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Preface

This book introduces the Monte Carlo simulation method for application to system
reliability and risk analysis. Monte Carlo simulation is a modeling tool widely
used in several scientific domains. The continuous improvements in computational
power and software solutions allow its application to complex systems and
problems.

The purpose of the book is to present basic and advanced techniques of Monte
Carlo sampling and simulation for realistic system reliability and risk modeling. In
the past, restrictive assumptions had to be introduced to the models in order to fit
them to the analytical or numerical methods available for their solution, at the cost
of drifting away from the actual system operation and at the risk of obtaining
sometimes dangerously misleading results. Thanks to the inherent flexibility of
Monte Carlo simulation, most of these assumptions can be relaxed so that realistic
operating rules, including for example maintenance policies and component aging
processes, can be accounted for in the model. This is of fundamental importance
for systems and plants, such as those employed in the nuclear, aerospace, and
chemical industry, which are safety-critical and must be designed and operated
within a risk-informed approach. Yet, the efficient use of Monte Carlo simulation
techniques is not trivial in large-scale applications, and the computational efforts
involved may require appropriate ‘‘intelligent’’ techniques to obtain the results of
interest in acceptable computing times.

This book collects, in a structured way, the material from a series of lectures held
to senior undergraduate and graduate students at various Universities (e.g., Ecole
Centrale Paris, Politecnico di Milano, Supelec, Universidad Politecnica de Valencia,
Universidad Federico Santa Maria de Valparaiso, and others) and from research
work carried out in the last 20 years by the author and his collaborators.

The material is organized as follows. In Chap. 1, a general introduction is offered
on the types of problems that can be addressed by Monte Carlo simulation.
Chapter 2 gives some basic concepts and definitions related to system reliability and
risk analysis; some additional basic knowledge is given through Appendixes at the
end of the book. In Chap. 3, basic procedures are given for sampling random
numbers from some probability distributions commonly used in system reliability
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and risk analysis, for solving definite integrals and linear integral equations, and for
sensitivity analysis. Chapter 4 illustrates the use of Monte Carlo simulation for the
problem of evaluating the reliability and availability of a system (formulated as a
transport problem of the system states) and provides an operative procedure for its
solution. The material in this chapter is completed by the presentation of a number of
practical applications in the following Chap. 5. In Chap. 6, a number of advanced
Monte Carlo simulation techniques are introduced to solve the problem of esti-
mating the probability of system failure when this event is rare. These techniques
include the classical Latin Hypercube Sampling and Importance Sampling, and also
more recent techniques such as Cross-Entropy, Subset Sampling, Line Sampling.
Examples of applications of some of these techniques are provided in Chap. 7,
where sample space is given to comparisons with standard Monte Carlo simulation
to appreciate the benefits offered by these techniques.

In preparing the book, efforts have been made to maintain a balance between the
required theoretical and mathematical rigor in the exposition of the methods and
the clarity in the illustration of the numerical examples and practical applications.
For this reason, this book can serve well as a reference to both reliability and risk
analysis researchers and engineers, and it would also prove useful for a university
course on the subject at junior/senior undergraduate or graduate levels. Although
the book is self-explanatory, a standard background in probability theory, mathe-
matical statistics, and integral calculus is recommended.

Finally, it is with sincere appreciation that I thank all those who have contributed
to prepare this book. In particular, I am grateful to Drs. Piero Baraldi, Edoardo
Patelli, Nicola Pedroni, Luca Podofillini, and Professor Marzio Marseguerra for
contributing the research that has provided the material for many parts of the book,
and to Dr. Michele Compare, Samuele Baronchelli and Fabio Frassini for their
careful editing work.

July 2012 Enrico Zio
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Chapter 1
Introduction

When designing a new system or attempting to improve an existing one, the
engineer tries to anticipate future patterns of system operation under varying
options. Inevitably, the prediction is done with a model of reality, which by
definition can never fit reality in all details. The model is based on the available
information on the interactions among the components of the system, the
interaction of the system with the environment, and data related to the properties of
the system components. All these aspects concur in determining how the com-
ponents move among their possible states and, thus, how the system behaves. With
the model, questions can be asked about the future of the system, for example in
terms of its failures, spare parts, repair teams, inspections, maintenance, produc-
tion and anything else that is of interest.

In this view, the Monte Carlo simulation (MCS) method is a powerful modelling
tool for the analysis of complex systems, due to its capability of achieving a closer
adherence to reality. It may be generally defined as a methodology for obtaining
estimates of the solution of mathematical problems by means of random numbers.
By random numbers, we mean numbers obtained through a roulette-like machine of
the kind utilized in the gambling Casinos of the Monte Carlo Principate: then, the
name of the method.

The random sampling of numbers was used in the past, well before the devel-
opment of the present computers, by skillful scientists. The first example of what we
would now call a MCS method seems to date back to the French naturalist Buffon
(1707–88) who considered a set of parallel straight lines a distance D apart onto a
plane and computed the probability P that a segment of length L\D randomly
positioned on the plane would intersect one of these lines [1]. The theoretical
expression he obtained was

P ¼ L=D

p=2
ð1:1Þ
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Perhaps not completely convinced about the correctness of his result, Buffon
had the idea of experimentally checking the above expression by actually drawing
parallel lines and throwing a needle on the floor of its house, thus acquiring the
honour of being the inventor of the MCS method. It is interesting to mention that,
later on, Laplace observed that the Buffon’s experiment represented a device for
computing p by just throwing a needle on a floor [2].

In later years, MCS techniques were used by Lord Kelvin to solve integrals
within the kinetic gas theory: he drew numbered cards from a drawer and
wondered about possible correlations between the drawn numbers due to an
imperfect mixing of the cards [3].

Many other scientists tackled probability problems with techniques based on
random sampling. Among these, Gosset (Student), who in 1908 used a MCS
method to estimate the correlation coefficient of his famous t-distribution [4].

Eventually, the revival of the method can be ascribed to Fermi, von Neumann
and Ulam in the course of the Manhattan Project during the World War II. Back
then, the MCS method provided, for example, the only option for solving the
six-dimensional integral equations employed in the design of shielding for nuclear
devices. It was probably the first case in human history in which solutions based on
trial and error were clearly too risky.

Nowadays, MCS seems to be emerging unchallenged as the only method that can
yield solutions to complex multi-dimensional problems. For about three decades it
was used almost exclusively, yet extensively, in nuclear technology. Presumably,
the main reason for this limited use was the lack of suitable computing power as the
method is computer memory and time intensive for practical applications. Yet, with
the increasing availability of fast computers the application of the method becomes
more and more feasible in the practice of various fields. Indeed, the present power of
computers allows uses of MCS otherways unimaginable.

The underlying tasks common to the various applications are:

• Simulation of random walks in a naturally stochastic environment or for the
solution of equations, both differential and integral;

• Adoption of variance reduction methods for improving the efficiency of MCS
calculations.

Two typical problems, one deterministic and one stochastic, which are
addressed by MCS are described below, in general terms. As an example of a
deterministic problem, let us consider the estimation of an n-dimensional
Euclidean volume V of complex shape. The problem is formally equivalent to the
evaluation of a definite integral. To this end, we place V inside a domain of volume
W that can be readily evaluated (W, thus, is to be considered given). By randomly
sampling a large number N of points inside W (we shall learn how to do this later
in the book), n of these will fall inside V, while the remaining N–n will fall outside.
Clearly, n is a random number that follows a binomial distribution characterized
by the probability p = V/W that a sampled point falls inside the volume V.
Considering n as an estimate of the average number of successes we have:
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n ’ Np ¼ N
V

W
and V̂ ¼ n

N
W

The statistical relative error of V̂ , estimate of V, can be immediately evaluated
from the binomial distribution of n:

rV

V̂
¼ rn

n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Np 1� pð Þ
p

Np
’ 1

ffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffi

N � n

n

r

ð1:2Þ

where rV and rn are the standard deviations of the rvs V̂ and n, respectively. For

instance, for V ¼ W=2, we have n ’ N=2 and thus rV

V̂
’ N�

1
2, so that if we want to

estimate V with a precision of 1%, we will have to sample N ¼ 104 points. From
this simple example, we see how it is possible to estimate a definite integral with
an error tending to zero as the number N of sampled points increases.

As examples of intrinsically stochastic problems, let us consider the neutron (or
photon) transport in a medium, and the reliability and risk analysis of an engineering
system or plant, two problems that are apparently very different from each other.

The first case, of prominent interest in reactor physics and in medical or
industrial dosimetry, aims at determining the position, energy, and flight direction
of particles travelling in a medium of different materials and of complicated
geometry, i.e., a fission reactor or a biological tissue [5–8]. If we suppose that the
problem is linear, i.e., the particles do not interact with each other, and that the
particles travel in an environment that is not modified in the course of the inter-
actions, the idea is to successively simulate a great number of independent particle
histories, each one describing the fate of a particle from its ‘birth’ from a radio-
active source or a fission, to its ‘death’ by absorption or escape from the system.
Each of these histories reproduces the life of a particle, which is simulated by a
random walk in the so-called ‘phase space’ by extracting random numbers from
appropriate probability distributions. In the course of the simulation, the occur-
rence of the events of interest in each history is recorded in appropriate counters,
and at the end of the calculation the statistical estimates of the corresponding
distributions are found. For example, in the case of neutron transport, each history
begins with the sampling of the birth parameters of the neutron (position, flight
direction and kinetic energy) from an appropriate source distribution. The neutron
thus generated begins its ‘flight’ along a line segment whose length is dependent
on the total macroscopic cross section of the material in which the neutron travels
with the sampled kinetic energy, and is determined by random sampling. At the
end of its flight along the line segment, the neutron interacts and the type of
interaction is chosen among the various possibilities (i.e., scattering, radiative
capture, fission) by sampling another random number: if as a result of the inter-
action the neutron is absorbed (radiative capture), the absorption event is tallied in
an appropriate counter, the current history is ended and a new one begins.
Alternatively, if one or more neutrons survive (from scattering or fission), for each
of them a new flight direction is randomly chosen from the angular distribution of
the collision, together with a new energy, and the simulation of the neutron life
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continues. At the end of the calculation, the contents of the various counters in
which the events of interest have been recorded allow obtaining the statistical
estimates of the desired quantities. For example, by accumulating the number of
fissions that occur in the different regions one can estimate the fission density; by
classifying the energy of the neutrons that are exiting the system, one can estimate
the escape spectrum, and so on.

By comparing the MCS approach to the neutron transport problem with the analyt-
ical–numerical solution to the neutron transport equation, the advantages and disad-
vantages of each method are evident. The principal advantages of the MCS method are:

• The direct use of nuclear data such as cross sections and angular distributions as
a function of energy, with no need of resorting to approximations, such as, for
example, the spherical harmonics representation for the transfer kernel and the
methods based on energy groups;

• The possibility of considering extremely complicated geometries with no need
of introducing simplifying, unrealistic assumptions such as the homogenization
of heterogeneous regions.

On the other hand, the disadvantages of the MCS method are:

• A massive use of memory: the cross sections and angular distributions must be
available for all nuclides and for all energies of interest;

• Long calculation times, which rapidly diverge with the desired accuracy.

Today, MCS neutronics calculations typically represent reference calculations
that can be used to ‘fix’ empirically the approximate numerical calculations, which
are generally faster.

The second example refers to the reliability and risk analysis of an engineering
system or plant [9–12]. For simplicity, imagine that the system is made of a number
of components placed in series or in parallel with k-over-N working logics. Each
component is subject to random failures and repairs, and can be in one of several
active states or in standby. The underlying idea of the MCS approach in this case is
that of simulating successively a large number of independent histories of system
life, each of which realizes the evolution of the state of the system from the starting
time to the final (mission) time of interest. Each history, thus, reproduces one of the
possible fates of the system, which is simulated with a random walk in the phase
space by sampling random numbers from known failure, repair and state-transition
distributions. From these distributions, it is possible to sample the time at which a
first transition, say a failure, occurs and which component has failed. Then, the time
at which the next transition occurs is sampled: this can be the time at which the failed
component is repaired or the time at which the failure of another component occurs.
The sequence of transitions is followed until the mission time is reached. During the
simulation of each history, the events of interest, e.g., the system availability to
function state, are recorded in appropriate counters. At the end of the simulation of
all the histories, the contents of the counters allow obtaining the statistical estimates
of the quantities of interest such as, for example, the failure probability of the
system, its instantaneous unavailability, etc.
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The MCS procedures described for the stochastic problems of particle transport
and system reliability and risk analysis are based on phenomenological models and
aim at estimating quantities that could, in principle, be calculated analytically, e.g.,
in the case of neutron transport, by solving the Boltzmann equation [13] and in the
case of the system risk and reliability analysis, by solving the system of Markovian
or Semi-Markovian differential equations [14–16]. The advantage of the MCS
approach comes from the fact that it allows taking into account, in a realistic
manner, the many phenomena that can occur, without additional complications in
the modelling and in the solution procedure. For example, particle transport can be
studied by MCS in complex geometries that are not solvable analytically: it is well
known that the general solution of the Boltzmann transport equation is not known,
and it is necessary to resort to various approximations which are more and more
distant from the phenomenological reality. Analogously, if the reliability evaluation
of a plant is performed using Markov equations, it would easily incur in the so-called
combinatorial explosion, given by an exponential increase of the order of the system
of differential equations: for example having 10 components, each of which can be
in three states (working, failed, and standby) is described by 310 ¼ 59; 049 equations
[17]; moreover, realistic aspects of system operation, such as component aging and
maintenance, introduce significant complications in the analytical models whereas
they can be treated straightforwardly by MCS [10, 18–20].

The principal disadvantage in the use of MCS in practice is the use of relevant
calculation times, which diverge with the required accuracy. This disadvantage is
decreasing thanks to the rapid development of computing power and to the
availability of a number of techniques for efficient simulation, some of which will
be illustrated in details in this book. Also, parallel computers are particularly
useful for MCS because the various histories that contribute to the estimate of the
solution are independent of each other and can thus be processed in parallel. On
this account, in the future it can be foreseen that in many disciplines MCS will take
the place of the more traditional numerical methods.

Finally, for comprehension of the book material, it is assumed that the reader has
a background in probability theory, mathematical statistics and integral calculus,
and is familiar with the basics of system availability and reliability theory, and risk
analysis. Some Appendices are provided for background reference.
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Chapter 2
System Reliability and Risk Analysis

2.1 System Reliability Analysis

This introduction to system reliability analysis is based on [1]. Historically, it seems
that the word reliability was first coined by the English poet Samuel T. Coleridge,
who along with William Wordsworth started the English Romantic Movement [2]:

‘‘He inflicts none of those small pains and discomforts which irregular men scatter about
them and which in the aggregate so often become formidable obstacles both to happiness
and utility; while on the contrary he bestows all the pleasures, and inspires all that ease of
mind on those around him or connected with him, with perfect consistency, and (if such a
word might be framed) absolute reliability.’’

These lines were written by Coleridge in the year 1816, in praise of his friend
the poet Robert Southey. From this initial ‘familiar’ use, the concept of reliability
grew into a pervasive attribute worth of both qualitative and quantitative conno-
tations. In fact, it only takes an internet search of the word ‘reliability’, e.g., by the
popular engine Google, to be overwhelmed by tens of millions of citations [3].

From 1816 to today several revolutionizing social, cultural, and technological
developments have occurred which have aroused the need of a rational framework
for the quantitative treatment of the reliability of engineered systems and plants
and the establishment of system reliability analysis as a scientific discipline,
starting from the mid 1950s.

The essential technical pillar which has supported the rise of system reliability
analysis as a scientific discipline is the theory of probability and statistics. This
theory was initiated to satisfy the enthusiastic urge for answers to gaming and
gambling questions by Blaise Pascal and Pierre de Fermat in the 1600s and later
expanded into numerous other practical problems by Laplace in the 1800s [3, 4].

Yet, the development of system reliability analysis into a scientific discipline in
itself needed a practical push, which came in the early 1900s with the rise of the
concept of mass production for the manufacturing of large quantities of goods

E. Zio, The Monte Carlo Simulation Method for System Reliability
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from standardized parts (rifle production at the Springfield armory, 1863 and Ford
Model T car production, 1913) [3].

But actually, the catalyst for the actual emergence of system reliability analysis
was the vacuum tube, specifically the triode invented by Lee de Forest in 1906,
which at the onset of WWII initiated the electronic revolution, enabling a series of
applications such as the radio, television, radar, and others.

The vacuum tube is by many recognized as the active element that allowed the
Allies to win the so-called ‘wizard war’. At the same time, it was also the main
cause of equipment failure: tube replacements were required five times as often as
all other equipments. After the war, this experience with the vacuum tubes
prompted the US Department of Defense (DoD) to initiate a number of studies for
looking into these failures.

A similar situation was experienced on the other side of the warfront by the
Germans, where chief Engineer Lusser, a programme manager working in
Peenemünde on the V1, prompted the systematic analysis of the relations between
system failures and components faults.

These and other military-driven efforts eventually led to the rise of the new
discipline of system reliability analysis in the 1950s, consolidated and synthesized
for the first time in the Advisory Group on Reliability of Electronic Equipment
(AGREE) report in 1957. The AGREE was jointly established in 1952 between the
DoD and the American Electronics Industry, with the mission of [5]:

• Recommending measures that would result in more reliable equipment;
• Helping to implement reliability programs in government and civilian agencies;
• Disseminating a better education on reliability.

Several projects, still military-funded, developed in the 1950s from this first
initiative [5–7]. Failure data collection and root cause analyses were launched with
the aim of achieving higher reliability in components and devices. These led
to the specification of quantitative reliability requirements, marking the beginning
of the contractual aspect of reliability. This inevitably brought the problem
of being able to estimate and predict the reliability of a component before it was
built and tested: this in turn led in 1956 to the publication of a major report on
reliability prediction techniques entitled ‘Reliability Stress Analysis for Electronic
Equipment’ (TR-1100) by the Radio Corporation of America (RCA), a major
manufacturer of vacuum tubes. The report presented a number of analytical
models for estimating failure rates and can be considered the direct predecessor of
the influential military standard MIL-HDBK-217F first published in 1961 and still
used today to make reliability predictions.

Still from the military side, during the Korean war maintenance costs were found
quite significant for some armed systems, thus calling for methods of reliability
prediction and optimized strategies of component maintenance and renovation.
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In the 1960s, the discipline of system reliability analysis proceeded along two
tracks:

• Increased specialization in the discipline by sophistication of the techniques,
e.g., redundancy modelling, Bayesian statistics, Markov chains, etc., and by the
development of the concepts of reliability physics to identify and model the
physical causes of failure and of structural reliability to analyze the integrity of
buildings, bridges, and other constructions;

• Shift of the attention from component reliability to system reliability and
availability, to cope with the increased complexity of the engineered systems,
like those developed as part of military and space programs like the Mercury,
Gemini, and Apollo ones.

Three broad areas characterized the development of system reliability analysis
in the 1970s:

• The potential of system-level reliability analysis [8] motivated the rational
treatment of the safety attributes of complex systems such as the nuclear power
plants [9];

• The increased reliance on software in many systems led to the growth of focus
on software reliability, testing, and improvement [10];

• The lack of interest on reliability programs that managers often showed already
at that time, sparked the development of incentives to reward improvement in
reliability on top of the usual production-based incentives.

With respect to methods of prediction reliability, no particular advancements
were achieved in those years.

In the following years, the scientific and practicing community has witnessed an
impressive increase of developments and applications of system reliability anal-
ysis, aimed at rationally coping with the challenges brought by the growing
complexity of the systems and practically taking advantage of the computational
power becoming available at reasonable costs [1].

The developments and applications of these years have been driven by a shift
from the traditional industrial economy, valuing production, to the modern
economy centered on service delivery: the fundamental difference is that the
former type of economy gives value to the product itself whereas the latter gives
value to the performance of the product in providing the service. The good is not
the product itself but its service and the satisfaction of the customer in receiving it.

This change of view has led to an increased attention to service availability as a
most important quality and to a consequent push in the development of techniques for
its quantification. This entails consideration of the fact that availability is a property
which depends on the combination of a number of interrelated processes of com-
ponent degradation, of failure and repair, of diagnostics and maintenance, which
result from the interaction of different systems including not only the hardware but
also the software, the human, and the organizational and logistic systems.

In this scenario, we arrive at our times. Nowadays, system reliability analysis is
a well-established, multidisciplinary scientific discipline which aims at providing
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an ensemble of formal methods to investigate the uncertain boundaries around
system operation and failure, by addressing the following questions [1, 11, 12]:

• Why systems fail, e.g., by using the concepts of reliability physics to discover
causes and mechanisms of failure and to identify consequences;

• How to develop reliable systems, e.g., by reliability-based design;
• How to measure and test reliability in design, operation, and management;
• How to maintain systems reliable, by maintenance, fault diagnosis, and prognosis.

Operatively, the system reliability analysis which addresses the questions above
is based on the quantitative definition of reliability in probabilistic terms: con-
sidering the continuous random variable failure time T, the reliability of the system
at time t is the probability that the system does not fail up to time t, i.e., the
probability that T takes on values larger than t.

Another quantity of interest is the system availability, which is used to charac-
terize the ability of a system to fulfill the function for which it is operated. It applies to
systems which can be maintained, restored to operation or renovated upon failure
depending on the particular strategy adopted to optimally assure its function [1–6]:

• Off-schedule (corrective) maintenance, i.e., replacement or repair of the failed
system;

• Preventive maintenance, i.e., regular inspections, and possibly repair, based on a
structured maintenance plan;

• Condition-based maintenance, i.e., performance of repair actions upon detection
of the degraded conditions of the system;

• Predictive maintenance, i.e., replacement of the system upon prediction of the
evolution of the degradation conditions of the system.

The instantaneous availability is defined as the probability that the system is
operating at time t. It differs from reliability, which is instead used to characterize
the ability of the system of achieving the objectives of its specified mission within
an assigned period of time, by the probability that the system functions with no
failures up to time t.

Operatively, the time-dependent, instantaneous availability function of a system
is synthesized by point values, e.g.:

• For units or systems under corrective maintenance, the limiting or steady state
availability is computed as the mathematical limit of the instantaneous avail-
ability function in time as this latter grows to infinity. It represents the proba-
bility that the system is functioning at an arbitrary moment of time, after the
transient of the failure and repair processes have stabilized. It is obviously
undefined for systems under periodic maintenance, for which the limit does not
exist;

• For systems under periodic maintenance, the average availability over a given
period of time is introduced as indicator of performance. It represents the
expected proportion of time that the system is operating in the considered period
of time.
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2.2 System Risk Analysis

This introduction to system risk analysis is based on [13]. The subject of risk
nowadays plays a relevant role in the design, development, operation and
management of components, systems, and structures in many types of industry. In
all generality, the problem of risk arises wherever there exist a potential source of
damage or loss, i.e., a hazard (threat), to a target, e.g., people or the environment.
Under these conditions, safeguards are typically devised to prevent the occurrence
of the hazardous conditions, and protections are emplaced to protect from and
mitigate its associated undesired consequences. The presence of a hazard does not
suffice itself to define a condition of risk; indeed, inherent in the latter there is the
uncertainty that the hazard translates from potential to actual damage, bypassing
safeguards and protections. In synthesis, the notion of risk involves some kind of
loss or damage that might be received by a target and the uncertainty of its
transformation in an actual loss or damage.

One classical way to defend a system against the uncertainty of its failure
scenarios has been to: (i) identify the group of failure event sequences leading to
credible worst-case accident scenarios {s�} (design-basis accidents), (ii) predict
their consequences {x�}, and (iii) accordingly design proper safety barriers for
preventing such scenarios and for protecting from, and mitigating, their associated
consequences [1].

Within this approach (often referred to as a structuralist, defense-in-depth
approach), safety margins against these scenarios are enforced through conser-
vative regulation of system design and operation, under the creed that the iden-
tified worst-case, credible accidents would envelope all credible accidents for what
regards the challenges and stresses posed on the system and its protections. The
underlying principle has been that if a system is designed to withstand all the
worst-case credible accidents, then it is ‘by definition’ protected against any
credible accident [14].

This approach has been the one classically undertaken, and in many technologies
it still is, to protect a system from the uncertainty of the unknown failure behaviors of
its components, systems, and structures, without directly quantifying it, so as to
provide reasonable assurance that the system can be operated without undue risk.
However, the practice of referring to ‘worst’ cases implies strong elements of
subjectivity and arbitrariness in the definition of the accidental events, which may
lead to the consideration of scenarios characterized by really catastrophic conse-
quences, although highly unlikely. This may lead to the imposition of unnecessarily
stringent regulatory burdens and thus excessive conservatism in the design and
operation of the system and its protective barriers, with a penalization of the industry.
This is particularly so for those high-consequence industries, such as the nuclear,
aerospace, and process ones, in which accidents may lead to potentially large
consequences.

For this reason, an alternative approach has been pushed forward for the design,
regulation, and management of the safety of hazardous systems. This approach,
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initially motivated by the growing use of nuclear energy and by the growing
investments in aerospace missions in the 1960s, stands on the principle of looking
quantitatively also at the reliability of the accident-preventing and consequence-
limiting protection systems that are designed and implemented to intervene in
protection against all potential accident scenarios, in principle with no longer any
differentiation between credible and incredible, large, and small accidents [15].
Initially, a number of studies were performed for investigating the merits of a
quantitative approach based on probability for the treatment of the uncertainty
associated with the occurrence and evolution of accident scenarios [16]. The
findings of these studies motivated the first complete and full-scale probabilistic
risk assessment of a nuclear power installation [9]. This extensive work showed
that indeed the dominant contributors to risk need not be necessarily the design-
basis accidents, a ‘revolutionary’ discovery undermining the fundamental creed
underpinning the structuralist, defense-in-depth approach to safety [14].

Following these lines of thought, and after several ‘battles’ for their demon-
stration and valorization, the probabilistic approach to risk analysis (Probabilistic
Risk Analysis, PRA) has arisen as an effective way for analysing system safety,
not limited only to the consideration of worst-case accident scenarios but extended
to looking at all feasible scenarios and its related consequences, with the proba-
bility of occurrence of such scenarios becoming an additional key aspect to be
quantified in order to rationally and quantitatively handle uncertainty [9, 17–24].

In this view, system risk analysis offers a framework for the evaluation of the
risk associated to an activity, process, or system, with the final aim of providing
decision support on the choice of designs and actions.

From the view point of safety regulations, this has led to the introduction of
new criteria that account for both the consequences of the scenarios and their
probabilities of occurrence under a now rationalist, defense-in-depth approach.
Within this approach to safety analysis and regulation, system reliability analysis
takes on an important role in the assessment of the probability of occurrence of the
accident scenarios as well as the probability of the functioning of the safety
barriers implemented to hinder the occurrence of hazardous situations and mitigate
their consequences if such situations should occur [1].

2.2.1 The Framework of PRA

The basic analysis principles used in a PRA can be summarized as follows. A PRA
systemizes the knowledge and uncertainties about the phenomena studied by
addressing three fundamental questions [24]:

• Which sequences of undesirable events transform the hazard into an actual
damage?

• What is the probability of each of these sequences?
• What are the consequences of each of these sequences?
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This leads to a widely accepted, technical definition of risk in terms of a set of
triplets [22] identifying the sequences of undesirable events leading to damage (the
accident scenarios), the associated probabilities and the consequences. In this
view, the outcome of a risk analysis is a list of scenarios quantified in terms of
probabilities and consequences, which collectively represent the risk. On the basis
of this information, the designer, the operator, the manager, and the regulator can
act effectively so as to manage (and possibly reduce) risk.

In the PRA framework, knowledge of the problem and the related uncertainties
are systematically manipulated by rigorous and repeatable probability-based
methods to provide representative risk outcomes such as the expected number of
fatalities (in terms of indices such as Potential Loss of Lives (PLL) and Fatal
Accident Rate (FAR), the probability that a specific person shall be killed due to an
accident (individual risk) and frequency-consequence (f-n) curves expressing the
expected number of accidents (frequency f) with at least n fatalities.

In spite of the maturity reached by the methodologies used in PRA, a number of
new and improved methods have been developed in recent years to better meet the
needs of the analysis, in light of the increasing complexity of the systems and to
respond to the introduction of new technological systems [1]. Many of the methods
introduced allow increased levels of detail and precision in the modeling of
phenomena and processes within an integrated framework of analysis covering
physical phenomena, human and organisational factors as well as software
dynamics (e.g., [25]). Other methods are devoted to the improved representation
and analysis of the risk and related uncertainties, in view of the decision making
tasks that the outcomes of the analysis are intended to support. Examples of newly
introduced methods are Bayesian Belief Networks (BBNs), Binary Digit Diagrams
(BDDs), multi-state reliability analysis, Petri Nets, and advanced MCS tools. For a
summary and discussion of some of these models and techniques, see [1] and [20].

The probabilistic analysis underpinning PRA stands on two lines of thinking,
the traditional frequentist approach and the Bayesian approach [19, 20]. The
former is typically applied in case of large amount of relevant data; it is founded
on well-known principles of statistical inference, the use of probability models, the
interpretation of probabilities as relative frequencies, point values, confidence
intervals estimation, and hypothesis testing.

The Bayesian approach is based on the use of subjective probabilities and is
applicable also in case of scarce amount of data. The idea is to first establish
adequate probability models representing the aleatory uncertainties, i.e., the
variabilities in the phenomena studied, such as for example the lifetimes of a type
of unit; then, the epistemic uncertainties (due to incomplete knowledge or lack of
knowledge) about the values of the parameters of the models are represented by
prior subjective probability distributions; when new data on the phenomena
studied become available, Bayes’ formula is used to update the representation of
the epistemic uncertainties in terms of the posterior distributions. Finally, the
predictive distributions of the quantities of interest (the observables, for example
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the lifetimes of new units) are derived by applying the law of total probability. The
predictive distributions are subjective but they also reflect the inherent variability
represented by the underlying probability models.

2.2.2 Uncertainty Analysis

Uncertainty is an unavoidable component affecting the behaviour of systems
and more so with respect to their limits of operation. In spite of how much
dedicated effort is put into improving the understanding of systems, components
and processes through the collection of representative data, the appropriate char-
acterization, representation, propagation and interpretation of uncertainty remains
a fundamental element of the risk analysis of any system. Following this view,
uncertainty analysis is considered an integral part of PRA, although it can also
exist independently in the evaluation of unknown quantities.

In the context of PRA, uncertainty is conveniently distinguished into two different
types: randomness due to inherent variability in the system (i.e., in the population of
outcomes of its stochastic process of behavior) and imprecision due to lack of
knowledge and information on the system. The former type of uncertainty is often
referred to as objective, aleatory or stochastic whereas the latter is often referred to as
subjective, epistemic, or state-of-knowledge [26–29]. Probability models are intro-
duced to represent the aleatory uncertainties, for example a Poisson model to
represent the variation in the number of events occurring in a period of time. The
epistemic uncertainties arise from a lack of knowledge of the parameters of the
probability models. Whereas epistemic uncertainty can be reduced by acquiring
knowledge and information on the system, the aleatory uncertainty cannot, and for
this reason it is sometimes called irreducible uncertainty.

In all generality, the quantitative analyses of the phenomena occurring in many
engineering applications are based on mathematical models that are then turned
into operative computer codes for simulation. A model provides a representation
of a real system dependent on a number of hypotheses and parameters. The model
can be deterministic (e.g., Newton’s dynamic laws or Darcy’s law for groundwater
flow) or stochastic (e.g., the Poisson model for describing the occurrence of
earthquake events).

In practice, the system under analysis cannot be characterized exactly—the
knowledge of the underlying phenomena is incomplete. This leads to uncertainty
in both the values of the model parameters and on the hypotheses supporting the
model structure. This defines the scope of the uncertainty analysis.

An uncertainty analysis aims at determining the uncertainty in analysis results that
derives from uncertainty in analysis inputs [29–31]. We may illustrate the ideas of the
uncertainty analysis by introducing a model G(X), which depends on the input
quantities X and on the function G; the quantity of interest Z is computed by using
the model Z = G(X). The uncertainty analysis of Z requires an assessment of
the uncertainties of X and their propagation through the model G to produce a
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characterization of the uncertainties of Z. Typically, the uncertainty related to the
model structure G, e.g., uncertainty due to the existence of alternative plausible
hypotheses on the phenomena involved, are treated separately [27, 32–34]; actually,
while the first source of uncertainty has been widely investigated and more or less
sophisticated methods have been developed to deal with it, research is still ongoing to
obtain effective and accepted methods to handle the uncertainty related to the model
structure [35]. See also [36] which distinguishes between model inaccuracies (the
differences between Z and G(X)), and model uncertainties due to alternative plausible
hypotheses on the phenomena involved.

The traditional tool used to express the uncertainties in PRA is (subjective)
probabilities. In this context, the quantities X and Z could be chances representing
fractions in a large (in theory infinite) population of similar items (loosely
speaking, a chance is the Bayesian term for a frequentist probability, cf. the
representation theorem of de Finetti [37], [38], p. 172). In this case, the assessment
is consistent with the so-called probability of frequency approach, which is based
on the use of subjective probabilities to express epistemic uncertainties of
unknown frequencies, i.e., the chances [22]. The probability of frequency approach
constitutes the highest level of uncertainty analysis according to a commonly
referenced uncertainty treatment classification system [39].

Recently, many researchers have argued that the information commonly
available in the practice of risk decision making does not provide a sufficiently
strong basis for a specific probability assignment; the uncertainties related to the
occurrence of the events and associated consequences are too large. Furthermore,
in a risk analysis context there are often many stakeholders and they may not be
satisfied with a probability-based assessment expressing the subjective judgments
of the analysis group: again a broader risk description is sought.

Based on the above critiques, it is not surprising that alternative approaches for
representing and describing uncertainties in risk assessment have been suggested,
which produce epistemic-based uncertainty descriptions and in particular proba-
bility intervals.

Work has also been carried out to combine different approaches, for example
probabilistic analysis and possibility theory. Here the uncertainties of some
parameters are represented by probability distributions and those of some other
parameters by means of possibilistic distributions. An integrated computational
framework has been proposed for jointly propagating the probabilistic and
possibilistic uncertainties [40]. This framework has been tailored to event tree
analysis [41] and Fault Tree Analysis (FTA) [42], allowing for the uncertainties
about event probabilities (chances) to be represented and propagated using both
probability and possibility distributions.
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Chapter 3
Monte Carlo Simulation: The Method

3.1 Sampling Random Numbers

Let X be a random variable (rv) obeying a cumulative distribution function (cdf)

P X� xð Þ ¼ FXðxÞ; FXð�1Þ ¼ 0; FXð1Þ ¼ 1 ð3:1Þ

In the following, if the rv X obeys a cdf we shall write X�FXðxÞ: From the
definition, it follows that FXðxÞ is a non-decreasing function and we further assume
that it is continuous and differentiable at will. The corresponding probability
density function (pdf) is then

fXðxÞ ¼
dFXðxÞ

dx
; fXðxÞ� 0;

Z

1

�1

fXðxÞdx ¼ 1 ð3:2Þ

We now aim at sampling numbers from the cdf FXðxÞ A sequence of N � 1 values
Xf g � x1; x2; . . .; xNf g sampled from FXðxÞ must be such that the number n of

sampled points falling within an interval Dx� Xmax � Xmin (where Xmin and Xmax

are the minimum and maximum values in {X}) is

n

N
’
Z

Dx

fXðxÞdx ð3:3Þ

In other words, we require that the histogram of the sampled data approximates
fXðxÞ:Also, the xi values should be uncorrelated and, if the sequence {X} is periodic,
the period after which the numbers start repeating should be as large as possible.

Among all the distributions, the uniform distribution in the interval [0,1),
denoted as U[0,1) or, more simply U(0,1), plays a role of fundamental importance
since sampling from this distribution allows obtaining rvs obeying any other
distribution [1].

E. Zio, The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer Series in Reliability Engineering,
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3.2 The Uniform Random Number Generator: Sampling
from the Uniform Distribution

The cdf and pdf of the distribution U [0,1) are

URðrÞ ¼ r;

¼ 0

¼ 1

uRðrÞ ¼ 1

¼ 0

¼ 0

for

for

for

0� r� 1

r\0

r [ 1

ð3:4Þ

The generation of random numbers R uniformly distributed in [0,1) has represented,
and still represents, an important problem subject of active research. In the
beginning, the outcomes of intrinsically random phenomena were used (e.g.,
throwing a coin or dice, spinning the roulette, counting of radioactive sources of
constant intensity, etc.), but soon it was realized that, apart from the non-uniformity
due to imperfections of the mechanisms of generation or detection, the frequency of
data thus obtained was too low and the sequences could not be reproduced, so that it
was difficult to find and fix the errors in the MCS codes in which the random
numbers generated were used.

To overcome these difficulties, the next idea was to fill tables of random
numbers to store in the computers (in 1955 RAND corporation published a table
with 106 numbers), but the access to the computer memory decreased the calcu-
lation speed and, above all, the sequences that had been memorized were always
too short with respect to the growing necessities.

Finally, in 1956, von Neumann proposed to have the computer directly generate
the ‘random’ numbers by means of an appropriate function gð	Þ which should
allow one to find the next number Rkþ1 from the preceding one Rk i.e.,

Rk þ 1 ¼ gðRkÞ ð3:5Þ

The sequence thus generated is inevitably periodic: in the course of the sequence,
when a number is obtained that had been obtained before, the subsequence
between these two numbers repeats itself cyclically, i.e., the sequence enters a
loop. Furthermore, the sequence itself can be reproduced so that it is obviously not
‘random’, rather deterministic. However, if the function gðrÞ is chosen correctly, it
can be said to have a pseudorandom character if it satisfies a number of ran-
domness tests. In particular, Von Neumann proposed to obtain Rkþ1 by taking the
central digits of the square of Rk: For example, for a computer with a four-digit
word, if Rk ¼ 4; 567; then R2

k ¼ 20; 857; 489 and Rkþ1 ¼ 8; 574; Rkþ2 ¼ 5; 134;
and so on. This function turns out to be lengthy to be calculated and to give rise to
rather short periods; furthermore, if one obtains Rk ¼ 0000; then all the following
numbers are also zero. Presently, the most commonly used methods for generating
sequences {R} of numbers from a uniform distribution are inspired from the Monte
Carlo roulette game. In a real roulette game the ball, thrown with high initial
speed, performs a large number of revolutions around the wheel and finally it
comes to rest within one of the numbered compartments. In an ideal machine
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nobody would doubt that the final compartment, or its associated number, is
actually uniformly sampled among all the possible compartments or numbers.

In the domain of the real numbers within the interval [0,1), the game could be
modeled by throwing a point on the positive x-axis very far from the origin with a
method having an intrinsic dispersion much larger than unity: then, the difference
between the value so obtained and the largest integer smaller than this value may
be reasonably assumed as sampled from U[0,1). In a computer, the above
procedure is performed by means of a mixed congruential relationship of the kind

Rkþ1 ¼ ðaRk þ cÞmod m ð3:6Þ

In words, the new number Rkþ1 is the remainder, modulo a positive integer m, of
an affine transform of the old Rk with non-negative integer coefficients a and
c. The above expression, in some way, resembles the uniform sampling in the
roulette game, aRk þ c playing the role of the distance travelled by the ball and
m that of the wheel circumference. The sequence so obtained is made up of
numbers Rk\m and it is periodic with period p\m: For example, if we choose
R0 ¼ a ¼ c ¼ 5 and m = 7, the sequence is {5,2,1,3,6,0,5,…}, with a period
p = 6. The sequences generated with the above described method are actually
deterministic so that the sampled numbers are more appropriately called pseudo-
random numbers. However, the constants a, c, m may be selected so that:

• The generated sequence satisfies essentially all randomness tests;
• The period p is very large.

Since the numbers generated by the above procedure are always smaller than m,
when divided by m they lie in the interval [0,1).

Research to develop algorithms for generating pseudo-random numbers is still
ongoing. Good statistical properties, low speed in numbers generation and
reproducibility are central requirements for these algorithms to be suitable for MC
simulation.

Other Pseudo-Random Number Generation (PRNG) algorithms include the
Niederreiter [2], Sobol [3], and Mersenne Twister [4] algorithms. For example,
this latter allows generating numbers with an almost uniform distribution in the
range [0, 2k - 1], where k is the computer word length (nowadays, k = 32 or 64).
Further details on other methods are given in [5–16], with wide bibliographies
which we suggest to the interested reader.

Before leaving this issue, it is important to note that for the generation of
pseudo-random numbers U[0,1) many computer codes do not make use of machine
subroutines, but use congruential subroutines which are part of the program itself.
Thus, for example, it is possible that an excellent program executed on a machine
with a word of length different from the one it was written for gives absurd results.
In this case it should not be concluded that the program is ‘garbage’, but it would
be sufficient to appropriately modify the subroutine that generates the random
numbers.
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3.3 Sampling Random Numbers from Generic Distributions

3.3.1 Sampling by the Inverse Transform Method: Continuous
Distributions

Let X 2 ð�1;þ1Þ be a rv with cdf FXðxÞ and pdf fXðxÞ; viz.,

FXðxÞ ¼
Z

x

�1

fXðx0Þdx0 ¼ P X� xð Þ ð3:7Þ

Since FXðxÞ is a non-decreasing function, for any y 2 ½0; 1Þ its inverse may be
defined as

F�1
X ðyÞ ¼ inf x : FXðxÞ� yf g ð3:8Þ

With this definition, we take into account the possibility that in some interval
½xs; xd
 FXðxÞ is constant (and fXðxÞ zero), that is

FXðxÞ ¼ c for xs\x� xd ð3:9Þ

In this case, from definition (3.8) it follows that corresponding to the value c, the
minimum value xs is assigned to the inverse function F�1

X ðcÞ: This is actually as if
FXðxÞ were not defined in ðxs; xd
; however, this does not represent a disadvantage,
since values in this interval can never be sampled because the pdf fXðxÞ is zero in
that interval. Thus, in the following, we will suppose that the intervals ðxs; xd

(open to the left and closed to the right), in which FXðxÞ is constant, are excluded
from the definition domain of the rv X. By so doing, the FXðxÞ will always be
increasing (instead of non-decreasing). We now show that it is always possible to
obtain values X�FXðxÞ starting from values R sampled from the uniform distri-
bution UR[0,1). In fact, if R is uniformly distributed in [0,1), we have

P R� rð Þ ¼ URðrÞ ¼ r ð3:10Þ

Corresponding to a number R extracted from URðrÞ; we calculate the number
X ¼ F�1

X ðRÞ and wonder about its distribution. As it can be seen in Fig. 3.1, for the
variable X we have

P X� xð Þ ¼ P F�1
X ðRÞ� x

� �

ð3:11Þ

Because FX is an increasing function, by applying it to the arguments at the right-
hand side of Eq. (3.11), the inequality is conserved and from Eq. (3.10) we have

P X� xð Þ ¼ P R�FXðxÞð Þ ¼ FXðxÞ ð3:12Þ

It follows that X ¼ F�1
X ðRÞ is extracted from FXðxÞ: Furthermore, because

FXðxÞ ¼ r
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P X� xð Þ ¼ P R� rð Þ ð3:13Þ

In terms of cdf

URðRÞ ¼ FXðxÞ and R ¼
Z

x

�1

fXðx0Þdx0 ð3:14Þ

This is the fundamental relationship of the inverse transform method which for any
R value sampled from the uniform distribution UR[0,1) gives the corresponding
X value sampled from the FXðxÞ distribution (Fig. 3.1). However, it often occurs
that the cdf FXðxÞ is noninvertible analytically, so that from Eq. (3.8) it is not
possible to find X�FXðxÞ as a function of R�U½0; 1Þ: An approximate procedure
that is often employed in these cases consists in interpolating FXðxÞ with a
polygonal function and in performing the inversion of Eq. (3.8) by using the
polygonal. Clearly, the precision of this procedure increases with the number of
points of FXðxÞ through which the polygonal passes. The calculation of the
polygonal is performed as follows:

• If the interval of variation of x is infinite, it is approximated by the finite interval
ðxa; xbÞ in which the values of the pdf fXðxÞ are sensibly different from zero: for
example, in case of the univariate normal distribution Nðl;r2Þ with mean value
l and variance r2; this interval may be chosen as ðl� 5r; lþ 5rÞ;

• The interval (0,1) in which both FXðxÞ and URðrÞ are defined is divided in
n equal subintervals of length 1/n and the points x0 ¼ xa; x1; x2; . . .; xn ¼ xb such
that FXðxiÞ ¼ i=n; (i = 0,1,…,n) are found, e.g., by a numerical procedure.

At this point the MC sampling may start: for each R sampled from the distribution
UR[0,1), we compute the integer i� ¼ IntðR 	 nÞ and then obtain the corresponding
X value by interpolating between the points xi� ; i�=n and xi� þ 1; i� þ 1=n: For
example, in case of a linear interpolation we have

X ¼ xi� þ ðxi�þ1 � xi� ÞðR 	 n� i�Þ ð3:15Þ

For a fixed number n of points xi upon which the interpolation is applied, the
described procedure can be improved by interpolating with arcs of parabolas in
place of line segments. The arcs can be obtained by imposing continuity conditions

Fig. 3.1 Inverse transform
method: continuous
distributions
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of the function and its derivatives at the points xi (cubic splines). The expression of
X as a function of R is in this case more precise, but more burdensome and difficult
to calculate. Currently, given the ease with which it is possible to increase
the RAM memory of the computers, to increase the precision it is possibly pref-
erable to increase the number n of points and to use the polygonal interpolation: as
a rule of thumb, a good choice is often n = 500.

