
Chapter 5
Artistic Stylization by Nonlinear Filtering

Jan Eric Kyprianidis

5.1 Introduction

Digital image processing is a mature field providing a solid foundation for build-
ing artistic rendering algorithms. All image-based artistic rendering (IB-AR) ap-
proaches utilize image processing operations in some form to extract information or
synthesize results. For instance, classical stroke-based rendering utilizes the image
gradient for stroke placement. Nevertheless, few of the filters proposed for image
processing are suitable in their original form, probably because in image processing,
one is often concerned with the restoration and recovery of photorealistic imagery.
By contrast, IB-AR generally aims for strong modification and simplification. As
a result, researchers have often proposed specialized and adapted forms of existing
techniques.

This chapter surveys a selection of nonlinear image processing algorithms that
have been found to produce particularly interesting results. These techniques have
in common that they perform some kind of edge-preserving simplification, often
in combination with edge enhancement. In general, such an operation cannot be
achieved by convolution filters, since these are fully determined by their impulse
responses (i.e., applying a linear shift-invariant filter is equivalent to a convolution
with the point spread function). By contrast, operations that preserve or selectively
enhance edges must be guided by local (or even global) decisions based on the
input source, leading directly to nonlinear operations that are not shift-invariant.
Figure 5.1 illustrates a few examples of the techniques discussed in this chapter.

In contrast to approaches that emulate a specific artistic style, the techniques de-
scribed here are based on heuristics developed through hands-on experience, show-
ing that certain combinations of filters produce an artistic look. In some cases, the
results obtained can be related to traditional styles such as cartoons, pen-and-ink
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Fig. 5.1 Example showing popular edge-preserving/enhancing smoothing techniques often ap-
plied for image abstraction. (b) Bilateral filter [52]. (c) Anisotropic Kuwahara filter [34].
(d) Shape-simplifying image abstraction [24]. Tambako the Jaguar@flickr.com

illustrations, or watercolor paintings. In other cases, however, the connection is less
obvious. The artistic look is thereby often achieved or further reinforced by tak-
ing the local image structure into account. Directional features and flow-like struc-
tures are considered pleasant, harmonic, or at least interesting by most humans [56].
They are also a highly sought after property in many of the traditional art forms,
such as paintings and illustrations. Enhancing directional coherence in the image
helps to clarify region boundaries and features. As exemplified by Expressionism,
it also helps to evoke mood or ideas and even elicit emotional response from the
viewer [58]. Particular examples include van Gogh and Munch, who have empha-
sized these features in their paintings.

Due to the local nature of image processing decisions, parallelization and GPU
implementations of image filters are straightforward in most cases and often lead to
real-time performance on modern multi-core CPUs and GPUs, making them practi-
cal for video processing—and applicable to footage that is otherwise challenging to
parse (e.g., water, smoke, fur) using vision methods such as segmentation. This sim-
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plicity, however, comes at the expense of style diversity afforded by a higher-level
interpretation of content.

The remainder of this chapter is organized as follows. In Sect. 5.2, the bilateral
and difference of Gaussians filters are discussed. Together, these provide a powerful
approach to the creation of cartoons, which will be discussed in detail. In Sect. 5.3,
different variants of the Kuwahara filter are presented. Based on local image statis-
tics, these are highly robust against high contrast noise, and driven by local image
flattening, achieve a comparatively consistent level of abstraction across an image.
In Sect. 5.4, techniques based on morphological operations are examined. Similar
to the Kuwahara filter, these techniques effectively remove small-scale image fea-
tures, and have been, for instance, successfully used to create watercolor renderings
from images and videos. Section 5.5 presents techniques combining diffusion with
sharpening. These allow for aggressive simplification while preserving sharp dis-
continuities. Finally, in Sect. 5.6, a brief overview of techniques operating in the
gradient domain is given. Instead of directly operating on the image’s gray or color
values, these techniques operate on the gradient field of an image.

5.2 Bilateral Filter and Difference of Gaussians

A seminal work in image filtering-based NPR is the work of Winnemöller et al. [60]
which, for the first time, presents a fully automatic pipeline for the creation of styl-
ized cartoon renderings from images and video. Their pipeline employs the bilateral
and difference of Gaussians (DoG) filter, and contains several influential ideas that
other researchers later built upon. The bilateral filter smoothes low-contrast regions
while preserving high-contrast edges, and may, therefore, fail for high-contrast im-
ages, where either no abstraction is performed or relevant information is removed
because of the parameters chosen. In addition, the bilateral filter also often fails for
low-contrast images, where typically too much information is removed. Moreover,
iterative application of the bilateral filter may blur edges, resulting in a washed-out
look (Fig. 5.1(b)). To some extent, these limitations can be alleviated by overlaying
the output of the bilateral filter with outlines (e.g., generated with the DoG filter).
Accordingly, the bilateral filter is rarely applied independently. Although the DoG
filter can be used independently, preprocessing with the bilateral filter can often re-
duce artifacts caused by noise in the image. We start with a review of the bilateral
and DoG filters, followed by a description the cartoon pipeline built from them.

