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Abstract This chapter will first provide an introduction to information retrieval
(IR) in general, before briefly explaining the research field of music information
retrieval (MIR). Hereafter, we will discuss why and how social media mining
(SMM) techniques can be beneficially employed in the context of MIR. More
precisely, motivations for the common MIR tasks of music similarity computation,
music popularity estimation, and auto-tagging music will be provided, and the
current state-of-the-art in employing SMM techniques to these three tasks will be
elaborated.

Developing music similarity measures is an important task in MIR as such mea-
sures are a key ingredient for music recommendation systems, automated playlist
generators, and intelligent browsing interfaces, among others. In this chapter, it will
be shown how to infer music similarity information from microblogs, collaborative
tags, web pages, playlists, and peer-to-peer networks. Estimating the popularity
of a music item is obviously important for the music industry but also to create
serendipitous music retrieval and recommendation systems. Therefore, approaches
that derive such information from web page counts, geo-located microblogs, a peer-
to-peer network, and a social music platform will be reviewed. Eventually, different
music auto-tagging methods that assign semantic labels to music pieces will be
presented. In particular, computational approaches that rely on machine learning
techniques as well as human-centred strategies that infer tags directly from some
kind of user input (e.g. “games with a purpose”) will be addressed.
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1 Introduction to Information Retrieval

The discipline of information retrieval (IR) is a mature field of research as early
work dates back to the 1950s, for instance [59]. Since I can only give a very brief
introduction to this exciting field here, the interested reader is referred to one of
the many excellent books that offer comprehensive coverage of IR. I personally
recommend [22] for an introduction and [3] and [8] for a more comprehensive
coverage.

Broadly speaking, IR is concerned with elaborating and testing methods to
uncover information from potentially large corpora of text (traditional IR) or (more
recently) multimedia, in response to the user’s expression of an information need.
This information need is usually given as a text query, the classical example being
a user who types in a query string into his or her preferred search engine. Texts are
most frequently organised in the form of documents, although other representations
exist. Hence, it is usually also documents which are returned as response to a query
to a search engine.

In order to be able to promptly provide search results for millions of queries
issued every hour to major search engines, enormous amounts of computational
power are required. But of no lesser importance are highly efficient representations
of the documents. For this purpose, an inverted index is commonly created from
the documents. Such an inverted index stores, for each term t , a list of documents
in which t occurs or a list of documents and the precise positions of t within
each document. The former is referred to as document-level inverted index, record-
level inverted index, inverted file index, or just inverted file; the latter is typically
named full inverted document index, word-level inverted index, full inverted index,
or inverted list. The major advantage of a full inverted index is that it allows for
phrase search, that is, finding an exact phrase within a document, not only a single
term. In a regular expression notation, the two variants of the mapping implemented
by the two flavours of indexes can be written as follows:

document-level index: term 7!document*
world-level index: term 7!(document,position+)*

If the user now wants to search for a particular topic, expressed as a query
q, the retrieval system computes a matching score between q and the indexed
documents D. A common approach is to compute term weights w.q; d/ between
q and each document d , which estimate the importance of the document for the
query. The documents are then ranked with respect to w.q; d/ and displayed to
the user in descending order of term weight. This classical retrieval approach is
often called term vector model or vector space model. Since its proposal in 1975
by Salton et al. [71], many extensions as well as alternative retrieval approaches
have been suggested. More recent methods include probabilistic retrieval [45] and
graph-based models [7].
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2 Music Information Retrieval at a Glance

Unlike traditional IR, music information retrieval (MIR) is a relatively young field
of research, dating back only about a decade. An early and quite general definition
of MIR, which highlights the multidisciplinarity of the field, is given by Downie
in [17]:

MIR is a multidisciplinary research endeavour that strives to develop innovative content-
based searching schemes, novel interfaces, and evolving networked delivery mechanisms in
an effort to make the worlds vast store of music accessible to all.

A later definition given by Schedl [72] focuses on extracting and processing musical
information on different levels and modalities:

MIR is concerned with the extraction, analysis, and usage of information about any kind of
music entity (for example, a song or a music artist) on any representation level (for example,
audio signal, symbolic MIDI representation of a piece of music, or name of a music artist).

Due to recent developments, such as audio and music streaming services
(e.g. Spotify [41]), personalised web radio (e.g. last.fm [27]), and increasing
use of multimedia data in social media, MIR has gained considerably in importance
as a research field.

Although MIR is a highly multidisciplinary research field, including areas as
diverse as music theory, library science, psychology, law, and artificial intelligence,
one of its key goals is to better understand how humans perceive, create, process,
and interact with music. Given its strong connection to computer science, MIR
approaches to achieve this broad goal typically involve elaborating computational
models of music perception. These approaches commonly take as input the audio
signal or other modalities of a music item and compute features that strive to
describe particular aspects of the music item, for example, rhythm, harmony, or
timbre. Figure 1 depicts a schematic and simplified illustration of how a signal-
based (content-based) audio feature extractor works. First, the audio signal is
sampled and digitised, yielding a representation as pulse code modulation (PCM).
For instance, when producing a compact disc, the sampling frequency is typically
44,100 Hz, and each sample is described via 16 bits. For a stereo recording, the
data volume hence amounts to 176,400 bytes per second. The PCM representation
is then split into (often overlapping) frames with a typical length of between 28

and 212 samples. Low-level features in the time domain can then be computed
directly on these frames. To capture frequency information, alternatively, it is very
common to apply a windowing function to each frame and subsequently compute
the fast Fourier transform (FFT) [13], which converts the data from a time–
amplitude representation into a frequency–magnitude system. Hereafter, several
post-processing steps are commonly performed, for instance, employing some
psychoacoustic model of human auditory perception. Eventually, one regularly has
to decide how to combine the features computed for each frame of a piece of music
to create a global representation. Methods range from computing simple statistical
moments to complex time-series modelling via hidden Markov models (HMM) [5].
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Fig. 1 Basic scheme of an acoustic feature extractor

The computational features extracted via algorithms similar to the one just
described can be used for a wide range of MIR tasks, for instance, to estimate
similarity between music items which in turn enables the creation of music
recommendation systems, of playlists automatically generated, and of clustering-
based user interfaces to music collections. If semantic labels describing the music
items are available, another popular task is to automatically learn relations between
audio features and semantic descriptors. This task is commonly referred to as auto-
tagging.

