

Image and Video-Based Artistic Stylisation

Computational Imaging and Vision

Managing Editor

MAX VIERGEVER
Utrecht University, Utrecht, The Netherlands

Series Editors

GUNILLA BORGEFORS, Centre for Image Analysis, SLU, Uppsala, Sweden
DANIEL CREMERS, Technische Universität München, München, Germany
RACHID DERICHE, INRIA, Sophia Antipolis, France
KATSUSHI IKEUCHI, Tokyo University, Tokyo, Japan
REINHARD KLETTE, University of Auckland, Auckland, New Zealand
ALES LEONARDIS, ViCoS, University of Ljubljana, Ljubljana, Slovenia
STAN Z. LI, CASIA, Beijing & CIOTC, Wuxi, China
DIMITRIS N. METAXAS, Rutgers University, New Brunswick, NJ, USA
HEINZ-OTTO PEITGEN, CeVis, Bremen, Germany
JOHN K. TSOTSOS, York University, Toronto, Canada

This comprehensive book series embraces state-of-the-art expository works and advanced
research monographs on any aspect of this interdisciplinary field.

Topics covered by the series fall in the following four main categories:

• Imaging Systems and Image Processing
• Computer Vision and Image Understanding
• Visualization
• Applications of Imaging Technologies

Only monographs or multi-authored books that have a distinct subject area, that is where each
chapter has been invited in order to fulfill this purpose, will be considered for the series.

Volume 42

For further volumes:
www.springer.com/series/5754

http://www.springer.com/series/5754

Paul Rosin � John Collomosse
Editors

Image and
Video-Based
Artistic
Stylisation

Editors
Paul Rosin
School of Computer Science & Informatics
Cardiff University
Cardiff, UK

John Collomosse
Centre for Vision Speech & Signal Proc.
University of Surrey
Guildford, Surrey, UK

ISSN 1381-6446 Computational Imaging and Vision
ISBN 978-1-4471-4518-9 ISBN 978-1-4471-4519-6 (eBook)
DOI 10.1007/978-1-4471-4519-6
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012951684

Mathematics Subject Classification: 68U05, 68U10, 65D18

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

“Computers are useless. They can only give you answers.”
Pablo Picasso, 1881–1973.

Almost two hundred years ago, the advent of photography was heralded as the be-
ginning of the end for traditional painting. Rather than rendering painting obsolete,
the technology instead motivated a new era of abstraction in visual art, delivering—
among many other movements—Impressionism, Futurism, and Cubism, which con-
tinue to inspire contemporary art. Similarly, the astonishing achievements in visual
realism delivered by Computer Graphics have motivated new research into the ren-
dering of non-photorealistic styles. Non-photorealistic Rendering (NPR) is now a
firmly established field within Computer Graphics, spanning over two decades of
research. With origins in artistic simulation and scientific visualization, NPR has
now broadened to intersect computational photography, perceptual modelling and
interaction design. NPR research regularly appears in top tier graphics conferences
and journals, and has delivered commercial impact through digital photography and
mobile applications, and through the creative industries.

This book assembles a catalogue of classical and contemporary techniques ca-
pable of transforming 2D footage—i.e. images and video—into synthetic artwork.
This sub-discipline within NPR is often referred to in the literature as Artistic Ren-
dering, and sometimes by the more specific title Artistic Stylization. Even limiting
ourselves to the rendering of images and video primarily for aesthetic value, there
has been a huge diversification and development of the field over the past decade—
approximately the time since the last survey of the field was published.

One significant development has been the emergence of NPR as a truly multi-
disciplinary field; a focal point for the convergence of Computer Graphics, Com-
puter Vision, Human Computer Interaction and perceptual Psychology. The con-
vergence with Computer Vision is particularly relevant to this book’s topic of 2D
artistic stylization. The increasing complexity and diversity in style demanded by
techniques demands a correspondingly greater degree of sophistication in the pars-
ing and extraction of information from source footage. In the mid-1990s when au-
tomated artistic stylization techniques began to emerge, there was a reliance upon

v

vi Preface

low-level image processing operators to guide the rendering process. In the early
2000s mid-level interpretation of imagery through image segmentation, perceptual
salience measures, and more sophisticated filtering operators yielded improved style
diversity and the robustness and temporal stability necessary to coherently stylize
video. As the field matures it is now common to see a fusion of even more sophis-
ticated image parsing, combined with careful interface design, recognizing the role
of artistic stylization as a practical creative tool. Consequently in recent years, this
research has begun to deliver commercial impact in major digital image and video
manipulation products.

The structure of this book echoes this categorization of artistic stylization re-
search. Part I focuses upon image stylization through the placement of marks (such
as strokes, hatches and stipples), or through non-linear filtering operators. This is
arguably the largest area of 2D stylization research, and also one of the most ac-
tive. Part II focuses on region-based techniques that require images to parsed into a
visual structure via interactive or automated algorithms. Regions may be shaded us-
ing a variety of gradient effects, or packed with rendering primitives such as strokes,
space filling curves, tiles and other marks. Furthermore, scene semantics may be de-
rived from regions enabling specialised rendering to be applied e.g. to enable portrait
rendering. Part III extends the discussion of both categories of stylization to video,
and explores both low-level methods based on optical flow, and mid-level methods
based on regions. In addition to processing real video into stylized animation, the is-
sue of processing existing animations into other stylized forms is discussed. Finally,
Part IV discusses the matter of evaluating NPR output. As the field of artistic styl-
ization matures, key questions include how to assess the benefits of a new proposed
approach, and how to assess the suitability of a particular approach to a particular
requirement or scenario. In this book we present complementary perspectives on the
matter of evaluating a rendering generated primarily for aesthetics. Finally, we dis-
cuss the emerging commercial impact of NPR “in the wild”; that is, the application
of NPR to real world scenarios. Crucially this requires consideration of the users of
NPR and its creative implications.

Picasso doubted the benefit of computers on the basis that they are merely pow-
erful calculating machines. Yet research in our field has shown that, enabled by such
machines, we can begin to ask new questions about art, computing, and their inter-
action. With advances in Vision, Machine Learning, and Human Factors merging
into this maturing sub-discipline with Computer Graphics, this is an exciting time
to be working in NPR.

Paul Rosin
John Collomosse

Cardiff University, UK
University of Surrey, UK

Acknowledgements

We would like to thank Reinhard Klette for encouraging us to start working on this
book, and also Jan Eric Kyprianidis whose help and technical expertise enabled us
to complete it.

vii

Contents

Part I Strokes, Marks and Filters for Artistic Stylization

1 Stroke Based Painterly Rendering 3
David Vanderhaeghe and John Collomosse

2 A Brush Stroke Synthesis Toolbox 23
Stephen DiVerdi

3 Halftoning and Stippling . 45
Oliver Deussen and Tobias Isenberg

4 Non-photorealistic Shading and Hatching 63
Victor Ostromoukhov

5 Artistic Stylization by Nonlinear Filtering 77
Jan Eric Kyprianidis

6 NPR for Traditional Artistic Genres 103
Eugene Zhang

Part II Stylization from Structure

7 Region-Based Abstraction . 125
David Mould

8 Gradient Art: Creation and Vectorization 149
Pascal Barla and Adrien Bousseau

9 Depiction Using Geometric Constraints 167
Craig S. Kaplan

10 Artificial Mosaic Generation . 189
Giovanni Puglisi and Sebastiano Battiato

11 Non-photorealistic Rendering with Reduced Colour Palettes 211
Yu-Kun Lai and Paul L. Rosin

ix

x Contents

12 Artistic Rendering of Portraits . 237
Mingtian Zhao and Song-Chun Zhu

Part III Stylized Animations

13 Temporally Coherent Video Stylization 257
Pierre Bénard, Joëlle Thollot, and John Collomosse

14 Computer-Assisted Repurposing of Existing Animations 285
Daniel Sýkora and John Dingliana

Part IV Evaluation and Impact of Artistic Stylization

15 Evaluating and Validating Non-photorealistic and Illustrative
Rendering . 311
Tobias Isenberg

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art
History . 333
Peter Hall and Ann-Sophie Lehmann

17 NPR in the Wild . 353
Holger Winnemöller

Erratum to: Artistic Rendering of Portraits E1
Mingtian Zhao and Song-Chun Zhu

References . 375

Index . 395

Contributors

Pascal Barla Inria Bordeaux, Talence Cedex, France

Sebastiano Battiato University of Catania, Catania, Italy

Pierre Bénard University of Toronto, Toronto, ON, Canada

Adrien Bousseau Inria Sophia Antipolis, Sophia Antipolis Cedex, France

John Collomosse Centre for Vision Speech and Signal Processing, University of
Surrey, Guildford, Surrey, UK

Oliver Deussen Dept. of Computer and Information Science, University of Kon-
stanz, Konstanz, Germany

John Dingliana Trinity College Dublin, Dublin 2, Ireland

Stephen DiVerdi Adobe Systems Inc., San Francisco, CA, USA

Peter Hall Department of Computer Science, University of Bath, Bath, UK

Tobias Isenberg INRIA Saclay, Orsay, France

Craig S. Kaplan University of Waterloo, Waterloo, Ontario, Canada

Jan Eric Kyprianidis Hasso-Plattner-Institut, University of Potsdam, Potsdam,
Germany

Yu-Kun Lai School of Computer Science and Informatics, Cardiff University,
Cardiff, UK

Ann-Sophie Lehmann Department of Media and Culture Studies, University of
Utrecht, Utrecht, The Netherlands

David Mould Carleton University, Ottawa, Canada

Victor Ostromoukhov CNRS/Université Claude Bernard Lyon 1, Villeurbanne,
France

Giovanni Puglisi University of Catania, Catania, Italy

xi

xii Contributors

Paul L. Rosin School of Computer Science and Informatics, Cardiff University,
Cardiff, UK

Daniel Sýkora FEE, DCGI, CTU in Prague, Praha 2, Czech Republic

Joëlle Thollot LJK, INRIA, Grenoble University, Saint Ismier, France

David Vanderhaeghe IRIT, Université de Toulouse, Toulouse CEDEX 9, France

Holger Winnemöller Adobe Systems, Inc., Seattle, USA

Eugene Zhang School of Electrical Engineering and Computer Science, Oregon
State University, Corvallis, OR, USA

Mingtian Zhao University of California, Los Angeles, CA, USA

Song-Chun Zhu University of California, Los Angeles, CA, USA

Part I
Strokes, Marks and Filters for Artistic

Stylization

Part I of this book focuses on the generation of synthetic artwork using filtering or
other low-level image analysis. In many cases, artistic renderings are produced by
placing a multitude of small marks (hatches, stipples, painterly brush strokes) on a
virtual canvas. The placement of the marks reacts to the image content via heuristics
that seek to emulate the placement of marks by a human artist. In other cases, mor-
phological or anisotropic filtering operators perform edge-preserving simplification
of the image to create a stylized appearance.

Stroke based painterly rendering of Annecy, France; regular venue of the
ACM/Eurographics Symposium on Non-photorealistic Animation and Rendering
(NPAR). Produced using the genetic algorithm described in Sect. 1.3.2

Chapter 1
Stroke Based Painterly Rendering

David Vanderhaeghe and John Collomosse

1.1 Introduction

Stroke based Rendering (SBR) is the process of synthesizing artwork by composit-
ing rendering marks (such as lines, brush strokes, or even larger primitives such
as tiles) upon a digital canvas. SBR under-pins many Artistic Rendering (AR) al-
gorithms, especially those algorithms seeking to emulate traditional brush-based
artistic styles such as oil painting.

The SBR paradigm was proposed in the early 1990s by Paul Haeberli [8], in
the context of his semi-automated ‘Paint By Numbers’ painting environment that
sought to rendering impressionist paintings from photographs. Although this work
is now regarded as having catalyzed the field of AR, Haeberli’s stated intention
was to improve the richness of manually created digital paintings. Such paintings
frequently lacked color depth, which Haeberli attributed to a prohibitively paintings
lacked lengthy ‘time to palette’; the time taken by the user to select a new color.

Haeberli’s concept was simple but effective. The user interacts with a canvas of
identical size to the source photograph they wish to render in a painterly style. Each
time the user clicks to place a brush stroke on the digital canvas, the color of that
stroke is sampled from the corresponding position in the source photograph. The
strokes are much larger than the pixels from which the color is sampled, and this
leads to an abstraction of detail reminiscent of that seen in real paintings. Further-
more, the noise inherent in the sampling of individual pixel color leads to a color
variation reminiscent of the impressionist style (this can be further exaggerated by
addition of Gaussian noise to the RGB values of the color).

D. Vanderhaeghe (�)
IRIT, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse CEDEX 9, France
e-mail: vdh@irit.fr

J. Collomosse
Centre for Vision Speech and Signal Processing, University of Surrey, Guildford,
Surrey GU2 7XH, UK
e-mail: j.collomosse@surrey.ac.uk

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_1,
© Springer-Verlag London 2013

3

mailto:vdh@irit.fr
mailto:j.collomosse@surrey.ac.uk
http://dx.doi.org/10.1007/978-1-4471-4519-6_1

4 D. Vanderhaeghe and J. Collomosse

Fig. 1.1 Stroke based Rendering. Left: Impressionist rendering created interactively using Hae-
berli’s Paint by Numbers algorithm [8]. The source image in the top-right is rendered as the user
clicks upon the canvas with pre-selected stroke sizes. Right: Driving the interactive elements of
this process using a pseudo-random number generator will cause loss of salient detail [9]

Table 1.1 Haeberli’s
representation of a painting as
an ordered list of strokes
underpins many later SBR
algorithms

Attribute Name Derived

P = (x, y) stroke seed position Manually

s stroke scale Manually

θ = Θ(x,y) stroke orientation Automatically

c RGB color Automatically

o stroke order Manually

Haeberli’s system not only automates the selection of color, but also drives other
stroke attributes such as orientation. In impressionist artwork, strokes are often
painting tangential to edges in the scene. This can be emulated by running an edge
detector (e.g. the Sobel operator) over the grayscale source photograph I (x, y):

Θ(x,y) = atan

(
δI

δy

/
δI

δx

)
(1.1)

i.e. strokes are painted so that their longest axis is orthogonal to Θ(x,y). Fig-
ure 1.1 illustrates the effect achieved using an open implementation of Haeberli’s
system.1

Note that in Haeberli’s system the user selects the size of stroke, the position on
the canvas, and the order in which strokes are laid down. The set of stroke attributes
are summarized in Table 1.1.

Under Haeberli’s framework, strokes behave rather like ‘rubber stamps’—an im-
age of a stroke is painted centered at P and oriented by θ . The texture and visual
properties of the stroke (beyond the color) are decoupled from the representation

1Available at http://kahlan.eps.surrey.ac.uk/EG2011.

http://kahlan.eps.surrey.ac.uk/EG2011

1 Stroke Based Painterly Rendering 5

of the ordered stroke list. This representation is therefore highly versatile and can
be used to represent pastel, crayon, oil paint etc. Later, more sophisticated AR al-
gorithms sought to automate beyond these paint daubs, to produce elegant curved
brush strokes [12]. We discuss these approaches later in Sect. 1.2.3.

In this chapter we restrict ourselves solely to the matter of semi-automatic or
automatic stroke placement. We briefly consider the simple texturing of strokes,
but refer the reader to Chap. 2 for a more detailed discussion of brush and media
simulation. In line with most AR research papers, we consider the matters of stroke
rendering and stroke placement as decoupled.

1.2 Iterative Approaches to Automatic Painting

Haeberli’s interactive systems catalyzed the development of fully automated
painterly rendering algorithms, raising research questions such as “can the user
be left out of the rendering work-flow?” and if so, “to what degree is it desirable
to do so?”. As we describe later in Chap. 13, increased automation has also opened
up the possibility of video stylization. The issue of user control in discussed further
Sect. 1.4.

A trivial adaptation to fully automate Haeberli’s pipeline is to drive the values of
manually set attributes with a pseudo-random number generator [9]. However, ran-
domizing the order of strokes and their sizes can cause a loss of important (‘salient’)
detail in the image as Fig. 1.1 illustrates.

A human artist will typically over-paint fine strokes, on top of coarser strokes, to
depict fine important details in the rendering. Therefore we can link rendering order
and stroke size to a simple automated measure of detail derived from the image.
Since we already compute first derivative edge information to derive Θ(x,y) we
can also derive a measure of edge magnitude |�I (x, y)|:

∣∣�I (x, y)
∣∣ =

(
δI

δx

2

+ δI

δy

2) 1
2

(1.2)

Strokes should be scaled size in inverse proportion to |�I (x, y)|. The stroke order-
ing should be modified so as to paint smaller strokes later, over-painting coarser
details.

1.2.1 Automated Impressionist Painting

Litwinowicz published the first automated painterly rendering algorithm in 1997
[17]. Litwinowicz’ technique not only automated the rendering process, reduc-
ing user interaction to parameter setting, but also extended painterly rendering
to video. We describe the latter aspects of the algorithm in further detail within
Chap. 13.

6 D. Vanderhaeghe and J. Collomosse

Fig. 1.2 Stroke detail in impressionist rendering. Comparison of painting via Litwinowicz’
method [17] with and without interpolation of orientation gradient. © 1997 ACM, images used
by permission

Litwinowicz addresses the stroke placement and ordering problem in a straight-
forward manner. Pixel locations are sub-sampled in a regular grid, and a stroke gen-
erated at each sampled location. In practice, strokes are generated densely typically
at every other pixel location. These strokes are rectangular in shape, and rendered
in a random order. As performed by Haeberli’s system, the color and orientation of
each stroke is determined automatically. The latter using the Sobel operator (first
derivative of intensity) as per Eq. (1.1).

To prevent loss of detail, each stroke is clipped against strong edges in the image.
These are detected via thresholding field |�I (x, y)| at a constant value (Eq. (1.2)).
The stroke may be thought of as a rectangle centered upon the initial stroke position,
and oriented to align with the local edges in the image. The rectangle extends from
the center position outward until a strong edge is met or the stroke exceeds a maxi-
mum length. This process prohibits strokes to cross strong image edges, preventing
loss of detail through “coloring outside the lines”.

Unfortunately the gradient field Θ(x,y) (Eq. (1.1)) does not offer reliable values
over the whole image, and provides a noisy estimate when the source image gradient
varies smoothly, or not at all. To provide smooth direction flow and mitigate noise,
a more robust direction flow computation is usually required.

Gradient direction is reliable when the magnitude of edge gradient |�I (x, y)|
is high, i.e. close to image edges and other high frequency artifacts. A practical
approach to obtain a cleaner direction flow is to estimate the gradient direction local
to such artifacts and interpolate elsewhere. Litwinowicz proposed the use of thin-
plate spline interpolation [17], resulting in an improved aesthetic (Fig. 1.2). The
mathematics of this interpolation are covered in more detail within Chap. 8.

Radial basis function are also well adapted to perform directional interpolation,
and were explored by Hays and Essa [11] for video painting. But interpolation of
vector fields δI

δx
or δI

δy
do not provide results consistent with the fact we only care

about orientation angle; considering the direction flow as a tensor field provides
better results as described by Kagaya et al. [16]. This extends earlier work exploring
the interactive editing of the directional field by Zhang et al. [26].

1 Stroke Based Painterly Rendering 7

Fig. 1.3 The iterative approach of Shiraishi and Yamaguchi [20]. (a) Source image, (b) pixel color
for four sample pixels, (c) difference between the pixel color and surrounding pixel colors is stored
in an array, (d) moment analysis of the array gives a rectangle with the same moments, (e) for each
anchor point, the attributes of the rectangle computed for this pixel are read to render the stroke

1.2.2 Painterly Rendering Using Image Moments

Shiraishi and Yamaguchi [20] proposed an alternative mechanism to orient and scale
strokes, that does not rely upon edge gradient. Rather, they rely upon 2D statistical
moments computed local to each stroke; an approach suggested earlier by Treavett
and Chen [23]. Shiraishi and Yamaguchi compute, for each pixel p of the source
image, the difference in color between p and pixels around p in a window of user
specified scale. The result of each difference is stored in an array A of the same size
of the window as indicated in Fig. 1.3.

The system computes the 2D central moments of A to define a rectangular stroke
that approximates the region of similar color in the neighborhood of p. Strokes
are aligned so that their principal axis is aligned with the principal eigenvector of
the difference array. The output image may be over-painted in several passes from
coarse scales, to finer scales, reminiscent of Hertzmann’s multi-resolution paint pro-
cess (described shortly in Sect. 1.2.3). As with most painterly rendering algorithms,
the stroke color is sampled locally from the source image.

1.2.3 Multi-resolution Painting Using Curved Strokes

Early painterly rendering algorithms [8, 17, 23] were limited to placing simple daubs
of paint. Essentially these were 2D sprites (textured rectangles) resembling a brush
stroke, that were scaled and oriented by the stroke placement process.

Hertzmann proposed an alternative paradigm for painting in 1998 [12], that pro-
gressed painterly rendering with two key innovations. First, the painting process

8 D. Vanderhaeghe and J. Collomosse

uses long, curved β-spline strokes rather than sprites for painting. This greatly en-
hances the realism and aesthetics of the resulting renderings. Second, the painting
process was performed iteratively over multiple “layers” from coarse to fine. The
painting process for each layer was driven by a source image down-sampled to a
particular spatial resolution. For this reason this innovation is sometime referred to
as multi-resolution painterly rendering.

1.2.3.1 Curved Stroke Formation

As with prior work, Hertzmann’s algorithm makes independent decisions for each
stroke’s placement based on information in the source image local to the stroke posi-
tion. Execution proceeds in a local, greedy manner with each stroke being rendered
in a pre-determined randomized order (after [17]). We first describe how a single
layer is painted; this process is summarized in Algorithm 1.1.

Each stroke is generated independently via a process of “hopping” between pix-
els, reminiscent of Line Integral Convolution (LIC). Given a starting point or “seed”
pixel, the stroke by jumping from the current (seed) pixel to another pixel a pre-
determined distance away. The direction of jump is derived from the gradient field
Θ(x,y) of Eq. (1.1). Specifically the jump is made orthogonal to this angle in order
that the stroke is formed tangential to edge structure in the source image. At each
hop there is 180° ambiguity in the hopping direction, the direction of hop that mini-
mize the curvature of the stroke being formed is taken. Stroke growth is terminated
when the color of the image pixels departs significantly from the color of the stroke
being formed. A minimum and maximum size for strokes is also enforced.

Each pixel visited forms a control point for a spline curve. Thus the eventual
shape of the stroke is defined by a path which is built by following the direction
flow. In Hertzmann’s method these control points are approximated by a β-spline,
which helps to smooth noise. However, other closely related painting techniques
that perform a similar hopping (e.g. the genetic paint system of Sect. 1.3.2 use an
interpolating Catmull–Rom spline for greater accuracy.

1.2.3.2 Coarse to Fine Painting

Hertzmann’s algorithm generates layers of paint strokes, from coarse to fine. Prior to
painting, a low-pass pyramid is generated by blurring and sub-sampling the source
image at a range of decreasing scales. Typically octave intervals are used for each
level of the pyramid. For example, a low-pass pyramid of four levels would comprise
images {1,2,4,8} times smaller than the original. The coarsest rendering layer is
generated from the most heavily sub-sampled image.

The coarsest painting layer is first generated by creating strokes for all pixels,
using the algorithm described in Sect. 1.2.3.1. Stroke size (radius) is proportional to
the degree of sub-sampling used at the corresponding layer of the low-pass pyramid,
and reflects the scale of visual features expected to occur at that level.

1 Stroke Based Painterly Rendering 9

Algorithm 1.1 Hertzmann’s algorithm for build the list of control point that form a
brush stroke, used in Algorithm 1.2. Here the functions Isrc(.) and Ipaint(.) denote
the RGB pixels values in the source image and painting respectively

1: function MAKESTROKE(x, y) return stroke
2: d ← Θ(x,y)

3: strokeColor ← Iref(x, y)

4: stroke.pushControlPoint(x, y)
5: for i: 1 → maxSize − 1 do
6: (x, y) ← (x, y) + d

7: d ′ ← Θ(x,y)

8: d ← fdird + (1 − fdir)d
′

9: srcColor = Isrc(x, y)

10: paintColor = Ipaint(x, y)

11: if i >= minimumSize AND |srcColor − strokeColor| > |srcColor −
paintColor| then

12: break
13: end if
14: stroke.pushControlPoint(x, y)
15: end for
16: end function

Subsequent layers are then painted by compositing over strokes already laid
down in previous layers. However, unlike the first (coarsest) layer, the algorithm
does not paint the entire layer (as this would entirely occlude the previously painted
layer). Rather, the algorithm selects which areas must be repainted by monitoring
differences between the current and previous layers in the low-pass pyramid. This
is equivalent to detecting which visual details have been revealed by moving to a
higher resolution layer in the low-pass pyramid. Specifically, to trigger the start of a
new stroke, Hertzmann’s approach computes the sum of squares differences over a
cell of size equivalent to the stroke’s radius. If this difference is over a user defined
threshold, then the stroke is painted. The algorithm is summarized in Algorithm 1.2.

Figure 1.4 illustrates the results of the painting process across successive layers
via this multi-resolution algorithm. The main drawback is the repeated over-painting
of edges and discontinuities in the scene. Strokes painted at such discontinuities
cause large differences between successive layers, so triggering the edge for re-
painting at each level of detail. To mitigate against this Huang et al. [15] propose
to use multiple brush sizes per layer, rather than a constant size. Huang et al. define
a grid with varying cell size (Fig. 1.5) and draw strokes starting in each cell with a
radius function of grid size. Cell size is adapted to reflect a pre-supplied importance
map. A trivial importance map might be simply the edge magnitude field |�I (x, y)|,
however, as discussed later, such maps are better derived from automated salience
measures. Each cell is divided along the longest axis until the sum of the importance

10 D. Vanderhaeghe and J. Collomosse

Algorithm 1.2 Hertzmann’s coarse to fine painting algorithm [12]
1: function PAINTIMAGE(Iin)
2: for all R in Radius from largest to smallest do
3: Iref ← F(Iin,R)

4: GridSize ← R

5: for all cell C of the grid spacing GridSize do
6: A ← ∑

(i,j)∈C |P(i, j) − Iref(i, j)|
7: if A > t then � t is a user defined threshold
8: (x, y) ← argmax(i,j)∈C |P(i, j) − Iref(i, j)|
9: S ← makeStroke(x, y)

10: paintStroke(P , S) � paint S onto the virtual canvas P

11: end if
12: end for
13: end for
14: end function

map it covers is below a user defined threshold, or a minimum size is reached. The
axis aligned cutting line position i with

arg min
i

(
Ms

i + δ

Ml
i + δ

)(
As

i

Al
i

)

Ms
i and Ml

i denote respectively the average importance over respectively the smaller
and the larger divisions of the cell, and δ is a small constant to prevent from divide
by zero. As

i and Al
i are the respective areas of the smaller and larger divisions of

the cell. Cells that are larger than a maximum allowed size are also subdivided
(Fig. 1.5). Having selected stroke scale and position using this process, painting
proceeds as per Sect. 1.2.3.1.

1.2.4 Transformations on the Source Image

In the algorithms described so far, the raw source image is used to drive the ren-
dering process. However, pre-filtering the source image can improve the painterly
result. Basic filters that remove noise and small color variations in the image are
good candidates for such a pre-process. Such noise can trigger the generation of
strokes with spurious color or inappropriate size. Chapter 5 describes a variety of
filters such as Gaussian blur, the bilateral filter and morphological operators that are
well suited to filter the source images of a SBR system.

Other transformations include color shift. Zhao and Zhu [27] propose to boost
color saturation proportional to the underlying importance map computed for the
source image. The SBR process of point sampling color, and generating marks of
greater size than one pixel, may be regarding as an integration or low-pass filtering
process. Such a process has a propensity to wash out colors, and so this process can
help emphasize important details in the final rendering.

1 Stroke Based Painterly Rendering 11

Fig. 1.4 Hertzmann’s multi-resolution curved brush approach [12]. From top to bottom, left to
right. The source image, three successive layers of the painterly rendering process demonstrating
the over-painting, and the final rendering. Courtesy of chefranden@flickr.com

1.2.5 Texturing Spline Strokes

The curved brush strokes formed by stroke growth algorithm, such as variants of
Hertzmann’s algorithm [12], are interpolated with smooth (C1) continuity using a
β-spline or Catmull–Rom spline [7]. Chapter 2 describes a number of brush models,

12 D. Vanderhaeghe and J. Collomosse

Fig. 1.5 Grids computed using Huang’s approach [15]. Importance map (left) and the grid derived
from the importance map (middle) and maximum cell size constraints. The input image as per
Fig. 1.4

of increasing sophistication, that may be swept along this curved path to emulate a
variety of media types. However, in many SBR implementations a simple texture
mapping suffices to produce a reasonable aesthetic.

As the piecewise cubic spline of the stroke is commonly expressed in a paramet-
ric form, it is trivial to compute a normalized local coordinate system (u, v) for the
purpose of texture mapping. The u coordinate of the texture map spans the total path
of the curve, and the v coordinate is expressed along the normal. Note that u should
be an arc-length parameterization to ensure smooth texture mapping. The direction
of the normal can be obtained via the second derivative of the curve at any point.
The spatial extent of the v axis is constant, and relates directly to the stroke ra-
dius; i.e. the radius of a circle that would cover the stroke’s footprint if swept along
the curved path of the stroke. This radius is half the stroke’s apparent width when
rendered.

Sampling (u, v) at regular intervals yields a simple quad-strip sweeping along
the path. A triangular strip may be similarly constructed. Either forms the basis for
texture mapping. Usually the texture applied is a digitally scanned brush stroke, with
an alpha mask to enable overlapping strokes to be seamlessly rendered. In addition
to regular texture mapping, it is also possible to introduce a bump map texture onto
the same coordinate system usually with minimal additional implementation com-

1 Stroke Based Painterly Rendering 13

Fig. 1.6 Example spline strokes textured along a quad-strip defined from the curved stroke path

plexity in the graphics library (e.g. OpenGL). Figure 1.6 provides some examples
of textured strokes.

1.3 Global Optimization for SBR

The algorithms discussed so far place strokes in a local greedy manner according
to a set of heuristics. These heuristics encourage aesthetically beneficial behavior,
such as painting fine details last with small strokes, or aligning strokes tangential to
edges. By designing such heuristics within the algorithm, we aim to guide the output
emerging from the process towards a desired aesthetic. However, because rendering
decisions are made independently on a per-stroke basis, it may be difficult to ensure
the generation of that aesthetic.

An alternative approach, discussed in this section, is to consider rendering as an
optimization (search) problem. In SBR our final output is a visualization of an or-
dered list of strokes (and associated attributes). Finding the rendering that is in some
sense exhibits the “optimal” or intended aesthetic for a given image is equivalent to
finding the correct sequence of stroke configurations. Quantitatively assessing the
optimality of an artistic rendering is neither a trivial nor even a well-defined task,
as any art critic might attest! Nevertheless, given a source image, a number of low-
level criteria may be expressed by which we may judge the quality of the resulting
artistic stylization. For example, measuring the degree to which important details in
the source image and depicted within the painting. Or ensuring that where possible,
long expressive strokes are used with minimal over-painting.

Defining the optimality of a rendering (i.e. stroke configuration) is one hurdle to
overcome when tackling SBR as an optimization problem. The other is to decide
how to perform the global optimization over all strokes; a very high dimensional
search space. We now discuss two early approaches to painterly rendering that pro-
pose solutions to these key problems.

1.3.1 Paint by Relaxation

Although optimization based painting was suggested as early as Haeberli’s seminal
paper [8], the first algorithmic solution did not appear in the literature until almost

14 D. Vanderhaeghe and J. Collomosse

ten years later. Hertzmann proposed a paint by relaxation process [13] in which
his curved stroke algorithm (Sect. 1.2.3) was used to create an initial painting. The
strokes comprising that painting were then iteratively modified; either strokes were
added or deleted, or strokes were moved to better positions, in order to maximize an
“energy” function.

Hertzmann’s innovation was to treat each stroke as an active contour or snake.
Snakes are commonly used in Computer Vision to fit curves to edges in an image.
Like brush strokes under Hertzmann’s curved brush model, snakes are also typically
represented by a piecewise cubic spline whose position is determined by a set of
control points. When a snake is fitted to a edge, its control points are iteratively
updated to minimize an energy function comprising internal and external terms.
This process is known as relaxation. The internal term sums the magnitude of the
first and second derivatives over the snake. With respect to these quantities, the
snake will have high energy if its control points are irregularly spaced or it exhibits
high curvature. The external term measures the evidence for an edge based on the
portion of the image the snake is currently positioned over. A high value reflects
poor alignment with an edge.

Hertzmann adapted this relaxation idea, replacing the classical snake energy
function with his own weighted sum of terms. Given a source image S(x, y) and
an output painting O(x,y), the energy a particular painting (P) comprising a set of
S strokes is

Eapp(P) = ω1

width∑
x=1

height∑
y=1

∣∣P(x, y) − M(x,y)
∣∣ (1.3)

Earea(P) = ω2

∑
S∈P

Area(S) (1.4)

Enstr(P) = ω3 · |S|(in P) (1.5)

Ecov(P) = ω4 · (unpainted pixels in P) (1.6)

The weights ω1..4 control the influence of each quality attribute and are deter-
mined empirically. The first term Eapp is a function of the appropriates of strokes,
based on the difference of vector functions P(x, y) and G(x,y). These functions
encode the RGB pixel color in the painting and source photograph, respectively.
The other subscripted energy terms E...(P) refer to area of strokes (app), number
of strokes (nstr) and coverage of the canvas (cov). Expression S ∈ P refers to all
strokes comprising painting P . Summing the areas of strokes in Eq. (1.4) yields
a value analogous to the quantity of paint used in the painting. During optimiza-
tion, the minimum of this energy function is sought. A similar model of stroke re-
dundancy was proposed contemporaneously in the global approach of Szirányi et
al. [22], though using an alternative form of optimization (Monte Carlo Markov
Chain).

The optimization adopted by Hertzmann is an adaptation of Amini et al.’s snake
relaxation process [1]. This is a dynamic programming based algorithm that effi-
ciently scans the pixel neighborhood of each control point on the curve, and iden-
tified the “move” for a particular control point that will best minimize the energy

1 Stroke Based Painterly Rendering 15

function. In addition, each stroke is visited in a randomized order to determine in
the energy function would be better minimized if the stroke were deleted. A simi-
larly stochastic stroke addition process is also incorporated; further details are given
in [13].

Hertzmann’s optimization technique dramatically improves stroke accuracy and
retention of detail versus the local greedy approach described in Sect. 1.2.3. The
technique has a secondary benefit in that a painting optimized for a given image,
may be optimized over a slightly different image without incurring major changes
to the constituent strokes. This stability to change enables coherent video styliza-
tion; the current frame is optimized using the previous frame as an initialization.
However, the drawback of the approach is the significant computational expense of
the optimization.

1.3.2 Perceptually Based Painting

Paintings are abstractions of photorealistic scenes in which salient elements are em-
phasized. Artists commonly paint to capture the structure and elements of the scene
that they consider to be important; remaining detail is abstracted away in some dif-
ferential style or level of detail. For example, an artist would not depict every leaf
on a tree, or brick in a wall, present in the background of a composition.

The painterly rendering algorithms described so far are guided by intensity gradi-
ent magnitude (|�I (x, y)|), or similar statistical measures that exhibit responses to
high spatial frequencies in the image. They therefore have a tendency to emphasize
all high frequency content in the image, rather than the perceptually salient visual
content that an artist might depict. To produce renderings that ostensibly represent
artwork, it is often necessary to manually doctor this field to reduce fidelity in the
painting and enhance the composition [13].

Collomosse et al. proposed a global optimization technique using a Genetic Al-
gorithm (GA) to search the space of possible paintings, so locating the optimal paint-
ing for a given source image [6]. Their optimality criterion measures the strength of
correlation between the level of detail in a painting and the salience map of its
source image. A salience map (sometimes referred to as importance map) is an au-
tomatically computed 2D field that encodes the perceptual significance of regions
within an image. Their optimization technique builds upon an earlier local greedy
approach to painting using salience maps [4].

Like most SBR approaches, the technique builds upon Haeberli’s abstraction of
a painting; an ordered list of strokes [8] (comprising control points, thickness, etc.
with color as a data dependent function of these). Under this representation the space
of possible paintings for a given source image is very high dimensional, and the
aforementioned optimality criterion makes this space extremely turbulent. Stochas-
tic searches that model evolutionary processes, such as GAs, are reasonable search
strategies in such situations; large regions of problem space can be covered quickly,
and local minima more likely to be avoided [14]. Furthermore the GA approach

16 D. Vanderhaeghe and J. Collomosse

adopted allows different regions within a painting to be optimized independently,
and later combined to produce improved solutions in later generations.

The optimization proceeds as follows. First, a population of several hundred
paintings are initialized from the source image using a stochastic variant of Hertz-
mann’s curve stroke algorithm [12] (Sect. 1.2.3). The curved strokes are created
by hopping between pixels, with direction sampled from a Gaussian normal vari-
ate center upon Θ(x,y). Brush stroke length and order are also stochastically. The
random variates introduced into the stroke generation process generate a diverse
population of possible paintings, some of which are better than others.

The entire population is rendered, and edge maps of each painting are produced
by convolution with Gaussian derivatives, which serve as a quantitative measure of
local fine detail. The generated maps are then compared to a precomputed salience
map of the source image. The mean squared error (MSE) between maps is used as
the basis for evaluating the fitness quality F(.) of a particular painting; the lower the
MSE, the better the painting:

F(I,ψ) = 1 − 1

N

∑∣∣S(I) − E
(
Ψ (I,ψ)

)∣∣2 (1.7)

The summation is computed over all N pixels in source image I . Ψ (.) is our
painterly process, which produces a rendering from I and a particular ordered list
of strokes ψ corresponding to an individual in the population. Function S(.) signi-
fies the salience mapping process described in Sect. 2.2.1, and E(.) the process of
convolution with Gaussian derivatives.

The population is evaluated according to Eq. (1.7) and individuals are ranked ac-
cording to fitness. The bottom 10 % are culled, and the best 10 % of the population
pass to the next generation. The middle 80 % are used to produce the remainder
of the next generation—two individuals are selected stochastically using roulette
wheel selection. These individuals are bred via genetic crossover, and subjected to
genetic mutation, to produce a novel offspring for the successive generation. Fig-
ure 1.7 demonstrates the results of the optimization, showing salient detail being
emphasized and non-salient detail being abstracted away over 70 iterations of the
optimization. Figure 1.8 shows the abstraction effect of the salience map versus a
process drive by intensity gradient.

A further contribution of Collomosse et al.’s system was a user-trainable measure
of image salience [10], recognizing the inherently subjective nature of image impor-
tant. This simultaneously measured salience and classified artifacts into categories
such as corner, edge, ridge and so on. This information could also be harnessed to
lay down different styles of stroke to depict different image artifacts.

1.4 Creative Control

Early artistic stylization papers broached the topic of impersonating the human
artist, or seeking to pass an “artistic Turing Test”. However, the major of contem-
porary techniques tend to now motivate their goal as offering a creative tool for use

1 Stroke Based Painterly Rendering 17

Fig. 1.7 Three iterations of refinement in the Genetic Painting process of Collomosse et al. From
left to right, 1st iteration, 30th iteration and 70th iteration. Images courtesy of Collomosse et al. [6],
Springer

Fig. 1.8 Global optimization using a Genetic Algorithm. Left: Source image, and a painterly ren-
dering produced using Litwinowicz’ method [17] based on intensity gradient; all fine details are
emphasized in the painting. Right: A rendering using the salience adaptive scheme of Collomosse
et al., with close-up on the sign (region A). The non-salient trees have been suppressed, but salient
detail on the sign is emphasized. In region B the salience map has been artificially suppressed to
illustrate the abstraction effect

by artists, rather than removing the artist from the loop completely. An interest-
ing question is then the degree of control a creative has over the artistic rendering
process, and how this is expressed.

User control is a trade-off between efficiency, freedom of expression and ease of
use, i.e. a system provide a way to obtain the user’s desired aesthetic while lessening
tedious, automatable tasks.

Currently most artistic rendering systems enable the user to influence the “style”
of presentation; using the terminology of Willats and Durand [24]. Willats and Du-
rand refer to the rendering process as a mapping between a scene—a reference im-
age in our case and a set of marks with attributes (color, color gradient, relative
depth, etc.). The link between the scene and the marks is the style. Other higher
level aspects of the scene such as geometry and composition are typically not ma-
nipulated, though there has been some progress in this area [5, 27].

One may consider this control over style to be expressed at either a low, medium
of high semantic level.

18 D. Vanderhaeghe and J. Collomosse

1.4.1 Low-Level Control

The lowest level of SBR style control is the modification of individual parameters
that govern the heuristics on the stroke placement algorithm itself. For example,
the thresholds on maximum stroke length during Hertzmann’s stroke growth [12],
window sizes in Shiraishi and Yamaguchi’s method [20], the levels of low-pass
filtering in a multi-resolution method, or coefficients on a color transfer function.
For an expert user these offer precise control. However, the final rendering is an
emergent property of a complex process incorporating many such parameters. This
makes them counter-intuitive for non-expert users to set.

1.4.2 Mid-Level Control

Mid-level control enables algorithm parameters to be set at the level of the desired
style, for example specifying presets for algorithm parameters that are known to
generate output resembling a particular artistic genre. Hertzmann documents four
such presets for his curved brush algorithm [12], covering expressionist, impression-
ist, pointillism and colorist wash. It is also possible to define regions of an image
containing specific parameter presets. This is a broader definition of the behavior
seen in the “paint by optimization” approach, where differing levels of emphasis
may defined for different regions in the image.

Zeng et al. [25] presented a region-based painterly rendering algorithm that splits
the scene into a tree of regions, each region being classified by its semantic content.
This allowed the users to select different styles for human skin, buildings, vegeta-
tion or sky. They also use the decomposition to compute the orientation of strokes.
Region based control over stroke orientation is also a feature of interactive painting
environments such as AniPaint [18].

1.4.3 High-Level Control

High level control is goal directed, enabling intuitive control at a semantic level.
A user might desire a “bright, cheerful” or “dark, gloomy” painting in a particular
style, but not have the experience to select the individual parameters necessary to
create the effect. This kind of control was first demonstrated by Shugrina et al. in
the context of an interactive painting, where the user’s facial expression was used
to estimate user state within a 2D emotional space. A mapping was established
between this space, and a higher dimensional parameter space of an impasto oil
painterly algorithm [21] (Fig. 1.9). Another option is to let the painterly rendering
system provide some potential paintings and let the user rate them [3]. Then new
paintings are generated taking into account the score of each candidates, using an
interactive evolutionary algorithm.

1 Stroke Based Painterly Rendering 19

Fig. 1.9 High-level style control: a face picture is analyzed to define a mood. The mood is linked
to middle level strokes attributes to produce the painting using the technique of Shugrina et al. [21].
Image courtesy John Collomosse

1.5 Discussion

We have documented the development of SBR from the semi-automated paint sys-
tems of the early 1990s, to automated processes driven by low-level image measures
(such as image gradient) and higher level measures such as salience maps.

Many forms of visual art are created through the manual composition of ren-
dering marks, such as brush strokes. Stroke based rendering (SBR) has therefore
become a foundation of many early and contemporary automated artistic rendering
algorithms. Many of the subsequent chapters in the first part of this book describe
more sophisticated algorithms that build upon the SBR concepts presented here.

SBR focuses only on the lowest level of stylization; that of placing individual
marks (strokes) in a greedy or global manner. There are many other considerations
in the creation artwork, for example geometry, layout and scene composition, that
require analysis at a higher conceptual level [19, 24].

Due to their reliance on structural information in the image, a higher level of
spatial of temporal analysis is required to access these styles [2]. For example, in
the second part of this book we see techniques analyzing the image at the level
of the region or performing domain specialized structural analysis (e.g. for portrait
painting). Nevertheless these algorithms often incorporate some form of SBR in the
final presentation of the processed scene elements.

20 D. Vanderhaeghe and J. Collomosse

References

1. Amini, A., Weymouth, T., Jain, T.: Using dynamic programming for solving variational prob-
lems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 9(12), 855–867 (1990)

2. Collomosse, J.P.: Higher level techniques for the artistic rendering of images and video. Ph.D.
thesis, University of Bath, UK (2004)

3. Collomosse, J.: Supervised genetic search for parameter selection in painterly rendering. In:
Proceedings EvoMUSART (LNCS), vol. 3907, pp. 599–610. Springer, Berlin (2006)

4. Collomosse, J., Hall, P.M.: Painterly rendering using image salience. In: Proc. Eurographics
UK, pp. 122–128 (2002)

5. Collomosse, J., Hall, P.M.: Cubist style rendering from photographs. IEEE Trans. Vis. Com-
put. Graph. 4(9), 443–453 (2003)

6. Collomosse, J.P., Hall, P.M.: Genetic Paint: A Search for Salient Paintings. In: Proceedings of
EvoWorkshops. Lecture Notes in Computer Science, vol. 3449, pp. 437–447. Springer, Berlin
(2005)

7. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann,
San Francisco (2002)

8. Haeberli, P.E.: Paint by numbers: abstract image representations. In: Computer Graphics (Pro-
ceedings of SIGGRAPH 90), pp. 207–214 (1990)

9. Haggerty, P.: Almost automatic computer painting. IEEE Comput. Graph. Appl. 11(6), 11–12
(1991)

10. Hall, P.M., Owen, M.J., Collomosse, J.P.: A trainable low-level feature detector. In: Proceed-
ings Intl. Conference on Pattern Recognition (ICPR), vol. 1, pp. 708–711. IEEE Press, New
York (2004)

11. Hays, J., Essa, I.: Image and video based painterly animation. In: Proc. NPAR, pp. 113–120
(2004)

12. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proceed-
ings of SIGGRAPH 98, Computer Graphics Proceedings. Annual Conference Series, pp. 453–
460 (1998)

13. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: NPAR 2000: First
International Symposium on Non Photorealistic Animation and Rendering, pp. 7–12 (2000)

14. Holland, J.: Adaptation in Natural and Artificial Systems. An Introductory Analysis with Ap-
plications to Biology, Control and Artificial Intelligence. University of Michigan Press, Ann
Arbor (1975)

15. Huang, H., Fu, T.N., Li, C.F.: Painterly rendering with content-dependent natural paint strokes.
Vis. Comput. 27(9), 861–871 (2011). doi:10.1007/s00371-011-0596-5

16. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P.J., Zhang, E.: Video
painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17(1),
74–87 (2011)

17. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of
SIGGRAPH 97, Computer Graphics Proceedings. Annual Conference Series, pp. 407–414
(1997)

18. O’Donovan, P., Hertzmann, A.: AniPaint: interactive painterly animation from video. IEEE
Trans. Vis. Comput. Graph. 18(3), 475–487 (2012)

19. Santella, A., DeCarlo, D.: Visual interest and NPR: an evaluation and manifesto. In: Proc.
NPAR, pp. 71–150 (2004)

20. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering based on local
source image approximation. In: NPAR 2000: First International Symposium on Non Photo-
realistic Animation and Rendering, pp. 53–58 (2000)

21. Shugrina, M., Betke, M., Collomosse, J.P.: Empathic painting: interactive stylization through
observed emotional state. In: NPAR 06, pp. 87–96. ACM, New York (2006). doi:10.1145/
1124728.1124744

22. Szirányi, T., Tóth, Z., Figueiredo, M., Zerubia, J., Jain, A.: Optimization of paintbrush render-
ing of images by dynamic MCMC methods. In: Proc. EMMCVPR, pp. 201–215 (2001)

http://dx.doi.org/10.1007/s00371-011-0596-5
http://dx.doi.org/10.1145/1124728.1124744
http://dx.doi.org/10.1145/1124728.1124744

1 Stroke Based Painterly Rendering 21

23. Treavett, S.M.F., Chen, M.: Statistical techniques for the automated synthesis of non-
photorealistic images. In: Proc. EGUK, pp. 201–210 (1997)

24. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graphics.
Axiomathes 15(3), 319–351 (2005)

25. Zeng, K., Zhao, M., Xiong, C., Zhu, S.C.: From image parsing to painterly rendering. ACM
Trans. Graph. 29(1), 2:1–2:11 (2009)

26. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces.
IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

27. Zhao, M., Zhu, S.C.: Sisley the abstract painter. In: NPAR’10: Proceedings of the 8th Interna-
tional Symposium on Non-Photorealistic Animation and Rendering, pp. 99–107. ACM, New
York (2010). doi:10.1145/1809939.1809951

http://dx.doi.org/10.1145/1809939.1809951

Chapter 2
A Brush Stroke Synthesis Toolbox

Stephen DiVerdi

2.1 Introduction

Digital painting has progressed by leaps and bounds since its humble begin-
nings [30]. What some of the original painting applications called “brushes” were
really simple line-drawing mechanisms based on the model of a circular tip, swept
along a path. Still, within these systems, artists prevailed to make impressive images
with the first inklings of a natural media style.

Things have advanced greatly since then. Much of the rest of this book deals with
the rise of non-photorealistic rendering, and in some cases specifically painterly ren-
dering, in which 3D models or 2D images and videos are processed automatically
to have the appearance of a piece of natural media artwork. On the other hand, tra-
ditional media artists who consider moving into the digital media world look for
the same level of expressive control and manual interaction that they have mastered
with physical brushes. From this perspective, painting engines that aim to replicate
or emulate real artistic tools represent the path forward, and there has been a corre-
spondingly large amount of research in the field.

However, it is not the case that brush strokes are only interesting to manual digital
painters. For example, in the automatic generation of painterly images from photos
or 3D models, many algorithms are based around the idea of stroke-based rendering
(SBR) [21], where the composition is broken down into a set of brush strokes that
combine to form the target output. The primary distinction between SBR and brush
simulation is that SBR assumes realistic brush strokes as an input to the algorithm,
whereas brush simulation is concerned with the synthesis of those realistic brush
strokes, but clearly the two areas are closely connected. SBR is discussed in detail
in Chap. 1.

S. DiVerdi (�)
Adobe Systems Inc., 601 Townsend St., San Francisco, CA 94107, USA
e-mail: stephen.diverdi@gmail.com

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_2,
© Springer-Verlag London 2013

23

mailto:stephen.diverdi@gmail.com
http://dx.doi.org/10.1007/978-1-4471-4519-6_2

24 S. DiVerdi

Algorithm 2.1 The swept stroke algorithm
1: function BASICSWEEP(S, d)
2: for i ← [1, n − 1] do
3: DRAWLINE(d, si , si+1)
4: end for
5: end function

Therefore, brush strokes are a sort of atomic unit of non-photorealistic rendering,
and brush stroke synthesis is a bread and butter algorithm that underlies the success
of many different applications.

The basic and most commonly used algorithm for constructing brush strokes will
be described in Sect. 2.2. It is a baseline for creating strokes that are parameterized
by some input path and a selected brush tip, and is the core of many commercial
applications and research systems. To go beyond this simple model, we will survey
the available technologies for more realistic brush stroke synthesis from the research
community in Sect. 2.3. In the remaining sections of the chapter, we will show step-
by-step how to implement a more complex, physically based model, and discuss
the tradeoffs at each stage of the process. By the end of this chapter, we will have
collected a set of algorithmic tools that will allow us to tailor a brush stroke synthesis
algorithm to satisfy constraints from real-world painting applications.

2.2 The Basic Brush Model

In the simplest case of brush stroke rendering, the user provides an input curve in the
form of a 2D trajectory, uniformly sampled in time, from an input device such as a
mouse or a tablet. The set S = {s1, . . . , sn} is the sequence of these 2D samples. The
goal is to make a stroke that follows this trajectory, with a simple circular brush of
diameter d . Then, given a function DRAWLINE(w,p,q) that draws a line of width
w from p to q (found in any 2D graphics package), the pseudocode in Algorithm 2.1
produces the desired result. See Fig. 2.1 for an illustration.

This model is fast and easy to implement, but also has some significant limita-
tions. For example, it does not properly draw transparent strokes, because of the
overlapping line endcaps at each sample point. It cannot create any kind of textured
brush stroke, such as the smooth falloff of an airbrush or the scratchy appearance
of a dry paint brush. It is unable to support variations along the stroke, such as
controlling the size of the stroke by the pressure of a tablet stylus.

A straightforward amendment to this simple algorithm will enable a wider variety
of brush strokes with a similar level of complexity. Rather than draw a line between
consecutive sample points, we will walk along the input trajectory and place stamps
of the brush footprint at uniform arc length. Given δ is the distance between stamps
(called the “spacing”), INTERPOLATE(S, a) is a function that returns the 2D position
along trajectory S at arc length a, Ω is the 2D raster image of the brush footprint,
and STAMP(p,Ω) is a function that draws the brush footprint at position p.

2 A Brush Stroke Synthesis Toolbox 25

Fig. 2.1 A demonstration of
the different output possible
with the basic model. Top to
bottom: the input trajectory,
the output of BASICSWEEP,
the output of BASICSTAMP

with a circular stamp, with a
gaussian blob stamp, and with
a “brush” stamp

Algorithm 2.2 The stamped stroke algorithm
1: function BASICSTAMP(S,Ω, δ)
2: l ← ARCLENGTH(S)
3: a ← 0
4: while a ≤ l do
5: p ← INTERPOLATE(S, a)
6: STAMP(p,Ω)
7: a ← a + δ

8: end while
9: end function

Algorithm 2.2 is the core of most digital painting brush engines. Selection of
the brush footprint image can create different stroke textures (e.g. a filled circle,
a gaussian blob, or a pattern of dots—see Fig. 2.1). Extending the STAMP func-
tion to support affine transforms allows the size and distortion of the stamp to be
controlled dynamically by tablet parameters such as pressure and tilt. Trajectory
smoothing can be handled by modifying INTERPOLATE. Transparency and buildup
are correctly handled within STAMP. Finally, dynamic brush footprints are possi-
ble by parameterizing Ω by additional parameters, such as the output of a physical
simulation.

These two examples, BASICSWEEP and BASICSTAMP, also demonstrate a fun-
damental difference between stroke synthesis algorithms. “Tweening” is short for
“in-betweening”, and refers to the generation of intermediate states between sample

26 S. DiVerdi

points. Sweeping and stamping are two ways to address the problem, and roughly
correspond to analytical and numerical solutions. Stamping has the limitation that
the necessary sampling rate (i.e. spacing) can be high depending on the frequency
content of the brush footprint. Sweeping on the other hand, is limited to strokes that
can be analytically computed in an efficient manner, which makes effects like tex-
tured appearances difficult. This issue will be discussed in more detail in Sect. 2.6.

2.3 Available Technologies

Particularly in the last decade, realistic brush stroke synthesis has been an active area
of research. Major contributions in the field are summarized in Table 2.1. Much of
this work has been conducted as part of larger agendas around the simulation of
paint media as well, such as watercolor or oil paint, but these results are out of the
scope of this text and are not considered here. In addition to research work, we also
consider some of the most popular commercially available applications for digital
painters [2, 3, 16, 18].

To help understand the space of different technologies available, we have cate-
gorized the contributions of each work based on common themes. These categories
are the output type, the algorithm strategy, the spline model, the brush head model,
the solution method by which new states are computed, and the type of tweening
used. Each of these categories is discussed in turn.

Output Type The options for the output of a brush stroke synthesis algorithm are
raster or vector. Raster is the most common type, and means that the output brush
stroke is a 2D grid of pixels. Conversely, vector output represents the brush stroke
as a set of filled, Bézier-bounded paths instead of pixels (n.b. vector representations
can be more complex, but for the purposes of this text, this definition is sufficient).
Adobe Illustrator [2] is a common example of a program that outputs vector brush
strokes. Vector representations are desirable because they are resolution independent
and sparse (for compactness of storage), but they are limited in terms of the types
of appearance they can represent. Soft airbrush strokes or textured dry brush strokes
are generally not supported by vector algorithms.

Algorithm Strategy The different strategies for creating brush strokes can be
grouped into a few bins: procedural, simulation, acquisition, and data-driven. Pro-
cedural strategies include those of commercial painting applications and are based
on simple, ad hoc models that can be controlled programmatically to create brush
strokes, without modeling a virtual 3D brush head. Alternately, simulation is the
approach of computing the dynamics of a physical system that mimics a real brush.
Rather than trying to compute the brush footprint shape, the acquisition strategy
uses custom hardware to measure the shape of a real brush in real-time. Finally,
data-driven approaches record real brushes offline and reproduce their effects via
machine learning of some form.

2 A Brush Stroke Synthesis Toolbox 27

Table 2.1 Overview of existing implementations and their characteristics. Output: raster (R) or
vector (V). Strategy: acquisition of real brush footprints (A), physical simulation (S), data-driven
methods (D), or procedural methods (P). Spline: for work that models splines, are they discrete (D)
or continuous (C). Brush: for work that models a brush head, is it a mesh (M), skeleton (S), inter-
polated geometry (I), or individual bristles (B). Solution: systems can be solved via integration (I),
energy minimization (M), or data-driven methods (D). Tween: short for in-between, intermediate
states between simulation steps can be generated by stamping (T) or sweeping (W)

work output strategy spline brush solution tween

Adobe Illustrator [2] V P – – – W

Adobe Photoshop [3] R P – – – T

Ambient Design ArtRage [18] R P – – – TW

Bai et al., 2007 [5] R P – – – T

Baxter at al., 2001 [9] R S D M I T

Baxter and Govindaraju, 2010 [7] R D C M D T

Baxter and Lin, 2004 [8] R S D MI M T

Chu and Tai, 2004 [14] R S D S M T

Chu, 2007 [13] R S D S M W

Corel Painter [16] R P – – – TW

DiVerdi at al., 2010 [19] RV S C B I TW

Lu and Huang, 2007 [25] R S C B M T

Mi et al., 2002 [26] R P – – – W

Okabe et al., 2005 [27] R A – – – T

Pudet, 1994 [28] V P – – – W

Saito and Nakajima, 1999 [29] R S C M M T

Van Laerhoven and Van Reeth, 2007 [32] R S D MI M T

Vandoren et al., 2009 [34] R A – – – T

Vandoren et al., 2008 [33] R A – – – T

Xie et al., 2010 [35] R P – – – W

Xu et al., 2004 [36] R D – MB – T

Spline Model For algorithms that work by creating a virtual brush head, the
spline is a basic building block that can deform in bristle-like ways to control the
shape of the brush head and thus footprint. These splines can be modeled discretely,
as a piecewise linear approximation consisting of sample positions joined by straight
line segments. Discrete models lend themselves to easy computation of physical dy-
namics and collisions, but may require many segments for acceptable quality. Con-
tinuous splines are also possible, using e.g. a Bézier or helix, and manipulating the
control points to change the shape. Collision and dynamics are more complicated,
but the resulting shape will always be smooth.

Brush Head Model Given a spline or set of splines, the brush head model con-
trolled by the spline(s) can be of varying levels of complexity. In the simplest case,
the brush head is represented as a single bulk triangle mesh, which is deformed by

28 S. DiVerdi

the shape of a control spline running through it. A more structured brush head can
use a skeleton of splines, branching off one another, to provide a way to control the
(potentially asymmetric) changes in spread of the brush. To represent the brush head
as a collection of bristles, each piece of bristle geometry can be controlled by an in-
dividual spline, for maximum fidelity, but at a large computational cost. A faster
way to model a collection of bristles is by interpolating the bristle geometry from a
few control splines.

Solution Method When computing a physical simulation of spline dynamics,
the most straightforward way to update the shape is by integration of the internal
and external forces. As brush bristles tend to be stiff systems, implicit integration
is necessary. Furthermore, bristles tend to achieve their rest shape very quickly in
the presence of changed forces, and so a commonly explored alternative is to com-
pute the quasi-static configuration via energy minimization. Potentially fastest of
all, data-driven solutions can determine the rest shape without costly math.

Tweening As discussed in Sect. 2.2, tweening refers to the generation of inter-
mediate states between samples. For brush strokes, there are two options. Stamping
is the numerical approach that works by computing many samples, whereas sweep-
ing is the analytical approach that attempts to compute the final result in a single
step.

2.4 Spline Modeling

To begin our more realistic brush stroke synthesis, in this section we construct the
spline model. Our spline is comprised of a chain of rigid links connected by hinge
joints. This is a discrete model, which allows for a simpler formulation of the spline
dynamics than a continuous model, at the cost of some fidelity. An illustration of
the spline model structure can be seen in Fig. 2.2.

A canvas is necessary to provide a surface for the spline to collide with, to create
the characteristic deformations. We will use a simple plane to represent the canvas
surface. The canvas will also provide friction forces to cause the bristles to drag
appropriately. To control the brush, we attach the base link of the spline to a brush
handle cylinder. This handle has a position and orientation that is controlled by the
user’s input. Ideally, a tablet and stylus with six degrees of freedom (2D position,
pressure, 2D tilt, and barrel rotation) is available, which can provide a direct map-
ping between all the input DOFs and the handles’. Otherwise, some sort of indirect
control must be defined.

As bristles are stiff, the spring constants for the spline joints must be high.
This creates a stiff system that means we will need to use an implicit integration
scheme.

Physical simulation is a complex topic and an active area of research, which
has been covered many times in other texts [6]. Getting into the details of how to

2 A Brush Stroke Synthesis Toolbox 29

Fig. 2.2 The basic model of
a brush spline as a chain of
rigid links connected by stiff
joints. The user controls the
handle’s position and
velocity, while gravity and
the canvas deform the spline

construct and solve a system of equations based on our system design would be quite
involved and would distract us from our goal of brush stroke synthesis. However,
the purpose of this chapter is to provide the reader with practical tools to achieve the
effects we have discussed. Therefore, to implement our brush simulation, we will
employ a physics engine.

Free, open source physics engines are available today largely thanks to their ris-
ing popularity in the game industry and the maturation of the mathematical tech-
niques to implement fast and robust simulations. Some of the more popular ex-
amples include ODE [31], Bullet [17], and Tokamak [23]. There are even efforts
to define a common API across all the engines to allow for decoupling of a pro-
gram’s system definition from the underlying engine [11, 12]. Each library empha-
sizes different aspects of the problem, such as focusing on robustness or on real-time
performance. Support for advanced features like soft bodies and fracturing varies.
However, the formulation of our spline model is relatively simple and can be sup-
ported by any of these engines. Therefore, we will use ODE for the remainder of
this section, because of its prioritization of absolute robustness above all else.

A comment on notation: in the algorithm listings in this section, function names
that begin with a ‘d’ and are typeset like dWorldCreate() refer to functions in the
ODE API. Consult the ODE documentation for the particulars of input arguments,
return values, and types.

2.4.1 Creating a Spline

Creating the basic brush and spline geometry in ODE is straightforward, and is ad-
dressed in Algorithm 2.3. The CREATEHANDLE function initializes the ODE world
and creates the brush handle object. Multiple brush handles could exist in the same
world, but we will assume there is one. Then CREATESPLINE can be used multiple
times to add individual splines to the brush. ODE’s model is such that rigid bodies

30 S. DiVerdi

Algorithm 2.3 Creating the brush geometry
1: function SETMASS(b)
2: M ← dMassSetCapsule(radius, length)
3: dMassSetMass(M,mass)
4: dBodySetMass(b,M)
5: end function
6:

7: function CREATEHANDLE()
8: W ← dWorldCreate()
9: dWorldSetGravity(0,0, g)

10: H ← dBodyCreate(W) � brush handle body
11: SETMASS(H)
12: Ibody ← dGetInertialTensor(H) � store for later
13: end function
14:

15: function CREATESPLINE()
16: for i ← [1, n] do � create each chain link
17: bi ← dBodyCreate(W)
18: dBodySetPosition(bi,pxi,pyi,pzi) � initialize link pose
19: dBodySetQuaternion(bi, qxi, qyi, qzi, qwi)
20: SETMASS(bi)
21: end for
22: for i ← [1, n] do � create joints between links
23: ji ← dJointCreateUniversal(W)
24: if i = 1 then
25: dJointAttach(ji,H,bi) � attach first link to handle
26: else
27: dJointAttach(ji, bi−1, bi)
28: end if
29: dJointSetUniversalAnchor(ji,pxi,pyi,pzi)
30: dJointSetUniversalAxis1(ji,1,0,0) � x-axis hinge
31: dJointSetUniversalAxis2(ji,0,1,0) � y-axis hinge
32: end for
33: end function

are represented as objects that store a position, orientation, and a mass and iner-
tia tensor. Joints are separate objects that define a connection between two bodies.
Collision detection is done on separate geometry objects that are associated with
bodies, to decouple the dynamics from the collision detection, and is discussed in
Sect. 2.4.4.

CREATESPLINE specifically mentions creating “universal” joints, which are a
standard concept in mechanical systems that allows two degrees of freedom—
rotation about the two axes perpendicular to the major axis. A third DOF is twist
about the major axis, which a universal joint restricts. An alternative joint type is

2 A Brush Stroke Synthesis Toolbox 31

Algorithm 2.4 Animating the brush geometry
1: function STEPSIMULATION()
2: m ← number of substeps
3: for i ← [1,m] do
4: ADDBRUSHFORCEANDTORQUE() � see Sect. 2.4.2
5: dSpaceCollide2(G,Ss,C) � see Sect. 2.4.4
6: dWorldStep(
t)
7: dJointGroupEmpty(C)
8: end for
9: end function

“ball and socket”, which allows all three DOFs and is supported by ODE. Full phys-
ical hair simulation, particularly for long hair such as on a virtual character’s head,
includes twist in its formulation because it has a significant impact on the overall
dynamic behavior, but for short, stiff brush bristles, it is generally unnecessary.

Once the handle and spline bodies and joints have been created, animating them
is handled by the STEPSIMULATION function in Algorithm 2.4, which should be
called once per frame in the application’s main loop. Simulation in its most basic
form consists of calling dWorldStep, but with gravity as the only force on the
spline, its behavior will not be particularly interesting. Next we will see how to add
user control for a more interactive simulation.

2.4.2 User Control

Once the virtual brush handle and spline have been constructed, the user input needs
to be integrated to allow for control of the brush. We assume that the user has some
mechanism of providing the six degrees of freedom (DOF) necessary to position
and orient the brush handle. Ideally this would come from directly manipulating the
six DOF of a tablet stylus, but other approaches are fine as well.

The instantaneous state of the brush handle is Γ = 〈p,v,q,ω〉, where p =
〈px,py,pz〉 is the 3D position, v = 〈vx, vy, vz〉 is the 3D velocity, q = 〈qx, qy,

qz, qw〉 is the orientation quaternion, and ω = 〈ωx,ωy,ωz〉 is the 3D angular veloc-
ity.

At time t0, the state is Γ0 = 〈p0,v0,q0,ω0〉. User input specifies the position and
orientation 〈p1,q1〉 at the end of the timestep, t1 = t0 +
t . Therefore, we must
compute the force and torque to apply to the brush handle to achieve the change in
state over the timestep. The relevant equations are

f = m

t2
(p1 − p0 − v0
t) (2.1)

ω1 = 2

t
(q1 − q0)q

−1
0 (2.2)

I0 = R(q0) Ibody R(q0)
ᵀ (2.3)

32 S. DiVerdi

τ = 1

t
I0(ω1 − ω0) (2.4)

where m is the brush handle’s mass, R(q) is the 3 × 3 rotation matrix corresponding
to q, and Ibody is the brush handle’s 3 × 3 inertia tensor in local coordinates. In
Eq. (2.2), the 3D ω1 is constructed from the 4D quaternion product by omitting the
quaternion’s w-component. The results of these equations are f, the 3D force vector
and τ , the 3D torque vector, which are applied to the brush handle in ODE using
dBodyAddForce and dBodyAddTorque.

It is helpful to break this process up into substeps, to improve ODE’s stabil-
ity and convergence (see Algorithm 2.4). If the desired simulation step is
t =
0.016 s (corresponding to 60 Hz), then with three substeps, the timestep be-
comes
t = 0.005 s. Furthermore, the user input specifies 〈p3,q3〉, and the force
and torque computations must be done three times to compute the three substeps
from Γ0.

With user input-based control of the brush handle, the simulation should be more
interesting—changing the position and orientation will result in forces being applied
to the spline, so it should swing around like a limp rope. Two problems remain
however. First, it does not collide with the canvas, and second, the spline has no
stiffness. We will add stiff springs next.

2.4.3 Adding Springs

Because brush bristles are stiff, our spline needs stiff springs at each of the joints
to maintain its rest shape. For example, a real brush’s bristles do not droop due
to gravity, because the strength of the bending stiffness is greater than the effect of
gravity on the bristle’s mass. Due to the stiff behavior, we must construct the springs
in such a way that they are implicitly integrated by ODE.

External body forces in ODE are integrated explicitly, but constraint forces are in-
tegrated implicitly. Constraint forces are represented with joints in ODE. As we have
universal joints constructed between each consecutive pair of links in the spline, we
can modify them to add springs. Specifically, each joint has a notion of “joint lim-
its”, which restrict the range of motion the joint allows about its degrees of freedom
(think of an elbow and how the forearm cannot bend back past a certain angle). As
joint limits are hard constraints, they are implicitly integrated, and so are ideal for
our uses.

Algorithm 2.5 contains the SETJOINTSPRINGS function which sets the parame-
ters of a universal joint to have a straight rest shape of some springiness. The low
and high stops are both set to θ = 0, which is the rest angle. fmax is the maxi-
mum restorative force that can be applied. The CFM and ERP parameters deter-
mine the spring and damping coefficients of the constraint. ERP stands for the Error
Reduction Parameter, in the range of [0,1], and represents how much of a con-
straint violation is corrected in each timestep (for hard contacts, e.g., it would seem
a value of 1 would be desired, but this can lead to instability). The CFM is the

2 A Brush Stroke Synthesis Toolbox 33

Algorithm 2.5 Adding bristle stiffness
1: function SETJOINTSPRINGS()
2: dJointSetUniversalParam(j,dParamLoStop, θ)
3: dJointSetUniversalParam(j,dParamHiStop, θ)
4: dJointSetUniversalParam(j,dParamFMax, fmax)
5: dJointSetUniversalParam(j,dParamStopERP,ERP)
6: dJointSetUniversalParam(j,dParamStopCFM,CFM)
7: end function

Constraint Force Mixing, in (0,∞), a measure of how much a constraint is allowed
to be violated. These two parameters are fundamentally related to the spring and
damping coefficients, kp and kd respectively, of the joint, and can be computed
by

ERP =
tkp

tkp + kd

(2.5)

CFM = 1

tkp + kd

(2.6)

After the joint springs have been set, our spline model should be much less rope-
like. Without something to collide with, the only way to see the spline bend is by
moving the brush quickly, or by increasing gravity (or decreasing the spring coeffi-
cient). Finally we will add collisions, to complete the spline model.

2.4.4 Adding Collisions

Collisions in ODE are orthogonal to the dynamics by design, so applications that
need collisions but not dynamics (e.g. collision detection to keep players from nav-
igating through walls in virtual environments) can be supported, as well as simula-
tions that have specific collision detection requirements (such as a-priori knowledge
about the types of objects that will be colliding with one another).

Creation of the collision objects is shown in Algorithm 2.6’s CREATECOL-
LIDERS function. Geometry objects are contained in spaces for organization,
and associated with body objects for bookkeeping. Geometry objects and body
objects need not be the same shape or mass (a common optimization is to
represent an entire virtual avatar with a single capsule), but for now we will
make them the same. Also a ground plane is necessary for the spline to collide
with.

For collisions to be detected, dSpaceCollide2 must be called in STEPSIM-
ULATION. This function checks the geometry (in our case the ground plane) against
the geometry in the space (containing the spline) for potential collisions by using
an approximation such as overlapping bounding boxes. When it detects a poten-
tial collision, it calls a callback function DETECTCOLLISION in Algorithm 2.7 that

34 S. DiVerdi

Algorithm 2.6 Creating brush collision objects
1: function CREATECOLLIDERS()
2: C ← dJointGroupCreate() � holds contacts
3: Sw ← dSimpleSpaceCreate() � collision space for world
4: Ss ← dSimpleSpaceCreate(Sw) � collision space for spline
5: G ← dCreatePlane(Sw,0,0,1,0) � x, y ground plane
6: for i ← [1, n] do � create each link collision object
7: gi ← dCreateCapsule(Ss, r, l)
8: dGeomSetBody(bi, gi) � attach collision object to link body
9: end for

10: end function

Algorithm 2.7 Handling collisions
1: function DETECTCOLLISION(g1, g2)
2: if dCollide(g1, g2) then
3: c ← dJointCreateContact(W,C) � stored in contact group
4: b1 ← dGeomGetBody(g1)
5: b2 ← dGeomGetBody(g2)
6: dJointAttach(c, b1, b2)
7: end if
8: end function

uses dCollide to find a specific contact point, and if it is successful, creates a
temporary joint object to represent the contact.

In this manner, collisions are detected and responded to for our spline, and once
this functionality is added, we should have a springy spline that we can press into
the canvas to cause characteristic bristle-like deformations.

2.5 Brush Head Modeling

A deformable spline is an important building block towards creating a brush stroke,
but by itself it is incomplete. Brush heads normally contain hundreds of bristles, but
it is not currently feasible to simulate hundreds of splines with high enough fidelity.
Therefore, different approaches are used to “bulk up” a simulated brush head, by
using a small number of splines to control a larger amount of geometry. We will
consider two such approaches. The first creates additional un-simulated bristles by
interpolating among splines, which is very fast but still creates a large amount of
geometry. The second represents many bristles as a single triangle mesh which is
deformed by splines. The mesh is even faster, but is more limited in what types of
effect it can reproduce.

2 A Brush Stroke Synthesis Toolbox 35

Fig. 2.3 Bristle X can be linearly interpolated between splines A and B either based on the vertex
positions (left) or on the joint angles (right)

2.5.1 Interpolation-Based

Regardless of simulation strategy, the output of a spline-based model is a sequence
of 3D positions of points along the spline in its new shape. Call this sequence,
A = {a1, . . . ,an}. Then if there are three splines, A, B, and C, arbitrary linear inter-
polations can be created from them as

X(α,β, γ) = αA+ βB+ γC (2.7)

xi (α,β, γ) = αai + βbi + γ ci , ∀i ∈ [1, n] (2.8)

This linear interpolation of positions is fast and simple, but has the downside
that it can result in interpolated splines that are shorter in length than the simu-
lated splines. See Fig. 2.3 for an illustration. The magnitude of this effect depends
on the difference among the splines being interpolated, and so for larger numbers
of simulated splines, or for less severe brush head deformations, it may be suffi-
cient.

Rather than interpolating splines’ 3D positions A, another option is to interpo-
late their 2D joint angles instead, A. Then after computing X as a linear combina-
tion of spline joint angles, the spline positions X can be constructed with knowl-
edge of the interpolated spline’s link lengths. This will ensure interpolated splines
have the same length as simulated splines, but has the downside that it could re-
sult in splines that penetrate the canvas plane. To compute A from A, each joint
is defined by three consecutive points, ai−1, ai , and ai+1, where ai is the joint
location, and u and v are the joint’s local right and up vectors. Then, we define
d1 as the default direction for the joint and d2 as the deformed direction, such
that d1 · u = d1 · v = 0. To find the angles about the u and v vectors, we can
use

36 S. DiVerdi

d1 = ai − ai−1

‖ai − ai−1‖ (2.9)

d2 = ai+1 − ai

‖ai+1 − ai‖ (2.10)

du = d2 − (d2 · u)u (2.11)

θu = cos−1
(

du · d1

‖du‖
)

(2.12)

(with corresponding equations for θv). Then θu and θv are the joint angles, which
allows us to construct ai = 〈θu, θv〉.

To do the reverse transform and compute A from A, starting at the base of the
spline with d1, the up and right vectors, u and v and the joint angles θu and θv , we
can use the equation

d2 = d1 + u tan θv + v tan θu (2.13)

where d2 is the direction of the subsequent spline link.
Regardless of the scheme used, interpolation can be used to generate bristles

inside the triangle defined by any three splines. Therefore, to produce the best bris-
tles, create as many splines as possible to simulate distribute around the head of
the brush, and then triangulate their positions to determine which splines should be
interpolated for new bristles at arbitrary locations.

2.5.2 Mesh-Based

Creating interpolated splines can make a nice bristly appearance for scratchy
strokes, but for smoother paint application, modeling the brush head as a contin-
uous mesh may be more desirable. In that case, one or more splines can be used to
control the deformation of one or more triangle meshes that represent a bulk collec-
tion of bristles and wet paint. We will discuss here how to control a single triangle
mesh, but a brush head can be modeled by multiple meshes to support a wider range
of behaviors. For example, a wide flat brush could benefit from multiple meshes to
allow it to support splitting deformation, which a single mesh would not allow.

Deforming a mesh by a collection of splines is a straightforward application
of vertex skinning, also known as vertex blending or skeleton-subspace deforma-
tion [24], which is a commonly used algorithm in the realtime 3D video games field
for character mesh animation based on an animated skeleton of rigid bones. The
approach is well-documented in many places [10], which we will summarize here.
See Fig. 2.4 for an overview.

The core concept is that each bone’s new position defines a transformation matrix
that can be applied to any vertex in the mesh. Thus, by assigning a weight to the

2 A Brush Stroke Synthesis Toolbox 37

Algorithm 2.8 Computing vertex weights
1: function FINDNEARESTNEIGHBORS(v, n,S)
2: return indices of n closest points to v in S, sorted by distance
3: end function
4: function ASSIGNWEIGHTS(n)
5: for all v ∈V do
6: {i1, . . . , in+1} ← FINDNEARESTNEIGHBORS(v, n + 1,S)
7: max ← ‖v − sin+1‖
8: min ← ‖v − si1‖
9: for j ← [1, n] do

10: d ← ‖v − sij ‖
11: wj ← 1 − (d − min)/(max − min)

12: end for
13: for j ← [1, n] do
14: wj ← wj/

∑
k wk � normalize weights

15: end for
16: end for
17: end function

influence of each bone per-vertex, the new position of the vertex is generated by
a linear combination of the bones’ transformations. Generally, a vertex has only a
small number of non-zero weights, between two and four. In our case, the bones are
each link of the spline. Therefore, a mesh vertex position can be computed as

v′ =
∑

i

wiMiv (2.14)

where wi are the bone weights, Mi are the bone transformation matrices, from
model coordinates to world coordinates, and v′ is the output vertex position. This
can be efficiently computed inside a vertex shader on modern graphics cards.

Once a triangle mesh and set of splines have been specified, the vertices’ bone
weights can be specified by hand, though this may be a tedious process. Alternately,
they can be computed automatically based on the distance of each vertex to the
bones. Consider the pseudocode in Algorithm 2.8, which assigns n weights per-
vertex for a mesh of vertices V and the spline S.

Mesh skinning is still an active area of research, and so as new techniques are
developed, they may be applied here, if they are found to have more desirable prop-
erties [22].

While mesh-based brush heads have an advantage over bristle-based, in that they
can have significantly less geometry and can produce smoother strokes, they have
difficulty reproducing some brush head behaviors. Specifically, tip-spreading is a
common effect where, for example, the point of a round brush will spread out when
it is pressed into the canvas. Using multiple splines to control a single mesh can
mimic this behavior, or other workarounds may be employed depending on the qual-
ity of result needed.

38 S. DiVerdi

Fig. 2.4 A triangle mesh based brush head modeled in a common 3D modeling application. Left
to right, top to bottom: The triangle mesh. The bones corresponding to spline links, placed in the
mesh. The mesh vertex weights for the first three bones, computed by Art of Illusion [20]. The
mesh is deformed based on the position of the bones by Eq. (2.14)

2.6 Stroke Rendering

At this point, our virtual brush has a physically simulated deformable head that is
represented either by a set of bristles or as a triangle mesh. Using it to create the
brush stroke output is the final step of this chapter. This process is non-trivial for
a number of reasons, and the tradeoffs made here have a significant impact on the
final output of our algorithm.

The first issue is that physical simulation is expensive to compute. It might be ap-
pealing to perform a simulation step for each new position of the brush (perhaps af-
ter some number of pixels have been traversed), but realistically, users can move the
brush at arbitrary speeds across large canvases, creating a prohibitive computation
burden. Furthermore, physics engines in general and ODE in particular, are signifi-
cantly more stable when they are stepped with uniform time increments. Therefore,
our strategy is to compute a constant number of physics steps per update of the

2 A Brush Stroke Synthesis Toolbox 39

application (generally per frame render). As fast strokes mean there will be a signif-
icant pixel distance between consecutive steps, the question becomes how to fill in
the pixels in between.

As discussed in Sect. 2.2, tweening is the term for generating in-between samples
when filling in a sparsely computed system (the source of the term is 2D animation,
where smooth transitions are drawn between artists’ keyframes). We will consider
both the numerical approach of stamping, and the analytical approach of sweeping,
from the perspectives of bristle-based and mesh-based brush heads.

It is interesting to note that brush strokes are inherently inexact—that is, it is
difficult to quantify a specific desired output for a set of parameters. There is an
important question of how much fidelity is necessary to produce a usable painting
system, which has been partially answered by the availability of digital painting
programs to date. Therefore, the process of generating the output brush stroke from
a physical simulation is as much a matter of taste as it is of science, and hence there
are many opportunities to tune the particulars of an implementation.

2.6.1 Stamping

Stamping is the numerical approach to generating the continuous output of a brush
stroke. Rather than trying to directly compute the value of each pixel covered by a
stroke, the instantaneous pose of the brush is computed many times at small incre-
ments, and their effect is combined to generate the final output. This has a number
of important implications to our algorithm design. Since this is the method of choice
for commercial digital painting applications, the design space has been extensively
explored already.

First, the instantaneous stamp needs to be computed. For a virtual brush head,
we call this the brush’s “footprint”—the contact area between the bristles and the
canvas, where paint is deposited. The output of our brush head model is some ge-
ometry that we could test for actual canvas contact, but that would likely be a very
small area and would not reflect the size of the mark we would expect such a brush
to make. Realistically, a brush head has wet paint on it which creates a larger contact
area with the canvas than just the bristle geometry. Therefore, we use what we call
a “deposition threshold” which is a plane slightly offset from the canvas, and state
that any geometry in the volume between the deposition threshold and the canvas is
considered to be in contact (see Fig. 2.5).

For a triangle mesh brush head, computing the footprint is therefore very easy.
The mesh is simply rasterized using a standard rendering library such as OpenGL,
with an orthographic projection setup looking down at the canvas and the deposition
threshold set as the depth clipping distance (the camera’s near or far plane).

With a bristle brush, from interpolation or individual bristles, each bristle can be
rendered in the same OpenGL setup as a bent cylinder. This geometry is straight-
forward to compute on the CPU, or a geometry shader can be used in OpenGL
to generate it automatically on the GPU, but either way it results in a significant

40 S. DiVerdi

Fig. 2.5 Left: The deposition threshold is offset slightly from the canvas surface and results in a
significantly larger brush footprint than the exact contact area. Right: An individual bristle can be
represented as a bent cylinder or as a triangle strip

amount of geometry to be processed. An alternative is to render each bristle as a
strip of triangles, oriented perpendicular to the camera view direction. This way the
width of the bristle can still be explicitly controlled, but with a significantly smaller
geometry burden. These options are illustrated in Fig. 2.5.

The second important consideration for stamping is how frequently to place the
stamps, called the brush “spacing”. Because each stamp has an associated cost in
terms of memory bandwidth and computation, the best performance will come from
placing as few stamps as possible. However, the frequency content of the stamp
images dictates how closely spaced stamps must be placed to create a stroke with-
out sampling artifacts (see Fig. 2.6). For example, the commonly available gaussian
blob brushes in programs like Photoshop [3] have only very low frequencies, and so
can generally be used at high spacings of around 25 % of the size of the brush with-
out artifact. On the other hand, hard-edged circular brushes at 25 % create obvious
stepping and un-smooth silhouette problems, and require spacings closer to 1–5 %.
For our brush heads, thin individual bristles can be as small as a single pixel, and
worse, since they are dynamic within the stamp image, even a spacing of 1 pixel
may be insufficient. Tricks like using wider bristles and applying a small gaussian
blur or a motion blur can help reduce the problem.

The other difficulty of spacing is that it can make proper coverage and cumulative
effects difficult to calculate. For example, while it is easy to apply an alpha value
to each stamp, the number of overlapping stamps at a single pixel is determined by
a combination of the footprint and the spacing rate, and can mean that changing
either one alters the final stroke’s transparency. This issue is further compounded
when bidirectional (brush ↔ canvas) pigment transfer is considered, as discussed
by Chu et al. [15].

Finally, the last concern with stamping is how to interpolate all the data to create
the intermediate stamps, such as the x, y stamp position and the intermediate brush
head configuration. Linear interpolation is straightforward, but creates piecewise
linear brush strokes that are immediately apparent and undesirable. Smooth strokes

2 A Brush Stroke Synthesis Toolbox 41

Fig. 2.6 Stamping artifacts depend on the stamp used and the spacing. For a low frequency stamp
(top), a high spacing produces a smooth stroke while a low spacing causes more alpha accumula-
tion than desired. For a high frequency stamp (bottom), a low spacing results in silhouette artifacts

are the result of interpolating the x, y positions with a higher order technique such
as cubic interpolation or Bézier fitting [4]. As higher order interpolation can be used
for the stamp position, it can also be used for each brush vertex’s position as well,
but the additional fidelity is not generally noticeable or worth the computational
cost.

2.6.2 Sweeping

The alternative to the numerical approach of stamping is the analytical approach of
sweeping. Computing swept volumes of 3D models is a much-researched problem
for applications like robot motion planning [1]. The same problems arise in the case
of 2D swept areas. Many approaches for computing sweeps rely on simplifying
assumptions about the nature of the problem, such as translation-only motion, or
convex polyhedra (polygon) models only.

In the case of a bristle-based brush head model, we can take advantage of such a
simplifying assumption. Specifically, computing a sweep is trivial if the object be-
ing swept has fewer dimensions than the space in which it is being swept. Consider
a 2D square being swept along a path in 3D—the swept volume can be generated
by connecting the corners of the square in consecutive positions. Similarly, for a 1D
line segment swept along a 2D path, the swept area can be generated by connecting
the end points of the line segment at consecutive positions. See Fig. 2.7 for an illus-
tration. We can use this simplification to create sweeps trivially out of the motion
of bristles across the canvas. For each link in each bristle, given its position at the
previous simulation step and the current one, use a rasterizer such as OpenGL to
render a quad defined by the end points of link at the two timesteps. With the same
camera setup as described in Sect. 2.6.1, clipping to the deposition threshold will
provide the same approximation of canvas contact.

The main limitation of computing the stroke as the swept area of line primitives
is that when the bristle is straight (when looking down from above) and the motion

42 S. DiVerdi

Fig. 2.7 Left: Trivial sweeps of a 2D square in 3D, and a 1D line in 2D. Right: Since a bristle
consists of a set of 1D lines, bristle sweeps can be trivially computed by connecting the vertices of
the same bristle at consecutive timesteps

of the bristle is parallel to its contact with the canvas, then the swept area will be
zero because a 1D line has zero width. This can be worked around in a number of
ways. For example, the bristles could always be made to have a slight curve, or many
bristles could be put on the brush at different angles to avoid the case that all the
bristles will ever become parallel. Each of these workarounds is an approximation
of varying quality, with its own pitfalls that may be significant depending on the
specific use case.

Another approach that also supports triangle mesh brush heads is to compute
the 2D swept area of a 2D polygon using an algorithm such as that proposed by
Pudet [28]. Pudet describes a way to efficiently compute brush strokes generated by
sweeping a 2D brush stamp along an input path. An algorithm like this is the basis
of the calligraphic brush tool in Adobe Illustrator [2], so it has been demonstrated
to be robust. To use Pudet’s algorithm, we need the brush footprint represented as a
2D polygon. Given the deformed triangle mesh of the brush head, it is possible to
find the intersection between the mesh and the deposition threshold, and to extract
the polygon contour of that intersection for use in sweeping. To reduce the number
of triangles that need to be considered, only the triangles where two vertices are on
opposite sides of the deposition threshold need to be considered.

The downside of creating a swept area from the brush head triangle mesh is that
the output of the sweep algorithm is a single contour to which a constant fill gets
applied. Therefore, if 50 % gray ink is deposited, the output brush stroke will be
a solid 50 % gray, which loses some of the natural media textural quality that is
desirable in real brush strokes. To create more variation within the stroke, rather
than computing a single sweep from a triangle mesh footprint, re-consider the in-
dividual bristle model. Each bristle’s contact with the canvas can be considered to
be a polygon (e.g. an ellipse for simplicity), dynamically sized based on the bristle
thickness and the length of the bristle-canvas contact. Then Pudet’s algorithm can be
used to compute the swept area of each bristle’s contact independently, outputting
one flat-filled region per-bristle. The combination of all these swept bristle regions,
when given transparent fills, can create the desired variation in shading across the

2 A Brush Stroke Synthesis Toolbox 43

Fig. 2.8 Left: A brush stroke
with a single, flat fill. Right:
One flat fill per bristle adds
texture

brush stroke (see Fig. 2.8). This is the algorithm used in Adobe Illustrator’s bristle
brushes [19].

One of the primary advantages of sweeping is that it can be used, as described
above, to generate vector output. The nature of Pudet’s algorithm is that it com-
putes the polygonal outline of the swept stroke, and the end-point connecting ap-
proach generates triangle vertices as its output. In either case, the final primitives
are resolution-independent and can be stored efficiently in vector image formats
such as SVG.

2.7 Summary

At this point, we have described the different components necessary to create a phys-
ically based virtual brush and to use it to render brush strokes. For each component,
we have provided an assessment of the advantages and disadvantages of the avail-
able options. Finally, we have summarized the research literature on brush stroke
synthesis, so interested readers can pursue a deeper understanding of the material,
while implementers interested in a practical understanding of brush stroke synthesis
can use this chapter as a guide.

References

1. Abdel-Malek, K., Blackmore, D., Joy, K.: Swept volumes: foundations, perspectives, and ap-
plications. Int. J. Shape Model. 12(1), 87–127 (2006)

2. Adobe: Illustrator (2012). http://www.adobe.com/illustrator/
3. Adobe: Photoshop (2012). http://www.adobe.com/photoshop/
4. Armstrong, J.: Composite Bezier curves (2006). http://www.algorithmist.net/composite.html
5. Bai, B., Wong, K.W., Zhang, Y.: An efficient physically-based model for Chinese brush. In:

Proceedings of the International Conference on Frontiers in Algorithmics, pp. 261–270 (2007)
6. Baraff, D., Witkin, A.: Physically based modeling: Principles and practice. In: ACM SIG-

GRAPH Courses (1997). http://www.cs.cmu.edu/~baraff/sigcourse/
7. Baxter, W., Govindaraju, N.: Simple data-driven modeling of brushes. In: Proceedings of the

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 135–142 (2010)
8. Baxter, W., Lin, M.: A versatile interactive 3D brush model. In: Proceedings of the Pacific

Conference on Computer Graphics and Applications, pp. 319–328 (2004)
9. Baxter, B., Scheib, V., Lin, M., Manocha, D.D.: Interactive haptic painting with 3D virtual

brushes. In: Proceedings of ACM SIGGRAPH, pp. 461–468 (2001)
10. Beeson, C.: Animation in the “Dawn” demo. In: Fernando, R. (ed.) GPU Gems, pp. 223–233.

Addison-Wesley, Reading (2004)
11. Boeing, A.: Physics Abstraction Layer (2009). http://pal.sourceforge.net/

http://www.adobe.com/illustrator/
http://www.adobe.com/photoshop/
http://www.algorithmist.net/composite.html
http://www.cs.cmu.edu/~baraff/sigcourse/
http://pal.sourceforge.net/

44 S. DiVerdi

12. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proceedings of
Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 281–288
(2007)

13. Chu, S.H.: Making digital painting organic. Ph.D. thesis, Hong Kong University of Science
and Technology (2007)

14. Chu, N., Tai, C.L.: Real-time painting with an expressive virtual Chinese brush. IEEE Comput.
Graph. Appl. 24(5), 76–85 (2004)

15. Chu, N., Baxter, W., Wei, L.Y., Govindaraju, N.: Detail-preserving paint modeling for 3D
brushes. In: Proceedings of the International Symposium on Non-photorealistic Animation
and Rendering, pp. 27–34 (2010)

16. Corel: Painter (2012). http://www.corel.com/painter/
17. Coumans, E.: Bullet physics library (2010). http://www.bulletphysics.org/
18. Design, A.: ArtRage (2012). http://www.artrage.com/
19. DiVerdi, S., Krishnaswamy, A., Hadap, S.: Industrial-strength painting with a virtual bristle

brush. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
pp. 119–126 (2010)

20. Eastman, P.: Art of illusion (2012). http://www.artofillusion.org/
21. Hertzmann, A.: A survey of stroke-based rendering. IEEE Comput. Graph. Appl. 23, 70–81

(2003)
22. Kavan, L., Sloan, P.P., O’Sullivan, C.: Fast and efficient skinning of animated meshes. Comput.

Graph. Forum 29(2), 327–336 (2010)
23. Lam, D.: Tokamak physics engine (2010). http://www.tokamakphysics.com/
24. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape inter-

polation and skeleton-driven deformation. In: Proceedings of ACM SIGGRAPH, pp. 165–172
(2000)

25. Lu, T.K., Huang, Z.: A GPU-based method for real-time simulation of Eastern painting. In:
Proceedings of the International Conference on Computer Graphics and Interactive Tech-
niques in Australia and Southeast Asia, pp. 111–118 (2007)

26. Mi, X., Xu, J., Tang, M., Dong, J.: The droplet virtual brush for Chinese calligraphic char-
acter modeling. In: Proceedings of the IEEE Workshop on Applications of Computer Vision,
pp. 330–334 (2002)

27. Okabe, Y., Saito, S., Nakajima, M.: Paintbrush rendering of lines using HMMs. In: Proceed-
ings of the International Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia, pp. 91–98 (2005)

28. Pudet, T.: Real time fitting of hand-sketched pressure brushstrokes. Comput. Graph. Forum
13(3), 205–220 (1994)

29. Saito, S., Nakajima, M.: 3D physics-based brush model for painting. In: Proceedings of ACM
SIGGRAPH Conference Abstracts and Applications, p. 226 (1999)

30. Smith, A.R.: Digital paint systems: an anecdotal and historical overview. IEEE Ann. Hist.
Comput. 23, 4–30 (2001)

31. Smith, R.: Open Dynamics Engine (2007). http://www.ode.org/
32. Van Laerhoven, T., Van Reeth, F.: Brush up your painting skills: realistic brush design for

interactive painting applications. Vis. Comput. 23(9), 763–771 (2007)
33. Vandoren, P., Van Laerhoven, T., Claesen, L., Taelman, J., Raymaekers, C., Van Reeth, F.: In-

tuPaint: bridging the gap between physical and digital painting. In: IEEE International Work-
shop on Horizontal Interactive Human Computer Systems, pp. 65–72 (2008)

34. Vandoren, P., Claesen, L., Van Laerhoven, T., Taelman, J., Van Reeth, F.: FluidPaint: an inter-
active digital painting system using real wet brushes. In: Proceedings of the IEEE International
Workshop on Tabletops and Interactive Surfaces (2009)

35. Xie, N., Laga, H., Saito, S., Nakajima, M.: IR2s: interactive real photo to Sumi-e. In: Pro-
ceedings of the International Symposium on Non-Photorealistic Animation and Rendering,
pp. 63–71 (2010)

36. Xu, S., Tang, M., Lau, F., Pan, Y.: Virtual hairy brush for painterly rendering. Graph. Models
66(5), 263–302 (2004)

http://www.corel.com/painter/
http://www.bulletphysics.org/
http://www.artrage.com/
http://www.artofillusion.org/
http://www.tokamakphysics.com/
http://www.ode.org/

Chapter 3
Halftoning and Stippling

Oliver Deussen and Tobias Isenberg

3.1 Halftoning

Shortly after photography was invented, images became part of printed newspapers
and books. William Fox Talbot, one of the inventors of photography, already men-
tioned an etching method (intaglio printing) for processing photographic screens
which was commercialized in the 1880s.

Georg Meisenbach, a German inventor, developed and patented a halftone pro-
cess on the basis of sets of parallel lines that were superimposed with the input
photograph. He created his pattern by engraving lines in glass and darkened them
using asphalt. Two or more such line patterns were superimposed and worked as a
filter for the input image that divided it into dots of varying size (see Fig. 3.1).

3.1.1 Digital Halftoning

In digital halftoning, the screening process is implemented by representing the input
image by electronically generated dots. Companies such as Linotype in the 1970s
developed film recorders where the film was electronically illuminated dot by dot
using precision optics.

O. Deussen (�)
Dept. of Computer and Information Science, University of Konstanz, Konstanz, Germany
e-mail: oliver.deussen@uni-konstanz.de

T. Isenberg
INRIA Saclay, Orsay, France
e-mail: tobias@isenberg.cc

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_3,
© Springer-Verlag London 2013

45

mailto:oliver.deussen@uni-konstanz.de
mailto:tobias@isenberg.cc
http://dx.doi.org/10.1007/978-1-4471-4519-6_3

46 O. Deussen and T. Isenberg

Fig. 3.1 Reproducing a photograph by multiple line patterns. (a) First line screen; (b) second line
screen; (c) resulting screening pattern; (d) Input Image: Rosemary Ratcliff/FreeDigitalPhotos.net;
(e) resulting halftoning pattern

When fully digital printing was invented for laser printers, halftoning meant to
convert grayscale images into black and white pixels that were directly realized by
printers.

3.1.2 Threshold Quantization

The easiest way to convert a given grayscale image into black and white pixels is
to use a threshold, typically half of the highest intensity. Doing so, the resulting
image shows large black and white areas (cf. Fig. 3.2(a)). A random variation of the
threshold avoids such large areas but introduces noise (Fig. 3.2(b)).

http://FreeDigitalPhotos.net

3 Halftoning and Stippling 47

Fig. 3.2 (a) Quantization with fixed threshold; (b) threshold is varied randomly

Algorithm 3.1 One-dimensional Error Diffusion
Input: A grayscale image
Output: An image of black and white pixels approximating the input
for y := height to 0 step 1 {

for x := 0 to width−1 step 1 {
if (input[x, y] > 127)

K := 255;
else

K := 0;
error := input[x, y] − K ;
input[x + 1, y] := input[x + 1, y] + error;

}
}

Each decision if a pixel is represented in white or in black introduces a visual
error. If the threshold is randomly varied, this error statistically averages and the
overall image appears in the right tonal values. However, the noise remains and thus
better techniques were developed.

Floyd and Steinberg [3] invented error diffusion for halftoning. When represent-
ing a pixel in white or black, the error in grayscale is determined and diffused to the
neighbor pixels. The simplest case is one dimensional (cf. Algorithm 3.1), here a
line of pixels is processed left to right and the error is diffused to the right neighbor.

In Fig. 3.3(a) the result of one-dimensional Floyd Steinberg quantization is
shown. Vertical patterns appear since for every line almost the same error is dis-
tributed leading to almost the same patterns in every line. The two-dimensional

48 O. Deussen and T. Isenberg

Fig. 3.3 Floyd Steinberg quantization: (a) in the one-dimensional version vertical patterns appear;
(b) the two-dimensional variant avoids this

Algorithm 3.2 Floyd Steinberg Error Diffusion
Input: A grayscale image
Output: An image of black and white pixels approximating the input
for y := height to 0 step 1 {

for x := 0 to width−1 step 1 {
if (input[x, y] > 127)

K := 255;
else

K := 0;
error := input[x, y] − K ;
input[x + 1, y] := input[x + 1, y] + 7/16 ∗ error;
input[x − 1, y − 1] := input[x − 1, y − 1] + 3/16 ∗ error;
input[x, y − 1] := input[x, y − 1] + 5/16 ∗ error;
input[x + 1, y − 1] := input[x + 1, y − 1] + 1/16 ∗ error;

}
}

variant of the algorithm (see Algorithm 3.2) avoids such patterns since here the er-
ror is not just distributed to the right neighbor but to the local neighborhood of the
pixel.

Here four pixels around the current pixel are updated. The error is distributed
with individual weights that were found by experiments. Figure 3.3(b) shows the
improvement in the visual output.

3 Halftoning and Stippling 49

Fig. 3.4 Manually generated stipple drawing. Image courtesy by Brian L. Sidlauskas, Oregon
State University

Many other halftoning techniques have been developed. Screening techniques
imitate Meisenbach’s superposition of an image with a repeating structure of varying
width. A dither kernel (a small matrix of threshold values) that is repeatedly placed
on the input image. Since the threshold values repeat regularly, the image impression
is also more regular than with error diffusion.

3.2 Stippling

Stippling is an illustration technique that relies on dots. In contrast to halftoning
methods, dots are distributed manually. The artists tries to set dots randomly but in
most cases with almost uniform point-to-point distances.

The technique allows artists to represent tone plus material of an object, thus
such techniques are used by scientific illustrators when objects have to be printed in
black and white while faithfully representing their surface details. An example from
biology is shown in Fig. 3.4, the surface of a bone is represented by the smooth
arrangements of the dots, especially in the lighter areas almost uniform point-to-
point distances are visible.

While in Fig. 3.4 silhouette lines were also used, in the following we want to
concentrate on how to distribute points with the necessary characteristics by means
of computers.

So called Centroidal Voronoi Tessellations create dot distributions that arrange
points in the desired manner. Du et al. [2] describe them thoroughly, an analysis
of different configurations of such tessellations and corresponding energy levels are
given in [5, 16].

Centroidal Voronoi Tessellations for creating stipple patterns were introduced
in [1, 17]. Other applications for such point sets are sampling [9] and numerical

50 O. Deussen and T. Isenberg

integration [18, 19]. In both cases the spectral characteristics of such sets (Blue
Noise characteristics) are the reason for their usage.

3.2.1 Voronoi Tessellations and Lloyd Relaxation

Let us assume that we have n points S = s1, . . . , sn on our paper. The Voronoi cell
V (si) of a point is the area around si for which each additional point on the paper
would be closer to si than to any other point of the given set S. The regions of all
points in S form a tessellation of the plane, meaning that they are pairwise distinct
and jointly covering the entire plane.

Such tessellations are called the Voronoi diagrams VD(S) of S. Since a tessel-
lation of the entire plane would have open Voronoi regions for the outer points of
S, typically such regions are closed by intersecting them with a (rectangular) frame
that encloses the given point set. This frame is our canvas on which the points are
distributed.

Ordinary Voronoi Tessellations use the Euclidean metric as a distance function.
Many other distance functions can be used. However, for the purpose of Stippling
the Euclidean distance is sufficient since it is a “natural” distance function with an
intuitive relation between value and perceived distance.

Centroidal Voronoi Tessellations (CVTs) are ordinary Voronoi Tessellations with
the additional property that every point si is placed in the centroid ci of its Voronoi
cell V (si). The centroid (xci, yci) is defined by the moments of the area:

m
0,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

dx dy

m
1,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

x dx dy

m
0,1
i =

∫ yi2

yi1

y

∫ xi2(y)

xi1(y)

dx dy

(3.1)

xci = m
0,0
i

m
1,0
i

, yci = m
0,0
i

m
0,1
i

(3.2)

with Ai being the area of the Voronoi Cell and xi1, xi2, yi1, yi2 the boundary of the
cell. Such a Cendroidal Voronoi Tessellation is shown in Fig. 3.5(b). The points
are still almost at random but now with much less variance in their point to point
distances.