5.2.1 Bilateral Filter

The bilateral filter is a well-known edge-preserving smoothing filter first introduced
by Aurich and Weule [4], popularised by Tomasi and Manduchi [52]. A detailed
review of the bilateral filter can be found in the survey by Paris et al. [45], which
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Fig. 5.2 Illustration of the working principle of the bilateral filter. (a) Noisy input signal (gray).
(b) Result of the convolution with Gaussian (blue) and bilateral (red) filter. Note how the Gaussian
kernel blurs the signal, while the bilateral filter keeps the sharp transition. In (c) and (d) the local
filter kernel profiles of the Gaussian filter (blue) and bilateral filter (red) are shown at two different
positions. The local filter kernel of the Gaussian filter does not depend on the signal (shift invari-
ance) and is the same in both cases. The bilateral filter adapts its local filter kernel to the signal and
thereby limits smoothing across the transition

also discusses various applications. For a given image I and position x0 the bilateral
filter is defined by

∑
x∈Ω(x0)

I (x)

domain weight
︷ ︸︸ ︷
kd(‖x − x0‖)

range weight
︷ ︸︸ ︷
kr(‖f (x) − f (x0)‖)

∑
x∈Ω(x0)

kd(‖x − x0‖)kr (‖f (x) − f (x0)‖) (5.1)

where Ω(x0) denotes a sufficiently large neighborhood of x0, and kd and kr are
two weighting functions. The domain weight given by kd is based on the spatial
distance from the filter origin x0, whereas the range weight given by kr is based on
the distance between the image’s values at the corresponding positions. Typically,
for both weighting functions a one-dimensional Gaussian

Gσ (r) = 1

σ
√

2π
exp

(

− 1

2σ
r2

)

(5.2)

is chosen, but other choices are possible. If kd is chosen as Gaussian and kr ≡ 1,
then the bilateral filter simplifies to the Gaussian filter. The bilateral filter smoothes
regions of similar color, while regions with detail are preserved. For instance, if the
local neighborhood of a pixel contains an edge, then pixels on the opposite side of
the edge receive a low and all others a high weight, resulting in the preservation of
the edge (Fig. 5.2).

By using a suitable metric for the computation of the range weight, the bilateral
filter extends naturally to color images. For instance, a possible choice is to use
the Euclidean metric in RGB color space. Another choice, proposed by Tomasi and
Manduchi [52], is using the Euclidean metric in CIELAB color space [62], which
is known to correlate with human perception for short distances. Winnemöller et
al. [60] and subsequent work adopted this approach.

If domain and range weight are chosen to be Gaussians, increasing the standard
deviation of the domain weight generally does not lead to a stronger abstraction ef-
fect. Moreover, increasing the range weight results, in most cases, in blurred edges.
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Fig. 5.3 An iterative application of the bilateral filter smoothes the image while preserving edges,
achieving a strong simplification effect. Original image courtesy of Philip Greenspun

Instead, to achieve a cartoon-like effect, it is better to apply multiple iterations of the
bilateral filter (Fig. 5.3). This was already noted by Tomasi and Manduchi [52], and
can be explained theoretically by the connection of bilateral filtering to anisotropic
diffusion [5].

A limitation of the bilateral filter for practical applications, especially in the case
of real-time processing, is that the direct evaluation of Eq. (5.1) is computation-
ally expensive. For a local neighborhood with radius r the complexity is O(r2),
which means that linear growth of the neighborhood leads to quadratic growth in
computational costs. In contrast to the Gaussian filter, the bilateral filter is not sep-
arable, since it depends on local image values. Nevertheless, in the context of video
compression, Pham and van Vliet [47] were able to show that for small filter sizes
a separable implementation of the bilateral filter (Fig. 5.4(b)) can provide reason-
able results. Their approach was adopted in the original cartoon pipeline by Win-
nemöller et al. [60] and was a crucial factor for achieving real-time performance
on consumer GPUs at that time. Since then, several other approaches have been de-
veloped, such as the bilateral grid [12], approaches that avoid redundant operations
by using histograms [48], and recently an approach based on domain transfer and
normalized convolution [17].

Of particular interest from the IB-AR perspective are approaches taking local
structure of an image into account. Kyprianidis and Döllner [31] proposed a separa-
ble implementation of the bilateral filter aligned to the local orientation (Fig. 5.4(c)).
The first pass filters in perpendicular direction, while the second pass filters parallel
to the local orientation. The adaptation to the local orientation helps to avoid arti-
facts, and produces more coherent region boundaries. In addition, the filter shape
can be adapted to the local image structure, since the parameters for each pass can
be controlled individually on a per-pixel basis. For instance, by decreasing the size
in the direction of the gradient and increasing it in the direction of the tangent, the
overall filter shape becomes elliptic, leading to an enhancement of anisotropic struc-
tures. An even stronger enhancement of anisotropic structures can be achieved with
the flow-based bilateral filter proposed by Kang et al. [26], where the second pass
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Fig. 5.4 Different variants of the bilateral filter. (a) A classical single pass bilateral filter performs
a weighted average of a two-dimensional neighborhood. (b) Separable implementation with the
first pass along the x-axis and second pass along the y-axis. (c) Orientation-aligned separable im-
plementation with the first pass perpendicular and the second pass parallel to a vector field derived
form the local structure, such as ETF or SST. (d) Separable implementation of the flow-based bi-
lateral filter with the first pass perpendicular to the integral curve and the second pass along the
integral curve defined by ETF or SST. Created by the author

performs an integration along the integral curves of a vector field given by smoothed
tangents (Fig. 5.4(d)), similar to line integral convolution (LIC) [10].

