
Compositional Verification of Untimed
Properties for a Class of Stochastic
Automata Networks

Nihal Pekergin and Minh-Anh Tran

Abstract We consider Stochastic Automata Networks whose transition rates depend
on the whole system state but are not synchronised and are restricted to satisfy a
property called inner proportional.We prove that this class of SANs has both product
form steady-state distribution and product form probability over untimed paths. This
product form result is then applied to check formulae that are equivalent to some
special structure that we call path-product of sets of untimed paths. In particular, we
show that product form solutions can be used to check unbounded Until formulae of
the Continuous Stochastic Logic.

1 Introduction

Probabilistic model checking is an extension of the formal verification methods for
systems exhibiting stochastic behaviour. The system model is usually specified as a
state transition system, with probabilities attached to transitions, for example, Markov
chains. A wide range of quantitative performance, reliability, and dependability mea-
sures can be specified using temporal logics such as Continuous Stochastic Logic
(CSL) defined over Continuous Time Markov Chains (CTMC) [1] and Probabilistic
Computational Tree Logic (PCTL) defined over Discrete Time Markov Chains
(DTMC) [8]. To perform model checking by numerical analysis we need to compute
transient-state or steady-state distribution of the underlying CTMC. The numeri-
cal model checking has been studied extensively and numerous algorithms [2] have
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been devised and implemented in different model checkers. Despite the considerable
works in the domain, the numerical Markovian analysis still remains a problem.

Different approaches have been applied to overcome the state space explosion
problem. Data structures which lead to compact representations of large models such
as Binary Decision Diagrams (BDD) and Multi Terminal Binary Decision Diagrams
(MTBDD) with efficient manipulation algorithms have been applied to consider large
models. This approach is called symbolic model checking [3]. Another approach is
based on the state space reduction techniques. The idea here is to have a representation
of the underlying model in a reduced-size model, which is called abstraction in model
checking [10]. The large models can also be analysed by decomposition which means
that sub-systems are analysed in isolation and then the global behaviour is deduced
from these solutions. This is called as compositional model checking [4, 6].

The goal of this paper is to present a model checking approach which is able to take
advantage of product form solutions. It is worth pointing out that product form solu-
tions play an important role in calculating stationary distributions of Markov chains
in performance evaluation [1], but, on the contrary, are believed to have no significant
use in model checking. In this paper, we study a subclass of Stochastic Automata
Networks (SANs) without synchronisations, which have product form steady-state
distributions [7]. In the subclass, there is no synchronisation, all transition rates are
functional and restricted to satisfy a property that we call inner proportional. This
class remains large enough, for example, to generalise competing Markov chains
[5]. We profit from product form solutions of this class to perform the CSL model
checking for the untimed Until path and the steady-state formulae.

The rest of the paper is organised as follows: Sect. 2 gives a brief introduction
for CSL and then introduces the class of SANs for which the compositional model
checking is performed. Section 3 proves the product form solution for the steady-state
and Sect. 4 provides the product form over untimed paths.

2 Framework and Model

CSL Model checking: In this paper, we consider the steady-state and untimed
Until formulae of CSL model checking. We briefly give the syntax and semantic
for these operators and we refer to [1, 2] for further information. Model M is a
time-homogeneous CTMC with infinitesimal generator Q taking values in a set of
states S. AP denotes a finite set of atomic propositions, and L : S → 2AP is the
labelling function which assigns to each state s ∈ S the set L(s) of atomic proposi-
tions a ∈ AP those are valid in s. A path through M can be finite or infinite. A finite
path σ of length n is a sequence of states: σ = s0, s1, . . . , sn with transition rates
Q(si , si+1) > 0. We denote by pathss the set of all paths starting from state s. Let p
be a probability threshold and � be an arbitrary operator in the set {≤,≥,<,>}.The
syntax of CSL is defined by :