The content-based feature extraction framework described above represents the
traditional MIR strategy to computationally grasp aspects of a music item that
should relate to human music perception. In the past few years, however, MIR has
seen a paradigm shift to incorporate additional factors into computational models
of music perception and description. In particular, contextual aspects of the music
items and of the listener are increasingly taken into account. Integrating these with
traditional content-based methods, Fig. 2 shows the three broad pillars from which
perceptual music information can be extracted, according to [76].

Music content feature extractors derive information directly from the audio
representation of a piece of music, by applying signal processing techniques. A
typical example are features inferred from time-invariant Mel frequency cepstral
coefficients (MFCC) representations of the audio signal, which serve to some extent
to describe the coarse timbre of an audio signal. Overviews of common content-
based extraction techniques are provided, for instance, in [9, 20, 57].
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Fig. 2 Categorisation of computational aspects that influence music perception

Music context refers to aspects that are not encoded in the audio signal (or cannot
be extracted with current methods), nevertheless are related to a music item. For
instance, collaborative tags about a performer, semantic meaning of song lyrics,
or the political background of an artist fall into this category. More details on
feature extraction and similarity estimation from the music context can be found,
for example, in [75].

User context relates to personal properties, preferences, and feelings of the music
listener. The user context hence includes the user’s mood, activities, friends, or level
of musical training. Although these highly individual factors are obviously influen-
tial on music perception, MIR literature centred around the user is relatively sparse.
Among the existing work, I would like to highlight the following: Cunningham
et al. present an interesting study on why people dislike particular music [15];
Lee conducted a thorough analysis of natural language music queries [55] and
personalised and user-aware music retrieval and recommendation are treated, for
example, in [4, 10, 81].

Finally, it is noteworthy that some aspects fall into more than one category.
For example, song lyrics might be seen to belong to the music content as they
are obviously encoded in the audio signal. However, with current MIR techniques,
it is impossible to extract and convert them to a semantically meaningful textual
representation. On the other hand, many web pages list huge amounts of song
lyrics, which make it easy to extract them from a contextual data source. I therefore
predominantly see them in the music context category. A similar overlap might
occur for collaborative tags. One can argue that such tags are the outcome of many
users, hence would count them to the user context. However, according to my
categorisation, the user context refers to individual, personal factors of the user,
not to user groups.
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3 Social Media Mining in Music Information Retrieval

Usage of social media has seen a tremendous increase during the past couple
of years. People create, modify, and most importantly share massive amounts of
multimedia data (text, images, music, videos) on platforms such as Twitter [42],
Facebook [34], last.fm [27], and YouTube [43].

As music plays a vital role in many human lives and everyone has an opin-
ion about music, user-generated content related to music items such as artists,
performers, songs, albums, or music videos is available in abundance. Given
the remarkable commercial interest in music distribution and delivery, innovative
music retrieval systems are becoming increasingly important. Such systems include
personalised, user-aware music recommenders [4], automated playlist generators
[64], or intelligent browsing interfaces [48] that transcend the traditional filtering-
based browsing scheme according to an artist–album–track hierarchy.

Given the huge amount of user-generated data and the broad interest in music,
elaborating sophisticated methods to mine social media content in order to derive
semantic information about music and other media items is an ongoing research
endeavour, which is currently pursued quite actively. In the following, we will
hence discuss the state of the art in three key areas of MIR, where social media
mining (SMM) can help improve upon traditional solutions. More precisely, the
topics covered are how to compute similarities between music items such as songs
or artists, how to estimate the popularity of a music item, and how to tag music
items, that is, assign semantic labels to a piece of music, album, or artist.

3.1 Music Similarity Estimation

Computing similarity estimates between two music items (e.g. songs or artists) is an
important task in MIR as it enables, among others, automated creation of playlists,
recommending items similar to the favourites of a user, or applying clustering
techniques and consequently creating user interfaces that foster browsing music
collections in an intuitive way.

An example for automated music playlist generation is [68], where content-based
data and contextual data (extracted from music-related web pages) are combined to
create seamless playlists. Pohle et al. aim at creating playlists in which consecutive
tracks sound as similar as possible. Figure 3 shows a music browser entitled
Traveller’s Sound Player, which allows to interact with the generated
playlists.

A user interface to music collections, named nepTune, is presented in [48],
where Knees et al. extract audio features from digital audio files to train a
self-organising map (SOM) [51]. The SOM uses similarities between feature
representations of songs to cluster the music collection under consideration. The
clusters are then visualised via first estimating the distribution of the data items over
the map and subsequently using the estimated densities as height values to create a
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Fig. 3 Screenshot of the
Traveller’s Sound
Player interface for
automated playlist generation

Fig. 4 Screenshot of the nepTune browsing interface for music collections

virtual landscape of the music collection. The landscape generated in this way can
then be navigated through in the manner of a computer game. Figure 4 shows a
screenshot of the nepTune interface.

Various kinds of social media have been used to derive similarity scores between
music items. In the following, we will particularly focus on methods that construct
a similarity measure from user-generated shared playlists (e.g. available from Art
of the Mix [30]) [2], shared folders in P2P networks [58], microblogs [80],
and collaborative tags [19, 56]. Social media sources for collaborative tags include
dedicated platforms such as last.fm or the recently quite popular “games with a
purpose” [54, 61, 90].
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Fig. 5 Artist similarity estimation from microblogs

According to the exploited data source and similarity computation strategy,
the methods under discussion can be categorised into text-based (microblogs and
collaborative tags) and co-occurrence-based (web pages, playlists, and shared
folders in P2P networks), each of which requires different algorithms to construct a
similarity measure. Evaluation, on the other hand, can be performed using the same
techniques; most common are genre classification and comparison against human
similarity judgements.

3.1.1 Text: Microblogs and Collaborative Tags

Text-based approaches to music similarity estimation typically approximate the
similarity by employing the vector space model, which was introduced in Sect. 1. In
the following, we will discuss how to derive similarity information from microblogs
and from collaborative tags extracted from last.fm or gathered from “games with
a purpose”.

Microblogs

A comprehensive study of different aspects in estimating music artist similar-
ity from microblogs is presented in [74]. For the experiments in this chapter,
the vector space model was applied, that is, each artist is modelled as a term
weight vector in a high-dimensional feature space and similarities between these
term vector representations are calculated. An overview of the basic approach is
depicted in Fig. 5. First, the Twitter API is used to retrieve microblogs for
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each artist in a given list of 3,000 music artists. The returned tweets for each
artist are then concatenated, resulting in a virtual artist document, and a term
vector representation for each artist is computed. The actual similarity estimate
between two artists Ai and Aj is eventually obtained by calculating a similarity1
function SAi ;Aj .