For both approaches, a smooth vector field of high quality representing the local
structure is critical (cf., Sect. 6.2.2). The two techniques that are known to pro-
duce vector fields of sufficient quality are the edge tangent flow (ETF) by Kang
et al. [25, 26] and the smoothed structure tensor (SST) [31, 33, 34]. The ETF is
essentially a bilateral filter, where the range weight has been specifically designed
to measure the deviations between two vectors representing an axis. To obtain a
reasonably smooth vector field, the ETF must be applied iteratively. The structure
tensor is a well-known tool in computer vision, and is given by the outer product
of the image gradients [9]. Smoothing the structure tensor and then performing an
eigenanalysis corresponds to performing a principal component analysis on the gra-
dient vectors. The major eigenvector can thus be interpreted as an averaged gradient
and the minor eigenvector as an averaged tangent. In contrast to the EFT, the SST is
suitable for speeding up the bilateral filter, since smoothing can be performed using
a linear filter, such as a Gaussian filter, and eigenanalysis only involves solving a
quadratic equation. Moreover, it is possible to define a coherence measure based on
the SST’s eigenvalues, which provides information about how anisotropic a local
neighborhood is, and which can be used to adapt filters on a per-pixel basis. Local
orientation estimation based on the SST fits well into the cartoon pipeline (Fig. 5.7),
since the DoG filter, which will be discussed next, can also be significantly improved
by adapting it to the local structure.

5.2.2 Difference of Gaussians

Early approaches to edge detection used simple approximations of the image gradi-
ent, such as the Prewitt and Sobel filter masks [49], and then thresholded the gradient
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Fig. 5.5 Example showing the output of different edge detection and stylization methods. (a) The
original image (USC-SIPI image database). (b) The globally thresholded gradient magnitude of
the Sobel filter. (c) Zero-crossing of the Laplacian of Gaussian [40]. (d) The output of the Canny
edge detector [11]. (e) The thresholded DoG as proposed in Winnemöller et al. [60]. (f) The
thresholded output of the separable implementation of the flow-based DoG [26, 31]. (g) The
flow-based DoG with XDoG thresholding. The image is pre-processed with a bilateral filter to
suppress noise. (h) Cartoon-style abstraction generated with bilateral and flow-based DoG filters
using the WOG-pipeline

magnitude. However, due to the small size of the filter masks, such approaches are
sensitive to noise and fail to detect edges at large scales. The Canny edge detec-
tor [11], therefore, combines first order differentials with appropriate smoothing,
non-maximum suppression, and hysteresis thresholding. It is one of the most pop-
ular edge detectors for applications in computer vision. From an artistic point of
view, however, the single pixel-wide edges it creates are typically not attractive and
require further processing (Fig. 5.5(d)).

Another popular approach to edge detection based on second derivatives goes
back to Marr and Hildreth [40]. For one-dimensional functions, a maximum of the
gradient magnitude is equivalent to a zero-crossing in the second derivative. This
also generalizes to two dimensions, where the second derivative perpendicular to
the zero-crossing has to be considered. However, since this direction is unknown at
computation time and would have to be estimated, Marr and Hildreth proposed to
use the Laplacian

∇2 = ∂2

∂x2
+ ∂2

∂y2
(5.3)

which is rotationally invariant. While the Laplacian was known at that time to be
useful for sharpening images [18], it has not been used for edge detection due to
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its high sensitivity to noise. Marr and Hildreth’s key insight was to smooth the
image before applying the Laplacian. This has two important effects. First, noise
is reduced and the differentiation regularized. Second, the bandwidth is restricted,
which means that the range of possible scales at which edges can occur is reduced.
For the smoothing filter, a two-dimensional Gaussian

Gρ(x) = 1

2πρ2
exp

(

−‖x‖2

2ρ2

)

(5.4)

was chosen, since it is known that it minimizes uncertainty, which simultaneously
measures the spread of a function in the spatial and frequency domains. Since the
Laplacian commutes with convolution, it follows that

∇2(Gρ ∗ I ) = (∇2Gρ

) ∗ I (5.5)

Thus, instead of applying smoothing and differentiation in sequence, both opera-
tions can be combined into a single operator ∇2Gρ , which can be symbolically
computed and is known as the Laplacian of Gaussian (LoG). Marr and Hildreth,
moreover, showed that the LoG operator can be approximated by the difference of
two Gaussians

Dσ,k(x) = Gσ (x) − Gkσ (x) (5.6)

with k ≈ 1.6 being a good engineering solution. Results in biological vision, which
showed that the ganglion cell receptive fields of cats can be modeled in this
way [63], matched this result. This provided motivation for their approach and
helped to popularize the technique. To extract edges from a LoG filtered image,
the local neighborhood of a pixel is typically examined to detect the zero-cross-
ings. This, however, again results in artistically questionable 1–2 pixel-wide edges
(Fig. 5.5(c)) similar to those produced by the Canny edge detector (Fig. 5.5(d)). To
achieve an artistically interesting effect, it turns out that simple thresholding works
surprisingly well [19, 51, 60], which can be explained as follows. Let I denote a
grayscale image. If we wish to generate a two-tone edge image, we essentially have
two choices: Either we start with a white image and make certain image regions
darker (i.e., set them to black), or we start with a black image and perform high-
lighting (i.e., set those regions to white). The DoG filter provides exactly this infor-
mation by describing which high-frequency details have to be added to the low-pass
filtered image Gkσ ∗ I to get

Gσ ∗ I = Gkσ ∗ I + Dσ,k ∗ I (5.7)

Hence, the sign of the DoG filter’s response describes whether capturing the shape
and structure of any nearby edges requires making each pixel darker or brighter than
most of its neighbors.

