
Chapter 3
Monte Carlo Simulation: The Method

3.1 Sampling Random Numbers

Let X be a random variable (rv) obeying a cumulative distribution function (cdf)

P X� xð Þ ¼ FXðxÞ; FXð�1Þ ¼ 0; FXð1Þ ¼ 1 ð3:1Þ

In the following, if the rv X obeys a cdf we shall write X�FXðxÞ: From the
definition, it follows that FXðxÞ is a non-decreasing function and we further assume
that it is continuous and differentiable at will. The corresponding probability
density function (pdf) is then

fXðxÞ ¼
dFXðxÞ

dx
; fXðxÞ� 0;

Z1

�1

fXðxÞdx ¼ 1 ð3:2Þ

We now aim at sampling numbers from the cdf FXðxÞ A sequence of N � 1 values
Xf g � x1; x2; . . .; xNf g sampled from FXðxÞ must be such that the number n of

sampled points falling within an interval Dx� Xmax � Xmin (where Xmin and Xmax

are the minimum and maximum values in {X}) is

n

N
’
Z

Dx

fXðxÞdx ð3:3Þ

In other words, we require that the histogram of the sampled data approximates
fXðxÞ:Also, the xi values should be uncorrelated and, if the sequence {X} is periodic,
the period after which the numbers start repeating should be as large as possible.

Among all the distributions, the uniform distribution in the interval [0,1),
denoted as U[0,1) or, more simply U(0,1), plays a role of fundamental importance
since sampling from this distribution allows obtaining rvs obeying any other
distribution [1].
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3.2 The Uniform Random Number Generator: Sampling
from the Uniform Distribution

The cdf and pdf of the distribution U [0,1) are

URðrÞ ¼ r;

¼ 0

¼ 1

uRðrÞ ¼ 1

¼ 0

¼ 0

for

for

for

0� r� 1

r\0

r [ 1

ð3:4Þ

The generation of random numbers R uniformly distributed in [0,1) has represented,
and still represents, an important problem subject of active research. In the
beginning, the outcomes of intrinsically random phenomena were used (e.g.,
throwing a coin or dice, spinning the roulette, counting of radioactive sources of
constant intensity, etc.), but soon it was realized that, apart from the non-uniformity
due to imperfections of the mechanisms of generation or detection, the frequency of
data thus obtained was too low and the sequences could not be reproduced, so that it
was difficult to find and fix the errors in the MCS codes in which the random
numbers generated were used.

To overcome these difficulties, the next idea was to fill tables of random
numbers to store in the computers (in 1955 RAND corporation published a table
with 106 numbers), but the access to the computer memory decreased the calcu-
lation speed and, above all, the sequences that had been memorized were always
too short with respect to the growing necessities.

Finally, in 1956, von Neumann proposed to have the computer directly generate
the ‘random’ numbers by means of an appropriate function gð	Þ which should
allow one to find the next number Rkþ1 from the preceding one Rk i.e.,

Rk þ 1 ¼ gðRkÞ ð3:5Þ

The sequence thus generated is inevitably periodic: in the course of the sequence,
when a number is obtained that had been obtained before, the subsequence
between these two numbers repeats itself cyclically, i.e., the sequence enters a
loop. Furthermore, the sequence itself can be reproduced so that it is obviously not
‘random’, rather deterministic. However, if the function gðrÞ is chosen correctly, it
can be said to have a pseudorandom character if it satisfies a number of ran-
domness tests. In particular, Von Neumann proposed to obtain Rkþ1 by taking the
central digits of the square of Rk: For example, for a computer with a four-digit
word, if Rk ¼ 4; 567; then R2

k ¼ 20; 857; 489 and Rkþ1 ¼ 8; 574; Rkþ2 ¼ 5; 134;
and so on. This function turns out to be lengthy to be calculated and to give rise to
rather short periods; furthermore, if one obtains Rk ¼ 0000; then all the following
numbers are also zero. Presently, the most commonly used methods for generating
sequences {R} of numbers from a uniform distribution are inspired from the Monte
Carlo roulette game. In a real roulette game the ball, thrown with high initial
speed, performs a large number of revolutions around the wheel and finally it
comes to rest within one of the numbered compartments. In an ideal machine
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nobody would doubt that the final compartment, or its associated number, is
actually uniformly sampled among all the possible compartments or numbers.

In the domain of the real numbers within the interval [0,1), the game could be
modeled by throwing a point on the positive x-axis very far from the origin with a
method having an intrinsic dispersion much larger than unity: then, the difference
between the value so obtained and the largest integer smaller than this value may
be reasonably assumed as sampled from U[0,1). In a computer, the above
procedure is performed by means of a mixed congruential relationship of the kind

Rkþ1 ¼ ðaRk þ cÞmod m ð3:6Þ

In words, the new number Rkþ1 is the remainder, modulo a positive integer m, of
an affine transform of the old Rk with non-negative integer coefficients a and
c. The above expression, in some way, resembles the uniform sampling in the
roulette game, aRk þ c playing the role of the distance travelled by the ball and
m that of the wheel circumference. The sequence so obtained is made up of
numbers Rk\m and it is periodic with period p\m: For example, if we choose
R0 ¼ a ¼ c ¼ 5 and m = 7, the sequence is {5,2,1,3,6,0,5,…}, with a period
p = 6. The sequences generated with the above described method are actually
deterministic so that the sampled numbers are more appropriately called pseudo-
random numbers. However, the constants a, c, m may be selected so that:

• The generated sequence satisfies essentially all randomness tests;
• The period p is very large.

Since the numbers generated by the above procedure are always smaller than m,
when divided by m they lie in the interval [0,1).

Research to develop algorithms for generating pseudo-random numbers is still
ongoing. Good statistical properties, low speed in numbers generation and
reproducibility are central requirements for these algorithms to be suitable for MC
simulation.

Other Pseudo-Random Number Generation (PRNG) algorithms include the
Niederreiter [2], Sobol [3], and Mersenne Twister [4] algorithms. For example,
this latter allows generating numbers with an almost uniform distribution in the
range [0, 2k - 1], where k is the computer word length (nowadays, k = 32 or 64).
Further details on other methods are given in [5–16], with wide bibliographies
which we suggest to the interested reader.

Before leaving this issue, it is important to note that for the generation of
pseudo-random numbers U[0,1) many computer codes do not make use of machine
subroutines, but use congruential subroutines which are part of the program itself.
Thus, for example, it is possible that an excellent program executed on a machine
with a word of length different from the one it was written for gives absurd results.
In this case it should not be concluded that the program is ‘garbage’, but it would
be sufficient to appropriately modify the subroutine that generates the random
numbers.
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3.3 Sampling Random Numbers from Generic Distributions

3.3.1 Sampling by the Inverse Transform Method: Continuous
Distributions

Let X 2 ð�1;þ1Þ be a rv with cdf FXðxÞ and pdf fXðxÞ; viz.,

FXðxÞ ¼
Zx

�1

fXðx0Þdx0 ¼ P X� xð Þ ð3:7Þ

Since FXðxÞ is a non-decreasing function, for any y 2 ½0; 1Þ its inverse may be
defined as

F�1
X ðyÞ ¼ inf x : FXðxÞ� yf g ð3:8Þ

With this definition, we take into account the possibility that in some interval
½xs; xd
 FXðxÞ is constant (and fXðxÞ zero), that is

FXðxÞ ¼ c for xs\x� xd ð3:9Þ

In this case, from definition (3.8) it follows that corresponding to the value c, the
minimum value xs is assigned to the inverse function F�1

X ðcÞ: This is actually as if
FXðxÞ were not defined in ðxs; xd
; however, this does not represent a disadvantage,
since values in this interval can never be sampled because the pdf fXðxÞ is zero in
that interval. Thus, in the following, we will suppose that the intervals ðxs; xd

(open to the left and closed to the right), in which FXðxÞ is constant, are excluded
from the definition domain of the rv X. By so doing, the FXðxÞ will always be
increasing (instead of non-decreasing). We now show that it is always possible to
obtain values X�FXðxÞ starting from values R sampled from the uniform distri-
bution UR[0,1). In fact, if R is uniformly distributed in [0,1), we have

P R� rð Þ ¼ URðrÞ ¼ r ð3:10Þ

Corresponding to a number R extracted from URðrÞ; we calculate the number
X ¼ F�1

X ðRÞ and wonder about its distribution. As it can be seen in Fig. 3.1, for the
variable X we have

P X� xð Þ ¼ P F�1
X ðRÞ� x

� �
ð3:11Þ

Because FX is an increasing function, by applying it to the arguments at the right-
hand side of Eq. (3.11), the inequality is conserved and from Eq. (3.10) we have

P X� xð Þ ¼ P R�FXðxÞð Þ ¼ FXðxÞ ð3:12Þ

It follows that X ¼ F�1
X ðRÞ is extracted from FXðxÞ: Furthermore, because

FXðxÞ ¼ r
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P X� xð Þ ¼ P R� rð Þ ð3:13Þ

In terms of cdf

URðRÞ ¼ FXðxÞ and R ¼
Zx

�1

fXðx0Þdx0 ð3:14Þ

This is the fundamental relationship of the inverse transform method which for any
R value sampled from the uniform distribution UR[0,1) gives the corresponding
X value sampled from the FXðxÞ distribution (Fig. 3.1). However, it often occurs
that the cdf FXðxÞ is noninvertible analytically, so that from Eq. (3.8) it is not
possible to find X�FXðxÞ as a function of R�U½0; 1Þ: An approximate procedure
that is often employed in these cases consists in interpolating FXðxÞ with a
polygonal function and in performing the inversion of Eq. (3.8) by using the
polygonal. Clearly, the precision of this procedure increases with the number of
points of FXðxÞ through which the polygonal passes. The calculation of the
polygonal is performed as follows:

• If the interval of variation of x is infinite, it is approximated by the finite interval
ðxa; xbÞ in which the values of the pdf fXðxÞ are sensibly different from zero: for
example, in case of the univariate normal distribution Nðl;r2Þ with mean value
l and variance r2; this interval may be chosen as ðl� 5r; lþ 5rÞ;

• The interval (0,1) in which both FXðxÞ and URðrÞ are defined is divided in
n equal subintervals of length 1/n and the points x0 ¼ xa; x1; x2; . . .; xn ¼ xb such
that FXðxiÞ ¼ i=n; (i = 0,1,…,n) are found, e.g., by a numerical procedure.

