
Chapter 13
Temporally Coherent Video Stylization

Pierre Bénard, Joëlle Thollot, and John Collomosse

13.1 Introduction

Artistic Rendering (AR) arguably evolved from semi-automated stroke based ren-
dering (SBR) systems of the early 1990s. SBR is discussed in detail within Chap. 1.
In brief, it is the process of compositing primitives (e.g. brush strokes) on to a
virtual canvas to create a rendering. Following Willats and Durand [58], we refer
to these rendering primitives as “marks”. Digital paint systems such as Haeberli’s
‘paint by numbers’ [24] were among the first to propose such a framework, seek-
ing to partially automate the image stylization process. Marks adopt some attributes
(e.g. color, and orientation) from a reference image, whilst user interaction governed
other attributes such as scale and compositing order. Soon after, fully automatic al-
gorithms emerged harnessing low-level image processing (e.g. edge filters [26, 40]
and moments [50]) in lieu of user interaction. These advances in automation brought
with them new algorithms designed specifically for video.

This chapter maps the landscape of video stylization algorithms in approximate
chronological order of development. We begin by briefly identifying some non-
linear filtering methods that, when applied independently to video frames, can pro-
duce a coherent rendering output. Chapter 5 explores these techniques in greater
detail. We then survey optical flow based methods [40], which, like filters, are very

P. Bénard (�)
University of Toronto, 40 St George Street, Toronto, ON M5S 2E4, Canada
e-mail: Pierre.Benard@laposte.net

J. Thollot
LJK, INRIA, Grenoble University, 655, avenue de l’Europe, 38334 Saint Ismier, France
e-mail: Joelle.Thollot@inria.fr

J. Collomosse
Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, Surrey,
GU2 7XH, UK
e-mail: J.Collomosse@surrey.ac.uk

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_13,
© Springer-Verlag London 2013

257

mailto:Pierre.Benard@laposte.net
mailto:Joelle.Thollot@inria.fr
mailto:J.Collomosse@surrey.ac.uk
http://dx.doi.org/10.1007/978-1-4471-4519-6_13

258 P. Bénard et al.

general in the class of video footage that may be processed, but are limited pre-
dominantly to painterly styles. These approaches move marks such as strokes or
texture fields over time according to a per-frame motion estimate. We then survey
early approaches to stylization driven by coherent video segmentation [14, 16, 55].
These approach artistic stylization by treating coherent placement of strokes as a ro-
toscoping problem, and extend to cartoon-like styles. Finally we survey the recent,
interactive techniques that extend this early work to sophisticated rotoscoping and
artistic rendering tools.

13.1.1 Temporal Coherence

Barbara Meier developed an early object-space technique for creating painterly ani-
mations of 3D scenes [43], and whilst not a video stylization approach per se it was
the first to consider the important issue of temporal coherence in SBR.

Meier’s approach to painting was to initialize (seed) marks (in her case, brush
strokes) as particles over the 3D surfaces of objects. The particles were projected to
2D during rendering, and brush strokes generated on the image-plane. The motiva-
tion to anchor strokes to move with the object arises from Meier’s early observations
on temporal coherence, and are echoed by many subsequent authors. Painting the
scene geometry independently for each frame results in a distracting flicker. Yet, fix-
ing stroke positions in 2D while allowing their attributes (e.g. color) to vary with the
underlying video content gives the impression of motion behind frosted glass—the
so called shower door effect. Meier’s proposal was therefore to fix the strokes to the
surface of the 3D object; minimizing flicker whilst maximizing the correspondence
between stroke motion and the motion of the underlying object.

Satisfying both criteria for coherence is tractable for 3D rendering where ge-
ometry is available, but is non-trivial when painting 2D video. As such, temporal
coherence remains a key challenge in video stylization research. Understanding the
motion of objects in an unconstrained monocular video feed requires a robust and
general model of scene structure; a long-term goal that continues to elude the Com-
puter Vision community. Moreover, there is no single best model for all video. The
model selected to represent the scene’s dynamics and visual structure impacts both
the classes of video content that can be processed, and the gamut of artistic styles
that may be rendered.

13.1.2 Problem Statement: Coherent Stylization

In order to better describe the problem of temporal coherence in this chapter, we
build upon Meier’s discussion to propose a definition of temporal coherence. Tem-
poral coherence video requires the concurrent fulfillment of three goals: spatial
quality, motion coherence and temporal continuity.

13 Temporally Coherent Video Stylization 259

1. Spatial quality describes the visual quality of the stylization at each frame. This
is a key ingredient in generating computer animations that appear similar to tradi-
tional hand-drawn animations. Several properties of the marks must be preserved
to produce a convincing appearance. In particular the size and distribution of
marks should be independent of the underlying geometry of the scene. As a typ-
ical example, the size of the marks should not increase during a zoom, but their
spatial density should not change neither. Deformation of the marks should be
avoided. Marks should not compress around occlusions for instance.

2. Motion coherence is the correlation between the apparent motion flow of the 3D
scene and the motion of the marks. A low correlation produces sliding artifacts
and gives the impression that the scene is observed through a semi-transparent
layer of marks; Meier’s shower door effect [43].

3. Temporal continuity minimizes abrupt changes of the marks from frame to frame.
Perceptual studies [47, 60] have shown that human observers are very sensitive
to sudden temporal variations such as popping and flickering. The visibility and
attributes of the marks should vary smoothly to ensure temporal continuity and
fluid animations.

Unfortunately these goals are inherently contradictory and naïve solutions of-
ten neglect one or more criteria. For example, the texture advection technique of
Bousseau et al. (Sect. 13.3.2.1) can be used to apply the marks over the scene with
high motion coherence and temporal continuity, but deformations destroy the spa-
tial quality of the stylization. Keeping the marks static from frame to frame ensures
a good spatial quality and temporal continuity but produces a strong shower door
effect since the motion of the marks has no correlation with the motion of the scene.
Finally, processing each frame independently, similarly to hand-drawn animation,
leads to pronounced flickering and popping since the position of the marks varies
randomly from frame to frame.

13.2 Temporally Local Filtering

Arguably the most straightforward method to stylize a video is to apply image pro-
cessing filters independently at each frame. Depending on the type of filter, the re-
sulting video will be more or less coherent in time. Typically filters that incorporate
hard thresholds will be less coherent than more continuous filters.

Winnemöller et al. [59] iteratively apply a bilateral filter followed by soft quan-
tization to produce cartoon animations from videos in real-time. Image edges are
extracted from the smoothed images with a difference of Gaussian filter. The soft
quantization, less sensitive to noise, produces results with higher temporal coher-
ence than traditional hard quantization.

As discussed in Chap. 5, Winnemöller’s stylization pipeline has been adapted to
incorporate various alternative filters: e.g. Kuwahara based filters [35], combination
of Shock filter with diffusion [36], and generalized geodesic distance transform [18]
for soft clustering. These filtering approaches are fast to compute as they can be

260 P. Bénard et al.

Fig. 13.1 Frames of a water drop video where luminance edges are depicted with lines of varying
thickness, either drawn in black (top), or drawn in white over the original image (bottom), both
with a disk footprint. From [52] © 2011 Blackwell Publishing. Included here by permission

implemented on the GPU. However, they are restricted in the gamut of artistic styles
that may be produced.

Similarly, Vergne et al. [52] use 2D local differential geometry to extract lumi-
nance edges of a video. The feature lines are also implicitly defined, which prevents
the use of an explicit parameterization needed for arc-length based effects or for
mapping a brush stroke texture. However, they propose to formulate the mark ren-
dering process as a spatially varying convolution that mimics the contact of a brush
of a given footprint with the feature line. It allows them to simulate some styles, like
thickness variations that remain fully coherent over time (see Fig. 13.1).

This chapter focuses primarily upon video stylization methods that encourage the
temporally coherent placement of marks. This is achieved by rendering using infor-
mation propagated from adjacent frames; i.e. frames are not rendered with temporal
independence. The remainder of the chapter covers these techniques, and the reader
is referred to Chap. 5 for more detailed coverage of the filtering techniques outlined
in this section.

13.3 Optical Flow Based Stylization

To make progress beyond independent filtering of frames, temporal correspondence
may be established on a per pixel basis using motion estimation. Optical flow algo-
rithms (e.g. [4] and related methods) can be applied to produce such an estimate.