In the study presented in [74], several thousand combinations of the following
single aspects have been assessed:

• Query scheme
• Index term set
• Term frequency (TF)
• Inverse document frequency (IDF)
• Normalisation with respect to document length
• Similarity function

Evaluating different query schemes is motivated by the fact that earlier work in
web-based MIR has shown an improvement in the accuracy of similarity estimates
when adding music-related keywords to the search query (e.g. “music” or “music
review”) [47, 78, 92]. Different index term sets, that is, lists of terms used to filter
the microblogs and create the term weight vectors, have been assessed as well. The
number of terms in the index term set corresponds to the dimensionality of the
respective feature vectors (TF � IDF vectors). The term frequency rd;t of a term t in
a virtual artist document d estimates the importance t has for document d , hence
for the artist under consideration. The inverse document frequency wt estimates the
overall importance of term t in the whole corpus and is commonly used to weight
the rd;t factor, that is, downweight terms that are important for many documents
and hence less discriminative for d . Performing this calculation for all terms in
the used index term set and each virtual artist document results in one TF � IDF
vector per artist. It is common to subsequently normalise the TF � IDF vectors with
respect to document length. Finally, different similarity functions Sdi ;dj to estimate
the proximity between the term vectors of two virtual artist documents di and dj

are examined.
As for evaluation, mean average precision (MAP) scores are computed on genre

labels predicted by various classifiers. More precisely, given a query or seed artist,
the retrieval task is to find artists of the same genre via similarity. MAP is simply
computed as the arithmetic mean of the precision@k scores, that is, the average
precision of k-nearest neighbour (kNN) classifiers for varying values of k.

Although reporting all results of [74] is way beyond the scope of this chapter, I
would like to summarise the most important findings in the following.

Query Scheme: When dealing with microblogs, it is preferable to use only the artist
name (no additional keywords) to query the TwitterAPI or more general to select
the tweets relevant to the artist under consideration.

Index Term Sets: Even though using all terms in the corpus yields the highest
MAP values, results are by far the most unstable ones. This means that slightly
modifying a single other aspect can cause a significant decline in accuracy when
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using all terms in the corpus. Given the high computational complexity due to
feature spaces of dimensionality greater than one million, employing no particular
index term set is not favourable. Best and most robust results were achieved on
average using a dictionary of musical genres, musical instruments, and emotions,
which was gathered from Freebase [35].

Term Frequency: A simple binary match TF formulation should not be used. The
most favourable algorithmic variants are logarithmic formulations and an adapted
Okapi BM25 formulation [69, 70].

Inverse Document Frequency: Among the IDF formulations, binary match yields
the worst results. Also signal estimates and signal-to-noise ratios do not perform
much better. Again, logarithmic formulations and the modified Okapi BM25
formulation yield top results.

Normalisation: Performing no normalisation for document length performs best,
both in terms of accuracy and robustness. This is presumably due to the special
characteristics of tweets, which are limited to 140 characters, a limit commonly
exhausted by Twitter users. Normalisation hence does not improve results but
increases computational costs.

Similarity Function: Among the similarity functions under estimation, the Jeffrey
divergence-based function performs very well, while at the same time maintaining
a reasonable stability level. Also the Jaccard coefficient performs remarkably well.
Euclidean similarity performed inferior in all combinations.

Overall, the best performing variants found in the experiments are given by
the three term-weighting functions in Eqs. 1–3, in combination with the Jaccard
coefficient similarity function (Eq. 4). In these equations, N represents the total
number of documents in the corpus, fd;t is the number of occurrences of term t

in document d , ft denominates the total number of documents containing term t ,
Wd is the document length of d , and Td1;d2 denotes the set of distinct terms in
documents d1 and d2.

wd;t D loge.1 C fd;t / � loge

N � ft

ft

(1)

wd;t D loge.1 C fd;t / � log
N � ft C 0:5

ft C 0:5
(2)

wd;t D .1 C loge fd;t / � loge

N � ft

ft

(3)

sim.d1; d2/ D
P

t2Td1;d2
.wd1;t � wd2;t /

W 2
d1

C W 2
d2

�P
t2Td1;d2

.wd1;t � wd2;t /
(4)
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Table 1 Most popular tags
and their artist frequencies,
among a set of 1,995 artists

Tag Frequency

Jazz 809
Seen live 658
Rock 633
60s 623
Blues 497
Soul 423
Classic rock 415
Alternative 397
Funk 388
Pop 381
Favourites 349
American 345
Metal 334
Electronic 310
Indie 309

Table 2 Tags assigned by
last.fm users only once,
among a set of 1,995 artists

Crappy girl singers
Stuff that needs further exploration
Disco noir
Knarz
Lektroluv compilation
Gdo02
Electro techo
808 state
Good gym music
Techno manchester electronic acid house
Music i tried but didnt like
American virgin festival

Collaborative Tags

User-generated tags that are assigned to music items are a valuable, albeit noisy
source for different MIR tasks, not least for similarity estimation and music retrieval
purposes.

Geleijnse et al. gather tags from last.fm to generate a “tag ground truth” on
the artist level [19]. The authors first filter redundant and noisy tags using the set
of tags associated with tracks by the artist under consideration. Similarity between
two artists is then estimated as the number of overlapping tags. Evaluation on a set
of 1,995 artists, using last.fm’s similar artist function as ground truth, shows
that the number of overlapping tags between similar artists is much larger than
the overlap between arbitrary artists (about 10 vs. 4 tags after filtering). Another
interesting observation is that the tags assigned to the largest number of artists fall
into only three semantic categories – genres, personal references, and time periods
(Table 1). The least frequent tags are shown in Table 2. Often they are more prosaic,
represent specific personal notes, or simply contain typos.
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Another work on collaborative tags is [56], where Levy and Sandler construct
a semantic space for music pieces based on tags retrieved from last.fm and
MusicStrands [28], a web service (no longer in operation) that allowed users to
share playlists. To this end, all tags found for a specific music piece are tokenised,
and a document-term matrix based on TF � IDF weighting is created. Each track is
hence represented by a term vector. For the TF part of the weighting, three different
approaches are considered: using the number of users that applied the tag, ignoring
the number of users (performing no TF weighting at all), and restricting the terms
to adjectives by employing a part-of-speech (POS) tagger. Levy and Sandler further
analyse the influence of applying latent semantic analysis (LSA) [16] to reduce
the dimensionality of the feature space. The authors then compute the similarity
between the resulting feature vectors using the cosine measure. For evaluation, the
authors employ a retrieval scenario and report average precision values. They judge
the relevance of retrieved terms as having assigned the same genre or artist label
as the seed. Levy and Sandler find that using all terms (not only adjectives) is
preferable. They also found the incorporation of the number of users that applied
the tag into the TF score superior.