At this point the MC sampling may start: for each R sampled from the distribution
UR[0,1), we compute the integer i� ¼ IntðR 	 nÞ and then obtain the corresponding
X value by interpolating between the points xi� ; i�=n and xi� þ 1; i� þ 1=n: For
example, in case of a linear interpolation we have

X ¼ xi� þ ðxi�þ1 � xi� ÞðR 	 n� i�Þ ð3:15Þ

For a fixed number n of points xi upon which the interpolation is applied, the
described procedure can be improved by interpolating with arcs of parabolas in
place of line segments. The arcs can be obtained by imposing continuity conditions

Fig. 3.1 Inverse transform
method: continuous
distributions
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of the function and its derivatives at the points xi (cubic splines). The expression of
X as a function of R is in this case more precise, but more burdensome and difficult
to calculate. Currently, given the ease with which it is possible to increase
the RAM memory of the computers, to increase the precision it is possibly pref-
erable to increase the number n of points and to use the polygonal interpolation: as
a rule of thumb, a good choice is often n = 500.

R : URðrÞ ¼ r in ½0; 1Þ ) X�FXðxÞ ð3:16Þ

3.3.2 Sampling by the Inverse Transform Method: Discrete
Distributions

Let X be a rv which can only have the discrete values xk; k = 0,1,…, with
probabilities

fk ¼ P X ¼ xkð Þ� 0; k ¼ 0; 1; . . . ð3:17Þ

Ordering the {x} sequence so that xk�1\xk; the cdf is

Fk ¼ P X� xkð Þ ¼
Xk

i¼0

fi ¼ Fk�1 þ fk k ¼ 0; 1; . . . ð3:18Þ

where, by definition, F�1 ¼ 0: The normalization condition of the cdf (Eq. 3.18)
now reads

lim
k!1

Fk ¼ 1 ð3:19Þ

Following the scheme of the inverse transform method, given a value R sampled
from the uniform distribution, the probability that R falls within the interval
ðFk�1;Fk
 is in the discrete case

P Fk � 1\R�Fkð Þ ¼
ZFk

Fk�1

dr ¼ Fk � Fk � 1 ¼ fk ¼ PðX ¼ xkÞ ð3:20Þ

In words, for any R * U[0,1), we get the realization X ¼ xk where k is the index
for which Fk�1\R�Fk (Fig. 3.2).

In practice, a realization of X is sampled from the cdf Fk through the following
steps:

1. Sample an R * U[0,1);
2. Set k = 0; F ¼ fo;
3. If R�F; proceed to 5);
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4. Viceversa, i.e., if R [ F; set k k þ 1 and then F  F þ fk and proceed to 3);
5. The required realization is X ¼ xk:

If the Fk values can be pre-computed, e.g., if their number is finite, the cycle
(3–4) may be simplified by comparing R and Fk at step 3 and increasing only k at
step 4.

Examples of Application of the Inverse Transform Sampling Method

Uniform Distribution in the interval (a,b)

A rv X is uniformly distributed in the interval (a,b) if

FXðxÞ ¼
x� a

b� a
;

¼ 0

¼ 1

fXðxÞ ¼
1

b� a
¼ 0

¼ 0

for

for

for

a� x� b

x\a

x [ b

ð3:21Þ

Substituting in Eq. (3.18) and solving with respect to X yields

X ¼ aþ ðb� aÞR ð3:22Þ

As a first application, we show how it is possible to simulate Buffon’s experiment,
mentioned in the Introduction, with the aim of finding the probability P in Eq. (1.1).
When the needle is thrown at random, the axis of the needle can have all possible
orientations, with equal probability. Let u be the angle between the needle’s axis
and the normal to the lines drawn on the floor. By symmetry, it is possible to
consider the interval 0; p=2ð Þ and from Eq. (3.21), with a = 0 and b ¼ p=2; we
have

FUð/Þ ¼
/
p
2

; fUð/Þ ¼
2
p

ð3:23Þ

Corresponding to a random value U, the needle projection on the normal to the
lines is L cos U and thus the probability that the needle intercepts one of the lines is
given by the ratio L cos U=D: Multiplying by fUð/Þ and integrating, we obtain the
value calculated by Buffon

Fig. 3.2 Inverse transform method: discrete distributions, k ¼ 2) X ¼ x2
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P ¼
Zp

2

0

L cos /
D

p
2

d/ ¼ L=D

p=2
ð3:24Þ

Operatively, for a given number of needle throws N � 1, e.g., N = 103, the
procedure is as follows:

• Sample an R1�U½0; 1Þ;
• Calculate from Eq. (3.22) U ¼ R1p=2 then, the probability that the needle

intercepts a line is h ¼ L cos U
D ;

• Sample an R2�U½0; 1Þ if R2\h; the needle has intercepted a line and thus we
set Ns ¼ Ns þ 1; where Ns is the counter of the number of times the needle has
intercepted a line.

At the end of this procedure, the estimate of the probability P is

P ffi Ns

N

A problem of, perhaps, more practical interest is that of sampling a direction X
from an isotropic angular distribution in space. This is, for example, a case of
interest for the choice of an initial direction of flight for a neutron emitted by
fission. In polar coordinates, the direction is identified by the angle # 2 ð0; pÞ
between X and the z axis and by the angle u[(-p, p) between the projection of X
on the xy plane and the x axis. Correspondingly,

dX ¼ sin# d# d/ ¼ �dl d/ ð3:25Þ

where, as usual, l ¼ cos#: The pdf of the isotropic distribution is then

fXðXÞdX � fl;Uðl;/Þdld/ ¼ dXj j
4p

f1ðlÞdlf2ð/Þd/ ð3:26Þ

where

f1ðlÞ ¼
1
2

; f2ð/Þ ¼
1

2p
ð3:27Þ

The required pdf is given by the product of two uniform pdfs, namely f1ðlÞ and
f2ð/Þ: If Rl; RU are two rvs * U[0,1), we have

Rl ¼
Zl

�1

f1ðl0Þ dl0 ¼ lþ 1
2

; RU ¼
ZU

�p

f2ð/Þ d/ ¼ Uþ p
2p

ð3:28Þ

and finally

l ¼ �1þ 2Rl; U ¼ �pþ 2pRU ð3:29Þ
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In practice, the direction cosines u, v, w of X are obtained through the following
steps:

• Sampling of two rvs Rl; RU*U[0,1);
• Computation of l ¼ �1þ 2Rl; U ¼ �pþ 2pRU;
• Finally,

u ¼ X 	 i ¼ sin# cos U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos U

v ¼ X 	 j ¼ sin# sin U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
sin U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � u2

p
w ¼ X 	 k ¼ l

ð3:30Þ

Note that a given value of l pertains to two quadrants, so that care must be taken in
selecting the proper one.

Exponential Distribution

Let us consider a two-state system whose transition probabilities from one state to
the other only depend on the present state and not on the way in which this state
was reached. Examples of such systems are:

• A radioactive nucleus: the two states are the nucleus at a given time, which we
will call initial time, and the nucleus at the moment of disintegration; the rv in
question, which is the argument of the transition pdf, is the time length between
the initial time, at which we know that the nucleus is intact and the time at which
the nucleus disintegrates.

• The path of a neutron in a medium: the two states are the neutron in a given
position, which we will call initial, and the neutron in the position at which the
collision occurs; the rv in consideration, which is the argument of the transition
pdf, is the length of the flight path between the initial positions.

• A component of an industrial plant: the two states of the component are its
nominal state and its failure state. The rv in consideration, which is the argument
of the transition pdf, is the difference between the time at which we know that the
component is in one of its two states, and the time at which the component moves
to the other state.

Such systems, characterized by ‘lack-of-memory’, are said to be ‘markovian’,
and they are said to be ‘homogeneous’ or ‘inhomogeneous’ according to whether the
transitions occur with constant or variable-dependent (space- or time-dependent)
rates, respectively. In the latter case, if the argument of the rate of leaving a given
state is the sojourn time of the system in that state, the process is called ‘semi-
markovian’. Thus, a semi-markovian system is markovian only at the times of
transition.

