
Chapter 6
The Kinematics of 3-D Cable-Towing Systems

Qimi Jiang and Vijay Kumar

6.1 Introduction

Helicopters are used to transport payloads suspended via cables to hard-to-access
environments in emergency response, construction, mining and military operations
[1, 6, 20]. The dynamics and stability of aerial towed-cable-body systems are dis-
cussed in [20] and the trajectory control for a payload suspended from a cable from
a helicopter is analyzed in [14]. In this chapter, we are interested in the mechanics
of payloads suspended by multiple cables in three dimensions. The case with six
cables with stationary anchors is addressed in the literature on cable-actuated plat-
forms [5, 19]. Indeed the kinematic analysis has much in common with the analysis
of cable-actuated parallel manipulators in three dimensions [2, 4, 5]. However, the
key difference is that the payload pose in our case is determined by the robots’
positions and the payload pose in parallel mechanisms is realized by changing the
lengths of multiple cables.

When the number of cables is reduced from six to five, the conditions for equi-
librium become more interesting. If the line vectors are linearly independent and the
cables are taut, the line vectors and the gravity wrench axis must belong to the same
linear complex [7]. The payload is free to instantaneously twist about the reciprocal
screw axis. With four cables, under similar assumptions on linear independence and
positive tension, the line vectors and the gravity wrench must belong to the same
linear congruence. The unconstrained freedoms correspond (instantaneously) to a
set of twists whose axes lie on a cylindroid. In the three-cable case, all three cables
and the gravity wrench axis must lie on the same regulus—the generators of a hyper-
boloid which is a ruled surface [16]. Of course, in all of these cases there are special
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Fig. 6.1 3-D towing of a
triangular payload with three
aerial robots [13]

configurations in which the screw systems assume special forms [7]. The arguments
for the single cable and the two cable cases are similar, but in these cases, the cables
and the center of mass must lie on the same vertical plane for equilibrium.

In this chapter, we address the manipulation and transportation of a payload sus-
pended from aerial robots via cables. In previous work [3, 13]1 (also see Fig. 6.1)
we formulated the dynamics, control and planning problems for such systems. In
this chapter, we present an overview of the kinematics of 3-D aerial manipulation.
We are interested in (a) the inverse kinematics problem, the problem of determining
the positions of the aerial robots to which the cables are attached given the de-
sired position and orientation of the payload suspended by cables; and (b) the direct
kinematics problem, the problem of determining the position and orientation of the
suspended payload for a given position of the aerial robots.

In Sect. 6.2, we formulate the conditions for static equilibrium and the geometric
constraints that are at the heart of this analysis. In Sect. 6.3, we address the direct
kinematics problem where we will limit ourselves to the case with vertical planes of
symmetry. We show how to solve the inverse kinematics using dialytic elimination
in Sect. 6.4. In Sect. 6.5 we discuss constraints on solutions imposed by limitations
on cable tensions. Finally, we conclude the chapter with a few remarks about open
problems in Sect. 6.7.

6.2 The Conditions of Equilibrium and Constraint

In Fig. 6.2 we show the general case of a payload suspended by cables from n

aerial robots. Suppose that the position of robot Qi in the inertial frame is qi =
[xqi, yqi, zqi]T . The positions of the attachment point Pi in the inertial and body-

1Taken from [3], reprinted with kind permission © Sage 2012.
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Fig. 6.2 A payload
suspended in three
dimensions by multiple aerial
robots

fixed frames are pi = [xpi, ypi, zpi]T and p̃i = [x̃pi , ỹpi, z̃pi]T respectively. The
positions of the center of mass of the payload in the inertial and body-fixed frames
are r = [x, y, z]T and r̃ = [x̃, ỹ, z̃]T respectively. If the length of cable i is given by
li , the unit wrench of cable i with respect to the origin O of the inertial frame can
be given as

wi = 1

li

[
qi − pi

pi × qi

]
. (6.1)

The wrench caused by the weight of the payload with respect to the origin O is

G = −mg

[
e3

r × e3

]
, (6.2)

where mg is the weight of the payload and e3 is the unit vector [0,0,1]T . If the
tension of cable i is given by Ti , the static equilibrium condition of the payload can
be given as

[w1 w2 . . . wn]
⎡
⎢⎣

T1
T2
...Tn

⎤
⎥⎦ + G = 0. (6.3)

Also, the cable lengths should satisfy the following geometric constraints:

‖qi − pi‖ = li (i = 1,2, . . . , n). (6.4)

6.3 Direct Kinematics

This section addresses the direct kinematics problem which can be described as
follows [10, 11]: Given the positions of the aerial robots, find the possible positions
and orientations of the payload, that satisfy (6.3) and (6.4).



164 Q. Jiang and V. Kumar

Fig. 6.3 Four-bar linkage
(payload suspended from two
robots)

The general case with three robots was formulated in [11]. The resulting set
of equations is quite unwieldy and does not lend itself to a closed form solution.
For simplicity, we address the direct kinematics problem for the symmetric case
here. The payload is a regular polygon suspended from n identical cables and we
consider the case where the n robots form a regular polygon on a horizontal plane.
The motion of such a 3-D cable system has several vertical planes of symmetry.
In each plane the motion can be described in terms of the motion of an equivalent
planar 4-bar linkage. Hence, an analytic algorithm based on resultant elimination
can be used to determine all possible equilibrium configurations of the planar 4-bar
linkage, which then offers a basis for solving the direct kinematics problem of the
3-D cable system with symmetric geometry.

