
Chapter 14
Computer-Assisted Repurposing of Existing
Animations

Daniel Sýkora and John Dingliana

14.1 Introduction

Paper and pencil are the only tools that a skilled artist needs to create a fascinating
world of cartoon animation. With these tools the artist has complete freedom, as
there are no limitations apart from the size of the paper and length of the lead. How-
ever, this freedom is tempered by the enormous effort and time needed to complete
the artwork especially in the case of colorful animation where hundreds of painted
drawings are required.

In recent times, computer-assisted 3D animation systems have become very pop-
ular as they can save a great deal of manual work. Here, the key advantage is that
the system already knows the structure and motion of an animated object, therefore
the final artwork is simply created by an automated rendering algorithm without
any additional effort. As a result, everything can be easily manipulated and mod-
ified. However, the compromise is that the artist loses a part of their freedom and
expressivity. Moreover, the creation of fully consistent 3D models can become very
tedious when compared to simple 2D drawing.

The aim of this chapter is to present a set of tools that enable ease of modification,
manipulation, and rendering similar to 3D animation systems, whilst preserving the
expressivity and simplicity of the original hand-drawn animation. To achieve this, it
is necessary to infer a part of the structural information hidden in the sequence of
hand-drawn images, namely the partitioning into meaningful segments, their topol-
ogy variations, depth ordering, and correspondences. Since this inference can be
very ambiguous and cannot be fully automated, we let the artist provide a couple of
rough hints that make this problem tractable.

D. Sýkora (�)
FEE, DCGI, CTU in Prague, Karlovo nám. 13, 121 35 Praha 2, Czech Republic
e-mail: sykorad@fel.cvut.cz

J. Dingliana
Trinity College Dublin, College Green, Dublin 2, Ireland
e-mail: John.Dingliana@scss.tcd.ie

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_14,
© Springer-Verlag London 2013

285

mailto:sykorad@fel.cvut.cz
mailto:John.Dingliana@scss.tcd.ie
http://dx.doi.org/10.1007/978-1-4471-4519-6_14

286 D. Sýkora and J. Dingliana

Fig. 14.1 Interactive segmentation of a hand-drawn image using LazyBrush [33]. The algorithm
finds an optimal labelling based on a set of roughly placed positional constraints—scribbles. It
automatically handles small gaps in outlines (note the small subaxillary gap), correctly maintains
anti-aliasing, and is not sensitive to imprecise placement of scribbles (e.g., the large brown scribble
over the plane). Reproduced with kind permission from Blackwell Publishing Ltd. © Anifilm +
© EG & Blackwell. Used with permission

The rest of the chapter is organized as follows. First we introduce an interactive
tool which enables quick partitioning of the image into a set of meaningful parts,
Sect. 14.2. These play a crucial role in the depth assignment and layering frame-
work, Sect. 14.3, which can further help to simplify deformation and retrieval of cor-
respondences between animation frames, Sect. 14.4. Finally, we demonstrate how
reconstructed structural information and correspondences can help to solve more
complex problems such as auto-painting, example-based synthesis, temporally co-
herent texture mapping, or 3D-like shading, Sect. 14.5.

14.2 Segmentation

This section presents LazyBrush—an interactive tool for segmenting hand-draw
images in various drawing styles [33], see Fig. 14.1. It addresses common limi-
tations of area selection tools used in professional ink-and-paint systems (usually
called magic wand or bucket fill). These are typically based on a variant of the flood-
fill algorithm which works well for images containing large flat regions separated by
continuous outlines. However, hand-drawn images are typically more complex and
thus tedious manual corrections are necessary to obtain clean segmentation. Typi-
cal problems that can arise when one wants to segment a hand-draw image using
flood-fill based tools are depicted in Fig. 14.2. These problems feature even in re-
cent advanced image segmentation [3, 10] and colorization algorithms [20, 27, 30],
see Fig. 14.3.

14 Computer-Assisted Repurposing of Existing Animations 287

Fig. 14.2 Typical problems of flood-fill based tools when applied to a hand-drawn image: (a) small
gaps cause leakage, the user has to retrieve them and draw a closure, (b) small regions require the
user to perform many detailed mouse clicks, (c) anti-aliasing is not preserved well due to intensity
thresholding mechanisms, the user has to tune the threshold to obtain better results, however, one
single value is typically not sufficient for the whole image, (d) the user has to move the mouse
pointer exactly inside the region of interest. © Anifilm. Used with permission

Fig. 14.3 LazyBrush [33] versus flood-fill and modern image segmentation and colorization al-
gorithms: Levin et al. [20] suffers from leakage, Sýkora et al. [30] does not handle small gaps
and small regions, Qu et al. [27] get stuck in a local minima, small regions when not arranged
in a repetitive hatching pattern need to be handled individually, anti-aliasing is not supported,
Grady [10] tends to produce weird boundaries and does not handle anti-aliasing, Boykov and
Funka-Lea 2006 [3] have problems with small regions as well as anti-aliasing. Reproduced with
kind permission from Blackwell Publishing Ltd. © Anifilm + © EG & Blackwell. Used with
permission

LazyBrush uses a popular interaction metaphor called scribbles, see Fig. 14.1,
which was originally used to perform interactive colorization of gray-scale im-
ages [20] and segmentation of photographs [3]. Instead of a single point click inside
the region of interest, the user specifies a set of constrained pixels upon which the
algorithm resolves the final labelling. Compared to previous approaches [3, 20],
LazyBrush scribbles are not necessarily meant to be hard constraints, i.e., the user

288 D. Sýkora and J. Dingliana

can overdraw the region of interest. The algorithm will recognize such inaccuracies
and try to produce better labelling.