Cendroidal Voronoi Tessellations can be achieved by applying the Lloyd relax-
ation to the points. This algorithm was invented by S. Lloyd in the 1960s at Bell
Labs and later published in [11]. Each step of one iteration of this algorithm moves

3 Halftoning and Stippling 51

Fig. 3.5 (a) Voronoi
Diagram; (b) movement of
points during relaxation

each point towards the centroid of its Voronoi Region. If ci = (xci, yci) is the cen-
troid of a Voronoi Region the movement can be represented

s
(t+1)
i = s

(t)
i + α

(
c
(t)
i − s

(t)
i

)
(3.3)

where α ∈ (0,1] determines the speed of the movement. In the original algorithm
α is set to one. The iteration is repeated until the movement of the points is be-
low a given threshold. Figure 3.5(b) visualizes the movement during such a relax-
ation.

The CVT minimizes the following energy function, which measures the com-
pactness of the Voronoi Regions (see [2]):

Fv

(
S,V (S)

) =
n∑

i=1

∫
V (Si)

‖x − si‖2 dx (3.4)

This energy function sums up the integral of all quadratic distances of the points
in a Voronoi Cell towards the corresponding point si . This is minimal for compact
regions with almost uniform aspect ratio, thereby approximating hexagons [2]. Fur-
thermore, it implies an almost uniform distribution of point-to-point distances since
these distances are maximized for compact regions.

The Lloyd relaxation minimizes Eq. (3.4) and therefore can be used as a local op-
timization method for F . It moves the points into a distribution with almost uniform
point-to-point distance. If continued for too long, it converges to a hexagonal distri-
bution. This is not desired and typically iterating is stopped after a smaller number
of steps.

3.2.2 Weighted Voronoi Tessellations

The Lloyd iteration distributes points in a uniform manner. However, for represent-
ing an input image we need varying density and thus have to find ways to modify
the sizes of the Voronoi cells locally. Secord [17] published a variant of the iteration

52 O. Deussen and T. Isenberg

Fig. 3.6 (a) Initial Point distribution for a face; (b) point distribution after 20 steps of Lloyd’s
relaxation. The points spread over the entire drawing plane, image details are lost

in which every point on the plane is assigned a weight in proportion to the needed
point density (grayscale value).

For doing so, the definition of the moments from Sect. 3.1 is modified in order to
encapsulate the weights:

m
0,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

ρ(x, y) dx dy

m
1,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

xρ(x, y) dx dy

m
0,1
i =

∫ yi2

yi1

y

∫ xi2(y)

xi1(y)

ρ(x, y) dx dy

(3.5)

with ρ(x, y) being the density function that reflects the needed point density on
the image. Parts of the equations can be precomputed, see [17] for details, and this
allows for a fast computation of the integrals.

Let us have a look what can be produced with this simple optimization scheme.
Since the method only moves points, an initial set has to be given. Usually one uses
one of the above described halftoning methods and for every black pixel one dot is
created.

Figure 3.6(a) shows such an initial point distribution for the face of a woman.
If we apply the normal Lloyd Iteration for this point set, the points are spread over
the entire drawing plane and all the details of the face are lost (cf. Fig. 3.6(b)). In
Fig. 3.7(a) a weighted Centroidal Voronoi Tessellation is displayed. Here, in addi-
tion to the initial distribution the image itself was given to determine density and
weights. Due to the weights the details of the face are captured better. If all points
that are placed on white areas are removed the result looks similar to a stipple draw-
ing (cf. Fig. 3.7(b)).

3 Halftoning and Stippling 53

Fig. 3.7 (a) Point distribution in weighted Voronoi Tessellation; (b) point distribution with points
in white regions omitted

Fig. 3.8 Automatically stipple illustration of the bone from Fig. 3.4

Finally, in Fig. 3.8 the automatically stippled version of the bone of Fig. 3.4 is
shown. Please note that this result is entirely automatic and no additional lines are
inserted.

3.3 Beyond Stippling

In general, Lloyd’s relaxation method can be applied to arbitrary objects, provided
that their Voronoi Diagram can be calculated. For each object the center of gravity
is determined. During iteration, the object is moved so that its center of gravity lies
upon the center of gravity of its Voronoi Region. Additionally, objects can now be
rotated (see Algorithm 3.3).

54 O. Deussen and T. Isenberg

Algorithm 3.3 Modified Lloyd relaxation
Input: A set of objects oi on the plane and a density function ρ(x, y)

Output: A relaxed centroidal Voronoi tessellation and a relaxed object-distribution.
1. Determine the mass centroids and main inertia axes of the objects oi

repeat
2. Determine the Voronoi-Regions V (oi) of the oi

for i = 1 to n do begin
3. Calculate the mass centroids (xci, yci) of the Voronoi cell V (oi)

4. Move the mass centroids of the objects onto the
mass centroids (xci, yci) of the Voronoi cells

5. Rotate the objects main axis so that it matches the main axis ϕ of V (oi)

end
until the object positions converge

To compute the rotations we need to determine the second-order moments of the
Voronoi cells:

m
1,1
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

xy dx dy

m
2,0
i =

∫ yi2

yi1

∫ xi2(y)

xi1(y)

x2 dx dy

m
0,2
i =

∫ yi2

yi1

y2
∫ xi2(y)

xi1(y)

dx dy

(3.6)

Using these moments and mass centroids one is able to calculate the main inertia
axes and the desired rotation angle ϕ for the object. The two-dimensional inertia
tensor is given as

J =
(

μ2,0 μ1,1
μ1,1 μ0,2

)

The eigenvalues of J form the maximal and the minimal inertia moments j1, j2:

j1,2 = 1

2

(
μ2,0 + μ0,2 ±

√
(μ2,0 − μ0,2)2 + 4μ2

1,1

)
(3.7)

The angle ϕ of the main inertia axis is the angle of the eigenvector v1 of J which
belongs to the eigenvalue j1:

ϕ = 1

2
arctan

(
2μ1,1

μ2,0 − μ0,2

)
(3.8)

Figure 3.9 shows an object with its main axes (solid arrows), its Voronoi cell and
its main axes (dashed arrows). These axes are determined for each iteration and the
object is rotated so that the axes match.

3 Halftoning and Stippling 55

Fig. 3.9 Mapping the axes of
the object (solid arrows) to
the axes of the Voronoi cell
(dashed arrows) defines the
rotation of the object

Fig. 3.10 A set of points and lines are relaxed using the extended relaxation method. © Euro-
graphics Association, used by permission

This allows the user to set up the algorithm for the extension of Lloyd’s relaxation
that is able to incorporate object rotations. Within the process, it is assumed that first
the mass centroid of the object is moved over the mass centroid of the corresponding
Voronoi cell, and that the orientation is then adapted.

In Fig. 3.10(a) a set of points and lines is shown. Applying the method an even
distribution as shown in Fig. 3.10(b) is achieved. Please note that the iteration works
well with the very badly distributed initial set shown in Fig. 3.10(a).

The variants of the iteration can be mixed while working with an object set.
Similar to what was proposed earlier [1], an interactive editor was built that allows
the user to model sets of objects in various ways. One can move objects, insert or
delete them using a number of “brushes”. A special variant of the editor allows the
user to apply one or more steps of each variant of the iteration.

The editor also enables the user to generate mosaics [4] (for more detail see
Chap. 10). Here, small tiles have to be arranged in order to follow important struc-
tures in the input image, also the tile size was reduced for important regions such as
the eyes to enhance precision. Examples are found in Figs. 3.11 and 3.12.

3.4 Stippling by Example

The techniques described so far create stipple patterns with a single characteristic—
despite the fact that artists most often develop variants of such a patterns according

56 O. Deussen and T. Isenberg

Fig. 3.11 A stipple
illustration that uses different
small objects as stipple
marks. © Eurographics
Association, used by
permission

Fig. 3.12 Computer-assisted mosaics using the modified Lloyd’s relaxation. © Eurographics As-
sociation, used by permission

to their own taste and style. It would, therefore, be desirable to create such stipple
distribution patterns from examples given by the artists.

Such an approach was presented by Kim et al. [7]. For this work an example
of a stipple drawing has to be given that incorporates different tonal values. In a
first step patterns for a set of tonal values are extracted and their dot distribution is
determined.

Since in hand-made stipple drawings the stipple marks have a variety of forms,
such forms are extracted and stored together with the stipple distribution. A sta-
tistical analysis of the distribution [12] is used to find parameters for the stipple
synthesis done on the basis of a texture synthesis algorithm.

Figure 3.13 shows example results of Kim et al.’s [7] approach. The grayscale
image in Fig. 3.13(a) and the artistic stipple distribution in Fig. 3.13(b) is given

3 Halftoning and Stippling 57

Fig. 3.13 Stippling by example: (a) grayscale image; (b) artistic stipple example used as the
source of the example-based stipple distribution; (c) computer-generated pattern by example;
(d) weighted Voronoi stippling for comparison. (a) Copyright © David Darling, used by permis-
sion, (b) copyright © 2009 William M. Andrews, used by permission, (c) copyright © 2009 Kim
et al., used by permission

as input. The algorithm produces the new stipple drawing shown in Fig. 3.13(c). In
contrast to the standard solution using weighted Voronoi Stippling (see Fig. 3.13(d)),
the distribution of dots follows the characteristics of the input.

Another approach of stippling by example by Martín et al. [13, 14] does not
look at the statistics of the stipple point distribution but, instead, at the resolution
and scale at which the stipple dots are placed as well as the specific shape of the
individual points. This technique addresses one of the limitations of the previous
one by Kim et al. [7]—namely the inability of Kim et al.’s technique to produce the
nice merging of stipple points in medium gray regions.

58 O. Deussen and T. Isenberg

To address this issue, Martín et al. [13, 14] no longer treat the stipple points as
black dots on a white background. Instead, they use grayscale scans of actual stipple
points which they distribute based on halftoning. However, they also compute the
correct resolution of stipple points on a paper of a given size, and use stipple dot
scans of the appropriate pixel size so that the resulting scale-dependent images are
produced for a given paper size (e.g., A4 or Letter paper). Moreover, due to the
grayscale treatment, the grayscale stipple dots overlap and thus create the merging
effects known from hand-made stippling. Interestingly, the randomized halftoning
distributions that result from this process exhibit similar statistics as hand-made
stippling, confirmed using Maciejewski et al.’s [12] distribution analysis.

Figure 3.14 shows an example of Martín et al.’s [13, 14] technique. Based on
the input image in Fig. 3.14(a), a grayscale stipple image was produced at 600 ppi
for A5 size (Fig. 3.14(b)), and the same stipple distribution was generated for
the 1200 dpi black-and-white image in Fig. 3.14(c). Notice that due to the scale-
dependence the same stipple dot scans and the same distribution is used for both
images because they were produced for the same paper size—even though they
have a different (pixel) resolution.

3.5 Structure-Aware Stippling

One issue raised, among others, also by Martín et al. [13, 14] is that low-level stipple
placement is not sufficient for being able to produce high-quality illustrations. While
Martín et al. analyze the stipple process by traditional stipple artist including such
high-level processing, some authors have tried to incorporate higher-level process-
ing into the NPR stippling pipeline (also compare some of the hatching techniques
described in Chap. 4).

For example, Mould [15] transforms the input image into a regular graph whose
edges are weighted according to the local gradient magnitude. Then, Mould uses
a version of Dijkstra’s algorithm to place stipple dots based on the graph. Next,
Mould places the dots progressively along the frontiers of growing regions, which
preserves the structure of meaningful artifacts such as edges in the images.

A related technique by Kim et al. [6] attempts to re-create the traditional hedcut
illustration style which arranges stipples dots along lines for portraits of people.
They first extract a line map and a tone map of the input image, then build a distance
field and from that offset lines, and then use the extracted maps to optimize the
placement of stipple dots. A different group of authors, Kim et al. [8], extend the
initial portrait stipple approach by adding perceptual depth cues to the stipple image.
Kim et al. [8] extract the image edges as well as a number of isophote lines (i.e., lines
of the same brightness) and use these, similar to Kim et al. [6], as means to place
stipple points. The isophote lines are extracted by quantizing the input image and
extracting edges of identical color value. Based on the edge map and the isophote
map, Kim et al. then produce a weighted distance map which they use to produce
offset lines which, in turn, are used to place stipple points.

3 Halftoning and Stippling 59

Fig. 3.14 Resolution-dependent stippling by example: (a) input image; (b) grayscale stipple re-
sult; and (c) black-and-white thresholded at a higher pixel resolution. (a) Copyright © 2012
Domingo Martín, used by permission; (b, c) copyright © 2012 Martín et al., used by permission

60 O. Deussen and T. Isenberg

Recently, Li and Mould [10] suggested another way for stipple rendering to take
the input image’s structure into account using structure-aware error distribution that
also permits the user to control how many stipple points are being used. For this
purpose, Li and Mould consider one pixel to be one stipple and provide means to
reduce the number of stipples by increasing the positive and reducing the negative
errors to avoid having to place too many stipples (on a regular grid). Both types of
error result in less pixels and, thus, less stipples being placed. This approach results
in a high degree of preservation of the structure in the input image, even if only
relatively few stipple dots are being used to represent the input image. Moreover, Li
and Mould [10] also describe a number of further adjustments that result in different
effects such as screening using textures or patterns.

3.6 Conclusion

Stippling is a powerful but cumbersome illustration technique for scientific illus-
trators since it allows to represent grayscale values and texture at the same time.
It is widely used in archeology and biology. Computer-generated stipple drawings
allow the production of such illustrations, for example for scientific visualization
purposes, much faster since automatic methods exist that mimic what artists do.

Data-driven methods use patterns created by artists. They enable to capture the
style of an illustrator quite precisely. Such methods enable the computer to create
a much larger variety of patterns with different spatial characteristics; however, the
price is that we have to use much more complex methods.

References

1. Deussen, O., Hiller, S., van Overveld, K., Strothotte, T.: Floating points: a method for
computing stipple drawings. Comput. Graph. Forum 19(4), 40–51 (2000). doi:10.1111/
1467-8659.00396

2. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations. SIAM Rev. 41(4), 637–
676 (1999). doi:10.1137/S0036144599352836

3. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp.
17(2), 75–77 (1976)

4. Fritzsche, L.P., Hellwig, H., Hiller, S., Deussen, O.: Interactive design of authentic looking
mosaics using Voronoi structures. In: Proc. 2nd International Symposium on Voronoi Dia-
grams in Science and Engineering 2005, pp. 1–11 (2005)

5. Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–
380 (1979). doi:10.1109/TIT.1979.1056067

6. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph.
Forum 27(4), 1209–1216 (2008). doi:10.1111/j.1467-8659.2008.01259.x

7. Kim, S., Maciejewski, R., Isenberg, T., Andrews, W.M., Chen, W., Sousa, M.C., Ebert, D.S.:
Stippling by example. In: Proc. NPAR, pp. 41–50. ACM, New York (2009). doi:10.1145/
1572614.1572622

8. Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated hedcut illustration using
isophotes. In: Proc. Smart Graphics, pp. 172–183. Springer, Berlin (2010). doi:10.1007/
978-3-642-13544-6_17

http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1109/TIT.1979.1056067
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
http://dx.doi.org/10.1145/1572614.1572622
http://dx.doi.org/10.1145/1572614.1572622
http://dx.doi.org/10.1007/978-3-642-13544-6_17
http://dx.doi.org/10.1007/978-3-642-13544-6_17

3 Halftoning and Stippling 61

9. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue
noise. ACM Trans. Graph. 25(3), 509–518 (2006). doi:10.1145/1141911.1141916

10. Li, H., Mould, D.: Structure-preserving stippling by priority-based error diffusion. In: Proc.
Graphics Interface, pp. 127–134. Canadian Human-Computer Communications Society,
School of Computer Science, University of Waterloo, Waterloo (2011)

11. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137
(1982). doi:10.1109/TIT.1982.1056489

12. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Measuring
stipple aesthetics in hand-drawn and computer-generated images. IEEE Comput. Graph. Appl.
28(2), 62–74 (2008). doi:10.1109/MCG.2008.35

13. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-based stippling using a
scale-dependent grayscale process. In: Proc. NPAR, pp. 51–61. ACM, New York (2010).
doi:10.1145/1809939.1809946

14. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-dependent and example-based stip-
pling. Comput. Graph. 35(1), 160–174 (2011). doi:10.1016/j.cag.2010.11.006

15. Mould, D.: Stipple placement using distance in a weighted graph. In: Proc. CAe, pp. 45–
52. Eurographics Association, Goslar (2007). doi:10.2312/COMPAESTH/COMPAESTH07/
045-052

16. Newman, D.J.: The hexagon theorem. IEEE Trans. Inf. Theory 28(2), 137–138 (1982).
doi:10.1109/TIT.1982.1056492

17. Secord, A.: Weighted Voronoi stippling. In: Proc. NPAR, pp. 37–43. ACM, New York (2002).
doi:10.1145/508530.508537

18. Smith, J.: Recent developments in numerical integration. J. Dyn. Syst. Meas. Control 96(1),
61–70 (1974). doi:10.1115/1.3426777

19. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1980)

http://dx.doi.org/10.1145/1141911.1141916
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/MCG.2008.35
http://dx.doi.org/10.1145/1809939.1809946
http://dx.doi.org/10.1016/j.cag.2010.11.006
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
http://dx.doi.org/10.1109/TIT.1982.1056492
http://dx.doi.org/10.1145/508530.508537
http://dx.doi.org/10.1115/1.3426777

Chapter 4
Non-photorealistic Shading and Hatching

Victor Ostromoukhov

4.1 Introduction. Shading and Hatching as Essential Visual Cues
in Marr’s Model

Seeing the external world is an essential ability of the human being. It ensures the
most vital survival functions such as avoiding predators, search of food or repro-
duction. Our visual system is a fine result of millions of years of evolution and
constant improvement. It is not surprising that it is extremely fast and provides to
our brain the information about spatial structure of the external world, as well as the
information about relative movement of external objects and the observer himself.
The science of vision (neuroscience, psychology, computer vision) studies the pro-
cess of perception of the external world, starting from retinal stimuli and ending up
in a complete spatiotemporal internal brain image. According to the most influen-
tial Marr computational model of vision, the whole process is divided into several
stages: from unstructured retinal image to primal 2.5 sketch, then to object-based
categorial model, essential to develop an understanding of the scene. This process
is extremely complex, with several feedback loops [19, 26]. To facilitate the task at
early stages of the perception process, our vision system uses, as visual cues, var-
ious pieces of information available in the scene: variations of tone due to natural
distribution of light in the scene, relative size and foreshortening of objects due to
the perspective, presence of edges due to particular viewing point, etc. It has been
discovered that some of these perception functions are ‘wired’ (e.g., lateral inhibi-
tion in the retinal processing, which facilitates edge detection); others are high-level
functions of our brain, which are learned from experience [19, 26].

Artists were always interested in depicting the external world. Early examples of
such depictions can be found in Lascaux caves; they are estimated to be 17,300 years

V. Ostromoukhov (�)
CNRS/Université Claude Bernard Lyon 1, 43, bd du 11 novembre 1918, 69622 Villeurbanne,
France
e-mail: victor.ostromoukhov@liris.cnrs.fr

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_4,
© Springer-Verlag London 2013

63

mailto:victor.ostromoukhov@liris.cnrs.fr
http://dx.doi.org/10.1007/978-1-4471-4519-6_4

64 V. Ostromoukhov

Fig. 4.1 Examples of usage of hatching for the purpose of shading in traditional art: (a) pencil
drawing by Leonardo da Vinci, (b) woodcut by Albrecht Dürer, (c) etching by Albrecht Dürer

old. During centuries of constant improvements, the artists were constantly improv-
ing the degree of realism in artificial depictions. Until XVII century, the highest
possible realism was considered as the ultimate goal of the artificial depiction [11].
Still, many skilled artists struggled with inherent limitations of the media, such as
limited dynamic range, flatness or static nature of the depiction, among many oth-
ers. Also, artists used discrete depiction primitives, marks of finite shape and size,
which are very different from continuous distribution of shades in the scene [4, 28].
In order to overcome these limitations, traditional artists often used special technical
‘tricks’, special rendering techniques which would allow to enhance the perception
of the depicted scenes [16]. Unconsciously, the artists pursue a two-fold goal: on
the one hand, facilitate the task of visual interpretation of the depicted scene; on the
other hand, to provide pure aesthetical and stylistic interpretation of the depicted
object, to produce depictions pleasant for our eyes.

Figure 4.1 shows a few examples of usage of hatching for the purpose of shading
in traditional art. It is interesting to notice that both irregular and regular repeti-
tive structures of elementary strokes have been traditionally used. In many strik-
ing cases of traditional etching and engraving techniques, large patches of almost-
parallel strokes were used. The directions of the engraving lines somehow follow
the features of the depicted object. This additional visual cue greatly facilitates un-
derstanding of 3D scenes and helps object-background separation, clearly visible
in Fig. 4.1(c).

In computer graphics, depiction of 3D scenes with artificial elements based on
line drawing appeared as early as in 1960s [2, 25]. But the dawn of true full-featured
NPR systems, which incorporate sophisticated shading, appeared in the 1990s. In
the early days of NPR, researchers were often concentrated on reproducing tradi-
tional artistic media with new computerized techniques. Namely, they tried to re-
produce traditional shading techniques such as pen-and-ink [21–23, 29], copperplate
engraving [17], freehand drawing [6].

There are many different conceptual approaches to generate NPR rendering with
shading, according to the nature of the input sources: static unstructured images

4 Non-photorealistic Shading and Hatching 65

Fig. 4.2 Pen-and-ink drawing system, as described in [22]. (a) A coherent set of stroke textures
produced for various gray tones. (b) The resulting pen-and-ink illustration. © 1994 ACM

(photos), video sequence of unstructured images, static images with geometry in-
formation, animated sequence of images with geometry information. As the prob-
lems of animation and temporal coherence are covered in Chap. 1 and Chap. 13,
we shall concentrate our attention on NPR shading of static unstructured images.
In many cases, elements of geometric information may enrich unstructured images;
this information may come from different sources: from image processing tech-
niques (e.g., edge- and surface-detection algorithms), from video processing tech-
niques (e.g., structure-from-motion algorithms), or simply from a modeler tool. It
is important to mention that all shading methods described in this section remain
inherently and fundamentally planar: they use the artistic mark metaphor, inspired
by traditional artwork on planar support.

4.2 Interactive Pen-and-Ink Illustration

The method described by Salisbury et al. [22] introduces an interactive pen-and-ink
drawing system. The system takes various 2D grayscale images as input: scanned
photos, or 2D output from an external 3D rendering system. This work introduces
the notion of stroke textures—collections of strokes arranged in different patterns—
to generate texture and tone of the input image. These stroke textures can be drawn
manually by a skilled artist or can be generated algorithmically, as shown in Fig. 4.2.
In case of algorithmic generation, the user controls the randomness of the distribu-
tion.

The whole dynamic range of gray scales is divided into reduced set of available
gray scales, for which stroke textures have been generated. During the process of
rendering, the local gray scale of the input image is mapped onto the set of available
gray scales, and the corresponding stroke texture is transferred onto the output. As
the stroke textures for different tones are mutually coherent, the resulting pen-and-
ink rendering looks very nice and seamless—see Fig. 4.2(b).

Later, in [21, 23] the same group of researches considerably improved the ini-
tial drawing system described in [22]. Namely, thanks to adaptive treatment of the

66 V. Ostromoukhov

Fig. 4.3 Basic elements used in copperplate engraving technique, as described in [17]: (a) Top-left:
A micro-photography of the graver’s tip making a furrow in the copperplate showing a shaving
lifted by the bevel. Virtual universal copperplate cut at different heights, producing furrows of dif-
ferent widths. Putting ink into the furrows imitates the true copperplate engraving printing process.
(b) Parametric grid defined on a unit square in parametric space uv is transformed into a morphed
parametric grid inside the patch T , in image space xy (upper row). This transformation maps Basic
Engraving Layer onto Transformed Layer (lower row). © 1999 ACM

scale of the drawing, they were able to produce convincing examples of pen-and-
ink illustration which provide almost equivalent appearance at different scales. An
interactive tool was used to guide local arrangement of the strokes.

Winkenbach and Salesin [29] use additional geometric information such as depth
or orientation of surfaces in the depicted scene. They base their approach on first
principles usually applied to hand-drawn illustrations and which can be found in
comprehensive guides for graphic artists. During the rendering time, the appropri-
ate pen-and-ink texture is picked up from a set of precomputed textures, according
to local lightness of the depicted objects. In order to suppress too dull and imper-
sonal rendering, the user of this system can introduce pseudo-randomness through
‘indications’. The resulting rendering appears much more appealing. This paper in-
troduces many clever features that greatly improve artistic appearance of the results:
scale-dependent levels of detail in rendering, orientation-based rendering, etc.

4.3 Copperplate Engraving

The system described in [17] imitated copperplate engraving, largely used as tra-
ditional support for reproducing grayscale images in bank notes, post stamps, etc.
The system is based on the analogy between the process of producing copperplate
engraving and digital halftoning (see [27] and Chap. 3). This analogy is illustrated
in Fig. 4.3(a). In traditional copperplate engraving, the width of the furrows pro-
duced by the tip of the graver influences the engraving line width. The furrows

4 Non-photorealistic Shading and Hatching 67

have a specific triangular shape. Based on this observation, one can build a vir-
tual ‘universal’ copperplate. This ‘universal’ copperplate can be cut at different
heights thus producing furrows of different widths. By putting ink into the fur-
rows we imitate the true copperplate engraving printing process. But at the same
time the process described here is nothing other than conventional digital halfton-
ing [27], a well known method in computer graphics. Simply, the term of virtual
‘universal’ copperplate stands for the threshold matrix (threshold levels correspond-
ing to the height of our ‘universal’ copperplate), while cutting and inking stand
for comparison between the input signal level and the current threshold value, thus
producing a black or white output signal. The analogy is so perfect that the art
of digital copperplate engraving may be resumed as the art of building appropri-
ate threshold structures looking like the ‘universal’ copperplate. Once this thresh-
old structure is built, the rendering may be done using conventional dithering soft-
ware.

The target ‘universal’ copperplate is composed of separate layers contain-
ing warped patches as shown in Fig. 4.3(b). The geometry of the warping is
user-defined, according to the features present in the depicted object, as shown
in Fig. 4.3(c). Usually only a few layers are needed, even for rather sophisticated
geometrical objects (only five layers were needed to produce the engraving shown
in Fig. 4.6).

The layers may partially overlap each other. In this case, they can be merged
using one of several available merging modes. The superimposition of several layers
is performed sequentially, one layer after another. It is important to define a set
of basic rules for superimposing two layers, the extension to several layers being
straightforward. Each engraving layer, before the superimposition, may undergo two
range transformations: it may be scaled (range scale) and raised or lowered (range
shift):

T ′(x, y) = T (x, y) × S(x, y) + D(x,y)

where range scale values S(x, y) and range shift values D(x,y) are two matrices
of the same dimensions as the matrix of threshold values T (x, y) which forms the
transformed engraving layer.

Superimposing engraving layers consists of consecutively merging the current
layer (CL) into the resulting layer (RL). Once merged, the current engraving layer
becomes an independent entity. The merging is performed according to the merging
mode. Figure 4.4 enumerates some merging modes, among the most important ones.
This list in not exhaustive: additional modes may be added if needed.

Figure 4.5 illustrates the use of merging modes. The sample image contains two
parts: a uniform gray ramp and four flat patches whose respective intensities are
1/8, 3/8, 5/8 and 7/8. the ‘copy’ mode serves to initialize the resulting engrav-
ing layer for the very first merging operation. The ‘smaller’ mode produces cross-
etching which is very close to traditional cross-etching known in the art. Notice dif-
ferent cross-hatching effects obtained when ‘smaller’ and ‘bigger’ merging modes
are used: black-line cross-hatching in the former and white-line cross-hatching in
the latter.

68 V. Ostromoukhov

Fig. 4.4 Merging modes used for generation of different cross-hatching, as described in [17]

Fig. 4.5 Merging modes used for generating different cross-hatching patterns, as described in [17].
Left column: the threshold structure obtained by superimposing threshold structures L1 and L2
using different merging modes. Right column: a sample image (the topmost image) rendered using
the threshold structures shown in the left column. Used merging modes were: (a) copy L1, (b) copy
L2, (c) L1 smaller L2, (d) L1 bigger L2. Notice different cross-hatching effects obtained when
smaller and bigger merging modes are used: black-line cross-hatching in the former and white-line
cross-hatching in the latter

In order to locally preserve a linear histogram of threshold levels, required for
digital halftoning, the paper suggests the use of local histogram equilibration. Fig-
ure 4.6 shows an example of black and white engraving of the head of Michelan-
gelo’s Giuliano de Medici using five separate engraving layers. The paper demon-
strates successful combination of regular etching with a simulated irregular engrav-

4 Non-photorealistic Shading and Hatching 69

Fig. 4.6 A copperplate engraving from [17], produced using only five partially overlapping
warped patches. © 1999 ACM

ing technique (mezzotint), as well as an extension of this engraving technique to
full-color imaging, as shown in Fig. 4.7.

A simple yet efficient technique has been proposed to extend black-and-white
copperplate engraving to color. For a given RGB input color image, three sepa-
rate Red–Green–Blue (or Cyan–Magenta–Yellow) separations use the same warped
patches to produce Red–Green–Blue engraved separations. Red and blue engrav-
ing lines follow u parameter, whereas green engraving lines follow v parameter
of Fig. 4.3.

Durand et al. [5] extended the initial engraving system described in [17]. Namely,
this paper extends the notion of patch of regular engraving lines to more gen-
eral patches of irregular drawing elements such as pencil or charcoal strokes, dry
point strokes, or even more abstract arbitrary strokes. These drawing elements can
be scanned from physical support or generated algorithmically. The procedure for
fine tonal adjustment follows the guideline introduced in [17], with one notice-

70 V. Ostromoukhov

Fig. 4.7 Color copperplate engraving. In this case, the same warped patches were used to produce
Red–Green–Blue separations. Red and blue engraving lines follow the u parameter, whereas green
engraving lines follow the v parameter of Fig. 4.3. © 1999 ACM

Fig. 4.8 A few examples produced by a drawing system which imitates traditional artistic shading,
as described in [5]. (a) Charcoal shading, (b) sanguine shading. In both cases, the input image was
an unstructured photograph. © 2001 Eurographics Association

able exception: the local histogram equilibration is performed based on statisti-
cal basis, taking into account the number of overlapping strokes at each point—
see Fig. 4.8.

4 Non-photorealistic Shading and Hatching 71

Fig. 4.9 Multi-color and artistic dithering, as described in [18]. Left: the source is a celtic motif
taken from the book by J. Romilly Allen [1]. Middle: a 3D view of the threshold structure built for
the purpose of multi-color and artistic dithering. Right: the resulting artistic dithered image which
incorporates the celtic motif. © 1999 ACM

4.4 Multi-color and Artistic Dithering

Multi-color and artistic dithering [18] is a natural extension of the method for cop-
perplate engraving that we have seen in the previous section. Both methods share
several mutual principles and techniques: both are tightly related to digital halfton-
ing, both are matrix-based, both use local histogram equilibration to ensure high
fidelity in tone reproduction. The main difference between the two methods con-
sists of the way of preparation of the dither matrices: copperplate engraving uses
warped patches of regular sine waves, whereas multi-color and artistic dithering
allows building sophisticated dither matrices from arbitrary images of from mathe-
matical functions.

Figure 4.9 gives a typical example of the NPR rendering using multi-color and
artistic dithering. A source celtic motif is taken from an influential textbook on
the history of celtic culture by J. Romilly Allen [1]. This motif is converted into
a threshold matrix structure, using various image-processing tools (the threshold
matrix structure is shown in Fig. 4.9 as a 3D surface). Then, local histogram equi-
libration is applied on the threshold matrix, to ensure a locally linear histogram
of threshold levels, required for digital halftoning. The equilibrated matrix is used
to produce the image shown in Fig. 4.9(right). Notice that multi-color and artistic
dithering preserves tonal fidelity of the original input image, while using artistic
marks of arbitrary complexity (celtic motif in this case; many other examples are
shown in [18], including a highly professional bank note design expressly produced
for Swiss notes manufacturer Oriel Füssli).

72 V. Ostromoukhov

Fig. 4.10 Some results of automated hedcut illustration using isophotes, as described in [15]
© 2010 Springer

4.5 Automated Hedcut Illustration

Hedcut illustration shares many common features with copperplate engraving de-
scribed in Sect. 4.3. Nevertheless, the method described in [15] does not explicitly
use digital halftoning as in [17]. Instead, it uses standard image processing tools in
order to extract useful information from the input images. First, edges are extracted,
and the luminance of the input image is quantized. From the latter, an isophote
map is built. A feature map is built from isophote and edge maps. This feature
map is used to guide the process of optimization in of the distribution of individ-
ual marks. The final result is a combination of the extracted features and individual
marks (stipples). The produced results are visually appealing. The paper explicitly
uses shading visual cues in order to enhance visual impact of NPR images, as shown
in Fig. 4.10.

4.6 Other Geometry-Based Hatching Techniques

From the early days of computer graphics, people started to use simple line mod-
els to represent edges and contours of the depicted objects. In the early 1990s,
Saito and Takahashi [20] introduced hatching based on isoparametric and planar
curves. Several papers introduced NPR shading, which take into account 3D geom-
etry, with lines whose directions follow principal curvature of the surface to ren-
der [6, 7, 12]. This approach, very powerful mathematically, was sometimes judged
as being too mechanical. In fact, artists represent shading more intuitively. Hertz-
mann and Zorin [10] proposed a more sophisticated distribution of hatching lines
based on principal curvature directions. More recently, Singh and Schaefer [24] pro-
posed a considerable improvement over this family of techniques. They construct a
gradient field of the diffuse intensity of the surface to guide a set of adaptively
spaced lines. The shape of these lines reflect the lighting under which the object is
being viewed and its shape. When the light source is placed at the viewer’s loca-
tion, these lines emanate from silhouettes and naturally extend suggestive contours.

4 Non-photorealistic Shading and Hatching 73

Fig. 4.11 Suggestive hatching as described in [24]. © 2010 Eurographics Association

The results produced with their technique produce very satisfactory results in many
cases of sophisticated geometry, as can be seen in Fig. 4.11.

Very recently, Kalogerakis et al. [14] proposed a more advanced technique for
pen-and-ink illustration. Their key idea is to learn the quality of distribution of
hatching strokes from examples provided by skilled artists. The artists’ work is
analyzed following several criteria: the nature of hatching (simple hatching, cross-
hatching or no hatching), stroke orientation, spacing, intensity, length, and thick-
ness. The result of such context-dependent analysis is applied to a concrete scene
using standard computer learning techniques. A user study shows very satisfactory
levels of quality produced with this method. Some results produced with these auto-
matic methods are hardly distinguishable from the artwork produced by the skilled
artists.

4.7 Automatic Generation of Distributions of Primitives

As mentioned in the previous sections, most applications for NPR shading place
drawing primitives either interactively, or by taking geometrical considerations (cur-
vature, projection, boundary) into account. Several researchers have tried to gen-
erate distributions of strokes, including their ‘look and feel’, from given exam-
ples. Jodoin et al. [13] model relative locations of strokes based on a statistical
analysis of the distribution of the input (example) distribution. Barla et al. [3]
propose a powerful method for the generation of shading primitives from exam-
ples. Their method is based on texture synthesis techniques, which require the
following steps: first, an analysis of the given pattern properties is performed
in order to extract meaningful pattern elements. Then, a synthesis algorithm
based on similarities in the detected stroke clusters produces output distributions
of strokes of arbitrary size, which look very much similar to the original dis-
tributions. The results of this technique look very convincing, as can be seen
in Fig. 4.12.

74 V. Ostromoukhov

Fig. 4.12 Automatic
generation of distribution of
shading primitives from
examples, as described in [3].
© 2006 Eurographics
Association. Left: input
distribution (example). Right:
the output sequence of
arbitrary size

4.8 Discussion

Today, a skilled NPR user is able to reproduce, more-or-less faithfully, a large vari-
ety of traditional artistic shading techniques such as drawing, engraving, stippling,
or pen-and-ink illustration. Many powerful concepts and techniques introduced in
NPR shading during the last two decades allow to go far beyond simple imitation
of traditional artwork. Namely, introducing conceptual separation of drawing prim-
itives from user interaction primitives [4, 5, 28] allows better modularity and clarity
of the rendering tools. Programmable stylization introduced in [8, 9] opens the door
to meta-stylization. Advanced computer learning techniques introduced by Kaloger-
akis et al. [14] increase visual appeal of the rendered results.

There is still much work to be done. Almost all the papers described in this chap-
ter use computers as powerful tools always driven by humans. Even in the most ad-
vanced cases, rendering quality is learned from artistic examples provided by skilled
users. With the tremendous progress in neuroscience (see in [16, 30, 31]) we may
hope that one day we shall deeply understand the mechanisms of aesthetical ap-
preciation of depiction and have a computational model for it. Building an efficient
computational model for visual cues responsible for perception of synthetic scenes
would allow a potential user to predict and control the degree of visual enhancement
of the NPR artwork. With such a powerful tool, tomorrow’s NPR users will be able
to optimize arbitrary synthetic scenes, in such a way as no artist has ever explored
in the past.

References

1. Allen, J.R.: Celtic Art in Pagan and Christian Times. Methuen, London (1904)
2. Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In:

Rosenthal, S. (ed.) Proceedings of the 22nd ACM National Conference, 1967, Washington,
D.C., USA, pp. 387–393. Thompson, Washington (1967).

3. Barla, P., Breslav, S., Thollot, J., Sillion, F., Markosian, L.: Stroke pattern analysis and syn-
thesis. In: Computer Graphics Forum (Proc. of Eurographics 2006), vol. 25 (2006)

4 Non-photorealistic Shading and Hatching 75

4. Durand, F.: An invitation to discuss computer depiction. In: Proceedings of the 2nd Inter-
national Symposium on Non-photorealistic Animation and Rendering, pp. 111–124. ACM,
Annecy (2002)

5. Durand, F., Ostromoukhov, V., Miller, M., Duranleau, F., Dorsey, J.: Decoupling strokes and
high-level attributes for interactive traditional drawing. In: Proc. Eurographics Workshop on
Rendering Techniques, pp. 71–82. Springer, London (2001)

6. Elber, G.: Line art rendering via a coverage of isoparametric curves. IEEE Trans. Vis. Comput.
Graph. 1(3), 231–239 (1995). ISSN 1077-2626

7. Elber, G.: Line art illustrations of parametric and implicit forms. IEEE Trans. Vis. Comput.
Graph. 4(1) 71–81 (1998). ISSN 1077-2626

8. Grabli, S., Turquin, E., Durand, F., Sillion, F.X.: Programmable style for NPR line drawing.
In: Rendering Techniques 2004 (Eurographics Symposium on Rendering). ACM, New York
(2004)

9. Grabli, S., Turquin, E., Durand, F., Sillion, F.X.: Programmable rendering of line drawing
from 3D scenes. ACM Trans. Graph. 29(2), 18 (2010)

10. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. SIGGRAPH, pp. 517–526.
ACM/Addison-Wesley, New York (2000)

11. Hockney, D.: Secret Knowledge (New and Expanded Edition): Rediscovering the Lost Tech-
niques of the Old Masters, expanded edn. Studio (2006)

12. Interrante, V., Fuchs, H., Pizer, S.: Illustrating transparent surfaces with curvature-directed
strokes. In: Proc. Visualization, pp. 211–218. IEEE Comput. Soc., Los Alamitos (1996)

13. Jodoin, P.M., Epstein, E., Granger-Piché, M., Ostromoukhov, V.: Hatching by example: a sta-
tistical approach. In: Proc. NPAR, pp. 29–36 (2002)

14. Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., Hertzmann, A.: Learning hatching for pen-
and-ink illustration of surfaces. ACM Trans. Graph. 31(1), 1 (2011)

15. Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated hedcut illustration using isophotes.
In: Proceedings of the 10th International Conference on Smart Graphics, pp. 172–183 (2010)

16. Livingstone, M.S.: Vision and Art: The Biology of Seeing. Abrams, New York (2008)
17. Ostromoukhov, V.: Digital facial engraving. In: Proceedings of SIGGRAPH, pp. 417–424

(1999)
18. Ostromoukhov, V., Hersch, R.D.: Multi-color and artistic dithering. In: Proceedings of the

26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 425–432.
ACM/Addison-Wesley, New York (1999)

19. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)
20. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. SIGGRAPH Comput.

Graph. 24(4), 197–206 (1990)
21. Salisbury, M., Anderson, C., Lischinski, D., Salesin, D.H.: Scale-dependent reproduction of

pen-and-ink illustrations. In: Proc. SIGGRAPH, pp. 461–468. ACM, New York (1996)
22. Salisbury, M.P., Anderson, S.E., Barzel, R., Salesin, D.H.: Interactive pen-and-ink illustration.

In: Proceedings of SIGGRAPH, pp. 101–108 (1994)
23. Salisbury, M.P., Wong, M.T., Hughes, J.F., Salesin, D.H.: Orientable textures for image-based

pen-and-ink illustration. In: Proc. SIGGRAPH, pp. 401–406. ACM/Addison-Wesley, New
York (1997)

24. Singh, M., Schaefer, S.: Suggestive hatching. In: Jepp, P., Deussen, O. (eds.) Computational
Aesthetics, pp. 25–32. Eurographics, Geneva (2010)

25. Sutherland, I.E.: Sketchpad: a man-machine graphical communication system. In: Johnson,
E.C. (ed.) Proc. Spring Joint Computer Conference, vol. 23, pp. 329–346. American Federa-
tion of Information Processing Societies, Spartan Books, Baltimore (1963)

26. Thompson, W., Fleming, R., Creem-Regehr, S., Stefanucci, J.K.: Visual Perception from a
Computer Graphics Perspective, 1st edn. AK Peters/CRC Press, Wellesley/Boca Raton (2011)

27. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)
28. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graphics.

Axiomathes 15, 319–351 (2005)

76 V. Ostromoukhov

29. Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: Proceedings
of SIGGRAPH, pp. 91–100 (1994)

30. Zeki, S.: Inner Vision: An Exploration of Art and the Brain. Oxford University Press, London
(2000)

31. Zeki, S.: Splendors and Miseries of the Brain: Love, Creativity, and the Quest for Human
Happiness, 5th edn. Wiley-Blackwell, New York (2009)

Chapter 5
Artistic Stylization by Nonlinear Filtering

Jan Eric Kyprianidis

5.1 Introduction

Digital image processing is a mature field providing a solid foundation for build-
ing artistic rendering algorithms. All image-based artistic rendering (IB-AR) ap-
proaches utilize image processing operations in some form to extract information or
synthesize results. For instance, classical stroke-based rendering utilizes the image
gradient for stroke placement. Nevertheless, few of the filters proposed for image
processing are suitable in their original form, probably because in image processing,
one is often concerned with the restoration and recovery of photorealistic imagery.
By contrast, IB-AR generally aims for strong modification and simplification. As
a result, researchers have often proposed specialized and adapted forms of existing
techniques.

This chapter surveys a selection of nonlinear image processing algorithms that
have been found to produce particularly interesting results. These techniques have
in common that they perform some kind of edge-preserving simplification, often
in combination with edge enhancement. In general, such an operation cannot be
achieved by convolution filters, since these are fully determined by their impulse
responses (i.e., applying a linear shift-invariant filter is equivalent to a convolution
with the point spread function). By contrast, operations that preserve or selectively
enhance edges must be guided by local (or even global) decisions based on the
input source, leading directly to nonlinear operations that are not shift-invariant.
Figure 5.1 illustrates a few examples of the techniques discussed in this chapter.

In contrast to approaches that emulate a specific artistic style, the techniques de-
scribed here are based on heuristics developed through hands-on experience, show-
ing that certain combinations of filters produce an artistic look. In some cases, the
results obtained can be related to traditional styles such as cartoons, pen-and-ink

J.E. Kyprianidis (�)
Hasso-Plattner-Institut, University of Potsdam, Potsdam, Germany
e-mail: kyprianidis@hpi.uni-potsdam.de

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_5,
© Springer-Verlag London 2013

77

mailto:kyprianidis@hpi.uni-potsdam.de
http://dx.doi.org/10.1007/978-1-4471-4519-6_5

78 J.E. Kyprianidis

Fig. 5.1 Example showing popular edge-preserving/enhancing smoothing techniques often ap-
plied for image abstraction. (b) Bilateral filter [52]. (c) Anisotropic Kuwahara filter [34].
(d) Shape-simplifying image abstraction [24]. Tambako the Jaguar@flickr.com

illustrations, or watercolor paintings. In other cases, however, the connection is less
obvious. The artistic look is thereby often achieved or further reinforced by tak-
ing the local image structure into account. Directional features and flow-like struc-
tures are considered pleasant, harmonic, or at least interesting by most humans [56].
They are also a highly sought after property in many of the traditional art forms,
such as paintings and illustrations. Enhancing directional coherence in the image
helps to clarify region boundaries and features. As exemplified by Expressionism,
it also helps to evoke mood or ideas and even elicit emotional response from the
viewer [58]. Particular examples include van Gogh and Munch, who have empha-
sized these features in their paintings.

Due to the local nature of image processing decisions, parallelization and GPU
implementations of image filters are straightforward in most cases and often lead to
real-time performance on modern multi-core CPUs and GPUs, making them practi-
cal for video processing—and applicable to footage that is otherwise challenging to
parse (e.g., water, smoke, fur) using vision methods such as segmentation. This sim-

5 Artistic Stylization by Nonlinear Filtering 79

plicity, however, comes at the expense of style diversity afforded by a higher-level
interpretation of content.

The remainder of this chapter is organized as follows. In Sect. 5.2, the bilateral
and difference of Gaussians filters are discussed. Together, these provide a powerful
approach to the creation of cartoons, which will be discussed in detail. In Sect. 5.3,
different variants of the Kuwahara filter are presented. Based on local image statis-
tics, these are highly robust against high contrast noise, and driven by local image
flattening, achieve a comparatively consistent level of abstraction across an image.
In Sect. 5.4, techniques based on morphological operations are examined. Similar
to the Kuwahara filter, these techniques effectively remove small-scale image fea-
tures, and have been, for instance, successfully used to create watercolor renderings
from images and videos. Section 5.5 presents techniques combining diffusion with
sharpening. These allow for aggressive simplification while preserving sharp dis-
continuities. Finally, in Sect. 5.6, a brief overview of techniques operating in the
gradient domain is given. Instead of directly operating on the image’s gray or color
values, these techniques operate on the gradient field of an image.

5.2 Bilateral Filter and Difference of Gaussians

A seminal work in image filtering-based NPR is the work of Winnemöller et al. [60]
which, for the first time, presents a fully automatic pipeline for the creation of styl-
ized cartoon renderings from images and video. Their pipeline employs the bilateral
and difference of Gaussians (DoG) filter, and contains several influential ideas that
other researchers later built upon. The bilateral filter smoothes low-contrast regions
while preserving high-contrast edges, and may, therefore, fail for high-contrast im-
ages, where either no abstraction is performed or relevant information is removed
because of the parameters chosen. In addition, the bilateral filter also often fails for
low-contrast images, where typically too much information is removed. Moreover,
iterative application of the bilateral filter may blur edges, resulting in a washed-out
look (Fig. 5.1(b)). To some extent, these limitations can be alleviated by overlaying
the output of the bilateral filter with outlines (e.g., generated with the DoG filter).
Accordingly, the bilateral filter is rarely applied independently. Although the DoG
filter can be used independently, preprocessing with the bilateral filter can often re-
duce artifacts caused by noise in the image. We start with a review of the bilateral
and DoG filters, followed by a description the cartoon pipeline built from them.

5.2.1 Bilateral Filter

The bilateral filter is a well-known edge-preserving smoothing filter first introduced
by Aurich and Weule [4], popularised by Tomasi and Manduchi [52]. A detailed
review of the bilateral filter can be found in the survey by Paris et al. [45], which

80 J.E. Kyprianidis

Fig. 5.2 Illustration of the working principle of the bilateral filter. (a) Noisy input signal (gray).
(b) Result of the convolution with Gaussian (blue) and bilateral (red) filter. Note how the Gaussian
kernel blurs the signal, while the bilateral filter keeps the sharp transition. In (c) and (d) the local
filter kernel profiles of the Gaussian filter (blue) and bilateral filter (red) are shown at two different
positions. The local filter kernel of the Gaussian filter does not depend on the signal (shift invari-
ance) and is the same in both cases. The bilateral filter adapts its local filter kernel to the signal and
thereby limits smoothing across the transition

also discusses various applications. For a given image I and position x0 the bilateral
filter is defined by

∑
x∈Ω(x0)

I (x)

domain weight︷ ︸︸ ︷
kd(‖x − x0‖)

range weight︷ ︸︸ ︷
kr(‖f (x) − f (x0)‖)∑

x∈Ω(x0)
kd(‖x − x0‖)kr (‖f (x) − f (x0)‖) (5.1)

where Ω(x0) denotes a sufficiently large neighborhood of x0, and kd and kr are
two weighting functions. The domain weight given by kd is based on the spatial
distance from the filter origin x0, whereas the range weight given by kr is based on
the distance between the image’s values at the corresponding positions. Typically,
for both weighting functions a one-dimensional Gaussian

Gσ (r) = 1

σ
√

2π
exp

(
− 1

2σ
r2
)

(5.2)

is chosen, but other choices are possible. If kd is chosen as Gaussian and kr ≡ 1,
then the bilateral filter simplifies to the Gaussian filter. The bilateral filter smoothes
regions of similar color, while regions with detail are preserved. For instance, if the
local neighborhood of a pixel contains an edge, then pixels on the opposite side of
the edge receive a low and all others a high weight, resulting in the preservation of
the edge (Fig. 5.2).

By using a suitable metric for the computation of the range weight, the bilateral
filter extends naturally to color images. For instance, a possible choice is to use
the Euclidean metric in RGB color space. Another choice, proposed by Tomasi and
Manduchi [52], is using the Euclidean metric in CIELAB color space [62], which
is known to correlate with human perception for short distances. Winnemöller et
al. [60] and subsequent work adopted this approach.

If domain and range weight are chosen to be Gaussians, increasing the standard
deviation of the domain weight generally does not lead to a stronger abstraction ef-
fect. Moreover, increasing the range weight results, in most cases, in blurred edges.

5 Artistic Stylization by Nonlinear Filtering 81

Fig. 5.3 An iterative application of the bilateral filter smoothes the image while preserving edges,
achieving a strong simplification effect. Original image courtesy of Philip Greenspun

Instead, to achieve a cartoon-like effect, it is better to apply multiple iterations of the
bilateral filter (Fig. 5.3). This was already noted by Tomasi and Manduchi [52], and
can be explained theoretically by the connection of bilateral filtering to anisotropic
diffusion [5].

A limitation of the bilateral filter for practical applications, especially in the case
of real-time processing, is that the direct evaluation of Eq. (5.1) is computation-
ally expensive. For a local neighborhood with radius r the complexity is O(r2),
which means that linear growth of the neighborhood leads to quadratic growth in
computational costs. In contrast to the Gaussian filter, the bilateral filter is not sep-
arable, since it depends on local image values. Nevertheless, in the context of video
compression, Pham and van Vliet [47] were able to show that for small filter sizes
a separable implementation of the bilateral filter (Fig. 5.4(b)) can provide reason-
able results. Their approach was adopted in the original cartoon pipeline by Win-
nemöller et al. [60] and was a crucial factor for achieving real-time performance
on consumer GPUs at that time. Since then, several other approaches have been de-
veloped, such as the bilateral grid [12], approaches that avoid redundant operations
by using histograms [48], and recently an approach based on domain transfer and
normalized convolution [17].

Of particular interest from the IB-AR perspective are approaches taking local
structure of an image into account. Kyprianidis and Döllner [31] proposed a separa-
ble implementation of the bilateral filter aligned to the local orientation (Fig. 5.4(c)).
The first pass filters in perpendicular direction, while the second pass filters parallel
to the local orientation. The adaptation to the local orientation helps to avoid arti-
facts, and produces more coherent region boundaries. In addition, the filter shape
can be adapted to the local image structure, since the parameters for each pass can
be controlled individually on a per-pixel basis. For instance, by decreasing the size
in the direction of the gradient and increasing it in the direction of the tangent, the
overall filter shape becomes elliptic, leading to an enhancement of anisotropic struc-
tures. An even stronger enhancement of anisotropic structures can be achieved with
the flow-based bilateral filter proposed by Kang et al. [26], where the second pass

82 J.E. Kyprianidis

Fig. 5.4 Different variants of the bilateral filter. (a) A classical single pass bilateral filter performs
a weighted average of a two-dimensional neighborhood. (b) Separable implementation with the
first pass along the x-axis and second pass along the y-axis. (c) Orientation-aligned separable im-
plementation with the first pass perpendicular and the second pass parallel to a vector field derived
form the local structure, such as ETF or SST. (d) Separable implementation of the flow-based bi-
lateral filter with the first pass perpendicular to the integral curve and the second pass along the
integral curve defined by ETF or SST. Created by the author

performs an integration along the integral curves of a vector field given by smoothed
tangents (Fig. 5.4(d)), similar to line integral convolution (LIC) [10].

For both approaches, a smooth vector field of high quality representing the local
structure is critical (cf., Sect. 6.2.2). The two techniques that are known to pro-
duce vector fields of sufficient quality are the edge tangent flow (ETF) by Kang
et al. [25, 26] and the smoothed structure tensor (SST) [31, 33, 34]. The ETF is
essentially a bilateral filter, where the range weight has been specifically designed
to measure the deviations between two vectors representing an axis. To obtain a
reasonably smooth vector field, the ETF must be applied iteratively. The structure
tensor is a well-known tool in computer vision, and is given by the outer product
of the image gradients [9]. Smoothing the structure tensor and then performing an
eigenanalysis corresponds to performing a principal component analysis on the gra-
dient vectors. The major eigenvector can thus be interpreted as an averaged gradient
and the minor eigenvector as an averaged tangent. In contrast to the EFT, the SST is
suitable for speeding up the bilateral filter, since smoothing can be performed using
a linear filter, such as a Gaussian filter, and eigenanalysis only involves solving a
quadratic equation. Moreover, it is possible to define a coherence measure based on
the SST’s eigenvalues, which provides information about how anisotropic a local
neighborhood is, and which can be used to adapt filters on a per-pixel basis. Local
orientation estimation based on the SST fits well into the cartoon pipeline (Fig. 5.7),
since the DoG filter, which will be discussed next, can also be significantly improved
by adapting it to the local structure.

5.2.2 Difference of Gaussians

Early approaches to edge detection used simple approximations of the image gradi-
ent, such as the Prewitt and Sobel filter masks [49], and then thresholded the gradient

5 Artistic Stylization by Nonlinear Filtering 83

Fig. 5.5 Example showing the output of different edge detection and stylization methods. (a) The
original image (USC-SIPI image database). (b) The globally thresholded gradient magnitude of
the Sobel filter. (c) Zero-crossing of the Laplacian of Gaussian [40]. (d) The output of the Canny
edge detector [11]. (e) The thresholded DoG as proposed in Winnemöller et al. [60]. (f) The
thresholded output of the separable implementation of the flow-based DoG [26, 31]. (g) The
flow-based DoG with XDoG thresholding. The image is pre-processed with a bilateral filter to
suppress noise. (h) Cartoon-style abstraction generated with bilateral and flow-based DoG filters
using the WOG-pipeline

magnitude. However, due to the small size of the filter masks, such approaches are
sensitive to noise and fail to detect edges at large scales. The Canny edge detec-
tor [11], therefore, combines first order differentials with appropriate smoothing,
non-maximum suppression, and hysteresis thresholding. It is one of the most pop-
ular edge detectors for applications in computer vision. From an artistic point of
view, however, the single pixel-wide edges it creates are typically not attractive and
require further processing (Fig. 5.5(d)).

Another popular approach to edge detection based on second derivatives goes
back to Marr and Hildreth [40]. For one-dimensional functions, a maximum of the
gradient magnitude is equivalent to a zero-crossing in the second derivative. This
also generalizes to two dimensions, where the second derivative perpendicular to
the zero-crossing has to be considered. However, since this direction is unknown at
computation time and would have to be estimated, Marr and Hildreth proposed to
use the Laplacian

∇2 = ∂2

∂x2
+ ∂2

∂y2
(5.3)

which is rotationally invariant. While the Laplacian was known at that time to be
useful for sharpening images [18], it has not been used for edge detection due to

84 J.E. Kyprianidis

its high sensitivity to noise. Marr and Hildreth’s key insight was to smooth the
image before applying the Laplacian. This has two important effects. First, noise
is reduced and the differentiation regularized. Second, the bandwidth is restricted,
which means that the range of possible scales at which edges can occur is reduced.
For the smoothing filter, a two-dimensional Gaussian

Gρ(x) = 1

2πρ2
exp

(
−‖x‖2

2ρ2

)
(5.4)

was chosen, since it is known that it minimizes uncertainty, which simultaneously
measures the spread of a function in the spatial and frequency domains. Since the
Laplacian commutes with convolution, it follows that

∇2(Gρ ∗ I) = (∇2Gρ

) ∗ I (5.5)

Thus, instead of applying smoothing and differentiation in sequence, both opera-
tions can be combined into a single operator ∇2Gρ , which can be symbolically
computed and is known as the Laplacian of Gaussian (LoG). Marr and Hildreth,
moreover, showed that the LoG operator can be approximated by the difference of
two Gaussians

Dσ,k(x) = Gσ (x) − Gkσ (x) (5.6)

with k ≈ 1.6 being a good engineering solution. Results in biological vision, which
showed that the ganglion cell receptive fields of cats can be modeled in this
way [63], matched this result. This provided motivation for their approach and
helped to popularize the technique. To extract edges from a LoG filtered image,
the local neighborhood of a pixel is typically examined to detect the zero-cross-
ings. This, however, again results in artistically questionable 1–2 pixel-wide edges
(Fig. 5.5(c)) similar to those produced by the Canny edge detector (Fig. 5.5(d)). To
achieve an artistically interesting effect, it turns out that simple thresholding works
surprisingly well [19, 51, 60], which can be explained as follows. Let I denote a
grayscale image. If we wish to generate a two-tone edge image, we essentially have
two choices: Either we start with a white image and make certain image regions
darker (i.e., set them to black), or we start with a black image and perform high-
lighting (i.e., set those regions to white). The DoG filter provides exactly this infor-
mation by describing which high-frequency details have to be added to the low-pass
filtered image Gkσ ∗ I to get

Gσ ∗ I = Gkσ ∗ I + Dσ,k ∗ I (5.7)

Hence, the sign of the DoG filter’s response describes whether capturing the shape
and structure of any nearby edges requires making each pixel darker or brighter than
most of its neighbors.

The recently presented XDoG filter by Winnemöller [59] further refines the
thresholding process by introducing additional parameters, and is defined by

5 Artistic Stylization by Nonlinear Filtering 85

Fig. 5.6 Illustration of the XDoG thresholding scheme for a step edge (blue). The output of the
DoG and XDoG operator before thresholding is shown in red; the threshold ε is indicated by the
yellow line. (a) DoG has no tone mapping effect. Light regions are outlined. (b) XDoG allows for
a tone mapping effect. Light regions get a black outline, dark regions receive a white outline. In
both cases the flow-based variant was used. Original image by X-ray delta one@flickr.com

Dσ,k,τ (x) = Gσ (x) − τ · Gkσ (x) (5.8)

Eε,ϕ(x) =
{

1 Dσ,k,τ (x) > ε

1 + tanh(ϕ·(Dσ,k,τ (x) − ε)) otherwise
(5.9)

The parameter σ controls the scale, whereas τ and ε control tone mapping and
thresholding. By using tanh and the parameter ϕ, hard thresholding is avoided,
which improves temporal coherence. In Fig. 5.5(e)–(f) and Fig. 5.6, a few examples
with different parameter settings are shown. The relationship between the XDoG
and the standard DoG can best be seen by rewriting Eq. (5.8) as

Dσ,k,τ (x) = Gσ (x) − τ · Gkσ (x) (5.10)

= (1 − τ) · Gσ (x) + τ · Dσ,k,τ (x) (5.11)

which shows that the XDoG approach is equivalent to a weighted average of the
blurred image and standard DoG. Unfortunately, adjusting the parameters τ , ϕ, and
ε is difficult, since they depend on each other and must be modified in concert.
An alternative, which was proposed in [61], is to normalize the XDoG operator by
dividing it by τ − 1.

The XDoG filter is still relatively sensitive to noise. To some extent, ε can be
used to reduce sensitivity, but a simple and highly effective approach is to apply
1–2 iterations of the bilateral filter before applying the XDoG filter (Fig. 5.7). An
explanation for the high sensitivity can be given by looking at the decomposition
of the LoG operator in the direction of the local gradient and tangent. The second
derivative in the direction of the gradient contributes to the edge localization, while
the one in the tangent direction merely increases the sensitivity to noise. This moti-
vates considering detecting zero-crossings in the second derivative in the direction

86 J.E. Kyprianidis

of the gradient. Such an edge detector was first proposed by Haralick [22], and also
the maximum suppression of the Canny edge detector [11] is essentially equivalent
to looking for a zero-crossing in the second derivative. A detailed discussion of the
relationships between the Laplacian and directional derivatives has been given by
Torre and Poggio [53].

The success of second derivative methods for edge detection suggests changing
the XDoG filter from an isotropic to a directional operator. However, simply replac-
ing the two-dimensional XDoG with its one-dimensional equivalent in the direction
of the gradient does not lead to better results. In fact, the results are even worse.
The reason for this is twofold: First, a one-dimensional XDoG is very sensitive to
an accurate estimation of the gradient direction, which is typically performed us-
ing first order Gaussian derivative operators along the coordinate axes. The scale
of these derivatives must be similar to the scale of the XDoG. For instance, if their
scale is too large, the estimated gradient direction will, in general, not match the un-
derlying image structure, which limits opportunities for noise suppression. Second,
the missing regularization in the tangent direction further increases the sensitivity to
noise.

The first work that addressed these issues and provided significantly improved
quality over the isotropic DoG is the flow-based difference of Gaussians (FDoG)
filter by Kang et al. [25]. In this work, the EFT was also initially introduced. It pro-
vided Kang et al. with a vector field closely aligned to the underlying image struc-
ture, and allowed them to derive an average gradient direction that is less affected
by noise. The originally proposed FDoG performs steps along the integral curves of
the EFT by using a Euler integration scheme. At each step, a one-dimensional DoG
filter in the direction perpendicular to the integral curve is applied, and all these
filter responses are accumulated by weighting them using a one-dimensional Gaus-
sian. This accumulation performs regularization in the tangent direction, and shares
a similarity with the hysteresis thresholding of the Canny edge detector. A separa-
ble implementation that achieves similar quality while being computationally less
expensive and simpler to implement was presented by Kyprianidis and Döllner [31]
and independently in a follow-up work by Kang et al. [26]. Similar to Fig. 5.4(d),
the separable FDoG first performs a one-dimensional DoG, which is then followed
by a second pass that performs line integral convolution with a Gaussian kernel. As
in the case of the flow-based bilateral filter, the ETF can be replaced by the SST,
which leads to a variant of the cartoon pipeline that delivers improved quality at
a reasonable computational cost [31, 32]. To further increase the response of the
FDoG, Kang et al. [25, 26] proposed to apply the FDoG iteratively by overlaying
the previous FDoG response with the input image. While this results in stronger
edges, it is also more sensitive to noise, and needs to be used with caution. The
FDoG in combination with XDoG thresholding is very versatile. By properly ad-
justing parameters, a large variety of NPR effects can be created [59, 61].

Kang et al.’s [25] work provided new ideas in the field of IB-AR, and popularized
the use of local structure information. It lead to several interesting results of work
in areas such as image filtering [24, 26, 31, 33, 34], stippling [27, 50], and texture
transfer [37]. Moreover, the flow-based XDoG is used by the ToonPAINT mobile
application, which is discussed in Sect. 17.5.

5 Artistic Stylization by Nonlinear Filtering 87

Fig. 5.7 The WOG-pipeline for the creation of a cartoon-like effect in modern generalized
form [26, 31, 60]. Processing starts with the conversion of the input to CIELAB color space. Then,
the input is iteratively abstracted by using a variant of the bilateral filter. After one or two iterations
of the bilateral filter to suppress noise, outlines are extracted from the intermediate result using a
variant of the DoG filter. Then more iterations of the bilateral filter are performed, typically up to
four, with luminance quantization applied afterwards. DoG edges and the output of the luminance
quantization are then composited, followed by an optional sharpening by warping and smoothing
of the edges

5.2.3 Cartoon Pipeline

That multiple iterations of the bilateral filter lead to a cartoon-like effect was al-
ready noticed by Tomasi and Manduchi [52]. Motivated by this, Fischer et al. [16]
applied the bilateral filter in the context of augmented reality to make virtual ob-
jects less distinct from the camera stream by applying stylization to the virtual and
camera input. However, at that time computing the bilateral filter at full resolution
was computationally too expensive. Due to this, Fischer et al. applied the bilateral
filter at reduced resolution followed by upsampling, resulting in an inferior result.
Winnemöller et al. [60] were faced with the same problem, but applied iteratively
the separable implementation of the bilateral filter by Pham and van Vliet [47]. Al-
though this brute force separation is prone to horizontal and vertical artifacts, it
provides a reasonable tradeoff in terms of quality and speed, and enabled real-time
processing on consumer GPUs of that time. In addition to the bilateral filter, Win-
nemöller et al. [60] added another processing step performing smooth luminance
quantization. The quantization is applied in CIELAB space, with only the lumi-
nance channel being modified, creating a strong cartoon-like effect. The quantiza-
tion is performed using a smooth step function whose steepness is chosen depending
on the luminance gradient. This makes the output of the quantization less sensible to
small changes in the input and increases temporal coherence when processing video
frame-by-frame (cf., Sect. 11.3).

Creating artistic images using the DoG filter was also not new at that time. For
instance, Sýkora et al. [51] used the thresholded output of the Laplacian of Gaussian,
which is approximated by the DoG filter, to create outlines for colorizing hand-
drawn black-and-white cartoons (see also Sect. 14.2 and Sect. 14.5.1), and Gooch et
al. [19] used the DoG filter in combination with a model of brightness perception to
create human facial illustrations. However, Winnemöller et al. [60] were the first to
combine a bilateral and DoG filter into an effective pipeline.

88 J.E. Kyprianidis

Fig. 5.8 The top row shows the four rectangular subregions used by the classical Kuwahara filter.
The bottom row shows the weighting functions that can be used to describe the subregions—one
over a specific subregion, or otherwise zero

A schematic overview of a modern generalized form of the pipeline proposed
by Winnemöller et al. [60], hereafter referred to as the WOG-pipeline, is shown in
Fig. 5.7. Input is typically an image, a frame of a video, or the output of a 3D render-
ing. In the original pipeline, the local orientation estimation step was not present;
this step was added later to adapt the bilateral and DoG filters to the local image
structure [25, 26, 31]. Also not present were the iterative application of the DoG
filter, which was first proposed in [25], and the final smoothing pass to further re-
duce aliasing of edges. The introduction of the flow-based DoG filter significantly
increased the quality of the produced outlines, and made the warp-based sharpen-
ing step of the original pipeline less important. Therefore, this step is typically not
present in later work.

5.3 Kuwahara Filter

An interesting class of edge-preserving filters that perform comparatively well on
high-contrast images are variants of the Kuwahara filter. Based on local area flatten-
ing, these filters properly remove detail in high-contrast regions and protect shape
boundaries in low-contrast regions, resulting in a roughly uniform level of abstrac-
tion across the image. The Kuwahara filter [29] was initially proposed in the mid-
1970s as a noise reduction approach in the context of biological image processing.
The general idea behind it is to divide the local filter neighborhood into four rectan-
gular subregions that overlap by one pixel (Fig. 5.8). For all subregions the variance,
which is the sum of the squared distances to the mean, is computed, and the response
of the filter is then defined as the mean of a subregion with minimum variance. As
can be seen in Fig. 5.9(a), this avoids averaging between differently colored regions
for corners and edges. However, for flat or homogeneous regions the variances of
the different subregions are almost equivalent or even the same. A subregion with
minimum variance is, therefore, generally not well-defined, and the selection highly
unstable, especially in the presence of noise. For small filter sizes the Kuwahara

5 Artistic Stylization by Nonlinear Filtering 89

Fig. 5.9 Comparison of
different variants of the
Kuwahara filter: (a) Classical
Kuwahara filter with
rectangular subregions; a
single subregion is selected.
(b) Generalized Kuwahara
filter with sectors of a disc as
subregions; multiple sectors
are chosen. (c) Anisotropic
Kuwahara filter, where the
filter shape is derived from
the local structure and divided
into subregions; multiple
filter responses are chosen.
Note that the subregions in
(a), (b) and (c) are defined to
overlap slightly. Redrawn
from [34]. © 2009 Blackwell
Publishing. Used by
permission

filter produces reasonable results. However, for IB-AR, comparatively large filter
sizes are necessary to achieve an interesting abstraction effect, resulting in clearly
noticeable artifacts. These are due to the unstable subregion selection process and
the use of rectangular subregions. A more detailed discussion of limitations of the
Kuwahara filter can be found in [44].

Several attempts have been made to address the limitations of the Kuwahara fil-
ter. The first work that provided an approach suitable for applications in IB-AR
is the generalized Kuwahara filter by Papari et al. [44], which introduces two im-
portant ideas. First, the rectangular subregions are replaced with smooth weighting
functions constructed over sectors of a disc in a way that their sum results in a
2D Gaussian. Neighboring weighting functions thereby have to overlap smoothly
(Fig. 5.10). Using these weighting functions, for every sector the weighted mean

mi(x0) =
∑

x∈Ω(x0)

wi(x − x0) · f (x) (5.12)

and weighted variance

s2(x0) =
∑

x∈Ω(x0)

wi(x − x0) · (f (x) − mi(x0)
)2

(5.13)

can be computed. It should be noticed that if the weighting functions are chosen as
characteristic functions of the rectangular subregions, as illustrated in Fig. 5.8, then

90 J.E. Kyprianidis

Fig. 5.10 Construction of the weighting functions of the generalized Kuwahara filter: (a) Char-
acteristic function χ0—one over the first sector, or otherwise zero. (b) Convolution of the charac-
teristic function with a Gaussian χ0 ∗ Gρ to create smooth transitions between different sectors.
(c) Multiplication of the smoothed characteristic function with a Gaussian to create a smooth fal-
l-off with increasing distance from the filter center: (χ0 ∗ Gρ) · Gσ

the weighted mean and variance defined above are exactly the mean and variance
of the subregions. Second, a new subregion selection method is defined. Instead
of selecting a single subregion, the result is defined as the weighted sum of the
weighted means, where the weights are based on the weighted variances, with sec-
tors of low variance receiving a high weight and sectors of high variance receiving a
low weight. This is achieved by taking the inverted weighted variance to the power
of a user provided parameter q , and given by

∑
i∈N

mi · s−q
i

/∑
i∈N

s
−q
i (5.14)

where N is the number of sectors. In Fig. 5.9(b), the behavior of the generalized
Kuwahara filter is illustrated for different local neighborhoods. As can be seen, for
corners and edges the filter adapts itself to the neighborhood, thus avoiding blurring
across region boundaries. In homogeneous regions, the variances are similar, result-
ing in similar weights, which makes the filter approximate a Gaussian. In flat and
smooth regions, the variances are very small and sensitive to noise, resulting in a
poorly approximated Gaussian. To avoid this, a simple solution is to threshold the
variances [30].

For highly anisotropic image regions, the flattening effect applied by the gener-
alized Kuwahara filter is typically too aggressive, resulting in blurred anisotropic
structures. Moreover, pixels tend to form clusters proportional to the filter size. The
anisotropic Kuwahara filter by Kyprianidis et al. [34, 35] addresses these issues by
replacing the weighting functions defined over sectors of a disc by weighting func-
tions defined over ellipses, as shown in Fig. 5.9(c). By adapting shape, scale, and
orientation of these ellipses to the local structure of the input, artifacts are avoided.
In addition, directional image features are better preserved and emphasized, result-
ing in overall sharper edges and the enhancement of anisotropic image features
(Fig. 5.1(c)). The local structure is estimated using the SST, where the coherence
measure derived from the eigenvalues is used to define the eccentricity of the el-
lipse. A further modification has been presented in [36], wherein new weighting

5 Artistic Stylization by Nonlinear Filtering 91

Fig. 5.11 Examples created
using different variants of the
Kuwahara filter: (a) Original
image courtesy of
chefranden@flickr.com.
(b) Generalized Kuwahara
filter (2 iterations) [44].
(c) Anisotropic Kuwahara
filter (2 iterations) [34].
(d) Multi-scale anisotropic
Kuwahara filter [30]

functions based on polynomials that can be evaluated directly during the filtering
process are defined.

The level of abstraction achievable with the generalized and the anisotropic
Kuwahara filter is limited by the filter radius. Simply increasing the filter radius
is typically not a solution, as it often results in artifacts. Another possibility would
be to control the radius adaptively per pixel depending on the local neighborhood,
but the computational cost would be very high, as the filter depends quadratically on
the radius. The multi-scale anisotropic Kuwahara filter by Kyprianidis [30], there-
fore applies the anisotropic Kuwahara filter at multiple scales. The computations
are carried out on an image pyramid, where processing is performed in a coarse-
to-fine manner, with intermediate results being propagated up the pyramid. Fig-
ure 5.11 shows an example image processed with different variants of the Kuwahara
filter.

92 J.E. Kyprianidis

5.4 Morphological Filters

Mathematical morphology (MM) provides a set-theoretic approach to image anal-
ysis and processing. Besides being useful the for extraction of object bound-
aries, skeletons, and convex hulls, it has been also applied successfully to many
pre- and post-processing tasks. A good introduction to the subject, covering as-
pects of image processing and computer vision, is the tutorial by Haralick et
al. [23]. Fundamental operations in MM are dilation and erosion. From these,
a large number of other operators can be derived, most notably opening, de-
fined as erosion followed by dilation, and closing, defined as dilation followed
by erosion. For grayscale images, dilation is equivalent to a maximum filter and
erosion corresponds to a minimum filter. Therefore, opening removes light im-
age features by removing peaks, while closing removes dark features by fill-
ing holes. Applying opening and closing in sequence results in a smoothing
operation that is often referred to as morphological smoothing, which, similar
to a median filter, quite effectively suppresses salt-and-pepper noise, while be-
ing computationally less expensive. In fact, openings and closings are closely
related to order-statistics filters. A further in-depth discussion of morphologi-
cal filters and their relations to other image processing operators can be found
in [38, 39].

In Bousseau et al.’s [7, 8] work on watercolor rendering (cf., Sect. 13.3.2.1),
morphological smoothing is applied to simplify input images and videos before their
heuristically defined rendering approach is applied. In the case of video, a spatio-
temporal kernel is used, aligned to the motion trajectory derived from optical flow.
Applying opening and then closing generally results in a darkened result. Since
watercolor paintings typically have light colors, Bousseau et al. proposed swapping
the order of the morphological operators and applying closing followed by opening
(Fig. 5.12). Since opening and closing are dual to each other, this is the same as
inverting the output of the usual morphological smoothing applied to the inverted
image.

Papari and Petkov [43] described another technique, which applied morphologi-
cal filtering in the context of IB-AR. Motivated by glass patterns, and similar to line
integral convolution [10], they performed a one-dimensional dilation in the form of
a maximum filter over noise along the integral curves defined by a vector field. In
contrast to line integral convolution, this technique is more capable of producing
thick piece-wise constant coherent lines with sharp edges, resulting in a stronger
brush-like effect. Moreover, it can also be applied to color images, by using the
location of the first maximum noise value along the integral curve as a look-up po-
sition.

Some morphological operators (e.g., with convex polygonal structuring ele-
ment) can be efficiently implemented by using distance transforms [15]. Crimin-
isi et al. [13] recently demonstrated that edge-sensitive smoothing based on the
generalized geodesic distance transform (GGDT) can be used for the creation
of cartoon-style abstractions. The image is first clustered into a fixed number of
colors. Then for every pixel, the probability of the pixel’s value belonging to

5 Artistic Stylization by Nonlinear Filtering 93

Fig. 5.12 Mathematical morphology operators. (a) Original image courtesy of PDPhoto.org.
(b) Opening. (c) Closing. (d) Opening followed by closing. (e) Closing followed by opening: The
morphological operator chosen by Bousseau et al. [7, 8]

a certain cluster is defined. These probabilities form a soft mask to which the
GGDT is applied. The output is then defined as the weighted sum of the clus-
ter’s mean values, where the weights are defined based on the corresponding dis-
tances.

5.5 PDE-Based Methods

Methods based on partial differential equations (PDE) provide a powerful approach
to image processing [3]. Interestingly, several local filtering approaches can be in-
terpreted in terms of corresponding PDEs. For example, anisotropic diffusion is
closely related to the bilateral filter [5], and PDE formulations for classical mor-
phological processes have been established [55]. There is also a connection be-
tween PDEs and the Kuwahara filter. As shown by van den Boomgaard [54], the
Kuwahara filter can be interpreted as a PDE with linear diffusion and shock filter
terms.

In this section, shape-simplifying image abstraction by Kang and Lee [24] will
be discussed. This technique applies a diffusion process to simplify the image, fol-
lowed by shock filtering, which deblurs the image to maintain sharp edges at dis-

http://PDPhoto.org

94 J.E. Kyprianidis

Fig. 5.13 Examples of different diffusion techniques. (a) van Gogh—Road with Cypress and Star.
(b) Anisotropic diffusion [46]. (c) Edge-enhancing diffusion [55]. (d) Coherence-enhancing diffu-
sion [55]

continuities. Before discussing it, we briefly review the concepts behind anisotropic
diffusion and shock filters.

5.5.1 Anisotropic Diffusion

Let I be a grayscale image, then the solution of the heat equation

∂u

∂t
=
u = div(∇u) (5.15)

at a particular time t with initial condition u(x,0) = I (x) is given by convolution
with a two-dimensional Gaussian having standard deviation

√
2t [55]. To overcome

the limitations of isotropic smoothing, Perona and Malik [46] added the regulariza-
tion term

g
(
s2) = 1

1 + s2

λ2

(λ > 0) (5.16)

to the heat equation that stops diffusion at the edges:

∂u

∂t
= div

(
g
(|∇u|2)∇u

)
(5.17)

This is known as anisotropic diffusion. Adding such penalization terms is a standard
technique often found in PDE-based approaches. For instance, the edge-enhancing
and coherence-enhancing diffusion techniques developed by Weickert [56] guide
the diffusion using a tensor derived from the SST (Fig. 5.13). More details about
anisotropic diffusion and other PDE-based image processing techniques can be
found in the books by Weickert [55] and Aubert and Kornprobst [3].

5 Artistic Stylization by Nonlinear Filtering 95

Fig. 5.14 Illustration of shock filtering and mean curvature flow. (a) A smooth step edge. (b) First
derivative of the edge. (c) Second derivative of the edge. (d) A shock filter applies an dilation where
the second derivative is positive and erosion where it is negative

5.5.2 Shock Filter

Osher and Rudin [42] were the first to study shock filters in image processing. The
classical shock filter evolution equation is given by

∂u

∂t
= −sign

(
L(u)

)|∇u| (5.18)

with initial condition u(x,0) = I (x) and where L is a suitable detector, such as the
Laplacian
u or the second derivative in direction of the gradient:

uξξ = u2
xuxx + 2uxuyuxy + u2

yuyy

u2
x + u2

y

(5.19)

In the influence zone of a maximum, L(u) is negative, and therefore a local dilation,
with a disc as the structuring element, is performed. Similarly, in the influence zone
of a minimum, L(u) is positive, which results in local erosion. This sharpens the
edges at the zero-crossings of
u, as shown in Fig. 5.14. Shock filters have the
attractive property of satisfying a maximum principle, and in contrast to unsharp
masking, therefore do not suffer from ringing artifacts.

Instead of the second derivative in the direction of the gradient, also the second
derivative in the direction of the major eigenvector of the SST can be used. This was
first proposed by Weickert [57] and shares some similarity with the flow-based DoG
discussed in Sect. 5.2.2. To achieve an higher robustness against small-scale image
details, the input image can be regularized with a Gaussian filter prior to second
derivative or SST computation [2]. As demonstrated in Fig. 5.15(b), this provides
an aggressive simplification method. Equation (5.18) is typically implemented us-
ing a finite difference scheme. Thereby, L(u) can be approximated using central
differences. Discretization of |∇u| requires the use of an upwind scheme [3].

Shock filter can also be related to local neighborhood filters. Guichard and
Morel [21] showed that the classical Osher–Rudin shock filter, with the Laplacian
as the edge detector, corresponds asymptotically to a filter by Kramer and Bruck-
ner [28], which replaces the current gray level value by either the minimum or max-
imum of the filter region, depending on which is closer to the current value.

96 J.E. Kyprianidis

Fig. 5.15 Shock filters in conjunction with regularization provide an aggressive image simplifi-
cation method. Original image (USC-SIPI image database). (b) Weickert’s coherence-enhancing
shock filter [57]. (c) A further refinement, applying curvature-preserving smoothing and shock
filtering iteratively [33]

5.5.3 Mean Curvature Flow

Previously, Osher and Rudin [42], as well as Weickert [57], made comments about
the artistic look of shock filtered results, but the work of Kang and Lee [24] was the
first to apply diffusion in combination with shock filtering for targeting IB-AR. The
mean curvature flow (MCF) diffusion method was chosen, which evolves isophote
curves under curvature speed in normal direction, resulting in simplified isophote
curves with regularized geometry. In contrast to other popular edge-preserving
smoothing techniques, such as the bilateral or the Kuwahara filter, MCF smoothes
not only irrelevant color variations while protecting region boundaries, but also sim-
plifies the shape of those boundaries. The evolution equation of MCF is given by

∂u

∂t
= κ|∇u| with κ = u2

xuxx − 2uxuyuxy + u2
yuyy

(u2
x + u2

y)
3/2

(5.20)

denoting the curvature. Equation (5.20) can be implemented using central differ-
ences. A better approach, however, is to use a finite difference scheme with har-
monic averaging [14].

MCF performs strong simplification of an image, but also creates blurred edges.
Therefore, Kang and Lee [24] performed deblurring with a shock filter after
some MCF iterations, which helps to keep important edges during the evolution
(Fig. 5.16). From an artistic point of view, however, shock filtered MCF is typi-
cally still too aggressive, and does not properly protect directional image features
(Fig. 5.17). Similar to Eq. (5.17), Kang and Lee therefore constrained the mean cur-
vature flow by using the ETF to penalize diffusion that deviates from the local image
structure. The evolution equation is given by

∂u

∂t
=

(
(1 − r) + r ·

∣∣∣∣
〈

E

‖E‖ ,
∇u⊥

‖∇u‖
〉∣∣∣∣
)

‖κ‖ (5.21)

5 Artistic Stylization by Nonlinear Filtering 97

Fig. 5.16 Pipeline for shape-simplifying image abstraction [24]. Processing starts with the estima-
tion of local orientation. Then multiple iterations of constrained mean curvature flow are applied,
followed by shock filtering for deblurring. This process is repeated until the desired amount of
abstraction has been reached

Fig. 5.17 Comparison of mean curvature flow with/without shock filtering and constraint.
(a) Original image (licensed by Getty images). (b) Mean curvature flow. (c) Mean curvature flow
with shock filtering after 15 iterations. (d) Constrained mean curvature flow with shock filtering
after 15 iterations. In all cases, a time step of 0.25 was used

where 〈·, ·〉 denotes the per-pixel scalar product of EFT vectors and vectors perpen-
dicular to the image gradients. The control parameter r ∈ [0,1] allows for blending
between the unconstrained and the constrained MCF. Alternatively, instead of the
ETF, the minor eigenvector field of the SST can be used.

98 J.E. Kyprianidis

MCF, and its constrained variant, contract isophote curves to points [20]. For
this reason, important image features must be protected by a user-defined mask.
A further limitation is that the technique is not stable against small changes in the
input, and therefore not suitable for per-frame video processing. In order to avoid
these issues, Kyprianidis and Kang [33] combine curvature-preserving flow-guided
smoothing and shock filter-based sharpening orthogonal to the flow, but instead of
modeling the process by a PDE, approximations that operate as a local neighbor-
hood filter are used (Fig. 5.15(c)). This makes the technique more stable and partic-
ularly suitable for per-frame video processing.

5.6 Gradient Domain Techniques

In recent years, gradient domain methods have become very popular in computer
vision and computer graphics [1]. The basic idea behind such methods is to construct
a gradient field representing the result. However, such constructed fields are rarely
conservative, and therefore the result needs to be found as an approximation by
solving an optimization problem. In the case of a best-fit in the least squares sense,
this corresponds to solving Poisson’s equation.

Orzan et al. [41] were the first to apply gradient domain image editing for IB-
AR. By performing a scale-space analysis, they extracted a multi-scale Canny edge
representation with lifetime and best scale information. This representation is then
used to define the gradient field, and allows for image operations, such as detail
removal and shape abstraction. Moreover, line drawings can be extracted from the
multi-scale representation and overlaid with the reconstructed image. A limitation
of the technique is that handling contrast is problematic and requires correction.
Besides being computationally expensive, this technique is also known not to create
temporal coherent output for video.

Bhat et al. [6] have presented a robust optimization framework that allows for
the specification of zero-order (pixel values) and first-order (gradient values) con-
straints over space and time. The resulting optimization problem is solved using a
weighted least squares solver. By using temporal constraints, the framework is able
to create temporal coherent video output. The framework makes use of several com-
putationally expensive techniques, such as steerable filters and optical flow, and is
therefore currently limited to offline processing.

References

1. Agrawal, A., Raskar, R.: Gradient domain manipulation techniques in vision and graphics. In:
ICCV Course (2007)

2. Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic
diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994). doi:10.1137/0731032

3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential
Equations and the Calculus of Variations. Springer, Berlin (2006)

http://dx.doi.org/10.1137/0731032

5 Artistic Stylization by Nonlinear Filtering 99

4. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In:
Proc. DAGM-Symposium, pp. 538–545 (1995)

5. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smooth-
ing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004)

6. Bhat, P., Zitnick, C.L., Cohen, M.F., Curless, B.: GradientShop: a gradient-domain opti-
mization framework for image and video filtering. ACM Trans. Graph. 29(2), 10 (2010).
doi:10.1145/1731047.1731048

7. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with
temporal coherence and abstraction. In: Proc. NPAR, pp. 141–149 (2006). doi:10.1145/
1124728.1124751

8. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional
texture advection. ACM Trans. Graph. 26(3), 104 (2007). doi:10.1145/1276377.1276507

9. Brox, T., Boomgaard, R., Lauze, F., Weijer, J., Weickert, J., Mrázek, P., Kornprobst, P.: Adap-
tive structure tensors and their applications. In: Visualization and Processing of Tensor Fields,
pp. 17–47. Springer, Berlin (2006). doi:10.1007/3-540-31272-2_2

10. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proc. SIG-
GRAPH, pp. 263–270 (1993). doi:10.1145/166117.166151

11. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8, 769–798 (1986). doi:10.1109/TPAMI.1986.4767851

12. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid.
ACM Trans. Graph. 26(3), 103 (2007). doi:10.1145/1276377.1276506

13. Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing. ACM Trans.
Graph. 29(5), 134 (2010). doi:10.1145/1857907.1857910

14. Didas, S., Weickert, J.: Combining curvature motion and edge-preserving denoising. In:
Proc. SSVM 2007. LNCS, vol. 4485, pp. 568–579. Springer, Berlin (2007). doi:10.1007/
978-3-540-72823-8

15. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algo-
rithms. ACM Comput. Surv. 40(1), 2 (2008). doi:10.1145/1322432.1322434

16. Fischer, J., Bartz, D., Straber, W.: Stylized augmented reality for improved immersion. In:
Proc. VR, pp. 195–202 (2005). doi:10.1109/VR.2005.1492774

17. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing.
ACM Trans. Graph. 30(4), 69 (2011). doi:10.1145/2010324.1964964

18. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York
(2006)

19. Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: Creation and psychophysical
evaluation. ACM Trans. Graph. 23(1), 27–44 (2004). doi:10.1145/966131.966133

20. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ.
Geom. 26(2), 285–314 (1987)

21. Guichard, F., Morel, J.M.: A note on two classical enhancement filters and their associated
PDE’s. Int. J. Comput. Vis. 52(2), 153–160 (2003). doi:10.1023/A:1022904124348

22. Haralick, R.M.: Digital step edges from zero crossing of second directional deriva-
tives. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 58–68 (1984). doi:10.1109/
TPAMI.1984.4767475

23. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical mor-
phology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987). doi:10.1109/
TPAMI.1987.4767941

24. Kang, H., Lee, S.: Shape-simplifying image abstraction. Comput. Graph. Forum 27(7), 1773–
1780 (2008). doi:10.1111/j.1467-8659.2008.01322.x

25. Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: Proc. NPAR, pp. 43–50 (2007).
doi:10.1145/1274871.1274878

26. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput.
Graph. 15(1), 62–76 (2009). doi:10.1109/TVCG.2008.81

27. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph.
Forum 27(4), 1209–1216 (2008). doi:10.1111/j.1467-8659.2008.01259.x

http://dx.doi.org/10.1145/1731047.1731048
http://dx.doi.org/10.1145/1124728.1124751
http://dx.doi.org/10.1145/1124728.1124751
http://dx.doi.org/10.1145/1276377.1276507
http://dx.doi.org/10.1007/3-540-31272-2_2
http://dx.doi.org/10.1145/166117.166151
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1145/1276377.1276506
http://dx.doi.org/10.1145/1857907.1857910
http://dx.doi.org/10.1007/978-3-540-72823-8
http://dx.doi.org/10.1007/978-3-540-72823-8
http://dx.doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.1109/VR.2005.1492774
http://dx.doi.org/10.1145/2010324.1964964
http://dx.doi.org/10.1145/966131.966133
http://dx.doi.org/10.1023/A:1022904124348
http://dx.doi.org/10.1109/TPAMI.1984.4767475
http://dx.doi.org/10.1109/TPAMI.1984.4767475
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://dx.doi.org/10.1111/j.1467-8659.2008.01322.x
http://dx.doi.org/10.1145/1274871.1274878
http://dx.doi.org/10.1109/TVCG.2008.81
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x

100 J.E. Kyprianidis

28. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of
digital images. Pattern Recognit. 7(1–2), 53–58 (1975)

29. Kuwahara, M., Hachimura, K., Ehiu, S., Kinoshita, M.: Processing of ri-angiocardiographic
images. In: Digital Processing of Biomedical Images, pp. 187–203. Plenum, New York (1976)

30. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering.
In: Proc. NPAR, pp. 55–64 (2011). doi:10.1145/2024676.2024686

31. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proc. EG
UK TPCG, pp. 51–58 (2008). doi:10.2312/LocalChapterEvents/TPCG/TPCG08/051-058

32. Kyprianidis, J.E., Döllner, J.: Real-time image abstraction by directed filtering. In: ShaderX7,
pp. 285–302. Charles River Media, London (2009)

33. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering.
Comput. Graph. Forum 30(2), 593–602 (2011). doi:10.1111/j.1467-8659.2011.01882.x

34. Kyprianidis, J.E., Kang, H., Döllner, J.: Image and video abstraction by anisotropic
Kuwahara filtering. Comput. Graph. Forum 28(7), 1955–1963 (2009). doi:10.1111/
j.1467-8659.2009.01574.x

35. Kyprianidis, J.E., Kang, H., Döllner, J.: Anisotropic Kuwahara filtering on the GPU. In:
GPUPro, pp. 247–264. AK Peters, Wellesley (2010)

36. Kyprianidis, J.E., Semmo, A., Kang, H., Döllner, J.: Anisotropic Kuwahara filtering with poly-
nomial weighting functions. In: Proc. EG UK TPCG, pp. 25–30 (2010)

37. Lee, H., Seo, S., Ryoo, S., Yoon, K.: Directional texture transfer. In: Proc. NPAR, pp. 43–50
(2010). doi:10.1145/1809939.1809945

38. Maragos, P., Schafer, R.: Morphological filters—Part I: Their set-theoretic analysis and rela-
tions to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1153–
1169 (1987). doi:10.1109/TASSP.1987.1165259

39. Maragos, P., Schafer, R.: Morphological filters—Part II: Their relations to median, order-
statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1170–1184
(1987). doi:10.1109/TASSP.1987.1165254

40. Marr, D., Hildreth, R.C.: Theory of edge detection. Proc. R. Soc. Lond. B, Biol. Sci. 207,
187–217 (1980)

41. Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of pho-
tographs. In: Proc. NPAR, pp. 103–110 (2007)

42. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Nu-
mer. Anal. 27(4), 919–940 (1990). doi:10.1137/0727053

43. Papari, G., Petkov, N.: Continuous glass patterns for painterly rendering. IEEE Trans. Image
Process. 18(3), 652–664 (2009). doi:10.1109/TIP.2008.2009800

44. Papari, G., Petkov, N., Campisi, P.: Artistic edge and corner enhancing smoothing. IEEE
Trans. Image Process. 16(10), 2449–2462 (2007). doi:10.1109/TIP.2007.903912

45. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filtering: theory and applications.
Found. Trends Comput. Graph. Vis. 4(1), 7–73 (2009). doi:10.1561/0600000020

46. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). doi:10.1109/34.56205

47. Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: Proc.
ICME, pp. 454–457 (2005). doi:10.1109/ICME.2005.1521458

48. Porikli, F.: Constant time O(1) bilateral filtering. In: Proc. CVPR, pp. 1–8 (2008). doi:10.1109/
CVPR.2008.4587843

49. Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, New York (2001). doi:10.1002/
0471221325

50. Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models
73(3), 74–87 (2011). doi:10.1016/j.gmod.2010.12.001

51. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis. Com-
put. 23(9), 767–782 (2005). doi:10.1016/j.imavis.2005.05.010

52. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. ICCV,
pp. 839–846 (1998). doi:10.1109/ICCV.1998.710815

http://dx.doi.org/10.1145/2024676.2024686
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG08/051-058
http://dx.doi.org/10.1111/j.1467-8659.2011.01882.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01574.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01574.x
http://dx.doi.org/10.1145/1809939.1809945
http://dx.doi.org/10.1109/TASSP.1987.1165259
http://dx.doi.org/10.1109/TASSP.1987.1165254
http://dx.doi.org/10.1137/0727053
http://dx.doi.org/10.1109/TIP.2008.2009800
http://dx.doi.org/10.1109/TIP.2007.903912
http://dx.doi.org/10.1561/0600000020
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1109/ICME.2005.1521458
http://dx.doi.org/10.1109/CVPR.2008.4587843
http://dx.doi.org/10.1109/CVPR.2008.4587843
http://dx.doi.org/10.1002/0471221325
http://dx.doi.org/10.1002/0471221325
http://dx.doi.org/10.1016/j.gmod.2010.12.001
http://dx.doi.org/10.1016/j.imavis.2005.05.010
http://dx.doi.org/10.1109/ICCV.1998.710815

5 Artistic Stylization by Nonlinear Filtering 101

53. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 147–
163 (1986). doi:10.1109/TPAMI.1986.4767769

54. van den Boomgaard, R.: Decomposition of the Kuwahara–Nagao operator in terms of linear
smoothing and morphological sharpening. In: Proc. ISMM, pp. 283–292. CSIRO, Colling-
wood (2002)

55. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998)
56. Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17(3),

201–212 (1999)
57. Weickert, J.: Coherence-enhancing shock filters. In: DAGM-Symposium, pp. 1–8. Springer,

Berlin (2003). doi:10.1007/978-3-540-45243-0_1
58. Wikipedia: Expressionism—Wikipedia, The Free Encyclopedia (2012)
59. Winnemöller, H.: XDoG: Advanced image stylization with eXtended difference-of-Gaussians.

In: Proc. NPAR, pp. 147–155 (2011). doi:10.1145/2024676.2024700
60. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. In: Proc. SIGGRAPH,

pp. 1221–1226 (2006). doi:10.1145/1141911.1142018
61. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an extended difference-of-Gaussians

compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012).
doi:10.1016/j.cag.2012.03.004

62. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and For-
mulae. Wiley-Interscience, New York (1982)

63. Young, R.A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spat.
Vis. 2(4), 273–293 (1987). doi:10.1163/156856887X00222

http://dx.doi.org/10.1109/TPAMI.1986.4767769
http://dx.doi.org/10.1007/978-3-540-45243-0_1
http://dx.doi.org/10.1145/2024676.2024700
http://dx.doi.org/10.1145/1141911.1142018
http://dx.doi.org/10.1016/j.cag.2012.03.004
http://dx.doi.org/10.1163/156856887X00222

Chapter 6
NPR for Traditional Artistic Genres

Eugene Zhang

6.1 Introduction

Automatic stylization from images and videos has been one of the goals for non-
photorealistic rendering (NPR) research since its inception. Such automatic tech-
niques can enable its users, often amateurs, to automatically stylize photographs
or video clips with the appearance of various traditional forms of arts, such as
oil painting, watercolors (western and oriental), or hand-drawn sketches. In this
chapter we review algorithms behind these techniques for the aforementioned art
forms. Note that each of these algorithms is typically the aggregated work of sev-
eral research papers. Instead of reviewing all these papers separately in an incre-
mental fashion, we will describe the algorithm as a whole and cite all relevant re-
search.

While the NPR algorithms are often highly dependent on the art form (or media)
that they emulate, occasionally one NPR algorithm can be used to generate different
art forms, such as oil painting and watercoloring. We will note this as we describe
the algorithms.

6.2 Oil Painting

Oil painting is perhaps one of the most well-researched NPR media. In this chapter
we review a number of topics such as rendering, brush stroke orientation generation,
and multi-style rendering for images and videos.

E. Zhang (�)
School of Electrical Engineering and Computer Science, Oregon State University, 2111 Kelley
Engineering Center, Corvallis, OR 97331, USA
e-mail: zhange@eecs.oregonstate.edu

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_6,
© Springer-Verlag London 2013

103

mailto:zhange@eecs.oregonstate.edu
http://dx.doi.org/10.1007/978-1-4471-4519-6_6

104 E. Zhang

Fig. 6.1 The work flow of Impressionism in the Kayaga et al. [13] system: given the input image
(upper-left), the edge field is extracted (lower-left) and a set of brush stroke seeds (disks) is placed
on a jittered 2D grid (upper-middle). Advection of the seed image along the field (lower-left) results
in the first layer rendering (lower-middle). From here, places where the painting result contains a
large error are detected and an additional layer of brush strokes is generated (upper-right), which
when composed with the first layer results in the final rendering (lower-right)

6.2.1 Rendering

There are a number of approaches to painterly rendering, including procedural tech-
niques and implicit methods. Procedural techniques are based on explicitly con-
structing the rendering primitives (brush strokes). Implicit methods do not construct
strokes explicitly. Instead, they are based on image processing techniques such as
filtering and image composition. Chapter 2 provides an excellent survey on the topic
of stroke-based method, while Chap. 5 reviews artistic filters. In this chapter we will
focus on implicit methods based on image advection and composition.

Cabral and Leedom [4] make use of line integral convolution to generate vector
field visualization. The idea is to take a noise texture and perform iterative image ad-
vection and composition. Kagaya et al. [13] adapt this idea to perform high-quality,
interactive painterly rendering. We review this framework next.

Given an input image I (see Fig. 6.1 (upper-left)), a set of user-specified style
parameters, and an orientation field which can be designed by the user or automat-
ically generated (Fig. 6.1 (lower-left); details see Sect. 6.2.2), the system generates
an image of seeds (Fig. 6.1 (upper-middle)). Each seed is a disk whose color is
given by the color at the center pixel of the disk from the input image. The seed
image is then advected according to the orientation field, which results in a second
image in which the disks are displaced and possibly deformed. The displaced seed
image is then composited with the original seed image through weighted average.
Figure 6.2 illustrates this process with a seed of four disks (a). After one round
of image advection and composition, the resulting image (Fig. 6.2(b)) consists of
four relatively short brush strokes. The process can be repeated to generate even

6 NPR for Traditional Artistic Genres 105

Fig. 6.2 This figure
illustrates the process of an
implicit renderer [13] which
advects a source image (a) in
the direction of an underlying
vector field: (b) the image in
(a) is warped based on V ,
(c) is obtained by combining
(a) and (b), (d) the image in
(c) is again warped according
to V , (e) is obtained by
combining (a) and (d), and
(f) is obtained from (e) by
two more iterations of
warping and blending

longer brush strokes (Fig. 6.2(c)). After a number of iterations (based on the de-
sired brush stroke length), the resulting image has the painterly appearance (Fig. 6.1
(lower-middle)). When multiple layers are used, the seed map for the second layer
is generated based on the algorithm of Hertzmann [10], which, through the same
image advection and composition process, can lead to the painting at the next layer
(Fig. 6.1 (upper-right)). Finally, images from different layers are composited in such
a way that the color of a pixel in the final rendering is taken from the corresponding
pixel from the highest layer for which the pixel is not in the background (Fig. 6.1
(lower-right)).

When compositing the seed map with its displacement under the orientation field,
it is difficult to decide consistently which color to use, since the same pixel may be
covered by two different brush strokes. Randomly making a decision can lead to
color bleeding. Since the strokes are not explicitly constructed and it is difficult to
maintain a brush stroke ID map, Kayaga et al. [13] use a pre-defined color order to
decide which brush is on top. In their implementation they first compare the color
intensity, and in case of a tie compare the green channel, the red channel, and finally
the blue channel. Experimenting with different color orders and understanding their
impact on the painterly results can be an interesting future research topic.

6.2.2 Brush Stroke Orientation: Representation and Generation

In many oil painting styles, one can observe long and curved brush strokes. Who,
after seeing van Gogh’s masterpiece titled “Starry Night”, can forget the sense of
restlessness (or liveliness) conveyed by brush strokes that seem to be following a
wave in the otherwise motionless dark sky? If and when carefully designed, the
underlying wave field, which orients the brush strokes and specifies their trajecto-
ries, can convey ideas, stylization, and even illusions (for example the dark sky that
seems to move like the waves).

Most existing painterly rendering algorithms focus on controlling aspects of
brush strokes such as color, texture, location, spacing, transparency, and width.

106 E. Zhang

Fig. 6.3 Numeric estimation of the edges in the image leads to rather noisy directions in the
background due to relatively uniform color (left). Through tensor field design, a number of circular
patterns are added to give the background more attention. Image courtesy of [12] © 2011 IEEE

While many of them make use of a directional field to guide brush stroke orien-
tations, the directional field is completely determined from the input image by first
extracting the strongest edges in the image and then propagating the edge directions
to the rest of the canvas. This treatment can alleviate color bleeding, which refers
to the phenomenon in which a brush stroke covering two objects of different colors
causes the color of one object to be spilled onto the other. However, it is impossible
with this approach to create the kind of illusory motion in the “Starry Night” from
a photo of a dark sky.

Zhang et al. [20, 21] introduce the problem of field design, in which a user spec-
ifies the directional field that orients the brush strokes to produce desired visual
effects, such as circular patterns in an otherwise featureless background; making
the background appear more lively (Fig. 6.3).

