
Chapter 1
Stroke Based Painterly Rendering

David Vanderhaeghe and John Collomosse

1.1 Introduction

Stroke based Rendering (SBR) is the process of synthesizing artwork by composit-
ing rendering marks (such as lines, brush strokes, or even larger primitives such
as tiles) upon a digital canvas. SBR under-pins many Artistic Rendering (AR) al-
gorithms, especially those algorithms seeking to emulate traditional brush-based
artistic styles such as oil painting.

The SBR paradigm was proposed in the early 1990s by Paul Haeberli [8], in
the context of his semi-automated ‘Paint By Numbers’ painting environment that
sought to rendering impressionist paintings from photographs. Although this work
is now regarded as having catalyzed the field of AR, Haeberli’s stated intention
was to improve the richness of manually created digital paintings. Such paintings
frequently lacked color depth, which Haeberli attributed to a prohibitively paintings
lacked lengthy ‘time to palette’; the time taken by the user to select a new color.

Haeberli’s concept was simple but effective. The user interacts with a canvas of
identical size to the source photograph they wish to render in a painterly style. Each
time the user clicks to place a brush stroke on the digital canvas, the color of that
stroke is sampled from the corresponding position in the source photograph. The
strokes are much larger than the pixels from which the color is sampled, and this
leads to an abstraction of detail reminiscent of that seen in real paintings. Further-
more, the noise inherent in the sampling of individual pixel color leads to a color
variation reminiscent of the impressionist style (this can be further exaggerated by
addition of Gaussian noise to the RGB values of the color).
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Fig. 1.1 Stroke based Rendering. Left: Impressionist rendering created interactively using Hae-
berli’s Paint by Numbers algorithm [8]. The source image in the top-right is rendered as the user
clicks upon the canvas with pre-selected stroke sizes. Right: Driving the interactive elements of
this process using a pseudo-random number generator will cause loss of salient detail [9]

Table 1.1 Haeberli’s
representation of a painting as
an ordered list of strokes
underpins many later SBR
algorithms

Attribute Name Derived

P = (x, y) stroke seed position Manually

s stroke scale Manually

θ = Θ(x,y) stroke orientation Automatically

c RGB color Automatically

o stroke order Manually

Haeberli’s system not only automates the selection of color, but also drives other
stroke attributes such as orientation. In impressionist artwork, strokes are often
painting tangential to edges in the scene. This can be emulated by running an edge
detector (e.g. the Sobel operator) over the grayscale source photograph I (x, y):

Θ(x,y) = atan

(
δI

δy

/
δI

δx

)
(1.1)

i.e. strokes are painted so that their longest axis is orthogonal to Θ(x,y). Fig-
ure 1.1 illustrates the effect achieved using an open implementation of Haeberli’s
system.1

Note that in Haeberli’s system the user selects the size of stroke, the position on
the canvas, and the order in which strokes are laid down. The set of stroke attributes
are summarized in Table 1.1.

Under Haeberli’s framework, strokes behave rather like ‘rubber stamps’—an im-
age of a stroke is painted centered at P and oriented by θ . The texture and visual
properties of the stroke (beyond the color) are decoupled from the representation

1Available at http://kahlan.eps.surrey.ac.uk/EG2011.

http://kahlan.eps.surrey.ac.uk/EG2011
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of the ordered stroke list. This representation is therefore highly versatile and can
be used to represent pastel, crayon, oil paint etc. Later, more sophisticated AR al-
gorithms sought to automate beyond these paint daubs, to produce elegant curved
brush strokes [12]. We discuss these approaches later in Sect. 1.2.3.

In this chapter we restrict ourselves solely to the matter of semi-automatic or
automatic stroke placement. We briefly consider the simple texturing of strokes,
but refer the reader to Chap. 2 for a more detailed discussion of brush and media
simulation. In line with most AR research papers, we consider the matters of stroke
rendering and stroke placement as decoupled.

1.2 Iterative Approaches to Automatic Painting

Haeberli’s interactive systems catalyzed the development of fully automated
painterly rendering algorithms, raising research questions such as “can the user
be left out of the rendering work-flow?” and if so, “to what degree is it desirable
to do so?”. As we describe later in Chap. 13, increased automation has also opened
up the possibility of video stylization. The issue of user control in discussed further
Sect. 1.4.