R : URðrÞ ¼ r in ½0; 1Þ ) X�FXðxÞ ð3:16Þ

3.3.2 Sampling by the Inverse Transform Method: Discrete
Distributions

Let X be a rv which can only have the discrete values xk; k = 0,1,…, with
probabilities

fk ¼ P X ¼ xkð Þ� 0; k ¼ 0; 1; . . . ð3:17Þ

Ordering the {x} sequence so that xk�1\xk; the cdf is

Fk ¼ P X� xkð Þ ¼
X

k

i¼0

fi ¼ Fk�1 þ fk k ¼ 0; 1; . . . ð3:18Þ

where, by definition, F�1 ¼ 0: The normalization condition of the cdf (Eq. 3.18)
now reads

lim
k!1

Fk ¼ 1 ð3:19Þ

Following the scheme of the inverse transform method, given a value R sampled
from the uniform distribution, the probability that R falls within the interval
ðFk�1;Fk
 is in the discrete case

P Fk � 1\R�Fkð Þ ¼
Z

Fk

Fk�1

dr ¼ Fk � Fk � 1 ¼ fk ¼ PðX ¼ xkÞ ð3:20Þ

In words, for any R * U[0,1), we get the realization X ¼ xk where k is the index
for which Fk�1\R�Fk (Fig. 3.2).

In practice, a realization of X is sampled from the cdf Fk through the following
steps:

1. Sample an R * U[0,1);
2. Set k = 0; F ¼ fo;
3. If R�F; proceed to 5);
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4. Viceversa, i.e., if R [ F; set k k þ 1 and then F  F þ fk and proceed to 3);
5. The required realization is X ¼ xk:

If the Fk values can be pre-computed, e.g., if their number is finite, the cycle
(3–4) may be simplified by comparing R and Fk at step 3 and increasing only k at
step 4.

Examples of Application of the Inverse Transform Sampling Method

Uniform Distribution in the interval (a,b)

A rv X is uniformly distributed in the interval (a,b) if

FXðxÞ ¼
x� a

b� a
;

¼ 0

¼ 1

fXðxÞ ¼
1

b� a
¼ 0

¼ 0

for

for

for

a� x� b

x\a

x [ b

ð3:21Þ

Substituting in Eq. (3.18) and solving with respect to X yields

X ¼ aþ ðb� aÞR ð3:22Þ

As a first application, we show how it is possible to simulate Buffon’s experiment,
mentioned in the Introduction, with the aim of finding the probability P in Eq. (1.1).
When the needle is thrown at random, the axis of the needle can have all possible
orientations, with equal probability. Let u be the angle between the needle’s axis
and the normal to the lines drawn on the floor. By symmetry, it is possible to
consider the interval 0; p=2ð Þ and from Eq. (3.21), with a = 0 and b ¼ p=2; we
have

FUð/Þ ¼
/
p
2

; fUð/Þ ¼
2
p

ð3:23Þ

Corresponding to a random value U, the needle projection on the normal to the
lines is L cos U and thus the probability that the needle intercepts one of the lines is
given by the ratio L cos U=D: Multiplying by fUð/Þ and integrating, we obtain the
value calculated by Buffon

Fig. 3.2 Inverse transform method: discrete distributions, k ¼ 2) X ¼ x2
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P ¼
Z

p
2

0

L cos /
D

p
2

d/ ¼ L=D

p=2
ð3:24Þ

Operatively, for a given number of needle throws N � 1, e.g., N = 103, the
procedure is as follows:

• Sample an R1�U½0; 1Þ;
• Calculate from Eq. (3.22) U ¼ R1p=2 then, the probability that the needle

intercepts a line is h ¼ L cos U
D ;

• Sample an R2�U½0; 1Þ if R2\h; the needle has intercepted a line and thus we
set Ns ¼ Ns þ 1; where Ns is the counter of the number of times the needle has
intercepted a line.

At the end of this procedure, the estimate of the probability P is

P ffi Ns

N

A problem of, perhaps, more practical interest is that of sampling a direction X
from an isotropic angular distribution in space. This is, for example, a case of
interest for the choice of an initial direction of flight for a neutron emitted by
fission. In polar coordinates, the direction is identified by the angle # 2 ð0; pÞ
between X and the z axis and by the angle u[(-p, p) between the projection of X
on the xy plane and the x axis. Correspondingly,

dX ¼ sin# d# d/ ¼ �dl d/ ð3:25Þ

where, as usual, l ¼ cos#: The pdf of the isotropic distribution is then

fXðXÞdX � fl;Uðl;/Þdld/ ¼ dXj j
4p

f1ðlÞdlf2ð/Þd/ ð3:26Þ

where

f1ðlÞ ¼
1
2

; f2ð/Þ ¼
1

2p
ð3:27Þ

The required pdf is given by the product of two uniform pdfs, namely f1ðlÞ and
f2ð/Þ: If Rl; RU are two rvs * U[0,1), we have

Rl ¼
Z

l

�1

f1ðl0Þ dl0 ¼ lþ 1
2

; RU ¼
Z

U

�p

f2ð/Þ d/ ¼ Uþ p
2p

ð3:28Þ

and finally

l ¼ �1þ 2Rl; U ¼ �pþ 2pRU ð3:29Þ
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In practice, the direction cosines u, v, w of X are obtained through the following
steps:

• Sampling of two rvs Rl; RU*U[0,1);
• Computation of l ¼ �1þ 2Rl; U ¼ �pþ 2pRU;
• Finally,

u ¼ X 	 i ¼ sin# cos U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

cos U
v ¼ X 	 j ¼ sin# sin U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

sin U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � u2
p

w ¼ X 	 k ¼ l
ð3:30Þ

Note that a given value of l pertains to two quadrants, so that care must be taken in
selecting the proper one.

Exponential Distribution

Let us consider a two-state system whose transition probabilities from one state to
the other only depend on the present state and not on the way in which this state
was reached. Examples of such systems are:

• A radioactive nucleus: the two states are the nucleus at a given time, which we
will call initial time, and the nucleus at the moment of disintegration; the rv in
question, which is the argument of the transition pdf, is the time length between
the initial time, at which we know that the nucleus is intact and the time at which
the nucleus disintegrates.

• The path of a neutron in a medium: the two states are the neutron in a given
position, which we will call initial, and the neutron in the position at which the
collision occurs; the rv in consideration, which is the argument of the transition
pdf, is the length of the flight path between the initial positions.

• A component of an industrial plant: the two states of the component are its
nominal state and its failure state. The rv in consideration, which is the argument
of the transition pdf, is the difference between the time at which we know that the
component is in one of its two states, and the time at which the component moves
to the other state.

Such systems, characterized by ‘lack-of-memory’, are said to be ‘markovian’,
and they are said to be ‘homogeneous’ or ‘inhomogeneous’ according to whether the
transitions occur with constant or variable-dependent (space- or time-dependent)
rates, respectively. In the latter case, if the argument of the rate of leaving a given
state is the sojourn time of the system in that state, the process is called ‘semi-
markovian’. Thus, a semi-markovian system is markovian only at the times of
transition.

A rv X 2 ½0;1Þ is said to be exponentially distributed if its cdf FXðxÞ and pdf
fXðxÞ are
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FXðxÞ ¼ 1� e�
R x

0
kðuÞdu

;

¼ 0

fXðxÞ ¼ kðxÞe�
R x

0
kðuÞdu

¼ 0

for 0� x�1
otherwise

ð3:31Þ

where kð	Þis the transition rate, also called hazard function within the context of
the last example mentioned above. In the following, we shall refer to an expo-
nential distribution of a time variable, T. Corresponding to a realization of a rv
R * U[0,1), the realization t of the exponentially distributed rv T can be obtained
by solving the equation

Z

t

0

kðuÞdu ¼ � logð1� RÞ ð3:32Þ

Let us first consider time-homogeneous systems, i.e., the case of constant k.
Correspondingly, Eq. (3.31) becomes

FTðtÞ ¼ 1� e�kt; fTðtÞ ¼ ke�kt ð3:33Þ

The moments of the distribution with respect to the origin are

l0k ¼
k!

kk k ¼ 1; 2; . . .ð Þ ð3:34Þ

Realizations of the associated exponentially distributed rv T are easily obtained
from the inverse transform method. The sampling of a given number N � 1 of
realizations is performed by repeating the following procedure:

• Sample a realization of R * U[0,1);
• Compute t ¼ � 1

k logð1� RÞ:

An example of a time-homogeneous markovian process is the failure of a
component, provided it is assumed that it does not age: such component, still good
(state 1) at time t, has a probability kdt of failing (entering state 2) between t and
t þ dt; note that this probability does not depend neither on the time t nor on the
age of the component at time t. The probability density per unit time that the
component, still good at time t0; will fail at time t� t0 is

fTðtÞ ¼ e�kðt�t0Þ 	 k ð3:35Þ

The collisions of a neutron with the nuclei of an homogeneous medium represent
an example of a space-homogeneous markovian process: a neutron with energy E,
traveling along a specified direction, say the x axis, at the point x has a probability
RtotalðEÞdx of undergoing a collision between x and xþ dx; where RtotalðEÞ is the
macroscopic total cross-section which plays the role of k in the Eq. (3.31) for
the exponential distribution; note that this probability does not depend neither on
the point x where the neutron is, nor on the distance traveled by that neutron before
arriving at x. The probability density per unit length that a neutron at point x0 will
make the first collision at point x� x0 is
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f ðx;EÞ ¼ e�RtotalðEÞðx�x0Þ 	 RtotalðEÞ ð3:36Þ

Returning to processes in the time domain, a generalization of the exponential
distribution consists in assuming that the probability density of occurrence of an
event, namely k, is time dependent. As mentioned above, in this case we deal with
non-homogeneous markovian processes. For example, although in the reliability
and risk analyses of an industrial plant or system, one often assumes that the
failures of the components occur following homogeneous Markov processes, i.e.,
exponential distributions with constant rates, it is more realistic to consider that the
age of the system influences the failure probability, so that the transition proba-
bility density is a function of time. A case, commonly considered in practice is that
in which the pdf is of the kind

kðtÞ ¼ b a ta�1 ð3:37Þ

with b[ 0 ; a [ 0: The corresponding distribution, which constitutes a general-
ization of the exponential distribution, is called Weibull distribution and was
proposed in the 1950s by W. Weibull in the course of its studies on the strength of
materials. The cdf and the pdf of the Weibull distribution are

FTðtÞ ¼ 1� e�b ta fTðtÞ ¼ ab ta�1e�b ta ð3:38Þ

The moments with respect to the origin are

l0k ¼ b�
k
aC

k

a
þ 1

� �

k ¼ 1; 2; . . . ð3:39Þ

In the particular case of a ¼ 1; the Weibull distribution reduces to the exponential
distribution with constant transition rate k ¼ b: The importance of the Weibull
distribution stems from the fact that the hazard functions of the components of
most industrial plants closely follow this distribution in time, with different
parameter values describing different phases of their life. In practice, a realization
t of the rv T is sampled from the Weibull distribution through the following steps:

• Sampling of a realization of the rv R * U[0,1);

• Computation of t ¼ � 1
b lnð1� RÞ

� �1
a
:

Multivariate Normal Distribution

Let us consider a multivariate normal distribution of order k of the vector of rvs
Z � ðk; 1Þ: The pdf is

fZðz; a;RÞ ¼ 1

ð2pÞ
k
2 Rj j

1
2

e�
1
2ðz�aÞ0R�1ðz�aÞ ð3:40Þ
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where with the hyphen we indicate the transpose, a � ðk; 1Þ is the vector of the
mean values, and R � ðk; kÞ is the symmetric covariance matrix, positive-defined
and with determinant Rj j given by

R ¼ E ðz� aÞðz� aÞ0
	 


¼

r2
1 r2

12 	 	 	 r2
1k

r2
21 r2

2 	 	 	 r2
2k

..

. ..
. . .

. ..
.

r2
k1 r2

k2 	 	 	 r2
k

0

B

B

B

@

1

C

C

C

A

ð3:41Þ

The generic term of R is

r2
ij ¼ E ðzi � aiÞðzj � ajÞ

	 


ð3:42Þ

and the elements r2
i ; i = 1,2,…,k are the variances of the k normal variates. The

pdf f in Eq. (3.40) is generally indicated as Nða;RÞ and correspondingly a rv
Z distributed according to f is indicated as Zða;RÞ:

The sampling from f of a random vector z, realization of Z can be done in the
following way [17]:

1. i ¼ �1;
2. i iþ 2;
3. Sample two values ui; uiþ1 from the distribution U[-1,1);
4. If u2

i þ u2
iþ1 [ 1 both values are rejected and we go back to 3. Otherwise, they

are both accepted. Note that if the values are accepted, the point P � ðui; uiþ1Þ
is uniformly distributed on the circle with center at the origin and radius 1;

5. Calculate the values

yi ¼ ui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
logðu2

i þ u2
iþ1Þ

u2
i þ u2

iþ1

s

ð3:43Þ

yiþ1 ¼ uiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
logðu2

i þ u2
iþ1Þ

u2
i þ u2

iþ1

s

ð3:44Þ

6. It can be shown that the variables yi and yiþ1 are independent and identically
distributed (iid) standard normal variables *N(0,1);

7 If k is even, and if iþ 1� k; we return to 2);
8. If k is odd and if i� k; we return to 2. In this last case, ykþ1 is calculated but not

used;
9. At this point, we have the random vector y � ðk; 1Þ having iid components

distributed as N(0,1). By Cholesky’s factorization of the matrix R into the
product of a sub triangular matrix U and its transpose U0, i.e., R ¼ U 	 U0; the
random vector z is given by the expression
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z ¼ aþ Uy ð3:45Þ

Because E½y
 ¼ 0 and Var½y
 ¼ I we have

E½z
 ¼ a ð3:46Þ

Var½z
 ¼ E½ðz� aÞðz� aÞ0
 ¼ E½UyyU0
 ¼ U Var½y
U0 ¼ UU0 ¼ R ð3:47Þ

Determination of a conditioned pdf

In Eq. (3.40) let us partition z into two sub-vectors z1 and z2 relative to the first
p and the remaining q ¼ k � p components, respectively. We then have

z ¼ z1
z2

� �

; a ¼ a1

a2

� �

ð3:48Þ

Correspondingly, we partition R in sub matrices

R ¼ R11 R12

R012 R22

� �

ð3:49Þ

We now write the pdf f in terms of the two groups of variables. We have

R�1 ¼ R�1
p �R�1

p R12R
�1
22

�R�1
22 R012R

�1
p �R�1

22 þ R�1
22 R012R

�1
p R12R

�1
22

" #

ð3:50Þ

where

Rp ¼ R11 � R12R
�1
22 R012 ð3:51Þ

Furthermore, we have

Rj j ¼ R22j j Rp







 ð3:52Þ

The exponent of fZðz; a;RÞ can be expressed in terms of the partitioned quantities
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ðz� aÞ0R�1ðz� aÞ ¼ ðz1 � a1Þ0 ðz2 � a2Þ0
� �

	
R�1

p ðz1 � a1Þ � R12R�1
22 ðz2 � a2Þ

	 


R�1
22 �R012R

�1
p ðz1 � a1Þ þ ðI þ R012R

�1
p R12R�1

22 Þðz2 � a2Þ
h i

2

4

3

5

¼ðz1 � a1Þ
0R�1

p ðz1 � a1Þ þ ðz2 � a2Þ
0R�1

22 ðI þ R012R
�1
p R12R

�1
22 Þðz2 � a2Þ

h i

� ðz1 � a1Þ0R�1
p R12R

�1
22 ðz2 � a2Þ � ðz2 � a2Þ0R�1

22 R012R
�1
p ðz1 � a1Þ

¼ðz1 � a1Þ0R�1
p ðz1 � a1Þ � R12R

�1
22 ðz2 � a2Þ

	 


þ ðz2 � a2Þ0R22ðz2 � a2Þ
� ðz2 � a2Þ0R�1

22 R012R
�1
p ðz1 � a1Þ � R12R

�1
22 ðz2 � a2Þ

	 


ð3:53Þ
By putting

ap ¼ a1 þ R12R
�1
22 ðz2 � a2Þ ð3:54Þ

we have

ðz� aÞ0R�1ðz� aÞ ¼ ðz2 � a2Þ0R�1
22 ðz2 � a2Þ þ ðz1 � apÞ0R�1

p ðz1 � apÞ ð3:55Þ

Correspondingly, fZðz; a;RÞ can be written as follows

fZðz1; z2Þ ¼ gðz1jz2Þ
	 


hðz2Þ
	 


ð3:56Þ

where

gðz1jz2Þ ¼
e�

1
2ðz1�apÞ

0R�1
p ðz1�apÞ

ð2pÞ
p
2 Rp









1
2

ð3:57Þ

hðz2Þ ¼
e�

1
2ðz2�a2Þ

0R�1
22 ðz2�a2Þ

ð2pÞ
q
2 R22j j

1
2

ð3:58Þ

It follows that f ðz; a;RÞ can be factored into the product of a q-variate multinormal
hðz2; a2;R22Þ; having mean value a2 and covariance matrix R22; and a conditioned
p-variate multinormal gðz1; ap;Rpjz2Þ; which is also multinormal with mean value
ap depending on z2; and covariance matrix Rp Operatively, to sample a vector
realization ~z � ð~z1;~z2Þ from f ðz1; z2Þ; we first sample a vector ~z2 from hðz2; a2;R22Þ
and, then, a vector ~z1 from gðz1; apð~z2Þ;Rpj~z2Þ:

Multinomial Distribution

Let us consider a random process which can only have n possible outcomes, the
probability of the kth one being fk: Examples are the throwing of a dice, the kind of
interaction that a neutron can have with a nucleus (scattering, absorption, fission,
etc.), once it is known that the interaction has occurred, the kind of transition
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(degradation, failure, repair, etc.) that a multi-state component may undergo from
its current state to one of the other reachable ones, given that a transition is known
to have occurred. The process is simulated by first dividing the interval [0,1) in
n successive subintervals of amplitudes f1; f2; . . .; fn and then performing a large
number of trials in each of which a rv R * U[0,1) is thrown on the interval [0,1)
(Fig. 3.3). Every time a point falls within the kth subinterval, we say that out of the
n possible ones the kth event has occurred: the probability of this event obeys the
Bernoulli distribution, in which fk is the probability of success and

Pn
j¼1j 6¼k fj ¼

1� fk is the complementary probability of the point falling elsewhere. The
probability that in N trials, the point falls nk times within the subinterval fk is given
by the binomial distribution

N
nk

� �

f nk
k ð1� fkÞN�nk ð3:59Þ

The generalization of this distribution leads to the multinomial distribution which
gives the probability that in N trials, the point falls n1 times in the subinterval f1; n2

times in f2;…, nn times in fn: Formally, the multinomial distribution is given by

N!

n1!n2!. . .nn!
f n1
1 f n2

2 . . .f nn
n ð3:60Þ

where, obviously, n1 þ n2 þ 	 	 	 þ nn ¼ N:

3.3.3 Sampling by the Composition Method

This method can be applied for sampling random numbers from a pdf that can be
expressed as a mixture of pdfs.

Continuous Case

Let X be a rv having a pdf of the kind

fXðxÞ ¼
Z

qðyÞpðx; yÞdy ð3:61Þ

Fig. 3.3 Sampling the occurrence of an event from a multinomial distribution
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where qðyÞ� 0; pðx; yÞ� 0; 8x; y and where the integral is extended over a given
domain of y. By definition of pdf, we have

Z

fXðxÞdx ¼
Z Z

dxdyqðyÞpðx; yÞ ¼ 1 ð3:62Þ

The pdf fXðxÞ is actually a mixture of pdfs. Indeed, the integrand function can be
written as follows:

qðyÞpðx; yÞ ¼ qðyÞ
Z

pðx0; yÞdx0
pðx; yÞ

R

pðx0; yÞdx0
¼ hYðyÞgðxjyÞ ð3:63Þ

where

hYðyÞ ¼ qðyÞ
Z

pðx0; yÞdx0; gðxjyÞ ¼ pðx; yÞ
R

pðx0; yÞdx0
ð3:64Þ

Let us show that hYðyÞ is a pdf in y, and that gðxjyÞ is a pdf in x. Because
pðx; yÞ� 0; hYðyÞ� 0 and gðxjyÞ� 0: The normalization of hYðyÞ can be derived
immediately from that of fXðxÞ and the normalization of gðxjyÞ is evident. Finally,
the pdf fXðxÞ can be written as

fXðxÞ ¼
Z

hYðyÞgXðxjyÞdy ð3:65Þ

where we have added the subscript X to the pdf gðxjyÞ to indicate that it is a pdf of
the rv X. Note that y plays the role of a parameter that is actually a random
realization of the rv Y having a pdf hYðyÞ:

To sample a realization of X from fXðxÞ we proceed as follows:

• Sample a realization of Y from the univariate hYðyÞ;
• Sample a realization of X from the univariate gXðxjYÞ (note that at this point

Y has a known numerical value).

For example, let

fXðxÞ ¼ n

Z

1

1

y�ne�xydy n [ 1; 0� x\1ð Þ ð3:66Þ

¼ ne�x
X

n�1

k¼1

ð�xÞk�1

ðn� 1Þðn� 2Þ 	 	 	 ðn� kÞ þ n
ð�xÞn�1

ðn� 1Þ! EiðxÞ ð3:67Þ

where

EiðxÞ ¼
Z 1

x

e�y

y
dy ð3:68Þ
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is the integral Exponential function. Sampling from the explicit expression of the
integral is too complicate, so that we prefer to resort to the composition method.
Let us choose

qðyÞ ¼ ny�n; pðx; yÞ ¼ e�xy ð3:69Þ

so that

Z

1

0

pðx; yÞdx ¼ 1
y

ð3:70Þ

and thus

hYðyÞ ¼ nyn�1; gXðxjyÞ ¼ ye�xy ð3:71Þ

The operative sequence for sampling a realization of X from fXðxÞ is thus

• We sample R1;R2�U½0; 1Þ;
• By using R1; we sample a value of Y from hYðyÞ with the inverse transform

method

R1 ¼
Z

Y

1

hYðyÞdy ¼ 1� Y�n ð3:72Þ

We have

Y ¼ ð1� R1Þ�
1
n ð3:73Þ

• By substituting the value of Y in gXðxjyÞ we have

gXðxjYÞ ¼ Ye�Yx ð3:74Þ

Hence, gXðxjYÞ is an exponential distribution with parameter Y. By using R2 we
finally sample the desired realization X from the pXðxjYÞ

X ¼ � 1
Y

lnð1� R2Þ ¼ �ð1� R1Þ
1
n lnð1� R2Þ ð3:75Þ

For example, for n = 3 the rigorous expression for fXðxÞ is

fXðxÞ ¼
3
2
½ð1� xÞe�x þ x2EiðxÞ
 ð3:76Þ

In Fig. 3.4, we show the analytical form of fXðxÞ (full line) and the result of the
MCS (indicated with the circles) with 105 random values sampled by the previ-
ously illustrated procedures. The values are calculated with the following Matlab�

program:
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dx=.001;
x=dx:dx:10;
y=1.5*((1-x).*exp(-x)+x.^2.*expint(x));
l=1e5;
ymc=-rand(l,1).^0.33333.*log(rand(l,1));
dey=(max(ymc)-min(ymc))/50;
[h,xx]=hist(ymc,50);
hn=h/(l*dey);
plot(x,y);
hold;
plot(xx,hn,0o0)
axis([0 5 0 1.6])

Discrete Case

Let X be a rv having pdf of the kind

fXðxÞ ¼
X

1

k¼0

qkpðx; ykÞ ð3:77Þ

where qk� 0; pðx; ykÞ� 0 8k; x; yk and where

Z

fXðxÞdx ¼
X

1

k¼0

qk

Z

pðx; ykÞdx ¼ 1 ð3:78Þ

The pdf fXðxÞ is really a mixture of pdfs. Indeed, each term of the sum can be
written as follows

Fig. 3.4 Example of
sampling from a continuous
distribution, by the
composition method.
Analytical = solid line;
MCS = circle
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qkpðx; ykÞ ¼ qk

Z

pðx0; ykÞdx0
pðx; ykÞ

R

pðx0; ykÞdx0
¼ hkgðxjykÞ ð3:79Þ

where

hk ¼ qk

Z

pðx0; ykÞdx0; gðxjykÞ ¼
pðx; ykÞ

R

pðx0; ykÞdx0
ð3:80Þ

We show that in fact hk is a probability, and that gðxjykÞ is a pdf in x. Because
pðx; ykÞ� 0 and qk � 0; it follows that hk � 0 and gðxjykÞ� 0: The normalization of
hk follows immediately from that of fXðxÞ

X

k

hk ¼
X

k

qk

Z

pðx0; ykÞdx0 ¼
Z

fXðx0Þdx0 ¼ 1 ð3:81Þ

The normalization of gðxjykÞ is evident. Finally, the pdf fXðxÞ can be written as

fXðxÞ ¼
X

1

k¼0

hkgXðxjykÞ ð3:82Þ

where gXðxjykÞ is a pdf depending on the parameter yk; which is a discrete rv
having probability hk:

To sample a value of X from fXðxÞ we proceed as follows:

• Sample a value Yk from the distribution hk (k = 0,1,…);
• Sample a value of X from gXðxjYkÞ:

For example let

fXðxÞ ¼
5

12
½1þ ðx� 1Þ4
 0� x� 2 ð3:83Þ

i.e.,

q1 ¼ q2 ¼
5

12
; pðx; y1Þ ¼ 1; pðx; y2Þ ¼ ðx� 1Þ4 ð3:84Þ

We have

h1 ¼ q1

Z

2

0

pðx; y1Þdx ¼ 5
12
 2 ¼ 5

6
ð3:85Þ

h2 ¼ q2

Z

2

0

pðx; y2Þdx ¼ 5
12

2
5
¼ 1

6
ð3:86Þ

gXðxjy1Þ ¼
1
2

ð3:87Þ
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gXðxjy2Þ ¼
ðx� 1Þ4

2
5

¼ 5
2
ðx� 1Þ4 ð3:88Þ

Operatively, to sample a value of X from fXðxÞ

• Sample R1;R2�U½0; 1Þ;
• If R1� h1 ¼ 5

6 ; sample a value of X from gXðxjy1Þ; i.e.,

R2 ¼
Z

X

0

gXðxjy1Þdx ¼ 1
2

X ð3:89Þ

and thus

X ¼ 2R2 ð3:90Þ

• If R1� h1; we extract a value of X from gXðxjy2Þ; i.e.,

R2 ¼
5
2

Z

X

0

ðx� 1Þ4dx ¼ 1
2
½ðX � 1Þ5 þ 1
 ð3:91Þ

and thus

X ¼ 1þ ð2R2 � 1Þ1=5 ð3:92Þ

In Fig. 3.5, we show the analytical form of fXðxÞ (full line) and the result of the
MCS (indicated with the circles) with 105 samplings. The values were calculated
with the following Matlab� program:

Fig. 3.5 Example of sampling from a discrete distribution, by the composition method.
Analytical = solid line; MCS = circles

38 3 Monte Carlo Simulation: The Method



dx=0.001;
x=0:dx:2;
y=0.41667*(1+(x-1).^4);
n=1e5;
c1=5/6;
c2=1/5;
r1=rand(n,1);
r2=rand(n,1);
X=zeros(n,1);
ip=find(r1\c1);
ig=find(r1[=c1);
X(ip)=2*r2(ip);
val=2*r2(ig)-1;
X(ig)=1+sign(val).*abs(val).^c2;
deX=(max(X)-min(X))/50;
[h,xx]=hist(X,50);
hn=h/(n*deX);
plot(x,y);
hold;
plot(xx,hn,0o0)

3.3.4 Sampling by the Rejection Method

Let fX xð Þ be an analytically assigned pdf, in general quite complicated. The sam-
pling of a realization of a rv X from its pdf with the rejection method consists in the
tentative sampling of the realization of a rv X0 from a simpler density function, and
then testing the given value with a test that depends on the sampling of another rv.
Then, X ¼ X0 only if the test is passed; else, the value of X0 is rejected and the
procedure is restarted. The main disadvantage of this method can be the low effi-
ciency of acceptance if many realizations of X0 are rejected before one is accepted as
X. In the following, when the sampling of a realization of Z from a pdf gZ zð Þ;
z 2 z1; z2ð Þ; can be easily done, for example by using one of the methods given in the
previous paragraphs, we will simply say that we sample a Z�G z1; z2ð Þ:

The von Neumann Algorithm

In its simplest version, the method of sampling by rejection can be summarized as
follows: given a pdf fX xð Þ limited in a; bð Þ let

h xð Þ ¼ fX xð Þ
max

x
fX xð Þ ð3:93Þ

so that 0� h xð Þ� 1; 8x 2 a; bð Þ:
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The operative procedure to sample a realization of X from fX xð Þ is the
following:

1. Sample X0 �U a; bð Þ; the tentative value for X; and calculate h X0ð Þ;
2. Sample R�U 0; 1Þ½ : If R� h X0ð Þ the value X0 is accepted; else start again from 1.

More generally, a given complicated fX xð Þ can be factored into the product of a
density gX0 xð Þ; from which it is simple to sample a realization of X0; and a residual
function H xð Þ; i.e.,

fX xð Þ ¼ gX0 xð ÞH xð Þ ð3:94Þ

Note that H xð Þ is not negative, being the ratio of two densities. We set

BH ¼ max
x

H xð Þ ¼
max

x
fX xð Þð Þ

gX0 xð Þ ð3:95Þ

and have

fX xð Þ ¼ gX0 xð ÞH xð Þ
BH

BH ¼ gX0 xð Þh xð ÞBH ð3:96Þ

where

h xð Þ ¼ H xð Þ
BH

so that 0� h xð Þ� 1 ð3:97Þ

Dividing by the integral of fX xð Þ over the entire domain, by hypothesis equal to
one, we have

fX xð Þ ¼ gX0 xð Þh xð Þ
R1
�1 gX0 zð Þh zð Þdz

ð3:98Þ

Integrating Eq. (3.96) over the domain of x we have

Z

1

�1

gX0 zð Þh zð Þdz ¼ 1
BH

ð3:99Þ

From Eqs. (3.97) and (3.98), we also have

Z

1

�1

gX0 zð Þh zð Þdz�
Z

1

�1

gX0 zð Þdz ¼ 1 ð3:100Þ

so that BH � 1: The sampling of a random realization of X from fX xð Þ can be done
in two steps:
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1. Sample a realization of X0 from the pdf gX0 xð Þ; which is simple by construction

P X0 � xð Þ ¼ GX0 xð Þ ¼
Z

x

�1

gX0 zð Þdz ð3:101Þ

and then compute the number h X0ð Þ;
2. Sample R�U 0; 1Þ½ : If R� h X0ð Þ; the sampled realization of X0 is accepted, i.e.,

X ¼ X0; else the value of X0 is rejected and we start again from 1. The
acceptance probability of the sampled value X0 is thus

P R� h X0ð Þð Þ ¼ h X0ð Þ ð3:102Þ

We show that the accepted value is actually a realization of X sampled from fX xð Þ:
The probability of sampling a random value X0 between z and zþ dz and accepting
it, is given by the product of the probabilities

P z�X0\zþ dzð ÞP R� h zð Þð Þ ¼ gX0 zð Þdzh zð Þ ð3:103Þ

The corresponding probability of sampling a random value X0 � x and accepting it is

P X0 � x AND R� h X0ð Þð Þ ¼
Z

x

�1

gX0 zð Þh zð Þdz ð3:104Þ

The probability that a sampled X0 is accepted, i.e., the probability of success is
given by the above expression for x!1

PðsuccessÞ ¼ P X0 � x AND R� h X0ð Þð Þ ¼
Z

1

�1

gX0 zð Þh zð Þdz ð3:105Þ

The distribution of the accepted values (the others are rejected) is then

P X0 � x successjð Þ ¼ P X0 � x AND R� h X0ð Þð Þ
PðsuccessÞ

¼
R x
1 gX0 zð Þh zð Þdz

R1
�1 gX0 zð Þh zð Þdz

ð3:106Þ

and the corresponding pdf is Eq. (3.97), i.e., the given fX xð Þ:
The simple version of the rejection method by von Neumann is the case

gX0 xð Þ ¼ 1
b� a

ð3:107Þ

The efficiency e of the method is given by the probability of success, i.e., from
Eq. (3.99)

e ¼ PðsuccessÞ ¼
Z

1

�1

gX0 ðzÞhðzÞdz ¼ 1
BH

ð3:108Þ
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Let us now calculate the average number of trials that we must make before
obtaining one success. The probability of having the first success at the kth trial is
given by the geometric distribution

Pk ¼ 1� eð Þk�1e; k ¼ 1; 2; . . . ð3:109Þ
and the average number of trials to have the first success is

EðkÞ ¼
P

1

k¼1
kPk ¼ e

P

1

k¼1
k 1� eð Þk�1 ¼ �e d

de

P

1

k¼1
1� eð Þk

¼ �e d
de

1
1� 1�eð Þ ¼ �e d

de
1
e ¼ 1

e ¼ BH

ð3:110Þ

For example, let the pdf

fX xð Þ ¼ 2
p 1þ xð Þ

ffiffiffi

x
p ; 0� x� 1 ð3:111Þ

For x ¼ 0; fX xð Þ diverges and thus we cannot use the simple rejection technique.
Note that the factor causing the divergence of fX xð Þ; i.e.,1=

ffiffiffi

x
p
; is proportional to

the pdf of the rv R2; with R�U 0; 1Þ½ : By the change of variables

X0 ¼ R2 ð3:112Þ
the CDF of the rv X0 is

GX0 xð Þ ¼ P X0 � xð Þ ¼ P R2� x
� �

¼ P R�
ffiffiffi

x
p� �

¼
ffiffiffi

x
p

ð3:113Þ

and the corresponding pdf is

gX0 ðxÞ ¼
dGX0 xð Þ

dx
¼ 1

2
ffiffiffi

x
p ð3:114Þ

Hence, fX xð Þ can be written as

fX xð Þ ¼ 1
2
ffiffiffi

x
p 4

p
1

1þ x
¼ gX0 xð ÞH xð Þ ð3:115Þ

where

HðxÞ ¼ 4
p

1
1þ x

ð3:116Þ

We have

BH ¼ max
x

HðxÞ ¼ 4
p

ð3:117Þ

and thus

h xð Þ ¼ HðxÞ
BH
¼ 1

1þ x
; 0� x� 1 ð3:118Þ
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The operative procedure to sample a realization of the rv X from fX xð Þ is then:

1. Sample R1�U 0; 1½ Þ and then calculate:

X0 ¼ R2
1 and h X0ð Þ ¼ 1

1þ R2
1

ð3:119Þ

2. Sample R2�U 0; 1½ Þ: If R2� h X0ð Þ accept the value of X0; i.e., X ¼ X0; else start
again from 1.

The efficiency of the method, i.e., the probability that an extracted value of X0 is
accepted is

e ¼ 1
BH
¼ p

4
¼ 78:5 % ð3:120Þ

In Fig. 3.6, we show the analytical fX xð Þ (full line) and the result of the MCS
(indicated by circles) with 105 trials.

The values were calculated with the following Matlab� program:

clear;dx=0.001;x=dx:dx:1;lx=length(x);u=ones(1,lx);
y=(2/pi)*u./((1+x).*sqrt(x));
n=1e5;r1=rand(1,n);r2=rand(1,n);v=ones(1,n);
h=v./(1+r1.^2);ip=find(r2\h);X=r1(ip).^2;
nn=length(X);deX=(max(X)-min(X))/50;
[h,xx]=hist(X,50);hn=h/(nn*deX);
disp([0Efficiency=0num2str(nn/n)]),pause(10);
plot(x,y);hold;plot(xx,hn,0o0);
xlabel(0xvalues0);title(0f(x):–analytical;ooMonteCarlo0) hold

In this case, the acceptance efficiency indeed turned out to be 78.5 %

Fig. 3.6 Example of
sampling by the rejection
method. Analytical = solid
line; MCS = circles
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3.4 The Solution of Definite Integrals by Monte Carlo
Simulation

3.4.1 Analog Simulation

Let us consider the problem of obtaining an estimate of the n-dimensional definite
integral

G ¼
Z

D

gðxÞfXðxÞdx ð3:121Þ

where x is an n-dimensional variable and the integration is extended to the domain
D 2 R

n: We can always make the hypothesis that f ðxÞ has the characteristics of a
pdf, i.e.,

fXðxÞ[ 0 8x 2 D;
R

D
fXðxÞdx ¼ 1 ð3:122Þ

If a factor fXðxÞ having the above characteristics cannot be identified in the
function to be integrated, it is always possible to set fXðxÞ equal to a constant value
to be determined from the normalization condition. From a statistical perspective,
it is therefore possible to consider x as a random realization of a rv having pdf
fXðxÞ: It then follows that gðxÞ is also a rv and G can be interpreted as the expected
value of gðxÞ; i.e.,

E½gðxÞ
 ¼
Z

D

gðxÞfXðxÞdx ¼ G ð3:123Þ

The variance of gðxÞ is then

Var½gðxÞ
 ¼
Z

D

gðxÞ � G½ 
2fXðxÞdx ¼ E g2ðxÞ
	 


� G2 ð3:124Þ

The MCS estimation of G can be approached with a method known as that of the
mean value estimation or of the ‘dart game’.

Let us consider a dart game in R
n in which the probability of hitting a point

x 2 dx is fXðxÞdx; we make the hypothesis that the dart throws are independent of
each other and also that fXðxÞ does not change as we proceed with the game. When
a player hits point x, he is given a prize gðxÞ: In a series of N throws in which the
points x1; x2; . . .; xN are hit, the assigned prizes are gðx1Þ; gðx2Þ; . . .; gðxNÞ: The
average prize per throw is, then

GN ¼
1
N

X

N

i¼1

gðxiÞ ð3:125Þ
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Because the gðxiÞ‘s are rvs, GN is also a rv, having expected value and variance
equal to

E GN½ 
 ¼ 1
N

P

N

i¼1
E gðxiÞ½ 
 Var GN½ 
 ¼ 1

N2

P

N

i¼1
Var gðxiÞ½ 
 ð3:126Þ

In Eq. (3.126), E gðxiÞ½ 
 and Var gðxiÞ½ 
 are the expected value and the variance of
gðxÞ computed at the point hit by the player on the ith throw. Each of these
expected values is taken over an ensemble of M !1 players who hit points
xi1 ; xi2 ; . . .; xiM at their ith throw. Because the probability distribution of these
values does not depend on considering the particular ith throw, i.e., fXðxÞ is
independent of i, the process is stationary and

E gðxiÞ½ 
 ¼ lim
M!1

1
M

X

M

j¼1

gðxijÞ ¼ E gðxÞ½ 
 ¼ G ð3:127Þ

Similarly

Var gðxiÞ½ 
 ¼ Var gðxÞ½ 
 ¼ E g2ðxÞ
	 


� G2 ð3:128Þ

We thus obtain

E GN½ 
 ¼ E gðxÞ½ 
 ¼ G ð3:129Þ

Var GN½ 
 ¼ 1
N

Var gðxÞ½ 
 ¼ 1
N

E g2ðxÞ
	 


� G2
	 


ð3:130Þ

In practical cases, E g2ðxÞ½ 
 and G are unknown (G is indeed the target of the present
evaluation) and in their place we can use the estimates with N � 1. That is, we
suppose that the process, in addition to being stationary, is also ergodic, and thus

E gðxÞ½ 
 � 1
N

P

N

i¼1
gðxiÞ ¼ g E g2ðxÞ½ 
 � 1

N

P

N

i¼1
g2ðxiÞ ¼ g2 ð3:131Þ

Thus for N � 1, it follows that G � GN and

E GN½ 
 � GN ¼ g Var GN½ 
 � s2
GN
¼ 1

N g2 � g2
� �

ð3:132Þ

In the last formula it is common to substitute N - 1 in place of N in the denomi-
nator, to account for the degree of freedom that is lost in the calculation of g;
generally, because N � 1, this correction is negligible.

3.4.2 Forced (Biased) Simulation

The evaluation of G by the analog method just illustrated yields poor results
whenever gðxÞ and fXðxÞ are such that where one is large the other is small: indeed,
in this case most of the sampled xi values result in small gðxiÞ values which give
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scarce contribution to GN ; and few large gðxiÞ values which ‘de-stabilize’ the
sample average. This situation may be circumvented in the following manner,
within a sampling scheme known under the name ‘Importance Sampling’ (see also
Sect. 6.2). Eq. (3.121) can be written as

G ¼
Z

D

gðxÞfXðxÞ
f1ðxÞ

f1ðxÞdx ¼
Z

D

g1ðxÞf1ðxÞdx ð3:133Þ

where f1ðxÞ 6¼ fXðxÞ is an appropriate function (typically called ‘Importance
Sampling Distribution’, see Sect. 6.2) having the characteristics of a pdf as given
in Eq. (3.122) and the prize of the dart game becomes

g1ðxÞ ¼
gðxÞfXðxÞ

f1ðxÞ
ð3:134Þ

As we shall formally demonstrate later, the optimal choice of the pdf f1ðxÞ is
f1ðxÞ ¼ k gðxÞj jfXðxÞ: Then, in correspondence of every value xi extracted from
f1ðxÞ one would obtain always the same prize g1ðxiÞ ¼ 1=k and the variance of GN

would be actually zero: this means that just one sampling would suffice to obtain
the exact value of G. However, we shall show that the determination of the
constant k poses the exact same difficulties of computing G.

In view of (3.133), from a statistical point of view x can be interpreted as a rv
distributed according to the pdf f1ðxÞ: As before, it follows that the prize g1ðxÞ is
also a rv and G can be interpreted as the expected value of g1ðxÞ: If E1 and Var1

denote the expected value and variance with respect to the pdf f1ðxÞ; we get

E1 g1ðxÞ½ 
 ¼
Z

D

g1ðxÞf1ðxÞdx ¼ G ð3:135Þ

Var1 g1ðxÞ½ 
 ¼
Z

D

g1ðxÞ � G½ 
2f1ðxÞdx ¼ E1 g2
1ðxÞ

	 


� G2 ð3:136Þ

As before, G can be estimated with the dart game method by sampling N values
x1; x2; . . .; xN from the pdf f1ðxÞ; calculating the corresponding values of the prize
g1ðxiÞ; and computing the sample mean by arithmetic averaging. The rv is thus

G1N ¼
1
N

X

N

i¼1

g1ðxiÞ ð3:137Þ

and

E1 G1N½ 
 ¼ 1
N

P

N

i¼1
E1 g1ðxiÞ½ 


Var1 G1N½ 
 ¼ 1
N2

P

N

i¼1
Var1 g1ðxiÞ½ 


ð3:138Þ
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Similar to the analog case, we obtain

E1 g1ðxiÞ½ 
 ¼ E1 g1ðxÞ½ 
 ¼ G
Var1 g1ðxiÞ½ 
 ¼ Var1 g1ðxÞ½ 
 ¼ E1 g2

1ðxÞ
	 


� G2 ð3:139Þ

and

E1 G1N½ 
 ¼ E1 g1ðxÞ½ 
 ¼ G ð3:140Þ

Var1 G1N½ 
 ¼ 1
N

Var1 g1ðxÞ½ 
 ¼ 1
N

E1 g2
1ðxÞ

	 


� G2
	 


ð3:141Þ

The estimates of the expected values from the corresponding averages are

E1 g1ðxÞ½ 
 ’ 1
N

P

N

i¼1
g1ðxiÞ ¼ g1

E1 g2
1ðxÞ

	 


’ 1
N

P

N

i¼1
g2

1ðxiÞ ¼ g2
1

ð3:142Þ

and finally, for N � 1

G1N ¼ g1 ’ G

Var1 G1N½ 
 ¼ 1
N Var1 g1ðxÞ½ 
 ¼ 1

N E1 g2
1ðxÞ

	 


� G2
	 


’ 1
N g2

1 � g1
2

� � ð3:143Þ

The variance Var1 G1N½ 
 of the estimated value G1N depends on the choice of f1ðxÞ:
To minimize it amounts to finding the pdf f1ðxÞ which minimizes E1 g2

1ðxÞ
	 


; with
the imposition of the normalization condition that is required for f1ðxÞ to be a pdf.
By using the method of Lagrange multipliers, the optimal f1ðxÞ is found by ren-
dering stationary the functional

‘ f1f g ¼
Z

D

g2
1ðxÞf1ðxÞdxþ 1

k2

Z

D

f1ðxÞdx� 1

2

4

3

5

¼
Z

D

g2ðxÞf 2
X ðxÞ

f1ðxÞ
þ 1

k2 f1ðxÞ
" #

dx� 1

k2

ð3:144Þ

The pdf f1ðxÞ is then the solution to o‘
of1
¼ 0: The condition is satisfied if

�
g2ðxÞf 2

X ðxÞ
f 2
1 ðxÞ

þ 1

k2 ¼ 0 ð3:145Þ

from which we obtain

f1ðxÞ ¼ kj j gðxÞj jfXðxÞ ð3:146Þ
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The constant kj j can be determined from the normalization condition on f1ðxÞ; so
that finally the best f1ðxÞ is

f1ðxÞ ¼
gðxÞj jf 2

X ðxÞ
R

D
gðx0Þj jfX0 ðx0Þdx0

ð3:147Þ

In correspondence to this optimal pdf, we have the value

min
f1

E1 g2
1ðxÞ

	 


¼
Z

D

g2ðxÞf 2
X ðxÞ

f1ðxÞ
dx

¼
Z

D

g2ðxÞf 2
X ðxÞ

gðxÞj jfXðxÞ
dx

Z

D

gðx0Þj jfX0 ðx0Þdx0
ð3:148Þ

Since independent of the sign of gðxÞ; g2ðxÞ=gðxÞ ¼ gðxÞj j; we obtain

min
f1

E1 g2
1ðxÞ

	 


¼
Z

D

gðxÞj jfXðxÞdx

2

4

3

5

2

ð3:149Þ

and correspondingly, from Eq. (3.141)

min
f1

Var1 G1N½ 
 ¼
Z

D

gðxÞj jfXðxÞdx

2

4

3

5

2

�G2

8

<

:

9

=

;

ð3:150Þ

In particular, if gðxÞ� 0; the variance of G is equal to zero [18].
Figure 3.7 shows an example in which it is advantageous to use forced simu-

lation: in fact, compared to what happens when using the natural pdf fXðxÞ; the
maximum of the optimal pdf f1ðxÞ ¼ f �X ðxÞ is shifted toward the maximum of gðxÞ;
and the values sampled from that optimal pdf more frequently correspond to high
values of the prize gðxÞ:

The described procedure for performing the optimal choice of f1ðxÞ; which
would lead us to Eq. (3.147), is not operative because to calculate f1ðxÞ one must
know how to calculate the denominator of Eq. (3.147), and the difficulty of this
operation is equivalent to the difficulty of calculating G.