Using this information, local filtering approaches can be extended by defining
2D+ t filters that smooth the effect of the filter along time as described in Sect. 13.2.
Moreover, temporal continuity can be enforced using the optical flow to guide the
evolution of the marks along the video. The difficulty is then to ensure the quality
of the spatial properties of the marks. Various approaches have been proposed to
solve this problem. We classify them in two categories: mark-based (Sect. 13.3.1)
and texture-based (Sect. 13.3.2) approaches.

In this section we adopt the notation It (x, y) to denote the RGB video frame at
time t , and similarly It (x, y) for the grayscale frame. Edge orientation Θt(x, y) and

13 Temporally Coherent Video Stylization 261

edge strength |�It (x, y)| field are so denoted, and computed:

�It (x, y) =
(

δIt

δx

2

+ δIt

δy

2) 1
2

(13.1)

Θt(x, y) = atan

(
δIt

δy

/
δIt

δx

)
(13.2)

13.3.1 Mark-Based Methods

Peter Litwinowicz proposed the first purpose designed algorithm for video styliza-
tion in 1997. The essence of the approach is to place marks upon the first video
frame, and push (i.e. translate) them over time to match the estimated motion of
objects in the video. Marks are moved according to the per-pixel motion estimate
derived from the optical flow. As such, Litwinowicz adopts a weak motion model,
applicable to very general input footage. However, what optical flow offers in gener-
ality, it lacks in robustness. Pixels arising from the same object might be estimated
with entirely different motion vectors. Whilst many optical flow algorithms exist,
and some enforce local spatial coherence, in practice it is often the case that parts of
objects are estimated with incorrect or inconsistent motion. This is especially true
for objects with flat texture or weak intensity edges, as these visual cues often drive
optical flow estimation algorithms. This can result in the swimming of painterly tex-
ture, due to motion mismatch between marks and underlying video content. The
sequential processing of frames can also cause motion estimation errors to accumu-
late, contributing to swimming artifacts.

In terms of our criteria for temporal coherence (Sect. 13.1.2), since the marks
(e.g. brush strokes) are usually small with respect to object size, their motion re-
mains very close to the original motion field of the depicted scene, providing good
motion coherence. Spatial quality is also preserved by drawing the marks as 2D
sprites and by ensuring a adequate density of marks. However as discussed, tempo-
ral continuity criterion is often violated due to error accumulation and propagation.

Nevertheless, Litwinowicz’ algorithm results in aesthetically pleasing render-
ings in many situations and especially when dealing with highly textured or
anisotropic phenomena—where many more recent region-based methods struggle.
Fluids, smoke, cloud, and similar phenomena are ideally suited to the generality of
the optical flow fields, and the fields may also be manually embellished to produce
attractive swirls reminiscent of a Van Gogh. Interactive software implementing this
technique won an Oscar for visual effects in the motion picture “What Dreams May
Come” (1999), for the creation of painterly landscapes of flowers, sea and sky [23].

13.3.1.1 Impressionist Painterly Rendering

Litwinowicz’ [40] algorithm uses a multitude of short rectangular brush strokes as
marks, to create a impressionist video effect. A sequence of strokes are created using

262 P. Bénard et al.

Fig. 13.2 Left: Stroke attributes in Litwinowicz’ approach to video stylization [40]. Strokes grow
until a strong edge is encountered, thus preserving detail. Middle: Source Image. Right: Resulting
painting. From © 2002 ACM, Inc. Included here by permission

the first frame of video. Pixels within I1 are sub-sampled in a regular grid (typically
every second pixel) yielding a set of N strokes St = {s1

t , . . . , sN
t } where each stroke

is represented by a tuple si = (x, y, θ, c) encoding each stroke’s seed location (x, y),
orientation θ , color c = I1(x, y) and length l1, l2. Figure 13.2 illustrates the stroke
geometry with respect to these parameters. Each stroke is grown iteratively from
its seed point (x, y) until a maximum length is reached, or the stroke encounters a
strong edge in |�I1(.)|. Strokes do not interact, and a stroke may be grown ‘over’
another stroke on the canvas. To prevent the appearance of sampling artifacts due to
such overlap, the rendering order of strokes in sequence S1 is randomized—in this
first video frame.

The orientation of each stroke is determined in one of two ways, depending
on whether |�I1(x, y)| exceeds a pre-defined threshold. In such cases, the stroke
is local to a strong edge and so it is possible to sample a reliable edge orienta-
tion θ = |Θ1(x, y)|. Otherwise the edge orientation is deemed to be noisy due to a
weakly present intensity gradient, and so must be interpolated from nearby strokes
that have reliable orientations. The interpolation is performed using a thin-plate
spline in Litwinowicz’ paper, but in practice any function that smoothly interpolates
irregularly spaced samples may be used. In later work by Hays and Essa, for exam-
ple, radial basis functions are used [25] to fulfil a similar purpose (Sect. 13.3.1.5).

13.3.1.2 Stroke Propagation

Given an optical flow vector field O(.) mapping pixel locations in It−1 to It ,
all strokes within St−1 are updated to yield set St where si

t−1(x, y) + O(x, y) ←
si
t (x, y). If stroke seed points are shifted outside of the canvas boundaries then those

strokes are omitted from St . Other stroke attributes within the si
t tuple remain con-

stant to inhibit flicker. Note that the rendering order of strokes is randomized only in
the first frame, and remains fixed for subsequent frames. This also mitigates against
flicker.

The translation process may cause strokes to bunch together, or to become
sparsely distributed leaving ‘holes’ in the painted canvas. A mechanism is therefore

13 Temporally Coherent Video Stylization 263

Fig. 13.3 Litwinowicz’ mark (stroke) density control algorithm in five steps, from left to right:
(1) Initial stroke positions. (2) Here, four strokes move under optical flow. (3) Delaunay triangu-
lation of the stroke points. (4) Red points show new vertices introduced to regularize the density.
(5) The updated list of strokes after culling points that violate the closeness test

introduced to measure and regulate stroke density on the canvas (Fig. 13.3). Stroke
density is first measured using a Delaunay triangulation of stroke seed points. Using
the connected neighborhood of the triangulation it is straightforward to evaluate, for
each stroke, the distance to its nearest stroke. Strokes are sorted by this distance. By
examining the head and tail of this sorted list one may identify strokes within the
most sparsely and densely covered area of the canvas.

Strokes may be culled from St to thin out areas of the canvas with dense stroke
coverage. This can be achieved by deleting strokes present in the tail of the list.
Strokes may also be inserted into St . To do so, new strokes are created from the cur-
rent frame using the process outlined in Sect. 13.3.1.1. These newly created strokes
must be distributed throughout the sequence St to disguise their appearance. A large
block of newly created strokes appearing simultaneously becomes visual salient and
causes flicker.

13.3.1.3 Dynamic Distributions

Much subsequent work addresses the issue of redistributing marks over time, pro-
viding various trade-offs between spatial quality and temporal continuity [25, 27,
51]. The general aim of such a ‘Dynamic distribution’ is to maintain a uniform
spacing between marks (commonly harnessing the Poisson disk distribution for this
purpose) while avoiding sudden appearance or disappearance of marks.

Extending the Poisson disk tiling method of Lagae et al. [37], Kopf et al. [34]
propose a set of recursive Wang tiles which allows to generate 2D point distributions
with blue noise property in real-time and at arbitrary scale. This approach relies on
precomputed tiles, handling 2D rigid motions (zooming and panning inside stills).
The subdivision mechanism ensures the continuity of the distribution during the
zoom, while the recursivity of the scheme enables infinite zoom.

Vanderhaeghe et al. [51] propose a hybrid technique which finds a more balanced
trade-off. They compute the distribution in 2D—ensuring blue noise property—but
move the points according to the 3D motion of the scene by following the optical
flow. At each frame, the distribution is updated to maintain a Poisson-disk criterion.
The temporal continuity is enhanced further by (1) fading appearing and disappear-
ing points over subsequent frames; and (2) allowing points in overly dense regions
to slide to close under-sampled regions.