A trivial adaptation to fully automate Haeberli’s pipeline is to drive the values of
manually set attributes with a pseudo-random number generator [9]. However, ran-
domizing the order of strokes and their sizes can cause a loss of important (‘salient’)
detail in the image as Fig. 1.1 illustrates.

A human artist will typically over-paint fine strokes, on top of coarser strokes, to
depict fine important details in the rendering. Therefore we can link rendering order
and stroke size to a simple automated measure of detail derived from the image.
Since we already compute first derivative edge information to derive Θ(x,y) we
can also derive a measure of edge magnitude |�I (x, y)|:

∣∣�I (x, y)
∣∣ =

(
δI

δx

2

+ δI

δy

2) 1
2

(1.2)

Strokes should be scaled size in inverse proportion to |�I (x, y)|. The stroke order-
ing should be modified so as to paint smaller strokes later, over-painting coarser
details.

1.2.1 Automated Impressionist Painting

Litwinowicz published the first automated painterly rendering algorithm in 1997
[17]. Litwinowicz’ technique not only automated the rendering process, reduc-
ing user interaction to parameter setting, but also extended painterly rendering
to video. We describe the latter aspects of the algorithm in further detail within
Chap. 13.
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Fig. 1.2 Stroke detail in impressionist rendering. Comparison of painting via Litwinowicz’
method [17] with and without interpolation of orientation gradient. © 1997 ACM, images used
by permission

Litwinowicz addresses the stroke placement and ordering problem in a straight-
forward manner. Pixel locations are sub-sampled in a regular grid, and a stroke gen-
erated at each sampled location. In practice, strokes are generated densely typically
at every other pixel location. These strokes are rectangular in shape, and rendered
in a random order. As performed by Haeberli’s system, the color and orientation of
each stroke is determined automatically. The latter using the Sobel operator (first
derivative of intensity) as per Eq. (1.1).

To prevent loss of detail, each stroke is clipped against strong edges in the image.
These are detected via thresholding field |�I (x, y)| at a constant value (Eq. (1.2)).
The stroke may be thought of as a rectangle centered upon the initial stroke position,
and oriented to align with the local edges in the image. The rectangle extends from
the center position outward until a strong edge is met or the stroke exceeds a maxi-
mum length. This process prohibits strokes to cross strong image edges, preventing
loss of detail through “coloring outside the lines”.

Unfortunately the gradient field Θ(x,y) (Eq. (1.1)) does not offer reliable values
over the whole image, and provides a noisy estimate when the source image gradient
varies smoothly, or not at all. To provide smooth direction flow and mitigate noise,
a more robust direction flow computation is usually required.

Gradient direction is reliable when the magnitude of edge gradient |�I (x, y)|
is high, i.e. close to image edges and other high frequency artifacts. A practical
approach to obtain a cleaner direction flow is to estimate the gradient direction local
to such artifacts and interpolate elsewhere. Litwinowicz proposed the use of thin-
plate spline interpolation [17], resulting in an improved aesthetic (Fig. 1.2). The
mathematics of this interpolation are covered in more detail within Chap. 8.

Radial basis function are also well adapted to perform directional interpolation,
and were explored by Hays and Essa [11] for video painting. But interpolation of
vector fields δI

δx
or δI

δy
do not provide results consistent with the fact we only care

about orientation angle; considering the direction flow as a tensor field provides
better results as described by Kagaya et al. [16]. This extends earlier work exploring
the interactive editing of the directional field by Zhang et al. [26].
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Fig. 1.3 The iterative approach of Shiraishi and Yamaguchi [20]. (a) Source image, (b) pixel color
for four sample pixels, (c) difference between the pixel color and surrounding pixel colors is stored
in an array, (d) moment analysis of the array gives a rectangle with the same moments, (e) for each
anchor point, the attributes of the rectangle computed for this pixel are read to render the stroke

1.2.2 Painterly Rendering Using Image Moments

Shiraishi and Yamaguchi [20] proposed an alternative mechanism to orient and scale
strokes, that does not rely upon edge gradient. Rather, they rely upon 2D statistical
moments computed local to each stroke; an approach suggested earlier by Treavett
and Chen [23]. Shiraishi and Yamaguchi compute, for each pixel p of the source
image, the difference in color between p and pixels around p in a window of user
specified scale. The result of each difference is stored in an array A of the same size
of the window as indicated in Fig. 1.3.