This apparently surprising result could have been foreseen by examining
Eq. (3.147) for f1ðxÞ: By following the dart game technique, to calculate G one
must sample a sequence of values x1if g from f1ðxÞ and then calculate the corre-
sponding sequence of prizes gðx1iÞf g with Eq. (3.134). Because by hypothesis we
have gðx1iÞ� 0; for each x1i we have

gðx1iÞ ¼
gðx1iÞfXðx1iÞ

gðx1iÞfXðx1iÞ
R

D

gðxÞfXðxÞdx

¼
Z

D

gðxÞfXðxÞdx ¼ G ð3:151Þ
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Then, it turns out that all the prizes gðx1iÞ are equal to each other and to G, so that
the variance of the sequence gðx1iÞf g is zero.

Operatively, one does not know how to calculate the denominator of
Eq. (3.147), which is the value G of the integral (3.121) whose solution we are
seeking. Then, in practice one chooses an f �1 ðxÞ ‘close’ to f1ðxÞ given by Eq. (3.147)
and this allows estimating G with a considerably smaller variance than that which
would be obtained by using the natural fXðxÞ directly: sampling the values x1if g
from a pdf f �1 ðxÞ that approximates f1ðxÞ; the values of the sequence gðx1iÞf g are
almost equal to G and their variance is small.

The forced pdf f �1 ðxÞ is usually assigned dependent on a vector a of parameters,
which are then determined so as to minimize the variance of the estimate. We
clarify this with an example.

Let us estimate

G ¼
Z

1

0

cos
px

2
dx ð3:152Þ

The integral can be calculated analogically and we have G = 2/p = 0.6366198.
Assuming that we are unable to perform the integration, we write the integral in
the form of Eq. 3.121 by setting

gðxÞ ¼ cos px
2 f ðxÞ ¼ 1 ð3:153Þ

Then

E g2ðxÞ½ 
 ¼
R

1

0
cos2 px

2

� �

dx ¼ 1
2

Var gðxÞ½ 
 ¼ 1
2� 2

p

� �2¼ 9:47152 	 10�2

ð3:154Þ

Fig. 3.7 An example in
which it would be appropriate
to resort to forced simulation
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Let us consider the two cases of estimating G by analog and optimally forced
MCS.

The analog estimate given by Eq. (3.132) can be found with the following
Matlab� program (N ¼ 104histories)

N=1e4; r=rand(N,1);g=cos(pi*r/2);
GN=mean(g); s2GN=var(g)/N

The following values are obtained

GN ¼ 0:6342 s2
GN
¼ 9:6 	 10�6

or
GN ¼ ð634:2� 3:1Þ 	 10�3

ð3:155Þ

The value GN so obtained is consistent with the true value of G, from which it
differs by 0.8 standard deviations.

In the case of the forced estimate of G, according to the optimal procedure we
should calculate f1ðxÞ with Eq. (3.147). Because gðxÞ� 0 for 0� x� 1; we know

that in this case we would obtain Var1 G1N½ 
 ¼ 0: We have f1ðxÞ ¼ gðxÞ
k ; where k is

the constant denominator of Eq. (3.147). Let us suppose that we are unable to
calculate k : to find f �1 ðxÞ close to the optimal f1ðxÞ we approximate gðxÞ with the
first two terms of the Taylor’s expansion of the cosine function

f �1 ðxÞ ’
1� 1

2
px
2

� �2
h i

k
ð3:156Þ

The pdf f �1 ðxÞ is thus of the kind

f �1 ðxÞ ¼ a� bx2 ð3:157Þ

From the normalization condition, we have a� b
3 ¼ 1 and thus

f �1 ðxÞ ¼ a� 3ða� 1Þx2 ð3:158Þ

From the nonnegativity condition it follows that

for 0� x\1=
ffiffiffi

3
p

it must be that a [ � 3x2

1� 3x2
and thus a [ 0;

For 1=
ffiffiffi

3
p

\x� 1 it must be that a� 3x2

3x2 � 1
and thus a� 3=2:

It follows that f �1 ðxÞ has been determined with the exception of the parameter a,
whose optimal value must be found inside the interval 0; 3

2

� �

:

From Eq. (3.134) we then have

g1 xð Þ ¼ g xð Þfx xð Þ
f1 xð Þ ¼

cos px
2

� �

a� 3 a� 1ð Þx2
ð3:159Þ
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In the ideal case, i.e., supposing we are able to evaluate the integrals, we would
have

E1 g2
1ðxÞ

	 


¼
Z

1

0

g2ðxÞ
f �1 ðxÞ

dx ¼
Z

1

0

cos2 px
2

� �

a� 3ða� 1Þx2
dx ð3:160Þ

The minimum value for this expression is found for a = 3/2, and is equal to
0.406275. By substituting into Eq. (3.141) we have

Var1 G1N½ 
 ¼ 1
N

0:406275� 2
p

� �2
" #

¼ 1
N

9:9026 	 10�4 ð3:161Þ

By choosing for N the value 104, like in the analog case, we obtain a variance that
is smaller by two orders of magnitude. In a real case, when we might be unable to
evaluate the integrals, the value of the parameter a is determined by trial and error.
For each trial value a, the f �1 ðxÞ is given by Eq. (3.158) and is completely deter-
mined. From this f �1 ðxÞ we sample N values xi (i = 1,2,…,N), we calculate the

corresponding values g1ðxiÞ with Eq. (3.159) and then g1 and g2
1 with Eq. (3.142);

finally, we calculate Var1 G1N½ 
 with Eq. (3.143). Among all the trial values a, the
best choice is the one for which Var1 G1N½ 
 is minimum. For this example, the
determination of a was done by using the following Matlab� program (N = 104

histories) inside the interval [0,1.5] with steps equal to 0.05

clear; N=1e4; g=zeros(N,1); s2G1N=[];
a=0:0.05:1.5; la=length(a);
for k=1:la

for n=1:N

rr=zeros(1,3);r=zeros(1,3);
c=[a(k)-1 0 -a(k) rand]; rr=roots(c);lrr=length(rr);
j=0;
for kk=1:lrr

r(kk)=-1;
if imag(rr(kk))==0
j=j+1;
r(j)=rr(kk);
end

end
i=find(r[0 && r\1); x=r(i);
g(n)=cos(pi*x/2)/(a(k)-3*(a(k)-1)*x^2);

end
s2G1N=[s2G1N var(g)];

end
plot(a, s2G1N/N)
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Figure 3.8 reports the value s2
G1N

as a function of a (left) and the two pdfs f1ðxÞ
and f �1 ðxÞ (right). This latter was calculated as a function of x, for the optimal value
a = 1.5. From the Figure, it can be seen that Var1 G1N½ 
 decreases monotonically
as a increases, and reaches the same minimum a = 3/2, as in the theory. The
corresponding estimate of G was obtained by using a forced MCS with the
following Matlab� program

clear;
N=1e4; g=zeros(N,1); s2G1N=[]; a=1.5;
for n=1:N

rr=zeros(1,3);r=zeros(1,3);
c=[a-1 0 -a rand]; rr=roots(c);lrr=length(rr); j=0;
for kk=1:lrr
r(kk)=-1;

if imag(rr(kk))==0
j=j+1; r(j)=rr(kk);
end

end
i=find(r[0 && r\1); x=r(i); g1(n)=cos(pi*x/2)/(a-3*(a-1)*x^2);

end
G1N=mean(g1); s2G1N=var(g1)/N;

The following values are obtained

g1N ¼ 0:6366 s2
G1N
¼ 9:95 	 10�8 or G1N ¼ð636:6� :032Þ 	 10�3

Fig. 3.8 Estimated variance as a function of parameter a (left); forced PDF f1ðxÞand f �1 ðxÞ (right)
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This result shows that choosing the optimal pdf f �1 ðxÞ allows us to estimate G with
a variance that is two orders of magnitude smaller than that of the analog
computation.

Extension to the Multivariate Case

Let us consider the definite integral G of Eq. (3.121). The sampling of a rv vector x
from fXðxÞ can be done by starting from the following identity

fXðx1; x2; . . .; xnÞ ¼
Y

n�1

j¼1

fjþ1ðxjjxj�1; xj�2; . . .; x1Þ
" #

f ðxnjxn�1; . . .; x1Þ ð3:162Þ

where

fj þ 1ðxjjxj � 1; xj � 2; . . .; x1Þ ¼
R

dxj þ 1dxjþ2. . .dxnfXðxÞ
R

dxjdxj þ 1dxjþ2. . .dxnfXðxÞ

¼ fmargðx1; x2; . . .; xjÞ
fmargðx1; x2; . . .; xj � 1Þ

ð3:163Þ

f ðxnjxn � 1; xn � 2; . . .; x1Þ ¼
fXðxÞ

R

dxnf ðxÞ ð3:164Þ

where fmargðx1; x2; . . .; xjÞ is the marginal pdf of fXðxÞ with respect to the variables
x1; x2; . . .; xj: From Eq. (3.162), it can be seen that we can sample x by sampling
successively the xj components from conditional univariate distributions, i.e.,

x1 from f2ðx1Þ½ 
; x2 from f3ðx2jx1Þ½ 
; . . .;

xn from f ðxnjxn�1; . . .; x1Þ½ 

ð3:165Þ

In words, we sample x1 from the marginal distribution of f with respect to all the
variables except for x1; x2 from the conditional distribution with respect to the
obtained value of x1 and marginal with respect to all the remaining variables
except for x2; and so on.

3.5 Sensitivity Analysis by Monte Carlo Simulation

The definite integral G defined by (3.121) depends on the values of the parameters
that appear in the function gðxÞ and in the pdf fXðxÞ: Let us suppose, for simplicity,
that those functions have in common a scalar parameter p: we want to make a MC
estimate of the sensitivity of G with respect to a variation of the parameter p,
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namely dG=dp: Thus, by including the parameter explicitly as an argument, we can
write Eq. (3.121) as

GðpÞ ¼
Z

D

gðx; pÞfXðx; pÞdx ð3:166Þ

Of course, a special case of this formulation is the one in which only g or only
f depends on p.

We present two procedures for estimating the sensitivity, both similar to the one
described for forced simulation [19–23].

3.5.1 Correlated Sampling

Let us set, for brevity

g� � gðx; pþ DpÞ
g � gðx; pÞ

f �X � fXðx; pþ DpÞ
fX � fXðx; pÞ

ð3:167Þ

Further, let us indicate with E 	½ 
 and E� 	½ 
 the expected values of the argument
calculated with the pdfs fX and f �X ; respectively. Corresponding to the value

p ? Dp of the parameter, the definite integral defined by Eq. (3.121) becomes

G� � Gðpþ DpÞ ¼
Z

D

gðx; pþ DpÞfXðx; pþ DpÞdx ¼ E� g�½ 
 ð3:168Þ

Also,

G� � Gðpþ DpÞ ¼
R

D
gðx; pþ DpÞ fXðx;pþDpÞ

fXðx;pÞ fXðx; pÞdx

¼ E� g�
f �X
fX

h i

� E h½ 

ð3:169Þ

where we set

hðx; p;DpÞ ¼ gðx; pþ DpÞ
fXðx; pþ DpÞ

fXðx; pÞ � g�
f �X
fX

ð3:170Þ

Corresponding to a given Dp (in general we choose Dp/p \\1). The MCS estimate
of g� can be done simultaneous to that of G with the described method of the dart
game (Sect. 3.4.1): for each of the N values xi sampled from fXðx; pÞ; we accu-
mulate the value gðxi; pÞ with the aim of calculating GN to estimate G, and we also
accumulate the value hðxi; p;DpÞ with the aim of calculating G�N as estimate of G�:
The values GN and G�N ; calculated by using the same sequence {xi}, are correlated.
We have
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G�N ¼
1
N

X

N

i¼1

hðxi; p;DpÞ ð3:171Þ

But

E h½ 
 ¼ G�N
Var h½ 
 ¼ E h2½ 
 � G�ð Þ2 ð3:172Þ

Thus

E G�N
	 


¼ G�

Var G�N
	 


¼ 1
N Var h½ 
 ¼ 1

N E h2½ 
 � G�ð Þ2
n o ð3:173Þ

To compute the sensitivity of G with respect to the variation of the parameter from
p to p ? Dp, let us define

DG�N ¼ G�N � GN ¼
1
N

X

N

i¼1

ðhi � giÞ ð3:174Þ

where, for brevity, we set

hi � hðxi; pþ DpÞ and gi � gðxi; pÞ ð3:175Þ

We have

E hi � gi½ 
 ¼ E h� g½ 
 ¼ E h½ 
 � E g½ 
 ¼ G� � G ð3:176Þ

Var hi � gi½ 
 ¼ Var h� g½ 
 ¼ E ðh� gÞ � G� � Gf g2
h i

¼ E h� G�ð Þ2
h i

þ E g� Gð Þ2
h i

� 2E h� G�ð Þ g� Gð Þ½ 


¼ Var h½ 
 þ Var g½ 
 � 2 E hg½ 
 � G�Gf g

ð3:177Þ

The sensitivity dG=dp and its variance are estimated as

E
DGN

Dp

� �

¼ 1
Dp

E hi � gi½ 
 ¼ 1
Dp

G� � Gð Þ ’ 1
Dp

h� g
� �

ð3:178Þ

Var DGN
Dp

h i

¼ 1
N

Var h½ 
þVar g½ 
�2E hg½ 
þ2G�G

ðDpÞ2

n o

’

1
N

h2�h
2

� �

þ g2�g2ð Þ�2E hg�hg½ 

ðDpÞ2

� � ð3:179Þ

The value of G, with its variance, and the sensitivity dG=dp; with its variance, can
be estimated by calculating, for each value xi of the sequence {xi} sampled from
fXðx; pÞ; the three values

gi � gðxi; pÞ; g�i � gðxi; pþ DpÞ and f �i � fXðxi; pþ DpÞ ð3:180Þ
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and by accumulating the five quantities

gi; g2
i ; hi ¼ g�i

f �i
fi

; h2
i � g�i

f �i
fi

� �2

; higi ¼ g�i
f �i
fi

gi ð3:181Þ

After the N accumulations, we calculate the arithmetic averages g; g2; h; h2; hg
which, substituted in Eqs. (3.178) and (3.179), give the desired estimates.

3.5.2 Differential Sampling

By differentiating Eq. (3.166) with respect to the parameter of interest p, we obtain
the expression for the first-order sensitivity of G with respect to a variation of p

oG

op
¼
Z

ogðx; pÞ
op

fXðx; pÞ þ gðx; pÞ
ofXðx; pÞ

op

� �

dx

¼
Z

o

op
ðx; pÞ þ o

opX
ðx; pÞ

" #

gðx; pÞfXðx; pÞdx

ð3:182Þ

The MC estimate of the first-order sensitivity can be obtained by sampling
N values {xi} from fXðx; pÞ; and calculating the arithmetic average

oG

op

� �

N

¼ 1
N

X

N

i¼1

o

op
ln gðxi; pÞ þ o

op
ln fXðxi; pÞ

� �

gðxi; pÞ ð3:183Þ

The extension of this simple procedure to the calculation of the pure or mixed
sensitivity of a generic nth order is straightforward.

3.6 Monte Carlo Simulation Error and Quadrature Error

Let us finally compare the statistical error made by estimating G by using the MCS
method with N trials, and the numerical error derived by a quadrature formula in
which the integrand function is calculated in N points [24, 25]. In any case, analog
or biased, the MC error [see Eqs. (3.131) and (3.143)] varies with N�

1
2; i.e.,

eMC �N�
1
2 ð3:184Þ

In the case of a fairly regular function, the error in any form of quadrature varies
like Dk with D equal to the integration interval and k a small integer which depends
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on the numerical method employed in the quadrature formula. In general,
k increases with the complexity of the rule, but is at most 2 7 3.

In the case of a hypercube with n dimensions and side length 1, the number of
points on one edge is D�1 so that the total number of points is N ¼ D�n and the
numerical quadrature error is

eq�Dk �N�
k
n ð3:185Þ

The MCS estimate is convenient, i.e., eMC � eq; if n� 2k ¼ 6; i.e., if it is necessary
to evaluate an integral in a domain that is at least 6-dimensional.
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Chapter 4
System Reliability and Risk Analysis
by Monte Carlo Simulation

4.1 Introduction

System reliability analysis arouse has a scientific discipline in the 1950s, spe-
cialized in the 1960s, was integrated into risk assessment in the 1970s, and rec-
ognized as a relevant contributor to system analysis with the extensive
methodological developments and practical applications of the 1980s and 1990s.

System reliability analysis aims at the quantification of the probability of failure
of a system, through an ensemble of formal methods for investigating the uncertain
boundaries between system operation and failure. This entails addressing the
following questions:

• Why systems fail, e.g., by using the concepts of reliability physics to discover
causes and mechanisms of failure and to identify consequences;

• How to develop reliable systems, e.g., by reliability-based design;
• How to measure and test reliability in design, operation, and management;
• How to maintain systems reliable, by fault diagnosis, prognosis, maintenance.

For a given system, the proper answers to these questions require to address the
following issues:

• The representation and modeling of the system;
• The quantification of the system model;
• The representation, propagation, and quantification of the uncertainty in system

behavior.

Nowadays, in its maturity, system reliability analysis is still confronted by these
challenges, possibly sharpened by the increased complexity of the systems.

For complex systems made up of several components, it is important to analyze
the possible mechanisms of failure and to evaluate their probabilities. Often, each
such system is unique in the sense that there are no other identical systems (same
components interconnected in the same way and operating under the same

E. Zio, The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer Series in Reliability Engineering,
DOI: 10.1007/978-1-4471-4588-2_4, � Springer-Verlag London 2013
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conditions) for which failure data have been collected; therefore, a statistical
failure analysis is not possible.

Furthermore, it is not only the probability of system failure which is of interest
but also the initiating causes and the combination of events which can lead to it.

The engineering way to tackle a problem of this nature, where many events
interact to produce other events, is to relate these events using simple logical
relationships (intersection, union, etc., see Appendix A) and to methodically build
a logical structure which represents the system. Then, the logic model is solved in
quantitative terms to provide the probability of system failure starting from the
probabilities of failures of its components.

Actually, the reliability analysis of modern complex systems entails an inte-
grated approach in which the hardware, software, organizational and human
elements are treated in a combined frame which accounts for their dynamic
interdependences in the complex related tasks of system production, maintenance,
and emergency management. To cope with such complexity from a quantifiable
point-of-view, computational methodologies are being advocated to provide a
framework for simulating directly the response of a system to an initial pertur-
bation, as the system hardware and software components and the operating crew
interact with each other and with the environment. This can be achieved by
embedding models of process evolution and human operator behavior within MCS
procedures reproducing the stochastic occurrence of system failure and success
state transitions.

4.2 Basic Principles of System Reliability Analysis

To characterize the failure behavior of a component in quantitative terms, let us
consider the rv time to failure, T, whose cdf FTðtÞ and pdf fTðtÞ are typically called
the failure probability and density functions at time t. The complementary
cumulative function (ccdf) RTðtÞ ¼ 1� FTðtÞ ¼ P T [ tð Þ is called reliability or
survival function of the component at time t and gives the probability that the
component survives up to time t with no failures.

Another information of interest for monitoring the failure evolution process of a
component is given by the probability that it fails in an interval dt knowing that it
has survived with no failures up to the time of beginning of the interval, t. This
probability is expressed in terms of the product of the interval dt times a condi-
tional probability density called hazard function or failure rate and usually indi-
cated by the symbol hTðtÞ

hTðtÞdt ¼ P t\T � t þ dtjT [ tð Þ

¼ P t\T � t þ dtð Þ
P T [ tð Þ ¼ fTðtÞdt

RðtÞ
ð4:1Þ
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The hazard function hTðtÞ gives the same information of the pdf and cdf to
whom it is univocally related by Eq. (4.1) and its integration

FTðtÞ ¼ 1� e
�
R

t

0

hT ðsÞds

ð4:2Þ

In general, the hazard function follows the so-called ‘bathtub’ curve which
shows three distinct phases in the life of a component: the first phase corresponds
to a failure rate decreasing with time and it is characteristic of the infant mortality
or burn in period whereupon the more the component survives, the lower becomes
its probability of failure (this period is central for warranty analysis); the second
period, called useful life, corresponds to a failure rate independent of time: during
this period, failures occur at random times with no influence on the usage time of
the component; finally, the last period sees an increase in the failure rate with time
and corresponds to the development of irreversible aging processes which make
the component more and more prone to fail as time goes by (this period is central
for maintenance analysis).

4.3 The Transport Process of a Stochastic System

Let us consider a system made up of NC physical components (pumps, valves,
ducts, electronic circuitry, and so on). Each component can be in a number of
states, e.g., working, failed, standby, etc. During its life, a component may move
from one state to another by a transition which occurs stochastically in time and
whose outcome (final state reached) is stochastic. The stochastic behavior of each
component is then defined by a matrix of probabilities of transition between
different states.

On the other hand, the full description of the system stochastic behavior in time
is given by the pdf that the system makes a transition at a given time which leads it
into a new configuration.

The configurations of the system (also termed ‘states’, in the following) can be
numbered by an index that orders all the possible combinations of all the states of
the components of the system. More specifically, let kn denote the index that
identifies the configuration reached by the plant at the n-th transition and tn be the
time at which the transition has occurred.

Fig. 4.1 Transition
t0; k0ð Þ ) k; tð Þ
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Consider the generic transition which has occurred at time t0 with the system
entering state k0. The probabilities which govern the occurrence of the next system
transition at time t which lead the system into state k are (Fig. 4.1):

• T tjt0; k0ð Þdt ¼conditional probability that the system makes the next transition
between t and t þ dt, given that the previous transition has occurred at time t’
and that the system had entered in state k0;

• Cðkjk0; tÞ ¼conditional probability that the system enters in state k by effect of
the transition occurring at time t with the system originally in state k0.

The probabilities above defined are normalized as follows

Z

1

t0

T tjt0; k0ð Þdt� 1 ð4:3Þ

X

k2X
Cðkjk0; tÞ ¼ 1; Cðkjk; tÞ ¼ 0 ð4:4Þ

where X is the set of all possible states of the system. In the following, unless
otherwise stated, all the summations on the system states will be performed on all
the values k 2 X. Note that T tjt0; k0ð Þ may not be normalized to one since with
probability 1�

R

T tjt0; k0ð Þdt the system may fall at t0 in a state k0 from which it
cannot exit, called absorbing state.

The two probability functions introduced form the so-called probabilistic
transport kernel for the transition t0; k0ð Þ ! t; kð Þ [1–4]

K t; kjt0; k0ð Þ ¼ T tjt0; k0ð ÞC kjk0; tð Þ ð4:5Þ

4.4 System Reliability Analysis by Monte Carlo Simulation

In practice, the analysis of system reliability by MCS corresponds to performing a
virtual experiment in which a large number of identical stochastic systems, each
one behaving differently due to the stochastic character of the system behavior, are
run for test during a given time and their failure occurrences are recorded [2]. This,
in principle, is the same procedure adopted in the reliability tests performed on
individual components to estimate their failure rates, mean times to failure, or
other parameters characteristic of their failure behavior: the difference is that for
components the tests can be actually done physically in laboratory, at reasonable
costs and within reasonable testing times (possibly by resorting to accelerated
testing techniques, when necessary) whereas for systems of components this is
obviously impracticable for the costs and times involved in systems failures. Thus,

62 4 System Reliability and Risk Analysis



instead of making physical tests on a system, its stochastic process of transition
among its states is modeled by defining its probabilistic transport kernel (Eq. 4.3)
and a large number of realizations are generated by sampling from it the times and
outcomes of the occurring transitions. Figure 4.2 shows a number of such
realizations on the plane system configuration versus time: in such plane, the
realizations take the form of random walks made of straight segments parallel to
the time axis in-between transitions, when the system is in a given configuration,
and vertical stochastic jumps to new system configurations at the stochastic times
when transitions occur. In the following, we will use also the terms ‘trial’ and
‘history’ to refer to a random walk realization.

For the purpose of reliability analysis, a subset C of the system configurations is
identified as the set of fault states. Whenever the system enters one such config-
uration, its failure is recorded together with its time of occurrence. With reference
to a given time t of interest, an estimate F̂TðtÞ of the probability of system failure
before such time, i.e., of the unreliability FTðtÞ, can be obtained by the frequency
of system failures occurred before t, computed by dividing the number of random
walk realizations which record a system failure before t by the total number of
random walk realizations generated.

More specifically, from the point-of-view of the practical implementation into a
computer code, the system mission time is subdivided in Nt intervals of length Dt
and to each time interval an unreliability counter CRðtÞ is associated to record the
occurrence of a failure: at the time s when the system enters a fault state, a one is
collected into all the unreliability counters CRðtÞ associated to times t successive to
the failure occurrence time, i.e., t 2 ½s; TM� (Fig. 4.3). After simulating a large
number of random walk trials M, an estimate of the system unreliability can be
obtained by simply dividing by M the accumulated contents of the counters CRðtÞ,
t 2 ½0; TM �.

Fig. 4.2 System random
walks in the system
configuration versus time
plane. System configuration 3
is circled as a fault
configuration. The squares
identify points of transition;
the circle bullets identify
fault states. The dashed lines
identify realizations leading
to system failure before the
mission time TM
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The MCS of one single system random walk (also called history or trial) entails
the repeated sampling from the probabilistic transport kernel (Eq. 4.3) of the time
of occurrence of the next transition and of the new configuration reached by the
system as a consequence of the transition, starting from the current system con-
figuration k0 at t0. This can be done in two ways which give rise to the so-called
indirect and direct MC approaches [5].

4.4.1 Indirect Simulation Method

The indirect method consists in sampling first the time t of a system transition from
the corresponding conditional probability density T tjt0; k0ð Þ of the system
performing at time t one of its possible transitions out of k0 entered at the previous
transition at time t0. Then, the transition to the new configuration k actually
occurring is sampled from the conditional probability C kjt; k0ð Þ that the system
enters the new state k given that a transition has occurred at t starting from the
system in state k0. The procedure then repeats to the next transition.

CR(t)    = cumulative counter of failures occurring before t

= system evolution in time from one transition to the next

= time of failure occurrence

Fig. 4.3 MCS estimation procedure of unreliability FT tð Þ. In the second and third simulated
histories, the system enters a failed configuration at time s; correspondingly, the failure
occurrence is recorded by collecting ones in all cumulative counters CR(t), t 2 ½s; TM �. In the end,
the quantity F̂T tð Þ, frequency of failure occurrences before t, gives the MC estimate of the system
unreliability at time t, FT tð Þ
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Consider for example the system in Fig. 4.4, consisting of components A and B in
active parallel followed by component C in series. Components A and B have two
distinct modes of operation and a failure state whereas component C has three modes
of operation and a failure state. For example, if A and B were pumps, the two modes
of operation could represent the 50 and 100 % flow modes; if C were a valve, the three
modes of operation could represent the ‘fully open, ‘half-open’, and ‘closed’ modes.

For simplicity of illustration, let us assume that the components’ times of tran-
sition between states are exponentially distributed and denote by ki

ji!mi
the rate of

transition of component i going from its state ji to the state mi. Table 4.1 gives the
transition rates matrices in symbolic form for components A, B, and C of the
example (the rate of self-transition ki

ji!ji
of component i does not need to be

assigned, since it can be retrieved from the probability equation stating that the sum
of the probabilities i of making anyone of the transitions from state ji to any
reachable state mi must be 1).

The components are initially (t ¼ 0) in their nominal states which we label with
the index 1 (e.g., pumps A and B at 50 % flow and valve C fully open), whereas
the failure states are labeled with the index 3 for the components A and B and with
the index 4 for component C.

The logic of operation is such that there is one minimal cut set (failure state) of
order 1, corresponding to component C in state 4, and one minimal cut set (failure
state) of order 2, corresponding to both components A and B being in their
respective failed states 3.

A

B

C 

Fig. 4.4 A simple series–
parallel logic

Table 4.1 Components
transition rates

Arrival

Initial 1 2 3
1 – kAðBÞ

1!2 kAðBÞ
1!3

2 kAðBÞ
2!1

– kAðBÞ
2!3

3 kAðBÞ
3!1 kAðBÞ

3!2
–

Arrival

1 2 3 4
Initial 1 – kC

1!2 kC
1!3 kC

1!4

2 kC
2!1

– kC
2!3 kC

2!4

3 kC
3!1 kC

3!2
– kC

3!4

4 kC
4!1 kC

4!2 kC
4!3

–
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Let us consider one MC trial, starting at t ¼ 0 with all components in their
nominal states (jA ¼ 1, jB ¼ 1, jC ¼ 1). The rate of transition of component A(B)
out of its nominal state 1 is simply

kAðBÞ
1 ¼ kAðBÞ

1!2þ kAðBÞ
1!3 ð4:6Þ

since the transition times are exponentially distributed and states 2 and 3 are the
mutually exclusive and exhaustive arrival states of the transition.

Similarly, the transition rate of component C out of its nominal state 1 is

kC
1 ¼ kC

1!2þ kC
1!3þ kC

1!4 ð4:7Þ

It follows, then, that the rate of transition of the system out of its current
configuration jA ¼ 1; jB ¼ 1; jC ¼ 1ð Þ is

kð1;1;1Þ ¼ kA
1 þ kB

1 þ kC
1 ð4:8Þ

We are now in the position of sampling the first system transition time t1, by
applying the inverse transform method for continuous distributions (Sect. 3.3.1,
Example 2)

t1 ¼ t0 �
1

kð1;1;1Þ
lnð1� RtÞ ð4:9Þ

where Rt�U½0; 1Þ is a uniform rv.
Assuming that t1\TM (otherwise one would proceed to the successive trial of

system simulation), one needs to determine which transition has occurred, i.e.,
which component has undergone the transition and to which arrival state. This can
be done resorting to the inverse transform method for discrete distributions
(Sect. 3.3.2). The probabilities of components A, B, C undergoing a transition out
of their initial nominal states 1, given that a transition occurs at time t1, are

kA
1

k 1;1;1ð Þ ;
kB

1

k 1;1;1ð Þ ;
kC

1

k 1;1;1ð Þ ð4:10Þ

respectively.
Figure 4.5 shows an example in which the sampled random number

RC �U½0; 1Þ is such that component B undergoes the transition.
Given that at t1 component B undergoes a transition, its arrival state can be

sampled by applying again the inverse transform method for discrete distributions,

 0 

RC

(1,1,1)
1

λ

λ
A

(1,1,1)
1

λ

λ
B

(1,1,1)
1

λ

λ
C

Fig. 4.5 Pictorial
representation of the
sampling of the component
by the inverse transform
method for discrete
distributions
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this time to the set of discrete probabilities kB
1!2

kB
1
;
kB

1!3

kB
1

n o

of the mutually exclusive

and exhaustive arrival states of component B. In the example shown in Fig. 4.6,
the sampled random number RS�U½0; 1Þ is such that the occurring transition leads
component B from state 1 to state 3, i.e., component B fails.

Note that for clarity of explanation, the procedure for sampling the transition
k0 1; 1; 1ð Þ ! k 1; 3; 1ð Þ from C kjk0; tð Þ was divided into two steps (component
sampling followed by arrival state sampling) but one could have as well divided the
interval [0,1) in 2 ? 2 ? 3 subintervals proportional to kA

1!2; k
A
1!3; k

B
1!2; k

B
1!3;

kC
1!2; k

C
1!3; k

C
1!4 normalized to kð1;1;1Þ, and used a single random number

RCS�U½0; 1Þ to sample both the component and the arrival state, i.e., the whole
transition, in one shot. The two procedures are statistically equivalent.

As a result of this first transition, at t1 the system enters configuration (1,3,1).
The simulation now continues with the sampling of the next transition time t2,
based on the updated system transition rate

k 1;3;1ð Þ ¼ kA
1 þ kB

3 þ kC
1 ð4:11Þ

The next transition, then, occurs at

t2 ¼ t1 �
1

kð1;3;1Þ
lnð1� RtÞ ð4:12Þ

where Rt�U½0; 1Þ.
Assuming again that t2\TM , the component undergoing the transition and its

arrival state are sampled as before by application of the inverse transform method
to the appropriate discrete probabilities.

The trial simulation of the system random walk proceeds through the various
transitions from one system configuration to another, until the mission time TM. As
explained earlier, when the system enters a failed configuration (*,*,4) or (3,3,*),
where the * denotes any state of the component, its occurrence is recorded.

Finally, the following Matlab� program implements the indirect method to
estimate the instantaneous unavailability of the considered system and its mean
unavailability over a mission time T:

1 2

1

B

B
λ

λ

→ 1 3

1

B

B
λ

λ

→

0 1

SRFig. 4.6 Pictorial
representation of the
sampling of the arrival state
of the transition by the
inverse transform method for
discrete distributions
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clear all
l_A=[0 1e-3 1e-3; 1e-4 0 1e-3; 1e-2 2e-2 0]; l_B=l_A;
l_C=[0 1e-4 1e-4 1e-3; 1e-4 0 1e-3 2e-3; 1e-3 2e-3 0 1e-5; 1e-2 2e-2 3e-2 0];
rates={l_A;l_B;l_C}; n_cmp=size(rates,1); nsim=1e5; bin_l=250; T=1e4;
time=0:bin_l:T; n_bins=length(time); Ca=zeros(1,n_bins); 
downtime=zeros(1,nsim);
for i=1:nsim

t=0;  state=ones(1,n_cmp); r=0; s=zeros(1,n_cmp); failure=0; repair=0;
down=0; tempo=0;

while t<=T
for j=1:n_cmp

l=rates{j,1};
s(j)=sum(l(state(j),:));

end
r=sum(s); t=t+exprnd(1/r);
cmp=find(cumsum(s)/r>rand,1,'first');

state(cmp)=find(cumsum(rates{cmp,1}(state(cmp),:))/s(cmp)>rand,1,'first');
if ((state(1)==3 && state(2)==3) | state(3)==4) && down ==0

failure=t; down=1;
else 

repair=min([t T]);
end
if (repair >failure ) && down ==1

failed_bins_m=find(time>failure,1,'first');
failed_bins_M=find(time<=repair,1,'last');
Ca(failed_bins_m:failed_bins_M)=Ca(failed_bins_m:failed_bins_M)+1;
downtime(i)=downtime(i)+repair-failure;  down=0;

end
end

end
plot(time,Ca/nsim) mean_unav=mean(downtime)/T; 
std_unav=std(downtime/T)/sqrt(nsim)

For the purpose of the example, the values of the transition rates of Table 4.1
have been set arbitrarily (Table 4.2) and the mission time has been assumed equal
to 104 units of time. Figure 4.7 shows the instantaneous unavailability; the mean
unavailability over the mission time is 0.01687.

4.4.2 Direct Simulation Method

The direct method differs from the indirect one in that the system transitions are
not sampled by considering the kernel distributions for the whole system but rather
by sampling directly the times of all possible transitions of all individual

68 4 System Reliability and Risk Analysis



components of the system and then arranging the transitions along a timeline in
increasing order, in accordance to their times of occurrence. The component which
actually performs the transition is the one corresponding to the first transition in
the timeline.

The timeline is updated after each transition occurs, to include the new possible
transitions that the transient component can perform from its new state. In other
words, during a system history starting from a given system configuration k’ at t’,
we sample the times of transition ti

j0 i!mi
; mi ¼ 1; 2; . . .;NSi , of each component i,

i ¼ 1; 2; . . .;NC leaving its current state j0i and arriving to the state mi from the

corresponding transition time probability distributions f i;j0 i!mi
T tjt0ð Þ. The time

instants ti
j0 i!mi

obtained for all arrival states mi are then arranged in ascending order

Table 4.2 Numerical values of the transition rates (in arbitrary units of time -1

Arrival

Initial 1 2 3
1 0 1e-3 1e-3
2 1e-4 0 1e-3
3 1e-2 2e-2 0

Arrival

1 2 3 4
Initial 1 0 1e-4 1e-4 1e-3

2 1e-4 0 1e-3 2e-3
3 1e-3 2e-3 0 1e-5
4 1e-2 2e-2 3e-2 0

Fig. 4.7 Instantaneous unavailability over time
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along a timeline from tmin to tmax� TM . The clock time of the trial is then moved
to the first occurring transition time tmin ¼ t� in correspondence of which the
system configuration is changed, i.e., the component i� undergoing the transition is
moved to its new state m�i . At this point, the new times of transition
ti�
mi
�!l�i

; li� ¼ 1; 2; . . .;NSi� , of component i� out of its current state m�i are sampled

from the corresponding transition time probability distributions, f i�;mi
�!l�i

T ðtjt�Þ, and
placed in the proper position of the timeline. The clock time and the system are
then moved to the next first occurring transition time and corresponding new
configuration, respectively, and the procedure repeats until the next first occurring
transition time falls beyond the mission time, i.e., tmin [ TM .

With respect to the previous example of Sect. 4.4.1, starting at t ¼ 0 with the
system in nominal configuration (1,1,1) one would sample the times of all possible
components transitions

ti
1!mi

¼ t0�
1

ki
1!mi

lnð1� Ri
t;1!mi

Þ
i ¼ A;B;C
mi ¼ 2; 3
mi ¼ 2; 3; 4

for i ¼ A;B
for i ¼ C

ð4:13Þ

where Ri
t;1!mi

�U½0; 1Þ:
These transition times would then be ordered in ascending order from tmin to

tmax� TM . Let us assume that tmin corresponds to the transition of component A to
state 3 of failure, i.e., tmin ¼ tA

1!3 (Fig. 4.8). The other sampled transition time
relating to component A, namely tA

1!2, is canceled from the timeline and the
current time is moved to t1 ¼ tmin in correspondence of which the system
configuration changes, due to the occurring transition, to (3,1,1) still operational.
The new transition times of component A toward the reachable arrival states
mA = 1,2 are then sampled

tA
3!mA

¼ t1�
1

kA
3!mA

lnð1� RA
t;3!mA

Þ

mA ¼ 1; 2

RA
t;3!mA

�U½0; 1Þ

ð4:14Þ

and placed at the proper position in the timeline of the succession of occurring
transitions. The simulation then proceeds orderly to the successive times in the list,
in correspondence of which a system transition occurs. After each transition, the
timeline is updated by canceling the times of the transitions relating to the com-
ponent which has undergone the last transition and by inserting the newly sampled
times of the transitions of the same component from its new state to the reachable
arrival states.

As with the indirect procedure explained above, when during the trial the
system enters a fault configuration ones are collected in the system unreliability
counters associated to the time intervals beyond that time, and in the end, after
M trials, the unreliability estimate is computed, as previously shown (Fig. 4.3).
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Compared to the previous indirect method, the direct approach is more suitable
for systems whose components failure and repair behaviors are represented by
different stochastic distribution laws whose combination would lead to a
complicated system transport kernel (Eq. 4.5) from which sampling of the system
transition would be difficult and/or computationally burdensome.

On the other hand, it is important to point out that when dependences among
components are present (e.g., due to load or standby configurations) the distri-
bution of the next transition time of a component may be affected by the transition
undergone by another component, in which case the next transition time of the
affected component (and not only of the transient component) has also to
be resampled after the transition. This can increase the burden, and thus reduce the
performance, of the direct simulation approach.

In the example above, if the failure of component A changes the failure
behavior of its companion component B (e.g., because it is required to carry all the
load by itself and therefore is more stressed and prone to failure, which could, for
example, translate in larger values of its transition rates out of the nominal state),
then also the transition times of B would need to be resampled (with the real
transition rates) upon occurrence of the failure of A.

Furthermore, the use of biasing techniques (Sect. 3.4.2) in the direct approach is
not trivial, because the effects of introducing modified probability functions for
one component have to be accounted for at the whole system level when setting up
the modifications to the ‘prizes’ of the simulation (in the ‘‘dart game’’ view of
Sect. 3.4.2).

Fig. 4.8 Direct simulation method. The squares identify components transitions; the bullets
identify fault states
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Finally, the following Matlab� program implements the direct simulation
method to estimate the instantaneous unavailability of the considered system and
its mean unavailability over the mission time T. The lines of code different from
the corresponding ones in the code for the indirect method presented at the end of
Sect. 4.4.1 have been underlined:

clear all
l_A=[0 1e-3 1e-3; 1e-4 0 1e-3; 1e-2 2e-2 0]; l_B=l_A;
l_C=[0 1e-4 1e-4 1e-3; 1e-4 0 1e-3 2e-3; 1e-3 2e-3 0 1e-5; 1e-2 2e-2 3e-2 0];
rates={l_A;l_B;l_C}; n_cmp=size(rates,1); nsim=1e5; bin_l=250; T=1e4;
time=0:bin_l:T; n_bins=length(time); Ca=zeros(1,n_bins);
downtime=zeros(1,nsim);
for i=1:nsim

t=0;  state=ones(1,n_cmp); t_times=zeros(1,n_cmp); s=zeros(1,n_cmp); 
failure=0; repair=0;

down=0; tempo=0;
while t<=T

for j=1:n_cmp
l=rates{j,1};
[t_times(j) s(j)]=min(exprnd(1./l(state(j),:)));

end
[tempo cmp]=min(t_times);
state(cmp)=s(cmp);
t=t+tempo;
if ((state(1)==3 && state(2)==3) | state(3)==4) && down ==0

failure=t; down=1;
else 

repair=min([t T]);
end
if (repair >failure ) && down ==1

failed_bins_m=find(time>failure,1,'first');
failed_bins_M=find(time<=repair,1,'last');
Ca(failed_bins_m:failed_bins_M)=Ca(failed_bins_m:failed_bins_M)+1;
downtime(i)=downtime(i)+repair-failure;  down=0;

end
end

end
plot(time,Ca/nsim,’k.’) mean_unav=mean(downtime)/T; 
std_unav=std(downtime/T)/sqrt(nsim)

Figure 4.9 (top) compares the estimations of the system instantaneous
unavailability provided by the direct and indirect simulation methods, with the
transition rates data of Table 4.2 and T = 104 units of time. Figure 4.9 (bottom)
reports the estimates of the mean unavailability over the mission time with the
corresponding 68.3 % confidence intervals.
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4.5 Transport Theory for System Reliability

As mentioned above, the stochastic process of the system random walk of tran-
sitions in time from one configuration to another is governed by the probabilistic
transport kernel (Eq. 4.5) which gives the probability density for the transition
t0; k0ð Þ ! t; kð Þ. The transport kernel provides a local description of the system

stochastic process: starting from known time and outcome of the last transition
t0; k0ð Þ, it allows sampling the next time and outcome t; kð Þ. Hence, knowledge of

the transport kernel allows performing the simulation of the system random walks
by sampling successively the times and outcomes of the transitions.

On the other hand, the full description of the system stochastic behavior in time
is given by the pdf that the system makes a transition at a time between t and t þ dt
leading to state k, independently of the time and outcome of the previous transi-
tion, i.e., integrating over all the times and outcomes of the previous transitions
from which state k can be reached through a transition at time t (with all different
probabilities). This pdf is denoted as w t; kð Þ and can be constructed as the series of
the partial probability densities wn t; kð Þ that the system enters state k at time t due
to the n-th transition, n ¼ 0; 1; . . .

Fig. 4.9 Comparison of the
results produced by the Direct
and Indirect simulation
methods applied to the
system of Fig. 4.1, with the
transition rate data of
Table 4.2: top, instantaneous
unavailability; bottom, mean
unavailability over the
mission time T = 104 and
68.3 % confidence intervals
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w t; kð Þ ¼
X

1

n¼0

wn t; kð Þ ð4:15Þ

Let us describe probabilistically the evolution of a random walk, in terms of the
partial probability densities wnðt; kÞ, n ¼ 0; 1; . . .. The system is known with
certainty to be in state k* (e.g., the nominal state) at the initial time t* (e.g., 0). The
stochastic evolution of the system proceeds from one transition to the next,
t�; k�ð Þ ! t1; k1ð Þ ! t2; k2ð Þ ! . . .! tn�1; kn�1ð Þ ! tn; knð Þ. The subsequent

partial probability densities describing such stochastic process of evolution are

w1 t1; k1ð Þ ¼ K t1; k1 t�; k�jð Þ

w2 t2; k2ð Þ ¼
X

k1

Z

t2

t�

dt1w
1 t1; k1ð ÞK t2; k2 t1; k1jð Þ

. . .

wn tn; knð Þ ¼
X

kn�1

Z

tn

t�

dtn�1w
n�1 tn�1; kn�1ð ÞK tn; kn tn�1; kn�1jð Þ

ð4:16Þ

For example, the second equation defines the partial probability density
w2 t2; k2ð Þ that the system makes its second transition at time t2 which results in its
entrance in state k2. It is computed as the sum of the probability densities of all
possible, mutually exclusive scenarios along which the system has a first transition
in state k1 at a time t1 prior to t2, i.e., t1 2 ½t�; t2�, with probability density w1 t1; k1ð Þ
and from there it ‘transports’ to the next transition time t2 and state k2 with
probability density K t2; k2jt1; k1ð Þ. Note that the summation is actually such on the
discrete rv describing the state of origin of the transition, k1, whereas it is an
integration over the continuous rv representing the previous transition time, t1.