φ : : = true | a | φ ∧ φ | ¬φ | P�p(φ U φ) | S�p(φ)
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The expression P�p(φ1 U φ2) asserts that the probability measure of paths satisfying
φ1 U φ2 meets the bound given by �p. The path formula φ1 U φ2 asserts that φ2 will
be satisfied at some time t ∈ [0,∞) and that at all preceding time φ1 holds. S�p(φ)

asserts that the steady-state probability for φ-states meets the bound �p. We present
briefly the semantics of these formula where |= is the satisfaction operator:

s |= true for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬φ iff s 	|= φ
s |= P�p(φ1 U φ2) iff P

M(s,φ1 U φ2) � p
s |= S�p(φ) iff

∑
s|s|=φ πM(s) � p

where P
M(s,φ1 U φ2) denotes the probability measure of all paths σ starting from

s (σ ∈ pathss) satisfying φ1 U φ2, i.e., P
M(s,φ1 U φ2) = P{σ ∈ pathss | σ |=

φ1 U φ2}; πM(s) denotes the steady-state probability of state s of the chain M. In
the case M is ergodic, the steady-state distribution is independent of the initial state,
then the steady-state formula is satisfied or not whatever the initial state.

SANs with local, functional and inner proportional transitions: Consider a
network of N interacting stochastic automata A1, A2, . . . AN where

• Transitions are local, i.e., not synchronised: it is forbidden to have two events
occurring at the same time in two different automata.

• Transition rates of each automaton depend on the state of the whole system. Such
transitions are also called functional transitions.

• For any automaton, transition rates are restricted to be inner proportional: they
may depend on the state of all other automata; however, the proportion between
two arbitrary transition rates of this automaton remains independent from the state
of other automata.

In this work, we note

• s = (s1, s2, . . . , sN ) the state vector, s−k = (s1, . . . , sk−1, sk+1, . . . , sN ) the state
vector without component sk .

• Sk the set of states of automaton Ak , S = S1 ×S2 ×· · ·×SN the set of all system
states, and S−k = S1 × · · · × Sk−1 × Sk+1 × · · · × SN the set of states of all
automata other than Ak .

• Qs
k : Sk × Sk → R the infinitesimal generator of Ak when the system is in state

s. More precisely, transition rates of Ak are functions of the state vector s−k .

In state s, the total outgoing rate from automaton Ak is −Qs
k(sk, sk) = ∑

s′
k 	=sk

Qs
k(sk, s′

k).

Property 1 (Characterisation of inner proportional transitions) The transition
rates of Ak are inner proportional if and only if there exists a state-dependent factor
αk : S−k → R and an infinitesimal generator Qk : Sk × Sk → R which does not
depend on the vector s−k such that

Qs
k(sk, s′

k) = αk(s−k)Qk(sk, s′
k) ∀sk, sk′ ∈ Sk,∀s−k ∈ S−k . (1)
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Matrix Qk is the infinitesimal generator of the representative automaton of Ak

(or Ak in isolation). In isolation, the total outgoing rate from state sk is given by
−Qk(sk, sk) = ∑

s′
k 	=sk

Qk(sk, s′
k).

3 Product Form Solution for the Steady-State

First of all, SANs with local, functional and inner proportional transitions form a
subclass of SANs without synchronisations considered in [7]. In this work, Fourneau
et al. considered SANs where transitions are local and functional, but not necessarily
inner proportional. They denote by Fk the set of infinitesimal generators of Ak . This
notation Fk denotes the set {Qs

k : s ∈ S} in our model. Theorem 6 of [7] states
that a SAN with local and functional transitions has a product form steady-state
distribution if for any automaton Ak there exists a probability distribution πk that
verifies the following equation

πk Q = 0 ∀Q ∈ Fk . (2)

In the view of Property 1, for inner proportional transitions, Fk is given by

Fk = {αk(s−k)Qk : s−k ∈ S−k},

where αk is a real-valued function of s−k and Qk is the representative infinitesimal
generator of automaton Ak . Thus, a distributionπk satisfies Eq. (2) for all infinitesimal
generators of Ak if it satisfies the following Eq. (3) for only Qk .