14.2.1 Problem Formulation

Similarly to recent advanced image segmentation and colorization techniques [3, 10,
20, 27] LazyBrush formulates segmentation as an energy minimization problem. It
defines a new energy function that is custom tailored to hand-drawn images and thus
can overcome issues depicted in Fig. 14.2 and Fig. 14.3.

14.2.1.1 Energy Function

As an input we consider a gray-scale image I consisting of pixels P in a 4-connected
neighborhood system N . Each pixel p ∈ P has an intensity Ip ∈ 〈0,1〉. In addition
to this, the user marks a subset of pixels using scribbles S. Each scribble s ∈ S has
a specific label �s taken from a set of possible labels L, see Fig. 14.1 left. The aim
is to find an optimal labelling �∗, i.e., the label-to-pixel assignment, see Fig. 14.1
right, that minimizes the following energy:

E(�) =
∑

{p,q}∈N

Vp,q(�p, �q) +
∑

p∈P

Dp(�p) (14.1)

where the smoothness term Vp,q represents the energy of label discontinuity be-
tween two neighbor pixels p and q (i.e., when �p �= �q otherwise Vp,q = 0), and
data term Dp the energy of assigning a label � to a pixel p.

14.2.1.2 Smoothness Term

As the aim is to maintain anti-aliasing, discontinuities between two labels are pre-
ferred to appear at pixels p where the intensity Ip is low, i.e., inside dark outlines,
see Fig. 14.4(A) left. Therefore we need to set Vp,q ∝ Ip . This is a fundamental
difference from standard image segmentation techniques [3, 10] where the aim is to
push segment boundaries to pixels with maximal gradient. Such a setting is unde-
sirable in our scenario as it reveals discontinuities at soft edges, Fig. 14.4(A) right.

Next we need to favor compact hole-free regions, see Fig. 14.4(B) left, therefore
it is necessary to set Vp,q > 0, otherwise outlines with zero intensity will not influ-
ence the minimum of Eq. (14.1) therefore can easily produce disconnected holes in
the final segmentation, Fig. 14.4(B) right. We avoid this by always adding 1 to the
smoothness term, i.e., Vp,q = 1 + Ip . However, when the original image contains
long creeks such simple additions can lead to unintended shortcuts, see Fig. 14.4(C)
right. To suppress them, discontinuities going through the white pixels should have

14 Computer-Assisted Repurposing of Existing Animations 289

Fig. 14.4 The energy function used in LazyBrush satisfies the following inequalities: (A) a dis-
continuity inside the outline always has lower energy than a discontinuity on the edge (bottom inset
depict intensity profile), (B) length of the discontinuity counts, i.e., compact hole-free regions have
lower energy, (C) shortcut through the white areas has higher energy than a discontinuity along a
creek even if the contrast of the outline is low, (D) soft scribbles respect rule of majority, i.e.,
the label of a scribble which occupies the largest area inside a homogeneous region will prevail.
Reproduced with kind permission from Blackwell Publishing Ltd.

very high energy K . As the aim is to have overall energy of a shortcut higher than a
sum of energies over a long creek, a good estimate for K can be a perimeter of I .

Another source of shortcuts is low contrast between homogeneous areas and out-
lines visualized by light gray in Fig. 14.4(C). This can happen, e.g., in unprocessed
scans of soft pencil drawings. To overcome this, a nonlinear mapping that enhances
contrast is required. We use a gamma correction: Vp,q = 1 + K · I

γ
p , with, e.g.,

γ = 5. Similar preprocessing of input intensities is required when segmenting gray-
scale images. In this case outlines need to be emphasized first (e.g., using the neg-
ative response of Laplacian-of-Gaussian filter [30], see also Sect. 5.2.2) and then
segmentation can be performed using the LazyBrush algorithm (cf. Fig. 14.18, for
details see [33]).

To summarize the previous discussion, the smoothness term Vp,q is defined as
follows:

Vp,q(�p, �q) =
{

1 + K · Iγ
p for �p �= �q

0 otherwise
(14.2)

where K is the perimeter of I and γ = 5.

14.2.1.3 Data Term

In recent image segmentation and colorization algorithms, the data term Dp is usu-
ally set to reflect some image-based prior such as intensity [3] or a repetitive hatch-
ing pattern [27]. However, repetitive hatching or intensity variations are not typical
for hand-made drawings and even if they are present, correspondences between in-
tensity/pattern and a meaningful segment in the image are rare. To address this fact,
LazyBrush uses only a user-driven data term. Among other properties, this setting
ensures that all label segments are always connected to their initial scribbles. A sim-
ilar approach is also used in [10], however, here a key difference is that LazyBrush

290 D. Sýkora and J. Dingliana

Fig. 14.5 Multiway cut—a basic structure of a graph G (left): pixels P (white dots), label termi-
nals L (color dots), pixel edges Ep with weight wp,q (black lines), and links to label terminals E�

with weight wp,� (color lines). The resulting multiway cut and corresponding labelling of pix-
els (right). Reproduced with kind permission from Blackwell Publishing Ltd.

does not necessarily assume that all user-defined scribbles serve as hard constraints.
It introduces a new rough positional constraint—soft scribble, which preserves the
so called rule of majority, i.e., within a homogeneous area a label whose scribble
occupies the majority of pixels will prevail, see Fig. 14.4(D). In other words, the
overall energy Eq. (14.1) should be lower for the left labelling in Fig. 14.4(D) even
thought all pixels under the yellow scribble have not received its label. This behavior
can be accomplished using the following data term:

Dp(�p) =
⎧
⎨

⎩

K no scribble
0.95 · K soft scribble
0 hard scribble

(14.3)

where K is the perimeter of the image I (i.e., the energy of a discontinuity at white
pixels). For a derivation of this setting and a more detailed discussion about the rule
of majority see [33].