We start with the planar abstraction which takes the form of a four bar linkage in
Fig. 6.3, in which we assume Q1 and Q2, the two robots, are on the same horizontal
plane. The lengths of the four bars are |Q1Q2| = l0, |P1Q1| = l1, |P2Q2| = l2, and
|P1P2| = ld respectively. The center of mass of the payload, the coupler P1P2, is C

and |P1C| = lc. Also, the masses of the cables (the input and output bars) can be
neglected. If Q1 is chosen as the origin O and Q1Q2 as the x axis of the frame, the
coordinates of P1 and P2 can be respectively given as

p1 = q1 + l1[cosα1, sinα1]T = q1 + l1[x1, z1]T ,

p2 = q2 + l2[cosα2, sinα2]T = q2 + l2[x2, z2]T ,
(6.5)

where

x2
1 + z2

1 = 1,

x2
2 + z2

2 = 1.
(6.6)

Referring to (6.3), the equilibrium condition for the planar 4-bar linkage can be
given as

x1T1 + x2T2 = 0,

z1T1 + z2T2 + mg = 0, (6.7)

l0ldz2T2 + mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

] = 0.

From the third equation of (6.7), one gets

T2 = −mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

]
/(l0ldz2). (6.8)
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Substituting T2 into the first equation of (6.7), one gets

T1 = −mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

]
x2/(l0ldx1z2). (6.9)

Then, substituting T1 and T2 into the second equation of (6.7), one gets

[
l1(lc − ld )x1x2 − l2lcx

2
2 − l0lcx2

]
z1

− [l1(lc − ld )x2
1 − l2lcx1x2 + l0(ld − lc)x1)z2 = 0. (6.10)

Also, the coordinates of P1 and P2 should satisfy the geometric constraint |P1P2| =
ld , hence

l1l2z1z2 + l1l2x1x2 + l0(l1x1 − l2x2) + g0 = 0, (6.11)

where

g0 = [
l2
d − l2

0 − l2
1

(
x2

1 + z2
1

) − l2
2

(
x2

2 + z2
2

)]
/2. (6.12)

From the trigonometric identities given by (6.6), it is clear that g is a constant.
Now, we have four equations consisting of (6.6), (6.10) and (6.11) in four unknowns
(x1, z1, x2, z2). In order to solve this nonlinear system, elimination algorithms are
used. From (6.11), one gets

z2 = −[
l1l2x1x2 + l0(l1x1 − l2x2) + g

]
/(l1l2z1). (6.13)

Substituting (6.13) into (6.10) and the second equation of (6.6), one gets

[
l2
1 l2(lc − ld )x1x2 − l1l

2
2 lcx

2
2 − l1l2lcl0x2

]
z2

1 + [
l2
1 l2(lc − ld )x2 + l2

1(lc − ld )l0
]
x3

1

+ [
l0l1l2(2ld − 3lc)x2 − l1l

2
2 lcx

2
2

]
x2

1 + l1
[
(ld − lc)l

2
0 + (lc − ld )g

]
x2

1

+ l2
2 lcl0x1x

2
2 + l2

[
(lc − ld )l2

0 − lcg
]
x1x2 + (ld − lc)l0gx1 = 0, (6.14)(

l2
1 l2

2x2
2 + 2l2

1 l2l0x2 + l2
1 l2

0

)
x2

1 − 2l1l
2
2 l0x1x

2
2 + 2l1l2

(
g − l2

0

)
x1x2 + 2l1l0gx1

+ (
l2
1 l2

2x2
2 − l2

1 l2
2

)
z2

1 + l2
2 l2

0x2
2 − 2l2l0bx2 + g2 = 0.

It can be seen that there is only one quadratic term in z1 in every equation of (6.14).
Referring to the first equation of (6.6), z2

1 can be substituted by (1 − x2
1 ). Hence,

(6.14) becomes

l2
{
2l0l1(ld − lc)x

2
1 + [

(lc − ld )
(
l2
0 + l2

1

) − lcg
]
x1 − l1lcl0

}
x2

+ (
l2
2 lcl0x1 − l1l

2
2 lc

)
x2

2 + (ld − lc)
[−l0l

2
1x3

1 + l1
(
l2
0 − g

)
x2

1 + l0gx1
] = 0,

l2
2

(
l2
0 + l2

1 − 2l1l0x1
)
x2

2 + 2l2
[
l2
1 l0x

2
1 + l1

(
g − l2

0

)
x1 − l0g

]
x2

+ (
l2
1 l2

0 + l2
1 l2

2

)
x2

1 + 2l1l0gx1 − l2
1 l2

2 + g2 = 0.