The recently presented XDoG filter by Winnemöller [59] further refines the
thresholding process by introducing additional parameters, and is defined by
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Fig. 5.6 Illustration of the XDoG thresholding scheme for a step edge (blue). The output of the
DoG and XDoG operator before thresholding is shown in red; the threshold ε is indicated by the
yellow line. (a) DoG has no tone mapping effect. Light regions are outlined. (b) XDoG allows for
a tone mapping effect. Light regions get a black outline, dark regions receive a white outline. In
both cases the flow-based variant was used. Original image by X-ray delta one@flickr.com

Dσ,k,τ (x) = Gσ (x) − τ · Gkσ (x) (5.8)

Eε,ϕ(x) =
{

1 Dσ,k,τ (x) > ε

1 + tanh(ϕ·(Dσ,k,τ (x) − ε)) otherwise
(5.9)

The parameter σ controls the scale, whereas τ and ε control tone mapping and
thresholding. By using tanh and the parameter ϕ, hard thresholding is avoided,
which improves temporal coherence. In Fig. 5.5(e)–(f) and Fig. 5.6, a few examples
with different parameter settings are shown. The relationship between the XDoG
and the standard DoG can best be seen by rewriting Eq. (5.8) as

Dσ,k,τ (x) = Gσ (x) − τ · Gkσ (x) (5.10)

= (1 − τ) · Gσ (x) + τ · Dσ,k,τ (x) (5.11)

which shows that the XDoG approach is equivalent to a weighted average of the
blurred image and standard DoG. Unfortunately, adjusting the parameters τ , ϕ, and
ε is difficult, since they depend on each other and must be modified in concert.
An alternative, which was proposed in [61], is to normalize the XDoG operator by
dividing it by τ − 1.

The XDoG filter is still relatively sensitive to noise. To some extent, ε can be
used to reduce sensitivity, but a simple and highly effective approach is to apply
1–2 iterations of the bilateral filter before applying the XDoG filter (Fig. 5.7). An
explanation for the high sensitivity can be given by looking at the decomposition
of the LoG operator in the direction of the local gradient and tangent. The second
derivative in the direction of the gradient contributes to the edge localization, while
the one in the tangent direction merely increases the sensitivity to noise. This moti-
vates considering detecting zero-crossings in the second derivative in the direction
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of the gradient. Such an edge detector was first proposed by Haralick [22], and also
the maximum suppression of the Canny edge detector [11] is essentially equivalent
to looking for a zero-crossing in the second derivative. A detailed discussion of the
relationships between the Laplacian and directional derivatives has been given by
Torre and Poggio [53].

The success of second derivative methods for edge detection suggests changing
the XDoG filter from an isotropic to a directional operator. However, simply replac-
ing the two-dimensional XDoG with its one-dimensional equivalent in the direction
of the gradient does not lead to better results. In fact, the results are even worse.
The reason for this is twofold: First, a one-dimensional XDoG is very sensitive to
an accurate estimation of the gradient direction, which is typically performed us-
ing first order Gaussian derivative operators along the coordinate axes. The scale
of these derivatives must be similar to the scale of the XDoG. For instance, if their
scale is too large, the estimated gradient direction will, in general, not match the un-
derlying image structure, which limits opportunities for noise suppression. Second,
the missing regularization in the tangent direction further increases the sensitivity to
noise.

The first work that addressed these issues and provided significantly improved
quality over the isotropic DoG is the flow-based difference of Gaussians (FDoG)
filter by Kang et al. [25]. In this work, the EFT was also initially introduced. It pro-
vided Kang et al. with a vector field closely aligned to the underlying image struc-
ture, and allowed them to derive an average gradient direction that is less affected
by noise. The originally proposed FDoG performs steps along the integral curves of
the EFT by using a Euler integration scheme. At each step, a one-dimensional DoG
filter in the direction perpendicular to the integral curve is applied, and all these
filter responses are accumulated by weighting them using a one-dimensional Gaus-
sian. This accumulation performs regularization in the tangent direction, and shares
a similarity with the hysteresis thresholding of the Canny edge detector. A separa-
ble implementation that achieves similar quality while being computationally less
expensive and simpler to implement was presented by Kyprianidis and Döllner [31]
and independently in a follow-up work by Kang et al. [26]. Similar to Fig. 5.4(d),
the separable FDoG first performs a one-dimensional DoG, which is then followed
by a second pass that performs line integral convolution with a Gaussian kernel. As
in the case of the flow-based bilateral filter, the ETF can be replaced by the SST,
which leads to a variant of the cartoon pipeline that delivers improved quality at
a reasonable computational cost [31, 32]. To further increase the response of the
FDoG, Kang et al. [25, 26] proposed to apply the FDoG iteratively by overlaying
the previous FDoG response with the input image. While this results in stronger
edges, it is also more sensitive to noise, and needs to be used with caution. The
FDoG in combination with XDoG thresholding is very versatile. By properly ad-
justing parameters, a large variety of NPR effects can be created [59, 61].