14.2.2 Problem Solution

Once the energy function Eq. (14.1) is defined we can proceed to its minimization.
Since the value of the smoothness term Vp,q depends only on the case where two
neighbor pixels have different labels, our energy satisfies the Potts model [26]. As
shown in [5], minimizing such energy is equivalent to solving a multiway cut prob-
lem on a certain undirected graph G = {V ,E } where V = {P,L} is a set of vertices
and E = {Ep,E�} a set of edges, see Fig. 14.5.

Vertices V consist of pixels P and terminals L. Each pixel p ∈ P is connected to
its 4 neighbors via edges Ep having weight equal to smoothness term wp,q = Vp,q

for the case �p �= �q . There are also auxiliary edges E� that connect terminals L to
marked pixels. Each E� has a weight wp,� = K −Dp(�) (hard scribbles have wp,� =
K and soft wp,� = 0.05 · K).

14 Computer-Assisted Repurposing of Existing Animations 291

Fig. 14.6 Greedy approximation to multiway cut in progress—computing binary
max-flow/min-cut subproblems on gradually reducing graphs (top), corresponding mask of
already labelled pixels (bottom, checkerboard indicates unlabelled pixels). Reproduced with kind
permission from Blackwell Publishing Ltd. © Ondřej Sýkora + © EG & Blackwell. Used with
permission

A multiway cut with two terminals is equivalent to a max-flow/min-cut problem
for which efficient algorithms exist [4, 12]. However, for three or more labels the
problem becomes NP-hard [6]. Nevertheless, in practice a simple greedy approxi-
mation can quickly deliver a solution which is visually close to the global minimum.
It is based on a sequence of binary solutions. The algorithm selects an arbitrary label
as a first terminal and all other labels as a second terminal. Then it solves a binary
max-flow/min-cut problem and removes a part of the graph associated to the first
terminal. The same operation is repeated on a reduced graph with a reduced set of
labels until there are only two different labels, see Fig. 14.6.

14.3 Adding Depth

In this section, an extension of the LazyBrush algorithm is presented that enables
quick addition of depth information into hand-drawn images [34]. It is motivated by
perceptual studies that have tried to understand how humans reconstruct depth from
a single image [17, 18]. These studies show that humans typically fail to specify
absolute depth values, however, are much more accurate in telling whether some
part of the object is occluded by another and vice versa. Therefore the aim is to
avoid inputs requiring knowledge of absolute depth and instead use a set of sparse
depth equalities that are much easier to specify, see Fig. 14.7.

14.3.1 Depth from Depth Inequalities

Supposing that we have already partitioned the input image into a set of mean-
ingful regions, see Fig. 14.8 left, and specified a set of depth inequalities which
indicate their relative ordering in depth Fig. 14.8 middle. Such input can be repre-
sented as an oriented graph G(V,E) where vertices V correspond to regions (red
dots in Fig. 14.8) and oriented edges E represent depth inequalities (green arrows
in Fig. 14.8). Now the task is to assign a depth value into each vertex v ∈ V so

292 D. Sýkora and J. Dingliana

Fig. 14.7 If we ask a human to tell us what are the absolute depths of regions denoted by question
marks (left) they immediately start to think in terms of pairwise above/under relationships (right)
from which they reconstruct absolute depths. This tedious process can be automated so that the
user can directly specify only these pairwise relationships (depth inequalities) and the system will
resolve absolute depths automatically. © UPP & DMP. Used with permission

Fig. 14.8 Depth from depth inequalities—a user specifies meaningful segmentation (left) and a
set of depth inequalities (middle). Based on this input, a graph is built (right) and its vertices are
enumerated according to their topological order. Reproduced with kind permission from Blackwell
Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used with permission

that it satisfies all specified depth inequalities E (see the graph in Fig. 14.8 and the
resulting depth map in Fig. 14.10).

This task is equivalent to a graph theoretical problem called topological
sorting [15]. It can be solved by a simple algorithm, the input of which is
graph G(V,E), a set of vertices having no incoming edges S, and an empty set L.
The algorithm repeats the following steps:

14 Computer-Assisted Repurposing of Existing Animations 293

while S �= ∅ do
S := S − {n} and L := L ∪ {n}
for ∀m ∈ V having edge e : n → m do

E := E − {e}
if m has no other incoming edges then

S := S ∪ {m}
endfor

endwhile

if E �= ∅ then
G has at least one oriented cycle else L contains topologically sorted
nodes.

A topologically sorted list of vertices L is returned only if the graph G does not
contain oriented loops. This situation can happen when a new depth inequality is
added in the wrong direction or when the partitioning of the input image is insuffi-
cient. The system will inform the user about this problem and ask them to change
the direction or refine the partition of the input image so that the loop is removed.
This leads to an interactive process where segmentation and specification of depth
inequalities is interchanged until the desired depth assignment is reached.

14.3.2 Outline-to-Region Assignment

The LazyBrush algorithm places segment boundaries inside the outline therefore
it is not clear to which segment the outline actually belongs. This knowledge is
crucial for applications where a precise extraction of individual parts is necessary.
The task is equivalent to the figure-ground separation problem [25], which is non-
trivial and requires additional semantic knowledge. However, an important part of
this knowledge is already encoded in the absolute depth ordering. This information
is sufficient to produce good results with only minor artifacts, see Fig. 14.9.