The system computes the 2D central moments of A to define a rectangular stroke
that approximates the region of similar color in the neighborhood of p. Strokes
are aligned so that their principal axis is aligned with the principal eigenvector of
the difference array. The output image may be over-painted in several passes from
coarse scales, to finer scales, reminiscent of Hertzmann’s multi-resolution paint pro-
cess (described shortly in Sect. 1.2.3). As with most painterly rendering algorithms,
the stroke color is sampled locally from the source image.

1.2.3 Multi-resolution Painting Using Curved Strokes

Early painterly rendering algorithms [8, 17, 23] were limited to placing simple daubs
of paint. Essentially these were 2D sprites (textured rectangles) resembling a brush
stroke, that were scaled and oriented by the stroke placement process.

Hertzmann proposed an alternative paradigm for painting in 1998 [12], that pro-
gressed painterly rendering with two key innovations. First, the painting process
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uses long, curved β-spline strokes rather than sprites for painting. This greatly en-
hances the realism and aesthetics of the resulting renderings. Second, the painting
process was performed iteratively over multiple “layers” from coarse to fine. The
painting process for each layer was driven by a source image down-sampled to a
particular spatial resolution. For this reason this innovation is sometime referred to
as multi-resolution painterly rendering.

1.2.3.1 Curved Stroke Formation

As with prior work, Hertzmann’s algorithm makes independent decisions for each
stroke’s placement based on information in the source image local to the stroke posi-
tion. Execution proceeds in a local, greedy manner with each stroke being rendered
in a pre-determined randomized order (after [17]). We first describe how a single
layer is painted; this process is summarized in Algorithm 1.1.

Each stroke is generated independently via a process of “hopping” between pix-
els, reminiscent of Line Integral Convolution (LIC). Given a starting point or “seed”
pixel, the stroke by jumping from the current (seed) pixel to another pixel a pre-
determined distance away. The direction of jump is derived from the gradient field
Θ(x,y) of Eq. (1.1). Specifically the jump is made orthogonal to this angle in order
that the stroke is formed tangential to edge structure in the source image. At each
hop there is 180° ambiguity in the hopping direction, the direction of hop that mini-
mize the curvature of the stroke being formed is taken. Stroke growth is terminated
when the color of the image pixels departs significantly from the color of the stroke
being formed. A minimum and maximum size for strokes is also enforced.

Each pixel visited forms a control point for a spline curve. Thus the eventual
shape of the stroke is defined by a path which is built by following the direction
flow. In Hertzmann’s method these control points are approximated by a β-spline,
which helps to smooth noise. However, other closely related painting techniques
that perform a similar hopping (e.g. the genetic paint system of Sect. 1.3.2 use an
interpolating Catmull–Rom spline for greater accuracy.

1.2.3.2 Coarse to Fine Painting

Hertzmann’s algorithm generates layers of paint strokes, from coarse to fine. Prior to
painting, a low-pass pyramid is generated by blurring and sub-sampling the source
image at a range of decreasing scales. Typically octave intervals are used for each
level of the pyramid. For example, a low-pass pyramid of four levels would comprise
images {1,2,4,8} times smaller than the original. The coarsest rendering layer is
generated from the most heavily sub-sampled image.