It was in 2007 when the MIR community recognised the value of “games with a
purpose” for MIR tasks. In this very year, three papers proposing different music-
tagging games were found in the proceedings of the annual “International Society
for Music Information Retrieval” (ISMIR) conference, the main scientific venue for
MIR research. The principal motivation for such games is to let users solve tasks
that are hard or even infeasible to perform for a computer, while at the same time
being entertaining enough to attract and keep many users playing. In the music
domain, Law et al. present TagATune, a game for semantic annotation of music
and audio [54]. Two players are paired and are then listening to the same piece of
audio. They can describe the audio by entering words but are rather told to guess
what their partners are thinking, because both players will only score points if their
tags match. If this is the case for one tag, the game will proceed to the next track.
Even though TagATune was originally designed to harvest semantic descriptions
for music and audio, it also implements a “comparison round”, where users are
presented three songs – one seed track and two alternatives to choose from. They
then have to decide which of the alternatives sound more similar to the seed song.
From this kind of information, relative similarity judgements and in turn a similarity
measure can be derived, as done by Law and von Ahn [53], Stober [88], and Wolff
and Weyde [93], for instance.

A similar game, called Listen Game, is presented by Turnbull et al. in [90]. It
aims at uncovering semantic relationships between words and music. Again, players
are grouped and listen to the same songs. They subsequently have to choose from
a list of words the one that best and the one that worst describes the song. Users
get immediate feedback about which tags other players have chosen. From the data
collected, Turnbull et al. employ the mixture hierarchies expectation maximisation
(MH-EM) [91] algorithm to learn semantic associations between words and songs.
These associations are weighted and can therefore be used to construct tag weight
vectors for songs and in turn to define a similarity measure for retrieval [89].
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Table 3 Most popular tags
assigned by players of a
“game with a purpose” on
music annotation

Tag Frequency

Drums 793
Guitar 720
Male 615
Rock 571
Synth 429
Electronic 414
Pop 375
Bass 363
Female 311
Dance 297
Techno 224
Electronica 155
Piano 153
Rap 140
Synthesizer 136

Mandel and Ellis present another game for music annotation in [61]. It differs
from the other games presented so far in that it uses a more fine-grained scoring
scheme. Players receive more points for new tags to stimulate the creation of a
larger semantic corpus. More precisely, a player who first uses a tag t to describe
a particular song scores two points if t is later confirmed (used again) by another
player. The third and subsequent players that use the same tag t do not receive any
points. Thus, players who are the first to use a word t for tagging a particular song
do not receive an immediate reward but will score two points as soon as another
player will have used t . The authors report the most popular tags confirmed by at
least one user. They are summarised in Table 3. Compared to the top tags extracted
from last.fm (Table 1), the tags originating from the tagging game more often
describe instruments and gender of the main performer.

3.1.2 Co-occurrences: Web Pages, Playlists, and P2P Networks

The family of co-occurrence approaches to music similarity estimation is based
upon the assumption that two music items are more likely to be similar if they co-
occur in the same document, for instance, a playlist, a web page, or a tweet.

Web Pages

In this vein, [78] defines the similarity of two artists as the conditional probability
that one artist is to be found on a web page that is known to mention the other artist.
This conditional probability can either be calculated on crawled web pages that
relate to the artists under consideration or heuristically approximated using page
count information from major search engines.
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The former strategy, performing web crawls to infer similarities, is followed in
[12] and [72][Chap. 3]. To this end, a certain amount of top-ranked web pages
returned by a search engine is retrieved for each artist Ai . Subsequently, all pages
fetched for Ai are searched for occurrences of all other artist names in the collection.
The number of page hits represents a co-occurrence count that equals the document
frequency of the artist term “Aj ” in the corpus of web pages for artist Ai . This count
is expressed by the asymmetric function cooc.Ai ; Aj /. A similarity score is then
computed by relating this count to the total number of pages successfully fetched
for artist Ai . Symmetrising these scores for all pairs of artists eventually leads to the
similarity function shown in Eq. 5. Please note that cooc.Ai ; Ai/ and cooc.Aj ; Aj /

refer to the total number of web pages successfully crawled for artists Ai and Aj ,
respectively.

sim.Ai ; Aj / D 1

2
�
�

cooc.Ai ; Aj /

cooc.Ai ; Ai /
C cooc.Aj ; Ai /

cooc.Aj ; Aj /

�

(5)

The heuristic solution referred to in the beginning of this section is proposed
in [78]. It relies solely on the page count estimates provided by a search engine.
In short, these page count estimates for queries like "artist name i" or
"artist name i"+"artist name j" are used to infer the relative fre-
quency of both artists’ co-occurrence and in turn the conditional probability as
indicated above. Equation 6 gives a formal representation of the symmetrised
similarity function.

sim.Ai ; Aj / D 1

2
�
�

pc.Ai ; Aj /

pc.Ai /
C pc.Ai ; Aj /

pc.Aj /

�

(6)

Comparing the two strategies (web crawls and page count estimates) in terms of
computational complexity, it is obvious that the former one requires fewer requests
to the search engine. The number of queries to the search engine grows indeed
linearly with the number of music items in the collection. In contrast, the second
approach that entirely relies on page count estimates from search engines grows
quadratically in the number of queries. It is hence less suited for mid- and large-size
music collections.

Playlists

Exploiting co-occurrence information from playlists to derive a similarity estimate
between music items was probably first suggested in [66]. Pachet et al. consider
radio station playlists from a French radio channel and compilation CDs from
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CDDB1 to extract co-occurrences between tracks and between artists. The authors
count the number of co-occurrences of two artists (or pieces of music) Ai and Aj

in the radio station playlists and compilation CDs. They define the co-occurrence
of an entity Ai to itself as the number of Ai ’s occurrences in the considered
data source. To account for different frequencies, that is, popularities, of songs or
artists, the co-occurrence counts are normalised. Assuming that co-occurrence is a
symmetric function, the similarity measure used by the authors is the same as given1
by Eq. 5.