A rv X 2 ½0;1Þ is said to be exponentially distributed if its cdf FXðxÞ and pdf
fXðxÞ are
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FXðxÞ ¼ 1� e�
R x

0
kðuÞdu

;

¼ 0

fXðxÞ ¼ kðxÞe�
R x

0
kðuÞdu

¼ 0

for 0� x�1
otherwise

ð3:31Þ

where kð	Þis the transition rate, also called hazard function within the context of
the last example mentioned above. In the following, we shall refer to an expo-
nential distribution of a time variable, T. Corresponding to a realization of a rv
R * U[0,1), the realization t of the exponentially distributed rv T can be obtained
by solving the equation

Z t

0

kðuÞdu ¼ � logð1� RÞ ð3:32Þ

Let us first consider time-homogeneous systems, i.e., the case of constant k.
Correspondingly, Eq. (3.31) becomes

FTðtÞ ¼ 1� e�kt; fTðtÞ ¼ ke�kt ð3:33Þ

The moments of the distribution with respect to the origin are

l0k ¼
k!

kk k ¼ 1; 2; . . .ð Þ ð3:34Þ

Realizations of the associated exponentially distributed rv T are easily obtained
from the inverse transform method. The sampling of a given number N � 1 of
realizations is performed by repeating the following procedure:

• Sample a realization of R * U[0,1);
• Compute t ¼ � 1

k logð1� RÞ:

An example of a time-homogeneous markovian process is the failure of a
component, provided it is assumed that it does not age: such component, still good
(state 1) at time t, has a probability kdt of failing (entering state 2) between t and
t þ dt; note that this probability does not depend neither on the time t nor on the
age of the component at time t. The probability density per unit time that the
component, still good at time t0; will fail at time t� t0 is

fTðtÞ ¼ e�kðt�t0Þ 	 k ð3:35Þ

The collisions of a neutron with the nuclei of an homogeneous medium represent
an example of a space-homogeneous markovian process: a neutron with energy E,
traveling along a specified direction, say the x axis, at the point x has a probability
RtotalðEÞdx of undergoing a collision between x and xþ dx; where RtotalðEÞ is the
macroscopic total cross-section which plays the role of k in the Eq. (3.31) for
the exponential distribution; note that this probability does not depend neither on
the point x where the neutron is, nor on the distance traveled by that neutron before
arriving at x. The probability density per unit length that a neutron at point x0 will
make the first collision at point x� x0 is
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f ðx;EÞ ¼ e�RtotalðEÞðx�x0Þ 	 RtotalðEÞ ð3:36Þ

Returning to processes in the time domain, a generalization of the exponential
distribution consists in assuming that the probability density of occurrence of an
event, namely k, is time dependent. As mentioned above, in this case we deal with
non-homogeneous markovian processes. For example, although in the reliability
and risk analyses of an industrial plant or system, one often assumes that the
failures of the components occur following homogeneous Markov processes, i.e.,
exponential distributions with constant rates, it is more realistic to consider that the
age of the system influences the failure probability, so that the transition proba-
bility density is a function of time. A case, commonly considered in practice is that
in which the pdf is of the kind

kðtÞ ¼ b a ta�1 ð3:37Þ

with b[ 0 ; a [ 0: The corresponding distribution, which constitutes a general-
ization of the exponential distribution, is called Weibull distribution and was
proposed in the 1950s by W. Weibull in the course of its studies on the strength of
materials. The cdf and the pdf of the Weibull distribution are

FTðtÞ ¼ 1� e�b ta fTðtÞ ¼ ab ta�1e�b ta ð3:38Þ

The moments with respect to the origin are

l0k ¼ b�
k
aC

k

a
þ 1

� �
k ¼ 1; 2; . . . ð3:39Þ

In the particular case of a ¼ 1; the Weibull distribution reduces to the exponential
distribution with constant transition rate k ¼ b: The importance of the Weibull
distribution stems from the fact that the hazard functions of the components of
most industrial plants closely follow this distribution in time, with different
parameter values describing different phases of their life. In practice, a realization
t of the rv T is sampled from the Weibull distribution through the following steps:

• Sampling of a realization of the rv R * U[0,1);

• Computation of t ¼ � 1
b lnð1� RÞ

� �1
a
:

Multivariate Normal Distribution

Let us consider a multivariate normal distribution of order k of the vector of rvs
Z � ðk; 1Þ: The pdf is

fZðz; a;RÞ ¼ 1

ð2pÞ
k
2 Rj j

1
2

e�
1
2ðz�aÞ0R�1ðz�aÞ ð3:40Þ
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where with the hyphen we indicate the transpose, a � ðk; 1Þ is the vector of the
mean values, and R � ðk; kÞ is the symmetric covariance matrix, positive-defined
and with determinant Rj j given by

R ¼ E ðz� aÞðz� aÞ0
	 


¼

r2
1 r2

12 	 	 	 r2
1k

r2
21 r2

2 	 	 	 r2
2k

..

. ..
. . .

. ..
.

r2
k1 r2

k2 	 	 	 r2
k

0
BBB@

1
CCCA ð3:41Þ

The generic term of R is

r2
ij ¼ E ðzi � aiÞðzj � ajÞ

	 

ð3:42Þ

and the elements r2
i ; i = 1,2,…,k are the variances of the k normal variates. The

pdf f in Eq. (3.40) is generally indicated as Nða;RÞ and correspondingly a rv
Z distributed according to f is indicated as Zða;RÞ:

The sampling from f of a random vector z, realization of Z can be done in the
following way [17]:

1. i ¼ �1;
2. i iþ 2;
3. Sample two values ui; uiþ1 from the distribution U[-1,1);
4. If u2

i þ u2
iþ1 [ 1 both values are rejected and we go back to 3. Otherwise, they

are both accepted. Note that if the values are accepted, the point P � ðui; uiþ1Þ
is uniformly distributed on the circle with center at the origin and radius 1;

5. Calculate the values

yi ¼ ui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

logðu2
i þ u2

iþ1Þ
u2

i þ u2
iþ1

s
ð3:43Þ

yiþ1 ¼ uiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

logðu2
i þ u2

iþ1Þ
u2

i þ u2
iþ1

s
ð3:44Þ

6. It can be shown that the variables yi and yiþ1 are independent and identically
distributed (iid) standard normal variables *N(0,1);

7 If k is even, and if iþ 1� k; we return to 2);
8. If k is odd and if i� k; we return to 2. In this last case, ykþ1 is calculated but not

used;
9. At this point, we have the random vector y � ðk; 1Þ having iid components

distributed as N(0,1). By Cholesky’s factorization of the matrix R into the
product of a sub triangular matrix U and its transpose U0, i.e., R ¼ U 	 U0; the
random vector z is given by the expression
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z ¼ aþ Uy ð3:45Þ

Because E½y
 ¼ 0 and Var½y
 ¼ I we have

E½z
 ¼ a ð3:46Þ

Var½z
 ¼ E½ðz� aÞðz� aÞ0
 ¼ E½UyyU0
 ¼ U Var½y
U0 ¼ UU0 ¼ R ð3:47Þ

Determination of a conditioned pdf

In Eq. (3.40) let us partition z into two sub-vectors z1 and z2 relative to the first
p and the remaining q ¼ k � p components, respectively. We then have

z ¼ z1
z2

� �
; a ¼ a1

a2

� �
ð3:48Þ

Correspondingly, we partition R in sub matrices

R ¼ R11 R12

R012 R22

� �
ð3:49Þ

We now write the pdf f in terms of the two groups of variables. We have

R�1 ¼ R�1
p �R�1

p R12R
�1
22

�R�1
22 R012R

�1
p �R�1

22 þ R�1
22 R012R

�1
p R12R

�1
22

" #
ð3:50Þ

where

Rp ¼ R11 � R12R
�1
22 R012 ð3:51Þ

Furthermore, we have

Rj j ¼ R22j j Rp



 

 ð3:52Þ

The exponent of fZðz; a;RÞ can be expressed in terms of the partitioned quantities
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ðz� aÞ0R�1ðz� aÞ ¼ ðz1 � a1Þ0 ðz2 � a2Þ0
� �

	
R�1

p ðz1 � a1Þ � R12R�1
22 ðz2 � a2Þ

	 

R�1

22 �R012R
�1
p ðz1 � a1Þ þ ðI þ R012R

�1
p R12R�1

22 Þðz2 � a2Þ
h i

2
4

3
5

¼ðz1 � a1Þ
0R�1

p ðz1 � a1Þ þ ðz2 � a2Þ
0R�1

22 ðI þ R012R
�1
p R12R

�1
22 Þðz2 � a2Þ

h i

� ðz1 � a1Þ0R�1
p R12R

�1
22 ðz2 � a2Þ � ðz2 � a2Þ0R�1

22 R012R
�1
p ðz1 � a1Þ

¼ðz1 � a1Þ0R�1
p ðz1 � a1Þ � R12R

�1
22 ðz2 � a2Þ

	 

þ ðz2 � a2Þ0R22ðz2 � a2Þ

� ðz2 � a2Þ0R�1
22 R012R

�1
p ðz1 � a1Þ � R12R

�1
22 ðz2 � a2Þ

	 

ð3:53Þ

By putting

ap ¼ a1 þ R12R
�1
22 ðz2 � a2Þ ð3:54Þ

we have

ðz� aÞ0R�1ðz� aÞ ¼ ðz2 � a2Þ0R�1
22 ðz2 � a2Þ þ ðz1 � apÞ0R�1

p ðz1 � apÞ ð3:55Þ

Correspondingly, fZðz; a;RÞ can be written as follows

fZðz1; z2Þ ¼ gðz1jz2Þ
	 


hðz2Þ
	 


ð3:56Þ

where

gðz1jz2Þ ¼
e�

1
2ðz1�apÞ

0R�1
p ðz1�apÞ

ð2pÞ
p
2 Rp



 