264 P. Bénard et al.

To further reduce flickering artifacts, Lin et al. [39] propose to create a damped
system between marks adjacent in space and time, and to minimize the energy of
this system. They also try to minimize marks insertions and deletions using two
passes. Disoccluded regions emerging during the forward pass are not rendered im-
mediately, but deferred until they reach a sufficient size. Then, they are painted and
the gaps are completed by backward propagation. Lin’s damped spring model is
discussed in greater detail in Sect. 13.4.2.3.

The data structures required to manage the attributes and rendering of each indi-
vidual stroke makes mark-based methods complex to implement and not very well-
suited to real-time rendering engines. Nevertheless, Lu et al. [42] proposed a GPU
implementation with a simplified stochastic stroke density estimation which runs at
interactive framerates but offers fewer guarantees on the point distribution.

To create animated mosaics, Smith et al. [48] and Dalal et al. [19] also rely on
the motion flow of the input animation to advect groups of tiles. They propose two
policies to spatially localize tiles insertions and deletions at either groups boundaries
or groups center. This approach allows coherent group movement and minimizes the
flickering of tiles.

13.3.1.4 Frame Differencing for Interactive Painting

The use of general, low-level motion estimation techniques (e.g. optical flow) for
video echoes the reliance upon low-level filtering operators by image stylization,
circa the 1990s.

Other low-level approaches for painterly video stylization suggested contempo-
raneously include Hertzmann and Perlin’s frame-differencing approach [28]. In their
algorithm, the absolute RGB difference between successive video frames was used
as a trigger to repaint (or “paint over”) regions of the canvas that changed signifi-
cantly; i.e. due to object motion. A binary mask M(.) was generated using a pixel
difference thresholded at an empirically derived value T :

M(x,y) = It−1(x, y) − It (x, y)| > T (13.3)

Strokes seeded at non-zero locations of M(.) are repainted at time t . Flicker is
greatly reduced, as only moving areas of the video feed are repainted. Furthermore
the computational simplicity of the differencing operation made practical real-time
interactive video painting, to create an interactive painterly video experience. This
contrasted to optical flow based approaches, which were challenging to compute in
real-time due to the limitations in computational power at the time their work was
carried out.

A further novelty of Hertzmann and Perlin’s interactive painting system was the
use of curved brush strokes to stylize video. This work built upon Hertzmann’s
earlier multi-resolution curved stroke painting algorithm for image stylization (dis-
cussed in more detail within Chap. 1). Previously Litwinowicz’ approach [40] and
similar optical flow based methods [49] had used only short rectangular strokes.

13 Temporally Coherent Video Stylization 265

13.3.1.5 Multi-scale Video Stylization with Curved Strokes

Hays and Essa developed a video stylization system fusing the benefits of opti-
cal flow, after Litwinowicz [40], with the benefits of coarse-to-fine rendering with
curved brush strokes, after Hertzmann [26]. Although experiments exploring this
fusion of ideas were briefly reported in [28], this was the first time such a system
had been described in detail.

The system of Hays and Essa shares a number of commonalities with Litwinow-
icz’ original pipeline. A set of strokes C is maintained as before, and propagated
forward in time using optical flow. Strokes are also classified as strong, or not, based
on local edge strength and interpolation applied to derive stroke orientations from
the strong strokes. However, the key to the improved temporal coherence of the ap-
proach is the way in which stroke attributes (such as color and orientation) evolve
over time. Rather than remaining fixed, or being sampled directly from the video
frame, attributes are blended based on their historic values. A particular stroke may
have color ct−1 at frame t − 1, and might sample a color ct from the canvas at
frame t . The final color of the stroke c′

t would be a weighted blend of these two
colors:

c′
t = αct + (1 − α)ct−1 (13.4)

Or more generally, all stroke attributes would follow a similar blended update, en-
forcing a smoothed variation in stroke color, orientation, opacity and any other ap-
pearance attributes:

si
t ← αsi

t + (1 − α)si
t−1 (13.5)

Uniquely, Hays and Essa also propose opacity as an additional mark attribute.
When adding or removing strokes to preserve stroke density over time, strokes do
not immediately appear or disappear. Rather they are faded in, or out, over a pe-
riod of several frames. This ‘fade-out’ greatly enhances temporal coherence and
suppresses the ‘popping’ artifacts that can occur with [40].

Rendering in Hays and Essa’s system follows Hertzmann’s curved brush stroke
pipeline, as described in Chap. 1. To decide where to add strokes, areas of the canvas
containing no paint are identified and strokes generated at the coarsest level. Strokes
are also added at successfully finer layers, local to edges present at the spatial scale
of that layer.

Strokes are deleted if they are moved, by the optical flow process, too far from
strong edges existing at a particular spatial scale of the pyramid. This prevents the
accumulation of fine-scale strokes that tend to clutter the painting.

13.3.2 Texture-Based Methods

Texture-based approaches are mostly used for continuous textures (canvas, water-
color) or highly structured patterns (hatching). By embedding multiple marks, tex-
tures facilitate and accelerate rendering compared to mark-based methods. Textures

266 P. Bénard et al.

Fig. 13.4 A checkerboard texture (second row) advected along the optical flow of a video (first
row) will rapidly be deformed and lose its spatial properties. Bousseau et al. “Video Watercoloriza-
tion” propagates one instance of the texture forward and the other one backward in time according
to the flow field, and alpha-blends them to minimize the distortion (third row). From [11] © 2007
ACM, Inc. Included here by permission

are generally applied over the entire frame. The challenge is then to deform the tex-
ture so that it follows the scene motion while preserving the spatial quality of the
original pattern.

13.3.2.1 Bi-directional Flow

A criticism of early optical flow techniques is their tendency to accumulate error
and propagate it forward in time, causing instability on longer sequences.

Bousseau et al. [11] apply non-rigid deformations to animate a texture according
to the optical flow of a video [4]. This approach extends texture advection methods
used in vector field visualization [44] by advecting the texture forward and backward
in time to follow the motion field. This bi-directional advection allows the method
to deal with occlusions where the optical flow is ill-defined in the forward direction
but well defined in the backward direction.

Rather than placing individual strokes, Bousseau et al. create a watercolor effect
by multiplying each video frame It with a global grayscale texture Gt of identical
size to the frame. Pixels in the image and texture field are multiplied place for place
to create the stylized frame I ′

t :

I ′
t = It

(
1 − (1 − It)(Gt − 0.5)

)
(13.6)

where pixels values in both It and Gt are assumed normalized. This affects a form
of alpha-blending of the texture.

13 Temporally Coherent Video Stylization 267

The texture in Gt is a weighted combination of two similarly sized textures, one
propagated or “advected” forward in time using the forward flow field, and the other
advected back in time. Call these watercolor textures Ft and Bt ; their weights are
respectively ωf (t) and ωb(t):

Gt = ωf (t)Ft + ωb(t)Bt (13.7)

Both fields Ft and Bt are generated from some user supplied continuous texture
function. Bousseau et al. do not specify a particular texture function but suggest the
pixel intensities should have more or less homogeneous spatial distribution, and the
texture should exhibit a reasonably a flat frequency distribution.

The texture field is warped under the respective (forward or backward) flow field
to render each frame. Over time, the texture will become distorted due to the motion
vectors significantly compressing or stretching the texture. This is detected via a set
of heuristics, and new textures initialized for advection periodically or as needed.
These detection heuristics are outlined in more detail within their paper. Bousseau et
al. propose an advanced blending scheme that periodically regenerates the texture to
cancel distortions and favor at each pixel the advected texture with the least distor-
tion. Suppose the textures are initialized periodically every τ frames. The weights
ωf (t) and ωb(t) for combining the texture fields Ft and Bt are given as

ωf (t) = cos2
(

π

2

tmodτ

τ

)

ωb(t) = sin2
(

π

2

tmodτ

τ

) (13.8)

Although the process of advecting a global single texture forward in time is in
common use within scientific visualization domain, Bousseau et al. were the first
to introduce this approach for video stylization. Flow fields in video exhibit more
frequent discontinuities than are typical in scientific visualization, due to object oc-
clusions. The use of bi-directional advection, rather than simply forward advection,
was principally motivated by the desired to suppress temporal incoherence caused
by such discontinuities. However the bidirectional advection requires the entire ani-
mation to be known in advance, which prevents the use of this method for real-time
applications. To overcome this limitation, Kass and Pesare [32] propose to filter a
white or band-pass noise. Their recursive filter produces a coherent noise with sta-
tionary statistics within a frame (high flatness) and high correlations between frames
(high motion coherence). This approach is fast enough for real-time application, but
is restricted to isotropic procedural noise and it needs depth information to handle
occlusions and disocclusions properly.