(6.15)
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Table 6.1 Real solutions of the equilibrium problem of the planar 4-bar linkage shown in Fig. 6.4

No. x1 x2 z1 z2 No. x1 x2 z1 z2

1 0.826 0.127 0.564 0.992 9 0.332 −0.777 0.943 0.630

2 0.826 0.127 −0.564 −0.992 10 0.332 −0.777 −0.943 −0.630

3 0.777 −0.332 0.630 0.943 11 0.180 −0.180 0.984 0.984

4 0.777 −0.332 −0.630 −0.943 12 0.180 −0.180 −0.984 −0.984

5 0.620 −0.620 0.785 0.785 13 −1 NA NA NA

6 0.620 −0.620 −0.785 −0.785 14 −1 NA NA NA

7 −0.127 −0.826 0.992 0.564 15 1 2.116 0 NA

8 −0.127 −0.826 −0.992 −0.564 16 1 2.116 0 NA

In order to eliminate x2 from (6.15), the resultant algorithm is used [17]. This
leads to the following 8 degree polynomial equation in x1:

G8x
8
1 +G7x

7
1 +G6x

6
1 +G5x

5
1 +G4x

4
1 +G3x

3
1 +G2x

2
1 +G1x1 +G0 = 0, (6.16)

where G0,G1, . . . ,G8 are constant coefficients.
In principle, up to 8 solutions in x1 can be found from (6.16). For every solu-

tion of x1 substituted into (6.15), one corresponding solution in x2 can be obtained.
Then, up to two solutions of z1 can be obtained by substituting a solution of x1 into
the first equation of (6.6). Finally, a corresponding solution of z2 can be obtained
by (6.13). It seems that the total number of solutions are 16. However, the compu-
tational results show that the maximal number of real solutions is no more than 12,
a result that is consistent with the reasoning in [12]. This point can be demonstrated
by an example for which the geometric parameters are l0 = 4 m, l1 = 5 m, l2 = 5 m,
ld = 2.2 m, lc = 1.1 m, mg = 10 N and the results are listed in Table 6.1.

When x1 = −1, two real solutions (1.800, −1.124) can be obtained for x2 from
the first equation of (6.15). However, no real solutions can be found for x2 from the
second equation of (6.15). When x1 = 1, the corresponding real solutions can be
found for x2 and z1, but no real solutions can be found for z2. In other words, when
x1 = ±1, there is no real solutions for the problem. Hence, the total number of real
solutions of the considered problem is only 12. The corresponding equilibrium con-
figurations are shown in Fig. 6.4 in which the thick solid lines represent the coupler,
the thin solid lines represent the input or output links (cables) with positive tensions,
and the dashed lines represent the input or output links (cables) with negative ten-
sions. Since cable tensions cannot be negative, only the four solutions (Nos. 4, 6, 10
and 12) listed in Table 6.1 make physical sense.

We use the methodology for determining equilibrium configurations of the planar
4-bar linkage to solve the direct kinematics problem of a homogeneous, regular,
polygonal payload suspended by n identical cables with n robots forming a regular,
horizontal polygon. Take the case with six robots as an example. Thus, the six aerial
robots (Q1, Q2, Q3, Q4, Q5, Q6) lie in the same horizontal plane and form a regular
hexagon with side length lq . The attachment points (P1, P2, P3, P4, P5, P6) of the
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Fig. 6.4 Twelve equilibrium
configurations of the planar
4-bar linkage

Table 6.2 Geometric
parameters of equivalent
planar 4-bar linkages for case
with 6 robots

No. l0 l1 l2 ld lc

1 2lq l l 2lp lp

2
√

3lq

√
4l2−(lq−lp)2

2

√
4l2−(lq−lp)2

2

√
3lp

√
3lp
2

Fig. 6.5 A homogeneous,
regular polygonal payload
(P1P2P3P4P5P6) suspended
from six robots Q1, Q2, Q3,
Q4, Q5, and Q6 arranged on
the verticals of a horizontal
regular polygon

payload also form a regular hexagon with side length lp , and the center of mass
of the payload coincides with the centroid of hexagon P1P2P3P4P5P6. Also, the
cables have the same length l.

An equilibrium configuration for this geometry is shown in Fig. 6.5. There are
six vertical planes of symmetry that fall into two classes. In the first class, every
vertical plane of symmetry, e.g., Q1P1P4Q4, passes through the diagonal lines of
regular hexagons Q1Q2Q3Q4Q5Q6 and P1P2P3P4P5P6. In the second class, every
vertical plane of symmetry, e.g., Q7P7P8Q8, passes through the middle points of
the opposite sides of regular hexagons Q1Q2Q3Q4Q5Q6 and P1P2P3P4P5P6. If
the payload swings in one of these six vertical planes of symmetry, it is equivalent
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Fig. 6.6 Four equilibrium configurations of a payload suspended from six robots determined by
the equivalent planar four bar linkage in the plane Q1P1P4Q4

to the motion of a 4-bar linkage in the same plane. The geometric parameters of two
classes equivalent planar 4-bar linkages are listed in Table 6.2.

If l, lq and lp are respectively given by 12 m, 4 m and 1 m, four equilibrium con-
figurations can be determined in every vertical plane of symmetry of the first class
using the corresponding equivalent planar 4-bar linkage. Figure 6.6 shows the four
equilibrium configurations in the vertical plane Q1P1P4Q4. In every configuration
except configuration 1 which coincides with the initial configuration, there are four
cables (P2Q2, P3Q3, P5Q5 and P6Q6) are slack and represented by the dashed
lines.

Also, four equilibrium configurations can be determined in every vertical plane
of symmetry of the second class using the corresponding equivalent planar 4-bar
linkage. Figure 6.7 shows the four equilibrium configurations in the vertical plane
Q7P7P8Q8. In every configuration except configuration 1 which coincides with the
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Fig. 6.7 Four equilibrium configurations of a payload suspended from six robots determined by
the equivalent planar four bar linkage in the plane Q7P7P8Q8

initial configuration, there are two cables (P3Q3 and P6Q6) are slack and repre-
sented by the dashed lines.