Theorem 1 If for each automaton Ak in isolation there exists a probability distrib-
ution πk such that

πk Qk = 0, (3)

then the steady-state distribution of the system has the following product form

π(s) = C
N∏

k=1

πk(sk). (4)

This product-form solution can be used to check the steady-state formula S�p(φ) to
see if the sum of steady-state probabilities of states satisfying φmeets the bound p or
not. In the following, two applications of this product form result will be illustrated.

Example 1 Generalised competing Markov chains. We extend the system of com-
petition between concurrent processes over a number of shared resources [4, 5]. The
extension is that common resources are no longer limited to be mutually exclusive
and strong blocking but may be used by different components at the same time. In
other words, transition rates may not be switched off to zero but are only reduced
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by some factor when common resources are shared. Transition rates are local, func-
tional and inner proportional: when a component shares some common resources
with others, its transition rates are reduced by some factor α, which might be a func-
tion of the states of all other resources. More precisely, the transition rate matrix
of component k is of the form Qs

k = αk(s−k)Qk . Thus, Theorem 1 applies to this
system of generalised competing Markov chains.

Example 2 Multiclass queue with proportional state-dependent rates In this exam-
ple, Theorem 1 is applied to a multiclass queue with state-dependent arrival rates
and service rates. Consider a queue of N classes of customers where customers of
each class arrive according to a variable-rate Poisson process. Let xk be the num-
ber of class-k customers, x = (x1 . . . xN ) be the system state. For class k, suppose
that service requirements follow an exponential distribution of parameter μk and the
arrival rate λk(x−k) is a general function of the vector x−k composed of numbers of
customers of other classes. Besides, suppose that the service effort Φk(x−k) allocated
to class k is also a function of x−k . Thus, class k is characterised by state-dependent
arrival rate λk(x−k) and departure rate μkΦk(x−k).

SAN representation. Let us describe each class by an automaton. First, transition
rates of each automaton are arrival rate and departure rate of the corresponding class.
Therefore, these transition rates are functional. Second, if two events of two different
classes are not allowed to occur at the same time, transition rates are local. Finally,
if the ratio between arrival rate λk(x−k) and departure rate μkΦk(x−k) is equal to a
constant λk/μk for any class k, transition rates are inner proportional. The system
is a SAN with local, functional and inner proportional transitions. Thus, Theorem 1
applies and gives us an example of state-dependent multiclass queue with product
form solutions w.r.t. classes.

4 Product Form Solution for Untimed Paths

In this section, we refer to a transition as a k-move if it corresponds to an event
of automaton Ak, and we consider an arbitrary starting state s = (s1 . . . sk . . . sN ).

Product form solution for untimed paths is based on the following key result which
is a direct consequence of the inner proportional characterisation (Property 1).

Property 2 Conditioning on the event E j
k that the first k-move happens at j th tran-

sition, the probability of the event Obs(sk, s′
k) of observing the move (sk, s′

k) at this
first k-move depends neither on the index j nor on the state of other automata:

P

(
Obs(sk, s′

k) | E j
k

)
= Qk(sk, s′

k)

−Qk(sk, sk)
∀k, j. (5)

Assumption In the rest of the work, we suppose that automaton Ak will make a
move in the future with probability one if the total outgoing rate of its representative
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automaton is strictly positive. This assumption states that the system will make a
k-move and the first k-move will happen at j th transition with some finite index j .

Property 3 Conditioning that the total outgoing rate of the representative automa-
ton of Ak is strictly positive, automaton Ak will make a move in the future and the
probability of observing (sk, s′

k) at the first k-move does not depend on the state of
other automata and is given by:

P
(
Obs(sk, s′

k) | − Qk(sk, sk) > 0
) = Qk(sk, s′

k)

−Qk(sk, sk)
∀k. (6)

In this part, we are interested in checking if state s satisfies an untimed formula φ.
If the formula corresponds to a set of untimed paths, the work consists in calculating
probabilities conditioned on the set of untimed paths starting with s. Let us denote
this set by U (s). Besides, for the representative automaton of Ak, let U (sk )

k be the set
of untimed paths starting with sk .