Zhang et al. also note the link between a number of visual artifacts in painterly
rendering and the singularities in the underlying field and propose means to either
remove a pair of singularities or move a singularity to a more desirable (perhaps less
visible) location. Figure 6.4 provides an example in which by moving a singularity
in the underlying field, the artifact in Mona Lisa’s forehead was removed.

Initially, Zhang et al. [20] follow the popular approach of treating the directional
field as a vector field. Their singularity editing operations (removal and movement)
are based on well-known results from Dynamical Systems, such as the Poincaré
index and Conley index theory [15]. However, it is difficult to start by modifying a
given field, such as the one estimated from the input image using the Sobel filter.
This leads to the realization that representing brush stroke orientations as a vector
field is inappropriate. Consider an image in which a rectangle in black is drawn over
a white canvas (Fig. 6.5: left). Most existing edge detection methods first extract the
strong edges, which are the outlines of the black region. Next, the image gradient is

6 NPR for Traditional Artistic Genres 107

Fig. 6.4 Singularities in the tensor field (left: colored dots) can lead to artifacts in the rendering,
such as the one on the left side Mona Lisa’s forehead. Through topological editing operations, the
singularity that caused the artifact (yellow dot) is moved to the corner of her left eye, leading to a
more natural result. This figure is a courtesy of [21], © 2007 IEEE

extracted for each pixel on the edges. The image gradient for a pixel is defined as:

g(p) =
(

∂I

∂X

∂I

∂Y

)
(6.1)

in which I = √
R2(p) + G2(p) + B2(p) is the intensity of the pixel p. Note that

other functions such as the luminance 0.3R(p)+ 0.59G(p)+ 0.11B(p) can be used
in place of I . For the example in Fig. 6.5 (left), the image gradient on the left and
right sides of the black region is pointing to the opposite side (red arrows). To obtain
the directions along the edges, the image gradient is turned counterclockwise by π

2
everywhere along the edges. This leads to the edge vectors pointing upward along
the left side and downward along the right side (green arrows in Fig. 6.5 (middle).

108 E. Zhang

Fig. 6.5 This figure
illustrates the need to model
brush stroke orientations as
line fields (bidirectional)
instead of vector fields

While this is not a problem for brush strokes along the silhouette (when tracing a
brush stroke one always traces in the forward and backward directions), propagating
these directions to the white pixels leads to a line of singularities in the middle of
the box (Fig. 6.5 (middle): blue arrows). This is because when extrapolating the
directions, arrows in opposite directions cancel each other. This leads to noisy stroke
orientations, which can be distracting in the rendered result.

Zhang et al. [21] propose to guide stroke orientations with a line field, which
associates each pixel with two vectors that point in opposite directions. Mathemati-
cally, this can be realized using 2 × 2 traceless, symmetric tensors. A 2 × 2 tensor t

is a matrix t = tij . It is symmetric if t12 = t21. It is traceless if t11 + t22 = 0. The set
of traceless, symmetric 2 × 2 tensors can be parameterized as follows:

ρ

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
(6.2)

where ρ ≥ 0 is the magnitude of the tensor and θ ∈ [0,π) is the angle between
the major eigenvector and the X-axis. A major eigenvector is the eigenvector cor-
responding to the larger eigenvalue of the matrix. When ρ = 0 the matrix has two
equal eigenvalues, and their respective eigenvectors cannot be differentiated. This
is referred to as a degenerate tensor. Note that when v is a major eigenvector, so
is −v. This ambiguity in the eigenvectors makes tensors an ideal representation for
bidirectional vectors that orient the brush strokes. Basically, we wish to construct a
tensor field from the image gradient g (Eq. (6.1)) such that the major eigenvectors
in the tensor field are perpendicular to g wherever g is not zero.

A tensor field T is a continuous tensor-valued function. A point (pixel) p is a
singularity if T (p) = 0. To enforce the previous condition, we need that

T (p) = ∣∣g(p)
∣∣(cos 2θ(p) sin 2θ(p)

sin 2θ(p) − cos 2θ(p)

)
(6.3)

where |g(p)| and θ(p) − π
2 are the length and the angle of g(p), respectively. This

representation has led to smoother directional fields for brush strokes (Fig. 6.6).
The left column is based on the vector representation, while the right is based on the
tensor representation. Notice that the field is smoother and more natural in the right.

Numerical estimation of the edges from the image, even under the tensor rep-
resentation, can still have undesirable artifacts due to self-collision in the tensor
field. Such self-collisions can be characterized by the singularities in the tensor field

6 NPR for Traditional Artistic Genres 109

Fig. 6.6 Treating the brush stroke orientations as a tensor field (right) leads to smoother results
than as a vector field (left)

(Fig. 6.4, left). A singularity in the tensor field can be characterized by its index
which must be a multiple of ± 1

2 . The first-order singularities are: wedges (with a 1
2

index), and trisectors (with a − 1
2 index). In Fig. 6.4 the singularities are colored in

yellow if they are wedges and blue if they are trisectors. Notice that the tensor pat-
tern near a wedge is reminiscent of a U-turn, while near a trisector it is similar to that
a three-point turn. Not incidentally, U-turns and three-point turns are the two most
fundamental ways to reverse driving directions. (Driving backward is not consid-
ered.) Such patterns are impossible in vector fields, which again highlights the fact
that tensor fields are more flexible in modeling phenomena in which an orientation
is given without a clear forward direction.

Delmarcello and Hesselink show that the total index of a tensor field on a mani-
fold is equal to the Euler characteristic of the manifold [9]. Consequently, in order
to remove a singularity from the field, another singularity with the opposite tensor

110 E. Zhang

index must be removed simultaneously in order to maintain the total tensor index.
In other words, a wedge and a trisector must be removed together. This leads to
the singularity pair cancellation operation [20, 21]. Alternatively, one can move a
singularity to a more desirable location (singularity movement). Zhang et al. [20]
provide efficient implementations of singularity pair cancellation and movement for
vector fields based on Conley index theory from Dynamical Systems [15], which
they adapt to the same topological editing operations for tensor fields based on a
bijective map between the set of traceless, symmetric matrices and vectors [21]. For
details on this we refer the readers to their work.

Another important use of tensor field design, is to elaborate upon the input image.
For example, interesting circular patterns may be added to the painting by modifying
the underlying brush stroke orientation field through tensor field design (Fig. 6.3).

6.2.3 Multi-style Painterly Rendering

To date most research in painterly rendering has focused on emulating a particular
painting style, such as Pointillism, Impressionism and Expressionism. Little atten-
tion has been given to the purpose (semantics) of these styles. For example, what
about impressionism that can capture our attention? Kagaya et al. [13] introduce the
notion of multi-style painterly rendering, in which different parts of the input im-
age are stylized differently, with some artistic goals such as emphasizing or deem-
phasizing an object, increasing or decreasing contrast between neighboring objects
(Fig. 6.7), etc.

In addition, style parameters can also change between frames in a video, leading
to a change in emphasis in the objects in the video and the effect of Rack focus
(Fig. 6.8 (top)). Style parameters can also be changed to create a stress-to-calm
effect (Fig. 6.8 (bottom)). These are just some examples of space-time-varying style
parameters in painterly rendering.

In the system of [13], the user can take an input image, perform manual segmen-
tation, and then assign style parameters such as brush stroke color, width, length,
transparency, and orientation to some objects in the scene. Note that the orienta-
tion can be generated automatically or based on tensor field design [21]. Some pre-
defined combinations of style parameters can also be used to reduce the amount
of work by the user. Objects that do not receive style assignment will get its style
parameters through a process in which style parameters from assigned regions (ob-
jects) are propagated to the unsigned regions through the so-called heat diffusion
process.

For video processing, the user first extracts a temporally coherent segmentation,
and then assigns style parameters to some objects in a set of key frames. We refer to
these objects as assigned objects, while objects that are not given any style assign-
ment are unassigned objects. To ensure that every object in every frame eventually
receives a style assignment, Kagaya et al. [13] make use of a two-stage pipeline. In
the first stage, the style parameters of an assigned object in a non-key frame are ob-

6 NPR for Traditional Artistic Genres 111

Fig. 6.7 A comparison between single style (lower-left) and multi-style (lower-right) rendering
for input image of a flower (upper-left). Notice that in the multi-style rendering, the stamens are
given fine details, the leaves are deemphasized, and the contrast between three regions are made
more pronounced

tained by interpolating the style parameters from the proceeding and succeeding key
frames for the object. If the non-key frame does not have a proceeding key frame,
then its style parameters will be identical to that of its succeeding frame. A similar
treatment is made for non-key frames that do not have a succeeding key frame. Note
that the proceeding and succeeding key frames are object-dependent. Once all the
assigned objects have their styles determined throughout the video, the unassigned
objects receive their style parameters in a per-frame fashion. That is, for each frame,
the same heat diffusion process described for image style propagation is used.

In addition, optical flows are used to propagate brush strokes from one frame
to the next. Moreover, brush stroke orientations are propagated through the optical
flow. We refer the reader to [13] for implementation details of their system. Note

112 E. Zhang

Fig. 6.8 Top: by using different style parameters on different people (a mother and her daughter)
and varying them over time, the effect of Rack focus can be achieved. Bottom: by modifying the
style parameters in the scene, a stress-to-calm effect can be created

that the ability to perform high-quality image and video segmentation is key to the
success of any multi-style rendering system.

6.3 Watercolorization

Watercolor is another form of traditional art that has captured the imaginations of
generations around the world. Two styles of watercolors, i.e., oriental and western,
are perhaps the most practiced watercolorization. The physical process behind both
styles of watercolorization is rather similar. For example, water-soluble pigments
of various degrees of dryness and colors are applied onto the paper through hairy
brushes. As the water flows on the surface of the paper, the pigment is transported,
diluted, and eventually deposited on the paper. In contrast, oil painting is based
on a rather different physical process, making use of pigments and a canvas that
have rather different physical properties than the watercolor pigments and the paper,

6 NPR for Traditional Artistic Genres 113

respectively. These differences lead to rather different physical appearances between
watercolor and oil painting, such as the lighting effects and transparency of the
strokes.

Next we will review work on watercolorization by the NPR community.

6.3.1 Physically-Driven Models

One of the major approaches to computer-generated watercolors is by physically
emulating the process in which watercolor paintings are generated. This includes
both natural processes, such as how water flows, transports pigments on the surface
of the paper, and is absorbed by the paper, as well as the processes that have human
involvement, such as the ways in which brushes are applied on the paper. Chapter 2
provide details on how brushes are modeled. In the remainder of this section we will
focus on how the interaction among water, pigments, and paper is simulated.

There are a number of watercolor effects that are rather unique to watercolor,
such as the following [7]:

1. Dry-brush effect: A nearly dry-brush is applied at a proper grazing angle which
causes the paint to be only applied to the raised area of the paper.

2. Edge darkening: When applying a wet-to-dry brush stroke, the pigments are con-
fined to the interior of the stroke due to the paper and surface tension of the water.
Gradually the pigments move towards the boundary of the stroke, causing a dark-
ening edge.

3. Backruns: When water moves into a region of wet paint, some pigment will be
carried by the water, leading to complex patterns within a stroke.

4. Granulation and separation of pigments: The granulation of pigments leads to a
grainy texture over the paper.

5. Flow patterns: In a wet-in-wet situation, the water flows freely over the surface
of the paper.

6. Glazing: A thin, pale layer of watercolor is added over existing and already dried
layers of watercolor.

Among these effects, glazing is perhaps the most differentiating effect between
watercolor painting and painting in other media, such as oil. In watercolor, the mix-
ture of pigments of different colors is optical, instead of physical, leading to a rather
luminous effect that is unique to watercolor painting.

To simulate these effects, Curtis et al. [7] devise a three-layer model: the shallow-
water layer, the pigment-deposition layer, and the capillary layer, in the order of top
to bottom. The water carrying pigments flows on the shallow-water layer. As the
water dries up, the pigment is deposited in the pigment-deposition layer. The paper
absorbed by the paper flows in the capillary layer, which is used only to model the
backrun effect.

In the shallow-water layer, a fluid simulation based on the shallow-water model
is performed for every newly applied brush stroke to track the movement of the

114 E. Zhang

Fig. 6.9 Computer-generated hatching based on a photo. This figure is a courtesy of [7], © 1997
ACM

water as well as the pigments. A shallow-water model, not to be confused with the
shallow-water layer or the fluid simulation therein, is essentially a 2D fluid dynamics
model which applies to the case when the largest depth of the waterflow is relatively
small compared to the area where the flow covers.

The quantities involved in the fluid simulation in the shallow-water layer include
the wet-area mask (whether the point is wet or dry), the 2D velocity and pressure
of the water, the concentration of each pigment in the paper, the slope of the rough
paper, and the viscosity of the water. Pigments can be transferred within the shallow-
water layer.

Between the shallow-water layer and the pigment-deposition layer, pigments can
be absorbed by or desorbed from the pigment-deposition layer. The rates of absorp-
tion and desorption, which are mutually different, are impacted by the density of
and the straining power of the pigments.

Most of the effects such as dry-brush, edge darkening, granulation, flow patterns,
and glazing can be achieved with just the shallow-water layer and the pigment-
deposition layer. For the backrun effect, which occurs in damp regions where the
dominant behavior is the capillary effect, a simulation is run between the shallow-
water layer and the capillary layer to produce the desired effect.

The final rendering is produced based on the amount of pigments in the pigment-
deposition layer. Curtis et al. [7] assign optical properties to the pigments, including
how they interact when co-existing, and make use of the Kubelka–Munk model.
Figure 6.9 demonstrates the effectiveness of watercolor simulation with an input
image of fruits.

6 NPR for Traditional Artistic Genres 115

Fig. 6.10 Watercolor painting produced using the method of Bousseau et al. [2]. Copyright of
ACM

6.3.2 Other Approaches

Many of the techniques for western watercolorization can be adapted to orien-
tal paintings in terms of the appearance of the strokes. Chu and Tai [5] develop
a model for brushes that is better suited for oriental painting. They later [6]
describe a physically-motivated framework for the creation of oriental painting.
Their framework is similar in spirit to that of Curtis et al. [7]. Xu et al. [19]
provide a unified framework for both western and oriental watercolors which
again is based on fluid simulation involving water, pigments, and binding materi-
als.

There have been other techniques for creating the appearance of watercolors that
are less dependent on physical simulation.

Bousseau et al. [2] first create an abstraction of the image using segmen-
tation [8] (Chap. 7). Each region is assigned a color that best approximates
the colors in the region (typically one or multiple objects). This abstracted
image is then combined with a texture that provides various watercolor ef-
fects, such as the turbulence of the flow, the dispersion of the pigments, and
the variation in the paper. This leads to high-quality watercolor effects with-
out performing a computationally expensive fluid simulation (see Fig. 6.10).
Boussau et al. [2, 3] also extend this method to achieve temporally coherent
video abstraction and watercolorization. Many of these details can be found in
Chap. 13.

Kagaya et al. [13] use a similar approach. However, instead of generating an
abstraction of the input image, they create the “colorist wash” style [10] of the input.
A colorist wash painting allows each brush stroke to be transparent. (See Chap. 1
for details.)

116 E. Zhang

Fig. 6.11 Example oriental watercolor paintings from user provided contours based on some input
images or calligraphy. This figure is a courtesy of [18], © 2010 ACM

6.3.3 Oriental Watercolors

The techniques reviewed are mostly designed to simulate western watercolor paint-
ings.

Oriental painting, also known as Chinese watercolor in China and sumi-e in
Japan, is another popular medium that has received much attention from the NPR
community. In many ways oriental painting is similar to western watercolor except
for the differences in the physical properties of the paper, pigments, and brushes.
Another major difference is that many traditional oriental paintings are rather ab-
stract, with only a few strokes to illustrate the main objects in the drawing and are
used for calligraphy, whereas in western watercolors the canvas is typically filled
with ink from brush strokes. There is also a difference in how brushes are applied
as well as how colors are used, leading to a rather different look in the results.

Many of the techniques for western watercolorization can be adapted to orien-
tal paintings in terms of the appearance of the strokes. Chu and Tai [5] develop a
model for brushes that is better suited for oriental painting. They later [6] describe a
physically-motivated framework for the creation of oriental painting. Their frame-
work is similar in spirit to that of Curtis et al. [7]. Xu et al. [19] provide a unified
framework for both western and oriental watercolors which again is based on fluid
simulation involving water, pigments, and binding materials.

For oriental painting, it is important to be able to abstract an image with a few
strokes which is essential in simulating classical oriental painting (see Fig. 6.11).
Xie et al. [18] allow the user to draw a few rough strokes of the input photo that
capture the contours of the main objects in the image. Their algorithm then auto-
matically determines the optimal trajectory for these contours and produces strokes
based on the optimal trajectories (Fig. 6.11).

6.4 Line Drawing

Pen-and-ink drawing is also a well-researched topic in NPR. In a typical setting,
a set of geometric primitives such as points (stipples) and lines (hatches) are used
to illustrate objects (see Chap. 3 and Chap. 4 for more details). While these prim-
itives can be in different colors, pen-and-ink drawings are usually monochromatic

6 NPR for Traditional Artistic Genres 117

Fig. 6.12 Computer-generated hatching based on a photo. This figure is a courtesy of [17], © 1997
ACM

(typically black) and they are placed against a background (typically white). The
locations and densities of these primitives are used to outline the shapes, present
the main features in the objects, and convey the shading. In the case of line primi-
tives, the directions of lines can also be used to illustrate geometric features in the
shape, such as ridges and valleys. Given the close connection between stippling and
halftoning, we will not review computer-based stippling techniques in this chapter
and instead focus on line drawings, i.e., the use of straight and curved lines to stylize
an image or depict a 3D object.

6.4.1 Streamline Placement

We first review existing approaches to line drawing based on an input image
(Fig. 6.12). Like painterly rendering algorithms [10, 13], the edges in the image
are extracted and used to generate an orientation field. This field is used to deter-
mine the trajectory (shape) of each hatch. Notice that in this sense hatching can be
considered as a painting style, in which all the strokes are thin (one pixel wide) and
of the same color (black). The latter (all strokes are black) dictates that sufficient
space must be given between nearby strokes, or they will not be distinguishable.
In addition, due to the loss of color, effects such as shadows and highlights must
be reflected in other visual cues. Both issues are addressed using the density (or
spacing) of strokes in that brighter regions in the input image receive fewer strokes
and darker regions receive more strokes. Inside a region where the brightness in the
input image is rather uniform, the spacing between the strokes should also be nearly

118 E. Zhang

even. When the minimal spacing in a region is still insufficient to reflect the tone
of the region, cross-hatches are introduced, which uses two families of mutually
perpendicular strokes to increase the darkness of the region without decreasing the
spacing between strokes.

One approach is to compute a set of evenly-spaced streamlines that follow the
orientation field. Jobard and Lefer [12] generate a set of evenly-spaced streamlines
given a vector field V by placing one streamline at a time. Given the seed of a new
streamline, it is tested against all existing streamlines to see whether it is closer
to any of them than the spacing requirement. The seed survives only if it passes
this test. Then the tracing of the streamline starts from the seed, typically based on
numerical methods such as Runge–Kutta. That is, given the current end point of the
streamline p, a line segment from p to p + V (p) ∗ dt is added to the streamline.
When dt > 0 is sufficiently small, the line segment approximates the trajectory at p.
Note that in this scheme a streamline (hatch) is represented as a polyline. Let p′ be
the new end point. Streamline tracing stops when one of the following criteria is met:

1. p′ is outside the domain.
2. p′ is closer to an existing streamline than the spacing threshold.
3. p′ is closer to a singularity (source, sink, saddle) than a user-specified distance.
4. p′ is closer to existing segments of the same streamline than the spacing thresh-

old, i.e., a loop has been found.

In addition, a maximal length is often imposed on each streamline to ensure that
all the streamlines have comparable length.

The same framework can be adapted to tracing a tensor field [1, 21], which, as
described earlier, is a more appropriate representation for edges in the image. To
build cross-hatching, two families of even-spaced hatches are generated, following
the major and minor eigenvectors of the tensor field, respectively. A final rendering
can be generated based on the process described in Fig. 6.13. These two families of
hatches (streamlines) will be used to generate two images, one following the major
eigenvector field, and the other the minor eigenvector field. We refer to these two
images as I1 and I2, respectively. In addition, an image I3 based on the outlines of
objects in the original image is also generated. Furthermore, a pixel with a value of
1 is white and a value of 0 is black. These three images will then be composited into
a single image as follows:

I (p) =

⎧⎪⎪⎨
⎪⎪⎩

0 if I3(p) = 0
1 if in highlight
min(I1(p), I2(p)) if in shadow
I2(p) otherwise

(6.4)

Notice that in the above one can also choose to always use I1(p) for single-
hatched regions. Another means of generating I1 and I2 is to first project the
principal directions onto the image plane and trace hyperstreamlines in the image
plane. This alternative is view-dependent but typically is fast enough for interac-
tive applications. In contrast, the object-based approach requires much time for pre-
processing but is then ready for interactive display, except when the resolution is
changed.

6 NPR for Traditional Artistic Genres 119

Fig. 6.13 The process of generating a hatch-based drawing from an input image, possibly a ren-
dered 3D model

6.4.1.1 Textures

Generating hatching from evenly-spaced streamlines is computationally expensive.
An alternative approach is to place textures that have the appearance of strokes of
various level of densities as well as single-hatching and cross-hatching patterns [14].
These textures are then placed at the desired locations on the canvas in the appro-
priate orientations. This approach is fast, high-quality, and robust against scale vari-
ations in the objects in the original image. However, it is important to deal with the
discontinuity in the places where patches with different tone or orientation overlap.
Fortunately the hatch textures are typically of high frequency. When blended, it is
not as easy to see the discontinuity as with rather low-frequency signals.

The original field can be extracted from the image or generated through user
design.

6.4.2 Orientation Field Representation for Hatching

Finally, proper representation of hatch orientations is important. Traditionally hatch
orientations are treated as the principal directions of the curvature tensor. Hertz-
mann and Zorin [11] point out that a more proper representation of hatch repre-
sentation are cross fields, i.e., by not distinguishing between the major and minor
principal curvature directions. This has led to the notion of N -way rotational sym-
metries, where a vector, line, or cross correspond to 1-, 2-, and 4-way rotational
symmetries. Cross fields can be used to model corners of a cube with a first-order
singularity, while such corners cannot be modeled by a tensor field (equivalent to a
line field). This leads to smoother hatching directions during initial generation and
subsequently modification [14] (Fig. 6.14).

120 E. Zhang

Fig. 6.14 Difference between different hatching orientation representations: (left) line field, and
(middle) cross field. Notice that the features are better represented by the cross representation. Such
a representation also enables rotational symmetry field editing, which leads to more natural result
(right). This figure is a courtesy of [16], © 2007 ACM

6.5 Conclusions

In this chapter we review some existing work in simulating traditional art genres,
such as oil painting, watercolorization, oriental painting, as well as hatching. We
also discuss some relatively recent development such as orientation field represen-
tation as well as multi-style rendering.

For future work, we believe it is important to consider other forms of art that have
not received much attention, such as African art and ceramics painting. There are
also more modern styles of painting that we are not able to simulate. Understanding
the semantics of art, such as the purpose of each style in terms of delivering infor-
mation or recording emotions and moods, could be another fruitful future research
direction.

References

1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal
remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

2. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with tem-
poral coherence and abstraction. In: NPAR’06: Proceedings of the 4th International Sympo-
sium on Non-photorealistic Animation and Rendering, pp. 141–149 (2006)

3. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional
texture advection. In: SIGGRAPH’07: ACM SIGGRAPH 2007 Papers, p. 104 (2007)

4. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: SIG-
GRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Inter-
active Techniques, pp. 263–270 (1993)

5. Chu, N.S.H., Tai, C.L.: Real-time painting with an expressive virtual Chinese brush. IEEE
Comput. Graph. Appl. 24(5), 76–85 (2004). doi:10.1109/MCG.2004.37

6. Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. In: ACM SIG-
GRAPH 2005 Papers, SIGGRAPH’05, pp. 504–511 (2005). doi:10.1145/1186822.1073221

http://dx.doi.org/10.1109/MCG.2004.37
http://dx.doi.org/10.1145/1186822.1073221

6 NPR for Traditional Artistic Genres 121

7. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated
watercolor. In: Proceedings of the 24th Annual Conference on Computer Graphics and Inter-
active Techniques, pp. 421–430 (1997). doi:10.1145/258734.258896

8. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proceedings of the
29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 769–776
(2002). doi:10.1145/566570.566650

9. Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyperstream lines.
IEEE Comput. Graph. Appl. 13(4), 25–33 (1993)

10. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: SIG-
GRAPH’98: Proceedings of the 25th Annual Conference on Computer Graphics and Inter-
active Techniques, pp. 453–460 (1998)

11. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: SIGGRAPH’00: Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 517–526
(2000)

12. Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Proc. of 8th
Eurographics Workshop on Visualization in Scientific Computing, pp. 45–55 (1997)

13. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P.J., Zhang, E.: Video
painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17, 74–
87 (2011)

14. Markosian, L., Kowalski, M.A., Goldstein, D., Trychin, S.J., Hughes, J.F., Bourdev, L.D.:
Real-time nonphotorealistic rendering. In: Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’97, pp. 415–420. ACM/
Addison-Wesley, New York (1997). ISBN 0-89791-896-7. doi:10.1145/258734.258894

15. Mischaikow, K., Mrozek, M.: Conley index. In: Handbook of Dynamical Systems, vol. 2,
pp. 393–460. North-Holland, Amsterdam (2002)

16. Palacios, J., Zhang, E.: Rotational symmetry field design on surfaces. ACM Trans. Graph.
26(3), 55 (2007)

17. Salisbury, M.P., Wong, M.T., Hughes, J.F., Salesin, D.H.: Orientable textures for image-based
pen-and-ink illustration. In: Proceedings of the 24th Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 401–406 (1997). doi:10.1145/258734.258890

18. Xie, N., Laga, H., Saito, S., Nakajima, M.: IR2s: interactive real photo to Sumi-e. In: Proceed-
ings of the 8th International Symposium on Non-Photorealistic Animation and Rendering,
pp. 63–71 (2010). doi:10.1145/1809939.1809947

19. Xu, S., Tan, H., Jiao, X., Lau, F.C.M., Pan, Y.: A generic pigment model for digital painting.
Comput. Graph. Forum 26(3), 609–618 (2007). doi:10.1111/j.1467-8659.2007.01084.x

20. Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Trans. Graph.
25(4), 1294–1326 (2006)

21. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces.
IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

http://dx.doi.org/10.1145/258734.258896
http://dx.doi.org/10.1145/566570.566650
http://dx.doi.org/10.1145/258734.258894
http://dx.doi.org/10.1145/258734.258890
http://dx.doi.org/10.1145/1809939.1809947
http://dx.doi.org/10.1111/j.1467-8659.2007.01084.x

Part II
Stylization from Structure

Part II of this book focuses on techniques that rely upon parsing the visual struc-
ture from an image to synthesize artwork. In most cases this is performed using a
region segmentation algorithm (either automated or user assisted), or in some cases
by fitting a model (e.g. of facial structure) to the source image. We also cover tech-
niques for stylizing this region based representation of images. A diverse variety of
stylization and shading techniques are included; from gradient diffusion, to packing
algorithms for packing regions with paths, tiles, and other rendering primitives.

Region-based color sketch, painting and stained glass rendering. All were produced
using segmentation based rendering algorithms described in Chap. 7. Courtesy of
Fang Wen

Chapter 7
Region-Based Abstraction

David Mould

7.1 Introduction

In this chapter we discuss image stylizations organized around regions. For the pur-
poses of this chapter, regions are contiguous areas of the image plane, often corre-
sponding to semantic divisions of the image content. Individual regions may be quite
meaningless, however, with meaning emerging only from the overall arrangement
of regions.

We will distinguish regions from tiles. Tile shapes usually have little relationship
to the image content. Moreover, tiles are generally quite homogeneous in shape and
size, while regions can be of arbitrary shape and size, usually varying widely. For
example, segmentation of a photo of a forest might produce some tiny regions (cor-
responding to leaves and branches of the trees) as well as some very large regions
(such as the featureless sky). We make an exception to this usage pattern when we
discuss stained glass, where we retain the traditional use of the term “tile” to refer
to the irregular regions in the glass.

One of the central challenges in image-based stylization is to make the stylized
output match up with the viewers’ understanding of the semantics of the original
image. Image understanding is a vast and active field, but automatic image under-
standing is not presently possible, nor is it feasible to communicate a detailed un-
derstanding of an image from a human to a computer system.

Fortunately, impressive effects can be achieved with only a weak representation
of the image semantics. One possible mechanism is segmentation, whereby the im-
age is divided into regions in some fashion; the segments are distinct from each other
in some way, whether based on color, texture content, or otherwise. Segmentation
might be done automatically or with user guidance; semi-automatic methods such as
GrabCut [28] are extremely powerful. Manual boundary tracing is less common but
examples exist; SnakeToonz [2] uses active contours to assist in tracing boundaries

D. Mould (�)
Carleton University, Ottawa, Canada
e-mail: mould@scs.carleton.ca

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_7,
© Springer-Verlag London 2013

125

mailto:mould@scs.carleton.ca
http://dx.doi.org/10.1007/978-1-4471-4519-6_7

126 D. Mould

of a photograph, while iR2S [38] has users trace freehand over an input photograph
to form region boundaries that are then transformed into strokes.

Automatic segmentation has many disadvantages, mainly arising from the lack of
robustness and potentially low quality of segmentation. Automatic methods tend to
be brittle: while they may work well for some images, other images can be problem-
atic. The segmentations may not correspond with semantic features; for example, the
shading of an object may cause its intensity to vary, producing oversegmentation.
Shadows might cause spurious segments to appear. Some features may be inherently
difficult to segment: for example, thin features such as tree branches are problematic
for the graph cuts algorithm.

An example of an automatic segmentation is shown in Fig. 7.1. We used EDI-
SON, a widely used mean-shift segmentation system, to obtain the middle image
and applied morphological smoothing to obtain the rightmost image. Although the
smoothing operation has tidied up some oversegmented regions (such as the car’s
wheel) by removing very small regions, it has also destroyed some structure (such
as the palm tree on the upper right) by smoothing complex region boundaries and
corners. The windows of the building have also been modified, largely for the worse,
as corners have been smoothed and thin areas between windows have been absorbed
into the window regions. Nonetheless, overall the filtered regions have simpler
shapes, are more uniform in size, and in general are more suitable for subsequent
stylization tasks than the original regions were.

Still, smoothing operations cannot in general repair poor initial segmentations of
difficult areas such as texture; further, smoothing can be harmful when the actual
region boundary is complex, such as that of the palm leaves. The difficulty of au-
tomatic segmentation, illustrated in part in the figure, has prompted use of manual
intervention in many of the methods discussed in this chapter.

If automatic segmentation can be made to work, however, it is extremely useful.
Human time is expensive compared to machine time, so anything we can do to re-
duce the burden on human artists is helpful. In applications such as animation, we
do not want to require each frame to be manually segmented. In real-time appli-
cations, such as live video or computer games, we need to maintain a high frame
rate and automation is the only possibility. (While none of the methods discussed in
this chapter operate at interactive speeds, requiring human intervention would make
high frame rates impossible even in principle.)

Many of the methods we discuss occupy a middle ground of semi-automatic seg-
mentation, where the detailed work is done automatically but a human user guides
the system towards better results, possibly by merging segments or by indicating
with broad gestures which portions of the image belong to the foreground instead
of the background. Techniques for productivity enhancement of manual segmenta-
tion have a long history in image processing, and we will mention a few custom
approaches in the remainder of this chapter.

Once a segmentation has been constructed, it can be used in diverse ways to
achieve a wide variety of artistic effects. Many historical artworks used segments
explicitly, including stained glass, mosaics, and stencils. Others contain visible seg-
ments; woodcuts, tilings, and many modern styles of illustration have this property.
Some historical artistic styles are reviewed in Sect. 7.1.2.

7 Region-Based Abstraction 127

Fig. 7.1 Segmentation and morphologically smoothed segments. Original image courtesy of
Philip Greenspun

Fig. 7.2 Region-based stylization flowchart

Segmentation has been used as an element of stylization algorithms even where
explicit segments are not a key feature of the intended output, as in some abstraction
algorithms or some media simulations, such as watercolor. Alternatively, segmen-
tation can be used as a precursor to a further stylization or optimization step, as in
Jigsaw Image Mosaics [18] or maze creation [40]; the latter is discussed in detail in
Chap. 9. We discuss the general process next.

7.1.1 Generic Process for Region-Based Stylization

A generic process for region-based stylization is depicted in Fig. 7.2. We begin
with an input image or video sequence. The image is divided into regions by some
means; this might be a fully automated segmentation algorithm, a semi-automatic
user-guided segmentation, or a completely manual tracing process. Then, region

128 D. Mould

boundaries are adjusted: perhaps simply smoothed, or perhaps more aggressively
modified, with regions being shrunk, simplified, distorted, or abstracted entirely.
The resulting regions serve as the basis for a rendering process. Region interiors
are populated, perhaps directly with color, texture, and/or geometry, or with other
primitives which are rendered separately. At the same time, region boundaries are
rendered, again either directly or by populating the boundaries with strokes or other
primitives and rendering them. Finally, the aggregate of regions, region boundaries,
and ancillary primitives is consolidated into an output image.

For some algorithms, the main burden of the method is on the segmentation, with
the region filling process done in a fairly simple way. In other cases, the segmenta-
tion is performed mainly to restrict the scope of local operators, and the majority of
the work lies in the region filling process. We will see examples of both when we
discuss specific algorithms from the research literature; a tour of the literature will
form the second half of this chapter.

7.1.2 Regions in Art

Stylized rendering can use regions in an indirect way; for example, as a founda-
tion for a painterly rendering or stippling algorithm. However, regions can also be
used directly. Many historical artworks are assembled from discrete physical pieces,
visible as regions in the final design.

Among the oldest surviving historical artworks are mosaics: designs made by
arranging pieces of stone into abstract patterns or representational forms [12, 21].
Opus tesselatum, traditional mosaics where the stones are small cubes (tesserae),
have been extensively studied in NPR, beginning with Hausner’s work [16]. Haus-
ner’s used a manual segmentation of the input image, prohibiting individual tesserae
from straddling region boundaries. Opus vermiculatum, in which rows of tesserae
follow the boundaries of regions, is a historical style which depends even more heav-
ily on an initial segmentation. Finally, opus sectile is a historical form which has
been relatively little studied in NPR, but where the regions have still greater impor-
tance. Opus sectile involved substantially larger pieces of stone than the tesserae:
the pieces were cut into representational shapes to form the design more directly.
Opus tesselatum and opus sectile are shown in the top row of Fig. 7.3.

Stained glass is another ancient art form that uses physical regions to portray im-
ages. Stained glass windows both ancient and modern use large glass tiles, carefully
shaped, to depict image content. Sometimes the glass is also painted, but sometimes
not, as in the example shown in Fig. 7.3. Because of the need to make the tile ar-
rangement correspond to the image structure, to date segmentation has been used in
all image-based techniques for synthetic stained glass.

Many forms of illustration make use of distinct regions. Art nouveau, exemplified
by a drawing by Alphonse Mucha in the middle right of Fig. 7.3, often displays uni-
formly or near-uniformly colored regions with distinct boundaries. Cartoons possess
these characteristics as well, as do many styles of modern graphic art. Some histori-
cal image reproduction techniques, such as woodcuts or other types of printmaking,

7 Region-Based Abstraction 129

Fig. 7.3 Regions in art. Above: opus vermiculatum; opus sectile. Middle: stained glass; art nou-
veau illustration. Below: Ukiyo-e print; jack o’lantern. R. Berteig (medusa); Jim Linwood (angel);
Steve Cadman (glass); Alphonse Mucha (advertisement); Danny Choo (ukiyo-e); William Warby
(jack o’lantern)

130 D. Mould

produced images with solid-colored regions. Ukiyo-e, a Japanese artform based on
woodblock printing, is depicted in the lower left of Fig. 7.3.

Stencils provide our last example. A stencil is a piece of solid material with
carefully shaped holes cut through it so as to form an image. A stencil could be
used as a shield through which paint is sprayed, leaving a design in the shape of
the holes. Or, light can shine through the holes, as is the case in the illustrated jack
o’lantern. For that matter, stencils are available for pumpkin carving, where the
holes are copied from the flat stencil onto the pumpkin. Stencil creation algorithms
must cope with the double problem of representing an image with few simple shapes
plus the physical constraint that the different parts of the stencil must be linked
together into a single piece.

7.1.3 Uses of Regions

We will distinguish between two main uses of regions. Regions can be a source of
structure with which we can organize other primitives: for example, a segment could
be a container for paint strokes, enhancing perceived structure by clipping strokes
to region boundaries. Alternatively, regions can be rendering primitives in their own
right. For example, the tiles in a medieval stained glass rendering are the primitives
from which the overall image is made. Regions are rendered simply, and the shapes
of regions and relationships between regions convey the image content.

7.1.3.1 Regions as Structure

We will first discuss the use of segmentation in NPR as a source of structure.
Unstructured stroke-based rendering can sometimes obscure or confuse important
edges and features. Segmentation provides structure in two main ways:

• Contrast. Regions provide edges which primitives should not cross; region
boundaries therefore remain visible in the final image.

• Coherence. Regions provide medium-scale, usually semantically meaningful sets
of pixels within which information can be aggregated. For example, within a seg-
ment, strokes can have similar color and direction.

An early example of regions used to supply contrast is the mosaic creation of
Hausner [16]. The user-supplied segmentation is used as a guideline for tile place-
ment: tiles are prevented from straddling region boundaries. Many mosaic creation
methods use similar ideas. The region boundaries are emphasized by the tile place-
ment; without this step, the mosaic is likely to be less comprehensible.

An example of regions used to supply coherence comes from the “Artistic Vi-
sion” of Gooch et al. [15]. Automatic segmentation provides region shapes, and
detailed analysis of region shapes yields local stroke directions. Within a region,
stroke directions are aligned, promoting a sense of order in the synthetic output.

7 Region-Based Abstraction 131

7.1.3.2 Regions as Primitives

Another application of segmentation is to use the regions themselves as the primary
primitives. In this treatment, the regions themselves are usually quite simply pre-
sented, with uniform color or texture in their interiors; the shapes of the regions and
the contrasts between adjacent regions reveal the image content. Region shape is
potentially emphasized by using a separate rendering process for region boundaries,
e.g., drawing the boundaries with heavy black lines.

When using regions as primary primitives, region shape is of foremost impor-
tance. For faithful representation of the original image content (e.g., in black and
white rendering) a high-quality segmentation is needed. When greater abstraction
is the goal, the region shapes may be smoothed or otherwise modified, sometimes
quite drastically as in the Arty Shapes of Song et al. [32].

7.2 Algorithmic Building Blocks

Here we briefly discuss some of the algorithms that underlie many of the results in
region-based stylization. As we saw in Fig. 7.2, a typical region-based stylization
first involves a segmentation into regions, possibly done automatically; the segmen-
tation step is then followed by smoothing of region boundaries. We will discuss each
of these elements in turn in this section.

7.2.1 Segmentation

Segmentation is the process of automatically dividing an input image into meaning-
ful regions. Typically, segmentation algorithms seek to assign similar pixels to the
same regions, and discontinuities in pixel characteristics mark region boundaries.

The simplest segmentation algorithms separate pixels into regions using thresh-
olding, possibly subsequent to an analysis of intensity histograms to obtain appro-
priate thresholds. Not including spatial relationships among pixels is a regrettable
failing of such methods.

Region growing methods are a class of segmentation algorithms that involve start-
ing with a small region, perhaps a single pixel, and adding pixels on the perimeter
one by one as long as the added pixel has properties similar to the region as a whole.
Such methods are most effective when enough is known about the input images to
craft sufficiently powerful similarity criteria.

For some time, the mean-shift algorithm [9] was the favored method for seg-
mentation. The freely available software EDISON was frequently incorporated into
the pipeline for published stylization methods. However, despite the effectiveness of
mean shift relative to other automatic algorithms, performance relative to the human
vision system is lacking. Consequently, the current trend in region-based stylization

132 D. Mould

is to avoid reliance on fully automatic segmentation, and instead to allow user input
to disambiguate difficult cases and correct undesired segmentation results. Meth-
ods such as GrabCut [28], which have extremely simple interaction mechanisms,
are sometimes used; occasionally, custom methods are developed for the stylization
task at hand. To improve segmentation performance, an initial oversegmentation
into superpixels may be undertaken; a recent robust method for finding superpixels
is the simple linear iterative clustering method of Achanta et al. [1].

This survey is necessarily brief and segmentation is a large field. Good starting
points for further reading include image processing texts such as that of Gonzalez
and Woods [14] or that of Sonka et al. [33].

7.2.2 Boundary Smoothing

Handcrafted regions, such as those in the artworks in Fig. 7.3, tend to be bounded by
smooth, elegant curves. However, automatic segmentation tends to produce jagged
and irregular boundaries. To improve boundary quality, smoothing is often em-
ployed.

Two basic options are available for boundary smoothing. The boundaries can
be smoothed directly, for example, using filtering operations on a 1D signal. Or, the
regions themselves can be modified, usually by using morphological operations. We
will discuss these two possibilities in turn.

Smoothing the boundaries can be undertaken in different ways. One smoothing
approach is to subsample the boundary and link the points with splines, resulting
in a smoother curve. A more explicit approach is to extract sets of boundary curves
and apply smoothing operations to each curve separately; an early but thorough
treatment of curve smoothing is given by Finkelstein and Salesin [13]. In either case,
boundary curves must be extracted and fixed points noted; typically, the corners
where three regions meet are treated as fixed. Care must be taken to ensure that the
smoothing process does not introduce spurious intersections of boundary curves.

Morphological operators allow interaction with and modification of the regions
themselves rather than their boundaries. In region-based stylization, they have been
a popular choice for tidying an initial automatic segmentation, by smoothing seg-
ment boundaries and removing tiny regions. The latter is a natural side effect of
morphological operations, whereas boundary smoothing approaches require a sepa-
rate stage if tiny regions are to be eliminated.

There are two basic morphological operators: erosion and dilation. Both operate
on a binary image by means of a structuring element, a binary mask that controls the
shape and size of the morphological change. Informally speaking, erosion has the
effect of scrubbing the structuring element like an eraser around the exterior of the
region, shrinking it; dilation has the opposite effect, expanding the region boundary
by the structuring element.

Erosion and dilation are building blocks for more elaborate operations. An ero-
sion followed by a dilation is called “opening”: it has the effect of separating re-
gions which are joined by thin strands, and of eliminating regions smaller than the

7 Region-Based Abstraction 133

structuring element. Dilation followed by erosion is called “closing”; it fills in small
holes. Both operations also remove small features from region boundaries. When we
refer to “morphological smoothing”, it is typically an opening or closing operation.

Although erosion and dilation are defined in terms of their effects on binary im-
ages, they can be applied to images with multiple regions by applying them to each
region, one by one. Dilation can proceed unchanged, but the erosion operator must
be modified, for example by relabeling the eroded pixel with the label of the near-
est exterior region rather than simply by the opposite binary label. An alternative to
incremental erosion is to erode all regions simultaneously, introducing a new “back-
ground” label that can then be consumed in a subsequent dilation step.

Boundary smoothing and repair, whether boundary-based or region-based, is
generally a necessary part of a region-based stylization process. The remainder of
this chapter describes specific stylization methods from the literature; we generally
do not mention boundary smoothing operations for each method, but they are often
present.

7.3 Review of Specific Works

This section provides a tour through selected research results that employed re-
gions. We divide the literature into work that primarily used regions as containers to
be filled with other primitives, work that populated regions with texture, and work
that chiefly emphasized region boundaries, especially involving manipulation of the
boundaries. Along the way, we touch briefly on stylization of video.

Before beginning the tour proper, we want to single out the work of DeCarlo
and Santella [10], who created one of the first examples of region-based abstraction.
This work is notable for three main reasons: it introduced the concept of gaze as a
lightweight control mechanism for identifying important image regions; it made use
of a hierarchy of segmentations; and it produced a novel abstraction mechanism, not
specifically designed in imitation of a historical artistic style or medium. Followup
work [29] also made use of gaze, serving a painterly abstraction technique.

DeCarlo and Santella’s initial groundbreaking system automatically computes
segmentations at different scales. A hierarchy is inferred by computing the overlap
between regions at different levels, and each region is assigned a single parent, up
to the top level where the entire image is a single region. The hierarchy, plus a set
of image edges, is precomputed for a given image. After the hierarchy is computed,
the segmentations are smoothed by low-pass filtering the segmentation boundary
curves, with the curve endpoints (where three or more regions meet) being held
fixed.

At runtime, a user examines the image while gaze is tracked. The resulting gaze
data create a salience map which is used in rendering. Rendering consists of placing
uniformly colored regions plus smoothed edges from an edge detection filter. Tex-
tured edges are suppressed by omitting short edges and by requiring that medium-
length edges lie on region boundaries. Portions of the image receiving more atten-

134 D. Mould

Fig. 7.4 Region-based
abstraction from DeCarlo and
Santella. © 2002 ACM, Inc.
Included here by permission

tion are rendered with more detail: more salient areas are depicted using smaller
regions, from lower in the hierarchy.

A rendered image is shown in Fig. 7.4. The user mainly looked at the people
in the background and at the face of the person in the foreground, resulting in a
lesser degree of abstraction for these parts. The body of the foreground figure, the
texture on the wall, and the structure of the walls and ceiling have all been abstracted
heavily. Also notice how the separately smoothed edges and region boundaries are
no longer perfectly aligned, producing a sketchy, handmade impression. The ideas
in this paper have had enormous influence on subsequent image-based abstraction
techniques, region-based and otherwise.

7.3.1 Filling Regions

In this section, we discuss the coherence-enhancing usage of regions. Regions can
be used as an organizational principle, with a single value or signature used to de-
scribe the region’s contents; the segmentation process is assumed to produce regions
with sufficiently uniform properties that this makes sense. The most basic way of
using this is to apply a single uniform color to a region; this is widely used, both in
cases where regions have high importance, such as the stained glass of Mould [24],
and in cases where regions are only incidental, such as the watercolor rendering of
Bousseau et al. [3], whose abstraction makes use of a segmentation where the colors
are averaged within regions.

One of the most common uses of regions in NPR is as containers to constrain
or organize discrete primitives. Among the first to use regions in this way were
Deussen et al. [11]; in this work, an input image is manually segmented into regions
which are then filled with stipples. These authors articulate a complaint which might
be echoed by creators of automatic region-based methods even up to the present day:
“segmentation might be done automatically, but our experiences in this direction are

7 Region-Based Abstraction 135

not very promising.” Once the regions are determined, the average graylevel of each
region is measured and an appropriate number of stipples placed, with stipple loca-
tions adjusted by relaxation and potentially by further user interaction. The method
is described in more detail in Chap. 3.

Following Deussen et al., regions were used as an organizational tool for arrang-
ing mosaic tiles by Hausner [16], among others. Mosaics are described more thor-
oughly in Chap. 10. Image-based mosaic algorithms commonly forbid tiles from
crossing region boundaries, and in Hausner’s case, tiles are also oriented to follow
the boundaries. The segmentation thus structures the tile arrangement, emphasizing
the large-scale features even as the tiles’ color varies depending on the local image
content. The Jigsaw Image Mosaics of Kim and Pellacini depend even more heavily
on the regions for image structure: in this work, regions are progressively filled by
tiny irregularly shaped tiles, but there is no attempt to match small-scale image de-
tail. Color matching is done at the scale of the region: a region is assigned a color,
and tiles with colors matching the region are preferred.

The “Artistic Vision” of Gooch et al. [15] was an early effort to make use of
region shape to guide region contents. The initial stages of the algorithm are con-
cerned with obtaining the segmentation. Segmentation of the image was done using
a custom flood-fill algorithm based on image tone similarity. The resulting regions
were not necessarily well shaped; region shapes were adjusted using, firstly, removal
of isolated pixels and small holes, then secondly, morphological operations to adjust
region boundaries.

Having obtained a reasonable segmentation, the algorithm then moves to the
stroke placement phase. The medial axis of each region is extracted using a dis-
tance transform. Next, the medial axes are thinned to produce fragmentary ridges,
which are then grouped to form strokes. The ridge grouping strategy ensures that the
strokes will approximately travel the length of the region; stroke widths are chosen
to match region widths. In short, the overall collection of strokes forms a structure
guided by the initial segmentation. The authors note that the quality of the final
painting depends on the segmentation: segmentations with smaller regions produce
paintings with greater detail, which may be appropriate for applications such as
portrait painting. We show a sample result from the system in Fig. 7.5.

As an aside, the distance transform is also used in the Batik stylization of Wyvill
et al. [37], seeking to recreate the effect of Batik dyes. In this work, an initial binary
segmentation is obtained manually. A distance field stores the distance to the nearest
crack or region boundary; cracks begin at points of greatest distance and propagate
along the direction in which distance decreases most rapidly, with the direction per-
turbed by noise. By placing sufficient numbers of cracks, a dense network of cracks
is created. The resulting cracking effect is unusual within NPR; an example is shown
in Fig. 7.6.

Stroke directions based on region shape is a theme revisited by Li and
Huang [19]. In this work, an initial segmentation supplies regions which structure
all subsequent computation. For each region, a local direction is calculated: if the
region contains little texture, the region orientation itself is used, whereas textured
regions use the texture direction, computed by finding the peak in the gradient ori-
entation histogram. The set of region directions provides a global vector field, and

136 D. Mould

Fig. 7.5 Painterly rendering from Gooch et al. Created by Hua Li using code provided by Bruce
Gooch. Used with permission

Fig. 7.6 Batik by Wyvill et al. This result was made from six separate binary segmentations, the
most prominent of which is shown. © 2004 ACM, Inc. Included here by permission

7 Region-Based Abstraction 137

Fig. 7.7 Pencil rendering (left, from Li and Huang) and woodcut rendering (right, from Mello et
al.). Right side: Created by Vincius Mello. Used with permission

the final rendering is done by applying line integral convolution [7] to a white noise
field approximating the local image intensity. An example appears in Fig. 7.7; tones
are well matched and the line integral convolution imparts a sketchy impression.

The vector field created by Li and Huang can be criticized for its excessive sim-
plicity. A more elaborate vector field is created by Mello et al. [22] in an effort
to create woodcut-like images. The visual style of Mello et al.’s virtual woodcuts
is contingent on the assumption that stroke directions should be perpendicular to
segment boundaries; this intent is realized in the following way.

First, the algorithm applies mean-shift segmentation to obtain regions. Next, the
vector field is created: control vectors are placed along region boundaries, oriented
perpendicular to the boundary, and on weaker edges within regions. Additional con-
trol vectors can be placed by a user, if desired. A full vector field is computed by
interpolating the control vectors throughout the image plane. Strokes are then dis-
tributed through the image, usually originating at region boundaries, and follow the
vector field. The final rendered image consists of both the strokes and the region
boundaries. An example appears in Fig. 7.7; the image content is conveyed mainly
through region boundaries, with the strokes sometimes adding a sense of surface
shape. Just as in many other region-based methods, the effectiveness of the method
depends on the quality of the initial segmentation.

138 D. Mould

7.3.2 Textured Regions

Coherence of color and of orientation are two reasons to segment. Coherence of tex-
ture is another possibility. We next present some examples where texture matching
within regions is the objective.

For emulation of stained glass, it is natural to split the image into regions. Setlur
and Wilkinson [30] use mean-shift segmentation to obtain regions which will be-
come stained glass tiles. Region boundaries are smoothed by replacement with
Bezier curves, and dilation of region boundaries gives the leading area. To pop-
ulate region interiors, they use a data-driven approach, matching textures from a
glass swatch database with local textures from the image.

Texture matching is also the main concern of Qu et al. [27] in their effort to
automatically screen photographs in a black and white manga style. The objective of
this work is to convey the color and texture of an original photograph in a black and
white image by using different patterns. This is accomplished by first segmenting
the image into many different regions, then matching the texture signature within a
region to one of the texture signatures of the predefined patterns. For regions where
no good-quality match is available, the patterns are selected so as to maintain the
same perceptual distance between patterned regions as the original colored regions.

The visible segments present in the results of Qu et al. are sometimes unattractive.
Li and Mould [20] present an alternative in which the screening process is unified
over the entire image: different screening masks are used for different regions, but
individual screening calculations are done over neighborhoods which cross region
boundaries. This reduces the dependency on the initial segmentation. Results from
segmentation-based screening are shown in Fig. 7.8.

Returning to stained glass, Brooks [5] provided a carefully planned system for
stained glass image synthesis. While the method is based on segments, an inevitable
feature of stained glass algorithms, Brooks avoided the difficulties of automatic seg-
mentation by providing a user tool for segmentation assistance: a hierarchy of auto-
matic segmentations is computed and a user then creates final regions by selecting,
splitting, and merging regions across different levels of the hierarchy. Brooks uses
a sophisticated combination of color transfer, texture synthesis, and image warping
to create a glassy appearance within regions, and relies on image analogies [17]
to compute the leading between glass tiles. Both Setlur and Wilkinson [30] and
Brooks made use of example-based techniques for stained glass, and sample results
from both are shown in Fig. 7.9.

Brooks’s mixed media simulation [6] is unusual in partitioning the image not
into semantically meaningful regions, but into regions which contain different levels
of detail. In practice, segmentation by detail may separate out semantically mean-
ingful regions anyway, particularly if the input photograph uses a limited depth
of field. Also, the system augments the basic detail-based segmentation with a
custom face detection system for separating out faces in service of a portraiture
style.

7 Region-Based Abstraction 139

Fig. 7.8 Segmentation-based screening. Left: Qu et al; right: Li and Mould. Manga image © 2010
ACM, Inc. Included here by permission. Left side: Created by Hua Li. Used with permission

Fig. 7.9 Example-based stained glass. Left: Setlur and Wilkinson; right: Brooks. Left image
© 2006 CGI. Included here by permission. Right image © 2006 IEEE. Included here by permission

Once the segmentation is done, the regions are smoothed using morphological
closing. Then, the regions are rendered: a user selects from among available NPR
filters (from the GIMP or Photoshop, in the reported work) and applies a different
one to each region. Finally, the different regions are fused into a single image using
Poisson blending [26]. The results are intriguing and mixing filters produces images
which would be very difficult to reproduce with a more conventional approach of
treating the image as a whole. An example result appears in Fig. 7.10.

140 D. Mould

Fig. 7.10 Mixed media
image filtering. Created by
Stephen Brooks. Used with
permission

7.3.3 Video

Stylization of video is a difficult problem, chiefly owing to the requirement of tem-
poral coherence, discussed in Chap. 13. Regions provide a possible mechanism to
promote coherence: region boundaries can be moved directly [2]; regions can act
as container shapes [31] or canvases [34, 35] so that internal primitives can follow
region movement; or 3D regions can be extracted from a video cube [8, 34].

Video segmentation can be undertaken automatically, either frame-by-frame or
within a video cube, but flawed segmentations can produce extremely distracting
defects in video. Accordingly, manual intervention to repair or initialize segmen-
tations is commonplace. Such intervention can be quite lightweight; for example,
SnakeToonz [2] used an average of 4 seconds of user time per frame, mainly con-
centrated into the minority of frames at the beginning of scene changes. Problems
and solutions in video stylization are discussed further in Chap. 13.

7.3.4 Region Boundary Manipulation

In some work, the major goal has been creating region shapes or arrangements of
regions which adhere to certain constraints. For example, stencils have the physical
constraint that the entire stencil must be a single piece: isolated, “floating” elements
are forbidden.

The work of Mould [24] was the first to treat stained glass in NPR. Its main
concern was to devise appropriate region shapes, governed to some extent by the
content of an input image, but more strongly by consideration of medieval stained
glass technology. In medieval times it was not possible to produce large flat sheets
of glass (glassblowing was the main manufacturing process) so tiles were small, and
thin features could not reliably be cut without the glass breaking. In Mould’s filter,
an initial mean-shift segmentation was followed by morphological region smooth-
ing, then subdivision of regions to remove isolated regions, split regions at thin fea-
tures (“bottlenecks”), and subdivide very large regions. Mould also chose to highly

7 Region-Based Abstraction 141

Fig. 7.11 Medieval stained glass by Mould [24]. Original image courtesy of Philip Greenspun

restrict the color palette of the tiles, matching original image colors to a seven-color
palette inspired by heraldic tinctures. Perlin noise texture and height-mapped lead-
ing, followed by rendering, completed the glass image. An example result from the
process is shown in Fig. 7.11. The procedural glass surface is quite striking, and the
tiles have been divided into manageable size; however, due to the scale of objects in
this image, the stylization has made the image contents difficult to recognize.

Bronson et al. [4] created an automated system for stencil planning. Their system
expected polygonal meshes as input, and used toon shading and silhouette finding
to craft a binary image; in general, the binary image will consist of some set of
disconnected regions, which are then transformed into a single region without holes
or islands by constructing a minimum spanning tree over a graph representing the set
of regions. Edges in the graph represent bridge strips added to the stencil, linking
formerly isolated island regions. Their algorithm was sufficiently successful that
they were able to use it to fabricate real stencils to be used in theatrical lighting.

Xu and Kaplan [41] used global optimization to assign black or white colors over
a segmentation. This work is notable for allowing communication between regions;
as we have seen, oftentimes one of the purposes behind the segmentation is to permit
the algorithm to concentrate on one region at a time, performing calculations on
different regions independently. This work is discussed in greater detail in Chap. 11.
Alternatively, black and white segmentation can be created directly using graph cuts,
as in the work of Mould and Grant [25], also discussed in Chap. 11. The graph
cuts algorithm has the drawback of providing only two regions; also, the graph cut
energy is highly influenced by the length of the cut, so that thin features (with a low

142 D. Mould

Fig. 7.12 Color sketch
rendering from Wen et al.
[36]. Created by Fang Wen;
copyright Microsoft Research
China. Included here by
permission

ratio of area to perimeter) are discouraged. Mould and Grant ameliorated the latter
problem by combining a base layer from a graph cut with a histogram-based detail
layer. In the case that black and white output is desired, the limitation that graph
cuts provides only a binary segmentation is not a drawback at all.

Milder boundary adjustment was an element of the work of Wen et al. [36],
whose semi-automatic method transforms photographic input into abstracted im-
ages emphasizing foreground figures. An initial mean-shift segmentation is manu-
ally repaired by merging regions, splitting regions, and redrawing region boundaries
as necessary. The user separates the regions into foreground and background; then,
the background regions are shrunk by moving the control points of a spline repre-
sentation of the boundary. Regions are recolored to make the background fade and
make the foreground more prominent. An example of the results of the algorithm is
shown in Fig. 7.12; notice how the regions are no longer a complete partition of the
image plane, but leave some areas uncolored.

A highly effective shape abstraction method was given by Mi et al. [23]. This
work did not deal with images per se, but could potentially be included in a region-
based abstraction system. The method applies to 2D shapes, which are divided into
parts automatically based on considerations of local symmetry. Optionally, a user
can help to guide the decomposition. The collection of parts is heuristically assem-
bled into a dependency graph, which provides an order in which parts can be re-
moved: eliminating parts in the order suggested by the dependency graph provides
different levels of abstraction of the original shape. The overall abstraction process
provides an alternative to blind region smoothing, being able to preserve impor-
tant features as well as maintaining overall shape until very late in the part removal
sequence. An example result appears in Fig. 7.13.

7 Region-Based Abstraction 143

Fig. 7.13 Region abstraction by parts. © 2009 ACM, Inc. Included here by permission

Extreme shape abstraction is one of the contributions of Song et al.’s Arty
Shapes [32]. Following a segmentation, each region is matched with a simple shape,
such as a circle or triangle. Manual labeling of segmentations of test images pro-
vided training data for a classifier, which is then able to classify regions automati-
cally in future images. The use of a classifier here is somewhat inspired, since it is
able to encode human judgement to some extent and errors on difficult classification
decisions have little effect on the final appearance of the image. Alternatively, the
matching step can be omitted, and the same basic shape used for every region: every
region could be replaced by a rectangle, for example. The dimensions of the shapes
can still vary to match the region.

Once the shape selections are made, the images can be rendered, replacing each
region with its corresponding shape, uniformly colored. Sample results are shown
in Fig. 7.14. By manipulating the region boundaries, quite extreme abstractions are
possible while still preserving some sense of the overall composition of the image.

One example of interactive stylization using regions is the sumi-e rendering of
Xie et al. [38, 39]. In this work, users draw stroke outlines, possibly freehand on
a blank canvas, but more likely tracing outlines of regions on an input photograph.
Each user-created region is filled by a single stroke, mapping scanned stroke textures
into the region and applying a final smoothing step to simulate pigment and water
dispersion. An example result is shown in Fig. 7.15. By relying heavily on user
input, the segmentation well reflects human perception of the scene, and the overall
result is extremely successful.

This work is unusual in a number of respects. Unlike most region-based tech-
niques, it allows overlapping regions; while overlapping regions are featured in work
that uses hierarchical segmentation, typically the rendered output does not display
the overlap, whereas the finished sumi-e strokes overlap considerably. Stroke-based

144 D. Mould

Fig. 7.14 Arty shapes: massive abstraction of source image in Fig. 7.11. Left: superellipses; right:
rectangles. Created by Yi-Zhe Song. Used with permission

techniques involving regions generally use the regions as a way to organize many
strokes, rather than making a one-to-one correspondence between strokes and re-
gions as is the case here. Finally, due to the intended style, regions cover only a
small portion of the canvas, rather than partitioning the whole image as is more
usual.

7.4 Future Directions

As we saw in the survey, many of the most effective techniques depended on manual
intervention to create semantically meaningful segmentations. Automatic segmen-
tation has been less effective. Thus, a goal of future work can be to improve the state
of the art of automatic segmentation.

Entirely automated, meaningful segmentation is viewed by some as a pipe dream
that will not manifest in the foreseeable future. While we have some sympathy for
this view, it does not mean that progress towards the ideal is impossible. For artis-
tic stylization, we need not automatically segment every possible input image; it
may suffice to treat only well composed, adequately lit images. Use of information
beyond simply color, such as depth or blur, will help inform segmentation of fu-
ture images. When the intent is to recognize specific details, such as faces, custom
algorithms and large databases can be brought to bear on the problem.

7 Region-Based Abstraction 145

Fig. 7.15 Sumi-e. Above: original image and hand-drawn contours; below: final result. Created by
Xie Ning. Used with permission

Even with a well-developed ability to segment, automatic techniques may not be
able to obtain desired results, simply because the desired result is not a function of
the image alone but a joint function of the image and a user’s intention. Since we
cannot read the user’s mind, we still need some user guidance to get the desired
output. Consequently, interaction schemes remain a future direction, particularly
lightweight interactions and fast exploration of different possible outcomes. This is
not a new direction; some such techniques have been explored already (and were
described in this chapter) but research on interaction techniques certainly will not
cease.

Styles depending on regions can be further explored. The various works on
image-based stained glass still leave room for further improvement. The region-
based abstraction of Song et al.’s “Arty Shapes” points the way towards region shape
stylization; more elaborate shape abstractions could be conceived, as well as shape
stylizations which occupy a middle ground between abstraction and representation,
as in many modern cartoons.

For artistic stylization, segmentation is not an end in itself, but an intermediate
representation en route to achieving the desired artistic effect. Consequently, regions
will continue to be used opportunistically whenever researchers see value in them.

146 D. Mould

Acknowledgements Thanks foremost to the various authors of the papers who provided images
or source code. We would also like to thank photographers R. Bertieg, Steve Cadman, Danny
Choo, Jim Linwood, and William Warby for the images in Fig. 7.3. Thanks to Jordan Miller for
the artwork for Fig. 7.2.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. Tech.
Rep. EPFL-REPORT-149300, École Polytechnique Fédrale de Lausanne (EPFL) (2010)

2. Agarwala, A.: SnakeToonz: a semi-automatic approach to creating cel animation from video.
In: Proceedings of the 2nd International Symposium on Non-Photorealistic Animation and
Rendering, NPAR’02, pp. 139–ff (2002). doi:10.1145/508530.508554

3. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with
temporal coherence and abstraction. In: NPAR, pp. 141–149 (2006)

4. Bronson, J., Rheingans, P., Olano, M.: Semi-automatic stencil creation through error mini-
mization. In: Proceedings of the 6th International Symposium on Non-Photorealistic Anima-
tion and Rendering, pp. 31–37 (2008). doi:10.1145/1377980.1377989

5. Brooks, S.: Image-based stained glass. IEEE Trans. Vis. Comput. Graph. 12, 1547–1558
(2006)

6. Brooks, S.: Mixed media painting and portraiture. IEEE Trans. Vis. Comput. Graph. 13(5),
1041–1054 (2007). doi:10.1109/TVCG.2007.1025

7. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 263–270 (1993). doi:10.1145/166117.166151

8. Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent artistic ani-
mations from video. IEEE Trans. Vis. Comput. Graph. 11, 540–549 (2005)

9. Comaniciu, D., Meer, P.: Mean Shift: A robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

10. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph.
21(3), 769–776 (2002). doi:10.1145/566654.566650

11. Deussen, O., Hiller, S., van Overveld, C.W.A.M., Strothotte, T.: Floating Points: A method for
computing stipple drawings. Comput. Graph. Forum 19, 41–50 (2000)

12. Dunbabin, K.: Mosaics of the Greek and Roman World. Cambridge University Press, Cam-
bridge (1999)

13. Finkelstein, A., Salesin, D.H.: Multiresolution curves. In: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, pp. 261–268 (1994)

14. Gonzalez, R., Woods, R.: Digital Image Processing. Pearson Prentice Hall, Upper Saddle
River (2008)

15. Gooch, B., Coombe, G., Shirley, P.: Artistic Vision: painterly rendering using computer vi-
sion techniques. In: Proceedings of the 2nd International Symposium on Non-Photorealistic
Animation and Rendering, pp. 83–ff (2002). doi:10.1145/508530.508545

16. Hausner, A.: Simulating decorative mosaics. In: Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pp. 573–580 (2001). doi:10.1145/
383259.383327

17. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Pro-
ceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 327–340 (2001). doi:10.1145/383259.383295

18. Kim, J., Pellacini, F.: Jigsaw image mosaics. ACM Trans. Graph. 21(3), 657–664 (2002).
doi:10.1145/566654.566633

19. Li, N., Huang, Z.: A feature-based pencil drawing method. In: Proceedings of the 1st Interna-
tional Conference on Computer Graphics and Interactive Techniques in Australasia and South
East Asia, pp. 135–ff (2003). doi:10.1145/604471.604498

http://dx.doi.org/10.1145/508530.508554
http://dx.doi.org/10.1145/1377980.1377989
http://dx.doi.org/10.1109/TVCG.2007.1025
http://dx.doi.org/10.1145/166117.166151
http://dx.doi.org/10.1145/566654.566650
http://dx.doi.org/10.1145/508530.508545
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1145/383259.383295
http://dx.doi.org/10.1145/566654.566633
http://dx.doi.org/10.1145/604471.604498

7 Region-Based Abstraction 147

20. Li, H., Mould, D.: Content-sensitive screening in black and white. In: GRAPP, pp. 166–172
(2011)

21. Ling, R.: Ancient Mosaics. British Museum Press, London (1998)
22. Mello, V.B., Jung, C.R., Walter, M.: Virtual woodcuts from images. In: Proceedings of the 5th

International Conference on Computer Graphics and Interactive Techniques in Australia and
Southeast Asia, pp. 103–109 (2007). doi:10.1145/1321261.1321280

23. Mi, X., DeCarlo, D., Stone, M.: Abstraction of 2D shapes in terms of parts. In: Proceedings of
the 7th International Symposium on Non-Photorealistic Animation and Rendering, pp. 15–24
(2009). doi:10.1145/1572614.1572617

24. Mould, D.: A stained glass image filter. In: Proceedings of the 14th Eurographics Workshop
on Rendering, pp. 20–25 (2003)

25. Mould, D., Grant, K.: Stylized black and white images from photographs. In: Proceedings of
the 6th International Symposium on Non-Photorealistic Animation and Rendering, pp. 49–58
(2008). doi:10.1145/1377980.1377991

26. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318
(2003). doi:10.1145/882262.882269

27. Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220
(2006). doi:10.1145/1141911.1142017

28. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using
iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

29. Santella, A., DeCarlo, D.: Abstracted painterly renderings using eye-tracking data. In: Pro-
ceedings of the 2nd International Symposium on Non-Photorealistic Animation and Render-
ing, pp. 75–82 (2002)

30. Setlur, V., Wilkinson, S.: Automatic stained glass rendering. In: Computer Graphics Interna-
tional, pp. 682–691 (2006)

31. Smith, K., Liu, Y., Klein, A.A.: In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 201–208 (2005). doi:10.1145/1073368.1073397

32. Song, Y.Z., Rosin, P.L., Hall, P.M., Collomosse, J.P.: Arty shapes. In: Computational Aesthet-
ics, pp. 65–72 (2008)

33. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson,
Tampa (2007)

34. Wang, J., Thiesson, B., Xu, Y., Cohen, M.F.: Image and video segmentation by anisotropic
kernel mean shift. In: ECCV, vol. 2, pp. 238–249 (2004)

35. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–
583 (2004). doi:10.1145/1015706.1015763

36. Wen, F., Luan, Q., Liang, L., Xu, Y.Q., Shum, H.Y.: Color sketch generation. In: Proceedings
of the 4th International Symposium on Non-Photorealistic Animation and Rendering, pp. 47–
54 (2006). doi:10.1145/1124728.1124737

37. Wyvill, B., van Overveld, K., Carpendale, S.: Rendering cracks in Batik. In: Proceedings of
the 3rd International Symposium on Non-Photorealistic Animation and Rendering, pp. 61–149
(2004). doi:10.1145/987657.987667

38. Xie, N., Laga, H., Saito, S., Nakajima, M.: IR2s: interactive real photo to Sumi-e. In: Proceed-
ings of the 8th International Symposium on Non-Photorealistic Animation and Rendering,
pp. 63–71 (2010). doi:10.1145/1809939.1809947

39. Xie, N., Laga, H., Saito, S., Nakajima, M.: Contour-driven Sumi-e rendering of real photos.
Comput. Graph. 35(1), 122–134 (2011)

40. Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 1–9 (2007).
29. doi:10.1145/1276377.1276414

41. Xu, J., Kaplan, C.S.: Artistic thresholding. In: Proceedings of the 6th International Sym-
posium on Non-Photorealistic Animation and Rendering, pp. 39–47 (2008). doi:10.1145/
1377980.1377990

http://dx.doi.org/10.1145/1321261.1321280
http://dx.doi.org/10.1145/1572614.1572617
http://dx.doi.org/10.1145/1377980.1377991
http://dx.doi.org/10.1145/882262.882269
http://dx.doi.org/10.1145/1141911.1142017
http://dx.doi.org/10.1145/1073368.1073397
http://dx.doi.org/10.1145/1015706.1015763
http://dx.doi.org/10.1145/1124728.1124737
http://dx.doi.org/10.1145/987657.987667
http://dx.doi.org/10.1145/1809939.1809947
http://dx.doi.org/10.1145/1276377.1276414
http://dx.doi.org/10.1145/1377980.1377990
http://dx.doi.org/10.1145/1377980.1377990

Chapter 8
Gradient Art: Creation and Vectorization

Pascal Barla and Adrien Bousseau

8.1 Introduction

Among existing methods employed to create stylized images, drawing is the oldest
one. The notion of style is complex, though, and goes from the tools and medium
used to produce an image, to rules of image composition. The focus of this chapter is
on color gradients, which form a basic, yet essential part of style in digital drawing.

Examples of color gradients abound in paintings, as well as in illustrations and
graphic novels. Although such pictures may make use of very different media such
as watercolor, oil paint, acrylic or pencil, they all tend to reproduce gradients in simi-
lar respects. Firstly, they are not constrained by physical accuracy: a few smooth gra-
dients are enough to produce a convincing appearance or to elicit a feeling through
an abstract composition. Second, they exhibit sharp color discontinuities that may
be used to convey occluding edges or to create shading or stylization effects. Com-
positions made of color gradients may be obtained in different ways: by carefully
reproducing the gradients found in a photograph, by freely taking inspiration and
then departing from them, or by being directly drawn from scratch. In this chapter,
we consider the whole spectrum of techniques to create color gradients in digital
images.

Before starting our investigation of computer-aided methods for the drawing of
color gradients, let us take a brief look at hand-made paintings and drawings and
how they use these gradients. In pure color compositions such as abstract art (see
Fig. 8.1a), gradients may convey an abstract sense of motion or lighting. The level
of abstraction varies among artists, and for that reason there is no a priori family

P. Barla (�)
Inria Bordeaux, 200 avenue de la Vieille Tour, 33405 Talence Cedex, France
e-mail: pascal.barla@inria.fr

A. Bousseau
Inria Sophia Antipolis, 2004 route des Lucioles, 06902 Sophia Antipolis Cedex, France
e-mail: adrien.bousseau@inria.fr

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_8,
© Springer-Verlag London 2013

149

mailto:pascal.barla@inria.fr
mailto:adrien.bousseau@inria.fr
http://dx.doi.org/10.1007/978-1-4471-4519-6_8

150 P. Barla and A. Bousseau

Fig. 8.1 Smooth color gradients are ubiquitous in art and illustration. (a) Fernand Leger. (b) Cour-
tesy of Nash Motors

of gradients that could be made to answer every imaginable artistic needs. Other
compositions make use of smooth shading-like gradients to convey characters and
objects in a rather iconic style, like in the art of Tamara de Lempicka. Although her
style is a lot more figurative, it is still quite far from an accurate reproduction of a
real-world image: in particular, shapes and lighting are often drastically simplified.
In industrial design, communication imperatives make the use of color gradients
more tightly coupled with faithful shape reproduction (see Fig. 8.1b). However, in-
dustrial designers often depart from realistic shading to convey shape and materials
unambiguously. Even hyper-realistic images make use of color gradients in their
own specific way. Although such images look surprisingly similar to photographs,
they actually go further than photo-realism by showing details that could not be seen
with the naked eye, thus exaggerating the impression of realism.

When it comes to digital drawing in general, and color gradients in particular, one
is faced with a choice between two alternatives: either use raster or vector graphics.

Raster graphics solutions such as Adobe Photoshop, Corel Painter or Gimp offer
by design a more direct analogy with traditional, hand-made paintings and drawings:
each drawn brush stroke is recorded in a pixel grid that represents the canvas, and
blended in a variety of ways depending on the choice of tool and medium. Tools may
tightly simulate their real-world counterparts (e.g., [2]), or they might provide novel
types of interaction (e.g., [18]). In both cases, though, users create color gradients
by layering multiple strokes. The first issue raised by this layering approach is that
the resulting gradient is not easily editable, and artists usually have to re-paint over
them when a change is required. A second limitation of raster images is their lack
of scalability: the resolution of the pixel grid limits the amount of details that can be
drawn.

Vector graphics, on the other hand, offers a more compact representation, res-
olution independence (allowing scaling of images while retaining sharp edges),
and geometric editability. Vector-based images are more easily animated (through
keyframe animation of their underlying geometric primitives), and more readily
stylized (e.g. through controlled perturbation of geometry). For all of these reasons,

8 Gradient Art: Creation and Vectorization 151

vector-based drawing tools, such as Adobe Illustrator, Corel Draw, and Inkscape,
continue to enjoy great popularity, as do standardized vector representations, such
as Flash and SVG.

However, for all of their benefits, basic vector-drawing tools offer limited support
for representing complex color gradients, which are integral to many artistic styles.
In order to better understand these limitations, let us consider the following two
important requirements for any vector-based solution:

1. Accurate manual control should be provided at sharp discontinuities, while a
somewhat more automated control (albeit accurate) is preferable in smooth re-
gions. These different levels of control are necessary because small changes of
sharp color variations are more noticeable, while smooth color variations are
more difficult to draw.

2. Completing a drawing should require as few vector primitives as possible to get
to the intended result. Such sparse representations are necessary to endow artists
with more direct control of entire parts of the image at once, and limit the amount
of user interaction for simple edits.

Basic color gradient tools have huge restrictions regarding both requirements.
In a nutshell, they require many primitives to create even simple images, work
solely with closed contours, and provide only for very simple interior behaviors.
Section 8.2 explains these limitations in detail, and presents the alternative primi-
tives that form the core of this chapter.

Despite considerable improvements in vector-based color gradient primitives, we
must say that as of today, there is no single solution that fulfils the above-mentioned
requirements unequivocally. This is mainly due to the extent to which each method
makes use of a reference raster image. For methods that strive to faithfully con-
vert a photograph to a vector representation—a process known as vectorization—
primitives need to stick as much as possible to underlying color variations (req. 1),
hence making it hard to provide holistic editing functionalities (req. 2). On the
opposite end of the spectrum, methods that let artists create color gradients from
scratch—i.e., vector drawing—must at the same time provide control in precise lo-
cations (req. 1), and incorporate priors to fill-in smooth regions with few primitives
(req. 2). These examples are extreme cases, and a host of intermediate solutions has
been proposed in the literature. This is elaborated in greater depth in Sect. 8.3.

An ideal solution would reside in a single tool for both vector drawing and image
vectorization: one could start from an image and more or less deviate from it ac-
cording to the intended message conveyed by the picture, in a style either personal
or optimized for legibility for instance. Even if such a method becomes available
one day, there will still be a last important point to consider: with more advanced
conversion and editing capabilities come more complex rendering requirements. To
reach a wide audience, the rendering of vector-based color gradients should be ef-
ficient (ideally real-time) and robust (artifact-free). We present in Sect. 8.4 existing
rendering solutions and compare their merits.

The gradient primitives, construction techniques, and rendering algorithms pre-
sented in the following sections have been used for applications outside of color

152 P. Barla and A. Bousseau

Fig. 8.2 Examples of elemental gradients and their parameterization and color control points

gradients. One important instance is the (re-)construction of normal and/or depth
images (e.g. [14]), which provide for 3D-like shading capabilities. We refer the in-
terested reader to Sects. 14.3.2, 14.3.3 of this book, where it is shown how diffusion-
based methods in particular have proven useful for a variety of applications. We have
intentionally focused on still 2D graphics; throughout the chapter, we will also men-
tion vector-based 3D methods, but only in contexts where they are of interest to 2D
color gradients.

8.2 Gradient Primitives

We start by describing existing gradient primitives, focusing on how they are created
and manipulated. We distinguish between three families of primitives: elemental
primitives that fill the whole space given a small set of parameters, primitives that
rely on meshes to provide more accurate and dense control, and primitives that rely
on extremal curves and a propagation process to fill-in space between them.

8.2.1 Elemental Gradients

Elemental gradients are composed of two ingredients: a parametrization of the plane
R

2 → [0,1], and a one-dimensional color gradient [0,1] → [0,1]4 that assigns
a color and opacity to each parametric value. The types of gradient differ in the
way they define the parametrization from two control points. The most common
parametrizations are linear, radial and polar, as shown in Fig. 8.2: a linear gradient
produces constant colors along directions perpendicular to the line defined by the
two control points; a radial gradient produces circles of constant colors centered on
the first control point; a polar gradient produces rays of constant colors originating
from the first anchor point. In the last case, the 1D gradient should be periodic to
avoid color discontinuities. The distance function may be adapted to produce con-
tours of constant colors with different shapes, such as rectangles or stars.

Each gradient is controlled by a pair of 2D control points (at least) for the
parametrization, and a series of colors and opacity control values arranged on the

8 Gradient Art: Creation and Vectorization 153

Fig. 8.3 Complex images require the combination of a multitude of elemental gradients.
loswl@vecteezy.com. Used under CC Licence

[0,1] interval. A piecewise-linear interpolation is commonly used to define this 1D
color function, although other interpolants such as splines can produce smoother
variations. The final 2D color gradient is either assigned to the background, or to
the interior of a closed 2D shape.

While the extent of an elemental gradient can be infinite, these primitives are
often used to fill-in closed shapes. Figure 8.3(a) shows a complex image created en-
tirely with linear and radial gradients. Figure 8.3(b) highlights how a linear gradient
fills a region to produce a convincing reflection. Although this example is com-
pelling, it requires advanced skills and a lot of time to complete a drawing. This is
why elemental gradients are most of the time confined to simple compositions.

8.2.2 Gradient Meshes

The main idea of a gradient mesh is to decompose the image plane into a connected
set of simple 2D patches Pi : R2 → [0,1]2, and assign each patch a color based
on a two-dimensional color gradient [0,1]2 → [0,1]4. It improves on the elemental
gradients in two ways: the mesh structure permits gradient structures to be produced
that are a lot more complex; and the use of a 2D elemental gradient for each patch
permits a greater variety of smooth color variations to be created.

The original gradient mesh tool is based on quad patches with curved boundaries,
as illustrated in Fig. 8.4. RGB colors and tangents are assigned to each vertex of the
mesh. Colors are interpolated inside the patch guided by tangents, which allows
artists to finely tune color variations inside a patch.

This tool provides a far more advanced control over the structure of the gradi-
ents: any kind of curve can be used. However, the grid-like structure constrains the
topology of control curves as a whole: users must align the main direction of the
quad mesh with the structure of the drawing they want to create in advance, and
holes are not easily treated. In practice, two types of grid are commonly employed:
Cartesian and angular grids. Their use depends on the structure of the gradient to be
drawn, which must often be decided in advance as well.

Alternative representations for gradient meshes have been proposed, such as the
triangular patches of Xia et al. [25]. Although in most cases colors are stored at

154 P. Barla and A. Bousseau

Fig. 8.4 Example of a simple
gradient mesh

Fig. 8.5 Gradient meshes are
well suited to represent the
smooth shading and
subsurface scattering of
organic materials.
rcraighead@vecteezy.com.
Used under CC Licence

vertices and interpolated over patches [21, 22], some methods store color control
points inside the patches [25]. Such representations are more adapted to image vec-
torization, as will be discussed in Sect. 8.3.

Figure 8.5 shows a Cartesian gradient mesh used to depict an apple. Note how the
structure has to be bent around the highlight, and the density of lines increased near
silhouettes. Gradient meshes are quite similar in spirit to 3D meshes, with which
artists have learnt to represent a shape with the smallest number of patches; except
that gradient meshes represent 2D color gradients instead of 3D surfaces.

The use of gradient meshes thus not only provides a gain in accuracy, but also
increases the number of control points that must be manipulated by the artist to reach
a desired goal, and requires some experience to make the right choice of structure
in advance.

8.2.3 Gradient Extrema

The idea of using extrema (i.e. discontinuities) of color gradients to represent im-
ages originally comes from the Vision literature. Among the many papers that have
stressed their importance, Elder’s article [7] has insisted on the ability of edges to
encode most of the visual information in an image.

Following this work, Diffusion Curves [19] have been introduced as a vector-
drawing primitive entirely based on extremal curves of color gradients. A primitive
path consists of a Bézier curve Ci : [0,1] → R

2 to which is assigned color control

8 Gradient Art: Creation and Vectorization 155

Fig. 8.6 A Diffusion curve is composed of (a) a geometric curve described by a Bézier spline,
(b) arbitrary colors on either side, linearly interpolated along the curve, (c) a blur amount linearly
interpolated along the curve. The final image (d) is obtained by diffusion and reblurring. Note the
complex color distribution and blur variation defined with a handful of controls

points on either side of the curve. Colors are first interpolated along the curve to
yield two 1D color gradients [0,1] → [0,1]3, one for each side of the curve; sec-
ond, colors are extrapolated to the whole image plane through a propagation pro-
cess, which mimics heat diffusion in the original approach. The primitive may be
augmented with blur control points, located anywhere on the curve. They are also
interpolated along the curve to yield a single blur gradient [0,1] → [0,1], which is
then used to control the sharpness of the color transition from one side to the other.
This is illustrated in Fig. 8.6.

The main advantage of this primitive compared to others is that it leaves artists
free to position extremal curves anywhere they want and to vary their number de-
pending on the amount of detail they wish to depict. Gradient extrema do not have
to be closed and nearby curves interact together more than curves that are far apart.
They may also intersect, although care should be taken with color assignment in this
case: the presence of multiple colors at the location of the intersection will produce
visual artifacts. Proper user interfaces remain to be proposed to facilitate color as-
signment in such configurations. The ability to blur color transitions across curves
allows artists to create interesting effects without having to duplicate primitives or
to adjust their color control points, as is the case with gradient meshes.

The main limitation of diffusion curves is the lack of control over the propa-
gation of colors. This is the reason why several extensions have been proposed to
improve artistic control using directional diffusion and blockers [3, 4], or to pro-
duce a smoother color propagation [10]. Jeschke et al. [13] also use diffusion curves
to control the parameters of procedural textures, while Hnaidi et al. [11] create
height fields by diffusing height from curves that represent ridges and cliffs. Fi-
nally, Takayama et al. [24] extend diffusion curves to diffusion surfaces to create
volumetric models with 3D color gradients.

Figure 8.7 shows a drawing made using diffusion curves. The complex fold pat-
terns would have been difficult to obtain with a more structured primitive such as
a gradient mesh. It is also natural to add more curves to increase details with this
approach. On the downside, the method is less localized than gradient meshes: for
instance, to obtain the black background colors, it is necessary to assign black col-
ors outside of all contour curves. This is partly solved by the use of Diffusion Barri-
ers [3], but an efficient treatment of occluding contours and layers remains an open
research challenge.

156 P. Barla and A. Bousseau

Fig. 8.7 Diffusion Curves can represent freeform color gradients such as the folds in this stylized
cloth

8.3 Construction Techniques

There is an obvious visual gap between the primitives illustrated in Figs. 8.2, 8.4
and 8.6 and the complex drawings obtained with them, shown in Figs. 8.3, 8.5 and
8.7. With enough skill and patience, these latter images may be drawn manually
from scratch. However, an often faster solution is to take an input photograph as a
reference, either by using the image to guide the drawing process, or by relying on
a conversion algorithm that involves no intervention on the part of the artist.

8.3.1 Manual Creation

Elemental gradients are often assigned to their own layer or 2D shape and blended
with layers below. With this approach, a lot of blended primitives are required to ob-
tain color gradients that are not directly expressible from available elemental prim-
itives, as shown in Fig. 8.8.

When working with gradient meshes, artists first need to indicate the number of
meshes necessary to represent each part of the drawing. Then, as with 3D modeling
tools, artists often start with a low resolution and add in details progressively. With a
regular quad-based mesh, users can add vertical or horizontal curves, move control
points and assign them new colors. Finer meshes are often needed to draw objects
with complex topology.

When a reference image is available, the mesh can be aligned with the image
features by hand, and vertex colors can be automatically sampled from underlying
pixels. A faster solution is to use optimization techniques [21, 22] that optimize the
color and position of vertices to best match the input image, as illustrated in Fig. 8.9.
Even if these methods are not entirely automatic, they save a lot of time for artists.

8 Gradient Art: Creation and Vectorization 157

Fig. 8.8 Multiple elemental (here radial) gradients (a) need to be combined to create more com-
plex color variations (b). Courtesy of Inkscape

Fig. 8.9 Starting from a user-defined mesh (b), Sun et al. [22] optimize the position and color of
the vertices (c) to best match an input bitmap (a, d). © Copyright 2007 ACM

Alternative structures that work with triangular meshes for instance are a lot
harder to draw entirely from scratch: the overall structure has to be changed when
one wants to add details or move some parts of the structure. This is why such
methods have been rather confined to automatic conversion.

When working with gradient extrema such as diffusion curves, a simple strategy
consists of first drawing the curves as a line drawing, and then adding or editing
colors and blur transitions along each curve. This approach is somewhat similar
to the traditional “sketching + coloring” process in traditional drawing. Because
of their flexibility, extremal primitives are also well adapted to multi-touch user
interfaces [23]. To facilitate color editing, Jeschke et al. [13] propose storing for
each pixel a list of the most influential curves and color control points. Users can
then specify the color at a pixel to modify the color of the curves accordingly.

158 P. Barla and A. Bousseau

Fig. 8.10 The Ardeco system [17] converts an input bitmap into a collection of linear or radial
gradients. The algorithms segments the image into regions well approximated by the elemental
gradients. © Copyright 2006 Eurographics

When a reference image is available, active contours [15] can be used to snap
extremal curves to image locations where the color gradient is strong [19]. To as-
sign color values, two methods have been proposed. A direct solution consists of
sampling a dense set of color control points along each side of a curve directly
from the image, and then simplifying the set of samples by keeping only the most
relevant ones using the Douglas–Pucker algorithm [19]. However, this method still
requires many color control points to reach satisfying results. A better solution, pro-
posed by Jeschke et al. [13], consists of finding optimal color control points using a
least-squares approach.

8.3.2 Automatic Conversion

The earliest of automatic conversion methods were designed for image compres-
sion purposes, and relied on simple triangulations [6]. One of the first techniques
that presented vectorization for stylization purposes is the Ardeco system [17] that
converts bitmap images into linear or radial gradients. The core of this method is a
region segmentation algorithm based on an energy minimization that combines two
terms: one term aims at creating compact regions while the other term measures the
goodness of fit of elemental color gradients.

As a result, the output of the system is a fully editable collection of 2D shapes
with their assigned gradients, as illustrated in Fig. 8.10. The method is particularly
efficient at converting images of artwork composed of very smooth gradients and
very sharp transitions, hence the name of the system which is reminiscent of the
artistic movement of the 1920s.

Although the restriction to elemental color gradients makes further editing
straightforward, it also severely restricts the kind of images that can be depicted.
Consequently, methods based on gradient meshes specifically tailored to image vec-

8 Gradient Art: Creation and Vectorization 159

Fig. 8.11 The method of Lai et al. [16] uses image segmentation to identify the main regions in
the image. A gradient mesh is then optimized over each region. © Copyright 2009 ACM

torization [16, 25] have flourished and greatly improved the accuracy of the conver-
sion process. Image segmentation and edge detection algorithms are typically used
to identify the important features of the image and guide the mesh creation process,
as illustrated in Fig. 8.11.

Such methods produce images that can look remarkably similar to photographs,
but are often difficult to edit and stylize due to the complexity of the resulting
meshes. On the other hand, mesh-based representations are well suited to image
deformations [1].

Edge detection algorithms can also be used to automate the conversion of bitmap
images into gradient extrema. Elder and colleagues [7, 8] first proposed converting
a bitmap image into a representation based on edges. However, their representa-
tion remains in a raster form suitable for image compression and editing. Orzan et
al. [19] build upon this approach to vectorize diffusion curves with color and blur
control points for stylization purposes. Their method works in two stages: (1) the
bitmap image is analyzed at multiple scales to detect not only the most salient color
edges, but also their blur which is important to represent out-of-focus objects or soft
shadow boundaries; (2) the extracted data are converted to a vector form, in a way
similar to methods for color assignment presented in the previous section.

An example is shown in Fig. 8.12. Similar to the Ardeco system, results are eas-
ily edited using gradient extrema tools. In addition, gradient extrema are able to
reproduce a greater variety of images (even photorealistic ones) with a small num-
ber of primitives, which makes their manipulation and editing more flexible than

160 P. Barla and A. Bousseau

Fig. 8.12 Automatic conversion of a bitmap image into diffusion curves. The algorithm fits Bezier
splines on the image edges (b). Colors are sampled along each spline and approximated as polylines
in color space. The resulting diffusion curve image closely matches the input bitmap, although
details can be lost in textured regions. © Copyright 2008 ACM

with mesh-based representations. However, representations based on gradient ex-
trema reach their limits with textured images. By definition, textures contain a lot
of edges, which prevent simple and direct editing. Very little work has been done
on the vectorization of textured images with gradient extrema methods. A notable
exception is the work of Jeschke et al. [13] that represent textures with procedural
noise controlled by diffusion curves. Nevertheless, a challenging direction for future
research is to generate the minimal set of extremal curves that vectorizes an image
under a given quality threshold. This vectorization problem is related to image com-
pression, although the measure of quality may also be designed to encourage the
editability of the set of curves.

8.4 Rendering Algorithms

Independently of the choice of primitive, the creation of an image requires a method
to rasterize them into a grid of pixels. We make the distinction between meth-
ods that allow the computation of a pixel color from an analytical expression
(closed-form methods) and methods that require solving a system of linear equa-
tions (optimization-based methods). Closed-form approaches allow the computa-
tion of pixels independently while optimization-based methods require computing
the entire image at once.

8.4.1 Closed-Form Methods

Elemental gradients and gradient meshes are evaluated with closed-form methods,
which makes them straightforward to render. For elemental gradients, rendering
consists of a simple evaluation of Cartesian or polar coordinates, followed by a
(usually linear) interpolation in the space of the 1D color gradient.

8 Gradient Art: Creation and Vectorization 161

Fig. 8.13 A Coons patch is define by 4 vertices P00, P01, P11, P10, and is bounded by 4 curves
C1(u), C2(v), C3(u), C4(v). The formula is used to interpolate the position and color of I (u, v)

For gradient meshes, the first step consists of identifying to which patch Pi a pixel
belongs to; then its parametric coordinates must be computed, and colors evaluated
via a 2D interpolation.

The last step depends on the type of patch. In the common case of a regular quad
mesh, the color at the (u, v) coordinates of a patch is given by surface interpolation.
Figure 8.13 provides the equations for the Coons patch to interpolate the position
and color at a given coordinate (u, v) [9]. Sun et al. use the Ferguson patch for this
purpose [22].

Due to the simplicity of the rendering process, these methods have found a
widespread use in graphics applications. They have a limitation specific to render-
ing though: they do not deal with blurring in closed form. To compensate for this,
some applications such as Inkscape rather apply a Gaussian blur in post-processing
to produce more complex images.

8.4.2 Optimization-Based Methods

Methods based on gradient extrema define the color image as the solution to a
partial-differential equation. The original formulation [19] uses the Laplace equa-
tion to enforce color variations in-between curves to be as smooth as possible. Finch
et al. [10] propose instead to use the Bi-Laplace equation that provides higher-order
smoothness.

The Laplace equation enforces an image to be as constant as possible by mini-
mizing the Laplace operator, which is the sum of the second partial derivatives of
the image I :

I (x, y) = ∂2I

∂x2
+ ∂2I

∂y2
= 0 (8.1)

A Diffusion Curve image is obtained by solving the Laplace equation subject to the
color specified along the curves. To do so, Orzan et al. discretize the equation over
the image grid using finite differences:

162 P. Barla and A. Bousseau

Fig. 8.14 The multigrid algorithm. Color constraints are repeatedly down-sampled (top row).
A coarse solution is quickly computed at the lowest level, by iteratively diffusing the color con-
straints. The solution is then upsampled and refined using the finer-scale color constraints (bottom
row)

I (x, y) = 4I (x, y) − (
I (x − 1, y) + I (x + 1, y) + I (x, y − 1) + I (x, y + 1)

)
= 0

I (x, y) = C(x, y) if pixel (x, y) stores a color value

The resulting sparse linear system of equations can be solved with a direct solver,
or using iterative solvers such as Jacobi relaxation that repeatedly update the value
at a pixel from the values of neighboring pixels at the previous iteration:

I k+1(x, y) = (
I k(x − 1, y) + I k(x + 1, y) + I k(x, y − 1) + I k(x, y + 1)

)
/4

I k+1(x, y) = C(x, y) if pixel (x, y) stores a color value

To obtain real-time performances, Orzan et al. [19] adopt a multi-scale approach in-
spired by the multigrid algorithm [5] that applies Jacobi iterations in a coarse-to-fine
scheme. Figure 8.14 illustrates this algorithm. The color constraints are first down-
sampled to form a pyramid. A few iterations on the coarsest level of the pyramid
is sufficient to solve for the low frequencies of the image. This coarse solution is
then repeatedly upsampled and refined to efficiently solve for the finer details in the
image. Despite GPU implementations of the multigrid, the time to convergence may
still be slow to generate images at high resolution. Jeschke et al. [12] present a faster
solution that initializes the color at each pixel with the color of the closest curve, and
uses finite differences with variable step size to accelerate the convergence rate of
Jacobi iterations.

While the Laplace equation produces a smooth image away from color con-
straints, it does not enforce smooth derivatives. The resulting image is a membrane
interpolant that forms creases, or “tents”, along the diffusion curves. Finch et al. [10]
provide smooth derivatives using the Bi-Laplace equation:

2I (x, y) =
(∂2I

∂x2

)2 + 2
(∂2I

∂xy

)2 +
(∂2I

∂y2

)2 = 0 (8.2)

8 Gradient Art: Creation and Vectorization 163

Fig. 8.15 Comparison
between the solution of the
Laplace and Bi-Laplace
equations. The Laplace
equation produces a
membrane interpolant with
tent-like artifacts along the
curves. The Bi-Laplace
produces a thin-plate spline
interpolant with higher
smoothness

for which the solution is called the “Thin Plate Spline” function, a physical analogy
involving the bending of a thin sheet of metal (see Fig. 8.15). Using finite differences
over the pixel grid, the discrete equation is expressed as

2I (x, y) = 20I (x, y) − 8
(
I (x − 1, y) + I (x + 1, y) + I (x, y − 1) + I (x, y + 1)

)
+ 2

(
I (x − 1, y + 1) + I (x + 1, y + 1) + I (x − 1, y − 1)

+ I (x + 1, y − 1)
)

+ I (x − 2, y) + I (x + 2, y) + I (x, y − 2) + I (x, y + 2) = 0

I (x, y) = C(x, y) if pixel (x, y) stores a color value

As in Orzan et al. [19], Finch et al. use a multigrid solver to obtain the final color
image. However, care must be taken when solving the linear system of equations
because the Bi-Laplace problem has a larger condition number than the Laplace
problem. A robust computation requires double-precision arithmetic, or damped it-
erative relaxations where the color of a pixel is only partly updated with the values
of its neighbors at each iteration. Figure 8.15 provides a visual comparison between
the solutions of the Laplace and Bi-Laplace equations.

These optimization techniques have a number of limitations in practice. When
working with multigrid solvers, temporal flickering artifacts can occur when curves
are edited because of the rasterization of the curves over a discrete multi-scale pixel
grid. Although flickering is greatly reduced by the technique of Jeschke et al. [12],
it only works for the original version of diffusion curves: extensions that have been
further proposed are not trivial to render with an optimized solver. Moreover, al-
though the thin-plate spline solution is smoother than the membrane solution, it may
produce unexpected colors as the thin-plate splines can extrapolate colors while the
membrane can only interpolate.

In all cases, important issues remain: the setting of color constraints on each side
of a curve is prone to numerical inaccuracies when discretized on a pixel grid, and
the blurring across a curve is usually performed by an additional diffusion of the
blur values that control the size of a Gaussian blur applied in post-processing.

164 P. Barla and A. Bousseau

8.4.3 Hybrid Methods

Most of the limitations of optimization-based solvers presented so far are due to one
implicit assumption: that gradient extrema should be rasterized directly in a pixel
grid. The methods we present in this section rather use an intermediate represen-
tation, which is then rasterized in a second step. Such hybrid methods are suitable
for the fast rendering of static vector images, but any modification of the extremal
curves requires re-building the intermediate representation.

Pang et al. [20] convert Diffusion Curves into a triangle-mesh representation
where colors are linearly interpolated over each triangle. They first apply a con-
strained triangulation to build a mesh from the curves. The positive Mean-Value
Coordinate (pMVC) interpolant is then used as a (closed-form) approximation to
color diffusion in order to compute the color at each vertex of the mesh. In a nut-
shell, positive Mean-Value Coordinates express the interpolated color at a point as
a weighted sum of the colors of the curves visible from this point. The main dif-
ficulty with this approach is to evaluate visibility efficiently. Pang et al. propose a
sorting algorithm that identifies the curve segments visible from each vertex. Sim-
ilarly, Takayama et al. [24] use the hardware depth buffer to compute visibility of
diffusion surfaces over the vertices of a mesh, while Bowers et al. [4] perform ray
tracing in a pixel shader to render diffusion curves.

These methods have investigated a promising direction of research for render-
ing gradient extrema, with the potential practical effect of making these primitives
available to a wider audience. However, they are still limited in a number of respects:
none of them provides solutions to the Bi-Laplacian, and the approximations nec-
essary for real-time rendering can degrade visual quality. Like previous rendering
algorithms, blur is not dealt with directly, and should be added in post-processing.

Therefore, finding a propagation algorithm that combines the advantages of
closed-form solutions with the flexibility of gradient extrema primitives remains
a challenging research direction.

8.5 Discussion

We have presented vector primitives dedicated to the creation of color gradients,
along with methods to construct them and algorithms to render images out of them.
As of now, elemental gradients are ubiquitous in vector applications, and since gra-
dient meshes have appeared in Adobe Illustrator, they have acquired support from a
large base of users. However, only basic construction methods are available in vec-
tor graphics packages, and non-regular meshes are still confined to the vectorization
of photographs. Diffusion Curves have appeared in various forms (stand-alone ap-
plications, webGL), but the issues raised by rendering algorithms make it hard to
run them on all platforms, since they often require advanced GPUs.

Gradient extrema are thus mainly limited regarding rendering, although in some
instances it is easier to use gradient meshes because the control over interiors is

8 Gradient Art: Creation and Vectorization 165

more direct. On the other hand, gradient meshes are straightforward to render, but
often tend to produce too dense representations. This trade-off is reflected by the
open scientific challenges we gave hints at throughout the chapter.

There might be a greater challenge though. To understand it, imagine placing the
methods we have presented on an axis ranging from those more prone to creation, to
those more adapted to conversion. Methods based on gradient extrema will cluster
on the creation side, while those based on gradient meshes will rather be packed
on the conversion side. In other words, there is a “virgin land” that has not yet
been reached, and it might necessitate the invention of yet another kind of primitive,
which better accounts for the structure found in images while still being sparse
enough to promote direct, intuitive control.

Throughout this chapter we have only considered static images, but another ap-
peal of vector graphics is animation. For instance, rotoscoping methods might make
use of patches and curves to track image features from frame to frame and vector-
ize them. Then least-square optimizations could be employed to assign them colors
smoothly in both space and time. Finally, these color gradients could serve as base
layers to guide further stylization processes, hence finding their place in stylized
rendering pipelines.