However, configurations found by the four-bar linkage abstraction are only a sub-
set of equilibrium configurations. This is easily seen in Fig. 6.8 in which every pair
opposite cables intersects. Hence, the total number of equilibrium configurations for
the case with six robots is at least 20.

In [11], we provide a more exhaustive analysis of such systems by considering
case studies with n = 3, 4, 5, and 6.

6.4 Inverse Kinematics

In this section, we present an efficient analytic algorithm based on Dialytic elimi-
nation to solve this inverse kinematics problem which can be described as follows
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Fig. 6.8 The equilibrium
configuration with six robots
in which every pair of
opposite cables intersect each
other

[8, 9]:2 Given a desired position and orientation of the payload (r,R), find the po-
sitions of the aerial robots (qi , i = 1,2, . . . , n) that satisfy (6.3) and (6.4).

To maintain a desired position and orientation, the payload needs at least three
attachment points. Thus, for the cases with 1 and 2 robots, the inverse kinematics
problem, in general, has no solution. However, for the cases with 3 or more robots,
there are infinitely many solutions, because the number of unknowns is greater than
the sum of the number of equations of static equilibrium and the number of con-
straints.

For the case with three robots, if the tensions Ti (i = 1,2,3) of three cables are
given, there are 9 unknowns (xqi, yqi, zqi , i = 1,2,3) in 9 equations given by (6.3)
and (6.4). Hence, it should be possible to find a finite number of solutions for the
inverse kinematics problem.

From (6.3), one gets

s1x1 + s2x2 + s3x3 = 0,

s1y1 + s2y2 + s3y3 = 0,

s1z1 + s2z2 + s3z3 = mg,

−s6y1 + s5z1 − s9y2 + s8z2 − s12y3 + s11z3 = t1,

s6x1 − s4z1 + s9x2 − s7z2 + s12x3 − s10z3 = t2,

−s5x1 + s4y1 − s8x2 + s7y2 − s11x3 + s10y3 = 0,

(6.17)

where s1, s2, . . . , s12, t1, t2 are constants or functions of Ti (i = 1,2,3), and xi =
xqi − xpi , yi = yqi − ypi and zi = zqi − zpi (i = 1,2,3). From (6.4), one gets

x2
i + y2

i + z2
i = l2

i (i = 1,2,3). (6.18)

2Taken from [8, 9], reprinted with kind permission © ASME 2012.
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Hence, the problem reduces to solving the 9 unknowns (xi, yi, zi , i = 1,2,3)

using the 9 equations given by (6.17) and (6.18). Once xi, yi, zi (i = 1,2,3) are
known, the position coordinates xqi , yqi , zqi ( i = 1,2,3) of the robots can be easily
obtained.

As long as the tensions of the cables are not zero, the six equations in (6.17)
are linear independent in z1, y2, z2, x3, y3, z3. Hence, we can eliminate these six
unknowns from (6.17) and (6.18). From (6.17), one obtains

z1 = t17x1 + t18y1 + t19x2 + t20,

y2 = −(t4x1 + t8y1 + t6x2)/t9,

x3 = −(s1x1 + s2x2)/s3,

y3 = t11x1 + t12y1 + t13x2,

z2 = t21x1 + t22y1 + t23x2 + t24,

(6.19)

where ti are constants for given tensions. Then, substituting (6.19) into (6.18), one
gets

aix
2
1 + biy

2
1 + cix

2
2 + dix1y1 + eiy1x2 + fix2x1 + gix1 + hiy1 + iix2 + ji = 0,

(6.20)
where ai, bi, . . . , ji (i = 1,2,3) are constants for given tensions.

The polynomial system given by (6.20) consists of 3 quadratic equations in x1, y1
and x2. The total degree of this polynomial system is 8. According to Bezout’s
theorem, this system has at most 8 isolated solutions in the complex space.

This section presents an analytic algorithm to address the general case of the
above inverse kinematics problem. The proposed algorithm is based on Roth’s Di-
alytic elimination approach [18]. The three equations given by (6.20) are actually
the general expressions of three quadratic surfaces. To find the solutions of (6.20)
is to find all common intersection points of three quadratic surfaces. In [18], Roth
proposed a Dialytic elimination approach to eliminate two unknowns without in-
creasing the power products and without increasing the degree of the system. The
principle is based on the fact that the derivatives of the determinant of the Jaco-
bian of a system of equations written in terms of homogeneous coordinates have the
same zeros as the original system of equations. Here, Roth’s approach is modified
and used to solve (6.20) for the general case.

Suppose that x2 is suppressed, (6.20) can be written as

aix
2
1 + biy

2
1 + dix1y1 + kix1 + uiy1 + vi = 0, (6.21)

where ki = fix2 + gi , ui = eix2 + hi and vi = cix
2
2 + iix2 + ji (i = 1,2,3).

