
Heuristic Algorithms for Fragment Allocation
in a Distributed Database System

Umut Tosun, Tansel Dokeroglu and Ahmet Cosar

Abstract Communication costs caused by remote access and retrieval of table
fragments accessed by queries is the main part execution cost of the distributed
database queries. Data Allocation algorithms try to minimize this cost by assigning
fragments at or near the sites they may be needed. Data Allocation Problem (DAP) is
known to be NP-Hard and this makes heuristic algorithms desirable for solving this
problem. In this study, we design a model based on Quadratic Assignment Problem
(QAP) for the DAP. The QAP is a well-known problem that has been applied to dif-
ferent problems successfully. We develop a set of heuristic algorithms and compare
them with each other through experiments and determine the most efficient one for
solving the DAP in distributed databases.

Keywords Distributed database design · Fragmentation · Heuristics.

1 Introduction

Although distributed databases (DDBs) are attractive for very large datasets, their
utilization brings new problems. Designing a DDB is one of the most complicated
problems in this domain. In addition to the classical centralized database design,
fragmentation and data allocation are the new two problems to tackle with [1, 2]. Data
allocation problem (DAP) is an optimization problem with constraints [3]. Disk drive
speed, parallelism of the queries, network traffic, load balancing of servers should
be considered during the design. Even without most of these decision parameters

U. Tosun · T. Dokeroglu · A. Cosar (B)

METU Computer Engineering Department, Ankara, Turkey
e-mail: cosar@ceng.metu.edu.tr

T. Dokeroglu
e-mail: tansel@ceng.metu.edu.tr

U. Tosun
e-mail: tosun@ceng.metu.edu.tr

E. Gelenbe and R. Lent (eds.), Computer and Information Sciences III, 401
DOI: 10.1007/978-1-4471-4594-3_41, © Springer-Verlag London 2013

402 U. Tosun et al.

it is clear that DAP is an NP-Hard problem. File allocation problem (FAP), DAP,
and QAP have some similarities. From the perspective of data transmission, DAP is
the same with FAP. However, the logical and semantic relations of fragments differ
from these two problems. QAP has more similarities with DAP that it also keeps track
of the resource locality. The QAP is first presented with Koopmans and Beckman
[4]. In Sect. 2, we give a brief information about the related works for FAP, DAP,
and QAP. Section 3 explains the design of the solution. Section 4 gives the proposed
algorithms and Sect. 5 gives experimental environment and the results respectively.
The conclusions are presented in Sect. 6.

2 Related Work

FAP, DAP, and QAP are extensively studied well-known problems [4, 5]. There are
static or dynamic allocation algorithms for the DAP. Static algorithms use predefined
requirements, whereas dynamic algorithms take modifications into consideration [6].
Ceri and Plagatti presented a greedy algorithm for replicated and non-replicated data
allocation design [7]. Bell showed that the DAP is NP-Hard [8]. Corcoran and Hale
[9] and Frieder and Siegelmann [10] solved the DAP with genetic algorithms (GA).
Ahmad and Karlapalem solved the problem of non-redundant data allocation of
fragments in distributed database systems by developing a query driven data allo-
cation approach integrating the query execution strategy with the formulation of
the data allocation problem [11]. Adl and Rankoohi addressed prominent issues of
non-replicated data allocation in distributed database systems with memory capacity
constraint [12]. They took into consideration the query optimization and the integrity
enforcement mechanisms in the formulation of the DAP. Many other NP-Hard prob-
lems are designed by using QAP [13–15].

3 Solution Formulation with the QAP

The data allocation problem is specified with two kinds of dependencies between
transactions and fragments as seen in Fig. 1. The dependency of sites to fragments
can be inferred from transaction-fragment and site-transaction dependencies. S rep-
resents sites, F represents fragments, T represents transactions in Fig. 1. Similarly,
freq is the number of requests for the execution of a transaction at a site, trfr is the
direct dependency of a transaction on a fragment, and q is the indirect dependency
of a transaction on two fragments.

We formulated the cost function of the data allocation problem as the sum of two
costs, direct and indirect transaction-fragment dependencies [12]. The dependency
between a transaction t and a fragment f is called direct if there is a data transmission
from the site containing f for each execution of t. If there is some data to be trans-
ferred from a site different from the originating site of transaction, the dependency
is considered as indirect. The total cost of data allocation Cst is the sum of two costs
Cst1 and Cst2 (Eq. 1).