From the definition of the wn t; kð Þ, n ¼ 0; 1; . . .; it is clear that they provide the
desired integral description of the system stochastic process of transition with
respect to the probability of making the n-th transition at a given time tn leading
the system to a given state kn, which is given by the sum of the probabilities of all
mutually exclusive random walks doing so. Note that in the situation described in
which the initial time and state are known with certainty, the 0-th probability
density is actually a Dirac delta in time located at t� and a Kronecker delta in
system state located at k�, viz.,

w0 t�; k�ð Þ ¼ d t � t�ð Þdkk� ð4:17Þ

Substituting in Eq. (4.16) tn, kn by t, k, and tn�1, kn�1 by t0 and k0, the expression
for wn at the generic time t and state k becomes

wn t; kð Þ ¼
X

k0

Z

t

t�

dt0wn�1 t0; k0ð ÞK t; k t0j ; k0ð Þ ð4:18Þ
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From Eq. (4.15), the probability density w t; kð Þ of a transition at time t as a
result of which the system enters state k is given by the series of all the possible
partial transition densities, viz.,

w t; kð Þ ¼
X

1

n¼0

wn t; kð Þ ¼ w0 t; kð Þ þ
X

k0

Z

t

t�

dt0w t0; k0ð ÞK t; k t0j ; k0ð Þ ð4:19Þ

This is the Boltzmann integral equation for the probability density of a system
transition to state k occurring at time t. The solution to this equation can be
obtained by standard analytical or numerical methods, under given simplifying
assumptions, or with the MC method under realistic assumptions. In this latter
case, a large number M � 1 of system life histories is performed (as explained in
Sect. 4.4.1), each of which is a realization (random walk) of the system stochastic
process of evolution in time. The ensemble of the random walks realized by the
MC histories allows estimating the transition probability density w t; kð Þ.

To generate the random walks, the partial transition densities are first rewritten
as follows, by successive substitutions

w1 t1; k1ð Þ ¼ K t1; k1 t�; k�jð Þ

w2 t2; k2ð Þ ¼
X

k1

Z

t2

t�

dt1w
1 t1; k1ð ÞK t2; k2 t1; k1jð Þ

¼
X

k1

Z

t2

t�

dt1K t1; k1 t�; k�jð ÞK t2; k2 t1; k1jð Þ

w3 t3; k3ð Þ ¼
X

k2

Z

t3

t�

dt2w
2 t2; k2ð ÞK t3; k3 t2; k2jð Þ

¼
X

k1;k2

Z

t3

t�

dt2

Z

t2

t�

dt1K t1; k1 t�; k�jð ÞK t2; k2 t1; k1jð ÞK t3; k3 t2; k2jð Þ

. . .

wn t; kð Þ ¼

X

k1;k2;...;kn�1

Z

t

t�

dtn�1

Z

tn�1

t�

dtn�2. . .

Z

t2

t�

dt1K t1; k1 t�; k�jð ÞK t2; k2 t1; k1jð Þ

. . .K t; k tn�1; kn�1jð Þ
ð4:20Þ

Equation (4.20) shows that wn t; kð Þ can be calculated from the integration of the
transport kernels over all possible random walks constituted of n intermediate
transitions
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t�; k�ð Þ ! t1; k1ð Þ ! t2; k2ð Þ ! . . .! tn�1; kn�1ð Þ ! tn; knð Þ ! t; kð Þ ð4:21Þ

Conceptually, the MC estimation of the multidimensional integral defining
wnðt; kÞ amounts to simulating a large number M of random walks and counting
the number of these random walks whose n-th transition indeed occurs at time t,
with the system indeed entering the state k: the frequency of these occurrences,
i.e., the ratio of the number of occurrences over M, gives an estimate of wnðt; kÞ.
Actually, if during the simulation of the random walks the occurrence of a tran-
sition at time t which leads the system into state k is recorded independently of the
order n of the transition, then the frequency of such occurrences over the M sim-
ulated histories gives directly an estimate of wðt; kÞ.

From the point of view of the implementation into a computer code, the system
mission time is subdivided in Nt intervals of length Dt and to each time interval
N counters are associated, one for each state of the system. Every time the system
undergoes a transition of any order n = 1,2,…, for which the system enters state
k at time t 2 Dtl, the content Clk of the lk-th counter is incremented by one. At the
end of all the M MC histories, Clk is equal to the number of occurrences of
the system undergoing a transition (of any order) at time t 2 Dtl which leads it into
state k. An estimate of the transition probability density is then

w t; kð Þ � 1
Dt

Z

Dt1

w s; kð Þds � 1
Dt

Clk

M
ð4:22Þ

t 2 Dtl; l ¼ 1; 2; . . .;Nt; k ¼ 1; 2; . . .;N

With respect to the problem of estimating the system unreliability at time t,
FTðtÞ, let us recall that it is the probability that a system failure occurs before time t,
i.e., that the system enters one of its fault states k 2 C prior to t. This probability is
given by the sum of the probabilities of all mutually exclusive random walks which
at a time s prior to t, i.e., s 2 ½0; t� lead the system into a fault state k 2 C; i.e.,

FTðtÞ ¼
X

k2C

Z

t

0

wðs; kÞds ð4:23Þ

where wðs; kÞ is the probability density of undergoing a transition (of any order n)
at time s which leads the system into state k, i.e., of entering state k at time s. Note
that, it has been assumed that the system starts at time t� ¼ 0 and with respect to
the continuous rv s the summation becomes an integral, as explained before.

In Sect. 4.4, we have illustrated the practical procedure for estimating FTðtÞ by
MCS (Fig. 4.3): (i) M random walks are sampled from the transport kernels;
(ii) for each random walk in which the system enters a state k 2 C at time s\t, a
one is cumulated in the counter associated to the time t; (iii) the estimate F̂TðtÞ of
the unreliability at time t is given by the cumulative value in the counter at the end
of the M simulated random walks divided by M. Such procedure is actually a dart
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game of the kind illustrated in Sect. 3.4.1. Indeed, Eq. (4.23) is an integral of the
kind of Eq. (3.121) where x is the whole sequence of transition points,
t�; k�; t1; k1; t2; k2; . . .ð Þ (Fig. 4.2), the probability density function fXðxÞ is wðs; kÞ

and the prize gðxÞ is 1 and it is collected when the dart hits the target, i.e., the
sequence of transition points, ðt�; k�; t1; k1; t2; k2; . . .Þ ends in a fault state k 2 C at
time s\t (the circle bullets of Figs. 4.2 and 4.3). Note that for sampling the
random walks of transition points t�; k�; t1; k1; t2; k2; . . .ð Þ it is not necessary to
know the probability density w s; kð Þ since the random walks can be generated step-
by-step by sampling from the probabilistic transport kernel of Eq. (4.5) (Fig. 4.1).

Similarly, the system unavailability at time t, q(t), i.e., the probability that the
system is in a fault state at time t (i.e. the complement to one of the system
availability introduced in Sect. 2.1), is given by the sum of the probabilities of all
mutually exclusive random walks which lead the system in a state k 2 C at a time s
prior to t and in which the system remains beyond time t, i.e.,

qðtÞ ¼
X

k2C

Z

t

0

w s; kð ÞRk s; tð Þds ð4:24Þ

where Rkðs; tÞ is the probability of the system not exiting before t from the failed
state k entered at s\t:

An estimate of q(t) may be obtained by MCS of the system random walks as
was done for the unreliability estimation. Let us consider a single random walk and
suppose that the system enters a failed state k 2 C at time sin; exiting from it at the
next transition at time sout; as before, the time is suitably discretized in intervals of
length Dt and cumulative counters CA(t) are introduced which accumulate the
contributions to q(t) in the time channels: in this case, we accumulate a unitary
weight in the counters for all the time channels within sin; sout½ � during which the
system is found in the unavailable state k. After performing all the M MC histories,
the content of each counter divided by the number of histories M gives an estimate
of the unavailability at that counter time (Fig. 4.10). This procedure corresponds to
performing an ensemble average of the realizations of the stochastic process
governing the system life.

The system transport formulation behind Eq. (4.24) suggests another analog
MCS procedure. In a single MCS trial, the contributions to the unavailability at a
generic time t are obtained by considering all the preceding entrances, during this
trial, into failed states k 2 C. Each such entrance at a time s gives rise to a
contribution in the counters of unavailability for all successsive time instants up to
the mission time, represented by the probability Rk s; tð Þ of remaining in that failed
state at least up to t. In case of a system made up of components with exponentially
distributed failure and repair times, we have

Rk s; tð Þ ¼ e�kk t�sð Þ ð4:25Þ

where kk is the sum of the transition rates (repairs or further failures) out of state k.
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Again, after performing all the MC histories, the contents of each unavailability
counter are divided by the total number of histories M to provide an estimate of the
mean time-dependent unavailability (Fig. 4.11).

The two analog MCS procedures presented above are equivalent and both lead to
satisfactory estimates. Indeed, with reference to the underlying stochastic process,
consider an entrance in state k 2 C at time s, which occurs with probability density
w s; kð Þ, and a subsequent generic time t: in the first procedure a one is scored in the
counter pertaining to t only if the system has not left the state k before t and this

CA(t) = cumulative counter which accumulates the contributions to q(t) in 
the time channel centered at t

= system evolution in time from one transition to the next

= system failure

( ) ( ) 1A AC t C t= +
TM

TM

( ) ( ) 1A AC t C t= +
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Fig. 4.10 MCS estimation procedure of unavailability q(t). In the first history, the system enters
the failed configuration at s1

in\t and exits at s1
out\t; then it enters another, possibly different,

failed configuration k2 2 C at s2
in\t and does not exit before the mission time TM : for the

estimation of the unavailability q(t) the cumulative counter CA((t) is correspondingly updated by
collecting a one in the counter. In the second history, no transitions at all occur before t; hence,
the counter CA(t) remains unmodified. In the last history, the system enters a failed configuration,
possibly different from the previous ones, at sn

in\t and exits from it after t; the cumulative
counter CA(t) is again correspondingly updated by collecting a one in the counter. In the end,
the quantity q̂ tð Þ, frequency of unavailability occurrences at time t, gives the MCS estimate of the
system unavailability at time t, q(t)
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occurs with probability Rk s; tð Þ. In this case, the collection of ones in t obeys a
Bernoulli process with parameter w s; kð Þ 	 Rk s; tð Þ and after M trials the mean
contribution to the unavailability counter at t is given by M 	 w s; kð Þ 	 Rk s; tð Þ. Thus,
the process of collecting ones in correspondence of a given t over M MC trials and
then dividing by M leads to estimating the quantity of interest qðtÞ. On the other
hand, the second procedure leads, in correspondence of each entrance in state k 2 C
at time s, which again occurs with probability density w s; kð Þ, to scoring a contri-
bution Rk s; tð Þ in all the counters corresponding to t [ s so that the total accumulated
contribution in all the M histories is again M 	 w s; kð Þ 	 Rk s; tð Þ. Dividing the accu-
mulated score by M yields the estimate of qðtÞ. Thus, the two procedures lead to
equivalent ensemble averages, even if with different variances. Here, we shall not
discuss the subject of the variance.
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Fig. 4.11 MCS unavailability estimation procedure of collecting Rkðsin; tÞ contributions in all
counters CA(t) associated to time t, following a failure to configuration k 2 C occurred at sin\t.
In the first history, the system enters three failed, possibly different configurations at s1

in\t; s2
in\t

and s3
in [ t. For the estimation of the unavailability q(t), the cumulative counter CA(t) is updated

by collecting Rkðs1
in; tÞ and Rkðs2

in; tÞ in the counter, whereas the last failure does not contribute to
q(t) because the system has already passed the time of interest t. In the second history, no
transitions at all occur before t; hence, the counter CA(t) remains unmodified. In the last history,
the system fails three times; the cumulative counter CA(t) is correspondingly updated by adding
the unavailability contributions brought by the three events. In the end, the quantity q̂ tð Þ,
frequency of unavailability occurrences at time t, gives the MCS estimate of the system
unavailability at time t, q(t)
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The situation is quite different in case of a biased MCS in which all the
transition rates are possibly varied. At any generic sampling of the rv Xn (which
could be a transition time or state) in the biased, or forced, random walk when a
biased fXn

� xnð Þ is used instead of the natural fXn xnð Þ, the weight of the history is
multiplied by fXn xnð Þ=fXn

� xnð Þ and the prize is the weight accumulated in the trial
up to that point. More specifically, in the biased MCS a weight is associated to
each trial, it is initialized to unity and then updated by the factor fXn xnð Þ=fXn

� xnð Þ
every time a quantity xn; with natural fXn xnð Þ; is instead sampled from the biased
fXn
� xnð Þ. Note that the weight is in itself a rv depending, in each trial, on the

number of times the biased probability has been used and on the values sampled
from such probability.

In our specific application of system unreliability and unavailability calcula-
tions, biasing is used to artificially increase the probability of system trajectories in
the phase space which lead the system toward entering a failed state k 2 C. In case
of exponential components, this objective may be achieved, for example, by
properly modifying the components’ natural transition rates k to biased values k�

which favor certain transitions [6].
With reference to the unavailability q tð Þ of Eq. (4.24), following the lines of the

previously presented analog simulation procedures, we may again conceive two
approaches to estimation by a biased MCS of M trials; we anticipate that the first
of them may lead to erroneous results:

1. The first approach closely adheres to the standard analog procedure of col-
lecting unitary weights in the time-channeled counters when the system is in a
failed state. Assume that in a given trial the biased probabilities are such to lead
the system to enter a failed state k 2 C at time sin with weight win, and to exit
from it at the next transition at time sout, sampled from the biased Rk

� sin; tð Þ
which depends on the biased pdf fXn

� xnð Þ of the stochastic parameters Xn

governing the possible transitions out of k. This time, as prize instead of a one

we accumulate the current trial weight win ¼ w sin;kð Þ
w� sin;kð Þ in the counters of all the

time channels centered at t 2 sin; sout½ �. After performing all the M MCS trials,
the accumulated weights contained in each counter are divided by the number
of histories M to give an estimate of the unavailability at that time t. However,
this procedure leads to erroneous results. Indeed, let us now switch our attention
from the single trial to the ensemble of M trials. Considering a generic time t,
the weight collected in t with the above procedure obeys a Bernoulli process
with parameter w� s; kð Þ 	 Rk

� s; tð Þ, where w� s; kð Þ is the probability that the
system enters a (failed) state k 2 C at time s\t and Rk

� s; tð Þ is the probability
of the system remaining in state k at least up to time t. After M trials the overall

contribution to the unavailability counter at t is given by M 	 w s;kð Þ
w� s;kð Þ 	 w

� s; kð Þ 	
R�k s; tð Þ; Thus, the process of collecting weights over M MCS trials and then
dividing by M amounts to estimating

P

k2C
R

w s; kð Þ 	 Rk
� s; tð Þds, an erroneous

result which differs, in general, from the quantity of interest q tð Þ of Eq. (4.24).
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2. According to the second procedure, in a given trial, the contributions to the
unavailability at generic time t are obtained, in accordance to Eq. (4.24), by
considering all the preceding entrances during this trial in failed states k 2 C. In
this biased case, such entrances depend on the biased probability density
w� s; kð Þ and give rise to a contribution in the counters of unavailability for all
successive times t up to the mission time. In this biased case, the contribution at

time t [ s is represented by the product of the current trial weight w s;kð Þ
w� s;kð Þ times

the natural probability Rk s; tð Þ of remaining in that failed state at least up to
t. Again, after performing all the MCS histories, the contents of each
unavailability counter are divided by the total number of histories M to provide
an estimate of k 2 C at time s, which occurs with biased probability density
w� s; kð Þ, this procedure leads to scoring the prize M 	 w� s; kð Þ times a contri-

bution w s;kð Þ
w� s;kð ÞRk s; tð Þ in the counter corresponding to t [ s so that the total

accumulated contribution is M 	 w s; kð Þ 	 Rk s; tð Þ. Dividing the accumulated
score by M yields the proper, unbiased estimate of the unavailability q(t) of
Eq. (4.24).
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Chapter 5
Practical Applications of Monte Carlo
Simulation for System Reliability Analysis

In this chapter, we shall illustrate some applications of MCS applied to system
reliability analysis. First, the power of MCS for realistic system modeling is shown
with regard to a problem of estimating the production availability of an offshore
plant, accounting for its operative rules and maintenance procedures [1]. Then, the
application of MCS for sensitivity and importance analysis [1, 2] is illustrated.

5.1 Monte Carlo Simulation Estimation of the Production
Availability of an Offshore Oil Plant

We consider the problem of determining the production availability of an offshore
installation in which different kinds of production processes are carried out as
shown in Fig. 5.1. The offshore installation is designed for the extraction of flow
from a well and the successive separation of the incoming flow in three different
components: gas, oil, and water [1].

The gas, separated by the separation unit from the water and oil coming from the
well, is first compressed by two turbo-compressors (TCs), then dehydrated through
a Tri-Ethylene Glycol (TEG) unit and finally exported. The nominal capacity of the
gas exported is 3:0� 106 Sm3/d at the pressure of 60 bar. The gas capacity for the
components is shown in Table 5.1. A flare is installed for safety purposes, to burn
the gas when it cannot be exported.

The oil coming from the production well is separated by the separation unit and,
after treatment, is exported through a pumping unit. In the perfect case of all units
operating at their maximum capacity, 23,300 m3/d of oil are exported. The
capacities of the components for the oil production are summarized in Table 5.1.

E. Zio, The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer Series in Reliability Engineering,
DOI: 10.1007/978-1-4471-4588-2_5, � Springer-Verlag London 2013
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As for the oil production, the water coming from the well is separated by the
separation unit and, after treatment, is re-injected in the field in addition with
seawater. The capacities of the components involved in the water production
process are shown in Table 5.1.

To achieve the nominal level of production of the well, compressed gas is
injected at the bottom in a so-called ‘gas lift’ configuration in which a fraction of
the export gas (1:0� 106 Sm3/d) at the output of the TEG is diverted and com-
pressed by an electro-compressor (EC) and finally injected, at a pressure of
100 bar, in the well. Alternatively, the gas lift can be injected directly in the well at
a lower pressure (60 bar), but in this case the production level is reduced to 80 %
of its maximum. When gas is not available for the gas lift, the production of the
well is reduced to 60 % of its maximum. The gas lift creates a first operational
loop in the plant because the input to the plant (i.e., the incoming flow of the well)

Fig. 5.1 Scheme of the offshore production plant

Table 5.1 Maximum
capacities of the components
of the gas, oil and water
production processes

Max capacity

Component Gas (Sm3/d) Oil (m3/d) Water (m3/d)

Well 5.0 9 106 26,500 8,000
Separator unit 4.4 9 106 23,300 7,000
Oil treatment – 23,300 –
Water treatment – – 7,000
Pumping unit – 23,300 7,000
TC 2.2 9 106 – –
TEG 4.4 9 106 – –
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depends on the output (i.e., the export gas) of the plant itself. The production levels
of the well are summarized in Table 5.2 as a function of the gas lift pressure.

A certain amount of gas also needs to be distributed to the two TCs and the two
turbogenerators (TGs) used for the electricity production. Each individual TG and TC
consumes 1:0� 106 Sm3/d. Such amount of ‘fuel gas’ is taken from the export gas at
the output of the TEG unit. This establishes a second loop in the gas process scheme
because the gas compressed by the two TCs is needed to run the TCs themselves.

The electricity produced by the two TGs is used to power the TEG unit, the EC,
the oil export pumping unit, and the water injection pumping unit. In Table 5.3,
the electric capacities of the components are summarized. Also here, there is a
loop in the system because the gas produced by the TEG unit is used to produce,
through the connection with the two TGs, the electricity consumed by the TEG
unit itself.

For simplicity of illustration, only the failures of the TCs, TGs, EC, and TEG
are taken into account. All the other components of the system are assumed to be
always in their perfect state of functioning.

The TGs and TCs can be in three different states, indexed as follows: 0 = As
good as new; 1 = Degraded; 2 = Failed. The EC and TEG can be in two states:
0 = As good as new; 2 = Failed. The ‘Failed’ state is such that the function of the
component is lost. The ‘Degraded’ state is such that the function of the component is
maintained but in this state the component has higher probability of going into the
‘Failed’ state: therefore, also when in this state the component needs to be repaired.

For simplicity, the times at which the degradation and failure transitions occur
and the duration of the corrective maintenances (repairs) are assumed to be
exponentially distributed, with values of the rates reported in Table 5.4. The fail-
ure rates are indicated with the Greek letter k whereas the transitions of repair are
indicated with the Greek letter l.

Table 5.2 Production of the
well for different gas lift
pressures

Gas lift Gas Oil Water

Bar Sm3/d Sm3/d m3/d m3/d

100 1.0 9 106 5.0 9 106 26,500 8,000
60 1.0 9 106 4.0 9 106 21,200 6,400
0 0 3.0 9 106 15,900 4,800

Table 5.3 Electricity
production and consumption
of the components of the
system

Component Electricity
production

Electricity
consumption

MW MW
TG 13 –
EC – 6
Export oil pumping unit – 7
Water injection pumping unit – 7
TEG – 6
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Only a single team is available for corrective maintenance, i.e., to perform
repairs upon failures of the components of the system. This implies that only one
component at a time can be repaired: when two or more components are failed at
the same time, the maintenance team starts to repair the component which is most
important with respect to system production. However, once a repair is started, it is
brought to completion even if another component with higher repair priority were
to fail.

The following priority of repair is introduced to handle the corrective main-
tenance dynamics:

• Level 1: utmost priority level. It pertains to components whose failures lead
immediately to a total loss of the production process;

• Level 2: medium priority level. It applies to failures leading only to a partial loss
of the export oil;

• Level 3: lower priority level. It pertains to failures which result in no loss of
export oil.

With these rules, one can assign a priority of repair to each component, which is
dependent on the system state, as shown in Table 5.5.

The TGs, TCs, and EC are subject to periodic preventive maintenance performed
by a single team, different from the team for the corrective maintenance.

In order to maintain the production at a level as high as possible, preventive
maintenance actions cannot be started if the system is not in a perfect state of
operation, i.e., while some repair or other preventive maintenance action is taking
place which limits the system production. While a preventive maintenance action
is performed on a component, the other operating components can obviously fail

Table 5.4 Failure and repair rates of the components

Transition Rate (1/h)

Component TEG EC TG TC

Number 1 2 3–4 5–6
0 ? 1 – – 7.90 9 10-4 6.70 9 10-4

1 ? 2 – – 1.86 9 10-3 2.12 9 10-4

0 ? 2 5.70 9 10-5 1.70 9 10-4 7.70 9 10-4 7.40 9 10-4

1 ? 0 – – 3.20 9 10-2 3.30 9 10-2

2 ? 0 3.33 9 10-1 3.20 9 10-2 3.80 9 10-2 4.80 9 10-2

Table 5.5 Production
components repair priority
levels

Priority Component System conditions

1 TEG –
1 TG Other TG failed
1 TC Other TC failed
2 EC –
2 TC Other TC not failed
3 TG Other TG not failed
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and corresponding corrective maintenance actions are immediately undertaken.
These failure and repair occurrences do not cause any disturbance on the
preventive maintenance action, which goes on unaffected.

Four different types of preventive maintenance actions are considered for the
test case, each one characterized by a different frequency and different mean
duration (Table 5.6). For simplicity, the durations of the preventive maintenance
are also assumed to be exponentially distributed variables.

When a failure occurs, the system is reconfigured in order to minimize, first of
all, the impact on the export oil and then the impact on the exported gas.
The impact on the water injection is considered as to not matter. Depending on
these strategies of production reconfiguration, the different component failures
have different effects on the three types of system production.

When only one TG fails, the ‘export oil’, ‘fuel gas’, and ‘gas lift’ are still served
but the EC and the ‘water injection’ are stopped due to the lower level of elec-
tricity production. Indeed, the TG left running is unable to produce the electricity
needed by the whole system and this requires that the EC and the pumping unit for
the water injection be stopped. As a consequence, the ‘export gas’ and the ‘export
oil’ decrease due to an overall lower production of the well caused by the
unavailability of the ‘gas lift’ high pressure. When both TGs are lost, all
productions are stopped because the TEG unit is not powered and it is not possible
to use gas which has not been dehydrated.

When one TC is lost, ‘export oil’, ‘export gas’, ‘fuel gas’, and ‘gas lift’ are
maintained. The non-compressed part of the gas is flared and therefore the quantity
of ‘export gas’ is reduced. When both TCs are lost, all productions are stopped
because without compressed gas it is not possible to produce fuel gas and,
consequently, electricity to power the components.

When the TEG fails, the entire system is shutdown because it is not possible to
use not dehydrated gas.

When the EC fails, the ‘gas lift’ pressure decreases and so do the well
productions of ‘export oil’ and ‘export gas’.

An analytic approach, e.g., by Markov modeling, to the evaluation of pro-
duction availability is impractical for the complex system operational dynamics
considered here. The number of possible configurations of the system, made of
four components (two TCs and two TGs) that may be in three different states and
two components (EC and TEG) that may be in two states, is not too large but a
significant modeling complication derives from the fact that the periodic

Table 5.6 Preventive
maintenance strategy, in
order of increasing period and
mean duration

Type of
maintenance

Component Period (h) Mean
duration (h)

1 TC, TG 2,160 4
2 EC 2,666 113
3 TC, TG 8,760 120
4 TC, TG 43,800 672

5.1 Monte Carlo Simulation Estimation of the Production Availability 87



maintenance actions are actually performed only if the system is in a perfect state,
otherwise they are postponed. This implies that the maintenance periods are
conditioned by the state of the plant.

On the contrary, the MCS approach can take into account the realistic aspects of
system operation, without additional burden on the solution of the model. This has
been here achieved by simulating with the indirect approach of Sect. 4.4.1 a large
number of system random walks realized, one at a time, from the beginning of
their operation to the end of their mission. This provides a sample of realizations of
the system stochastic life process from which sample averages of the time-
dependent oil, gas, and water production availabilities are performed.

To obtain the time-dependent production availabilities, the time is suitably
discretized in intervals and counters are introduced to accumulate the contributions
to production availability at different levels. It turns out that the system can be in
seven different production levels of gas, oil, and water which can be automatically
associated to the configuration of its components by extension of what is done for
the unreliability and unavailability analyses of systems with two production levels
(full production and no production) and NC components with two states (working
and failed). The details of this procedure can be found in [1].

First, the case in which the plant components do not undergo preventive
maintenance has been considered. The system life evolution has been followed for
a mission time TM of 103 h, for a total computation time of 15 min on an
Athlon@1400 MHz.

The average availability over the mission time of each production level is
reported in Fig. 5.2. The plant is highly available (92.2 %) at the full production
level (level 0). Figure 5.3 shows the time evolution of the expected values of the
production of gas, oil, and water. After a short transient of about 140 h, the
productions, as expected, reach their asymptotic values.

Fig. 5.2 Average plant
availability over the mission
time on the different
production levels for the
system without periodic
preventive maintenance
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Then, the behavior of the real system with periodic preventive maintenance has
been analyzed. The mission time TM for this case has been extended to 5� 105 h,
so as to capture the effects also of the maintenance action of type 4 which has a
very long period. The computing time in this case increases to several hours, which
would call for the implementation of some non-analog, biasing procedures to
improve the simulation performance (Sect. 3.4.2).

The results of the average availability over the mission time of each production
level of the plant are reported in Fig. 5.4. The plant production capacity appears
reduced with respect to the case of no preventive maintenance of Fig. 5.2, with the
plant having higher probabilities of performing at lower production levels. This is
due to the fact that while some components are under maintenance, the plant is in a
more critical state with respect to possible failures. For example the probability of
no production (level 6) increases from 1:8� 10�3 to 1:5� 10�2, due to the fact
that when a TC is under preventive maintenance if the other one fails the system
fails to no production. Figure 5.5 shows the time evolution of the expected values
of the productions of gas, oil, and water.

Finally, Table 5.7 shows the effects of preventive maintenance by comparing
the expected oil, gas, and water productions per year in the two cases, without and

Fig. 5.3 Expected values of the gas (top), oil (middle) and water (bottom) production as a
function of time for the system without preventive maintenance
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with preventive maintenance. Preventive maintenance appears to slightly decrease
the production, as expected from the fact that it operates on components which are
assumed not to age (constant failure rates) and thus has the sole effect of rendering
them unavailable during maintenance, without mitigating their failure processes.

5.2 Monte Carlo Simulation for Sensitivity and Importance
Analysis

In this section, we apply the MCS method for system transport analysis in order to
perform a reliability/availability analysis, complete of the first-order sensitivity
analysis presented in Sect. 3.5. For illustration purposes, we consider first a simple
case study; then, we perform the analysis of the reactor protection system (RPS) of
a nuclear power plant (NPP). The first-order sensitivity indexes computed by MCS
are used to determine the values of the differential importance measure (DIM) of
the system components, which relates to the effects of changes in the system
performance due to changes in the properties of the system components [2].

In all generality, importance measures (IMs) are used for ranking the compo-
nents of a system with respect to their contribution to the considered metric of risk,
unreliability or unavailability. For example, in the nuclear field, the calculation of
IMs is a relevant outcome of the PRA of NPPs [3–5]. In this framework, IMs
evaluate the importance of components (or more generally, events) with respect to
their impact on a risk metric G, usually the Core Damage Frequency or the Large
Early Release Frequency. In other system engineering applications, such as
aerospace and transportation, the impact of components is considered on the
system unreliability or, for renewal systems, such as the manufacturing production
and power generation ones, on the system unavailability.

Fig. 5.4 Average plant
availability over the mission
time of the different
production levels for the real
system with periodic
preventive maintenance
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In what follows, we briefly recall the concepts underlying the definition of the
DIM introduced in [6], which the reader should consult for further details.

Consider a generic system performance metric G. In general, the metric can be
expressed as a function G(p1, p2, …, pNp) of the parameters pi, i = 1,2,…Np of the
underlying stochastic model (components failure rates, repair rates, aging rates,
maintenance intervals, human error probabilities, etc.). The total variation of the
function of interest due to small variations in its parameters, one at a time, is given
by the differential

dG ¼ oG

op1
� dp1 þ

oG

op2
� dp2 þ � � � þ

oG

opNP

� dpNP ð5:1Þ

Table 5.7 Comparison of the expected productions per year between case A (real system
without preventive maintenance) and B (real system with preventive maintenance)

Oil (106 9 m3 year Gas (106 9 Sm3 year) Water (106 9 m3 year)

Case A 8.482 1,065 2.447
Case B 8.154 969.8 2.446

Fig. 5.5 Expected values of the gas (top), oil (middle) and water (bottom) production as a
function of time for the real system with preventive periodic maintenance with a mission time TM

of 5� 105 h
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The DIM of parameter pi is then defined as the fraction of total change in G that
is due to a change in the parameter value

DIMðpiÞ ¼
dGpi

dG
¼

oG
opi
� dpi

oG
op1
� dp1 þ oG

op2
� dp2 þ � � � þ oG

opNP
� dpNP

ð5:2Þ

Because of its definition, once all the individual sensitivities oG
opi

, i = 1,2,…Np

have been computed, the DIM enjoys the additivity property, i.e., the DIM of a
subset of parameters pi, pj,…,pk, is the sum of the DIMs of the individual
parameters

DIMðpi; pj; . . .; pkÞ ¼
oG
opi
� dpi þ oG

opj
� dpj þ � � � þ oG

opk
� dpk

dG
¼ DIMðpiÞ þ DIMðpjÞ þ � � � þ DIMðpkÞ

ð5:3Þ

Viewing the definition of DIM in Eq. (5.2) in terms of a limit for the parameter
variation going to zero, allows defining the operational steps for its computation.
Two different hypotheses can be considered: H1, all the parameters change by
the same small value (uniform changes); H2, the parameters are changed by the
same percentage (uniform percentage changes). Under H1, DIMðpiÞ measures the
importance of parameter pi with respect to a small equal change in all parameters;
under H2, DIMðpiÞ measures the importance of parameter pi when all the
parameters are changed by the same fraction of their nominal values. Clearly the
two assumptions address different situations and should lead to different impor-
tance values. The conditions under which to apply one hypothesis or the other
depend on the problem and risk metric model at hand. In particular, when
investigating the effects of changes at the parameter level, H1 cannot be used since
the parameters may have different dimensions (e.g., failure rates have inverse-time
units, maintenance intervals have time units and human error probabilities
are dimensionless numbers).

5.2.1 Case Study 1: Simple System

We consider the simple series–parallel system structure of Fig. 4.4 which, for ease
of consultation, we represent again in Fig. 5.6, with the components numbered 1, 2
and 3. The unavailability UA(t) is the risk metric of interest G, and we want to
estimate its first-order sensitivity with respect to variations in the parameters of the
underlying stochastic failure-repair processes that the components undergo.

1

2

3

Fig. 5.6 A simple series–
parallel system
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Concerning the model which governs the stochastic transitions of the system
components, the following simplifying assumptions are made, so as to allow
validation against analytical results:

• The components are binary, with one functioning state (state 1) and one faulty
state (state 2);

• The time of transition of component i from state ji to state mi is a stochastic
variable which follows an exponential distribution with constant rate ki

ji!mi
,

i = 1, 2, 3 ji; mi = 1, 2 (i.e., no aging effects are considered). Correspondingly,
in this case of a system made up of components with exponentially distributed

transition times, the function of interest reads Rkðs; tÞ ¼ e�kkðt�sÞ where kk ¼
P3

i¼1 ki
jk

is the sum of the components transition rates out of their respective
states jk attained when the system entered the state indexed k;

• There are no dependencies of any kind (e.g., load-sharing, standbys, etc.);
• Repair starts immediately upon failure of the unit;
• There is a sufficient number of repair teams to act simultaneously on all

components;
• Repairs are always successful and lead the component to its perfect functioning

conditions (e.g., as good as new).

The mission time of the system is TM = 1,000 h and the values of the transition
rates of the components are those reported in Table 5.8, where for simplicity of
notation we have identified with ki the failure rates ki

1!2 and with li the repair
rates ki

2!1, i = 1, 2, 3.
Figure 5.7 shows the evolution in time of the system unavailability UA(t), as

computed analytically (solid line) and estimated by a MCS with 106 trials (dots
with one standard deviation error bars).

In the simple example considered, we know the explicit analytical form of the
unavailability function which can be differentiated with respect to the transition
rates parameters to obtain the first-order sensitivities. The analytical results can
then be compared with the MCS estimates. Figures 5.8 and 5.9 report the sensi-
tivities obtained with respect to the failure rate k1 and the repair rate l1 of
component 1. Similar results are obtained for the sensitivities with respect to the
transition rates of components 2 and 3. The MCS estimates are in good agreement
with the analytical results. Obviously, in the MCS, the simultaneous calculation of
the unavailability estimate and of its sensitivities leads to an increased computa-
tional burden with respect to the estimation of the unavailability only. In this case,
this turned out to be a factor of about three.

Table 5.8 Transition rates i ki (h�1) li (h�1)

1 0.005 0.02
2 0.005 0.02
3 0.0005 0.03
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Fig. 5.7 Unavailability
UA(t). Analytic computation
(solid line); MCS estimate
with 106 trials (dotted line
with one standard deviation
error bar)
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Fig. 5.8 First-order
sensitivity of the
unavailability UA(t) with
respect to the failure rate k1

of the component 1. Analytic
computation (solid line);
MCS estimate with 106 trials
(dotted line with one standard
deviation error bar)
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Fig. 5.9 First-order
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Given the first order sensitivities with respect to the failure and repair rates of
each component, it is possible to compute the DIMs of each component by
exploiting the additivity property

DIMi ¼
oUA
oki
� dki þ oUA

oli
� dli

P

3

j¼1

oUA
okj
� dkj þ

P

3

j¼1

oUA
olj
� dlj

ð5:4Þ

for i = 1, 2, 3, and the DIM of the parallel block

DIM12 ¼ DIM1 þ DIM2 ð5:5Þ

Note that given the homogeneity of the units of measure of k and l, both
operative hypotheses H1 and H2 can be employed.

Figure 5.10 shows the results computed analytically (solid line) and estimated
by MCS with 106 trials (dots), under hypothesis H1 and with Dki = Dli, i = 1, 2, 3,
chosen sufficiently small for the convergence of the incremental ratios involved in
the DIM definition [6]. The results obtained show that component 3 is more
important than components 1 and 2, because of its series logic position. Although
not reported here, this ranking was verified to be in good agreement with those
obtained on the basis of the Birnbaum importance and the risk reduction worth
measures [3–5], whereas they are in disagreement with the rankings obtained on the
basis of the Fussel-Vesely and risk achievement worth measures [3–5] due to the
relevance given in the latter to the unavailabilities of the individual components.

DIM1 and DIM2 start from a value close to zero whereas DIM3 starts from a
value close to unity. At short times, approximating the exponential functions with
the first term of Mac Laurin series we have

UAðtÞ ffi ð1� ð1þ k1 � tÞ � ð1þ k2 � tÞÞ � ð1� ð1þ k3 � tÞÞ
¼ k1 � k3 � t2 þ k2 � k3 � t2 þ k1 � k2 � k3 � t3

ð5:6Þ
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Fig. 5.10 DIMs of the three
components and of the
parallel block. Analytic
computation (solid line);
MCS estimate with 106 trials
(dotted line)
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Thus, at short times, the derivatives of the unavailability with respect to the li’s
are negligible and the DIM of the generic ith component is only governed by the
derivative of the unavailability with respect to its failure rate, ki

oUAðtÞ
ok1

ffi k3 � t2 þ k2 � k3 � t3

oUAðtÞ
ok2

ffi k3 � t2 þ k1 � k3 � t3

oUAðtÞ
ok3

ffi k1 � t2 þ k2 � t2 þ k1 � k2 � t3

ð5:7Þ

At long times, once the transients have vanished, the DIMs stabilize on
asymptotic values.

In practice, it is important to account for the aging processes of the components
and the corresponding countermeasures of maintenance. These phenomena
introduce additional parameters which the system unavailability turns out to be
dependent upon. Information on the sensitivity of the system unavailability with
respect to these parameters is of relevance to establish optimal maintenance
strategies.

Let us consider the same system of Fig. 5.6 and let us assume that its generic
component now ages in time according to a linear model for the failure rate kðtÞ [7]

kðtÞ ¼ k0 þ at ð5:8Þ

where k0 is the constant failure rate in absence of aging and a is the aging rate.
The corresponding mean time to failure (MTTF) is equal to

tf ¼
1
2

ffiffiffiffiffiffi

2p
a

r

e
k2

0
2a 1� U

k0
ffiffiffiffiffi

2a
p
� �� �

ð5:9Þ

where UðxÞ ¼ 2
ffiffi

p
p
R

x

0
e�u2

du is the error function.

The effects of aging are mitigated through preventive maintenance actions,
performed with period s, which rejuvenate the component. The period s is chosen
sufficiently small that the failure rate k(t) increases only slightly. In order to
simplify the calculations, we approximate the matter by substituting the underlying
cdf of the time to failure with the simpler exponential distribution, whose
parameter k* is determined by imposing that the two cdfs give the same failure
probability within [0, s]. It follows that the failure rate of the exponential distri-
bution must have the effective value (constant throughout the maintenance period)

k� ¼ k0 þ
1
2

as ð5:10Þ

which is the average of the k(t) function over the period s. Note that this effective
failure rate of a component, k*, is strictly linked to the maintenance period s.
Within this approximation, the MTTF becomes �t�f ¼ 1

k�.
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Obviously, the exponential approximation is good for small values of the aging
rate, i.e., for slowly varying failure rates, whereas for large values of the aging rate
the discrepancy between the underlying true cdf and the exponential approxima-
tion becomes significant as they coincide only at t = s. In this latter case, in the
limit of zero repair times, the probability of a failure within the period [0, s] is the
same by construction but the failure occurs at very different times: the exponential
distribution somewhat favors early failures whereas the distribution with linear
aging shifts the failures to later times, closer to the end of the period s.

As for the maintenance scheduling, we assume that for each component the
period between maintenances is a fraction 1/as of its MTTF, i.e.,

s ¼ 1
as

�t�f ¼
1
as

1
k�
¼ 1

as
� 1
k0 þ a � s2

ð5:11Þ

We then obtain the explicit expression for the maintenance period

s ¼ k0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

as
k2

0
2a

s

� 1

2

4

3

5: ð5:12Þ

By doing so, the maintenance period s of each component is linked to the
values of (k0, a) characterizing its failure behavior.

Concerning the repair process, we maintain the initial assumption of constant
repair rate, l.

For our numerical example, the values of k0 for the various components are
taken equal to the failure rates of Table 5.8 and the same is done for the repair
rates. Table 5.9 reports for each component i = 1, 2, 3 the value of the aging rate
ai, the maintenance period si (corresponding to a value as = 1.3 chosen such as to
obtain similar values of the maintenance periods for all components) and the value
of the mean failure rate over the maintenance period, k�i (which also turns out to be
very similar for all components). The effect on the system unavailability is a
reduction of a factor of four on its steady state value.

Figure 5.11 reports the results of the sensitivity of the unavailability UA(t) with
respect to the aging rate a1 of component 1. Similar results are obtained for the
sensitivities with respect to the aging rates of the other components 2 and 3. The
analytical results are obtained by resorting to the equivalent system of components
with constant failure rates k�i , i = 1, 2, 3. Thus, the variation Da1 of the aging rate
a1 translates in a variation of the associated failure rate k�1 and the sensitivity of the

unavailability is computed as the incremental ratio UAðt;k�1ða1þDa1ÞÞ�UAðt;k�1ða1ÞÞ
k�1ða1þDa1Þ�k�1ða1Þ . Again,

Table 5.9 Aging rates and
maintenance periods

i ai (h�2) si (h) k�i ðh�1Þ
1 1.3 9 10-5 131.4 5.85 9 10-3

2 1.3 9 10-5 131.4 5.85 9 10-3

3 8 9 10-5 132.5 5.82 9 10-3
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the MCS estimates turn out to be in good agreement with the analytical results,
despite the approximations introduced.

The DIMs of the individual components are computed by resorting to the
additivity property

DIMi ¼
oUA
oki
� dki þ oUA

oli
� dli þ oUA

oai
� dai

P

3

j¼1

oUA
okj
� dkj þ

P

3

j¼1

oUA
olj
� dlj þ

P

3

j¼1

oUA
oaj
� daj

ð5:13Þ

In this case, the unit of measure of ki and li (h-1) differs from that of a1 (h-2),
i = 1, 2, …, 3, so that only hypothesis H2 could be applied. However, as just
explained, the variation on ai is actually modeled in terms of its effects on k�

i

(Eq. 5.10) which has the same units (h-1) of ki and li so that hypothesis H1 can
also be used. Figure 5.12 shows the results for this latter case; again, the variations
to the parameters of component 3 turn out to be the most relevant.

In Fig. 5.13, the DIMs found in the cases with (dotted lines) or without (solid
lines) aging and maintenance are compared. The effects of aging and maintenance
are shown to increase the relevance of components 1 and 2, and correspondingly to
decrease that of component 3. This is due to the fact that in the case of aging and
maintenance, given the model assumed, the differences k�1 � k�3

�

�

�

� ¼ k�2 � k�3
�

�

�

� are
reduced of two orders of magnitude with respect to the values k1 � k3j j ¼
k2 � k3j j of the case without aging and maintenance.

5.2.2 Case Study 2: The Reactor Protection System

We consider a nuclear RPS, also known as the reactor control rod scram system,
for the case of a small loss of coolant accident (LOCA), as described in [8].
The reader is referred to such reference for an accurate description of the system
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Fig. 5.11 First-order
sensitivity of the
unavailability UA(t) with
respect to the aging rate a1 of
component 1. Analytic
computation (solid line);
MCS estimate with 106 trials
(dotted line with one standard
deviation error bar) estimated
by MCS)
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components and of their mechanics of operation. During normal control of the
reactor, the rods are raised or lowered into the core by the use of magnetic jacks.

When during accident the shutdown of the reactor (reactor scram or trip) is
required, the control rods are rapidly dropped into the core by removing the
voltage to the magnetic jacks. More precisely, the control rod assemblies are
dropped by removal of power through the opening of either the reactor trip breaker
RTA, controlled by RPS Train A or the reactor trip breaker RTB, controlled by
RPS Train B.

We refer to the analysis and model assumptions of [8] with respect to the
assessment of the probability of the top event that at least two out of 48 rods fail
to enter the core when conditions following a small LOCA exist, which require a
reactor scram: this probability is, then, the system performance metric G. The focus
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Fig. 5.12 DIMs of the three
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MCS estimate with 106 trials
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of the analysis is concerned with the failures of the electronic control system of
the trip circuit breakers. Twelve failure events are considered. The rods and jacks
components are considered only with respect to their mechanical fault events.
The two trip breakers connected in series control the power provided by two motor
generators connected in parallel. Each of them is bypassed by a special test breaker
of the same type of the trip breakers. These are called bypass A (BYA) and B,
for RTA and RTB respectively. BYA is tripped by the reactor Train B and BYB
is tripped by the reactor train A. The tripping signals which trip the various breakers
come from two logic trains which are identical in design. Each one is composed of a
relay logic for combining various transducer bistable signals into a single command
to trip the reactor. The initiating bistable signals are combined into eight functional
signals called RT1-RT7 and manual trip. Each of the eight functional signals is
capable of initiating a trip by itself.