Focusing on social media data, Baccigalupo et al. present an approach to derive
artist similarity information from playlists shared by members of a web community
[2]. The authors look at more than one million playlists made publicly available by
MusicStrands [28]. The authors extract the 4,000 most popular artists from the
playlist set, measuring popularity as the number of playlists in which each artist
occurs. They further take into account that two artists consecutively occurring in
a playlist are probably more similar than two artists occurring farther away in a
playlist. To this end, the authors define a distance function dh.Ai ; Aj / that counts
how often a song by artist Ai co-occurs with a song by Aj at a distance of h. Thus,
h is a parameter that reflects the number of songs in between the occurrence of a
song by Ai and the occurrence of a song by Aj in the same playlist. The distance
between two artists Ai and Aj is defined by Eq. 7, where the playlist counts at
distances 0 (two consecutive songs by artists Ai and Aj ), 1, and 2 are weighted
with factors ˇ0, ˇ1, and ˇ2, respectively. The authors empirically set the weights to
ˇ0 D 1; ˇ1 D 0:8; and ˇ2 D 0:64.

dist.Ai ; Aj / D
2X

hD0

ˇh � �dh.Ai ; Aj / C dh.Aj ; Ai /
�

(7)

jdistj .Ai ; Aj / D dist.Ai ; Aj / � bdist.Ai /ˇ
ˇ
ˇmax

�
dist.Ai ; Aj / � bdist.Ai /

�ˇ
ˇ
ˇ

(8)

bdist.Ai / D 1

n � 1
�
X

j 2X

dist.Ai ; Aj / (9)

To account for the popularity bias, that is, very popular artists co-occur with
a lot of other artists in many playlists simply because they are well known and
often listened to by the average music listener, the authors perform normalisation
according to Eq. 8, where bdist.Ai / denotes the average distance between Ai and all
other artists (Eq. 9) and X is the set of the n � 1 artists other than Ai .

1CDDB is a web-based album identification service that returns, for a given unique disc identifier,
meta-data like artist and album name, tracklist, or release year. This service is offered in a
commercial version operated by Gracenote [38] as well as in an open source implementation
named freeDB [36].
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Peer-to-Peer Networks

Peer-to-peer (P2P) networks represent another source of music-related data since
users of this kind of network are commonly willing to reveal meta-data about their
shared content. For music files, meta-data typically shared is filenames and ID3
tags. By analysing which items co-occur in a user’s shared folder, researchers have
created music similarity measures.

Among early work that makes use of data extracted from P2P networks is [18,
58, 92], and [6]. These papers all extract data from the P2P network OpenNap to
derive music similarity information.2

Logan et al. [58] and Berenzweig et al. [6] report on having determined the
400 most popular artists on OpenNap in mid-2002. The authors harvested meta-
data on shared content, which yielded about 175,000 user-to-artist relations from
about 3,200 shared music collections. Logan et al. [58] especially highlights the
sparsity in the OpenNap data, in comparison with music content data. Logan et al.
compare similarities defined by artist co-occurrences in OpenNap collections, by
expert opinions from allmusic.com [29], by playlist co-occurrences from Art
of the Mix, by data gathered from a web survey, and by audio feature extraction
(MFCCs) [1]. They calculate a “ranking agreement score” by comparing the top
N most similar artists according to each data source and calculating the pairwise
overlap between the sources. Their main findings are that the co-occurrence data
from OpenNap and from Art of the Mix show a high degree of overlap,
the experts from allmusic.com and the participants of the web survey agree
moderately, and the signal-based measure has a rather low agreement with all other
sources (except for comparison to the allmusic.com data).

Whitman and Lawrence use a software agent to retrieve from OpenNap a total
of 1.6 million user–song relations over a period of 3 weeks in August 2001 [92]. To
alleviate the popularity bias, the authors use a similarity measure as shown in Eq. 10,
where C.Ai / denotes the number of users that share songs by artist Ai , C.Ai ; Aj /

is the number of users that have both artists Ai and Aj in their shared collection,
and Ak is the most popular artist of the whole data set. The second factor (in the
right-hand part of the equation) downweights the similarity between two artists if
one of them is very popular and the other is not.

sim.Ai ; Aj / D C.Ai ; Aj /

C.Aj /
�
 

1 �
ˇ
ˇC.Ai / � C.Aj /

ˇ
ˇ

C.Ak/

!

(10)

In [18], Ellis et al. aim to build a ground truth for artist similarity estimation.
The authors report on having extracted from OpenNap about 400,000 user-to-
song relations, covering about 3,000 unique artists. Again, the co-occurrence

2It is not clear whether the four mentioned publications make use of exactly the same data set.
In any case, the authors emphasise that they only extract meta-data from OpenNap, but do not
download any files.

allmusic.com
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data is compared with artist similarity data gathered by a web survey and with
allmusic.com data. In contrast to Whitman and Lawrence, Ellis et al. take
indirect links in allmusic.com’s similarity judgements into account. To this
end, Ellis et al. propose a transitive similarity function on similar artists from
the allmusic.com data, called “Erdös distance”. More precisely, the distance
d.Ai ; Aj / between two artists Ai and Aj is measured as the minimum number
of intermediate artists needed to form a path from Ai to Aj . As this definition also
allows to derive information on dissimilar artists (with a high minimum path length),
it can be employed to obtain a complete distance matrix.

A recent approach by Shavitt and Weinsberg derives similarity information on
the artist and on the song level from the Gnutella file-sharing network [84]. The
authors collected meta-data of shared files from more than 1.2 million Gnutella
users in November 2007. They restricted their search to music files (MP3 and WAV).
The crawl yielded a data set of 530,000 songs. Information on both users and songs
are represented via a 2-mode graph showing users and songs. A link between a song
and a user is created if the user shares the song. Analysing the resulting network, it
turned out that most users of the P2P network share similar files.

Shavitt and Weinsberg further propose an approach to artist recommendation. To
this end, they construct a user-to-artist matrix V , where V.i; j / gives the number of
songs by artist Aj that user Ui shares. They subsequently perform direct clustering
on V using the k-means algorithm [60] with the Euclidean distance metric. Artist
recommendation is then performed using either data from the centroid of the cluster
to which the seed user Ui belongs or information about the nearest neighbours of Ui

within the cluster to which Ui belongs.
In addition, Shavitt and Weinsberg address the problem of song clustering.

Accounting for the popularity bias, the authors define a distance function that is
normalised according to song popularity, as shown in Eq. 11, where uc.Si ; Sj /

denotes the total number of users that share songs Si and Sj . Ci and Cj denote,
respectively, the popularity of songs Si and Sj , measured as their total occurrence
in the data set:

dist.Si ; Sj / D � log2

 
uc.Si ; Sj /
p

Ci � Cj

!