The coarsest painting layer is first generated by creating strokes for all pixels,
using the algorithm described in Sect. 1.2.3.1. Stroke size (radius) is proportional to
the degree of sub-sampling used at the corresponding layer of the low-pass pyramid,
and reflects the scale of visual features expected to occur at that level.
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Algorithm 1.1 Hertzmann’s algorithm for build the list of control point that form a
brush stroke, used in Algorithm 1.2. Here the functions Isrc(.) and Ipaint(.) denote
the RGB pixels values in the source image and painting respectively

1: function MAKESTROKE(x, y) return stroke
2: d ← Θ(x,y)

3: strokeColor ← Iref(x, y)

4: stroke.pushControlPoint(x, y)
5: for i: 1 → maxSize − 1 do
6: (x, y) ← (x, y) + d

7: d ′ ← Θ(x,y)

8: d ← fdird + (1 − fdir)d
′

9: srcColor = Isrc(x, y)

10: paintColor = Ipaint(x, y)

11: if i >= minimumSize AND |srcColor − strokeColor| > |srcColor −
paintColor| then

12: break
13: end if
14: stroke.pushControlPoint(x, y)
15: end for
16: end function

Subsequent layers are then painted by compositing over strokes already laid
down in previous layers. However, unlike the first (coarsest) layer, the algorithm
does not paint the entire layer (as this would entirely occlude the previously painted
layer). Rather, the algorithm selects which areas must be repainted by monitoring
differences between the current and previous layers in the low-pass pyramid. This
is equivalent to detecting which visual details have been revealed by moving to a
higher resolution layer in the low-pass pyramid. Specifically, to trigger the start of a
new stroke, Hertzmann’s approach computes the sum of squares differences over a
cell of size equivalent to the stroke’s radius. If this difference is over a user defined
threshold, then the stroke is painted. The algorithm is summarized in Algorithm 1.2.

Figure 1.4 illustrates the results of the painting process across successive layers
via this multi-resolution algorithm. The main drawback is the repeated over-painting
of edges and discontinuities in the scene. Strokes painted at such discontinuities
cause large differences between successive layers, so triggering the edge for re-
painting at each level of detail. To mitigate against this Huang et al. [15] propose
to use multiple brush sizes per layer, rather than a constant size. Huang et al. define
a grid with varying cell size (Fig. 1.5) and draw strokes starting in each cell with a
radius function of grid size. Cell size is adapted to reflect a pre-supplied importance
map. A trivial importance map might be simply the edge magnitude field |�I (x, y)|,
however, as discussed later, such maps are better derived from automated salience
measures. Each cell is divided along the longest axis until the sum of the importance
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Algorithm 1.2 Hertzmann’s coarse to fine painting algorithm [12]
1: function PAINTIMAGE(Iin)
2: for all R in Radius from largest to smallest do
3: Iref ← F(Iin,R)

4: GridSize ← R

5: for all cell C of the grid spacing GridSize do
6: A ← ∑

(i,j)∈C |P(i, j) − Iref(i, j)|
7: if A > t then � t is a user defined threshold
8: (x, y) ← argmax(i,j)∈C |P(i, j) − Iref(i, j)|
9: S ← makeStroke(x, y)

10: paintStroke(P , S) � paint S onto the virtual canvas P

11: end if
12: end for
13: end for
14: end function

map it covers is below a user defined threshold, or a minimum size is reached. The
axis aligned cutting line position i with

arg min
i

(
Ms

i + δ

Ml
i + δ

)(
As

i

Al
i

)

Ms
i and Ml

i denote respectively the average importance over respectively the smaller
and the larger divisions of the cell, and δ is a small constant to prevent from divide
by zero. As

i and Al
i are the respective areas of the smaller and larger divisions of

the cell. Cells that are larger than a maximum allowed size are also subdivided
(Fig. 1.5). Having selected stroke scale and position using this process, painting
proceeds as per Sect. 1.2.3.1.

1.2.4 Transformations on the Source Image

In the algorithms described so far, the raw source image is used to drive the ren-
dering process. However, pre-filtering the source image can improve the painterly
result. Basic filters that remove noise and small color variations in the image are
good candidates for such a pre-process. Such noise can trigger the generation of
strokes with spurious color or inappropriate size. Chapter 5 describes a variety of
filters such as Gaussian blur, the bilateral filter and morphological operators that are
well suited to filter the source images of a SBR system.