13.3.2.2 Coherent Shape Abstraction

In order to produce an aesthetically pleasing watercolor effect, Bousseau et al. ap-
plied video processing in addition to texture advection, to abstract away some of

268 P. Bénard et al.

the visual detail in the scene. This was achieved using morphological operators to
remove small-scale details in the frames. Bousseau et al. observed that a binary
opening operation (an erosion, following by a dilation) could remove lighter col-
ored objects in the image. The reverse sequence of operations—a binary closure—
can remove darker objects. Depending on the scale of the structuring element using
in the morphological operations, different scales of object may be abstracted; i.e.
removed, or their shapes simplified.

In the Computer Vision literature, the use of morphological scale-space filtering
has been well known to produce these kinds of image simplification. For example,
the 1D and 2D image sieves developed by Bangham et al. in the late 1990s comprise
similar morphological operations. Such filtering is particularly effective at image
simplification, as angular features such as corners are not ‘rounded off’ as might
result using a linear low-pass filter such as successive Gaussian blurring. Indeed,
sieves were applied to color imagery several years earlier in 2003 precisely for the
purposes of image stylization [3]. Bousseau et al. were, however, the first to extend
the use of such morphological filters to coherently stylize video, filtering in 3D
(space–time) rather than on a per frame basis [10].

13.4 Video Segmentation for Stylization

In an effort to improve temporal coherence and explore a wider gamut of styles,
researchers in the early-mid 2000s began to apply segmentation algorithms to the
video stylization problem.

Segmentation is the process of dividing an image into a set of regions sharing
some homogeneity property. The implicit assumption in performing such segmen-
tation is that regions should correspond to objects within the scene. However, in
practice the homogeneity criteria used in the segmentation are typically defined at
a much lower level (e.g. color or texture). For video segmentation, it is desirable to
segment each frame not only with accuracy with respect to such criteria, but also
with temporal coherence. The boundaries of regions should remain stable (exhibit
minimal change) over time, and spurious regions should not appear and disappear.

The stable mid-level representation provided by video segmentation offers two
main advantages over low-level flow-based video stylization:

First, rendering parameters may be applied consistently across objects; a com-
mon phenomenon in real artwork. Furthermore, users intervention may be incorpo-
rated to selectively stylize particular objects [16, 30].

Second, the motion of rendering marks may be fixed to the reference frame of
each region as it moves over time. This ensures motion coherence—one of our key
criteria for temporal coherence (Sect. 13.1.2). Rotoscoping and artistic stylization
are therefore closely related. Given a coherent video segmentation, one might ro-
toscope any texture onto the regions for artistic effect, from flat-shaded cartoons to
the complex brush stroke patterns of an oil painting. Many image stylization ap-
proaches may be applied to video, by considering each region as a stable reference

13 Temporally Coherent Video Stylization 269

frame upon which to apply the effect [1, 16, 57]. Furthermore, the boundaries of the
regions may also be stylized [7, 31, 33].

In essence, a coherent video segmentation enables the coherent parameterization
of lines (boundaries) or regions one may wish to stylize. Such a parameterization al-
lows the coherent mapping of textures (or placement of marks) allowing for precise
control of a broad range of styles.

13.4.1 Coherent Video Segmentation

Video segmentation is a long-standing research topic in Computer Vision, and a
number of robust approaches to coherent video segmentation now exist. However,
in the early 2000s, research focused firmly upon image segmentation. Variants of
the mean-shift algorithm [17] were very popular. Chapter 7 covers the application
of the EDISON variant of mean-shift to a variety of image stylization tasks, spurred
by the early work of DeCarlo and Santella [20]. Around 2004 two complemen-
tary approaches were simultaneously developed to extend mean-shift to video for
the purpose of video stylization. The Video Tooning approach of Wang et al.’s [55]
adopts an 3D extension of mean-shift to the space–time video cube (x, y, t). Col-
lomosse et al.’s Stroke Surfaces approach [14, 16] adopts a 2D plus time (2D + t)
approach, creating correspondences between regions in independently segmented,
temporally adjacent frames.

13.4.1.1 Video Tooning

Mean-shift is an unsupervised clustering algorithm [21]. It is most often applied to
image segmentation by considering each pixel as a point in a 5D space (r, g, b, x, y)

encoding color and location. The essence of the algorithm is to identify local modes
in this feature space, by shifting a window (kernel) toward more densely populated
regions of the space. The resulting modes become regions in the video, with pixels
local to each mode being labelled to that region.

Extension of this algorithm to a space–time video cube may be trivially per-
formed by adding a sixth dimension to pixel features, encoding time (r, g, b, x, y, t).
Due to differences in the spatial and temporal resolution of video, and the isotropy
of typical Mean-shift kernels, this can results in spurious regions manifesting local
to movement in the footage. One solution is to add further dimensions to the space,
encoding the motion vector (i.e. optical flow) of each pixel however this has the
disadvantage of increasing the dimensionality of the feature space, requiring longer
videos (i.e. more samples) to cluster effectively. Wang et al.’s contribution was to
compensate for the artifacts in a 6D clustering by using an anisotropic kernel dur-
ing the mean-shift. The scale of the kernel is determined on a per pixel basis by
analyzing local variation in color [54].

270 P. Bénard et al.

Fig. 13.5 Video Tooning: (a) Space–time mean-shift is used to over-segment the video volume.
(b) Volume fragments are grouped by the user, and pre-prepared texture applied to create a cartoon
rotoscoped effect. (c) The interiors and bounding contours of region groups may also be rendered.
From [55] © 2004 ACM, Inc. Included here by permission

Fig. 13.6 Left: Visualization of the Stroke Surfaces space–time representation [16]. © 2005 IEEE.
Included here by permission. Right: Two rendering styles generated by rendering the same stroke
surface representation [16]

Figure 13.5 provides a representative video segmentation, demonstrating the ten-
dency of space–time mean-shift to over-segment object. In their Video Tooning sys-
tem, Wang et al. invite users to group space–time volumes into objects using an
interactive tool. The resulting regions within each frame may then be rotoscoped
with any texture. We discuss a general approach to performing such rotoscoping
in Sect. 13.4.2. In the example of Fig. 13.5, a manually created child’s drawing is
rotoscoped on to each region, and composited upon a drawn background.

13.4.1.2 Stroke Surfaces

Due to memory constraints, a space–time video segmentation is practical only for
shorter sequences. Furthermore, such methods are prone to over-segmentation espe-
cially of small fast moving video objects, resulting in the representation of objects as
many disparate sub-volumes. These can require considerable manual intervention to
group. An alternative is to segment regions independently within each video frame,
and associate those regions over time (a 2D + t approach). Independently segment-
ing frames often yields different region topologies between frames, and many small
noisy regions. However, the larger video objects one typically wishes to rotoscope
exhibit greater stability.

13 Temporally Coherent Video Stylization 271

The approach of Collomosse et al. is to associate regions at time t with regions
at time t − 1 and t + 1 using a set of heuristics, e.g. region color, shape, centroid
location. These associations form a graph for each region over time, which may be
post-processed to remove short cycles and so prune sporadically splitting/merging
regions. Only the temporally stable regions remain, forming sub-volumes through
the space–time video volume.

At this stage, the space–time volume representation is similar to that of Wang et
al. and amenable to rotoscoping (Sect. 13.4.2). However the temporal coherence of
the segmented objects is further enhanced in Collomosse et al.’s pipeline through
the formation and manipulation of stroke surfaces.

A stroke surface is a partitioning surface separating exactly two sub-volumes.
Stroke surfaces are fitted via an optimization process adapted from the Active Con-
tour literature; full details are available in [16]. As a single stroke surface describes
the space–time interface between two video objects, the coherence of the corre-
sponding region boundary may be smoothed by smoothing the geometry of the
stroke surface in the temporal direction. Temporally slicing the surface produces
a series of smoothed regions which may be used, as in Wang et al., for rotoscop-
ing.