Kang et al.’s [25] work provided new ideas in the field of IB-AR, and popularized
the use of local structure information. It lead to several interesting results of work
in areas such as image filtering [24, 26, 31, 33, 34], stippling [27, 50], and texture
transfer [37]. Moreover, the flow-based XDoG is used by the ToonPAINT mobile
application, which is discussed in Sect. 17.5.
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Fig. 5.7 The WOG-pipeline for the creation of a cartoon-like effect in modern generalized
form [26, 31, 60]. Processing starts with the conversion of the input to CIELAB color space. Then,
the input is iteratively abstracted by using a variant of the bilateral filter. After one or two iterations
of the bilateral filter to suppress noise, outlines are extracted from the intermediate result using a
variant of the DoG filter. Then more iterations of the bilateral filter are performed, typically up to
four, with luminance quantization applied afterwards. DoG edges and the output of the luminance
quantization are then composited, followed by an optional sharpening by warping and smoothing
of the edges

5.2.3 Cartoon Pipeline

That multiple iterations of the bilateral filter lead to a cartoon-like effect was al-
ready noticed by Tomasi and Manduchi [52]. Motivated by this, Fischer et al. [16]
applied the bilateral filter in the context of augmented reality to make virtual ob-
jects less distinct from the camera stream by applying stylization to the virtual and
camera input. However, at that time computing the bilateral filter at full resolution
was computationally too expensive. Due to this, Fischer et al. applied the bilateral
filter at reduced resolution followed by upsampling, resulting in an inferior result.
Winnemöller et al. [60] were faced with the same problem, but applied iteratively
the separable implementation of the bilateral filter by Pham and van Vliet [47]. Al-
though this brute force separation is prone to horizontal and vertical artifacts, it
provides a reasonable tradeoff in terms of quality and speed, and enabled real-time
processing on consumer GPUs of that time. In addition to the bilateral filter, Win-
nemöller et al. [60] added another processing step performing smooth luminance
quantization. The quantization is applied in CIELAB space, with only the lumi-
nance channel being modified, creating a strong cartoon-like effect. The quantiza-
tion is performed using a smooth step function whose steepness is chosen depending
on the luminance gradient. This makes the output of the quantization less sensible to
small changes in the input and increases temporal coherence when processing video
frame-by-frame (cf., Sect. 11.3).

Creating artistic images using the DoG filter was also not new at that time. For
instance, Sýkora et al. [51] used the thresholded output of the Laplacian of Gaussian,
which is approximated by the DoG filter, to create outlines for colorizing hand-
drawn black-and-white cartoons (see also Sect. 14.2 and Sect. 14.5.1), and Gooch et
al. [19] used the DoG filter in combination with a model of brightness perception to
create human facial illustrations. However, Winnemöller et al. [60] were the first to
combine a bilateral and DoG filter into an effective pipeline.
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Fig. 5.8 The top row shows the four rectangular subregions used by the classical Kuwahara filter.
The bottom row shows the weighting functions that can be used to describe the subregions—one
over a specific subregion, or otherwise zero

A schematic overview of a modern generalized form of the pipeline proposed
by Winnemöller et al. [60], hereafter referred to as the WOG-pipeline, is shown in
Fig. 5.7. Input is typically an image, a frame of a video, or the output of a 3D render-
ing. In the original pipeline, the local orientation estimation step was not present;
this step was added later to adapt the bilateral and DoG filters to the local image
structure [25, 26, 31]. Also not present were the iterative application of the DoG
filter, which was first proposed in [25], and the final smoothing pass to further re-
duce aliasing of edges. The introduction of the flow-based DoG filter significantly
increased the quality of the produced outlines, and made the warp-based sharpen-
ing step of the original pipeline less important. Therefore, this step is typically not
present in later work.

5.3 Kuwahara Filter

An interesting class of edge-preserving filters that perform comparatively well on
high-contrast images are variants of the Kuwahara filter. Based on local area flatten-
ing, these filters properly remove detail in high-contrast regions and protect shape
boundaries in low-contrast regions, resulting in a roughly uniform level of abstrac-
tion across the image. The Kuwahara filter [29] was initially proposed in the mid-
1970s as a noise reduction approach in the context of biological image processing.
The general idea behind it is to divide the local filter neighborhood into four rectan-
gular subregions that overlap by one pixel (Fig. 5.8). For all subregions the variance,
which is the sum of the squared distances to the mean, is computed, and the response
of the filter is then defined as the mean of a subregion with minimum variance. As
can be seen in Fig. 5.9(a), this avoids averaging between differently colored regions
for corners and edges. However, for flat or homogeneous regions the variances of
the different subregions are almost equivalent or even the same. A subregion with
minimum variance is, therefore, generally not well-defined, and the selection highly
unstable, especially in the presence of noise. For small filter sizes the Kuwahara
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Fig. 5.9 Comparison of
different variants of the
Kuwahara filter: (a) Classical
Kuwahara filter with
rectangular subregions; a
single subregion is selected.
(b) Generalized Kuwahara
filter with sectors of a disc as
subregions; multiple sectors
are chosen. (c) Anisotropic
Kuwahara filter, where the
filter shape is derived from
the local structure and divided
into subregions; multiple
filter responses are chosen.
Note that the subregions in
(a), (b) and (c) are defined to
overlap slightly. Redrawn
from [34]. © 2009 Blackwell
Publishing. Used by
permission

filter produces reasonable results. However, for IB-AR, comparatively large filter
sizes are necessary to achieve an interesting abstraction effect, resulting in clearly
noticeable artifacts. These are due to the unstable subregion selection process and
the use of rectangular subregions. A more detailed discussion of limitations of the
Kuwahara filter can be found in [44].