(11)

3.2 Music Popularity Estimation

Estimating the popularity of a music artist or song in a certain region of the world
is an important task, not only for the music industry. Also the cosmopolitan and
culturally aware music aficionado is likely to be interested in which music is
currently “hot” in different parts of the world. Not least artists are interested to know
where in the world their music is particularly (un)popular. Furthermore, popularity
information can serve as an important component for serendipitous music retrieval
systems [10, 81].
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An artist’s or song’s popularity can be estimated via a wide variety of predictors,
such as traditional charts (e.g. “Billboard Hot 100” released weekly for the United
States of America by the Billboard Magazine [26]), microblogging activity,
playcounts (e.g. from last.fm or YouTube), occurrences on web pages, and
shared folder analysis in P2P networks.

Scientific work on this topic includes [73], where Schedl et al. compare different
data sources for artist popularity estimation on a per-country basis. In [50],
Koenigstein et al. analyse search queries issued within a P2P network to infer music
popularity. Grace et al. compute popularity rankings from user comments in a social
network [21].

Given the large interest record companies, producers, and artists have in this
kind of information, it is not surprising that there also exist businesses spe-
cialised on music popularity measurement. Examples are Band Metrics [31]
or BigChampagne Media Measurement [32]. Even though they obviously
do not reveal details of their algorithms, it can be reasonably assumed that these
companies harvest multiple data sources to create their predictors. The music
information platform Echo Nest [25] even offers a public API function to retrieve
a ranking based on the so-called “hottness” of an artist [24]. This ranking is based on
editorial, social, and mainstream aspects [23]. However, this web service does not
provide country-specific information, and Echo Nest is known to have a strong
focus on the USA.

In the following, approaches that make use of social media to predict the
popularity of an artist or a song will be presented and discussed. Also properties
of the data sources, such as particular biases, availability, noisiness, and time
dependence, will be addressed.

3.2.1 Data Sources for Popularity Estimation

The popularity of an artist or track can be defined on different levels of granularity
(e.g. individual user, peer group, country, or cultural region). Incorporating previous
approaches presented in [49, 50], Schedl et al. compare different ways to derive
popularity information from various social media sources [79] on the level of
countries. To this end, a framework is established that uses the following proxies
for popularity:

• Page counts of web pages
• Artist occurrences in geo-located microblogs
• Meta-data from folders shared in the Gnutella P2P network
• Playcount data from the social music platform last.fm

The approaches proposed to compute popularity rankings from each data source are
detailed below.

Another work that infers popularity information from social media is [21],
where Grace et al. compute popularity rankings from user comments in the social
networkMySpace [40]. To this end, the authors apply various annotators to crawled
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MySpace artist pages in order to spot, for example, names of artists, albums, and
tracks, sentiments, and spam. Subsequently, a data hypercube (OLAP cube) is used
to represent structured and unstructured data and to project the data to a popularity
dimension. A user study showed that the list generated by this procedure was on
average preferred to Billboard charts.

Web Page Counts

Page counts are gathered by querying the web search engines Google [37] and
Exalead [33] for hartist; countryi tuples. To guide the search towards musically
relevant web pages and avoid distortions caused by artist names that equal common
speech words (e.g. “Bush”, “Kiss”, “Hole”), the query scheme "artist name"
"country name" music is employed. Furthermore, a factor resembling in-
verse document frequency (IDF) is used to downweight popularity of artists that are
popular everywhere in the world since the aim is to uncover popular artists specific
to each country. The final ranking score is calculated according to Eq. 12, where
pcc;a is the page count value returned for the country-specific query for artist a and
country c, jC j is the total number of countries for which data is available, and dfa

is the number of countries in which artist a is known according to the data source
(i.e. the number of countries with pcc;a > 0).

popularityc;a D pcc;a � log2

�

1 C jC j
dfa

	

(12)

Geo-Located Microblogs

Microblogs are retrieved from Twitter using the search API and are then
narrowed in two ways. First, only posts containing the hashtag #nowplaying are
considered. This filtering is directly supported by the Twitter API. Secondly, the
search is narrowed to a specific country. To this end, posts are categorised according
to their location within a certain radius around the major cities of the world. Tweets
are then aggregated to the country level. Scanning the retrieved microblogs for
occurrences of the artists of interests and counting the number of their appearances
for a given country c eventually yield a count equal to the term frequency (tfc;a)
of artist a in an aggregated document comprising all tweets gathered for cities in
country c. Equation12 again gives the ranking score, when pcc;a is replaced with
tfc;a.

P2P Network

Shared folder data from the P2P network Gnutella is extracted employing a two-
stage process, similar to [49]: a crawler component discovers the highly dynamic
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network topology; a browser queries the active nodes – corresponding to users – for
meta-data of files in their shared folders. The crawler treats the network as a graph
and performs breadth-first exploration. Discovered active nodes are enqueued in
a list that is processed by the browser. Shared digital content is associated with
artists by matching the artist names of interest against ID3 tags of shared music
files. Occasionally ID3 tags are missing or misspelled. Artists names are therefore
also matched against the filenames. Creating popularity charts for specific countries
requires determining the geographical location of the users. The necessary geo-
identification process is based on IP addresses. First, a list of all unique IP addresses
in the data set – typically over a million – is created. IP addresses are then geo-
located using the commercial IP2Location [39] database. Each IP address is
hence attached a country code, a city name, and latitude–longitude coordinates. The
geographical information obtained in this way pinpoints fans and enables tracking
spatial diffusion of artists popularity [50]. Aggregating the amount of digital content
associated with each artist for the country under consideration yields the final
ranking score.

Social Music Platform

As last data source, artist popularity based on the user community of the social
music platform last.fm is considered. Despite the issues of hacking and vandal-
ism and a certain community bias [75], which are inherent to collaborative music
information systems, the playcounts of last.fm users can be expected to reflect
which music is currently popular in this community. First, the top 400 listeners of
each country are gathered via the last.fmAPI. The most frequently played artists
for each of these listeners are extracted subsequently.3 Aggregating these playcounts
for each hartist; countryi pair finally yields a popularity ranking.

3.2.2 A Multifaceted Comparison of Different Data Sources

It was shown in [79] that the popularity charts obtained from the different,
inhomogeneous data sources do not correlate highly. Each data source hence covers
different aspects of popularity, which indicates that the quest for artist popularity
is a multifaceted and challenging task, especially in the era of multichannel music
distribution.