13.4.1.3 Region Tracking

Both of the above video adaptations of mean-shift above require space–time
processing, either for initial segmentation [55] or region association pruning
[16]. For online processing (e.g. for streaming video, or to avoid memory over-
head) it may be desirable to segment video progressively (on a per-frame basis)
based on information propagated forward from prior frames. A number of ro-
bust systems have emerged in recent years for tracking a binary matte through
video [2], providing single object segmentation suitable for stylizing a single ob-
ject. However, a progressive segmentation algorithm capable of tracking multi-
ple object labels through video is necessary to perform stylization of the entire
scene.

One such approach, recently proposed by Wang et al., harnesses a multi-label
extension of the popular graph-cut algorithm to robustly segment video [53]. Wang
et al.’s solution is to perform a multi-label graph cut on each frame of video, using
information both from the current frame and from prior information propagated
forward from previous frames.

Given a segmentation of It−1, the region map is skeletonized to produce a set of
pixels central to each region considered to be labelled with high confidence. These
labelled pixels are warped to new positions in It , under a dense optical flow fields
computed between the two frames. These labels are used to initialize the graph cut
on the next frame, alongside models of color and texture that are incrementally
learned over time from the labelled image regions.

As discussed in Sect. 13.3.1, dense optical flow fields are often poorly estimated
and so this propagation strategy can fail in the longer term. To compensate, Wang

272 P. Bénard et al.

Fig. 13.7 Outline of Wang et al.’s video segmentation algorithm. Multi-label graph cut is applied
to each video frame, influenced by region labelings from prior frames. Each labelled region is
coded as a binary mask; labels are propagated from prior frames by warping the skeletons of those
masked regions via optical flow. The warped skeleton is diffused according to motion estimation
confidence and the diffused masks of all regions form a probability density function over labels
that is used as a prior in the multi-label graph cut of the next frame

et al. perform a diffusion of each pixel in It−1 over multiple pixels in It ; each pixel
obtains a probability of belonging to a particular region label. In practice this is
achieved using a Gaussian distribution centered upon the optical flow-derived lo-
cation of the point in It . The standard deviation (i.e. spread) of the Gaussian is
modulated to reflect the confidence in the optical flow estimate, which can in turn
be estimated from the diversity of motion vector directions local to the point. Fig-
ure 13.7 outlines the process.

13.4.2 Rotoscoping Regions

Once a coherent video segmentation has been produced, marks (such as brush
strokes) may be fixed to each region. In all cases it is necessary to first establish
correspondence between the boundary of a region across adjacent frames, usually
encoded via the control points of a contour. The dense motion field inside the region
is then deduced from the motion vectors established between these control points.
There are a number methods in the literature to model this dense motion, for exam-
ple treating the region as follows.

1. A rigid body, e.g. moving under an affine motion model deduced from the control
points of the region boundary [16] (Fig. 13.8(a)).

2. A deforming body, with marks adopting motion of the closest control point on
the region boundary [1] (Fig. 13.8(b)).

3. A deforming body, with marks moving under a motion model that minimizes
discontinuities within the motion field within region, whilst moving with the
control points of the region boundary [57] (Fig. 13.8(c).

13 Temporally Coherent Video Stylization 273

Fig. 13.8 Three region rotoscoping strategies: (a) In Stroke Surfaces [16] regions were treated as
rigid bodies, mapped using affine transformations. (c) Dynamic programming was used by Agar-
wala et al. [1] to assign points within regions to moving control points on the bounding contour,
tracked from (d) an initial hand-drawn user contour. (b) Wang et al. [57] perform affine regis-
tration of regions using shape contexts and then interpolate a dense motion field using Poisson
filling. From [16] © 2005 IEEE, [57] © 2011 Elsevier, and [1] © 2004 ACM, Inc. Included here
by permission

Although many shape correspondence techniques exist, a robust solution to
inter-frame boundary matching is commonly to use Shape Contexts [5]. Suppose
using Shape Contexts, or otherwise, we obtain a set of n control points C′ =
{c′

1, c′
2, . . . , c′

n} at time t , and the corresponding points C = {c1, c2, . . . , cn} at the
previous frame t − 1. Pixels within the region at time t − 1 are written Pt−1{p1..n}
and we wish to determine their locations Pt = {p′

1..n} at time t . We wish to obtain
the dense motion field Vt−1 responsible for this shift:

Vt−1(pi) = p′
i − pi (13.9)

In this chapter we cover one rigid (1) and deforming (3) solution.

274 P. Bénard et al.

13.4.2.1 Rigid motion

If operating under the rigid model we can simply write the ith control point location
c′
i = Aci in homogeneous form, expanded as:

⎡
⎣c′

i,x

c′
i,y

1

⎤
⎦ =

⎡
⎣a1 a2 a3

a4 a5 a6
0 0 1

⎤
⎦

⎡
⎣ci,x

ci,y

1

⎤
⎦ (13.10)

The 3 × 3 affine transformation matrix A is deduced between C and C′ (contain the
respective control points in homogeneous form) as a least squares solution:

A = C′CT
(
CCT

)−1 (13.11)

The dense vector field (Eq. (13.9)) is created by applying the resulting transforma-
tion to all pixels Pt−1 within the region at t − 1, i.e. p′

i = Api .

13.4.2.2 Smooth Deformation

A smooth dense motion field may be extrapolated from control points, for exam-
ple using a least squares fitting scheme that minimizes the Laplacian of the motion
vectors. This is achieved by solving an approximation to Poisson’s equation; com-
monly referred to in Graphics as Poisson in-filling after Pérez and Blake’s initial
application of the technique to texture infilling in 2003 [46].

Recall we wish to deduce a dense motion field Vt−1(pi) defining the motion of
for all pixels Pt−1. However we know only irregularly and sparsely placed points
in this field Vt−1(ci) = c′

i − ci . Call this known, sparse field V and dense field V ,
dropping the time subscript for brevity.

We seek the dense field VP over all pixel values Ω ∈ �2, such that V (c) =
V (c),∀c∈Ct and minimizing:

argmin
V

ΣΣP (�V − V)2 s.t. V |δP = V |δP (13.12)

i.e. �V = 0 over P , s.t. V |δP = V |δP . This is Poisson’s equation and is practically
solvable for our discrete field as follows.

The desired 2D motion vector field V (P) is first split into its component scalar
fields Vx(P) and Vy(P). For each scalar field, e.g. that of the x component,
Vx(pi) = vi , where i = [1, n] we form the following n × n linear system using
‘known’ pixels V (p) = vi (i.e. at the control points, below denoted ki = vi) and

13 Temporally Coherent Video Stylization 275

unknown pixels (i.e. everywhere else):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0 0
0 1 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 −1
... −1 4 −1 . . . −1 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...

vi

...

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

ki

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.13)

The system can be solved efficiently by a sparse linear solver such as LAPACK,
yielding values for all vi and so the dense scalar field—in our example for the x

component of V (P). Repeating this for both x and y components yields the dense
motion field V (P) that may be used to move strokes or other rendering marks within
the region as Fig. 13.8 illustrates.

A variety of other smoothness constraints have been explored for region defor-
mation, including thin-plate splines [39] and weighted combinations of control point
motion vectors [1].

13.4.2.3 Spring-Based Dampening

Once strokes, or similar marks, have been propagated to their new positions under
the chosen deformation model, their position may be further refined. Inaccuracy in
the region segmentation, and occlusions, can cause sporadic jumps in stroke posi-
tion. Lin et al. showed that this can be successfully mitigated by dampening stroke
motion using a simple string model [39].

Strokes are connected to their space–time neighbors (i.e. other strokes present
within a small space–time range) using springs. Using the notation Si,t to denote
the putative position of stroke i at time t—and S0

i,t to denote the initial (i.e. post-
deformation) position of the strokes—the energy of the spring system E(S) is given
as a weighted sum:

Esystem(S) = E1(S) + 2.8E2(S) + 1.1E3(S) (13.14)

In their formulation the first term E1(.) indicates spatial deviation from the initial
position:

E1(S) =
∑
∀Si,t

∣∣Si,t − S0
i,t

∣∣2 (13.15)

The second term enforces temporal smoothness in position:

E2(S) =
∑
∀Si,t

(Si,t−1 + 2Si,t + Si,t+1)
2 (13.16)

276 P. Bénard et al.

and the third term enforces proximity to neighboring strokes, which are denoted by
the set Ni,t for a given stroke Si,t :

E3(S) =
∑
∀Si,t

∑
∀p×q∈Ni,t

δ(p, q)2 (13.17)

here δ(.) is a function evaluating smaller for strokes of similar size and spatial po-
sition. The system is minimized via an iterative Levenburg–Marquadt optimization
over all strokes in the video.