12 ð3:57Þ

hðz2Þ ¼
e�

1
2ðz2�a2Þ

0R�1
22 ðz2�a2Þ

ð2pÞ
q
2 R22j j

1
2

ð3:58Þ

It follows that f ðz; a;RÞ can be factored into the product of a q-variate multinormal
hðz2; a2;R22Þ; having mean value a2 and covariance matrix R22; and a conditioned
p-variate multinormal gðz1; ap;Rpjz2Þ; which is also multinormal with mean value
ap depending on z2; and covariance matrix Rp Operatively, to sample a vector
realization ~z � ð~z1;~z2Þ from f ðz1; z2Þ; we first sample a vector ~z2 from hðz2; a2;R22Þ
and, then, a vector ~z1 from gðz1; apð~z2Þ;Rpj~z2Þ:

Multinomial Distribution

Let us consider a random process which can only have n possible outcomes, the
probability of the kth one being fk: Examples are the throwing of a dice, the kind of
interaction that a neutron can have with a nucleus (scattering, absorption, fission,
etc.), once it is known that the interaction has occurred, the kind of transition
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(degradation, failure, repair, etc.) that a multi-state component may undergo from
its current state to one of the other reachable ones, given that a transition is known
to have occurred. The process is simulated by first dividing the interval [0,1) in
n successive subintervals of amplitudes f1; f2; . . .; fn and then performing a large
number of trials in each of which a rv R * U[0,1) is thrown on the interval [0,1)
(Fig. 3.3). Every time a point falls within the kth subinterval, we say that out of the
n possible ones the kth event has occurred: the probability of this event obeys the
Bernoulli distribution, in which fk is the probability of success and

Pn
j¼1j 6¼k fj ¼

1� fk is the complementary probability of the point falling elsewhere. The
probability that in N trials, the point falls nk times within the subinterval fk is given
by the binomial distribution

N
nk

� �
f nk
k ð1� fkÞN�nk ð3:59Þ

The generalization of this distribution leads to the multinomial distribution which
gives the probability that in N trials, the point falls n1 times in the subinterval f1; n2

times in f2;…, nn times in fn: Formally, the multinomial distribution is given by

N!

n1!n2!. . .nn!
f n1
1 f n2

2 . . .f nn
n ð3:60Þ

where, obviously, n1 þ n2 þ 	 	 	 þ nn ¼ N:

3.3.3 Sampling by the Composition Method

This method can be applied for sampling random numbers from a pdf that can be
expressed as a mixture of pdfs.

Continuous Case

Let X be a rv having a pdf of the kind

fXðxÞ ¼
Z

qðyÞpðx; yÞdy ð3:61Þ

Fig. 3.3 Sampling the occurrence of an event from a multinomial distribution
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where qðyÞ� 0; pðx; yÞ� 0; 8x; y and where the integral is extended over a given
domain of y. By definition of pdf, we have

Z
fXðxÞdx ¼

Z Z
dxdyqðyÞpðx; yÞ ¼ 1 ð3:62Þ

The pdf fXðxÞ is actually a mixture of pdfs. Indeed, the integrand function can be
written as follows:

qðyÞpðx; yÞ ¼ qðyÞ
Z

pðx0; yÞdx0
pðx; yÞR

pðx0; yÞdx0
¼ hYðyÞgðxjyÞ ð3:63Þ

where

hYðyÞ ¼ qðyÞ
Z

pðx0; yÞdx0; gðxjyÞ ¼ pðx; yÞR
pðx0; yÞdx0

ð3:64Þ

Let us show that hYðyÞ is a pdf in y, and that gðxjyÞ is a pdf in x. Because
pðx; yÞ� 0; hYðyÞ� 0 and gðxjyÞ� 0: The normalization of hYðyÞ can be derived
immediately from that of fXðxÞ and the normalization of gðxjyÞ is evident. Finally,
the pdf fXðxÞ can be written as

fXðxÞ ¼
Z

hYðyÞgXðxjyÞdy ð3:65Þ

where we have added the subscript X to the pdf gðxjyÞ to indicate that it is a pdf of
the rv X. Note that y plays the role of a parameter that is actually a random
realization of the rv Y having a pdf hYðyÞ:

To sample a realization of X from fXðxÞ we proceed as follows:

• Sample a realization of Y from the univariate hYðyÞ;
• Sample a realization of X from the univariate gXðxjYÞ (note that at this point

Y has a known numerical value).

For example, let

fXðxÞ ¼ n

Z1

1

y�ne�xydy n [ 1; 0� x\1ð Þ ð3:66Þ

¼ ne�x
Xn�1

k¼1

ð�xÞk�1

ðn� 1Þðn� 2Þ 	 	 	 ðn� kÞ þ n
ð�xÞn�1

ðn� 1Þ! EiðxÞ ð3:67Þ

where

EiðxÞ ¼
Z 1

x

e�y

y
dy ð3:68Þ
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is the integral Exponential function. Sampling from the explicit expression of the
integral is too complicate, so that we prefer to resort to the composition method.
Let us choose

qðyÞ ¼ ny�n; pðx; yÞ ¼ e�xy ð3:69Þ

so that

Z1

0

pðx; yÞdx ¼ 1
y

ð3:70Þ

and thus

hYðyÞ ¼ nyn�1; gXðxjyÞ ¼ ye�xy ð3:71Þ

The operative sequence for sampling a realization of X from fXðxÞ is thus

• We sample R1;R2�U½0; 1Þ;
• By using R1; we sample a value of Y from hYðyÞ with the inverse transform

method

R1 ¼
ZY

1

hYðyÞdy ¼ 1� Y�n ð3:72Þ

We have

Y ¼ ð1� R1Þ�
1
n ð3:73Þ

• By substituting the value of Y in gXðxjyÞ we have

gXðxjYÞ ¼ Ye�Yx ð3:74Þ

Hence, gXðxjYÞ is an exponential distribution with parameter Y. By using R2 we
finally sample the desired realization X from the pXðxjYÞ

X ¼ � 1
Y

lnð1� R2Þ ¼ �ð1� R1Þ
1
n lnð1� R2Þ ð3:75Þ

For example, for n = 3 the rigorous expression for fXðxÞ is

fXðxÞ ¼
3
2
½ð1� xÞe�x þ x2EiðxÞ
 ð3:76Þ

In Fig. 3.4, we show the analytical form of fXðxÞ (full line) and the result of the
MCS (indicated with the circles) with 105 random values sampled by the previ-
ously illustrated procedures. The values are calculated with the following Matlab�

program:
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dx=.001;
x=dx:dx:10;
y=1.5*((1-x).*exp(-x)+x.^2.*expint(x));
l=1e5;
ymc=-rand(l,1).^0.33333.*log(rand(l,1));
dey=(max(ymc)-min(ymc))/50;
[h,xx]=hist(ymc,50);
hn=h/(l*dey);
plot(x,y);
hold;
plot(xx,hn,0o0)
axis([0 5 0 1.6])

Discrete Case

Let X be a rv having pdf of the kind

fXðxÞ ¼
X1
k¼0

qkpðx; ykÞ ð3:77Þ

where qk� 0; pðx; ykÞ� 0 8k; x; yk and where

Z
fXðxÞdx ¼

X1
k¼0

qk

Z
pðx; ykÞdx ¼ 1 ð3:78Þ

The pdf fXðxÞ is really a mixture of pdfs. Indeed, each term of the sum can be
written as follows

Fig. 3.4 Example of
sampling from a continuous
distribution, by the
composition method.
Analytical = solid line;
MCS = circle
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qkpðx; ykÞ ¼ qk

Z
pðx0; ykÞdx0

pðx; ykÞR
pðx0; ykÞdx0

¼ hkgðxjykÞ ð3:79Þ

where

hk ¼ qk

Z
pðx0; ykÞdx0; gðxjykÞ ¼

pðx; ykÞR
pðx0; ykÞdx0

ð3:80Þ

We show that in fact hk is a probability, and that gðxjykÞ is a pdf in x. Because
pðx; ykÞ� 0 and qk � 0; it follows that hk � 0 and gðxjykÞ� 0: The normalization of
hk follows immediately from that of fXðxÞ

X
k

hk ¼
X

k

qk

Z
pðx0; ykÞdx0 ¼

Z
fXðx0Þdx0 ¼ 1 ð3:81Þ

The normalization of gðxjykÞ is evident. Finally, the pdf fXðxÞ can be written as

fXðxÞ ¼
X1
k¼0

hkgXðxjykÞ ð3:82Þ

where gXðxjykÞ is a pdf depending on the parameter yk; which is a discrete rv
having probability hk:

To sample a value of X from fXðxÞ we proceed as follows:

• Sample a value Yk from the distribution hk (k = 0,1,…);
• Sample a value of X from gXðxjYkÞ:

For example let

fXðxÞ ¼
5

12
½1þ ðx� 1Þ4
 0� x� 2 ð3:83Þ

i.e.,

q1 ¼ q2 ¼
5

12
; pðx; y1Þ ¼ 1; pðx; y2Þ ¼ ðx� 1Þ4 ð3:84Þ

We have

h1 ¼ q1

Z2

0

pðx; y1Þdx ¼ 5
12

 2 ¼ 5

6
ð3:85Þ

h2 ¼ q2

Z2

0

pðx; y2Þdx ¼ 5
12

2
5
¼ 1

6
ð3:86Þ

gXðxjy1Þ ¼
1
2

ð3:87Þ
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gXðxjy2Þ ¼
ðx� 1Þ4

2
5

¼ 5
2
ðx� 1Þ4 ð3:88Þ

Operatively, to sample a value of X from fXðxÞ

• Sample R1;R2�U½0; 1Þ;
• If R1� h1 ¼ 5

6 ; sample a value of X from gXðxjy1Þ; i.e.,

R2 ¼
ZX

0

gXðxjy1Þdx ¼ 1
2

X ð3:89Þ

and thus

X ¼ 2R2 ð3:90Þ

• If R1� h1; we extract a value of X from gXðxjy2Þ; i.e.,

R2 ¼
5
2

ZX

0

ðx� 1Þ4dx ¼ 1
2
½ðX � 1Þ5 þ 1
 ð3:91Þ

and thus

X ¼ 1þ ð2R2 � 1Þ1=5 ð3:92Þ

In Fig. 3.5, we show the analytical form of fXðxÞ (full line) and the result of the
MCS (indicated with the circles) with 105 samplings. The values were calculated
with the following Matlab� program:

Fig. 3.5 Example of sampling from a discrete distribution, by the composition method.
Analytical = solid line; MCS = circles
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dx=0.001;
x=0:dx:2;
y=0.41667*(1+(x-1).^4);
n=1e5;
c1=5/6;
c2=1/5;
r1=rand(n,1);
r2=rand(n,1);
X=zeros(n,1);
ip=find(r1\c1);
ig=find(r1[=c1);
X(ip)=2*r2(ip);
val=2*r2(ig)-1;
X(ig)=1+sign(val).*abs(val).^c2;
deX=(max(X)-min(X))/50;
[h,xx]=hist(X,50);
hn=h/(n*deX);
plot(x,y);
hold;
plot(xx,hn,0o0)

3.3.4 Sampling by the Rejection Method

Let fX xð Þ be an analytically assigned pdf, in general quite complicated. The sam-
pling of a realization of a rv X from its pdf with the rejection method consists in the
tentative sampling of the realization of a rv X0 from a simpler density function, and
then testing the given value with a test that depends on the sampling of another rv.
Then, X ¼ X0 only if the test is passed; else, the value of X0 is rejected and the
procedure is restarted. The main disadvantage of this method can be the low effi-
ciency of acceptance if many realizations of X0 are rejected before one is accepted as
X. In the following, when the sampling of a realization of Z from a pdf gZ zð Þ;
z 2 z1; z2ð Þ; can be easily done, for example by using one of the methods given in the
previous paragraphs, we will simply say that we sample a Z�G z1; z2ð Þ:

The von Neumann Algorithm

In its simplest version, the method of sampling by rejection can be summarized as
follows: given a pdf fX xð Þ limited in a; bð Þ let

h xð Þ ¼ fX xð Þ
max

x
fX xð Þ ð3:93Þ

so that 0� h xð Þ� 1; 8x 2 a; bð Þ:
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The operative procedure to sample a realization of X from fX xð Þ is the
following:

1. Sample X0 �U a; bð Þ; the tentative value for X; and calculate h X0ð Þ;
2. Sample R�U 0; 1Þ½ : If R� h X0ð Þ the value X0 is accepted; else start again from 1.

More generally, a given complicated fX xð Þ can be factored into the product of a
density gX0 xð Þ; from which it is simple to sample a realization of X0; and a residual
function H xð Þ; i.e.,

fX xð Þ ¼ gX0 xð ÞH xð Þ ð3:94Þ

Note that H xð Þ is not negative, being the ratio of two densities. We set

BH ¼ max
x

H xð Þ ¼
max

x
fX xð Þð Þ

gX0 xð Þ ð3:95Þ

and have

fX xð Þ ¼ gX0 xð ÞH xð Þ
BH

BH ¼ gX0 xð Þh xð ÞBH ð3:96Þ

where

h xð Þ ¼ H xð Þ
BH

so that 0� h xð Þ� 1 ð3:97Þ

Dividing by the integral of fX xð Þ over the entire domain, by hypothesis equal to
one, we have

fX xð Þ ¼ gX0 xð Þh xð ÞR1
�1 gX0 zð Þh zð Þdz

ð3:98Þ

Integrating Eq. (3.96) over the domain of x we have

Z1

�1

gX0 zð Þh zð Þdz ¼ 1
BH

ð3:99Þ

From Eqs. (3.97) and (3.98), we also have

Z1

�1

gX0 zð Þh zð Þdz�
Z1

�1

gX0 zð Þdz ¼ 1 ð3:100Þ

so that BH � 1: The sampling of a random realization of X from fX xð Þ can be done
in two steps:
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1. Sample a realization of X0 from the pdf gX0 xð Þ; which is simple by construction

P X0 � xð Þ ¼ GX0 xð Þ ¼
Zx

�1

gX0 zð Þdz ð3:101Þ

and then compute the number h X0ð Þ;
2. Sample R�U 0; 1Þ½ : If R� h X0ð Þ; the sampled realization of X0 is accepted, i.e.,

X ¼ X0; else the value of X0 is rejected and we start again from 1. The
acceptance probability of the sampled value X0 is thus

P R� h X0ð Þð Þ ¼ h X0ð Þ ð3:102Þ

We show that the accepted value is actually a realization of X sampled from fX xð Þ:
The probability of sampling a random value X0 between z and zþ dz and accepting
it, is given by the product of the probabilities

P z�X0\zþ dzð ÞP R� h zð Þð Þ ¼ gX0 zð Þdzh zð Þ ð3:103Þ

The corresponding probability of sampling a random value X0 � x and accepting it is

P X0 � x AND R� h X0ð Þð Þ ¼
Zx

�1

gX0 zð Þh zð Þdz ð3:104Þ

The probability that a sampled X0 is accepted, i.e., the probability of success is
given by the above expression for x!1

PðsuccessÞ ¼ P X0 � x AND R� h X0ð Þð Þ ¼
Z1

�1

gX0 zð Þh zð Þdz ð3:105Þ

The distribution of the accepted values (the others are rejected) is then

P X0 � x successjð Þ ¼ P X0 � x AND R� h X0ð Þð Þ
PðsuccessÞ

¼
R x
1 gX0 zð Þh zð ÞdzR1
�1 gX0 zð Þh zð Þdz

ð3:106Þ

and the corresponding pdf is Eq. (3.97), i.e., the given fX xð Þ:
The simple version of the rejection method by von Neumann is the case

gX0 xð Þ ¼ 1
b� a

ð3:107Þ

The efficiency e of the method is given by the probability of success, i.e., from
Eq. (3.99)

e ¼ PðsuccessÞ ¼
Z1

�1

gX0 ðzÞhðzÞdz ¼ 1
BH

ð3:108Þ
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Let us now calculate the average number of trials that we must make before
obtaining one success. The probability of having the first success at the kth trial is
given by the geometric distribution

Pk ¼ 1� eð Þk�1e; k ¼ 1; 2; . . . ð3:109Þ
and the average number of trials to have the first success is

EðkÞ ¼
P1
k¼1

kPk ¼ e
P1
k¼1

k 1� eð Þk�1 ¼ �e d
de

P1
k¼1

1� eð Þk

¼ �e d
de

1
1� 1�eð Þ ¼ �e d

de
1
e ¼ 1

e ¼ BH

ð3:110Þ

For example, let the pdf

fX xð Þ ¼ 2
p 1þ xð Þ

ffiffiffi
x
p ; 0� x� 1 ð3:111Þ

For x ¼ 0; fX xð Þ diverges and thus we cannot use the simple rejection technique.
Note that the factor causing the divergence of fX xð Þ; i.e.,1=

ffiffiffi
x
p
; is proportional to

the pdf of the rv R2; with R�U 0; 1Þ½ : By the change of variables

X0 ¼ R2 ð3:112Þ
the CDF of the rv X0 is

GX0 xð Þ ¼ P X0 � xð Þ ¼ P R2� x
� �

¼ P R�
ffiffiffi
x
p� �

¼
ffiffiffi
x
p

ð3:113Þ

and the corresponding pdf is

gX0 ðxÞ ¼
dGX0 xð Þ

dx
¼ 1

2
ffiffiffi
x
p ð3:114Þ

Hence, fX xð Þ can be written as

fX xð Þ ¼ 1
2
ffiffiffi
x
p 4

p
1

1þ x
¼ gX0 xð ÞH xð Þ ð3:115Þ

where

HðxÞ ¼ 4
p

1
1þ x

ð3:116Þ

We have

BH ¼ max
x

HðxÞ ¼ 4
p

ð3:117Þ

and thus

h xð Þ ¼ HðxÞ
BH
¼ 1

1þ x
; 0� x� 1 ð3:118Þ
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The operative procedure to sample a realization of the rv X from fX xð Þ is then:

1. Sample R1�U 0; 1½ Þ and then calculate:

X0 ¼ R2
1 and h X0ð Þ ¼ 1

1þ R2
1

ð3:119Þ

2. Sample R2�U 0; 1½ Þ: If R2� h X0ð Þ accept the value of X0; i.e., X ¼ X0; else start
again from 1.

The efficiency of the method, i.e., the probability that an extracted value of X0 is
accepted is

e ¼ 1
BH
¼ p

4
¼ 78:5 % ð3:120Þ

In Fig. 3.6, we show the analytical fX xð Þ (full line) and the result of the MCS
(indicated by circles) with 105 trials.