Now, there are three equations and six power products. Hence, at least three more
equations are needed. Rewriting (6.21) into the form with homogeneous coordinates
by substituting x1 = X/T , y1 = Y/T and then multiplying by T 2, one gets

aiX
2 + biY

2 + diXY + kiXT + uiYT + viT
2 = 0. (6.22)
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If the left-hand side of (6.22) is given by Fi (i = 1,2,3), (6.22) can be re-written as

FiXX + FiY Y + FiT T = 0, (6.23)

where

FiX = ∂Fi

∂X
= 2aiX + diY + kiT ,

FiY = ∂Fi

∂Y
= 2biY + diX + uiT ,

FiT = ∂Fi

∂T
= kiX + uiY + 2viT .

(6.24)

Hence, (6.23) can be re-written in the following matrix form:

JX1 = 0, (6.25)

where X1 = [X,Y,T ]T and J is the Jacobian matrix:

J =
⎡
⎣F1X F1Y F1T

F2X F2Y F2T

F3X F3Y F3T

⎤
⎦ . (6.26)

In order to make X1 to be not a zero vector, the determinant of the above Jacobian
matrix must be zero:

|J| = 0. (6.27)

Thus,

∂|J|
∂X

= 3AX2 + 2BXY + 2CXT + DY 2 + ET 2 + FYT = 0,

∂|J|
∂Y

= BX2 + 2DXY + FXT + 3GY 2 + 2HYT + IT 2 = 0, (6.28)

∂|J|
∂T

= CX2 + 2EXT + FXY + HY 2 + 2IYT + 3JT 2 = 0,

where A,B, . . . ,K are functions of x2. The six equations in (6.22) and (6.28) can
be written in the following matrix form:

MX2 = 0, (6.29)

where X2 = [X2, Y 2,XY,XT ,YT ,T 2]T . In order to make X2 to be not a zero vec-
tor, the determinant of matrix M must be zero. This determinant is an eight-degree
polynomial in x2. The coefficients of this polynomial are functions of the coeffi-
cients of the original three equations. Hence, x2 can be easily solved with Matlab.
For every real root x2 substituted into (6.29), a linear system in (x2

1 , y2
1 , x1y1, x1, y1)

will be available by setting T to 1. Then, a solution of x1 and y1 can be obtained
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Fig. 6.9 Possible workspace
of the tensions (mg is the
weight of the payload)

by solving this linear system. When x1, y1 and x2 are available, the other six un-
knowns (z1, y2, z2, x3, y3, z3) can be calculated with (6.19). When xi , yi and
zi (i = 1,2,3) are available, the position coordinates (xqi, yqi, zqi , i = 1,2,3) of
the robots can be obtained. Theoretically speaking, there are up to eight common in-
tersection points of three quadratic surfaces. The case studies conducted later show
that usually only six or less real solutions can be found by (6.20) for the 3-D cable
towing.

The above algorithm can solve the general inverse kinematics problem. Unfor-
tunately, it fails in the special case with the attachment points lie in the horizontal
plane which is discussed in greater detail in [9].

Referring to Fig. 6.9, in order to address the cooperation in the manipulation task,
it is useful to define the so-called tension ratio. If the payload capacity of robot Qi

is Timax, the tension ratio of cable i can be defined as

cri = Ti/Timax. (6.30)

If all robots were to share the load equally, normalized to their strengths, the tension
ratios cri (i = 1,2,3) should be the same. Otherwise, the robots are not, strictly
speaking, cooperating in a fair way. In the case with three robots, we want cr1 =
cr2 = cr3 = cr , which corresponds to the line EO inside the rectangular cuboid
in Fig. 6.9. E represents the point with the maximal tension ratio cr = 1. At this
point, the tension of every cable reaches the payload capacity of every robot. In this
condition of maximal cooperation, the tensions can be directly obtained from the
tension ratio cr .

For the 3-D cooperative towing with three aerial robots, the body-fixed frame can
be chosen by taking P1 as the origin Õ , P1P2 as the x̃ axis and triangle P1P2P3 as
the Õx̃ỹ plane.

Suppose that the attachment points (P1, P2, P3) of the payload form an arbitrary
triangle. Their coordinates in the body-fixed frame are given by p̃1 = [0,0,0]T m,
p̃2 = [1,0,0]T m and p̃3 = [0.8,0.7,0]T m. The center of mass does not lie in the
plane of triangle P1P2P3. Instead, its position in the body-fixed frame is given by
r̃ = [0.7,0.2,−0.3]T m. The lengths of three cables are l1 = l2 = l3 = 1.5 m. The
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Table 6.3 Solutions for a general payload with cr = 0.9, φ = 25◦, θ = 15◦ and ψ = −5◦

No. 1 2 3 4 5 6

xq1(m) −0.024 −0.590 1.783 1.469 −0.111 −0.456

yq1(m) 1.473 −0.319 0.527 1.294 1.428 1.159

zq1(m) 2.621 1.845 1.738 2.196 2.618 2.560

xq2(m) 2.385 0.650 0.030 1.039 2.548 2.489

yq2(m) 1.453 1.464 0.085 1.656 −0.166 −0.244

zq2(m) 1.790 2.186 1.630 2.195 0.937 0.911

xq3(m) 0.588 2.531 1.293 0.646 0.510 0.821

yq3(m) 0.071 1.405 1.977 0.028 1.522 1.791

zq3(m) 1.979 2.214 2.781 1.944 2.728 2.794

weight of the payload is mg = 100 N. The payload capacities of three robots are
respectively T1max = 60 N, T2max = 70 N and T3max = 80 N. In this very general
case, if the position of the payload is chosen as r = [1,1,1]T m and the tension
ratios are chosen as the same with cr = 0.9 and the desired orientation is given by
(φ = 25◦, θ = 15◦, ψ = −5◦), six solutions for the inverse kinematics problem
can be found and listed in Table 6.3, which corresponds to the four configurations
as shown in Fig. 6.10.