The details of the fault tree, the modeling assumptions and the detailed data for
the quantitative analysis are contained in [8]. The system minimal cut sets (mcs)
and the relevant unavailability data are recalled in Tables 5.10 and 5.11 below,
where the events which cause them are reported with the original coding employed
in [8].

Here we report the results of the importance analysis carried out based on the
DIM computed by MCS. In Fig. 5.14, we report the time-dependent DIM for each
failure event considered in the analysis, computed by analog MCS with 108 trials
under hypothesis H1 of uniform variation. The additional burden in the simulation
due to the computation of the 12 (number of parameters) 9 100 (time points)
first-order sensitivities was of a factor of 5 in the CPU time.

Table 5.10 Minimal cut sets for the reactor protection system [8]

Minimal cut sets (mcs) mcs code mcs order

{Core distortion} {‘IEDCOREF’} 1
{Rod drop failure} {‘IED0001F’} 1
{Wire failure} {‘IWR0001Q’} 1
{Common mode failure} no code 1
{RTA,RTB} {‘ICB0005D’,‘ICB0004D’} 2
{RTA,BYB} {‘ICB0005D’,‘ICB0005C’} 2
{RTA,Train B} {‘ICB0005D’,‘**’} 2
{BYA,RTB} {‘ICB0004C’,‘ICB0004D’} 2
{BYA,BYB} {‘ICB0004C’,‘ICB0005C’} 2
{BYA,Train B} {‘ICB0004C’,‘* *’} 2
{Train A,RTB} {‘*’,‘ICB0004D’} 2
{Train A,BYB} {‘*’,‘ICB0005C’} 2
{Train A,Train B} {‘*’,‘**’} 2
{Train A, Test RTB} {‘*’,‘ICB0002X’} 2
{Train B, Test RTA} {‘**’,‘ICB0003X’} 2

‘*’:IWR0007Q ? ITM0009Q ? ITM0011Q ? ITM0013Q ? ITM0015Q ? ITM0017-
Q ? ITM0019Q ? ITM0021Q ? ITM0023Q ? ITM0025Q
‘**’ IWR0006Q ? ITM0008Q ? ITM0010Q ? ITM0012Q ? ITM0014Q ? ITM0016Q
? ITM0018Q ? ITM0020Q ? ITM0022Q ? ITM0024Q
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We can distinguish four groups of importance. The first group, characterized by
the largest values of DIMs includes the following four events: failure of a sufficient
number of control rods to enter the core due to core distortions; failure of a
sufficient number of control rods to drop due to mechanical faults; wire faults to
the trip bus resulting in no loss of power when the trip breakers are opened;
common mode human errors. Each one of these events constitutes a minimal cut
set of first order and for this reason they are characterized by values of DIM, under
hypothesis H1, two orders of magnitude larger than the ones of the next group, in
spite of having probability values two orders of magnitude lower. The two logic

Table 5.11 Unavailability data of the failure events of the reactor protection system [8]

Event/component Code Occurrence rate k ðh�1Þ Unavailability

Rod drop failure IED0001F 4.72 9 10-8 1.7 9 10-5

Wire failure IWR0001Q 2.0 9 10-9 1.0 9 10-7

Core distortion IEDCOREF 2.0 9 10-9 1.0 9 10-7

Common mode failure No code 6.33 9 10-8 3.0 9 10-5

Test of RTB ICB0002X 6.50 9 10-6 6.1 9 10-3

Test of RTA ICB0003X 6.50 9 10-6 6.1 9 10-3

BYA ICB0004C 1.0 9 10-6 3.6 9 10-4

RTB ICB0004D 2.78 9 10-6 1.0 9 10-3

BYB ICB0005C 1.0 9 10-6 3.6 9 10-4

RTA ICB0005D 2.78 9 10-6 1.0 9 10-3

Train A
Terminal board short circuit ITM0009Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0011Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0013Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0015Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0017Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0019Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0021Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0023Q 3.0 9 10-7 1.08 9 10-4

Terminal board short circuit ITM0025Q 3.0 9 10-7 1.08 9 10-4

Wire failure IWR0007Q 1.0 9 10-8 3.6 9 10-6

Train A 2.71 9 10-6 360 9.7 9 10-4

Train B
Terminal board short circuit ITM0008Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0010Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0012Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0014Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0016Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0018Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0020Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0022Q 3.0 9 10-7 360 1.08 9 10-4

Terminal board short circuit ITM0024Q 3.0 9 10-7 360 1.08 9 10-4

Wire failure IWR0006Q 1.0 9 10-8 360 3.6 9 10-6

Train B 2.71 9 10-6 360 9.7 9 10-4
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trains A and B form the second group of importance in the RPS due to the fact that
they contribute to most of the second-order mcs of the system. The third group of
importance is made of the bypass breakers, BYA and BYB, and trip breakers RTA
and RTB: these events make up a smaller number of mcs of order two than the
events of the previous group. Finally, the last group in order of importance is
characterized by the unavailabilities of RTA and RTB due to testing and main-
tenance. These events also form mcs of order two but in a small number.
In synthesis, under the hypothesis H1 the DIM gives indications on the relevance
of an event with respect to its logical role in the system whereas the probability of
the event does not contribute significantly. This viewpoint is similar to that
characterizing the definition of Birnbaum importance and indeed similar results
can be found with respect to this latter measure, as shown in Fig. 5.15.

In Fig. 5.16, we report the time-dependent DIM for each failure event of the
RPS, computed by analog MCS with 108 trials under hypothesis H2 of uniform
percentage variation. The additional burden due to the perturbation analysis for the
computation of the first-order sensitivities was of a factor of 5.

We can distinguish five groups of importances. The first group, of largest DIM
values, comprises the common mode human errors and the failure of a sufficient
number of control rods to drop due to mechanical faults. These events, already in
the first group of importance under hypothesis H1, are responsible for two mcs of
order one with probability values which are low, in an absolute sense, but high
relative to the four mcs of order one (i.e., considering also the events of failure of a
sufficient number of control rods to enter the core due to core distortions and of
wire faults to the trip bus resulting in no loss of power when the trip breakers are
opened). It is evident how under the hypothesis H2 the DIM, besides the signifi-
cance of the logical structure, also reflects the quantitative relevance related to the
probability of the events.
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As in the previous case of hypothesis H1, the two logic trains A and B form the
second group of importance in the RPS due to the fact that they contribute to most
of the second-order mcs of the system with rates of occurrence which are among
the largest in value.

The events of unavailability due to inspection and maintenance of RTA (Test
RTA) and RTB (Test RTB) constitute the third important group, close to the second
one. These events contribute to a smaller number of second-order cut sets but their
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probability of occurrence is the highest among the 12 events considered: the effect
of these two characteristics is such to put them in the third group of importance,
whereas under hypothesis H1 they were in the least important group.

The events included in the fourth group of importance, the failures to open the
trip breakers RTA and RTB, participate to few mcs and with small probability.

Finally, the last group of importance contains the events of failure of a sufficient
number of control rods to enter the core due to core distortions, of wire faults to
the trip bus resulting in no loss of power when the trip breakers are opened and of
failure to close the bypass breakers, BYA and BYB. The first two events are cut
sets of order one, and thus belong to the first group of importance under hypothesis
H1, but they occur with negligible probability; the latter two events have the same
logical relevance of the events of failure to open the trip breakers RTA and RTB in
the fourth group but they occur with a smaller probability.

In synthesis, under the hypothesis H2 the DIM gives indications on the rele-
vance of an event with respect to both its logical role in the system and its
probability of occurrence. As mentioned before, this viewpoint is similar to that
characterizing the definition of Fussel-Vesely importance and indeed similar
results can be found with respect to this latter measure, as shown in Fig. 5.17.

The computed IMs identify possible weaknesses in the system design and
management, with reference to the logic of the system or to the reliability/avail-
ability characteristics of the components and events involved. The situations
identified as critical can be tackled with improvement actions, e.g., the introduction
of a redundancy or of a more reliable component, aiming at reducing the criticality
degree of the identified situation. The actual effectiveness of a proposed system
modification must be evaluated within a risk-informed point of view to verify the net
gains and losses in terms of risk and cost. This aspect will however, not be
considered here.
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The results of the DIM for the RPS, under both hypotheses H1 and H2, suggest
the introduction of corrective measures to limit the criticality of the events of
common mode failures due to human errors. The importance of such event can be
mitigated, for example, by having two independent teams performing the opera-
tions of testing and calibration of the instruments of Trains A and B: by so doing,
the previous Common Mode Event is splitted into two independent human error
events (here denoted Common Mode Failure 1 and 2 to maintain the association
with the previous common mode event), each one occurring with the same
probability given in Table 5.11 for this type of event. Thus, we basically substitute
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a cut set of order one with one of order two. This modification leads to a reduction
of a factor of three in the system unavailability.

Figure 5.18 shows the behavior of the DIMs of the components, under
hypothesis H1, in the new situation with redundant teams for the testing of Trains
A and B. The splitted human error events now bear the smaller values of the IM
(the corresponding two lines obviously coincide in the graph) because of their new
redundant position in the logical structure of the system. The large fluctuations of
the DIM values are obviously due to the very low occurrence probability of the
second-order cut sets.

Figure 5.19 shows the behavior of the DIMs of the components, under hypothesis
H2, in the new situation with redundant teams for the testing of Trains A and B.
The two human error events, Common Mode Failure 1 and 2, still have the smaller
values of the IM because of their new redundant position in the logical structure
of the system; these values, however, are larger than under hypothesis H1 because of
the small probability of occurrence associated to this second-order cut set.

In summary, the corrective action on the Common Mode Failure was successful
in reducing significantly the DIM relevance of the event.

We also analyzed the case that the Common Mode Failure event can be
detected immediately upon occurrence and consider the possibility of as good as
new corrective repair interventions to re-establish the proper situation. We took,
for simplicity, a constant repair rate of arbitrary value l ¼ 2:0� 10�2 h�1. This
approach differs from the previous one in that the logical structure of the system is
not changed, the Common Mode Failure still constituting a cut set of order one,
whereas the reliability/availability characteristics of the event are improved due to
the introduced repair actions. The modification introduced has been chosen such as
to lead again to a reduction of a factor of two in the system unavailability.

For the sake of brevity, we do not report here the details of this case but simply
synthesize its results. Under hypothesis H1, the DIM values show that in the new
situation, with corrective repairs upon common mode failures during testing and
calibration of the instrumentation of Trains A and B, the importance of the
Common Mode Failure event is reduced, but not significantly due to the fact that
hypothesis H1 gives emphasis to the role of the event in the logical structure of the
system (which is left unchanged by the modification introduced) while it does not
give significant account to the probability of the events. On the contrary, under
hypothesis H2, in spite of the fact that the Common Mode Failure event still
constitutes a cut set of order one, its importance tends to values comparable to
those of other events contributing to cut sets of order two, due to the significantly
improved reliability/availability characteristics related to this event.

Summarizing, in light of the obtained results it seems that with the assumptions
and numerical values used in our example, the first action of introducing two
distinct and independent teams for the testing and calibration of the instrumen-
tation of Trains A and B is more effective in reducing the importance of the
Common Mode Failure event than the second action of corrective repairs.
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Chapter 6
Advanced Monte Carlo Simulation
Techniques for System Failure
Probability Estimation

6.1 General Remarks

In mathematical terms, the probability of the event F of system failure can be
expressed as a multidimensional integral of the form

PðFÞ ¼ Pðx 2 FÞ ¼
Z

IFðxÞqXðxÞdx ð6:1Þ

where X ¼ X1; X2; . . .; Xj; . . .; Xn

� �

2 R
n is the vector of the uncertain input

parameters/variables of the model describing the system behavior, qX : R
n !

½0; 1Þ is the multidimensional pdf, F � R
n is the failure region and IF : R

n !
0; 1f g is an indicator function such that IFðxÞ ¼ 1, if x 2 F and IFðxÞ ¼ 0,

otherwise. The failure domain F is commonly defined by a so-called performance
function (PF) or limit state function (LSF) gX xð Þ which is lower than or equal to
zero if x 2 F and greater than zero, otherwise.

In practical cases, the multidimensional integral Eq. (6.1) cannot be easily
evaluated by analytical methods nor by numerical schemes. On the other hand,
MCS offers an effective means for estimating the integral, because the method
does not suffer from the complexity and dimension of the domain of integration,
albeit it implies the non-trivial task of sampling from the multidimensional pdf.
The MCS solution to Eq. (6.1) entails that a large number of samples of the values
of the uncertain parameters x be drawn from qX xð Þ and that these be used to
compute an unbiased and consistent estimate of the system failure probability as
the fraction of the number of samples that lead to failure. However, a large number
of samples (inversely proportional to the failure probability) are necessary to
achieve an acceptable estimation accuracy: in terms of the integral in Eq. (6.1) this
can be seen as due to the high dimensionality n of the problem and the large
dimension of the relative sample space compared to the failure region of interest
[1]. This calls for simulation techniques that allow performing robust estimations

E. Zio, The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer Series in Reliability Engineering,
DOI: 10.1007/978-1-4471-4588-2_6, � Springer-Verlag London 2013

109



with a limited number of input samples (and associated low computational time),
somewhat along the lines of Sect. 3.4.2.

Note that in the present chapter a different notation than that used in Sect. 3.4.2
(and Chap. 3 in general) is used, to remain as close as possible to the notation used
in the literature specialized on the subject content of the chapter. For reader’s
convenience, Table 6.1 lists the main notation adopted in the two chapters.

6.2 Importance Sampling

In the framework of the ‘‘Forced simulation’’ scheme for solving definite integrals
(Sect. 3.4.2), the importance sampling (IS) method amounts to replacing the ori-
ginal pdf qX xð Þ with an importance sampling distribution (ISD) ~qX xð Þ arbitrarily
chosen by the analyst so as to generate a large number of samples in the
‘‘important region’’ of the sample space, i.e., the failure region F [1, 2].

The IS algorithm proceeds as follows [2]:

1. Identify a proper ISD, ~qX �ð Þ, in order to increase the probability of occurrence
of the failure samples;

2. Express the failure probability P(F) in Eq. (6.1) as a function of the ISD ~qX �ð Þ

P Fð Þ ¼
Z

IF xð ÞqX xð Þdx

¼
Z

IF xð ÞqX xð Þ
~qX xð Þ

� �

~qX xð Þdx

¼ E~q
IF xð Þq xð Þ

~q xð Þ

� �

ð6:2Þ

3. Draw NT iid samples xk : k ¼ 1; 2; . . .; NT

� �

from the ISD ~qX �ð Þ; if a good

choice for the ISD ~qX �ð Þ is made, the samples xk : k ¼ 1; 2; . . .; NT

� �

con-
centrate in the failure region F of interest;

Table 6.1 List of notation

Section 3.4.2 Chapter 6

F cdf Failure region
C Failure region (set of failure states)
g Prize function Performance function/Limit state function
f pdf
f1 Importance sampling distribution
q pdf
~q ISD
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4. Compute an estimate P̂ðFÞ for the failure probability P(F) in Eq. (6.1) by
resorting to the last expression in Eq. (6.2)

P̂ Fð Þ ¼ 1
NT

X

NT

k¼1

IF xk
� �

qX xk
� �

~qX xkð Þ ð6:3Þ

5. The variance V P̂ðFÞ
� 	

of the estimator P̂ Fð Þ in Eq. (6.3) is given by

V P̂ Fð Þ
� 	

¼ 1
NT

V~q
IF xð ÞqX xð Þ

~qX xð Þ

� �

¼ 1
NT

Z IF xð Þq2
X xð Þ

~q2
X xð Þ ~qX xð Þdx� P Fð Þ2

 ! ð6:4Þ

As shown in Sect. 3.4.2, the quantity in Eq. (6.4) becomes zero when

~qX xð Þ ¼ ~qopt
X xð Þ ¼

IF xð ÞqX xð Þ
P Fð Þ ð6:5Þ

As pointed out earlier, this represents the optimal choice for the IS density, but
it is practically unfeasible since it requires the a priori knowledge of P(F). Several
techniques have been developed in order to approximate the optimal sampling
density Eq. (6.5) or to at least find one giving small variance of the estimator in
Eq. (6.3). Recent examples include the use of engineering judgment [3], design
points [2] and kernel density estimators [1].

6.3 The Cross-Entropy Method

The cross-entropy (CE) method is a simulation-based technique for solving rare-
event probability estimation problems and complex, multi-extrema optimization
problems [3, 4]. It provides a simple adaptive procedure for estimating the optimal
values of the set of parameters of the biasing probability distributions and also
enjoys asymptotic convergence properties under certain circumstances. Recently,
the method has been successfully applied to the estimation of rare-event proba-
bilities in queuing models [5] and Markovian reliability models [6].

The CE method is based on an iterative procedure in which each iteration is
composed of two stages:

1. Generate a random data sample (trajectories, vectors, etc.) according to a
specified mechanism;

2. Update the parameters of the random mechanism based on the generated data,
in order to produce an improved sample in the next iteration.
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The importance of the method stems not only from its efficiency but also from
the fact that it defines a precise mathematical framework for deriving fast and
optimal updating rules, based on advanced simulation.

Although the focus of this book is on simulation, it is interesting to note that the
CE method can also be applied to solve complex, multicriteria optimization
problems, both deterministic and stochastic (noisy). In the former, the objective
function to be optimized is completely known (e.g., like in the traveling salesman,
quadratic assignment, and max-cut problems), whereas in the latter it is itself
random or to be estimated via simulation (e.g., like in the buffer allocation, sto-
chastic scheduling, flow control, and routing of data networks problems). In the
case of deterministic optimization, the problem is translated into a related sto-
chastic optimization problem which is solved by rare-event simulation techniques.

The CE optimization method is based on ideas which are quite different from
those of other well-known random search algorithms for global optimization, e.g.,
simulated annealing, tabu search, guided local search, ant colony, and genetic
algorithms. Indeed, in general, these are local heuristics which exploit the local
neighborhood structures within a randomized search procedure, whereas CE
performs a global random search procedure by reconstructing the initial probability
distribution to make occurrence of events more likely in the proximity of a global
extremum. Tabu search and guided local search methods are based on a completely
different mechanism of iterative generation of solutions, driven by a penalization of
the neighborhood of previously examined solutions. Instead, in principle, the CE
method and genetic algorithms share the idea of sampling random solutions and
improving the way the samples are generated in successive iterations (generations).
In both methods, the goodness of the solutions is computed with respect to a score
or PF (fitness). On the other hand, the encoding of the solution in the genetic
algorithms is problem specific and may require significant efforts, and a number of
parameters can be critical for the algorithms, e.g., the crossover and mutation
probabilities, the sample (population) size. On the contrary, the way the CE method
samples the solutions in the next iteration (generation) is less heuristic, as the
updating of the parameters of the sample distribution is optimal in the Kullback–
Leibler sense. Also the ant colony optimization method bears some similarities
with the CE method; a difference is in the way the next sample of solutions is
generated because in the former method a problem-dependent heuristic is imple-
mented such that good solutions in the previous iteration increase the probability
that solutions in the future iterations follow a similar path whereas in the latter
method, the future solutions are sampled from probability distributions whose
parameters are updated based on a principled calculation.

A flourishing literature of works which employ the CE optimizer method seems
to demonstrate its potentials. Applications include: buffer allocation [7]; static
simulation models [8], queuing models of telecommunication systems [9, 10];
neural computation [11]; control and navigation [12]; DNA sequence alignment
[13]; scheduling [14]; vehicle routing [15]; reinforcement learning [16]; project
management [17]; heavy tail distributions [18]; network reliability [19, 20]; max-
cut and bipartition problems [21]; HIV spread control [22, 23].
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6.3.1 The Cross-Entropy Method for the Estimation
of Rare-Event Probabilities

Let, X ¼ X1; . . .;Xnð Þ be a vector of rvs describing the behavior of a stochastic
system and qX x; kð Þ the corresponding joint pdf of real-valued parameter vector k.
For example, assuming that the rvs X1; . . .;Xn are independent of each other and
exponentially distributed with means 1

k1
; . . .; 1

kn
, respectively, the pdf qX x; kð Þ reads

qX x; kð Þ ¼
Y

n

j¼1

kj � exp �
X

n

j¼1

kjxj

 !

ð6:6Þ

The problem of interest regards the evaluation of the expected performance
P Fð Þ of a stochastic system, in the following expressed in terms of the probability
that a real-valued function YðXÞ is greater than or equal to some threshold value aY

P Fð Þ ¼ P Y Xð Þ� aYð Þ ¼ EfX I Y Xð Þ� aYf g
h i

ð6:7Þ

where the subscript qX specifies that the expectation is taken with respect to the pdf
qX �ð Þ and I Y Xð Þ� aYf g is an indicator function equal to 1 if Y Xð Þ� aY and 0

otherwise; in relation to the original failure probability estimation problem of
Eq. (6.1), this means that X 2 F when Y Xð Þ� aY .

If the probability in Eq. (6.7) is very small, say of the order of 10-5, the event
Y Xð Þ� aY is called a rare event. Classical examples of rare events are the failures
of a redundant system made of highly reliable components, the occurrence of
earthquakes of large magnitude and the release of radionuclides from a safe waste
repository.

The estimation of the probability in Eq. (6.7) entails the solution of the mul-
tidimensional integral of the expectation operator. As seen in Sect. 3.4, MCS can
be used for estimating such an integral [24–26]; this requires drawing a large
number N of samples x1; . . .; xN of the random vector X from the multidimensional
joint pdf qX �ð Þ, which in general may not be a trivial task [1]; then, an estimator

P̂ Fð Þ of the probability in Eq. (6.7) is obtained by dividing the number of times
that I Y xið Þ� aYf g ¼ 1 by the total number of samples drawn N, viz.,

P̂ Fð Þ ¼ 1
N

X

N

i¼1

I Y xið Þ� aYf g ð6:8Þ

This estimator is unbiased, i.e., as N approaches infinity, the probability in Eq.
(6.8) approaches the true value in Eq. (6.7). For rare events, given the high
dimensionality of the random vector X and the large dimension of the sample
space relatively to the region of occurrence of the rare events, a large number of
samples x are necessary, in practice to achieve an acceptable estimation accuracy,
i.e., a small relative error or a narrow confidence interval. This may lead to very
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large computing times, especially if the calculation of Y xð Þ is done by long-
running computer codes (one code run for each sample x).

We have seen that an alternative to circumvent this problem is to utilize the
forced simulation of Sect. 3.4.2 as developed in the IS procedure explained in Sect.
6.2 [24, 25], in which the random samples x1; . . .; xN are drawn from a different pdf
~qX �ð Þ and the likelihood ratio estimator of P Fð Þ is computed

P̂ Fð Þ ¼ 1
N

X

N

i¼1

I Y xið Þ� aYf gW x; kð Þ ð6:9Þ

where

W x; kð Þ ¼
qX x; kð Þ
~qX xð Þ ð6:10Þ

is the likelihood ratio. For example, considering again independent rvs X1; . . .;Xn

exponentially distributed with means 1
k1
; . . .; 1

kn
, respectively, and restricting the

functional form of the IS density ~qX �ð Þ to an exponential function of parameter
vector t, the likelihood ratio in Eq. (6.10) becomes

W x; k; tð Þ �
qX x; kð Þ
~qX x; tð Þ ¼

Y

n

j¼1

kj

tj
� exp �

X

n

j¼1

kj � tj

� �

xj

 !

ð6:11Þ

The question then arises on which IS density ~qX �ð Þ to use for minimizing the
error of the estimator. As shown in Sect. 3.4.2, the optimal choice is to use [24–26]

~q�X xð Þ ¼
I Y xð Þ� aYf gfX x; kð Þ

P Fð Þ ð6:12Þ

because by so doing the elements in the sum of Eq. (6.9) are all equal to P Fð Þ

I Y xið Þ� aYf g
qX xi; kð Þ
~q�X xið Þ

¼ P Fð Þ i ¼ 1; 2; � � � ;N ð6:13Þ

and one single sample x drawn from q�X �ð Þ would allow to obtain the exact value of

the probability of interest [Eq. (6.7)].
As explained in Sect. 3.4.2, the optimal IS density ~q�X �ð Þ cannot be used in

practice because one needs to know the value of the unknown P Fð Þ to calculate it,
and then, one chooses a functional form of ~qX x; tð Þ dependent on a vector of
parameters t whose values are determined so as to minimize the variance of the
estimator (6.9) [24–26].

An alternative way to proceed is to choose a ~qX �ð Þ of the same functional form
qX �ð Þ of the original pdf but dependent on a different vector of parameters t (the
reference or tilting parameter vector), whose values are determined so as to
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minimize the distance between the densities ~q�X �ð Þ [Eq. (6.12)] and the chosen

~qX �ð Þ.
A particularly convenient form of distance between two pdfs pX �ð Þ and hX �ð Þ is

the Kullback–Leibler distance, also called CE

D pX; hX

� �

¼ EpX ln
pX xð Þ
hX xð Þ

� �

¼
Z

pX xð Þ ln pX xð Þdx�
Z

pX xð Þ ln hX xð Þdx ð6:14Þ

Notice that Eq. (6.14) is not a distance metric in the strict mathematical sense;
for example, it does not satisfy the symmetry property.

The idea behind the CE method is to choose the IS density ~qX xð Þ ¼ qX x; tð Þ
such that its Kullback–Leibler distance from the optimal IS density ~q�X �ð Þ is

minimal. Minimizing the Kullback–Leibler distance between the densities ~qX xð Þ ¼
qX x; tð Þ and ~q�X �ð Þ amounts to finding the values of the parameters t of ~qX �ð Þ such

that the second quantity in Eq. (6.14) �
R

~q�X xð Þ ln qX x; tð Þdx is minimized. This is

equivalent to solving the maximization problem

max
m

Z

~q�X xð Þ ln qX x; tð Þdx ð6:15Þ

Substituting Eq. (6.12) for ~q�X �ð Þ

max
m

Z I Y xð Þ� aYf gqX x; kð Þ
P Fð Þ ln qX x; tð Þdx ð6:16Þ

which is equivalent to

max
m

EfX X;kð Þ I Y Xð Þ� aYf g
h i

ln qX x; tð Þ ð6:17Þ

Applying again IS with a different density qX x; xð Þ to effectively tackle the
computation of the expectation value for rare-event problems, the maximization
problem in Eq. (6.17) can be rewritten as:

max
m

EfX X;xð Þ I Y Xð Þ� aYf g
h i

W x; k;xð Þ ln qX x; tð Þ ð6:18Þ

for any reference parameter x, where W(x, k, x) is the likelihood ratio in Eq.
(6.11) between qX x; kð Þ and qX x; xð Þ.

The optimal reference vector t� solution of Eq. (6.18) can be estimated by
solving its stochastic, simulated counterpart
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max
m

1
N

X

N

i¼1

I Y xið Þ� aYf gW xi; k;xð Þ ln qX xi; tð Þ ð6:19Þ

where the vector values x1; . . .; xN are drawn from qX x; xð Þ.
In typical applications, the function to be maximized in Eq. (6.19) is convex

and differentiable with respect to t, and thus the solution to Eq. (6.19) may be
readily obtained by solving for t the following system of equations

1
N

X

N

i¼1

I Y xið Þ� aYf gW xi; k;xð Þr ln qX xi; tð Þ ¼ 0 ð6:20Þ

where the gradient is with respect to t.
Operatively, the algorithm for the CE method would proceed as follows:

1. k ¼ 0; choose an initial reference vector t 0ð Þ, e.g., t 0ð Þ ¼ k;
2. k ¼ k þ 1;

3. Draw a random sample of vector values x1; . . .; xN from qX x; t k�1ð Þ� �

;

4. Find the solution tk to the maximization problem in Eq. (6.19)

t kð Þ ¼ arg max
t

1
N

X

N

i¼1

I Y xið Þ� aYf gW xi; k; v
k�1ð Þ


 �

ln qX xi; tð Þ ð6:21Þ

5. Return to Eq. (6.7) unless convergence is achieved.

A possible stopping criterion demands to stop the iterations when all the
parameters have ceased to increase or decrease monotonously. Letting Kj be the

iteration at which the sequence of iterated values tð0Þj ; tð1Þj ; tð2Þj ; . . . of the jth

component of t starts fluctuating, i.e., tð0Þj � tð1Þj � tð2Þj . . .� tðKj�1Þ
j [ tðKjÞ

j or

tð0Þj � tð1Þj � tð2Þj . . .� tðKj�1Þ
j \tðKjÞ

j , the criterion requires to stop at the iteration
K ¼ max

j
Kj.

The advantage of the CE method with respect to the variance minimization one
of Sect. 3.4.2 is that tk can often be calculated analytically. In particular, this is
true if the distributions involved are exponential or discrete with finite support
[27].

However, as presented up to now the method is of little practical use when rare
events are involved, i.e., when the probability P Fð Þ in Eq. (6.7) is less than, say,
10�5. Indeed, due to the rarity of the target event fYðXÞ� aYg, most of the
sampled values of the binary indicator variable IfYðxiÞ� aYg i ¼ 1; . . .;N will be zero
for practical sample dimension N. In this case, the difficult problem of estimating
the very small probability P Fð Þ can be broken down into a sequence of
simple problems involving larger probabilities which are solved by an iterative
two-phase procedure each time generating a sequence of pairs of estimates of
the reference parameter t and the level aY , in a way to avoid that the indicator
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variable takes a value of zero too many times while estimating the optimal value t�

of the reference parameter vector. The iterative sequencing of t and aY estimation
is regulated by introducing the rarity parameter q usually of the order of 0.01.

Starting as before from an initial reference parameter vector t 0ð Þ, e.g., equal to
k, at each iteration the two phases proceed as follows:

• Update of a kð Þ
Y : Given the reference parameter vector estimate t k�1ð Þ at the

previous iteration, the updated value a kð Þ
Y is taken as the 1� qð Þ-quantile of Y Xð Þ

when the density is qX x; t k�1ð Þ� �

, i.e., a kð Þ
Y \aYð Þ such that under the current

density qX x; t k�1ð Þ� �

the probability lk ¼ EqX x;t k�1ð Þð Þ I Y Xð Þ� a kð Þ
Yf g

h i

is at least

equal to q

P Y Xð Þ� a kð Þ
Y

h i

� q ð6:22Þ

where X	 qX x; t k�1ð Þ� �

; a simple estimator of a kð Þ
Y can be obtained from the

random sample of values Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ ordered from the smallest to
the largest, taking the 1� qð Þ sample quantile, i.e., the 1� qð ÞN order statistic
of the sequence Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ

a kð Þ
Y ¼ Y 1�qð ÞN½ 
 ð6:23Þ

Note that updating the procedure in this way is feasible because the value a kð Þ
Y is

such that the event Y Xð Þ� ak
Y

� �

is not so rare (it has a probability of around q);

• Update of t kð Þ: The updated value t kð Þ of the reference parameter vector is found
as the optimal value for estimating lk, i.e., the solution of [see Eq. (6.18)]

max
t

EqX x;t k�1ð Þð Þ I Y Xð Þ� a kð Þ
Yf g

h i

W x; k; t k�1ð Þ

 �

ln q x; tð Þ ð6:24Þ

which from the stochastic simulated counterpart gives [see Eq. (6.19)]

t kð Þ ¼ arg max
t

1
N

X

N

i¼1

I Y xið Þ� a kð Þ
Yf gW xi; k; v

k�1ð Þ

 �

ln qX xi; tð Þ ð6:25Þ

As before, the optimal solution t kð Þ can often be found analytically, particularly
when qX x; tð Þ is exponential or discrete with finite support.

Operatively, the algorithm for the CE method for rare-event probability
estimation becomes:

6.3 The Cross-Entropy Method 117



1. k ¼ 0; choose an initial reference vector t 0ð Þ, e.g., t 0ð Þ ¼ k, and a value of q,
e.g., 10�2;

2. k ¼ k þ 1; (iteration = level counter);
3. Draw a random sample of vector values x1; . . .; xN from qX x; t k�1ð Þ� �

and
compute the corresponding sample Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ;

4. Find the 1� qð Þ sample quantile a kð Þ
Y [Eq. (6.23)];

5. With the same sample x1; . . .; xN determine the solution t kð Þ in Eq. (6.25)

t kð Þ ¼ arg max
t

1
N

X

N

i¼1

I Y xið Þ� a kð Þ
Yf gW xi; k;xð Þ ln qX xi; tð Þ ð6:26Þ

6. If the value of a kð Þ
Y in step 4 above is less than aY , return to step 2; otherwise

7. Estimate the rare-event probability P Fð Þ as

P Fð Þ ¼ 1
N

X

N

i¼1

I Y xið Þ� aYf gW xi; k; t
K

� �

ð6:27Þ

where K is the number of iteration levels.

Thus, starting with t 0ð Þ at the first iteration, a good estimate of the updated
reference parameter vector t 1ð Þ is sought by making the target event Y Xð Þ� aYf g
less rare by temporarily using a level a 1ð Þ

Y \aYð Þ. The value t 1ð Þ thereby obtained
will hopefully make the target event Y Xð Þ� aYf g less rare in the following iter-

ation, so that a threshold a 2ð Þ
Y \aYð Þ can be used, which is closer to aY itself. The

algorithm proceeds in this way until at some iteration K the threshold level reached
is at least aY , and thus the original value of aY can be used without getting too few
samples.

Note that in practice the sample size N1 used in steps 3–5 for the updating of the
pair aY and t can be significantly smaller than the one used in step 7 for the
estimation of the probability P Fð Þ.

Also, to obtain a more accurate estimate of the optimal reference parameter
vector t� it is sometimes useful, especially with small sample sizes, to repeat the
iterative loop of steps 2–6 for some additional iterations after the threshold aY has
been reached.

6.3.2 The Cross-Entropy Method for Combinatorial
Optimization

The CE method previously introduced can be transformed into a randomized
algorithm for solving combinatorial optimization problems. The main idea is to
associate a rare-event probability estimation problem (the so-called associated
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stochastic problem) to the combinatorial optimization problem and then to tackle
the former with an iterative algorithm similar to the one illustrated earlier, in
which at each iteration two stages are performed:

1. Generation of a random sample of data (trajectories, vectors, etc.) according to
a specified mechanism;

2. Updating of the parameters of the random mechanism (typically parameters of
pdfs) based on the generated data, in order to produce an improved sample in
the next iteration.

Without loss of generality, consider the problem of maximizing the PF Y xð Þ
over all possible values x 2 X. Let Y� denote the value of the maximum, i.e.,

Y� ¼ max
x2X

Y xð Þ ð6:28Þ

To the maximization problem (6.28), one associates the stochastic problem of
probability estimation in Eq. (6.7), which is rewritten here as follows:

P aYð Þ ¼ P Y Xð Þ� aYð Þ ¼ EqX I Y Xð Þ� aYf g
h i

ð6:29Þ

where the random vector X	 qX �; kð Þ and the dependence of the expected per-
formance on the known or unknown threshold aY is rendered explicit. Note that
one may know aY and want to estimate P Fð Þ or viceversa.

To explain how Eq. (6.29) is associated to Eq. (6.28), suppose for example that
aY ¼ Y� and that qX �; kð Þ ¼ 1

Xj j, i.e., uniform; then, typically P Y�ð Þ ¼ qX x�; kð Þ ¼
1
Xj j is a very small number and a natural way to estimate it is to use the likelihood

ratio estimator in Eq. (6.27) with reference parameter t� estimated by

t� ¼ arg max
t

1
N

X

N

i¼1

I Y xið Þ� aYf g ln qX xi; tð Þ ð6:30Þ

where the random samples xi are drawn from the pdf qX �; kð Þ.
In general, let us consider the problem of estimating P Fð Þ for a certain aY close

to Y�; then, it is plausible that qX �; t�ð Þ assigns most of the probability mass close
to the optimal vector value x�, and thus can be used to generate an approximate
solution to the maximization problem (6.28). However, the event Y Xð Þ� aYf g is a
rare event: the (nontrivial) problem of estimating the value of P Fð Þ can then be
tackled with the previously introduced CE method, by making adaptive changes to
the pdf, i.e., to its reference parameter vector t, according to Kullback–Leibler
distance (CE), and thus creating a sequence qX �; t 0ð Þ� �

, qX �; t 1ð Þ� �

, . . . of pdfs that
are steered toward the optimal density.

A two phase, multilevel procedure, analogous to the one devised for the rare-
event simulation problem, is adopted to construct a sequence of levels

a 1ð Þ
Y ; a 2ð Þ

Y ; . . .; a Kð Þ
Y and corresponding optimal parameter vectors t 1ð Þ; t 2ð Þ; . . .; t Kð Þ
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such that the convergence value a Kð Þ
Y is close to the optimal value Y� and t Kð Þ is

such that the corresponding density assigns high probability mass to the vector
values x that give a high performance Y xð Þ.

Starting from an initial reference parameter vector t 0ð Þ, e.g., equal to k, and a
value of the rarity parameter q not too small, e.g., equal to 10�2, at each iteration
the two phases proceed as follows:

• Update of a kð Þ
Y : Given the reference parameter vector estimate t k�1ð Þ at the

previous iteration, the updated value a kð Þ
Y is taken as the 1� qð Þ-quantile of Y Xð Þ

where X	 qX x; t k�1ð Þ� �

; a simple estimator of a kð Þ
Y can be obtained from the

random sample of values Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ ordered from the smallest to
the largest, taking the 1� qð Þ sample quantile, i.e., the 1� qð ÞN order statistic
of the sequence Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ as in Eq. (6.23);

• Update of t kð Þ: The updated value t kð Þ of the reference parameter vector is found
as the optimal value for estimating Pk Fð Þ, i.e., as the solution to the optimization
problem

max
t

EqX X;t k�1ð Þð Þ I Y Xð Þ� a kð Þ
Yf g

h i

ln q x; tð Þ ð6:31Þ

whose stochastic simulated counterpart is

max
t

1
N

X

N

i¼1

I Y xið Þ� a kð Þ
Yf g ln qX xi; tð Þ ð6:32Þ

Note that differently from Eqs. (6.24) and (6.25), Eqs. (6.31) and (6.32) do not
contain the likelihood ratio term W. This is because while in the rare-event sim-
ulation problem the initial (nominal) parameter vector k is specified in advance
and it is an essential element of the rare-event probability estimation problem, in
the combinatorial optimization problem the initial reference vector parameter k is
arbitrarily introduced to define the associated stochastic problem and it is redefined
at each iteration. Indeed, at each iteration the optimal reference parameter vector
t kð Þ is determined with respect to the problem of estimating P Y Xð Þ� aYð Þ with
X	 qX x; t k�1ð Þ� �

and not X	 qX x; kð Þ. Consequently, the likelihood ratio term W
that plays a crucial role in the rare-event estimation problem does not appear in the
combinatorial optimization problem. Of course, it is possible to include the W term
in the solution to the combinatorial optimization problem but numerical results
suggest that this may often lead to less reliable (i.e., noisy) estimates t Kð Þ of t�.

Finally, the following smoothed updating procedure is often conveniently
applied

t̂ kð Þ ¼ at kð Þ þ 1� að Þt̂ k�1ð Þ ð6:33Þ
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where t kð Þ is the reference parameter vector obtained from the solution of Eq.
(6.32) and 0:7� a� 1 is a smoothing parameter. The reason for using the

smoothing procedure is twofold: (1) to smooth out the values of t̂ kð Þ and (2) to
reduce the probability that some components of the reference parameter vector
will be zero or one at the first few iterations: once such entries become zero or one,
they remain so forever, which is undesirable in a vector or matrix of probabilities.

Operatively, the algorithm for the CE method for combinatorial optimization
becomes:

1. k ¼ 0; choose an initial reference vector t 0ð Þ, e.g., t 0ð Þ ¼ k, and a value of q,
e.g., 10�2;

2. k ¼ k þ 1; (iteration = level counter);
3. Draw a random sample of vector values x1; . . .; xN from qX x; t k�1ð Þ� �

and
compute the corresponding sample Y x1ð Þ; Y x2ð Þ; . . .; Y xNð Þ;

4. Find the 1� qð Þ sample quantile a kð Þ
Y [Eq. (6.23)];

5. With the same sample x1; . . .; xN determine the solution t kð Þ of Eq. (6.32);

6. Smooth out the reference parameter vector t kð Þ by computing t̂ kð Þ with Eq.
(6.33);

7. If the value of a kð Þ
Y does not change for a number of iteration steps, say five, then

stop; otherwise, reiterate from step 2.

The stopping criterion, the sample size N, the reference parameter vector t 0ð Þ,
and the rarity parameter q for initializing the associated stochastic problem, and
the smoothing parameter a need to be specified in advance by the analyst.
Numerical studies suggest to take values of q of the order of 10�2, the smoothing
parameter around 0:7 and N ¼ CR where C is a constant, e.g., equal to 5, and R is
the number of auxiliary distribution parameters introduced into the associated
stochastic problem. The above suggestions are rules of thumb; in practice, it may
be useful to run a number of small test problems derived from the original one, in
order to tune the parameters.

The main advantage of the CE method for combinatorial optimization problems
is that in many cases the updating of t kð Þ can be done analytically, with no need for
numerical optimization. Note that in general there are many ways to generate the
samples of X while estimating the rare-event probability P aYð Þ of the associated
stochastic problem and it is not always clear which yields the best results and/or
easiest updating formulas.

6.4 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a method for efficiently generating a distri-
bution of plausible realizations of values from a multidimensional distribution.
The technique was first described in [28] and has been further developed for
different purposes by several researchers [29–31].

6.3 The Cross-Entropy Method 121



In the context of statistical sampling, a square grid containing sample positions
is a Latin square if and only if there is only one sample in each row and each
column (Fig. 6.1). A Latin hypercube is the generalization of this concept to an
arbitrary number of dimensions, whereby each sample is the only one in each axis-
aligned hyperplane containing it [32].

The LHS procedure for drawing NT samples from n independent random
variables Xj : j ¼ 1; 2; . . .; n

� �

with distributions qj �ð Þ : j ¼ 1; 2; . . .; n
� �

is
detailed below [31].

The range of each variable is divided into NT disjoint intervals of equal prob-
ability and one value is selected at random from each interval, in consistency with
the corresponding distributions qj �ð Þ : j ¼ 1; 2; . . .; n

� �

. The NT values xk
1; k ¼

1; 2; . . .; NT thus obtained for X1 are paired at random, without replacement, with
the NT values xk

2; k ¼ 1; 2; . . .;NT obtained for X2 to produce the NT ordered pairs
of values xk

1; xk
2

� �

, k = 1, 2, …, NT. These NT ordered pairs are combined at

random without replacement with the NT values xk
3; k ¼ 1; 2; . . .;NT of X3 to form

the NT ordered triplets xk
1; xk

2; xk
3

� �

, k = 1, 2, …, NT. The process is repeated for
all the n variables until a set of NT n-tuples is obtained. These n-tuples are of the
form

xk ¼ xk
1; xk

2; . . .; xk
j ; . . .; xk

n

n o

; k ¼ 1; 2; . . .;NT ð6:34Þ

and constitute the Latin hypercube samples [31].
For illustration, consider a simple example where it is desired to generate a

Latin hypercube sample of size NT = 4 from two rvs X1; X2f g. It is assumed that

Fig. 6.1 Examples of a square grid containing sample positions generated at random without
any constraint (left) and of a Latin square where only one sample is contained in each row and
each column (right)
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X1 has a standard normal distribution (i.e., with zero mean and unit standard
deviation) and X2 has a uniform distribution on the interval (0, 1) (Fig. 6.2, top,
left, and right, respectively). The ranges of X1 and X2 are subdivided into NT = 4
intervals each of probability equal to 1/NT = 1/4 = 0.25; these intervals are
identified by the solid lines that originate at 0.25, 0.5, and 0.75 on the ordinates of
Fig. 6.2, middle, left, and right, extend horizontally on the cdfs and then drop
vertically to the abscissas to produce the four indicated intervals. Random values
x1

1, x2
1, …, x4

1 and x1
2, x2

2, …, x4
2 are then sampled from these intervals for the two rvs

X1 and X2, respectively. The sampling of these random realizations is performed as
follows [30]: (1) sample u1

1 and u1
2 from a uniform distribution on (0, 0.25), u2

1 and
u2

2 from a uniform distribution on (0.25, 0.5), …, u4
1 and u4

2 from a uniform
distribution on (0.75, 1.0); (2) use the cdfs to identify (i.e., sample) the corre-
sponding X1 and X2 values by means of the inverse transform method [25]: this
identification is represented by the dashed lines that originate on the ordinates of
Fig. 6.2, middle, left and right, in correspondence of u1

1, u2
1, …, u4

1 and u1
2, u2

2, …,
u4

2, respectively, and then drop vertically to the abscissas to produce x1
1, x2

1, …, x4
1

and x1
2, x2

2, …, x4
2, respectively. The generation of the LHS is then completed by

randomly pairing without replacement the resulting values for X1 and X2. Since
this pairing is not unique, many different LHSs are possible, with the LHS in
Fig. 6.2, bottom, left, resulting from the pairings x1

1; x2
2

� �

, x2
1; x3

2

� �

, x3
1; x4

2

� �

,

x4
1; x1

2

� �

and the LHS in Fig. 6.2, bottom, right, resulting from the pairings

x1
1; x3

2

� �

, x2
1; x1

2

� �

, x3
1; x2

2

� �

, x4
1; x4

2

� �

(dots).
The effectiveness of LHS, and hence its popularity, derives from the fact that it

provides a dense stratification over the range of each uncertain variable with a
relatively small sample size while preserving the desirable probabilistic features of
simple random sampling, i.e., standard MCS [30].