13.4.3 Rotoscoping Boundaries for Stylized Lines

Parameterized lines allow the use of texture mapping to produce dots and dashes or
to mimic paint brushes, pencil, ink and other traditional media. The correspondence
of region boundaries outlined in Sect. 13.4.2 enables such a parameterization to be
established in a temporally coherent fashion. This opens the door to a wide variety
of artistic line stylization techniques.

There are two simple policies for texturing a path. The first approach, which we
call the stretching policy (Fig. 13.9(a)), stretches or compresses the texture so that
it fits along the path a fixed number of times. As the length of the path changes,
the texture deforms to match the new length. The second approach, called the tiling
policy (Fig. 13.9(b)), establishes a fixed pixel length for the texture, and tiles the path
with as many instances of the texture as can fit. Texture tiles appear or disappear as
the length of the path varies.

The two policies are appropriate in different cases. The tiling policy is necessary
for textures that should not appear to stretch, such as dotted and dashed lines. Be-
cause the tiling policy does not stretch the texture, it is also usually preferred for still
images. Under animation, however, the texture appears to slide on or off the ends of
the path similarly to the shower door effect (Fig. 13.9(b)). In contrast, the stretch-
ing policy produces high motion coherence under animation, but the stroke texture
loses its character if the path is stretched or shrunk too far (Fig. 13.9(a)). Kalnins et
al. [31] combine these two policies with 1D texture synthesis using Markov random
field to reduce repetitions.

The artmap method [33] (Fig. 13.9(c)) is an alternative to the simple stretching
and tiling policies. This method uses texture pyramid, where each texture has a
particular target length in pixels. At each frame, the texture with the target length
closest to the current path length is selected and drawn. This mechanism ensures
that the brush texture never appears stretched by more than a constant factor (often
2×).

Nevertheless, stretching artifacts still appear when the length of the path extends
beyond the length of the largest texture in the artmap. Fading or popping artifacts can
also occur during transitions between levels of the texture pyramid. Finally, a major
drawback of the artmap method resides in the manual construction of the texture

13 Temporally Coherent Video Stylization 277

Fig. 13.9 Four strokes texture mapping policies. (a) Stretching ensures coherence during motion
but deforms the texture. Conversely (b) tiling perfectly preserves the pattern, but produces sliding
when the path is animated. (c) Artmap [33] avoids both problems at the price of fading artifacts
because the hand-drawn texture pyramid is usually too sparse. (d) Self-Similar Line Artmap [7]
solves this problem. From [9] © 2012 Blackwell Publishing. Included here by permission

pyramid. Artists need to draw each level of the pyramid, tacking care of the coher-
ence across levels. As a result, current artmap implementations such as “Styles” in
Google SketchUp© use as few as four textures, which accentuates artifacts during
transitions.

To reduce transition artifacts and automate the creation process, Bénard et al.
[7] propose Self-Similar Line Artmap (SLAM), an example-based artmap synthesis
approach that generates an arbitrarily dense artmap based on a single exemplar.
Their synthesis not only guarantees that each artmap level blends seamlessly into
the next, but also provides continuous infinite zoom by constructing a self-similar
texture pyramid where the last level of the pyramid is included in the first level. The
synthesis takes a few minutes as a pre-process and provides good results for many
brush textures, although fine details might be lost for very complex patterns.

13.4.4 Painterly Rotoscoping Environments

Early papers recognizing the links between coherent stylization and rotoscoping
[16, 55] used the techniques of Sect. 13.4.2 to directly fix marks to regions, enabling
those marks to match-move video content.

278 P. Bénard et al.

However recent systems adopt a more indirect approach, harnessing the re-
gion correspondence to transform data fields over time that drive the placement
of strokes. A popular choice of field is the intensity gradient (equivalently, the edge
orientation) field, which typically plays an important role in the placement of indi-
vidual marks such as strokes [26]. Ensuring coherence in the transformed orientation
field ensures coherence in the final rendering.

The advantage in deferring stroke placement until the rendering of individual
frames (rather than placing strokes on the first frame, and subsequently moving
them) is that more frame-specific information can be taken into account during styl-
ization. This can lead to a broader range of styles as Kagaya et al. demonstrated in
their multi-style video painting system [30]. It can also lead to greater control, as
when framed in an interactive setting, users can manipulate the fields and parameters
used to create particular effects on particular objects. For example, O’Donovan and
Hertzmann’s AniPaint system enable the rotoscoping of regular curved strokes onto
regions, along with “guide strokes” that influence the orientation of further strokes
placed on the frame [45]. Kagaya et al.’s multi-style rendering system [30] enables
the interactive specification of tensor fields at key frames that are used to form ele-
gant brush strokes in a manner reminiscent of the Line Integral Convolution meth-
ods used to create a painterly effect in the filtering approaches of Chap. 5. These key
framed fields are smoothly interpolated over time using a space–time extension of
the heat diffusion process outlined in Chap. 6, which like the smooth deformation
method of Chap. 13.4.2.2, is based upon a Laplacian smoothing constraint.

The incorporation of user interaction into the video stylization pipeline also of-
fers the possibility of correcting the initial automated video segmentations provided
by Computer Vision algorithms. These corrections remain inevitable as the general
video segmentation problem is far from solved.

13.5 Segmentation for Motion Stylization

Video analysis at the region level enables not only consistent rendering within ob-
jects, but also the analysis of object motion. This motion may then be stylized us-
ing a variety of motion emphasis cues borrowed from classical animation, such as
mark-making (speed-lines, ghosting or ‘skinning’ lines), deformation and distortion
as a function of motion, and alteration of timing. In his influential paper, Lasseter
[38] describes many such techniques, introducing them to the Computer Graphics
community. However his paper presents no algorithmic solutions to the synthesis of
motion cues. Hsu et al. [29] also identify depiction of motion as important, though
the former discusses the effect of such cues on perception. Both studies focus only
the placement of speed-lines through user-interactive processes.

Automated methods to generate speed-lines in video require camera motion com-
pensation, as the camera typically pans to keep moving objects within frame. This
can be approximated by estimating inter-frame homographies. Trailing edges of ob-
ject may be corresponded over time to yield a set of trails, which having been warped

13 Temporally Coherent Video Stylization 279

Fig. 13.10 Motion stylization in Video using [15]. (a) Squash and Stretch effect with flight and
collision emphasis. (b) Augmentation of motion using blur and speed-lines. (c) Deformation em-
phasizing inertia. From [15]

to compensate for the camera motion-induced homography, may be smoothed and
visualized as speed-lines. A collection of heuristics derived from animation practice
were presented in [15] and optimized against to obtain well placed speed-lines. The
trailing edges of objects may also be rendered to produce ghosting or ‘skinning’ ef-
fects, which when densely packed can additionally serve as motion blur. The visual
nature of speed-lines has also led to their application in motion summarization via
reverse story-boarding [22] visualized using a mosaic constructed from the video
frames. Chenney et al. [12] presented the earliest work exploring automated de-
formation of objects to emphasize motion. This work introduced the ‘squash and
stretch’ effect, scaling 3D objects along their trajectories and applying the inverse
scale upon surface impact. A similar effect was applied to 2D video in [15], where
a nonuniform scaling of the object was performed within a curvilinear basis set es-
tablished using a cubic spline fitted to the object’s trajectory. Other distortions were
explored within this basis set including per-pixel warping of the object according
to velocity and acceleration; giving rise to the visual effect of emphasizing drag or
inertia. Figure 13.10 illustrates the gamut of effects available in this single frame-
work.