Several attempts have been made to address the limitations of the Kuwahara fil-
ter. The first work that provided an approach suitable for applications in IB-AR
is the generalized Kuwahara filter by Papari et al. [44], which introduces two im-
portant ideas. First, the rectangular subregions are replaced with smooth weighting
functions constructed over sectors of a disc in a way that their sum results in a
2D Gaussian. Neighboring weighting functions thereby have to overlap smoothly
(Fig. 5.10). Using these weighting functions, for every sector the weighted mean

mi(x0) =
∑

x∈Ω(x0)

wi(x − x0) · f (x) (5.12)

and weighted variance

s2(x0) =
∑

x∈Ω(x0)

wi(x − x0) · (f (x) − mi(x0)
)2

(5.13)

can be computed. It should be noticed that if the weighting functions are chosen as
characteristic functions of the rectangular subregions, as illustrated in Fig. 5.8, then
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Fig. 5.10 Construction of the weighting functions of the generalized Kuwahara filter: (a) Char-
acteristic function χ0—one over the first sector, or otherwise zero. (b) Convolution of the charac-
teristic function with a Gaussian χ0 ∗ Gρ to create smooth transitions between different sectors.
(c) Multiplication of the smoothed characteristic function with a Gaussian to create a smooth fal-
l-off with increasing distance from the filter center: (χ0 ∗ Gρ) · Gσ

the weighted mean and variance defined above are exactly the mean and variance
of the subregions. Second, a new subregion selection method is defined. Instead
of selecting a single subregion, the result is defined as the weighted sum of the
weighted means, where the weights are based on the weighted variances, with sec-
tors of low variance receiving a high weight and sectors of high variance receiving a
low weight. This is achieved by taking the inverted weighted variance to the power
of a user provided parameter q , and given by

∑

i∈N

mi · s−q
i

/∑

i∈N

s
−q
i (5.14)

where N is the number of sectors. In Fig. 5.9(b), the behavior of the generalized
Kuwahara filter is illustrated for different local neighborhoods. As can be seen, for
corners and edges the filter adapts itself to the neighborhood, thus avoiding blurring
across region boundaries. In homogeneous regions, the variances are similar, result-
ing in similar weights, which makes the filter approximate a Gaussian. In flat and
smooth regions, the variances are very small and sensitive to noise, resulting in a
poorly approximated Gaussian. To avoid this, a simple solution is to threshold the
variances [30].

For highly anisotropic image regions, the flattening effect applied by the gener-
alized Kuwahara filter is typically too aggressive, resulting in blurred anisotropic
structures. Moreover, pixels tend to form clusters proportional to the filter size. The
anisotropic Kuwahara filter by Kyprianidis et al. [34, 35] addresses these issues by
replacing the weighting functions defined over sectors of a disc by weighting func-
tions defined over ellipses, as shown in Fig. 5.9(c). By adapting shape, scale, and
orientation of these ellipses to the local structure of the input, artifacts are avoided.
In addition, directional image features are better preserved and emphasized, result-
ing in overall sharper edges and the enhancement of anisotropic image features
(Fig. 5.1(c)). The local structure is estimated using the SST, where the coherence
measure derived from the eigenvalues is used to define the eccentricity of the el-
lipse. A further modification has been presented in [36], wherein new weighting
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Fig. 5.11 Examples created
using different variants of the
Kuwahara filter: (a) Original
image courtesy of
chefranden@flickr.com.
(b) Generalized Kuwahara
filter (2 iterations) [44].
(c) Anisotropic Kuwahara
filter (2 iterations) [34].
(d) Multi-scale anisotropic
Kuwahara filter [30]

functions based on polynomials that can be evaluated directly during the filtering
process are defined.

The level of abstraction achievable with the generalized and the anisotropic
Kuwahara filter is limited by the filter radius. Simply increasing the filter radius
is typically not a solution, as it often results in artifacts. Another possibility would
be to control the radius adaptively per pixel depending on the local neighborhood,
but the computational cost would be very high, as the filter depends quadratically on
the radius. The multi-scale anisotropic Kuwahara filter by Kyprianidis [30], there-
fore applies the anisotropic Kuwahara filter at multiple scales. The computations
are carried out on an image pyramid, where processing is performed in a coarse-
to-fine manner, with intermediate results being propagated up the pyramid. Fig-
ure 5.11 shows an example image processed with different variants of the Kuwahara
filter.
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5.4 Morphological Filters

Mathematical morphology (MM) provides a set-theoretic approach to image anal-
ysis and processing. Besides being useful the for extraction of object bound-
aries, skeletons, and convex hulls, it has been also applied successfully to many
pre- and post-processing tasks. A good introduction to the subject, covering as-
pects of image processing and computer vision, is the tutorial by Haralick et
al. [23]. Fundamental operations in MM are dilation and erosion. From these,
a large number of other operators can be derived, most notably opening, de-
fined as erosion followed by dilation, and closing, defined as dilation followed
by erosion. For grayscale images, dilation is equivalent to a maximum filter and
erosion corresponds to a minimum filter. Therefore, opening removes light im-
age features by removing peaks, while closing removes dark features by fill-
ing holes. Applying opening and closing in sequence results in a smoothing
operation that is often referred to as morphological smoothing, which, similar
to a median filter, quite effectively suppresses salt-and-pepper noise, while be-
ing computationally less expensive. In fact, openings and closings are closely
related to order-statistics filters. A further in-depth discussion of morphologi-
cal filters and their relations to other image processing operators can be found
in [38, 39].