A drawback of the LHS technique is that its highly structured form makes it
difficult to increase the size of an already existing Latin Hypercube Sample
while preserving its stratification properties. Unlike simple random sampling,
the size of a Latin hypercube sample cannot be increased simply by generating
additional sample elements as the new sample containing the original Latin
hypercube sample and the additional sample elements will no longer have the
structure of a Latin hypercube sample. For the new sample to also be a Latin
hypercube sample, the additional sample elements must be generated with a
procedure that takes into account the existing Latin hypercube sample that is
being increased in size and the definition of LHS [31]. Moreover, it has been
experimentally shown that LHS, which is very efficient for estimating mean
values and standard deviations in complex reliability problems [29], is only
slightly more efficient than standard MCS for estimating small failure proba-
bilities [33].
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Fig. 6.2 Examples of LHS for the generation of a sample of size NT = 4 from two rvs {X1, X2}
with X1 standard normal (first) and X2 uniform on (0, 1) (second). Top pdfs (thick solid lines);
third and fourth cdfs (thick solid lines) and corresponding disjoint intervals of equal probability
(thin solid lines); fifth and sixth two possible Latin hypercube samples of size NT = 4 originating
from two different possible random pairings (dots)
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6.5 Orthogonal Axis

The orthogonal axis (OA) method combines the first-order reliability method
(FORM) approximation [34] and MCS in a sort of IS around the ‘‘design point’’ of
the problem.

The OA algorithm proceeds as follows [35, 36]:

1. Transform X ¼ X1;X2; . . .;Xj; . . .;Xn

� �

2 R
n, i.e., the vector of uncertain

parameters/values defined in the original physical space X 2 R
n, into the

vector h 2 R
n, where each element of the vector hj, j = 1, 2, …, n, is asso-

ciated with a central unit Gaussian standard distribution [2]. Thus, the joint
pdf of h can simply be written as

/n hð Þ ¼
Y

n

j¼1

u hj

� �

ð6:35Þ

where u hj

� �

¼ 1=
ffiffiffiffiffiffi

2p
p

� �

e� h2
j =2ð Þ; j ¼ 1; 2; . . .; n;

2. With reference to the LSF gXðxÞ of the given problem (Sect. 6.1), find the
‘‘design point’’ h� of the problem (see Sect. 6.8.2.1 for the definition of the
design point);

3. Rotate the coordinate system (i.e., by means of a proper rotation matrix R) so
that the new coordinate hn is in the direction of the axis defined by the design
point h�;

4. Define a new failure function gaxis hð Þ as

gaxis hð Þ ¼ gX Rhð Þ ð6:36Þ

5. Writing h as ~h; hn


 �

, where ~h ¼ h1; h2; . . .; hn�1ð Þ, express the failure proba-

bility P(F) as follows:

P Fð Þ ¼ P gaxis
~h; hn


 �

� 0
h i

¼
Z

P gaxis
~h; hn


 �

� 0 ~h




h i

/n�1
~h

 �

d~h

¼ E�h P gaxis
~h; hn


 �

� 0
h in o

ð6:37Þ

6. Generate NT iid (n - 1)-dimensional samples ~h
k

: k ¼ 1; 2; . . .;NT

n o

, where

~h
k ¼ hk

1; h
k
2; . . .hk

n�1

� �

;

7. Compute an estimate P̂ Fð Þ for the failure probability P(F) as follows:

P̂ Fð Þ ¼ 1
NT

X

NT

k¼1

P gaxis
~h

k
; hn


 �

� 0
h i

ð6:38Þ

6.5 Orthogonal Axis 125



The terms P gaxis
~h

k
; hn


 �

� 0
h i

, k = 1, 2, …, NT, are evaluated with an iterative

algorithm which searches for the roots of the equation gaxis
~h

k
; hn


 �

¼ 0 [35, 36].

It is worth noting that the idea underlying the OA method is essentially the same as
that of LS. However, in OA the ‘‘important direction’’ is forced to coincide with
that of the design point of the problem; moreover, OA employs a rotation of the
coordinate system, which can be difficult to define in very high-dimensional
problems.

6.6 Dimensionality Reduction

Objective of the dimensionality reduction (DR) method is to reduce the variance
associated to the failure probability estimates by exploiting the property of
conditional expectation [35, 36]. In extreme synthesis, the LSF gX xð Þ� 0 is
re-expressed in such a way as to highlight one of the n uncertain input variables of
X (say, Xj); then, the failure probability estimate is computed as the expected value
of the cdf of Xj conditional on the remaining (n - 1) input variables. By so doing,
the zero values contained in the standard MCS estimator (i.e., IF(x) = 0, if x 2 F)
are removed: this allows to (1) reach any level of probability (even very small) and
(2) reduce the variance of the failure probability estimator [35, 36].

The DR algorithm proceeds as follows [35, 36]:

1. Write the failure event gX xð Þ ¼ gX x1; x2; . . .; xj; . . .; xn

� �

� 0 in such a way as
to highlight one of the n uncertain input variables (e.g., Xj)

xj� hX x�j

� �

; j ¼ 1; 2; . . .; n ð6:39Þ

where hX �ð Þ is a function defined on R
n�1 which takes values on the set of all

(measurable) subsets of R and x�j is a vector containing values of all the

uncertain input variables except the value xj of Xj, i.e., x�j ¼ x1; x2; . . .; xj�1;
�

xjþ1; . . .; xnÞ;
2. Write the failure probability P(F) as follows

P Fð Þ ¼ P gX xð Þ� 0
� 	

¼ P xj� hX x�j

� �� 	

¼ EX�j
FXjjX�j

hX x�j

� �� 	

n o

ð6:40Þ

where FXjjX�j
�ð Þ is the cdf of Xj conditional on X�j;
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3. Draw NT samples xk
�j : k ¼ 1; 2; . . .;NT

n o

, where xk
�j ¼ xk

1; x
k
2; . . .; xk

j�1; x
k
jþ1;




. . .; xk
nÞ, from the (n - 1)-dimensional marginal pdf qm x�j

� �

, i.e.,

qm x�j

� �

¼ qm x1; x2; . . .; xj�1; xjþ1; . . .; xn

� �

¼
R

xj
q x1; x2; . . .; xj; . . .; xn

� �

dxj;

4. Using the last expression in Eq. (6.39), compute an unbiased and consistent
estimate P̂ Fð Þ for the failure probability P(F) as follows

P̂ Fð Þ ¼ 1
NT

X

NT

k¼1

FXjjX�j
hX xk

�j


 �h i

ð6:41Þ

It is worth noting that in Eq. (6.40) the failure probability estimate is com-
puted as the expected value of the cdf FXjjX�j

�ð Þ of Xj conditional on the

remaining (n - 1) uncertain variables. Since this quantity takes values between
0 and 1, the zero values contained in the standard MCS estimator (i.e., IF(x) = 0,
if x 2 F) are removed: this allows to (1) reach any level of failure probability
(even very small) and (2) reduce the variance of the failure probability estimator.
However, such method cannot always be applied: first, the PF gX �ð Þ must be
known analytically; second, it must have the property that one of the uncertain
input variables can be separated from the others to allow rewriting the failure
condition gX xð Þ� 0 in the form of Eq. (6.39) [35, 36].

Finally, notice that DR can be considered a very special case of line sampling
(LS, Sect. 6.8) where the PF gX �ð Þis analytically known and the important direction

a coincides with the ‘‘direction’’ of the variable Xj, i.e., a ¼ 0; 0; . . .; xj; . . .; 0; 0
� �

.

6.7 Subset Simulation

Subset simulation (SS) is an adaptive stochastic simulation method for efficiently
computing small failure probabilities, originally developed for the reliability
analysis of structural systems [37]. The underlying idea is to express the (small)
failure probability as a product of (larger) probabilities conditional on some
intermediate failure events. This allows converting a rare-event simulation into a
sequence of simulations of more frequent events. During simulation, the condi-
tional samples are generated by means of a Markov chain designed so that the
limiting stationary distribution is the target conditional distribution of some
adaptively chosen failure event; by so doing, the conditional samples gradually
populate the successive intermediate failure regions up to the final target (rare)
failure region [1].

For a given target failure event F of interest, [i.e., the failure region F � R
n, see

Eq. (6.1)] let F1 � F2 � � � � � Fm ¼ F be a sequence of intermediate failure
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events (sets in R
n), so that Fk ¼ \k

i¼1Fi; k ¼ 1; 2; . . .; m: By sequentially condi-
tioning on the event Fi, the failure probability P(F) can be written as:

P Fð Þ ¼ P Fmð Þ ¼ P F1ð Þ
Y

m�1

i¼1

P Fiþ1 Fijð Þ ð6:42Þ

Notice that even if P(F) is small, the conditional probabilities involved in Eq.
(6.42) can be made sufficiently large by appropriately choosing m and the inter-
mediate failure events {Fi, i = 1, 2, …, m - 1}.

The original idea of SS is to estimate the failure probability P(F) by estimating
P(F1) and fPðFiþ1jFiÞ : i ¼ 1; 2; . . .;m� 1g. Considering for example P(F) �
10-5 and choosing m = 5 intermediate failure events such that P(F1) and
fPðFiþ1jFiÞ : i ¼ 1; 2; 3; 4g � 0:1, the conditional probabilities can be evaluated
efficiently by simulation of the relatively frequent failure events [37].

Standard MCS can be used to estimate P(F1). On the contrary, computing the
conditional failure probabilities in Eq. (6.42) by MCS entails the nontrivial task of
sampling from the conditional distributions of X given that it lies in Fi, i = 1, 2,…,
m - 1, i.e., from qX xjFið Þ ¼ qX xð ÞIFi xð Þ

�

P Fð Þ. In this regard, Markov Chain
Monte Carlo (MCMC) simulation provides a powerful method for generating
samples conditional on the failure region Fi, i = 1, 2,…, m - 1 [1, 37]. The
related algorithm is presented in Sect. 6.7.1.

6.7.1 Markov Chain Monte Carlo Simulation

MCMC simulation comprises a number of powerful simulation techniques for
generating samples according to any given probability distribution [38–40].

In the context of the failure probability assessment of interest here, MCMC
simulation provides an efficient way for generating samples from the multidi-
mensional conditional pdf qXðxÞ. The distribution of the samples thereby generated
tends to the multidimensional conditional pdf qX xjFð Þ as the length of the Markov
chain increases. In mathematical terms, letting xu : u ¼ 1; 2; . . .;Nsf g be the set of
MCMC samples, then xNs tends to be distributed as qX xjFð Þ as Ns ? ?. In the
particular case of the initial sample x1 being distributed exactly as the multidi-
mensional conditional pdf qX xjFð Þ, then so are the subsequent samples and the
Markov chain are always stationary [37].

Furthermore, since in practical applications dependent rvs may often be gen-
erated by some transformation of independent rvs, in the following it is assumed
without loss of generality that the components of X are independent, that is,

qX xð Þ ¼
Q

n

j¼1
qj xj

� �

, where qj xj

� �

denotes the 1-D pdf of xj [37].
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To illustrate the MCMC simulation algorithm with reference to a generic failure

region Fi, let ~xu ¼ ~xu
1;~x

u
2; . . .;~xu

j ; . . .;~xu
n

n o

be the uth Markov chain sample drawn

and let p�j ðnjjxu
j Þ; j ¼ 1; 2; . . .; n; be a one-dimensional ‘proposal pdf’ for nj,

centered at the value xu
j and satisfying the symmetry property

p�j ðnjjxu
j Þ ¼ p�j ðxu

j jnjÞ. Such distribution, arbitrarily chosen for each element xj of x,
allows generating a ‘‘precandidate value’’ nj based on the current sample value xu

j .
The following algorithm is then applied to generate the next Markov chain sample

~xuþ1 ¼ ~xuþ1
1 ;~xuþ1

2 ; . . .;~xuþ1
j ; . . .;~xuþ1

n

n o

, u = 1, 2, …, Ns - 1 [37]:

1. Generation of a candidate sample ~xuþ1 ¼ ~xuþ1
1 ;~xuþ1

2 ; . . .;~xuþ1
j ; . . .;~xuþ1

n


 �

: for

each parameter xj, j = 1, 2, …, n:

(a) Sample a precandidate value nuþ1
j from p�j ð�jxu

j Þ;
(b) Compute the acceptance ratio

ruþ1
j ¼

qjðnuþ1
j Þ

qjðxu
j Þ

ð6:43Þ

(c) Set the new value ~xuþ1
j of the jth element of ~xuþ1 as follows:

~xuþ1
j ¼ nuþ1

j with probability minð1; ruþ1
j Þ

xu
j with probability 1�minð1; ruþ1

j Þ

(

ð6:44Þ

2. Acceptance/rejection of the candidate sample vector ~xuþ1:
If ~xuþ1 ¼ xu (i.e., no precandidate values have been accepted), set ~xuþ1 ¼ xu.
Otherwise, check whether ~xuþ1 is a system failure configuration, i.e.,
~xuþ1 2 Fi: if it is, then accept the candidate ~xuþ1 as the next state, i.e., set
xuþ1 ¼ ~xuþ1; otherwise, reject the candidate ~xuþ1 and take the current sample
as the next one, i.e., set xuþ1 ¼ xu.

In synthesis, a candidate sample ~xuþ1 is generated from the current sample xu

and then either the candidate sample ~xuþ1 or the current sample xu is taken as the
next sample xuþ1, depending on whether the candidate ~xuþ1 lies in the failure
region Fi or not. For clarity, a pictorial representation of the MCMC simulation
algorithm is provided in Fig. 6.3.

Step 1 above can be viewed as a ‘‘local’’ random walk in the neighborhood of the
current state xu, while step 2 above ensures that the next sample always lies in Fi so
as to produce the correct conditioning in the samples. Thus, step 2 is, in principle,
similar to the standard MCS approach in that both are based on accepting samples
that lie in Fi. However, the acceptance rate for the Metropolis algorithm should be
considerably higher than for standard MCS, because the candidate state ~xuþ1 is
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simulated in the neighborhood of the current state ~xu 2 Fi if the proposal pdfs

p�j : j ¼ 1; 2; . . .; n
n o

are sufficiently local and so ~xuþ1 should have a high proba-

bility of lying in Fi. Thus, Markov chain simulation accelerates the efficiency of
exploring the failure region. The higher acceptance rate, however, is gained at the
expense of introducing dependence between successive samples, which inevitably
reduces the efficiency of the conditional failure probability estimators [1].

Proof of Stationary Distribution of the Markov Chain

In this section, we show that the next sample xuþ1 of the Markov chain is dis-
tributed as qX �jFið Þ if the current sample xu is, and hence qX �jFið Þ is the stationary
distribution of the Markov chain. Since all the Markov chain samples lie in Fi, it is
sufficient to consider the transition between the states in Fi, which is governed by
step 1 of the MCMC Simulation algorithm described in Sect. 6.7.1.

According to step 1 above, the transition of the individual components of xu is
independent, so the transition pdf of the Markov chain between any two states in Fi

can be expressed as a product of the component transition pdfs

pðxuþ1jxuÞ ¼
Y

n

j¼1

pjðxuþ1
j jxu

j Þ ð6:45Þ

where pjð�jxu
j Þ is the transition pdf for the jth component of xu.

Fig. 6.3 Illustration of the
MCMC simulation algorithm
[37]
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For xuþ1
j 6¼ xu

j

pjðxuþ1
j jxu

j Þ ¼ p�j ðxuþ1
j jxu

j Þmin 1;
qjðxuþ1

j Þ
qjðxu

j Þ

)(

ð6:46Þ

Using Eq. (6.46), together with the symmetry property of p�j ð�jxu
j Þ and the

identity min{1, a/b}b = min{1, b/a}a for any positive numbers a and b, it is
straightforward to show that pjð�jxu

j Þ satisfies the ‘reversibility’ condition with
respect to qjð�Þ

pjðxuþ1
j jxu

j Þqjðxu
j Þ ¼ pjðxu

j jxuþ1
j Þqjðxuþ1

j Þ ð6:47Þ

Combining Eqs. (6.45) and (6.47) and the fact that all the states lie in Fi, the
transition pdf for the whole state xu also satisfies the following reversibility con-
dition with respect to q(�|Fi)

p xuþ1jxu
� �

qX xujFið Þ ¼ p xujxuþ1
� �

qX xuþ1jFi

� �

ð6:48Þ

Thus, if the current sample xu is distributed as q(�|Fi), then

p xuþ1
� �

¼
Z

p xuþ1jxu
� �

qX xujFið Þdxu

¼
Z

p xujxuþ1
� �

qX xuþ1jFi

� �

dxu

¼ qX xuþ1jFi

� �

Z

p xujxuþ1
� �

dxu

¼ qX xuþ1jFi

� �

ð6:49Þ

since
R

p xu xuþ1




� �

dxu ¼ 1: This shows that the next Markov chain sample xuþ1

will also be distributed as qX �jFið Þ, and so the latter is indeed the stationary
distribution for the generated Markov chain.

6.7.2 The Subset Simulation Procedure

Utilizing the MCMC Simulation method described in Sect. 6.7.1, SS proceeds as
follows. First, N vectors xk

0 : k ¼ 1; 2; . . .;N
� �

are simulated by standard MCS to

compute an estimate ~P1 for P F1ð Þ by

PðF1Þ � ~P1 ¼
1
N

X

N

k¼1

IF1ðxk
0Þ ð6:50Þ

where xk
0 : k ¼ 1; 2; . . .;N

� �

are iid samples drawn from the original multidi-
mensional pdf qX �ð Þ. The subscript ‘‘0’’ denotes the fact that these samples
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correspond to ‘‘Conditional Level 0’’. Among the iid samples
xk

0 : k ¼ 1; 2; . . .;N
� �

, those lying in F1 can be readily identified: these samples
are at ‘‘Conditional level 1’’ and are distributed as qX �jF1ð Þ. Starting from each of
these samples, additional conditional samples lying in F1 are generated using
MCMC simulation: as shown in Sect. 6.7.1, these samples will also be distributed
as qX �jF1ð Þ because the Markov chain is in stationary state. These samples can be

used to estimate P(F2|F1) using an estimator ~P2 similar to Eq. (6.49). Notice that
the Markov chain samples which lie in F2 are at ‘‘Conditional level 2’’ and
distributed as qX �jF2ð Þ; thus, they provide seeds for simulating more samples
according to qX �jF2ð Þ to estimate P(F3|F2). Repeating the process, the conditional
failure probabilities can be computed for the higher conditional levels until the
failure region of interest F (� Fm) is reached. At the ith conditional level, i = 1, 2,
…, m - 1, let xk

i : k ¼ 1; 2; . . .;N
� �

be the Markov chain samples with distribu-
tion qX �jFið Þ, possibly coming from different chains generated by different seeds;
then

PðFiþ1jFiÞ � ~Piþ1 ¼
1
N

X

N

k¼1

IFiþ1ðxk
iÞ ð6:51Þ

Finally, combining Eqs. (6.42), (6.50) and (6.51), the failure probability esti-
mator is

~PF ¼
Y

m

i¼1

~Pi ð6:52Þ

Notice that the total number of samples generated during the SS procedure is
roughly NT = mN where m is the number of levels and N is the number of samples
generated for each level i = 1, 2, …, m.

6.7.3 Statistical Properties of Estimators

In this section, results are presented about the statistical properties of the esti-
mators ~Pi, i = 1, 2, …, m, and ~PF . The detailed derivation of these results can be
found in [37].

Monte Carlo Simulation Estimator ~P1

As it is well known, the MCS estimator ~P1 in Eq. (6.50), computed using the iid
samples xk

0 : k ¼ 1; 2; . . .;N
� �

converges almost surely to P1 (Strong Law of
Large Numbers), is unbiased, consistent, and normally distributed as N ? ?
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(Central Limit Theorem). The coefficient of variation (c.o.v., defined as the ratio of
the standard deviation to the mean of the estimate) of ~P1, d1, is given by

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PðF1Þ
NPðF1Þ

s

ð6:53Þ

Conditional Probability Estimator ~Pi; i ¼ 2; 3; . . .;m

Since the Markov chains generated at each conditional level are started with
samples distributed as the corresponding target conditional pdf, the Markov chain
samples used for computing the conditional probability estimators based on Eq.
(6.51) are all identically distributed as the target conditional pdf. It follows that the
conditional probability estimators ~Pi, i = 2, 3, …, m, are unbiased. The c.o.v. of
~Pi, di, is given by

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PðFijFi�1Þ
NPðFijFi�1Þ

ð1þ ciÞ

s

ð6:54Þ

where

ci ¼ 2
X

N=Nc�1

s¼1

1� sNc

N

� �

qiðsÞ ð6:55Þ

is a correlation factor. It has been assumed that at each simulation level there are
Nc Markov chains developed, each having N/Nc samples, so that the total number
of samples generated at each simulation level is Nc 9 N/Nc = N (the question of
how to maintain a fixed number of chains Nc will be discussed later). In Eq. (6.55)

qiðsÞ ¼ RiðsÞ=Rið0Þ ð6:56Þ

is the correlation coefficient at lag s of the stationary sequence IFiðx
c;u
i�1Þ :

�

u ¼ 1; 2; . . .;N=Ncg:, where xc;u
i�1 denotes the uth sample along the cth chain

(started from the cth seed) at the (i - 1)th simulation level. In Eq. (6.56)

RiðsÞ ¼ E IFiðx
c;u
i�1Þ � PðFijFi�1Þ

� 	

� IFiðx
c;uþs
i�1 Þ � PðFijFi�1Þ

� 	��

¼ E IFiðx
c;u
i�1ÞIFiðx

c;uþs
i�1 Þ

� 	

� PðFijFi�1Þ2
ð6:57Þ

is the covariance between IFiðx
c;u
i�1Þ and IFiðx

c;uþs
i�1 Þ, for any u = 1, 2, …, N/Nc, and

it is independent of u due to stationarity. It is also independent of the chain index
c since all chains are probabilistically equivalent.
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The covariance sequence RiðsÞ : s ¼ 1; 2; . . .;N=Nc � 1f g can be estimated
using the Markov chain samples xc;u

i�1 : c ¼ 1; 2; . . .;Nc; u ¼ 1; 2; . . .;N=Nc

� �

at
the (i - 1)th conditional level by

RiðsÞ � ~RðsÞ ¼ 1
N � sNc

X

Nc

c¼1

X

N=Nc�1

s¼1

IFiðx
c;u
i�1ÞIFiðx

c;uþs
i�1 Þ

 !

� ~Pi ð6:58Þ

from which the correlation sequence qiðsÞ : s ¼ 1; 2; . . .;N=Nc � 1f g and hence
the correlation factor ci in Eq. (6.55) can also be estimated. Consequently,
the c.o.v. di for the conditional estimator ~Pi can be estimated by Eq. (6.54), where
PðFijFi�1Þ is approximated by ~Pi using Eq. (6.51).

Failure Probability Estimator ePF

Due to the correlation among the estimators ~Pi : i ¼ 1; 2; . . .;m
� �

, ~PF given by
Eq. (6.52) is biased for every N. This correlation is due to the fact that the samples
used for computing ~Pi which lie in Fi are used to start the Markov chains to
compute ~Piþ1. It can be shown that the fractional bias of ~PF is bounded by

E
~PF � PðFÞ

PðFÞ

� �
















�
X

i [ j

didj þ oð1=NÞ ¼ Oð1=NÞ ð6:59Þ

which means that ~PF is asymptotically unbiased and the bias is O(1/N).
On the other hand, the c.o.v. d of ~PF may be bounded above by using

d2 ¼ E
~PF � PðFÞ

PðFÞ

� �

�
X

m

i;j¼1

didj þ oð1=NÞ ¼ Oð1=NÞ ð6:60Þ

showing that ~PF is a consistent estimator and its c.o.v. d is Oð1=
ffiffiffiffi

N
p
Þ. Note that the

c.o.v. d in Eq. (6.60) is defined through the expected deviation about the target
failure probability P(F) instead of E ~PF

� 	

so that the effects of the bias are
accounted for. The upper bound corresponds to the case when the conditional
probability estimators ~Pi : i ¼ 2; 3; . . .;m

� �

are fully correlated. The actual c.o.v.

depends on the correlation between the ~Pi’s. If all the ~Pi’s were uncorrelated, then

d2 ¼
X

m

i¼1

d2
i ð6:61Þ

Although the ~Pi’s are generally correlated, simulations show that d2 may be
well approximated by Eq. (6.61). This will be illustrated in the applications of the
Sects. 7.1 and 7.2.
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6.7.4 Implementation Issues

Choice of the Proposal Pdfs

The proposal pdfs P�j : j ¼ 1; 2; . . .; n
n o

affect the deviation of the candidate

sample from the current one, thus controlling the efficiency of the Markov chain
samples in populating the failure region. Simulations show that the efficiency of
the method is almost insensitive to the type of the proposal pdfs, and hence those
which can be manipulated most easily may be used. For example, the uniform pdf
centered at the current sample with a proper width is a good candidate for

P�j : j ¼ 1; 2; . . .; n
n o

, and thus it will be used in the applications of the Sects. 7.1

and 7.2.
On the other hand, the spreads of the proposal pdfs affect the size of the region

covered by the Markov chain samples, and consequently they control the effi-
ciency of the method. Small spreads tend to increase the correlation between
successive samples due to their proximity to the conditioning central value, thus
slowing down the convergence of the failure probability estimators. Indeed, as it
has been shown in Sects. 6.7.3.2 and 6.7.3.3, the c.o.v. of the failure probability
estimates, increases as the correlation between the successive Markov chain
samples increases. On the other hand, excessively large spreads may reduce the
acceptance rate, increasing the number of repeated Markov chain samples, still
slowing down convergence [1]. The optimal choice of the spread of the proposal

pdfs P�j : j ¼ 1; 2; . . .; n
n o

is therefore a tradeoff between acceptance rate and

correlation due to proximity of the MCMC samples. Roughly speaking, the spread
of p�j may be chosen as some fraction of the standard deviation of the corre-
sponding parameter xj; j ¼ 1; 2; . . .; n; as specified by the original pdf qðxÞ,
although the optimal choice depends on the particular type of the problem [1].

Choice of Intermediate Failure Events

The choice of the intermediate failure regions Fi : i ¼ 1; 2; . . .;m� 1f g plays a key
role in the SS procedure. Two issues are basic to their choice. The first is a
parameterization of the target failure region F which allows the generation of
intermediate failure regions by varying the value of the defined parameter. The
second issue concerns the choice of the specific sequence of values of the defined
parameter which affects the values of the conditional failure probabilities

P Fiþ1 Fijð Þ : i ¼ 1; 2; . . .;m� 1f g and hence the efficiency of the SS procedure [37].
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Generic Representation of Failure Regions

Many failure regions encountered in engineering applications are a combination of
the union and intersection of failure regions of components. In particular, consider
a failure region of the following form

F ¼
[

n

b¼1

\

nb

j¼1

x : ObjðxÞ\DbjðxÞ
� �

ð6:62Þ

where ObjðxÞ and DbjðxÞ may be viewed as the output performance and demand
variables of the component (b, j) of the system, respectively. The failure region
F in Eq. (6.62) can be considered as the failure of a system with g subsystems
connected in series, where the bth subsystem consists of nb components connected
in parallel.

In order to apply SS, it is requested to parameterize F with a single parameter so
that the sequence of intermediate failure regions Fi : i ¼ 1; 2; . . .;m� 1f g can be
generated by varying that parameter. This can be accomplished as follows. For the
failure region F in Eq. (6.62), the ‘‘critical output-to-demand ratio’’ (CODR) YðxÞ
is defined as

YðxÞ ¼ max
b¼1;2;...;n

min
j¼1;2;...nb

ObjðxÞ
DbjðxÞ

ð6:63Þ

Then, it can be easily verified that

F ¼ x : YðxÞ\1f g ð6:64Þ

and so the sequence of intermediate failure regions can be generated as

Fi ¼ x : YðxÞ\yif g ð6:65Þ

where y1 [ y2 [ � � � [ yi [ � � � [ ym ¼ y [ 0 is a decreasing sequence of
(normalized) intermediate threshold values.

It is straightforward to generalize to failure regions consisting of multiple stacks
of unions and intersections. Essentially, Y is defined using ‘‘max’’ and ‘‘min’’ in
the same order corresponding to each occurrence of union ([) and intersection (\)
in F, respectively [1].

Choice of Intermediate Threshold Levels

The choice of the sequence of intermediate threshold values yi; i ¼ 1; 2; . . .;mf g
appearing in the parameterization of intermediate failure regions affects the values
of the conditional failure probabilities, and hence the efficiency of the SS proce-
dure. If the sequence decreases slowly, then the conditional probabilities will be
large, and so their estimation requires a low number of samples N. A slow
sequence, however, requires more simulation levels m to reach the target failure
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region, increasing the total number of samples NT = mN in the whole procedure.
Conversely, if the sequence increases so rapidly that the conditional failure events
become rare, it will require a high number of samples N to obtain an accurate
estimate of the conditional failure probabilities in each simulation level, which
again increases the total number of samples NT. Thus, it can be seen that the choice
of the intermediate threshold values is a tradeoff between the number N of samples
required in each simulation level and the number m of simulation levels required to
reach the target failure region [37].

One strategy for the choice of the intermediate threshold values is to select the
yi’s a priori; unfortunately, in this case it is difficult to control the values of
the conditional probabilities PðFiþ1jFiÞ : i ¼ 1; 2; . . .;m� 1f g. For this reason, in
the applications of the Sects. 7.1 and 7.2 the yi’s are chosen ‘‘adaptively’’ so that
the estimated conditional probabilities PðFiþ1jFiÞ : i ¼ 1; 2; . . .;m� 1f g are equal
to a fixed value p0 2 (0, 1). This can be accomplished by choosing the intermediate
threshold level yi, i = 1, 2, …, m, as the (1 - p0)Nth smallest value (i.e., an order
statistics) among the CODRs Y xk

i�1

� �

: k ¼ 1; 2; . . .;N
� �

where the xk
i�1’s are the

Markov chain samples generated at the (i - 1)th conditional level for i = 2, 3, …,
m - 1, and the xk

0’s are the samples from the initial standard MCS. This choice of
the intermediate threshold levels implies that they are dependent on the conditional
samples and will vary in different simulation runs. For a target failure probability
level of 10-3–10-6, choosing p0 = 0.1 is found to yield good efficiency [37].

Computational Flow of Subset Simulation

According to the considerations made in Sect. 6.7.4.2, in the actual SS imple-
mentation it is assumed, with no loss of generality, that the failure event of interest
can be defined in terms of the value of a critical response variable Y of the system
under analysis being lower than a specified threshold level y, i.e., F = {Y \ y}.
The sequence of intermediate failure events Fi : i ¼ 1; 2; . . .;mf g can then be
correspondingly defined as Fi Y\yif g; i ¼ 1; 2; . . .;mf g, where y1 [ y2 [ � � � [
yi [ � � � [ ym ¼ y [ 0 is a decreasing sequence of intermediate threshold values
[1, 37].

Moreover, the intermediate threshold values are chosen adaptively in such a
way that the estimated conditional failure probabilities are equal to a fixed value p0

[1, 37].
The SS algorithm proceeds as follows (Fig. 6.4). First, N vectors

xk
0 : k ¼ 1; 2; . . .;N

� �

are sampled by standard MCS, i.e., from the original pdf
function qX �ð Þ. The subscript ‘0’ denotes the fact that these samples correspond to
‘‘Conditional Level 0’’. The corresponding values of the response variable

Y xk
0

� �

: k ¼ 1; 2; . . .;N
� �

are then computed and the first intermediate threshold
value y1 is chosen as the (1 - p0)Nth value in the decreasing list of values

Y xk
0

� �

: k ¼ 1; 2; . . .;N
� �

. By so doing, the sample estimate of P(F1) = P(Y \ y1)
is equal to p0 (note that it has been implicitly assumed that p0N is an integer value).
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With this choice of y1, there are now p0N samples among xk
0 : k ¼ 1; 2; . . .;N

� �

whose response Y lies in F1 = {Y \ y1}. These samples are at ‘‘Conditional level
1’’ and distributed as qX �jF1ð Þ. Starting from each one of these samples, MCMC
simulation is used to generate (1 - p0)N additional conditional samples distrib-
uted as qX �jF1ð Þ, so that there are a total of N conditional samples

xk
0 : k ¼ 1; 2; . . .;N

� �

2 F1, at ‘‘Conditional level 1’’. Then, the intermediate
threshold value y2 is chosen as the (1 - p0)Nth value in the descending list of

Y xk
1

� �

: k ¼ 1; 2; . . .;N
� �

to define F2 ¼ Y\y2f g so that, again, the sample
estimate of PðF2jF1Þ ¼ PðY\y2jY\y1Þ is equal to p0. The p0N samples lying in
F2 are conditional values from qX �jF2ð Þ and function as ‘‘seeds’’ for sampling
(1 - p0)N additional conditional samples distributed as qX �jF2ð Þ, making up a total

of N conditional samples xk
2 : k ¼ 1; 2; . . .;N

� �

at ‘‘Conditional level 2’’. This
procedure is repeated for the remaining conditional levels until the samples at
‘‘Conditional level (m - 1)’’ are generated to yield ym \ y as the (1 - p0)Nth
value in the descending list of Y xk

m�1

� �

: k ¼ 1; 2; . . .;N
� �

, so that there are
enough samples for estimating P(Y \ y).

Fig. 6.4 Flow diagram of the SS algorithm
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In the end, with this procedure the exact total number of samples generated is
equal to N ? (m - 1)(1 - p0)N [41].

For clarity sake, a step-by-step illustration of the procedure for Conditional
levels 0 and 1 is provided in Fig. 6.5 by way of an example.

Notice that the procedure is such that the response values yi; i ¼ 1; 2; . . .;mf g at
the specified probability levels PðF1Þ ¼ p0, P F2ð Þ ¼ p F2jF1ð ÞP F1ð Þ ¼ p2

0, …,
P Fmð Þ ¼ pm

0 are estimated, rather than the failure probabilities P F1ð Þ, P F2jF1ð Þ,
…, P FmjFm�1ð Þ, which are a priori fixed at p0. In this view, SS is a method for
generating samples whose response values correspond to specified probability
levels, rather than for estimating probabilities of specified failure events. As a
result, it produces information about P Y\yð Þ versus y at all the simulated values
of Y rather than at a single value of y. This feature is important because the whole
trend of P Y\yð Þ versus y obviously provides much more information than a point
estimate [42].

For a threshold value y of interest that does not coincide with the simulated
values of Y, the following formula may be used for estimating P(F) = P(Y \ y),
which follows directly from the Theorem of Total Probability (Appendix A.4)

P Fð Þ
X

m

i¼0

P FjBið ÞP Bið Þ ð6:66Þ

where

B0 ¼ �F1 ¼ Y � y1f g
Bi ¼ Fi � Fiþ1 ¼ yiþ1� Y\yif g; i ¼ 1; 2; . . .;m� 1

Bm ¼ Fm ¼ Y\ymf g
ð6:67Þ

are ‘‘bins’’ derived from the intermediate failure events Fi : i ¼ 1; 2; . . .;mf g.
Note that Bi : i ¼ 0; 1; . . .;mf g form a partition of the uncertain parameter

space, i.e., p Bi \ Bj

� �

¼ 0 for i 6¼ j and
P

m

i¼0
P Bið Þ ¼ 1. In fact

p B0ð Þ ¼ 1� p0

p Bið Þ ¼ pi
0 � piþ1

0 ; i ¼ 1; 2; . . .;m� 1

p Bmð Þ ¼ pm
0

ð6:68Þ

The conditional probability P FjBið Þ in Eq. (6.66) is simply estimated as the
fraction of samples in Bi that lie in F (i.e., with corresponding Y \ y), whereas the
samples conditional on each bin Bi can be readily obtained from those in SS.
Basically, the (1 - p0)N samples at Conditional Level 0 that do not lie in Con-
ditional Level 1 are collected in B0; for i = 1, 2, …, m - 1, the (1 - p0)N samples
at Conditional Level i (with corresponding Y \ yi) that do not lie in Conditional
Level (i ? 1) (i.e., with Y C yi+1) are collected in Bi; the samples in Fm (i.e., with
Y \ ym) are collected in Bm [42].
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Fig. 6.5 Illustration of the
SS procedure: a conditional
level 0: standard Monte Carlo
simulation; b conditional
level 0: adaptive selection of
y1; c conditional level 1:
MCMC simulation;
d conditional level 1:
adaptive selection of y2
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Computational Efficiency

The computational efficiency of SS relative to standard MCS increases with
decreasing failure probability to be estimated; in fact, the computational effort
depends roughly on the logarithm of P(F) and so grows more slowly as
P(F) decreases than for standard MCS [37].

To get an idea of the number of samples required to achieve a given accuracy in
~PF , consider the case where P(F1) = P(Fi+1|Fi) = p0 and the same number of
samples N is used in the simulation at each level. Then, from Eq. (6.54) the c.o.v. di

of the estimator for a failure probability P(Fi), i = 2, 3, …, m, could be obtained by

�d2
i ¼
ð1� p0Þð1þ �cÞ

Np0
; i ¼ 2; 3; . . .; m ð6:69Þ

where �c is a suitable average value of the correlation parameters ci defined in
Eq. (6.55) for the simulated samples at each level; by so doing, the di’s are
assumed to be the same for all conditional levels i = 2, 3, …, m [37]. Using Eqs.
(6.54) and (6.61) and noting that the number of simulation levels m necessary to
reach the target failure probability P Fð Þ ¼ pm

0 is m ¼ log P Fð Þ= log p0, it can be
concluded that in order to achieve a given c.o.v. of �d in the estimate ~PF , the total
number of samples required is roughly

NT � mN ¼ log P Fð Þð Þ2ð1� p0Þð1þ �cÞ
ðlog p0Þ2p0

�d2
ð6:70Þ

Thus, for a fixed p0 and �d, NT / log P Fð Þð Þ2. Compared with standard MCS,
where NT / 1/P(F), this implies a substantial improvement in efficiency when
estimating small probabilities. In particular, for standard MCS, the minimum
number of samples required to give a c.o.v. of �d is N0 ¼ 1� P Fð Þð Þ

�

P Fð Þ�d2. A
measure of the efficiency of SS relative to standard MCS is then given by

N0

NT
¼ p0 1� P Fð Þð Þ log p0ð Þ2

P Fð Þ log P Fð Þð Þ2 1� p0ð Þ 1þ �cð Þ
ð6:71Þ

It is noted that the computational overhead required for SS, beyond that due to
the system analysis for each sample that is also required in standard MCS, is
negligible. Taking p0 = 0.1, for target failure probabilities of P(F) = 10-3 and
10-6 (that correspond to m = 3 and six conditional levels, respectively), the above
equation gives N0/NT = 4 and 1,030, respectively (since �c is about 2) [37]. This
shows that SS becomes more efficient than standard MCS for smaller values of
P(F). This gain in efficiency is based on �c, which can be achieved if the proposal
distribution is chosen properly [1].
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6.8 Line Sampling

Line sampling (LS) has been originally developed for the reliability analysis of
complex structural systems with small failure probabilities [43]. The underlying
idea is to employ lines instead of random points in order to probe the failure
domain of the high-dimensional system under analysis [44].

The problem of computing the multidimensional failure probability integral
(Sect. 6.1) in the original ‘‘physical’’ space is transformed into the so-called
‘‘standard normal space’’, where each rv is represented by an independent central
unit Gaussian distribution. In this space, a unit vector a (hereafter also called
‘‘important unit vector’’ or ‘‘important direction’’) is determined, possibly pointing
toward the failure domain F of interest (for illustration purposes, two plausible
important unit vectors, a1 and a2, pointing toward two different failure domains, F1

and F2, are visually represented in Fig. 6.6, left and right, respectively, in a two-
dimensional uncertain parameter space). The problem of computing the high-
dimensional failure probability integral in Eq. (6.1) is then reduced to a number of
conditional 1-D problems, which are solved along the ‘‘important direction’’ a in
the standard normal space. The conditional 1-D failure probabilities (associated to
the conditional 1-D problems) are readily computed by using the standard normal
cdf [44].

6.8.1 Transformation of the Physical Space into the Standard
Normal Space

Let X ¼ X1;X2; . . .;Xj; . . .;Xn

� �

2 R
n be the vector of uncertain parameters

defined in the original physical space X 2 R
n. For problems where the dimension

n is not so small, the parameter vector X can be transformed into the vector h 2 R
n,

where each element of the vector hj, j = 1, 2, …, n, is associated with a central
unit Gaussian standard distribution [2]. The joint pdf of the random parameters
hj : j ¼ 1; 2; . . .; n
� �

is, then

u hð Þ ¼
Y

n

j¼1

/jðhjÞ ð6:72Þ

where uj hj

� �

¼ 1
�
ffiffiffiffiffiffi

2p
p

� �

e�x2
j =2, j = 1, 2,…, n.

The mapping from the original, physical vector of rvs X 2 R
n to the standard

normal vector h 2 R
n is denoted by TXhð�Þ and its inverse by ThXð�Þ, i.e.,

h ¼ TXhð�Þ ð6:73Þ

X ¼ ThXð�Þ ð6:74Þ
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Transformations [Eq. (6.73) and (6.74)] are in general nonlinear and are
obtained by applying Rosenblatt’s or Nataf’s transformations, respectively [45–47];
they are linear only if the random vector X is jointly Gaussian distributed. By
transformation [Eq. (6.73)], also the PF gXð�Þ defined in the physical space can be
transformed into gh �ð Þ in the standard normal space

ghðhÞ ¼ gXðxÞ ¼ gXðThXðhÞÞ ð6:75Þ

Since in most cases of practical interest the function gh hð Þ is not known ana-
lytically, it can be evaluated only point wise. According to Eq. (6.75), the eval-
uation of the system PF gh �ð Þ at a given point hk, k = 1, 2,…, NT, in the standard
normal space requires (1) a transformation into the original space, (2) a complete
simulation of the system response, and (3) the computation of the system per-
formance from the response. The computational cost of evaluating the failure
probability is governed by the number of system performance analyses that have to
be carried out [2].

Fig. 6.6 Examples of
possible important unit
vectors a1 (left) and a2 (right)
pointing toward the
corresponding failure
domains F1 (left) and F2

(right) in a two-dimensional
uncertain parameter space
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6.8.2 The Important Direction a for Line Sampling: Interpretation
and Identification

In this section, (1) three methods proposed in the open literature to identify the LS
important direction a are summarized, (2) the interpretation of the important unit
vector a as the direction of the ‘‘design point’’ in the standard normal space is
given, (3) the interpretation of a as the normalized gradient of the PF in the
standard normal space is presented, (4) a method for calculating the important unit
vector a as the normalized ‘‘center of mass’’ of the failure domain F of interest is
provided.

Design Point Direction

A plausible selection of a ¼ a1; a2; . . .; aj; . . .; an

� �

could be the direction of the
‘‘design point’’ in the standard normal space [43]. According to a geometrical
interpretation, the ‘‘design point’’ is defined as the point h� on the limit state
surface gh hð Þ ¼ 0 in the standard normal space, which is closest to the origin [2]
(Fig. 6.7). It can be computed by solving the following constrained minimization
problem

Find h� : jjh�jj2 ¼ min
ghðhÞ¼0

jjhjj2
� �

ð6:76Þ

where jj � jj2 is the well-known Euclidean norm.
It can be demonstrated that h� in Eq. (6.76) is also the point of maximum

likelihood [48]; as such, it is the best choice unless additional information about
the true limit state surface is available [49]. Then, the unit important vector a can
be easily obtained by normalizing h�, i.e., a ¼ h�=jjh�jj2.

However, the design points, and their neighborhood, do not always represent
the most important regions of the failure domain, especially in high-dimensional
spaces [2]. Moreover, the computational cost associated with the resolution of the
constrained minimization problem in Eq. (6.76) can be quite high, in particular, if
long-running numerical codes are required to simulate the response of the system
to its uncertain input parameters.

Gradient of the Performance Function in the Standard Normal Space

Since the unit vector a ¼ a1; a2; . . .; aj; . . .; an

� �

points toward the failure domain
F, it can be used to draw information about the relative importance of the random
parameters hj :¼ j ¼ 1; 2; . . .; n

� �

with respect to the failure probability P(F);
actually, the more relevant a rv in determining the failure of the system is the
larger the corresponding component of the unit vector a will be [44].
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Such quantitative information can be easily obtained from the gradient of the
PF gh hð Þ in the standard normal space, rgh hð Þ

rgh hð Þ ¼ ogh hð Þ
oh1

ogh hð Þ
oh2

. . .
ogh hð Þ

ohj
. . .

ogh hð Þ
ohn

� �T

ð6:77Þ

The gradient measures in a unique way the relative importance of a particular rv
with respect to the failure probability P(F); actually, the larger the (absolute) value
of a component of Eq. (6.77) is, the greater the ‘‘impact’’ of the corresponding rv
will be on the PF gh hð Þ in the standard normal space. In other words, given a
specified finite variation Dh in the parameter vector h, the PF gh hð Þ will change
most if this variation is taken in the direction of Eq. (6.77). Thus, it is reasonable to
identify the LS important direction with the direction of the gradient Eq. (6.77) and
compute the corresponding unit vector a as the normalized gradient of the PF gh �ð Þ
in the standard normal space, i.e., a ¼ rgh hð Þ

�

jjrgh hð Þjj2 [44].
For clarity sake, Fig. 6.8 shows this procedure with reference to a 2-Dimen-

sional problem: the important unit vector a ¼ a1; a2ð Þ associated to the 2-
Dimensional PF gh h1; h2ð Þ is computed at a proper (selected) point h0 ¼ h0

1; h
0
2

� �

(e.g., the nominal point of the system under analysis). Notice that since component

a1 ¼
ogh hð Þ

oh1









h0

,

rgh hð Þjh0

�

�

�

�

�

�

2
(Fig. 6.8, top) is significantly larger than

Fig. 6.7 Interpretation of the LS important direction a as the direction of the design point in the
standard normal space [43]
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component a2 ¼
ogh hð Þ

oh2









h0

,

rgh hð Þjh0

�

�

�

�

�

�

2
(Fig. 6.8 bottom), then rv h1 will be far

more important than h2 in leading the system to failure.
It is worth noting that thanks to the transformation into dimensionless standard

normal variables, the relative importance of the uncertain parameters in terms of
the impact on the PF can be compared directly in the standard normal space. On
the contrary, the importance of the physical rvs cannot be directly compared using
the gradient rgXðxÞ in the original space: this is evident by considering that the
components of X have different, not commensurable physical units [44].