Other transformations include color shift. Zhao and Zhu [27] propose to boost
color saturation proportional to the underlying importance map computed for the
source image. The SBR process of point sampling color, and generating marks of
greater size than one pixel, may be regarding as an integration or low-pass filtering
process. Such a process has a propensity to wash out colors, and so this process can
help emphasize important details in the final rendering.
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Fig. 1.4 Hertzmann’s multi-resolution curved brush approach [12]. From top to bottom, left to
right. The source image, three successive layers of the painterly rendering process demonstrating
the over-painting, and the final rendering. Courtesy of chefranden@flickr.com

1.2.5 Texturing Spline Strokes

The curved brush strokes formed by stroke growth algorithm, such as variants of
Hertzmann’s algorithm [12], are interpolated with smooth (C1) continuity using a
β-spline or Catmull–Rom spline [7]. Chapter 2 describes a number of brush models,
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Fig. 1.5 Grids computed using Huang’s approach [15]. Importance map (left) and the grid derived
from the importance map (middle) and maximum cell size constraints. The input image as per
Fig. 1.4

of increasing sophistication, that may be swept along this curved path to emulate a
variety of media types. However, in many SBR implementations a simple texture
mapping suffices to produce a reasonable aesthetic.

As the piecewise cubic spline of the stroke is commonly expressed in a paramet-
ric form, it is trivial to compute a normalized local coordinate system (u, v) for the
purpose of texture mapping. The u coordinate of the texture map spans the total path
of the curve, and the v coordinate is expressed along the normal. Note that u should
be an arc-length parameterization to ensure smooth texture mapping. The direction
of the normal can be obtained via the second derivative of the curve at any point.
The spatial extent of the v axis is constant, and relates directly to the stroke ra-
dius; i.e. the radius of a circle that would cover the stroke’s footprint if swept along
the curved path of the stroke. This radius is half the stroke’s apparent width when
rendered.

Sampling (u, v) at regular intervals yields a simple quad-strip sweeping along
the path. A triangular strip may be similarly constructed. Either forms the basis for
texture mapping. Usually the texture applied is a digitally scanned brush stroke, with
an alpha mask to enable overlapping strokes to be seamlessly rendered. In addition
to regular texture mapping, it is also possible to introduce a bump map texture onto
the same coordinate system usually with minimal additional implementation com-
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Fig. 1.6 Example spline strokes textured along a quad-strip defined from the curved stroke path

plexity in the graphics library (e.g. OpenGL). Figure 1.6 provides some examples
of textured strokes.

1.3 Global Optimization for SBR

The algorithms discussed so far place strokes in a local greedy manner according
to a set of heuristics. These heuristics encourage aesthetically beneficial behavior,
such as painting fine details last with small strokes, or aligning strokes tangential to
edges. By designing such heuristics within the algorithm, we aim to guide the output
emerging from the process towards a desired aesthetic. However, because rendering
decisions are made independently on a per-stroke basis, it may be difficult to ensure
the generation of that aesthetic.

An alternative approach, discussed in this section, is to consider rendering as an
optimization (search) problem. In SBR our final output is a visualization of an or-
dered list of strokes (and associated attributes). Finding the rendering that is in some
sense exhibits the “optimal” or intended aesthetic for a given image is equivalent to
finding the correct sequence of stroke configurations. Quantitatively assessing the
optimality of an artistic rendering is neither a trivial nor even a well-defined task,
as any art critic might attest! Nevertheless, given a source image, a number of low-
level criteria may be expressed by which we may judge the quality of the resulting
artistic stylization. For example, measuring the degree to which important details in
the source image and depicted within the painting. Or ensuring that where possible,
long expressive strokes are used with minimal over-painting.

Defining the optimality of a rendering (i.e. stroke configuration) is one hurdle to
overcome when tackling SBR as an optimization problem. The other is to decide
how to perform the global optimization over all strokes; a very high dimensional
search space. We now discuss two early approaches to painterly rendering that pro-
pose solutions to these key problems.

1.3.1 Paint by Relaxation

Although optimization based painting was suggested as early as Haeberli’s seminal
paper [8], the first algorithmic solution did not appear in the literature until almost
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ten years later. Hertzmann proposed a paint by relaxation process [13] in which
his curved stroke algorithm (Sect. 1.2.3) was used to create an initial painting. The
strokes comprising that painting were then iteratively modified; either strokes were
added or deleted, or strokes were moved to better positions, in order to maximize an
“energy” function.