References

1. Barrett, W.A., Cheney, A.S.: Object-based image editing. ACM Trans. Graph. 21(3), 777–784
(2002). doi:10.1145/566654.566651

2. Baxter, W.V., Scheib, V., Lin, M.C.: dAb: interactive haptic painting with 3D virtual brushes.
In: SIGGRAPH, pp. 461–468 (2001)

3. Bezerra, H., Eisemann, E., DeCarlo, D., Thollot, J.: Diffusion constraints for vector graph-
ics. In: Proceedings of the International Symposium on Non-Photorealistic Animation and
Rendering (NPAR), pp. 35–42 (2010). doi:10.1145/1809939.1809944

4. Bowers, J.C., Leahey, J., Wang, R.: A ray tracing approach to diffusion curves. Comput.
Graph. Forum 30(4), 1345–1352 (2011). doi:10.1111/j.1467-8659.2011.01994.x

5. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia
(2000)

6. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangula-
tions. Signal Process. 86(7), 1604–1616 (2006). doi:10.1016/j.sigpro.2005.09.003

7. Elder, J.H.: Are edges incomplete? Int. J. Comput. Vis. 34(2–3), 97–122 (1999). doi:10.1023/
A:1008183703117

8. Elder, J.H., Goldberg, R.M.: Image editing in the contour domain. IEEE Trans. Pattern Anal.
Mach. Intell. 23(3), 291–296 (2001). doi:10.1109/34.910881

9. Farin, G., Hansford, D.: Discrete Coons patches. Comput. Aided Geom. Des. 16, 691–700
(1999)

10. Finch, M., Snyder, J., Hoppe, H.: Freeform vector graphics with controlled thin-plate splines.
ACM Trans. Graph. 30(6), 166 (2011). doi:10.1145/2070781.2024200

11. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation
using diffusion equation. Comput. Graph. Forum 29(7), 2179–2186 (2010)

12. Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson
image editing. ACM Trans. Graph. 28, 116 (2009). doi:10.1145/1618452.1618462

13. Jeschke, S., Cline, D., Wonka, P.: Estimating color and texture parameters for vector graphics.
Comput. Graph. Forum 30(2), 523–532 (2011)

http://dx.doi.org/10.1145/566654.566651
http://dx.doi.org/10.1145/1809939.1809944
http://dx.doi.org/10.1111/j.1467-8659.2011.01994.x
http://dx.doi.org/10.1016/j.sigpro.2005.09.003
http://dx.doi.org/10.1023/A:1008183703117
http://dx.doi.org/10.1023/A:1008183703117
http://dx.doi.org/10.1109/34.910881
http://dx.doi.org/10.1145/2070781.2024200
http://dx.doi.org/10.1145/1618452.1618462

166 P. Barla and A. Bousseau

14. Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of the International
Symposium on Non-photorealistic Animation and Rendering (NPAR) (2002). doi:10.1145/
508530.508538

15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis.
1(4), 321–331 (1988)

16. Lai, Y.K., Hu, S.M., Martin, R.R.: Automatic and topology-preserving gradient mesh
generation for image vectorization. ACM Trans. Graph. 28(3), 85 (2009). doi:10.1145/
1531326.1531391

17. Lecot, G., Lévy, B.: ARDECO: Automatic Region DEtection and Conversion. In: 17th Euro-
graphics Symposium on Rendering—EGSR’06, pp. 349–360 (2006)

18. McCann, J., Pollard, N.S.: Real-time gradient-domain painting. ACM Trans. Graph. 27(3), 93
(2008)

19. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion
curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27, 92 (2008).
doi:10.1145/1360612.1360691

20. Pang, W.M., Qin, J., Cohen, M., Heng, P.A., Choi, K.S.: Fast rendering of diffusion curves
with triangles. IEEE Comput. Graph. Appl. 32(4), 68–78 (2011). doi:10.1109/MCG.2011.86

21. Price, B.L., Barrett, W.A.: Object-based vectorization for interactive image editing. Vis. Com-
put. 22(9–11), 661–670 (2006). doi:10.1007/s00371-006-0051-1

22. Sun, J., Liang, L., Wen, F., Shum, H.Y.: Image vectorization using optimized gradient meshes.
ACM Trans. Graph. 26(3), 11 (2007). doi:10.1145/1276377.1276391

23. Sun, Q., Fu, C.W., He, Y.: An interactive multi-touch sketching interface for diffusion curves.
In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems
(CHI), pp. 1611–1614 (2011). doi:10.1145/1978942.1979176

24. Takayama, K., Sorkine, O., Nealen, A., Igarashi, T.: Volumetric modeling with diffusion sur-
faces. ACM Trans. Graph. 29, 180 (2010). doi:10.1145/1882261.1866202

25. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvilinear feature
alignment. ACM Trans. Graph. 28(5), 115 (2009). doi:10.1145/1618452.1618461

http://dx.doi.org/10.1145/508530.508538
http://dx.doi.org/10.1145/508530.508538
http://dx.doi.org/10.1145/1531326.1531391
http://dx.doi.org/10.1145/1531326.1531391
http://dx.doi.org/10.1145/1360612.1360691
http://dx.doi.org/10.1109/MCG.2011.86
http://dx.doi.org/10.1007/s00371-006-0051-1
http://dx.doi.org/10.1145/1276377.1276391
http://dx.doi.org/10.1145/1978942.1979176
http://dx.doi.org/10.1145/1882261.1866202
http://dx.doi.org/10.1145/1618452.1618461

Chapter 9
Depiction Using Geometric Constraints

Craig S. Kaplan

9.1 Introduction

An artist creates a drawing by distributing a sequence of marks on an initially empty
canvas. Simple marks such as stipple dots and hatching lines can be used to indicate
tone, texture, and shape, sometimes all at once. Usually those marks are chosen to
be unremarkable as individuals. Only in aggregate do they fulfill their collective
destiny and communicate an image.

Novel artistic styles can emerge when the marks that make up a drawing are pro-
moted to a higher level of significance. A well known example in computer graph-
ics is the image mosaic, in which a single large image is approximated via a grid of
smaller images chosen from a collection. The dual role played by each of the smaller
images creates a dynamic tension between the whole and its constituent parts.

In this chapter, I present several related algorithms that achieve a similar tension
in the creation of line drawings. In all cases, the low-level geometry of the marks
will call attention to itself, and disclose a secondary purpose distinct from the marks’
participation in the overall drawing. These algorithms all connect marks together to
form long paths. Such drawing styles derive great benefit from computation, be-
cause algorithmic approaches can balance between complex geometric constraints
on mark placement and global representational goals like halftoning. I will discuss
continuous line drawing (Sect. 9.2), in which the marks align into a single closed
loop; tree-based drawing (Sect. 9.3), in which marks are arranged into an image-
wide branching structure; and mazes (Sect. 9.4), in which paths must also satisfy the
complex geometric goal of forming a compelling maze puzzle. As a reflection of the
research frontier in this subject, most topics will be seen from two perspectives: a
drawing style inspired by standard data structures and algorithms in computational
geometry, and a style based on simulation and a metaphor with a physical process.

C.S. Kaplan (�)
University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
e-mail: csk@uwaterloo.ca

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_9,
© Springer-Verlag London 2013

167

mailto:csk@uwaterloo.ca
http://dx.doi.org/10.1007/978-1-4471-4519-6_9

168 C.S. Kaplan

9.2 Continuous Line Drawing

As previously discussed in Chap. 3, halftoning is the process of approximating a
continuous-tone image with information in only two colours (usually black and
white). Most traditional and computational halftoning techniques rely on the distri-
bution of a large number of small primitives, which can be disjoint (as in stippling)
or overlapping (as in crosshatching). In both cases, the local density of primitives
approximates the tone of a source image in the vicinity of those primitives.

We might ask whether there are alternatives to primitives that avoid or overlap
one another. One interesting artistic and algorithmic challenge would be to commu-
nicate a halftoned image using a single continuous path. We would expect such a
path to meander all over the canvas in order to deposit ink wherever it is needed.
The path might be made to vary locally in both density and line thickness in order
to communicate continuous changes in tone.

This notion has its precedents in traditional art and design, as shown in Fig. 9.1.
An ink drawing from 1884 depicts its subject using a single spiral path that varies
primarily in thickness, though variations in the shape of the path are also used to
communicate texture and three-dimensional form to some extent. More recently,
artist and designer J. Eric “Mo” Morales has created a number of line drawings that
he calls “labyrinthine projections”. His hand-drawn designs typically use a constant-
width line with large variations in local spacing to depict tone. Fiona Ross has cre-
ated several line drawings from simple closed paths, in part to demonstrate visually
the hidden complexity of the Jordan Curve Theorem [20]. In all cases, the fact that
the path does not intersect itself is an important part of the aesthetic.

In this section, I discuss two computational techniques for creating a halftoned
representation of an image from a single, continuous, closed path. The first is based
on the fact that solutions to the Euclidean Travelling Salesman Problem cannot be
self-intersecting; the second evolves a suitable path incrementally via a physical
simulation.

9.2.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most well known problems
in optimization, and its intractability is an important result in complexity theory [6].
Given an arbitrary graph with weighted edges, the TSP asks for the “tour”—the
closed path that visits every vertex exactly once—for which the sum of the weights
of the path’s edges is minimized. In the present context we are particularly interested
in the Euclidean TSP, in which we are given only a set of “cities” in the plane (i.e.,
two-dimensional points). We implicitly construct the complete graph with the cities
as vertices, taking Euclidean distances between pairs of cities as edge weights. This
problem can be shown to be NP-hard in the number of cities; certainly the naïve
approach of trying every ordering of the cities does not scale.

For the purposes of constructing line drawings, the deep mathematical intrica-
cies of the TSP are not of direct relevance. Rather, we need just two main facts.

9 Depiction Using Geometric Constraints 169

Fig. 9.1 Three hand-drawn examples of continuous line art. Top: “All done with a single stroke
of the pen”, from a 19th century manual on penmanship [19]. Bottom left: “Olya” © 2009 J. Eric
Morales (ink drawing). Bottom right: “When we could be diving for pearls”, by Fiona Ross (ink
drawing, 2011). Used with permission

170 C.S. Kaplan

Fig. 9.2 A set of grids for ordered dithering that yield point distributions suitable for TSP art

First, it can be shown that a minimum-cost solution to the Euclidean TSP cannot
be self-intersecting.1 Second, there are efficient heuristic algorithms that produce
approximate solutions to the Euclidean TSP. These algorithms cannot necessarily
achieve optimality, but they are guaranteed to avoid crossings.

An implementation of continuous line halftoning can now be readily assembled
from well understood components. Given an image, we apply any stippling algo-
rithm (see Chap. 3) to obtain a distribution of points. We then use a heuristic TSP
solver, such as the Lin–Kernighan heuristic technique in Concorde [2], passing in
the stipple locations as cities. The solver outputs an ordering of the cities that can
be drawn as a continuous closed path.

Early experiments in so-called “TSP Art” used stratified sampling to distribute
points [5]. The image is divided up into cells and points are distributed uniformly
at random within each cell, with the number of points in a cell derived from the
image’s average tone there. This method creates a wide distribution of distances
between points, leading to a large variance in edge lengths in the resulting tour. This
variance lends the tour a jagged, “crinkly” appearance that distracts from the quality
of the result. A superior point distribution method is Weighted Voronoi Stippling,
discussed in Sect. 3.2.2. The resulting Poisson-like distribution of stipples interacts
favourably with the TSP solver.2 Of course, the aesthetic character of a TSP tour
is not necessarily tied directly to the quality of the underlying point distribution
algorithm. For example, while the set of simple ordered dither matrices shown in
Fig. 9.2 do not constitute an effective stippling algorithm on their own, they lead
to interesting rectilinear designs when combined with the TSP. Examples of TSP
drawings created with these point distribution methods are shown in Fig. 9.3.

Even when backed by a high-quality point distribution algorithm such as
Weighted Voronoi Stippling, we cannot expect TSP tours to reproduce the tones
of an input image with high fidelity. As Secord reports in his thesis [21], Weighted
Voronoi Stippling tends to underestimate density, producing stippled drawings that
we perceive as lighter than the images on which they are based. As the same time,

1This fact relies on a proof by contradiction. Assuming that two edges in the tour cross each other,
we replace the crossing edges with non-crossing alternatives in a way that is guaranteed to reduce
the total tour length.
2The evenness of Weighted Voronoi Stippling also tends to produce especially hard Euclidean
TSP instances, because there are many possible edges with nearly identical distances. Perhaps
for this reason, several stippled drawings are now used as challenges for TSP software; see
http://www.tsp.gatech.edu/data/ml/monalisa.html.

http://www.tsp.gatech.edu/data/ml/monalisa.html

9 Depiction Using Geometric Constraints 171

Fig. 9.3 TSP tours constructed from a variety of point distribution algorithms. The source image
has been cropped, rescaled, contrast enhanced, and matted using image editing software. Two
examples of Weighted Voronoi Stippling are shown with different stipple counts; both are relaxed
arrangements of initial distributions created via rejection sampling

the additional ink used to draw the edges of the tour will darken the entire image,
effectively lowering the dynamic range of TSP drawings.

One way to mitigate these effects is to boost the contrast of the source image
before stippling. (A more thorough solution would be to precompute, analytically
or empirically, a tone mapping relationship between stipple densities and perceived
tone, and to apply the inverse of that tone mapping curve to the input image.) Stip-
pling algorithms also modulate the radii of stipples in order to compensate for bias
in the density distribution; we can use these radii to draw a variable-width TSP tour
that better reproduces image tone, as in Fig. 9.4. Figure 9.5 shows a larger example
of a TSP Art drawing with a thickened path.

The negative aesthetic impact of joining stipples into a continuous path is most
pronounced in areas of an image that are almost but not quite white. Here, an indi-
vidual stipple may be quite distant from its neighbours. The path must nevertheless
pass through this stipple, adding a disproportionate amount of extra ink. The relative
isolation of this part of the path also causes it to stand out incorrectly as a salient
part of the drawing, rather than an incidental mark used for tone reproduction. This
problem is most easily remedied by choosing a brightness threshold and not placing
any stipples in image regions brighter than the threshold.

172 C.S. Kaplan

Fig. 9.4 The two Weighted
Voronoi-based TSP tours
from Fig. 9.3, redrawn with
variable weight paths

Fig. 9.5 An example of a
TSP Art drawing, based on a
photograph courtesy of
http://philip.greenspun.com

9.2.2 Evolving Labyrinthine Paths

Lloyd’s method (see Sects. 3.2.1 and 10.3), which underlies Weighted Voronoi Stip-
pling, operates as a kind of physical simulation. When a point moves to the cen-
troid of its Voronoi region, that point can be seen as responding to repulsive forces
exerted upon it by points in neighbouring regions. Viewed this way, the Voronoi
diagram itself provides a convenient optimization, by associating to each point the
small number of neighbours whose action upon it must be taken into account. In-
stead of using a Voronoi diagram as an intermediary and building the TSP tour in
a final step, it is also possible to define a physical simulation that applies forces to
points more directly, maintaining a simple closed path as it evolves. The technique
presented in this section can be regarded as a kind of geometric reaction–diffusion
model, one that produces closed loops under the influence of a large set of tunable
parameters. In Sect. 9.4.3 I will present a maze generation algorithm based more
directly on reaction–diffusion.

http://philip.greenspun.com

9 Depiction Using Geometric Constraints 173

Fig. 9.6 An example of a
simple curve evolving
organically (redrawn from
Pedersen and Singh [18])

We begin with a non-self-intersecting polygon P = {p1, . . . , pn}, which will
evolve in a physical process to become the final continuous line drawing. The core
of this kind of physical simulation is to compute, at each time step, the sum Ftot
of all the forces acting on a sample point pi , and to displace pi by some frac-
tion of that force vector. Specifically, to evolve from time t to time t + 1, we set
p

(t+1)
i = pt

i +
tFtot. The constant
t > 0 controls the speed of the simulation;
small values keep the simulation stable, while large values allow it to run more
quickly. The goal, then, is to define a family of forces that will guide the simulation
to create drawings in the desired style.

The most obvious force required for continuous line drawing is one that pushes
the path to achieve a desired spacing. To this end, every edge pjpj+1 will exert an
attraction–repulsion force on a given sample point pi . When the point is at some
chosen distance d from the edge, the two are at equilibrium and no force is applied.
For distances smaller than d the edge exerts a repulsive force on the point, and for
larger distances the edge attracts the point. Pedersen and Singh achieve this balance
using the Lennard–Jones potential, borrowed from the modelling of Van der Waals
forces in chemistry [18]. The total attraction-repulsion force on point pi , denoted
Far, is computed by summing over all edges pjpj+1.

We wish to coerce P to evolve and grow, not just achieve an equilibrium state
with respect to attraction-repulsion forces. To that end we introduce randomness
into the simulation by displacing pi by a randomly generated Brownian motion
force Fbm with normally distributed magnitude and uniformly distributed direction.

Finally, we wish to smooth out any high-frequency kinks introduced by Far and
Fbm. We add a fairing force Ff that aims to minimize curvature. Each point pi

experiences a force that moves it a fraction of the way towards the edge defined by
pi−1pi+1.

The total force Ftot on pi can then be defined as αFar +βFbm +γFf. The weights
α, β and γ trade off between the relative importances of these forces; they can also
be expressed as functions of the plane in order to vary the trade-off spatially. Fig-
ure 9.6 shows the evolution of a simple curve under the influence of low Brownian
motion and high attraction-repulsion. Pedersen and Singh also modulate these cal-
culations by a spatially varying length scale that allows the path to achieve different
rest distances in different parts of a drawing.

The simulation process can cause the sample points to become distributed non-
uniformly around the path, making it difficult to evolve new geometry. Therefore,

174 C.S. Kaplan

Fig. 9.7 An artwork generated from an organic labyrinthine path: “me” by Karan Sher Singh (ink
on mylar, 2010). From Karan Singh. Used with permission

after every generation we resample the curve by coalescing short edges and splitting
long ones.

Figure 9.7 shows an example of a completed drawing created using this simula-
tion method.

9.2.3 Discussion

TSP Art, introduced in Sect. 9.2.1, betrays a very strong mathematical aesthetic. The
connection of these drawings to the legendary Travelling Salesman Problem seems
to imbue them with extra significance in the minds of some viewers. But ultimately,
it is not clear how important the TSP is in the construction of drawings of this kind.
We neither expect nor require an optimal tour; one that is “short enough” and free
from intersections always suffices aesthetically. On the other hand, the quality of
the underlying city placement seems to have a much larger effect on the perceived
quality of the drawing. Yet it is difficult to develop strategies for point distribution
that permit any kind of aesthetic control when the resulting points are passed through
the black box of a heuristic TSP solver.

The simulation algorithm presented in Sect. 9.2.2 is brimming over with tunable
parameters that can drive the simulation to produce curves in a wide range of styles.
For this reason, it is a very practical workhorse for generating continuous line draw-
ings.

9 Depiction Using Geometric Constraints 175

9.3 Drawing with Trees

Notwithstanding Ross’s assertion of the complexity of the Jordan Curve Theo-
rem [20], a continuous closed path is a fairly simple object. A tree, with branches
that split unpredictably, is more complex both geometrically and perceptually. This
extra complexity is actually a benefit in the context of creating drawings based on
images: the ability to spawn branches offers us extra flexibility in the placement of
primitives.

In this section I present two techniques for image representation via trees. As
with continuous line drawings, one approach uses standard ideas from computa-
tional geometry to post-process a point distribution, and the other builds the tree
incrementally by making an analogy with a physical process.

9.3.1 Drawing with Minimum Spanning Trees

If the Euclidean TSP provides the natural basis for connecting a set of points into a
single closed loop, then the Euclidean Minimum Spanning Tree (MST) is the natural
tree structure that connects those points. Like the TSP, the problem of constructing
an MST can be formulated on an arbitrary graph with weighted edges: it is the tree
formed from the edges of the graph that has the lowest possible total edge weight.
The Euclidean MST is the special case based on the complete graph formed from a
set of points in the plane, using Euclidean distance as edge weights. In other words,
the TSP produces the shortest route that visits every city and returns home; the MST
produces the cheapest overall road network that permits travel from any city to any
other.

A method for tree-based depiction follows immediately. As with TSP Art, we
construct a suitable point distribution, for example via Weighted Voronoi Stippling.
We can then build a tree using any of a suite of standard Euclidean MST algo-
rithms [7]. The most obvious are Kruskal’s algorithm (connect pairs of points in
increasing order of distance until a tree is formed) and Prim’s algorithm (grow a
tree by repeatedly adding the shortest edge from a vertex in the tree to one not in
it). Both of these can be implemented naïvely in quadratic time, which will proba-
bly suffice for many practical cases. For better performance, we exploit the fact that
an MST can always be extracted from the edges of a Delauney triangulation of the
points; the MST can then be constructed in time O(n logn), the cost of computing
the triangulation [8]. See Fig. 9.8 for examples of MST drawings created from the
point distributions of Fig. 9.3.

Our visual systems are tuned to detect branching, and so trees create a very differ-
ent visual impression than closed loops. Nevertheless, the two have similar low-level
graphical properties. A tree on n points will have n − 1 edges, nearly identical to
the n edges in a loop. To a first approximation, we therefore estimate that the two
structures will have comparable tone reproduction properties (though the sum of the
edge lengths of the TSP tour will typically be higher than that of the MST). As dis-
cussed previously, we might derive the curve that maps from point distributions at

176 C.S. Kaplan

Fig. 9.8 Minimum spanning tree drawings constructed from the same point distributions as those
of Fig. 9.3

different densities to output tone, whether analytically or empirically, and use that
curve to guide the initial placement of points. It is also possible to associate radii
with the stipples in the initial distribution, and vary the widths of the tree edges to
interpolate between those radii.

There is a deeper connection between minimum spanning trees and labyrinthine
paths. Imagine a minimum spanning tree as a geometric figure in the plane, drawn
with infinitesimal lines. The locus of points at some small constant distance from
the MST is a closed loop that never intersects itself. There may be an opportunity
for a simple, efficient continuous line drawing algorithm based on tracing around
the outside of an MST while varying the offset distance in an intelligent way.

9.3.2 Growing a Tree via Path Planning

The MST-based approaches discussed above can be considered continuous, in that
the point locations are chosen freely in the plane. There are also tree-drawing al-
gorithms that rely on a discrete raster grid. Here, some of the grid cells are desig-
nated as point locations, and the edges that join them must travel through the grid.
The resulting edges are typically meandering paths rather than the straight lines of

9 Depiction Using Geometric Constraints 177

an MST, and the shapes of these paths can therefore be used as an extra channel
through which to depict the features of a source image.

Dendritic stylization borrows from the field of path planning in robotics. Given a
graph with weights on the edges, a simple path planning task is to compute, for two
vertices, the cheapest path connecting those vertices relative to some cost function
on edges. A typical solution is to use Dijkstra’s algorithm [7], which computes the
best paths from a single source to every other vertex in the graph. To create a draw-
ing, we construct a graph in which every pixel in a source image is a vertex, with
edges connecting it to its horizontal, vertical and diagonal neighbours. If we set the
weight of an edge to be equal to the average brightness of the pixels it connects,
then Dijkstra’s algorithm will in some sense give us the tree of darkest paths from a
source pixel to every other pixel. Drawing those paths will place ink preferentially
where the source image is dark.

However, this naïve approach produces unsatisfactory drawings. The problem is
that Dijkstra’s algorithm incurs a heavy penalty for long paths: a long path consisting
entirely of low-cost (i.e., dark) edges might be rejected in favour of a short path
with a single high-cost edge, even though the former would be preferable. Long and
Mould’s solution [16] adopts a modified cost function used for path planning over
uneven terrain. We effectively move from an L1 norm to an L∞ norm, and measure
the cost of a path by its worst edge instead of the sum of the edges. By measuring
the cost of a path this way, we favour the construction of long, meandering paths
that avoid high-cost edges. To support this change, we modify Dijkstra’s algorithm
to maintain the maximum edge weight seen from the source to every vertex on the
frontier of the developing tree.

The edge weights need not be taken directly from the darkness of the source
image. For example, we can construct an abstract “importance image” by taking
the weighted sum at every pixel of brightness and gradient magnitude (Long and
Mould suggest weighting the gradient three times as heavily as brightness). This
combination trades off between reproducing tone and depicting edges.

To apply dendritic stylization to an image, we begin by creating a distribution of
points via a stippling method, with the stipples restricted to pixel centres. We can
stipple the source image directly, or the importance image if desired. We label a
central stipple as the source, and use the modified Dijkstra’s algorithm to compute
paths to all stipple locations. These paths can then be rendered as before, possibly
thickened in proportion to importance. As a simple alternative to Dijkstra’s algo-
rithm, it is possible to compute a minimum spanning tree of the entire grid and
prune it to extract the subtree that connects all the stipple locations. Examples based
on Dijkstra’s algorithm and MSTs are shown in Fig. 9.9.

9.4 Mazes

Many of the algorithms discussed so far in this chapter produce drawings reminis-
cent of mazes. Articles on continuous line and tree-based stylization usually note

178 C.S. Kaplan

Fig. 9.9 Two drawings created using dendritic stylization: a drawing of Lena by Long and
Mould [16] (left) (used with permission), created using a modification of Dijkstra’s algorithm;
a drawing created from a pruned minimum spanning tree (right)

this connection, either in passing or by exploring maze construction in some de-
tail. However, while these drawings might be mazes in a strict mathematical sense,
they are unsatisfying because they do not respect the usual aesthetic conventions
of maze design. Designers like Christopher Berg create mazes in which every path
simultaneously contributes to the representation of an image and participates in the
structure of a compelling puzzle [3]. In this section I discuss specialized techniques
for constructing path-based drawings that respect principles of effective maze de-
sign.

9.4.1 Grid Mazes

The construction and solution of simple mazes based on square grids is a fertile
playground in which to explore many core data structures and algorithms in com-
puter science. I use this simplified context to introduce the maze terminology and
concepts that will be required in the sequel.

Suppose that we wish to construct a maze based on an m×n grid of unit squares.
By erasing a wall (i.e., an edge of the grid), we connect the two cells that border that
wall into a short passage. If we erase a sufficient number of walls, then every cell
will be connected to every other via a set of passages and the maze itself is said to
be connected. On the other hand, if we keep enough walls in place then there will
be no set of passages that connect together into a loop. When we balance between
these constraints then the maze is both connected and acyclic, and is called a perfect
maze. For this discussion we will always seek to construct perfect mazes. While

9 Depiction Using Geometric Constraints 179

Fig. 9.10 The connection between a cell graph and a perfect grid maze. A cell graph is shown su-
perimposed on a grid on the left. In the middle, a spanning tree of the cell graph has been computed.
The spanning tree determines the walls to remove to construct the perfect maze on the right

cycles are a valuable tool in the maze designer’s arsenal, they are easy to construct
from a perfect maze by erasing edges.

The dual of this wall-erasing process can be regarded as operating on a graph
called the cell graph, in which the vertices are the cells of the grid. Two vertices
representing adjacent grid cells are connected by an edge precisely when the wall
between those cells has been removed. Viewed this way, a perfect maze corresponds
to a spanning tree of the cell graph. Conversely, any spanning tree algorithm can be
used as a maze construction algorithm under this dual relationship, as illustrated in
Fig. 9.10. For example, we can run Kruskal’s algorithm on a random ordering of the
walls of the grid, continuing until we have erased just enough walls to leave behind a
perfect maze. Different strategies for assigning “weights” to the walls, and different
spanning tree algorithms, can yield mazes with distinct visual characteristics and
levels of difficulty.

9.4.2 Mazes from Generalized Cell Graphs

The grid-based construction above can easily be generalized. Any planar subdivi-
sion can be treated as a cell graph, with the subdivision’s faces as vertices. The
construction of a picture maze with a particular style or texture might then be re-
duced to the problem of constructing a suitable planar subdivision and breaking
walls as before. Examination of the work of professional maze designers suggests
three maze textures that are particularly important to emulate algorithmically. They
are illustrated in Fig. 9.11 and described below.

In a directional maze, passages flow preferentially in one direction, or are more
generally aligned with a vector field. Given a region of the plane and a vector field
defined over that region (perhaps defined by interpolating from a few hand-placed
strokes), we can use standard streamline placement algorithms [12] to draw long
curves that flow along the vector field, together with a second set of curves in a per-
pendicular field. These intersecting curves induce a planar subdivision from which

180 C.S. Kaplan

Fig. 9.11 The construction of mazes with different textures, as described by Xu and Kaplan [29].
From left to right, examples of a directional maze, a spiral maze and a random maze. © 2007 ACM,
Inc. Included here by permission

a maze might be constructed. We can assign weights to the edges of the subdivi-
sion from two probability distributions, with the perpendicular edges biased to have
lower expected weights than the aligned ones. A minimum spanning tree with these
weights will tend to break more perpendicular walls, producing passages that flow
along the vector field.

On his web page,3 Berg discusses the importance of spirals and vortices as de-
vices that add complexity to a maze. Spirals also have a long tradition as decorative
devices in art and ornament. To construct spiral passages within a region, we can
fill the region with a sequence of concentric copies of the boundary (computed us-
ing the straight skeleton [1], or by simulating the motion of boundary points inward
along image gradients [22]). We divide the annuli delineated by these concentric
curves with radial lines. The result is another cell graph, in which we preferentially
remove the radial walls in order to bias towards concentric passages.

A final important maze style is a random, coral-like texture that fills a region
evenly and isotropically. The random structure of the simulation-based labyrinths of
Sect. 9.2.2 have the right form to some extent, but the wrong topology: we require
the branching walls of a maze rather than a single labyrinthine path. But examination
of that algorithm suggests that it is not necessarily confined to a single closed loop.
Indeed, it is possible to construct a standard grid maze in a region and then “relax”
that maze by running the physical labyrinth simulation on its walls.

A given maze might be made up of different regions that rely on a combination of
these three styles. To construct a maze from an image, we would then segment that
image into regions manually or computationally, and then assign a texture to each
region. The pixels of the original image can be incorporated in the construction and
rendering process in several places. Gradients can be used to define seed vectors for
the vector field in a directional maze. Also, image tone can drive the modulation of
both line width and line spacing, in order to allow the walls of the maze to act as
halftoning primitives. Figure 9.12 shows an example of a maze in which lines depict
multiple distinct textures and tones.

3http://www.amazeingart.com/.

http://www.amazeingart.com/

9 Depiction Using Geometric Constraints 181

Fig. 9.12 A maze constructed from a photograph of the Sphinx, based on segmenting the pho-
tograph by hand and assigning directional, spiral and random textures to different segments. The
segmented template is shown on the left. Note also that the walls of the maze have been thickened
to reproduce tone, using a technique described by Xu and Kaplan [29]

9.4.3 Mazes from Reaction–Diffusion Patterns

Reaction–diffusion refers to a general class of mathematical models that describe the
behaviour of two (or more) chemical compounds as they spread out into a space and
interact with each other. These models, originally developed by Turing as a basis for
explaining morphogenesis, have found wide applicability in both computer graphics
and chemistry. Reaction–diffusion models can be tuned to produce a wide variety
of visual imagery, including spots, stripes and cellular patterns. A classic computer
graphics paper by Turk demonstrates the use of reaction–diffusion to synthesize
surface textures [23]. Many people have observed that carefully balanced reaction–
diffusion patterns resemble the tangled passages of a random maze. We can make
this connection real by using such patterns as the basis for building the walls of real
mazes.

One simple means of obtaining reaction–diffusion textures is to use a cellular
neural network (CNN), a simple computational model resembling a cellular au-
tomaton. In a CNN, each cell in a grid performs a small calculation based on its
current contents and the contents of cells in its local neighbourhood. By iteratively
updating the contents of the cells in a sequence of generations, we evolve the state
of the CNN towards a desired goal.

In particular, let X = {Xij } be a grid of scalar values representing the current
state of the CNN, and let A be a filter kernel, i.e., a small matrix. We also define

182 C.S. Kaplan

Y = {Yij } to be the “output” of the CNN, a grid of the same dimensions as X. Each
Yij is computed as f (Xij) for a given transfer function f . We can now express the
rate of change of the elements of X at a given time as dX

dt
= −X + Y ∗ A, where

Y ∗ A denotes the discrete convolution of Y with kernel A.
We can construct a cellular neural network that behaves like a reaction–diffusion

model by defining a transfer function f (x) that clamps x to [−1,1], together with
the 5 × 5 filter kernel

A =

⎡
⎢⎢⎢⎢⎣

−0.25 −1.0 −1.5 −1.0 −0.25
−1.0 2.5 7.0 2.5 −1.0
−1.5 7.0 −23.5 7.0 −1.5
−1.0 2.5 7.0 2.5 −1.0
−0.25 −1.0 −1.5 −1.0 −0.25

⎤
⎥⎥⎥⎥⎦

In each iteration of the algorithm we set X(t+1) to be X(t) +
t dX
dt

, for a constant

t small enough to keep the simulation stable.

Taking a grid of noise as the initial value of X and iterating for hundreds of gen-
erations will produce a random maze-like texture, as shown in Fig. 9.13. We might
hope to guide the evolution of the texture by initializing X to the contents of some
image I , but that initial impulse can get washed out after many generations. We rein-
force the source image by pumping it back into the system with the revised equation
dX
dt

= −X + Y ∗ A + I . As Wan et al. point out [24], we must remap the brightness
of the source image to the experimentally derived range [−0.208,0176], in order
to stay within the tolerances for maze-like reaction–diffusion patterns. Figure 9.14
demonstrates the effect of this modification.

After a sufficient number of generations, we use a vectorization algorithm to
extract the paths that run along the black regions of the grid, as shown in the bottom
right image of Fig. 9.13. These paths, and the connections between them, induce
a planar subdivision. However, the subdivision is not yet a (perfect) maze—it may
contain isolated regions and cycles. The topological flaws are corrected by adding
and removing walls as necessary, yielding a final maze puzzle.

It may seem awkward to derive the geometry of a curvilinear maze from an in-
herently discrete process. But the technique is robust, and it produces high-quality
output, an example of which appears in Fig. 9.15. Furthermore, it has the advantage
that many desirable visual properties of mazes can be expressed in terms of simple
image processing operations on the source. Simple shapes in the source generate
concentric walls that can be used to create a spiral maze. Pixel-level noise leads
directly to randomness in the maze. On the other hand, the discrete grid does not
adapt well to variable wall spacing. One solution is to run the CNN at variable spa-
tial resolutions. To scale up the wall spacing at a cell Xij , we downsample the grid
before convolving with A at that cell.

9.5 Summary

The techniques related in this chapter, and the visual styles they enable, occupy a
niche in the world of non-photorealistic rendering. These styles communicate using

9 Depiction Using Geometric Constraints 183

Fig. 9.13 A sequence of generations of a cellular neural network creating a reaction–diffusion
texture from a random source image. After the final generation, the texture can be vectorized to
extract paths

Fig. 9.14 A demonstration of biasing the cellular neural network by repeatedly injecting a source
image into the simulation. Each pair of images shows the initial and final states of the grid. The
left pair uses a rasterized version of a simple vector glyph; the right adds noise, producing more
random variation far from image edges

Fig. 9.15 An example of a maze created from reaction–diffusion textures, using the method of
Wan et al. [24]. © 2010 IEEE. Included here by permission

184 C.S. Kaplan

a restricted vocabulary of geometric primitives, without assigning colour or texture
to the canvas. Whereas primitives in ordinary halftoning algorithms would seek to
be assimilated by the human eye as it fuses them into a coherent drawing, here
they retain a separate voice in the final artwork. Often, that voice refuses to mask
its clear mathematical origins, and the overt geometric structure is essential to the
aesthetic character of the resulting artworks. The marriage of line drawing to com-
putational geometry and simulation offers endless opportunities for exploration, and
will continue to produce new works of art that bear the mark of a computational aes-
thetic.

9.6 Notes

TSP Art was first suggested by Bosch and Herman [5], and later refined by Ka-
plan and Bosch [14] to use Weighted Voronoi Stippling [21]. Bosch has continued
to investigate the aesthetic possibilities of TSP Art in a more abstract setting. In
particular, by carefully controlling an exact TSP solver he is able to impose con-
straints on which parts of the plane will be inside and outside the path [4]. He can
therefore design TSP tours with meaningful interiors. Somewhat related is the “Con-
stellation” series by contemporary artist Kumi Yamashita.4 She winds a continuous
thread around a set of nails to create a large portrait. Her path reuses individual nails
as many times as necessary to achieve a desired tone.

The simulation-based approach to continuous line drawing is due to Pedersen
and Singh [18]. Their technique is protected by US Patent 7928983.5 Their paper
includes a method for biasing the path direction to flow along a vector field by scal-
ing the attraction-repulsion forces non-uniformly. They also discuss high-level tools
for authoring drawings, the relationship of their work to mazes, and an analogue
of their technique that generates labyrinths on surfaces in three dimensions. Recent
work by Xing et al. [28] demonstrates similar results on mesh surfaces. Their tech-
nique can be interpreted as using Kruskal’s algorithm to construct a spanning tree
of the dual of the mesh and tracing around it to form a closed curve (as suggested at
the end of Sect. 9.3.1), though it is not presented that way.

Inoue and Takahashi introduced the use of minimum spanning trees for line draw-
ing [11]. They used an analytical model to approximate expected tone from sample
density, and validated their model experimentally. They also suggested dividing the
image plane into two parts and constructing disjoint spanning trees; the dividing
line between those trees can play the role of a solution path in a maze. However,
because the branches of the trees do not interleave across the path, the division is
often plainly visible.

Diffusion-Limited Aggregation (DLA) is a classic algorithm for drawing pixel-
level branching structures [25]. In DLA, an initial seed point is chosen in a fixed

4http://www.kumiyamashita.com/constellation/.
5http://www.google.com/patents?id=83rLAQAAEBAJ.

http://www.kumiyamashita.com/constellation/
http://www.google.com/patents?id=83rLAQAAEBAJ

9 Depiction Using Geometric Constraints 185

grid. The rest of the grid is then peppered with a set of particles, which proceed
to take random walks in the grid. Any particle that comes into contact with a seed
freezes in its current position and becomes another seed. The process can be contin-
ued until any desired number of particles have aggregated to the seed. The result is
an organic branching structure with fractal-like properties. Greenfield experimented
with the use of DLA to generate a mosaic of duotone tiles that communicate two
images simultaneously [9].

Dendritic stylization is the work of Long and Mould [15, 16]. The second part
of their journal article, not discussed in this chapter, extends the drawing algorithm
to construct realistic looking trees whose branches embed a hidden image, a visual
phenomenon known as pareidolia. They model the branching characteristics of dif-
ferent trees, and transfer texture from tree images to enhance realism.

Even the simple world of rectilinear grid mazes offers opportunities for interest-
ing picture generation. Maze-a-pix puzzles, by Conceptis,6 appear to be unadorned
grid mazes. But a binary image is revealed by filling in the cells that make up the
solution path. On the surface, the construction of a Maze-a-pix puzzle would seem
to require the difficult computation of a Hamiltonian path. But a recent paper by
Okamoto and Uehara [17] suggests an efficient alternative that will by now be fa-
miliar: construct a grid at half the desired resolution, find a spanning tree of the
cells, and trace around it (thereby doubling the resolution) to build a Hamiltonian
tour.

Xu and Kaplan experimented with a direct, geometric approach to constructing
vortices and linking them together into mazes [30]. Their work was concerned with
mazes as abstract designs rather than representations of images, and with an inquiry
into sources of difficulty in maze solving. A later paper [29], which forms the basis
for Sect. 9.4.2, introduces techniques for constructing directional, spiral, and ran-
dom mazes. They also present an algorithm that can build passages that conform to
arbitrary user-specified solution paths. Their algorithm can be used to define solu-
tion paths that blend seamlessly with the rest of the maze and that fulfill higher-level
semantic goals (such as visiting a given set of regions in a prescribed order).

Wan et al. presented the method for using a cellular neural network to evolve
a texture from which a maze may be extracted [24]. They also discuss an inter-
face for “painting” maze generation properties onto an image; for example, a noise
brush and a blur brush play the complementary roles of adding and reducing ran-
domness in the resulting maze. Walls and passages can even be painted directly
and maintained during the evolution process. Contemporaneous work by Wong and
Takahashi [26] combines picture mazes and Maze-a-pix puzzles. They use the di-
rection maze method introduced by Xu and Kaplan, based on a vector field induced
by edge tangent flow of a source image [13] as illustrated in Fig. 9.16. They then
use a heuristic method to force the solution path to trace out a superimposed bi-level
image (though the method of Okamoto and Uehara seems particularly apt here).

Finally, two recent projects are worthy of mention in the context of path-based
rendering.

6http://www.conceptispuzzles.com/index.aspx?uri=puzzle/maze-a-pix.

http://www.conceptispuzzles.com/index.aspx?uri=puzzle/maze-a-pix

186 C.S. Kaplan

Fig. 9.16 An example of a maze created using the method of Wong and Takahashi [26], showing
the source image, vector field, and the resulting maze

In a traditional art context, “continuous line art” usually refers to a form of ges-
ture drawing in which the artist rapidly sketches a figure in one continuous motion,
sometimes without even looking at the drawing as it takes form. The result often
sacrifices legibility, but gains expressiveness and energy in return. Wong and Taka-
hashi propose a technique for creating gesture drawings from images [27]. They
extract vectorized edges from an image and connect them into a continuous path.
The results are promising, but they betray the computational nature of the edges
used, a common obstacle in high-quality artistic rendering.

Inglis, Inglis and Kaplan explored the tradition of line-based and curve-based Op
Art [10], in which families of closely spaced parallel lines in multiple directions are
placed on a page in such a way that bends or kinks in the lines communicate a shape
via inferred contours. A two-colour image quantized to a square grid can always be
depicted as the bends in lines in two directions. They extend their technique to three
and four colours by using optimization to minimize undesirable artifacts at the line
intersections that coincide with object boundaries in the underlying illustration.

References

1. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for poly-
gons. J. Univers. Comput. Sci. 1(12), 752–761 (1995)

2. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem:
A Computational Study. Princeton University Press, Princeton (2006)

3. Berg, C.: Amazing Art: Wonders of the Ancient World. Harper Collins, New York (2001)
4. Bosch, R.: Simple-closed-curve sculptures of knots and links. J. Math. Arts 4(2), 57–71

(2010). doi:10.1080/17513470903459575
5. Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper.

Res. Lett. 32(4), 302–303 (2004). doi:10.1016/j.orl.2003.10.001
6. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.

Princeton University Press, Princeton (2011)
7. Cormen, T.H., Leiserson, C.E., Stein, R.L.R.C.: Introduction to Algorithms, 3rd edn. MIT

Press, Cambridge (2009)
8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algo-

rithms and Application, 3rd edn. Springer, Berlin (2010)

http://dx.doi.org/10.1080/17513470903459575
http://dx.doi.org/10.1016/j.orl.2003.10.001

9 Depiction Using Geometric Constraints 187

9. Greenfield, G.: Composite digital mosaics using duotone tiles. In: Kaplan, C.S., Sarhangi, R.
(eds.) Proceedings of Bridges 2009: Mathematics, Music, Art, Architecture, Culture, pp. 155–
162. Tarquin Books, Mill Valley (2009)

10. Inglis, T.C., Inglis, S., Kaplan, C.S.: Op Art rendering with lines and curves. Comput. Graph.
36(6), 607–621 (2012). doi:10.1016/j.cag.2012.03.003

11. Inoue, K., Urahama, K.: Halftoning with minimum spanning trees and its application to maze-
like images. Comput. Graph. 33(5), 638–647 (2009). doi:10.1016/j.cag.2008.09.015

12. Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Visualiza-
tion in Scientific Computing’97. Proceedings of the Eurographics Workshop, Boulogne-sur-
Mer, France, pp. 43–56. Springer, Berlin (1997)

13. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput.
Graph. 15(1), 62–76 (2009). doi:10.1109/TVCG.2008.81

14. Kaplan, C.S., Bosch, R.: TSP art. In: Bridges 2005: Mathematical Connections in Art, Music
and Science, pp. 301–308 (2005)

15. Long, J.: Modeling dendritic structures for artistic effects. Master’s thesis, University of
Saskatchewan (2007)

16. Long, J., Mould, D.: Dendritic stylization. Vis. Comput. 25(3), 241–253 (2009)
17. Okamoto, Y., Uehara, R.: How to make a picturesque maze. In: Proceedings of the 21st Annual

Canadian Conference on Computational Geometry, pp. 137–140 (2009)
18. Pedersen, H., Singh, K.: Organic labyrinths and mazes. In: Proceedings of the 4th International

Symposium on Non-photorealistic Animation and Rendering, NPAR’06, pp. 79–86. ACM,
New York (2006). doi:10.1145/1124728.1124742

19. Real Pen Work: Self-Instructor in Penmanship. Knowles & Maxim, Pittsfield (1885).
http://www.iampeth.com/books/real_penwork/real_pen_work_index.php

20. Ross, F., Ross, W.T.: The Jordan curve theorem is non-trivial. J. Math. Arts 5(4), 213–219
(2011). doi:10.1080/17513472.2011.634320

21. Secord, A.: Weighted Voronoi stippling. In: 2nd International Symp. on Non-Realistic Ani-
mation and Rendering (NPAR), pp. 37–43. ACM, New York (2002)

22. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, Cambridge (1999)

23. Turk, G.: Generating textures for arbitrary surfaces using reaction–diffusion. Comput. Graph.
25(4), 289–298 (1991)

24. Wan, L., Liu, X., Wong, T.T., Leung, C.S.: Evolving mazes from images. IEEE Trans. Vis.
Comput. Graph. 16(2), 287–297 (2010)

25. Witten, T.A. Jr., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon.
Phys. Rev. Lett. 47, 1400–1403 (1981). doi:10.1103/PhysRevLett.47.1400

26. Wong, F.J., Takahashi, S.: Flow-based automatic generation of hybrid picture mazes. Comput.
Graph. Forum 28(7), 1975–1984 (2009). doi:10.1111/j.1467-8659.2009.01576.x

27. Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with
variable levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011). doi:10.1111/
j.1467-8659.2011.02040.x

28. Xing, Q., Akleman, E., Taubin, G., Chen, J.: Surface covering curves. In: Cunningham, D.,
House, D. (eds.) Workshop on Computational Aesthetics, pp. 107–114. Eurographics Associ-
ation, Annecy (2012). doi:10.2312/COMPAESTH/COMPAESTH12/107-114

29. Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 29 (2007).
Proceedings of SIGGRAPH 2007. doi:10.1145/1276377.1276414

30. Xu, J., Kaplan, C.S.: Vortex maze construction. J. Math. Arts 1(1), 7–20 (2007)

http://dx.doi.org/10.1016/j.cag.2012.03.003
http://dx.doi.org/10.1016/j.cag.2008.09.015
http://dx.doi.org/10.1109/TVCG.2008.81
http://dx.doi.org/10.1145/1124728.1124742
http://www.iampeth.com/books/real_penwork/real_pen_work_index.php
http://dx.doi.org/10.1080/17513472.2011.634320
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1111/j.1467-8659.2009.01576.x
http://dx.doi.org/10.1111/j.1467-8659.2011.02040.x
http://dx.doi.org/10.1111/j.1467-8659.2011.02040.x
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH12/107-114
http://dx.doi.org/10.1145/1276377.1276414

Chapter 10
Artificial Mosaic Generation

Giovanni Puglisi and Sebastiano Battiato

10.1 Introduction

Mosaic is an ancient art form, with first examples going back some 4,000 years or
more. Some mosaics can be found in Sumerian ancient manufacts with unusual cone
shaped-tesserae of various length [11]. Other mosaics realized in the same period
can be also found in some Egyptian and Phoenician manufacts. Later, different col-
ored stones to create patterns have been used in pebble pavements by the 8th century
BC. Greek artists improved this art form by using precise geometric patterns and de-
tailed scenes of people and animals (4th century BC). Later, in order to provide extra
detail and range of color to the mosaic, small manufactured pieces (tesserae) have
been used. By properly using small tesserae with varying shape and color, mosaics
can imitate paintings. Examples of the work of Greek artists can be found, for ex-
ample, at Pompeii. From the 5th century onwards, with the rise of the Byzantine
Empire, centered on Byzantium (now Istanbul, Turkey), novel characteristics were
exploited. Specifically, these novelties are related to the style (eastern influences)
and the usage of glass tesserae called smalti. Different from before, in Byzantine
culture one mainly covered walls and ceilings instead of floors like the Roman mo-
saics. The used smalti allows light to reflect and refract within the glass. In the 8th
century, the Moors brought Islamic mosaic into the Iberian peninsula. Their motifs
are mainly geometric and mathematical [8]. During Gothic Revival there was influ-
ence from medieval themes. Some famous artists like Antonio Salviati and Antoni
Gaudì gave new emphasis to the mosaic world in the modern area.

Mosaics, in essence, are images obtained cementing together small colored frag-
ments. Likely, they are the most ancient examples of discrete primitive based im-

G. Puglisi (�) · S. Battiato
University of Catania, Catania, Italy
e-mail: puglisi@dmi.unict.it

S. Battiato
e-mail: battiato@dmi.unict.it

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_10,
© Springer-Verlag London 2013

189

mailto:puglisi@dmi.unict.it
mailto:battiato@dmi.unict.it
http://dx.doi.org/10.1007/978-1-4471-4519-6_10

190 G. Puglisi and S. Battiato

ages. In the digital realm, mosaics are illustrations composed by a collection of
small images called “tiles”. The tiles tessellate a source image with the purpose of
reproducing the original visual information rendered into a new mosaic-like style.
The same source image may be translated into many strikingly different mosaics.
Factors like tile dataset, constraints on positioning, deformations, and rotations of
the tiles are indeed very influent upon the final results.

10.2 Digital Mosaic Generation

The generation of a digital mosaic from a raster image can be formulated as a math-
ematical optimization problem:

Given a rectangular region I 2 in the plane R
2, a tile dataset and a set of constraints, find N

sites Pi(xi , yi) in I 2 and place N tiles, one at each Pi , such that all tiles are disjoint, the
area they cover is maximized and the constraints are verified as much as possible.

Taking into account the mosaic generation process four different definitions can be
given to solve specific problems:

Crystallization Mosaic Given an image I 2 in the plane R
2 and a set of con-

straints (i.e., on edge features), find N sites Pi(xi, yi) in I 2 and place N tiles, one
at each Pi , such that all tiles are disjoint, the area they cover is maximized, each tile
is colored by a color which reproduces the image portion covered by the tile. In this
case in order to allow a solution the requirements have to be relaxed by asking only
that the constraints are verified as much as possible.

Ancient Mosaic Given an image I 2 in the plane R2 and a vector field φ(x, y) de-
fined on that region by the influence of the edges of I 2, find N sites Pi(xi, yi) in I 2

and place N rectangles, one at each Pi , oriented with sides parallel to φ(xi, yi),
such that all rectangles are disjoint, the area they cover is maximized and each
tile is colored by a color which reproduces the image portion covered by the tile
[14].

Photo-Mosaic Given an image I 2 in the plane R
2, a dataset of small rectangular

images and a regular rectangular grid of N cells, find N tile images in the dataset
and place them in the grid such that each cell is covered by a tile that “resembles”
the image portion covered by the tile.

Puzzle Image Mosaic Given an image I 2 in the plane R
2, a dataset of small

irregular images and an irregular grid of N cells, find N tile images in the dataset
and place them in the grid such that the tiles are disjoint and each cell is covered by
a tile that “resembles” the image portion covered by the tile.

The former two types of mosaics decompose a source image into tiles (with dif-
ferent color, size, and rotation), reconstructing the image by properly painting the
tiles (Figs. 10.1, 10.2). The latter two kinds of mosaic are obtained by fitting images

10 Artificial Mosaic Generation 191

Fig. 10.1 Example of
Crystallization Mosaic
generated by using [18]

Fig. 10.2 Example of
Ancient Mosaic generated by
using [5]

from a database to cover an assigned source image. They may hence be grouped
together under the denomination of multi-picture mosaics (Figs. 10.3, 10.4). Many
mosaic techniques may fit in more than a single class and it is likely that other new
types of mosaics will appear in the future. A detailed survey is available in [3].
This chapter will review several solutions focusing on Ancient Mosaic generation
algorithms.

192 G. Puglisi and S. Battiato

Fig. 10.3 Example of Image
Mosaic generated by using
[10]. © 1998 Springer

Fig. 10.4 Example of Puzzle
Image Mosaic generated by
using [15]. © 2002 ACM

10 Artificial Mosaic Generation 193

Fig. 10.5 Example of
Ancient Mosaic generated by
using [14]. © 2007
Eurographics Association

10.3 Artificial Mosaics Resembling Ancient Mosaics

Ancient mosaics are artworks constituted by cementing together small colored tiles.
A smart and judicious use of orientation, shape, and size may allow to convey much
more information than the uniform or random distribution of N graphic primitives
(like pixels, dots, etc.). For example, ancient mosaicists avoided lining up their
tiles in rectangular grids, because such grids emphasize only horizontal and vertical
lines. Such evidence may distract the observer from seeing the overall picture. To
overcome such potential drawback, old masters placed tiles emphasizing the strong
edges of the main subject to be represented.

One of the earliest algorithms of artificial mosaic generation was developed by
Hausner [14] who also proposed the mathematical formulation of the mosaic prob-
lem (see Sect. 10.2). Hausner’s technique is an iterative approach in which the user
selects important feature edges to be used for mosaic generation. An orientation
field is then computed considering the gradient of the Euclidean distance transform
from the edges. This field φ(x, y) follows edge orientation if (x, y) is close to the
edge. Tile placing is then performed by using a modified version of the Centroidal
Voronoi Diagram (CVD)—see Sect. 3.2.1 for more detail. The CVD, which usually
arranges points in regular hexagonal grids, has been adapted to place tiles in curving
square grids. This adaption is performed by using the Manhattan distance instead of
the Euclidean one. Efficiently computing the CVD is made possible by leveraging
the z-buffer algorithm available in many graphics cards. Although this approach is
able to produce good results (see Fig. 10.5) the convergence of the iterative algo-
rithm could be a drawback if there is no direct access to the graphic acceleration
engine.

194 G. Puglisi and S. Battiato

Another strategy of artificial mosaic generation has been proposed in [7] and
in [2]. The proposed approach tries to emulate mosaicist work making use of di-
rectional guidelines and distance transform. First one segments the image by using
the Statistical Region Merging algorithm [19] and divide the image into background
and foreground regions. Although this step is optional, it enables generation of mo-
saics that mimic “opus vermiculatum” style. Later, for each pixel the distance trans-
form from the segmented region bounds is evaluated. The gradient matrix and the
level line matrix are then computed. Finally, based on the previous steps, tiles are
placed. The authors, in order to obtain a high degree of similarity in terms of style
with respect to ancient mosaics, also consider tile cutting. Several examples of mo-
saics generated by using [7] with and without considering tile cutting are shown in
Figs. 10.6 and 10.7.

In [20] an interesting framework for stroke-based rendering based on a multi-
agent system is proposed. These agents (RenderBots) represent one stroke and dur-
ing the simulation disseminate themselves in the environment (a source image and
possibly additional G-buffer support images such as edge image, luminance im-
age, etc.). The output of the algorithm is created at the end of the simulation when
each RenderBot executes its painting function. Different styles can be created by
using the same framework: stippling, hatching, painterly rendering, and mosaics.
This high degree of flexibility is achieved by using a specific class of RenderBot
for each style. Figure 10.8 has been obtained by using the RenderBots algorithm
without user interaction. Better results can be achieved by using a manual segmen-
tation.

In [9] a technique that tries to simulate the classic mosaic art form is presented.
First, feature curves are extracted from the input image. Later, offset curves are
computed and the self-intersecting segments get trimmed off with the guidance of
Voronoi diagrams. Finally, tiles are placed along the computed curves without over-
lapping. Although results are interesting (see Fig. 10.9), this technique requires user
interaction in the selection of the edges to be followed.

In [12] an interactive technique able to create visually pleasing ancient mosaics
is proposed. The authors, starting from the study of ancient mosaics, derive a set
of characteristic features of a generic mosaic. Specifically, they consider the splices
among tiles (which should be constant), the variations of colors (tone and lumi-
nance), size, and shape of the tiles. Moreover, tiles should be placed along feature
lines of the input image and their orientation should vary in a smooth way. To satisfy
the above mentioned properties, the authors design a method based on Lloyd’s algo-
rithm for CVT (Centroidal Voronoi Tessellation) computation and can be viewed
as a smart extension and/or optimization of the technique proposed by Hausner
[14]. Instead of considering heuristics to automatically generate the artificial mo-
saic, they model their solution as an interactive tool. The user can arrange tiles of
various shapes and sizes, and control the distribution process by adding additional
data such as contour lines and directional information. Moreover, tiles can be sized
or shaped to better approximate the master image features. Although this algorithm
obtains impressive results it requires user interaction, and therefore depends on the
user’s aesthetic skill and experience.

10 Artificial Mosaic Generation 195

Fig. 10.6 Examples of Ancient Mosaic generated by using [7] without performing tile cutting

196 G. Puglisi and S. Battiato

Fig. 10.7 Examples of Ancient Mosaic generated by using [7] with tile cutting

10 Artificial Mosaic Generation 197

Fig. 10.8 Examples of Ancient Mosaic generated by using [20] without performing manual seg-
mentation

A novel technique for ancient mosaic generation has been presented in [16]
and further refined in [17]. The tile orientation field is generated respecting the
strong edges of the underlying image. Moreover orientations are forced to vary
smoothly in order to produce pleasing mosaics and reduce the gap between tiles.
This field is obtained by using a global optimization approach (α-expansion algo-
rithm) [6]. The packing of the tiles is then performed in two steps. First a set of
mosaic layers (M1,M2, . . . ,Mn) is generated. Starting from a random pixel p each
mosaic layer is created with a region growing strategy based on a greedy assump-
tion (the nearby pixel s that does not overlap and with the minimum gap space
with respect to p is chosen). Later the mosaic layers are stitched together taking
into account gap space minimization, the absence of broken tiles and the cross-
ing of strong edge intensity. This task is performed through the graph cuts algo-
rithm [6]. Several mosaics generated by the aforementioned approach can be seen
in Fig. 10.10.

198 G. Puglisi and S. Battiato

Fig. 10.9 An example of mosaic generated by using [9]. © 2003 Springer

In [4, 5] the authors propose a mosaic generation approach based on Gradient
Vector Flow (GVF) [21] computation together with some smart heuristics to drive
tile positioning. Edge information is preserved, propagated in the close regions and
merged together in a smooth way. Once the orientation field has been computed,
several heuristics are employed to follow principal edges and cover, as much as pos-
sible, the overall mosaic area. Several examples of mosaics generated by [5] are
shown in Fig. 10.11. To obtain mosaics with irregular tiles, the authors extended
their approach considering two different strategies of tile cutting: subtractive and
shared cut (see Fig. 10.12). The former cuts only the novel tiles, i.e., tiles that are
not already present in the mosaic; the latter cuts both novel and already placed tiles.
In order to improve the mosaic visualization experience they also developed an ap-
plication for the 3D mosaic rendering [1]. Each 2D tile becomes a 3D truncated
pyramid with its bottom base slightly bigger than the top one; oblique sides increase
the effect of depth. By properly modifying the pixels’ coordinates adapting them to
the 3D virtual environment a planar 3D mosaic is simple obtained. A cement-like
background is also used to improve the overall aesthetic effect. Several 3D surfaces
can be obtained by simply transforming pixel coordinates. The following surfaces
have been considered in their approach: Plane, Dome, Cylinder, and Pyramid. Sev-
eral examples are shown in Fig. 10.13.

To summarize this section, the keys of any technique aimed at the production of
digital ancient mosaics are clearly the tile positioning and orientation. The methods
presented in this section use different approaches to solve this problem, obtaining
different visual results. Some techniques are based on a CVD approach [9, 12, 14])
whereas other methods [5, 17] compute a vector field by making use of different
strategies (i.e., gradient vector flow, graph cuts minimization). Tile positioning is
then performed with iterative strategies [9, 12, 14, 17] or reproducing the ancient
artisans’ style by using a “one-after-one” tile positioning [2, 5, 7]. A different non-
deterministic approach is used in [20].

10 Artificial Mosaic Generation 199

Fig. 10.10 Examples of Ancient Mosaic generated by using [17]

200 G. Puglisi and S. Battiato

Fig. 10.11 Examples of Ancient Mosaic generated by using [5] without performing tile cutting

10 Artificial Mosaic Generation 201

Fig. 10.12 Example of Ancient Mosaic generated by using [5] with tile cutting

202 G. Puglisi and S. Battiato

Fig. 10.13 Examples of Ancient Mosaic generated by using [1]

10.4 Discussions

Designing a technique able to automatically generate a high quality mosaic is a
challenging task. As discussed earlier, several design choices influence the final

10 Artificial Mosaic Generation 203

results. It is worth noting that, whenever possible, all results presented here are
meant to try to reproduce a mosaic by considering the same underlying structure
(e.g., shape and tile size). This section will review in detail some of the aspects
related to the orientation, size, and shape of the tiles, providing useful hints for the
design of novel automatic mosaic generation approaches.

10.4.1 Tile Orientation

Tile orientation has a strong visual influence on the overall perception of the mosaic.
In particular orientation cannot be arbitrary but it is constrained to follow the gestalt
choices made by the author of the source picture. Tiles, hence, must follow and
emphasize the main orientations chosen by the artist. Some approaches [9, 12, 14]
solve this problem with an interactive strategy allowing the user to provide useful
hints for the creation of the orientation field. On the contrary other techniques try to
automatically generate this field [5, 17].

In order to properly find the correct orientation Battiato et al. [5] make use of
the GVF (Gradient Vector Flow) field computation based on [21] algorithm. GVF
is a dense force field designed by the authors of [21] in order to solve the classical
problems that affect snakes: sensitivity to initialization and poor convergence to
boundary concavity. Starting from the gradient of an image, this field is computed
through diffusion equations. GVF is a field of vectors v = [v,u] that minimizes the
following energy function:

E =
∫ ∫

μ
(
u2

x + u2
y + v2

x + v2
y

)+ |∇f |2|v − ∇f |2

where the subscripts represent partial derivatives along x and y axes respectively,
μ is a regularization parameter and |∇f | is the gradient computed from the in-
tensity input image. Due to the formulation described above, GVF field values
are close to |∇f | values where this quantity is large (the energy E, to be mini-
mized, is dominated by |∇f |2|v − ∇f |2) and are slow-varying in homogeneous
regions (the energy E is dominated by the sum of the squares of the partial deriva-
tives of the GVF field). An example of the GVF field is shown in Fig. 10.14.
This vector field can then be used to effectively drive tile positioning. Edge in-
formation is preserved, propagated in the close regions, and merged in a smooth
way.

Another approach able to automatically compute the tile orientation field has
been proposed in [17]. The authors make use of a global optimization framework
based on the graph cuts algorithm. Specifically, the object function has been de-
signed to obtain smooth variations in tile orientations and alignment of the tile with
the strong edges. The authors formulate the mosaic generation problem as a labeling
one. Tiles have been represented by using two labels (center and orientation). Con-
sidering an image I to be mosaicized, let P the set of all pixels belonging to I . For
each pixel p they assign a pair (vp,φp), where vp is a binary variable representing

204 G. Puglisi and S. Battiato

Fig. 10.14 Input image and its corresponding GVF field. Input image and its corresponding GVF
field. Source image from http://commons.wikimedia.org/wiki/File:Yin_and_Yang.svg

the visibility of the tile and φp the related orientation. The energy function has then
been formulated as follows:

E(v,φ) =
∑
p∈P

(1 − vp) +
∑
p∈P

vpDp(φp) +
∑

{p,q}∈N

Vpq(vp, vq,φp,φq)

The first sum is useful for the gap space minimization. The data term (second sum)
measures the alignment of the tiles with respect to the main edges. The smoothness
term (third sum) forces neighboring pixels to have similar orientations.

10.4.2 Tile Size

As already discussed before, many parameters influence the final quality of the gen-
erated mosaic. It is worth noting that tile size is a crucial parameter, difficult to set
without user interaction. Specifically, it depends not only on the dimension of the
input images but also on the intrinsic size of the objects contained into it. Consider-
ing a specific image, if tile size is not properly set (too big or too small), important
details could be lost or the output images could lose the mosaic effect. An example
of mosaics generated with increasing tile size is reported in Fig. 10.15.

10.4.3 Tile Shape

Ancient mosaicists could make use of irregular tiles in the mosaic creation. Irregular
tiles are suited to follow principal image edges, properly cover the image canvas
obtaining hence visually pleasant mosaics. In order to emulate this aspect some
approaches introduces different strategies of tile cutting.

http://commons.wikimedia.org/wiki/File:Yin_and_Yang.svg

10 Artificial Mosaic Generation 205

Fig. 10.15 Examples of mosaics obtained by using [5] with increasing tile size (from 3 × 3 to
13 × 13 at steps of two pixels)

Di Blasi et al. [7] studied ancient artisans’ work and tried to emulate them. An-
cient mosaicists outline the shapes of the image they want to obtain, fill the shapes
with a set of parallel curves and place the tiles along these curves. Di Blasi et al. [7]
compute directional guideline by using a combination of standard filters (Gaussian,
Laplacian edge detector, etc.). Starting from the computed directional guideline,
making use of the distance transform [13], two novel matrices are computed: gradi-
ent matrix and level line matrix. While there are chains of pixels not yet processed
in the level line matrix, the algorithm works as follows:

• select a chain;
• starting from an arbitrary pixel on it, follow the chain;
• place new tiles at regular distances along the path (the orientation of the tiles is

assigned using the gradient information from matrix).

206 G. Puglisi and S. Battiato

Fig. 10.16 The novel tile B

overlaps a previously placed
tile A. Tile B is then cut,
removing the overlapping
area C

Fig. 10.17 Tile A crosses the
border l. Region B is then cut
away

In order to improve the aesthetic quality of the final mosaic by also avoiding the
overlapping of the tile they adopt the following strategy:

• if the novel tile overlaps a previously placed one, a cut is performed (see
Fig. 10.16).

• if a novel tile crosses the border curves it is trimmed against this line (see
Fig. 10.17).

The algorithm proposed in [5] has been extended to introduce tile cutting. In
particular when the tile to be placed overlaps with some already placed tiles, a series
of cutting heuristics is introduced as detailed below. Specifically, two tile cutting
strategies have been considered: subtractive and shared cut. The former cuts only the
novel tiles, i.e., tiles that are not already present in the mosaic (shared cut actually
unions two tiles and can be considered a tile-merging strategy); the latter cuts both
novel and already placed tiles. Let tileP and tileN be the tiles already placed and
to be placed (novel), respectively. Their intersection creates some novel vertices
placed on their border. The cutting is performed considering the line connecting
these vertices (see Fig. 10.18). As already stated, the cut is performed both on tileP

and tileN . It is worth noting that the shared cut creates convex tiles without irregular
parts. However it should be carefully used because it tends to increase the sides of
polygons and round shapes. Sometimes the shared cut cannot be used (e.g., further
cutting of the placed tiles cannot be done due to the limit specified by the user); in
these cases the subtractive cut could be useful. It does not modify the already placed
tiles but removes part of the novel tile. As shown in Fig. 10.19 two possible cuts can
be considered along the side of the tile already placed. In order to preserve more
information and increase the possibility of satisfying all the constraints about tile
cutting, the cut removing less area is chosen. It is worth noting that the subtractive
cut gives higher importance to the already placed tiles (the orientations of their sides
are taken into account in the cutting).

Both shared and subtractive tile cuts depend on a set of thresholds detailed as
follows:

• TP , maximum percentage of total cut area, from an already placed tile.

10 Artificial Mosaic Generation 207

Fig. 10.18 Shared cut

Fig. 10.19 Subtractive cut. If both cuts satisfy the aforementioned constraints, cut (c) is chosen.
In this way a smaller area is removed from the novel tile

• SP , maximum percentage of cut area, with a single cut, from an already placed
tile; it should be noted that SP ≤ TP .

• TN , maximum percentage of total cut area, from a novel tile.
• SN , maximum percentage of cut area, with a single cut, from a novel tile; it should

be noted that SN ≤ TN .

Let AN
0 be the original tile area (i.e., the area of the rectangular shape the tile has

when it is generated) of the novel tile and AP
0 the area of the already placed tile. Let

AN
i and AP

i the corresponding tile area after the ith cut.
The tile cutting of a novel tile has to satisfy the following constraints:

AN
i − AN

i+1

AN
0

≤ SN, i = 1, . . . ,MN − 1

AN
0 − AN

MN

AN
0

≤ TN

where MN is the overall number of cuts performed on the novel tile. The tile cutting
of an already placed tile has to satisfy the following constraints:

AP
i − AP

i+1

AP
0

≤ SP , i = 1, . . . ,MP − 1

AP
0 − AP

MP

AP
0

≤ TP

where MP is the overall number of cuts performed on the already placed tile. Notice
that there is a subtractive cut if TP = 0 or SP = 0.

208 G. Puglisi and S. Battiato

10.5 Conclusions

In this chapter we review several approaches for the generation of artificial mosaics.
In particular, techniques generating mosaics resembling the ancient ones have been
considered. Finally, also some useful discussion of fundamental aspects of artificial
mosaic generations such as the choice of tile orientation, size, and shape have been
provided.

Acknowledgement We would like to thank the authors of [7, 17] and [20] for providing the
original code or the images used in this chapter.

References

1. Battiato, S., Puglisi, G.: 3D ancient mosaics. In: Proceedings of ACM Multimedia Technical
Demos (2010)

2. Battiato, S., Di Blasi, G., Farinella, G., Gallo, G.: A novel technique for opus vermiculatum
mosaic rendering. In: Proceedings of the 14th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG’06), pp. 133–140 (2006)

3. Battiato, S., Di Blasi, G., Farinella, G.M., Gallo, G.: Digital mosaic frameworks—an
overview. Comput. Graph. Forum 26(4), 794–812 (2007)

4. Battiato, S., Di Blasi, G., Gallo, G., Guarnera, G.C., Puglisi, G.: A novel artificial mosaic
generation technique driven by local gradient analysis. In: Proceedings of International Con-
ference on Computational Science (ICCS’08)—Seventh International Workshop on Computer
Graphics and Geometric Modeling (CGGM’08), vol. 5102, pp. 76–85 (2008)

5. Battiato, S., Di Blasi, G., Gallo, G., Guarnera, G.C., Puglisi, G.: Artificial mosaics by gradient
vector flow. In: Short Proceedings of EUROGRAPHICS (2008)

6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

7. Di Blasi, G., Gallo, G.: Artificial mosaics. Vis. Comput. 21(6), 373–383 (2005)
8. Du Sautoy, M.: Symmetry: A Journey into the Patterns of Nature. Harper Collins, New York

(2008)
9. Elber, E., Wolberg, G.: Rendering traditional mosaics. Vis. Comput. 19(1), 67–78 (2003)

10. Finkelstein, A., Range, M.: Image mosaics. In: Proceedings of Raster Imaging & Digital Ty-
pography (RIDT), pp. 11–22 (1998)

11. Fiorentini Roncuzzi, I., Fiorentini, E.: Mosaic: Materials, Techniques and History. MWeV
(2002)

12. Fritzsche, L., Hellwig, H., Hiller, S., Deussen, O.: Interactive design of authentic looking
mosaics using Voronoi structures. In: Proceedings of the 2nd International Symposium on
Voronoi Diagrams in Science and Engineering VD 2005 Conference, pp. 1–11 (2005)

13. Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading
(1992)

14. Hausner, A.: Simulating decorative mosaics. In: Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH’01), pp. 573–580 (2001)

15. Kim, J., Pellacini, F.: Jigsaw image mosaics. ACM Trans. Graph. 21(3), 657–664 (2002)
16. Liu, Y., Veksler, O., Juan, O.: Simulating classic mosaics with graph cuts. In: Proceedings

of Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 55–70
(2007)

17. Liu, Y., Veksler, O., Juan, O.: Generating classic mosaics with graph cuts. Comput. Graph.
Forum 29(8), 2387–2399 (2010)

10 Artificial Mosaic Generation 209

18. Mould, D.: A stained glass image filter. In: Fourteenth Eurographics Workshop on Rendering,
pp. 20–25 (2003)

19. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell.
26(11), 1452–1458 (2004)

20. Schlechtweg, S., Germer, T., Strothotte, T.: RenderBots—multi-agent systems for direct image
generation. Comput. Graph. Forum 24(2), 137–148 (2005)

21. Xu, C., Prince, L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3),
359–369 (1998)

Chapter 11
Non-photorealistic Rendering with Reduced
Colour Palettes

Yu-Kun Lai and Paul L. Rosin

11.1 Introduction

In fine art the limitations of the media often dictate that the work employs a small
number of tones or colours, e.g. pen and ink, woodblock, engraving, posters. How-
ever, artists have worked to take advantage of such restrictions, producing master-
pieces that prove that “less is more”. This chapter describes NPR techniques that
also work within the confines of a reduced palette, from the extreme case of binary
renderings to those that use a handful of tones or colours.

A reduced palette is also common in popular culture. A good example is the
iconic representational style of The Blues Brothers that has spun out of the clas-
sic cult film. Mostly dating after the film’s release, these graphics have developed
a distinctive style (see Fig. 11.1 for one that we have created). They appear to be
generated by applying some simple filters to source colour images taken from the
original film, with the processing pipeline something like the following: foreground
extraction → blurring → colour to greyscale conversion → binary thresholding →
additional manual correction. Thus, the first four steps perform abstraction, while
the last step preserves salient details and ensures that the aesthetic quality is satis-
factory.

In fact, the above exemplifies the goals of non-photorealistic rendering with re-
duced colour palettes and the steps involved. As is normal for image based NPR,
geometric abstraction is required to remove the noise and extraneous detail present
in captured images. Moreover, as the number of tones/colours decreases and the
image’s information content is further reduced, ensuring that significant details are
preserved becomes even more critical. Thus, the overall goal can be summarised as

Y.-K. Lai (�) · P.L. Rosin
School of Computer Science and Informatics, Cardiff University, Cardiff, UK
e-mail: Yukun.Lai@cs.cardiff.ac.uk

P.L. Rosin
e-mail: Paul.Rosin@cs.cardiff.ac.uk

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_11,
© Springer-Verlag London 2013

211

mailto:Yukun.Lai@cs.cardiff.ac.uk
mailto:Paul.Rosin@cs.cardiff.ac.uk
http://dx.doi.org/10.1007/978-1-4471-4519-6_11

212 Y.-K. Lai and P.L. Rosin

Fig. 11.1 An example similar to the abstracted black and white designs produced as spin-offs
from The Blues Brothers film. (Left image courtesy of Hallenser@flickr.com)

a combination of geometric and photometric abstraction along with detail preserva-
tion.

There is a large computer vision literature containing methods for processing im-
ages that could be applied to the task of simplifying the geometric and photometric
properties of images. However, when applied naïvely they tend not to be effective
for producing pleasing “artistic” renderings. For example, when a standard thresh-
olding algorithm [23] is applied to a grey level version of the image in Fig. 11.2(a)
the result is unattractive, and moreover contains blotches, speckles, and has lost
many significant details (Fig. 11.2(b)). In fact, no single threshold is sufficient to
produce a satisfactory result. Detail can be better retained if the global threshold is
replaced by a threshold surface created by interpolating local thresholds calculated
in subwindows—Fig. 11.2(c). However, a consequence is that noise and other un-
wanted detail is also increased. Alternatively, Fig. 11.2(d) shows the results of first
segmenting [9] the image, and then re-rendering the regions so that each is given
a flat colour consisting of the mean colour of that region in the source colour im-
age. Although some details and structures have been captured better, others are lost,
and the effect is unattractive. Another segmentation (using graph cuts [3]) shown in
Fig. 11.2(e) is more successful, but still contains visual clutter while losing salient
details. Using adaptive colour quantisation such as the median cut algorithm [12],
the result in Fig. 11.2(f) preserves some details, but is not aesthetically pleasing due
to the spurious boundaries caused by quantisation; a subtle change of colour may
lead to the pixel being quantised to a different colour.

Whilst describing a range of reduced palette techniques, the scope of this chapter
does not cover methods that are focussed on rendering using strokes or other small
primitives. Some of these are described in detail elsewhere in this book—stippling
and halftoning (Chap. 3), hatching (Chap. 4), pen and ink (Chap. 6), path based
rendering (Chap. 9) and mosaicing (Chap. 10)—although other highly specialised
techniques such as digital micrography [19], ASCII art [37], etc. are outside the
scope of this book. Another related but complementary topic, focussing more on the
creative use of regions, is provided in Chap. 7.

11 Non-photorealistic Rendering with Reduced Colour Palettes 213

Fig. 11.2 Unsuccessful attempts to render images using computer vision algorithms. (a) Source
colour image (courtesy of Anthony Santella), (b) image with global thresholding, (c) image with
local thresholding, (d) segmented image with regions rendered with the mean colour from the cor-
responding source colour image pixels, (e) alternative segmentation, (f) image with colour quanti-
sation using median cut (10 colours)

11.2 Binary Palettes

Converting a colour image to black and white is the most extreme version of colour
palette reduction. While it is the most challenging case, it is also the most inter-

214 Y.-K. Lai and P.L. Rosin

esting, and can potentially produce the most dramatic stylisation. Although image
thresholding has been popular in the image processing community for over 50 years,
it is only recently that it has become of significant interest to the NPAR commu-
nity. To differentiate NPAR methods from traditional thresholding algorithms, Xu
and Kaplan [35] coined the term “artistic thresholding” to describe approaches to
thresholding that try to preserve the visibility of objects and edges.

Xu and Kaplan’s [35] method starts by over-segmenting the input image, to pro-
duce small regions (i.e. superpixels), which are connected to form a region adja-
cency graph. The assignment of black or white labels to the regions will define a
binary segmentation of the image. Each region is described by a set of properties:
its average colour, area; also the lengths of the shared boundaries between adja-
cent regions are stored. Several cost functions are then designed to capture specific
aspects of a potential labelling: (1) The normalised pixelwise difference between
the binary assignment and the intensity of the source image. (2) The difference be-
tween the current proportion of black in the segmented image and a target black
proportion. (3) Two cost functions are defined to take into account the effectiveness
of the labelling of adjacent regions, since adjacent regions with contrasting colours
should be assigned opposite black and white labels, while adjacent regions with
similar colours should be assigned the same labels. They are computed using both
the difference in intensity between the labelled region and the source image pixels
and the amount of common region boundary. (4) If the image has been partitioned
into a number of high-level components then there is a cost function to encourage
a homogeneous distribution of the labels amongst these components. Finally, these
individual cost functions are combined as a weighted sum, where the weights can
be chosen to produce different artistic effects. The overall cost function is optimised
using simulated annealing. Perturbing individual region labels provides too local an
effect, and so sub-graphs of size 3–5 vertices are modified by enumerating all label
assignments and choosing the one with the lowest cost. A post-processing step tidies
up the results, applying mathematical morphology opening and closing operations
to remove small regions and increase abstraction. In addition, lines are inserted be-
tween adjacent regions if their colour difference is above a threshold. An interesting
consequence of the cost function is that segments are sometimes inverted from their
natural tone so as to maintain boundaries; see Fig. 11.3(a).

The approach by Mould and Grant [21] initialises their binary rendering using
adaptive thresholding (see Fig. 11.2(c)). Next, a cost function is minimised using the
graph cut algorithm. Let the intensity at each pixel be Ip , the local mean intensity
in the neighbourhood of pixel p be μp , and the global variation in image intensity
be σ . The basic data term is defined as the distance from the local mean,

1

2
e−(Ip−μp)2/2σ 2

This is later modified by weighting with a penalty function in an attempt to down-
weight outliers. The smoothness term has a similar form applied to image gradients,
and penalises differences in neighbouring intensities. To balance abstraction and
preservation of detail, Mould and Grant separate the image into a simplified base

11 Non-photorealistic Rendering with Reduced Colour Palettes 215

Fig. 11.3 Examples of rendering with a binary palette. (a) Xu and Kaplan [35] (courtesy of Craig
Kaplan), (b) Mould and Grant [21] (courtesy of David Mould), (c) Winnemöller [33] (courtesy of
Holger Winnemoeller), (d) Rosin and Lai [25]

layer and a detail layer. The base layer is generated by applying the graph cut algo-
rithm with the cost function modified to increase the smoothness term and decrease
the data term. For the detail layer, as well as determining black and white pixels by
adaptive thresholding, a third class is included whose intensities are as yet uncertain
(a “don’t know” class) if |Ip − μp| ≤ 0.4 × σ . The known values in the detail layer
are refined using graph cuts, and combined with the base layer by a further energy
minimisation. The cost function takes its data term values from the detail layer ex-
cept for those locations with “don’t know” labels which use the base layer energies.
The smoothness term from the detail layer is reused. This further optimisation is
only carried out in the detail region and in a 5-pixels wide band around it. Finally,
the result is tidied up by removing small isolated regions; see Fig. 11.3(b).

The Difference of Gaussians (DoG) operator that has been commonly used in
computer vision for edge detection has been extended by Winnemöller [33] to pro-
duce a filter capable of generating many styles such as pastel, charcoal, hatching,
etc. Of relevance to this section is its black and white rendering with both standard
black edges and negative white edges. The DoG is modified so that the strength

216 Y.-K. Lai and P.L. Rosin

of the inhibitory effect of the larger Gaussian is allowed to vary according to the
parameter τ :

Dσ,k,τ (x) = Gσ (x) − τ × Gkσ (x)

and the output is further modified by an adjustable thresholding function that allows
soft thresholding:

Tε,ψ(u) =
{

1 if u ≥ ε,

1 + tanh(ψ(u − ε)) otherwise

τ controls the brightness of the result and the strength of the edge emphasis, ψ

controls the sharpness of the black/white transitions, and ε controls the level below
which the adjusted luminance values will approach black. Since τ and ψ are coupled
it was found more convenient to reparameterise the filter as

Sσ,k,ρ(x) = (1 + ρ)Gσ (x) − ρ × Gkσ (x)

so that the new parameter controls just the strength of the edge sharpening effect.
For black and white images a large value of ψ is used. The DoG output contains
both minima and maxima, and so increasing their magnitude by setting large values
of ρ will encourage negative edges (i.e. white lines on a black background). To
improve the spatial coherence of the results, the isotropic DoG filter is replaced by
the anisotropic flow-based DoG [14]. See Fig. 11.3(c).

Rosin and Lai’s [25] 3-tone method described in the next section can also be
adapted to produce binary renderings. In brief, it uses the flow-based DoG to ex-
tract both black and white (negative) lines (cf. Winnemöller’s [33] approach). The
source image is thresholded, and the lines are drawn on top; see Fig. 11.3(d) and
Fig. 11.4(b).

Meng et al. [20] described a specialised method to generate paper-cuts restricted
to human portraits. These are effectively binary renderings with the extra constraint
that the black pixels form a single connected region. They use a simplified version
of the hierarchical composition model [36] which represents the face by an AND–
OR graph. Nodes in this graph represent facial components (e.g. left eyebrow, right
eye, nose); the AND nodes provide the decomposition of the face, while the OR
nodes provide alternative instances for facial components. The latter are created by
artists who manipulated photographs to extract a set of binary templates for typical
mouths, eyes, etc. which form the leaves of the AND–OR graph. Facial features
are located in the source image by fitting an active appearance model [7], and local
thresholding is applied at each feature’s bounding subwindow to produce a set of
regions (the “proposal”)

T ′ = {
nose′,mouth′, . . .

}
These features are matched using a greedy algorithm to the AND–OR graph to
minimise the following cost:

d
(
Ti,j,..., T

′)+ λc(Ti,j,...)

where

Ti,j,... = {nosei ,mouthj , . . .}

11 Non-photorealistic Rendering with Reduced Colour Palettes 217

Fig. 11.4 Examples of rendering with a binary palette. (a) Source image (courtesy of Mingtian
Zhao), (b) Rosin and Lai [25], (c) Meng et al. [20], (d) Gooch et al. [10]

denotes a set of facial component templates from the AND–OR graph that make
up a complete face, d is the distance between the template and the proposal, and c

is the number of different original paper-cut template that the selected components
are taken from. Finally, post-processing is applied to extract the hair and clothing
using graph cut segmentation, and enforce connectivity by inserting a few curves;
see Fig. 11.4(c).

Another approach that was designed and applied to faces was given by Gooch
et al. [10]. They computed brightness according to a model of human perception
involving computation of DoGs over multiple scales. A simple global threshold was
then applied, typically close to the average brightness, which produced a line-like
result. Finally, dark regions were extracted from the source intensity image by per-
forming thresholding at about 3–5 % intensity range. and combined with the lines
by a multiplication or logical AND; see Fig. 11.4(d).

Xu and Kaplan [34] describe a specialised stylistic method for rendering im-
ages as calligraphic packings in which the black regions are approximated by letters
which form one or several words. The method is limited to relatively simple images
from which a simple foreground object can be extracted. The foreground is simpli-
fied by blurring, and thresholded, to produce the “container region” in which the
letters will placed. The positions of the letters are refined using a version of Lloyd’s
algorithm: at each iteration the container is partitioned into subregions (one for each

218 Y.-K. Lai and P.L. Rosin

Fig. 11.5 Stages in calligraphic packing: source image, thresholded image, calligraphic pack-
ing [34] using text “Lose Win” (courtesy of Jie Xu)

letter), and each letter is moved to its subregion’s centroid. The letters are also scaled
to fit their subregion. The subregion boundaries are simplified using mathematical
morphology, and then the source letter templates are warped to fit their enclosing
subregions by warping individual convex subpolygons in such a manner as to max-
imise the similarity between the subregion and letter shapes; see Fig. 11.5.

Comparing the methods described above for rendering using a binary palette,
certain similarities and differences become apparent. The two basic approaches use
either filtering or perform segmentation and labelling as part of an optimisation
framework. While the former has the advantage of efficiency, the latter is more flex-
ible regarding the terms that can be incorporated into the cost function, and is able
to consider more global aspects of the rendering. As outlined in the introduction,
a combination of abstraction and detail preservation is necessary to achieve good
stylisation, and this is carried out by all the methods. For instance, lines can be ex-
tracted from the image or from the region adjacency graph, and inserted into the ren-
dering. In addition to rendering with black regions and/or lines, several approaches
take advantage of negative (white) lines to include extra information without in-
creasing the palette. In a similar manner, region tones can also be inverted. Most
of the techniques are general purpose, but a model based approach can be advanta-
geous. For instance, in the second row in Fig. 11.4(a) there is low contrast around
the woman’s chin. This causes the contour to be missed by the general methods, but
it can be captured with the facial model.

For binary rendering, one of the issues for most of the methods is to set an appro-
priate level for some thresholding or segmentation step in their processing pipeline,
and this is done either using preset values, dynamically, or manually. This setting is
most critical for a binary palette since the limited intensities mean that an error in
the setting will tend to have more drastic consequences on the results than for larger
palettes. Unfortunately, unless high-level semantics is available (e.g. in the form of
a facial model) it is not possible to expect any automatic method to work 100 %
reliably, since low level image cues such as gradient, colour, shape etc may at times
be misleading.

11 Non-photorealistic Rendering with Reduced Colour Palettes 219

11.3 Palettes with Fixed Number of Tones

While two tone rendering is probably most interesting as it reduces the palette to an
extreme and mimics some artistic forms such as pen-and-ink drawing, introducing
a small number of extra tones may be beneficial, e.g. to improve the expressibil-
ity. Similar to binary palette rendering, to achieve artistic effect, various abstraction
strategies have been proposed to remove extraneous detail, reduce the number of
tones and the complexity of shapes. However, the availability of additional tones
gives opportunities to preserve more subtle detail and gives more flexibility in deter-
mining the choice of tones, shapes of regions etc. without sacrificing recognisability.
Different algorithms are needed to handle extra tones properly to achieve a balance
of abstraction and recognisability using a combination of techniques. We focus on
techniques that produce rendering with a fixed or perceptually fixed number of tones
and cover more general rendering with variable number of tones in the next section.

Rosin and Lai [25] proposed an approach that produces a three-tone rendering
where the grey background is overlaid with a combination of dark (black) and light
(white) tonal blocks and lines. As the mid-tone is grey, both light and dark regions
can be well delineated. A multi-level adaptive thresholding [23] is used to extract
the dark and light tonal blocks which are then refined by using GrabCut [26] (an
iterative graph cut based algorithm). Lines are further extracted to make the image
more recognisable. a modified coherent line drawing algorithm by Kang et al. [13]
is used. Kang’s approach first finds a smooth edge tangent flow following the salient
image edges which is then used to produce a local edge-aware kernel, combined with
difference-of-Gaussian (DoG) and thresholding to obtain binary edge pixels that are
more coherent with dominant edges. To apply this for three-tone rendering, both
dark and light lines are extracted by using [13] both on the input image I and its in-
verse Ī . Some further improvements involve using hysteresis thresholding [4] where
edgels with intermediate strength are preserved only if there is some path connecting
them to strong edgels, and deleting small connected components. These improve-
ments lead to a cleaner edge map with less fragments and noise. Consider four set of
pixels: dark lines, light lines, dark blocks and light blocks. Each pixel can belong to
none or multiple sets. A quite sophisticated set of rules with all the 24 combinations
of set membership is introduced. The rationale is to make lines more visible when
combined with tonal blocks. So a black line over a white tonal block can be rendered
black while a black line over a black tonal block should be rendered differently (e.g.
grey) to be distinctive (see Fig. 11.6(d)). They also extended their method to ap-
ply the three-tone rendering to an image pyramid with three levels and average the
obtained image, leading to a 10-tone rendering (see Fig. 11.6(e)). Compared with
binary rendering, the additional tones allow more detail such as highlights and shad-
ows to be preserved. The results preserve more salient details and generally contain
less unimportant details than simple thresholding (Fig. 11.6(b), (c)).

Another approach to achieve a fixed number of tones is quantisation and in prac-
tice soft quantisation is often used to avoid artefacts which produces perceptually
fixed number of tones. Winnemöller et al. [32] proposed an approach for real-time

220 Y.-K. Lai and P.L. Rosin

Fig. 11.6 Examples of rendering using a palette with a fixed number of tones. (a) Source im-
age, (b) simple thresholding (3 tones), (c) simple thresholding (10 tones), (d) Rosin and Lai (3
tones) [25], (e) Rosin and Lai (pyramid: 10 tones) [25], (f) Kyprianidis and Döllner [16], (g) Olsen
and Gooch [22]. Part g: © 2011 ACM, Inc. Included here by permission

image and video abstraction. They first produced a more abstracted image by sim-
plifying the low-saliency regions while enhancing high-saliency features. They en-
hanced the image contrast by using an extended non-linear filter [2] which in the
automatic real-time scenario reduces to the bilateral filter [28] but also allows extra
saliency measures as input. This step was followed by an edge enhancement step
where a difference-of-Gaussian (DoG) filter is used for edge detection. To produce
more stylised images, such as cartoon or paint-like effects, they used an optional
colour pseudo-quantisation step to reduce the number of tones. For each channel, q

11 Non-photorealistic Rendering with Reduced Colour Palettes 221

(typically 8–10) equal-sized bins are chosen. If hard quantisation were used, a max-
imum of q3 tones would be produced. To improve the time coherence for videos,
their approach was instead a soft quantisation, so the exact number of tones may be
more but remains perceptually similar. For each pixel location x̂, assume the chan-
nel value is f (x̂), the nearest bin boundary is qnearest, and
q is the bin size, the
quantised value is calculated as

Q(x̂, q,ϕq) = qnearest +
q

2
tanh

(
ϕq · (f (x̂) − qnearest

))
where tanh(·) is a sigmoid (smooth step) function, ϕq controls how sharp the step
function is. A fixed ϕq would create transition boundaries in regions with large
smooth transitions. An adaptive approach was proposed instead to use larger ϕq for
pixels where the local luminance gradient is large. The soft quantisation improves
time coherence and thus reduces flickering in video stylisation.

Kyprianidis and Döllner [16] proposed an approach based on a similar frame-
work, and soft quantisation as in [32] is used to produce a more stylised effect.
Before that, the image abstraction is instead obtained by adapting the bilateral fil-
ter (for region contrast enhancement) and DoG (for edge enhancement) guided by
a smoothed structure tensor. The input image is treated as a mapping f : (x, y) ∈
R

2 → (R,G,B) ∈ R
3, where (x, y) is the pixel coordinate and (R,G,B) is the

vector comprising three colour components. The directional derivatives (Sobel op-
erators) in x and y directions are: ∂f

∂x
= (∂R

∂x
∂G
∂x

∂B
∂x

)T , ∂f
∂y

= (∂R
∂y

∂G
∂y

∂B
∂y

)T . Denote

the Jacobian matrix (
∂f
∂x

,
∂f
∂y

) as J and the structure tensor is computed as

(gij) = J T J =
⎛
⎝

∂f
∂x

· ∂f
∂x

∂f
∂x

· ∂f
∂y

∂f
∂x

· ∂f
∂y

∂f
∂y

· ∂f
∂y

⎞
⎠

J T J is a symmetric positive semi-definite matrix and assume λ1 ≥ λ2 ≥ 0 are two
eigenvalues and v1 and v2 are corresponding eigenvectors. v1 shows the direction
with the maximum rate of change and v2 the minimum. So the direction field de-
rived from v2 follows the local edge direction. To improve smoothness and reduce
discontinuities, a Gaussian smoothing operator on the local structure tensor is ap-
plied before eigen decomposition. An example is shown in Fig. 11.6(f). Details as
well as the original tones are largely preserved. Region boundaries are generally
smooth due to the soft quantisation.

In the settings of image simplification and vectorisation, Olsen and Gooch [22]
proposed an approach to produce stylised images with three-tone rendering using
soft and hard quantisation. The stylisation helps to reduce the complexity of images
and make it effective in vectorisation. Their method worked on greyscale images and
started with similar blurring and unsharp masking to suppress low-saliency regions
and enhance significant features. The object boundaries were then simplified using
line integral convolution guided by a smoothed edge orientation field as in [16].
After that, a piecewise linear intensity remapping is applied to increase the contrast.
A soft quantisation approach was then used, similar to [32] but more flexible as the
bins do not need to be equal-sized. Assume feature (bin centre) values for all the bins

222 Y.-K. Lai and P.L. Rosin

are b = (b1, b2, . . . , bn), where n is the number of bins. For an arbitrary intensity
value v, it is first clamped to the range of [b1, bn]. Then assuming for some j ,
v ∈ [bj , bj+1], the width wj and vertical shift cj are defined as wj := 1

2 (bj+1 − bj)

and cj := 1
2 (bj+1 − bj) respectively. The soft quantised output p is then defined as

p(v, s) := wj

sig(s
wj

(v − cj))

sig(s)
+ cj

where sig is a sigmoid function. The formula ensures C0 continuity and since

p′(cj , s) = s×sig′(0)
sig(s)

, the derivative (sharpness) at the midpoint between two regions
is solely determined by the parameter s, regardless of the bin size. As a vectorisa-
tion method, the three-tone regions are further traced and boundaries smoothed to
obtain a compact representation. An example is shown in Fig. 11.6(g). The result
looks more stylised as the region boundaries are smoothed.

From this section we see that to obtain renderings with a fixed number of tones,
two general approaches are considered. The fixed number of tones can be a natural
result of some generating model, such as combining multiple layers of rendering,
mimicking the art forms of e.g. charcoal and chalk. Another general approach is
to use (soft) quantisation. Using quantisation alone is usually not sufficient as it
can easily mix the salient features with extraneous detail, but it can be an effective
way of making the intermediate results more artistically appealing. This technique
is typically combined with algorithms such as image filtering that produce smooth
but abstracted rendering to produce a cartoon-like flat shading.

11.4 Palettes with Variable Number of Tones

Image rendering with reduced but a variable number of tones is useful to achieve
paint-like flat rendering, thus removing the non-essential detail. Segmentation is
often used to find regions with homogeneous colours. A simple but widely used
strategy is to use a flat colour for each region. A further improvement involves ma-
nipulating the tones and regions to enhance the stylisation. For segmentation based
stylisation of videos, special attention needs to be paid to ensure temporal coher-
ence. Alternative approaches to achieve fewer tones include image filtering or can
be formulated as an energy optimisation problem. An example of a variable number
of fixed tones produced by a GIMP cartoon filter plug-in1 is given in Fig. 11.7(b).

11.4.1 Stylisation Using Segmentation

Segmentation is often used to produce stylised images with flat colours. Examples
shown in Fig. 11.2(d), (e) demonstrate that traditional image segmentation tech-
niques may not be ideal for stylisation.

1Many cartoon effect filters are available for GIMP—we have used CarTOONize by Joe1GK.

11 Non-photorealistic Rendering with Reduced Colour Palettes 223

Fig. 11.7 Examples of rendering using a palette with a variable number of tones. (a) Source
image (courtesy of Anthony Santella), (b) result using GIMP cartoon filter, (c) DeCarlo et al. [8],
(d) Song et al. [27] (courtesy of Yi-Zhe Song), (e) Zhang et al. [39] (courtesy of Song-Hai Zhang),
(f) Weickert et al. [30], (g) Kyprianidis et al. [17] (courtesy of Jan Eric Kyprianidis), (h) Xu et
al. [38]. Part c: © 2002 ACM, Inc. Included here by permission

224 Y.-K. Lai and P.L. Rosin

DeCarlo and Santella [8] proposed an approach that renders abstracted and
stylised images based on eye tracker data such that regions receiving more atten-
tion are better preserved. The method starts with a hierarchical image segmentation
to build a region hierarchy. The input image is repeatedly down-sampled to form
an image pyramid. The image at each resolution is segmented individually using an
existing method. Following scale-space theory, the regions at finer scales tend to be
included within regions at the coarser scales. A region hierarchy is formed using a
bottom-up merging process. Starting from the regions at the finest scale, treat each as
a leaf node, proceed up the pyramid until reaching the coarsest level. At each level,
a finer region is generally assigned to the parent region with the most significant
overlap as long as this does not violate the tree (hierarchical) structure. To render
the image in a more abstracted and stylised manner, for areas receiving more atten-
tion, more detail needs to be preserved, thus finer regions in the hierarchy should
be used. Similarly, coarser regions should be used for areas with less attention. This
effectively defines a frontier, a separation of the tree structure determining whether
a branch or its children nodes should be used for rendering. Since region boundaries
are determined by the finest level segmentation, region boundaries are smoothed by
treating them as a curve network and the interior nodes are smoothed using low-pass
filtering while keeping the branching nodes fixed. The final rendering is obtained by
showing the average colour for each region. Selected smoothed lines are overlaid if
the boundary lines belong to the frontier and they are sufficiently long with respect
to the fixation. The line thickness is also determined by the length, with longer lines
being thicker. An example is shown in Fig. 11.7(c); effective abstraction is obtained,
but this also requires eye tracking data as input.

Although a vast literature exists for image and video segmentation, it remains
particularly challenging to obtain semantically meaningful regions. An alternative
approach is to use some interactive segmentation instead. The work in [31] for
colour sketch generation starts from the mean-shift image segmentation [6]. They
then designed a user interface to allow users to merge and split regions as well as
editing region boundaries. The tones and shapes of regions are then manipulated to
further enhance the stylisation. More detail is given in the next subsection.

11.4.2 Tone and Region Manipulation

Whilst it is natural to take the mean colour of a region to achieve abstraction, the
results may not be sufficiently stylised. In an effort to learn the artist’s experience
of choosing appropriate colours, Wen et al. [31] further consider applying learning
based colour shift to each region. The training data involve a set of regions from
some training images, with their average colour Ok and artist painting colour Pk ,
both vectors in a perceptually uniform (hue, chroma, value) colour space. For each
region Ri in the current image with M regions, N candidate colours are obtained
from the training set such that the hue is similar (within a difference threshold) and
chroma and value are as close as possible. A graph is then built treating each region

11 Non-photorealistic Rendering with Reduced Colour Palettes 225

as a vertex. An edge is created for an adjacent pair of regions or regions with similar
colours. Edges between a foreground region and a background region are excluded,
making it two separated graphs. Following the artist’s experience, different rules are
applied for foreground and background regions. The heuristics are then formulated
as an energy minimisation problem, considering all the following: For example,
background regions tend to have the same colour as the training region with similar
colour, area and perimeter. Non-adjacent background regions with similar colour
tend to be coloured the same. Foreground regions often have increased chroma and
value but also adjacent and homogeneous foreground regions tend to preserve the
original chroma and value contrast, etc.

Instead of requiring example pairs of original and artistic colours as training data,
Zhang et al. [39] take a reference video or reference colour distribution as input and
adjust the region colour from a simple average to follow the style of the reference.
HSV colour space is used. The hue is adjusted using mean shift [6] and the saturation
and value are adjusted using some linear scaling. Ignoring the pixels with low S
and/or V, for the reference video, the following are calculated: the colour histogram
for the H channel, the mean μS and standard deviation σS for the S channel, and
the mean μV for the V channel. For the current input frame, assuming μs , σs and
μv are defined similarly and computed based on the whole frame. (h, s, v) is the
average colour of a region being considered, and (h′, s′, v′) is the adjusted colour.
h′ is obtained by updating h using mean shift for a few iterations:

h ⇐
∑

c∈N(h) cD(c)∑
c∈N(h) D(c)

where N(h) represents 30◦ neighbourhood in the reference histogram, and D(c)

is the corresponding histogram entry. s′ and v′ are adjusted to match the overall
saturation and value:

s′ = μS + (s − μs)
σS

σs

, v′ = v

(
λ + (1 − λ)

μV

μv

)

where λ is a parameter balancing the brightness variation between the input and the
reference. To improve temporal coherence, the adjusted colour is further blended
across time.

The region boundaries may also be manipulated to enhance artistic styles. To
simulate artistic sketching, Wen et al. [31] observe that regions do not entirely fill
the image and more specifically light pixels close to boundaries are shrunk leav-
ing white blanks to emphasise the shading. For each region, the boundary is first
smoothed and then down-sampled to obtain a list of control points. Each control
point is then adjusted individually. For a control point P0, the closest opposite
boundary point along the normal direction is denoted as P1. N points are evenly
sampled along P0P1. A weight is assigned for each point Xk as Wk = 1 − Ik where
Ik is the intensity at pixel Xk . This gives more weight to darker pixels. Two centres
are then calculated, a geometric centre Pc as the average of all the coordinates Xk

and a weighted centre Pw with Wk as the weight. If more dark pixels exist closer

226 Y.-K. Lai and P.L. Rosin

to P1, i.e. d = ‖P0Pw‖ − ‖P0Pc‖ > 0, P0 is moved by d along the normal direc-
tion and otherwise no adjustment is needed for P0. Self-crossing generated in this
process is detected and resolved using heuristics.

Instead of using regions directly obtained from segmentation, the work by Song
et al. [27] considers extreme abstraction by replacing each region with some more
abstracted shape (see Fig. 11.7(d) for an example). The algorithm starts by seg-
menting the image into regions using existing methods. Each region can be fitted
with various primitives and the following are considered: circles, rectangles, trian-
gles, superellipses and robust convex hull. Specifying the appropriate type of shape
primitive is time-consuming as there may exist a large number of regions. Since
aesthetics is a subjective judgement, a supervised learning approach is used. Re-
gions in the training set are obtained by segmenting selected images. Each region
used in the training set is manually labelled to indicate the ideal primitive type and
a feature vector is extracted consisting of the errors between the region and fitted
shape of each type. These are fed into a C4.5 decision tree [24]. For a new input im-
age, they first segment the image into two levels of details (by changing the number
of regions). Regions are rendered using the flat mean colour. Coarse-level regions
are rendered first. Fine-level regions are rendered on top of that if the difference
between the fine-level region and pixels underneath are larger than some threshold
(measured in L2 difference in the CIELab colour space). This provides a balance
between abstraction (using large regions) and recognisability (using small regions).
For regions with the same level of detail, shapes are rendered in descending order
of approximation error compared with the regions they represent.

These tone and region manipulation techniques can in principle be combined
with other colour palette reduction approaches to produce more stylised rendering.

11.4.3 Temporally Coherent Stylisation Using Segmentation

Segmentation based stylisation can also be used for video rendering. In this case,
temporal coherence is essential.