First we need to estimate local thickness of outlines using two distance
maps [8]: D1 computed from the boundaries of regions being expanded, red color
in Fig. 14.9(b) and D2 from all other regions, blue color in Fig. 14.9(b). Pixels
where D1

p = D2
p form a medial axis from which we can propagate estimates of

outline thickness t to all other pixels, Fig. 14.9(c).
This propagation can be understood as a variant of diffusion curves [24]

(see Sect. 8.2.3) and so can be formulated as a solution to the Laplace equation:
∇2t = 0 with the following boundary conditions (q ∈ Np):

Dirichlet: tp = 2D1
p ⇐⇒ D1

p = D2
p

Neumann: t ′pq = 0 ⇐⇒ D1
p = 0 or D2

p = 0

This formulation leads to a sparse system of linear equations which is solvable using
simple Gauss–Seidel iterations or some more advanced techniques such as [13].

294 D. Sýkora and J. Dingliana

Fig. 14.9 Outline-to-region assignment—a synthetic example (left): (a) input depth map with dark
outlines, (b) medial axis obtained using two distance maps computed from the active region (red)
and all other regions (blue), (c) propagation of outline thickness from the medial axis to all other
outline pixels, (d) outline-to-region assignment based on the local estimation of outline thickness,
(e) filling in small gaps, (f) final expanded depth map. A practical example (right): several mi-
nor artifacts are depicted in selected zoom-ins. Reproduced with kind permission from Blackwell
Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used with permission

With the estimation of outline thickness we can expand the region to pixels
where d1

p < tp , Fig. 14.9(d), and fill in small gaps by removing connected com-
ponents whose size is below a predefined threshold, Fig. 14.9(e). The expanded
region is then removed from the depth map and the same process is applied to all
other remaining regions in a front-to-back order to obtain the resulting assignment,
Fig. 14.9(f).

14.3.3 Smooth Depth Transitions

When the absolute depths and outline-to-region assignments are known, we can
produce smooth depth transitions in areas where depth discontinuities between seg-
ments were enforced due to a depth assignment process based on topological sorting
(note the depth discontinuity between body and arm in Fig. 14.10).

As we already know where the original depth inequalities were placed, we can
use their endpoints to define a set of point constraints U◦ (see red dots in Fig. 14.10)
from which we can smoothly propagate absolute depth values to the rest of the im-
age. Values are taken from d̂ , which denotes the initial depth map produced by Lazy-
Brush and the topological sorting algorithm described in Sect. 14.3.1, see Fig. 14.10
left.

This is again a problem similar to diffusion curves and can be solved using the
Laplace equation: ∇2d = 0 with the following boundary conditions (q ∈ Np):

Dirichlet: dp = d̂p ⇐⇒ p ∈ U◦

Neumann: d ′
pq = 0 ⇐⇒ d̂p �= d̂q ∧ Ip < τ

14 Computer-Assisted Repurposing of Existing Animations 295

Fig. 14.10 Enforcing smooth depth transitions—the initial depth map (left) produced by Lazy-
Brush (Sect. 14.2) and the topological sorting algorithm (Sect. 14.3.1) contains artificial depth
discontinuities at pixels where the body and arm connects. This artifact can be removed (right) by
calculating a smooth transition between the endpoints (red dots) of the original depth inequality
which was used to specify depth ordering of these two regions (depicted in Fig. 14.8). Reproduced
with kind permission from Blackwell Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used
with permission

Here Neumann conditions enforce zero derivative only at pixels where the depth
discontinuity in the initial depth map d̂ is valid, i.e., lies inside the outline (τ is a
threshold for the intensity of outlines).

14.4 Deformation

Image deformation tools are invaluable for computer assisted production of hand-
drawn cartoon animations since they allow for quick animation prototyping,
example-based synthesis and can help to obtain rough correspondences between in-
dividual animation frames. Recently the as-rigid-as-possible deformation model [1]
has become very popular due to its ability to produce plausible deformations with
only little user intervention [11], see Fig. 14.11.

14.4.1 Rigid Square Matching

In this section we describe a simple yet effective algorithm called rigid square
matching [37], which enables interactive as-rigid-as-possible shape manipulation
and can be easily extended to perform fully automatic or supervised image registra-
tion [32].

296 D. Sýkora and J. Dingliana

Fig. 14.11 As-rigid-as-possible shape manipulation—the user selects a few control points (red
dots) on the pre-segmented image (left), drags them to a desired location (middle and right), and
the algorithm deforms the image in a way that the rigidity of the original shape is preserved. © UPP
& DMP. Used with permission

Fig. 14.12 Rigid square
matching—the original image
is embedded within a square
lattice whose connectivity
respects the initial
segmentation and depth
layering provided by the
user (left). To avoid gluing of
disconnected parts during the
deformation (right) there can
exist multiple collocated
squares with different
connectivity (examples are
denoted in green). © UPP &
DMP. Used with permission

An initial step of the rigid square matching algorithm is to embed the input im-
age into a control lattice, see Fig. 14.12, consisting of interconnected squares whose
topology respects segmentation and depth layering specified by the user. Each
square is assigned a bitmap with corresponding pixels and a depth map to resolve
the local layering problem when displaying self-occluded poses, see Fig. 14.11. This
solution has an advantage over the triangulation used in [11] as it is much easier to
implement and there is no need to approximate shape boundaries using piecewise
linear segments.

To avoid gluing due to insufficient resolution of the control lattice, the algo-
rithm allows several collocated squares with different connectivity, green squares
in Fig. 14.12. For segments glued together due to occlusion, see hands or boots
in Fig. 14.13(a), the user can additionally specify a subset of depth inequalities,
blue arrows in Fig. 14.13(a), that will mark corresponding depth discontinuities as
tears, Fig. 14.13(b). This modification is important namely for the image registra-
tion scenario where it can help to improve the accuracy of the final registration,
Fig. 14.13(c).