Hertzmann’s innovation was to treat each stroke as an active contour or snake.
Snakes are commonly used in Computer Vision to fit curves to edges in an image.
Like brush strokes under Hertzmann’s curved brush model, snakes are also typically
represented by a piecewise cubic spline whose position is determined by a set of
control points. When a snake is fitted to a edge, its control points are iteratively
updated to minimize an energy function comprising internal and external terms.
This process is known as relaxation. The internal term sums the magnitude of the
first and second derivatives over the snake. With respect to these quantities, the
snake will have high energy if its control points are irregularly spaced or it exhibits
high curvature. The external term measures the evidence for an edge based on the
portion of the image the snake is currently positioned over. A high value reflects
poor alignment with an edge.

Hertzmann adapted this relaxation idea, replacing the classical snake energy
function with his own weighted sum of terms. Given a source image S(x, y) and
an output painting O(x,y), the energy a particular painting (P ) comprising a set of
S strokes is

Eapp(P ) = ω1

width∑
x=1

height∑
y=1

∣∣P(x, y) − M(x,y)
∣∣ (1.3)

Earea(P ) = ω2

∑
S∈P

Area(S) (1.4)

Enstr(P ) = ω3 · |S|(in P) (1.5)

Ecov(P ) = ω4 · (unpainted pixels in P) (1.6)

The weights ω1..4 control the influence of each quality attribute and are deter-
mined empirically. The first term Eapp is a function of the appropriates of strokes,
based on the difference of vector functions P(x, y) and G(x,y). These functions
encode the RGB pixel color in the painting and source photograph, respectively.
The other subscripted energy terms E...(P ) refer to area of strokes (app), number
of strokes (nstr) and coverage of the canvas (cov). Expression S ∈ P refers to all
strokes comprising painting P . Summing the areas of strokes in Eq. (1.4) yields
a value analogous to the quantity of paint used in the painting. During optimiza-
tion, the minimum of this energy function is sought. A similar model of stroke re-
dundancy was proposed contemporaneously in the global approach of Szirányi et
al. [22], though using an alternative form of optimization (Monte Carlo Markov
Chain).

The optimization adopted by Hertzmann is an adaptation of Amini et al.’s snake
relaxation process [1]. This is a dynamic programming based algorithm that effi-
ciently scans the pixel neighborhood of each control point on the curve, and iden-
tified the “move” for a particular control point that will best minimize the energy
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function. In addition, each stroke is visited in a randomized order to determine in
the energy function would be better minimized if the stroke were deleted. A simi-
larly stochastic stroke addition process is also incorporated; further details are given
in [13].

Hertzmann’s optimization technique dramatically improves stroke accuracy and
retention of detail versus the local greedy approach described in Sect. 1.2.3. The
technique has a secondary benefit in that a painting optimized for a given image,
may be optimized over a slightly different image without incurring major changes
to the constituent strokes. This stability to change enables coherent video styliza-
tion; the current frame is optimized using the previous frame as an initialization.
However, the drawback of the approach is the significant computational expense of
the optimization.

1.3.2 Perceptually Based Painting

Paintings are abstractions of photorealistic scenes in which salient elements are em-
phasized. Artists commonly paint to capture the structure and elements of the scene
that they consider to be important; remaining detail is abstracted away in some dif-
ferential style or level of detail. For example, an artist would not depict every leaf
on a tree, or brick in a wall, present in the background of a composition.

The painterly rendering algorithms described so far are guided by intensity gradi-
ent magnitude (|�I (x, y)|), or similar statistical measures that exhibit responses to
high spatial frequencies in the image. They therefore have a tendency to emphasize
all high frequency content in the image, rather than the perceptually salient visual
content that an artist might depict. To produce renderings that ostensibly represent
artwork, it is often necessary to manually doctor this field to reduce fidelity in the
painting and enhance the composition [13].

Collomosse et al. proposed a global optimization technique using a Genetic Al-
gorithm (GA) to search the space of possible paintings, so locating the optimal paint-
ing for a given source image [6]. Their optimality criterion measures the strength of
correlation between the level of detail in a painting and the salience map of its
source image. A salience map (sometimes referred to as importance map) is an au-
tomatically computed 2D field that encodes the perceptual significance of regions
within an image. Their optimization technique builds upon an earlier local greedy
approach to painting using salience maps [4].