The values were calculated with the following Matlab� program:

clear;dx=0.001;x=dx:dx:1;lx=length(x);u=ones(1,lx);
y=(2/pi)*u./((1+x).*sqrt(x));
n=1e5;r1=rand(1,n);r2=rand(1,n);v=ones(1,n);
h=v./(1+r1.^2);ip=find(r2\h);X=r1(ip).^2;
nn=length(X);deX=(max(X)-min(X))/50;
[h,xx]=hist(X,50);hn=h/(nn*deX);
disp([0Efficiency=0num2str(nn/n)]),pause(10);
plot(x,y);hold;plot(xx,hn,0o0);
xlabel(0xvalues0);title(0f(x):–analytical;ooMonteCarlo0) hold

In this case, the acceptance efficiency indeed turned out to be 78.5 %

Fig. 3.6 Example of
sampling by the rejection
method. Analytical = solid
line; MCS = circles
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3.4 The Solution of Definite Integrals by Monte Carlo
Simulation

3.4.1 Analog Simulation

Let us consider the problem of obtaining an estimate of the n-dimensional definite
integral

G ¼
Z

D

gðxÞfXðxÞdx ð3:121Þ

where x is an n-dimensional variable and the integration is extended to the domain
D 2 R

n: We can always make the hypothesis that f ðxÞ has the characteristics of a
pdf, i.e.,

fXðxÞ[ 0 8x 2 D;
R
D

fXðxÞdx ¼ 1 ð3:122Þ

If a factor fXðxÞ having the above characteristics cannot be identified in the
function to be integrated, it is always possible to set fXðxÞ equal to a constant value
to be determined from the normalization condition. From a statistical perspective,
it is therefore possible to consider x as a random realization of a rv having pdf
fXðxÞ: It then follows that gðxÞ is also a rv and G can be interpreted as the expected
value of gðxÞ; i.e.,

E½gðxÞ
 ¼
Z

D

gðxÞfXðxÞdx ¼ G ð3:123Þ

The variance of gðxÞ is then

Var½gðxÞ
 ¼
Z

D

gðxÞ � G½ 
2fXðxÞdx ¼ E g2ðxÞ
	 


� G2 ð3:124Þ

The MCS estimation of G can be approached with a method known as that of the
mean value estimation or of the ‘dart game’.

Let us consider a dart game in R
n in which the probability of hitting a point

x 2 dx is fXðxÞdx; we make the hypothesis that the dart throws are independent of
each other and also that fXðxÞ does not change as we proceed with the game. When
a player hits point x, he is given a prize gðxÞ: In a series of N throws in which the
points x1; x2; . . .; xN are hit, the assigned prizes are gðx1Þ; gðx2Þ; . . .; gðxNÞ: The
average prize per throw is, then

GN ¼
1
N

XN

i¼1

gðxiÞ ð3:125Þ
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Because the gðxiÞ‘s are rvs, GN is also a rv, having expected value and variance
equal to

E GN½ 
 ¼ 1
N

PN
i¼1

E gðxiÞ½ 
 Var GN½ 
 ¼ 1
N2

PN
i¼1

Var gðxiÞ½ 
 ð3:126Þ

In Eq. (3.126), E gðxiÞ½ 
 and Var gðxiÞ½ 
 are the expected value and the variance of
gðxÞ computed at the point hit by the player on the ith throw. Each of these
expected values is taken over an ensemble of M !1 players who hit points
xi1 ; xi2 ; . . .; xiM at their ith throw. Because the probability distribution of these
values does not depend on considering the particular ith throw, i.e., fXðxÞ is
independent of i, the process is stationary and

E gðxiÞ½ 
 ¼ lim
M!1

1
M

XM

j¼1

gðxijÞ ¼ E gðxÞ½ 
 ¼ G ð3:127Þ

Similarly

Var gðxiÞ½ 
 ¼ Var gðxÞ½ 
 ¼ E g2ðxÞ
	 


� G2 ð3:128Þ

We thus obtain

E GN½ 
 ¼ E gðxÞ½ 
 ¼ G ð3:129Þ

Var GN½ 
 ¼ 1
N

Var gðxÞ½ 
 ¼ 1
N

E g2ðxÞ
	 


� G2
	 


ð3:130Þ

In practical cases, E g2ðxÞ½ 
 and G are unknown (G is indeed the target of the present
evaluation) and in their place we can use the estimates with N � 1. That is, we
suppose that the process, in addition to being stationary, is also ergodic, and thus

E gðxÞ½ 
 � 1
N

PN
i¼1

gðxiÞ ¼ g E g2ðxÞ½ 
 � 1
N

PN
i¼1

g2ðxiÞ ¼ g2 ð3:131Þ

Thus for N � 1, it follows that G � GN and

E GN½ 
 � GN ¼ g Var GN½ 
 � s2
GN
¼ 1

N g2 � g2
� �

ð3:132Þ

In the last formula it is common to substitute N - 1 in place of N in the denomi-
nator, to account for the degree of freedom that is lost in the calculation of g;
generally, because N � 1, this correction is negligible.

3.4.2 Forced (Biased) Simulation

The evaluation of G by the analog method just illustrated yields poor results
whenever gðxÞ and fXðxÞ are such that where one is large the other is small: indeed,
in this case most of the sampled xi values result in small gðxiÞ values which give
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scarce contribution to GN ; and few large gðxiÞ values which ‘de-stabilize’ the
sample average. This situation may be circumvented in the following manner,
within a sampling scheme known under the name ‘Importance Sampling’ (see also
Sect. 6.2). Eq. (3.121) can be written as

G ¼
Z

D

gðxÞfXðxÞ
f1ðxÞ

f1ðxÞdx ¼
Z

D

g1ðxÞf1ðxÞdx ð3:133Þ

where f1ðxÞ 6¼ fXðxÞ is an appropriate function (typically called ‘Importance
Sampling Distribution’, see Sect. 6.2) having the characteristics of a pdf as given
in Eq. (3.122) and the prize of the dart game becomes

g1ðxÞ ¼
gðxÞfXðxÞ

f1ðxÞ
ð3:134Þ

As we shall formally demonstrate later, the optimal choice of the pdf f1ðxÞ is
f1ðxÞ ¼ k gðxÞj jfXðxÞ: Then, in correspondence of every value xi extracted from
f1ðxÞ one would obtain always the same prize g1ðxiÞ ¼ 1=k and the variance of GN

would be actually zero: this means that just one sampling would suffice to obtain
the exact value of G. However, we shall show that the determination of the
constant k poses the exact same difficulties of computing G.

In view of (3.133), from a statistical point of view x can be interpreted as a rv
distributed according to the pdf f1ðxÞ: As before, it follows that the prize g1ðxÞ is
also a rv and G can be interpreted as the expected value of g1ðxÞ: If E1 and Var1

denote the expected value and variance with respect to the pdf f1ðxÞ; we get

E1 g1ðxÞ½ 
 ¼
Z

D

g1ðxÞf1ðxÞdx ¼ G ð3:135Þ

Var1 g1ðxÞ½ 
 ¼
Z

D

g1ðxÞ � G½ 
2f1ðxÞdx ¼ E1 g2
1ðxÞ

	 

� G2 ð3:136Þ

As before, G can be estimated with the dart game method by sampling N values
x1; x2; . . .; xN from the pdf f1ðxÞ; calculating the corresponding values of the prize
g1ðxiÞ; and computing the sample mean by arithmetic averaging. The rv is thus

G1N ¼
1
N

XN

i¼1

g1ðxiÞ ð3:137Þ

and

E1 G1N½ 
 ¼ 1
N

PN
i¼1

E1 g1ðxiÞ½ 


Var1 G1N½ 
 ¼ 1
N2

PN
i¼1

Var1 g1ðxiÞ½ 

ð3:138Þ
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Similar to the analog case, we obtain

E1 g1ðxiÞ½ 
 ¼ E1 g1ðxÞ½ 
 ¼ G
Var1 g1ðxiÞ½ 
 ¼ Var1 g1ðxÞ½ 
 ¼ E1 g2

1ðxÞ
	 


� G2 ð3:139Þ

and

E1 G1N½ 
 ¼ E1 g1ðxÞ½ 
 ¼ G ð3:140Þ

Var1 G1N½ 
 ¼ 1
N

Var1 g1ðxÞ½ 
 ¼ 1
N

E1 g2
1ðxÞ

	 

� G2

	 

ð3:141Þ

The estimates of the expected values from the corresponding averages are

E1 g1ðxÞ½ 
 ’ 1
N

PN
i¼1

g1ðxiÞ ¼ g1

E1 g2
1ðxÞ

	 

’ 1

N

PN
i¼1

g2
1ðxiÞ ¼ g2

1

ð3:142Þ

and finally, for N � 1

G1N ¼ g1 ’ G

Var1 G1N½ 
 ¼ 1
N Var1 g1ðxÞ½ 
 ¼ 1

N E1 g2
1ðxÞ

	 

� G2

	 

’ 1

N g2
1 � g1

2
� � ð3:143Þ

The variance Var1 G1N½ 
 of the estimated value G1N depends on the choice of f1ðxÞ:
To minimize it amounts to finding the pdf f1ðxÞ which minimizes E1 g2

1ðxÞ
	 


; with
the imposition of the normalization condition that is required for f1ðxÞ to be a pdf.
By using the method of Lagrange multipliers, the optimal f1ðxÞ is found by ren-
dering stationary the functional