Fig. 6.8 Interpretation of the
LS important unit vector a as
the normalized gradient of the
PF gh �ð Þ computed at proper
point h0 (e.g., the nominal
point) in the standard normal
space (a two-dimensional
case is considered for
simplicity). Top
determination of component
a1; bottom determination of
component a2. Since a1 [ a2,
rv h1 is ‘‘more important’’
than h2 in determining the
failure of the system [44]
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When the PF is defined on a high-dimensional space, i.e., when many param-
eters of the system under analysis are random, the computation of the gradient
rgh hð Þ in Eq. (6.77) becomes a numerically challenging task. Actually, as the
function gh hð Þ is known only implicitly through the response of a numerical code,
for a given vector h ¼ h1; h2; . . .; hj; . . .; hn

� �

at least n system performance

analyses are required to determine accurately the gradient at a given point h0 of the
PF gh �ð Þ by straightforward numerical differentiation, e.g., the secant method [50,
51]. In order to reduce the computational effort required by the gradient compu-
tation, an efficient iterative procedure is proposed in [44] based on a linear
approximation of the PF gh �ð Þ in the neighborhood of the point h0. In particular,
the procedure aims at obtaining an approximate estimate for the gradientrgh hð Þjh0

by imposing the condition that as many components of the gradient vector as
possible are set to 0: this obviously reduces the number of system performance
analyses necessary for the calculation. The above simplification is based on the
practical observation that in most engineering systems there is often a large subset
of rvs with comparatively less effect on the PF gh �ð Þ: this assumption is found to be
particularly true for high-dimensional systems, i.e., those with a large number n of
rvs, say n [ 100 [44].

Normalized ‘‘Center of Mass’’ of the Failure Domain F

The important unit vector a can also be computed as the normalized ‘‘center of
mass’’ of the failure domain F of interest [43].

A point h0 is chosen which belongs to the failure domain F: the latter can be
determined with standard MCS or by engineering judgment when it is possible.
Subsequently, h0 is used as the initial point of a Markov chain which lies entirely
in the failure domain F. For that purpose a Metropolis–Hastings algorithm can
be employed, with which a sequence of Ns points hu; u ¼ 1; 2; . . .;Nsf g lying in the
failure domain F is obtained [38]. The unit vectors hu= huk k, u = 1, 2, …, Ns, are

then averaged in order to obtain the LS important unit vector as a ¼ 1
Ns
�

P

Ns

u¼1
hu= huk k (Fig. 6.9). The latter is by no means optimal, but it is clear that it

provides a good approximation of the important regions of the failure domain (at
least as the sample size Ns increases). On the down side, it should be noticed that
this procedure implies Ns additional system analyses, which substantially increase
the computational cost associated to the simulation method.
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6.8.3 Minimization of the Variance of the LS Failure
Probability Estimator

A more efficient way to identify the optimal important direction aopt for LS is to

take the one minimizing the variance r2 P̂ Fð ÞNT
� 	

of the LS failure probability

estimator P̂ Fð ÞNT . Notice that aopt can be expressed as the normalized version of a
proper vector hopt in the standard normal space, i.e., aopt ¼ hopt

�

hopt
�

�

�

�

2
. Thus, in

order to search for a physically meaningful important unit vector aopt (i.e., a vector
that optimally points toward the failure domain F of interest), hoptshould belong to
the failure domain F of interest, i.e., hopt 2 F or, equivalently, gðhoptÞ[ 0.

In mathematical terms, the optimal LS important direction aopt is obtained by
solving the following nonlinear constrained minimization problem

Find aopt ¼hopt
�

hopt
�

�

�

�

2
: r2 P̂ Fð ÞNT

� 	

¼ min
a¼h= hk k2

r2 P̂ Fð ÞNT
� 	� �

subject to h 2 Fði:e:; gðhÞ[ 0Þ:
ð6:78Þ

The conceptual steps of the procedure for solving Eq. (6.78) are schematized in
(Fig. 6.10):

1. An optimization algorithm proposes a candidate solution a ¼ h= hk k2 to Eq.
(6.78);

Fig. 6.9 Interpretation of the LS important unit vector a as the normalized ‘‘center of mass’’ of
the failure domain F in the standard normal space. The ‘‘center of mass’’ of F is computed as an
average of Ns failure points generated by means of a Markov chain starting from an initial failure
point h0 [43]
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2. The LS failure probability estimator P̂ Fð ÞNT and the associated variance

r2 P̂ Fð ÞNT
� 	

are calculated using the unit vector a ¼ h= hk k2 proposed as
important direction in step 1 above; notice that 2�NT or 3�NT system perfor-
mance analyses (i.e., runs of the system model code) have to be carried out in
this phase;

3. The variance r2 P̂ Fð ÞNT
� 	

obtained in step 2 above is the objective function to
be minimized; it measures the quality of the candidate solution a ¼ h= hk k2
proposed by the optimization algorithm in step 1 above;

4. The feasibility of the proposed solution a ¼ h= hk k2 is checked by evaluating
the system PF gh �ð Þ (i.e., by running the system model code) in correspondence
of h: if the proposed solution a ¼ h= hk k2 is not feasible (i.e., if h 62 F or,
equivalently, gh hð Þ� 0), it is penalized by increasing the value of the corre-

sponding objective function r2 P̂ Fð ÞNT
� 	

through an additive factor;
5. Steps 1–4 are repeated until a predefined stopping criterion is met and the

optimization algorithm identifies the optimal unit vector aopt ¼ hopt
�

hopt
�

�

�

�

2
.

Notice that (1) the optimization search requires the iterative evaluation of
hundreds or thousands of possible solutions a ¼ h= hk k2 to Eq. (6.78) and (2) 2 NT

or 3 NT system performance analyses (i.e., runs of the system model code) have to

be carried out to calculate the objective function r2 P̂ Fð ÞNT
� 	

for each proposed
solution; as a consequence, the computational effort associated to this technique
could be absolutely prohibitive with a system model code requiring hours or even
minutes to run a single simulation. Hence, it is often unavoidable, for practical
applicability, to resort to a simplified model or a regression model (e.g., based on
artificial neural networks, ANNs, as in [52]) as a fast-running approximator of the
original system model for performing the calculations in steps 2 and 4 above, to
make the computational cost acceptable.

To sum up, the characteristics of the main methods for the definition of the LS
important direction a are summarized in Table 6.2.

6.8.4 Theoretical Formulation of the LS Method

Without loss of generality, let us assume for the moment that the standard normal
rv h1 points in the direction of the important unit vector a: this can always be
assured by a suitable rotation of the coordinate axes. Then, the failure domain
F can be alternatively expressed as

F ¼ h 2 R
n : h1 2 F1ðh1; h2; . . .; hj. . .; hnÞ

� �

ð6:79Þ

where F1 is a function defined in R
n�1. For example, if the failure domain

corresponds to a PF of the form gh hð Þ ¼ gh;�1 h�1ð Þ � h1� 0, where h�1 is the
(n - 1)-dimensional vector h2; h3; . . .; hj; . . .; hn

� �

, then F1 h�1ð Þ is simply the

6.8 Line Sampling 149



half-open interval gh;�1 h�1ð Þ;1
� �

. Notice that functions similar to F1 in Eq.
(6.79) can be defined in all generality with respect to any direction in the random
parameter space.

Using Eqs. (6.1) and (6.72) the probability of failure P(F) can be expressed as
follows

P Fð Þ ¼ Z

n

. . .
Z

IF hð Þ
Y

n

j¼1

/j hj

� �

dh

¼ Z

n�1

. . .
Z Z

IF h�1ð Þ/1 h1ð Þdh1


 �

Y

n

j¼2

/j hj

� �

dh�1

¼ Z

n�1

. . .
Z

U F1 h�1ð Þð Þ
Y

n

j¼2

/j hj

� �

dh�1

¼ Eh�1
U F1 h�1ð Þð Þ½ 


ð6:80Þ

where U Að Þ ¼
R

IA xð Þu xð Þdx is the so-called Gaussian measure of A [43]. In
contrast to standard MCS, where P(F) is expressed as expectation of the discrete rv
IF hð Þ as in Eq. (6.1), in Eq. (6.80) it is written as the expectation, with respect to
h�1, of the continuous rv U F1 h�1ð Þð Þ.

An unbiased MC estimator P̂ Fð Þ of the last integral in Eq. (6.80) can be
computed as

P̂ Fð Þ ¼ 1
NT
�
X

NT

k¼1

U F1 hk
�1

� �� �

ð6:81Þ

Table 6.2 Summary of the methods employed in this work for estimating the LS important
direction a

Concept Evaluations to be performed

Design point Minimization of the distance ||h||2 in Eq. (6.76)
Evaluation of the PF gh(h) to verify if h is a feasible solution to Eq. (6.77)

i.e., if h belongs to the failure surface gh(h) = 0
Gradient Evaluation of the PF gh(h) to estimate the gradient rgh hð Þ in Eq. (6.77) by

numerical differentiation
Variance

minimization
Minimization of the variance r2 P̂ Fð ÞNT

� 	

of the LS failure probability

estimator P̂ Fð ÞNT

Calculation of the variance r2 P̂ Fð ÞNT
� 	

of the LS failure probability

estimator P̂ Fð ÞNT

Evaluation of the PF gh(h) for the estimation of the failure probability
P̂ Fð ÞNT and its variance r2 P̂ Fð ÞNT

� 	

during the LS simulation

Evaluation of the PF gh(h) to verify if h is a feasible solution to Eq. (6.78),
i.e., if h belongs to the failure domain F (where gh(h) [ 0)
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where hk
�1, k = 1, 2, …, NT, are iid samples in the standard normal space. The

variance of the estimator in Eq. (6.81) is thus determined by the variance of
U F1 h�1ð Þð Þ; specifically r2 P̂ Fð Þ

� �

¼ r2 U F1 h�1ð Þð Þ½ 

�

NT . It is interesting to
observe that U F1 h�1ð Þð Þ takes values in (0, 1), which means that U F1 h�1ð Þð Þ� 1
and U2 F1 h�1ð Þð Þ�U F1 h�1ð Þð Þ; 8h�1 2 R

n�1. As a consequence

r2 U F1 h�1ð Þð Þ½ 

¼ Eh�1

U2 F1 h�1ð Þð Þ
� 	

� E2
h�1

U F1 h�1ð Þð Þ½ 

�Eh�1

U F1 h�1ð Þð Þ½ 
 � E2
h�1

U F1 h�1ð Þð Þ½ 

¼ P Fð Þ 1� p Fð Þð Þ ¼ r2 IF hð Þð Þ

ð6:82Þ

Hence, the c.o.v. d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 P̂ Fð Þ
� �

q

.

P Fð Þ of the estimator in Eq. (6.81) is

always smaller than that of standard MCS; this implies that the convergence rate
attained by the LS scheme in Eq. (6.81) is always faster than that of standard MCS.

Moreover, for a linear limit state surface, two extreme cases can be observed.
In the first case, where the boundary of the failure domain F is perpendicular to the
sampling direction, it is evident that r2 P̂ Fð Þ

� �

¼ 0 and d = 0. In the second case,
the boundary of F is parallel to the LS important direction and consequently
U F h�1ð Þð Þ ¼ IF hð Þ thus, the c.o.v. is the same as that of standard MCS [43].

Finally, notice that in the derivation of Eqs. (6.80), (6.81), and (6.82), for ease
of notation, it has been assumed without loss of generality that the direction of
the unit vector a (i.e., the vector pointing to the important region of the failure
domain) coincides with that of h1; this can always be assured by a suitable rotation
of the coordinate axes. In the following, the important direction will be always
referred to as a.

6.8.5 The Line Sampling Algorithm

The LS algorithm proceeds as follows [44]:

1. Determine the unit important direction a ¼ a1; a2; . . .; aj; . . .; an

� �

. Any of the
methods summarized in Sect. 6.8.2 can be employed to this purpose. Notice
that the computation of a implies additional system analyses, which substan-
tially increase the computational cost associated to the simulation method;

2. From the original multidimensional joint pdf q �ð Þ : Rn ! ½0;þ1Þ, sample NT

vectors xk : k ¼ 1; 2; . . .;NT

� �

, with xk ¼ xk
1; x

k
2; . . .; xk

j ; . . .; xk
n


 �

by standard

MCS;
3. Transform the NT sample vectors xk : k ¼ 1; 2; . . .;NT

� �

defined in the original
(i.e., physical) space of possibly dependent, non-normal rvs (step 2 above) into
NT samples hk : k ¼ 1; 2; . . .;NT

� �

defined in the standard normal space where
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each component of the vector hk ¼ hk
1; h

k
2; . . .; hk

j ; . . .; hk
n


 �

, k = 1, 2,…, NT, is

associated with an independent central unit Gaussian standard distribution;
4. Estimate NT conditional ‘‘one-dimensional’’ failure probabilities

P̂k Fð Þ : k ¼ 1; 2; . . .;NT

� �

, corresponding to each one of the standard nor-

mal samples hk : k ¼ 1; 2; . . .;NT

� �

obtained at step 3 above. In particular,

for each random sample hk, k = 1, 2, …, NT, perform the following steps
(Fig. 6.11) [2, 44, 53, 54]:

(a) Define the sample vector ~hk, k = 1, 2,…, NT, as the sum of a
deterministic multiple of a and a vector hk;?, k = 1, 2,…, NT, per-
pendicular to the direction a, i.e.

~hk ¼ ckaþ hk;? ð6:83Þ

where ck is a real number in (-?, +?), k = 1, 2,…, NT and

hk;? ¼ hk � a; hk� �

a ð6:84Þ

In Eq. (6.84), hk, k = 1, 2,…, NT, denotes a random realization of the input
variables in the standard normal space of dimension n and a; hk� �

is the

scalar product between a and hk, k = 1, 2,…, NT. Finally, it is worth noting
that since the standard Gaussian space is isotropic, both the scalar ck and
the vector hk;? are also standard normally distributed [53, 54];

(b) Compute the value c�k as the intersection between the LSF gh
~hk

 �

¼

ghðckaþ h
k ;?Þ ¼ 0 and the line lk ck; a

� �

passing through hk and par-

allel to a (Fig. 6.11). The value of c�k can be approximated by
evaluating the PF gh �ð Þ at two or three different values of ck (e.g., ck

1; c
k
2

and ck
3 in Fig. 6.10), fitting a first- or second-order polynomial and

determining its root (Fig. 6.11). Hence, for each standard normal
random sample hk, k = 1, 2, …, NT, two or three system performance
evaluations are required;

(c) Solve the conditional 1-D reliability problem associated to each ran-
dom sample hk, k = 1, 2, …, NT, in which the only (standard normal)
rv is ck. The associated conditional failure probability P̂kðFÞ, k = 1, 2,
…, NT, is given by

P̂k ¼ P½Nð0; 1Þ[ ck
 ¼ 1� P½Nð0; 1Þ[ ck

¼ 1� UðckÞ ¼ Uð�ckÞ

ð6:85Þ

where Uð�Þ denotes the standard normal cdf;
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Fig. 6.10 Method for estimating the LS important direction a by minimization of the variance
r2 P̂ Fð ÞNT
� 	

of the LS failure probability estimator. The system model code is assumed to be
substituted by, e.g., an ANN for fast calculations

Fig. 6.11 The line sampling procedure [44]
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5. Using the independent conditional ‘‘one-dimensional’’ failure probability
estimates fP̂kðFÞ : k ¼ 1; 2; . . .;NTg in Eq. (6.85) (step 4.c. above), compute
the unbiased estimator P̂ðFÞ for the failure probability P Fð Þ as

P̂ðFÞ ¼ 1
NT

X

NT

k¼1

P̂kðFÞ ð6:86Þ

Comparing Eq. (6.86) to (6.81), it is evident that the ‘‘Gaussian measures’’ of
the failure domain F, i.e., UðF1ðhk

�1ÞÞ : k ¼ 1; 2; . . .;NT

� �

in Eq. (6.80), are
nothing but the conditional 1-D failure probability estimates

P̂ Fð Þ : k ¼ 1; 2; . . .NT

� �

in Eq. (6.86).
The variance of the estimator in Eq. (6.85) is

r2 P̂ Fð Þ
� �

¼ 1
NT NT � 1ð Þ

X

NT

k¼1

P̂kðFÞ � P̂ Fð Þ
� �2 ð6:87Þ

With the described approach, the variance of the estimator P̂ Fð Þ of the failure
probability P Fð Þ is considerably reduced. In general, a relatively low number NT

of simulations has to be carried out to obtain a sufficiently accurate estimate. A
single evaluation would suffice for the ideal case in which the LSF is linear and a
LS direction a perpendicular to it has been identified [43].

References

1. Schueller, G. I. (2007). On the treatment of uncertainties in structural mechanics and analysis.
Computers and Structures, 85, 235–243.

2. Schueller, G. I., Pradlwarter, H. J., & Koutsourelakis, P. S. (2004). A critical appraisal of
reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics,
19, 463–474.

3. Pagani, L., Apostolakis, G. E., & Hejzlar, P. (2005). The impact of uncertains on the
performance of passive system. Nuclear Technology, 149, 129–140.

4. Rubinstein, R. Y. (1999). The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 2, 127–190.

5. De Boer, P. T., Kroese, D. P., & Rubinstein, R. Y. (2004). A fast cross-entropy method for
estimating buffer overflows in queueing networks. Management Science, 50(7), 883–895.

6. Ridder, A. (2005). Importance sampling simulations of Markovian reliability systems using
cross-entropy. Annuals of Operations Research, 134, 119–136.

7. Allon, G., Kroese, D. P., Raviv, T., & Rubinstein, R. Y. (2004). Application of the cross-
entropy method to the buffer allocation problem in a simulation-based environment. Annals
of Operations Research, 134, 137–151.

8. Homem de Mello, T., & Rubinstein, R. Y. (2002). Rare event probability estimation for static
models via cross-entropy and importance sampling. Submitted. New York: Wiley.

9. De Boer, P. T. (2000). Analysis and efficient simulation of queueing models of
telecommunication systems. PhD thesis, University of Twente.

154 6 Advanced Monte Carlo Simulation Techniques



10. De Boer, P. T. (2005). Rear-event simulation of non-Markovian queueing networks using a
state-dependent change of measure determined using cross-entropy. Annals of Operations
Research, 134, 69–100.

11. Dubin, U. (2002). The cross-entropy method for combinatorial optimization with
applications. The Technion, Israel Institute of Technology, Haifa, Master’s thesis.

12. Helvik, E., & Wittner, O. (2001). Using the cross-entropy method to guide/govern mobile
agent’s path finding in networks. In 3rd International Workshop on Mobile Agents for
Telecommunication Applications—MATA’01.

13. Kroese, D. P., & Keith, J. M. (2002). Sequence alignment by rare event simulation. In
Proceedings of the 2002 Winter Simulation Conference, San Diego, U.S. 2002 (pp, 320–327).

14. Margolin, L. (2005). On the convergence of the cross-entropy method. Annuals of Operations
Research, 134, 201–214.

15. Chepuri, K., & Homem de Mello, T. (2005). Solving the vehicle routing problem with
stochastic demands using the cross entropy method. Annals of Operations Research, 134,
153–181.

16. Menache, I., Mannor, S., & Shimkin, N. (2005). Basis function adaption in temporal
difference reinforcement learning. Annals of Operations Research, 134, 215–238.

17. Cohen, I., Golany, B., & Shtub, A. (2005). Managing stochastic finite capacity multi-project
systems through the cross-entropy method. Annals of Operations Research, 134, 183–199.

18. Kroese, D. P., & Rubinstein, R. Y. (2004). The transform likelihood ratio method for rare
event simulation with heavy tails. Queueing Systems, 46, 317–351.

19. Hui, K. P., Bean, N., Kraetzl, M., & Kroese, D. P. (2004). The cross-entropy method for
network reliability estimation. Annals of Operations Research, 134, 101–118.

20. Kroese, D. P., Nariai, S., & Hui, K.-P. (2007). Network reliability optimization via the cross-
entropy method. IEEE Transactions on Reliability, 56(2), 275–287.

21. Rubinstein, R. Y. (2002). The cross-entrophy method and rare-events for maximal cut and
bipartition problems. ACM Transactions on modelling and Computer Simulation, 12(1),
27–53.

22. Sani, A., & Kroese, D. P. (2008). Controling the number of HIV infectives in a mobile
population. Mathematical Biosciences, 213(2), 103–112.

23. Sani, A., & Kroese, D. P. (2007). Optimal Epidemic Intervention of HIV Spread Using the
Cross-Entropy Method. In Proceedings of the International Congress on Modelling and
Simulation (MODSIM), Modelling and Simulation Society of Australia and New Zealand
(pp. 448–454).

24. Rubistein, R. Y., (1981). Simulation and the Monte Carlo method. New York: Wiley.
25. Kalos, M. H., & Whitlock, P. A. (1986). Monte Carlo methods (Vol. 1: Basic). New York:

Wiley.
26. Zio, E. (2009). Computational methods for reliability and risk analysis, Chapter 2. Singapore:

World Scientific.
27. Rubinstein, Y., & Kroese, D. P. (2004). The cross-entropy method: A unified approach to

Monte Carlo simulation, randomized optimization and machine learning. New York:
Springer.

28. MacKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2), 239–245.

29. Olsson, A., Sabdberg, G., & Dahlblom, O. (2003). On Latin hypercube sampling for
structural reliability analysis. Structural Safety, 25, 47–68.

30. Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of
uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81,
23–69.

31. Sallaberry, C. J., Helton, J. C., & Hora, S. C. (2008). Extension of Latin hypercube samples
with correlated variables. Reliability Engineering and System Safety, 93(7), 1047–1059.

32. Liefvendahl, M., & Stocki, R. (2006). A study on algorithms for optimization of Latin
hypercubes. Journal of Statistical Planning and Inference, 136, 3231–3247.

References 155



33. Pebesma, E. J., & Heuvelink, G. B. M. (1999). Latin hypercube sampling of Gaussian random
fields. Technometrics, 41(4), 203–212.

34. Der Kiureghian, A. (2000). The geometry of random vibrations and solutions by FORM and
SORM. Probabilistic Engineering Mechanics, 15(1), 81–90.

35. Gille. A. (1998). Evaluation of failure probabilities in structural reliability with Monte Carlo
methods. In Proceeedings of ESREL, Throndheim, Norway.

36. Gille. A. (1999). Probabilistic numerical methods used in the applications of the structural
reliability domain. PhD Thesis, Universitè Paris 6, Paris.

37. Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions
by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263–277.

38. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., & Taller, A. H. (1953). Equations of
state calculations by fast computing machines. Journal of Chemical Physics, 21(6), 1087–1092.

39. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57, 97–109.

40. Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York:
Springer.

41. Au, S. K., Ching, J., & Beck, J. L. (2007). Application of subset simulation methods to
reliability benchmark problems. Structural Safety, 29, 183–193.

42. Au, S. K. (2005). Reliability-based design sensitivity by efficient simulation. Computers and
Structures, 83, 1048–1061.

43. Koutsourelakis, P. S., Pradlwarter, H. J., & Schueller, G. I. (2004). Reliability of structures in
high dimensions, Part I: Algorithms and application. Probabilistic Engineering Mechanics,
19, 409–417.

44. Pradwarter, H. J., Pellisetti, M. F., Schenk, C. A., Schueller, G. I., Kreis, A., Fransen, S., et al.
(2005). Realistic and efficient reliability estimation for aerospace structures. Computer
Methods in Applied Mechanics and Engineering, 194, 1597–1617.

45. Rosenblatt, M. (1952). Remarks on multivariate transformations. The Annals of
Mathematical Statistics, 23(3), 470–472.

46. Nataf, A. (1962). Determination des distribution dont les marges sont donnees. Comptes
Rendus de l’Academie des Sciences, 225, 42–43.

47. Huang, B., & Du, X. (2006). A robust design method using variable transformation and
Gauss-Hermite integration. International Journal for Numerical Methods in Engineering, 66,
1841–1858.

48. Freudenthal, A. M. (1956). Safety and the probability of structural failure. ASCE
Transactions, 121, 1337–1397.

49. Schueller, G. I., & Stix, R. (1987). A critical appraisal of method to determine failure
probabilities. Structural Safety, 4(4), 293–309.

50. Ahammed, M., & Malchers, M. E. (2006). Gradient and parameter sensitivity estimation for
systems evaluated using Monte Carlo analysis. Reliability Engineering and System Safety, 91,
594–601.

51. Fu, M. (2006). Stochastic gradient estimation. In S. G. Henderson & B. L. Nelson (Eds.),
Handbook on operation research and management science: Simulation. Amsterdam:
Elsevier.

52. Zio, E., & Pedroni, N. (2010). An optimized line sampling method for the estimation of the
failure probability of nuclear passive systems. Reliability Engineering and System Safety,
95(12), 1300–1313.

53. Pradlwarter, H. J., Schueller, G. I., Koutsourelakis, P. S., & Charmpis, D. C. (2007).
Application of line sampling simulation method to reliability benchmark problems.
Structural Safety, 29, 208–221.

54. Au, S. K., & Beck, J. L. (2003). Importance sampling in high dimensions. Structural Safety,
25, 139–163.

156 6 Advanced Monte Carlo Simulation Techniques



Chapter 7
Practical Applications of Advanced Monte
Carlo Simulation Techniques for System
Failure Probability Estimation

7.1 Subset Simulation Applied to a Series–Parallel
Continuous-State System

In this chapter, SS (Sect. 6.7) is applied for performing the reliability analysis of a
series–parallel multistate system of literature [1]. The original system, character-
ized by multiple discrete states, is extended to have continuous states.

Let us consider the simple series–parallel system of Fig. 5.6. For each
component j = 1, 2, 3 we assume that there is an infinite set of continuous states,
each one corresponding to a different hypothetical level of performance, vj. Each
component can randomly occupy the continuous states, according to properly
defined pdfs qj vj

� �

, j = 1, 2, 3. Table 7.1 gives the ranges of variability

vj;min; vj;max

� �

of the performances vj (in arbitrary units) of the three components
j = 1, 2, 3.

In all generality, the output performance Om
�

associated to the system state

m ¼ m1; m2; . . .; mj; . . .; mn

� �

is obtained on the basis of the performances vj of the
components j ¼ 1; 2; . . .; n constituting the system. More precisely, we assume that
the performance of each node constituted by no elements in parallel logic, is the
sum of the individual performances of the components and that the performance of
the node series system is that of the node with the lowest performance, which
constitutes the ‘bottleneck’ of the system [1–3]. For example, with reference to the
system configuration m� ¼ m�1; m

�
2; m
�
3

� �

, with v�1 ¼ 80; v�2 ¼ 40 and v�3 ¼ 75, the first
node is characterized by a value of the performance equal to v�1 þ v�2 ¼ 120,
whereas the second node has performance v�3 ¼ 75. This latter node determines the
value of the system performance Om

�
� ¼ 75:

The system is assumed to fail when its performance O falls below some specified
threshold value o, so that its probability of failure P(F) can be expressed as
P O\oð Þ: During simulation, the intermediate failure events Fi : i ¼ 1; 2; . . .;mf g
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are adaptively generated as Fi ¼ O\oif g;where o1 [ o2 [ . . . [ oi [ . . . [ on ¼
o are the intermediate threshold values for the SS procedure.

The pdfs qj vj

� �

of the performances vj; j ¼ 1; 2; 3, of the components consti-
tuting the system are assumed Normal, with the parameters (i.e., the mean �vj and
the standard deviation rvj ; j = 1, 2, 3) reported in Table 7.2. These values have
been obtained by proper manipulation of the original discrete-state probabilities in
[2].

In the application of SS, the conditional failure regions are chosen such that a
conditional failure probability of p0 = 0.1 is attained at all conditional levels. The
simulations are carried out for m = 4 conditional levels, thus covering the esti-
mation of failure probabilities as small as 10�4:

At each conditional level, N = 500 samples are generated. The total number of
samples is thus NT = 500 ? 450 ? 450 ? 450 = 1850, because p0N = 50 con-
ditional samples from one conditional level are used to start the next conditional
level and generate the missing (1 - p0)N = 450 samples at that level. The failure
probability estimates corresponding to the intermediate thresholds

oi : i ¼ 1; 2; 3; 4f g; i.e., 10-1, 10-2, 10-3, and 10-4, are computed using a total
number of samples equal to NT = 500, 950, 1400 and 1850, respectively.

For each component performance vj; j ¼ 1; 2; 3, the one-dimensional ‘proposal
pdf’ p�j njjvj

� �

adopted to generate by MCMC simulation the random ‘pre-candi-
date value’ nj based on the current sample component vj; is chosen as a symmetric
uniform distribution

p�j ðnjjvjÞ ¼
1=ð2ljÞ
0

�

nj � vj

�

�

�

�� lj

otherwise
; j ¼ 1; 2; 3 ð7:1Þ

where lj is the maximum step length, i.e., the maximum allowable distance that the
next sample can depart from the current one. The choice of lj is such that the
standard deviation of p�j njjvj

� �

is equal to that of qj vj

� �

; j = 1, 2, 3.

Table 7.2 Parameters of the pdfs of the components’ performances

Pdf parameters

Component index, j Performance range, ½vj;min; vj;max� Mean, vj Standard deviation, rvj

1 [0, 80] 40 10
2 [0, 80] 40 10
3 [0, 100] 50 12.5

Table 7.1 Performance data of the components of the continuous-state system of Fig. 5.6

Component index, j Performance range, ½vj;min; vj;max�
1 [0, 80]
2 [0, 80]
3 [0, 100]
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The results of the application of SS to the performance analysis of the system in
Fig. 5.6 are now illustrated. First, the percentiles of the system performance are
determined; then, the probabilities of failure of the system are estimated for dif-
ferent threshold levels of performance o; finally, the sensitivity of the performance
of the system to the performances of the constituting components is studied by
examination of the conditional sample distributions at different failure probability
levels.

The ath percentile of the rv O is defined as the value oa such that

PðO� oaÞ ¼ a: ð7:2Þ

Figure 7.1 shows the empirical cdf of the system performance O for different
confidence levels a ¼ 0:1, 0.01, 0.001 and 0.0001. The results produced by SS
with a total of 1850 samples (i.e., four simulation levels, each with N = 500
samples) are shown in solid lines, whereas those produced by standard MCS with
the same number of samples (i.e., 1850) are shown in dashed lines. The dot-dashed
lines correspond to the results obtained by standard MCS with 500,000 samples,
which produce reliable results for benchmarking up to a confidence level a ¼
0:0001 (Fig. 7.1, bottom). It can be seen that the results from SS are reasonably
close to the benchmark solution for all confidence levels, except in the upper
regime of Fig. 7.1, bottom, where the error in the standard MCS solution in this
probability regime also contributes to the observed discrepancy. On the other hand,
the results of the standard MCS with 1850 samples fail to reproduce reliable results
for small values of a (Fig. 7.1, middle, right and Fig. 7.1, bottom). This is due to
the fact that with 1850 samples there are on average only 1850 � 0:001� 0:2 failure
samples in Fig. 7.1, middle, right, and 1850 � 0:0001� 0:2, i.e., less than one
failure sample, in Fig. 7.1, bottom. In contrast, for SS, due to successive condi-
tioning, it is guaranteed that there are 1850, 1400, 950, 500, and 50 conditional
failure samples in Fig. 7.1, top, left and right, middle, left and right, and bottom,
respectively, providing sufficient information for efficiently estimating the cdf.

Notice that for the standard MCS with 500,000 samples, there are on average 50
samples in Fig. 7.1, bottom, i.e., the same number as produced by SS, but this is
achieved at a much higher computational effort.

Table 7.3 reports the values of the percentiles o0:1; o0:01; o0:001 and o0:0001 of the
output performance O of the series–parallel distribution system: for a equal to 0.1
and 0.01, both SS and MCS with 1850 samples produce results similar to those of
the benchmark simulation approach (i.e., MCS with 500,000 samples), whereas for
a equal to 0.001 and 0.0001, only SS achieves reliable results.

Figure 7.2 shows the system failure probability estimates for different threshold
levels o, obtained in a single simulation run. Note that a single SS run yields
failure probability estimates for all threshold levels o up to the smallest one (10-4)
considered (solid lines). For comparison, the results using standard MCS with
100,000 samples are shown in the same Figures (dot-dashed lines). The results of
the SS are shown to approximate well the estimates obtained by standard MCS.

7.1 Subset Simulation Applied to a Series–Parallel Continuous-State System 159

http://dx.doi.org/10.1007/978-1-4471-4588-2_5


To assess quantitatively the statistical properties of the failure probability
estimates produced by SS, 50 independent runs have been carried out and the
sample mean and sample c.o.v. of the failure probability estimates thereby
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Fig. 7.1 Empirical cdf of the performance O of the series–parallel, continuous-state system, at
different confidence levels: a = 1 (top, left), a = 0.1 (top, right), a = 0.01 (middle, left),
a = 0.001 (middle, right) and a = 0.0001 (bottom). Solid lines SS with 1850 samples; dashed
lines standard MCS with 1850 samples; dot-dashed lines standard MCS with 500000 samples
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obtained have been computed. Figure 7.3 shows the sample means of the system
failure probability estimates obtained by SS (solid lines); a comparison with the
estimates computed by direct MCS using 100,000 samples is also given (dot-
dashed lines). The sample means of the failure probability estimates almost
coincide with the standard MCS results, except at small failure probabilities, near
10-4, where the error in the MCS estimates becomes significant. This leads to
conclude that the bias due to the correlation between the conditional probability
estimators at different levels is negligible, so that the failure probability estimates
obtained by SS can be taken as practically unbiased [4, 5].

The c.o.v. of the failure probability estimate is plotted versus different failure
probability levels P(F) (solid line) in Fig. 7.4. In the Fig. 7.4, the dashed line
shows a lower bound on the c.o.v. which would be obtained if the conditional
probability estimates at different simulation levels were uncorrelated; on the
contrary, the dot-dashed line provides an upper bound on the c.o.v. which would
be obtained in case of full correlation among the conditional probability estimates.
From the Figure, it can be seen that the trend of the actual c.o.v. estimated from 50
runs follows more closely the lower bound, confirming that the conditional failure
probability estimates are almost completely uncorrelated. A detailed theoretical
analysis of these statistical aspects can be found in [4–6].

Table 7.3 Percentiles of the performance O of the series–parallel, continuous-state system,
determined by SS with 1850 samples and by standard MCS with 1850 and 500,000 samples, at
different confidence levels a = 0.1, 0.01, 0.001, 0.0001

Simulation approach Number of samples Percentile values

o0:1 o0:01 o0:001 o0:0001

SS 1850 34.09 20.62 10.63 4.33
MCS 1850 33.43 19.69 6.19 6.06
MCS 500000 33.97 20.81 11.06 3.40
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The computational efficiency of SS can be compared with that of a standard
MCS in terms of the c.o.v. of the failure probability estimates computed from the
same number of samples. Recall that the number of samples required by SS at the
probability levels 10�1, 10�2, 10�3 and 10�4 are NT ¼ 500, 950, 1400 and 1850,
respectively, as explained above. The exact c.o.v. of the MC estimator using the
same number of samples at probability levels PðFÞ ¼ 10�1, 10�2, 10�3 and 10�4

are computed using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� PðFÞÞ=PðFÞNT

p

; which holds for NT iid samples: the
results are shown as squares in Fig. 7.4. It can be seen that while the c.o.v. of the
standard MCS grows exponentially with decreasing failure probability, the c.o.v.
of the SS estimate only grows in a logarithmic manner: this empirically proves that
SS can lead to a substantial improvement in efficiency over standard MCS when
estimating small failure probabilities. These results agree with several theoretical
analyses which can be found in the open literature [4–7].
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The Markov chain samples generated by SS can be used not only for estimating
the conditional probabilities but also to infer the probable scenarios that will occur
in the case of failure [8]. In all generality, from the comparison of the pdf qðxjjFÞ
of the uncertain parameter xj; j ¼ 1; 2; . . .; n; conditional to the occurrence of
failure F, with the unconditional pdf qðxjÞ; an indication can be obtained on how
important is the parameter xj in affecting the system failure.

Formally, for any given value of xj the Bayes’ theorem reads

PðFjxjÞ ¼
qðxjjFÞ
qðxjÞ

PðFÞ j ¼ 1; 2; . . .; n ð7:3Þ

so that PðFjxjÞ is insensitive to xj when qðxjjFÞ� qðxjÞ; i.e., when the conditional
pdf qðxjjFÞ is similar in shape to the pdf qðxjÞ:The sensitivity of the system
performance to the individual components’ performances can, thus, be studied by
examining the change of the sample distributions at different conditional levels.
The histograms of the conditional samples of the components’ performances at
different conditional levels for a single SS run are shown in Fig. 7.5. It can be
seen that the system performance is not very sensitive to the performances of
components 1 and 2 in parallel logic, which constitute node 1 of the system
(Fig. 5.6), as indicated by the negligible deviation of their empirical conditional
distributions (histograms) from the unconditional ones (solid lines). On the
contrary, there is a significant leftward shift in the conditional distribution of the
performance of component 3, which constitutes node 2 of the system. This result
is quite reasonable: in fact, since the unconditional distributions of the compo-
nents’ performances are almost identical (Table 7.2), the importance of each
single component in determining the failure of the whole system is almost
entirely due to the topology of the system itself. Considering that the perfor-
mance of the two-nodes series system in Fig. 5.6 is that of the node with the
lowest performance and that the two redundant components constituting node 1
sum their individual performances, it is likely that the ‘bottleneck’ of the system
(i.e., the node with the lowest performance) is represented by node 2, i.e.,
component 3.

7.2 Subset Simulation Applied to a Series–Parallel
Discrete-State System

Let us apply SS for performing the reliability analysis of the series–parallel system
of Fig. 5.6, where, however, in this case for each component j ¼ 1; 2; 3 there are zj

possible discrete states, each one corresponding to a different hypothetical level of
performance, vj;l; l ¼ 0; 1; . . .; zj � 1. Each component can randomly occupy the
discrete states, according to properly defined discrete probabilities qj;l; j ¼ 1; 2; 3;
l ¼ 0; 1; . . .; zj � 1:
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For each component j ¼ 1; 2; 3 , there are zj ¼ 11 possible states each one
corresponding to a different hypothetical level of performance vj;l; l ¼ 0; 1; . . .; 10;

thus, the number of available system states is
Q3

j¼1 zj ¼ 113 ¼ 1331: The proba-
bilities qj;l associated to the performances vj;l; j ¼ 1; 2; 3; l ¼ 0; 1; . . .; 10; are
reported in Table 7.4. Obviously,

Pzj

l¼1 qj;l ¼ 1; j ¼ 1; 2; 3:
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Fig. 7.5 Empirical conditional distributions of the components’ performances at different
conditional levels (histograms) compared to their unconditional distributions (solid lines)
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For clarity sake, the synthetic parameters of the performance distributions of
Table 7.4 (i.e., the mean �vj and the standard deviation rvj ; j = 1, 2, 3) are sum-
marized in Table 7.5.

Figure 7.6 shows the analytical cdf of the system performance O, obtained by
calculating the exact probabilities of all the 1331 available system states; it is
worth noting that the probability of the system having performance O equal to 0,
i.e., being in the configuration in which each of the three components is in the state
l = 0, is 1.364 9 10-3.

As in the previous application, the conditional failure regions are chosen such
that a conditional failure probability of p0 = 0.1 is attained at all conditional
levels. The simulations are carried out for m = 3 conditional levels, thus covering
the estimation of failure probabilities as small as 10�3: At each conditional level,
N = 300 samples are generated. The total number of samples is thus
NT = 300 ? 270 ? 270 = 840, because p0N = 30 conditional samples from one
conditional level are used to start the next conditional level and generate the
missing (1 - p0)N = 270 samples at that level.

The failure probability estimates corresponding to the intermediate thresholds,
i.e., 10-1, 10-2 and 10-3, are computed using a total number of samples equal to
NT = 300, 570 and 840, respectively. It is worth noting that the number of samples
employed for estimating the probabilities of failure of the system is much (about

Table 7.4 Performance distributions of the components of the discrete multistate system of
Fig. 5.6

Component index, j 1 2 3

State index, l vj,l qj,l vj,l qj,l vj,l qj,l

0 0 3.7507 9 10-2 0 3.4573 9 10-2 0 6.77 9 10-5

1 8 7.5013 9 10-2 8 6.9146 9 10-2 10 1.354 9 10-4

2 16 2.522 9 10-2 16 8.7933 9 10-3 20 7.314 9 10-4

3 24 4 9 10-2 24 1.3 9 10-2 30 1.4628 9 10-3

4 32 5.044 9 10-2 32 1.7586 9 10-2 40 2.7538 9 10-3

5 40 3.4573 9 10-2 40 4.6976 9 10-2 50 5.5077 9 10-3

6 48 6.9147 9 10-2 48 9.3953 9 10-2 60 2.4953 9 10-2

7 56 6.9947 9 10-2 56 8.9943 9 10-2 70 4.9907 9 10-2

8 64 1.3989 9 10-1 64 1.7988 9 10-1 80 8 9 10-2

9 72 1.6608 9 10-1 72 1.5304 9 10-1 90 3.0482 9 10-1

10 80 2.9217 9 10-1 80 2.9309 9 10-1 100 5.2965 9 10-1

Table 7.5 Parameters of the probability distributions of the components’ performances

Performance distributions’ parameters

Component index, j Mean, vj Standard deviation, rvj

1 56.48 25.17
2 58.97 23.11
3 92.24 11.15
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two times) lower than the total number of available system states, i.e., 1331; thus,
the computational time required for estimating the failure probabilities by SS is
substantially lower than that necessary for analytically computing them (i.e., for
calculating the exact probabilities of all the 1331 system states).

For each component’s performance vj;l; j ¼ 1; 2; 3; l ¼ 0; 1; . . .; zj � 1; the one-
dimensional discrete ‘proposal pdf’ p�j;l0 ðnj;l0 jvj;lÞ adopted to generate by MCMC
simulation the random ‘pre-candidate value’ nj;l0 based on the current sample
component vj;l is chosen as a symmetric uniform distribution

p�j;l0 ðnj;l0 jvj;lÞ ¼
1=ð2Xj þ 1Þ

0

o0 � oj j �Xj

otherwise

�

j ¼ 1; 2; 3; o0 ¼ o� Xj; o� Xj þ 1; . . .; oþ Xj � 1; oþ Xj

ð7:4Þ

where Xj is the maximum allowable number of discrete steps that the next sample
can depart from the current one. The choice X1 ¼ 2; X2 ¼ 2 and X3 ¼ 1 empir-
ically turned out to offer the best trade-off between estimation accuracy and rel-
atively low correlation among successive conditional failure samples.

Figure 7.7 shows the failure probability estimates for different threshold levels
o, obtained in a single simulation run. The results produced by SS with a total of
840 samples (i.e., three simulation levels, each with N = 300 samples) and 1110
samples (i.e., four simulation levels, each with N = 300 samples) are shown in
solid lines. Note that, a single SS run yields failure probability estimates for all
threshold levels o up to the smallest one considered (i.e., 10-3). For comparison,
the analytical failure probabilities (dashed lines) and the results using standard
MCS with 840 and 1110 samples (dot-dashed lines) are shown in the same
Fig. 7.7.
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In order to properly represent the randomness of the SS and MCS procedures
and provide a statistically meaningful comparison between the performances of SS
and standard MCS in the estimation of a given failure probability PðFÞ of interest,
S ¼ 200 independent runs of each method have been carried out. In each simu-
lation s ¼ 1; 2; . . .; S the relative absolute error Ds½PðFÞ� between the exact (i.e.,
analytically computed) value of the failure probability PðFÞ and the corresponding
estimate ~PF;s (obtained by SS or standard MCS) is computed as follows

Ds PðFÞ½ � ¼
PðFÞ � ~PF;s

�

�

�

�

PðFÞ ; S ¼ 1; 2; . . .S ð7:5Þ

The performances of SS and standard MCS in the estimation of PðFÞ are then
compared in terms of the mean relative absolute error D PðFÞ½ � over S ¼ 200 runs

D PðFÞ½ � ¼ 1
S
�
X

S

s¼1

Ds PðFÞ½ � ð7:6Þ

The quantity above gives an idea of the relative absolute error made on average
by the simulation method in the estimation of a given failure probability P(F) of
interest in a single run.