14 Computer-Assisted Repurposing of Existing Animations 297

Fig. 14.13 Introducing tears—a subset of depth inequalities (blue arrows) is selected (a) to specify
tears at corresponding depth discontinuities (b). This can help to improve the accuracy of the image
registration algorithm (c) when a source image (a) is registered to a target image (d). Reproduced
with kind permission from Blackwell Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used
with permission

Fig. 14.14 Schematic overview of two simple steps repeated by the rigid square matching algo-
rithm: (1) computation of rigid transformation for each square and (2) moving vertices towards
centroid computed from their instances in connected squares

14.4.1.1 Algorithm

When the control lattice is created, the user selects a subset of its vertices called con-
trol points and moves them to arbitrary locations to define the desired deformation,
see Fig. 14.11 and Fig. 14.12. The aim of the rigid square matching algorithm is to
move all remaining vertices on the lattice so that deformation of the corresponding
squares will be as close as possible to a rigid transformation, i.e., just rotation R∗
and translation t∗. This is accomplished by iterating the following two simple steps,
see Fig. 14.14:

1. For each square, compute optimal rigid transformation (R∗, t∗) and use it to
transform its vertices.

2. Move each vertex to the centroid of its transformed instances in all intercon-
nected squares.

Step (1) can be computed as follows:

298 D. Sýkora and J. Dingliana

The aim is to find the optimal rigid
transformation (R∗,t∗) that moves the
vertices of the original square pi so
that the sum of squared distances to
the corresponding vertices in the de-
sired pose qi is minimized:

(
R∗, t∗

) = arg min
R,t

∑

i

|R · pi + t − qi |2 (14.4)

A simple closed form solution exists to this least square problem in 2D [28]. It can
be shown that the optimal rigid transformation (R∗,t∗) always moves the centroid pc

of the source vertices to the centroid qc of the target vertices. When we align source
and target vertices in a way that their centroids are in the origin (i.e., p̂i = pi − pc

and q̂i = qi − qc) then the optimal rotation R∗ can be computed as follows:

R∗ = 1

μ

∑

i

(
p̂i

p̂⊥
i

)
(

q̂T
i q̂⊥T

i

)
(14.5)

where

μ =
√√√√

(∑

i

q̂i p̂T
i

)2

+
(∑

i

q̂i p̂⊥T
i

)2

(14.6)

T denotes transposition, and the operator ⊥ denotes the perpendicular vector,
i.e.: (x, y)⊥ = (y,−x). Once the rotation matrix R∗ is known, the translation vec-
tor t∗ can be computed directly:

t∗ = qc − R∗ · pc (14.7)

14.4.2 As-Rigid-As-Possible Image Registration

The knowledge of correspondences between individual hand-drawn animation
frames is crucial for many applications described in this chapter. However, obtaining
them automatically is a challenging task. The problem is that each animation frame
is unique and when compared to a previous frame, it typically undergoes a large
amount of free-form deformation and notable change in appearance, see Fig. 14.15.

Popular computer vision techniques based on local similarity (SIFT keys [21])
or global context (shape contexts [2]) typically fail on such images since they rely
on unique local features or stable global configurations, which are common in pho-
tographs but rare in hand-drawn images. A more powerful approach—deformable
image registration based on discrete optimization [9, 29] allows retrieval of corre-
spondences even in the presence of local/global free-form deformation, however, it

14 Computer-Assisted Repurposing of Existing Animations 299

Fig. 14.15 Automatic retrieval of correspondences between two hand-drawn images—SIFT
keys [21] or shape contexts [2] fail as there are only a few distinct local features and the global
context is not preserved. Deformable image registration [9] cannot handle large displacements.
© UPP & DMP. Used with permission

Fig. 14.16 Result of fully automatic as-rigid-as-possible image registration—the aim is to register
source and target image with depicted initial overlap, after several push/regularize iterations the
source is deformed so that it approximately matches the target (cf. final overlap and deformed
source). © UPP & DMP. Used with permission

becomes computationally intractable for larger displacements due to an exponen-
tially increasing state space.

In this section we describe a simple yet effective extension of the rigid square
matching algorithm that enables fully automatic or supervised deformable image
registration [32]. As the deformation model employed enforces local rigidity and
respects the original shape articulation, the algorithm is more robust to larger dis-
placements, see Fig. 14.16. Moreover, due to its iterative nature, it allows the user
to inspect the registration process and intervene when necessary.

The algorithm iterates two simple steps until a stable configuration is reached,
see Fig. 14.17:

1. Push all vertices to locations with minimal visual difference.
2. Regularize control lattice using the rigid square matching algorithm.

The aim of the push phase is to find a new location for each vertex on the embed-
ding lattice that minimizes visual difference in its local neighborhood. To do this we
can utilize a simple block matching algorithm, which guarantees a globally optimal
shift within a predefined search area.

300 D. Sýkora and J. Dingliana

Fig. 14.17 As-rigid-as-possible image registration in progress—in each iteration two steps are
executed: first all vertices are pushed towards locations with minimal visual difference (left) and
then the shape is regularized using the rigid square matching algorithm (right). For clarity, the
source shape is filled with a transparent color and the control lattice is visualized

Formally, the aim is to find an op-
timal shift vector t∗ within a local
search area M that minimizes the
sum of square differences over a
neighborhood N , i.e.:

t∗ = arg min
t∈M

∑

p∈N

∣∣S(p) − T(p − t)
∣∣2 (14.8)

where S denotes the source and T the target image. Note that in spite of shift opti-
mization, the overall image registration algorithm is not limited to pure translation,
since S is slightly deformed during the regularization phase and local neighborhoods
of vertices gradually adapt to more complicated deformations, see Fig. 14.17.