Six sequences of configurations can be obtained by reducing cr from 1 along line
EO in Fig. 6.9. These sequences are shown in Fig. 6.11 in which sequences 1 and 2
correspond to a range of cr ∈ [0.532,1], sequences 3 and 4 correspond to a range of
cr ∈ [0.575,1], and sequences 5 to 6 correspond to a range of cr ∈ [0.9,1]. In other
words, when the tension ratio cr is less than 0.9 and greater than 0.575, the inverse
kinematics problem has only four solutions. When the tension ratio cr is less than
0.575, the inverse kinematics problem has only two solutions. In this general case,
the minimal tension ratio cr = 0.532 can also be obtained numerically using a line
search. Obviously, in the general case, the minimal tension ratio 0.532 is greater
than 0.472 calculated with cr

∑3
i=1 Timax = mg. Also, when cr reaches its minimal

valid value 0.532, the three cables do not lie in vertical positions, see the dashed
lines in Figs. 6.11(a) and (b).

6.5 The Set of Valid Tensions

For a given set of tensions, we can find several equilibrium configurations. However,
the tensions cannot be chosen arbitrarily. The tension of every cable should be in a
range from a positive lower threshold to the payload capacity Timax of the robot,
i.e., Ti ∈ [0, Timax]. In the case with three robots, it would seem that any point in
the rectangular cuboid with side length Timax (i = 1,2,3) as shown in Fig. 6.9 is a
valid choice of tensions. However, this is not true. First, the tensions of three cables
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Fig. 6.10 Configurations for a general payload in a general configuration (r = [1,1,1]T m,
φ = 25◦, θ = 15◦ and ψ = −5◦), with cr = 0.9

should satisfy the following condition:

3∑
i=1

Ti ≥ mg. (6.31)
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Fig. 6.11 Sequences of configurations for a general configuration (r = [1,1,1]T m,
φ = 25◦, θ = 15◦ and ψ = −5◦), with different tension ratios

This condition shows that the possible work point for the tensions should be in the
region above the plane ABC with

∑3
i=1 Ti = mg. However, even in this region, not

every point represents a valid set of tensions. For instance, in general, points on the
boundary FGHIJKF are not realistic if a desired orientation is specified.

Accordingly, we determine the tension workspace, the set of valid tensions. First,
the vertex E in Fig. 6.9 should be a valid point. Otherwise, the tension workspace
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Fig. 6.12 Tension workspace for an equilateral triangle payload with φ = 25◦, θ = 15◦, ψ = −5◦

is the null set. Second, the tension workspace should lie in the half plane above
the plane ABC defined

∑3
i=1 Ti = mg. Hence, it should be closed by three planes,

each perpendicular to one of the axes, and a surface that lies above ABC as shown in
Fig. 6.12. To compute the boundary of this workspace, we start from cr = 1 (which
corresponds to point E in Fig. 6.9) and gradually decrease cr with a small step size,
Δcr , along different rays in the workspace numerically. See Fig. 6.12. More details
are available in [9].

6.6 Stability Analysis

The equilibrium configurations have been obtained from the case studies in both
direct and inverse kinematics analysis. However, we have not discussed the stability
of the equilibrium points. Clearly the payload will not stay in configurations that are
unstable. Thus it is necessary to able to find solutions that are stable.

The obvious approach to analyze the stability is to derive the Hessian matrix of
the system. If all eigenvalues λi (i = 1,2, . . . , n) of the Hessian matrix are strictly
positive, the corresponding equilibrium configuration can be regarded as stable. Oth-
erwise, the configuration is either unstable (one of the eigenvalues is strictly nega-
tive) or requires higher order analysis (all eigenvalues are non negative).

The position and orientation of the payload can be defined by the position r =
[x, y, z]T of its center of mass and the rotation matrix R in which there are three
orientation angles (φ, θ,ψ). Hence, six variable (x, y, z,φ, θ,ψ) can be used to
define the position and orientation of the payload.

6.6.1 Case with Two Cables

In the equilibrium configurations as shown in Figs. 6.6(b), (c) and (d), the payload
is suspended by only two cables. Considering the geometric constraints imposed by
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the two cables, the payload has four degrees of freedom. Hence, only four of the six
variables (x, y, z,φ, θ,ψ) are independent. Referring to the geometric constraints
given by (6.4), the coordinate x can be eliminated and z can be expressed as the
function of (y,φ, θ,ψ), which are used as four independent variables. The potential
energy of the payload can be given by

V = mgz = mgz(y,φ, θ,ψ). (6.32)

Hence, the Hessian matrix can be given as

H = mg

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2z

∂y2
∂2z

∂y∂φ
∂2z

∂y∂θ
∂2z

∂y∂ψ

∂2z
∂φ∂y

∂2z

∂φ2
∂2z

∂φ∂θ
∂2z

∂φ∂ψ

∂2z
∂θ∂y

∂2z
∂θ∂φ

∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂y

∂2z
∂ψ∂φ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6.33)

Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2,
(6.34)

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2,

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

(6.35)

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given as follows:

r11 = cos θ cosψ,

r12 = sinφ sin θ cosψ − cosφ sinψ,

r11 = cosφ sin θ cosψ + sinφ sinψ,

r21 = cos θ sinψ,

r22 = sinφ sin θ sinψ + cosφ cosψ, (6.36)

r23 = cosφ sin θ sinψ − sinφ cosψ,

r31 = − sin θ,
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r32 = sinφ cos θ,

r33 = cosφ cos θ.