Definition 1 For any untimed path σ = (s0, s1, s2, . . .), its k-projection is

projk(σ) = (si0
k , si1

k , si2
k , . . .), 0 = i0 < i1 < i2 < · · ·

such that any two consecutive system states s j , s j+1 whose kth components are the
same, i.e., s j

k = s j+1
k , are projected into a unique state s j

k .

Thus, a k-projection of a path is defined such that repeated states are deleted.Consider
an arbitrary starting state s = (s1, s2, . . . , sN ) and a finite untimed path σk =
(sk, s1

k , . . . , sl
k) of Ak in isolation. We say that the k-projection of an untimed path

σ starts with σk if
projk(σ) = (sk, s1

k , . . . , sl
k, . . .).

In the rest of the paper, the notation projk(σ) = σk indicates that the k-projection
of σ starts with σk . For example, consider σk = (sk, s′

k) of length 1. Property 3 gives
the probability that the k-projection of σ starts with (sk, s′

k), i.e., automaton Ak will
make a move and the first k-move corresponds to (sk, s′

k).

Theorem 2 Conditioned on starting states s and sk respectively, the probability
of observing an untimed path σ whose k-projection starts with σk is equal to the
probability of observing σk in the representative automaton of Ak :

P

(
σ : projk(σ) = σk | U (s)

)
= P

(
σk | U (sk )

k

)
. (7)

In the following we shall consider sets of untimed paths. We first introduce the notion
of path-product over these sets.

Definition 2 For all k = 1 . . . N , let Uk be a set of untimed paths σk in Sk . The
path-product of the sets U1 . . . UN is defined by the set of untimed paths σ in S,
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U ≡ {σ : projk(σ) = σk,σk ∈ Uk, k = 1 . . . N } , we note U = Uk .

For example, the set of untimed paths starting with state s is the path-product of the
sets of untimed paths starting with state sk of automaton Ak for all k = 1 . . . N , that
is, U (s) = U (sk )

k .

Theorem 3 Let s be an arbitrary starting state, Uk be a set of finite untimed paths
starting with sk in Sk for any automaton Ak, and U be the path-product Uk . We
have the following product form

P

(
σ ∈ U | U (s)

)
=

N∏

k=1

P

(
σk ∈ Uk | U (sk )

k

)
. (8)

Theorem 3 is important as it gives us a compositional method to check any formulae
that is equivalent to a path-product of sets of single component untimed paths. In
particular, we shall consider global unbounded Until formulae in the sequel.

Single component unbounded Until formulae: One consequence of Theorem 2
is the following result which provides a compositional method to check any single
component untimed formula ωk .

Theorem 4 For any system state s = (s1, . . . , sk, . . . , sN ) and for any single com-
ponent untimed formula ωk , the satisfaction of ωk by the whole system is equivalent
to its satisfaction by component k: s |= ωk ⇐⇒ sk |= ωk .

Thus, one may simply check if state sk verifies formula ωk for automaton Ak in
isolation instead of working with global state s. For example, one may remove all
functional interactions and only needs to pay attention to the corresponding iso-
lated chain (or isolated class) in the model of generalised competing Markov chains
(or multiclass queue with proportional state-dependent rates respectively).

Global unbounded Until formulae: Let U (φUψ) be the set of all untimed paths σ
that satisfy the Until formula (φ U ψ). The probability that s satisfies (φ U ψ) is the
following probability:

P

(
σ ∈ U (φUψ) | U (s)

)
= P

(
σ ∈ U (s) ∩ U (φUψ) | U (s)

)
.