Heuristic Algorithms for Fragment Allocation 403

Fig. 1 The dependencies of transactions on fragments and sites on transactions

Cst (Φ) = Cst1(Φ) + Cst2(Φ) (1)

In Eq. 1, Φ represents the m element vector where Φ j specifies the site to which
f j is allocated. Cst1 is represented by the amount of site-fragment dependencies. It
is expressed by the multiplication of two matrices STFR and UC, where STFR stores
the site fragment dependencies and UC stores the unit communication cost among
the sites. The cost of storing a fragment f j in site si is represented by partial cost
matrix PC ST 1n×m . The unit partial cost matrix is formulated in Eq. 2.

pcst1i j =
n∑

q=1

uciq × st f rq j (2)

Cst1 can be represented as in Eq. 3 after having calculated the unit partial cost
pcst1i j for each i and j.

Cst1(Φ) =
m∑

j=1

pcst1Φ j j (3)

The inter-fragment dependency matrix FRDEP is defined as the multiplication
of the matrices QF Rl×m×m and Ql×m×m . The matrix QFR denotes the execution
frequencies of the transactions. The FRDEP matrix representing the inter-fragment
dependency is the multiplication of the matrix QFR with the matrix Q. Q represents
the indirect transaction fragment dependency. Equation 4 formulates the indirect
transaction-fragment dependency Cst2. Cst2 is a form of the QAP as seen in the
equation.

404 U. Tosun et al.

Cst2(Φ) =
m∑

j1=1

m∑

j2=1

f rdep j1 j2 × ucΦ j 1Φ j 2 (4)

4 Proposed Algorithms for the Data Allocation Problem

GAs randomly generate an initial population of solutions, then by applying selection,
crossover, and mutation operations repetitively, creates new generations [16]. The
individual having the best fitness value is returned as the best solution of the problem
[17]. PMX crossover is used in the GA. PMX copies a random segment from parent1
to the first child. It looks for the elements in that segment of parent2 that have not
been copied starting from the initial crossover point. For each of these elements, say
i, it looks in the offspring to see what element j has been copied in its place from
parent1, PMX places i into the position occupied by j in parent2, since we know
that we will not be putting j there. If the place occupied by j in parent2 has already
been filled in the offspring by k, we put i in the position occupied by k in parent2.
The rest of the offspring can be filled from parent2. The second child is created
similarly [18].

Dorigo and colleagues proposed ACO as a method for solving difficult combina-
torial problems [19]. ACO is a metaheuristic inspired by the behavior of real ants
where individuals cooperate through self-organization. FANT is a method to incorpo-
rate diversification and intensification strategies [20]. It systematically reinforces the
attractiveness of values corresponding to the best solution found so far the search,
and on the other hand by clears the memory while giving less weight to the best
solution if the process appears to be stagnating.

Metropolis developed a method by simulating the thermodynamic energy level
changes in 1953 [21]. With this method, particles exhibit energy levels maximizing
the thermodynamic entropy at a given temperature value. The average energy level
is proportional to the temperature. This method is called Simulated Annealing (SA).
Kirkpatrick applied SA on computer related problems in 1983 [22]. Many scientists
have applied it to different optimization problems since then [23]. If a metal cools
down slowly, it turns into a smooth metal because its molecules have entered a crystal
structure. This crystal structure shows the minimum energy state, for an optimization
problem. If a metal cools down too fast, the metal turns into a rough piece with bumps.
These bumps and jagged edges show the local minimums and maximums. In SA, each
point of the search space represents a state of the physical system, and the function
to be minimized is the internal energy of the system in that state. The goal of the
algorithm is to bring the system from an initial state to a state with the minimum
possible energy.