Trying to uncover the different dimensions of the five data sources (the four
web and social media sources and traditional music charts), Table 4 compares

3In the meantime, last.fm has extended its API with a Geo.getTopArtists function that
returns the top-played artists in a particular country.
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Table 4 Comparing different social media sources to infer popularity information

Source/aspect Bias Availability Noisiness Time dependence

Web page counts Web users Widespread High Accumulating
Twitter Community Country-dependent Medium Current
P2P Community Country-dependent Low–medium Accumulating
Last.fm Community Widespread Medium–high Accumulating
Traditional charts Music industry Country-dependent Low Current

Table 5 Availability of data
for popularity estimation

Data source Countries

Web page counts 240
Twitter 155
P2P 86
Last.fm 240

them according to several criteria relevant to the task of popularity estimation. One
issue is that certain approaches are prone to a specific bias. The average last.fm
user, for instance, does not represent the average music listener of a country, that
is, last.fm data is distorted by a community bias. The same holds for Twitter,
which is biased towards artists with very active fans. On the other hand, some
very popular artists may have fans who use Twitter to a much lower degree.
Traditional charts are frequently biased towards the record sales figures the music
industry commonly uses as proxy.

Another aspect is data availability. While page count estimates are available
for all countries of the world, the approaches based on P2P and Twitter data
suffer from a very unbalanced coverage for different countries. Also traditional
music charts vary strongly in terms of availability between countries. Table 5 shows
the number of countries for which data could be extracted for each approach, as
presented in [79]. Please note that these results are based on a list of 240 countries
retrieved from last.fm.

A big advantage of traditional charts is their robustness against noise. In
contrast, page count estimates are easily distorted by ambiguous artist or country
names. Last.fm data suffers from hacking and vandalism [11], as well as from
unintentional input of wrong information and misspellings.

According to the dimension of time dependence, the data sources can be
categorised into “current” and “accumulating”, relating to whether they reflect an
instantaneous popularity or a general, time-independent popularity. The largest
overlap in popularity rankings between the investigated data sources can be
explained by the dimension of time dependence. It is present between the output
of the page count predictor and the P2P rankings, the data sources behind both of
which share an accumulating strategy of data storage. Twitter and last.fm
on the other hand are more time dependent in that they reflect better the current
“hotness” of an artist than his or her overall popularity.
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Fig. 6 Basic scheme of a music auto-tagger

3.3 Auto-tagging Music

Semantic labels attached to multimedia items, such as images, music pieces, or
videos, have become an important means to categorise and describe such items
and to communicate particular opinions or feelings about them by users of social
media. The process of automatically attaching semantic labels, or tags, to music
pieces is referred to as auto-tagging and is a rather recent research endeavour in
MIR. Typically, first, a machine learning approach, a supervised learner to be more
precise, is employed on a training data set that associates feature representations
(commonly music content or music context features) with semantic tags. After
training is finished, the classifier is used to predict labels to previously unseen
music items. In order to increase computational efficiency, optionally some feature
selection or dimensionality reduction technique might be employed to the input
feature vectors before training the classifier. This is of particular importance when
dealing with high-dimensional representations of music items, which are typically
present when modelling music items via a multimodal approach, for instance, via a
feature vector describing aspects of the music content and the music context [76].
It was shown by Sordo in [86] that a dimensionality reduction of 95% by applying
principal components analysis (PCA) [44] to the CAL500 data set [89] and 600-
dimensional audio feature vectors does not significantly decrease accuracy but
decreases computational costs considerably. Figure 6 depicts the general framework
of an auto-tagger [86].

One can broadly categorise music-tagging efforts into approaches that learn
relations between feature representations of music files and semantic tags, hence-
forth referred to as “computational approaches” and strategies to infer tags directly
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Table 6 Comparing different approaches to tag music

Source/approach Advantages Disadvantages

Human surveys Well-defined vocabulary,
high-quality annotations,
strong labelling

Restricted vocabulary, yields
only small data sets, high
human effort,
time-consuming

Social tags Unrestricted vocabulary,
incorporates social and
cultural context, wisdom of
the crowds

Popularity bias, community bias,
weak labelling

Games with a purpose Wisdom of the crowds,
entertainment factor yields
high-quality and fast
annotations

Cheating, tags valid only for
short segments (incentive for
quick skipping)

Web pages Incorporates cultural context,
large corpus available, no
immediate human
involvement necessary

Noisy annotations, weak
labelling, sparseness in the
“long tail”

Auto-tagging Not affected by cold-start
problem, no immediate
human involvement
necessary, strong labelling

Computationally expensive,
limited by training data

from some kind of user input, referred to as “human-centred approaches”, in the
following. Both strategies will be addressed below. As for the former one, methods
that learn tags from co-occurrence data (collaborative filtering), audio features,
and web pages will be introduced. For the category of human-centred approaches,
another game with a purpose will be presented, and the use of music folksonomies
to infer tags and associate them to semantic categories will be discussed.

Turnbull et al. in [52] compare various data sources and corresponding algo-
rithms (computational and human-centred) for the task of tagging music: human
surveys, social tags, games with a purpose, web pages, and auto-tagging. They
elaborate on advantages and disadvantages of each, which are summarised from
[52] and extended by the author in Table 6. Weak labelling refers to the fact that
one cannot infer from the absence of a tag t that t does not apply to the item. Users
might simply not have thought of the tag in such a case. In contrast, a strongly
labelled data set is complete in the sense that the absence of tag t does mean
that t is not suited to describe the item under consideration. For an explanation
of popularity bias and community bias, please refer to Sects. 3.1.2 and 3.2.1,
respectively.

3.3.1 Computational Approaches

As described above, the most common approach to auto-tagging music is to train a
classifier on music content features and learn relations between them and a set of
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tags that are known to relate to the corresponding music items. As features typically
rhythm and/or timbre descriptors are used [63], sometimes high-level features are
included in addition [86].

Sordo proposes a simple and efficient algorithm based on a weighted vote k-
nearest neighbour (kNN) classifier to propagate tags from training data to unseen
music items [86]. Given a training set of PCA-compressed feature vectors of a song
collection together with a set of labels for each piece, the proposed weighted vote
kNN algorithm first determines the k closest neighbours to the seed song s, which
should be tagged. The frequency of all tags assigned to s’s neighbours are then
summed up per tag, and a threshold relative to k ensures that only frequently used
tags are predicted for s.