In Bousseau et al.’s [7, 8] work on watercolor rendering (cf., Sect. 13.3.2.1),
morphological smoothing is applied to simplify input images and videos before their
heuristically defined rendering approach is applied. In the case of video, a spatio-
temporal kernel is used, aligned to the motion trajectory derived from optical flow.
Applying opening and then closing generally results in a darkened result. Since
watercolor paintings typically have light colors, Bousseau et al. proposed swapping
the order of the morphological operators and applying closing followed by opening
(Fig. 5.12). Since opening and closing are dual to each other, this is the same as
inverting the output of the usual morphological smoothing applied to the inverted
image.

Papari and Petkov [43] described another technique, which applied morphologi-
cal filtering in the context of IB-AR. Motivated by glass patterns, and similar to line
integral convolution [10], they performed a one-dimensional dilation in the form of
a maximum filter over noise along the integral curves defined by a vector field. In
contrast to line integral convolution, this technique is more capable of producing
thick piece-wise constant coherent lines with sharp edges, resulting in a stronger
brush-like effect. Moreover, it can also be applied to color images, by using the
location of the first maximum noise value along the integral curve as a look-up po-
sition.

Some morphological operators (e.g., with convex polygonal structuring ele-
ment) can be efficiently implemented by using distance transforms [15]. Crimin-
isi et al. [13] recently demonstrated that edge-sensitive smoothing based on the
generalized geodesic distance transform (GGDT) can be used for the creation
of cartoon-style abstractions. The image is first clustered into a fixed number of
colors. Then for every pixel, the probability of the pixel’s value belonging to
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Fig. 5.12 Mathematical morphology operators. (a) Original image courtesy of PDPhoto.org.
(b) Opening. (c) Closing. (d) Opening followed by closing. (e) Closing followed by opening: The
morphological operator chosen by Bousseau et al. [7, 8]

a certain cluster is defined. These probabilities form a soft mask to which the
GGDT is applied. The output is then defined as the weighted sum of the clus-
ter’s mean values, where the weights are defined based on the corresponding dis-
tances.

5.5 PDE-Based Methods

Methods based on partial differential equations (PDE) provide a powerful approach
to image processing [3]. Interestingly, several local filtering approaches can be in-
terpreted in terms of corresponding PDEs. For example, anisotropic diffusion is
closely related to the bilateral filter [5], and PDE formulations for classical mor-
phological processes have been established [55]. There is also a connection be-
tween PDEs and the Kuwahara filter. As shown by van den Boomgaard [54], the
Kuwahara filter can be interpreted as a PDE with linear diffusion and shock filter
terms.

In this section, shape-simplifying image abstraction by Kang and Lee [24] will
be discussed. This technique applies a diffusion process to simplify the image, fol-
lowed by shock filtering, which deblurs the image to maintain sharp edges at dis-

http://PDPhoto.org
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Fig. 5.13 Examples of different diffusion techniques. (a) van Gogh—Road with Cypress and Star.
(b) Anisotropic diffusion [46]. (c) Edge-enhancing diffusion [55]. (d) Coherence-enhancing diffu-
sion [55]

continuities. Before discussing it, we briefly review the concepts behind anisotropic
diffusion and shock filters.

5.5.1 Anisotropic Diffusion

Let I be a grayscale image, then the solution of the heat equation

∂u

∂t
= �u = div(∇u) (5.15)

at a particular time t with initial condition u(x,0) = I (x) is given by convolution
with a two-dimensional Gaussian having standard deviation

√
2t [55]. To overcome

the limitations of isotropic smoothing, Perona and Malik [46] added the regulariza-
tion term

g
(
s2) = 1

1 + s2

λ2

(λ > 0) (5.16)

to the heat equation that stops diffusion at the edges:

∂u

∂t
= div

(
g
(|∇u|2)∇u

)
(5.17)

This is known as anisotropic diffusion. Adding such penalization terms is a standard
technique often found in PDE-based approaches. For instance, the edge-enhancing
and coherence-enhancing diffusion techniques developed by Weickert [56] guide
the diffusion using a tensor derived from the SST (Fig. 5.13). More details about
anisotropic diffusion and other PDE-based image processing techniques can be
found in the books by Weickert [55] and Aubert and Kornprobst [3].
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Fig. 5.14 Illustration of shock filtering and mean curvature flow. (a) A smooth step edge. (b) First
derivative of the edge. (c) Second derivative of the edge. (d) A shock filter applies an dilation where
the second derivative is positive and erosion where it is negative

5.5.2 Shock Filter

Osher and Rudin [42] were the first to study shock filters in image processing. The
classical shock filter evolution equation is given by

∂u

∂t
= −sign

(
L(u)

)|∇u| (5.18)

with initial condition u(x,0) = I (x) and where L is a suitable detector, such as the
Laplacian �u or the second derivative in direction of the gradient:

uξξ = u2
xuxx + 2uxuyuxy + u2

yuyy

u2
x + u2

y

(5.19)

In the influence zone of a maximum, L(u) is negative, and therefore a local dilation,
with a disc as the structuring element, is performed. Similarly, in the influence zone
of a minimum, L(u) is positive, which results in local erosion. This sharpens the
edges at the zero-crossings of �u, as shown in Fig. 5.14. Shock filters have the
attractive property of satisfying a maximum principle, and in contrast to unsharp
masking, therefore do not suffer from ringing artifacts.

Instead of the second derivative in the direction of the gradient, also the second
derivative in the direction of the major eigenvector of the SST can be used. This was
first proposed by Weickert [57] and shares some similarity with the flow-based DoG
discussed in Sect. 5.2.2. To achieve an higher robustness against small-scale image
details, the input image can be regularized with a Gaussian filter prior to second
derivative or SST computation [2]. As demonstrated in Fig. 5.15(b), this provides
an aggressive simplification method. Equation (5.18) is typically implemented us-
ing a finite difference scheme. Thereby, L(u) can be approximated using central
differences. Discretization of |∇u| requires the use of an upwind scheme [3].