Like most SBR approaches, the technique builds upon Haeberli’s abstraction of
a painting; an ordered list of strokes [8] (comprising control points, thickness, etc.
with color as a data dependent function of these). Under this representation the space
of possible paintings for a given source image is very high dimensional, and the
aforementioned optimality criterion makes this space extremely turbulent. Stochas-
tic searches that model evolutionary processes, such as GAs, are reasonable search
strategies in such situations; large regions of problem space can be covered quickly,
and local minima more likely to be avoided [14]. Furthermore the GA approach
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adopted allows different regions within a painting to be optimized independently,
and later combined to produce improved solutions in later generations.

The optimization proceeds as follows. First, a population of several hundred
paintings are initialized from the source image using a stochastic variant of Hertz-
mann’s curve stroke algorithm [12] (Sect. 1.2.3). The curved strokes are created
by hopping between pixels, with direction sampled from a Gaussian normal vari-
ate center upon Θ(x,y). Brush stroke length and order are also stochastically. The
random variates introduced into the stroke generation process generate a diverse
population of possible paintings, some of which are better than others.

The entire population is rendered, and edge maps of each painting are produced
by convolution with Gaussian derivatives, which serve as a quantitative measure of
local fine detail. The generated maps are then compared to a precomputed salience
map of the source image. The mean squared error (MSE) between maps is used as
the basis for evaluating the fitness quality F(.) of a particular painting; the lower the
MSE, the better the painting:

F(I,ψ) = 1 − 1

N

∑∣∣S(I) − E
(
Ψ (I,ψ)

)∣∣2 (1.7)

The summation is computed over all N pixels in source image I . Ψ (.) is our
painterly process, which produces a rendering from I and a particular ordered list
of strokes ψ corresponding to an individual in the population. Function S(.) signi-
fies the salience mapping process described in Sect. 2.2.1, and E(.) the process of
convolution with Gaussian derivatives.

The population is evaluated according to Eq. (1.7) and individuals are ranked ac-
cording to fitness. The bottom 10 % are culled, and the best 10 % of the population
pass to the next generation. The middle 80 % are used to produce the remainder
of the next generation—two individuals are selected stochastically using roulette
wheel selection. These individuals are bred via genetic crossover, and subjected to
genetic mutation, to produce a novel offspring for the successive generation. Fig-
ure 1.7 demonstrates the results of the optimization, showing salient detail being
emphasized and non-salient detail being abstracted away over 70 iterations of the
optimization. Figure 1.8 shows the abstraction effect of the salience map versus a
process drive by intensity gradient.

A further contribution of Collomosse et al.’s system was a user-trainable measure
of image salience [10], recognizing the inherently subjective nature of image impor-
tant. This simultaneously measured salience and classified artifacts into categories
such as corner, edge, ridge and so on. This information could also be harnessed to
lay down different styles of stroke to depict different image artifacts.

1.4 Creative Control

Early artistic stylization papers broached the topic of impersonating the human
artist, or seeking to pass an “artistic Turing Test”. However, the major of contem-
porary techniques tend to now motivate their goal as offering a creative tool for use
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Fig. 1.7 Three iterations of refinement in the Genetic Painting process of Collomosse et al. From
left to right, 1st iteration, 30th iteration and 70th iteration. Images courtesy of Collomosse et al. [6],
Springer

Fig. 1.8 Global optimization using a Genetic Algorithm. Left: Source image, and a painterly ren-
dering produced using Litwinowicz’ method [17] based on intensity gradient; all fine details are
emphasized in the painting. Right: A rendering using the salience adaptive scheme of Collomosse
et al., with close-up on the sign (region A). The non-salient trees have been suppressed, but salient
detail on the sign is emphasized. In region B the salience map has been artificially suppressed to
illustrate the abstraction effect

by artists, rather than removing the artist from the loop completely. An interest-
ing question is then the degree of control a creative has over the artistic rendering
process, and how this is expressed.