In addition to the block matching algorithm the user can also intrude into the
push phase by specifying their own positional constraints similarly to the shape ma-
nipulation scenario, Fig. 14.11, or just quickly guide the process by simply dragging
selected vertices towards desired locations. The key difference from the stand-alone
rigid square matching algorithm is that during the push phase all vertices are moved
(not only those representing user-defined constraints). As can be seen in Fig. 14.17
this leads to temporarily inconsistent configurations, however, in the regularization
phase, vertex positions are immediately relaxed by a couple of rigid square matching
iterations that enforce local rigidity and make the overall shape consistent.

14.5 Applications

The techniques described in previous sections can now be used as basic building
blocks in various practical applications enabling repurposing of existing or creation

14 Computer-Assisted Repurposing of Existing Animations 301

Fig. 14.18 Examples of interactive painting (left) and colorization (right) of hand-drawn images
in various drawing styles using the LazyBrush algorithm. Reproduced with kind permission from
Blackwell Publishing Ltd. © Lukáš Vlček + © UPP & DMP + © EG & Blackwell. Used with
permission

of new hand-drawn cartoon animations with a look that is distinct from traditional
techniques.

14.5.1 Painting, Colorization and Texture Mapping

The first straightforward application of segmentation and registration is paint-
ing and colorization, see Fig. 14.18 and also Sect. 17.5. Here desired colors or
color components are assigned to the resulting segments and, in each pixel, mul-
tiplied/combined with the original gray-scale intensity. The greedy multi-label seg-
mentation algorithm presented in Sect. 14.2.2 is fast enough to enable interactive
response when working in PAL resolution.

To avoid repeated specification of scribbles for all animation frames, as-rigid-
as-possible image registration, Sect. 14.4.2, can be used to register the first frame
to the following frame, transfer the scribbles, and use the LazyBrush algorithm to
obtain the segmentation, see Fig. 14.19. As the LazyBrush algorithm is robust to
imprecise positioning of scribbles, small mismatches in the registration are allowed.
However, for scenes where detailed painting is required (e.g., many small regions
with different colors), the user may need to specify additional correction scribbles
to keep the segmentation consistent.

Instead of a single color, the user can also specify a texture and make the region
filling more visually rich. However, in contrast to a single color there is an additional
problem: the texture should follow the motion and/or deformation of its correspond-
ing regions in the subsequent frames to preserve temporal coherency. This can be
problematic in hand-drawn animation as it is typically impossible to obtain one-to-
one correspondence between individual frames, see Sect. 14.4.2.

Fortunately, as noted in [39] the human visual system tends to focus more on
visually salient regions, while devoting significantly less attention to other, less vi-

302 D. Sýkora and J. Dingliana

Fig. 14.19 Auto-painting—color scribbles (a) are transferred from already painted (b) to yet un-
painted frames (c) using as-rigid-as-possible image registration algorithm (d). LazyBrush is then
utilized to compute the final painting (e). Reproduced with kind permission from ACM. © Anifilm
+ © ACM. Used with permission

Fig. 14.20 Texture mapping with approximate temporal coherence—scribbles used to paint the
first frame (a), textures were applied to selected regions (b), texture transfer to a new frame using
a deformation field obtained by as-rigid-as-possible image registration algorithm (c), final painting
of the new frame (d), small gaps were filled using extrapolation of texture coordinates. Reproduced
with kind permission from ACM. © Anifilm + © ACM. Used with permission

sually important, areas. In hand-drawn animations contours are the salient features.
Textures are typically less salient and thus attract considerably less attention [36].
Exploiting this property, an illusion of temporal coherent animation can be created
using only rough correspondences obtained by an as-rigid-as-possible image regis-
tration algorithm [35], see Fig. 14.20.

14.5.2 Simulation of 3D-Like Effects

In this section we describe techniques which allow artists to simulate 3D-like ef-
fects common for computer-generated movies entirely in the 2D domain without
the need to reconstruct and render a 3D model, see Fig. 14.23(d). They are based on

14 Computer-Assisted Repurposing of Existing Animations 303

Fig. 14.21 Simulation of 3D-like effects: (a) depth map with Dirichlet (red) and Neumann (blue)
boundary conditions, (b) Lumo shading, (c) simulation of ambient occlusion, (d) simulation of
ambient occlusion with Lumo shading, (e) texture mapping using flat UV coordinates, (f) texture
rounding based on shading, (g) texture rounding with ambient occlusion, (h) texture rounding with
shading and ambient occlusion

the segmentation and depth obtained using the algorithms described in Sect. 14.2
and Sect. 14.3.

14.5.2.1 Ambient Occlusion

Ambient occlusion is a popular technique that can approximate smooth light at-
tenuation on diffuse surfaces caused by occlusion. Its key advantage is that it can
enhance the perception of depth in the image [19]. In our setting with known seg-
mentation and depth order this effect can be simulated by unsharp masking the depth
buffer [22] or by simply superimposing a stack of regions with blurred boundaries
in a back-to-front order, see Fig. 14.21(c) and Fig. 14.23(c).

14.5.2.2 Shading

Another popular technique that can profit from knowledge of segmentation and
depth is Lumo [14]. The method approximates the normal field inside a region using
the 2D normals computed on its boundaries. The main idea is that on the silhouette
of an object the normal component in the viewing direction is always equal to zero,
hence the normal is completely specified by its x and y components. Furthermore,
the gradient of the image intensity is orthogonal to the silhouette, giving exactly the
required normal components. This simple rule holds only when the target shape con-
tains silhouette pixels, i.e., for interior strokes, depth discontinuities should be taken
into account. In the original method the user had to trace over the region boundaries
and then manually specify an over-under assignment map to produce correct results.