Heuristic Algorithms for Fragment Allocation 405

5 Experimental Setup and Test Results

5.1 Experimental Environment

In each test, one parameter is varied while the others are fixed. The algorithms are
tested by the same test data. Data is generated with rules defined in Sect. 5.2. Exper-
iments are performed using a 2.21 GHz AMD Athlon (TM) 64 × 2 dual processor
with 2 GB RAM and MS Windows 7 (TM) operating system. Each processing node
has 102 buffers, and page size is 10,240 bytes, disk I/O time is 10 ms (per page),
available memory is assumed to be sufficient to perform all join operations in main
memory and each table is loaded into memory only once. Test data is generated
according to the experimental environment of Adl [12]. The only difference is that
we choose the unit costs in range [0,1]. Our test data generator gets number of frag-
ments m, number of sites n and other parameters as input and creates a random
DAP instance. We choose the fragment size randomly from the range [c

10 , 20 × c
10],

where c is a number between 10 and 1,000. We choose the site capacities in [1, 2
× m

n −1]. The sum of the site capacities should be equal to total fragment size m,
where n is the total number of sites. We assumed that the number of sites n is equal
to number of fragments m. Each fragment size is chosen randomly. We selected the
unit transmission costs as a random number in range [0,1]. We generate a random
probability of request for each transaction (RT) for each transaction to be requested
at a site. Transaction fragment dependency is also represented with probability of
access for each fragment (AF). The site fragment frequency matrix FREQ is deter-
mined as the multiplication of probability RT and a random frequency in range
[1, 1,000]. Transaction fragment dependency matrix is generated as the multiplica-
tion of AF and a uniformly distributed random value in [0, f j] where f j is the jth
fragment. Finally the site fragment dependency matrix STFR is equal to FREQ ×
TRFR. We define the inter-fragment dependency matrix FRDEP as multiplication of
the matrices QF Rl×m×m and Ql×m×m where QFR takes into account the execution
frequencies of the transactions and Q represents the indirect transaction fragment
dependency.

5.2 Experimental Results

We performed several tests over GA to set the appropriate parameters. GA uses
population size 1,000 and number of generations 200. We used the Fast Ant System
[20] with parameter R = 5 for managing traces and number of iterations as 20,000. SA
uses 100,000 as number of iterations and 2,750 as number of runs. After completing
the experiments on instances ranging from size 5 to 100, it is concluded that FANT
performs better than GA and SA. FANT executes faster than GA and SA on all instances
as seen in Table 1, Figs. 2 and 3.

406 U. Tosun et al.

Table 1 Comparison of algorithms on DAP instances (cost value is column×106) unit

Cost Cost Cost DAP size Time (s) Time (s) Time (s)

DAP size ACO GA SA ACO GA SA

5 0.04 0.04 0.04 5 9.26 76.27 130.29
10 0.31 0.32 0.31 10 14.52 87.80 143.84
15 0.98 0.99 0.98 15 13.74 90.76 214.02
20 2.61 2.63 2.61 20 17.91 123.79 243.30
25 5.19 5.25 5.19 25 25.86 131.98 351.23
30 10.27 10.39 10.27 30 31.17 132.46 461.89
35 16.39 16.64 16.41 35 43.31 150.06 393.73
40 25.91 26.28 26.02 40 56.59 166.80 420.65
45 37.28 37.73 37.40 45 80.92 191.93 437.74
50 53.93 54.76 54.08 50 105.33 471.98 511.40
55 71.30 72.72 71.40 55 126.00 268.31 516.86
60 90.35 91.76 90.50 60 166.55 315.31 828.14
65 112.31 113.59 112.49 65 204.35 421.93 1,090.77
70 146.41 148.48 146.73 70 320.62 536.15 1,303.21
75 177.90 180.04 178.16 75 309.51 609.77 976.97
80 219.40 223.10 219.81 80 396.18 464.17 1,234.48
85 262.24 267.04 262.89 85 807.43 532.05 898.11
90 316.11 320.88 316.81 90 621.55 563.15 1,336.74
95 370.14 375.49 371.14 95 725.93 629.55 1,128.08
100 428.40 436.19 429.10 100 1,203.99 1,236.30 1,389.19

Fig. 2 Cost versus instance size comparisons of the algorithms

Heuristic Algorithms for Fragment Allocation 407

Fig. 3 Time versus instance size comparisons of the algorithms

6 Conclusions and Future Work

We solve the fragment allocation problem in distributed databases by making use
of the well known Quadratic Assignment Problem solution algorithms. A new set
of Genetic, Simulated Annealing, and Fast Ant Colony algorithms are introduced
for solving this important problem. In the experiments, the execution times and the
quality of the fragment allocation alternatives are investigated. The results are very
promising even for very large number of fragments and sites. The model used for
deciding the sites where each fragment will be allocated assigns only one fragment to
each site. Replication of fragments to multiple sites and assigning multiple fragments
to any site have not been considered in this work. As future work, we plan to eliminate
these restrictions and develop algorithms that can produce any distributed database
schema by allowing replication and horizontal/vertical fragmentation.