Zhang et al. [39] propose a system for automatic on-line video stylisation. Their
approach also uses segmentation and flat colour shading to produce artistic effect. In
this case temporal coherence is essential to avoid flickering. To ensure real-time per-
formance on live video streams, the algorithm works on individual frames. The first
frame is segmented using some image segmentation algorithm. For each subsequent
frame, as edges give important information for regions, the Canny edge detector [4]
is used to extract the edge map. To balance abstraction with recognisability, impor-
tant areas such as human faces need more regions to be well represented. This is
accomplished by using a face detector and applying a smaller threshold for edge
detection, leading to more detailed edges in these areas. To preserve coherence be-
tween frames, segmentation labels are propagated from the previous frame using
optical flow. This gives for each source pixel in the previous frame a corresponding
target pixel. Not all the pixels in the current frame receive consistent labels from

11 Non-photorealistic Rendering with Reduced Colour Palettes 227

propagation. The target pixel will remain unlabelled if any of the following con-
ditions is true: either the colour difference between the target and source pixels is
above some threshold, or the target pixel has none or multiple source pixels asso-
ciated. The propagated labels are often noisy and a morphological filter is applied
to improve the regions by updating the label of a pixel based on its eight connected
neighbours: if the current pixel is either unlabelled or consistent with the labels
of more than half of its neighbours, it obtains/keeps this label and otherwise it is
marked unlabelled. Unlabelled pixels are assigned to adjacent regions if they have
consistent colours. The remaining pixels are treated as belonging to new regions and
a trapped-ball segmentation is applied. This strategy deals with video shot change
as a large number of pixels will be unlabelled and thus a new segmentation applied.
An example where this technique is applied to an image is shown in Fig. 11.7(e).

Another technique related to segmentation based stylisation is rotoscoping, used
for generating cartoon-like videos. To obtain high-quality temporally coherent re-
gions, user assistance is often needed. Agarwala et al. [1] proposed a system for
rotoscoping based on interactive tracking. Users are asked to draw a set of curves
for a pair of keyframes. The rotoscoping curves are then interpolated between
these frames. The interpolation needs to take into account smoothness of the curve,
smooth transition over time, and consistency with underlying image transitions. This
is formulated as an energy minimisation problem with five terms (three shape terms
and two image terms) and the obtained non-linear least squares problem is solved
using the Levenberg–Marquardt (LM) algorithm. Interpolated rotoscoping curves
may also be edited if users prefer. Smoothly changing rotoscoping curves allow var-
ious rendering styles, including cartoon-like flat shading or brush strokes following
the curve evolution.

Wang et al. [29] also propose an interactive system for rotoscoping based video
tooning. The user input is similar: the user needs to draw a few curves in keyframes
to roughly indicate the semantic regions. Keypoints on these curves are also speci-
fied, indicating the correspondences. For time coherence, they instead treat the video
as a 3D volume of pixels and a 3D generalisation of the mean-shift algorithm is first
applied. The curves drawn by the user are then used to guide the merging of 3D
segments. Assume a pair of loops L(k1) and L(k2) are specified in frames k1 and
k2 respectively. S(k1) and S(k2) indicate segments that each have the majority of
their pixels located within loops L(k1) and L(k2) in the corresponding frame re-
spectively. For intermediate frame t , k1 < t < k2, to produce closed regions, pixels
fully surrounded by pixels in S(k1)∪S(k2) are also included and after that segments
with the majority of their pixels included form a set S∗. Within each frame t , S∗
indicates a mean-shift suggested boundary Lms(t). Simple linear interpolation also
produces a boundary Ls(t). An optimisation approach is then used, iteratively de-
forming Ls(t) to be closer to Lms(t) while preserving smoothness. After mapping
keypoints from user drawn curves to the deforming curve using local shape descrip-
tors, the deformation is formulated as an energy minimization with two terms. For
two adjacent frames, the first term Esmooth measures the change in movement of
each control point as well as the vector between adjacent keypoints and thus prefers
consistent and stable transitions. The second term simply measures the distance be-
tween corresponding control points of LS(t) and Lms(t). This iterates until the local

228 Y.-K. Lai and P.L. Rosin

minimum is reached. In addition to 3D regions, boundaries between them also form
3D edge sheets. When the video is rendered, the 3D regions and edge sheets are in-
tersected with the frame to form a 2D image. The region is rendered in a flat colour
and the strength of edges is determined by a few factors such as time in the frame
sequence, or the location on the intersected curve and motion.

11.4.4 Abstraction Using Filtering

Filtering, in particular anisotropic filtering, is an effective approach for image
abstraction. Although not guaranteed, in practice, certain filters tend to produce
stylised rendering with reduced palettes. Detailed discussion about filtering is given
in Chap. 5, and in this section we only focus on its application for reduced palette
rendering.

Anisotropic diffusion has been studied in the image processing community for a
long time. Although it was not directly considered for the application of NPR, such
techniques can actually produce reasonable stylisations. An example produced by
Weickert et al. [30] is given in Fig. 11.7(f). Assume f (x) represents an image with
x represents the coordinate of a pixel. u(x, t) is a filtered image, with t being a scale
parameter, conceptually as time. u(x, t) is the solution of the diffusion equation

∂tu = div
(
g
(|∇uσ |2)∇u

)
with the boundary conditions u(x,0) = f (x), ∂nu = 0 for boundary pixels where n

is the normal direction to the boundary. ∇uσ is the gradient of u after smoothing by
a Gaussian kernel with σ being the standard deviation. g(s) is a non-linear function
for anisotropic diffusion. If s is close to zero, g(s) is close to 1, and g(s) drops with
increasing s. This ensures that diffusion is less likely to cross high gradient pixels
which tend to be region boundaries.

More recently, Kyprianidis et al. extend Kuwahaha filter with anisotropic ker-
nels derived from structure tensor, similar to [16] (see Fig. 11.7(g) for an example).
Their experiments demonstrate that sufficiently abstracted results are obtained, even
without further quantisation. A further improvement [15] has later been proposed to
strengthen the abstraction while avoiding some artefacts, by using an image pyra-
mid, and propagates from coarse to fine orientation estimates and filtering results.

11.4.5 Reduced Tone Rendering Using Optimisation

Unlike most segmentation techniques where regions are obtained first, followed by
an estimation of the representative colour for each region, it is possible to formulate
both region segmentation and colour estimation in a uniform energy minimisation
formulation. Xu et al. [38] propose an approach that aims at finding an optimal
output image S for an input image I such that S contains as little change as possible

11 Non-photorealistic Rendering with Reduced Colour Palettes 229

while close to I . Assume ∂xSp and ∂xSp represent the colour difference around
pixel p between adjacent pixels in the x and y directions, respectively. The energy
to be minimised is represented as

E(S) =
∑
p

(Sp − Ip)2 + λC(S)

where λ is a weight balancing the two terms. The first term ensures S is as close
to I as possible, and C(S) is the count of non-zero elements (a.k.a. L0 norm) and
defined as

C(S) = #
{
p | |∂xSp| + |∂ySp| �= 0

}
is the number of elements in the set. This formulation naturally leads to a reduced
palette rendering as the number of colour changes is minimised. An example of L0
energy minimisation is given in Fig. 11.7(h). This approach is nicely formulated,
however, it is an NP-hard problem to find the global optimum, and therefore in
practise only an approximate solution is achieved [38].

While a variety of methods have been proposed for rendering with a variable
number of tones, the use of a relatively small number of tones naturally leads to
flat-shaded regions. However, these regions may be explicitly calculated or implic-
itly obtained. Explicit approaches use segmentation to obtain regions and assign an
appropriate tone to each region. Although image segmentation has been studied for
decades, it is still challenging in practice to obtain aesthetically pleasing render-
ing for various input images, especially when a smaller number of regions is used.
In many cases, additional input is resorted to, such as eye tracking data and user
interaction. Unlike the filtering based approaches, when video is stylised, special
care needs to be taken to ensure temporal coherence. Approaches proposed involve
propagation of segmentation labels along adjacent frames or treating the temporal
sequence of 2D frames as a 3D volume. Alternatively, implicit approaches do not
calculate regions directly; they are rather by-products of tone reduction process. Im-
age filtering (in particular anisotropic filtering) based approaches cannot guarantee
to reduce the number of tones and thus are often combined with (soft) quantisation.
However, certain filtering methods can directly obtain sufficient abstraction with
perceptually reduced number of tones. Another implicit approach, which is studied
more recently, is to formulate the reduced tone rendering as an energy minimisa-
tion problem. While obtaining regions explicitly seems to require more effort and is
more error prone as inappropriate segmentation may lead to loss of essential detail
or distracting region boundaries, these methods naturally have more flexibility in
manipulating the regions, by adjusting the tones and/or region boundaries.

11.5 Pre-processing

As part of the image stylisation pipeline it is often useful to apply various pre-
processing steps to improve the suitability of the image for rendering. Previous

230 Y.-K. Lai and P.L. Rosin

sections have already mentioned the application of filtering to remove noise and
perform abstraction. Likewise, there are other pre-processing algorithms that, while
they have not necessarily been applied yet in the context of reduced palette render-
ing, could be usefully incorporated. Examples include: saliency detection to control
levels of abstraction [8]; colourimetric correction to provide color constancy which
will ensure more consistent and correct palettes; colour harmonisation to produce
more attractive palettes [5]; depth estimation to control relighting and other stylisa-
tion effects [18]; intrinsic image decomposition to extract shading and reflectance
from an image to enable rendering to better capture the underlying scene character-
istics, conversion from a colour image to greyscale whilst attempting to preserve the
colour contrast in the greyscale image [11].

We demonstrate the effect of the last example in Fig. 11.8. This is especially
critical for rendering with a binary palette since limiting the final colours to just
black and white means the standard colour to greyscale conversion method (a simple
weighted combination of the three colour channels) is prone to missing detail that is
more easily retained when a larger palette is available. The conversion that preserves
colour contrast (Fig. 11.8(c)) has retained a much higher contrast between the aero-
plane and the background foliage compared to the standard colour to greyscale con-
version (Fig. 11.8(b)). This subsequently enables the intensity thresholding step in
Rosin and Lai’s [25] rendering pipeline to achieve a better foreground/background
separation (see Fig. 11.8(d), (e)).

11.6 Conclusions

This chapter has described techniques for transforming a colour or grey level image
into a reduced palette rendering for artistic effect. Although there is a large vari-
ety of techniques and stylisations (see Figs. 11.9, 11.10, 11.11 for more rendering
examples), it is evident that there are several common elements in the rendering
pipelines. First, some degree of abstraction should be performed, otherwise a pixel-
wise recolouring will tend to result in noisy, fragmented and unartistic renderings.
Second, detail needs to be preserved or re-inserted, since the reduced palette and
the abstraction tends to remove salient features that are necessary to fully recog-
nise important aspects of the image/scene. Third, for arbitrary images determining
the palette boundaries is non-trivial, and most algorithms are liable to make errors
at least occasionally. Therefore some techniques use a soft thresholding approach
which reduces the visual impact of such palette boundary errors, and has a stabilis-
ing effect which will increase temporal coherence for video stylisation.

We note that for the different classes of reduced palettes that have been discussed
in this chapter, the smaller the palette, the greater the variety in the stylisations. This
can be explained by the fact that large palettes enable the renderings to reproduce the
original image more faithfully (while still incorporating subtle stylistic differences)
than smaller palettes such as the two tone rendering. Since the latter is not aiming
for fidelity, it uses relatively extreme stylisation techniques such as region and line
tone inversions that are not seen in large palette renderings.

11 Non-photorealistic Rendering with Reduced Colour Palettes 231

Fig. 11.8 Effects of image pre-processing before stylisation. (a) Source image (courtesy of Arm-
chair Aviator@flickr.com), (b) standard colour to greyscale conversion, (c) colour contrast pre-
serving colour to greyscale conversion [11], (d) Rosin and Lai’s [25] two tone rendering of (b),
(e) Rosin and Lai’s [25] two tone rendering of (c)

The results presented in this chapter show that many reduced palette rendering
methods are available and capable of achieving effective stylised effects. However,
in the literature they tend to be demonstrated on good quality images and systematic
evaluation is limited (see Chap. 15 and Chap. 16). Therefore it is not easy to deter-
mine the reliability of the techniques, or the effect of applying them to images with
varying resolution, foreground/background characteristics, colour/intensity distri-
butions, etc. Nevertheless, even if it is difficult to develop general purpose methods
that are guaranteed a 100 % success rate on arbitrary images, this does not exclude

232 Y.-K. Lai and P.L. Rosin

Fig. 11.9 Examples of rendering with various styles. (a) Xu and Kaplan [35] (courtesy of Craig
Kaplan), (b) Winnemöller [33] (courtesy of Holger Winnemoeller), (c) Rosin and Lai [25] (3
tones), (d) Rosin and Lai [25] (pyramid: 10 tones), (e) Song et al. [27] (courtesy of Yi-Zhe Song),
(f) Zhang et al. [39] (courtesy of Song-Hai Zhang), (g) Kyprianidis and Döllner [16] (courtesy of
Jan Eric Kyprianidis), (h) Kyprianidis et al. [17] (courtesy of Jan Eric Kyprianidis)

11 Non-photorealistic Rendering with Reduced Colour Palettes 233

Fig. 11.10 Examples of rendering with various styles. (a) Source image (courtesy of Philip Green-
spun), (b) Xu and Kaplan [35] (courtesy of Craig Kaplan), (c) Winnemöller [33] (courtesy of Hol-
ger Winnemoeller), (d) Rosin and Lai [25], (e) Zhang et al. [39] (courtesy of Song-Hai Zhang),
(f) Wen et al. [31] (created by Fang Wen; copyright Microsoft Research China. Included here by
permission), (g) Song et al. [27] (courtesy of Yi-Zhe Song), (h) Kyprianidis et al. [17] (courtesy of
Jan Eric Kyprianidis)

them from practical applications if some manual interaction is allowed. For instance,
the complete 2006 film ‘A Scanner Darkly’ was rendered using a reduced palette:
regions were rendered with flat colours, and some linear features were included.
This stylisation was an extremely time-consuming task since all the keyframes were
rotoscoped (i.e. hand-traced on top of the source film). However, the state of the art
is now at a stage where a much less user intensive, semi-automatic solution would
be possible. An alternative solution to improving performance is to design methods

234 Y.-K. Lai and P.L. Rosin

Fig. 11.11 Examples of rendering with various styles. (a) Source image (courtesy of
PDPhoto.org), (b) Mould and Grant [21] (courtesy of David Mould), (c) Winnemöller [33] (cour-
tesy of Holger Winnemoeller), (d) Rosin and Lai [25], (e) Kyprianidis and Döllner [16] (courtesy
of Jan Eric Kyprianidis), (f) Song et al. [27] (courtesy of Yi-Zhe Song)

for specialised domains, which are then able to use domain specific knowledge and
constraints to overcome limitations in the data (noise, ambiguities, missing data).
An example given in this chapter is the paper-cut rendering by Meng et al. [20] that
used a facial model.

http://PDPhoto.org

11 Non-photorealistic Rendering with Reduced Colour Palettes 235

Until recently rendering using a binary palette was an underdeveloped topic,
which may explain the recent surge of interest in developing such techniques. As
the reduced palette techniques mature it is likely that there will be a trend to video
stylisation, especially since related methods for ensuring temporal coherence have
been developed for a variety of other stylisation effects (see Chap. 13). Further di-
rections in the future will be to apply reduced palette rendering to a wider range
of data types, such as 3D volumetric data, image plus range data (e.g. the Kinect),
stereo image/video pairs, low quality images (e.g. mobile phones), etc.

References

1. Agarwala, A., Hertzmann, A., Salesin, D., Seitz, S.M.: Keyframe-based tracking for rotoscop-
ing and animation. ACM Trans. Graph. 23(3), 584–591 (2004)

2. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smooth-
ing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004)

3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimisation in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137
(2004)

4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8, 679–698 (1986)

5. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Trans.
Graph. 25(3), 624–630 (2006)

6. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal.
Mach. Intell. 23(6), 681–685 (2001)

8. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph.
21(3), 769–776 (2002)

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Com-
put. Vis. 59(2), 167–181 (2004)

10. Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: creation and psychophysical
evaluation. ACM Trans. Graph. 23(1), 27–44 (2004)

11. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2Gray: salience-preserving color re-
moval. ACM Trans. Graph. 24(3), 634–639 (2005)

12. Heckbert, P.: Color image quantization for frame buffer display. In: Proc. ACM SIGGRAPH,
pp. 297–307 (1982)

13. Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: ACM Symp. Non-photorealistic
Animation and Rendering, pp. 43–50 (2007)

14. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput.
Graph. 15(1), 62–76 (2009)

15. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering.
In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, pp. 55–64 (2011)

16. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: EG UK
Theory and Practice of Computer Graphics, pp. 51–58 (2008)

17. Kyprianidis, J.E., Kang, H., Döllner, J.: Image and video abstraction by anisotropic Kuwahara
filtering. Comput. Graph. Forum 28(7), 1955–1963 (2009)

18. Lopez-Moreno, J., Jimenez, J., Hadap, S., Reinhard, E., Anjyo, K., Gutierrez, D.: Stylized
depiction of images based on depth perception. In: ACM Symp. Non-photorealistic Animation
and Rendering, pp. 109–118. ACM, New York (2010)

236 Y.-K. Lai and P.L. Rosin

19. Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. ACM
Trans. Graph. 30(4), 100 (2011)

20. Meng, M., Zhao, M., Zhu, S.C.: Artistic paper-cut of human portraits. In: 18th Int. Conf. on
Multimedia, pp. 931–934 (2010)

21. Mould, D.: A stained glass image filter. In: Eurographics Workshop on Rendering Techniques,
pp. 20–25 (2003)

22. Olsen, S.C., Gooch, B.: Image simplification and vectorization. In: ACM Symp. Non-
photorealistic Animation and Rendering, pp. 65–74 (2011)

23. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man
Cybern. 9, 62–66 (1979)

24. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
25. Rosin, P.L., Lai, Y.K.: Towards artistic minimal rendering. In: ACM Symp. Non-photorealistic

Animation and Rendering, pp. 119–127 (2010)
26. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using

iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)
27. Song, Y., Hall, P., Rosin, P.L., Collomosse, J.: Arty shapes. In: Proc. Comp. Aesthetics, pp. 65–

73 (2008)
28. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846

(1998)
29. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–

583 (2004)
30. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for

nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)
31. Wen, F., Luan, Q., Liang, L., Xu, Y.Q., Shum, H.Y.: Color sketch generation. In: ACM Symp.

Non-photorealistic Animation and Rendering, pp. 47–54 (2006)
32. Winnemöller, H., Olsen, S., Gooch, B.: Real-time video abstraction. ACM Trans. Graph.

25(3), 1221–1226 (2006)
33. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an extended difference-of-Gaussians

compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012)
34. Xu, J., Kaplan, C.S.: Calligraphic packing. In: Graphics Interface 2007, pp. 43–50 (2007)
35. Xu, J., Kaplan, C.S.: Artistic thresholding. In: ACM Symp. Non-photorealistic Animation and

Rendering, pp. 39–47 (2008)
36. Xu, Z., Chen, H., Zhu, S.C., Luo, J.: A hierarchical compositional model for face representa-

tion and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)
37. Xu, X., Zhang, L., Wong, T.T.: Structure-based ASCII art. ACM Trans. Graph. 29(4), 52:1–

52:9 (2010)
38. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans.

Graph. 30(6), 174 (2011)
39. Zhang, S.H., Li, X.Y., Hu, S.M., Martin, R.R.: Online video stream abstraction and stylization.

IEEE Trans. Multimed. 13(6), 1286–1294 (2011)

Chapter 12
Artistic Rendering of Portraits

Mingtian Zhao and Song-Chun Zhu

12.1 Introduction

Portraiture, the artistic representations of the appearances and expressions of human
faces, is one of the oldest and most popular genres in visual arts. Generally there are
two essential factors to consider in creating a portrait.

• The first factor is face fidelity. A portrait should preserve a certain amount of the
original face’s information, ensuring that not only can it be recognized as a face
picture, but there is also an appropriate level of similarity in the perception of the
appearance or character of the person in the portrait to the actual person or to the
person shown in a photograph.

• The second factor is the artistic style of the portrait picture, chosen to simu-
late different media such as sketch, painting, paper-cut, and caricature. These
styles/forms provide unique dictionaries of visual elements used to express the
various facial structures and appearances.

These two factors vary with different ages and genres of portraiture, revealing its
two principles, namely the pursuits of likeness and aesthetic. For example, before
the invention of photography in the 19th century, the mainstream artists pursued ac-
curate likeness by studying the structure of bones and muscles beneath the facial
skin, practicing their skills on depicting them, developing pigments made from var-
ious materials, and even using external tools such as mirrors and pinhole imaging
to improve the fidelity. Nowadays, with the popularity of digital cameras, perfect fi-
delity is easily available, but many modern portrait artists usually depict only rough
or even distorted likeness. Instead, they resort to new styles and techniques to evoke

M. Zhao (�) · S.-C. Zhu
University of California, Los Angeles, CA 90095-1554, USA
e-mail: mtzhao@ucla.edu

S.-C. Zhu
e-mail: sczhu@stat.ucla.edu

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_12,
© Springer-Verlag London 2013

237

mailto:mtzhao@ucla.edu
mailto:sczhu@stat.ucla.edu
http://dx.doi.org/10.1007/978-1-4471-4519-6_12

238 M. Zhao and S.-C. Zhu

strong psychological and emotional reactions in the audience, demonstrating the
sense of aesthetic.

These two factors/principles also apply to computerized artistic rendering of
portraits—the simulation of portraiture on the computer. From an image analysis
and synthesis perspective, using W to denote the facial information and Δ to denote
the elements to compose an image, a natural image (photograph) IN is generated
with

IN = f (WN;ΔN) (12.1)

and in a similar way, an artistic portrait IA can be synthesized with

IA = g(WA;ΔA) (12.2)

where f and g are image generating functions (rendering processes). Interestingly,
Eqs. (12.1), (12.2) differ in all their three aspects:

• WN �= WA. The facial information W usually contains features such as geometry
(2D or 3D), appearance, texture, color, and illumination. To generate a realistic
photograph, WN should usually approximate the truth very closely. In contrast,
WA often only captures part of the information interesting to artistic perception,
which is regarded as the essence of a face by many artists.

• ΔN �= ΔA. In the image analysis and computer vision literature, ΔN is usually
modeled with PCA, wavelets like Gabor bases, image patches, etc. ΔA, however,
is usually a dictionary of graphical elements used in creating artworks, for exam-
ple, graphite sketches, paint brush strokes, etc.

• f �= g. While f is usually a simple linear combination of the image elements,
the portrait rendering process g can be a much more complex process involving
content-oriented algorithms for manipulating the sketches, strokes, etc.

In the non-photorealistic rendering (NPR) [7] literature, there are plenty of studies
on computerized artistic portrait rendering with different implementations of WA

and g(·;ΔA), corresponding to likeness and aesthetic, respectively.

• To preserve the facial fidelity, existing portrait rendering methods adopt different
models and data structures to represent selected geometry and appearance fea-
tures in WA.

• To simulate different artistic styles, existing methods use different dictionaries
of graphical elements, which are maintained in ΔA, and corresponding composi-
tional algorithms, g.

In the rest of this chapter, we review the latest artistic portrait rendering methods
and their respective implementations of the two factors. We organize these methods
by the four most studied types of portrait in NPR: sketch, paper-cut, oil-painting,
and caricature.

12 Artistic Rendering of Portraits 239

12.2 Sketch

A sketch is a rapidly executed drawing demonstrating the basic shape and appear-
ance features of objects. In this section, we review three types of portrait sketching
method. The first two types of sketch depict the boundaries and salient edges/curves
in portraits with concise strokes (like stick drawings). The former uses holistic mod-
els for the shape of face, and the latter uses part-based models with greater expres-
sive power. The third type of portrait sketch focuses more on the facial surface,
including the appearance caused by illumination and shading effects.

12.2.1 Holistic Models

Li and Kobatake [10] made one of the earliest investigations in generating facial
sketches from photographs. Their method consists of three steps:

1. Color coordinate transformation, in which an input image is first processed with
the saturation component enhanced, and transformed to the YIQ color space. In
the YIQ color space, the Y channel represents the luma information, and the I and
Q channels represent the chrominance information. They are used for extracting
the face area and some facial parts: lips are red so they have relatively large
values in Q, the face area with skin color is generally larger in Q and smaller in I
than the dark gray background, and black pupils of eyes are usually darker than
other parts reflected in Y.

2. Facial components detection. In addition to lips and pupils, facial parts such as
eyes, mouth, nose, and chin are located with rough edges detected using the Y
channel of the image.

3. Approximation of edges with feature points and feature curves. The method takes
advantage of a facial sketch representation with 35 feature points connected by
feature curves as shown in Fig. 12.1a, in which spliced second-order polynomials
are used for approximating the edges of mouth, eyes, nose, and chin. The 35
feature points are then detected as characteristic points on the curves.

In their follow-up work [11], detailed algorithms of the method were improved
by adding a symmetry measure, a novel rectangle filter, a geometric template, and
morphological processing, all of which led to more robust detections of the positions
and edges of facial parts. Figure 12.1b shows two example facial sketches extracted
using the method.

In Li and Tobatake’s methods, the two factors introduced in Sect. 12.1 are im-
plemented in a very straight-forward way. The facial information WA is represented
with the shape model shown in Fig. 12.1a, which is extracted from the color and
gradient features of the input image. This ensures that the portrait sketch looks sim-
ilar to the photograph. As for the second factor, ΔA simply defines a line drawing
style, with the feature curves fitted using spliced second-order polynomials.

240 M. Zhao and S.-C. Zhu

Fig. 12.1 (a) Feature points and feature curves used for extracting facial sketch images by Li and
Kobatake [10, 11]. (b) Example results of facial sketch extraction using their method, from [11].
© IEEE

Fig. 12.2 Pipeline of the example-based facial sketch generation system developed by Chen
et al. [2]

To further improve the results of Li and Tobatake’s method, especially on the
aesthetic aspect, many studies have been carried out recently. Chen et al. [2] devel-
oped an example-based facial sketch generation system whose pipeline is shown in
Fig. 12.2. Observing that the artistic styles of sketches vary among different artists
and cannot be easily summarized by precise rules (such as polynomial curves up to
a specific order or curvatures of certain degrees), their system refers to a set of train-
ing examples for obtaining their styles. Each training example is a pair of a portrait
photograph and its corresponding sketch image created by artists. An active shape
model (ASM) [5] for the face is also attached to each example, with the landmark
points manually labeled for better accuracy.

12 Artistic Rendering of Portraits 241

• In the training phase, a mean shape of face is computed by averaging the ASM
landmarks of all training examples. Then a geometric transformation is performed
on each training example in order to warp the image and the sketch to match the
mean shape. After that, a prior probability model of the sketches is learned to
cover three types of curve: those that always appear, those that probably appear
but are independent of other curves, and those that depend on other curves.

• At runtime, given an input face photograph, the ASM is first applied to extract
the landmark points. Then a geometric transformation is defined between these
landmarks and the mean shape. After applying this geometric transformation to
warp the input image, non-parametric sampling is used for producing a sketch
image for the input, which is then warped back to the original shape using an
inverse geometric transformation, producing the final sketch.

Compared to Li and Kobatake’s method, Chen et al.’s system improved both WA
and ΔA. For facial information, WA, the ASM model provides a more robust way
to capture the shape of the face than the model in Fig. 12.1a which relies on local
edge detection and curve fitting. For a higher level of aesthetic, the sketches used as
graphical elements in the style set ΔA essentially come from the training examples
created by artists, instead of naive polynomial curves, and are encoded within a prior
distribution of the sketch curves as we introduced above.

12.2.2 Part-Based Models

A disadvantage of the holistic methods is that the rendered sketches only contain
stiff lines and curves, whereas sketches created by artists usually have various curve
styles and multiple levels of darkness and thickness for different facial components,
as well as the hair. To address this problem, part-based methods were introduced
for processing different parts of the face separately in order for greater expressive
power. Generally, these part-based models allow richer representations of WA and
larger variety of elements in ΔA.

12.2.2.1 Flat Model

Chen et al. [3] proposed an example-based composite sketching approach. This ap-
proach decomposes the face into semantic parts (as shown in Fig. 12.3) and uses
image-based, instead of curve-based, sketches (as shown in Fig. 12.4). Their system
also includes a sub-system for hair rendering which contributes greatly to the visual
quality of the portrait sketches.

In the composite sketching system of Chen et al., the sketches are split into two
layers: a global layer and a local layer. The global layer captures the spatial place-
ment of the facial parts, and the local layer captures how each facial part is depicted.
For both layers, features are selected and learned using training image-sketch pairs
provided by artists. At runtime, two processing steps are executed:

242 M. Zhao and S.-C. Zhu

Fig. 12.3 Portrait sketching using example-based composite sketching [3]. The input image (a) is
decomposed into facial parts shown in (b), then for each part the best match is found in the training
examples, as shown in (c). Then sketches are drawn for each part in (d), which are composed in (e)
by considering both global and local features. © ACM

Fig. 12.4 Example sketches
of facial parts used by Chen
et al. [3] for ΔA. © ACM

• Local processing. The input image is first decomposed into facial parts using a re-
fined ASM. Then, for each part, the system finds the best match in shape (accord-
ing to ASM landmarks) from the training examples. After that, the corresponding
sketches of the best matches are adopted.

• Global processing. The sketches of the facial parts are composed according to the
learned global spatial model, which adjusts the locations, sizes, and orientations
of the parts.

The hair rendering sub-system extracts both structural (boundary) and detail
(streamline) components in the hair area and fits them with curves. The two types of
curve are then rendered using their respective example-based strokes (learned from
training examples) to synthesize the hair sketch.

Regarding the two factors we have been discussing in this chapter, the global/
local hybrid method of Chen et al. works in a more flexible way for preserving face
fidelity in WA than the global geometric transformation based on ASM used in their
early work [2]. For each facial part, the locally best matching sketch is selected
and composed into a globally coherent image. But, due to the selection of the best
matches instead of a learned local sketch model [2], the system may lose certain
degrees of likeness when the number of training examples is small, for example,
the locally best matches may not be good enough in terms of similarity. On the
aesthetic aspect, however, this method achieves much finer detailed appearances
by maintaining image-based sketches instead of stiff curves in ΔA (as shown in
Fig. 12.4) where different facial parts may be sketched using different techniques
by artists.

12 Artistic Rendering of Portraits 243

Fig. 12.5 A three-layer And–Or Graph (AOG) representation for face [22]. Dark arrows represent
the paths for generating an instance from the AOG, by decomposing And-nodes (solid ellipses) into
sub-components and choosing among alternative types at Or-nodes (dashed ellipses). As marked
on the right side, examples in ΔN and ΔA of different scales can be embedded in the AOG. © IEEE

12.2.2.2 Hierarchical Model

Since part-based portrait rendering methods have greater expressive power than
global methods, more studies in this direction have been dedicated to better models
and algorithms for both global and local processing. A powerful model for orga-
nizing the facial components is the hierarchical and compositional And–Or Graph
(AOG) [20–22], as shown in Fig. 12.5.

In this AOG, the And-nodes represent decompositions of the face or its parts into
sub-components (e.g., decomposing the face into nose, mouth, etc.), and the Or-
nodes represent alternative types of a part (e.g., there are multiple ways to sketch
a nose, given by either models or examples). On the AOG, complex spatial con-
straints of the facial parts can be embedded at the And-nodes at multiple levels, for
example, by using Markov networks [20]. Also, the photo-sketch similarity measure
enforcing the likeness principle can be applied at multiple resolutions (thanks to the
hierarchical structure) and optimized by switching at the Or-nodes during rendering.

To create the face AOG, a hierarchical structure is designed by hand with the
nodes corresponding to semantic facial parts. Then a set of training sketch exam-
ples with their corresponding photographs are collected and manually decomposed
corresponding to the structure of the AOG. The decomposed parts are then asso-
ciated with the nodes in the AOG in order to construct ΔN and ΔA for multiple
scales in the hierarchy as marked on the right side of Fig. 12.5. Using these ΔN and
ΔA, models for constraining spatial configurations are learned at the And-nodes,

244 M. Zhao and S.-C. Zhu

Fig. 12.6 A parse graph instantiated from the AOG in Fig. 12.5 [22]. This process essentially
generates a portrait sketch by selecting sketches of different parts and composing them. © IEEE

and switching probabilities are summarized at Or-nodes. Note that if we save all
examples in the AOG without merging similar ones, the switching probabilities are
uniform.

Generating a portrait sketch from an input photograph is equivalent to instan-
tiating a parse graph from the AOG by decomposing at And-nodes and switching
at Or-nodes, as shown in Fig. 12.6. An instance optimizing the probabilities at the
And- and Or-nodes, as well as the similarity measures at multiple resolutions, is ex-
pected to preserve the fidelity both globally and locally (cf. the global/local hybrid
model introduced by Chen et al. [3]).

Compared with the flat model described in the previous section, the hierarchical
AOG has two advantages on the aspect of the face fidelity factor.

1. The AOG can encode spatial constraints more efficiently with the And-nodes at
multiple levels on the graph. Furthermore, if multiple selections at Or-nodes are
clustered and similar ones are merged, the AOG compresses the storage of all
training examples, which is important when the training set is large.

2. The hierarchical AOG structure makes it easier to enforce likeness for different
facial parts at multiple resolutions, especially when we want different weights
for the likenesses at different parts/levels. For example, the likeness of the eyes
could be more important than that of the eyebrows, while the appearance of an
entire eye might be more important than those of the eyelids at an unnecessarily
high resolution. In this sense, the power of the face AOG has yet to be fully
developed before comprehensive psychological studies on this topic are carried
out.

As for the artistic style factor, Xu et al. [20–22] still used sketch examples created by
artists. To improve the visual effects, Min et al. [14] collected more stylish training
examples in ΔA and added two sub-systems for processing the hair and clothes,
respectively. Figure 12.7 includes an example generated by their system.

12 Artistic Rendering of Portraits 245

Fig. 12.7 An example portrait sketch generated by the system of Min et al. [14]. © Springer

Fig. 12.8 Framework of the portrait sketch system developed by Wang and Tang [19]

12.2.3 Sketching the Facial Surface

In addition to the concise sketching styles discussed in Sects. 12.2.1 and 12.2.2,
there is another popular sketching style which pays more attention to the facial sur-
face than the boundaries and salient edges/curves. This style depicts the appearance
of facial surface affected by illumination and shading effects. There are a few studies
on this type of portrait sketch in the NPR literature.

Wang and Tang [19] proposed an example-based method for synthesizing portrait
sketches with surface strokes to depict the facial appearance. Figure 12.8 displays
the framework of their method.

In this method, a triangular mesh is attached to the face, whose vertices are lo-
cated at the fiducial points on the face, for example, the eyeballs, the corners of the
mouth, etc. Given a training set containing pairs of portrait photographs and their
corresponding sketches created by artists, the fiducial points are located for each
image (both photographs and sketches), and the corresponding triangular mesh is
constructed for the pair. Then two eigentransformations from photograph to sketch
are computed for shape (coordinates of mesh vertices) and texture (grayscale im-
ages), respectively. For rendering a given input photograph, its fiducial points and
triangular mesh are first computed, and then these are used to warp the image to
the mean shape as derived from the training set. This essentially separates the shape
component Gp and the texture component Ip , which then pass through their respec-
tive eigentransformations we computed before to generate the sketch shape Gs and
the sketch texture Is . After warping Is back to the original shape of the input, we
obtain the final sketch.

246 M. Zhao and S.-C. Zhu

Although the two differ in detailed models and algorithms for shape and texture,
the global design of the method by Wang and Tang [19] is essentially very similar
to that of Chen et al. [3]. They both try to separate the shape and texture informa-
tion, and each defines certain mapping relationships for both components in order
to transfer a photograph into a sketch image.

• For shape, Chen et al. adopted ASM, while Wang and Tang used a triangular
mesh.

• For texture, Chen et al. used a non-parametric sketch model dependent on the pho-
tograph, while Wang and Tang used an eigentransformation in the image space.

Therefore, the face fidelity and artistic style factors are implemented here in a sim-
ilar way to the flat model of Chen et al. but with different details. The fidelity is
enforced using the triangular mesh attached to the face with shape and texture eigen-
transformations, and the artistic style is defined by the sketch examples created by
artists.

Another interesting work on sketching the facial surface was presented by Tresset
and Leymarie [18]. In this work, sketches are drawn randomly as Bézier curves at
different densities for each color-clustered region in the segmented face area. In this
way, the face fidelity factor is only roughly preserved at a low-resolution level in
terms of approximate grayscale levels of different regions and is dropped for most
details. Meanwhile, this random sketching process, defined in its style ΔA, produces
a unique appearance which may appear aesthetic to people.

12.3 Paper-Cut

The second portrait genre we review in this chapter is the paper-cut, which is es-
sentially a binary image called a Mooney image in the psychological literature [8].
The binarization process is inhomogeneous for different facial areas, which usually
does not correspond strictly to the grayscale levels. While there have been a few
studies on the paper-cut in the NPR literature, to the best of our knowledge, the only
dedicated portrait paper-cut work is by Meng et al. [13].

The method of Meng et al. adopts the hierarchical AOG face representation intro-
duced in Sect. 12.2.2.2, shown in Fig. 12.9. Its global design is very similar to that
of Min et al. [14], except for a few differences in detailed algorithms. Further differ-
entiating the two, sketch examples in the latter are replaced by paper-cut versions in
the former, as shown in Fig. 12.10. Meng et al. also used separated sub-systems for
the face, the hair and clothes.

Figure 12.11 includes two results generated by the system of Meng et al. The
structural information of the face is represented by the AOG model (the fidelity
factor), and the style factor and aesthetic rely on the paper-cut examples in ΔA that
were created by artists.

Meng et al. [13] is thus far the only work that studied the trade-off between
fidelity and aesthetic in the rendering process. In this work, fidelity is achieved by

12 Artistic Rendering of Portraits 247

Fig. 12.9 Parse graph of a face image and its corresponding paper-cut [13]

Fig. 12.10 Paper-cut
graphical elements in ΔA for
facial parts used in the system
of Meng et al. [13]

Fig. 12.11 Example paper-cuts generated using the method of Meng et al. [13]

a binary proposal generated from the source image using dynamic thresholding, as
shown in Fig. 12.12, and the aesthetic level is controlled by the compatibility level
of the facial parts in the template dictionary ΔA. To obtain a trade-off between the
two, a weighted sum of the cost function of each,

d + λc (12.3)

is measured, where d is the difference between the template image and the binary
proposal, and c is the number of template instances that the facial parts are selected

248 M. Zhao and S.-C. Zhu

Fig. 12.12 The dynamic
thresholding algorithm for
computing the binary
proposal used by Meng
et al. [13]

from, which is a metric of compatibility (assuming parts are more compatible if
they are from the same template). By tuning λ it is possible to obtain a continuous
spectrum from pursuing only likeness, to considering a weighted combination, then
to pursuing only aesthetic.

12.4 Oil-Painting

Besides sketch and paper-cut, another type of visual art in which portraiture plays an
important role is oil-painting. Portrait painting has also been studied in the artistic
rendering literature.

Zhao and Zhu [24] developed a system for rendering portrait paintings from pho-
tographs using active templates. The main idea of this system is similar to many
methods introduced above on sketching. However, due to the much more detailed
appearance in paintings than in sketches, the algorithms for depicting these details
are especially important for both likeness and aesthetic.

The system of Zhao and Zhu has a few crucial components:

• A dictionary of portrait painting templates. Given photographs, artists are asked
to paint portraits on a screen with a digitizer, using image-example-based brush
strokes as shown in Fig. 12.13. The color statistics (mean and variance), geome-
try (control points of the backbone curve), and texture (example ID in the brush
dictionary [23]) of each stroke used by the artists to compose the portrait are
recorded. This gives the complete information about the sequence of brush strokes
for each portrait painting, as shown in Fig. 12.14b (only part of the strokes are
visualized). A dictionary of these portrait painting examples, along with their cor-
responding photographs, is constructed as shown in Fig. 12.15. The elements of
the dictionary are used as templates later in rendering.

• A representation of the spatial configuration of the face and the brush strokes.
For each instance in the dictionary, the shape of the face is captured using an
active appearance model (AAM) [6] with 83 landmarks. The positions of these
landmarks are put in the same coordinate system as the control points describing
the geometry of the brush strokes. Shape matching between two different faces
(e.g., an input photograph to paint from and a reference example in the dictionary)
are achieved by computing a Thin Plate Spline (TPS) transformation [1] between
the coordinate pairs of their AAM landmarks.

12 Artistic Rendering of Portraits 249

Fig. 12.13 The example-based brush stroke model used by Zhao and Zhu [24]

Fig. 12.14 Pipeline of the portrait painting system of Zhao and Zhu [24]. See explanations in text

Fig. 12.15 Example portrait painting templates from the dictionary of Zhao and Zhu [24]

• A brush stroke rendering algorithm. Given an input face photograph, in order to
synthesize a corresponding portrait painting, we first select a reference example
from the dictionary of templates. Then we compute the TPS transformation from
the shape of the reference example to that of the input photograph. Afterward,
this TPS transformation is applied to the control points of all brush strokes in the
reference example, and the output control points with new coordinates defines the
new geometry of the strokes for composing the portrait corresponding the input
photograph, as shown in Fig. 12.14c. Finally, the color of each brush stroke is
transferred to match the color of the target photograph, and the brush strokes are
superimposed to compose the result painting image, as shown in Figs. 12.14d, e.

250 M. Zhao and S.-C. Zhu

Fig. 12.16 Example results
generated using Zhao and
Zhu’s system [24]

Figure 12.16 displays example results generated using Zhao and Zhu’s system.
In this system, the face fidelity factor is taken care of by the AAM landmarks and a
few algorithms in the portrait painting system:

• Template selection. For a given input photograph, the top-10 best matched exam-
ples from the dictionary in terms of both shape and appearance are reported for
selection. This avoids using templates differing too much from the target image,
which may potentially cause problems in likeness and rendering.

• Shape matching and stroke deformation. Shapes of different faces are matched
through the 83 AAM landmark points. Using stroke deformation defined by the
matching between landmarks ensures that the strokes are rendered at appropriate
positions with correct curvatures to depict the facial surface and parts.

• Stroke color transfer, which maps the colors of all strokes to the target photograph
in a coherent way. This contributes crucially to preserving the global appearance
of the original photograph.

The artistic style factor and the aesthetic is supported by the portrait painting
dictionary, including:

• The sequence of sparse but decisive and colorful strokes which, when put to-
gether, convey an impression of 3D structures and vibrant contrasts, and

• The individual textured brush strokes, which deliver elegant oil-painting details
with illumination and shading.

12.5 Caricature

Caricature is a very special type of portrait image. It differs from traditional sketch,
paper-cut, and painting by manipulating the two factors we study in this chapter.
Most caricatures explicitly trade a certain degree of fidelity for unique aesthetic
effects, for example, by exaggerating features in several parts of the face.

Tominaga et al. [16, 17] developed the PICASSO facial caricaturing system. In
the PICASSO system, 445 characteristic points are located on the edges of facial

12 Artistic Rendering of Portraits 251

Fig. 12.17 Framework of the example-based caricature generation system of Liang et al. [12]

parts, and various expressions are defined as offsets of these points from a mean
face (without expression). The idea of deliberately manipulating the facial shape for
caricaturing and further exaggeration is the basis of most later studies on portrait
caricatures.

Liang et al. [12], whose framework is shown in Fig. 12.17, extended the sketch-
ing method of Chen et al. [2] with exaggeration for generating facial caricatures. In
its prototype-based shape exaggeration model, the training examples are analyzed
and clustered into a few exaggeration prototypes. Each prototype represents a trend
of exaggeration in some facial features, towards which the sketch image is warped
using a local linear model at runtime to generate caricatures. The additional exag-
geration module extending the system of Chen et al. essentially reduces the level of
face fidelity while enhancing features exaggerated in training examples, reflecting a
type of aesthetic.

Mo et al. [15] noticed that the exaggeration level should depend not only on the
absolute difference from the mean shape, but also the variance level of such differ-
ences among examples. This idea enables the comparison between the exaggeration
levels of different facial parts, which corresponds better to our perception.

Another interesting work on caricature was presented by Chiang et al. [4], which
adds exaggeration upon a mesh-based representation for facial geometry (simi-
lar to Wang and Tang [19]) instead of the contour-based ones used by Tominaga
et al. [16, 17] and Liang et al. [12]. This enables more details in color and texture in
the rendered caricature.

12.6 Summary

In this chapter, by reviewing recent work on artistic rendering of portraits, we have
studied its two essential factors, namely, the face fidelity factor supported by certain
face representations stored in WA, and the artistic style chosen to simulate differ-
ent media with graphical elements and rendering details defined in ΔA and g, as
introduced in Sect. 12.1.

252 M. Zhao and S.-C. Zhu

• Fidelity is usually enforced at two different levels. At the local level of details of
facial parts, certain similarity measures are adopted between the photograph and
the artistic depiction or implicitly applied by defining a mapping/transformation
between them. At the global level of the face, certain shape models are adopted,
such as ASM, AAM or triangular mesh, to constrain the spatial configuration
of the facial parts. Additionally, the And–Or Graph model has been applied to
integrate the two or more levels in a single hierarchy.

• The artistic style/format is usually applied by using training-example art pieces
or elements created by artists, in addition to some simple rule-based strategies for
straightness, smoothness, etc. The unique style of caricature is mainly attributed
to the exaggerated features which are also learnable from training examples.

Guided by the two factors, various methods in past studies on artistic rendering of
portraits were used to pursue likeness and aesthetic of portraiture.

Despite the progress, a few key questions still remain standing in our way to a
systematic theory and solution to the portrait rendering problem:

• How should we select the important information from WN to be used in WA? In
practice, this means choosing a facial model that captures features essential to
artistic perception while ignoring unimportant parts. Also, what is the minimum
information needed in WA to satisfy the likeness principle?

• Is there a principled method for balancing between likeness and aesthetic, or
can these two be separated for independent manipulation under certain circum-
stances? The study of Leopold et al. [9] gives us some hints on this question,
indicating that extrapolation against a mean face can preserve a person’s iden-
tity without confusing with other people in the dataset. This supports the carica-
ture rendering methods based on shape exaggeration which improve the aesthetic
without giving up the likeness. Meanwhile, a comprehensive investigation to this
problem has yet to be conducted.

Acknowledgements We would like to thank Meng Meng, Jinli Suo and Yaling Yang for discus-
sions and help with the experimental data and figures during studying the likeness and aesthetic
principles in portrait rendering, and Amy Morrow for suggestions on the presentation of this chap-
ter. This work has been supported by ONR MURI Grant N000141010933 and DARPA Award FA
8650-11-1-7149.

References

1. Barrodale, I., Skea, D., Berkley, M., Kuwahara, R., Poeckert, R.: Warping digital images using
thin plate splines. Pattern Recognit. 26(2), 375–376 (1993)

2. Chen, H., Xu, Y.Q., Shum, H.Y., Zhu, S.C., Zheng, N.N.: Example-based facial sketch gener-
ation with non-parametric sampling. In: Proceedings of ICCV (2001)

3. Chen, H., Liu, Z., Rose, C., Xu, Y., Shum, H.Y., Salesin, D.: Example-based composite sketch-
ing of human portraits. In: Proceedings of NPAR (2004)

4. Chiang, P.Y., Liao, W.H., Li, T.Y.: Automatic caricature generation by analyzing facial fea-
tures. In: Proceedings of ACCV (2004)

12 Artistic Rendering of Portraits 253

5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape model—their training and
application. Comput. Vis. Image Underst. 61, 38–59 (1995)

6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal.
Mach. Intell. 23(6), 681–685 (2001)

7. Gooch, A., Gooch, B.: Non-Photorealistic Rendering. AK Peters, Wellesley (2001)
8. Hegdé, J., Thompson, S., Kersten, D.: Identifying faces in two-tone (‘Mooney’) images:

A psychophysical and fMRI study. J. Vis. 7(9), 624 (2007)
9. Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding re-

vealed by high-level aftereffects. Nat. Neurosci. 4(1), 89–94 (2001)
10. Li, Y., Kobatake, H.: Extraction of facial sketch images and expression transformation based

on FACS. In: Proceedings of ICIP (1995)
11. Li, Y., Kobatake, H.: Extraction of facial sketch image based on morphological processing. In:

Proceedings of ICIP (1997)
12. Liang, L., Chen, H., Xu, Y.Q., Shum, H.Y.: Example-based caricature generation with exag-

geration. In: Proceedings of Pacific Graphics (2002)
13. Meng, M., Zhao, M., Zhu, S.C.: Artistic paper-cut of human portraits. In: Proceedings of ACM

MM (2010)
14. Min, F., Suo, J.L., Zhu, S.C., Sang, N.: An automatic portrait system based on and-or graph

representation. In: Proceedings of EMMCVPR (2007)
15. Mo, Z., Lewis, J.P., Neumann, U.: Improved automatic caricature by feature normalization

and exaggeration. In: SIGGRAPH Sketch (2004)
16. Tominaga, M., Fukuoka, S., Murakami, K., Koshimizu, H.: Facial caricaturing with motion

caricaturing in PICASSO system. In: Proceedings of the IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (1997)

17. Tominaga, M., Hayashi, J.I., Murakami, K., Koshimizu, H.: Facial caricaturing system PI-
CASSO with emotional motion deformation. In: Proceedings of the 2nd International Confer-
ence on Knowledge-Based Intelligent Electronic System (1998)

18. Tresset, P., Leymarie, F.: Generative portrait sketching. In: Proceedings of VSMM (2005)
19. Wang, X., Tang, X.: Face sketch synthesis and recognition. In: Proceedings of ICCV (2003)
20. Xu, Z., Luo, J.: Accurate dynamic sketching of faces from video. In: Proceedings of CVPR

(2007)
21. Xu, Z., Chen, H., Zhu, S.C.: A high resolution grammatical model for face representation and

sketching. In: Proceedings of CVPR (2005)
22. Xu, Z., Chen, H., Zhu, S.C., Luo, J.: A hierarchical compositional model for face representa-

tion and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)
23. Zeng, K., Zhao, M., Xiong, C., Zhu, S.C.: From image parsing to painterly rendering. ACM

Trans. Graph. 29(1), 2 (2009)
24. Zhao, M., Zhu, S.C.: Portrait painting using active templates. In: Proceedings of NPAR (2011)

Part III
Stylized Animations

Part III of this book explores the creation of stylized animations from video; either
photorealistic video, or existing animations. The first chapter outlines how Com-
puter Vision technology has been applied to the video stylization problem, and how
this has enabled the extension of many stroke-based rendering and region-based ren-
dering approaches to video. The second chapter focuses on techniques for analyzing
cartoon animations to enable their re-presentation or enhancement in a variety of
artistic styles.

Analysis of existing animations to enable their manipulation and re-rendering;
described in Sect. 14.4.1. Temporally coherent rotoscoping enabling a cartoon ef-
fect; described in Sect. 13.4.1.1

Chapter 13
Temporally Coherent Video Stylization

Pierre Bénard, Joëlle Thollot, and John Collomosse

13.1 Introduction

Artistic Rendering (AR) arguably evolved from semi-automated stroke based ren-
dering (SBR) systems of the early 1990s. SBR is discussed in detail within Chap. 1.
In brief, it is the process of compositing primitives (e.g. brush strokes) on to a
virtual canvas to create a rendering. Following Willats and Durand [58], we refer
to these rendering primitives as “marks”. Digital paint systems such as Haeberli’s
‘paint by numbers’ [24] were among the first to propose such a framework, seek-
ing to partially automate the image stylization process. Marks adopt some attributes
(e.g. color, and orientation) from a reference image, whilst user interaction governed
other attributes such as scale and compositing order. Soon after, fully automatic al-
gorithms emerged harnessing low-level image processing (e.g. edge filters [26, 40]
and moments [50]) in lieu of user interaction. These advances in automation brought
with them new algorithms designed specifically for video.

This chapter maps the landscape of video stylization algorithms in approximate
chronological order of development. We begin by briefly identifying some non-
linear filtering methods that, when applied independently to video frames, can pro-
duce a coherent rendering output. Chapter 5 explores these techniques in greater
detail. We then survey optical flow based methods [40], which, like filters, are very

P. Bénard (�)
University of Toronto, 40 St George Street, Toronto, ON M5S 2E4, Canada
e-mail: Pierre.Benard@laposte.net

J. Thollot
LJK, INRIA, Grenoble University, 655, avenue de l’Europe, 38334 Saint Ismier, France
e-mail: Joelle.Thollot@inria.fr

J. Collomosse
Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, Surrey,
GU2 7XH, UK
e-mail: J.Collomosse@surrey.ac.uk

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_13,
© Springer-Verlag London 2013

257

mailto:Pierre.Benard@laposte.net
mailto:Joelle.Thollot@inria.fr
mailto:J.Collomosse@surrey.ac.uk
http://dx.doi.org/10.1007/978-1-4471-4519-6_13

258 P. Bénard et al.

general in the class of video footage that may be processed, but are limited pre-
dominantly to painterly styles. These approaches move marks such as strokes or
texture fields over time according to a per-frame motion estimate. We then survey
early approaches to stylization driven by coherent video segmentation [14, 16, 55].
These approach artistic stylization by treating coherent placement of strokes as a ro-
toscoping problem, and extend to cartoon-like styles. Finally we survey the recent,
interactive techniques that extend this early work to sophisticated rotoscoping and
artistic rendering tools.

13.1.1 Temporal Coherence

Barbara Meier developed an early object-space technique for creating painterly ani-
mations of 3D scenes [43], and whilst not a video stylization approach per se it was
the first to consider the important issue of temporal coherence in SBR.

Meier’s approach to painting was to initialize (seed) marks (in her case, brush
strokes) as particles over the 3D surfaces of objects. The particles were projected to
2D during rendering, and brush strokes generated on the image-plane. The motiva-
tion to anchor strokes to move with the object arises from Meier’s early observations
on temporal coherence, and are echoed by many subsequent authors. Painting the
scene geometry independently for each frame results in a distracting flicker. Yet, fix-
ing stroke positions in 2D while allowing their attributes (e.g. color) to vary with the
underlying video content gives the impression of motion behind frosted glass—the
so called shower door effect. Meier’s proposal was therefore to fix the strokes to the
surface of the 3D object; minimizing flicker whilst maximizing the correspondence
between stroke motion and the motion of the underlying object.

Satisfying both criteria for coherence is tractable for 3D rendering where ge-
ometry is available, but is non-trivial when painting 2D video. As such, temporal
coherence remains a key challenge in video stylization research. Understanding the
motion of objects in an unconstrained monocular video feed requires a robust and
general model of scene structure; a long-term goal that continues to elude the Com-
puter Vision community. Moreover, there is no single best model for all video. The
model selected to represent the scene’s dynamics and visual structure impacts both
the classes of video content that can be processed, and the gamut of artistic styles
that may be rendered.

13.1.2 Problem Statement: Coherent Stylization

In order to better describe the problem of temporal coherence in this chapter, we
build upon Meier’s discussion to propose a definition of temporal coherence. Tem-
poral coherence video requires the concurrent fulfillment of three goals: spatial
quality, motion coherence and temporal continuity.

13 Temporally Coherent Video Stylization 259

1. Spatial quality describes the visual quality of the stylization at each frame. This
is a key ingredient in generating computer animations that appear similar to tradi-
tional hand-drawn animations. Several properties of the marks must be preserved
to produce a convincing appearance. In particular the size and distribution of
marks should be independent of the underlying geometry of the scene. As a typ-
ical example, the size of the marks should not increase during a zoom, but their
spatial density should not change neither. Deformation of the marks should be
avoided. Marks should not compress around occlusions for instance.

2. Motion coherence is the correlation between the apparent motion flow of the 3D
scene and the motion of the marks. A low correlation produces sliding artifacts
and gives the impression that the scene is observed through a semi-transparent
layer of marks; Meier’s shower door effect [43].

3. Temporal continuity minimizes abrupt changes of the marks from frame to frame.
Perceptual studies [47, 60] have shown that human observers are very sensitive
to sudden temporal variations such as popping and flickering. The visibility and
attributes of the marks should vary smoothly to ensure temporal continuity and
fluid animations.

Unfortunately these goals are inherently contradictory and naïve solutions of-
ten neglect one or more criteria. For example, the texture advection technique of
Bousseau et al. (Sect. 13.3.2.1) can be used to apply the marks over the scene with
high motion coherence and temporal continuity, but deformations destroy the spa-
tial quality of the stylization. Keeping the marks static from frame to frame ensures
a good spatial quality and temporal continuity but produces a strong shower door
effect since the motion of the marks has no correlation with the motion of the scene.
Finally, processing each frame independently, similarly to hand-drawn animation,
leads to pronounced flickering and popping since the position of the marks varies
randomly from frame to frame.

13.2 Temporally Local Filtering

Arguably the most straightforward method to stylize a video is to apply image pro-
cessing filters independently at each frame. Depending on the type of filter, the re-
sulting video will be more or less coherent in time. Typically filters that incorporate
hard thresholds will be less coherent than more continuous filters.

Winnemöller et al. [59] iteratively apply a bilateral filter followed by soft quan-
tization to produce cartoon animations from videos in real-time. Image edges are
extracted from the smoothed images with a difference of Gaussian filter. The soft
quantization, less sensitive to noise, produces results with higher temporal coher-
ence than traditional hard quantization.

As discussed in Chap. 5, Winnemöller’s stylization pipeline has been adapted to
incorporate various alternative filters: e.g. Kuwahara based filters [35], combination
of Shock filter with diffusion [36], and generalized geodesic distance transform [18]
for soft clustering. These filtering approaches are fast to compute as they can be

260 P. Bénard et al.

Fig. 13.1 Frames of a water drop video where luminance edges are depicted with lines of varying
thickness, either drawn in black (top), or drawn in white over the original image (bottom), both
with a disk footprint. From [52] © 2011 Blackwell Publishing. Included here by permission

implemented on the GPU. However, they are restricted in the gamut of artistic styles
that may be produced.

Similarly, Vergne et al. [52] use 2D local differential geometry to extract lumi-
nance edges of a video. The feature lines are also implicitly defined, which prevents
the use of an explicit parameterization needed for arc-length based effects or for
mapping a brush stroke texture. However, they propose to formulate the mark ren-
dering process as a spatially varying convolution that mimics the contact of a brush
of a given footprint with the feature line. It allows them to simulate some styles, like
thickness variations that remain fully coherent over time (see Fig. 13.1).

This chapter focuses primarily upon video stylization methods that encourage the
temporally coherent placement of marks. This is achieved by rendering using infor-
mation propagated from adjacent frames; i.e. frames are not rendered with temporal
independence. The remainder of the chapter covers these techniques, and the reader
is referred to Chap. 5 for more detailed coverage of the filtering techniques outlined
in this section.

13.3 Optical Flow Based Stylization

To make progress beyond independent filtering of frames, temporal correspondence
may be established on a per pixel basis using motion estimation. Optical flow algo-
rithms (e.g. [4] and related methods) can be applied to produce such an estimate.

Using this information, local filtering approaches can be extended by defining
2D+ t filters that smooth the effect of the filter along time as described in Sect. 13.2.
Moreover, temporal continuity can be enforced using the optical flow to guide the
evolution of the marks along the video. The difficulty is then to ensure the quality
of the spatial properties of the marks. Various approaches have been proposed to
solve this problem. We classify them in two categories: mark-based (Sect. 13.3.1)
and texture-based (Sect. 13.3.2) approaches.

In this section we adopt the notation It (x, y) to denote the RGB video frame at
time t , and similarly It (x, y) for the grayscale frame. Edge orientation Θt(x, y) and

13 Temporally Coherent Video Stylization 261

edge strength |�It (x, y)| field are so denoted, and computed:

�It (x, y) =
(

δIt

δx

2

+ δIt

δy

2) 1
2

(13.1)

Θt(x, y) = atan

(
δIt

δy

/
δIt

δx

)
(13.2)

13.3.1 Mark-Based Methods

Peter Litwinowicz proposed the first purpose designed algorithm for video styliza-
tion in 1997. The essence of the approach is to place marks upon the first video
frame, and push (i.e. translate) them over time to match the estimated motion of
objects in the video. Marks are moved according to the per-pixel motion estimate
derived from the optical flow. As such, Litwinowicz adopts a weak motion model,
applicable to very general input footage. However, what optical flow offers in gener-
ality, it lacks in robustness. Pixels arising from the same object might be estimated
with entirely different motion vectors. Whilst many optical flow algorithms exist,
and some enforce local spatial coherence, in practice it is often the case that parts of
objects are estimated with incorrect or inconsistent motion. This is especially true
for objects with flat texture or weak intensity edges, as these visual cues often drive
optical flow estimation algorithms. This can result in the swimming of painterly tex-
ture, due to motion mismatch between marks and underlying video content. The
sequential processing of frames can also cause motion estimation errors to accumu-
late, contributing to swimming artifacts.

In terms of our criteria for temporal coherence (Sect. 13.1.2), since the marks
(e.g. brush strokes) are usually small with respect to object size, their motion re-
mains very close to the original motion field of the depicted scene, providing good
motion coherence. Spatial quality is also preserved by drawing the marks as 2D
sprites and by ensuring a adequate density of marks. However as discussed, tempo-
ral continuity criterion is often violated due to error accumulation and propagation.

Nevertheless, Litwinowicz’ algorithm results in aesthetically pleasing render-
ings in many situations and especially when dealing with highly textured or
anisotropic phenomena—where many more recent region-based methods struggle.
Fluids, smoke, cloud, and similar phenomena are ideally suited to the generality of
the optical flow fields, and the fields may also be manually embellished to produce
attractive swirls reminiscent of a Van Gogh. Interactive software implementing this
technique won an Oscar for visual effects in the motion picture “What Dreams May
Come” (1999), for the creation of painterly landscapes of flowers, sea and sky [23].

13.3.1.1 Impressionist Painterly Rendering

Litwinowicz’ [40] algorithm uses a multitude of short rectangular brush strokes as
marks, to create a impressionist video effect. A sequence of strokes are created using

262 P. Bénard et al.

Fig. 13.2 Left: Stroke attributes in Litwinowicz’ approach to video stylization [40]. Strokes grow
until a strong edge is encountered, thus preserving detail. Middle: Source Image. Right: Resulting
painting. From © 2002 ACM, Inc. Included here by permission

the first frame of video. Pixels within I1 are sub-sampled in a regular grid (typically
every second pixel) yielding a set of N strokes St = {s1

t , . . . , sN
t } where each stroke

is represented by a tuple si = (x, y, θ, c) encoding each stroke’s seed location (x, y),
orientation θ , color c = I1(x, y) and length l1, l2. Figure 13.2 illustrates the stroke
geometry with respect to these parameters. Each stroke is grown iteratively from
its seed point (x, y) until a maximum length is reached, or the stroke encounters a
strong edge in |�I1(.)|. Strokes do not interact, and a stroke may be grown ‘over’
another stroke on the canvas. To prevent the appearance of sampling artifacts due to
such overlap, the rendering order of strokes in sequence S1 is randomized—in this
first video frame.

The orientation of each stroke is determined in one of two ways, depending
on whether |�I1(x, y)| exceeds a pre-defined threshold. In such cases, the stroke
is local to a strong edge and so it is possible to sample a reliable edge orienta-
tion θ = |Θ1(x, y)|. Otherwise the edge orientation is deemed to be noisy due to a
weakly present intensity gradient, and so must be interpolated from nearby strokes
that have reliable orientations. The interpolation is performed using a thin-plate
spline in Litwinowicz’ paper, but in practice any function that smoothly interpolates
irregularly spaced samples may be used. In later work by Hays and Essa, for exam-
ple, radial basis functions are used [25] to fulfil a similar purpose (Sect. 13.3.1.5).

13.3.1.2 Stroke Propagation

Given an optical flow vector field O(.) mapping pixel locations in It−1 to It ,
all strokes within St−1 are updated to yield set St where si

t−1(x, y) + O(x, y) ←
si
t (x, y). If stroke seed points are shifted outside of the canvas boundaries then those

strokes are omitted from St . Other stroke attributes within the si
t tuple remain con-

stant to inhibit flicker. Note that the rendering order of strokes is randomized only in
the first frame, and remains fixed for subsequent frames. This also mitigates against
flicker.

The translation process may cause strokes to bunch together, or to become
sparsely distributed leaving ‘holes’ in the painted canvas. A mechanism is therefore

13 Temporally Coherent Video Stylization 263

Fig. 13.3 Litwinowicz’ mark (stroke) density control algorithm in five steps, from left to right:
(1) Initial stroke positions. (2) Here, four strokes move under optical flow. (3) Delaunay triangu-
lation of the stroke points. (4) Red points show new vertices introduced to regularize the density.
(5) The updated list of strokes after culling points that violate the closeness test

introduced to measure and regulate stroke density on the canvas (Fig. 13.3). Stroke
density is first measured using a Delaunay triangulation of stroke seed points. Using
the connected neighborhood of the triangulation it is straightforward to evaluate, for
each stroke, the distance to its nearest stroke. Strokes are sorted by this distance. By
examining the head and tail of this sorted list one may identify strokes within the
most sparsely and densely covered area of the canvas.

Strokes may be culled from St to thin out areas of the canvas with dense stroke
coverage. This can be achieved by deleting strokes present in the tail of the list.
Strokes may also be inserted into St . To do so, new strokes are created from the cur-
rent frame using the process outlined in Sect. 13.3.1.1. These newly created strokes
must be distributed throughout the sequence St to disguise their appearance. A large
block of newly created strokes appearing simultaneously becomes visual salient and
causes flicker.

13.3.1.3 Dynamic Distributions

Much subsequent work addresses the issue of redistributing marks over time, pro-
viding various trade-offs between spatial quality and temporal continuity [25, 27,
51]. The general aim of such a ‘Dynamic distribution’ is to maintain a uniform
spacing between marks (commonly harnessing the Poisson disk distribution for this
purpose) while avoiding sudden appearance or disappearance of marks.

Extending the Poisson disk tiling method of Lagae et al. [37], Kopf et al. [34]
propose a set of recursive Wang tiles which allows to generate 2D point distributions
with blue noise property in real-time and at arbitrary scale. This approach relies on
precomputed tiles, handling 2D rigid motions (zooming and panning inside stills).
The subdivision mechanism ensures the continuity of the distribution during the
zoom, while the recursivity of the scheme enables infinite zoom.

Vanderhaeghe et al. [51] propose a hybrid technique which finds a more balanced
trade-off. They compute the distribution in 2D—ensuring blue noise property—but
move the points according to the 3D motion of the scene by following the optical
flow. At each frame, the distribution is updated to maintain a Poisson-disk criterion.
The temporal continuity is enhanced further by (1) fading appearing and disappear-
ing points over subsequent frames; and (2) allowing points in overly dense regions
to slide to close under-sampled regions.

264 P. Bénard et al.

To further reduce flickering artifacts, Lin et al. [39] propose to create a damped
system between marks adjacent in space and time, and to minimize the energy of
this system. They also try to minimize marks insertions and deletions using two
passes. Disoccluded regions emerging during the forward pass are not rendered im-
mediately, but deferred until they reach a sufficient size. Then, they are painted and
the gaps are completed by backward propagation. Lin’s damped spring model is
discussed in greater detail in Sect. 13.4.2.3.

The data structures required to manage the attributes and rendering of each indi-
vidual stroke makes mark-based methods complex to implement and not very well-
suited to real-time rendering engines. Nevertheless, Lu et al. [42] proposed a GPU
implementation with a simplified stochastic stroke density estimation which runs at
interactive framerates but offers fewer guarantees on the point distribution.

To create animated mosaics, Smith et al. [48] and Dalal et al. [19] also rely on
the motion flow of the input animation to advect groups of tiles. They propose two
policies to spatially localize tiles insertions and deletions at either groups boundaries
or groups center. This approach allows coherent group movement and minimizes the
flickering of tiles.

13.3.1.4 Frame Differencing for Interactive Painting

The use of general, low-level motion estimation techniques (e.g. optical flow) for
video echoes the reliance upon low-level filtering operators by image stylization,
circa the 1990s.

Other low-level approaches for painterly video stylization suggested contempo-
raneously include Hertzmann and Perlin’s frame-differencing approach [28]. In their
algorithm, the absolute RGB difference between successive video frames was used
as a trigger to repaint (or “paint over”) regions of the canvas that changed signifi-
cantly; i.e. due to object motion. A binary mask M(.) was generated using a pixel
difference thresholded at an empirically derived value T :

M(x,y) = It−1(x, y) − It (x, y)| > T (13.3)

Strokes seeded at non-zero locations of M(.) are repainted at time t . Flicker is
greatly reduced, as only moving areas of the video feed are repainted. Furthermore
the computational simplicity of the differencing operation made practical real-time
interactive video painting, to create an interactive painterly video experience. This
contrasted to optical flow based approaches, which were challenging to compute in
real-time due to the limitations in computational power at the time their work was
carried out.

A further novelty of Hertzmann and Perlin’s interactive painting system was the
use of curved brush strokes to stylize video. This work built upon Hertzmann’s
earlier multi-resolution curved stroke painting algorithm for image stylization (dis-
cussed in more detail within Chap. 1). Previously Litwinowicz’ approach [40] and
similar optical flow based methods [49] had used only short rectangular strokes.

13 Temporally Coherent Video Stylization 265

13.3.1.5 Multi-scale Video Stylization with Curved Strokes

Hays and Essa developed a video stylization system fusing the benefits of opti-
cal flow, after Litwinowicz [40], with the benefits of coarse-to-fine rendering with
curved brush strokes, after Hertzmann [26]. Although experiments exploring this
fusion of ideas were briefly reported in [28], this was the first time such a system
had been described in detail.

The system of Hays and Essa shares a number of commonalities with Litwinow-
icz’ original pipeline. A set of strokes C is maintained as before, and propagated
forward in time using optical flow. Strokes are also classified as strong, or not, based
on local edge strength and interpolation applied to derive stroke orientations from
the strong strokes. However, the key to the improved temporal coherence of the ap-
proach is the way in which stroke attributes (such as color and orientation) evolve
over time. Rather than remaining fixed, or being sampled directly from the video
frame, attributes are blended based on their historic values. A particular stroke may
have color ct−1 at frame t − 1, and might sample a color ct from the canvas at
frame t . The final color of the stroke c′

t would be a weighted blend of these two
colors:

c′
t = αct + (1 − α)ct−1 (13.4)

Or more generally, all stroke attributes would follow a similar blended update, en-
forcing a smoothed variation in stroke color, orientation, opacity and any other ap-
pearance attributes:

si
t ← αsi

t + (1 − α)si
t−1 (13.5)

Uniquely, Hays and Essa also propose opacity as an additional mark attribute.
When adding or removing strokes to preserve stroke density over time, strokes do
not immediately appear or disappear. Rather they are faded in, or out, over a pe-
riod of several frames. This ‘fade-out’ greatly enhances temporal coherence and
suppresses the ‘popping’ artifacts that can occur with [40].

Rendering in Hays and Essa’s system follows Hertzmann’s curved brush stroke
pipeline, as described in Chap. 1. To decide where to add strokes, areas of the canvas
containing no paint are identified and strokes generated at the coarsest level. Strokes
are also added at successfully finer layers, local to edges present at the spatial scale
of that layer.

Strokes are deleted if they are moved, by the optical flow process, too far from
strong edges existing at a particular spatial scale of the pyramid. This prevents the
accumulation of fine-scale strokes that tend to clutter the painting.

13.3.2 Texture-Based Methods

Texture-based approaches are mostly used for continuous textures (canvas, water-
color) or highly structured patterns (hatching). By embedding multiple marks, tex-
tures facilitate and accelerate rendering compared to mark-based methods. Textures

266 P. Bénard et al.

Fig. 13.4 A checkerboard texture (second row) advected along the optical flow of a video (first
row) will rapidly be deformed and lose its spatial properties. Bousseau et al. “Video Watercoloriza-
tion” propagates one instance of the texture forward and the other one backward in time according
to the flow field, and alpha-blends them to minimize the distortion (third row). From [11] © 2007
ACM, Inc. Included here by permission

are generally applied over the entire frame. The challenge is then to deform the tex-
ture so that it follows the scene motion while preserving the spatial quality of the
original pattern.

13.3.2.1 Bi-directional Flow

A criticism of early optical flow techniques is their tendency to accumulate error
and propagate it forward in time, causing instability on longer sequences.

Bousseau et al. [11] apply non-rigid deformations to animate a texture according
to the optical flow of a video [4]. This approach extends texture advection methods
used in vector field visualization [44] by advecting the texture forward and backward
in time to follow the motion field. This bi-directional advection allows the method
to deal with occlusions where the optical flow is ill-defined in the forward direction
but well defined in the backward direction.

Rather than placing individual strokes, Bousseau et al. create a watercolor effect
by multiplying each video frame It with a global grayscale texture Gt of identical
size to the frame. Pixels in the image and texture field are multiplied place for place
to create the stylized frame I ′

t :

I ′
t = It

(
1 − (1 − It)(Gt − 0.5)

)
(13.6)

where pixels values in both It and Gt are assumed normalized. This affects a form
of alpha-blending of the texture.

13 Temporally Coherent Video Stylization 267

The texture in Gt is a weighted combination of two similarly sized textures, one
propagated or “advected” forward in time using the forward flow field, and the other
advected back in time. Call these watercolor textures Ft and Bt ; their weights are
respectively ωf (t) and ωb(t):

Gt = ωf (t)Ft + ωb(t)Bt (13.7)

Both fields Ft and Bt are generated from some user supplied continuous texture
function. Bousseau et al. do not specify a particular texture function but suggest the
pixel intensities should have more or less homogeneous spatial distribution, and the
texture should exhibit a reasonably a flat frequency distribution.

The texture field is warped under the respective (forward or backward) flow field
to render each frame. Over time, the texture will become distorted due to the motion
vectors significantly compressing or stretching the texture. This is detected via a set
of heuristics, and new textures initialized for advection periodically or as needed.
These detection heuristics are outlined in more detail within their paper. Bousseau et
al. propose an advanced blending scheme that periodically regenerates the texture to
cancel distortions and favor at each pixel the advected texture with the least distor-
tion. Suppose the textures are initialized periodically every τ frames. The weights
ωf (t) and ωb(t) for combining the texture fields Ft and Bt are given as

ωf (t) = cos2
(

π

2

tmodτ

τ

)

ωb(t) = sin2
(

π

2

tmodτ

τ

) (13.8)

Although the process of advecting a global single texture forward in time is in
common use within scientific visualization domain, Bousseau et al. were the first
to introduce this approach for video stylization. Flow fields in video exhibit more
frequent discontinuities than are typical in scientific visualization, due to object oc-
clusions. The use of bi-directional advection, rather than simply forward advection,
was principally motivated by the desired to suppress temporal incoherence caused
by such discontinuities. However the bidirectional advection requires the entire ani-
mation to be known in advance, which prevents the use of this method for real-time
applications. To overcome this limitation, Kass and Pesare [32] propose to filter a
white or band-pass noise. Their recursive filter produces a coherent noise with sta-
tionary statistics within a frame (high flatness) and high correlations between frames
(high motion coherence). This approach is fast enough for real-time application, but
is restricted to isotropic procedural noise and it needs depth information to handle
occlusions and disocclusions properly.

13.3.2.2 Coherent Shape Abstraction

In order to produce an aesthetically pleasing watercolor effect, Bousseau et al. ap-
plied video processing in addition to texture advection, to abstract away some of

268 P. Bénard et al.

the visual detail in the scene. This was achieved using morphological operators to
remove small-scale details in the frames. Bousseau et al. observed that a binary
opening operation (an erosion, following by a dilation) could remove lighter col-
ored objects in the image. The reverse sequence of operations—a binary closure—
can remove darker objects. Depending on the scale of the structuring element using
in the morphological operations, different scales of object may be abstracted; i.e.
removed, or their shapes simplified.

In the Computer Vision literature, the use of morphological scale-space filtering
has been well known to produce these kinds of image simplification. For example,
the 1D and 2D image sieves developed by Bangham et al. in the late 1990s comprise
similar morphological operations. Such filtering is particularly effective at image
simplification, as angular features such as corners are not ‘rounded off’ as might
result using a linear low-pass filter such as successive Gaussian blurring. Indeed,
sieves were applied to color imagery several years earlier in 2003 precisely for the
purposes of image stylization [3]. Bousseau et al. were, however, the first to extend
the use of such morphological filters to coherently stylize video, filtering in 3D
(space–time) rather than on a per frame basis [10].

13.4 Video Segmentation for Stylization

In an effort to improve temporal coherence and explore a wider gamut of styles,
researchers in the early-mid 2000s began to apply segmentation algorithms to the
video stylization problem.

Segmentation is the process of dividing an image into a set of regions sharing
some homogeneity property. The implicit assumption in performing such segmen-
tation is that regions should correspond to objects within the scene. However, in
practice the homogeneity criteria used in the segmentation are typically defined at
a much lower level (e.g. color or texture). For video segmentation, it is desirable to
segment each frame not only with accuracy with respect to such criteria, but also
with temporal coherence. The boundaries of regions should remain stable (exhibit
minimal change) over time, and spurious regions should not appear and disappear.

The stable mid-level representation provided by video segmentation offers two
main advantages over low-level flow-based video stylization:

First, rendering parameters may be applied consistently across objects; a com-
mon phenomenon in real artwork. Furthermore, users intervention may be incorpo-
rated to selectively stylize particular objects [16, 30].

Second, the motion of rendering marks may be fixed to the reference frame of
each region as it moves over time. This ensures motion coherence—one of our key
criteria for temporal coherence (Sect. 13.1.2). Rotoscoping and artistic stylization
are therefore closely related. Given a coherent video segmentation, one might ro-
toscope any texture onto the regions for artistic effect, from flat-shaded cartoons to
the complex brush stroke patterns of an oil painting. Many image stylization ap-
proaches may be applied to video, by considering each region as a stable reference

13 Temporally Coherent Video Stylization 269

frame upon which to apply the effect [1, 16, 57]. Furthermore, the boundaries of the
regions may also be stylized [7, 31, 33].

In essence, a coherent video segmentation enables the coherent parameterization
of lines (boundaries) or regions one may wish to stylize. Such a parameterization al-
lows the coherent mapping of textures (or placement of marks) allowing for precise
control of a broad range of styles.

13.4.1 Coherent Video Segmentation

Video segmentation is a long-standing research topic in Computer Vision, and a
number of robust approaches to coherent video segmentation now exist. However,
in the early 2000s, research focused firmly upon image segmentation. Variants of
the mean-shift algorithm [17] were very popular. Chapter 7 covers the application
of the EDISON variant of mean-shift to a variety of image stylization tasks, spurred
by the early work of DeCarlo and Santella [20]. Around 2004 two complemen-
tary approaches were simultaneously developed to extend mean-shift to video for
the purpose of video stylization. The Video Tooning approach of Wang et al.’s [55]
adopts an 3D extension of mean-shift to the space–time video cube (x, y, t). Col-
lomosse et al.’s Stroke Surfaces approach [14, 16] adopts a 2D plus time (2D + t)
approach, creating correspondences between regions in independently segmented,
temporally adjacent frames.

13.4.1.1 Video Tooning

Mean-shift is an unsupervised clustering algorithm [21]. It is most often applied to
image segmentation by considering each pixel as a point in a 5D space (r, g, b, x, y)

encoding color and location. The essence of the algorithm is to identify local modes
in this feature space, by shifting a window (kernel) toward more densely populated
regions of the space. The resulting modes become regions in the video, with pixels
local to each mode being labelled to that region.

Extension of this algorithm to a space–time video cube may be trivially per-
formed by adding a sixth dimension to pixel features, encoding time (r, g, b, x, y, t).
Due to differences in the spatial and temporal resolution of video, and the isotropy
of typical Mean-shift kernels, this can results in spurious regions manifesting local
to movement in the footage. One solution is to add further dimensions to the space,
encoding the motion vector (i.e. optical flow) of each pixel however this has the
disadvantage of increasing the dimensionality of the feature space, requiring longer
videos (i.e. more samples) to cluster effectively. Wang et al.’s contribution was to
compensate for the artifacts in a 6D clustering by using an anisotropic kernel dur-
ing the mean-shift. The scale of the kernel is determined on a per pixel basis by
analyzing local variation in color [54].

270 P. Bénard et al.

Fig. 13.5 Video Tooning: (a) Space–time mean-shift is used to over-segment the video volume.
(b) Volume fragments are grouped by the user, and pre-prepared texture applied to create a cartoon
rotoscoped effect. (c) The interiors and bounding contours of region groups may also be rendered.
From [55] © 2004 ACM, Inc. Included here by permission

Fig. 13.6 Left: Visualization of the Stroke Surfaces space–time representation [16]. © 2005 IEEE.
Included here by permission. Right: Two rendering styles generated by rendering the same stroke
surface representation [16]

Figure 13.5 provides a representative video segmentation, demonstrating the ten-
dency of space–time mean-shift to over-segment object. In their Video Tooning sys-
tem, Wang et al. invite users to group space–time volumes into objects using an
interactive tool. The resulting regions within each frame may then be rotoscoped
with any texture. We discuss a general approach to performing such rotoscoping
in Sect. 13.4.2. In the example of Fig. 13.5, a manually created child’s drawing is
rotoscoped on to each region, and composited upon a drawn background.

13.4.1.2 Stroke Surfaces

Due to memory constraints, a space–time video segmentation is practical only for
shorter sequences. Furthermore, such methods are prone to over-segmentation espe-
cially of small fast moving video objects, resulting in the representation of objects as
many disparate sub-volumes. These can require considerable manual intervention to
group. An alternative is to segment regions independently within each video frame,
and associate those regions over time (a 2D + t approach). Independently segment-
ing frames often yields different region topologies between frames, and many small
noisy regions. However, the larger video objects one typically wishes to rotoscope
exhibit greater stability.

13 Temporally Coherent Video Stylization 271

The approach of Collomosse et al. is to associate regions at time t with regions
at time t − 1 and t + 1 using a set of heuristics, e.g. region color, shape, centroid
location. These associations form a graph for each region over time, which may be
post-processed to remove short cycles and so prune sporadically splitting/merging
regions. Only the temporally stable regions remain, forming sub-volumes through
the space–time video volume.

At this stage, the space–time volume representation is similar to that of Wang et
al. and amenable to rotoscoping (Sect. 13.4.2). However the temporal coherence of
the segmented objects is further enhanced in Collomosse et al.’s pipeline through
the formation and manipulation of stroke surfaces.

A stroke surface is a partitioning surface separating exactly two sub-volumes.
Stroke surfaces are fitted via an optimization process adapted from the Active Con-
tour literature; full details are available in [16]. As a single stroke surface describes
the space–time interface between two video objects, the coherence of the corre-
sponding region boundary may be smoothed by smoothing the geometry of the
stroke surface in the temporal direction. Temporally slicing the surface produces
a series of smoothed regions which may be used, as in Wang et al., for rotoscop-
ing.

13.4.1.3 Region Tracking

Both of the above video adaptations of mean-shift above require space–time
processing, either for initial segmentation [55] or region association pruning
[16]. For online processing (e.g. for streaming video, or to avoid memory over-
head) it may be desirable to segment video progressively (on a per-frame basis)
based on information propagated forward from prior frames. A number of ro-
bust systems have emerged in recent years for tracking a binary matte through
video [2], providing single object segmentation suitable for stylizing a single ob-
ject. However, a progressive segmentation algorithm capable of tracking multi-
ple object labels through video is necessary to perform stylization of the entire
scene.

One such approach, recently proposed by Wang et al., harnesses a multi-label
extension of the popular graph-cut algorithm to robustly segment video [53]. Wang
et al.’s solution is to perform a multi-label graph cut on each frame of video, using
information both from the current frame and from prior information propagated
forward from previous frames.

Given a segmentation of It−1, the region map is skeletonized to produce a set of
pixels central to each region considered to be labelled with high confidence. These
labelled pixels are warped to new positions in It , under a dense optical flow fields
computed between the two frames. These labels are used to initialize the graph cut
on the next frame, alongside models of color and texture that are incrementally
learned over time from the labelled image regions.

As discussed in Sect. 13.3.1, dense optical flow fields are often poorly estimated
and so this propagation strategy can fail in the longer term. To compensate, Wang

272 P. Bénard et al.

Fig. 13.7 Outline of Wang et al.’s video segmentation algorithm. Multi-label graph cut is applied
to each video frame, influenced by region labelings from prior frames. Each labelled region is
coded as a binary mask; labels are propagated from prior frames by warping the skeletons of those
masked regions via optical flow. The warped skeleton is diffused according to motion estimation
confidence and the diffused masks of all regions form a probability density function over labels
that is used as a prior in the multi-label graph cut of the next frame

et al. perform a diffusion of each pixel in It−1 over multiple pixels in It ; each pixel
obtains a probability of belonging to a particular region label. In practice this is
achieved using a Gaussian distribution centered upon the optical flow-derived lo-
cation of the point in It . The standard deviation (i.e. spread) of the Gaussian is
modulated to reflect the confidence in the optical flow estimate, which can in turn
be estimated from the diversity of motion vector directions local to the point. Fig-
ure 13.7 outlines the process.

13.4.2 Rotoscoping Regions

Once a coherent video segmentation has been produced, marks (such as brush
strokes) may be fixed to each region. In all cases it is necessary to first establish
correspondence between the boundary of a region across adjacent frames, usually
encoded via the control points of a contour. The dense motion field inside the region
is then deduced from the motion vectors established between these control points.
There are a number methods in the literature to model this dense motion, for exam-
ple treating the region as follows.

1. A rigid body, e.g. moving under an affine motion model deduced from the control
points of the region boundary [16] (Fig. 13.8(a)).

2. A deforming body, with marks adopting motion of the closest control point on
the region boundary [1] (Fig. 13.8(b)).

3. A deforming body, with marks moving under a motion model that minimizes
discontinuities within the motion field within region, whilst moving with the
control points of the region boundary [57] (Fig. 13.8(c).

13 Temporally Coherent Video Stylization 273

Fig. 13.8 Three region rotoscoping strategies: (a) In Stroke Surfaces [16] regions were treated as
rigid bodies, mapped using affine transformations. (c) Dynamic programming was used by Agar-
wala et al. [1] to assign points within regions to moving control points on the bounding contour,
tracked from (d) an initial hand-drawn user contour. (b) Wang et al. [57] perform affine regis-
tration of regions using shape contexts and then interpolate a dense motion field using Poisson
filling. From [16] © 2005 IEEE, [57] © 2011 Elsevier, and [1] © 2004 ACM, Inc. Included here
by permission

Although many shape correspondence techniques exist, a robust solution to
inter-frame boundary matching is commonly to use Shape Contexts [5]. Suppose
using Shape Contexts, or otherwise, we obtain a set of n control points C′ =
{c′

1, c′
2, . . . , c′

n} at time t , and the corresponding points C = {c1, c2, . . . , cn} at the
previous frame t − 1. Pixels within the region at time t − 1 are written Pt−1{p1..n}
and we wish to determine their locations Pt = {p′

1..n} at time t . We wish to obtain
the dense motion field Vt−1 responsible for this shift:

Vt−1(pi) = p′
i − pi (13.9)

In this chapter we cover one rigid (1) and deforming (3) solution.

274 P. Bénard et al.

13.4.2.1 Rigid motion

If operating under the rigid model we can simply write the ith control point location
c′
i = Aci in homogeneous form, expanded as:

⎡
⎣c′

i,x

c′
i,y

1

⎤
⎦ =

⎡
⎣a1 a2 a3

a4 a5 a6
0 0 1

⎤
⎦
⎡
⎣ci,x

ci,y

1

⎤
⎦ (13.10)

The 3 × 3 affine transformation matrix A is deduced between C and C′ (contain the
respective control points in homogeneous form) as a least squares solution:

A = C′CT
(
CCT

)−1 (13.11)

The dense vector field (Eq. (13.9)) is created by applying the resulting transforma-
tion to all pixels Pt−1 within the region at t − 1, i.e. p′

i = Api .

13.4.2.2 Smooth Deformation

A smooth dense motion field may be extrapolated from control points, for exam-
ple using a least squares fitting scheme that minimizes the Laplacian of the motion
vectors. This is achieved by solving an approximation to Poisson’s equation; com-
monly referred to in Graphics as Poisson in-filling after Pérez and Blake’s initial
application of the technique to texture infilling in 2003 [46].

Recall we wish to deduce a dense motion field Vt−1(pi) defining the motion of
for all pixels Pt−1. However we know only irregularly and sparsely placed points
in this field Vt−1(ci) = c′

i − ci . Call this known, sparse field V and dense field V ,
dropping the time subscript for brevity.

We seek the dense field VP over all pixel values Ω ∈ �2, such that V (c) =
V (c),∀c∈Ct and minimizing:

argmin
V

ΣΣP (�V − V)2 s.t. V |δP = V |δP (13.12)

i.e.
V = 0 over P , s.t. V |δP = V |δP . This is Poisson’s equation and is practically
solvable for our discrete field as follows.

The desired 2D motion vector field V (P) is first split into its component scalar
fields Vx(P) and Vy(P). For each scalar field, e.g. that of the x component,
Vx(pi) = vi , where i = [1, n] we form the following n × n linear system using
‘known’ pixels V (p) = vi (i.e. at the control points, below denoted ki = vi) and

13 Temporally Coherent Video Stylization 275

unknown pixels (i.e. everywhere else):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0 0
0 1 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 −1
... −1 4 −1 . . . −1 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...

vi

...

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

ki

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.13)

The system can be solved efficiently by a sparse linear solver such as LAPACK,
yielding values for all vi and so the dense scalar field—in our example for the x

component of V (P). Repeating this for both x and y components yields the dense
motion field V (P) that may be used to move strokes or other rendering marks within
the region as Fig. 13.8 illustrates.

A variety of other smoothness constraints have been explored for region defor-
mation, including thin-plate splines [39] and weighted combinations of control point
motion vectors [1].

13.4.2.3 Spring-Based Dampening

Once strokes, or similar marks, have been propagated to their new positions under
the chosen deformation model, their position may be further refined. Inaccuracy in
the region segmentation, and occlusions, can cause sporadic jumps in stroke posi-
tion. Lin et al. showed that this can be successfully mitigated by dampening stroke
motion using a simple string model [39].

Strokes are connected to their space–time neighbors (i.e. other strokes present
within a small space–time range) using springs. Using the notation Si,t to denote
the putative position of stroke i at time t—and S0

i,t to denote the initial (i.e. post-
deformation) position of the strokes—the energy of the spring system E(S) is given
as a weighted sum:

Esystem(S) = E1(S) + 2.8E2(S) + 1.1E3(S) (13.14)

In their formulation the first term E1(.) indicates spatial deviation from the initial
position:

E1(S) =
∑
∀Si,t

∣∣Si,t − S0
i,t

∣∣2 (13.15)

The second term enforces temporal smoothness in position:

E2(S) =
∑
∀Si,t

(Si,t−1 + 2Si,t + Si,t+1)
2 (13.16)

276 P. Bénard et al.

and the third term enforces proximity to neighboring strokes, which are denoted by
the set Ni,t for a given stroke Si,t :

E3(S) =
∑
∀Si,t

∑
∀p×q∈Ni,t

δ(p, q)2 (13.17)

here δ(.) is a function evaluating smaller for strokes of similar size and spatial po-
sition. The system is minimized via an iterative Levenburg–Marquadt optimization
over all strokes in the video.

13.4.3 Rotoscoping Boundaries for Stylized Lines

Parameterized lines allow the use of texture mapping to produce dots and dashes or
to mimic paint brushes, pencil, ink and other traditional media. The correspondence
of region boundaries outlined in Sect. 13.4.2 enables such a parameterization to be
established in a temporally coherent fashion. This opens the door to a wide variety
of artistic line stylization techniques.

There are two simple policies for texturing a path. The first approach, which we
call the stretching policy (Fig. 13.9(a)), stretches or compresses the texture so that
it fits along the path a fixed number of times. As the length of the path changes,
the texture deforms to match the new length. The second approach, called the tiling
policy (Fig. 13.9(b)), establishes a fixed pixel length for the texture, and tiles the path
with as many instances of the texture as can fit. Texture tiles appear or disappear as
the length of the path varies.

The two policies are appropriate in different cases. The tiling policy is necessary
for textures that should not appear to stretch, such as dotted and dashed lines. Be-
cause the tiling policy does not stretch the texture, it is also usually preferred for still
images. Under animation, however, the texture appears to slide on or off the ends of
the path similarly to the shower door effect (Fig. 13.9(b)). In contrast, the stretch-
ing policy produces high motion coherence under animation, but the stroke texture
loses its character if the path is stretched or shrunk too far (Fig. 13.9(a)). Kalnins et
al. [31] combine these two policies with 1D texture synthesis using Markov random
field to reduce repetitions.

The artmap method [33] (Fig. 13.9(c)) is an alternative to the simple stretching
and tiling policies. This method uses texture pyramid, where each texture has a
particular target length in pixels. At each frame, the texture with the target length
closest to the current path length is selected and drawn. This mechanism ensures
that the brush texture never appears stretched by more than a constant factor (often
2×).

Nevertheless, stretching artifacts still appear when the length of the path extends
beyond the length of the largest texture in the artmap. Fading or popping artifacts can
also occur during transitions between levels of the texture pyramid. Finally, a major
drawback of the artmap method resides in the manual construction of the texture

13 Temporally Coherent Video Stylization 277

Fig. 13.9 Four strokes texture mapping policies. (a) Stretching ensures coherence during motion
but deforms the texture. Conversely (b) tiling perfectly preserves the pattern, but produces sliding
when the path is animated. (c) Artmap [33] avoids both problems at the price of fading artifacts
because the hand-drawn texture pyramid is usually too sparse. (d) Self-Similar Line Artmap [7]
solves this problem. From [9] © 2012 Blackwell Publishing. Included here by permission

pyramid. Artists need to draw each level of the pyramid, tacking care of the coher-
ence across levels. As a result, current artmap implementations such as “Styles” in
Google SketchUp© use as few as four textures, which accentuates artifacts during
transitions.

To reduce transition artifacts and automate the creation process, Bénard et al.
[7] propose Self-Similar Line Artmap (SLAM), an example-based artmap synthesis
approach that generates an arbitrarily dense artmap based on a single exemplar.
Their synthesis not only guarantees that each artmap level blends seamlessly into
the next, but also provides continuous infinite zoom by constructing a self-similar
texture pyramid where the last level of the pyramid is included in the first level. The
synthesis takes a few minutes as a pre-process and provides good results for many
brush textures, although fine details might be lost for very complex patterns.

13.4.4 Painterly Rotoscoping Environments

Early papers recognizing the links between coherent stylization and rotoscoping
[16, 55] used the techniques of Sect. 13.4.2 to directly fix marks to regions, enabling
those marks to match-move video content.

278 P. Bénard et al.

However recent systems adopt a more indirect approach, harnessing the re-
gion correspondence to transform data fields over time that drive the placement
of strokes. A popular choice of field is the intensity gradient (equivalently, the edge
orientation) field, which typically plays an important role in the placement of indi-
vidual marks such as strokes [26]. Ensuring coherence in the transformed orientation
field ensures coherence in the final rendering.

The advantage in deferring stroke placement until the rendering of individual
frames (rather than placing strokes on the first frame, and subsequently moving
them) is that more frame-specific information can be taken into account during styl-
ization. This can lead to a broader range of styles as Kagaya et al. demonstrated in
their multi-style video painting system [30]. It can also lead to greater control, as
when framed in an interactive setting, users can manipulate the fields and parameters
used to create particular effects on particular objects. For example, O’Donovan and
Hertzmann’s AniPaint system enable the rotoscoping of regular curved strokes onto
regions, along with “guide strokes” that influence the orientation of further strokes
placed on the frame [45]. Kagaya et al.’s multi-style rendering system [30] enables
the interactive specification of tensor fields at key frames that are used to form ele-
gant brush strokes in a manner reminiscent of the Line Integral Convolution meth-
ods used to create a painterly effect in the filtering approaches of Chap. 5. These key
framed fields are smoothly interpolated over time using a space–time extension of
the heat diffusion process outlined in Chap. 6, which like the smooth deformation
method of Chap. 13.4.2.2, is based upon a Laplacian smoothing constraint.

The incorporation of user interaction into the video stylization pipeline also of-
fers the possibility of correcting the initial automated video segmentations provided
by Computer Vision algorithms. These corrections remain inevitable as the general
video segmentation problem is far from solved.

13.5 Segmentation for Motion Stylization

Video analysis at the region level enables not only consistent rendering within ob-
jects, but also the analysis of object motion. This motion may then be stylized us-
ing a variety of motion emphasis cues borrowed from classical animation, such as
mark-making (speed-lines, ghosting or ‘skinning’ lines), deformation and distortion
as a function of motion, and alteration of timing. In his influential paper, Lasseter
[38] describes many such techniques, introducing them to the Computer Graphics
community. However his paper presents no algorithmic solutions to the synthesis of
motion cues. Hsu et al. [29] also identify depiction of motion as important, though
the former discusses the effect of such cues on perception. Both studies focus only
the placement of speed-lines through user-interactive processes.

Automated methods to generate speed-lines in video require camera motion com-
pensation, as the camera typically pans to keep moving objects within frame. This
can be approximated by estimating inter-frame homographies. Trailing edges of ob-
ject may be corresponded over time to yield a set of trails, which having been warped

13 Temporally Coherent Video Stylization 279

Fig. 13.10 Motion stylization in Video using [15]. (a) Squash and Stretch effect with flight and
collision emphasis. (b) Augmentation of motion using blur and speed-lines. (c) Deformation em-
phasizing inertia. From [15]

to compensate for the camera motion-induced homography, may be smoothed and
visualized as speed-lines. A collection of heuristics derived from animation practice
were presented in [15] and optimized against to obtain well placed speed-lines. The
trailing edges of objects may also be rendered to produce ghosting or ‘skinning’ ef-
fects, which when densely packed can additionally serve as motion blur. The visual
nature of speed-lines has also led to their application in motion summarization via
reverse story-boarding [22] visualized using a mosaic constructed from the video
frames. Chenney et al. [12] presented the earliest work exploring automated de-
formation of objects to emphasize motion. This work introduced the ‘squash and
stretch’ effect, scaling 3D objects along their trajectories and applying the inverse
scale upon surface impact. A similar effect was applied to 2D video in [15], where
a nonuniform scaling of the object was performed within a curvilinear basis set es-
tablished using a cubic spline fitted to the object’s trajectory. Other distortions were
explored within this basis set including per-pixel warping of the object according
to velocity and acceleration; giving rise to the visual effect of emphasizing drag or
inertia. Figure 13.10 illustrates the gamut of effects available in this single frame-
work.

A layered approach to deformation was described by Liu et al. [41]. Video frames
were segmented into distinctly moving layers, using unsupervised clustering of mo-
tion vectors (followed by optional manual correction). The layers were then dis-
torted according to an optical flow estimate of pixels within each layer. Texture
infilling algorithms were applied to fill holes, and a priority ordering assigned to lay-
ers to resolve conflicts when warped layers overlapped post-deformation. Animators
frequently manipulate the timing and trajectory of object motion to emphasize an

280 P. Bénard et al.

Table 13.1 Summary of the trade-offs made by the different families of methods surveyed in this
chapter

Spatial
quality

Coherent
motion

Temporal
continuity

Style
variety

Complexity Footage
diversity

Naïve Static marks ++ −− ++ ++ ++ ++
Advection −− ++ ++ ++ − ++
Random marks ++ −− −− ++ ++ ++

Filtering Chapter 5 ++ ++ + − ++ ++
Opt. Flow Mark-based ++ ++ − + − +

Texture-based + ++ + + − +
Segmentation 3D (x, y, z) ++ ++ + + −− −−

2D + t ++ ++ + + −− −

action; for example, a slight move backward prior to a sprint forwards. This effect is
referred to as anticipation or snap in the animation. The automated introduction of
snap into video objects was described in [13], learning an articulated model of the
moving object e.g. a walking person, by observing the rigidity and inter-occlusion
of moving parts in that object. The joint angles parameterizations were manipulated
to exhibit a small opposing motion in proportion to the scale of each movement
made. A more general motion filtering model based of region deformation, rather
than articulated joints, was described in [56].

13.6 Discussion and Conclusion

This chapter illustrates the large amount of work addressing the problem of tempo-
rally coherence video stylization, and highlights a number of limitations that rep-
resent interesting directions for future research. The requirements implied by tem-
poral coherence are both contradictory and ill-defined, which in our sense is one
of the challenges of this field. In order to facilitate the concurrent analysis of exist-
ing methods in this chapter, we proposed a formulation of the temporal coherence
problem in terms of three goals: spatial quality, motion coherence and temporal con-
tinuity. Table 13.1 summarizes the relative trade-offs against these criteria exhibited
by the main families of technique surveyed in this chapter. In addition, we compare
against three additional criteria which should be considered when selecting appro-
priate methods. These are the overall complexity of implementation, the variety of
styles that may be simulated, and the diversity of footage that may be processed.

Of these criteria it is arguably hardest to precisely define the goal of spatial qual-
ity. To go further, we are convinced that human perception should play a greater role
in evaluating video stylization work (see Chap. 15 for an in-depth survey of eval-
uation approaches in NPR). Our spatial quality criterion relates to the perception

13 Temporally Coherent Video Stylization 281

of each frame as being somehow ‘hand-made’. Temporal continuity involves visual
attention which encapsulates explain human visual sensitivity to flicker and ‘pop-
ping’. Motion coherence could benefit from studies on motion transparency to de-
scribe more precisely sliding effects. Some studies have been done in the context of
3D scenes animations [6, 8] and could be use as a starting point for evaluating styl-
ized videos. Beyond the evaluation of temporal coherence, these connections could
also help drive coherent video stylization algorithms. Quantitative measurements
could be deduced from perceptual evaluations, paving the way to the formulation of
temporal coherence as a numerical optimization problem. Such a formulation would
give users precise control on the different goals of temporal coherence.

The coherent stylization of video footage remains an open challenge. This is pri-
marily because the coherent movement of marks with video content requires the
accurate estimation of video content motion. This is currently an unsolved problem
in Computer Vision, and is likely to remain so in the near-term. Consequently the
more successful solutions, and arguably the more aesthetically compelling output,
has resulted from semi-automated solutions that require user interaction. Such sys-
tem enable both the correction the stylization process, but more fully embrace the
user interaction to enable intuitive and flexible control over the stylization process.

Currently video stylization algorithms are caught in a compromise between ro-
bustness and generality of style. Low-level motion estimation based on flow can pro-
duce a reasonable motion estimation over most general video, but this is frequently
noisy because each pixel may potentially be estimated with a different motion vec-
tor. Although modern flow estimation algorithms seek to preserve spatial coherence
in the motion vector estimates, in practical video it is common to see inconsis-
tent motion estimation within a single object. On the other hand, Mid-level motion
estimation based on video segmentation can ensure consistency within objects by
virtue of their operation—delimited the boundaries of objects through coherent re-
gion identification. However such methods trade this robustness for the inability to
deal with objects than cannot be easily delineated such as hair, water, smoke, and so
on. The treatment of stylization as a rotoscoping problem in mid-level framework is
attractive, as it allows easy generalization of image-based techniques to video, and
the creation of aggressively stylized output such as cartoons. This leads to greater
style diversity with these techniques, versus flow-based techniques (and non-linear
filtering techniques covered in Chap. 5) that have so far been limited to painterly
effects. An open challenge in the field is to somehow combine the benefits of these
complementary approaches, perhaps by finding a way to fuse both into a common
framework to reflect the mix of object types within typical video footage. Regarding
region-based video stylization, and rotoscoping more generally, the region defor-
mation models currently considered in the literature (e.g., those of Sect. 13.4.2) are
quite basic. Region boundaries may deform naturally, or due to scene occlusion, yet
there is no satisfactory method for discriminating between, and reacting to, these
different causes of shape change.