In this section we describe a new formulation of Lumo [35], which exploits al-
gorithms described in this chapter in order to obtain similar results with much less

304 D. Sýkora and J. Dingliana

Fig. 14.22 Texture rounding (1D example): linearly interpolated texture coordinates on the sur-
face S and their back projection f to the plane

effort, see Fig. 14.21(b) and Fig. 14.23(c). The formulation is analogous to diffu-
sion curves. The resulting normal field is obtained by solving the Laplace equation
∇2f = 0 (where f is either the x or y component of the normal vector n) with the
following boundary conditions, see Fig. 14.21(a):

Dirichlet: fp = d ′
pq ⇐⇒ dp > dq

Neumann: f ′
pq = 0 ⇐⇒ dp < dq

(14.9)

where q is a neighboring pixel to p, d ′
pq is the derivative of the depth map at pixel

p in the direction pq and f ′
pq is the derivative of the normal component (nx or ny).

This leads to a sparse system of linear equations with two different right hand sides
(nx and ny). As in the original method nz is computed using nx and ny components
via the sphere equation:

nz =
√

1 − n2
x − n2

y (14.10)

14.5.2.3 Texture Rounding

Values of nz can be further utilized to simulate a texture rounding effect, i.e., when
the curvature of the surface generates an area distortion and causes the texture to
scale. Parallax mapping [16] is typically used to simulate this scaling [38], how-
ever, the disadvantage here is that it does not preserve UV coordinates at region
boundaries thus produces noticeable texture sliding when used in animation [35].
This artifact can be avoided by interpolating texture coordinates on a virtual 3D sur-
face S = (x, y,h(x, y)), where the height h is taken from the z component of the
extrapolated normal: h(x, y) = nz(x, y), see Fig. 14.22.

Such interpolation can be computed directly in 2D by solving the inhomogeneous
Laplace equation: ∇2

wf = 0 where ∇2
w is the Laplace–Beltrami operator, which

measures actual distances on the surface S. This yields another large sparse system
of linear equations, now with an irregular Laplacian matrix where the weights wij

between pixels i and j are computed as the inverted length of the edge connecting
their corresponding 3D vertices on S:

wij = 1√
1 + (hi − hj)2

(14.11)

14 Computer-Assisted Repurposing of Existing Animations 305

Fig. 14.23 Simulation of 3D-like effects (real example): (a) original image with LazyBrush scrib-
bles and depth inequalities, (b) depth map, (c) ambient occlusion and Lumo shading, (d) final
composition: original image, textures, ambient occlusion, Lumo shading and texture rounding.
Reproduced with kind permission from ACM. © Anifilm + © ACM. Used with permission

Fig. 14.24 Approximate 3D model and stereo: (a) original image with LazyBrush scribbles and
depth inequalities, (b) depth map, (c) Lumo shading, (d) depth map after shape-from-shading ap-
plied on the Lumo shading, (e) approximate 3D mode with texture, (f) anaglyph stereo. Reproduced
with kind permission from Blackwell Publishing Ltd. © Anifilm + © UPP & DMP + © EG &
Blackwell. Used with permission

Solving this inhomogeneous system with Dirichlet boundary conditions and two
different right hand sides yields texture coordinates for the surface S projected on
the plane, see Fig. 14.21(f) and Fig. 14.23(d).

14.5.2.4 Approximate 3D Model and Stereo

We can further combine the depth map with Lumo shading and apply shape-from-
shading [7] to reconstruct an approximation of the 3D surface, see Fig. 14.24(a–e).
Such a simple 3D model can be further refined in some modelling tool or rendered
from two different viewpoints to obtain stereoscopic images, Fig. 14.24(f).

306 D. Sýkora and J. Dingliana

Fig. 14.25 Local layering—depth inequalities can be used to obtain desired visibility during the
interactive shape manipulation (a) and fragment composition (b), the approach can handle com-
plex self-occlusions (c). Reproduced with kind permission from Blackwell Publishing Ltd. (a).
© Anifilm + © UPP & DMP + © EG & Blackwell. Used with permission

Fig. 14.26 Example-based shape manipulation—by registering several consecutive frames (left)
a smooth sequence of intermediate frames can be generated. This can be utilized for a synthesis of
new poses satisfying a user-given positional constraint (right): the current position of the dragged
point (red dot) is projected (blue dot) on its original motion trajectory (red curve) to retrieve the
corresponding intermediate frame, which is subsequently deformed to match the current position
of the dragged control point. Reproduced with kind permission from ACM. © UPP & DMP +
© ACM. Used with permission

14.5.3 Shape Manipulation and Example-Based Synthesis

Depth maps generated by the algorithm described in Sect. 14.3 can be used
to resolve the visibility of occluded parts during interactive shape manipulation,
see Fig. 14.11. The user can freely interact with the shape and modify the visibil-
ity on the fly using additional depth inequalities, Fig. 14.25(a). A similar problem
arises in systems where the user extracts and composes fragments of images [31].
Here depth inequalities allow quick reordering of regions to obtain correct compo-
sition, see Fig. 14.25(b). This operation is also known as local layering for which
alternative techniques exist [23], however, the approach presented in this chapter is
more general as it handles complex self-occlusions, Fig. 14.25(c).

The knowledge of correspondences between consecutive animation frames al-
lows the creation of smooth intermediate transitions, see Fig. 14.26. For this task
sub-pixel accurate registration is required. We can use the results of the as-rigid-as-
possible image registration, Sect. 14.4.2, as an initial guess for a more precise algo-
rithm with a flexible deformation model, e.g., [9]. Then, intermediate frames can be

14 Computer-Assisted Repurposing of Existing Animations 307

obtained by interpolating positions of vertices on the control lattice and performing
several shape regularization iterations to enforce rigidity. Inside each square, sub-
pixel accurate source-target and target-source deformation fields together with pixel
blending help to produce the final smooth transition.