Theorem 5 If U (s) ∩ U (φUψ) is a path-product of the form

U (s) ∩ U (φUψ) = Uk (9)

where Uk is some set of finite untimed paths σk of automaton Ak in isolation for all
k, the probability that s satisfies the formula φ U ψ has the following product form
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P (s |= φ U ψ) =
N∏

k=1

P

(
σk ∈ Uk |U (sk )

k

)
. (10)

This is a direct consequence of Theorem 3 applied to the set U = U (s) ∩ U (φUψ).

The idea of this result is to decompose the Until formula probability into separated
components. However condition (9) seems to be sophisticated. Let us illustrate it by
considering a concrete Until formula in the following.

Application of the compositional approach: Consider the multiclass queue described
in Example 2 with batch Poisson arrivals [9]: For each class, arrivals of batches
follow a Poisson process, where the batch size is a positive integer random variable.
The Poisson parameter and the random variable for the batch size are functional, i.e.,
may depend on the state of all other classes.Suppose that arrival rates, batch sizes,
departure rates depend on the system state such that inner proportional property
holds : Qs

k = αk(s−k)Qk ∀k. With this extension, the SAN remains local, functional
and inner proportional.

In a multiclass queue, we are often interested in the number of customers of each
class. The logic formulae are to compare this number of customers to a threshold or
a composition of these formulae. For each class k, let Mk be a threshold. We have
a failure (overload) for class k if its number of customers reaches Mk . Whenever
this happens the class stays at state Mk forever by convention, that is, Qk(Mk, sk) =
0 ∀sk 	= Mk . On the contrary, the system functions properly if there exists a class k
such as its number of customers does not exceed a threshold mk . We are interested
in verifying the Until formula (φ U ψ) where

{
φ = φ1 ∨ · · · ∨ φN , φk = {xk ≤ mk}
ψ = ψ1 ∧ · · · ∧ ψN , ψk = {xk ≥ Mk}. (11)

Condition ψ means failure of all classes, on the contrary, condition φ means that
the system functions with at least one class. Let us remark that this Until formula is
different from the steady-state probability of being in ψ-states, we consider indeed
the probability to reach ψ-states passing through φ-states.

Consider the probability P(s |= φ U ψ) for an arbitrary state s. In order to use
the above compositional approach, we shall determine the corresponding sets U (s),
U (φUψ) and their intersection. First of all, U (s) is composed of untimed paths that
begin with s. This set is simply the path-product of sets U (sk )

k of untimed paths

that begin with sk for each component k, i.e., U (s) = U (sk)
k . Second, U (φUψ) is

composed of finite untimed paths that satisfy the Until formula (φ U ψ). Lastly, the
intersection of the two sets is given by the following set of finite untimed paths U =
{σ : σ starts wi th s,σ |= φ U ψ} . Replacing (φ U ψ) by its definition described
by Eq. (11), we obtain U = {σ : projk(σ) = σk,σk starts wi th sk, σk |= φk U
ψk, k = 1 . . . N } = Uk, where Uk = {σk : σk starts wi th sk,σk |= φk U ψk}.

As a result, Theorem 5 can be applied and the probability that s satisfies (φ U ψ) is
given by
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N∏

k=1

P

(
σk ∈ Uk | U (sk )

k

)
=

N∏

k=1

P (sk |= φk U ψk) .

In this example, the global Until formula can be decomposed into single compo-
nent Until formulae. Instead of calculating the probability that some starting state
satisfies a global Until formula, one only needs to calculate the product of corre-
sponding single component probabilities.

5 Conclusion

In this paper we prove the product form solutions for the steady-state distribu-
tion of a class of SANs which generalises competing Markov chains. We per-
form the verification of the untimed Until and the steady-state formulae for this
class of models through the product form solutions. In the last years, the com-
mon points for the performance evaluation and the quantitative model checking
have been emphasised by many authors. Product form solutions have been largely
used in performance evaluation and we think that it would be interesting to look
for classes of models that can be efficiently model checked by means of product
form solutions.

Acknowledgments The authors thank to Jean-Michel Fourneau for the fruitful discussions on
product form solutions of SANs.
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