Subtracting the first equation of (6.34) from the second equation of (6.34), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1, (6.37)

where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23.
(6.38)

From (6.37), one gets

x = [(
l2
2 − u2

21 − u2
22 − u2

23 − l2
1 + u2

11 + u2
12 + u2

13

)
/2

− (u22 − u12)y − (u23 − u13)z
]
/(u21 − u11). (6.39)

Substituting (6.39) into the first equation of (6.34), one gets

F = F(y, z,u11, . . . , u23) = F(y, z,φ, θ,ψ). (6.40)

So,

∂z

∂y
= −Fy/Fz,

∂z

∂φ
= −Fφ/Fz,

∂z

∂θ
= −Fθ/Fz,

∂z

∂ψ
= −Fψ/Fz.

(6.41)

Therefore,

∂2z

∂y2
= −FyyFz − FyFzy

F 2
z

,
∂2z

∂y∂φ
= −FyφFz − FyFzφ

F 2
z

,

∂2z

∂y∂θ
= −FyθFz − FyFzθ

F 2
z

,
∂2z

∂y∂ψ
= −FyψFz − FyFzψ

F 2
z

,

∂2z

∂φ∂y
= −FφyFz − FφFzy

F 2
z

,
∂2z

∂φ2
= −FφφFz − FφFzφ

F 2
z

,

∂2z

∂φ∂θ
= −FφθFz − FφFzθ

F 2
z

,
∂2z

∂φ∂ψ
= −FφψFz − FφFzψ

F 2
z

,

∂2z

∂θ∂y
= −FθyFz − FθFzy

F 2
z

,
∂2z

∂θ∂φ
= −FθφFz − FθFzφ

F 2
z

,

(6.42)

∂2z

∂θ2
= −FθθFz − FθFzθ

F 2
z

,
∂2z

∂θ∂ψ
= −FθψFz − FθFzψ

F 2
z

,



180 Q. Jiang and V. Kumar

Table 6.4 Eigenvalues of the Hessian matrices of the equilibrium configurations with two cables

Configuration Fig. 6.6(a) Fig. 6.6(b) Fig. 6.6(c) Fig. 6.6(d)

λ1 1.635 0.092 0.091 0.091

λ2 0.344 +0.000 0.000 9.214

λ3 0.086 9.039 −0.150 −0.150

λ4 +0.000 −0.367 −0.153 −0.153

∂2z

∂ψ∂y
= −FψyFz − FψFzy

F 2
z

,
∂2z

∂ψ∂φ
= −FψφFz − FψFzφ

F 2
z

,

∂2z

∂ψ∂θ
= −FψθFz − FψFzθ

F 2
z

,
∂2z

∂ψ2
= −FψψFz − FψFzψ

F 2
z

.

If F is directly expressed as the function of (y, z,φ, θ,ψ), the expression of F

is so complicated that standard symbolic manipulation packages cannot handle the
derivation. Hence, all derivatives (Fy , Fz, Fφ , Fθ , Fψ , Fzy , Fzφ , Fzθ , Fzψ , Fyy , Fyφ ,
Fyθ , Fyψ , Fφy , Fφφ , Fφθ , Fφψ , Fθy , Fθφ , Fθθ , Fθψ , Fψy , Fψφ , Fψθ , Fψψ ) of F

with respect to (y, z,φ, θ,ψ) have to be computed individually and pieced together
using the chain rule. Even so, the expressions of some second order derivatives are
still very complicated. Substituting (6.42) into (6.33), the Hessian matrix is obtained
and the eigenvalues of the Hessian matrix are determined.

Now the above developed approach is used to analyze the stability of the equilib-
rium configurations as shown in Fig. 6.6. Although the configuration of the payload
as shown Fig. 6.6(a) coincides with its initial configuration as shown in Fig. 6.5,
this configuration is obtained by supposing that the payload is suspended with two
cables. Hence, the stability analysis of this configuration can be conducted by sup-
posing that the payloads is suspended with only two relevant cables. If this config-
uration under this condition is stable, its corresponding initial configuration should
be more stable.

For every equilibrium configuration as shown in Fig. 6.6, the positions of two
relevant robots and two relevant attachment points and the center of mass as well
as the orientation angles of the payload are know. Substituting all these parameters
into (6.42) and then into (6.33), a Hessian matrix is available. The eigenvalues of
the Hessian matrix can be easily evaluated by the package Matlab.

Table 6.4 lists the eigenvalues of the Hessian matrices of these equilibrium con-
figurations. From this table, it can be seen that the configurations as shown in
Fig. 6.6(a) are stable. But other configurations are unstable.