User control is a trade-off between efficiency, freedom of expression and ease of
use, i.e. a system provide a way to obtain the user’s desired aesthetic while lessening
tedious, automatable tasks.

Currently most artistic rendering systems enable the user to influence the “style”
of presentation; using the terminology of Willats and Durand [24]. Willats and Du-
rand refer to the rendering process as a mapping between a scene—a reference im-
age in our case and a set of marks with attributes (color, color gradient, relative
depth, etc.). The link between the scene and the marks is the style. Other higher
level aspects of the scene such as geometry and composition are typically not ma-
nipulated, though there has been some progress in this area [5, 27].

One may consider this control over style to be expressed at either a low, medium
of high semantic level.
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1.4.1 Low-Level Control

The lowest level of SBR style control is the modification of individual parameters
that govern the heuristics on the stroke placement algorithm itself. For example,
the thresholds on maximum stroke length during Hertzmann’s stroke growth [12],
window sizes in Shiraishi and Yamaguchi’s method [20], the levels of low-pass
filtering in a multi-resolution method, or coefficients on a color transfer function.
For an expert user these offer precise control. However, the final rendering is an
emergent property of a complex process incorporating many such parameters. This
makes them counter-intuitive for non-expert users to set.

1.4.2 Mid-Level Control

Mid-level control enables algorithm parameters to be set at the level of the desired
style, for example specifying presets for algorithm parameters that are known to
generate output resembling a particular artistic genre. Hertzmann documents four
such presets for his curved brush algorithm [12], covering expressionist, impression-
ist, pointillism and colorist wash. It is also possible to define regions of an image
containing specific parameter presets. This is a broader definition of the behavior
seen in the “paint by optimization” approach, where differing levels of emphasis
may defined for different regions in the image.

Zeng et al. [25] presented a region-based painterly rendering algorithm that splits
the scene into a tree of regions, each region being classified by its semantic content.
This allowed the users to select different styles for human skin, buildings, vegeta-
tion or sky. They also use the decomposition to compute the orientation of strokes.
Region based control over stroke orientation is also a feature of interactive painting
environments such as AniPaint [18].

1.4.3 High-Level Control

High level control is goal directed, enabling intuitive control at a semantic level.
A user might desire a “bright, cheerful” or “dark, gloomy” painting in a particular
style, but not have the experience to select the individual parameters necessary to
create the effect. This kind of control was first demonstrated by Shugrina et al. in
the context of an interactive painting, where the user’s facial expression was used
to estimate user state within a 2D emotional space. A mapping was established
between this space, and a higher dimensional parameter space of an impasto oil
painterly algorithm [21] (Fig. 1.9). Another option is to let the painterly rendering
system provide some potential paintings and let the user rate them [3]. Then new
paintings are generated taking into account the score of each candidates, using an
interactive evolutionary algorithm.
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Fig. 1.9 High-level style control: a face picture is analyzed to define a mood. The mood is linked
to middle level strokes attributes to produce the painting using the technique of Shugrina et al. [21].
Image courtesy John Collomosse

1.5 Discussion

We have documented the development of SBR from the semi-automated paint sys-
tems of the early 1990s, to automated processes driven by low-level image measures
(such as image gradient) and higher level measures such as salience maps.

Many forms of visual art are created through the manual composition of ren-
dering marks, such as brush strokes. Stroke based rendering (SBR) has therefore
become a foundation of many early and contemporary automated artistic rendering
algorithms. Many of the subsequent chapters in the first part of this book describe
more sophisticated algorithms that build upon the SBR concepts presented here.

SBR focuses only on the lowest level of stylization; that of placing individual
marks (strokes) in a greedy or global manner. There are many other considerations
in the creation artwork, for example geometry, layout and scene composition, that
require analysis at a higher conceptual level [19, 24].

Due to their reliance on structural information in the image, a higher level of
spatial of temporal analysis is required to access these styles [2]. For example, in
the second part of this book we see techniques analyzing the image at the level
of the region or performing domain specialized structural analysis (e.g. for portrait
painting). Nevertheless these algorithms often incorporate some form of SBR in the
final presentation of the processed scene elements.
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