A layered approach to deformation was described by Liu et al. [41]. Video frames
were segmented into distinctly moving layers, using unsupervised clustering of mo-
tion vectors (followed by optional manual correction). The layers were then dis-
torted according to an optical flow estimate of pixels within each layer. Texture
infilling algorithms were applied to fill holes, and a priority ordering assigned to lay-
ers to resolve conflicts when warped layers overlapped post-deformation. Animators
frequently manipulate the timing and trajectory of object motion to emphasize an

280 P. Bénard et al.

Table 13.1 Summary of the trade-offs made by the different families of methods surveyed in this
chapter

Spatial
quality

Coherent
motion

Temporal
continuity

Style
variety

Complexity Footage
diversity

Naïve Static marks ++ −− ++ ++ ++ ++
Advection −− ++ ++ ++ − ++
Random marks ++ −− −− ++ ++ ++

Filtering Chapter 5 ++ ++ + − ++ ++
Opt. Flow Mark-based ++ ++ − + − +

Texture-based + ++ + + − +
Segmentation 3D (x, y, z) ++ ++ + + −− −−

2D + t ++ ++ + + −− −

action; for example, a slight move backward prior to a sprint forwards. This effect is
referred to as anticipation or snap in the animation. The automated introduction of
snap into video objects was described in [13], learning an articulated model of the
moving object e.g. a walking person, by observing the rigidity and inter-occlusion
of moving parts in that object. The joint angles parameterizations were manipulated
to exhibit a small opposing motion in proportion to the scale of each movement
made. A more general motion filtering model based of region deformation, rather
than articulated joints, was described in [56].

13.6 Discussion and Conclusion

This chapter illustrates the large amount of work addressing the problem of tempo-
rally coherence video stylization, and highlights a number of limitations that rep-
resent interesting directions for future research. The requirements implied by tem-
poral coherence are both contradictory and ill-defined, which in our sense is one
of the challenges of this field. In order to facilitate the concurrent analysis of exist-
ing methods in this chapter, we proposed a formulation of the temporal coherence
problem in terms of three goals: spatial quality, motion coherence and temporal con-
tinuity. Table 13.1 summarizes the relative trade-offs against these criteria exhibited
by the main families of technique surveyed in this chapter. In addition, we compare
against three additional criteria which should be considered when selecting appro-
priate methods. These are the overall complexity of implementation, the variety of
styles that may be simulated, and the diversity of footage that may be processed.

Of these criteria it is arguably hardest to precisely define the goal of spatial qual-
ity. To go further, we are convinced that human perception should play a greater role
in evaluating video stylization work (see Chap. 15 for an in-depth survey of eval-
uation approaches in NPR). Our spatial quality criterion relates to the perception

13 Temporally Coherent Video Stylization 281

of each frame as being somehow ‘hand-made’. Temporal continuity involves visual
attention which encapsulates explain human visual sensitivity to flicker and ‘pop-
ping’. Motion coherence could benefit from studies on motion transparency to de-
scribe more precisely sliding effects. Some studies have been done in the context of
3D scenes animations [6, 8] and could be use as a starting point for evaluating styl-
ized videos. Beyond the evaluation of temporal coherence, these connections could
also help drive coherent video stylization algorithms. Quantitative measurements
could be deduced from perceptual evaluations, paving the way to the formulation of
temporal coherence as a numerical optimization problem. Such a formulation would
give users precise control on the different goals of temporal coherence.

The coherent stylization of video footage remains an open challenge. This is pri-
marily because the coherent movement of marks with video content requires the
accurate estimation of video content motion. This is currently an unsolved problem
in Computer Vision, and is likely to remain so in the near-term. Consequently the
more successful solutions, and arguably the more aesthetically compelling output,
has resulted from semi-automated solutions that require user interaction. Such sys-
tem enable both the correction the stylization process, but more fully embrace the
user interaction to enable intuitive and flexible control over the stylization process.

Currently video stylization algorithms are caught in a compromise between ro-
bustness and generality of style. Low-level motion estimation based on flow can pro-
duce a reasonable motion estimation over most general video, but this is frequently
noisy because each pixel may potentially be estimated with a different motion vec-
tor. Although modern flow estimation algorithms seek to preserve spatial coherence
in the motion vector estimates, in practical video it is common to see inconsis-
tent motion estimation within a single object. On the other hand, Mid-level motion
estimation based on video segmentation can ensure consistency within objects by
virtue of their operation—delimited the boundaries of objects through coherent re-
gion identification. However such methods trade this robustness for the inability to
deal with objects than cannot be easily delineated such as hair, water, smoke, and so
on. The treatment of stylization as a rotoscoping problem in mid-level framework is
attractive, as it allows easy generalization of image-based techniques to video, and
the creation of aggressively stylized output such as cartoons. This leads to greater
style diversity with these techniques, versus flow-based techniques (and non-linear
filtering techniques covered in Chap. 5) that have so far been limited to painterly
effects. An open challenge in the field is to somehow combine the benefits of these
complementary approaches, perhaps by finding a way to fuse both into a common
framework to reflect the mix of object types within typical video footage. Regarding
region-based video stylization, and rotoscoping more generally, the region defor-
mation models currently considered in the literature (e.g., those of Sect. 13.4.2) are
quite basic. Region boundaries may deform naturally, or due to scene occlusion, yet
there is no satisfactory method for discriminating between, and reacting to, these
different causes of shape change.

Despite these shortcomings, stylized video is featuring increasingly within the
creative industries within movies (e.g., “Waking Life”, “Sin City”, “A Scanner
Darkly”), TV productions, advertisements and games. The field should strive to

282 P. Bénard et al.

work more closely with the end-users of these techniques. If user interaction and
creativity will remain within the stylization work-flow for some time, then collab-
oration with Creatives and with Human Factors researchers may prove at least as
fruitful a research direction as raw algorithmic development, and would prove valu-
able in evaluating the temporal coherence of algorithms developed.

References

1. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for roto-
scoping and animation. ACM Trans. Graph. 23, 584–591 (2004)

2. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object cutout using
localized classifiers. ACM Trans. Graph. 28(3), 70 (2009)

3. Bangham, J.A., Gibson, S.E., Harvey, R.: The art of scale-space. In: Proc. BMVC, pp. 569–
578 (2003)

4. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3),
433–466 (1995)

5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

6. Bénard, P., Thollot, J., Sillion, F.: Quality assessment of fractalized NPR textures: a perceptual
objective metric. In: Proceedings of the 6th Symposium on Applied Perception in Graphics
and Visualization, Chania, Greece, pp. 117–120. ACM, New York (2009)

7. Bénard, P., Cole, F., Golovinskiy, A., Finkelstein, A.: Self-similar texture for coherent line
stylization. In: Proceedings of the 8th International Symposium on Non-Photorealistic Ani-
mation and Rendering, Annecy, France, p. 91. ACM, New York (2010)

8. Bénard, P., Lagae, A., Vangorp, P., Lefebvre, S., Drettakis, G., Thollot, J.: A dynamic noise
primitive for coherent stylization. Comput. Graph. Forum 29(4), 1497–1506 (2010)

9. Bénard, P., Bousseau, A., Thollot, J.: Temporal coherence for stylized animation. Comput.
Graph. Forum 30(8), 2367–2386 (2012)

10. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with
temporal coherence and abstraction. In: Proc. NPAR, pp. 141–149 (2006)

11. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional
texture advection. ACM Trans. Graph. 26(3), 104 (2007)

12. Chenney, S., Pingel, M., Iverson, R., Szymanski, M.: Simulating cartoon style animation. In:
Proc. NPAR, pp. 133–138 (2002)

13. Collomosse, J.P., Hall, P.M.: Video motion analysis for the synthesis of dynamic cues and
futurist art. Graph. Models 68(5–6) 402–414 (2006)

14. Collomosse, J., Rowntree, D., Hall, P.M.: Stroke surfaces: a spatio-temporal framework for
temporally coherent nonphotorealistic animations. Tech. Rep. CSBU-2003-01, University of
Bath, UK (2003). http://opus.bath.ac.uk/16858/

15. Collomosse, J., Rowntree, D., Hall, P.M.: Video analysis for cartoon-style special effects. In:
Proc. BMVC, pp. 749–758 (2003)

16. Collomosse, J., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent non-
photorealistic animations from video. IEEE Trans. Vis. Comput. Graph. 11(5), 540–549
(2005)

17. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

18. Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing. ACM Trans.
Graph. 29(5), 134 (2010)

19. Dalal, K., Klein, A.W., Liu, Y., Smith, K.: A spectral approach to NPR packing. In: Proceed-
ings of the 4th International Symposium on Non-photorealistic Animation and Rendering,
pp. 71–78. ACM, New York (2006)

http://opus.bath.ac.uk/16858/

13 Temporally Coherent Video Stylization 283

20. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proc. SIGGRAPH,
pp. 769–776 (2002)

21. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with appli-
cations in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

22. Goldman, D.B., Curless, B., Salesin, D., Seitz, S.M.: Schematic storyboarding for video visu-
alization and editing. ACM Trans. Graph. 25(3), 862–871 (2006)

23. Green, S., Salesin, D., Schofield, S., Hertzmann, A., Litwinowicz, P., Gooch, A., Curtis, C.,
Gooch, B.: Non-photorealistic rendering. In: SIGGRAPH Courses (1999)

24. Haeberli, P.: Paint by numbers: abstract image representations. In: Proc. SIGGRAPH, pp. 207–
214 (1990)

25. Hays, J., Essa, I.: Image and video based painterly animation. In: Proc. NPAR, pp. 113–120
(2004)

26. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proc. SIG-
GRAPH, pp. 453–460 (1998)

27. Hertzmann, A.: Paint by relaxation. In: Computer Graphics International, pp. 47–54. IEEE
Comput. Soc., Hong Kong (2001)

28. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc. NPAR,
pp. 7–12 (2000)

29. Hsu, S.C., Lee, I.H.H., Wiseman, N.E.: Skeletal strokes. In: Proc. UIST, pp. 197–206 (1993).
doi:10.1145/168642.168662

30. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P.J., Zhang, E.: Video
painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17(1),
74–87 (2011)

31. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb,
M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: drawing strokes directly on 3D models.
In: Proceedings of SIGGRAPH 2002, San Antonio, USA, vol. 21, p. 755. ACM, New York
(2002)

32. Kass, M., Pesare, D.: Coherent noise for non-photorealistic rendering. ACM Trans. Graph. 30,
30 (2011)

33. Klein, A.W., Li, W., Kazhdan, M.M., Corrêa, W.T., Finkelstein, A., Funkhouser, T.A.: Non-
photorealistic virtual environments. In: Proceedings of SIGGRAPH 2000, New Orleans, USA,
pp. 527–534. ACM, New York (2000)

34. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue
noise. ACM Trans. Graph. 25(3), 509–518 (2006)

35. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering.
In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, pp. 55–64. ACM, New York (2011)

36. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering.
Comput. Graph. Forum 30(2), 593–602 (2011)

37. Lagae, A., Dutré, P.: A procedural object distribution function. ACM Trans. Graph. 24(4),
1442–1461 (2005)

38. Lasseter, J.: Principles of traditional animation applied to 3D computer animation. In: Proc.
SIGGRAPH, vol. 21, pp. 35–44 (1987)

39. Lin, L., Zeng, K., Lv, H., Wang, Y., Xu, Y., Zhu, S.C.: Painterly animation using video se-
mantics and feature correspondence. In: Proc. NPAR, pp. 73–80 (2010)

40. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of
SIGGRAPH, Los Angeles, USA, vol. 97, pp. 407–414. ACM, New York (1997)

41. Liu, C., Torralba, A., Freeman, W., Durand, F., Adelson, E.H.: Motion magnification. ACM
Trans. Graph. 24(3), 519–526 (2005)

42. Lu, J., Sander, P.V., Finkelstein, A.: Interactive painterly stylization of images, videos and
3D animations. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, Washington, USA, vol. 26, pp. 127–134. ACM, New York (2010)

43. Meier, B.J.: Painterly rendering for animation. In: Proc. SIGGRAPH, pp. 477–484 (1996).
doi:10.1145/237170.237288. dl.acm.org/citation.cfm?id=237288

http://dx.doi.org/10.1145/168642.168662
http://dx.doi.org/10.1145/237170.237288
http://dl.acm.org/citation.cfm?id=237288

284 P. Bénard et al.

44. Neyret, F.: Advected Textures. In: Proceedings of Eurographics/SIGGRAPH Symposium on
Computer Animation, pp. 147–153. Eurographics Association, San Diego (2003)

45. O’Donovan, P., Hertzmann, A.: AniPaint: interactive painterly animation from video. IEEE
Trans. Vis. Comput. Graph. 18(3), 475–487 (2012)

46. Perez, P., Gangnet, A., Blake, A.: Poisson image editing. In: Proc. ACM SIGGRAPH, pp. 313–
318 (2003)

47. Schwarz, M., Stamminger, M.: On predicting visual popping in dynamic scenes. In: Proceed-
ings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania,
Greece, p. 93. ACM, New York (2009)

48. Smith, K., Liu, Y., Klein, A.: Animosaics. In: Proc. SCA, pp. 201–208 (2005)
49. Szirányi, T., Tóth, Z., Figueiredo, M., Zerubia, J., Jain, A.: Optimization of paintbrush render-

ing of images by dynamic MCMC methods. In: Proc. EMMCVPR, pp. 201–215 (2001)
50. Treavett, S.M.F., Chen, M.: Statistical techniques for the automated synthesis of non-

photorealistic images. In: Proc. EGUK, pp. 201–210 (1997)
51. Vanderhaeghe, D., Barla, P., Thollot, J., Sillion, F.: Dynamic point distribution for stroke-

based rendering. In: Proceedings of the 18th Eurographics Symposium on Rendering 2007,
pp. 139–146. Eurographics Association, Grenoble (2007)

52. Vergne, R., Vanderhaeghe, D., Chen, J., Barla, P., Granier, X., Schlick, C.: Implicit brushes
for stylized line-based rendering. Comput. Graph. Forum 30, 513–522 (2011)

53. Wang, T., Collomosse, J.: Progressive motion diffusion of labeling priors for coherent video
segmentation. IEEE Trans. Multimed. 14(2), 389–400 (2012)

54. Wang, J., Thiesson, B., Xu, Y., Cohen, M.F.: Image and video segmentation by anisotropic
kernel mean shift. In: Proc. ECCV, pp. 238–249 (2004). doi:10.1007/978-3-540-24671-8_19

55. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574
(2004)

56. Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F.: The cartoon animation filter. ACM
Trans. Graph. 25(3), 1169–1173 (2006)

57. Wang, T., Collomosse, J., Hu, R., Slatter, D., Greig, D., Cheatle, P.: Stylized ambient
displays of digital media collections. Comput. Graph. 35(1), 54–66 (2011). doi:10.1016/
j.cag.2010.11.004

58. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graphics.
Axiomathes 15, 319–351 (2005)

59. Winnemöller, H., Olsen, S., Gooch, B.: Real-time video abstraction. In: Proc. SIGGRAPH,
pp. 1221–1226 (2006)

60. Yantis, S., Jonides, J.: Abrupt visual onsets and selective attention: evidence from visual
search. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 601–621 (1984)

http://dx.doi.org/10.1007/978-3-540-24671-8_19
http://dx.doi.org/10.1016/j.cag.2010.11.004
http://dx.doi.org/10.1016/j.cag.2010.11.004

	Chapter 13: Temporally Coherent Video Stylization
	13.1 Introduction
	13.1.1 Temporal Coherence
	13.1.2 Problem Statement: Coherent Stylization

	13.2 Temporally Local Filtering
	13.3 Optical Flow Based Stylization
	13.3.1 Mark-Based Methods
	13.3.1.1 Impressionist Painterly Rendering
	13.3.1.2 Stroke Propagation
	13.3.1.3 Dynamic Distributions
	13.3.1.4 Frame Differencing for Interactive Painting
	13.3.1.5 Multi-scale Video Stylization with Curved Strokes

	13.3.2 Texture-Based Methods
	13.3.2.1 Bi-directional Flow
	13.3.2.2 Coherent Shape Abstraction

	13.4 Video Segmentation for Stylization
	13.4.1 Coherent Video Segmentation
	13.4.1.1 Video Tooning
	13.4.1.2 Stroke Surfaces
	13.4.1.3 Region Tracking

	13.4.2 Rotoscoping Regions
	13.4.2.1 Rigid motion
	13.4.2.2 Smooth Deformation
	13.4.2.3 Spring-Based Dampening

	13.4.3 Rotoscoping Boundaries for Stylized Lines
	13.4.4 Painterly Rotoscoping Environments

	13.5 Segmentation for Motion Stylization
	13.6 Discussion and Conclusion
	References