An approach similar to Sordo’s is suggested in [46]. Kim et al. also employ
a kNN classifier to address the problem of auto-tagging artists, but they analyse
different artist similarity functions. They compare similarities derived from artist
co-occurrences in last.fm playlists (“scrobbles”), from last.fm tags, from
web pages about the artists, and from music content features. Using as ground
truth tags manually assigned by music experts, Kim et al. found that the similarity
measure based on last.fm co-occurrences performed best, both in terms of
precision and recall. When using a kNN classifier, it is crucial to carefully select
the similarity measure to determine the nearest neighbours. Depending on the origin
of the features, a common choice is cosine similarity (for term-weighting features)
or one of the distances/divergences Mahalanobis, Manhattan, or Kullback–Leibler
(for music content features).

In their proposed algorithm to extract tags from artist-related web pages, Schedl
et al. use a dictionary of musically relevant terms to filter the textual content of the
pages under consideration [77]. The authors propose three different term-weighting
functions to score the extracted tags per artist and predict the resulting top-ranked
tags. A user survey was conducted to evaluate the quality of the suggested tags
in terms of descriptiveness. Quite surprisingly, participants in the study found tags
suggested by a simple document frequency function superior to those proposed by
TF � IDF-based term scoring.

Mandel et al. [63] use conditional restricted Boltzmann machines [85] to
learn tag language models over three sets of vocabularies: annotations by users of
Amazon’s Mechanical Turk, of the tagging game MajorMiner [62], and
of last.fm. The models are learned on the level of song segments. Optionally
different “contexts” are included, that is, track level and user level annotations are
factored in.

Seyerlehner et al. in [82] use a combination of different audio features described
within their block-level framework [83]: spectral pattern (SP), delta spectral pat-
tern (DSP), variance delta spectral pattern (VDSP), logarithmic fluctuation pattern
(LFP), correlation pattern (CP), and spectral contrast pattern (SCP). Associations
between songs and tags are then learned using a random forest classifier.

Recently, two-stage algorithms have become popular. In the first stage, they infer
higher-level information from music content features, such as term weight vector
representations. These new representations are then fed into a machine learning
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Table 7 Most frequently used tags in the TagATune game, in descend-
ing order of frequency

classical, guitar, piano, violin, slow, strings, rock, techno, opera, drums,
same, flute, fast, diff, electronic, ambient, beat, yes, harpsichord, indian,
female, vocal, no, synth, quiet, no vocals, soft, sitar, no vocal, classic,
male, singing, solo, vocals, cello, loud, woman, pop, male vocal, choir,
violins, new age, beats, no voice, harp, voice, weird, instrumental, dance

algorithm to learn semantic labels [14, 65]. Sometimes this second stage is said
to incorporate contextual aspects since correlations between tags are frequently
considered. Alternatively, the term weight vectors inferred in the first stage can also
be used as input to a music similarity measure [82]. As an example for a two-stage
auto-tagger, Miotto et al. in [65] first model semantic multinomials over tags based
on music content features. In order to account for co-occurrence relations between
tags, they subsequently learn a Dirichlet mixture model of the semantic space, which
eventually yields a contextual multinomial.

3.3.2 Human-Centred Approaches

Games with a purpose have already been introduced in Sect. 3.1.1, where it was
shown how to use their results for similarity estimation. In [53], Law and von Ahn
present another interesting game with a purpose that focuses on input-agreement.
Users have to agree whether they are listening to the same piece of music or not,
that is, they have to agree on the input. To this end, they can exchange any free-form
text that helps to reach the goal. Usually players enter descriptive tags in an effort
to quickly choose the correct one of the two classes “same” or “different”. If they
agree on the correct class, both players are awarded points and the next round starts.
Each game lasts for a total of 3 min.

According to Law and von Ahn, this input-agreement mechanism offers the
advantage of being more popular and producing a higher number of tags than other,
similar games. Analysing the most frequently used tags (Table 7), most of them
describe genre, instrumentation, and properties of the music. Due to the very nature
of the game design, the top list also includes communication tags that are unsuited
to describe the music itself (“yes”, “same”, “no”, “diff”). Furthermore, negation
tags are frequently used to indicate the absence of a particular musical aspect (“no
vocal”, for example).

Music folksonomies present another valuable source for musical information.
They are created by large numbers of users via tagging particular music items with
their own, specific vocabulary. Although this vocabulary is probably not as precise
as the one employed by music experts, the wisdom of the crowds is potentially able
to cover more diverse aspects of human music perception than experts can think of.

Sordo et al. [87] present a method to automatically categorise tags extracted
from Wikipedia into semantically meaningful groups, which they call “facets”.
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Table 8 Top facets of music
extracted from Wikipedia

Music genres
Music geography
Musical groups
Musicians
Musical culture
Occupations in music
Music people
Record labels
Music technology
Sociological genres of music

To this end, starting at the most generic page about “music”, the authors extract links
from DBpedia, a machine-readable knowledge base created from Wikipedia
pages. Applying some heuristics, pages not related to music are filtered out. To the
remaining nodes, the PageRank algorithm [67] is applied to determine a relevance
score for all nodes/pages in the network. The top facets Sordo et al.’s method found
on a data set of about 600,000 artists and 400,000 tags are given in Table 8. The
facets and tags extracted in this way are particularly interesting for music retrieval
systems, where the user might want to restrict the results to a search query to tracks
that are similar according to a specific facet.

4 Conclusions and Research Directions

In this chapter, we have discussed how various kinds of social media can be used
for common music information retrieval tasks. More precisely, approaches to infer
music similarity from text and co-occurrence information were presented, strategies
to estimate the popularity of a music item from social media were elaborated, and
recent methods to automatically assign semantically meaningful tags to music items,
a process also known as auto-tagging, were discussed.

I am sure that future research in music information retrieval has to strive for
a holistic perspective in a sense that information is not only derived from the
audio signal and from meta-data but from many different types of multimedia
material. Given the spiralling success of social media, analysis and data mining
of the respective sources will open unprecedented opportunities to elaborate truly
personalised and context-aware music retrieval and recommendation systems. Some
concrete challenges in the context of social media mining for music information
retrieval are analysing music video clips (official music videos as well as user-
generated versions) to infer descriptive information; processing images of album
covers, of band photographs, and of concert snapshots taken by enthusiastic music
aficionados; and making sense of textual data about music items (for instance,
microblogs). In addition, data fusion techniques are required to build multifaceted
models that describe both music items and listeners in order to eventually enable the
next generation of intelligent music retrieval systems.
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