‘ f1f g ¼
Z

D

g2
1ðxÞf1ðxÞdxþ 1

k2

Z

D

f1ðxÞdx� 1

2
4

3
5

¼
Z

D

g2ðxÞf 2
X ðxÞ

f1ðxÞ
þ 1

k2 f1ðxÞ
" #

dx� 1

k2

ð3:144Þ

The pdf f1ðxÞ is then the solution to o‘
of1
¼ 0: The condition is satisfied if

�
g2ðxÞf 2

X ðxÞ
f 2
1 ðxÞ

þ 1

k2 ¼ 0 ð3:145Þ

from which we obtain

f1ðxÞ ¼ kj j gðxÞj jfXðxÞ ð3:146Þ
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The constant kj j can be determined from the normalization condition on f1ðxÞ; so
that finally the best f1ðxÞ is

f1ðxÞ ¼
gðxÞj jf 2

X ðxÞR
D

gðx0Þj jfX0 ðx0Þdx0
ð3:147Þ

In correspondence to this optimal pdf, we have the value

min
f1

E1 g2
1ðxÞ

	 

¼
Z

D

g2ðxÞf 2
X ðxÞ

f1ðxÞ
dx

¼
Z

D

g2ðxÞf 2
X ðxÞ

gðxÞj jfXðxÞ
dx

Z

D

gðx0Þj jfX0 ðx0Þdx0
ð3:148Þ

Since independent of the sign of gðxÞ; g2ðxÞ=gðxÞ ¼ gðxÞj j; we obtain

min
f1

E1 g2
1ðxÞ

	 

¼

Z

D

gðxÞj jfXðxÞdx

2
4

3
5

2

ð3:149Þ

and correspondingly, from Eq. (3.141)

min
f1

Var1 G1N½ 
 ¼
Z

D

gðxÞj jfXðxÞdx

2
4

3
5

2

�G2

8<
:

9=
; ð3:150Þ

In particular, if gðxÞ� 0; the variance of G is equal to zero [18].
Figure 3.7 shows an example in which it is advantageous to use forced simu-

lation: in fact, compared to what happens when using the natural pdf fXðxÞ; the
maximum of the optimal pdf f1ðxÞ ¼ f �X ðxÞ is shifted toward the maximum of gðxÞ;
and the values sampled from that optimal pdf more frequently correspond to high
values of the prize gðxÞ:

The described procedure for performing the optimal choice of f1ðxÞ; which
would lead us to Eq. (3.147), is not operative because to calculate f1ðxÞ one must
know how to calculate the denominator of Eq. (3.147), and the difficulty of this
operation is equivalent to the difficulty of calculating G.

This apparently surprising result could have been foreseen by examining
Eq. (3.147) for f1ðxÞ: By following the dart game technique, to calculate G one
must sample a sequence of values x1if g from f1ðxÞ and then calculate the corre-
sponding sequence of prizes gðx1iÞf g with Eq. (3.134). Because by hypothesis we
have gðx1iÞ� 0; for each x1i we have

gðx1iÞ ¼
gðx1iÞfXðx1iÞ

gðx1iÞfXðx1iÞR
D

gðxÞfXðxÞdx

¼
Z

D

gðxÞfXðxÞdx ¼ G ð3:151Þ
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Then, it turns out that all the prizes gðx1iÞ are equal to each other and to G, so that
the variance of the sequence gðx1iÞf g is zero.

Operatively, one does not know how to calculate the denominator of
Eq. (3.147), which is the value G of the integral (3.121) whose solution we are
seeking. Then, in practice one chooses an f �1 ðxÞ ‘close’ to f1ðxÞ given by Eq. (3.147)
and this allows estimating G with a considerably smaller variance than that which
would be obtained by using the natural fXðxÞ directly: sampling the values x1if g
from a pdf f �1 ðxÞ that approximates f1ðxÞ; the values of the sequence gðx1iÞf g are
almost equal to G and their variance is small.

The forced pdf f �1 ðxÞ is usually assigned dependent on a vector a of parameters,
which are then determined so as to minimize the variance of the estimate. We
clarify this with an example.

Let us estimate

G ¼
Z1

0

cos
px

2
dx ð3:152Þ

The integral can be calculated analogically and we have G = 2/p = 0.6366198.
Assuming that we are unable to perform the integration, we write the integral in
the form of Eq. 3.121 by setting

gðxÞ ¼ cos px
2 f ðxÞ ¼ 1 ð3:153Þ

Then

E g2ðxÞ½ 
 ¼
R1
0

cos2 px
2

� �
dx ¼ 1

2

Var gðxÞ½ 
 ¼ 1
2� 2

p

� �2¼ 9:47152 	 10�2

ð3:154Þ

Fig. 3.7 An example in
which it would be appropriate
to resort to forced simulation
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Let us consider the two cases of estimating G by analog and optimally forced
MCS.

The analog estimate given by Eq. (3.132) can be found with the following
Matlab� program (N ¼ 104histories)

N=1e4; r=rand(N,1);g=cos(pi*r/2);
GN=mean(g); s2GN=var(g)/N

The following values are obtained

GN ¼ 0:6342 s2
GN
¼ 9:6 	 10�6

or
GN ¼ ð634:2� 3:1Þ 	 10�3

ð3:155Þ

The value GN so obtained is consistent with the true value of G, from which it
differs by 0.8 standard deviations.

In the case of the forced estimate of G, according to the optimal procedure we
should calculate f1ðxÞ with Eq. (3.147). Because gðxÞ� 0 for 0� x� 1; we know

that in this case we would obtain Var1 G1N½ 
 ¼ 0: We have f1ðxÞ ¼ gðxÞ
k ; where k is

the constant denominator of Eq. (3.147). Let us suppose that we are unable to
calculate k : to find f �1 ðxÞ close to the optimal f1ðxÞ we approximate gðxÞ with the
first two terms of the Taylor’s expansion of the cosine function

f �1 ðxÞ ’
1� 1

2
px
2

� �2
h i

k
ð3:156Þ

The pdf f �1 ðxÞ is thus of the kind

f �1 ðxÞ ¼ a� bx2 ð3:157Þ

From the normalization condition, we have a� b
3 ¼ 1 and thus

f �1 ðxÞ ¼ a� 3ða� 1Þx2 ð3:158Þ

From the nonnegativity condition it follows that

for 0� x\1=
ffiffiffi
3
p

it must be that a [ � 3x2

1� 3x2
and thus a [ 0;

For 1=
ffiffiffi
3
p

\x� 1 it must be that a� 3x2

3x2 � 1
and thus a� 3=2:

It follows that f �1 ðxÞ has been determined with the exception of the parameter a,
whose optimal value must be found inside the interval 0; 3

2

� �
:

From Eq. (3.134) we then have

g1 xð Þ ¼ g xð Þfx xð Þ
f1 xð Þ ¼

cos px
2

� �
a� 3 a� 1ð Þx2

ð3:159Þ
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In the ideal case, i.e., supposing we are able to evaluate the integrals, we would
have

E1 g2
1ðxÞ

	 

¼
Z1

0

g2ðxÞ
f �1 ðxÞ

dx ¼
Z1

0

cos2 px
2

� �
a� 3ða� 1Þx2

dx ð3:160Þ

The minimum value for this expression is found for a = 3/2, and is equal to
0.406275. By substituting into Eq. (3.141) we have

Var1 G1N½ 
 ¼ 1
N

0:406275� 2
p

� �2
" #

¼ 1
N

9:9026 	 10�4 ð3:161Þ

By choosing for N the value 104, like in the analog case, we obtain a variance that
is smaller by two orders of magnitude. In a real case, when we might be unable to
evaluate the integrals, the value of the parameter a is determined by trial and error.
For each trial value a, the f �1 ðxÞ is given by Eq. (3.158) and is completely deter-
mined. From this f �1 ðxÞ we sample N values xi (i = 1,2,…,N), we calculate the

corresponding values g1ðxiÞ with Eq. (3.159) and then g1 and g2
1 with Eq. (3.142);

finally, we calculate Var1 G1N½ 
 with Eq. (3.143). Among all the trial values a, the
best choice is the one for which Var1 G1N½ 
 is minimum. For this example, the
determination of a was done by using the following Matlab� program (N = 104

histories) inside the interval [0,1.5] with steps equal to 0.05

clear; N=1e4; g=zeros(N,1); s2G1N=[];
a=0:0.05:1.5; la=length(a);
for k=1:la

for n=1:N

rr=zeros(1,3);r=zeros(1,3);
c=[a(k)-1 0 -a(k) rand]; rr=roots(c);lrr=length(rr);
j=0;
for kk=1:lrr

r(kk)=-1;
if imag(rr(kk))==0
j=j+1;
r(j)=rr(kk);
end

end
i=find(r[0 && r\1); x=r(i);
g(n)=cos(pi*x/2)/(a(k)-3*(a(k)-1)*x^2);

end
s2G1N=[s2G1N var(g)];

end
plot(a, s2G1N/N)
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Figure 3.8 reports the value s2
G1N

as a function of a (left) and the two pdfs f1ðxÞ
and f �1 ðxÞ (right). This latter was calculated as a function of x, for the optimal value
a = 1.5. From the Figure, it can be seen that Var1 G1N½ 
 decreases monotonically
as a increases, and reaches the same minimum a = 3/2, as in the theory. The
corresponding estimate of G was obtained by using a forced MCS with the
following Matlab� program

clear;
N=1e4; g=zeros(N,1); s2G1N=[]; a=1.5;
for n=1:N

rr=zeros(1,3);r=zeros(1,3);
c=[a-1 0 -a rand]; rr=roots(c);lrr=length(rr); j=0;
for kk=1:lrr
r(kk)=-1;

if imag(rr(kk))==0
j=j+1; r(j)=rr(kk);
end

end
i=find(r[0 && r\1); x=r(i); g1(n)=cos(pi*x/2)/(a-3*(a-1)*x^2);

end
G1N=mean(g1); s2G1N=var(g1)/N;

The following values are obtained

g1N ¼ 0:6366 s2
G1N
¼ 9:95 	 10�8 or G1N ¼ð636:6� :032Þ 	 10�3

Fig. 3.8 Estimated variance as a function of parameter a (left); forced PDF f1ðxÞand f �1 ðxÞ (right)
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This result shows that choosing the optimal pdf f �1 ðxÞ allows us to estimate G with
a variance that is two orders of magnitude smaller than that of the analog
computation.

