is the longest time window we want the system to consider and δIth is the
threshold value for generating the mask for the region of motion. The result is a
scalar-valued image where brighter pixels indicate more recent motion. Statistical
descriptions of the motion history images are then computed based on seven Hu
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Fig. 10.3 A diagram of the generation process of DLMC-STIPs representation

moment-based features [14], which are known to yield reasonable shape discrimi-
nation in a translation- and scale-invariant manner.

However, using only RGB camera, MHIs can only encode the history of motion
induced by the lateral component of the scene motion parallel to the image plane.
With the additional depth sensor, we can now develop an extended framework which
is capable of encoding the motion history along the depth-changing directions. In
particular, we propose two depth-change induced motion history images named as
DMHIs. DMHIs contain forward-DMHIs (fDMHIs) which encode the forward mo-
tion history (increase of depth) and backward-DMHIs (bDMHIs) which encode the
backward motion history (decrease of depth). To generate fDMHIs, the following
process is adopted:

Hf D
τ (x, y, t) =

{
τ, if (D(x, y, t) − D(x,y, t − 1)) > δDth

max(0,H
f D
τ (x, y, t − 1) − 1), else.

(10.4)

Here, H
f D
τ denotes the forward motion history image and D(x,y, t) denotes the

depth sequence. δDth is the threshold value for generating the mask for the region
of forward motion. The backward-DMHI (i.e., HbD

τ ) is generated in a similar way
with the thresholding function replaced by (D(x, y, t) − D(x,y, t − 1)) < −δDth.
The conventional MHIs are combined with fDMHIs and bDMHIs to represent 3-
dimensional motion history and we denote the combined feature representation as
3D-MHIs. To represent each action video, similar to MHIs, Hu moments are cal-
culated for all three channels (i.e., MHIs, fDMHIs and bDMHIs) and are concate-
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Fig. 10.4 Illustration of the MHI, fDMHI and bDMHI in a sit down sequence

nated to form a representation vector. An example 3D-MHI is illustrated in Fig. 10.4
in the context of a sit down sequence. From Fig. 10.4, we notice obvious motion
patterns in fDMHI in contrast to bDMHI, which indicates the subject is moving
away from the camera. This example implies that by using fDMHIs and bDMHIs,
we can distinguish different actions which present similar motion patterns in the
x–y directions but with distinctive motion patterns in the depth-changing direc-
tions.

10.5 Experimental Evaluations

10.5.1 Evaluation Schemes

In this work, we use 59 % (i.e., by random sampling a fixed number of samples
from each category) of the video samples in the RGBD-HuDaAct database for ex-
periment. The subset we use in the experiments include 18 subjects with nine cap-
ture sessions, yielding a total of 702 video samples belonging to 13 activity classes,
including the background activity videos which are added to the existing 12 activ-
ity classes to test how algorithms can recognize the specified activities from some
random daily activities such as walk around, stand still, pick-up some object, etc.

To test the generalization capability of the methods for novel input, we use
the leave-one-subject-out (LOSO) scheme for algorithmic evaluations. In each run,
we choose the samples from one subject as the testing samples, and the remain-
ing samples from the database serve as the training samples. The overall recog-
nition performance is calculated by gathering the results from all training-testing
runs.

The evaluation results are reported in terms of classification accuracy as well
as class confusion matrix. We regard our human daily activity recognition problem
as a multi-class classification problem and each video sample has one and only
one activity label (i.e., out of 13 classes). For the LOSO scheme, the classification
accuracy is given by the ratio of the correctly classified testing samples over the total
number of testing samples, by gathering the classification results from all testing
runs. In our experiments, the class confusion matrix C is a 13 × 13 matrix where
each element Cij denotes how many testing samples of the ith class are classified
into the j th class. Larger values for the diagonal elements and smaller values for the
off-diagonal elements indicate better discriminating capability.
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Table 10.2 Comparisons of
the classification accuracies
(%) for STIPs and
DLMC-STIPs under different
experimental settings

Setting K = 128 K = 256 K = 512

STIPs (χ2) 68.95 76.78 79.77

DLMC-STIPs (χ2, M = 2) 72.43 77.10 79.91

DLMC-STIPs (χ2, M = 4) 74.22 77.91 79.23

DLMC-STIPs (χ2, M = 8) 76.64 79.49 79.49

DLMC-STIPs (SPM) 77.64 81.05 81.48

Prior to feature extraction, we down-sample the original color and depth video se-
quences in both spatial and temporal dimensions by a factor of 2, yielding 320×240
pixels and 15 fps video samples (i.e., this setting is similar with [20]). We use sup-
port vector machines (SVM) [5] (one-against-one scheme for multi-class classifica-
tion) for all classification tasks with different kernels. The penalty parameter C of
SVM is optimized by cross-validation. The bandwidth parameters for χ2 and RBF
kernels are set as the average of the squared distances (χ2 and Euclidean, respec-
tively) of the training sample pairs.