Despite these shortcomings, stylized video is featuring increasingly within the
creative industries within movies (e.g., “Waking Life”, “Sin City”, “A Scanner
Darkly”), TV productions, advertisements and games. The field should strive to

282 P. Bénard et al.

work more closely with the end-users of these techniques. If user interaction and
creativity will remain within the stylization work-flow for some time, then collab-
oration with Creatives and with Human Factors researchers may prove at least as
fruitful a research direction as raw algorithmic development, and would prove valu-
able in evaluating the temporal coherence of algorithms developed.

References

1. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for roto-
scoping and animation. ACM Trans. Graph. 23, 584–591 (2004)

2. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object cutout using
localized classifiers. ACM Trans. Graph. 28(3), 70 (2009)

3. Bangham, J.A., Gibson, S.E., Harvey, R.: The art of scale-space. In: Proc. BMVC, pp. 569–
578 (2003)

4. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3),
433–466 (1995)

5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

6. Bénard, P., Thollot, J., Sillion, F.: Quality assessment of fractalized NPR textures: a perceptual
objective metric. In: Proceedings of the 6th Symposium on Applied Perception in Graphics
and Visualization, Chania, Greece, pp. 117–120. ACM, New York (2009)

7. Bénard, P., Cole, F., Golovinskiy, A., Finkelstein, A.: Self-similar texture for coherent line
stylization. In: Proceedings of the 8th International Symposium on Non-Photorealistic Ani-
mation and Rendering, Annecy, France, p. 91. ACM, New York (2010)

8. Bénard, P., Lagae, A., Vangorp, P., Lefebvre, S., Drettakis, G., Thollot, J.: A dynamic noise
primitive for coherent stylization. Comput. Graph. Forum 29(4), 1497–1506 (2010)

9. Bénard, P., Bousseau, A., Thollot, J.: Temporal coherence for stylized animation. Comput.
Graph. Forum 30(8), 2367–2386 (2012)

10. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with
temporal coherence and abstraction. In: Proc. NPAR, pp. 141–149 (2006)

11. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional
texture advection. ACM Trans. Graph. 26(3), 104 (2007)

12. Chenney, S., Pingel, M., Iverson, R., Szymanski, M.: Simulating cartoon style animation. In:
Proc. NPAR, pp. 133–138 (2002)

13. Collomosse, J.P., Hall, P.M.: Video motion analysis for the synthesis of dynamic cues and
futurist art. Graph. Models 68(5–6) 402–414 (2006)

14. Collomosse, J., Rowntree, D., Hall, P.M.: Stroke surfaces: a spatio-temporal framework for
temporally coherent nonphotorealistic animations. Tech. Rep. CSBU-2003-01, University of
Bath, UK (2003). http://opus.bath.ac.uk/16858/

15. Collomosse, J., Rowntree, D., Hall, P.M.: Video analysis for cartoon-style special effects. In:
Proc. BMVC, pp. 749–758 (2003)

16. Collomosse, J., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent non-
photorealistic animations from video. IEEE Trans. Vis. Comput. Graph. 11(5), 540–549
(2005)

17. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

18. Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing. ACM Trans.
Graph. 29(5), 134 (2010)

19. Dalal, K., Klein, A.W., Liu, Y., Smith, K.: A spectral approach to NPR packing. In: Proceed-
ings of the 4th International Symposium on Non-photorealistic Animation and Rendering,
pp. 71–78. ACM, New York (2006)

http://opus.bath.ac.uk/16858/

13 Temporally Coherent Video Stylization 283

20. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proc. SIGGRAPH,
pp. 769–776 (2002)

21. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with appli-
cations in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

22. Goldman, D.B., Curless, B., Salesin, D., Seitz, S.M.: Schematic storyboarding for video visu-
alization and editing. ACM Trans. Graph. 25(3), 862–871 (2006)

23. Green, S., Salesin, D., Schofield, S., Hertzmann, A., Litwinowicz, P., Gooch, A., Curtis, C.,
Gooch, B.: Non-photorealistic rendering. In: SIGGRAPH Courses (1999)

24. Haeberli, P.: Paint by numbers: abstract image representations. In: Proc. SIGGRAPH, pp. 207–
214 (1990)

25. Hays, J., Essa, I.: Image and video based painterly animation. In: Proc. NPAR, pp. 113–120
(2004)

26. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proc. SIG-
GRAPH, pp. 453–460 (1998)

27. Hertzmann, A.: Paint by relaxation. In: Computer Graphics International, pp. 47–54. IEEE
Comput. Soc., Hong Kong (2001)

28. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc. NPAR,
pp. 7–12 (2000)

29. Hsu, S.C., Lee, I.H.H., Wiseman, N.E.: Skeletal strokes. In: Proc. UIST, pp. 197–206 (1993).
doi:10.1145/168642.168662

30. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P.J., Zhang, E.: Video
painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17(1),
74–87 (2011)

31. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb,
M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: drawing strokes directly on 3D models.
In: Proceedings of SIGGRAPH 2002, San Antonio, USA, vol. 21, p. 755. ACM, New York
(2002)

32. Kass, M., Pesare, D.: Coherent noise for non-photorealistic rendering. ACM Trans. Graph. 30,
30 (2011)

33. Klein, A.W., Li, W., Kazhdan, M.M., Corrêa, W.T., Finkelstein, A., Funkhouser, T.A.: Non-
photorealistic virtual environments. In: Proceedings of SIGGRAPH 2000, New Orleans, USA,
pp. 527–534. ACM, New York (2000)

34. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue
noise. ACM Trans. Graph. 25(3), 509–518 (2006)

35. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering.
In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, pp. 55–64. ACM, New York (2011)

36. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering.
Comput. Graph. Forum 30(2), 593–602 (2011)

37. Lagae, A., Dutré, P.: A procedural object distribution function. ACM Trans. Graph. 24(4),
1442–1461 (2005)

38. Lasseter, J.: Principles of traditional animation applied to 3D computer animation. In: Proc.
SIGGRAPH, vol. 21, pp. 35–44 (1987)

39. Lin, L., Zeng, K., Lv, H., Wang, Y., Xu, Y., Zhu, S.C.: Painterly animation using video se-
mantics and feature correspondence. In: Proc. NPAR, pp. 73–80 (2010)

40. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of
SIGGRAPH, Los Angeles, USA, vol. 97, pp. 407–414. ACM, New York (1997)

41. Liu, C., Torralba, A., Freeman, W., Durand, F., Adelson, E.H.: Motion magnification. ACM
Trans. Graph. 24(3), 519–526 (2005)

42. Lu, J., Sander, P.V., Finkelstein, A.: Interactive painterly stylization of images, videos and
3D animations. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, Washington, USA, vol. 26, pp. 127–134. ACM, New York (2010)

43. Meier, B.J.: Painterly rendering for animation. In: Proc. SIGGRAPH, pp. 477–484 (1996).
doi:10.1145/237170.237288. dl.acm.org/citation.cfm?id=237288

http://dx.doi.org/10.1145/168642.168662
http://dx.doi.org/10.1145/237170.237288
http://dl.acm.org/citation.cfm?id=237288

284 P. Bénard et al.

44. Neyret, F.: Advected Textures. In: Proceedings of Eurographics/SIGGRAPH Symposium on
Computer Animation, pp. 147–153. Eurographics Association, San Diego (2003)

45. O’Donovan, P., Hertzmann, A.: AniPaint: interactive painterly animation from video. IEEE
Trans. Vis. Comput. Graph. 18(3), 475–487 (2012)

46. Perez, P., Gangnet, A., Blake, A.: Poisson image editing. In: Proc. ACM SIGGRAPH, pp. 313–
318 (2003)

47. Schwarz, M., Stamminger, M.: On predicting visual popping in dynamic scenes. In: Proceed-
ings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania,
Greece, p. 93. ACM, New York (2009)

48. Smith, K., Liu, Y., Klein, A.: Animosaics. In: Proc. SCA, pp. 201–208 (2005)
49. Szirányi, T., Tóth, Z., Figueiredo, M., Zerubia, J., Jain, A.: Optimization of paintbrush render-

ing of images by dynamic MCMC methods. In: Proc. EMMCVPR, pp. 201–215 (2001)
50. Treavett, S.M.F., Chen, M.: Statistical techniques for the automated synthesis of non-

photorealistic images. In: Proc. EGUK, pp. 201–210 (1997)
51. Vanderhaeghe, D., Barla, P., Thollot, J., Sillion, F.: Dynamic point distribution for stroke-

based rendering. In: Proceedings of the 18th Eurographics Symposium on Rendering 2007,
pp. 139–146. Eurographics Association, Grenoble (2007)

52. Vergne, R., Vanderhaeghe, D., Chen, J., Barla, P., Granier, X., Schlick, C.: Implicit brushes
for stylized line-based rendering. Comput. Graph. Forum 30, 513–522 (2011)

53. Wang, T., Collomosse, J.: Progressive motion diffusion of labeling priors for coherent video
segmentation. IEEE Trans. Multimed. 14(2), 389–400 (2012)

54. Wang, J., Thiesson, B., Xu, Y., Cohen, M.F.: Image and video segmentation by anisotropic
kernel mean shift. In: Proc. ECCV, pp. 238–249 (2004). doi:10.1007/978-3-540-24671-8_19

55. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574
(2004)

56. Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F.: The cartoon animation filter. ACM
Trans. Graph. 25(3), 1169–1173 (2006)

57. Wang, T., Collomosse, J., Hu, R., Slatter, D., Greig, D., Cheatle, P.: Stylized ambient
displays of digital media collections. Comput. Graph. 35(1), 54–66 (2011). doi:10.1016/
j.cag.2010.11.004

58. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graphics.
Axiomathes 15, 319–351 (2005)

59. Winnemöller, H., Olsen, S., Gooch, B.: Real-time video abstraction. In: Proc. SIGGRAPH,
pp. 1221–1226 (2006)

60. Yantis, S., Jonides, J.: Abrupt visual onsets and selective attention: evidence from visual
search. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 601–621 (1984)

http://dx.doi.org/10.1007/978-3-540-24671-8_19
http://dx.doi.org/10.1016/j.cag.2010.11.004
http://dx.doi.org/10.1016/j.cag.2010.11.004

Chapter 14
Computer-Assisted Repurposing of Existing
Animations

Daniel Sýkora and John Dingliana

14.1 Introduction

Paper and pencil are the only tools that a skilled artist needs to create a fascinating
world of cartoon animation. With these tools the artist has complete freedom, as
there are no limitations apart from the size of the paper and length of the lead. How-
ever, this freedom is tempered by the enormous effort and time needed to complete
the artwork especially in the case of colorful animation where hundreds of painted
drawings are required.

In recent times, computer-assisted 3D animation systems have become very pop-
ular as they can save a great deal of manual work. Here, the key advantage is that
the system already knows the structure and motion of an animated object, therefore
the final artwork is simply created by an automated rendering algorithm without
any additional effort. As a result, everything can be easily manipulated and mod-
ified. However, the compromise is that the artist loses a part of their freedom and
expressivity. Moreover, the creation of fully consistent 3D models can become very
tedious when compared to simple 2D drawing.

The aim of this chapter is to present a set of tools that enable ease of modification,
manipulation, and rendering similar to 3D animation systems, whilst preserving the
expressivity and simplicity of the original hand-drawn animation. To achieve this, it
is necessary to infer a part of the structural information hidden in the sequence of
hand-drawn images, namely the partitioning into meaningful segments, their topol-
ogy variations, depth ordering, and correspondences. Since this inference can be
very ambiguous and cannot be fully automated, we let the artist provide a couple of
rough hints that make this problem tractable.

D. Sýkora (�)
FEE, DCGI, CTU in Prague, Karlovo nám. 13, 121 35 Praha 2, Czech Republic
e-mail: sykorad@fel.cvut.cz

J. Dingliana
Trinity College Dublin, College Green, Dublin 2, Ireland
e-mail: John.Dingliana@scss.tcd.ie

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_14,
© Springer-Verlag London 2013

285

mailto:sykorad@fel.cvut.cz
mailto:John.Dingliana@scss.tcd.ie
http://dx.doi.org/10.1007/978-1-4471-4519-6_14

286 D. Sýkora and J. Dingliana

Fig. 14.1 Interactive segmentation of a hand-drawn image using LazyBrush [33]. The algorithm
finds an optimal labelling based on a set of roughly placed positional constraints—scribbles. It
automatically handles small gaps in outlines (note the small subaxillary gap), correctly maintains
anti-aliasing, and is not sensitive to imprecise placement of scribbles (e.g., the large brown scribble
over the plane). Reproduced with kind permission from Blackwell Publishing Ltd. © Anifilm +
© EG & Blackwell. Used with permission

The rest of the chapter is organized as follows. First we introduce an interactive
tool which enables quick partitioning of the image into a set of meaningful parts,
Sect. 14.2. These play a crucial role in the depth assignment and layering frame-
work, Sect. 14.3, which can further help to simplify deformation and retrieval of cor-
respondences between animation frames, Sect. 14.4. Finally, we demonstrate how
reconstructed structural information and correspondences can help to solve more
complex problems such as auto-painting, example-based synthesis, temporally co-
herent texture mapping, or 3D-like shading, Sect. 14.5.

14.2 Segmentation

This section presents LazyBrush—an interactive tool for segmenting hand-draw
images in various drawing styles [33], see Fig. 14.1. It addresses common limi-
tations of area selection tools used in professional ink-and-paint systems (usually
called magic wand or bucket fill). These are typically based on a variant of the flood-
fill algorithm which works well for images containing large flat regions separated by
continuous outlines. However, hand-drawn images are typically more complex and
thus tedious manual corrections are necessary to obtain clean segmentation. Typi-
cal problems that can arise when one wants to segment a hand-draw image using
flood-fill based tools are depicted in Fig. 14.2. These problems feature even in re-
cent advanced image segmentation [3, 10] and colorization algorithms [20, 27, 30],
see Fig. 14.3.

14 Computer-Assisted Repurposing of Existing Animations 287

Fig. 14.2 Typical problems of flood-fill based tools when applied to a hand-drawn image: (a) small
gaps cause leakage, the user has to retrieve them and draw a closure, (b) small regions require the
user to perform many detailed mouse clicks, (c) anti-aliasing is not preserved well due to intensity
thresholding mechanisms, the user has to tune the threshold to obtain better results, however, one
single value is typically not sufficient for the whole image, (d) the user has to move the mouse
pointer exactly inside the region of interest. © Anifilm. Used with permission

Fig. 14.3 LazyBrush [33] versus flood-fill and modern image segmentation and colorization al-
gorithms: Levin et al. [20] suffers from leakage, Sýkora et al. [30] does not handle small gaps
and small regions, Qu et al. [27] get stuck in a local minima, small regions when not arranged
in a repetitive hatching pattern need to be handled individually, anti-aliasing is not supported,
Grady [10] tends to produce weird boundaries and does not handle anti-aliasing, Boykov and
Funka-Lea 2006 [3] have problems with small regions as well as anti-aliasing. Reproduced with
kind permission from Blackwell Publishing Ltd. © Anifilm + © EG & Blackwell. Used with
permission

LazyBrush uses a popular interaction metaphor called scribbles, see Fig. 14.1,
which was originally used to perform interactive colorization of gray-scale im-
ages [20] and segmentation of photographs [3]. Instead of a single point click inside
the region of interest, the user specifies a set of constrained pixels upon which the
algorithm resolves the final labelling. Compared to previous approaches [3, 20],
LazyBrush scribbles are not necessarily meant to be hard constraints, i.e., the user

288 D. Sýkora and J. Dingliana

can overdraw the region of interest. The algorithm will recognize such inaccuracies
and try to produce better labelling.

14.2.1 Problem Formulation

Similarly to recent advanced image segmentation and colorization techniques [3, 10,
20, 27] LazyBrush formulates segmentation as an energy minimization problem. It
defines a new energy function that is custom tailored to hand-drawn images and thus
can overcome issues depicted in Fig. 14.2 and Fig. 14.3.

14.2.1.1 Energy Function

As an input we consider a gray-scale image I consisting of pixels P in a 4-connected
neighborhood system N . Each pixel p ∈ P has an intensity Ip ∈ 〈0,1〉. In addition
to this, the user marks a subset of pixels using scribbles S. Each scribble s ∈ S has
a specific label �s taken from a set of possible labels L, see Fig. 14.1 left. The aim
is to find an optimal labelling �∗, i.e., the label-to-pixel assignment, see Fig. 14.1
right, that minimizes the following energy:

E(�) =
∑

{p,q}∈N

Vp,q(�p, �q) +
∑
p∈P

Dp(�p) (14.1)

where the smoothness term Vp,q represents the energy of label discontinuity be-
tween two neighbor pixels p and q (i.e., when �p �= �q otherwise Vp,q = 0), and
data term Dp the energy of assigning a label � to a pixel p.

14.2.1.2 Smoothness Term

As the aim is to maintain anti-aliasing, discontinuities between two labels are pre-
ferred to appear at pixels p where the intensity Ip is low, i.e., inside dark outlines,
see Fig. 14.4(A) left. Therefore we need to set Vp,q ∝ Ip . This is a fundamental
difference from standard image segmentation techniques [3, 10] where the aim is to
push segment boundaries to pixels with maximal gradient. Such a setting is unde-
sirable in our scenario as it reveals discontinuities at soft edges, Fig. 14.4(A) right.

Next we need to favor compact hole-free regions, see Fig. 14.4(B) left, therefore
it is necessary to set Vp,q > 0, otherwise outlines with zero intensity will not influ-
ence the minimum of Eq. (14.1) therefore can easily produce disconnected holes in
the final segmentation, Fig. 14.4(B) right. We avoid this by always adding 1 to the
smoothness term, i.e., Vp,q = 1 + Ip . However, when the original image contains
long creeks such simple additions can lead to unintended shortcuts, see Fig. 14.4(C)
right. To suppress them, discontinuities going through the white pixels should have

14 Computer-Assisted Repurposing of Existing Animations 289

Fig. 14.4 The energy function used in LazyBrush satisfies the following inequalities: (A) a dis-
continuity inside the outline always has lower energy than a discontinuity on the edge (bottom inset
depict intensity profile), (B) length of the discontinuity counts, i.e., compact hole-free regions have
lower energy, (C) shortcut through the white areas has higher energy than a discontinuity along a
creek even if the contrast of the outline is low, (D) soft scribbles respect rule of majority, i.e.,
the label of a scribble which occupies the largest area inside a homogeneous region will prevail.
Reproduced with kind permission from Blackwell Publishing Ltd.

very high energy K . As the aim is to have overall energy of a shortcut higher than a
sum of energies over a long creek, a good estimate for K can be a perimeter of I .

Another source of shortcuts is low contrast between homogeneous areas and out-
lines visualized by light gray in Fig. 14.4(C). This can happen, e.g., in unprocessed
scans of soft pencil drawings. To overcome this, a nonlinear mapping that enhances
contrast is required. We use a gamma correction: Vp,q = 1 + K · I

γ
p , with, e.g.,

γ = 5. Similar preprocessing of input intensities is required when segmenting gray-
scale images. In this case outlines need to be emphasized first (e.g., using the neg-
ative response of Laplacian-of-Gaussian filter [30], see also Sect. 5.2.2) and then
segmentation can be performed using the LazyBrush algorithm (cf. Fig. 14.18, for
details see [33]).

To summarize the previous discussion, the smoothness term Vp,q is defined as
follows:

Vp,q(�p, �q) =
{

1 + K · I γ
p for �p �= �q

0 otherwise
(14.2)

where K is the perimeter of I and γ = 5.

14.2.1.3 Data Term

In recent image segmentation and colorization algorithms, the data term Dp is usu-
ally set to reflect some image-based prior such as intensity [3] or a repetitive hatch-
ing pattern [27]. However, repetitive hatching or intensity variations are not typical
for hand-made drawings and even if they are present, correspondences between in-
tensity/pattern and a meaningful segment in the image are rare. To address this fact,
LazyBrush uses only a user-driven data term. Among other properties, this setting
ensures that all label segments are always connected to their initial scribbles. A sim-
ilar approach is also used in [10], however, here a key difference is that LazyBrush

290 D. Sýkora and J. Dingliana

Fig. 14.5 Multiway cut—a basic structure of a graph G (left): pixels P (white dots), label termi-
nals L (color dots), pixel edges Ep with weight wp,q (black lines), and links to label terminals E�

with weight wp,� (color lines). The resulting multiway cut and corresponding labelling of pix-
els (right). Reproduced with kind permission from Blackwell Publishing Ltd.

does not necessarily assume that all user-defined scribbles serve as hard constraints.
It introduces a new rough positional constraint—soft scribble, which preserves the
so called rule of majority, i.e., within a homogeneous area a label whose scribble
occupies the majority of pixels will prevail, see Fig. 14.4(D). In other words, the
overall energy Eq. (14.1) should be lower for the left labelling in Fig. 14.4(D) even
thought all pixels under the yellow scribble have not received its label. This behavior
can be accomplished using the following data term:

Dp(�p) =
⎧⎨
⎩

K no scribble
0.95 · K soft scribble
0 hard scribble

(14.3)

where K is the perimeter of the image I (i.e., the energy of a discontinuity at white
pixels). For a derivation of this setting and a more detailed discussion about the rule
of majority see [33].

14.2.2 Problem Solution

Once the energy function Eq. (14.1) is defined we can proceed to its minimization.
Since the value of the smoothness term Vp,q depends only on the case where two
neighbor pixels have different labels, our energy satisfies the Potts model [26]. As
shown in [5], minimizing such energy is equivalent to solving a multiway cut prob-
lem on a certain undirected graph G = {V ,E } where V = {P,L} is a set of vertices
and E = {Ep,E�} a set of edges, see Fig. 14.5.

Vertices V consist of pixels P and terminals L. Each pixel p ∈ P is connected to
its 4 neighbors via edges Ep having weight equal to smoothness term wp,q = Vp,q

for the case �p �= �q . There are also auxiliary edges E� that connect terminals L to
marked pixels. Each E� has a weight wp,� = K −Dp(�) (hard scribbles have wp,� =
K and soft wp,� = 0.05 · K).

14 Computer-Assisted Repurposing of Existing Animations 291

Fig. 14.6 Greedy approximation to multiway cut in progress—computing binary
max-flow/min-cut subproblems on gradually reducing graphs (top), corresponding mask of
already labelled pixels (bottom, checkerboard indicates unlabelled pixels). Reproduced with kind
permission from Blackwell Publishing Ltd. © Ondřej Sýkora + © EG & Blackwell. Used with
permission

A multiway cut with two terminals is equivalent to a max-flow/min-cut problem
for which efficient algorithms exist [4, 12]. However, for three or more labels the
problem becomes NP-hard [6]. Nevertheless, in practice a simple greedy approxi-
mation can quickly deliver a solution which is visually close to the global minimum.
It is based on a sequence of binary solutions. The algorithm selects an arbitrary label
as a first terminal and all other labels as a second terminal. Then it solves a binary
max-flow/min-cut problem and removes a part of the graph associated to the first
terminal. The same operation is repeated on a reduced graph with a reduced set of
labels until there are only two different labels, see Fig. 14.6.

14.3 Adding Depth

In this section, an extension of the LazyBrush algorithm is presented that enables
quick addition of depth information into hand-drawn images [34]. It is motivated by
perceptual studies that have tried to understand how humans reconstruct depth from
a single image [17, 18]. These studies show that humans typically fail to specify
absolute depth values, however, are much more accurate in telling whether some
part of the object is occluded by another and vice versa. Therefore the aim is to
avoid inputs requiring knowledge of absolute depth and instead use a set of sparse
depth equalities that are much easier to specify, see Fig. 14.7.

14.3.1 Depth from Depth Inequalities

Supposing that we have already partitioned the input image into a set of mean-
ingful regions, see Fig. 14.8 left, and specified a set of depth inequalities which
indicate their relative ordering in depth Fig. 14.8 middle. Such input can be repre-
sented as an oriented graph G(V,E) where vertices V correspond to regions (red
dots in Fig. 14.8) and oriented edges E represent depth inequalities (green arrows
in Fig. 14.8). Now the task is to assign a depth value into each vertex v ∈ V so

292 D. Sýkora and J. Dingliana

Fig. 14.7 If we ask a human to tell us what are the absolute depths of regions denoted by question
marks (left) they immediately start to think in terms of pairwise above/under relationships (right)
from which they reconstruct absolute depths. This tedious process can be automated so that the
user can directly specify only these pairwise relationships (depth inequalities) and the system will
resolve absolute depths automatically. © UPP & DMP. Used with permission

Fig. 14.8 Depth from depth inequalities—a user specifies meaningful segmentation (left) and a
set of depth inequalities (middle). Based on this input, a graph is built (right) and its vertices are
enumerated according to their topological order. Reproduced with kind permission from Blackwell
Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used with permission

that it satisfies all specified depth inequalities E (see the graph in Fig. 14.8 and the
resulting depth map in Fig. 14.10).

This task is equivalent to a graph theoretical problem called topological
sorting [15]. It can be solved by a simple algorithm, the input of which is
graph G(V,E), a set of vertices having no incoming edges S, and an empty set L.
The algorithm repeats the following steps:

14 Computer-Assisted Repurposing of Existing Animations 293

while S �= ∅ do
S := S − {n} and L := L ∪ {n}
for ∀m ∈ V having edge e : n → m do

E := E − {e}
if m has no other incoming edges then

S := S ∪ {m}
endfor

endwhile

if E �= ∅ then
G has at least one oriented cycle else L contains topologically sorted
nodes.

A topologically sorted list of vertices L is returned only if the graph G does not
contain oriented loops. This situation can happen when a new depth inequality is
added in the wrong direction or when the partitioning of the input image is insuffi-
cient. The system will inform the user about this problem and ask them to change
the direction or refine the partition of the input image so that the loop is removed.
This leads to an interactive process where segmentation and specification of depth
inequalities is interchanged until the desired depth assignment is reached.

14.3.2 Outline-to-Region Assignment

The LazyBrush algorithm places segment boundaries inside the outline therefore
it is not clear to which segment the outline actually belongs. This knowledge is
crucial for applications where a precise extraction of individual parts is necessary.
The task is equivalent to the figure-ground separation problem [25], which is non-
trivial and requires additional semantic knowledge. However, an important part of
this knowledge is already encoded in the absolute depth ordering. This information
is sufficient to produce good results with only minor artifacts, see Fig. 14.9.

First we need to estimate local thickness of outlines using two distance
maps [8]: D1 computed from the boundaries of regions being expanded, red color
in Fig. 14.9(b) and D2 from all other regions, blue color in Fig. 14.9(b). Pixels
where D1

p = D2
p form a medial axis from which we can propagate estimates of

outline thickness t to all other pixels, Fig. 14.9(c).
This propagation can be understood as a variant of diffusion curves [24]

(see Sect. 8.2.3) and so can be formulated as a solution to the Laplace equation:
∇2t = 0 with the following boundary conditions (q ∈ Np):

Dirichlet: tp = 2D1
p ⇐⇒ D1

p = D2
p

Neumann: t ′pq = 0 ⇐⇒ D1
p = 0 or D2

p = 0

This formulation leads to a sparse system of linear equations which is solvable using
simple Gauss–Seidel iterations or some more advanced techniques such as [13].

294 D. Sýkora and J. Dingliana

Fig. 14.9 Outline-to-region assignment—a synthetic example (left): (a) input depth map with dark
outlines, (b) medial axis obtained using two distance maps computed from the active region (red)
and all other regions (blue), (c) propagation of outline thickness from the medial axis to all other
outline pixels, (d) outline-to-region assignment based on the local estimation of outline thickness,
(e) filling in small gaps, (f) final expanded depth map. A practical example (right): several mi-
nor artifacts are depicted in selected zoom-ins. Reproduced with kind permission from Blackwell
Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used with permission

With the estimation of outline thickness we can expand the region to pixels
where d1

p < tp , Fig. 14.9(d), and fill in small gaps by removing connected com-
ponents whose size is below a predefined threshold, Fig. 14.9(e). The expanded
region is then removed from the depth map and the same process is applied to all
other remaining regions in a front-to-back order to obtain the resulting assignment,
Fig. 14.9(f).

14.3.3 Smooth Depth Transitions

When the absolute depths and outline-to-region assignments are known, we can
produce smooth depth transitions in areas where depth discontinuities between seg-
ments were enforced due to a depth assignment process based on topological sorting
(note the depth discontinuity between body and arm in Fig. 14.10).

As we already know where the original depth inequalities were placed, we can
use their endpoints to define a set of point constraints U◦ (see red dots in Fig. 14.10)
from which we can smoothly propagate absolute depth values to the rest of the im-
age. Values are taken from d̂ , which denotes the initial depth map produced by Lazy-
Brush and the topological sorting algorithm described in Sect. 14.3.1, see Fig. 14.10
left.

This is again a problem similar to diffusion curves and can be solved using the
Laplace equation: ∇2d = 0 with the following boundary conditions (q ∈ Np):

Dirichlet: dp = d̂p ⇐⇒ p ∈ U◦

Neumann: d ′
pq = 0 ⇐⇒ d̂p �= d̂q ∧ Ip < τ

14 Computer-Assisted Repurposing of Existing Animations 295

Fig. 14.10 Enforcing smooth depth transitions—the initial depth map (left) produced by Lazy-
Brush (Sect. 14.2) and the topological sorting algorithm (Sect. 14.3.1) contains artificial depth
discontinuities at pixels where the body and arm connects. This artifact can be removed (right) by
calculating a smooth transition between the endpoints (red dots) of the original depth inequality
which was used to specify depth ordering of these two regions (depicted in Fig. 14.8). Reproduced
with kind permission from Blackwell Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used
with permission

Here Neumann conditions enforce zero derivative only at pixels where the depth
discontinuity in the initial depth map d̂ is valid, i.e., lies inside the outline (τ is a
threshold for the intensity of outlines).

14.4 Deformation

Image deformation tools are invaluable for computer assisted production of hand-
drawn cartoon animations since they allow for quick animation prototyping,
example-based synthesis and can help to obtain rough correspondences between in-
dividual animation frames. Recently the as-rigid-as-possible deformation model [1]
has become very popular due to its ability to produce plausible deformations with
only little user intervention [11], see Fig. 14.11.

14.4.1 Rigid Square Matching

In this section we describe a simple yet effective algorithm called rigid square
matching [37], which enables interactive as-rigid-as-possible shape manipulation
and can be easily extended to perform fully automatic or supervised image registra-
tion [32].

296 D. Sýkora and J. Dingliana

Fig. 14.11 As-rigid-as-possible shape manipulation—the user selects a few control points (red
dots) on the pre-segmented image (left), drags them to a desired location (middle and right), and
the algorithm deforms the image in a way that the rigidity of the original shape is preserved. © UPP
& DMP. Used with permission

Fig. 14.12 Rigid square
matching—the original image
is embedded within a square
lattice whose connectivity
respects the initial
segmentation and depth
layering provided by the
user (left). To avoid gluing of
disconnected parts during the
deformation (right) there can
exist multiple collocated
squares with different
connectivity (examples are
denoted in green). © UPP &
DMP. Used with permission

An initial step of the rigid square matching algorithm is to embed the input im-
age into a control lattice, see Fig. 14.12, consisting of interconnected squares whose
topology respects segmentation and depth layering specified by the user. Each
square is assigned a bitmap with corresponding pixels and a depth map to resolve
the local layering problem when displaying self-occluded poses, see Fig. 14.11. This
solution has an advantage over the triangulation used in [11] as it is much easier to
implement and there is no need to approximate shape boundaries using piecewise
linear segments.

To avoid gluing due to insufficient resolution of the control lattice, the algo-
rithm allows several collocated squares with different connectivity, green squares
in Fig. 14.12. For segments glued together due to occlusion, see hands or boots
in Fig. 14.13(a), the user can additionally specify a subset of depth inequalities,
blue arrows in Fig. 14.13(a), that will mark corresponding depth discontinuities as
tears, Fig. 14.13(b). This modification is important namely for the image registra-
tion scenario where it can help to improve the accuracy of the final registration,
Fig. 14.13(c).

14 Computer-Assisted Repurposing of Existing Animations 297

Fig. 14.13 Introducing tears—a subset of depth inequalities (blue arrows) is selected (a) to specify
tears at corresponding depth discontinuities (b). This can help to improve the accuracy of the image
registration algorithm (c) when a source image (a) is registered to a target image (d). Reproduced
with kind permission from Blackwell Publishing Ltd. © UPP & DMP + © EG & Blackwell. Used
with permission

Fig. 14.14 Schematic overview of two simple steps repeated by the rigid square matching algo-
rithm: (1) computation of rigid transformation for each square and (2) moving vertices towards
centroid computed from their instances in connected squares

14.4.1.1 Algorithm

When the control lattice is created, the user selects a subset of its vertices called con-
trol points and moves them to arbitrary locations to define the desired deformation,
see Fig. 14.11 and Fig. 14.12. The aim of the rigid square matching algorithm is to
move all remaining vertices on the lattice so that deformation of the corresponding
squares will be as close as possible to a rigid transformation, i.e., just rotation R∗
and translation t∗. This is accomplished by iterating the following two simple steps,
see Fig. 14.14:

1. For each square, compute optimal rigid transformation (R∗, t∗) and use it to
transform its vertices.

2. Move each vertex to the centroid of its transformed instances in all intercon-
nected squares.

Step (1) can be computed as follows:

298 D. Sýkora and J. Dingliana

The aim is to find the optimal rigid
transformation (R∗,t∗) that moves the
vertices of the original square pi so
that the sum of squared distances to
the corresponding vertices in the de-
sired pose qi is minimized:

(
R∗, t∗

) = arg min
R,t

∑
i

|R · pi + t − qi |2 (14.4)

A simple closed form solution exists to this least square problem in 2D [28]. It can
be shown that the optimal rigid transformation (R∗,t∗) always moves the centroid pc

of the source vertices to the centroid qc of the target vertices. When we align source
and target vertices in a way that their centroids are in the origin (i.e., p̂i = pi − pc

and q̂i = qi − qc) then the optimal rotation R∗ can be computed as follows:

R∗ = 1

μ

∑
i

(
p̂i

p̂⊥
i

)(
q̂T

i q̂⊥T
i

)
(14.5)

where

μ =
√√√√(∑

i

q̂i p̂T
i

)2

+
(∑

i

q̂i p̂⊥T
i

)2

(14.6)

T denotes transposition, and the operator ⊥ denotes the perpendicular vector,
i.e.: (x, y)⊥ = (y,−x). Once the rotation matrix R∗ is known, the translation vec-
tor t∗ can be computed directly:

t∗ = qc − R∗ · pc (14.7)

14.4.2 As-Rigid-As-Possible Image Registration

The knowledge of correspondences between individual hand-drawn animation
frames is crucial for many applications described in this chapter. However, obtaining
them automatically is a challenging task. The problem is that each animation frame
is unique and when compared to a previous frame, it typically undergoes a large
amount of free-form deformation and notable change in appearance, see Fig. 14.15.

Popular computer vision techniques based on local similarity (SIFT keys [21])
or global context (shape contexts [2]) typically fail on such images since they rely
on unique local features or stable global configurations, which are common in pho-
tographs but rare in hand-drawn images. A more powerful approach—deformable
image registration based on discrete optimization [9, 29] allows retrieval of corre-
spondences even in the presence of local/global free-form deformation, however, it

14 Computer-Assisted Repurposing of Existing Animations 299

Fig. 14.15 Automatic retrieval of correspondences between two hand-drawn images—SIFT
keys [21] or shape contexts [2] fail as there are only a few distinct local features and the global
context is not preserved. Deformable image registration [9] cannot handle large displacements.
© UPP & DMP. Used with permission

Fig. 14.16 Result of fully automatic as-rigid-as-possible image registration—the aim is to register
source and target image with depicted initial overlap, after several push/regularize iterations the
source is deformed so that it approximately matches the target (cf. final overlap and deformed
source). © UPP & DMP. Used with permission

becomes computationally intractable for larger displacements due to an exponen-
tially increasing state space.

In this section we describe a simple yet effective extension of the rigid square
matching algorithm that enables fully automatic or supervised deformable image
registration [32]. As the deformation model employed enforces local rigidity and
respects the original shape articulation, the algorithm is more robust to larger dis-
placements, see Fig. 14.16. Moreover, due to its iterative nature, it allows the user
to inspect the registration process and intervene when necessary.

The algorithm iterates two simple steps until a stable configuration is reached,
see Fig. 14.17:

1. Push all vertices to locations with minimal visual difference.
2. Regularize control lattice using the rigid square matching algorithm.

The aim of the push phase is to find a new location for each vertex on the embed-
ding lattice that minimizes visual difference in its local neighborhood. To do this we
can utilize a simple block matching algorithm, which guarantees a globally optimal
shift within a predefined search area.

300 D. Sýkora and J. Dingliana

Fig. 14.17 As-rigid-as-possible image registration in progress—in each iteration two steps are
executed: first all vertices are pushed towards locations with minimal visual difference (left) and
then the shape is regularized using the rigid square matching algorithm (right). For clarity, the
source shape is filled with a transparent color and the control lattice is visualized

Formally, the aim is to find an op-
timal shift vector t∗ within a local
search area M that minimizes the
sum of square differences over a
neighborhood N , i.e.:

t∗ = arg min
t∈M

∑
p∈N

∣∣S(p) − T(p − t)
∣∣2 (14.8)

where S denotes the source and T the target image. Note that in spite of shift opti-
mization, the overall image registration algorithm is not limited to pure translation,
since S is slightly deformed during the regularization phase and local neighborhoods
of vertices gradually adapt to more complicated deformations, see Fig. 14.17.

In addition to the block matching algorithm the user can also intrude into the
push phase by specifying their own positional constraints similarly to the shape ma-
nipulation scenario, Fig. 14.11, or just quickly guide the process by simply dragging
selected vertices towards desired locations. The key difference from the stand-alone
rigid square matching algorithm is that during the push phase all vertices are moved
(not only those representing user-defined constraints). As can be seen in Fig. 14.17
this leads to temporarily inconsistent configurations, however, in the regularization
phase, vertex positions are immediately relaxed by a couple of rigid square matching
iterations that enforce local rigidity and make the overall shape consistent.

14.5 Applications

The techniques described in previous sections can now be used as basic building
blocks in various practical applications enabling repurposing of existing or creation

14 Computer-Assisted Repurposing of Existing Animations 301

Fig. 14.18 Examples of interactive painting (left) and colorization (right) of hand-drawn images
in various drawing styles using the LazyBrush algorithm. Reproduced with kind permission from
Blackwell Publishing Ltd. © Lukáš Vlček + © UPP & DMP + © EG & Blackwell. Used with
permission

of new hand-drawn cartoon animations with a look that is distinct from traditional
techniques.

14.5.1 Painting, Colorization and Texture Mapping

The first straightforward application of segmentation and registration is paint-
ing and colorization, see Fig. 14.18 and also Sect. 17.5. Here desired colors or
color components are assigned to the resulting segments and, in each pixel, mul-
tiplied/combined with the original gray-scale intensity. The greedy multi-label seg-
mentation algorithm presented in Sect. 14.2.2 is fast enough to enable interactive
response when working in PAL resolution.

To avoid repeated specification of scribbles for all animation frames, as-rigid-
as-possible image registration, Sect. 14.4.2, can be used to register the first frame
to the following frame, transfer the scribbles, and use the LazyBrush algorithm to
obtain the segmentation, see Fig. 14.19. As the LazyBrush algorithm is robust to
imprecise positioning of scribbles, small mismatches in the registration are allowed.
However, for scenes where detailed painting is required (e.g., many small regions
with different colors), the user may need to specify additional correction scribbles
to keep the segmentation consistent.

Instead of a single color, the user can also specify a texture and make the region
filling more visually rich. However, in contrast to a single color there is an additional
problem: the texture should follow the motion and/or deformation of its correspond-
ing regions in the subsequent frames to preserve temporal coherency. This can be
problematic in hand-drawn animation as it is typically impossible to obtain one-to-
one correspondence between individual frames, see Sect. 14.4.2.

Fortunately, as noted in [39] the human visual system tends to focus more on
visually salient regions, while devoting significantly less attention to other, less vi-

302 D. Sýkora and J. Dingliana

Fig. 14.19 Auto-painting—color scribbles (a) are transferred from already painted (b) to yet un-
painted frames (c) using as-rigid-as-possible image registration algorithm (d). LazyBrush is then
utilized to compute the final painting (e). Reproduced with kind permission from ACM. © Anifilm
+ © ACM. Used with permission

Fig. 14.20 Texture mapping with approximate temporal coherence—scribbles used to paint the
first frame (a), textures were applied to selected regions (b), texture transfer to a new frame using
a deformation field obtained by as-rigid-as-possible image registration algorithm (c), final painting
of the new frame (d), small gaps were filled using extrapolation of texture coordinates. Reproduced
with kind permission from ACM. © Anifilm + © ACM. Used with permission

sually important, areas. In hand-drawn animations contours are the salient features.
Textures are typically less salient and thus attract considerably less attention [36].
Exploiting this property, an illusion of temporal coherent animation can be created
using only rough correspondences obtained by an as-rigid-as-possible image regis-
tration algorithm [35], see Fig. 14.20.

14.5.2 Simulation of 3D-Like Effects

In this section we describe techniques which allow artists to simulate 3D-like ef-
fects common for computer-generated movies entirely in the 2D domain without
the need to reconstruct and render a 3D model, see Fig. 14.23(d). They are based on

14 Computer-Assisted Repurposing of Existing Animations 303

Fig. 14.21 Simulation of 3D-like effects: (a) depth map with Dirichlet (red) and Neumann (blue)
boundary conditions, (b) Lumo shading, (c) simulation of ambient occlusion, (d) simulation of
ambient occlusion with Lumo shading, (e) texture mapping using flat UV coordinates, (f) texture
rounding based on shading, (g) texture rounding with ambient occlusion, (h) texture rounding with
shading and ambient occlusion

the segmentation and depth obtained using the algorithms described in Sect. 14.2
and Sect. 14.3.

14.5.2.1 Ambient Occlusion

Ambient occlusion is a popular technique that can approximate smooth light at-
tenuation on diffuse surfaces caused by occlusion. Its key advantage is that it can
enhance the perception of depth in the image [19]. In our setting with known seg-
mentation and depth order this effect can be simulated by unsharp masking the depth
buffer [22] or by simply superimposing a stack of regions with blurred boundaries
in a back-to-front order, see Fig. 14.21(c) and Fig. 14.23(c).

14.5.2.2 Shading

Another popular technique that can profit from knowledge of segmentation and
depth is Lumo [14]. The method approximates the normal field inside a region using
the 2D normals computed on its boundaries. The main idea is that on the silhouette
of an object the normal component in the viewing direction is always equal to zero,
hence the normal is completely specified by its x and y components. Furthermore,
the gradient of the image intensity is orthogonal to the silhouette, giving exactly the
required normal components. This simple rule holds only when the target shape con-
tains silhouette pixels, i.e., for interior strokes, depth discontinuities should be taken
into account. In the original method the user had to trace over the region boundaries
and then manually specify an over-under assignment map to produce correct results.

In this section we describe a new formulation of Lumo [35], which exploits al-
gorithms described in this chapter in order to obtain similar results with much less

304 D. Sýkora and J. Dingliana

Fig. 14.22 Texture rounding (1D example): linearly interpolated texture coordinates on the sur-
face S and their back projection f to the plane

effort, see Fig. 14.21(b) and Fig. 14.23(c). The formulation is analogous to diffu-
sion curves. The resulting normal field is obtained by solving the Laplace equation
∇2f = 0 (where f is either the x or y component of the normal vector n) with the
following boundary conditions, see Fig. 14.21(a):

Dirichlet: fp = d ′
pq ⇐⇒ dp > dq

Neumann: f ′
pq = 0 ⇐⇒ dp < dq

(14.9)

where q is a neighboring pixel to p, d ′
pq is the derivative of the depth map at pixel

p in the direction pq and f ′
pq is the derivative of the normal component (nx or ny).

This leads to a sparse system of linear equations with two different right hand sides
(nx and ny). As in the original method nz is computed using nx and ny components
via the sphere equation:

nz =
√

1 − n2
x − n2

y (14.10)

14.5.2.3 Texture Rounding

Values of nz can be further utilized to simulate a texture rounding effect, i.e., when
the curvature of the surface generates an area distortion and causes the texture to
scale. Parallax mapping [16] is typically used to simulate this scaling [38], how-
ever, the disadvantage here is that it does not preserve UV coordinates at region
boundaries thus produces noticeable texture sliding when used in animation [35].
This artifact can be avoided by interpolating texture coordinates on a virtual 3D sur-
face S = (x, y,h(x, y)), where the height h is taken from the z component of the
extrapolated normal: h(x, y) = nz(x, y), see Fig. 14.22.

Such interpolation can be computed directly in 2D by solving the inhomogeneous
Laplace equation: ∇2

wf = 0 where ∇2
w is the Laplace–Beltrami operator, which

measures actual distances on the surface S. This yields another large sparse system
of linear equations, now with an irregular Laplacian matrix where the weights wij

between pixels i and j are computed as the inverted length of the edge connecting
their corresponding 3D vertices on S:

wij = 1√
1 + (hi − hj)2

(14.11)

14 Computer-Assisted Repurposing of Existing Animations 305

Fig. 14.23 Simulation of 3D-like effects (real example): (a) original image with LazyBrush scrib-
bles and depth inequalities, (b) depth map, (c) ambient occlusion and Lumo shading, (d) final
composition: original image, textures, ambient occlusion, Lumo shading and texture rounding.
Reproduced with kind permission from ACM. © Anifilm + © ACM. Used with permission

Fig. 14.24 Approximate 3D model and stereo: (a) original image with LazyBrush scribbles and
depth inequalities, (b) depth map, (c) Lumo shading, (d) depth map after shape-from-shading ap-
plied on the Lumo shading, (e) approximate 3D mode with texture, (f) anaglyph stereo. Reproduced
with kind permission from Blackwell Publishing Ltd. © Anifilm + © UPP & DMP + © EG &
Blackwell. Used with permission

Solving this inhomogeneous system with Dirichlet boundary conditions and two
different right hand sides yields texture coordinates for the surface S projected on
the plane, see Fig. 14.21(f) and Fig. 14.23(d).

14.5.2.4 Approximate 3D Model and Stereo

We can further combine the depth map with Lumo shading and apply shape-from-
shading [7] to reconstruct an approximation of the 3D surface, see Fig. 14.24(a–e).
Such a simple 3D model can be further refined in some modelling tool or rendered
from two different viewpoints to obtain stereoscopic images, Fig. 14.24(f).

306 D. Sýkora and J. Dingliana

Fig. 14.25 Local layering—depth inequalities can be used to obtain desired visibility during the
interactive shape manipulation (a) and fragment composition (b), the approach can handle com-
plex self-occlusions (c). Reproduced with kind permission from Blackwell Publishing Ltd. (a).
© Anifilm + © UPP & DMP + © EG & Blackwell. Used with permission

Fig. 14.26 Example-based shape manipulation—by registering several consecutive frames (left)
a smooth sequence of intermediate frames can be generated. This can be utilized for a synthesis of
new poses satisfying a user-given positional constraint (right): the current position of the dragged
point (red dot) is projected (blue dot) on its original motion trajectory (red curve) to retrieve the
corresponding intermediate frame, which is subsequently deformed to match the current position
of the dragged control point. Reproduced with kind permission from ACM. © UPP & DMP +
© ACM. Used with permission

14.5.3 Shape Manipulation and Example-Based Synthesis

Depth maps generated by the algorithm described in Sect. 14.3 can be used
to resolve the visibility of occluded parts during interactive shape manipulation,
see Fig. 14.11. The user can freely interact with the shape and modify the visibil-
ity on the fly using additional depth inequalities, Fig. 14.25(a). A similar problem
arises in systems where the user extracts and composes fragments of images [31].
Here depth inequalities allow quick reordering of regions to obtain correct compo-
sition, see Fig. 14.25(b). This operation is also known as local layering for which
alternative techniques exist [23], however, the approach presented in this chapter is
more general as it handles complex self-occlusions, Fig. 14.25(c).

The knowledge of correspondences between consecutive animation frames al-
lows the creation of smooth intermediate transitions, see Fig. 14.26. For this task
sub-pixel accurate registration is required. We can use the results of the as-rigid-as-
possible image registration, Sect. 14.4.2, as an initial guess for a more precise algo-
rithm with a flexible deformation model, e.g., [9]. Then, intermediate frames can be

14 Computer-Assisted Repurposing of Existing Animations 307

obtained by interpolating positions of vertices on the control lattice and performing
several shape regularization iterations to enforce rigidity. Inside each square, sub-
pixel accurate source-target and target-source deformation fields together with pixel
blending help to produce the final smooth transition.

The process of inbetweening can be additionally controlled by the user. This ex-
tension can be viewed as an example-based shape manipulation which respects the
original animation but is more flexible than simple inbetweening. In this scenario,
the user can drag a specific vertex on the control lattice and move it to a differ-
ent location. By projecting this new location on its inbetweening trajectory we can
generate the closest transition frame and deform it to match the user-specified con-
straint, see Fig. 14.26, for details refer to [32].

Acknowledgements This work has been supported by the Marie Curie action ERG, No.
PERG07-GA-2010-268216 and partially by the Technology Agency of the Czech Republic un-
der the project TE01010415 (V3C—Visual Computing Competence Center). Hand-drawn images
used in this chapter are courtesy of UPP & DMP, Anifilm, Lukáš Vlček, and Ondřej Sýkora.

References

1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: ACM SIG-
GRAPH Conference Proceedings, pp. 157–164 (2000)

2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 509–522 (2002)

3. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput.
Vis. 70(2), 109–131 (2006)

4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137
(2004)

5. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–655
(1998)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The com-
plexity of multiway cuts. In: Proceedings of ACM Symposium on Theory of Computing,
pp. 241–251 (1992)

7. Ecker, A., Jepson, A.D.: Polynomial shape from shading. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp. 145–152 (2010)

8. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Tech. Rep.
TR2004-1963, Cornell University (2004)

9. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration
through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

10. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
28(11), 1768–1783 (2006)

11. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM
Trans. Graph. 24(3), 1134–1141 (2005)

12. Jamriška, O., Sýkora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3673–
3680 (2012)

13. Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson
image editing. ACM Trans. Graph. 28(5), 116 (2009)

308 D. Sýkora and J. Dingliana

14. Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of International Sympo-
sium on Non-photorealistic Animation and Rendering, pp. 45–52 (2002)

15. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)
16. Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.: Detailed

shape representation with parallax mapping. In: Proceedings of International Conference on
Artificial Reality and Telexistence, pp. 205–208 (2001)

17. Koenderink, J.J.: Pictorial relief. Philos. Trans. R. Soc. Lond. 356(1740), 1071–1086 (1998)
18. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L.: Pictorial surface attitude and local depth

comparisons. Percept. Psychophys. 58(2), 163–173 (1996)
19. Langer, M.S., Buelthoff, H.H.: Depth discrimination from shading under diffuse lighting. Per-

ception 29(6), 649–660 (2000)
20. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph.

23(3), 689–694 (2004)
21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.

60(2), 91–110 (2004)
22. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer.

ACM Trans. Graph. 25(3), 1206–1213 (2006)
23. McCann, J., Pollard, N.S.: Local layering. ACM Trans. Graph. 28(3), 84 (2009)
24. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves:

a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92 (2008)
25. Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: Pro-

ceedings of IEEE International Conference on Computer Vision, pp. 948–955 (1999)
26. Potts, R.: Some generalized order-disorder transformation. In: Proceedings of Cambridge

Philosophical Society, vol. 48, pp. 106–109 (1952)
27. Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220

(2006)
28. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM

Trans. Graph. 25(3), 533–540 (2006)
29. Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid im-

age matching. Comput. Vis. Image Underst. 112(1), 91–99 (2008)
30. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis. Com-

put. 23(9), 767–782 (2005)
31. Sýkora, D., Buriánek, J., Žára, J.: Sketching cartoons by example. In: Proceedings of Euro-

graphics Workshop on Sketch-Based Interfaces and Modeling, pp. 27–34 (2005)
32. Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn

cartoon animations. In: Proceedings of International Symposium on Non-photorealistic Ani-
mation and Rendering, pp. 25–33 (2009)

33. Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn car-
toons. Comput. Graph. Forum 28(2), 599–608 (2009)

34. Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S.: Adding depth to cartoons
using sparse depth (in)equalities. Comput. Graph. Forum 29(2), 615–623 (2010)

35. Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., Simmons, M.: TexToons: practical texture
mapping for hand-drawn cartoon animations. In: Proceedings of International Symposium on
Non-photorealistic Animation and Rendering, pp. 75–83 (2011)

36. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–
1407 (2006)

37. Wang, Y., Xu, K., Xiong, Y., Cheng, Z.Q.: 2D shape deformation based on rigid square match-
ing. Comput. Animat. Virtual Worlds 19(3–4), 411–420 (2008)

38. Winnemöller, H., Orzan, A., Boissieux, L., Thollot, J.: Texture design and draping in 2D
images. Comput. Graph. Forum 28(4), 1091–1099 (2009)

39. Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)

Part IV
Evaluation and Impact of Artistic

Stylization

Parts I–III of this book have focused on the techniques that have been developed as
the building blocks for creating an NPR pipeline. In Part IV the remaining chapters
consider the principles behind the important and difficult task of assessing results
from such an NPR system, so as to be able to compare different approaches, and de-
termine the quality of any individual technique. And finally, now that NPR has built
up a solid research foundation, this has led to commercial impact and applications,
which are reviewed in the last chapter.

The image in the top left is rendered in various styles using algorithms described in
Chap. 5, Chap. 7, and Chap. 11. The arrows represent the goal of comparing and
evaluating renderings. Courtesy of Philip Greenspun

Chapter 15
Evaluating and Validating Non-photorealistic
and Illustrative Rendering

Tobias Isenberg

15.1 Introduction

With non-photorealistic, artistic, and illustrative rendering (which is collectively be-
ing called NPR in this book) having developed into a mature field over the last
two to three decades, researchers have begun to question the validity, usefulness,
appropriateness, and acceptance of the large variety of different techniques that
have been created [13]. This chapter aims to survey the different evaluation and
validation techniques that have been employed within NPR to provide inspiration
for future work and to encourage the use of evaluation techniques in the field.
For the purpose of this chapter on evaluation, however, we treat the domain of
NPR a bit more broadly than only the stylization of images and video as in the
rest of this book: we incorporate all NPR approaches in the discussion, includ-
ing those that use 3D scenes as input as well as methods for illustrative visual-
ization.

To be able to discuss specific NPR evaluation strategies, however, we need to
start by thinking about what it is that we want to or need to learn. In fact, there
are many different questions one may ask about the field of NPR as a whole or
about individual techniques. Hertzmann [26], for example, talks about evaluating
human aesthetics and the question of how people respond to NPR, while Salesin
[47] mentioned the NPR Turing test as one of his seven grand challenges for NPR
in 2002 (recently revisited by Gooch et al. [19]): Can we render images using NPR
that a normal person is no longer able to distinguish from hand-made ones? While
answering these questions is certainly a worthwhile endeavor, the potential for eval-
uation within NPR is much larger. One may ask, for example, the following ques-
tions:

T. Isenberg (�)
INRIA Saclay, Orsay, France
e-mail: tobias@isenberg.cc

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_15,
© Springer-Verlag London 2013

311

mailto:tobias@isenberg.cc
http://dx.doi.org/10.1007/978-1-4471-4519-6_15

312 T. Isenberg

• Why do we want to or need to use NPR in the first place?
• What are appropriate goals for NPR?
• Is a given approach/technique/application accepted by its intended users, does it

serve the intended purpose?
• By which mechanism/principle does NPR imagery assist a given goal, and how

can we take advantage of such mechanism/principle?
• What do people think about NPR imagery or how do they respond to it?
• What emotions or (potentially) unconscious reactions can/does NPR imagery in-

voke in viewers?
• How do NPR images compare to hand-made drawings/paintings/illustrations?

Each of these points, in turn, cover a broad range of more specific questions
(see also [19, 26, 47]). To be able to discuss NPR evaluation in a more sys-
tematic way we, therefore, group these questions roughly into three major ar-
eas:

1. the question of providing a general motivation for the use of NPR techniques
(Sect. 15.2),

2. the question of understanding how NPR techniques support a specific purpose
(Sect. 15.3), and

3. the question of comparing hand-made images with computer-generated (non-
photorealistic) ones (Sect. 15.4).

Before we turn to discussing these three main questions, however, we need to
briefly touch on study methodologies in general. We do this, in particular, because
there is a danger of selecting a wrong study methodology [20, 26] or misinterpret-
ing the results [5, 32]. While a more comprehensive overview of study methodology
can be found elsewhere (e.g., [11, 34]), a useful short overview is given by Carpen-
dale [4] for the domain of information visualization but which similarly applies to
the study of NPR. Generally, there are two major types of evaluation methodologies
that can be employed: quantitative evaluation which focuses on hypotheses, mea-
surable variables in controlled experiments, and a statistical analysis of the results
and qualitative evaluation which tries to gain a richer understanding of the subject
matter by taking a more holistic approach and which uses techniques like observa-
tion and interviewing [4]. Both general techniques as well as combined approaches
can be and have been applied to NPR evaluation, the specific type of methodology
depending on the questions that one is asking. For example, the question of what
effect a stylized depiction vs. photograph have on learning and recognizing [18] is
rightfully studied with a quantitative technique, while the question of what people
think about hand-drawn illustrations vs. computer-generated visualizations [30] is
better studied with a qualitative approach. We illustrate the various methodologies
further in the discussion of the individual techniques below.

15.2 Providing a General Motivation for NPR

While the ability to create images in a specific artistic or illustrative style can be
motivation enough for the development and application of NPR techniques, we can

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 313

also examine people’s reactions to seeing NPR visuals to better understand why it
makes sense to use NPR in the first place. This insight in the general motivation
for the use of NPR can then inform the design of new techniques as well as their
practical application.

Such an early example of “assessing the effect of non-photorealistic[ally] ren-
dered images” was presented by Schumann et al. [50] in 1996. They were motivated
by the continued use of hand drawing in the domains of architecture and CAD [52]
and examined the effect that a sketchy rendering style (as opposed to ‘normal’ shad-
ing and regular CAD plots) has on the communicative goals during the development
of architectural designs. To study this effect, the authors started from three hypothe-
ses: (1) that sketched depiction styles are preferred to CAD plots and shaded images
for presenting early drafts of architectural designs, (2) that sketches perform better
in communicating affective and motivational aspects of an image, while CAD plots
and shaded images perform better in cognitive aspects, and (3) that sketches stim-
ulate viewers to participate in an active discussion and development of a design,
more than shaded images. To examine these hypotheses, Schumann et al. [50] used
a questionnaire-based approach that both asked for quantitative ratings (selection of
an image that is preferred for a given task or responses on a 5-point Likert scale)
and for qualitative feedback. The questionnaires were sent to 150 architects and ar-
chitectural students, 54 of which (36 %) returned it. Based on these responses the
authors analyzed their three hypotheses.

The results showed that of the people who regularly use CAD tools (67 % of the
responses), 53 % would use the NPR sketch to present an early draft, while only
33 % would use a CAD plot for this purpose and only 22 % would use a shaded
image. In contrast, only 8 % would use the NPR sketch for a final presentation,
while a CAD plot would be used by 50 % and the shaded image by 42 %. These
results confirm the first hypothesis and, thus, show that stylistic depictions can be
used to indicate the stage of a design process—a fact that has since then been used,
for example, in the domain of sketch-based interaction and modeling (e.g., [27, 49]).

To analyze the second hypothesis the participants were asked to assess the im-
pression that the three different images have on them in more detail. The authors
used a classification scheme from the psychology literature and asked the partici-
pants to rate each image according to criteria from a cognitive group, an affective
group, and a motivational group. They found that the NPR sketch was rated signif-
icantly higher/better on affective and motivational criteria, while the CAD plot was
rated significantly higher/better on cognitive criteria. This result indicates the po-
tential for stylistic depiction to evoke emotion and to stimulate active involvement,
a question that was further examined with respect to the third hypothesis.

To analyze this involvement in a design process, the CAD-using participants were
asked how they would communicate design changes using either an NPR sketch or
a shaded image: (a) using verbal descriptions, (b) using gestures or pointing, (c) by
drawing onto a separate sheet of paper, or (d) by drawing into the presented image.
The only statistically significant difference that was found between the NPR sketch
and the shaded image was that participants are much more likely to draw into the
NPR sketch (69 %) than into the shaded image (33 %), confirming the authors’

314 T. Isenberg

third hypothesis. This means that style of a rendering can have an effect on how
willing somebody is to interact with the depiction, and the authors suggest that the
stylization leaves more room for interpretation with respect to the exact design.

This effect of stylistic imagery on people—in other words whether and how peo-
ple are affected by NPR—was also examined by Duke et al. [10] and Halper et al.
[21, 22] who describe a motivation for employing NPR styles based higher-level
psychological principles. For example, Halper et al. [21, 22] discuss the effect of
figure-ground segregation as supported by NPR elements such as silhouettes and
feature lines. Their study looked at whether people would rather select objects from
an image that were depicted with an abstracting style consisting of cartoon shading
and silhouette or objects shown in a more detailed, oil-painting style. Their results
suggest that the rendering style had an effect on which objects people selected, with
participants tending to select two or more objects depicted in the cartoon-style.

A second evaluation by Halper et al. looked at people’s social perception and
judgment. They presented participants with simple line drawings of scenes with
previously established social connotations about safety and danger, such as a house
(typically associated to be safe) and a group of trees (typically considered to be less
safe). They then depicted the house in a zig-zaggy and the trees in a rounded style,
which changed participants’ behavior to no longer associate the house with safety.
A simple comparison of the same object rendered in different styles supported these
findings, also associating certain (zig-zaggy) line styles with danger.

Finally, Halper et al. examined aspects of environmental psychology and peo-
ple’s participation and interaction in environments. In particular, they studied how
the level of detail in a rendering affects people’s behavior. They provided images
with two paths, one depicted in more, and another in less detail. They found that
the amount of detail has an effect on the choice of path people make—participants
preferring the more detailed path over the one with less detail.

Based on these and other experiments, Duke et al. [10] explain people’s behavior
using the concept of invariant from perception, which describes a property common
to or shared by a range of entities of behavior. Duke et al. argue that the stylistic
differences (i.e., NPR styles) and their stylistic invariants lead to specific behavior
in the experiments due to latent, implicational knowledge and that this may lead to
higher-level cognitive interpretations common across a range of people (affected by
their culture and language). This insight can then be used, as suggested by Duke et
al., to associate depicted objects with emotions or to guide people’s engagement and
attention, for example in computer games and virtual environments.

These two aspects—the effect of NPR on emotion and the use of NPR to guide
attention—which both form a strong motivation for the use of NPR in practice have
been studied in more detail by two other teams of authors. The first aspect, the ef-
fect that NPR imagery has on people’s emotions, has recently been studied in detail
by Mandryk et al. [41] and Mould et al. [44] who looked at how the stylization
of photographs changed people’s emotional response to the images. They selected
18 images covering a wide range of topics from the IAPS image database (created
specifically as affective stimuli and with known emotional content), and examined
the emotional response of 42 participants. They measured the emotional response

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 315

of their participants with respect to an established dimensional scheme of emotion
(using a 5 × 3 pictorial scale that allowed participants to analyze and report their
emotional state) including the dimensions valence, arousal, dominance, and aesthet-
ics. For that purpose they compared the emotional response of the original images
(whose previous rating for affective content was known) with those of the result of
five image-based NPR styles and those of two blurred versions.

The result of Mandryk et al.’s [41] and Mould et al.’s [44] analysis was that
all NPR techniques significantly shifted their participants’ reported experiences
of valence (pleasure/positive or displeasure/negative of a feeling) and arousal (en-
ergy/activation of a feeling) to the neutral rating, thus reducing the strength of the
emotion, but never eliminating the emotion completely. They found that some tech-
niques preserve the emotions better than others, but that the effect might be at-
tributed to the amount of detail that was preserved by a given technique. It is inter-
esting that this muting of emotion to some degree stands in contrast to the observa-
tions of Duke et al. [10] and Halper et al. [21, 22], but this effect can probably be
explained based on the different types of stylization employed by both evaluations:
Mandryk et al. [41] and Mould et al. [44] examined image-based (i.e., mostly space-
filling) techniques in which the style’s amplitude (as measured in tone or color) is
reduced by the NPR technique from the original photograph due to the introduced
abstraction, while Duke et al. and Halper et al.’s analysis of emotion (social percep-
tion and judgment) was based on line drawings in which the strong emotion (fear)
was caused by a high-amplitude zig-zaggy style.

Another recent study adds to these mixed results: Seifi et al. [51] looked at what
effect color palettes have on the perception of emotion in painterly rendered faces.
They used color palettes designed to enhance certain emotions (joy, surprise, anger,
and fear) and examined their effect for still images and animations. Seifi et al. found
that sometimes the perceived emotion is emphasized if the palette matches the face’s
expression, while non-matching palettes dampen the perceived emotion. However,
they also report about a general damping effect for some emotions, and that even
sometimes the perceived emotion is damped further when the matching palette is
used than for non-matching palettes (e.g., fear in the animated scenario).

The second general aspect to be affected in a controlled manner by NPR styles
as suggested by Duke et al. [10] and also previously mentioned by Strothotte et
al. [52]—the guiding of people’s attention—was studied in detail by Santella and
DeCarlo [48]. Their goal was, based on eye tracking data, to understand the effec-
tiveness meaningful abstraction (i.e., directed removal of detail) with the intent of
guiding a person’s attention. For that purpose Santella and DeCarlo created four
types of abstraction of an input photograph: one using constant abstraction with a
high amount of detail, one using constant abstraction with a low amount of detail,
one with adaptive abstraction in which the detail points are based on image saliency,
and one with adaptive abstraction in which the detail points are based on a person’s
fixation points for the original photograph. The authors then used their eye tracker
to analyze where 74 study participants fixated when looking at one of the five dif-
ferent versions (original and four abstracted versions) of 50 input images (using a
between-participants design).

316 T. Isenberg

The study results showed that the local treatment of abstraction does have an ef-
fect on where people look in an image, the salience-based and fixation-based adap-
tive abstractions receiving fewer fixation clusters than the other images. The analysis
of the distance of the fixation clusters to the detail points also showed that these are
smaller for both adaptive abstractions, leading to a concentration of the visual in-
terest. Moreover, the authors also argue that the distance from a detail point to a
cluster is consistently smaller for the eye tracking condition than for the salience
condition, suggesting that eye tracking points were more closely examined, i.e., that
there seems to be less interest in salience points. These results provide evidence for
the previously discussed hypothesis that the control of the amount of detail as is
possible with NPR styles can be used to guide people’s attention.

Related to the use of NPR for guiding attention is also the issue of whether or
not the abstraction introduced by NPR techniques has a positive effect on the abil-
ity to recognize and to memorize objects. This question was examined by Gooch
et al. [16, 18] specifically for face illustrations, but similar to the previous studies
their work provides a motivation for NPR in general. In their psychophysical study
the authors compare photographs of faces with line illustrations as well as with
line-based caricatures of the same faces. Specifically, Gooch et al. used controlled,
quantitative experiments to measure the speed and accuracy of participants recog-
nizing known faces and learning new faces, using photographs, computer-generated
line illustrations, and caricatures produced with computer support.

In a first experiment, Gooch et al. used images created from face pictures of the
12 most familiar out of 20 possible people (colleagues) and asked their 42 partic-
ipants to recognize them when presented in a random order. Each participant saw
only two types of images, either photographs and illustrations, photographs and car-
icatures, or illustrations and caricatures. The results of this experiment were that
participants were slightly faster in naming photographs than caricatures, with the
other combinations not showing a significant effect and with the accuracy for all
conditions being high (98 %)—thus without a speed-for-accuracy trade-off.

To examine the learning of the different types of depictions in a second experi-
ment, Gooch et al. created the same types of images for faces that were unknown
to 30 different participants. As before, each participant was shown 12 face pictures,
but this time a name was associated with each picture and each participant only saw
one type of image (i.e., three groups of 10 participants). Then, the image stack was
shuffled and the participants were asked to recall the name previously associated
to a face as the stack of images was presented one image at a time. If a name was
incorrect, then the participant was corrected. This process (including shuffling) was
repeated until all names were recalled correctly. The analysis showed that illustra-
tions were learned more than twice as fast as photographs. While caricatures were
about 1.5× as fast as photographs, this difference was not statistically significant.

Interestingly, a similar experiment about the ability to recognize and memo-
rize objects using abstractions vs. real photographs was later conducted by Win-
nemöller et al. [54], using their real-time video abstraction technique as a founda-
tion (Chap. 5). This meant that they could investigate color images as opposed to

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 317

the black-and-white images used by Gooch et al. [16, 18]. Like Gooch et al., Win-
nemöller et al. used faces for the recognition task (using celebrity images) but em-
ployed arbitrary scenes for the memory task in a memory card game setting. Overall,
their results supported the findings by Gooch et al., but in contrast also found that
recognition was significantly faster with the abstracted images as opposed to the real
photographs. However, this result does not generalize to all NPR depiction styles—
Zhao and Zhu [56], for example, showed that objects depicted in both painterly
rendering and actual paintings are recognized slower than actual photographs.

In summary, the mentioned studies provide evidence for a number of benefits
or effects of stylistic depictions created with NPR techniques, and thus motivate
the development of as well as the application of NPR approaches in practice. This
includes that they can encourage participation in design discussions [50], that they
can assist figure-ground segregation, can carry social connotations, and can steer
people’s interest [10, 21, 22], that their style has an effect on people’s emotions
[41, 44], that they can be used to guide people’s attention [48], and that they can
affect how people recognize and memorize depictions of objects [16, 18, 54].

15.3 Understanding How NPR Supports a Specific Purpose

While the studies discussed in Sect. 15.2 necessarily each use a specific study set-
ting, their findings do provide a motivation for employing NPR styles more gener-
ally as we just outlined. However, there have also been a number of evaluations of
NPR techniques that, we find, point to more specific usage possibilities because they
illustrate how NPR can support a specific purpose or application domain. We first
discuss a number of evaluations that examine aspects that relate to human perception
of NPR with respect to textures, then examine techniques that support the creation
of visualizations using NPR approaches, and finally look at application contexts in
the domains of virtual and augmented reality (VR and AR).

15.3.1 Perception of NPR Textures

A large body of NPR work addresses the creation of textures for a variety of appli-
cation domains. For example, the creation of stippling (dot placement, see Chap. 3)
and hatching (line placement) are among the most fundamental NPR techniques,
applicable both to the representation of 2D images and the depiction of 3D shapes.
Thus it is important to understand how people see and interpret such textures.

To obtain this kind of understanding, Kim et al. [35, 36] looked specifically at
the use of textures for the representation of 3D shapes and their impact on people’s
shape categorization judgments. In this context it is important that a texture supports
the perception of 3D shapes, despite them only being depicted as a projection on a
2D image. Specifically, Kim et al. investigated which effect the texture type has on

318 T. Isenberg

shape perception, using a set of five different types: one-directional hatching, per-
pendicular cross-hatching, swirly lines, three-directional hatching, and noise; with
three additional variations. Based on these types, the authors conducted a controlled
study in which they asked their participants to classify surface patches as ellipsoid,
cylindrical, saddle-like, or flat as well as to categorize them as convex, concave, both
(for saddles), or none (for flat patches). They found that, overall, the texture type
does have a significant effect on shape perception, with the perpendicular cross-hat-
ching along the principal directions performing best, confirming a hypothesis for-
mulated earlier [15]. They also found that certain textures and an oblique viewing
direction can alleviate problems that arise from orthographic projection.

To examine the situation further, Kim et al. [36] performed a second experiment
to concentrate on single-, dual-, and triple-hatching textures. Some of the hatching
directions of the new texture set followed the principal directions, while others were
turned away from a principal direction by 45 degrees. Using the same experimental
procedure as in the first study, Kim et al. found that, surprisingly, the two-directional
hatching texture was now outperformed for some shapes by the single-hatching as
well as, in particular, the three-directional hatching. The authors speculate that this
effect may be due to people inferring non-existent lines from the otherwise regular
hatching patterns as well as distances along these non-existent lines to be able to
understand and classify the depicted shape as well as or better than with ‘normal’
two-directional hatching along the principal directions.

While Kim et al. [36] examined the issue of 3D shape classification based on the
applied textures, another problem in NPR is the use of textures on 3D shapes for
stylized animation. Traditionally, the straightforward process of applying 2D tex-
tures to 3D objects led to a number of issues during an animation including popping,
sliding, and deformations—leading to the use of ‘fractalized’ (i.e., self-similar on
different levels of scale) NPR textures in such 3D scene animations. Because these
fractalized textures are no longer identical to the traditional textures, Bénard et al.
[3] conducted an experiment to analyze this perceived change and, based on these
results, to derive a quantitative metric for the introduced texture distortion. In the
study the authors asked participants to rank pairs of original and fractalized textures
(representative of a variety of media replicated by NPR; including, e.g., stippling,
hatching, cross-hatching, and paint texture) with respect to how much distortion
participants perceived to have been introduced by the fractalization.

The authors statistically analyze the results and find that, between two sets of
textures of the same categories, participants seem to have treated them roughly the
same way overall. However, it also is apparent that the class of a texture (e.g., “cross-
hatching”) does not always get classified the same way if different instances of the
texture class are used. More interestingly, however, Bénard et al. try to extract a cor-
relation between known image metrics and their empirical results to find a model
that is able to predict a potential perceived dissimilarity of the fractalization for a
new texture instance. They find that deriving the average co-occurrence error be-
tween the local gray-level co-occurrence statistics of the original and the ‘fractal-
ized’ version of a texture strongly correlates with the distortion perceived with their
participants, and thus suggest it could be used to predict such perceived distortion.

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 319

Related to the issue of ‘fractalized’ NPR textures is the general problem of 2D ge-
ometric texture synthesis and the degree of perceived visual similarity between two
such synthesized textures. AlMeraj et al. [2] conducted two psychophysical experi-
ments to analyze this question, motivated by the fact that geometric texture synthesis
as a sub-domain of NPR is itself based on human perception. In their first experi-
ment, they asked participants to interactively generate a larger dot texture based on
a small sample, and then asked the participants both quantitative and qualitative
questions to understand their strategies. To analyze the answers to the qualitative
questions, the authors used an open coding approach, resulting in the ability to com-
pare responses between participants. From this comprehensive analysis AlMeraj et
al. extracted a number of causal attributes that motivated participants’ generation
styles (dominant visual properties perceived, local themes identifies, and recogni-
tion of large spatial structures), a number of strategies for generating geometric
arrangements (tiling, structured approach, and random approach), and a number of
criteria for evaluating similarity (symmetry, apparent shape, repetition, conformity
to apparent rules, and accuracy of copied samples).

To understand the quality of the textures participants had synthesized, AlMeraj
et al. conducted a second mixed-method study with a new group of participants to
avoid bias. In this study participants were again provided with a sample texture, but
this time were shown five synthesized textures. These synthesized textures were de-
rived from the previous experiments (180 textures) which were complemented with
36 computer-generated textures, either using a random or a perfect tiling approach.
Participants then had to rank the five shown textures according to their similarity to
the shown sample, similar to the approach by Bénard et al. [3]. In addition to ex-
tracting the list of criteria used by participants, again using a qualitative approach,
AlMeraj et al. [2] analyzed the similarities quantitatively, in particular taking the
generation strategies (tiling, structured, random) of the first experiment into account.
The results show that the textures generated by people using a tiling approach were
ranked as “most similar” to the sample textures, likely because participants were
able to detect the repeated instances in the larger images. The authors identify an
apparent hierarchy in the criteria used for rating similarity: first looking for com-
plete samples, then the identification of themes (small dot arrangements) that are
consistently distributed in the synthesized textures, and finally an overall compar-
ison of texture to sample using global mathematical attributes. The overall results
are interesting since typically researchers strive for a more structured approach to
computer-driven texture synthesis, and also the structured techniques used by par-
ticipants were also rated higher in AlMeraj et al.’s first study.

15.3.2 Evaluation of Illustrative Visualizations

One specific application area of NPR research is the recently emerged domain of
illustrative visualization [45]. In this sub-domain of the general field of visualization
it is essential to understand how people see and perceive visuals, thus the evaluation
of illustrative visualization plays a particularly important role.

320 T. Isenberg

For example, while the previous section examined the evaluation of the percep-
tion of NPR textures in general, researchers also have specifically looked at the
evaluation of NPR textures in a visualization context. The first approach discussed
in this section is closely related to those discussed in Sect. 15.3.1. This evaluation
is particularly interesting because it employs an evaluation strategy otherwise typi-
cally used in an artistic context: critique sessions. Jackson et al. [31] and Acevedo
et al. [1] report on feedback from expert designers/illustration educators on a num-
ber of texture-based visualization techniques to represent 2D vector fields and their
properties. The critique by experts as an evaluation strategy promises to provide
rich qualitative feedback which cannot only suggest which type of technique is bet-
ter suited for a given purpose but also, in particular, why this is the case. Acevedo et
al. [1] also compared the critique-based results by Jackson et al. [31] to those of a
previous controlled experiment [38]. They found in their pilot study that the results
exhibited the same patterns for both studies, but that the designer critique generally
took less time. Both Laidlaw [37] and Keefe et al. [33] describe this critique-based
evaluation strategy in the larger context of art-science collaboration, outlining how
the evaluation fits into the general visualization design workflow.

In general, NPR and illustrative visualization are both driven by inspiration from
artistic practice, leading to a number of artistic visualization techniques. For exam-
ple, Healey et al. [23, 24] describe a texture-based visualization technique for 2D
vector and scalar data that employ techniques from painterly stroke-based rendering
[25]. Because the simple inspiration is not sufficient for validating the usefulness of
such a technique, they validated their approach using a series of psychophysical ex-
periments. First, they examined whether, in general, people are able to rapidly and
accurately identify a group of target brush strokes within a larger stroke set by color
or orientation. They found that participants could identify stroke groups better by
color than by orientation and that random colors interfere with the identification of
orientations. They also concluded that their results indicate that the use of painterly
strokes for visualization seems feasible, and thus continued to create one.

Based on these results and also inspired by positive expert feedback, Healey et
al. [24] thus conducted a second experiment, this time with their newly created
actual 2D visualization of weather data. They examined whether the illustrative vi-
sualization could support practical analysis tasks on real-world data and compared
their technique to existing (traditional) visualizations. Participants in this controlled
experiment were asked to identify which visualization would make it easiest from
them to distinguish data aspects such as temperature, precipitation, wind speed, and
wind direction; to identify regions in the visualizations with certain combinations
of high/low values of the scalar properties, as well as to identify regions with rapid
change of temperature. The results of this experiment showed that Healey et al.’s
illustrative visualization was as good as or better than the traditional weather visu-
alization for all the tested cases, thus specifically for identifying multi-dimensional
patterns in the data (which the study was designed to evaluate).

The techniques examined in Sects. 15.3.1 and 15.3.2 thus far aim primarily at
two-dimensional NPR and visualization techniques. The domain of scientific vi-
sualization, however, primarily examines spatial datasets that are defined in three
dimensions, and illustrative visualization approaches have also been developed for

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 321

this purpose. Consequently, researchers are interested in validating such techniques,
for example in the context of medical visualization. Tietjen et al. [53], for instance,
looked at the domain of surgery planning and education and, specifically, at the
different visualization of detail and context of the human anatomy. Their hybrid
visualization technique combined traditional shading techniques (usually for focus
objects) with volumetric rendering and NPR line rendering (for both near-focus and
context objects), and the authors were interested in how the use of different visual-
ization techniques for depicting, in particular, context objects would support tasks
both for medical practitioners and for laypeople.

To examine these questions, the authors employed a questionnaire-based evalu-
ation methodology and distributed the questionnaires to surgeons and participants
without a medical education. Each page of the questionnaire showed two differ-
ent visualizations, one of which needed to be chosen based on personal prefer-
ence, questions with respect to the usefulness of the visualization for specific tasks
were asked (using Likert-scale ratings), and the visualization particularly suited for
surgery education needed to be identified. Using this approach, Tietjen et al. com-
pared one specific visualization (their reference) to all other variants they tested,
and also conducted comparisons of some other combinations for cross-validation.
Based on this approach, the authors conclude that their technique was considered to
be appropriate by most of the participating surgeons, and that these surgeons tend
to prefer little context information as long as context is present. Laypeople favored
images in which the context was shown with colored silhouettes or with silhouettes
combined with additional surface shading.

15.3.3 Perception of NPR in the Context of VR/AR and Immersion

As we have seen in Sects. 15.3.1 and 15.3.2, human perception plays an important
role in the evaluation of NPR results. It is particularly important to understand how
perception affects viewers if we use NPR in contexts that augment or completely
replace the ‘normal’ reality as we experience it every day—i.e., in fields like vir-
tual and augmented reality (VR and AR). While to date there have not been that
many approaches to apply NPR in such a context, there have already been some
noteworthy evaluations of VR/AR NPR settings.

An early example was presented by Gooch and Willemsen [17] who tried to
answer the question how the perception of space and distances in a VR context if
the normal (photorealistic) environment was replaced by an NPR one. Specifically,
they created a model of their physical lab environment to be able to create a black-
and-white NPR version of it using silhouettes and feature lines (creases). With the
help of a tracked head-mounted display (HMD) setup they were then able to present
participants with the NPR environment as well as with the real world (no HMD).
In Gooch and Willemsen’s controlled experiment (within-participants design), the
participants were shown a target shape a certain distance away from their position
(in either the NPR or real-world condition), were able to look around (turn the head

322 T. Isenberg

but not move it), and then were asked to walk blind-folded up to the point where
they had perceived the object—the distance of which was recorded.

The quantitative analysis of the recorded walked distances showed that, in the
NPR condition, participants walked 66 % of the distance to the object, while in the
real world they would walk 97 % of the distance on average. While the difference
of walked distances in the NPR condition from the real world seems to be an indi-
cation for the inappropriateness of using NPR within VR, the authors argue that the
observed over-estimation of NPR-VR corresponds well to how people perceive and
interact in ‘normal/traditional’ (i.e., photorealistic) VR environments, thus conclude
that NPR-based VR environments are a viable alternative to photorealistic ones.

In fact, when using immersive environments it is not always necessary to decide
for either a physical or a virtual world, but it is also possible to combine both in
an augmented reality. Such setups add virtual objects to otherwise realistic scenes
which are captured through a camera system or see-through glasses. The problem
with such setups is that, due to an incomplete knowledge of all environmental influ-
ences and the ability to render in a completely photorealistic way, the real and the
virtual objects look quite different. To address this discrepancy, people have pro-
posed to use stylized augmented reality which applies stylization to both the real
and the virtual parts of the image and thus masks the differences between them. To
understand the effectiveness of this approach, Fischer et al. [12] conducted a psy-
chophysical study in which participants were asked to determine if an object shown
in a stylized augmented reality setting would be real or virtual.

Based on still images and short video clips (between-participants factor), 18 par-
ticipants were asked to answer this question for 30 objects (half of which were
virtual, the other half real). The results showed that participants were able to cor-
rectly determine the type of object in 69 % of the cases in the stylized AR style as
opposed to 94 % in a traditional AR style on average, with the results being con-
sistent between the two groups with still images and video clips. Interestingly, it
was more difficult to correctly identify physical objects than virtual objects, but this
result was not statistically significant. The authors speculate that these results are
due to the lack of compelling 3D models which led to a number of rendering errors
which made it easier for participants to tell that virtual objects were, in fact, virtual.
However, the authors also conclude that their experiment showed stylized AR to be
successful in solving the discrepancy problem as it was more difficult to tell objects
apart in the stylized condition.

In dynamic 3D environments—such as the mentioned VR/AR settings—it is of-
ten also important to correctly and reliably perceive the shape of objects, which may
be assisted by NPR means. In fact, one of the defining and seminal NPR publica-
tions [46] argues that adding NPR elements (silhouettes and feature lines) to conven-
tionally rendered objects makes them more comprehensible. To examine if such a
correlation really exists, Winnemöller et al. [55] present an experimental framework
and psychophysical study that examines the usefulness of a number of shape cues
in dynamic environments. Specifically, they analyze how shading, contours, texture,
and a mix of shading with contours (which Saito and Takahashi [46] suggest makes
shapes comprehensible) affect the recognition of rigidly moving objects.

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 323

In the actual experiment, the 21 participants were asked to identify those shapes
that moved with other shapes across a touch-sensitive display, using a background
similar to the moving foreground objects, that shared a certain shape characteris-
tic. The object depictions and backgrounds were chosen such that they only used
contours, only used shading, only used one of two textures, or used a combination
of shading and textures. The analysis of the task accuracy showed that the use of
only shading lead to the best correct recognition rates, before outlines and textures.
Interestingly, the combination of shading with outlines did not perform better than
just shading, but worse than it (while still being more accurate than just outlines).
While it seems to contradict intuition [46] and studies mentioned earlier [10, 21, 22],
Winnemöller et al. attribute this effect to participants’ feeling that the mixed condi-
tion provided too much and, thus, confusing information since also the background
shapes were rendered with additional outlines—unlike in the earlier techniques [46]
and evaluations [10, 21, 22]. Nevertheless, this example illustrates well that one
should not simply base NPR and illustrative rendering design decisions on assump-
tions but should always validate these assumptions before employing a new tech-
nique in a practical application.

15.4 Comparing Hand-Made Images with Computer-Generated
Non-photorealistic Rendering

The final major type of evaluation of NPR techniques to be addressed in this dis-
cussion is the question of how NPR imagery compares to human-made images or
drawings. This question may initially seem quite straightforward; however, it is not
as easy to answer as one may think because it is not clear from the question’s general
phrasing what we mean by “to compare to.” While the NPR Turing test [19, 47]—
whether a person is able to distinguish a hand-made from a computer-generated
image—that was mentioned in the introduction may be one form of the question,
there are also several other possible ways to compare the different types of images.

For example, we may be interested in the question of how drawing patterns differ
between hand-made examples and computer-generated styles. This is a question
about differences that affect the perceived aesthetics of an image as pointed out by
Maciejewski et al. [39] specifically for the area of stipple rendering (see Chap. 3).
Maciejewski et al. discuss this difference of aesthetics, overall, in the context of
intentional dot placement with several high-level considerations (also discussed in
detail by Martín et al. [42]) on the side of hand-drawn stippling—as opposed to a
mechanistic stipple placement with many more stipple points, according to simple
illumination models and simple stipple shapes, and without the mentioned high-
level considerations on the side of the computer-generated stippling.

Maciejewski et al. [40] then proceed to evaluate such differences with respect
to the distribution of the stipple dots using statistical methods, specifically by ex-
amining the gray-scale textures that characterize the two different styles. For this
purpose they employ the gray-level co-occurrence matrix (GLCM) as a tool which

324 T. Isenberg

measures the frequency in which certain gray levels occur in a given spatial rela-
tionship. Based on this matrix they then derive three properties: contrast, energy,
and correlation which they use to compare textures from hand-drawn and computer-
generated stippling. This analysis unveils a number of differences that Maciejewski
et al. initially only hypothesized about: for example, the regular artifacts of stippling
based on centroidal Voronoi diagrams (which cause undesired correlation across the
textures) as well as similarity of hand-drawn stippling to natural textures. The re-
sults also show that, while certain computer stippling techniques that incorporate
randomness also exhibit strong correlations with hand-drawn stippling, they still
can be easily distinguished from hand drawings due to other regularities. Interest-
ingly, Martín et al. [43] later employed the same statistical evaluation technique
to analyze a resolution-dependent halftoning-based stippling with randomness ap-
plied to stipple locations but with example-based stipple dots (see Chap. 3, also for
example images). The analysis showed that Martín et al. were able to create compu-
ter-generated stipple textures whose statistical properties were virtually identical to
those of hand-drawn stippling. This suggests that using an example-based approach
for NPR as opposed to a purely algorithmic technique may be better able to create
results that are less distinguishable from their hand-drawn counterparts.

This observation, however, may not apply to all NPR techniques since some of
the primitives used in traditional artistic depiction heavily rely on mathematical
principles. One of the best examples for such techniques is the creation of sparse
line drawings—lines that consist of silhouettes/contours [29] and feature lines. One
question that comes up in this context is “where do people draw lines” [6, 7, 9] and
how are these lines related to the zoo of lines typically employed in NPR?; another
question is “how well do [such] line drawings depict shape” [6, 8].

To answer the first question, Cole et al. [6, 7, 9] conducted a study to compare
the line drawings created by artists to depict 3D shapes with NPR-based computer-
generated line renderings. For this purpose they conceived an ingenious study setup
to satisfy two apparently conflicting constraints: they wanted to (1) allow their par-
ticipants full freedom in creating line drawings, while (2) at the same time they
needed to be able to precisely compare lines created by the artists with lines ren-
dered by NPR algorithms. Cole et al. resolved this conflict by first allowing their
participants to draw the 3D shapes freely based on a shaded depiction of the 3D
shape, and then in a second step asked them to copy only the drawn lines onto a
faint copy of the shaded depiction. This approach resulted in hand-made line draw-
ings that could be compared to computer-generated ones on a pixel basis with a high
level of accuracy.

Using this setup, Cole et al. collected input from 29 participating artists or art
students, each of whom drew up to twelve 3D shapes, resulting in 208 line drawings
in total. To analyze the data, the authors compared the hand-dawn lines both with
each other as well as with those lines created by a number of established NPR line
techniques including silhouettes/occluding contours, suggestive contours, apparent
ridges, image intensity edges, and geometric ridges and valleys.

The analysis showed that artists drew their lines very close to other artists’ lines,
75 % of the lines being within 1 mm of lines from all other artists. Silhouettes/oc-
cluding contours account for most of these similarities, comprising 57 % of all lines

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 325

that were drawn. Other categories of lines from computer graphics/NPR that explain
lines the participants draw are large gradients in image intensity as well as object-
space feature lines. In fact, all object-space NPR line definitions together account
for 81 % of the lines drawn by the participants, while each of the category explains
some lines that the others do not explain. Overall, the output of all considered line
definitions only accounts for 86 % of the hand-drawn lines. Cole et al. speculate that
the rest could be explained by looking at other local properties, combinations of the
existing line definitions, as well as by some higher-level decisions that have to do
with what the artists want to communicate or what they think is implied.

Of course, the difference between hand-drawn and computer-generated sparse
line drawings is not only interesting from an aesthetic standpoint but also affects
how the respective images can be employed for specific purposes. It is particu-
larly important to understand whether it makes a difference to people to use hand-
drawn as opposed to computer-generated illustrations of shapes if the people need
to correctly perceive, understand, and interpret the 3D shape of the depicted objects.
Therefore, Cole et al. [6, 8] conducted a follow-up study based on the data they
acquired in their first study to examine the question of shape depiction and percep-
tion. For this purpose they employed the established gauge figure protocol to ask
people to estimate the perceived orientation of a surface at many points, based on
both hand-drawn and computer-generated sparse line drawings (as well as shaded
images for comparison). Due to the first experiment’s [6, 7, 9] setup they also had
access to the ground truth in form of the 3D shapes that people illustrated or that
were used in generating the NPR images.

Their results show that, for about half of the 3D models they used in the study,
the line drawings that performed best were almost as good as the shaded images the
authors used for comparison. For other models (e.g., those with organic, smooth,
or blobby shapes) viewers had not only more problems understanding the shaded
image but also were unable to correctly interpret the line drawings. The study also
showed that computer-generated line drawings based on differential properties have
the potential to be as effective as hand drawings: for all but one shape there was a
computer-generated line drawing that caused lower errors in shape perception than
the drawings created by an artists. However, the specific type of lines to be used for
a good depiction depends on the specific 3D shape as it was not always the same
line type that was responsible for the better result.

The question of which specific primitive to use to depict a given shape not only
applies to line renderings of 3D shapes but even more so to pixel art, a unique form
of expression arising from early computer depiction [14, 28]. Recently, the ques-
tion of how to generate such pixel representations from images or vector graphics
was examined and evaluated [14, 28]. For example, Inglis and Kaplan [28] create
pixel art from vector line drawings and evaluated these by comparing hand-created
images with their automatic technique. To achieve this comparison, they first asked
their participants to create pixel images for given vector input using a Web tool,
and in a second stage asked them to compare these images with each other as well
as with synthetically generated ones. Specifically, Inglis and Kaplan asked their
participants to compare the images with respect to their visual appeal and with re-
spect to their fidelity. The results showed that the Pixelator technique conceived by

326 T. Isenberg

Inglis and Kaplan outperformed other computer-generated techniques. The results
also showed that, interestingly, people liked Pixelator images better than all groups
of human-created images. However, the authors note that this does not mean that
Pixelator images outperformed all human-created examples, but instead that their
group classification is not a good indicator for how people judge the results. An-
other interesting result was that images created by people with lots of experience
and a high artistic level were not rated very well, likely due to a lot of artistic ‘in-
terpretation’ rather than a faithful depiction as examined by the authors. Here, an
evaluation approach that asks for aesthetic judgment [14] may yield different re-
sults.

While studies like the ones discussed in this section so far are able to shed
light on quantitatively measurable properties of NPR imagery or the suitability
of an NPR algorithm, they cannot provide answers to questions about what hap-
pens when people look at such images. For example, how do people understand
and assess NPR illustrations in general, what do they think about both hand-drawn
and computer-generated images, and does a potential difference mean that they
would prefer one over the other? Such questions are not easily answered with the
more common quantitative evaluation techniques but require a more qualitative ap-
proach.

To examine such questions in the context of hand-drawn and computer-gene-
rated pen-and-ink illustrations, Isenberg et al. [30] conduced a qualitative, obser-
vational study. Specifically, they used an ethnographic approach to avoid biasing
people by asking questions in a certain way since any question inherently biases
the person asked. The study methodology they chose is an unconstrained pile sort-
ing task which asks participants to ‘sort’ the objects they are given into piles, the
specific number and size of the piles being determined by the participant. The ob-
jects to be sorted in this case were computer-generated and hand-drawn illustrations
of three different objects, each printed on a Letter-sized page. They also had three
different types of participants: people with illustration/drawing experiences, NPR
researchers, and illustration end users (general university students). Each partici-
pant was presented with the pile of illustrations with the images in a random order,
and then was asked to form the piles. After that part was completed, the participant
was asked to explain what characterized each of the piles in order to understand the
reasons for grouping images, and only after this were asked a number of questions
about preference, potential use context, and also whether some images/piles looked
particularly hand-drawn or computer-generated.

The analysis of the results showed that the different types of participants grouped
the images in similar ways and that people generally did group by illustration style
and amount of detail. More interestingly, none of the participants constructed piles
of the images by whether they thought that an image looked particularly hand-drawn
or computer-generated. However, participants were generally able to tell one type
from the other with only a few (but consistent) exceptions. Nevertheless, this clear
difference did not mean that the participants would like one type better than the
other; instead participants liked them for different reasons. For example, participants

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 327

liked the clarity, precision, three-dimensionality, detail, and—ironically—the real-
ism of the NPR images, while they similarly appreciated the artistic appearance and
character of the hand-drawn illustrations. Based on these and other insights from
the rich qualitative feedback provided by the participants due to the chosen study
methodology, Isenberg et al. provide a number of recommendations and guidelines
for future NPR research including to know one’s goal, to know one’s audience, to
explore material depiction and non-realistic models, to avoid patterns and regulari-
ties, and to pay close attention to marks and tools.

15.5 Conclusion

The various evaluations of NPR styles and techniques that were introduced in this
chapter demonstrate that there are numerous questions that one may want to an-
swer about the produced images. One of the most fundamental ones, however, is the
question of the goal of a technique and whether this goal is achieved [30]. One of
the obvious goals one may potentially want to strive for is to become indistinguish-
able from hand-made drawings, paintings, or illustrations. We have seen, however,
that the NPR Turing test as proposed by Salesin in 2002 [19, 47] has, to date, not
successfully been passed, as demonstrated, for instance, by observations by Isen-
berg et al. [30] or by texture statistics by Maciejewski et al. [40]. Even cases where
we as NPR researchers come close (the very few of the NPR images examined by
Isenberg et al. [30] that were often thought to be hand-drawn, the stippling distri-
butions examined statistically by Martín et al. [43], or the abstract painterly style
of Zhao and Zhu [56]) we can still observe obvious differences, for example on the
lack of perceived ‘skillfulness’ of drawings or the lack of support of higher-level
painting/drawing/stippling strategies.

Therefore, the goal of being indistinguishable from artwork is not necessarily
the most interesting one for NPR as a field, and thus is also not the most relevant
driving force for employing evaluation and validation as part of the research. In-
stead, the goal of providing general motivations for stylistic rendering as identified
in Sect. 15.2, the need for support of specific goals as discussed in Sect. 15.3, or the
general question of aesthetic judgments (e.g., in Gerstner et al.’s [14] work) may
serve as alternative reasons for evaluating and validating NPR algorithms. Nev-
ertheless, comparing one’s results to their hand-made counterparts as reviewed in
Sect. 15.4 can also be instructive, but should not only be reduced to an NPR Turing
test. In fact, in Chap. 16 of this book Hall and Lehmann look at NPR in the context
of traditional artistic depiction and ask the question of how to assess the generated
visuals from the perspective of art history. In taking this view, they nicely make the
point that an NPR Turing test does not provide any insight on the aesthetic value
of the NPR visuals, but that the produced images instead have to be appreciated by
people—just like traditional artworks.