The process of inbetweening can be additionally controlled by the user. This ex-
tension can be viewed as an example-based shape manipulation which respects the
original animation but is more flexible than simple inbetweening. In this scenario,
the user can drag a specific vertex on the control lattice and move it to a differ-
ent location. By projecting this new location on its inbetweening trajectory we can
generate the closest transition frame and deform it to match the user-specified con-
straint, see Fig. 14.26, for details refer to [32].

Acknowledgements This work has been supported by the Marie Curie action ERG, No.
PERG07-GA-2010-268216 and partially by the Technology Agency of the Czech Republic un-
der the project TE01010415 (V3C—Visual Computing Competence Center). Hand-drawn images
used in this chapter are courtesy of UPP & DMP, Anifilm, Lukáš Vlček, and Ondřej Sýkora.

References

1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: ACM SIG-
GRAPH Conference Proceedings, pp. 157–164 (2000)

2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 509–522 (2002)

3. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput.
Vis. 70(2), 109–131 (2006)

4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137
(2004)

5. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–655
(1998)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The com-
plexity of multiway cuts. In: Proceedings of ACM Symposium on Theory of Computing,
pp. 241–251 (1992)

7. Ecker, A., Jepson, A.D.: Polynomial shape from shading. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp. 145–152 (2010)

8. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Tech. Rep.
TR2004-1963, Cornell University (2004)

9. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration
through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

10. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
28(11), 1768–1783 (2006)

11. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM
Trans. Graph. 24(3), 1134–1141 (2005)

12. Jamriška, O., Sýkora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3673–
3680 (2012)

13. Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson
image editing. ACM Trans. Graph. 28(5), 116 (2009)

308 D. Sýkora and J. Dingliana

14. Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of International Sympo-
sium on Non-photorealistic Animation and Rendering, pp. 45–52 (2002)

15. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)
16. Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.: Detailed

shape representation with parallax mapping. In: Proceedings of International Conference on
Artificial Reality and Telexistence, pp. 205–208 (2001)

17. Koenderink, J.J.: Pictorial relief. Philos. Trans. R. Soc. Lond. 356(1740), 1071–1086 (1998)
18. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L.: Pictorial surface attitude and local depth

comparisons. Percept. Psychophys. 58(2), 163–173 (1996)
19. Langer, M.S., Buelthoff, H.H.: Depth discrimination from shading under diffuse lighting. Per-

ception 29(6), 649–660 (2000)
20. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph.

23(3), 689–694 (2004)
21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.

60(2), 91–110 (2004)
22. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer.

ACM Trans. Graph. 25(3), 1206–1213 (2006)
23. McCann, J., Pollard, N.S.: Local layering. ACM Trans. Graph. 28(3), 84 (2009)
24. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves:

a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92 (2008)
25. Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: Pro-

ceedings of IEEE International Conference on Computer Vision, pp. 948–955 (1999)
26. Potts, R.: Some generalized order-disorder transformation. In: Proceedings of Cambridge

Philosophical Society, vol. 48, pp. 106–109 (1952)
27. Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220

(2006)
28. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM

Trans. Graph. 25(3), 533–540 (2006)
29. Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid im-

age matching. Comput. Vis. Image Underst. 112(1), 91–99 (2008)
30. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis. Com-

put. 23(9), 767–782 (2005)
31. Sýkora, D., Buriánek, J., Žára, J.: Sketching cartoons by example. In: Proceedings of Euro-

graphics Workshop on Sketch-Based Interfaces and Modeling, pp. 27–34 (2005)
32. Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn

cartoon animations. In: Proceedings of International Symposium on Non-photorealistic Ani-
mation and Rendering, pp. 25–33 (2009)

33. Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn car-
toons. Comput. Graph. Forum 28(2), 599–608 (2009)

34. Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S.: Adding depth to cartoons
using sparse depth (in)equalities. Comput. Graph. Forum 29(2), 615–623 (2010)

35. Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., Simmons, M.: TexToons: practical texture
mapping for hand-drawn cartoon animations. In: Proceedings of International Symposium on
Non-photorealistic Animation and Rendering, pp. 75–83 (2011)

36. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–
1407 (2006)

37. Wang, Y., Xu, K., Xiong, Y., Cheng, Z.Q.: 2D shape deformation based on rigid square match-
ing. Comput. Animat. Virtual Worlds 19(3–4), 411–420 (2008)

38. Winnemöller, H., Orzan, A., Boissieux, L., Thollot, J.: Texture design and draping in 2D
images. Comput. Graph. Forum 28(4), 1091–1099 (2009)

39. Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)

	Chapter 14: Computer-Assisted Repurposing of Existing Animations
	14.1 Introduction
	14.2 Segmentation
	14.2.1 Problem Formulation
	14.2.1.1 Energy Function
	14.2.1.2 Smoothness Term
	14.2.1.3 Data Term

	14.2.2 Problem Solution

	14.3 Adding Depth
	14.3.1 Depth from Depth Inequalities
	14.3.2 Outline-to-Region Assignment
	14.3.3 Smooth Depth Transitions

	14.4 Deformation
	14.4.1 Rigid Square Matching
	14.4.1.1 Algorithm

	14.4.2 As-Rigid-As-Possible Image Registration

	14.5 Applications
	14.5.1 Painting, Colorization and Texture Mapping
	14.5.2 Simulation of 3D-Like Effects
	14.5.2.1 Ambient Occlusion
	14.5.2.2 Shading
	14.5.2.3 Texture Rounding
	14.5.2.4 Approximate 3D Model and Stereo

	14.5.3 Shape Manipulation and Example-Based Synthesis

	References