10.5.2 DLMC-STIPs vs. STIPs

We compare the classification performances between the proposed DLMC-STIPs
and the conventional STIPs. We perform K-means clustering to the set of HOG
+ HOF descriptors, which yields codebooks with size K . We vary the value of
K as 128, 256 and 512 for more comprehensive evaluations. For the conventional
STIPs, a K-dimensional histogram vector is calculated for representing each video
sequence. Note that in order to better reveal the discriminating capability gained
by depth-layered multi-channel representation, we fix the setting of other config-
urations as simple as possible, i.e., we do not partition the STIPs into different
x–y–t sub-volume as in [18]. Obviously, space partition in terms of x–y–t for
both methods could bring more discriminative information on an equal basis. For
DLMC-STIPs, we divide the depth axis into M = 2,4,8 equally spaced layers ac-
cording to the depth value distributions of the SITPs. As both DLMC-STIPs and
STIPs are histogram-based representations, we use χ2 distance for calculating the
kernel matrix. We also explore the spatial pyramid matching kernel (SPM) [19] for
DLMC-STIPs representations with l = 3 depth spatial levels. Various classification
accuracies under different parameter combinations are given in Table 10.2. We also
illustrate the class confusion matrices for both methods in Fig. 10.5, at the setting
of K = 256.

It can be observed from Table 10.2 that by using depth-layered multi-channel his-
togram representation, the classification accuracies can be improved consistently;
also, by using the spatial pyramid matching kernel (SPM), the classification perfor-
mances can be further boosted.
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Fig. 10.5 Class confusion matrices for STIPs (left) and DLMC-STIPs (right, SPM kernel) under
the setting of K = 256. For better view, we use two characters to represent each activity category,
i.e., PJ: put on the jacket, TJ: take off the jacket, EN:enter the room, EX: exit the room, SD: sit
down, SU: stand up, DW: drink water, EM: eat meal, MF: mop the floor, MP: make a phone call,
GB: go to bed, GU: get up and BG: background activity

Table 10.3 Comparisons of
the classification accuracies
(%) for MHIs and 3D-MHIs
under different experimental
settings

Kernel MHIs fDMHIs + bDMHIs 3D-MHIs

Linear 34.19 68.66 70.51

RBF 37.18 66.81 69.66

10.5.3 3D-MHIs vs. MHIs

We also compare the classification performances between the proposed 3D-MHIs
and the conventional MHIs. For both methods, the τ value is chosen by cross-
validations. We further normalize the 3D-MHIs and MHIs by multiplying a scale
factor 1

τ
to achieve scale invariance. Note that the original implementation of MHIs

as in [4] uses a multiple view configuration. In this work, however, we use a single
view instead. For SVM classification, we explore both the linear kernel and the RBF
kernel, and the classification results are given in Table 10.3. We again show the class
confusion matrices for both methods in Fig. 10.6, for the case of linear SVM.

From Table 10.3 and Fig. 10.6, it is noted obviously that by adding the two depth-
changing induced motion history images, the discriminating capability of the fea-
ture representation is significantly boosted (by nearly 30 %). Furthermore, from
Fig. 10.6, we see that the activity enter the room is quite easy to confuse with the
activities exit the room and mop the floor due to their similar lateral motion pat-
terns; however, by using 3D-MHIs, these ambiguities are significantly eliminated,
since both enter the room and exit the room include abundant and distinctive depth-
changing information.

We also compare the best results obtained from our RGB-D-based methods,
i.e., 3D-MHIs and DLMC-STIPs (SPM) with the state-of-the-art action recognition
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Fig. 10.6 Class confusion matrices for MHIs (left) and 3D-MHIs (right), at the setting of linear
SVM

Fig. 10.7 Comparison of
recognition accuracies using
DT, B3D, 3D-MHIs and
DLMC-STIPs (SPM)

methods using RGB images, e.g., dense trajectories (DT) [28] and depth images,
e.g., bag of 3D points (B3D) [20]. The related parameters for these comparing meth-
ods (e.g., trajectory length, number of visual words of trajectory descriptors, number
of mixtures and number of states for bag of 3D points method, the 3D points sam-
pling rate) are tuned optimally on a validation subset. The comparison is illustrated
in Fig. 10.7. We can see that fusion RGB and depth information (DLMC-STIPs
(SPM)) outperforms single modality-based methods.

10.6 Conclusions

In this work, we introduced a publicly available color-depth video database for hu-
man daily activity recognition. We also presented two fusion schemes combining
color and depth modalities for action representation, which have shown superior



10 A Color-Depth Video Database for Human Daily Activity Recognition 207

recognition performances over their color-only counterparts. We hope this database
could serve as a benchmark test bed of color-depth-based algorithms for home moni-
toring oriented activity recognition. In the future, we will extend the current database
with actions captured from different distance ranges and view angles.
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