328 T. Isenberg

Appendix: Data Resources

Some of the datasets used/created in the mentioned studies are available online for
further analysis and future studies. For example, the following datasets are available
online at the moment of writing (of course, the URLs are always subject to change):

• sparse line drawing comparison by Cole et al. [6, 7, 9];
→ captured registered drawings, models, etc.: http://gfx.cs.princeton.edu/proj/
ld3d/

• shape perception based on sparse line drawings by Cole et al. [6, 8];
→ gauge settings: http://gfx.cs.princeton.edu/proj/ld3d/

• evaluation of the pixelization of line art by Inglis and Kaplan [28];
→ user study data: http://sites.google.com/site/tiffanycinglis/generating-pixel-
art/generating-pixel-art—outlining

• ethnographic study of illustrations by Isenberg et al. [30];
→ images: http://www.cs.rug.nl/~isenberg/VideosAndDemos/Isenberg2006NPR

• shape perception in dynamic 3D environments by Winnemöller et al. [55];
→ 3D models: http://www.cs.northwestern.edu/~holger/Research/projects.htm

References

1. Acevedo, D., Laidlaw, D., Drury, F.: Using visual design expertise to characterize the effec-
tiveness of 2D scientific visualization methods. In: Proceedings Compendium of IEEE InfoVis
and Visualization 2005, pp. 111–112 (2005). doi:10.1109/VIS.2005.109

2. AlMeraj, Z., Kaplan, C.S., Asente, P., Lank, E.: Towards ground truth in geometric textures.
In: Proc. NPAR, pp. 17–26. ACM, New York (2011). doi:10.1145/2024676.2024679

3. Bénard, P., Thollot, J., Sillion, F.: Quality assessment of fractalized NPR textures: a percep-
tual objective metric. In: Proc. APGV, pp. 117–120. ACM, New York (2009). doi:10.1145/
1620993.1621016

4. Carpendale, S.: Evaluating information visualizations. In: Information Visualization: Human-
Centered Issues and Perspectives. LNCS, vol. 4950, pp. 19–45. Springer, Berlin (2008).
doi:10.1007/978-3-540-70956-5_2

5. Cohen, J.: The Earth is round (p < 0.05). Am. Psychol. 49(12), 997–1003 (1994). doi:
10.1037/0003-066X.49.12.997

6. Cole, F.: Line drawings of 3D models. Ph.D. thesis, Princeton University (2009)
7. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T.,

Rusinkiewic, S.: Where do people draw lines? ACM Trans. Graph. 27(3), 88 (2008).
doi:10.1145/1360612.1360687

8. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.:
How well do line drawings depict shape? ACM Trans. Graph. 28(3), 28 (2009). doi:10.1145/
1531326.1531334

9. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T.,
Rusinkiewicz, S.: Where do people draw lines? Commun. ACM 55(1), 107–115 (2012). doi:
10.1145/2063176.2063202

10. Duke, D.J., Barnard, P.J., Halper, N., Mellin, M.: Rendering and affect. Comput. Graph. Forum
22(3), 359–368 (2003). doi:10.1111/1467-8659.00683

11. Field, A., Hole, G.: How to Design and Report Experiments. Sage, London (2003)
12. Fischer, J., Cunningham, D., Bartz, D., Wallraven, C., Bülthoff, H., Straßer, W.: Mea-

suring the discernability of virtual objects in conventional and stylized augmented reality.

http://gfx.cs.princeton.edu/proj/ld3d/
http://gfx.cs.princeton.edu/proj/ld3d/
http://gfx.cs.princeton.edu/proj/ld3d/
http://sites.google.com/site/tiffanycinglis/generating-pixel-art/generating-pixel-art---outlining
http://sites.google.com/site/tiffanycinglis/generating-pixel-art/generating-pixel-art---outlining
http://www.cs.rug.nl/~isenberg/VideosAndDemos/Isenberg2006NPR
http://www.cs.northwestern.edu/~holger/Research/projects.htm
http://dx.doi.org/10.1109/VIS.2005.109
http://dx.doi.org/10.1145/2024676.2024679
http://dx.doi.org/10.1145/1620993.1621016
http://dx.doi.org/10.1145/1620993.1621016
http://dx.doi.org/10.1007/978-3-540-70956-5_2
http://dx.doi.org/10.1037/0003-066X.49.12.997
http://dx.doi.org/10.1145/1360612.1360687
http://dx.doi.org/10.1145/1531326.1531334
http://dx.doi.org/10.1145/1531326.1531334
http://dx.doi.org/10.1145/2063176.2063202
http://dx.doi.org/10.1111/1467-8659.00683

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 329

In: Proc. EGVE, pp. 53–61. Eurographics Association, Goslar (2006). doi:10.2312/EGVE/
EGVE06/053-061

13. Gatzidis, C., Papakonstantinou, S., Brujic-Okretic, V., Baker, S.: Recent advances in the user
evaluation methods and studies of non-photorealistic visualisation and rendering techniques.
In: Proc. IV, pp. 475–480. IEEE Comput. Soc., Los Alamitos (2008). doi:10.1109/IV.2008.75

14. Gerstner, T., DeCarlo, D., Alexa, M., Finkelstein, A., Gingold, Y., Nealen, A.: Pixelated
image abstraction. In: Proc. NPAR, pp. 29–36. Eurographics Association, Goslar (2012).
doi:10.2312/PE/NPAR/NPAR12/029-036

15. Girshick, A., Interrante, V., Haker, S., Lemoine, T.: Line direction matters: an argument for
the use of principal directions in 3D line drawings. In: Proc. NPAR, pp. 43–52. ACM, New
York (2000). doi:10.1145/340916.340922

16. Gooch, B.: Human facial illustrations: creation and evaluation using behavioral studies and
functional magnetic resonance imaging. Ph.D. thesis, University of Utah, USA (2003)

17. Gooch, A.A., Willemsen, P.: Evaluating space perception in NPR immersive environments.
In: Proc. NPAR, pp. 105–110. ACM, New York (2002). doi:10.1145/508530.508549

18. Gooch, B., Reinhard, E., Gooch, A.A.: Human facial illustrations: creation and psychophysi-
cal evaluation. ACM Trans. Graph. 23(1), 27–44 (2004). doi:10.1145/966131.966133

19. Gooch, A.A., Long, J., Ji, L., Estey, A., Gooch, B.S.: Viewing progress in non-photorealistic
rendering through Heinlein’s lens. In: Proc. NPAR, pp. 165–171. ACM, New York (2010).
doi:10.1145/1809939.1809959

20. Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the time). In:
Proc. CHI, pp. 111–120. ACM, New York (2008). doi:10.1145/1357054.1357074

21. Halper, N., Mellin, M., Herrmann, C.S., Linneweber, V., Strothotte, T.: Psychology and non-
photorealistic rendering: the beginning of a beautiful relationship. In: Proc. Mensch & Com-
puter, pp. 277–286. Teubner, Stuttgart (2003)

22. Halper, N., Mellin, M., Herrmann, C.S., Linneweber, V., Strothotte, T.: Towards an under-
standing of the psychology of non-photorealistic rendering. In: Proc. Workshop Computa-
tional Visualistics, Media Informatics and Virtual Communities, pp. 67–78. Deutscher Uni-
versitäts, Wiesbaden (2003)

23. Healey, C.G., Enns, J.T.: Perception and painting: a search for effective, engaging visualiza-
tions. IEEE Comput. Graph. Appl. 22(2), 10–15 (2002). doi:10.1109/38.988741

24. Healey, C.G., Tateosian, L., Enns, J.T., Remple, M.: Perceptually-based brush strokes
for nonphotorealistic visualization. ACM Trans. Graph. 23(1), 64–96 (2004). doi:10.1145/
966131.966135

25. Hertzmann, A.: A survey of stroke-based rendering. IEEE Comput. Graph. Appl. 23(4), 70–81
(2003). doi:10.1109/MCG.2003.1210867

26. Hertzmann, A.: Non-photorealistic rendering and the science of art. In: Proc. NPAR, pp. 147–
157. ACM, New York (2010). doi:10.1145/1809939.1809957

27. Igarashi, T., Matsuoka, S., Tanaka, H.T.: A sketching interface for 3D freeform design. In:
Proc. SIGGRAPH, pp. 409–416. ACM, New York (1999). doi:10.1145/311535.311602

28. Inglis, T.C., Kaplany, C.S.: Pixelating vector line art. In: Proc. NPAR, pp. 21–28. Eurographics
Association, Goslar (2012). doi:10.2312/PE/NPAR/NPAR12/021-028

29. Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S., Strothotte, T.: A developer’s guide
to silhouette algorithms for polygonal models. IEEE Comput. Graph. Appl. 23(4), 28–37
(2003). doi:10.1109/MCG.2003.1210862

30. Isenberg, T., Neumann, P., Carpendale, S., Sousa, M.C., Jorge, J.A.: Non-photorealistic ren-
dering in context: an observational study. In: Proc. NPAR, pp. 115–126. ACM, New York
(2006). doi:10.1145/1124728.1124747

31. Jackson, C.D., Acevedo, D., Laidlaw, D.H., Drury, F., Vote, E., Keefe, D.: Designer-critiqued
comparison of 2D vector visualization methods: a pilot study. In: ACM SIGGRAPH Sketches
& Applications. ACM, New York (2003). doi:10.1145/965400.965505

32. Kaptein, M., Robertson, J.: Rethinking statistical analysis methods for CHI. In: Proc. CHI,
pp. 1105–1114. ACM, New York (2012). doi:10.1145/2207676.2208557

http://dx.doi.org/10.2312/EGVE/EGVE06/053-061
http://dx.doi.org/10.2312/EGVE/EGVE06/053-061
http://dx.doi.org/10.1109/IV.2008.75
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/029-036
http://dx.doi.org/10.1145/340916.340922
http://dx.doi.org/10.1145/508530.508549
http://dx.doi.org/10.1145/966131.966133
http://dx.doi.org/10.1145/1809939.1809959
http://dx.doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1109/38.988741
http://dx.doi.org/10.1145/966131.966135
http://dx.doi.org/10.1145/966131.966135
http://dx.doi.org/10.1109/MCG.2003.1210867
http://dx.doi.org/10.1145/1809939.1809957
http://dx.doi.org/10.1145/311535.311602
http://dx.doi.org/10.2312/PE/NPAR/NPAR12/021-028
http://dx.doi.org/10.1109/MCG.2003.1210862
http://dx.doi.org/10.1145/1124728.1124747
http://dx.doi.org/10.1145/965400.965505
http://dx.doi.org/10.1145/2207676.2208557

330 T. Isenberg

33. Keefe, D.F., Karelitz, D.B., Vote, E.L., Laidlaw, D.H.: Artistic collaboration in designing VR
visualizations. IEEE Comput. Graph. Appl. 25(2), 18–23 (2005). doi:10.1109/MCG.2005.34

34. Kerlinger, F.N., Lee, H.B.: Foundations of Behavioral Research, 4th edn. Wadsworth Publish-
ing/Thomson Learning, London (2000)

35. Kim, S., Hagh-Shenas, H., Interrante, V.: Conveying shape with texture: an experimental in-
vestigation of the impact of texture type on shape categorization judgments. In: Proc. InfoVis,
pp. 163–170. IEEE Comput. Soc., Los Alamitos (2003). doi:10.1109/INFVIS.2003.1249022

36. Kim, S., Hagh-Shenas, H., Interrante, V.: Conveying shape with texture: experimental inves-
tigation of texture’s effects on shape categorization judgments. IEEE Trans. Vis. Comput.
Graph. 10(4), 471–483 (2004). doi:10.1109/TVCG.2004.5

37. Laidlaw, D.H.: Loose, artistic “textures” for visualization. IEEE Comput. Graph. Appl. 21(2),
6–9 (2001). doi:10.1109/38.909009

38. Laidlaw, D., Kirby, R., Jackson, C., Davidson, J., Miller, T., da Silva, M., Warren, W., Tarr, M.:
Comparing 2D vector field visualization methods: a user study. IEEE Trans. Vis. Comput.
Graph. 11(1), 59–70 (2005). doi:10.1109/TVCG.2005.4

39. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C.: Aesthetics of hand-
drawn vs. computer-generated stippling. In: Proc. CAe, pp. 53–56. Eurographics Association,
Goslar (2007). doi:10.2312/COMPAESTH/COMPAESTH07/053-056

40. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Measuring
stipple aesthetics in hand-drawn and computer-generated images. IEEE Comput. Graph. Appl.
28(2), 62–74 (2008). doi:10.1109/MCG.2008.35

41. Mandryk, R.L., Mould, D., Li, H.: Evaluation of emotional response to non-photorealistic
images. In: Proc. NPAR, pp. 7–16. ACM, New York (2011). doi:10.1145/2024676.2024678

42. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-based stippling using a scale-
dependent grayscale process. In: Proc. NPAR, pp. 51–61. ACM, New York (2010). doi:
10.1145/1809939.1809946

43. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-dependent and example-based stip-
pling. Comput. Graph. 35(1), 160–174 (2011). doi:10.1016/j.cag.2010.11.006

44. Mould, D., Mandryk, R.L., Li, H.: Emotional response and visual attention to non-
photorealistic images. Comput. Graph. 36(5), 658–672 (2012). doi:10.1016/j.cag.2012.
03.039

45. Rautek, P., Bruckner, S., Gröller, E., Viola, I.: Illustrative visualization: new technology or
useless tautology? Comput. Graph. 42(3), 4:1–4:8 (2008). doi:10.1145/1408626.1408633

46. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. Comput. Graph. 24(3),
197–206 (1990). doi:10.1145/97880.97901

47. Salesin, D.H.: Non-photorealistic animation & rendering: 7 grand challenges. Keynote talk at
NPAR (2002)

48. Santella, A., DeCarlo, D.: Visual interest and NPR: an evaluation and manifesto. In: Proc.
NPAR, pp. 71–78. ACM, New York (2004). doi:10.1145/987657.987669

49. Schmidt, R., Isenberg, T., Jepp, P., Singh, K., Wyvill, B.: Sketching, scaffolding, and inking:
a visual history for interactive 3D modeling. In: Proc. NPAR, pp. 23–32. ACM, New York
(2007). doi:10.1145/1274871.1274875

50. Schumann, J., Strothotte, T., Raab, A., Laser, S.: Assessing the effect of non-photorealistic
rendered images in CAD. In: Proc. CHI, pp. 35–42. ACM, New York (1996). doi:10.1145/
238386.238398

51. Seifi, H., DiPaola, S., Enns, J.: Exploring the effect of color palette in painterly rendered
character sequences. In: Proc. CAe, pp. 89–97. Eurographics Association, Goslar (2012).
doi:10.2312/COMPAESTH/COMPAESTH12/089-097

52. Strothotte, T., Preim, B., Raab, A., Schumann, J., Forsey, D.R.: How to render frames and
influence people. Comput. Graph. Forum 13(3), 455–466 (1994). doi:10.1111/1467-8659.
1330455

53. Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, shading, and volume rendering for
surgery education and planning. In: Proc. EuroVis, pp. 303–310. Eurographics Association,
Goslar (2005). doi:10.2312/VisSym/EuroVis05/303-310

http://dx.doi.org/10.1109/MCG.2005.34
http://dx.doi.org/10.1109/INFVIS.2003.1249022
http://dx.doi.org/10.1109/TVCG.2004.5
http://dx.doi.org/10.1109/38.909009
http://dx.doi.org/10.1109/TVCG.2005.4
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/053-056
http://dx.doi.org/10.1109/MCG.2008.35
http://dx.doi.org/10.1145/2024676.2024678
http://dx.doi.org/10.1145/1809939.1809946
http://dx.doi.org/10.1016/j.cag.2010.11.006
http://dx.doi.org/10.1016/j.cag.2012.03.039
http://dx.doi.org/10.1016/j.cag.2012.03.039
http://dx.doi.org/10.1145/1408626.1408633
http://dx.doi.org/10.1145/97880.97901
http://dx.doi.org/10.1145/987657.987669
http://dx.doi.org/10.1145/1274871.1274875
http://dx.doi.org/10.1145/238386.238398
http://dx.doi.org/10.1145/238386.238398
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH12/089-097
http://dx.doi.org/10.1111/1467-8659.1330455
http://dx.doi.org/10.1111/1467-8659.1330455
http://dx.doi.org/10.2312/VisSym/EuroVis05/303-310

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering 331

54. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph.
25(3), 1221–1226 (2006). doi:10.1145/1141911.1142018

55. Winnemöller, H., Feng, D., Gooch, B., Suzuki, S.: Using NPR to evaluate perceptual
shape cues in dynamic environments. In: Proc. NPAR, pp. 85–92. ACM, New York (2007).
doi:10.1145/1274871.1274885

56. Zhao, M., Zhu, S.C.: Sisley the abstract painter. In: Proc. NPAR, pp. 99–107. ACM, New York
(2010). doi:10.1145/1809939.1809951

http://dx.doi.org/10.1145/1141911.1142018
http://dx.doi.org/10.1145/1274871.1274885
http://dx.doi.org/10.1145/1809939.1809951

Chapter 16
Don’t Measure—Appreciate! NPR Seen
Through the Prism of Art History

Peter Hall and Ann-Sophie Lehmann

16.1 Introduction

The question of how to judge NPR images and video is often raised, both within and
without the field. The argument from outside is that NPR papers cannot be properly
assessed, because there is no objective measure of quality; some even imply that
NPR is somehow of lesser value for it. We do not accept the argument and reject the
implication. Indeed in this book Isenberg ably argues that NPR images not only can
be assessed but should be assessed. Importantly, he points out that the purpose of the
NPR image (e.g. scientific visualisation) should have an impact upon the method of
assessment (see Chap. 15). We focus on that class of NPR images which have the
primary purpose of “being art” and consider how to judge these images based on
methods used in Art History.

The problem of assessing NPR is relevant across the whole field, but is most
pertinent for NPR pieces (images and video) that have been produced automatically.
After all, an artist using a computer to produce art should rightly compete with
artists using traditional media. Therefore it is algorithms for automatic NPR we
focus upon, but to obtain a more rounded and robust view we do include interactive
NPR too.

One answer, a seemingly obvious answer, to the question of evaluating NPR
is “use the Turing Test”. There are many variants, but all of them ask whether
a human has produced a piece or not. We argue that the Turing test is not suit-

P. Hall (�)
Department of Computer Science, University of Bath, Bath, UK
e-mail: pmh@cs.bath.ac.uk

A.-S. Lehmann
Department of Media and Culture Studies, University of Utrecht, Utrecht,
The Netherlands
e-mail: a.s.lehmann@uu.nl

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_16,
© Springer-Verlag London 2013

333

mailto:pmh@cs.bath.ac.uk
mailto:a.s.lehmann@uu.nl
http://dx.doi.org/10.1007/978-1-4471-4519-6_16

334 P. Hall and A.-S. Lehmann

able for us because its aim is to identify the maker, not to evaluate the output: we
are not interested in assessing forgery. For similar reasons we argue against ex-
periments that claim to measure NPR value in some objective way. There is no
reliable objective measure, instead NPR, like all art must be appreciated. This
means its value derives first from the rest of NPR, and second from the culture
in which NPR as whole sits. It is hardly a surprise to find a Western researcher
producing NPR that resembles the Western tradition, and an Eastern researcher pro-
ducing NPR that resembles the Eastern tradition [44]. The algorithms each pro-
duces can be assessed on equal terms, but evaluating the output may be more
problematic because each of us inherits a cultural bias that we may not be aware
of.

Consider this: suppose alien life were to make contact with humans here on
Earth. It is a fair bet that creatures advanced enough to reach us would have a highly
developed culture. The question is: would we recognise it as art? We would know
it is not made by humans, so the Turing test is clearly of no relevance. The general
problem is one of learning to appreciate art, be it from another planet, from another
era or continent, or—as in our case—as made by a computer.

Given that NPR is analogous to human produced art it is relevant to look to Art
History to help us appreciate its value. The question of why an art work is good
or not, and whether art can be judged in such terms at all, has usually been easy
to answer in relation to individual art works, yet difficult to clarify when it comes
to developing general objective criteria. To develop such criteria has nonetheless
been an on-going enterprise in the history of art, ever since Giorgio Vasari founded
the discipline of Art History in the sixteenth century and Georg Wilhelm Friedrich
Hegel argued in the nineteenth century that art moves towards the expression of per-
fection [22]. Yet since Modernism contradicted dominant teleological models that
advocated an aesthetic development towards a particular standard, Art Historians
and Art Philosophers have eschewed attempts to define aesthetic value in an objec-
tive sense. That is, however, no barrier to a discourse which evaluates works of art
as being great, mediocre, or poor, within the realm of a particular school, style or
period [30].

This chapter continues by first arguing in more detail against tests and experiment
as a way to solve the problem of evaluating NPR. Next we identify norms used
when assessing NPR, in particular the internal norms that might be used by a typical
reviewer of an NPR paper, and we also point to external cultural references that
assist us when understanding the place of NPR as a whole in the history of art. In
this way we identify both an internal scale by which individual contributions can
be appreciated, and we begin to calibrate that scale against wider alternatives. We
conclude that at least some knowledge of Art History is required to satisfactorily
appreciate NPR.

Before continuing we wish to note that NPR is a very active field, and we have
been able to cite only a small fraction of the work; there is a great deal of excellent
work we have been unable to refer to in this chapter.

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 335

16.2 The Unsuitability of the Turing Test and the Impossibility
of Absolute Aesthetic Measure

It is not uncommon to hear the Turing test advanced as a solution to the problem of
judging the aesthetic value of NPR pictures, for example [6, 73, 82], and specifically
in NPR [64]. In this section we argue against both the Turing test and alternatives.

Our argument for the ineligibility of the Turing test is this: the issue at hand is
the aesthetic value of an image, not whether a human or computer made it. In other
words we are not asking “is it made by a human or machine?” but “is it justifiably
a good picture?” We want a framework for assessing NPR, not a measure of the
deceptive potential of a machine. This is a simple argument, but it is worth exploring
a little more.

Before continuing, we should narrow our understanding of aesthetic value and in
particular differentiate it from aesthetic quality. Aesthetic quality has a wide mean-
ing, but essentially possesses a subjective character. Without reference to any agreed
definition we can recognise the individual aesthetic qualities in the joy of a summer’s
day, the exhilaration of winning at sports, and the warmth of a lover’s touch. The
degree of feeling in each case is the aesthetic measure or, as we call it the “aesthetic
value”, of that particular quality.

We are concerned with the visual aesthetics of pictures. In keeping with the range
of aesthetic quality, there are many distinct flavours of visual aesthetic. Different
cultures throughout history and across the world have produced, and continue to
produce, distinctive forms of visual art. Indeed, cultures are in part delimited by
their sense of aesthetic quality, as expressed in pictures. Therefore we must appre-
ciate art, including NPR, relative to the cultural norms in which it was produced.
It follows that there is more than one measure of visual aesthetic value. Nonethe-
less we can point to ‘good’, ‘bad’ and ‘indifferent’ examples within each cultural
tradition, implying distinct but congruent scales. A corollary is the impossibility of
assessing the aesthetic value of an NPR piece without reference to not just to other
NPR pieces (so setting an internal scale) but also with reference to the wider culture
in which the pieces sit (so calibrating the NPR scale against other scales).

We are not alone in rejecting the Turing Test as a valid aesthetic measure. Pease
and Colton [61] give a detailed account of why the Turing test is not suitable for
assessing creativity in general. Like us they point to differences in cultural her-
itage, but they make additional points too, including that the knowledge of the agent
making a piece of art is important when assessing that piece—information that the
Turing test deliberately excludes.

The question of measuring aesthetic value is much older than the Turing test it
dates back to Antiquity and the notion of ideal proportions in humans, buildings,
and nature, as well as the fascination with overarching principles guiding beauty,
such as the number π . These discussions always concern issues of regularity and
the ideal relation between the parts of a whole. For example, there is Pliny’s famous
account of the painter Zeuxis, who in looking for a model among the maidens of
Croton for a painting of the most beautiful woman—Helena—ended up combining

336 P. Hall and A.-S. Lehmann

the most beautiful part of five maidens, as no individual human being could embody
perfect beauty alone. This anecdote would shape art theory for centuries after.

In the early twentieth century, the philosopher Birkoff defined aesthetic measure
as the ratio of ‘orderliness’ over ‘complexity’ [5]. Psychologists have used this to
propose a specific measure for colour harmony [55], later tested experimentally [33],
and the relation between beauty and truth in scientific experiment continues to be
discussed [74]. Birkoff’s measure has rarely been used in computational environ-
ments but did influence a study into the layout of graphical windows [57]. More
recently, colour harmony has been studied [40] using a fuzzy logic framework. The
measure has also influenced a study that concludes the aesthetic value of a scien-
tific visualisation impacts upon understanding [26]. Whether both ‘orderliness’ and
‘complexity’ can be defined and measured in images and in video is an interesting
open question. A particular issue arises because they do not seem to be independent
and both relate to entropy: a system that is well ordered is not complex—it has low
entropy; conversely a complex system is (almost by definition) is not well ordered
and has high entropy.

We find the argument that aesthetic value has an explanation rooted in our evo-
lutionary history to be appealing. If this is the case, then our sense of aesthetics
should be embodied within image statistics. This argument has led to studies us-
ing photographs of natural scenes [9, 24], and of art [32]. Other studies show that
natural scenes and paintings exhibit similar statistical properties, in particular the
Fourier spectrum for photographs is about (1/f)1.2 for natural scenes, which com-
pares to (1/f)1.4 for artwork [31, 75]. Sparseness of information has been found to
be a useful cue [25] as is local contrast [27] which is consistent with an evolution-
ary explanation of beauty—although aesthetic value and beauty are not necessarily
synonymous.

Whether such studies will lead to a measurable quantity that generalizes over
all images is an open question, after all it has proven elusive for centuries. This is
because quantifying the aesthetic value of an image is not possible based on the
image alone. Rather, aesthetic value is intimately connected with the meaning of a
picture. For example, knowing that Picasso’s Guernica is a comment on the Spanish
Civil war will affect the aesthetic value one ascribes to it.

With these ideas in mind we turn away from the Turing test, Birkoff’s measure,
and even image statistics as means of making progress when assessing the aesthetic
value of an NPR picture. Similarly we are cautious of claims that eye-tracking data
can be used to evaluate NPR images [65], not only because the attribute of aesthetic
value lies beyond the picture itself but also because many pictures of high aesthetic
value have no detail to focus upon (e.g., Rothko), while others are a myriad of detail
(e.g., Pollock).

Instead we opt to assess the NPR in the same way that all art is assessed, which
is to gauge it against the wider cultural background of existing art. In doing so we
must take care, because human and computer aesthetic scales may not be coinci-
dent. Hence the problem of assessing NPR becomes similar to that faced by Art
Historians when assessing any new movement in art. Our effort to establish assess-
ment guidelines is not intended to revive the discussion as to whether computers can

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 337

generate art, but instead points to the relation NPR undoubtedly has with forms of
visual, artistic expression [79].

16.3 Understanding NPR as Art

Our central claim that NPR should be assessed and understood—that is, appreci-
ated—as art. Within the wide range of cultural image production we can consider
NPR as a particular sub-genre of computer generated imagery; a point of view jus-
tified by the fact that NPR has its own recognisable norms. Currently, these norms
are latent—that is they have not been explicitly articulated, but they exist nonethe-
less, otherwise consistent refereeing would be impossible. It is not at all obvious
that these norms are uniformly agreed in all of their parts, but there is sufficient ac-
cord for NPR to be a recognisable sub-genre (hence characterisable by some set of
norms). These norms not only help us delimit the field, but also to set up an internal
scale. By comparing these norms with others from other fields we move towards
calibrating the NPR internal scale against its wider cultural background.

16.3.1 Internal Norms

NPR’s most defining norm is certainly the “Non-” that divides NPR from photoreal-
ism, the initial driving force in the development of computer graphics. Although the
name and the inherent opposition of different kinds of realism has often been crit-
icised, and different names have been proposed [67], it seems to best describe the
tenet of the genre as being to create convincing, effective and scientifically valid im-
ages in other ways than complete visual verisimilitude, thereby employing the whole
wide range of mediated visual expressions that are not bound to the photographic
mechanism/technology. It has rightfully been argued that photo-realistic rendering
and NPR both are equal members of the family of computer depiction [20, 23]. Yet
the distinction is kept intact as images remain to be judged against the two over-
arching principles of photographic documentation of the visual world on the one
hand and its pictorial representation on the other (notwithstanding the on-going hy-
bridization of these principles [52]).

While photorealist rendering only has one defining medium to be judged against,
NPR has many. It is this many-headed hydra that makes NPR interesting, yet dif-
ficult to assess. Its initial indistinctness therefore affords the affinity to existing,
pictorial styles and hints at the immense project that NPR is: while an (ideal)
image-machine that can generate photorealistic renderings is imaginable, an image-
machine that cannot only generate all known pictorial styles but also new pictorial
styles, may be a utopian project [66].

Art History offers an appropriate model for the assessment of a multitude of
different styles because it developed criteria based on resemblance, style as well as

338 P. Hall and A.-S. Lehmann

originality long before the invention of photography. Photography, in its early days
perceived in art historical terms as the “brush of nature”, only briefly and in part
served as a foil to judge art against. Mainly, by claiming visual realism as ‘good’, it
stimulated painting to develop a new diversity of styles moving beyond the mimetic
representation of the visual world [28, 29]: without photography it is questionable
whether Cubism would ever have been, for example. NPR therefore is essentially
connected to art historical principles of aesthetic evaluation.

This connection predicts the second norm of NPR: the fact that many NPR au-
thors claim relationship between their NPR and some or other school of art: the out-
put their algorithms produce is said to be like that of some or other school or artist.
Not all authors of NPR algorithms make such a claim explicit, but even amongst
those who are silent on the issue a likeness to some school remains. This provides
us with an obvious link to wider culture, and invites us to make direct comparison
between particular pieces on NPR and pieces produced by humans—but only in the
sense of calibrating the cultural progression of NPR. (The Turing Test is appropri-
ate only if an author claims that their algorithm is capable of forgery, most claim
a likeness.) However, we should be careful to note that the styles of artists within
a school offer considerable variation, and even a single artist varies over their life-
time. These matters complicate comparison between NPR and schools, and lead us
to treat claims of likeness (explicit or otherwise) with caution. Even so, linking NPR
to existing art is inevitable, and this link is a norm of NPR.

Closely related to the third norm of emulating pictorial style is the norm of em-
ulating media: is it not possible to emulate oil painting without emulating oil paint.
Success in this norm is much easier to asses, at least if we adopt a narrow point of
view that judges the visual similarity between a synthetic and real medium. Whether
NPR will ever develop its own unique medium or media is an interesting open ques-
tion.

A fourth norm is the elimination of direct human input to create artistic images.
Arguably, it is this norm that leads some to argue for some objective measure of
success. We recognise that not all NPR shares this aim, some NPR algorithms aim to
make it easier for human artists to create art, sometimes by the provision of synthetic
media, other times smart tools. In this paper we are thinking almost exclusively on
fully automated NPR, because it is there that the relevant issues have their sharpest
profile.

A fifth norm is that algorithms should be as simple and as elegant as possible,
particularly for automated NPR. This norm is inherited from the wider contexts of
Computer Science and Mathematics. Additionally, it corresponds to Art Historians
using knowledge about how a piece was made when coming to understand the aes-
thetic value of a piece. In some sense, the art of NPR is designing simple and elegant
algorithms that produce output of high aesthetic value.

The final norm is novelty. In the case of human produced art this means finding
a new way to express or communicate. Within NPR, novelty usually has a more
restricted definition: it is the algorithm that must be novel when compared to relevant
literature. This restricted view provides some evidence that NPR is not sufficiently
mature for novelty to be judged more widely. We do not see this as a criticism, but
as a challenge.

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 339

A sixth norm is “prettiness”, or a “wow factor”, although this is rarely stated,
at least within NPR. Wider Computer Graphics, on the other hand is not quite so
bashful: the idea that output should “look good” (that is, look like a photograph) is
acknowledged as the driving force. NPR seems to have inherited the “look good”
criterion but modified it away from using the photograph as a foil to using schools
and artists. We argue that this is a norm that should not be used for NPR, for at least
two reasons: first it is culturally specific, e.g. animation in Eastern Europe is very
different from animation in the USA, so that, unless researchers and reviewers are
cognisant of their own cultural bias, the “look good” criterion is a distorting prism.
Second, and most important, even with a given tradition, art does not have to look
good to qualify as great art, as we illustrate in the next subsection.

We would not be surprised if reviewers of NPR submissions make use of the
above norms when arriving at a judgement regarding acceptance of a paper, indeed
we would be surprised if these norms were not used. To be clear, we are not claim-
ing these are the only issues used by reviewers—clarity of writing is not included
in the above list but is a factor when assessing papers, for example. However, the
norms correspond to large degree to the taxonomy of NPR that is used when assess-
ing the aesthetic value of the NPR output—it is, after all, impossible to ignore the
algorithm. These norms are useful in assessing NPR internally, that is in relation
to itself. However, as mentioned already, NPR should be assessed against a wider
cultural context if is to be more roundly understood.

16.3.2 Cross Cultural Comparisons

Internal norms help us give an initial assessment of individual NPR pieces with
respect to the rest of NPR. However, the progress in NPR as a whole can be assessed
only by referencing it to art as a whole: if NPR is ever to claim artistic merit, then it
must be judged in an equivalent way.

Art is much more than producing pretty objects. Of course it is true that art can
be beautiful, but “prettiness” per se is no criteria at all by which to judge any work
of art. We have already mentioned Guernica: the painting is impossible to appreciate
without recognising that it represents the bombing of unarmed civilians—hardly a
pretty subject—hardly a pretty painting. Many of Goya’s paintings are difficult to
look at, unpleasant even, explicitly depicting, as they do, the horrors of war. The
work of Joseph Beuys, made from fat and fur, is all the more compelling when
one realizes the artist survived in fat and fur after being shot down as a fighter
pilot. The photographs of Dorothea Lange depicting social deprivation in America
in the 1930s are not mantle-piece objects. Yet all of these artists produce work of
the highest aesthetic value; art is not imprisoned by “looking good”.

Art as practised by humans draws upon every conceivable experience, and ap-
preciating any piece demands the viewer draws from that same well. Unfortunately
the depth and breadth of the pooled, common experience is vastly wider and deeper
than that of any particular individual, or even that of any particular culture. Thus,

340 P. Hall and A.-S. Lehmann

a viewer versed in the Western tradition may find it difficult to appreciate Oriental
art, for example; and vice versa. It takes effort and education and some humility to
overcome these barriers.

By comparison, NPR is very limited in its scope. Most of NPR sets out to imitate
art that already exists. More exactly, NPR sets out to imitate the appearance of art
that already exists. Even there it is limited because the appearance is nearly always
limited to output on a screen; much of the power of a Van Gogh, for example comes
from paint so thickly applied it holds the passion of its maker. That passion is com-
pletely drained out when the work is presented flat, on a postcard or on a computer
screen.

So far as we can tell, NPR is judged by the six norms explained above, especially
on “looking good”, meaning similarity—assumed or claimed—to existing (cultur-
ally specific) genres; and by the elegance and novelty of the algorithm. None of the
six norms reference the wider issues of concern to art, and because of that we can-
not accept the full weight of Hertzman’s argument [38] that NPR has explanatory
power with regard to art. For example, NPR does not aim to comment on social
issues but art often does, and since such a commentary is essential for art apprecia-
tion NPR is the poorer for being mute. However, Hertzmann may be correct in that
NPR may help to understand perceptual elements, such as why the patterns used
by Van Gogh are so appealing, or how Cezanne composes his paintings. Some Art
Historians argue that pictures possess a grammar [69]; NPR might be of assistance
there.

When compared to the rest of art, NPR is very much found to be wanting. Works
of NPR cannot currently be assessed in exactly the same way as works of art pro-
duced by humans. This is not to deny the area as a subject of study. On the contrary,
acknowledging the scale and the nature of the NPR project is, we claim, the best way
to drive the field. Moreover, remarkable progress has already been made, progress
we now explore a little. We will find that there are three basic questions NPR algo-
rithms must address, and that progress to date has answered one very well, partially
answered the second, but barely considered the third.

16.4 The How, Where, and What of NPR

In this section we will discuss the technical issues that face NPR in general, which
we name ‘how’, ‘where’, and ‘what’. These issues can be used not only to broadly
classify NPR algorithms but to chart the progress of NPR against art in general.

There are three basic issues that any picture maker (human or computer) must ad-
dress: how to make marks at all, where to make marks, and what to depict. How to
make marks means deciding on media such a oil paint or pencil, as well as a partic-
ular rendering styles such as cross-hatch, impasto, palette knife, including also the
choice of no perceptible mark. Having chosen how to make marks, the maker must
next chose where to place marks on the image plane. At its most basic, marks could
be placed at the edges of an object, or inside it. Support for this pair of issues comes

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 341

from [83], who separates projective system from the denotational system when dis-
cussing art. He argues that schools of art are delineated by the class of projection
(from 3D to 2D) they use, rather than the marks they make. This dualism is of course
directly tied to the question of whether the image is figurative and therefore refers
to an object in the world, or if it is abstract and so refrains from an iconic relation to
the visual world. In the following, we discuss images of the former kind, with var-
ious gradations of abstraction, but always with some relation to the visible world.
A human artist may not be conscious of solving ‘how’ and ‘where’; but must solve
them nonetheless. NPR algorithms are forced to explicitly solve these problems.

The third issue is what to depict. Humans will typically be primarily concerned
with the semantic meaning of the picture; and presumably come equipped with a
rich and complex internal representation capable of supporting pictures of the high-
est aesthetic value. This is currently beyond the scope of NPR: finding an equivalent
is the grand challenge for the field.

16.4.1 How: Mark Making and Media Emulation

Any picture is an accumulation of marks: whether interactive or automatic, all ap-
proaches to NPR require an agent (human or computer) to make marks. The easiest
way to make a mark using a computer is to distribute uniform colour around a point,
line, or area. This approach yields marks that are flat and consistent—characteristics
that are almost unique to early computer generated art. However, many people dis-
like such marks because it is difficult to be expressive with them, and in the early
history of computer graphics they have described them as cold and unemotional (for
some excellent examples see the SIGGRAPH documentary The Story of Computer
Graphics, 1999). The response of the NPR has been to engage in research to emulate
traditional artistic media.

Variations in media have long existed, with early interactive systems leading the
way both in two dimensions from image [34] and in three dimensions by painting
on models [36]. Media emulation has now become a staple of NPR. In fact, the
affordance to simulate all artistic materials—from oil paint to charcoal, pen and ink,
pastel, clay etc.—may be regarded as a distinctive material quality of NPR [49].

In fact, it was only in the early days, that Computer Graphics had a “typical”
appearance because it could not yet render specific material qualities in detail (ac-
cordingly, it was often compared to plastic, which also is often like, but not quite
like, a material it imitates). Emulation involved modelling the application device
(brush, pencil, etc.) the pigment, be it liquid or solid, and the receiving surface.
Just as photorealism models the interaction of light with matter, so media emulation
models physical media and their application devices. Hairy Brushes is one early
example [72], followed by many others including physical simulations of brush
hairs [48]. However, the transfer of paint from brush to surface depends on more
than the physics of brushes; it depends too on the bi-directional flow of physical
paint [16]. Today, many of the traditional media have been emulated, not limited to

342 P. Hall and A.-S. Lehmann

oil paint [4], watercolour [16], pencil [71], charcoal [53], pen-and-ink [18], wood-
engraving [59], copper-plate [50] and mixed-media [8]. This is a non-exhaustive
list as a full list would occupy several pages, but NPR has made a few interesting
omissions, including tempera and fresco.

Not all mark making requires brushes, pencils or such like. Mosaics use small
coloured have been studied within NPR [21]. Larger scale cut from photographs
showing different views of the same object have been used to simulate Cubist-like
NPR [12]. Collage is a related genre in that it requires pieces cut from many pic-
tures, but each of a different object. Automated collage has recently been addressed
within NPR; Huang et al. [41] describe a sophisticated system for cut-and-paste
from Internet images to produce Arcimboldo-like pictures.

16.4.2 Where: A Salient Question for NPR

We argue that where to place marks is more important than what marks are made.
We have already noted that Willats [83] correlated schools of art with a projective
rather than a denotational system. It is true that the nature of marks often defines
the personal style of an artist (connoisseurship works that way). However, in an
NPR context the location of a mark is the most important factor in the production of
aesthetic value. We can conduct a thought experiment in which the marks making up
a picture are all replaced with marks of another type: would we expect the aesthetic
value of the picture to change? Our answer is ‘yes’, because although marks are
important, the change would not be so much as if the same marks were moved to
non-salient positions, for example.

Placing marks is a very difficult problem. It is hardly controversial and no ac-
cident that the highest quality NPR comes from interactive systems, in which the
responsibility of where to place marks is passed to the user. Many interactive sys-
tems are now very sophisticated [68]. At its most complex, deciding where to place
a mark depends upon the semantic meaning of the object that mark is related to, and
to all other marks in the picture. Possibly apocryphal, Cezanne is reputed to have
remarked to Ambroise Vollard that he could not possibly change one stroke on the
hand of his portrait, for then he needed to change all others. For automated NPR,
the ‘where’ question is a significant one.

In terms of 3D models, automation began in the early 1990s [63] that used edge
maps computed by differentiating depth maps. More recently locating marks often
comes down to deciding which parts of a model are salient, at least from a given
point of view [7, 62], including when these change in time [78]. However, the focus
of our attention is image based NPR.

When working from images, early attempts at automatically choosing mark lo-
cations depended upon edge detection [51] or local variance [76]. Both of these
are low level operations, meaning they make only weak assumptions about image
content and so are applicable to many input images. The output of these and sim-
ilar algorithms is often related to the Impressionist school [51]. It remains one of

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 343

the most extensively studied approaches to producing NPR. Innovations include a
coarse-to-fine placement of edge-approximating strokes rather than simple blobs of
paint [37] and more recently the use of filters based on structure tensors [47] or
edge-aware Laplacian pyramids [60].

However, edge detection maps look very different from human sketches, even
when made from the same photographic source. In fact, the difference is measur-
able using precision-recall plots [54]. Typically humans make many fewer marks
than computers, and place marks judiciously—so that the content of the picture is
efficiently depicted. In any case, it is interesting to observe that many artists, typ-
ified by Cezanne, tried to move away from painting edges at all. However, even
Cezanne failed to completely remove edges. Nonetheless, edge detection and other
low-level approaches to answering the ‘where’ question tend to treat all detections
with equal weight, whereas artists will usually give greater weight to some edges
rather than others. We call this differential emphasis, and reaching for it has been a
driver of NPR. Interestingly, NPR rarely considers marks that become invisible by
over-painting, as is the case in oil paintings by Jan van Eyck or the Photorealists.

The easiest way to pursue differential emphasis in NPR is to make use of salience
maps. A salience map highlights areas that are supposed to be important to under-
stand an image. The production of salience maps without explicit reference to any
image content has been discussed in the Computer Vision literature for some time,
Itti, Koch and Niebur provide a well known example [43]. Salience was recognised
as useful to NPR from around 2002. DeCarlo and Santella [17] use eye-track data;
they assumed that peoples’ gaze dwells on important image regions for longer than it
does less important regions. They build a hierarchical description of an image, which
is rendered from top to bottom to maintain details. Such an interactive approach is
of limited value to automatic NPR because it provides no model of salience that
can be used generally. Recently a model that predicts where humans look has ap-
peared [45], and it has been used to emulate the results of DeCarlo and Santella [17].
However, excellent results can be achieved in other ways. Bangham et al. [3] build
a hierarchical image description, based on morphological operations centred on in-
tensity extrema, which those authors assume to be salient. Collomosse and Hall [11]
defined salience via rarity, the idea being that salient image regions are uncommon
in a given picture; hence they assumed that salience is a global property in that the
whole image must be taken into account. The same authors used their definition
of salience maps to define an objective function that guided a genetic search that
lay down brush strokes in an optimal way: to “smudge out” unwanted detail while
maintaining acuity where necessary [13].

Despite these efforts the problem of salience has yet to be definitely solved.
A general solution will, to borrow from probability, almost for sure have to be condi-
tioned on task: the question to ask is is this image element salient, given this image,
and given this task? For example: is this segmented region salient, given the task
is to paint a portrait of Ambroise Vollard? An answer clearly requires identification
of the region in question: an eye will be painted differently from a tree in the back-
ground, and a scar on one person may identify them but be removed for someone
else. Knowledge of the subject should be used, where it is available. The down side

344 P. Hall and A.-S. Lehmann

is that using prior knowledge limits the scope of things that can be rendered. For
example DiPaola [19] produces excellent portraits, but at the cost of specialising
in portraiture. DiPaloa writes that “. . . In general, artistic methodology attempts
the following: from the photograph or live sitter, the painting must ’simplify, com-
pose and leave out what’s irrelevant, emphasizing what’s important’. Since human
painters have knowledge of the source imagery, we are limiting this approach to
portraiture and therefore take advantage of portrait and facial knowledge in the
NPR process.”

It remains the case that even if salience maps improve the “look good” criterion
(should be accept that measure), the outputs will still fall short of the highest aes-
thetic value witnessed in human art. Hence we are irrevocably drawn towards the
dual subjects of abstraction and meaning, from which art derives so much of its
power.

16.4.3 What: Steps Towards Abstraction and Meaning

Salience is helpful, maybe even necessary, for automated NPR, but is not sufficient.
Moreover, we should not confine ourselves to thinking about brushes or pencils
but instead consider all forms of picture making, such as mosaics, paper cut-outs,
marquetry, etc. Such methods may require a different definition of salience to those
currently in use. Projective systems too should be accounted for—in art, the rules of
linear perspective are honoured more in their breach than their observance.

Artists, young and old, good or bad, in all parts of the world and throughout
history are characterised by the projective systems they use [83]. Many of these
defy simple mathematical modelling, in particular, Willats includes composition in
his definition of projective systems, but composition is rarely researched in NPR.

The need for artistic projection in NPR has been recognised for some time
now [1]. An array of non-linear camera models are now available to NPR, which al-
lows users to create pictures with more than one focal point; sometimes with finitely
many, other times with an infinite number. Most of these cameras are designed to
operate on 3D models; RYAN [10] is one such example that combines projections
from a finite number of linear cameras into a unified whole. The General Linear
Camera (GLC) differs in that being a single camera capable of non-linear projec-
tion [84] GLCs are specified by a user defining three vectors, which deforms a plane
into a bilinear surface; whereas every linear camera has a plane of points it cannot
image–those points are zero homogeneous depth, called points at infinity. GLCs
possess a bilinear surface of points at infinity. The RTcam (Rational Tensor Cam-
era) is more general still [35], they have tri-quadratic surfaces of such points, and is
designed to operate over photographic input.

Before moving on to abstraction, it is worth mentioning real-world non-linear
cameras. These comprise fish-eye lens, strip cameras on satellites, and many forms
of mirror. In practice no real camera is perfectly linear, but defects in lens and/or
mirrors show up as artefacts such as pin-cushion distortion. Artist David Hockney
suggests that many artists, such as Vermeer, made use of the equivalent of cam-
eras in their day (e.g., camera obscurer) which were non-linear, either because of

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 345

imperfections or because of the need to re-focus on different parts of a real-world
scene [39]. It is interesting to reflect on whether any such imperfections might be
recovered from paintings.

Perhaps the easiest way to move toward abstraction is image segmentation. The
aim of segmentation is to partition an image into semantic regions such as “face”
and “tree”—a problem that not only remains open within Computer Vision but also
is arguably the most difficult of all problems in that field. Helpfully for NPR, seg-
mentation can be hierarchical, so that an eye is segmented as a part within a face.
We have already seen that heuristics such as eye-tracking and image morphology
can be used to build salience maps. However, Computer Vision does furnish us with
a battery of alternative techniques that are beginning to match human performance.

Voronoi regions are a popular choice in NPR research, typically defined via mor-
phology to make renderings similar to stained glass [56]. Similar segmentation tech-
niques, coupled with some interaction, lie behind the sketches produced by [81].
Scale-space hierarchies have also been exploited by the NPR literature to abstract
images, see [58] for example. Others make use of hierarchical segmentations, such
as N-cuts coupled with shape classification to produce paper cuts image that shadow
Matisse and others [70].

Motion may also be segmented with positive results on NPR output. The early
methods of painting video would paint strokes in frame one, and then use optical
flow to push those strokes across frames [51]. Unfortunately, this leads to ‘flicker’,
which is caused by a combination of several effects: optical flow is not defined in the
interior of regions of uniform colour; it is noisy, it is interrupted by occlusion, and
so on. Segmenting the video as a spatio-temporal volume is a first step to solving
this issue [15, 80] because the eigenframe of segments (which are assumed to cor-
respond to objects) act as object-centric reference frames in which to place strokes.
Furthermore, tracking objects throughout a video sequences yields a trajectory that
can be used to create typical cartoon effects such as streak-lines, squash-and-stretch,
and anticipation [14].

There is little work in NPR beyond segmentation; The Painting Fool is a rare
exception, see e.g. [46]. The Painting Fool is a computer program, but is perhaps
better understood as a research programme investigating artificial intelligence and
creativity.1 It is one of the few computer programs to have exhibited in real galleries.

16.4.4 NPR As Perceptually Acceptable Photorealism

At first glance NPR as Photorealism is an oxymoron, but closer inspection reveals
this is not the case, at least photorealism as perceived is a potential output of NPR.

Consider a feature film that requires some special effect. A good example appears
in The Mummy comedy adventure in which a sand storm—raised by the power-
hungry, newly resurrected mummy—is sent to devour the heroes and heroines. The

1http://www.thepaintingfool.com/index.html.

http://www.thepaintingfool.com/index.html

346 P. Hall and A.-S. Lehmann

face of the mummy gapes out of the storm wall, all built of moving sand. The mo-
tion cannot be real, but the visual appearance has to convince the viewer that the
storm is real. This is not normally called NPR, and if NPR related only to rendering
appearance then it should not be; yet if we allow NPR to refer to motions too, then
it is NPR.

The question of photo-retouching is similar. It has long been common practice for
artists to ‘retouch’ photographs, especially in advertising, to add highlights to a car,
to remove skin blemishes from a model, or to replace objects altogether. This prac-
tice continues, but now using a computer instead of an airbrush. Since a photograph
is the source, it is undeniable that retouching moves the image away from veridical
photorealism and into what might be called perceptually acceptable photorealism.
Whether this shift is sufficient such that the output can be declared as examples of
NPR is a question that depends on the tightness of the definition of NPR. Since that
definition is not tight at all, it is arguable that NPR includes examples of images that
look photorealistic, but which cannot be photographs.

Additionally animation and film often combine different modes of visual styles—
for instance photorealism, cartoon-style and impressionist pastel style—into new
hybrids of NPR, which may even constitute the most original style in NPR to date.
The result can be described as functional realism, i.e. a style geared towards creating
particular effects for and in the viewer [23]. Film studios and advertising houses
engage with this form of NPR on an everyday basis. To a large degree it is the
singular most successful branch of NPR. It is true that is relies almost exclusively
on human input, but it does suggest that NPR, understood in its most general sense,
has a bright future.

16.5 Conclusion

We have considered the question how should NPR be evaluated? More exactly, how
should NPR be evaluated, when ‘art’ is its ‘task’. It is a question that arises very
often, both within and without the NPR community of researchers.

We agree with [38] that NPR cannot be assessed by experiments, and in particu-
lar agree with Pease and Colton [61] that the Turing test is not a valid prescription
for NPR. We disagree that NPR has an explanatory power regarding art [38], instead
it seems the other way around: art informs NPR. We argue that NPR cannot be eval-
uated in any objective measurable way, rather it is to be appreciated by reference
first to internal norms, thereby distinguishing a scale from ‘bad, to ‘good’ for com-
parable work; and second to external norms that give reference to a wider cultural
background. The second set of norms are mutable in that they depend on culture, on
the intention of the artists, and so on; it is for this reason a single objective definition
of aesthetic value has evaded both historians and philosophers of art, and it is likely
to evade NPR too.

When NPR is compared to a wider culture we see it focuses on technical matters,
such as how to make a mark and (more complex) where to mark. Addressing the

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 347

issue of what to make marks about is in its infancy in NPR, but is undoubtedly
the central question asked by human artists. To be clear, technique is important to
humans and to art history, but only in so far as it produces art of high aesthetic
value—in this case judged by cultural norms that at present are beyond the reach of
NPR.

NPR research is likely to progress in the mid-term by attending to thorny issues
such as object identity and function, and in the longer term by the integration of
deeper cultural knowledge into its output. It has yet to find its own distinctive style;
the high-water mark for NPR at this moment is—arguably—Perceptually Accept-
able Photorealism because that appears so often in photographs, films etc.

Finally, and pragmatically, we argue that NPR might widen its internal norms to
include terms of reference that more closely resemble those used by art historians.
We suggest 8 points to consider:

1. When choosing a certain artistic school be aware of the historical background
and the artists. For example, the emergence of Impressionism depended two de-
velopments: (1) Leaving the studio and the academy as a restrictive environment
that had adapted a photorealistic style where the invisibility of the brush stroke
was the highest ideal and (2) painting outside, trying to capture natural light-
ning phenomena directly with paint and without preliminary sketches, thereby
developing a quicker, literally patchy manner of painting.

2. Within schools, individual artists’ styles vary greatly, so that claims such as ‘this
paper provides an algorithm that produces art in the style of the Impressionists’
needs significant qualification to have real meaning.

3. Individual artists’ style varies in time (early and late style, the most famous being
Picasso); again qualification is needed to be precise.

4. Materials afford certain processes and movements (brush strokes, pen and ink
hatching). It could be that breaching these rules leads to non-physical media
unique to NPR.

5. Media is more than physics! Materials have a distinct impact on style. Get famil-
iar with material accordances, i.e. get the stuff and try it out in order to understand
behaviour of oil paint, pastel, tempera, etc. NPR may develop new ways to apply
media.

6. Art is not an accident: study, record, analyse artists’ movements at work to un-
derstand salient choices.

7. Do not work from reproductions, but from the originals if at all possible. For
instance, to understand why and how Claude Monet’s representation of water,
clouds or leaves works so well, one must view his work ‘in the flesh’. Only orig-
inals allow perception of the surface structure, impasto, and texture of pictures
and their materials. More than that, the originals often have a real and compelling
power that can never be reproduced on a computer screen or printed on paper:
maybe NPR should use media more often than it does [77].

8. Familiarity with basic principles of Art History will help when assessing NPR.
Texts relate directly to the problems NPR face include Rudolf Arnheim [2], Ernst
H. Gombrich [28, 29], and John Hyman [42].

348 P. Hall and A.-S. Lehmann

NPR is in its infancy, and will no doubt flourish in the coming years. We predict
it will move to become accepted as an art form in its own right. We suggest NPR
should be appreciated in that way.

References

1. Agrawala, M., Zorin, D., Munzner, T.: Artistic multiprojection rendering. In: Peroche,
B., Rushmeier, H.E. (eds.) Proceedings of the Eurographics Workshop on Render-
ing 2000, Brno, Czech Republic, June 2000, pp. 125–136. Springer, Berlin (2000).
doi:10.1145/647652.732127

2. Arnhiem, R.: Art and Visual Perception: A Psychology of the Creative Eye, 2nd edn. Univer-
sity of California Press, Berkeley (1974)

3. Bangham, J.A., Gibson, S.E., Harvey, R.: The art of scale-space. In: British Machine Vision
Conference (2003)

4. Baxter, W., Wendt, J., Lin, M.C.: IMPaSTo: a realistic, interactive model for paint. In:
Hertzmann, A., Kaplan, C. (eds.) Proceedings of the Third International Symposium on
Non-Photorealistic Animation and Rendering (NPAR 2004), pp. 45–56 (2004). doi:10.1145/
987657.987665

5. Birkoff, G.: Aesthetic Measure. Harvard University Press, Harvard (1933)
6. Boden, M.: The Turing test and artistic creativity. Kybernetes 39(3), 409–413 (2010)
7. Breslav, S., Szerszen, K., Markosian, L., Barla, P., Thollot, J.: Dynamic 2D patterns for shad-

ing 3D scenes. ACM Trans. Graph. 26(3), 20 (2007). doi:10.1145/1275808.1276402
8. Brooks, S.: Mixed media painting and portraiture. IEEE Trans. Vis. Comput. Graph. 13(5),

1041–10,540 (2007). doi:10.1109/TVCG.2007.1025
9. Burton, G.J., Moorhead, I.R.: Color and spatial structure in natural scenes. Appl. Opt. 26(1),

157 (1987). doi:10.1364/AO.26.000157
10. Coleman, P., Singh, K.R.: Rendering your animation nonlinearly projected. In: Hertzmann, A.,

Kaplan, C. (eds.) Proceedings of the Third International Symposium on Non-Photorealistic
Animation and Rendering (NPAR 2004), Annecy, pp. 129–138. ACM, New York (2004).
doi:10.1145/987657.987678

11. Collomosse, J.P., Hall, P.M.: Painterly rendering using image salience. In: EGUK ’02: Pro-
ceedings of the 20th UK Conference on Eurographics, p. 122. IEEE Comput. Soc., Los Alami-
tos (2002)

12. Collomosse, J.P., Hall, P.M.: Cubist style rendering from photographs. IEEE Trans. Vis. Com-
put. Graph. 4(9), 443–453 (2003). doi:10.1109/TVCG.2003.1260739

13. Collomosse, J.P., Hall, P.M.: Genetic paint: a search for salient paintings. In: Proceedings of
EvoMUSART (LNCS). Lecture Notes in Computer Science, vol. 3449, pp. 437–447. Springer,
Berlin (2005). doi:10.1007/978-3-540-32003-6_44

14. Collomosse, J.P., Rowntree, D., Hall, P.M.: Video analysis for cartoon-style special effects. In:
Proceedings 14th British Machine Vision Conference (BMVC), vol. 2, pp. 749–758 (2003)

15. Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent non-
photorealistic animations from video. IEEE Trans. Vis. Comput. Graph. 11(5), 540–549
(2005). doi:10.1109/TVCG.2005.85

16. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated
watercolor. In: Whitted, T. (ed.) Proceedings of ACM SIGGRAPH, vol. 97, pp. 421–430
(1997). doi:10.1145/258734.258896

17. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph.
21(3), 769–776 (2002). doi:10.1145/566654.566650

18. Deussen, O., Strothotte, T.: Computer-generated pen-and-ink illustration of trees. In: Proceed-
ings of ACM SIGGRAPH 2000, New Orleans, LA, July 23–28, 2000, pp. 23–28 (2000).
doi:10.1145/344779.344792

http://dx.doi.org/10.1145/647652.732127
http://dx.doi.org/10.1145/987657.987665
http://dx.doi.org/10.1145/987657.987665
http://dx.doi.org/10.1145/1275808.1276402
http://dx.doi.org/10.1109/TVCG.2007.1025
http://dx.doi.org/10.1364/AO.26.000157
http://dx.doi.org/10.1145/987657.987678
http://dx.doi.org/10.1109/TVCG.2003.1260739
http://dx.doi.org/10.1007/978-3-540-32003-6_44
http://dx.doi.org/10.1109/TVCG.2005.85
http://dx.doi.org/10.1145/258734.258896
http://dx.doi.org/10.1145/566654.566650
http://dx.doi.org/10.1145/344779.344792

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 349

19. DiPaola, S.: Painterly rendered portraits from photographs using a knowledge-based approach.
Proc. SPIE 6492, 33–43 (2007). doi:10.1117/12.706594

20. Durand, F.: An invitation to discuss computer depiction. In: Finkelstein, A. (ed.) Proceed-
ings of the Second International Symposium on Non-Photorealistic Animation and Rendering
(NPAR 2002), pp. 111–124. ACM, New York (2002). doi:10.1145/508530.508550

21. Elber, G., Wolberg, G.: Rendering traditional mosaics. Vis. Comput. 19(1), 67–78 (2003).
doi:10.1007/s00371-002-0175-x

22. Fernie, E.: Art History and Its Methods: A Critical Anthology. Phaidon, Oxford (2011)
23. Ferwerda, J.A.: Three varieties of realism in computer graphics. In: Rogowitz, B.E., Pappas,

T.N. (eds.) Proceedings of Human Vision and Electronic Imaging VIII, Santa Clara, Califor-
nia, USA, January 21, 2003. SPIE Proceedings Series, vol. 5007, pp. 290–297. SPIE/IS&T,
Springfield (2003). doi:10.1117/12.473899

24. Field, D.: Relations between the statistics of natural images and the response profiles of corti-
cal cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987)

25. Field, D.: What is the goal of sensory coding? Neural Comput. 6, 559–601 (1994)
26. Filonik, D., Baur, D.: Measuring aesthetics for information visualization. In: International

Conference on Information Visualization, pp. 579–584 (2009)
27. Frazor, R., Geisler, W.: Local luminance contrast in natural images. Vis. Res. 46, 1585–1598

(2006)
28. Gombrich, E.: Art and Illusion: A Study in the Psychology of the Pictorial Representation.

Phaidon, Oxford (1983)
29. Gombrich, E.: The Story of Art. Phaidon, Oxford (1995)
30. Gombrich, E.H.: The claims of excellence. In: Gombrich, E. (ed.) Reflections on the History

of Art, pp. 179–185. Phaidon, Oxford (1987)
31. Graham, D., Field, D.: Statistical regularities of art image and natural scenes: spectra, sparse-

ness and nonlinearities. Spat. Vis. 21, 149–164 (2007)
32. Graham, D., Field, D.: Variations in intensity statistics for representational and abstract art

from the Eastern and Western hemispheres. Perception 37, 1341–1352 (2008)
33. Granger, G.: Aesthetic measure applied to color harmony: an experimental test. J. Gen. Psy-

chol. 52(2), 205–212 (1955)
34. Haeberli, P.E.: Paint by numbers: abstract image representations. Comput. Graph. 24(4) 207–

214 (1990)
35. Hall, P.M., Collomosse, J.P., Song, Y.Z., Shen, P., Li, C.: RTcams: a new perspective on non-

photorealistic rendering from photographs. IEEE Trans. Vis. Comput. Graph. 13(5), 966–979
(2007). doi:10.1109/TVCG.2007.1047

36. Hanrahan, P., Haeberli, P.: Direct WYSIWYG painting and texturing on 3D shapes. Comput.
Graph. 24(3), 215–223 (1990). doi:10.1145/97880.97903

37. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Cohen,
M. (ed.) SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 453–460. ACM/ACM SIGGRAPH, New York (1998).
doi:10.1145/280814.280951

38. Hertzmann, A.: Non-photorealistic rendering and the science of art. In: Collomosse, J.,
McGuire, M. (eds.) Proceedings of the Eighth International Symposium on Non-Photorealistic
Animation and Rendering (NPAR 2010), Annecy, France, June 7–10, 2010, pp. 147–157.
ACM, New York (2010). doi:10.1145/1809939.1809957

39. Hockney, D.: Secret Knowledge: Rediscovering the Lost Techniques of the Old Masters.
Thames and Hudson, London (2001)

40. Hsiao, S.W., Chiu, F.Y., Hsu, H.Y.: A computer-assisted colour selection system based on
aesthetic measure for colour harmony and fuzzy logic theory. Color Res. Appl. 33, 411–423
(2008)

41. Huang, H., Zhang, L., Zhang, H.C.: Arcimboldo-like collage using internet images. ACM
Trans. Graph. 30(6), 155 (2011). doi:10.1145/2070781.2024189

42. Hyman, J.: The Objective Eye: Color, Form, and Reality in the Theory of Art. University of
Chicago, Chicago (2006)

http://dx.doi.org/10.1117/12.706594
http://dx.doi.org/10.1145/508530.508550
http://dx.doi.org/10.1007/s00371-002-0175-x
http://dx.doi.org/10.1117/12.473899
http://dx.doi.org/10.1109/TVCG.2007.1047
http://dx.doi.org/10.1145/97880.97903
http://dx.doi.org/10.1145/280814.280951
http://dx.doi.org/10.1145/1809939.1809957
http://dx.doi.org/10.1145/2070781.2024189

350 P. Hall and A.-S. Lehmann

43. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

44. Jones, B.: Computer imagery: imitation and representation of realities. Leonardo. Supplemen-
tal Issue 31–38 (1989)

45. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In:
IEEE International Conference on Computer Vision (ICCV) (2009)

46. Kreczkowska, A., El-Hage, J., Colton, S., Clark, S.: Automated collage generation with intent.
In: International Joint Conference on Computational Creativity (2010)

47. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering.
Comput. Graph. Forum 30(2), 593–602 (2011)

48. Lee, J.: Physically-based modeling of brush painting. In: Computer Networks and ISDN Sys-
tems, pp. 1571–1756 (1997)

49. Lehmann, A.: Taking the lid off the Utah teapot. Towards a material analysis of computer
graphics. Z. Medien Kult.-forsch. 1, 157–172 (2012)

50. Leister, W.: Computer generated copper plates. Comput. Graph. Forum 13(1), 69–77 (1994).
doi:10.1111/1467-8659.1310069

51. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Whitted, T. (ed.)
Proceedings of ACM SIGGRAPH 97, Los Angeles, CA, August 3–8, 1997, pp. 407–414.
ACM, New York (1997). doi:10.1145/258734.258893

52. Manovich, L.: Image future. Animation 1(1), 25–44 (2006)
53. Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D., Goldstein, D., Hughes, J.F.:

Real-time nonphotorealistic rendering. In: Proceedings of ACM SIGGRAPH 97, pp. 415–420
(1997). doi:10.1145/258734.258894

54. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using
local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–
549 (2004). doi:10.1109/TPAMI.2004.1273918

55. Moon, P., Spencer, D.E.: Aesthetic measure applied to color harmony. J. Opt. Soc. Am. 34(4),
234–242 (1944)

56. Mould, D.: A stained glass image filter. In: Eurographics Symposium on Rendering: 14th
Eurographics Workshop on Rendering, pp. 20–25 (2003)

57. Ngo, D.C.L., Samsudin, A., Abdullah, R.: Aesthetic measures for assessing graphic screens.
J. Inf. Sci. Eng. 16(1), 97–116 (2000)

58. Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of pho-
tographs. In: Agrawala, M., Deussen, O. (eds.) NPAR ’07: Proceedings of the 5th International
Symposium on Non-photorealistic Animation and Rendering, pp. 103–110. ACM, New York
(2007). doi:10.1145/1274871.1274888

59. Ostromoukhov, V.: Digital facial engraving. In: Proceedings of ACM SIGGRAPH 99, Los
Angeles, CA, August 8–13, 1999, pp. 417–424 (1999). doi:10.1145/311535.311604

60. Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters: edge-aware image processing with
a Laplacian pyramid. ACM Trans. Graph. 30(4), 68 (2011). doi:10.1145/2010324.1964963

61. Pease, A., Colton, S.: On impact and evaluation in computational creativity: a discussion of the
Turing test and an alternative proposal. In: AISB Symposium on AI and Philosophy (2011)

62. Rusinkiewicz, S., Cole, F., DeCarlo, D., Finkelstein, A.: Line drawings from 3D models. In:
ACM SIGGRAPH 2008 Classes, vol. 39, pp. 1–356 (2008). doi:10.1145/1401132.1401188

63. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. Comput. Graph. 24(3),
197–206 (1990). doi:10.1145/97880.97901

64. Salesin, D.: Non-photorealistic animation and rendering: 7 grand challenges. In: Keynote talk
at NPAR (2002)

65. Santella, A., DeCarlo, D.: Visual interest and NPR: an evaluation and manifesto. In: Hertz-
mann, A., Kaplan, C. (eds.) Proceedings of the Third International Symposium on Non-

http://dx.doi.org/10.1111/1467-8659.1310069
http://dx.doi.org/10.1145/258734.258893
http://dx.doi.org/10.1145/258734.258894
http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://dx.doi.org/10.1145/1274871.1274888
http://dx.doi.org/10.1145/311535.311604
http://dx.doi.org/10.1145/2010324.1964963
http://dx.doi.org/10.1145/1401132.1401188
http://dx.doi.org/10.1145/97880.97901

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History 351

Photorealistic Animation and Rendering (NPAR 2004), Annecy, France, June 7–9, 2004,
pp. 71–78. ACM, New York (2004). doi:10.1145/987657.987669

66. Schelske, A.: Zur Sozialität des nicht-fotorealistischen Renderings. Eine zu kurze, soziolo-
gische Skizze für zeitgenössische Bildmaschinen. Image: J. Interdiscip. Image Sci. 6, 47–58
(2007)

67. Schirra, J.R.J., Scholz, M.: Abstraction versus realism: not the real question. In: Strothotte,
T., Deussen, O. (eds.) Computer Visualization—Graphics, Abstraction, and Interactivity,
pp. 379–401. Springer, Berlin (1998)

68. Schwarz, M., Isenberg, T., Mason, K., Carpendale, S.: Modeling with rendering primitives:
an interactive non-photorealistic canvas. In: Proc. NPAR, pp. 15–22 (2007). doi:10.1145/
1274871.1274874

69. Smith, P.: Pictorial grammar: Chomsky, John Willats, and the rules of representation. Art Hist.
562–593 (2011)

70. Song, Y., Hall, P., Rosin, P.L., Collomosse, J.: Arty shapes. In: Proc. Comp. Aesthetics, pp. 65–
73 (2008)

71. Sousa, M.C., Buchanan, J.W.: Computer-generated graphite pencil rendering of 3D polygonal
models. Comput. Graph. Forum 18(3), 195–207 (1999). doi:10.1111/1467-8659.00340

72. Strassmann, S.H.: Hairy brushes. Comput. Graph. 20(4), 225–232 (1986). doi:10.1145/
15922.15911

73. Strothotte, T., Schlechtweg, S.: Non-Photorealistic Computer Graphics: Modeling, Rendering,
and Animation. Morgan Kaufmann, San Mateo (2002)

74. Tauber, A.: The Elusive Synthesis Aesthetics and Science. Kluwer Academic, Dordrecht
(1996)

75. Tolhurst, D., Tadmor, Y., Chao, T.: The amplitude spectra of natural images. Ophthalmic Phys-
iol. Opt. 12, 229–232 (1992)

76. Treavett, S.M.F., Chen, M.: Statistical techniques for the automatic generation of non-
photorealistic images. In: Proceedings of the 15th Eurographics UK Conference (1997)

77. Tresset, P., Leymarie, F.: Generative portrait sketching. In: Proceedings of VSMM (2005)
78. Umenhoffer, T., Szécsi, L., Szirmay-Kalos, L.: Hatching for motion picture production. Com-

put. Graph. Forum 30(2), 533–542 (2011)
79. Verlaek, P.: Non-photorealistic rendering as epistemic images. In: Workshop on Abstract Im-

ages in Art and Science (2009)
80. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–

583 (2004). doi:10.1145/1015706.1015763
81. Wen, F., Luan, Q., Liang, L., Xu, Y.Q., Shum, H.Y.: Color sketch generation. In: De-

Carlo, D., Markosian, L. (eds.) Proceedings of the Fourth International Symposium on Non-
Photorealistic Animation and Rendering (NPAR 2006), Annecy, France, June 5–7, 2006,
pp. 47–54. ACM, New York (2006). doi:10.1145/1124728.1124737

82. Wiggins, G.: A preliminary framework for description, analysis and comparison of creative
systems. Knowl.-Based Syst. 19(7), 449–458 (2006)

83. Willats, J.: Art and Representation: New Principles in the Analysis of Pictures. Princeton
University Press, Princeton (1997)

84. Yu, J., McMillan, L.: A framework for multiperspective rendering. In: Keller, A., Jensen, H.W.
(eds.) Rendering Techniques 2004, Proceedings of Eurographics Symposium on Rendering
2004, pp. 61–68. Eurographics Association, Annecy (2004)

http://dx.doi.org/10.1145/987657.987669
http://dx.doi.org/10.1145/1274871.1274874
http://dx.doi.org/10.1145/1274871.1274874
http://dx.doi.org/10.1111/1467-8659.00340
http://dx.doi.org/10.1145/15922.15911
http://dx.doi.org/10.1145/15922.15911
http://dx.doi.org/10.1145/1015706.1015763
http://dx.doi.org/10.1145/1124728.1124737

Chapter 17
NPR in the Wild

Holger Winnemöller

17.1 Introduction

In this chapter, we take a look at applications of NPR in the real world. This survey
is neither intended to be comprehensive in scope nor in technical detail (for back-
ground on specific techniques, please consult the paper references at the end of this
chapter). Instead, we focus on representative techniques and applications of various
NPR approaches that have found use in production software and entertainment.

To further focus our attention, we shall use a somewhat more restrictive definition
of NPR than might be applied elsewhere in this book. Specifically, we shall define
NPR as “computer-enabled synthesis and tools for Art creation and reproduction”.
That is, we include systems and tools that enable digital synthesis and creation of
traditional artistic styles, but we exclude examples that are clearly non-realistic, yet
are not obviously linked to any particular traditional art style (such as the movie
“Tron”, 1982, which makes heavy use of non-realistic visual effects and computer
graphics, but does not represent an established artistic style).

The chapter starts with a historical review of artistic styles that were invented
or refined as answers to certain production challenges, particularly print reproduc-
tion. While modern printing techniques obviate the need for traditional reproduction
methods, their artistic merits have prompted NPR researchers to revive them in the
digital age. Next, uses of NPR for entertainment, namely movies and games, are
discussed, followed by visualization and presentation applications. Finally, a case
study focusing on design considerations covers an example of NPR on mobile de-
vices. The chapter closes with some forward looking suggestions to further increase
the impact of NPR, particularly to reach a larger audience of artistically untrained
users.

H. Winnemöller (�)
Adobe Systems, Inc., Seattle, USA
e-mail: hwinnemo@adobe.com

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_17,
© Springer-Verlag London 2013

353

mailto:hwinnemo@adobe.com
http://dx.doi.org/10.1007/978-1-4471-4519-6_17

354 H. Winnemöller

17.2 Production Tools

NPR has found use in Art and other production environments in a number of ways.
For example, there are art creation tools, such as the digital paint brushes discussed
in Chap. 2. These art creation tools mimic tools in the real world (e.g. a painter’s
brush), but often add some unique digital affordances, such as undo, copy/paste,
scaling, etc. In many cases, art creation tools straddle the border between NPR and
realistic techniques, as they commonly rely on highly realistic, physically based
simulations, or approximations thereof.

Another production use of NPR is automatic or user-assisted style reproduction.
While an artist could be employed to create an artifact manually using an art cre-
ation tool, it may sometimes be cheaper, more convenient, and less time consuming
to replicate an artistic style using an NPR system. For example, creating a cartoon
animation commonly requires between 12–24 individually painted frames per sec-
ond of the final movie. Automatically converting a live-action video or 3D animation
into a cartoon style [27, 34, 50] can significantly save on artists’ time and thereby
lower production costs.

Finally, there are NPR assistive technologies, which help in the style-specific
production process, but which are not necessarily contributing to the stylization it-
self. Examples of such technologies include tweening for animations (Chap. 14),
cartoon-optimized flood-filling [45], and animation motion capture and retarget-
ing [7].

17.2.1 Artistic Styles in Printing

Several media reproduction techniques, such as woodcut, engraving, stamping, and
stippling are of particular interest to this section, as they were themselves conceived
primarily as answers to production problems, but have since then been recognized
as artistic styles in their own right, and subsequently been subject of several NPR
investigations.

Before the invention of printing processes like woodblock printing (xylography),
movable type, and the Gutenberg printing press, production and copying of writ-
ten materials was a fully manual process, performed by skilled scribes and artists.
Images, illustrations, and visual decorations were drawn and copied by hand. As
printing techniques revolutionized the dissemination of information, new methods
had to be found to replicate the accompanying figures and images. One of the oldest
samples of Eastern woodcut printing dates back to 220 A.D., with variations of the
technique being discovered and re-discovered throughout antiquity.

The basic building block of all so-called relief printing techniques is the ‘relief
matrix’. For woodcut, this is simply a level piece of wood. Areas that are intended
to appear as ‘white’ are chiseled or scraped away. The remaining parts appear as
‘black’ by applying dark ink onto the wood surface and pressing or stamping the
wood onto cloth, parchment, or paper (see Fig. 17.1a). It is easy to see how the

17 NPR in the Wild 355

Fig. 17.1 Art (Re)production: (a) Woodcut of a block-cutter by Jost Amman (1568), (b) detail
of Dürer’s engraving “Melencolia I” (1514). Note the combined use of hatching and stippling,
the masterful texture of numerous materials, and the orientation of marks along surface features.
(c) Modern Hedcut stipple by Kevin Sprouls, creator of the WSJ portrait style. (c) Copyright
© 2012 Kevin Sprouls, used with permission

characters comprising text could be chiseled into wood and replicated this way. Even
simple images akin to line drawings were reasonably straightforward to achieve in
woodcut. However, more intricate or lifelike images proved to be more challenging,
because the complexity of shape and particularly shading was difficult to express in
terms of simple presence or absence of ink.

As a solution, printmakers adopted artistic techniques to approximate continu-
ous tone (grayscale) images with dot and hatching patterns of a single color. In
stippling, dark dots of varying size and spacing are placed on a light background.
When viewed from a sufficiently large distance, the individual dots are fused into
a continuous tone by the human perceptual system. For hatching or cross-hatching,
lines (parallel or intersecting, respectively) of varying thickness and spacing are
used to achieve a similar effect. Both hatching and especially stippling have found
extensive use in printing, engraving, etching, tattooing, and scrimshaw. Common-
day examples of these techniques include newspaper printing, currency design, and
technical illustrations (particularly biology).

The manual creation of high-quality stippling images or engravings requires sig-
nificant artistic training and, even then, is a time-consuming and laborious pro-
cess. As such, various NPR works have addressed the need to simplify or auto-
mate these production processes. Woodcut-like images are addressed in the work of
Mello et al. [31] and Winnemöller et al. [51]. Mizuno et al. [33] have presented a
system to virtually model, carve, and print with digital woodblocks.1 Igarashi and
Igarashi [18] developed a method to allow novice users (even children) to produce

1As such, their work is closer related to physical modeling and simulation than NPR.

356 H. Winnemöller

physically realizable stencils from 2D drawings. A system for digital facial engrav-
ing has been presented by Ostromokhov [35] (Chap. 4).

17.2.2 Stippling—The Story of a Virtuous Cycle

An interesting example for its interplay between art and production is stippling.2

Technically, hatching and cross-hatching predate stippling both in terms of art use
and in printmaking, possibly due to hatching requiring fewer marks (lines) and
therefore being faster to produce. A noteworthy aspect of hatching marks is that
they are commonly aligned along directions of principal curvature on the perceived
surfaces of a drawing. As such, hatching lines suggest surface shape not only by
simulating shading, but also by visually encoding important geometric properties of
a surface. In artistic use, stippling is often used to depict soft surfaces, such as faces,
cloth, or sand, while hatching is used to depict rougher or textured surfaces, such
as wood, rocks, or wallpaper. It is common to intermix both techniques within the
same work of art (Fig. 17.1b).

Use of these techniques in printmaking followed the same chronological order,
with hatching being employed in early woodcuts, while stippling became more com-
mon only in later printing methods, such as etching and Mezzotint. Both stippling
and hatching served as inspiration for a printing technique called halftoning, which
allows photographs to be reproduced by automatically mapping them onto one or
more3 screens, which are then applied similar to other relief printing techniques.
Commonly, halftone screens consist of grids of regularly spaced dots, where the
size of each dot correlates to the darkness of the photograph at the position of the
dot. Halftone printing became commercially successful in the late 1800s and, in its
modern digital form, is still used in print production and computer printers today.
Despite their historical origins, halftoning and the related dithering are not generally
considered artistic techniques, as they follow fairly simple, deterministic algorithms.

One of the few newspapers that used to frown upon the extensive use of photo-
graphic reproduction was the Wall Street Journal (WSJ). One of its past editors, Fred
Taylor, has been quoted as ascribing to a “one word is worth a thousand pictures”
policy. It was felt that the liberal use of photographs would detract from the journal-
istic quality of the articles. This attitude changed in 1979 after freelance artist Kevin
Sprouls approached the WSJ presenting a stipple and hatching-based portrait style,
which was later to become a popular visual trademark for the journal. This style,
today referred to as Hedcut stippling, was reminiscent of traditional engravings and
deemed distinctive and formal enough to reflect the journal’s aesthetic sensibility.
As an added advantage, the Hedcut drawings were often more legible than simple
halftone prints of the same size (see Fig. 17.1c).

2For technical details on stippling, refer to Chap. 3.
3Multiple screens, commonly rotated relative to one another and with slightly varying grid spacing,
are used to reproduce color photographs.

17 NPR in the Wild 357

The Hedcut style is qualitatively different from standard NPR stippling ap-
proaches [43] in that its stipples are aligned to follow surface features, such as con-
tours or principal curvature, similar to the manual hatching and stippling techniques,
described above. Ostromokhov [35] addressed this issue for digital engraving by al-
lowing a user to specify local parametric grids along which the engraving directions
would follow. Several recent works have proposed automatic solutions to the Hedcut
challenge [25, 44]. As such, it would not be surprising if the online version of the
WSJ would leverage NPR Hedcut techniques to augment their articles in the future,
for example to aid in projects like their interactive Lego Hedcut [8].

17.3 Entertainment

Both the movie and computer games industries have embraced NPR as a valuable
technical resource and differentiator. For movies (particularly animated ones), com-
monly requiring anywhere between 12–24 individually crafted frames per second,
NPR is an invaluable tool to reduce production costs and increase throughput.

For computer games, the motivation for employing NPR techniques is some-
what different. Early computer games were by necessity more abstract than realistic,
mainly because computer graphics at the time were too limited to render complex
models or realistic looking lighting and environmental effects. As computer graph-
ics matured and graphics hardware became more powerful, game companies com-
peted with each other by offering ever more realistic effects, such as motion blur,
depth-of-field, soft shadows, ambient occlusion, and sub-surface scattering. Even-
tually, a saturation point was reached, where additional realism was ever more diffi-
cult to achieve while the resulting visual improvements became increasingly subtle.
Confounding this issue was the fact that yearly hardware advances were outpac-
ing game development, which could easily take between 3–5 years. Game studios
were thus facing a moving target and kept having to adjust their rendering engines
throughout development.

At that point, several game studios started turning to stylistic differentiation to
lock-in a visual style (thereby decoupling their rendering pipeline from the realism
“arms race”) and setting their product apart in the marketplace. Some games that
make heavy use of NPR rendering include XIII (Ubisoft, 2003), Prince of Persia
(Ubisoft, 2008), and Borderlands (Gearbox Software/2K Games, 2009), amongst
others. It should be noted that other forms of stylization can also be found in realism-
focused gaming titles. These include cinematographic techniques, such as tracking
and panning cameras in the Need for Speed series (Electronic Arts), or the ‘bullet-
time’ effect in the Max Payne titles (Remedy Entertainment).

17.3.1 Cartooning

In both film and games, the overwhelmingly prevalent NPR style is cartoon. The
reason for this is historically different for both mediums, but based on the same

358 H. Winnemöller

premise of simplified imagery and easily achievable temporal coherence. For ex-
ample, manually painting 12 oil paintings for each second of an animation is pro-
hibitively expensive. Instead, animators adopted the simplified shapes and colors
of cartoons, which were more manageable to mass produce. For games, temporal
coherence is a bigger concern than the visual complexity of an individual frame.
Specifically, stylistic elements (such as brush strokes, outlines, hatching) in one
frame should be correlated to the corresponding elements in the following frame,
lest they produce distracting flickering. Cartoons (in the most basic form) are vi-
sually simple, relying only on intrinsic information of a scene (such as positions
of lights, objects and viewer, and objects’ 3D shape and material properties). No
extrinsic properties (e.g. random perturbations, or surface marks, brush splats and
hatching strokes) need to be correlated between frames of an animation, thereby
guaranteeing temporal coherence on a per-frame basis. That is, temporal coherence
can be trivially achieved by applying the same algorithm to each frame individually,
without considering temporally neighboring frames. This is particularly relevant for
games, where the actions of players are unpredictable and the status of future frames
cannot be anticipated.

Given the prevalence of the cartoon style in entertainment applications, it is
worthwhile briefly recapturing the relevant NPR literature.

Early Beginnings In 1990 Saito and Takahashi [41] presented a system based
on geometry-buffers (G-buffers) to visually enhance geometric features of 3D mod-
els. A G-buffer is a raster-buffer, like the RGBA color buffer, but instead of colors
it stores geometric values (e.g. surface view-depth or normals) at each pixel loca-
tion. Using several G-buffers, Saito and Takahashi computed silhouettes, creases,
and contour lines via simple image processing operations. At the time, the G-buffer
approach was somewhat impractical due to the high cost of memory modules and
the limited CPU power to perform interactive image processing.4 As a result, most
following works computed geometric features directly on 3D data. However, as it
turns out, the G-buffer approach maps elegantly onto modern programmable graph-
ics hardware, so that Saito and Takahashi’s approach, over two decades later, forms
the basis for ink-lines in cartoon rendering for most state-of-the art computer games
(for an example, see Fig. 17.2).

Interactive Rendering Given the hardware limitations of the time, researchers
turned to geometric solutions and rendering tricks to implement cartoon rendering
at interactive rates. In 1997, Markosian et al. [30] described a probabilistic feature-
line detection scheme based on a modification of Appel’s hidden line algorithm [3],
which allowed for quality trade-offs to enable real-time performance. In 1999, sev-
eral authors proposed real-time capable edge-feature algorithms [14, 39, 52].

4Consumer GPUs only became available in the late 1990s and were limited to a fixed function
pipeline. General GPU accelerated image processing operations via fragment shaders were intro-
duced in the OpenGL 2.0 specification, in late 2004.

17 NPR in the Wild 359

F
ig

.1
7.

2
C

ar
to

on
R

en
de

ri
ng

:
M

od
er

n
ca

rt
oo

n
re

nd
er

in
g

pi
pe

lin
e,

ba
se

d
on

G
-b

uf
fe

rs
.C

op
yr

ig
ht

©
20

04
N

ie
nh

au
s

an
d

D
öl

ln
er

[3
4]

,u
se

d
w

ith
pe

rm
is

si
on

360 H. Winnemöller

Fig. 17.3 Cartoon Shading:
(a, left-to-right) Diffuse
shading only, specular
shading only, combined
diffuse + specular shading;
(b, left-to-right) physically
based specular highlight,
parametric squaring of
highlight, division of
highlight, moving highlight.
(b) Copyright © 2006 Anjyo
et al. [2], used with
permission

Cartoon Shading A year later, Lake et al. [27] presented a full-fledged inter-
active cartoon rendering approach, including cartoon shading in addition to ink-
lines. To produce the banded multi-tone shading of traditional cartoons, Lake et al.
modified the Gouraurd shading model [15] via discretized tone-mapping. Instead
of Gouraurd’s continuous shading, all values below a given threshold value were
mapped to one shading tone, while those value above the threshold were mapped to
another. Practically, Lake et al. implemented this scheme via texture mapping of a
1D texture, where the texture co-ordinate at each vertex was computed on the CPU
using Gouraud’s shading model. Texture co-ordinate interpolation across each tri-
angle, along with nearest-neighbor texture lookup ensured that shading boundaries
could move smoothly over surfaces and remain crisp without blurring.

Style Extensions At this point, the technical challenges of real-time standard car-
toon rendering seemed all but solved, and researchers turned to stylistic extensions
and variations. As Lake et al.’s approach only addressed ambient and diffuse shad-
ing, Winnemöller and Bangay [49] extended this work to include a specular compo-
nent (Fig. 17.3a). Based on several heuristics, they proposed an approximation ac-
celeration scheme for sorting surface triangles into front-and back-facing, allowing
them to compute a view-dependent specular light contribution with negligible com-
putational overhead. By extending the 1D texture-based cartoon lighting approach
to 2D, and encoding the specular mapping in the second dimension, they demon-
strated a number of material effects with varying specular and even stylistic behav-
ior. A few years later, Barla et al. used the same approach in their X-Toon system [4],
and they were now able to take advantage of GPU-accelerated programmable vertex
and fragment shaders.

Randomness In a parallel thread of research, several authors addressed the issue
of randomness [17, 22, 30, 34]. Up to this point, computer-generated cartoons were
directly tied to the underlying model geometry, resulting in a perfect, almost clini-
cal look. In contrast, sketches and cartoon drafts of real artists often exhibit irregu-
lar line-widths, crooked and wiggly strokes, and other natural artifacts. Markosian
et al. [30] simulated hand-drawn uncertainty by randomly perturbing silhouettes
and other features lines and by texturing them with scanned, hand-drawn strokes.

17 NPR in the Wild 361

Kalnins et al. [22] took this concept of data-driven randomness a step further and
allowed users to directly draw strokes onto models and feature lines. Similar strokes
were then applied, by example, to all other feature lines in a scene. This allowed for
an unprecedented degree of personalization (capturing actual strokes from a user)
coupled with convenience (automatically learning and applying a stroke style).

Consistency One issue with the above randomness approaches was that they
treated inking lines separately from fills, resulting in randomized outlines being mis-
aligned with fills, which themselves still perfectly matched the underlying geometry.
Nienhaus and Döllner [34] solved this problem by reverting back to a G-buffer based
approach and ensuring that the exact same distortions were applied to all buffers re-
sponsible for outlines and fills (Fig. 17.2). Specifically, undistorted outlines and fills
were rendered using G-buffers and a color buffer. Additionally, a random perturba-
tion map was computed, based on Perlin noise.5 This noise map was then used to
distort the outlines, fills, and depth-map in a model and scene-consistent manner.6

Image-based Cartooning Up to this point, the focus of this section has been
exclusively on cartoon rendering based on 3D geometry, rather than image or video-
based cartooning. The reason for this is that it is the primary use of cartooning in
the industry. Despite their obviously stylized appearances, even the movies “Waking
Life” (2001) or “A Scanner Darkly” (2008) did not employ automatic cartooning
techniques. Instead, rotoscoping was applied by a large number of artists and custom
software was used to interpolate (tween) the rotoscoped shapes—altogether a very
labor intensive and expensive procedure. For completeness, the interested reader
may consult the following references regarding image-based cartooning [12, 14,
23, 26, 50]. In addition, Sect. 17.5 describes a commercial image-based cartooning
application.

17.3.2 Entertainment Applications

Equipped with the above overview of cartooning techniques, we now look at exam-
ples of some of these techniques in the real world.

17.3.2.1 Movies

In general, computer graphics animations are more cost effective to produce than
hand-drawn or stop-motion animations of similar complexity. For this reason, many

5Random and pseudo-random artifacts are a popular NPR mechanism to simulate natural uncer-
tainty or manual jitter. But since such randomness is extrinsic to the scene, special care must be
taken to ensure temporal coherence during animation. Consequently, a number of works are dedi-
cated to this topic [5, 6, 24].
6For pseudo-code of their implementation, refer to NVidia’s “GPU Gems 2” [37], which is also
available online.

362 H. Winnemöller

traditionally animated TV series have moved to digital animation in recent years,
including “Bob the Builder” and “Thomas the Tank Engine” (both by UK-based
HIT Entertainment). Critics of this development argue that the look-and-feel of CG
animations lacks the liveliness and warmth of manual animations.

As a compromise, some animation studios have opted to manually draw the main
characters of a show, but to use computer-generated animations for backgrounds
and set elements. For example, Matt Groening’s Futurama series regularly em-
ploys 3D-based cartoon rendering for the main space-ship, the headquarter building
(Planet Express), planets, and many other objects undergoing complex 3D rotations
(as these motions are the hardest to animate manually). Several challenges exist
in seamlessly compositing cartoon rendered scene elements with hand-drawn ani-
mations, for example matching lighting (shading) between both types of elements.
According to Scott Vanzo of Rough Draft Studios,7 the shading of hand-drawn char-
acters in Futurama was intentionally kept simple, and highlights and shadows were
often placed more for compositional reasons, rather than to portrait accurate lighting
interactions. To achieve the same look for 3D elements, the animators would lock
a light source to an object, thereby synchronizing their movements and minimizing
sweeping motions of shadows and highlights across the object’s surface.

A more configurable solution to the same problem was developed by the Japanese
OLM Inc. for the production of the Pokémon movies and other anime series. While
specular and other lighting effects had been adopted to cartoon rendering [4, 49],
they were still essentially physically based and therefore unable to produce the al-
most iconic specular highlights used by many anime artists. In 2003, Anjyo et al. [1]
offered a solution in the form of a specialized highlight shader, capable of produc-
ing split-and-square anime highlights. Three years later, Anjyo et al. [2] improved
upon this prior work by allowing a user to adjust the shape, size, orientation, and po-
sition of stylized cartoon highlights via direct through-the-lens manipulation. That
is, a user could move and adjust highlights in the actual rendered image via sim-
ple mouse interactions. Another three years later, Todo et al. [46] added another
extension to the system to allow for art-directed tweaking of shading-extent and
orientations. In addition to publishing this research and improving workflows for
their in-house animators and art directors, OLM made several of their tools freely
available as plugins for a variety of third-party software.8

In some animation styles, most notably many of Disney’s movies, hand-drawn
cel animations are composited on top of painted backgrounds. Since the same back-
ground image can be used for an entire scene, it is feasible to create a much more
elaborate painting than for the animated foreground elements. Background painting
artists have developed remarkable techniques to imply changes in perspective and
camera angle while panning over the background image [9, 38, 53], but these tech-
niques are still limited by the static nature of the backdrops. To overcome this limi-
tation, thereby creating backgrounds with more depth and dynamics while retaining

7http://www.gotfuturama.com/Information/Articles/3dani.dhtml.
8http://www.olm.co.jp/rd/technology/tools/?lang=en.

http://www.gotfuturama.com/Information/Articles/3dani.dhtml
http://www.olm.co.jp/rd/technology/tools/?lang=en

17 NPR in the Wild 363

Fig. 17.4 Painted World: Painterly rendering in “What Dreams May Come” (1998). (a) Photo-
graph showing studio set with background blue screen. (b) The same scene with painterly render-
ing and compositing effects added. Copyright © Universal Pictures. All rights reserved. Used with
permission

the painterly aesthetic, Disney developed Deep Canvas [11]. With Deep Canvas,
background artists can paint brush-strokes directly onto 3D scene geometry. In con-
trast to the simple planar canvas used for traditional backgrounds, 3D backgrounds
require artists to cover all surfaces visible during an animation. However, once this
is completed, the scene can be rendered from many novel viewpoints and still retain
a painterly look-and-feel. Deep Canvas was first used in Disney’s Tarzan (1999) and
went on to earn its creators a Technical Achievement award from the Academy of
Motion Picture Arts and Sciences in 2003. Various systems have been developed
over the years to simplify a diverse range of cel animation challenges, including
shadows [36], shading [20], and texturing [10] (see also Chap. 14).

Painterly Rendering Despite its prevalence, the cartoon style is not the only
artistic style used in movie production. In fact, one of the first uses of NPR in
a feature-length movie were the “painted world” sequences of the movie What
Dreams May Come (1998). In the movie, Robin William’s character creates his own
afterlife world in the likeness of an impressionist painting. The director’s vision was
for the world to look both dynamic and alive, yet painted.

To achieve this effect, the decision was made to create a painterly rendering sys-
tem (MotionPaint) driven by live action footage (see Fig. 17.4). This system was
derived from work of Litwinowicz [28] as the first painterly rendering approach to
automatically move brush strokes across the screen based on the optical flow field of
the input video. While Litwinowicz’s system eliminated the need to painstakingly
repaint every frame by hand, the overall workflow was still far from automatic. Op-
tical flow methods are imperfect even today, and were much less sophisticated in
1998. To augment the optical flow from the video input, the production team also
captured laser range scans of the landscape where the live action footage was filmed,
to create a rough 3D model of the scene. This, together with markers placed in the

364 H. Winnemöller

scene, allowed the team to track the camera within the environment and align the
3D model with the film footage.

The captured scene itself was then processed in several stages where different
types of brush stroke and distribution pattern were applied to the sky, the moun-
tains, and even different classes of flowers. Part of Litwinowicz’s contribution was
the ability for art directors to locally specify parameters for distribution and ren-
dering of brush strokes, and for the optical flow to spatially push these parameters
through the scene. This reduced the required manual input from specifying such
parameters on every frame to specifying them only once, followed by occasional
corrections. One might therefore argue that the main importance of Litwinowicz’s
work was not so much an improvement in painterly rendering (which was largely
based on Haeberli’s Paint by Numbers system [16]), but an improvement in tem-
poral coherence of painterly rendering on video sequences and the mechanisms by
which art directors could specify parameters within these sequences. In large part
due to the “painted world” scenes, the movie received an Academy Award for Visual
Effects.

17.3.2.2 Games

Even with all the advances made in geometry-based cartoon rendering, discussed
in Sect. 17.3.1 and employed in several movie titles, modern cartoon rendering for
games is more related to the very early comprehensible rendering work by Saito and
Takahashi [41] than most of the techniques we listed thereafter. The main reason for
this is rendering speed, which is paramount for interactive gameplay. Many of the
advanced cartoon rendering techniques described above require visibility compu-
tations for edges and triangles of an object. For complex scenes with hundreds of
objects, such computations can quickly become intractable. Additionally, the ren-
dering cost for such an approach scales with the number of objects in a scene, so
care has to be taken to not overload a scene. In contrast, a G-buffer based approach,
like that of Saito and Takahashi, only depends on the number of pixels on the screen,
which stays constant and is therefore much easier to budget for in terms of comput-
ing resources.

Modern cartoon rendering for games makes extensive use of programmable
graphics hardware (GPUs). Commonly, each frame is first rendered into three
buffers: The color buffer (with ambient lighting only, but including textures), the
depth buffer (which encodes the screen distance of the nearest surface underneath
a pixel), and the normal buffer (which encodes the normal at the corresponding
surface location). Figure 17.2 illustrates this approach. The depth buffer is used to
detect sudden changes in depth, which typically occur at object boundaries (sil-
houettes). Additional features lines, such as valleys, ridges, creases [19], suggestive
contours [13], and apparent ridges [21] may be computed by using combined depth
and normal buffers. These feature lines are generally detected by evaluating the first
or second order differentials with finite differences, or by convolution with appro-
priate feature kernels (such as the Sobel kernel). A practical issue is that the width

17 NPR in the Wild 365

of detected feature lines then depends on the size of the kernel and cannot easily
be adjusted (morphological operations can be applied to this end, but require an
additional rendering pass).

Simple diffuse cartoon lighting can be easily computed using one or more light-
sources and a normal map. The initial color buffer is then composited with the fea-
ture lines and cartoon lighting to achieve the final cartoon effect. This basic ap-
proach, with minor modifications, is used in popular cartoon-style game titles such
as XIII (Ubisoft, 2003), Prince of Persia (Ubisoft, 2008), and Borderlands (Gear-
box Software/2K Games, 2009).9 It should be noted that cartoon rendering is but
one of several methods to achieve stylistic differentiation. Several games, includ-
ing Borderlands, Prince of Persia, and Battlefield Heroes (Easy Studios/Electronic
Arts, 2009) additionally employ hand-painted textures to achieve a unique visual
style. Such textures may be applied to static background objects (scenery) as well
as actors, and quite often differ in visual style between foreground and background
elements to direct the player’s attention. Other means of non-realistic game styl-
ization include custom palettes (e.g. black-and-white, super-saturated, desaturated),
exaggerated geometry (caricatures and prototypical body types, faces, weapons,
and vehicles), and non-realistic motion (bounce-and-stretch, super-human speed or
agility).

17.4 Visualization & Presentation

Another use of NPR, in addition to production and entertainment, is the visualization
of data or ideas. Traditional architectural designs, for example, may evolve from
rough initial sketches to miniature-scale cardboard models, each presentation style
focusing on the most critical aspect of the current design stage. First, sketches and
blue-prints may focus primarily on the spatial layout of walls and rooms, whereas
later design concepts could include specific furniture layout and even wall-art. The
challenge for the architect is to provide just enough information and context for the
client to make an informed decision, while at the same time avoiding superfluous
specifics that could distract the client and cloud or even inhibit the decision making
process.

In an empirical study involving 54 architects, Schumann et al. [42] compared
the standard output of a CAD software with a smooth-shaded version (“realistic”)
and an interactive sketch-renderer for several architectural scenes. While the first
two presentation modes precisely followed the underlying geometry, the sketching
mode employed randomness, abstraction, and stylized textures to simulate a hand-
crafted look. Schumann et al. found that the stylized rendering was preferred in
the early phases of the design, as it was visually more engaging than the precise

9Team Fortress 2 (Valve, 2007) also uses stylized shading, but opts for a more customized look
based on early 20th century commercial illustration, in addition to heavily exaggerated characters
and carefully crafted color palettes [32].

366 H. Winnemöller

renditions. Moreover, a sketchy look suggested to viewers that the design was not
final and therefore fostered more discussion and design exploration than either of
the more realistic visualizations.

Modern NPR techniques allow architects and designers to leverage CAD soft-
ware for convenient design creation and modification, yet produce the hand-crafted
look of traditional sketches, which have proven beneficial in the communication
and exploration of early ideation. In addition, with automatic NPR algorithms it is
trivial to produce numerous custom views in a variety of styles, which would be
impractical or costly to produce by hand.

17.4.1 Examples

Piranesi The Piranesi system (Informatix Inc.), based on work by Richens and
Schofield [40], is one of the first commercial systems that made NPR techniques
available for architects to stylize their CAD drawings. While initially intended to be
a fully automatic painterly system, the decision was made early on to not focus on
any one particular artistic style, but rather to offer the user the control to manually
combine a host of effects and filters, thereby creating their own personal look.

A technique used by architects and interior designers to visually enhance their
CAD designs is to print them out using conventional plotters and then manually
redrawing, coloring, and beautifying them (commonly using watercolors or felt-tip
pens). This mode of drawing over CAD data is the guiding principle of Piranesi and
makes the system look much like a painting program—however, one with smarter
tools than conventional painting software. The reason for this is that Piranesi adds
some additional input channels to the standard RGBA canvas, specifically a per-pixel
depth buffer and material buffer, both derived from the CAD model and current
camera view. Any stylization tool offered in Piranesi has access to these additional
channels to perform automatic or smart interactions. For example, an edge-brush
can use discontinuities in the depth-buffer to paint silhouettes. Other brushes can
differentiate the depth-buffer data to compute surface normals or even curvature,
and apply special effects based on these. For example, the normal of a surface can
be used to apply lighting effects without requiring a traditional renderer. Principal
curvature could be used to infer hatching directions. Deformation brushes may have
a different effect depending on what material they are painted on. The output of
particular brushes can further be processed by filtering operations. For example, the
perfectly straight lines of an edge-detection brush may be randomly perturbed to
yield a sketch-like appearance. As an interactive system, Piranesi is not a one-click
solution. Rather, it allows skilled users to combine a variety of NPR techniques into
a uniquely personal style which highlights semantically important aspects of their
CAD design (Fig. 17.5a).

PaletteCAD Another product, PaletteCAD (PaletteCAD GmbH) focuses on
craftsmen and interior designers. Unlike Piranesi, which ingests output from a CAD

17 NPR in the Wild 367

Fig. 17.5 Presentation: (a) Architectural illustration using Piranesi; (b) default presentation of
example scenes; (c) automatic watercolor rendering of interior scene by PaletteCAD. (a), (b, top)
Default scene Copyright © 2012 Informatic Inc Japan; (b, bottom), (c) Copyright © 2012 Palette
CAD GmbH

program, PaletteCAD integrates both CAD development and presentation modules.
PaletteCAD’s NPR rendering modes emphasize ease-of-use over creative expres-
sion. As a result, the product offers several pre-defined, high-quality NPR rendering
modes, including black-and-white edge lines, sketchy felt-tip rendering, and water-
color rendering (Fig. 17.5b). The latter is based on the work by Luft et al. [29],
which uses an ambient occlusion buffer to modulate and mask two watercolor lay-
ers, one for details including colors and textures in lit parts of the scene, and one
with complementary coloring for unlit scene parts. A third layer, consisting of con-
tours and hatching for shadowed and dark regions, is combined with the other two
layers to complete the rendering. The final result leverages artistic theory of oppos-
ing colors, has a convincingly hand-crafted look, yet retains some of the complex
lighting effects simulated by the ambient occlusion computation. The watercolor
rendition is easily more visually compelling than a simple Gouraud shaded version,
but it also stands out when compared with a photorealistic, raytraced version—and
in marketing, teasing a second look from a potential customer can mean the dif-
ference between a window shopper and a client. For this reason PaletteCAD also
offers PaletteSketch, a fully automatic drawing system, which renders the output of
PaletteCAD one brush stroke and pencil line at a time. The effect for the observer
is one of a watercolor painting being performed as if by hand, emphasized by the
current painting tool being animated across the screen. Drawn in by this animation,
a customer is likely going to engage significantly longer with the display than they
might otherwise.

SketchUp Due to Google’s widespread impact and its low entry cost, SketchUp
(@Last, Google, Trimble) is probably the most widely used 3D modeling package
to-date. Since the focus of SketchUp is simple and intuitive modeling, rather than
sophisticated rendering (which can be achieved by importing SketchUp models into
third party rendering software) SketchUp natively produces mainly stylized out-
put. To this end, SketchUp offers a simple local shading model with optional hard
shadows. Edges are rendered as black lines by default, but can be customized for in-
creased stylistic variability. Specifically, edges may be extended to produce artificial

368 H. Winnemöller

overshoot, exterior edges may be emphasized over interior edges (profile), and edges
may be jittered or textured to suggest a hand-drawn quality. Using SketchUp’s Style
Builder, edges can be further customized by allowing the user to manually draw or
scan line textures.

17.5 A Case Study: Mobile NPR

Turning NPR research into end-user facing products is challenging for many rea-
sons. A research prototype may only produce quality results for well-lit images, it
may take many minutes to compute a single image, and it may have a large number
of technical parameters that need to be tuned by an individual with expert knowl-
edge of the underlying technology. In this section, we discuss the productization of
a research system. The reader should note that each technology transfer is differ-
ent, yet, many of the issues raised in the following text are common productization
challenges.

17.5.1 Cartooning with ToonPAINT

ToonPAINT (ToonFX LLC) is a creative mobile application that turns images into
cartoons. The underlying NPR technology for this software is based on Winnemöller
et al.’s “Real-time Video Abstraction” [50] and extensions by Kyprianidis and Döll-
ner [26]. In the former work, Winnemöller et al. presented a graph-based filter
processing framework, which simplified colors via bilateral filtering and pseudo-
quantization of the luminance channel, while image shapes were enhanced via
Difference-of-Gaussian (DoG) edge detection. The entire system was implemented
on the GPU and allowed for real-time processing of streaming video. The work
of Kyprianidis and Döllner modified this framework to reduce noise and generate
cleaner ink lines by guiding image processing operations along the source image’s
structure tensor.

Opportunities & Challenges Adapting this cartooning framework to a mobile
platform in 2010 offered many opportunities and challenges. In terms of opportu-
nities, mobile platforms, including mobile phones and tablet devices, allow for suc-
cessful publishing of so-called one-trick ponies. That is, unlike desktop software,
which is traditionally expected to be powerful and feature-packed, mobile apps may
be very small and specialized. Consequently, mobile apps may be produced rela-
tively quickly and for lower cost than many larger desktop titles. Additionally, mo-
bile platforms offer sensors and input modalities, such as accelerometers, location
services, and touch-screen capabilities, which are generally not present on desktop
computers, but which may be used to enhance human–computer interaction.

One major mobile challenge is the reduced processing power of mobile devices,
which is a direct consequence of the requirements for low power consumption and

17 NPR in the Wild 369

Fig. 17.6 ToonPAINT: (a) Input photograph; (b) XDoG [48] edge detection is used for automatic
shape and shading representations; (c) user adjustable defaults for edges, mid-tones, and shadows;
(d) The user paints roughly with manually selected colors; (d) the final image is a blend of source
image features and the user’s imagination. Source © Maryse Casol. Screenshots courtesy Toon-FX,
LLC. Used with permission

prolonged battery life. As a rule-of-thumb, the state-of-the-art processing power
of mobile devices is roughly similar to the equivalent desktop performance of 3–5
years ago. This is in stark contrast with the image capturing capabilities of mo-
bile devices, which rival those of mid-level dedicated cameras, at least in terms of
resolution. The result is a performance mismatch where images of desktop-typical
sizes need to be processed on mobile devices, but with much reduced processing
resources.

The Audience The makers of ToonPAINT attacked these challenges on a fun-
damental level by designing a user experience that would at once reduce process-
ing requirements and increase user engagement with the product. Several decisions
were made early on in the product design stage: The product should be aimed at
users with limited artistic skills (non-professionals) thereby widening the potential
user-base. At the same time, the user experience should be more engaging than
a mere one-click (fully automatic) algorithm, thereby keeping the users interested
and locked-in.

Most instructional art books focus on technical issues that budding artists find
challenging, namely the accurate depiction of shape and shading. Coloring, on the
other hand, may be crude, employ a limited palette, or even be non-existent, without
detracting from the overall sense of expressiveness and creativity of the final image.
ToonPAINT’s basic workflow was designed around this insight: Using NPR tech-
niques, ToonPAINT represents shapes using flow-DoG based edge-lines and several
levels of shading with a multi-adjustable XDoG [48] (Fig. 17.6b). Coloring, while
possible to compute fully automatically [50], is left for the user to apply (Fig. 17.6d).
Given the automatically pre-computed edge+duo-tone rendition, the user’s task re-
duces to a simple coloring exercise, similar to those in a children’s coloring book.