Shock filter can also be related to local neighborhood filters. Guichard and
Morel [21] showed that the classical Osher–Rudin shock filter, with the Laplacian
as the edge detector, corresponds asymptotically to a filter by Kramer and Bruck-
ner [28], which replaces the current gray level value by either the minimum or max-
imum of the filter region, depending on which is closer to the current value.
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Fig. 5.15 Shock filters in conjunction with regularization provide an aggressive image simplifi-
cation method. Original image (USC-SIPI image database). (b) Weickert’s coherence-enhancing
shock filter [57]. (c) A further refinement, applying curvature-preserving smoothing and shock
filtering iteratively [33]

5.5.3 Mean Curvature Flow

Previously, Osher and Rudin [42], as well as Weickert [57], made comments about
the artistic look of shock filtered results, but the work of Kang and Lee [24] was the
first to apply diffusion in combination with shock filtering for targeting IB-AR. The
mean curvature flow (MCF) diffusion method was chosen, which evolves isophote
curves under curvature speed in normal direction, resulting in simplified isophote
curves with regularized geometry. In contrast to other popular edge-preserving
smoothing techniques, such as the bilateral or the Kuwahara filter, MCF smoothes
not only irrelevant color variations while protecting region boundaries, but also sim-
plifies the shape of those boundaries. The evolution equation of MCF is given by

∂u

∂t
= κ|∇u| with κ = u2

xuxx − 2uxuyuxy + u2
yuyy

(u2
x + u2

y)
3/2

(5.20)

denoting the curvature. Equation (5.20) can be implemented using central differ-
ences. A better approach, however, is to use a finite difference scheme with har-
monic averaging [14].

MCF performs strong simplification of an image, but also creates blurred edges.
Therefore, Kang and Lee [24] performed deblurring with a shock filter after
some MCF iterations, which helps to keep important edges during the evolution
(Fig. 5.16). From an artistic point of view, however, shock filtered MCF is typi-
cally still too aggressive, and does not properly protect directional image features
(Fig. 5.17). Similar to Eq. (5.17), Kang and Lee therefore constrained the mean cur-
vature flow by using the ETF to penalize diffusion that deviates from the local image
structure. The evolution equation is given by

∂u

∂t
=

(

(1 − r) + r ·
∣
∣
∣
∣

〈
E

‖E‖ ,
∇u⊥

‖∇u‖
〉∣
∣
∣
∣

)

‖κ‖ (5.21)
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Fig. 5.16 Pipeline for shape-simplifying image abstraction [24]. Processing starts with the estima-
tion of local orientation. Then multiple iterations of constrained mean curvature flow are applied,
followed by shock filtering for deblurring. This process is repeated until the desired amount of
abstraction has been reached

Fig. 5.17 Comparison of mean curvature flow with/without shock filtering and constraint.
(a) Original image (licensed by Getty images). (b) Mean curvature flow. (c) Mean curvature flow
with shock filtering after 15 iterations. (d) Constrained mean curvature flow with shock filtering
after 15 iterations. In all cases, a time step of 0.25 was used

where 〈·, ·〉 denotes the per-pixel scalar product of EFT vectors and vectors perpen-
dicular to the image gradients. The control parameter r ∈ [0,1] allows for blending
between the unconstrained and the constrained MCF. Alternatively, instead of the
ETF, the minor eigenvector field of the SST can be used.
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MCF, and its constrained variant, contract isophote curves to points [20]. For
this reason, important image features must be protected by a user-defined mask.
A further limitation is that the technique is not stable against small changes in the
input, and therefore not suitable for per-frame video processing. In order to avoid
these issues, Kyprianidis and Kang [33] combine curvature-preserving flow-guided
smoothing and shock filter-based sharpening orthogonal to the flow, but instead of
modeling the process by a PDE, approximations that operate as a local neighbor-
hood filter are used (Fig. 5.15(c)). This makes the technique more stable and partic-
ularly suitable for per-frame video processing.

5.6 Gradient Domain Techniques

In recent years, gradient domain methods have become very popular in computer
vision and computer graphics [1]. The basic idea behind such methods is to construct
a gradient field representing the result. However, such constructed fields are rarely
conservative, and therefore the result needs to be found as an approximation by
solving an optimization problem. In the case of a best-fit in the least squares sense,
this corresponds to solving Poisson’s equation.

Orzan et al. [41] were the first to apply gradient domain image editing for IB-
AR. By performing a scale-space analysis, they extracted a multi-scale Canny edge
representation with lifetime and best scale information. This representation is then
used to define the gradient field, and allows for image operations, such as detail
removal and shape abstraction. Moreover, line drawings can be extracted from the
multi-scale representation and overlaid with the reconstructed image. A limitation
of the technique is that handling contrast is problematic and requires correction.
Besides being computationally expensive, this technique is also known not to create
temporal coherent output for video.

Bhat et al. [6] have presented a robust optimization framework that allows for
the specification of zero-order (pixel values) and first-order (gradient values) con-
straints over space and time. The resulting optimization problem is solved using a
weighted least squares solver. By using temporal constraints, the framework is able
to create temporal coherent video output. The framework makes use of several com-
putationally expensive techniques, such as steerable filters and optical flow, and is
therefore currently limited to offline processing.
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