Table 7.6 reports the values of the mean relative absolute errors D PðFÞ½ � made
by both SS and standard MCS with 840 samples in the estimation of the failure
probability PðFÞ ¼ 1:364 � 10�3: this value has been chosen as target because it
corresponds to the probability of the system having performance O equal to 0, i.e.,
being in the configuration where all its components are in state 0 which is the most
critical for the system and also the less likely one. Only for illustration purposes,
the results obtained in four batches of S ¼ 200 simulations each are reported.
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It can be seen from Table 7.6 that in all cases the mean relative absolute errors
made by SS are significantly (two to three times) lower than those provided by
standard MCS using the same number of samples.

The computational efficiency of SS is reported in Fig. 7.8 (solid line) in terms
of the sample c.o.v. of the failure probability estimates obtained by SS in S = 200
independent runs. The exact c.o.v. of the MC estimator using the same number of
samples (NT = 300, 570, 840, and 1110) at probability levels P(F) = 10-1, 10-2,
10-3, respectively, are also shown as squares in Fig. 7.8. As before, the c.o.v. of
the standard MCS is seen to grow exponentially with decreasing failure probability
whereas the c.o.v. of the SS estimate approximately grows in a logarithmic
manner: again, this empirically proves that SS can lead to a substantial
improvement in efficiency over standard MCS when estimating small failure
probabilities.

To assess quantitatively the statistical properties of the failure probability
estimates produced by SS, the sample mean of the failure probability estimates
obtained in S = 200 independent runs have been computed. For a given failure

Table 7.6 Mean relative absolute errors made by both SS and standard MCS with 840 samples
in the estimation of the failure probability PðFÞ ¼ 1:364� 10�3; these values have been com-
puted for four batches of S = 200 simulations each

Mean relative absolute errors, D PðFÞ½ �
SS Standard MCS
P(F) = 1.364 9 10-3 P(F) = 1.364 9 10-3

Batch 1 0.4327 0.7265
Batch 2 0.4611 0.7530
Batch 3 0.4821 0.6656
Batch 4 0.3856 0.6394
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probability level P(F) of interest, the sample mean PF of the corresponding esti-
mates ~PF;s; s ¼ 1; 2; . . .; S; is

PF ¼
1
S
�
X

S

s¼1

~PF;s ð7:7Þ

Figure 7.9 shows the sample means of the failure probability estimates obtained
by SS; a comparison with the exact (i.e., analytically computed) failure proba-
bilities is also given (dashed lines).

The sample means of the failure probability estimates almost coincide with the
analytical results, except at small failure probabilities, near 10�3; where the esti-
mates seem to be quite biased. As before, a quantitative indicator of the bias
associated to the estimate of a given failure probability PðFÞ can be computed as
the relative absolute deviation D½PðFÞ� between the exact value of the failure
probability, i.e., PðFÞ; and the sample average PF of the corresponding estimates

D½PðFÞ� ¼
PF � PðFÞ
�

�

�

�

PðFÞ ð7:8Þ

Table 7.7 reports the values of the sample means PF and the corresponding
biases D½PðFÞ� produced by SS in the estimation of PðFÞ ¼ 1:364� 10�3. Only
for illustration purposes, the results obtained in four batches of S = 200 simula-
tions each are reported.

Finally, the sample c.o.v. of the failure probability estimates is plotted versus
different failure probability levels P(F) (solid line) in Fig. 7.10, together with the
lower (dashed lines) and upper (dot-dashed lines) bounds which would be obtained
if the conditional probability estimates at different simulation levels were
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uncorrelated or fully correlated, respectively. It can be seen that the trend of the
c.o.v. estimated from the 200 runs follows more closely the upper bound, signaling
that the conditional failure probability estimates are almost completely correlated.
The high correlation between conditional probability estimates may be explained
as follows: differently from continuous-state systems whose stochastic evolution is
modeled in terms of an infinite set of continuous states, discrete multistate systems
can only occupy a finite number of states; as a consequence, the generation of
repeated (thus, correlated) conditional failure samples during MCMC simulation
may be significant. Hence, a word of caution is in order with respect to the fact that
the estimates produced by SS when applied to discrete multistate systems may be
quite biased if the number of discrete states is low.

In conclusion, SS has been shown to be particularly suitable for characterizing
the performance of both continuous- and discrete-state systems in their entire
range of operation: actually, a single SS run yields failure probability estimates for
different threshold levels up to the largest one considered, thus avoiding multiple
runs which are instead required by standard MCS.

7.3 Line Sampling Applied to the Reliability Analysis
of a Nuclear Passive Safety System

The case study considered regards a safety system for natural convection cooling
in a gas-cooled fast reactor (GFR), operating in the conditions of a post-LOCA
[9, 10]. The reactor is a 600 MW GFR cooled by helium flowing through separate
channels in a silicon carbide matrix core. In case of a LOCA, long-term removal of
the decay heat is ensured by natural circulation in a given number Nloops of
identical and parallel heat removal loops. However, in order to achieve a sufficient
heat removal rate by natural circulation, it is necessary to maintain an elevated
pressure even after the LOCA. This is accomplished by a guard containment,
which surrounds the reactor vessel and power conversion unit and holds the
pressure at a level that is reached after the depressurization of the system.

Table 7.7 Sample means PF of the failure probability estimates over 200 SS runs and the
corresponding biases D½PðFÞ� produced by SS in the estimation of PðFÞ ¼ 1:364� 10�3; these
values have been computed for four batches of S = 200 simulations each

Subset simulation

P(F) = 1.364 9 10-3

Sample mean, PF Bias, �D½PðFÞ�
Batch 1 1.136 9 10-3 0.1672
Batch 2 1.145 9 10-3 0.1606
Batch 3 1.065 9 10-3 0.2192
Batch 4 1.126 9 10-3 0.1745
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The GFR decay heat removal configuration considered is shown schematically
in Fig. 7.11, with only one loop for clarity of the picture: the flow path of the
cooling helium gas is indicated by the black arrows. For numerical modeling
purposes, the loop has been divided into Nsections = 18 sections; for further tech-
nical details about the geometrical and structural properties of these sections, the
interested reader may refer to [10–13].

The subject of the present analysis is the quasi-steady-state natural circulation
cooling that takes place after the LOCA transient has occurred, assuming suc-
cessful inception of natural circulation. The average core decay power to be
removed is assumed to be 18.7 MW, equivalent to about 3 % of full reactor power
(600 MW). To guarantee natural circulation cooling at this power level, a pressure
of 1650 kPa is required in nominal conditions. Finally, the secondary side of the
heat exchanger (i.e., item 12 in Fig. 7.11) is assumed to have a nominal wall
temperature of 90 �C [10].
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To simulate the steady-state behavior of the system, a one-dimensional
Thermal–Hydraulic (T–H) Matlab� code developed at the Massachusetts Institute
of Technology (MIT) has been implemented [11–13]. The code treats as identical
all the Nloops multiple loops, each one divided in Nsections = 18 sections.

Fig. 7.11 Schematic representation of one loop of the 600 MW GFR passive decay heat removal
system [10]; HE=Heat Exchanger
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Furthermore, the sections corresponding to the heater (i.e., the reactor core, item 4
in Fig. 7.11) and the cooler (i.e., the heat exchanger, item 12 in Fig. 7.11) are
divided in a proper number Nnodes of axial nodes to compute the temperature and
flow gradients with sufficient detail (40 nodes are chosen for the present analysis).
Both the average and hot channels are modeled in the core, so that the increase in
temperature in the hot channel due to the radial peaking factor can be calculated.

To obtain a steady-state solution, the code balances the pressure losses around
the loops so that friction and form losses are compensated by the buoyancy term,
while at the same time maintaining the heat balance in the heater and cooler.

The two following equations govern the heat transfer process in each node
l ¼ 1; 2; . . .;Nnodes of both heater and cooler

_Ql ¼ _mcp;l Tout;l � Tin;l

� �

l ¼ 1; 2; . . .;Nnodes

_mcp;l Tout;l � Tin;l

� �

¼ Slhl Twall;l � Tbulk;l

� �

l ¼ 1; 2; . . .;Nnodes ð7:9Þ

where _Ql is the heat flux (kW), _ml is the mass flow rate (kg/s), cp;l is the specific
heat at constant pressure (kJ/kgK), Tout;l, Tin;l, Twall;l and Tbulk;l are the temperatures
in degrees Kelvin (K) measured at the outlet, the inlet, the wall channel and
coolant bulk, respectively, Sl is the heat-exchanging surface (m2) and hl is the heat
transfer coefficient (kW/m2K) in the l-th node, l ¼ 1; 2; . . .;Nnodes:

The first equation above states the equality of the enthalpy increase between the
flow at the inlet and the flow at the outlet in any node, whereas the second equation
regulates the heat exchange between the channel wall and the bulk of the coolant.
Notice that the heat transfer coefficients hl; l ¼ 1; 2; . . .;Nnodes are functions of the
fluid characteristics and geometry and are calculated through proper correlations
covering forced-, mixed-, and free-convection regimes in both turbulent and
laminar flows; further, different Nusselt number correlations are used in the
different regimes to obtain values for the heat transfer coefficients.

The mass flow rate _m is determined by a balance between buoyancy and
pressure losses along the closed loop according to the following equation

X

Nsections

s¼1

qsgHs þ fs
Ls

Ds

_m2

2qsA2
s

þ Ks
_m2

2qsA2
s

	 


¼ 0 ð7:10Þ

where qs is the coolant density (kg/m3), Hs is the height of the section (m), fs is the
friction factor, Ls is the length of the section (m), Ds is the hydraulic diameter of
the section (m), _m is the mass flow rate (kg/s), As is the flow area of the section
(m2), and Ks is the form loss coefficient of the s-th section of the loop, s ¼
1; 2; . . .;Nsections (Fig. 7.11). Such equation states that the sum of buoyancy (first
term), friction losses (second term), and form losses (third term) should be equal to
zero along the closed loop. Notice that the friction factors fs, s ¼ 1; 2; . . .;Nsections;
are also functions of the fluid characteristics and geometry and are calculated using
appropriate correlations.
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The deterministic T–H model described in the previous paragraphs provides a
mathematical description of the system behaviour. The actual behavior of the
natural circulation passive system in reality deviates from its mathematical rep-
resentation, due to a number of uncertain factors which affect its operation: the
outcome of such uncertain behavior must be accounted for in the evaluation of the
system reliability [10].

Uncertainties in the passive system operation are mainly due to lack of
knowledge about the natural circulation phenomena involved and their conditions
of occurrence. These uncertainties translate into uncertainties in the models and
parameters used to represent the system and its processes.

In this example, parameter uncertainties are associated to the reactor power
level, to the pressure established in the loops after the LOCA and to the wall
temperature of the cooler (i.e., the heat exchanger, item 12 in Fig. 7.11). Model
uncertainties are associated to the correlations used to calculate Nusselt numbers
and friction factors in forced, mixed, and free convection. Correspondingly, nine
uncertain model inputs fxj : j ¼ 1; 2; . . .; 9g are considered, as summarized in
Table 7.8 [10]. The parameters are assumed to be distributed according to normal
distributions of given mean l and standard deviation r. The practical and
conceptual reasons underpinning the choices of the values in Table 1 are described
in [10].

The passive decay heat removal system of Fig. 7.11 is considered failed
whenever the temperature of the coolant helium leaving the core (item 4 in
Fig. 7.11) exceeds either 1200 �C in the hot channel or 850 �C in the average
channel: these values are chosen to limit the fuel temperature for avoiding
excessive release of fission gasses and high thermal stresses in the cooler (item 12
in Fig. 7.11) and in the stainless steel cross-ducts connecting the reactor vessel and
the cooler (items from 6 to 11 in Fig. 7.11).

Letting x be the vector of uncertain system inputs (Table 7.8) and Thot
out;core xð Þ

and Tavg
out;core xð Þ be the coolant outlet temperatures in the hot and average channels,

respectively, the failure region F can be written as follows

F ¼ x : Thot
out;core xð Þ[ 1200

n o

[ x : Tavg
out;core xð Þ[ 850

� �

ð7:11Þ

In order to apply LS, the failure region F has been parameterized with a single
parameter so that a single-valued performance function (PF) gX

�
ð�Þ arises (Sect. 6.8

). This is accomplished as follows. For the failure region F, the system perfor-
mance indicator Y xð Þ can be defined as

YðxÞ ¼ max
Thot

out;coreðxÞ
1200

;
Tavg

out;coreðxÞ
850

( )

ð7:12Þ
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Then, it can be easily verified that

F ¼ x : YðxÞ[ 1f g ð7:13Þ

Thus, the failure threshold aY is equal to 1 and the system PF is written as

gXðxÞ ¼ YðxÞ � aY ¼ YðxÞ � 1 ð7:14Þ

In the following, the results of the application of LS for the reliability analysis
of the 600 MW GFR passive decay heat removal system in Fig. 7.11 are illus-
trated. First, the probabilities of failure of the system are estimated; then, the
sensitivity of the passive system performance with respect to the uncertain input
parameters is studied by examination of the important unit vectors a: For illus-
tration purposes, three different system configurations (with Nloops = 3, 4 and 5)
are analyzed.

Furthermore, LS is compared to the common method of LHS. For this purpose,
LS has been run with a total of NT ¼ 10000 samples in all the cases, whereas LHS
has been run with NT ¼ 10000; 100000 and 1000000 for the configurations with
Nloops = 3, 4, and 5, respectively. Notice that the larger number NT of samples
employed by LHS in the analyses of the configurations with Nloops = 4 (where
P(F) = 10-5) and 5 (where P(F) = 10-6) is due to the necessity of producing a
number of failure samples sufficient to estimate the related small failure proba-
bilities and their standard deviations with acceptable robustness.

In order to compare the results, the efficiency of the simulation methods under
analysis is evaluated in terms of two indices which are independent of the total
number NT of samples drawn: the unitary c.o.v., du; and the so-called figure of
merit (FOM).

Table 7.8 Parameter and model uncertainties together with the values of the parameters of the
related subjective probability distributions for the 600 MW GFR passive decay heat removal
system of Fig. 7.11 [10]

Name Mean,
l

Standard deviation, r (% of
l)

Parameter
uncertainty

Power (MW), x1 12 1
Pressure (kPa), x2 1650 7.5
Cooler wall temperature (�C), x3 90 5

Model uncertainty Nusselt number in forced
convection, x4

1 5

Nusselt number in mixed
convection, x5

1 15

Nusselt number in free convection,
x6

1 7.5

Friction factor in forced convection,
x7

1 1

Friction factor in mixed convection,
x8

1 10

Friction factor in free convection, x9 1 1.5
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The unitary c.o.v. du is defined as

du ¼ d �
ffiffiffiffiffiffi

NT

p
¼ r

P̂ Fð Þ
�
ffiffiffiffiffiffi

NT

p
ð7:15Þ

where d is the c.o.v., bPðFÞ is the sample estimate of P(F) and r is the sample

standard deviation of bPðFÞ: Since in all MC-type estimators the standard deviation
r (and, thus, the c.o.v. d) decays with a rate Oð1=

ffiffiffiffiffiffi

NT
p
Þ; then du ¼ d �

ffiffiffiffiffiffi

NT
p

is
independent of NT. Notice that the lower is the value of du; the lower is the
variability of the corresponding failure probability estimator and thus the higher is
the efficiency of the simulation method adopted.

However, in addition to the precision of the failure probability estimator, also
the computational time associated to the simulation method has to be taken into
account. Thus, the FOM is introduced and defined as

FOM ¼ 1
r2 � tcomp

ð7:16Þ

where tcomp is the computational time required by the simulation method. Since
r2 / NT and approximately tcomp / NT , also the FOM is independent of NT.
Notice that in this case the higher is the value of the index, the higher is the
efficiency of the method.

Table 7.9 reports the values of the failure probability estimate bPðFÞ; the unitary
c.o.v. du and the FOM obtained by LS with NT = 10000 samples and LHS with
NT ¼ 10000; 100000 and 1000000 samples in the reliability analysis of the T–H
passive system of Fig. 7.11 with Nloops = 3, 4 and 5, respectively; the actual
number Nsys of system performance analyses is also reported together with the
computational time tcomp (in seconds) required by each simulation method on a
Pentium 4 CPU 3.00 GHz. Notice that for LS the actual number Nsys of system
performance analyses is given by Nsys ¼ Ns þ 2� NT : in particular, Ns = 2000
analyses are performed to generate the Markov chain used to compute the
important unit vector a as the normalized ‘‘center of mass’’ of the failure domain
F (Sect. 3.4); instead, 2 � NT analyses are carried out to compute the NT conditional

one-dimensional failure probability estimates bPk Fð Þ : k ¼ 1; 2; . . .;NT

n o

by linear

interpolation.
It can be seen that LS leads to a substantial improvement in efficiency over LHS

in all the cases considered, i.e., for failure probabilities P(F) ranging from 10-3

(Nloops = 3 in Table 7.9) to 10-6 (Nloops = 5 in Table 7.9). The most significant
improvement is registered in the estimation of very small failure probabilities.
Indeed, for PðFÞ� 10�6 (i.e., Nloops = 5 in Table 7.9) the estimate produced by
LS is much more robust than the one produced by LHS: actually, the unitary c.o.v.
du (thus, the variability) of the LS estimator is about 770 times lower than that of
the LHS estimator (conversely, the FOM is about 105 times larger). Notice that
even though the determination of the sampling important direction a and the
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calculation of the conditional one-dimensional failure probability estimates
bPk Fð Þ : k ¼ 1; 2; . . .;NT

n o

require much more than NT system analyses to be

performed, this is significantly overweighed by the accelerated convergence rate
that can be attained.

Finally, it is worth noting that the use of preferential lines (instead of random
points) to probe the failure domain F of interest makes the effectiveness of the LS
method almost independent of the target failure probability P(F) to be estimated:
actually, in this case the value of the unit c.o.v. du keeps almost constant although
the target failure probability P(F) changes by three orders of magnitude (in par-
ticular, du = 0.4757, 0.4785 and 0.9105 for PðFÞ� 1:4� 10�3, 1.5 9 10-5 and
3.4 9 10-6, respectively).

As explained in Sect. 6.8, the important unit vector a ¼ a1; a2; . . .; aj; . . .; an

� �

points in the ‘‘direction of greatest impact’’ on the PF ghðhÞ in the standard normal
space. In other words, given a specified finite variation Dh in the parameter vector
h; the PF ghðhÞ will change most if this variation is taken in the direction of a:
Equivalently, the vector a tells what combinations of parameter variations con-
tribute most to failure and thus gives an idea of the relative importance of the
random parameters hj : j ¼ 1; 2; . . .; n

� �

in determining the failure of the system
under analysis.

Thus, the sensitivity of the passive system performance to the individual
uncertain input parameters of Table 7.8 can be studied by comparing the magni-
tude of each component of a: Table 7.10 reports the values of the components of
the LS important unit vectors a computed as the normalized ‘‘centers of mass’’
of the failure domain F of the 600 MW passive decay heat removal system of
Fig. 7.11 with Nloops = 3, 4, and 5.

Table 7.9 Values of the failure probability estimate, unitary coefficient of variation (c.o.v.) du
and FOM obtained by LS with NT = 10000 samples and LHS with NT = 10000, 100000, and
1000000 samples, in the reliability analysis of the passive system of Fig. 7.11 with Nloops = 3, 4
and 5, respectively

bPðFÞ du FOM NT Nsys tcomp (s)

Nloops = 3
LHS 1.400 9 10-3 19.05 1.41 9 103 10000 10000 32515
LS 1.407 9 10-3 0.4757 1.00 9 106 10000 22000 64328
Nloops = 4
LHS 2.000 9 10-5 210.82 5.63 9 104 100000 100000 321650
LS 1.510 9 10-5 0.4785 9.87 9 108 10000 22000 63482
Nloops = 5
LHS 2.000 9 10-6 699.80 1.58 9 105 1000000 1000000 3223508
LS 3.426 9 10-6 0.9105 1.60 9 1010 10000 22000 64281

The actual number Nsys of system performance analyses is also reported together with the
computational time tcomp (in seconds) required by each simulation method on a Pentium 4 CPU
3.00 GHz
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It can be seen that the performance of the passive system is strongly sensitive to
the pressure level established in the guard containment after the LOCA, as indicated
by the large (absolute) values of component a2 in all the cases considered (in par-
ticular a2 = -0.9243, -0.9753, and -0.9868 for Nloops = 3, 4 and 5, respectively).
A (slight) sensitivity of the passive system performance is also observed with
respect to the correlation errors in both the Nusselt number (in particular, a5 =

-0.0976, -0.1330 and �0:0924 for Nloops = 3, 4 and 5, respectively) and the
friction factor (in particular, a8 = +0.3518, +0.1534 and +0.0796 for Nloops = 3, 4
and 5, respectively) in mixed convection. The magnitude of the other vector
components is instead negligible with respect to these ones.

Also, the signs of the vector components provide useful pieces of information
about sensitivity: in particular, they indicate the direction toward which the cor-
responding parameters have to move in order to cause the failure of the passive
system: for instance, since a2 and a5 are negative (Table 7.10), failure of the
passive system will be caused by a decrease in the pressure (x2) and in the Nusselt
numbers in mixed convection (x5); on the contrary, since a8 is positive
(Table 7.10), failure of the passive system will be registered in correspondence of
high values of the friction factor in mixed convection (x8).

These results are physically reasonable. In fact, the pressure of the system
strongly affects the density of the coolant helium gas, and thus the extent of the
buoyancy force on which the effective functioning of the natural circulation system
is based. In particular, a decrease in the system pressure leads to a decrease in the
buoyancy force which may not succeed in balancing the pressure losses around the
natural circulation loop. Nusselt numbers instead are directly (i.e., linearly) related
to the heat transfer coefficients in both the core and the heat exchanger, and thus
their variations directly impact the global heat removal capacity of the passive
system. In particular, a decrease in the heat transfer coefficient in the heat
exchanger (where the wall temperature is imposed) leads to a reduction in the
heat flux and consequently to an increase in the coolant. Further, a decrease in the
heat transfer coefficient in the core (where the heat flux is imposed as constant)
causes an increase in the coolant wall temperature. Thus, both processes lead to a
rapid attainment of the coolant temperature limits. Finally, the friction factors

Table 7.10 LS important unit vector a computed as the normalized ‘‘center of mass’’ of the
failure domain F of the 600 MW passive decay heat removal system of Fig. 7.11 with Nloops = 3,
4 and 5

Nloops LS important unit vector, a

a1 (x1) a2 (x2) a3 (x3) a4 (x4) a5 (x5) a6 (x6) a7 (x7) a8 (x8) a9 (x9)

3 +0.052 20.924 +0.054 +0.029 20.097 -0.043 +0.019 +0.351 +0.060
4 +0.077 20.975 +0.020 +0.003 20.133 +0.001 +0.002 +0.153 -0.034
5 +0.071 20.987 +0.064 +0.0110 20.0924 -0.0110 +0.0065 +0.0796 -0.0423

The indication of the physical parameters corresponding to one of the vector components are
enclosed in parentheses (Table 7.8). The parameters which most contribute to the failure of the
passive system are highlighted in bold
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directly determine the extent of the pressure losses which oppose the coolant flow
in natural circulation. In particular, an increase in the friction factors determines an
increase in the pressure losses along the closed loop and consequently a reduction
in the coolant flow rate. The smaller the flow rate in the decay heat removal loop,
the higher the coolant temperature rise will be, leading to an earlier attainment of
the coolant temperature limits.
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Appendix A
Probability

Definitions

A process whose outcome is a priori unknown to the analyst is called an
experiment e: The possible outcomes are all a priori known and classified but
which one will occur is unknown at the time the experiment is performed. The set
of all possible outcomes of e is called sample space X. The sample space can be
discrete finite (e.g., for an experiment of a coin or dice toss), countably infinite
(e.g., the number of persons crossing the street in a given period of time: in
principle, it could be infinite and yet be counted) or continuous (e.g., the value of
the dollar currency in the year 3012).

An event E is a group of possible outcomes of the experiment e; i.e., a subset of
X. In particular, each possible outcome represents an (elementary) event itself,
being a subset of X. Further, the null set £ and the sample space X can also be
considered events. To each event E is possible to associate its complementary
event E; constituted by all possible outcomes in X which do not belong to E. Event
E occurs when the outcome of the experiment e is one of the elements of E.

Logic of Certainty

In the logic of certainty (Boolean logic), an event can either occur or not occur.
Thus, it is represented by a statement, or proposition which can only be either true
or false, and at a certain point in time, after the experiment is performed, the
analyst will know its actual state.

Correspondingly, to event E we can associate an indicator variable XE which
takes the value of 1 when the event occurs in the experiment and 0 when it does
not. As a counter example, the statement ‘‘It may rain tomorrow’’ does not
represent an event because it does not imply a ‘‘true’’ or ‘‘false’’ answer.
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We define the following operations involving Boolean events:
Negation: Given event E, represented by the indicator variable XE; its negation

E is described by

XE ¼ 1� XE ðA:1Þ

Union: The event A [ B; union of the two events A and B, is true, e.g., XA[B ¼
1; if any one of A or B is true. Hence,

XA[B ¼ 1� ð1� XAÞð1� XBÞ ¼ 1�
Y

j¼A;B

ð1� XjÞ ¼
a

j¼A;B

Xj ¼XA þ XB � XAXB

ðA:2Þ

Often in practice this event is indicated as A + B and referred to as the OR
event, A OR B.

Intersection: The event A \ B; intersection of the events A and B, is true, e.g.,
XA\B ¼ 1; if both A and B are simultaneously true. Hence,

XA\B ¼ XAXB ðA:3Þ

Often in practice this event is indicated as AB and referred to as the joint event
A AND B.

Mutually exclusive events: Two events A and B are said to be mutually
exclusive if their intersection is the null set, i.e.,

XA\B ¼ 0 ðA:4Þ

Logic of Uncertainty

Axiomatic Definition of Probability

At the current state of knowledge, it is possible that the state of an event be
uncertain, although at some point in the future uncertainty will be removed and
replaced by either the true or the false state. Inevitably, if one needs to make
decisions based on the current state of knowledge, he or she has to deal with such
uncertainty. In particular, one needs to be able to compare different uncertain
events and say whether one is more likely to occur than another. Hence, we accept
the following axiom as a primitive concept which does not need to be proven:

Uncertain events can be compared.

It represents a concept very similar to that of the value of objects and goods
which need to be compared for the purpose of exchanging them. In this latter case
at one point in history, the monetary scale was introduced as an absolute scale
against which to compare different goods with respect to their values. Similarly, it
is necessary to introduce a measure for comparing uncertain events.
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Let us consider an experiment e and let X be its sample space. To each event E
we assign a real number pðEÞ; which we call probability of E and which satisfies
the following three Kolmogorov axioms:

1. For each event E; 0� p Eð Þ� 1;
2. For event X; it is pðXÞ ¼ 1; for event £; it is P £ð Þ ¼ 0;
3. Let E1;E2; . . .En be a finite set of mutually exclusive events. Then,

p
[

n

i¼1

Ei

 !

¼
X

n

i¼1

pðEiÞ ðA:5Þ

The latter axiom is called the addition law and is assumed to maintain its
validity also in the case of countably infinite sample spaces.

This axiomatic view constitutes the Bayesian, or subjectivist, interpretation of
probability according to which everything is made relative to an assessor which
declares ‘a priori’ its ‘belief’ regarding the likelihood of uncertain events in order
to be able to compare them. Thus, in this view, the probability of an event
E represents a degree of belief, or degree of confidence, of the assessor with
regards to the occurrence of that event. Because the probability assignment is
subjectively based on the assessor’s internal state, in most practical situations there
is no ‘true’ or ‘correct’ probability for a given event and the probability value can
change as the assessor gains additional information (experimental evidence).
Obviously, it is completely ‘objective’ in the sense that it is independent of the
personality of the assessor who must assign probabilities in a coherent manner,
which requires obeying the axioms and laws of probability, in particular to Bayes
theorem for updating the probability assignment on the basis of newly collected
evidence (see Sect. A.4). By so doing, two assessors sharing the same total
background of knowledge and experimental evidence on a given event must assign
the same probability for its occurrence.

Empirical Frequentist Definition

Let E be an event associated to experiment e: Suppose that we repeat the
experiment n times and let k be the number of times that event E occurs. The ratio
k=n represents the relative frequency of occurrence of E. As the number of
repetitions n approaches infinity we empirically observe that the ratio k=n settles
around an asymptotic value, p, and we say that p is the probability of E.

From a rigorous point-of-view, this empirical procedure does not follow the
usual definition of mathematical limit and it can be synthesized as follows,

lim
n!1

k

n
� p

�

�

�

�

�

�

�

�

\n ðA:6Þ
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with n� 0: Obviously, this definition may be somewhat unsatisfactory as
probability is defined in terms of likelihood of a large number of repeated
experiments.

Classical Definition

This definition is very similar to the previous empirical one. The only fundamental
difference is that it is not necessary to resort to the procedure of taking a limit. Let
us consider an experiment with N possible elementary, mutually exclusive and
equally probable outcomes A1;A2; . . .;AN : We are interested in the event E which
occurs if anyone of M elementary outcomes occurs, A1;A2; . . .;AM ; i.e.,
E ¼ A1 [ A2 [ . . . [ AM:

Since the events are mutually exclusive and equally probable

p Eð Þ ¼ number of outcomes of interest
total number of possible outcomes

ðA:7Þ

This result is very important because it allows computing the probability with
the methods of combinatorial calculus; its applicability is however limited to the
case in which the event of interest can be decomposed in a finite number of
mutually exclusive and equally probable outcomes. Furthermore, the classical
definition of probability entails the possibility of performing repeated trials; it
requires that the number of outcomes be finite and that they be equally probable,
i.e., it defines probability resorting to a concept of frequency.

Once a probability measure is defined in one of the above illustrated ways, the
mathematical theory of probability is founded on the three fundamental axioms of
Kolmogorov introduced earlier, independently of the definition. All the theorems
of probability follow from these three axioms.

Probability Laws

As previously mentioned, to the generic random event E is associated an indicator
variable XE which takes the value of 1 when the event occurs in the experiment and
0 when it does not. Correspondingly, a real number p(E) is assigned to measure the
probability of E and which satisfies the three Kolmogorov axioms. Given the
binary nature of the indicator variable, XE can only take values of 0 or 1 so that

pðEÞ ¼ pðXE ¼ 1Þ � 1þ pðXE ¼ 0Þ � 0 ¼ E XE½ � ðA:8Þ
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Union of Non-mutually Exclusive Events

Consider n events En not mutually exclusive. Their union EU is associated with an
indicator variable XU which is the extension of the formula (Eq. A.2) for the union
of the two events A and B. For example, for the intersection of the three events A,
B, and C we have

X[ ¼ 1�
Y

j¼A;B;C

1� Xj

� �

¼ 1� 1� XAð Þ 1� XBð Þ 1� XCð Þ

¼ XA þ XB þ XC � XAXB � XAXC � XBXC þ XAXBXC

ðA:9Þ

Following Eq. (A.8), the probability of the event EU can then be computed
applying to Eq. (A.9) the (linear) expectation operator. More generally, for the
union of n non-mutually exclusive events

P EUð Þ ¼ E X[½ � ¼
X

n

j¼1

E Xj

� �

� E
X

n�1

i¼1

X

n

j¼iþ1

XiXj

" #

þ � � � þ �1ð Þn�1
Y

n

j¼1

E Xj

� �

¼ PðEjÞ �
X

n�1

i¼1

X

n

j¼iþ1

PðEi \ EjÞ þ � � � þ �1ð Þn�1
Y

n

j¼1

PðEjÞ

ðA:10Þ

From an engineering practice point-of-view, it is often necessary to introduce
reasonably bounded approximations of Eq. (A.10). Keeping only the first sum, one
obtains an upper bound (often referred to as the rare-event approximation)

PðEUÞ�
X

n

j¼1

PðEjÞ ðA:11Þ

whereas keeping the first two sums gives a lower bound

PðEUÞ�
X

n

j¼1

PðEjÞ�
X

n�1

i¼1

X

n

j¼iþ1

PðEi \ EjÞ ðA:12Þ

More refined upper and lower bounds can then be obtained by alternately
keeping an odd or even number of sum terms in Eq. (A.10).

Conditional Probability

In many practical situations, it is important to compute the probability of an event
A given that another event B has occurred. This probability is called the
conditional probability of A given B and it is given by the ratio of the probability
of the joint event A \ B over the probability of the conditioning event B, viz.,
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PðAjBÞ ¼ PðA \ BÞ
PðBÞ ðA:13Þ

Intuitively, PðAjBÞ gives the probability of the event A not on the entire
possible sample space X but on the sample space relative to the occurrences of
B. This is the reason for the normalization by P(B) of the probability of the joint
event PðA \ BÞ in Eq. (A.9).

Based on the conditional probability, it is possible to introduce the concept of
statistical independence: event A is said to be statistically independent from event
B if PðAjBÞ ¼ PðAÞ: In other words, knowing that B has occurred does not change
the probability of A. From Eq. (A.13), it follows that if A and B are statistically
independent PðA \ BÞ ¼ PðAÞPðBÞ: Note that the concept of statistical
independence should not be confused with that of mutual exclusivity introduced
earlier XAXB ¼ 0ð Þ; which is actually a logical dependence: knowing that A has
occurred XA ¼ 1ð Þ guarantees that B cannot occur XB ¼ 0ð Þ:

Theorem of Total Probability

Let us consider a partition of the sample space X into n mutually exclusive and
exhaustive events Ej; j ¼ 1; 2; . . .; n: In terms of Boolean events, this is written as

Ei \ Ej ¼ 0 8i 6¼ j
[

n

j¼1

Ej ¼ X ðA:14Þ

whereas in terms of the indicator variables

XiXj ¼ 0 8i 6¼ j
X

n

j¼1

Xj ¼ 1 ðA:15Þ

Given any event A in X; its probability can be computed in terms of the
partitioning events Ej; j ¼ 1; 2; . . .; n and the conditional probabilities of A on these
events, viz.,

PðAÞ ¼ PðAjE1ÞPðE1Þ þ PðAjE2ÞPðE2Þ þ � � � þ PðAjEnÞPðEnÞ ðA:16Þ

Bayes Theorem

Assume now that you have experimental evidence that event A has occurred: what
is the probability that event Ei has also occurred? This may be considered as a
‘reverse’ probability with respect to the probability question underlying the
previous theorem of total probability. To the joint event A \ Ei we can apply the
conditional probability (Eq. A.13) from both the points of view of A and of Ei
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PðA \ EiÞ ¼ PðAjEiÞPðEiÞ ¼ PðEijAÞPðAÞ ðA:17Þ

From this, Bayes theorem is readily derived

PðEijAÞ ¼
PðAjEiÞPðEiÞ

PðAÞ ¼ PðAjEiÞPðEiÞ
P

n

j¼1
PðAjEjÞPðEjÞ

ðA:18Þ

Equation (A.18) updates the prior probability value PðEiÞ of event Ei to the
posterior probability value PðEi Aj Þ in reflection of the acquired experimental
evidence on the occurrence of event A whose unknown probability P Að Þ is
computed by applying the theorem of total probability (Eq. A.16).
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Appendix B
HAZID

Definitions

Hazard Identification (HAZID) is the procedure to assess all hazards that could
directly and indirectly affect the safe operation of the system. The procedure is
broken down and categorized into the two streams that can affect the system both
directly and indirectly, i.e., the Internal Hazards and External Hazards studies,
respectively.

Main Concepts

A HAZID study is carried out by a team of competent engineers from a mixture of
disciplines, led by an analyst who is experienced in the HAZID technique. Each
area of the installation is considered against a checklist of hazards. Where it is
agreed that a hazard exists in a particular area, the risk presented by the hazard is
considered, and all possible means of either eliminating the hazard or controlling
the risk and/or the necessity for further study are noted on a HAZID worksheet.
Actions are assigned to either discipline groups or individuals to ensure the
mitigating control, or further study is completed.

Essentials

1. HAZID Objectives

• Identify hazards to facilities due to design and evaluate potential consequences
should the hazards be realized;
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• Establish safeguards to manage hazards; identify areas where further
understanding of safeguard effectiveness is needed;

• Make recommendations to reduce the likelihood of hazard occurrence or
mitigate the potential consequences.

2. The HAZID method, accepted as one of the best techniques for identifying
potential hazards and operability problems, involves the following:

• Assembly of a team of experienced project personnel;
• Presentations detailing the scope of the HAZID;
• Identify hazards, causes, consequences, and safeguards;
• Make recommendations to address hazards, as appropriate;
• Risk ranking of hazardous events.

3. Key Benefits to Client

• Existing design knowledge is efficiently captured relative to client’s projects;
• Numerous procedural, equipment design, testing, and process control

recommendations allow expedited development of standardized equipment.

4. Logic diagram

5. Process steps:

1. Define the purpose, objectives, and scope of the study;
2. Select the team;
3. Prepare for the study;
4. Carry out the team review;
5. Record the results.
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Appendix C
Fault Tree Analysis

Definitions

For complex multicomponent systems, for example such as those employed in
the nuclear, chemical, process, and aerospace industries, it is important to analyze
the possible mechanisms of failure and to perform probabilistic analyses for
the expected frequency of such failures. Often, each such system is unique in the
sense that there are no other identical systems (same components interconnected in
the same way and operating under the same conditions) for which failure data have
been collected; therefore, a statistical failure analysis is not possible. Furthermore,
it is not only the probabilistic aspects of failure of the system which are of interest
but also the initiating causes and the combinations of events which can lead to a
particular failure.

The engineering way to tackle a problem of this nature, where many events
interact to produce other events, is to relate these events using simple logical
relationships such as those introduced in Sect. A.2. (intersection, union, etc.) and
to methodically build a logical structure which represents the system.

In this respect, Fault Tree Analysis (FTA) is a systematic, deductive technique
which allows to develop the causal relations leading to a given undesired event. It
is deductive in the sense that it starts from a defined system failure event and
unfolds backward its causes down to the primary (basic) independent faults. The
method focuses on a single system failure mode and can provide qualitative
information on how a particular event can occur and what consequences it leads to,
while at the same time allowing the identification of those components which play
a major role in determining the defined system failure. Moreover, it can be solved
in quantitative terms to provide the probability of events of interest starting from
knowledge of the probability of occurrence of the basic events which cause them.

In the following, we shall give only the basic principles of the technique. The
interested reader is invited to look at the specialized literature for further details,
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e.g., [1] and references therein from which the material herein contained has been
synthetized.

Fault Tree Construction and Analysis

A fault tree is a graphical representation of causal relations obtained when a
system failure mode is traced backward to search for its possible causes. To
complete the construction of a fault tree for a complex system, it is necessary to
first understand how the system functions. A system flow diagram (e.g., a
reliability block diagram) can be used for this purpose, to depict the pathways by
which flows (e.g., of mass, signals, energy, information, etc.) are transmitted
among the components of the system.

The first step in fault tree construction is the selection of the system failure
event of interest. This is called the top event and every following event will be
considered in relation to its effect upon it.

The next step is to identify contributing events that may directly cause the top
event to occur. At least four possibilities exist [2]:

• No input to the device;
• Primary failure of the device (under operation in the design envelope, random,

due to aging or fatigue);
• Human error in actuating or installing the device;
• Secondary failure of the device (due to present or past stresses caused by

neighboring components or the environments: e.g., common cause failures,
excessive flows, external causes such as earthquakes).

If these events are considered to be indeed contributing to the system fault, then
they are connected to the top event logically via an OR event (see Eq. A.2) and
graphically through the OR gate (Fig. C.1):

Once the first level of events directly contributing to the top has been
established, each event must be examined to decide whether it is to be further
decomposed in more elementary events contributing to its occurrence. At this
stage, the questions to be answered are:

• Is this event a primary failure?
• Is it to be broken down further in more primary failure causes?

In the first case, the corresponding branch of the tree is terminated and this
primary event is symbolically represented by a circle. This also implies that the
event is independent of the other terminating events (circles) which will be
eventually identified and that a numerical value for the probability of its
occurrence is available if a quantitative analysis of the tree is to be performed.

On the contrary, if a first level contributing event is not identified as a primary
failure, it must be examined to identify the subevents which contribute to its
occurrence and their logical relationships (Fig. C.2).
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The procedure of analyzing every event is continued until all branches have
been terminated in independent primary failures for which probability data are
available. Sometimes, certain events which would require further breakdown can
be temporarily classified as primary at the current state of the tree structure and
assigned a probability by rule of thumb (typically a conservative value). These
underdeveloped events are graphically represented by a diamond symbol rather
than by a circle.

For the analysis, a fault tree can be described by a set of Boolean algebraic
equations, one for each gate of the tree. For each gate, the input events are the
independent variables and the output event is the dependent variable. Utilizing the
rules of Boolean algebra, it is then possible to solve these equations so that the top
event is expressed in terms of sets of primary events only.

Finally, the quantification of the fault tree consists of transforming its logical
structure into an equivalent probability form and numerically calculating the
probability of occurrence of the top event from the probabilities of occurrence of
the basic events. The probability of the basic event is the failure probability of the
component or subsystem during the mission time of interest. The corresponding
mathematical details can be found in [1].

Fig. C.1 Top and first levels of a fault tree for a circuit breaker (CB) failing to trip an electrical
circuit [3]

Fig. C.2 AND event exam-
ple for the circuit breaker of
the electrical system with the
top event of Fig. C.1 [3]
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Appendix D
Event Tree Analysis

Definitions

Event Tree Analysis (ETA) is an inductive logic method for identifying the various
accident sequences which can generate from a single initiating event. The
approach is based on the discretization of the real accident evolution in few
macroscopic events. The accident sequences which derive are then quantified in
terms of their probability of occurrence.

The events delineating the accident sequences are usually characterized in
terms of: (1) the intervention (or not) of protection systems which are supposed to
take action for the mitigation of the accident (system event tree); (2) the fulfillment
(or not) of safety functions (functional event tree); (3) the occurrence or not of
physical phenomena (phenomenological event tree).

Typically, the functional event trees are an intermediate step to the construction
of system event trees: following the accident-initiating event, the safety functions
which need to be fulfilled are identified; these will later be substituted by the
corresponding safety and protection systems.

The system event trees are used to identify the accident sequences developing
within the plant and involving the protection and safety systems.

The phenomenological event trees describe the accident phenomenological
evolution outside the plant (fire, contaminant dispersion, etc.).

In the following, we shall give only the basic principles of the technique. The
interested reader is invited to look at the specialized literature for further details,
e.g., [1] and references therein from which most of the material herein contained
has been synthetized.

E. Zio, The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer Series in Reliability Engineering,
DOI: 10.1007/978-1-4471-4588-2, � Springer-Verlag London 2013

195



Event Tree Construction and Analysis

An event tree begins with a defined accident-initiating event which could be a
component or an external failure. It follows that there is one event tree for each
different accident-initiating event considered. This aspect obviously poses a
limitation on the number of initiating events which can be analyzed in details. For
this reason, the analyst groups similar initiating events and only one representative
initiating event for each class is investigated in details. Initiating events which
are grouped in the same class are usually such to require the intervention of the
same safety functions and to lead to similar accident evolutions and consequences.

Once an initiating event is defined, all the safety functions that are required to
mitigate the accident must be defined and organized according to their time and
logic of intervention. For example (Fig. D.1), if the Initiating Event (IE) is the
rupture of a tube with release of inflammable liquid and the sparking of jet-fire, the
first function required would be that of interception of the released flow rate,
followed by the cooling of adjacent tanks, and finally the quenching of the jet.
These functions are structured in the form of headings in the functional event tree.
For each function, the set of possible success and failure states must be defined and
enumerated. Each state gives rise to a branching of the tree (Fig. D.1). For
example, in the typical binary success/failure logic it is customary to associate to
the top branch the success of the function and to the bottom branch its failure.

Figure D.2 shows a graphical example of a system event tree: the initiating
event is depicted by the initial horizontal line and the system states are then
connected in a stepwise, branching fashion; system success and failure states have
been denoted by S and F, respectively. The accident sequences that result from the
tree structure are shown in the last column. Each branch yields one particular
accident sequence; for example, IS1F2 denotes the accident sequence in which the
IE occurs, system 1 is called upon and succeeds S1ð Þ; and system 2 is called upon
but fails to perform its defined function F2ð Þ: For larger event trees, this stepwise

Fig. D.1 Example of func-
tional event tree [1]
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branching would simply be continued. Note that the system states on a given
branch of the event tree are conditional on the previous system states having
occurred. With reference to the previous example, the success and failure of
system 1 must be defined under the condition that the initiating event has occurred;
likewise, in the upper branch of the tree corresponding to system 1 success, the
success and failure of system 2 must be defined under the conditions that the
initiating event has occurred and system 1 has succeeded.

Fig. D.2 Illustration of system event tree branching [3]
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3 4 4 3 3* + * + * +U U R U U K R U K R K

3 4 4 3 3* + * + * +U H R H U K R U K R K

3 4 4 3 3* + * + * +H U R U H K R H K R K

3 4 4 3 3* + * + * +HH R H H K R H K R K

S1 S2I

Fig. D.3 Schematics of the event tree and associated fault trees for accident sequences
evaluation



Event Tree Evaluation

Once the final event tree has been constructed, the final task is to compute the
probabilities of system failure. Each event (branch) in the tree can be interpreted as
the top event of a fault tree which allows the evaluation of the probability of
occurrence of such event. The value thus computed represents the conditional
probability of the occurrence of the event, given that the events which precede on
that sequence have occurred. Multiplication of the conditional probabilities for
each branch in a sequence gives the probability of that sequence (Fig. D.3).
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