Extension to the Multivariate Case

Let us consider the definite integral G of Eq. (3.121). The sampling of a rv vector x
from fXðxÞ can be done by starting from the following identity

fXðx1; x2; . . .; xnÞ ¼
Yn�1

j¼1

fjþ1ðxjjxj�1; xj�2; . . .; x1Þ
" #

f ðxnjxn�1; . . .; x1Þ ð3:162Þ

where

fj þ 1ðxjjxj � 1; xj � 2; . . .; x1Þ ¼
R

dxj þ 1dxjþ2. . .dxnfXðxÞR
dxjdxj þ 1dxjþ2. . .dxnfXðxÞ

¼ fmargðx1; x2; . . .; xjÞ
fmargðx1; x2; . . .; xj � 1Þ

ð3:163Þ

f ðxnjxn � 1; xn � 2; . . .; x1Þ ¼
fXðxÞR
dxnf ðxÞ ð3:164Þ

where fmargðx1; x2; . . .; xjÞ is the marginal pdf of fXðxÞ with respect to the variables
x1; x2; . . .; xj: From Eq. (3.162), it can be seen that we can sample x by sampling
successively the xj components from conditional univariate distributions, i.e.,

x1 from f2ðx1Þ½ 
; x2 from f3ðx2jx1Þ½ 
; . . .;

xn from f ðxnjxn�1; . . .; x1Þ½ 

ð3:165Þ

In words, we sample x1 from the marginal distribution of f with respect to all the
variables except for x1; x2 from the conditional distribution with respect to the
obtained value of x1 and marginal with respect to all the remaining variables
except for x2; and so on.

3.5 Sensitivity Analysis by Monte Carlo Simulation

The definite integral G defined by (3.121) depends on the values of the parameters
that appear in the function gðxÞ and in the pdf fXðxÞ: Let us suppose, for simplicity,
that those functions have in common a scalar parameter p: we want to make a MC
estimate of the sensitivity of G with respect to a variation of the parameter p,
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namely dG=dp: Thus, by including the parameter explicitly as an argument, we can
write Eq. (3.121) as

GðpÞ ¼
Z

D

gðx; pÞfXðx; pÞdx ð3:166Þ

Of course, a special case of this formulation is the one in which only g or only
f depends on p.

We present two procedures for estimating the sensitivity, both similar to the one
described for forced simulation [19–23].

3.5.1 Correlated Sampling

Let us set, for brevity

g� � gðx; pþ DpÞ
g � gðx; pÞ

f �X � fXðx; pþ DpÞ
fX � fXðx; pÞ

ð3:167Þ

Further, let us indicate with E 	½ 
 and E� 	½ 
 the expected values of the argument
calculated with the pdfs fX and f �X ; respectively. Corresponding to the value

p ? Dp of the parameter, the definite integral defined by Eq. (3.121) becomes

G� � Gðpþ DpÞ ¼
Z

D

gðx; pþ DpÞfXðx; pþ DpÞdx ¼ E� g�½ 
 ð3:168Þ

Also,

G� � Gðpþ DpÞ ¼
R
D

gðx; pþ DpÞ fXðx;pþDpÞ
fXðx;pÞ fXðx; pÞdx

¼ E� g�
f �X
fX

h i
� E h½ 


ð3:169Þ

where we set

hðx; p;DpÞ ¼ gðx; pþ DpÞ
fXðx; pþ DpÞ

fXðx; pÞ � g�
f �X
fX

ð3:170Þ

Corresponding to a given Dp (in general we choose Dp/p \\1). The MCS estimate
of g� can be done simultaneous to that of G with the described method of the dart
game (Sect. 3.4.1): for each of the N values xi sampled from fXðx; pÞ; we accu-
mulate the value gðxi; pÞ with the aim of calculating GN to estimate G, and we also
accumulate the value hðxi; p;DpÞ with the aim of calculating G�N as estimate of G�:
The values GN and G�N ; calculated by using the same sequence {xi}, are correlated.
We have
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G�N ¼
1
N

XN

i¼1

hðxi; p;DpÞ ð3:171Þ

But

E h½ 
 ¼ G�N
Var h½ 
 ¼ E h2½ 
 � G�ð Þ2 ð3:172Þ

Thus

E G�N
	 


¼ G�

Var G�N
	 


¼ 1
N Var h½ 
 ¼ 1

N E h2½ 
 � G�ð Þ2
n o ð3:173Þ

To compute the sensitivity of G with respect to the variation of the parameter from
p to p ? Dp, let us define

DG�N ¼ G�N � GN ¼
1
N

XN

i¼1

ðhi � giÞ ð3:174Þ

where, for brevity, we set

hi � hðxi; pþ DpÞ and gi � gðxi; pÞ ð3:175Þ

We have

E hi � gi½ 
 ¼ E h� g½ 
 ¼ E h½ 
 � E g½ 
 ¼ G� � G ð3:176Þ

Var hi � gi½ 
 ¼ Var h� g½ 
 ¼ E ðh� gÞ � G� � Gf g2
h i

¼ E h� G�ð Þ2
h i

þ E g� Gð Þ2
h i

� 2E h� G�ð Þ g� Gð Þ½ 


¼ Var h½ 
 þ Var g½ 
 � 2 E hg½ 
 � G�Gf g

ð3:177Þ

The sensitivity dG=dp and its variance are estimated as

E
DGN

Dp

� �
¼ 1

Dp
E hi � gi½ 
 ¼ 1

Dp
G� � Gð Þ ’ 1

Dp
h� g
� �

ð3:178Þ

Var DGN
Dp

h i
¼ 1

N
Var h½ 
þVar g½ 
�2E hg½ 
þ2G�G

ðDpÞ2

n o
’

1
N

h2�h
2

� �
þ g2�g2ð Þ�2E hg�hg½ 

ðDpÞ2

� � ð3:179Þ

The value of G, with its variance, and the sensitivity dG=dp; with its variance, can
be estimated by calculating, for each value xi of the sequence {xi} sampled from
fXðx; pÞ; the three values

gi � gðxi; pÞ; g�i � gðxi; pþ DpÞ and f �i � fXðxi; pþ DpÞ ð3:180Þ
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and by accumulating the five quantities

gi; g2
i ; hi ¼ g�i

f �i
fi

; h2
i � g�i

f �i
fi

� �2

; higi ¼ g�i
f �i
fi

gi ð3:181Þ

After the N accumulations, we calculate the arithmetic averages g; g2; h; h2; hg
which, substituted in Eqs. (3.178) and (3.179), give the desired estimates.

3.5.2 Differential Sampling

By differentiating Eq. (3.166) with respect to the parameter of interest p, we obtain
the expression for the first-order sensitivity of G with respect to a variation of p

oG

op
¼
Z

ogðx; pÞ
op

fXðx; pÞ þ gðx; pÞ
ofXðx; pÞ

op

� �
dx

¼
Z

o

op
ðx; pÞ þ o

opX
ðx; pÞ

" #
gðx; pÞfXðx; pÞdx

ð3:182Þ

The MC estimate of the first-order sensitivity can be obtained by sampling
N values {xi} from fXðx; pÞ; and calculating the arithmetic average

oG

op

� �
N

¼ 1
N

XN

i¼1

o

op
ln gðxi; pÞ þ o

op
ln fXðxi; pÞ

� �
gðxi; pÞ ð3:183Þ

The extension of this simple procedure to the calculation of the pure or mixed
sensitivity of a generic nth order is straightforward.

3.6 Monte Carlo Simulation Error and Quadrature Error

Let us finally compare the statistical error made by estimating G by using the MCS
method with N trials, and the numerical error derived by a quadrature formula in
which the integrand function is calculated in N points [24, 25]. In any case, analog
or biased, the MC error [see Eqs. (3.131) and (3.143)] varies with N�

1
2; i.e.,

eMC �N�
1
2 ð3:184Þ

In the case of a fairly regular function, the error in any form of quadrature varies
like Dk with D equal to the integration interval and k a small integer which depends
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on the numerical method employed in the quadrature formula. In general,
k increases with the complexity of the rule, but is at most 2 7 3.

In the case of a hypercube with n dimensions and side length 1, the number of
points on one edge is D�1 so that the total number of points is N ¼ D�n and the
numerical quadrature error is

eq�Dk �N�
k
n ð3:185Þ

The MCS estimate is convenient, i.e., eMC � eq; if n� 2k ¼ 6; i.e., if it is necessary
to evaluate an integral in a domain that is at least 6-dimensional.
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