References

1. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn, pp. 245–293.
Springer (2011)

2. Dokeroglu, T., Cosar, A.: Dynamic programming with ant colony optimization metaheuristic
for the optimization of distributed database queries. In: Proceedings of the 26th International
Symposium on Computer and Information Sciences (ISCIS), London, Sept 2011

3. Lee, Z., Su, S., Lee, C.: A heuristic genetic algorithm for solving resource allocation problems.
Knowl. Inf. Syst. 5(4), 503–511 (2003)

4. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economics activ-
ities. Econometrica 25, 53–76 (1957)

408 U. Tosun et al.

5. Laning, L.J., Leonard, M.S.: File allocation in a distributed computer communication network.
IEEE Trans. Comput. 32(3), 232–244 (1983)

6. Gu, X., Lin, W.: Practically realizable efficient data allocation and replication strategies for
distributed databases with buffer constraints. IEEE Trans. Parallel Distrib. Syst. 17(9), 1001–
1013 (2006)

7. Ceri, S., Pelagatti, G.: Distributed Databases Principles and Systems. McGraw-Hill, New York
(1984)

8. Bell, D.A.: Difficult data placement problems. Comput. J. 27(4), 315–320 (1984)
9. Corcoran, A.L., Hale, J.: A genetic algorithm for fragment allocation in a distributed database

system. In: Proceedings of the 1994 ACM Symposium on Applied Computing (SAC 94), pp.
247–250. Phoenix (1994)

10. Frieder, O., Siegelmann, H.T.: Multiprocessor document allocation: a genetic algorithm
approach. IEEE Trans. Knowl. Data Eng. 9(4), 640–642 (1997)

11. Ahmad, I., Karlapalem, K.: Evolutionary algorithms for allocating data in distributed database
systems. Distrib. Parallel Databases 11, 5–32 (2002)

12. Adl, R.K., Rankoohi, S.M.T.R.: A new ant colony optimization based algorithm for data allo-
cation problem in distributed databases. knowl. inf. syst. 25(1), 349–372 (2009)

13. Dokeroglu, T., Tosun, U., Cosar, A.: Parallel mutation operator for the quadratic assignment
problem. In: Proceedings of WIVACE, Italian Workshop on Artificial Life and Evolutionary
Computation, Parma, Feb 2012

14. Mamaghani, A.S., Mahi, M., Meybodi, M.R., Moghaddam, M.M.: A novel evolutionary algo-
rithm for solving static data allocation problem in distributed database systems, In: Second
International Conference on Network Applications, Protocols and Services, Reviews Booklet,
Brussels (2010)

15. Lim, M.H., Yuan, Y., Omatu, S.: Efficient genetic algorithms using simple genes exchange
local search policy for the quadratic assignment problem. Comput. Optim. Appl. 15(3), 249–
268 (2000)

16. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading (1989)

17. Sevinc, E., Cosar, A.: An evolutionary genetic algorithm for optimization of distributed database
queries. Comput. J. 54(5), 717–725 (2011)

18. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
19. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating

agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29 (1996)
20. Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.Y.: Adaptive memory programming:

a unifed view of meta-heuristics. EURO XVI Conference tutorial and research (1998)
21. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state

calculations by fast computing machines. J. Chem. Phys. 21(6), 1087 (1953)
22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
23. He, X., Gu, Z., Zhu, Y.: Task allocation and optimization of distributed embedded systems with

simulated annealing and geometric programming. Comput. J. 53(7), 1071–1091 (2010)

	41 Heuristic Algorithms for Fragment Allocation in a Distributed Database System
	1 Introduction
	2 Related Work
	3 Solution Formulation with the QAP
	4 Proposed Algorithms for the Data Allocation Problem
	5 Experimental Setup and Test Results
	5.1 Experimental Environment
	5.2 Experimental Results

	6 Conclusions and Future Work
	References