Presets and Robustness Given the image’s pre-processing results, the user is pre-
sented with an initial output, based on the software’s default settings (Fig. 17.6c),

370 H. Winnemöller

exhibiting dark (‘inked’) outlines, as well as a mid-tone and a shadow-tone for shad-
ing. Productization of an NPR algorithm in general, and the feasibility of offering
default settings and presets in particular, require the algorithm to robustly produce
high-quality results for a wide range of input images, especially if these images may
be taken in less than desirable lighting situations, with inexpensive mobile cameras,
and by non-professional photographers. Being aware of the possible input varia-
tions (lighting levels, noise, etc.) helps to design an NPR implementation around
these potential pitfalls.10

Outcomes Omitting the automatic coloring component from ToonPAINT ad-
dressed many of the above-mentioned issues all at once: Computational steps and
storage for color smoothing and quantization could be saved. A high-quality NPR
algorithm with robust default settings ensured aesthetically pleasing results, even in
black-and-white. The manual coloring process utilized the touch-screen capabilities
of the mobile device, thereby providing for a more ‘tactile’ and fun interaction with
the product. Most importantly, comments from those users that provided feedback
on their experience via ToonPAINT, blogs, and creative forums made it clear that
the simple act of finger-painting a few colors onto the pre-fabricated edge + tone
rendition instilled in them a strong sense of ownership and achievement. They felt
like they had ‘created’ the resulting image (Fig. 17.6e), often neglecting the fact that
a lot of work had been done for them by the software.

17.6 Discussion—NPR and Casual Creativity

As discussed throughout this chapter, NPR has had a considerable impact in produc-
tion, entertainment, and specific design and presentation scenarios. However, these
applications areas are almost exclusively limited to professional use. Even in movies
and games, the end-user is a mere passive consumer of stylized NPR imagery. I be-
lieve that there is an important insight to be gained from the above ToonPAINT case
study in terms of making NPR research relevant to a broader, non-professional user
base.

As noted in the introduction of this chapter, NPR techniques can be roughly cate-
gorized as art creation tools, style reproduction systems, and assistive technologies.
Traditionally, much of academic NPR research is dedicated to the class of auto-
matic style reproduction systems. Yet, very few true artists find use for those works,
because they generally do not seek an automated solution. Instead, they want fine
control not only of the final end product, but also of the creative process along the

10Of course, the maxim “garbage-in →garbage-out” still applies. In general, most NPR algorithms
work better with higher contrast images than with lower contrast images. As such, a tone-mapping
or normalization pre-processing stage can be used to improve the input to many NPR algorithms.
Similarly, bilateral filtering or similar edge-preserving smoothing operations may be used to reduce
sensor and other noise before further NPR processing is applied (see also Chap. 5).

17 NPR in the Wild 371

way. In essence, they want to express their creativity through artistic means, and
while digital art creation tools are a convenient way of achieving this, fully auto-
matic style reproduction systems often take away too much control. The same is
actually true for many non-artists, however they lack the technical skills to produce
high-quality artworks unassisted. Encoding an artistic style within an automatic al-
gorithm allows non-artists to transform a photograph into a more interesting looking
artifact, which is undoubtedly a desirable goal in itself. However, a fully automatic
one-click solution does not engage the user in the creative process and denies them
a sense of personal achievement.

In academia, fully automatic solutions are often considered superior to those re-
quiring user-input, as if a semi-automatic approach is by definition incomplete until
total automation is achieved. I would argue that putting the user “into the loop”
may bring significant advantages. For one, a user can often provide perceptual or
semantic input that significantly improves the results of an algorithm. Secondly, the
user can add creativity to an NPR work, which, in my opinion, is currently beyond
the reach of any existing algorithm.11 Lastly, involving the user in the creative pro-
cess empowers them to explore their creativity, which they might otherwise feel too
daunted to attempt.

17.6.1 A Challenge: User-Centric NPR

The above endorsement of user-assisted NPR approaches comes with several practi-
cal caveats, and should not be treated as a catch-all for avoiding challenging research
questions. If possible, there should be a graduation in user-involvement. An algo-
rithm should be autonomous enough to produce decent results even without user-
input. This is important for multiple reasons. A non-artist may be intimidated by
the blank page and even an artist may have “painter’s block”. A reasonable default
result can achieve a minimal amount of initial momentum to kick-start the creation
process in those situations.

However, it should be possible to integrate user-input into the algorithm to im-
prove the results or to override default behavior. Particularly for professional art cre-
ation, directability is of vital importance; for example, to move a shadow or highlight
in an otherwise physically lit environment. Importantly, user interactions should be
limited as much as possible to engaging and creative tasks, rather than repetitive or
tedious ones, where the human is a mere stand-in for imperfect computer vision. Ex-
amples of such systems already exist. One of these, Winkenbach and Salesin’s much
cited Pen-and-Ink approach [47] automatically produces detailed, high-quality illus-
trations from 3D data. However, the user may manually specify visual emphasis re-
gions, which are then fully rendered, while other regions are intentionally left blank
or only indicated.

11Some may find this statement objectionable. For alternative views, the interested reader may
search the web for “Computational Creativity”.

372 H. Winnemöller

Overall, NPR researchers might put more emphasis on assisting art creation,
rather than automating it. We should aim to aid users in their creative endeavors,
not to disengage them from the process. This requires a conscious consideration
for the intended end-user of an NPR system. A well-designed NPR algorithm can
achieve a multitude of goals with respect to non-professional user involvement. In
an automated form, it can inspire the user to partake in the creative process. In a
semi-automated form, it can act as ‘training wheels’, ensuring a quality result by au-
tomating difficult aspects while fostering ‘safe’ experimentation and learning. In the
future, smart algorithms may be able to monitor a user’s technical learning progress
and back off gracefully until a user has mastered a technique fully unassisted.

References

1. Anjyo, K.i., Hiramitsu, K.: Stylized highlights for cartoon rendering and animation. IEEE
Comput. Graph. Appl. 23(4), 54–61 (2003)

2. Anjyo, K.i., Wemler, S., Baxter, W.: Tweakable light and shade for cartoon animation. In: Pro-
ceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering,
NPAR ’06, pp. 133–139. ACM, New York (2006)

3. Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In:
Proceedings of the 1967 22nd National Conference, ACM ’67, pp. 387–393. ACM, New York
(1967)

4. Barla, P., Thollot, J., Markosian, L.: X-toon: an extended toon shader. In: Proceedings of the
4th International Symposium on Non-photorealistic Animation and Rendering, NPAR ’06,
pp. 127–132. ACM, New York (2006)

5. Bénard, P., Bousseau, A., Thollot, J.: Dynamic solid textures for real-time coherent stylization.
In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09,
pp. 121–127. ACM, New York (2009)

6. Bénard, P., Lagae, A., Vangorp, P., Lefebvre, S., Drettakis, G., Thollot, J.: A dynamic noise
primitive for coherent stylization. Comput. Graph. Forum 29(4), 1497–1506 (2010)

7. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing
cartoons. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’02, pp. 399–407. ACM, New York (2002)

8. Chen, M.: For some grown-ups, playing with legos is a serious business (2011). http://goo.gl/
vFUX4

9. Coleman, P., Singh, K.: Ryan: rendering your animation nonlinearly projected. In: Proceed-
ings of the 3rd International Symposium on Non-photorealistic Animation and Rendering,
NPAR ’04, pp. 129–156. ACM, New York (2004)

10. Corrêa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein, A.: Texture mapping for cel animation.
In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’98, pp. 435–446. ACM, New York (1998)

11. Daniels, E.: Deep canvas in Disney’s Tarzan. In: ACM SIGGRAPH 99 Conference Abstracts
and Applications, SIGGRAPH ’99, p. 200. ACM, New York (1999)

12. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph.
21(3), 769–776 (2002)

13. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for convey-
ing shape. ACM Trans. Graph. 22(3), 848–855 (2003)

14. Gooch, B., Sloan, P.P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustra-
tion. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, I3D ’99, pp. 31–38.
ACM, New York (1999)

http://goo.gl/vFUX4
http://goo.gl/vFUX4

17 NPR in the Wild 373

15. Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623–629
(1971)

16. Haeberli, P.: Paint by numbers: abstract image representations. In: Proceedings of the 17th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’90,
pp. 207–214. ACM, New York (1990)

17. Ho, S.N., Komiya, R.: Real time loose and sketchy rendering in hardware. In: Proceedings of
the 20th Spring Conference on Computer Graphics, SCCG ’04, pp. 83–88. ACM, New York
(2004)

18. Igarashi, Y., Igarashi, T.H.: A drawing editor for designing stencils. IEEE Comput. Graph.
Appl. 30, 8–14 (2010)

19. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and val-
ley lines. In: Proceedings of the 6th Conference on Visualization ’95 (VIS ’95), p. 52. IEEE
Comput. Soc., Los Alamitos (1995)

20. Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of the 2nd International
Symposium on Non-photorealistic Animation and Rendering, NPAR ’02, pp. 45–ff. ACM,
New York (2002)

21. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. ACM Trans. Graph. 26(3),
19 (2007)

22. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb,
M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: drawing strokes directly on 3D models.
ACM Trans. Graph. 21(3), 755–762 (2002)

23. Kang, H., Lee, S., Chui, C.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph.
15(1), 62–76 (2009)

24. Kass, M., Pesare, D.: Coherent noise for non-photorealistic rendering. ACM Trans. Graph.
30(4), 30 (2011)

25. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph.
Forum 27(4), 1209–1216 (2008)

26. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proc. EG
UK Theory and Practice of Computer Graphics, pp. 51–58 (2008)

27. Lake, A., Marshall, C., Harris, M., Blackstein, M.: Stylized rendering techniques for scal-
able real-time 3D animation. In: Proceedings of the 1st International Symposium on Non-
photorealistic Animation and Rendering, NPAR ’00, pp. 13–20. ACM, New York (2000)

28. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of
the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’97, pp. 407–414. ACM/Addison-Wesley, New York/Reading (1997)

29. Luft, T., Kobs, F., Zinser, W., Deussen, O.: Watercolor illustrations of CAD data. In: Inter-
national Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging,
pp. 57–63. Eurographics Association, Geneva (2008)

30. Markosian, L., Kowalski, M.A., Goldstein, D., Trychin, S.J., Hughes, J.F., Bourdev,
L.D.: Real-time nonphotorealistic rendering. In: Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 415–420.
ACM/Addison-Wesley, New York/Reading (1997)

31. Mello, V.B., Jung, C.R., Walter, M.: Virtual woodcuts from images. In: Proceedings of the 5th
International Conference on Computer Graphics and Interactive Techniques in Australia and
Southeast Asia, GRAPHITE ’07, pp. 103–109. ACM, New York (2007)

32. Mitchell, J., Francke, M., Eng, D.: Illustrative rendering in Team Fortress 2. In: Proceedings
of the 5th International Symposium on Non-photorealistic Animation and Rendering, NPAR
’07, pp. 71–76. ACM, New York (2007)

33. Mizuno, S., Okada, M., Toriwaki, J.: An interactive designing system with virtual sculpting
and virtual woodcut printing. Comput. Graph. Forum 18(3), 183–194 (1999)

34. Nienhaus, M., Döllner, J.: Sketchy drawings. In: Proceedings of the 3rd International Confer-
ence on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRI-
GRAPH ’04, pp. 73–81. ACM, New York (2004)

374 H. Winnemöller

35. Ostromoukhov, V.: Digital facial engraving. In: Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 417–424.
ACM/Addison-Wesley, New York/Reading (1999)

36. Petrović, L., Fujito, B., Williams, L., Finkelstein, A.: Shadows for cel animation. In: Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’00, pp. 511–516. ACM/Addison-Wesley, New York/Reading (2000)

37. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (GPU Gems). Addison-Wesley Professional,
Reading (2005)

38. Popescu, V., Rosen, P., Adamo-Villani, N.: The graph camera. ACM Trans. Graph. 28(5), 158
(2009)

39. Raskar, R., Cohen, M.: Image precision silhouette edges. In: Proceedings of the 1999 Sympo-
sium on Interactive 3D Graphics, I3D ’99, pp. 135–140. ACM, New York (1999)

40. Richens, P.: The Piranesi system for interactive rendering. In: Proceedings of the Eighth Inter-
national Conference on Computer Aided Architectural Design Futures, pp. 381–398. Kluwer
Academic, Dordrecht (1999)

41. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. SIGGRAPH Comput.
Graph. 24(4), 197–206 (1990)

42. Schumann, J., Strothotte, T., Laser, S., Raab, A.: Assessing the effect of non-photorealistic
rendered images in CAD. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems: Common Ground, CHI ’96, pp. 35–41. ACM, New York (1996)

43. Secord, A.: Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium
on Non-photorealistic Animation and Rendering, NPAR ’02, pp. 37–43. ACM, New York
(2002)

44. Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models
73(3), 74–87 (2011)

45. Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn car-
toons. Comput. Graph. Forum 28(2), 599–608 (2009)

46. Todo, H., Anjyo, K., Igarashi, T.: Stylized lighting for cartoon shader. Comput. Animat. Vir-
tual Worlds 20(2–3), 143–152 (2009)

47. Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: Proc. of
ACM SIGGRAPH, vol. 94, pp. 91–100 (1994)

48. Winnemöller, H.: XDoG: advanced image stylization with eXtended difference-of-Gaussians.
In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, NPAR ’11, pp. 147–156. ACM, New York (2011)

49. Winnemöller, H., Bangay, S.: Geometric approximations towards free specular comic shading.
Comput. Graph. Forum 21(3), 309–316 (2002)

50. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph.
25(3), 1221–1226 (2006)

51. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an eXtended difference-of-Gaussians
compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012)

52. Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL PRogramming GUide: THe OFficial
Guide to LEarning OpenGL, Version 1.2, 3rd edn. Addison-Wesley Longman, Reading (1999)

53. Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin, D.H.: Multiperspective
panoramas for cel animation. In: Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 243–250. ACM/Addison-Wesley,
New York/Reading (1997)

ERRATUM

Erratum to: Artistic Rendering of Portraits

Mingtian Zhao and Song-Chun Zhu

Erratum to: P. Rosin, J. Collomosse (eds.), Image and Video-Based
Artistic Stylisation,
Computational Imaging and Vision 42, pp. 237–253
DOI 10.1007/978-1-4471-4519-6_12,
© Springer-Verlag London 2013

In Fig. 12.11, the two source photographs are incorrect. The correct figure should be:

Fig. 12.11 Example paper-cuts generated using the method of Meng et al. [13]

The online version of the original chapter can be found at doi:10.1007/978-1-4471-4519-6_12.

M. Zhao (�) · S.-C. Zhu
University of California, Los Angeles, CA 90095-1554, USA
e-mail: mtzhao@ucla.edu

S.-C. Zhu
e-mail: sczhu@stat.ucla.edu

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6_18,
© Springer-Verlag London 2013

E1

http://dx.doi.org/10.1007/978-1-4471-4519-6_12
http://dx.doi.org/10.1007/978-1-4471-4519-6_12
mailto:mtzhao@ucla.edu
mailto:sczhu@stat.ucla.edu
http://dx.doi.org/10.1007/978-1-4471-4519-6_18

References

1. Abdel-Malek, K., Blackmore, D., Joy, K.: Swept volumes: foundations, perspectives, and
applications. Int. J. Shape Model. 12(1), 87–127 (2006)

2. Acevedo, D., Laidlaw, D., Drury, F.: Using visual design expertise to characterize the ef-
fectiveness of 2D scientific visualization methods. In: Proceedings Compendium of IEEE
InfoVis and Visualization 2005, pp. 111–112 (2005)

3. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels.
Technical report EPFL-REPORT-149300, École Polytechnique Fédrale de Lausanne (EPFL)
(2010)

4. Adobe: Illustrator (2012). http://www.adobe.com/illustrator
5. Adobe: Photoshop (2012). http://www.adobe.com/photoshop
6. Agarwala, A.: SnakeToonz: a semi-automatic approach to creating cel animation from video.

In: Proc. NPAR, pp. 139–163 (2002)
7. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for roto-

scoping and animation. ACM Trans. Graph. 23(3), 584–591 (2004)
8. Agrawal, A., Raskar, R.: Gradient domain manipulation techniques in vision and graphics.

In: ICCV Course (2007)
9. Agrawala, M., Zorin, D., Munzner, T.: Artistic multiprojection rendering. In: Peroche, B.,

Rushmeier, H.E. (eds.) Proc. EG Workshop on Rendering, pp. 125–136 (2000)
10. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for

polygons. J. Univers. Comput. Sci. 1(12), 752–761 (1995)
11. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proc. SIG-

GRAPH, pp. 157–164 (2000)
12. Allen, J.R.: Celtic Art in Pagan and Christian Times. Studio Limited (1993)
13. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal

remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)
14. AlMeraj, Z., Kaplan, C.S., Asente, P., Lank, E.: Towards ground truth in geometric textures.

In: Proc. NPAR, pp. 17–26 (2011)
15. Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic

diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)
16. Anjyo, K.-i., Hiramitsu, K.: Stylized highlights for cartoon rendering and animation. IEEE

Comput. Graph. Appl. 23(4), 54–61 (2003)
17. Anjyo, K.-i., Wemler, S., Baxter, W.: Tweakable light and shade for cartoon animation. In:

Proc. NPAR, pp. 133–139 (2006)
18. Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In:

Rosenthal, S. (ed.) Proc. ACM ’67, pp. 387–393 (1967)
19. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem:

A Computational Study. Princeton University Press, Princeton (2006)

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6,
© Springer-Verlag London 2013

375

http://www.adobe.com/illustrator
http://www.adobe.com/photoshop
http://dx.doi.org/10.1007/978-1-4471-4519-6

376 References

20. Armstrong, J.: Composite Bezier curves (2006). http://www.algorithmist.net/composite.html
21. Arnhiem, R.: Art and Visual Perception: A Psychology of the Creative Eye, 2nd edn. Uni-

versity of California Press, Berkeley (1974)
22. Ambient design. ArtRage (2012). http://www.artrage.com
23. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential

Equations and the Calculus of Variations. Springer, Berlin (2006)
24. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In:

Proc. DAGM-Symposium, pp. 538–545 (1995)
25. Bai, B., Wong, K.-W., Zhang, Y.: An efficient physically-based model for Chinese brush. In:

Proceedings of the Int. Conf. on Frontiers in Algorithmics, pp. 261–270 (2007)
26. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object cutout using

localized classifiers. ACM Trans. Graph. 28(3), 1–11 (2009)
27. Bangham, J.A., Gibson, S.E., Harvey, R.: The art of scale-space. In: Proc. BMVC, pp. 569–

578 (2003)
28. Baraff, D., Witkin, A.: Physically based modeling: principles and practice. In: SIGGRAPH

Courses (1997)
29. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smooth-

ing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004)
30. Barla, P., Breslav, S., Thollot, J., Sillion, F., Markosian, L.: Stroke pattern analysis and syn-

thesis. In: Computer Graphics Forum, vol. 25, pp. 663–671 (2006)
31. Barla, P., Thollot, J., Markosian, L.: X-toon: an extended toon shader. In: Proc. NPAR,

pp. 127–132 (2006)
32. Barrett, W.A., Cheney, A.S.: Object-based image editing. ACM Trans. Graph. 21(3), 777–

784 (2002)
33. Barrodale, I., Skea, D., Berkley, M., Kuwahara, R., Poeckert, R.: Warping digital images

using thin plate splines. Pattern Recognit. 26(2), 375–376 (1993)
34. Battiato, S., Di Blasi, G., Farinella, G.M., Gallo, G.: A novel technique for opus vermicula-

tum mosaic rendering. In: Proc. WSCG, pp. 133–140 (2006)
35. Battiato, S., Di Blasi, G., Farinella, G.M., Gallo, G.: Digital mosaic frameworks—an

overview. Comput. Graph. Forum 26(4), 794–812 (2007)
36. Battiato, S., Di Blasi, G., Gallo, G., Guarnera, G.C., Puglisi, G.: A novel artificial mosaic

generation technique driven by local gradient analysis. In: Proc. International Workshop on
Computer Graphics and Geometric Modeling (CGGM’08), vol. 5102, pp. 76–85 (2008)

37. Battiato, S., Di Blasi, G., Gallo, G., Guarnera, G.C., Puglisi, G.: Artificial mosaics by gradi-
ent vector flow. In: Short Proceedings of Eurographics (2008)

38. Baxter, W., Govindaraju, N.: Simple data-driven modeling of brushes. In: Proc. SIGGRAPH
Symposium on Interactive 3D Graphics and Games, pp. 135–142 (2010)

39. Baxter, W., Lin, M.: A versatile interactive 3D brush model. In: Proc. Pacific Graphics,
pp. 319–328 (2004)

40. Baxter, W.V., Scheib, V., Lin, M.C.: DAV: interactive haptic painting with 3D virtual brushes.
In: Proc. SIGGRAPH, pp. 461–468 (2001)

41. Baxter, W., Wendt, J., Lin, M.C.: IMPaSTo: a realistic, interactive model for paint. In: Proc.
NPAR, pp. 45–56 (2004)

42. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3),
433–466 (1995)

43. Beeson, C.: Animation in the “Dawn” demo. In: Fernando, R. (ed.) GPU Gems, pp. 223–233.
Addison-Wesley Professional, Reading (2004)

44. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

45. Bénard, P., Bousseau, A., Thollot, J.: Dynamic solid textures for real-time coherent styliza-
tion. In: Proc. SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 121–127
(2009)

46. Bénard, P., Thollot, J., Sillion, F.: Quality assessment of fractalized NPR textures: a percep-
tual objective metric. In: Proc. APGV, pp. 117–120 (2009)

http://www.algorithmist.net/composite.html
http://www.artrage.com

References 377

47. Bénard, P., Cole, F., Golovinskiy, A., Finkelstein, A.: Self-similar texture for coherent line
stylization. In: Proc. NPAR, pp. 91–97 (2010)

48. Bénard, P., Lagae, A., Vangorp, P., Lefebvre, S., Drettakis, G., Thollot, J.: A dynamic noise
primitive for coherent stylization. Comput. Graph. Forum 29(4), 1497–1506 (2010)

49. Bénard, P., Bousseau, A., Thollot, J.: Temporal coherence for stylized animation. Comput.
Graph. Forum 30(8), 2367–2386 (2012)

50. Berg, C.: Amazing Art: Wonders of the Ancient World. Harper Collins, New York (2001)
51. Bezerra, H., Eisemann, E., DeCarlo, D., Thollot, J.: Diffusion constraints for vector graphics.

In: Proc. NPAR, pp. 35–42 (2010)
52. Bhat, P., Zitnick, C.L., Cohen, M.F., Curless, B.: GradientShop: a gradient-domain optimiza-

tion framework for image and video filtering. ACM Trans. Graph. 29(2), 10 (2010)
53. Birkoff, G.: Aesthetic Measure. Harvard University Press, Harvard (1933)
54. Boden, M.A.: The Turing test and artistic creativity. Kybernetes 39(3), 409–413 (2010)
55. Boeing, A.: Physics Abstraction Layer (2009). http://pal.sourceforge.net
56. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proc.

GRAPHITE, pp. 281–288 (2007)
57. Bosch, R.: Simple-closed-curve sculptures of knots and links. J. Math. Arts 4(2), 57–71

(2010)
58. Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper.

Res. Lett. 32(4), 302–303 (2004)
59. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with

temporal coherence and abstraction. In: Proc. NPAR, pp. 141–149 (2006)
60. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional

texture advection. ACM Trans. Graph. 26(3), 104 (2007)
61. Bowers, J.C., Leahey, J., Wang, R.: A ray tracing approach to diffusion curves. Comput.

Graph. Forum 30(4), 1345–1352 (2011)
62. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient {N-D} image segmentation. Int. J. Com-

put. Vis. 70(2), 109–131 (2006)
63. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms

for energy minimisation in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137
(2004)

64. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In:
Proc. CVPR, pp. 648–655 (1998)

65. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

66. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing
cartoons. ACM Trans. Graph., 21(3), 399–407 (2002)

67. Breslav, S., Szerszen, K., Markosian, L., Barla, P., Thollot, J.: Dynamic 2D patterns for
shading 3D scenes. ACM Trans. Graph. 26(3), 20 (2007)

68. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia
(2000)

69. Bronson, J., Rheingans, P., Olano, M.: Semi-Automatic stencil creation through error mini-
mization. In: Proc. NPAR, pp. 31–37 (2008)

70. Brooks, S.: Image-based stained glass. IEEE Trans. Vis. Comput. Graph. 12(6), 1547–1558
(2006)

71. Brooks, S.: Mixed media painting and portraiture. IEEE Trans. Vis. Comput. Graph. 13(5),
1041–1054 (2007)

72. Brox, T., Boomgaard, R., Lauze, F., Weijer, J., Weickert, J., Mrázek, P., Kornprobst, P.:
Adaptive structure tensors and their applications. In: Visualization and Processing of Ten-
sor Fields, pp. 17–47. Springer, Berlin (2006)

73. Burton, G.J., Moorhead, I.R.: Color and spatial structure in natural scenes. Appl. Opt. 26(1),
157 (1987)

74. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proc.
SIGGRAPH, pp. 263–270 (1993)

http://pal.sourceforge.net

378 References

75. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8, 769–798 (1986)

76. Carpendale, S.: Evaluating information visualizations. In: Information Visualization:
Human-Centered Issues and Perspectives, vol. 4950, pp. 19–45. Springer, Berlin (2008)

77. Chen, M.: For some grown-ups, playing with legos is a serious business (2011).
http://online.wsj.com/article/SB10001424052970203503204577038164225658328.html

78. Chen, H., Xu, Y.-Q., Shum, H.-Y., Zhu, S.-C., Zheng, N.-N.: Example-based facial sketch
generation with non-parametric sampling. In: Proc. ICCV, pp. 433–438 (2001)

79. Chen, H., Liu, Z., Rose, C., Xu, Y., Shum, H.-Y., Salesin, D.: Example-based composite
sketching of human portraits. In: Proc. NPAR, pp. 95–153 (2004)

80. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid.
ACM Trans. Graph. 26(3), 103 (2007)

81. Chenney, S., Pingel, M., Iverson, R., Szymanski, M.: Simulating cartoon style animation. In:
Proc. NPAR, pp. 133–138 (2002)

82. Chiang, P.-Y., Liao, W.-H., Li, T.-Y.: Automatic caricature generation by analyzing facial
features. In: Proc. ACCV, pp. 808–821 (2004)

83. Chu, S.H.: Making digital painting organic. PhD thesis, Hong Kong University of Science
and Technology (2007)

84. Chu, N., Tai, C.-L.: Real-time painting with an expressive virtual Chinese brush. IEEE Com-
put. Graph. Appl. 24(5), 76–85 (2004)

85. Chu, N.S.-H., Tai, C.-L.: MoXi. ACM Trans. Graph. 24, 504–511 (2005)
86. Chu, N., Baxter, W., Wei, L.-Y., Govindaraju, N.: Detail-preserving paint modeling for 3D

brushes. In: Proc. NPAR, pp. 27–34 (2010)
87. Cohen, J.: The Earth is round (p < 0.05). Am. Psychol. 49(12), 997–1003 (1994)
88. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.-Q.: Color harmonization. ACM

Trans. Graph. 25(3), 624–630 (2006)
89. Cole, F.: Line drawings of 3D models. PhD thesis, Princeton University (2009)
90. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T.,

Rusinkiewicz, S.: Where do people draw lines? ACM Trans. Graph. 27(3), 88 (2008)
91. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh,

M.: How well do line drawings depict shape? ACM Trans. Graph. 28(3), 28 (2009)
92. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T.,

Rusinkiewicz, S.: Where do people draw lines? Commun. ACM 55(1), 107–115 (2012)
93. Coleman, P., Singh, K.: RYAN: rendering your animation nonlinearly projected. In: Proc.

NPAR, pp. 129–138 (2004)
94. Collomosse, J.P., Hall, P.M.: Painterly rendering using image salience. In: Proc. EGUK,

pp. 122–128 (2002)
95. Collomosse, J.P., Hall, P.M.: Cubist style rendering from photographs. IEEE Trans. Vis.

Comput. Graph. 4(9), 443–453 (2003)
96. Collomosse, J.P., Hall, P.M.: Genetic paint: a search for salient paintings. In: Proc. Evo-

MUSART, vol. 3449, pp. 437–447 (2005)
97. Collomosse, J.P., Hall, P.M.: Video motion analysis for the synthesis of dynamic cues and

futurist art. Graph. Models 5(68), 402–414 (2006)
98. Collomosse, J., Rowntree, D., Hall, P.M.: Video analysis for cartoon-style special effects. In:

Proc. BMVC, pp. 749–758 (2003)
99. Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: a spatio-temporal framework for

temporally coherent nonphotorealistic animations. Technical report CSBU-2003-01, Univer-
sity of Bath, UK (2003)

100. Collomosse, J., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent non-
photorealistic animations from video. IEEE Trans. Vis. Comput. Graph. 11(5), 540–549
(2005)

101. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

http://online.wsj.com/article/SB10001424052970203503204577038164225658328.html

References 379

102. Cook, W.J.: In: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computa-
tion. Princeton University Press, Princeton (2011)

103. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape model—their training and
application. Comput. Vis. Image Underst. 61, 38–59 (1995)

104. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern
Anal. Mach. Intell. 23(6), 681–685 (2001)

105. Corel: Painter (2012). http://www.corel.com/painter
106. Cormen, T.H., Leiserson, C.E., Stein, R.L.R.C.: Introduction to Algorithms, 3rd edn. MIT

Press, Cambridge (2009)
107. Corrêa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein, A.: Texture mapping for cel animation.

In: Proc. SIGGRAPH, pp. 435–446. ACM, New York (1998)
108. Coumans, E.: Bullet Physics Library (2010). http://www.bulletphysics.org/
109. Criminisi, A., Sharp, T., Rother, C., Pérez, P.: Geodesic image and video editing. ACM Trans.

Graph. 29(5), 134 (2010)
110. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated

watercolor. In: Whitted, T. (ed.) Proc. SIGGRAPH, pp. 421–430 (1997)
111. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The com-

plexity of multiway cuts. In: Proceedings of ACM Symposium on Theory of Computing,
pp. 241–251 (1992)

112. Dalal, K., Klein, A.W., Liu, Y., Smith, K.: A spectral approach to NPR packing. In: Proc.
NPAR, pp. 71–78 (2006)

113. Daniels, E.: Deep canvas in Disney’s Tarzan. In: SIGGRAPH Conference Abstracts and Ap-
plications, p. 200 (1999)

114. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algo-
rithms and Application, 3rd edn. Springer, Berlin (2010)

115. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proc. SIGGRAPH,
pp. 769–776 (2002)

116. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for convey-
ing shape. ACM Trans. Graph. 22(3), 848–855 (2003)

117. Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyperstream lines.
IEEE Comput. Graph. Appl. 13(4), 25–33 (1993)

118. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangula-
tions. Signal Process. 86(7), 1604–1616 (2006)

119. Deussen, O., Strothotte, T.: Computer-generated pen-and-ink illustration of trees. In: Proc.
SIGGRAPH, pp. 13–18 (2000)

120. Deussen, O., Hiller, S., van Overveld, K., Strothotte, T.: Floating points: a method for com-
puting stipple drawings. Comput. Graph. Forum 19(4), 40–51 (2000)

121. Di Blasi, G., Gallo, G.: Artificial mosaics. Vis. Comput. 21(6), 373–383 (2005)
122. Didas, S., Weickert, J.: Combining curvature motion and edge-preserving denoising. In: Proc.

SSVM 2007, vol. 4485, pp. 568–579 (2007)
123. DiPaola, S.: Painterly rendered portraits from photographs using a knowledge-based ap-

proach. Proc. SPIE 6492, 33–43 (2007)
124. DiVerdi, S., Krishnaswamy, A., Hadap, S.: Industrial-strength painting with a virtual bristle

brush. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
pp. 119–126 (2010)

125. Du Sautoy, M.: Symmetry: A Journey into the Patterns of Nature. Harper Collins, New York
(2008)

126. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations. SIAM Rev. 41(4), 637–
676 (1999)

127. Duke, D.J., Barnard, P.J., Halper, N., Mellin, M.: Rendering and affect. Comput. Graph.
Forum 22(3), 359–368 (2003)

128. Dunbabin, K.: Mosaics of the Greek and Roman World. Cambridge University Press, Cam-
bridge (1999)

129. Durand, F.: An invitation to discuss computer depiction. In: Proc. NPAR, pp. 111–124 (2002)

http://www.corel.com/painter
http://www.bulletphysics.org/

380 References

130. Durand, F., Ostromoukhov, V., Miller, M., Duranleau, F., Dorsey, J.: Decoupling strokes and
high-level attributes for interactive traditional drawing. In: Proc. EG Workshop on Rendering
Techniques, pp. 71–82 (2001)

131. Eastman, P.: Art of Illusion (2012). http://www.artofillusion.org
132. Ecker, A., Jepson, A.D.: Polynomial shape from shading. In: Proc. CVPR, pp. 145–152

(2010)
133. Elber, G.: Line art rendering via a coverage of isoparametric curves. IEEE Trans. Vis. Com-

put. Graph. 1(3), 231–239 (1995)
134. Elber, G.: Line art illustrations of parametric and implicit forms. IEEE Trans. Vis. Comput.

Graph. 4(1), 71–81 (1998)
135. Elber, G., Wolberg, G.: Rendering traditional mosaics. Vis. Comput. 19(1), 67–78 (2003)
136. Elder, J.H.: Are edges incomplete? Int. J. Comput. Vis. 34(2–3), 97–122 (1999)
137. Elder, J.H., Goldberg, R.M.: Image editing in the contour domain. IEEE Trans. Pattern Anal.

Mach. Intell. 23(3), 291–296 (2001)
138. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algo-

rithms. ACM Comput. Surv. 40(1), 2 (2008)
139. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann,

San Mateo (2002)
140. Farin, G., Hansford, D.: Discrete Coons patches. Comput. Aided Geom. Des. 16(7), 691–700

(1999)
141. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Technical

report TR2004-1963, Cornell University (2004)
142. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J.

Comput. Vis. 59(2), 167–181 (2004)
143. Fernie, E.: Art History and Its Methods: A Critical Anthology. Phaidon, Oxford (2011)
144. Ferwerda, J.A.: Three varieties of realism in computer graphics. In: Rogowitz, B.E., Pappas,

T.N. (eds.) Proceedings of Human Vision and Electronic Imaging VIII, vol. 5007, pp. 290–
297 (2003)

145. Field, D.: Relations between the statistics of natural images and the response profiles of
cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987)

146. Field, D.: What is the goal of sensory coding. Neural Comput. 6, 559–601 (1994)
147. Field, A., Hole, G.: How to Design and Report Experiments. Sage, London (2003)
148. Filonik, D., Baur, D.: Measuring aesthetics for information visualization. In: International

Conference on Information Visualization, pp. 579–584 (2009)
149. Finch, M., Snyder, J., Hoppe, H.: Freeform vector graphics with controlled thin-plate splines.

ACM Trans. Graph. 30(6), 166 (2011)
150. Finkelstein, A., Range, M.: Image mosaics. In: Proceedings of Raster Imaging & Digital

Typography (RIDT), pp. 11–22 (1998)
151. Finkelstein, A., Salesin, D.H.: Multiresolution curves. In: Proc. SIGGRAPH, pp. 261–268

(1994)
152. Fiorentini Roncuzzi, I., Fiorentini, E.: Mosaic: Materials, Techniques and History. MWeV

(2002)
153. Fischer, J., Bartz, D., Straber, W.: Stylized augmented reality for improved immersion. In:

Proc. VR, pp. 195–202 (2005)
154. Fischer, J., Cunningham, D., Bartz, D., Wallraven, C., Bülthoff, H., Straßer, W.: Measuring

the discernability of virtual objects in conventional and stylized augmented reality. In: Proc.
EGVE, pp. 53–61 (2006)

155. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp.
17(2), 75–77 (1976)

156. Frazor, R., Geisler, W.: Local luminance contrast in natural images. Vis. Res. 46, 1585–1598
(2006)

157. Fritzsche, L.-P., Hellwig, H., Hiller, S., Deussen, O.: Interactive design of authentic look-
ing mosaics using Voronoi structures. In: Proc. 2nd International Symposium on Voronoi
Diagrams in Science and Engineering 2005, pp. 1–11 (2005)

http://www.artofillusion.org

References 381

158. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with appli-
cations in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

159. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video process-
ing. ACM Trans. Graph. 30(4), 69 (2011)

160. Gatzidis, C., Papakonstantinou, S., Brujic-Okretic, V., Baker, S.: Recent advances in the user
evaluation methods and studies of non-photorealistic visualisation and rendering techniques.
In: Proc. IV, pp. 475–480 (2008)

161. Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–
380 (1979)

162. Gerstner, T., DeCarlo, D., Alexa, M., Finkelstein, A., Gingold, Y., Nealen, A.: Pixelated
image abstraction. In: Proc. NPAR, pp. 29–36 (2012)

163. Girshick, A., Interrante, V., Haker, S., Lemoine, T.: Line direction matters: an argument for
the use of principal directions in 3D line drawings. In: Proc. NPAR, pp. 43–52. ACM, New
York (2000)

164. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration
through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

165. Goldman, D.B., Curless, B., Salesin, D., Seitz, S.M.: Schematic storyboarding for video
visualization and editing. ACM Trans. Graph. 25(3), 862–871 (2006)

166. Gombrich, E.H.: Art and Illusion: A Study in the Psychology of the Pictorial Representation.
Phaidon, Oxford (1983)

167. Gombrich, E.H.: The claims of excellence. In: Gombrich, E.H. (ed.) Reflections on the His-
tory of Art, pp. 179–185. Phaidon, Oxford (1987)

168. Gombrich, E.H.: The Story of Art. Phaidon, Oxford (1995)
169. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall,

Upper Saddle River (2008)
170. Gooch, B.: Human facial illustrations: creation and evaluation using behavioral studies and

functional magnetic resonance imaging. PhD thesis, University of Utah, USA (2003)
171. Gooch, B., Gooch, A.: Non-photorealistic Rendering. AK Peters, Wellesley (2001)
172. Gooch, A.A., Willemsen, P.: Evaluating space perception in NPR immersive environments.

In: Proc. NPAR, pp. 105–110 (2002)
173. Gooch, B., Sloan, P.-P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustra-

tion. In: Proc. I3D, pp. 31–38 (1999)
174. Gooch, B., Coombe, G., Shirley, P.: Artistic vision: painterly rendering using computer vision

techniques. In: Proc. NPAR, pp. 83–90 (2002)
175. Gooch, B., Reinhard, E., Gooch, A.A.: Human facial illustrations: creation and psychophys-

ical evaluation. ACM Trans. Graph. 23(1), 27–44 (2004)
176. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2Gray: salience-preserving color

removal. ACM Trans. Graph. 24(3), 634–639 (2005)
177. Gooch, A.A., Long, J., Ji, L., Estey, A., Gooch, B.S.: Viewing progress in non-photorealistic

rendering through Heinlein’s lens. In: Proc. NPAR, pp. 165–171. ACM, New York (2010)
178. Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623–629

(1971)
179. Grabli, S., Turquin, E., Durand, F., Sillion, F.X.: Programmable style for NPR line drawing.

In: Proc. EG Symposium on Rendering, pp. 18:1–18:20 (2004)
180. Grabli, S., Turquin, E., Durand, F., Sillion, F.X.: Programmable rendering of line drawing

from 3D scenes. ACM Trans. Graph. 29(2), 18 (2010)
181. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.

28(11), 1768–1783 (2006)
182. Graham, D.J., Field, D.: Statistical regularities of art image and natural scenes: spectra,

sparseness and nonlinearities. Spat. Vis. 21, 149–164 (2007)
183. Graham, D.J., Field, D.: Variations in intensity statistics for representational and abstract art

from the eastern and western hemispheres. Perception 37, 1341–1352 (2008)
184. Granger, G.W.: Aesthetic measure applied to color harmony: an experimental test. J. Gen.

Psychol. 52(2), 205–212 (1955)

382 References

185. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ.
Geom. 26(2), 285–314 (1987)

186. Green, S., Salesin, D., Schofield, S., Hertzmann, A., Litwinowicz, P., Gooch, A., Curtis, C.,
Gooch, B.: Non-photorealistic rendering. In: SIGGRAPH Courses (1999)

187. Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the time). In:
Proc. CHI, pp. 111–120. ACM, New York, (2008)

188. Greenfield, G.: Composite digital mosaics using Duotone tiles. In: Kaplan, C.S., Sarhangi,
R. (eds.) Bridges 2009: Mathematics, Music, Art, Architecture, Culture, pp. 155–162 (2009)

189. Guichard, F., Morel, J.M.: A note on two classical enhancement filters and their associated
PDE’s. Int. J. Comput. Vis. 52(2), 153–160 (2003)

190. Haeberli, P.: Paint by numbers: abstract image representations. In: Proc. SIGGRAPH,
pp. 207–214 (1990)

191. Hall, P.M., Collomosse, J.P., Song, Y.-Z., Shen, P., Li, C.: RTcams: a new perspective on
nonphotorealistic rendering from photographs. IEEE Trans. Vis. Comput. Graph. 13(5), 966–
979 (2007)

192. Halper, N., Mellin, M., Herrmann, C.S., Linneweber, V., Strothotte, T.: Psychology and non-
photorealistic rendering: the beginning of a beautiful relationship. In: Proc. Mensch & Com-
puter, pp. 277–286 (2003)

193. Halper, N., Mellin, M., Herrmann, C.S., Linneweber, V., Strothotte, T.: Towards an under-
standing of the psychology of non-photorealistic rendering. In: Proc. Workshop Computa-
tional Visualistics, Media Informatics and Virtual Communities, pp. 67–78 (2003)

194. Hanrahan, P., Haeberli, P.: Direct WYSIWYG painting and texturing on 3D shapes. Comput.
Graph. 24(4), 215–223 (1990)

195. Haralick, R.M.: Digital step edges from zero crossing of second directional derivatives. IEEE
Trans. Pattern Anal. Mach. Intell. 6(1), 58–68 (1984)

196. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading
(1992)

197. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphol-
ogy. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

198. Hausner, A.: Simulating decorative mosaics. In: Proc. SIGGRAPH, pp. 573–580 (2001)
199. Hays, J., Essa, I.: Image and video based painterly animation. In: Proc. NPAR, pp. 113–120

(2004)
200. Healey, C.G., Enns, J.T.: Perception and painting: a search for effective, engaging visualiza-

tions. IEEE Comput. Graph. Appl. 22(2), 10–15 (2002)
201. Healey, C.G., Tateosian, L., Enns, J.T., Remple, M.: Perceptually-based brush strokes for

nonphotorealistic visualization. ACM Trans. Graph. 23(1), 64–96 (2004)
202. Heckbert, P.: Color image quantization for frame buffer display. In: Proc. ACM SIGGRAPH,

pp. 297–307 (1982)
203. Hegdé, J., Thompson, S., Kersten, D.: Identifying faces in two-tone (‘mooney’) images: a

psychophysical and fMRI study. J. Vis. 7(9), 642 (2007)
204. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proc.

SIGGRAPH, pp. 453–460 (1998)
205. Hertzmann, A.: Paint by relaxation. In: Computer Graphics International, pp. 47–54 (2001)
206. Hertzmann, A.: Fast paint texture. In: Proc. NPAR, pp. 91–96 (2002)
207. Hertzmann, A.: A survey of stroke-based rendering. IEEE Comput. Graph. Appl. 23, 70–81

(2003)
208. Hertzmann, A.: Non-photorealistic rendering and the science of art. In: Proc. NPAR, pp. 147–

157 (2010)
209. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc. NPAR,

pp. 7–12 (2000)
210. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proc. SIGGRAPH, pp. 517–526

(2000)
211. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In:

Proc. SIGGRAPH, pp. 327–340 (2001)

References 383

212. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation
using diffusion equation. Comput. Graph. Forum 29(7), 2179–2186 (2010)

213. Ho, S.N., Komiya, R.: Real time loose and sketchy rendering in hardware. In: Proc. SCCG,
pp. 83–88 (2004)

214. Hockney, D.: Secret Knowledge (New and Expanded Edition): Rediscovering the Lost Tech-
niques of the Old Masters. Studio, London (2006). Expanded edition

215. Hsiao, S.-W., Chiu, F.-Y., Hsu, H.-Y.: A computer-assisted colour selection system based on
aesthetic measure for colour harmony and fuzzy logic theory. Color Res. Appl. 33, 411–423
(2008)

216. Hsu, S.C., Lee, I.H.H., Wiseman, N.E.: Skeletal strokes. In: Proc. UIST, pp. 197–206 (1993)
217. Huang, H., Fu, T.-N., Li, C.-F.: Painterly rendering with content-dependent natural paint

strokes. Vis. Comput. 27(9), 861–871 (2011)
218. Huang, H., Zhang, L., Zhang, H.-C.: Arcimboldo-like collage using internet images. ACM

Trans. Graph. 30(6), 155 (2011)
219. Hyman, J.: The Objective Eye: Color, Form, and Reality in the Theory of Art. University of

Chicago, Chicago (2006)
220. Igarashi, Y., Igarashi, T.: Holly: a drawing editor for designing stencils. IEEE Comput.

Graph. Appl. 30, 8–14 (2010)
221. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design.

In: Proc. SIGGRAPH, pp. 409–416 (1999)
222. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM

Trans. Graph. 24(3), 1134–1141 (2005)
223. Inglis, T.C., Kaplany, C.S.: Pixelating vector line art. In: Proc. NPAR, pp. 21–28 (2012)
224. Inglis, T.C., Inglis, S., Kaplan, C.S.: Op art rendering with lines and curves. Comput. Graph.

36(6), 607–621 (2012)
225. Inoue, K., Urahama, K.: Halftoning with minimum spanning trees and its application to

maze-like images. Comput. Graph. 33(5), 638–647 (2009)
226. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and valley

lines. In: Proc. Visualization, pp. 52–59 (1995)
227. Interrante, V., Fuchs, H., Pizer, S.: Illustrating transparent surfaces with curvature-directed

strokes. In: Proc. Visualization, pp. 211–218 (1996)
228. Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S., Strothotte, T.: A developer’s guide

to silhouette algorithms for polygonal models. IEEE Comput. Graph. Appl. 23(4), 28–37
(2003)

229. Isenberg, T., Neumann, P., Carpendale, S., Sousa, M.C., Jorge, J.A.: Non-photorealistic ren-
dering in context: an observational study. In: Proc. NPAR, pp. 115–126 (2006)

230. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1254–1259 (1998)

231. Jackson, C.D., Acevedo, D., Laidlaw, D.H., Drury, F., Vote, E., Keefe, D.: Designer-critiqued
comparison of 2D vector visualization methods: a pilot study. In: SIGGRAPH Sketches &
Applications. ACM, New York (2003)

232. Jamriška, O., Sýkora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In:
Proc. CVPR, pp. 3673–3680 (2012)

233. Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson
image editing. ACM Trans. Graph. 28(5), 116 (2009)

234. Jeschke, S., Cline, D., Wonka, P.: Estimating color and texture parameters for vector graphics.
Comput. Graph. Forum 30(2), 523–532 (2011)

235. Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Proc. Vi-
sualization in Scientific Computing, pp. 43–56 (1997)

236. Jodoin, P.-M., Epstein, E., Granger-Piché, M., Ostromoukhov, V.: Hatching by example: a
statistical approach. In: Proc. NPAR, pp. 29–36 (2002)

237. Johnston, S.F.: Lumo: illumination for cel animation. In: Proc. NPAR, pp. 45–52 (2002)
238. Jones, B.: Computer imagery: imitation and representation of realities. Leonardo 31–38

(1989). Computer Art in Context Supplemental Issue

384 References

239. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. ACM Trans. Graph.
26(3), 19 (2007)

240. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In:
IEEE International Conference on Computer Vision (ICCV), pp. 2106–2113 (2009)

241. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P.J., Zhang, E.: Video
painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17(1),
74–87 (2011)

242. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)
243. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb,

M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: drawing strokes directly on 3D models.
In: Proc. SIGGRAPH, vol. 21, p. 755 (2002)

244. Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., Hertzmann, A.: Learning hatching for pen-
and-ink illustration of surfaces. ACM Trans. Graph. 31(1), 1 (2011)

245. Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.: De-
tailed shape representation with parallax mapping. In: Proceedings of International Confer-
ence on Artificial Reality and Telexistence, pp. 205–208 (2001)

246. Kang, H., Lee, S.: Shape-simplifying image abstraction. Comput. Graph. Forum 27(7), 1773–
1780 (2008)

247. Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: Proc. NPAR, New York, pp. 43–50
(2007)

248. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput.
Graph. 15(1), 62–76 (2009)

249. Kaplan, C.S., Bosch, R.: TSP art. In: Bridges 2005: Mathematical Connections in Art, Music
and Science, pp. 301–308 (2005)

250. Kaptein, M., Robertson, J.: Rethinking statistical analysis methods for CHI. In: Proc. CHI,
pp. 1105–1114 (2012)

251. Kass, M., Pesare, D.: Coherent noise for non-photorealistic rendering. ACM Trans. Graph.
30(4), 30 (2011)

252. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis.
1(4), 321–331 (1988)

253. Kavan, L., Sloan, P.-P., O’Sullivan, C.: Fast and efficient skinning of animated meshes. Com-
put. Graph. Forum 29(2), 327–336 (2010)

254. Keefe, D.F., Karelitz, D.B., Vote, E.L., Laidlaw, D.H.: Artistic collaboration in designing VR
visualizations. IEEE Comput. Graph. Appl. 25(2), 18–23 (2005)

255. Kerlinger, F.N., Lee, H.B.: Foundations of Behavioral Research, 4th edn. Wadsworth/
Thomson Learning, Belmont (2000)

256. Kim, J., Pellacini, F.: Jigsaw image mosaics. ACM Trans. Graph. 21(3), 657–664 (2002)
257. Kim, S., Hagh-Shenas, H., Interrante, V.: Conveying shape with texture: an experimental in-

vestigation of the impact of texture type on shape categorization judgments. In: Proc. InfoVis,
pp. 163–170 (2003)

258. Kim, S., Hagh-Shenas, H., Interrante, V.: Conveying shape with texture: experimental inves-
tigation of texture’s effects on shape categorization judgments. IEEE Trans. Vis. Comput.
Graph. 10(4), 471–483 (2004)

259. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput.
Graph. Forum 27(4), 1209–1216 (2008)

260. Kim, S., Maciejewski, R., Isenberg, T., Andrews, W., Chen, W., Sousa, M.C., Ebert, D.S.:
Stippling by example. In: Proc. NPAR, pp. 41–50 (2009)

261. Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated hedcut illustration using
isophotes. In: Smart Graphics, pp. 172–183 (2010)

262. Klein, A.W., Li, W., Kazhdan, M.M., Corrêa, W.T., Finkelstein, A., Funkhouser, T.A.: Non-
photorealistic virtual environments. In: Proc. SIGGRAPH, pp. 527–534 (2000)

263. Koenderink, J.J.: Pictorial relief. Philos. Trans. R. Soc. Lond. 356(1740), 1071–1086 (1998)
264. Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L.: Pictorial surface attitude and local depth

comparisons. Percept. Psychophys. 58(2), 163–173 (1996)

References 385

265. Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue
noise. ACM Trans. Graph. 25(3), 509–518 (2006)

266. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of
digital images. Pattern Recognit. 7(1–2), 53–58 (1975)

267. Kreczkowska, A., El-Hage, J., Colton, S., Clark, S.: Automated collage generation with in-
tent. In: International Joint Conference on Computational Creativity (2010)

268. Kuwahara, M., Hachimura, K., Ehiu, S., Kinoshita, M.: Processing of ri-angiocardiographic
images. In: Digital Processing of Biomedical Images, pp. 187–203. Plenum, New York
(1976)

269. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering.
In: Proc. NPAR, pp. 55–64 (2011)

270. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proc. EG
UK TPCG, pp. 51–58 (2008)

271. Kyprianidis, J.E., Döllner, J.: Real-time image abstraction by directed filtering. In: ShaderX7,
pp. 285–302. Charles River Media, London (2009)

272. Kyprianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering.
Comput. Graph. Forum 30(2), 593–602 (2011)

273. Kyprianidis, J.E., Kang, H., Döllner, J.: Image and video abstraction by anisotropic Kuwa-
hara filtering. Comput. Graph. Forum 28(7), 1955–1963 (2009)

274. Kyprianidis, J.E., Kang, H., Döllner, J.: Anisotropic Kuwahara filtering on the GPU. In:
GPUPro, pp. 247–264 (2010)

275. Kyprianidis, J.E., Semmo, A., Kang, H., Döllner, J.: Anisotropic Kuwahara filtering with
polynomial weighting functions. In: Proc. EG UK TPCG, pp. 25–30 (2010)

276. Lagae, A., Dutré, P.: A procedural object distribution function. ACM Trans. Graph. 24(4),
1442–1461 (2005)

277. Lai, Y.-K., Hu, S.-M., Martin, R.R.: Automatic and topology-preserving gradient mesh gen-
eration for image vectorization. ACM Trans. Graph. 28(3), 85 (2009)

278. Laidlaw, D.H.: Loose, artistic “textures” for visualization. IEEE Comput. Graph. Appl.
21(2), 6–9 (2001)

279. Laidlaw, D.H., Kirby, R.M., Jackson, C.D., Davidson, J.S., Miller, T.S., da Silva, M., Warren,
W.H., Tarr, M.J.: Comparing 2D vector field visualization methods: a user study. IEEE Trans.
Vis. Comput. Graph. 11(1), 59–70 (2005)

280. Lake, A., Marshall, C., Harris, M., Blackstein, M.: Stylized rendering techniques for scalable
real-time 3D animation. In: Proc. NPAR, pp. 13–20 (2000)

281. Lam, D.: Tokamak physics engine (2010). http://www.tokamakphysics.com
282. Langer, M.S., Buelthoff, H.H.: Depth discrimination from shading under diffuse lighting.

Perception 29(6), 649–660 (2000)
283. Lasseter, J.: Principles of traditional animation applied to 3D computer animation. In: Proc.

SIGGRAPH, vol. 21, pp. 35–44 (1987)
284. Lecot, G., Lévy, B.: ARDECO: Automatic Region DEtection and Conversion. In: Proc.

EGSR, pp. 349–360 (2006)
285. Lee, J.: Physically-based modeling of brush painting. In: Computer Networks and ISDN

systems, pp. 1571–1756 (1997)
286. Lee, H., Lee, C.H., Yoon, K.: Motion based painterly rendering. Comput. Graph. Forum

28(4), 1207–1215 (2009)
287. Lee, H., Seo, S., Ryoo, S., Yoon, K.: Directional texture transfer. In: Proc. NPAR, pp. 43–50

(2010)
288. Lehmann, A.: Taking the lid off the Utah teapot. Towards a material analysis of computer

graphics. Z. Med. Kult.-forsch. 1, 157–172 (2012)
289. Leister, W.: Computer generated Copper plates. Comput. Graph. Forum 13(1), 69–77 (1994)
290. Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding

revealed by high-level aftereffects. Nat. Neurosci. 4, 89–94 (2001)
291. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph.

23(3), 689–694 (2004)

http://www.tokamakphysics.com

386 References

292. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. In: Proc. SIGGRAPH, pp. 165–172 (2000)

293. Li, N., Huang, Z.: A feature-based pencil drawing method. In: Proc. GRAPHITE, pp. 135–
140 (2003)

294. Li, Y., Kobatake, H.: Extraction of facial sketch images and expression transformation based
on FACS. In: Proc. ICIP, pp. 520–523 (1995)

295. Li, Y., Kobatake, H.: Extraction of facial sketch image based on morphological processing.
In: Proc. ICIP, pp. 316–319 (1997)

296. Li, H., Mould, D.: Content-sensitive screening in black and white. In: Proc. GRAPP, pp. 166–
172 (2011)

297. Liang, L., Chen, H., Xu, Y.-Q., Shum, H.-Y.: Example-based caricature generation with ex-
aggeration. In: Proc. Pacific Graphics, pp. 386–393 (2002)

298. Lin, L., Zeng, K., Lv, H., Wang, Y., Xu, Y., Zhu, S.-C.: Painterly animation using video
semantics and feature correspondence. In: Proc. NPAR, pp. 73–80 (2010)

299. Ling, R.: Ancient Mosaics. British Museum Press, London (1998)
300. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proc. SIG-

GRAPH, pp. 407–414 (1997)
301. Liu, C., Torralba, A., Freeman, W., Durand, F., Adelson, E.H.: Motion magnification. ACM

Trans. Graph. 24(3), 519–526 (2005)
302. Liu, Y., Veksler, O., Juan, O.: Simulating classic mosaics with graph cuts. In: Proc. Energy

Minimization Methods in Computer Vision and Pattern Recognition, pp. 55–70 (2007)
303. Liu, Y., Veksler, O., Juan, O.: Generating classic mosaics with graph cuts. Comput. Graph.

Forum 29(8), 2387–2399 (2010)
304. Livingstone, M.S.: Vision and Art: The Biology of Seeing. Abrams, New York (2008)
305. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137

(1982)
306. Long, J.: Modeling dendritic structures for artistic effects. Master’s thesis, University of

Saskatchewan (2007)
307. Long, J., Mould, D.: Dendritic stylization. Vis. Comput. 25(3), 241–253 (2009)
308. Lopez-Moreno, J., Jimenez, J., Hadap, S., Reinhard, E., Anjyo, K., Gutierrez, D.: Stylized

depiction of images based on depth perception. In: Proc. NPAR, pp. 109–118 (2010)
309. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.

60(2), 91–110 (2004)
310. Lu, T.K., Huang, Z.: A GPU-based method for real-time simulation of Eastern painting. In:

Proc. GRAPHITE, pp. 111–118 (2007)
311. Lu, J., Sander, P.V., Finkelstein, A.: Interactive painterly stylization of images, videos and

3D animations. In: Proc. SIGGRAPH Symposium on Interactive 3D Graphics and Games,
vol. 26, pp. 127–134 (2010)

312. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer.
ACM Trans. Graph. 25(3), 1206–1213 (2006)

313. Luft, T., Kobs, F., Zinser, W., Deussen, O.: Watercolor illustrations of CAD data. In: Proc.
CAe, pp. 57–63 (2008)

314. Luo, W.C., Liu, P.C., Ouhyoung, M.: Exaggeration of facial features in caricaturing. In: Pro-
ceedings of International Computer Symposium (2002)

315. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C.: Aesthetics of hand-
drawn vs. computer-generated stippling. In: Proc. CAe, Goslar, Germany, pp. 53–56 (2007)

316. Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Measur-
ing stipple aesthetics in hand-drawn and computer-generated images. IEEE Comput. Graph.
Appl. 28(2), 62–74 (2008)

317. Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. ACM
Trans. Graph. 30(4), 100 (2011)

318. Mandryk, R.L., Mould, D., Li, H.: Evaluation of emotional response to non-photorealistic
images. In: Proc. NPAR, pp. 7–16 (2011)

319. Manovich, L.: Image future. Animation 1(1), 25–44 (2006)

References 387

320. Maragos, P., Schafer, R.: Morphological filters–Part I: their set-theoretic analysis and re-
lations to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process. 35(8),
1153–1169 (1987)

321. Maragos, P., Schafer, R.: Morphological filters–Part II: their relations to median, order-
statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1170–1184
(1987)

322. Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D., Goldstein, D., Hughes, J.F.:
Real-time nonphotorealistic rendering. In: Proc. SIGGRAPH, pp. 415–420 (1997)

323. Marr, D., Hildreth, R.C.: Theory of edge detection. Proc. R. Soc. Lond. B, Biol. Sci. 207,
187–217 (1980)

324. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using
local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–
549 (2004)

325. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-based stippling using a scale-
dependent grayscale process. In: Proc. NPAR, pp. 51–61 (2010)

326. Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-dependent and example-based stip-
pling. Comput. Graph. 35(1), 160–174 (2011)

327. McCann, J., Pollard, N.S.: Real-time gradient-domain painting. ACM Trans. Graph. 27(3),
93 (2008)

328. McCann, J., Pollard, N.S.: Local layering. ACM Trans. Graph. 28(3), 84 (2009)
329. Meier, B.J.: Painterly rendering for animation. In: Proc. SIGGRAPH, pp. 477–484 (1996)
330. Mello, V.B., Jung, C.R., Walter, M.: Virtual woodcuts from images. In: Proc. GRAPHITE,

pp. 103–109 (2007)
331. Meng, M., Zhao, M., Zhu, S.-C.: Artistic paper-cut of human portraits. In: Proc. International

Conference on Multimedia, p. 931 (2010)
332. Mi, X., Xu, J., Tang, M., Dong, J.: The droplet virtual brush for Chinese calligraphic charac-

ter modeling. In: Proceedings of the IEEE Workshop on Applications of Computer Vision,
pp. 330–334 (2002)

333. Mi, X., DeCarlo, D., Stone, M.: Abstraction of 2D shapes in terms of parts. In: Proc. NPAR,
pp. 15–24 (2009)

334. Min, F., Suo, J.-L., Zhu, S.-C., Sang, N.: An automatic portrait system based on and–or graph
representation. In: Proc. EMMCVPR, pp. 184–197 (2007)

335. Mischaikow, K., Mrozek, M.: Conley index. In: Handbook of Dynamical Systems, vol. 2,
pp. 393–460. North-Holland, Amsterdam (2002)

336. Mitchell, J., Francke, M., Eng, D.: Illustrative rendering in team fortress 2. In: Proc. NPAR,
pp. 71–76 (2007)

337. Mizuno, S., Okada, M., Toriwaki, J.: An interactive designing system with virtual sculpting
and virtual woodcut printing. Comput. Graph. Forum 18(3), 183–194 (1999)

338. Mo, Z., Lewis, J.P., Neumann, U.: Improved automatic caricature by feature normalization
and exaggeration. In: SIGGRAPH Sketch (2004)

339. Moon, P., Spencer, D.E.: Aesthetic measure applied to color harmony. J. Opt. Soc. Am.
34(4), 234–242 (1944)

340. Mould, D.: A stained glass image filter. In: Eurographics Symposium on Rendering: 14th
Eurographics Workshop on Rendering, pp. 20–25 (2003)

341. Mould, D.: Stipple placement using distance in a weighted graph. In: Proc. CAe, pp. 45–52
(2007)

342. Mould, D., Grant, K.: Stylized black and white images from photographs. In: Proc. NPAR,
pp. 49–58 (2008)

343. Mould, D., Mandryk, R.L., Li, H.: Emotional response and visual attention to non-
photorealistic images. Comput. Graph. 36(5), 658–672 (2012)

344. Newman, D.J.: The hexagon theorem. IEEE Trans. Inf. Theory 28(2), 137–138 (1982)
345. Neyret, F.: Advected textures. In: Proc. SCA, pp. 147–153 (2003)
346. Ngo, D.C.L., Samsudin, A., Abdullah, R.: Aesthetic measures for assessing graphic screens.

J. Inf. Sci. Eng. 16(1), 97–116 (2000)

388 References

347. Nienhaus, M., Döllner, J.: Sketchy drawings. In: Proc. AFRIGRAPH, pp. 73–81 (2004)
348. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell.

26(11), 1452–1458 (2004)
349. Obaid, M., Mukundan, R., Billinghurst, M.: Rendering and animating expressive caricatures.

In: Proc. ICCSIT, pp. 401–406 (2010)
350. O’Donovan, P., Hertzmann, A.: AniPaint: interactive painterly animation from video. IEEE

Trans. Vis. Comput. Graph. 18(3), 475–487 (2012)
351. Okabe, Y., Saito, S., Nakajima, M.: Paintbrush rendering of lines using HMMs. In: Proc.

GRAPHITE, pp. 91–98 (2005)
352. Okamoto, Y., Uehara, R.: How to make a picturesque maze. In: Proceedings of the 21st

Annual Canadian Conference on Computational Geometry, pp. 137–140 (2009)
353. Olsen, S.C., Gooch, B.: Image simplification and vectorization. In: Proc. NPAR, pp. 65–74

(2011)
354. Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of pho-

tographs. In: Proc. NPAR, pp. 103–110 (2007)
355. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion

curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92
(2008)

356. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J.
Numer. Anal. 27(4), 919–940 (1990)

357. Ostromoukhov, V.: Digital facial engraving. In: Proc. SIGGRAPH, pp. 417–424 (1999)
358. Ostromoukhov, V., Hersch, R.D.: Multi-color and artistic dithering. In: Proc. SIGGRAPH,

pp. 425–432 (1999)
359. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man

Cybern. 9, 62–66 (1979)
360. Palacios, J., Zhang, E.: Rotational symmetry field design on surfaces. ACM Trans. Graph.

26(3), 55 (2007)
361. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)
362. Pang, W.-M., Qin, J., Cohen, M., Heng, P.-A., Choi, K.-S.: Fast rendering of diffusion curves

with triangles. IEEE Comput. Graph. Appl. 32(4), 68–78 (2012)
363. Pao, H.-K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In:

Proc. ICCV, pp. 948–955 (1999)
364. Papari, G., Petkov, N.: Continuous glass patterns for painterly rendering. IEEE Trans. Image

Process. 18(3), 652–664 (2009)
365. Papari, G., Petkov, N., Campisi, P.: Artistic edge and corner enhancing smoothing. IEEE

Trans. Image Process. 16(10), 2449–2462 (2007)
366. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filtering: theory and applications.

Found. Trends Comput. Graph. Vis. 4(1), 7–73 (2009)
367. Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters. ACM Trans. Graph. 30(4), 68

(2011)
368. Pease, A., Colton, S.: On impact and evaluation in computational creativity: a discussion

of the Turing test and an alternative proposal. In: AISB Symposium on AI and Philosophy
(2011)

369. Pedersen, H., Singh, K.: Organic labyrinths and mazes. In: Proc. NPAR, pp. 79–86 (2006)
370. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318

(2003)
371. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.

Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
372. Petrović, L., Fujito, B., Williams, L., Finkelstein, A.: Shadows for cel animation. In: Proc.

SIGGRAPH, pp. 511–516 (2000)
373. Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: Proc.

ICME, pp. 454–457 (2005)
374. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance

Graphics and General-Purpose Computation. Addison-Wesley Professional, Reading (2005)

References 389

375. Popescu, V., Rosen, P., Adamo-Villani, N.: The graph camera. ACM Trans. Graph. 28(5),
158 (2009)

376. Porikli, F.: Constant time O(1) bilateral filtering. In: Proc. CVPR, pp. 1–8 (2008)
377. Potts, R.: Some generalized order-disorder transformation. In: Proceedings of Cambridge

Philosophical Society, vol. 48, pp. 106–109 (1952)
378. Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, New York (2001)
379. Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: Proc. SIGGRAPH,

pp. 581–586. ACM, New York (2001)
380. Price, B.L., Barrett, W.A.: Object-based vectorization for interactive image editing. Vis.

Comput. 22(9–11), 661–670 (2006)
381. Pudet, T.: Real time fitting of hand-sketched pressure brushstrokes. Comput. Graph. Forum

13(3), 205–220 (1994)
382. Qu, Y., Wong, T.-T., Heng, P.-A.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220

(2006)
383. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
384. Raskar, R., Cohen, M.: Image precision silhouette edges. In: Proc. I3D, pp. 135–140 (1999)
385. Rautek, P., Bruckner, S., Gröller, E., Viola, I.: Illustrative visualization: new technology or

useless tautology?. Comput. Graph. 42(3), 4 (2008)
386. Real Pen Work: Self-Instructor in Penmanship. Knowles and Maxim (1885)
387. Richens, P.: The Piranesi system for interactive rendering. In: Proceedings of the Eighth

International Conference on Computer Aided Architectural Design Futures, pp. 381–398
(1999)

388. Rosin, P.L., Lai, Y.-K.: Towards artistic minimal rendering. In: Proc. NPAR, pp. 119–127
(2010)

389. Ross, F., Ross, W.T.: The Jordan curve theorem is non-trivial. J. Math. Arts 5(4), 213–219
(2011)

390. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using
iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

391. Rusinkiewicz, S., Cole, F., DeCarlo, D., Finkelstein, A.: Line drawings from 3D models. In:
SIGGRAPH Classes, pp. 39:1–39:356 (2008)

392. Saito, S., Nakajima, M.: 3D physics-based brush model for painting. In: Proc. SIGGRAPH,
p. 226 (1999)

393. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. Comput. Graph. 24(4),
197–206 (1990)

394. Salesin, D.: Non-photorealistic animation and rendering: 7 grand challenges. In: Keynote
talk at NPAR (2002)

395. Salisbury, M.P., Anderson, S.E., Barzel, R., Salesin, D.H.: Interactive pen-and-ink illustra-
tion. In: Proc. SIGGRAPH, pp. 101–108 (1994)

396. Salisbury, M., Anderson, C., Lischinski, D., Salesin, D.H.: Scale-dependent reproduction of
pen-and-ink illustrations. In: Proc. SIGGRAPH, pp. 461–468 (1996)

397. Salisbury, M.P., Wong, M.T., Hughes, J.F., Salesin, D.H.: Orientable textures for image-
based pen-and-ink illustration. In: Proc. SIGGRAPH, pp. 401–406 (1997)

398. Santella, A., DeCarlo, D.: Abstracted painterly renderings using eye-tracking data. In: Proc.
NPAR, pp. 75–82 (2002)

399. Santella, A., DeCarlo, D.: Visual interest and NPR: an evaluation and manifesto. In: Proc.
NPAR, pp. 71–78 (2004)

400. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM
Trans. Graph. 25(3), 533–540 (2006)

401. Schelske, A.: Zur Sozialität des nicht-fotorealistischen Renderings. Eine zu kurze, soziolo-
gische Skizze für zeitgenössische Bildmaschinen. Image: J. Interdiscip. Image Sci. 6, 47–58
(2007)

402. Schirra, J.R.J., Scholz, M.: Abstraction versus realism: not the real question. In: Com-
puter Visualization—Graphics, Abstraction, and Interactivity, pp. 379–401. Springer, Berlin
(1998)

390 References

403. Schlechtweg, S., Germer, T., Strothotte, T.: RenderBots—multi-agent systems for direct im-
age generation. Comput. Graph. Forum 24(2), 137–148 (2005)

404. Schmidt, R., Isenberg, T., Jepp, P., Singh, K., Wyvill, B.: Sketching, scaffolding, and inking:
a visual history for interactive 3D modeling. In: Proc. NPAR, pp. 23–32 (2007)

405. Schumann, J., Strothotte, T., Raab, A., Laser, S.: Assessing the effect of non-photorealistic
rendered images in CAD. In: Proc. CHI, pp. 35–42 (1996)

406. Schwarz, M., Stamminger, M.: On predicting visual popping in dynamic scenes. In: Proc.
APGV, pp. 93–100 (2009)

407. Schwarz, M., Isenberg, T., Mason, K., Carpendale, S.: Modeling with rendering primitives:
an interactive non-photorealistic canvas. In: Proc. NPAR, pp. 15–22 (2007)

408. Secord, A.: Weighted Voronoi stippling. In: Proc. NPAR, pp. 37–43 (2002)
409. Seifi, H., DiPaola, S., Enns, J.T.: Exploring the effect of color palette in painterly rendered

character sequences. In: Proc. CAe, pp. 89–97 (2012)
410. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-

putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, Cambridge (1999)

411. Setlur, V., Wilkinson, S.: Automatic stained glass rendering. In: Computer Graphics Interna-
tional, pp. 682–691 (2006)

412. Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid
image matching. Comput. Vis. Image Underst. 112(1), 91–99 (2008)

413. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering based on local
source image approximation. In: Proc. NPAR, pp. 53–58 (2000)

414. Shugrina, M., Betke, M., Collomosse, J.P.: Empathic painting: interactive stylization through
observed emotional state. In: Proc. NPAR, pp. 87–96 (2006)

415. Singh, M., Schaefer, S.: Suggestive hatching. In: Proc. CAe, pp. 25–32 (2010)
416. Smith, J.M.: Recent developments in numerical integration. J. Dyn. Syst. Meas. Control

96(1), 61–70 (1974)
417. Smith, A.R.: Digital paint systems: an anecdotal and historical overview. IEEE Ann. Hist.

Comput. 23, 4–30 (2001)
418. Smith, R.: Open Dynamics Engine (2007). http://www.ode.org
419. Smith, P.: Pictorial Grammar: Chomsky, John Willats, and the Rules of Representation. Art

Hist. 562–593 (2011)
420. Smith, K., Liu, Y., Klein, A.: Animosaics. In: Proc. SCA, pp. 201–208 (2005)
421. Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models

73(3), 74–87 (2011)
422. Song, Y., Hall, P.M., Rosin, P.L., Collomosse, J.: Arty shapes. In: Proc. CAe, pp. 65–72

(2008)
423. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thom-

son, Tampa (2007)
424. Sousa, M.C., Buchanan, J.W.: Computer-generated graphite pencil rendering of 3D polygo-

nal models. Proc. Eurographics 18(3), 195–207 (1999)
425. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1980)
426. Strassmann, S.H.: Hairy brushes. Comput. Graph. 20(4), 225–232 (1986)
427. Strothotte, T., Schlechtweg, S.: Non-Photorealistic Computer Graphics: Modeling, Render-

ing, and Animation. Morgan Kaufmann, San Mateo (2002)
428. Strothotte, T., Preim, B., Raab, A., Schumann, J., Forsey, D.R.: How to render frames and

influence people. Comput. Graph. Forum 13(3), 455–466 (1994)
429. Sun, J., Liang, L., Wen, F., Shum, H.-Y.: Image vectorization using optimized gradient

meshes. ACM Trans. Graph. 26(3), 11 (2007)
430. Sun, Q., Fu, C.-W., He, Y.: An interactive multi-touch sketching interface for diffusion

curves. In: Proc. CHI, pp. 1611–1614 (2011)
431. Sutherland, I.E.: Sketchpad: a man-machine graphical communication system. In: Proc.

Spring Joint Computer Conference, vol. 23, pp. 329–346 (1963)

http://www.ode.org

References 391

432. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis. Com-
put. 23(9), 767–782 (2005)

433. Sýkora, D., Buriánek, J., Žára, J.: Sketching cartoons by example. In: Proc. SBIM, pp. 27–34
(2005)

434. Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn
cartoon animations. In: Proc. NPAR, pp. 25–33 (2009)

435. Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn car-
toons. Comput. Graph. Forum 28(2), 599–608 (2009)

436. Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S.: Adding depth to cartoons
using sparse depth (in)equalities. Comput. Graph. Forum 29(2), 615–623 (2010)

437. Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., Simmons, M.: TexToons: practical texture
mapping for hand-drawn cartoon animations. In: Proc. NPAR, pp. 75–83 (2011)

438. Szirányi, T., Tóth, Z., Figueiredo, M., Zerubia, J., Jain, A.: Optimization of paintbrush ren-
dering of images by dynamic MCMC methods. In: Proc. EMMCVPR, pp. 201–215 (2001)

439. Takayama, K., Sorkine, O., Nealen, A., Igarashi, T.: Volumetric modeling with diffusion
surfaces. ACM Trans. Graph. 29(6), 180 (2010)

440. Tauber, A.: The Elusive Synthesis Aesthetics and Science. Kluwer Academic, Dordrecht
(1996)

441. Thompson, W., Fleming, R., Creem-Regehr, S., Stefanucci, J.K.: Visual Perception from a
Computer Graphics Perspective, 1st edn. AK Peters, Wellesley (2011)

442. Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, shading, and volume rendering
for surgery education and planning. In: Proc. EuroVis, pp. 303–310 (2005)

443. Todo, H., Anjyo, K., Igarashi, T.: Stylized lighting for cartoon shader. Comput. Animat.
Virtual Worlds 20(2–3), 143–152 (2009)

444. Tolhurst, D., Tadmor, Y., Chao, T.: The amplitude spectra of natural images. Ophthalmic
Physiol. Opt. 12, 229–232 (1992)

445. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. ICCV,
pp. 839–846 (1998)

446. Tominaga, M., Fukuoka, S., Murakami, K., Koshimizu, H.: Facial caricaturing with motion
caricaturing in PICASSO system. In: Proceedings of the IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics, p. 30 (1997)

447. Tominaga, M., Hayashi, J.-I., Murakami, K., Koshimizu, H.: Facial caricaturing system PI-
CASSO with emotional motion deformation. In: Proceedings of the 2nd International Con-
ference on Knowledge-Based Intelligent Electronic System, pp. 205–214 (1998)

448. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2),
147–163 (1986)

449. Treavett, S.M.F., Chen, M.: Statistical techniques for the automated synthesis of non-
photorealistic images. In: Proc. EGUK, pp. 201–210 (1997)

450. Tresset, P., Leymarie, F.F.: Generative portrait sketching. In: Proc. VSMM, pp. 739–748
(2005)

451. Turk, G.: Generating textures for arbitrary surfaces using reaction-diffusion. In: Proc. SIG-
GRAPH, pp. 289–298 (1991)

452. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)
453. Umenhoffer, T., Szécsi, L., Szirmay-Kalos, L.: Hatching for motion picture production.

Comput. Graph. Forum 30(2), 533–542 (2011)
454. van den Boomgaard, R.: Decomposition of the Kuwahara–Nagao operator in terms of linear

smoothing and morphological sharpening. In: Proc. ISMM, pp. 283–292 (2002)
455. Van Laerhoven, T., Van Reeth, F.: Brush up your painting skills: realistic brush design for

interactive painting applications. Vis. Comput. 23(9), 763–771 (2007)
456. Vanderhaeghe, D., Barla, P., Thollot, J., Sillion, F.: Dynamic point distribution for stroke-

based rendering. In: Proc. EG Symposium on Rendering, pp. 139–146 (2007)
457. Vandoren, P., Van Laerhoven, T., Claesen, L., Taelman, J., Raymaekers, C., Van Reeth, F.:

IntuPaint: bridging the gap between physical and digital painting. In: IEEE International
Workshop on Horizontal Interactive Human Computer Systems, pp. 65–72 (2008)

392 References

458. Vandoren, P., Claesen, L., Van Laerhoven, T., Taelman, J., Van Reeth, F.: FluidPaint: an
interactive digital painting system using real wet brushes. In: Proceedings of the IEEE Inter-
national Workshop on Tabletops and Interactive Surfaces, pp. 53–56 (2009)

459. Vergne, R., Vanderhaeghe, D., Chen, J., Barla, P., Granier, X., Schlick, C.: Implicit brushes
for stylized line-based rendering. Comput. Graph. Forum 30, 513–522 (2011)

460. Verlaek, P.: Non-photorealistic renderings as epistemic images. In: Workshop on Abstract
Images in Art and Science (2009)

461. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–
1407 (2006)

462. Wan, L., Liu, X., Wong, T.-T., Leung, C.-S.: Evolving mazes from images. IEEE Trans. Vis.
Comput. Graph. 16(2), 287–297 (2010)

463. Wang, T., Collomosse, J.: Progressive motion diffusion of labeling priors for coherent video
segmentation. IEEE Trans. Multimed. 14(2), 389–400 (2012)

464. Wang, X., Tang, X.: Face sketch synthesis and recognition. In: Proc. ICCV, pp. 687–694
(2003)

465. Wang, J., Thiesson, B., Xu, Y., Cohen, M.F.: Image and video segmentation by anisotropic
kernel mean shift. In: Proc. ECCV, pp. 238–249 (2004)

466. Wang, J., Xu, Y., Shum, H.-Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–
583 (2004)

467. Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F.: The cartoon animation filter. ACM
Trans. Graph. 25(3), 1169–1173 (2006)

468. Wang, Y., Xu, K., Xiong, Y., Cheng, Z.-Q.: 2D shape deformation based on rigid square
matching. Comput. Animat. Virtual Worlds 19(3–4), 411–420 (2008)

469. Wang, T., Collomosse, J., Hu, R., Slatter, D., Greig, D., Cheatle, P.: Stylized ambient displays
of digital media collections. Comput. Graph. 35(1), 54–66 (2011)

470. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998)
471. Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17(3),

201–212 (1999)
472. Weickert, J.: Coherence-enhancing shock filters. In: DAGM-Symposium, pp. 1–8 (2003)
473. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for

nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)
474. Wen, F., Luan, Q., Liang, L., Xu, Y.-Q., Shum, H.-Y.: Color sketch generation. In: Proc.

NPAR, pp. 47–54 (2006)
475. Wiggins, G.A.: A preliminary framework for description, analysis and comparison of creative

systems. Knowl.-Based Syst. 19(7), 458–499 (2006)
476. Willats, J.: Art and Representation: New Principles in the Analysis of Pictures. Princeton

University Press, Princeton (1997)
477. Willats, J., Durand, F.: Defining pictorial style: lessons from linguistics and computer graph-

ics. Axiomathes 15, 319–351 (2005)
478. Winkenbach, G.A., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: Proc.

SIGGRAPH, pp. 91–100 (1994)
479. Winnemöller, H., Bangay, S.: Geometric approximations towards free specular comic shad-

ing. Comput. Graph. Forum 21(3), 309–316 (2002)
480. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph.

25(3), 1221–1226 (2006)
481. Winnemöller, H., Feng, D., Gooch, B., Suzuki, S.: Using NPR to evaluate perceptual shape

cues in dynamic environments. In: Proc. NPAR, pp. 85–92 (2007)
482. Winnemöller, H., Orzan, A., Boissieux, L., Thollot, J.: Texture design and draping in 2D

images. Comput. Graph. Forum 28(4), 1091–1099 (2009)
483. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an extended difference-of-Gaussians

compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012)
484. Witten, T.A. Jr., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon.

Phys. Rev. Lett. 47(19), 1400–1403 (1981)

References 393

485. Wong, F.J., Takahashi, S.: Flow-based automatic generation of hybrid picture mazes. Com-
put. Graph. Forum 28(7), 1975–1984 (2009)

486. Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with vari-
able levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011)

487. Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.2, 3rd edn. Addison-Wesley, Reading (1999)

488. Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin, D.H.: Multiperspective
panoramas for cel animation. In: Proc. SIGGRAPH, pp. 243–250 (1997)

489. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and
Formulae. Wiley-Interscience, New York (1982)

490. Wyvill, B., van Overveld, K., Carpendale, S.: Rendering cracks in batik. In: Proc. NPAR,
pp. 61–149 (2004)

491. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvilinear feature
alignment. ACM Trans. Graph. 28(5), 115 (2009)

492. Xie, N., Laga, H., Saito, S., Nakajima, M.: IR2s: interactive real photo to Sumi-e. In: Proc.
NPAR, pp. 63–71 (2010)

493. Xie, N., Laga, H., Saito, S., Nakajima, M.: Contour-driven Sumi-e rendering of real photos.
Comput. Graph. 35(1), 122–134 (2011)

494. Xing, Q., Akleman, E., Taubin, G., Chen, J.: Surface covering curves. In: Workshop on Com-
putational Aesthetics, pp. 107–114 (2012)

495. Xu, J., Kaplan, C.S.: Calligraphic packing. In: Proc. Graphics Interface, pp. 43–50 (2007)
496. Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 29 (2007)
497. Xu, J., Kaplan, C.S.: Vortex maze construction. J. Math. Arts 1(1), 7–20 (2007)
498. Xu, J., Kaplan, C.S.: Artistic thresholding. In: Proc. NPAR, pp. 39–47 (2008)
499. Xu, Z., Luo, J.: Accurate dynamic sketching of faces from video. In: Proc. CVPR (2007)
500. Xu, C., Prince, L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process.

7(3), 359–369 (1998)
501. Xu, S., Tang, M., Lau, F., Pan, Y.: Virtual hairy brush for painterly rendering. Graph. Models

66(5), 263–302 (2004)
502. Xu, Z., Chen, H., Zhu, S.-C.: A high resolution grammatical model for face representation

and sketching. In: Proc. CVPR, pp. 470–477 (2005)
503. Xu, S., Tan, H., Jiao, X., Lau, F.C.M., Pan, Y.: A generic pigment model for digital painting.

Comput. Graph. Forum 26(3), 609–618 (2007)
504. Xu, Z., Chen, H., Zhu, S.C., Luo, J.: A hierarchical compositional model for face represen-

tation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)
505. Xu, X., Zhang, L., Wong, T.-T.: Structure-based ASCII art. ACM Trans. Graph. 29(4), 52

(2010)
506. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans.

Graph. 30(6), 174 (2011)
507. Yantis, S., Jonides, J.: Abrupt visual onsets and selective attention: evidence from visual

search. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 601–621 (1984)
508. Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)
509. Young, R.A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spat.

Vis. 2(4), 273–293 (1987)
510. Yu, J., McMillan, L.: A framework for multiperspective rendering. In: Proc. EG Symposium

on Rendering, pp. 61–68 (2004)
511. Zeki, S.: Inner Vision: An Exploration of Art and the Brain. Oxford University Press, London

(2000)
512. Zeki, S.: Splendors and Miseries of the Brain: Love, Creativity, and the Quest for Human

Happiness, 5th edn. Wiley-Blackwell, New York (2009)
513. Zeng, K., Zhao, M., Xiong, C., Zhu, S.-C.: From image parsing to painterly rendering. ACM

Trans. Graph. 29(1), 2 (2009)
514. Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Trans. Graph.

25(4), 1294–1326 (2006)

394 References

515. Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces.
IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007)

516. Zhang, S.-H., Li, X.-Y., Hu, S.-M., Martin, R.R.: Online video stream abstraction and styl-
ization. IEEE Trans. Multimed. 13(6), 1286–1294 (2011)

517. Zhao, M., Zhu, S.-C.: Sisley the abstract painter. In: Proc. NPAR, pp. 99–107 (2010)
518. Zhao, M., Zhu, S.-C.: Customizing painterly rendering styles using stroke processes. In:

Proc. NPAR, pp. 137–146 (2011)
519. Zhao, M., Zhu, S.-C.: Portrait painting using active templates. In: Proc. NPAR, pp. 117–124

(2011)

Index

A
Active appearance model, 248, 252
Active shape model, 240, 242, 246, 252
Active template, 248
Ancient Mosaic, 190
Ancient Mosaics, 193
And–or graph, 243, 244, 246, 252
Anisotropic diffusion, 94
Architecture, 365

B
Bézier curve, 246
Bilateral filter, 79

flow-based, 81
orientation-aligned, 81
xy-separable, 81

C
CAD, 365, 366
Cartoon, 357

backgrounds, 362
coherence, 361
extended shading, 360, 362
image-based, 361
interactive rendering, 358
shading, 360
ToonPAINT, 368

Cartoon pipeline, 88
CEF, see coherence-enhancing filtering
Characteristic point, see feature point
Closing, 92
Coherence-enhancing filtering, 98
Color space

chrominance, 239
luma, 239
YIQ, 239

Computer games, 357, 364
Crystallization Mosaic, 190

D
Deblurring, 96
Difference of Gaussians, 84

flow-based, 86
XDoG, 84

Dijkstra’s algorithm, 58
Dilation, 92
Distance transforms, 92
DoG, see difference of Gaussians

E
Edge enhancement, 77
Edge tangent flow, 82
Edge-preserving filtering, 77
Eigen transform, 245, 246
Entertainment, 357
Erosion, 92
ETF, see edge tangent flow
Evaluation, 311, 333

critique, 320
ethnographic, 326
methodologies, 312
NPR Turing test, 311, 323, 327, 333, 335,

346
observational study, 326
psychophysical study, 316, 319, 320, 322
qualitative, 312, 319, 320, 326
quantitative, 312
questions to ask, 311, 327

Exaggeration, 250, 252
Example-based, 241, 242, 245, 252

F
FDoG, see flow-based DoG
Feature point, 239
Fiducial point, see feature point

P. Rosin, J. Collomosse (eds.), Image and Video-Based Artistic Stylisation,
Computational Imaging and Vision 42, DOI 10.1007/978-1-4471-4519-6,
© Springer-Verlag London 2013

395

http://dx.doi.org/10.1007/978-1-4471-4519-6

396 Index

G
G-Buffers, 358, 364
Gabor wavelet, 238
Geodesic distance transform, 92
GGDT, see geodesic distance transform
Glass patterns, 92
GPU, 358, 364
Gradient domain, 98
Grand challenges of NPR, 311

H
Halftoning, 356

digital, 45
dithering, 49
error diffusion, 47
Floyd–Steinberg error diffusion, 47
screening, 45, 49, 60
threshold quantization, 46

Hatching, 103, 355, 356
Hedcut, 356
Hierarchical, 243, 246, 252
Holistic, 239

I
IB-AR, 77
Image analysis and synthesis, 238
Image and video processing, 103
Integral convolution, 92

K
Kuwahara filter

anisotropic, 90
classical, 88
generalized, 89
multi-scale, 91
polynomial, 90

L
Landmark point, see feature point
Landmark points, see feature points
Laplacian of Gaussian, 84
LIC, see line integral convolution
Line integral convolution, 82, 86
LoG, see Laplacian of Gaussian

M
Mathematical morphology, 92

closing, 92
dilation, 92
erosion, 92
opening, 92

Maximum principle, 95
MCF, see mean curvature flow

constrained, 97

Mean curvature flow, 96
constrained, 96

Mesh, 245, 246, 252
MM, see mathematical morphology
Mooney image, 246
Morphological smoothing, 92
Mosaic, 55
Movies

animations, 361
Futurama, 362
Pokémon, 362
What Dreams May Come, 363

Multi-style painter rendering, 103

N
Non-photorealistic rendering, 103
Nonlinear filter, 77
NPR, 238, 245, 246

art creation tools, 354
assistive technologies, 354
automation, 371
caricature, 250
casual creativity, 370
in the wild, 353
oil-painting, 248
paper-cut, 246
restrictive definition, 353
sketch, 239
style reproduction, 354
user-assisted, 371
visualization, 365

NPR Turing test, 311, 323, 327, 333, 335, 346

O
Opening, 92
Oriental painting, 103

P
Painterly rendering, 103, 363
Parse graph, 244
Part-based, 239, 241
Partial differential equation, 93
PCA, 238
PDE, see partial differential equation
Photo Mosaic, 190
Poisson’s equation, 98
Portraiture, 237

computerized simulation, 238
Principles of portraiture

aesthetic, 237, 239, 242, 244, 246, 250, 252
likeness, 237, 239, 242–244, 246, 250, 252
trade-off, 246, 250–252

Index 397

Printing, 354, 356
Production, 354
Puzzle Image Mosaic, 190

R
Randomness, 361

S
Scientific illustration, 49, 60, 319

data-driven, 60
Scientific visualization, 333

illustrative visualization, 60, 311, 319
Semantic, 241
Shock filter, 95, 96
Smoothed structure tensor, 82
Software

Deep Canvas, 363
Mobile, 368
MotionPaint, 363
PaletteCAD, 367
Piranesi, 366
SketchUp, 367
ToonPAINT, 368

SST, see smoothed structure tensor
Stippling, 49, 355, 356

arbitrary objects, 53
centroidal Voronoi tessellation, 50
example-based, 56
example-based distributions, 56
example-based stipple dots, 56, 57
hedcut, 356

hedcut illustrations, 58
high-level processing, 58
Lloyd’s method, 50
scale-dependent, 57
structure-aware, 58
Voronoi tessellation, 50
weighted centroidal Voronoi tessellation,

51

T
Temporal coherence, 358, 361, 363
Thin plate spline, 248
Turing test, 311, 323, 327, 333, 335, 346

U
Unsharp masking, 95

V
Vector and tensor field design, 103

W
Wall Street Journal, 356
Watercolor, 92
Watercolorization, 103
Weighted least squares, 98
WOG pipeline, 88
Woodcut, 355

X
XDoG, 84

	Image and Video-Based Artistic Stylisation
	Preface
	Acknowledgements
	Contents
	Contributors

	Part I: Strokes, Marks and Filters for Artistic Stylization
	Chapter 1: Stroke Based Painterly Rendering
	1.1 Introduction
	1.2 Iterative Approaches to Automatic Painting
	1.2.1 Automated Impressionist Painting
	1.2.2 Painterly Rendering Using Image Moments
	1.2.3 Multi-resolution Painting Using Curved Strokes
	1.2.3.1 Curved Stroke Formation
	1.2.3.2 Coarse to Fine Painting

	1.2.4 Transformations on the Source Image
	1.2.5 Texturing Spline Strokes

	1.3 Global Optimization for SBR
	1.3.1 Paint by Relaxation
	1.3.2 Perceptually Based Painting

	1.4 Creative Control
	1.4.1 Low-Level Control
	1.4.2 Mid-Level Control
	1.4.3 High-Level Control

	1.5 Discussion
	References

	Chapter 2: A Brush Stroke Synthesis Toolbox
	2.1 Introduction
	2.2 The Basic Brush Model
	2.3 Available Technologies
	Output Type
	Algorithm Strategy
	Spline Model
	Brush Head Model
	Solution Method
	Tweening

	2.4 Spline Modeling
	2.4.1 Creating a Spline
	2.4.2 User Control
	2.4.3 Adding Springs
	2.4.4 Adding Collisions

	2.5 Brush Head Modeling
	2.5.1 Interpolation-Based
	2.5.2 Mesh-Based

	2.6 Stroke Rendering
	2.6.1 Stamping
	2.6.2 Sweeping

	2.7 Summary
	References

	Chapter 3: Halftoning and Stippling
	3.1 Halftoning
	3.1.1 Digital Halftoning
	3.1.2 Threshold Quantization

	3.2 Stippling
	3.2.1 Voronoi Tessellations and Lloyd Relaxation
	3.2.2 Weighted Voronoi Tessellations

	3.3 Beyond Stippling
	3.4 Stippling by Example
	3.5 Structure-Aware Stippling
	3.6 Conclusion
	References

	Chapter 4: Non-photorealistic Shading and Hatching
	4.1 Introduction. Shading and Hatching as Essential Visual Cues in Marr's Model
	4.2 Interactive Pen-and-Ink Illustration
	4.3 Copperplate Engraving
	4.4 Multi-color and Artistic Dithering
	4.5 Automated Hedcut Illustration
	4.6 Other Geometry-Based Hatching Techniques
	4.7 Automatic Generation of Distributions of Primitives
	4.8 Discussion
	References

	Chapter 5: Artistic Stylization by Nonlinear Filtering
	5.1 Introduction
	5.2 Bilateral Filter and Difference of Gaussians
	5.2.1 Bilateral Filter
	5.2.2 Difference of Gaussians
	5.2.3 Cartoon Pipeline

	5.3 Kuwahara Filter
	5.4 Morphological Filters
	5.5 PDE-Based Methods
	5.5.1 Anisotropic Diffusion
	5.5.2 Shock Filter
	5.5.3 Mean Curvature Flow

	5.6 Gradient Domain Techniques
	References

	Chapter 6: NPR for Traditional Artistic Genres
	6.1 Introduction
	6.2 Oil Painting
	6.2.1 Rendering
	6.2.2 Brush Stroke Orientation: Representation and Generation
	6.2.3 Multi-style Painterly Rendering

	6.3 Watercolorization
	6.3.1 Physically-Driven Models
	6.3.2 Other Approaches
	6.3.3 Oriental Watercolors

	6.4 Line Drawing
	6.4.1 Streamline Placement
	6.4.1.1 Textures

	6.4.2 Orientation Field Representation for Hatching

	6.5 Conclusions
	References

	Part II: Stylization from Structure
	Chapter 7: Region-Based Abstraction
	7.1 Introduction
	7.1.1 Generic Process for Region-Based Stylization
	7.1.2 Regions in Art
	7.1.3 Uses of Regions
	7.1.3.1 Regions as Structure
	7.1.3.2 Regions as Primitives

	7.2 Algorithmic Building Blocks
	7.2.1 Segmentation
	7.2.2 Boundary Smoothing

	7.3 Review of Speciﬁc Works
	7.3.1 Filling Regions
	7.3.2 Textured Regions
	7.3.3 Video
	7.3.4 Region Boundary Manipulation

	7.4 Future Directions
	References

	Chapter 8: Gradient Art: Creation and Vectorization
	8.1 Introduction
	8.2 Gradient Primitives
	8.2.1 Elemental Gradients
	8.2.2 Gradient Meshes
	8.2.3 Gradient Extrema

	8.3 Construction Techniques
	8.3.1 Manual Creation
	8.3.2 Automatic Conversion

	8.4 Rendering Algorithms
	8.4.1 Closed-Form Methods
	8.4.2 Optimization-Based Methods
	8.4.3 Hybrid Methods

	8.5 Discussion
	References

	Chapter 9: Depiction Using Geometric Constraints
	9.1 Introduction
	9.2 Continuous Line Drawing
	9.2.1 The Travelling Salesman Problem
	9.2.2 Evolving Labyrinthine Paths
	9.2.3 Discussion

	9.3 Drawing with Trees
	9.3.1 Drawing with Minimum Spanning Trees
	9.3.2 Growing a Tree via Path Planning

	9.4 Mazes
	9.4.1 Grid Mazes
	9.4.2 Mazes from Generalized Cell Graphs
	9.4.3 Mazes from Reaction-Diffusion Patterns

	9.5 Summary
	9.6 Notes
	References

	Chapter 10: Artiﬁcial Mosaic Generation
	10.1 Introduction
	10.2 Digital Mosaic Generation
	Crystallization Mosaic
	Ancient Mosaic
	Photo-Mosaic
	Puzzle Image Mosaic

	10.3 Artiﬁcial Mosaics Resembling Ancient Mosaics
	10.4 Discussions
	10.4.1 Tile Orientation
	10.4.2 Tile Size
	10.4.3 Tile Shape

	10.5 Conclusions
	References

	Chapter 11: Non-photorealistic Rendering with Reduced Colour Palettes
	11.1 Introduction
	11.2 Binary Palettes
	11.3 Palettes with Fixed Number of Tones
	11.4 Palettes with Variable Number of Tones
	11.4.1 Stylisation Using Segmentation
	11.4.2 Tone and Region Manipulation
	11.4.3 Temporally Coherent Stylisation Using Segmentation
	11.4.4 Abstraction Using Filtering
	11.4.5 Reduced Tone Rendering Using Optimisation

	11.5 Pre-processing
	11.6 Conclusions
	References

	Chapter 12: Artistic Rendering of Portraits
	12.1 Introduction
	12.2 Sketch
	12.2.1 Holistic Models
	12.2.2 Part-Based Models
	12.2.2.1 Flat Model
	12.2.2.2 Hierarchical Model

	12.2.3 Sketching the Facial Surface

	12.3 Paper-Cut
	12.4 Oil-Painting
	12.5 Caricature
	12.6 Summary
	References

	Part III: Stylized Animations
	Chapter 13: Temporally Coherent Video Stylization
	13.1 Introduction
	13.1.1 Temporal Coherence
	13.1.2 Problem Statement: Coherent Stylization

	13.2 Temporally Local Filtering
	13.3 Optical Flow Based Stylization
	13.3.1 Mark-Based Methods
	13.3.1.1 Impressionist Painterly Rendering
	13.3.1.2 Stroke Propagation
	13.3.1.3 Dynamic Distributions
	13.3.1.4 Frame Differencing for Interactive Painting
	13.3.1.5 Multi-scale Video Stylization with Curved Strokes

	13.3.2 Texture-Based Methods
	13.3.2.1 Bi-directional Flow
	13.3.2.2 Coherent Shape Abstraction

	13.4 Video Segmentation for Stylization
	13.4.1 Coherent Video Segmentation
	13.4.1.1 Video Tooning
	13.4.1.2 Stroke Surfaces
	13.4.1.3 Region Tracking

	13.4.2 Rotoscoping Regions
	13.4.2.1 Rigid motion
	13.4.2.2 Smooth Deformation
	13.4.2.3 Spring-Based Dampening

	13.4.3 Rotoscoping Boundaries for Stylized Lines
	13.4.4 Painterly Rotoscoping Environments

	13.5 Segmentation for Motion Stylization
	13.6 Discussion and Conclusion
	References

	Chapter 14: Computer-Assisted Repurposing of Existing Animations
	14.1 Introduction
	14.2 Segmentation
	14.2.1 Problem Formulation
	14.2.1.1 Energy Function
	14.2.1.2 Smoothness Term
	14.2.1.3 Data Term

	14.2.2 Problem Solution

	14.3 Adding Depth
	14.3.1 Depth from Depth Inequalities
	14.3.2 Outline-to-Region Assignment
	14.3.3 Smooth Depth Transitions

	14.4 Deformation
	14.4.1 Rigid Square Matching
	14.4.1.1 Algorithm

	14.4.2 As-Rigid-As-Possible Image Registration

	14.5 Applications
	14.5.1 Painting, Colorization and Texture Mapping
	14.5.2 Simulation of 3D-Like Effects
	14.5.2.1 Ambient Occlusion
	14.5.2.2 Shading
	14.5.2.3 Texture Rounding
	14.5.2.4 Approximate 3D Model and Stereo

	14.5.3 Shape Manipulation and Example-Based Synthesis

	References

	Part IV: Evaluation and Impact of Artistic Stylization
	Chapter 15: Evaluating and Validating Non-photorealistic and Illustrative Rendering
	15.1 Introduction
	15.2 Providing a General Motivation for NPR
	15.3 Understanding How NPR Supports a Speciﬁc Purpose
	15.3.1 Perception of NPR Textures
	15.3.2 Evaluation of Illustrative Visualizations
	15.3.3 Perception of NPR in the Context of VR/AR and Immersion

	15.4 Comparing Hand-Made Images with Computer-Generated Non-photorealistic Rendering
	15.5 Conclusion
	Appendix: Data Resources
	References

	Chapter 16: Don't Measure-Appreciate! NPR Seen Through the Prism of Art History
	16.1 Introduction
	16.2 The Unsuitability of the Turing Test and the Impossibility of Absolute Aesthetic Measure
	16.3 Understanding NPR as Art
	16.3.1 Internal Norms
	16.3.2 Cross Cultural Comparisons

	16.4 The How, Where, and What of NPR
	16.4.1 How: Mark Making and Media Emulation
	16.4.2 Where: A Salient Question for NPR
	16.4.3 What: Steps Towards Abstraction and Meaning
	16.4.4 NPR As Perceptually Acceptable Photorealism

	16.5 Conclusion
	References

	Chapter 17: NPR in the Wild
	17.1 Introduction
	17.2 Production Tools
	17.2.1 Artistic Styles in Printing
	17.2.2 Stippling-The Story of a Virtuous Cycle

	17.3 Entertainment
	17.3.1 Cartooning
	Early Beginnings
	Interactive Rendering
	Cartoon Shading
	Style Extensions
	Randomness
	Consistency
	Image-based Cartooning

	17.3.2 Entertainment Applications
	17.3.2.1 Movies
	Painterly Rendering

	17.3.2.2 Games

	17.4 Visualization & Presentation
	17.4.1 Examples
	Piranesi
	PaletteCAD
	SketchUp

	17.5 A Case Study: Mobile NPR
	17.5.1 Cartooning with ToonPAINT
	Opportunities & Challenges
	The Audience
	Presets and Robustness
	Outcomes

	17.6 Discussion-NPR and Casual Creativity
	17.6.1 A Challenge: User-Centric NPR

	References

	Erratum to: Artistic Rendering of Portraits
	References
	Index