6.6.2 Case with Three Cables

In the equilibrium configurations as shown in Fig. 6.10, the payload is suspended
by three cables. Considering the geometric constraints imposed by the three ca-



6 The Kinematics of 3-D Cable-Towing Systems 181

bles, the payload has three degrees of freedom. Hence, three of the six variables
(x, y, z,φ, θ,ψ) are independent.

Referring to the geometric constraints given by (6.4), the coordinates (x, y) can
be eliminated and z can be expressed as the function of the orientation angles
(φ, θ,ψ), which are used as three independent variables. The potential energy of
the payload can be given by

V = mgz = mgz(φ, θ,ψ). (6.43)

Hence, the Hessian matrix can be given as

H = mg

⎡
⎢⎢⎢⎣

∂2z

∂φ2
∂2z

∂φ∂θ
∂2z

∂φ∂ψ

∂2z
∂θ∂φ

∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂φ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤
⎥⎥⎥⎦ . (6.44)

Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2, (6.45)

(x + u31)
2 + (y + u32)

2 + (z + u33)
2 = l2

3,

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2, (6.46)

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

u31 = r11(x̃p3 − x̃) + r12(ỹp3 − ỹ) + r13(z̃p3 − z̃) − xq3,

u32 = r21(x̃p3 − x̃) + r22(ỹp3 − ỹ) + r23(z̃p3 − z̃) − yq3,

u33 = r31(x̃p3 − x̃) + r32(ỹp3 − ỹ) + r33(z̃p3 − z̃) − zq3,

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given by (6.36).
Respectively subtracting the first equation of (6.45) from the second and the third
equations of (6.45), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1,

2(u31 − u11)x + 2(u32 − u12)y + 2(u33 − u13)z = U3 − U1,
(6.47)
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where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23, (6.48)

U3 = l2
3 − u2

31 − u2
32 − u2

33.

From (6.47), one gets

x = −u32u23 + u32u13 + u12u23 + u22u33 − u22u13 − u12u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

+ u32U2 − u32U1 − u12U2 − u22U3 + u22U1 + u12U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
,

y = u31u23 − u31u13 − u11u23 − u21u33 + u21u13 + u11u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

− u31U2 − u31U1 − u11U2 − u21U3 + u21U1 + u11U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
.

(6.49)

Substituting (6.49) into the first equation of (6.45), one gets

F(z,u11, . . . , u33) = F(z,φ, θ,ψ) = 0. (6.50)

So,

∂z

∂φ
= −Fφ/Fz,

∂z

∂θ
= −Fθ/Fz,

∂z

∂ψ
= −Fψ/Fz. (6.51)

Hence,

∂2z

∂φ2
= −FφφFz − FφFzφ

F 2
z

,

∂2z

∂φ∂θ
= −FφθFz − FφFzθ

F 2
z

,

∂2z

∂φ∂ψ
= −FφψFz − FφFzψ

F 2
z

,

∂2z

∂θ∂φ
= −FθφFz − FθFzφ

F 2
z

,

∂2z

∂θ2
= −FθθFz − FθFzθ

F 2
z

, (6.52)
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Table 6.5 Eigenvalues of
Hessian matrices of the
equilibrium configurations in
Fig. 6.10

No. 1 2 3 4 5 6

λ1 2.789 1.345 1.101 0.625 11.001 29.549

λ2 0.495 0.729 0.428 0.080 0.823 0.844

λ3 0.009 0.196 0.043 −0.350 0.450 0.689

∂2z

∂θ∂ψ
= −FθψFz − FθFzψ

F 2
z

,

∂2z

∂ψ∂φ
= −FψφFz − FψFzφ

F 2
z

,

∂2z

∂ψ∂θ
= −FψθFz − FψFzθ

F 2
z

,

∂2z

∂ψ2
= −FψψFz − FψFzψ

F 2
z

.

Equation (6.50) shows that F is a function of (z,φ, θ,ψ). Its derivatives with
respect to (z,φ, θ,ψ) can be derived using the chain rule. Substituting (6.52) into
(6.44), we can obtain a Hessian matrix which can be used to analyze the stability of
the equilibrium configurations. For every equilibrium configuration, the positions of
three relevant robots and three relevant attachment points and the center of mass as
well as the orientation angles of the payload are know. Substituting all these param-
eters into (6.52) and then into (6.44), a Hessian matrix is available. The eigenvalues
of the Hessian matrix can be easily evaluated by the package Matlab.

Table 6.5 lists the eigenvalues of the Hessian matrices of the six equilibrium con-
figurations as shown in Fig. 6.10. From this table, it can be seen that configurations
1, 2, 3, 5 and 6 are stable. Only configuration 4 is unstable.

6.6.3 Case with Four Cables

In the equilibrium configurations as shown in Figs. 6.7(b), (c) and (d), the payload
is suspended by four cables. Considering the geometric constraints imposed by the
four cables, the payload has two degrees of freedom. Hence, only two of the six vari-
ables (x, y, z,φ, θ,ψ) are independent. If (θ,ψ) are used as the two independent
variables, the Hessian matrix can be given by

H = mg

⎡
⎣ ∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤
⎦ . (6.53)
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Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2,

(x + u31)
2 + (y + u32)

2 + (z + u33)
2 = l2

3,

(x + u41)
2 + (y + u42)

2 + (z + u43)
2 = l2

4,

(6.54)

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2,

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

u31 = r11(x̃p3 − x̃) + r12(ỹp3 − ỹ) + r13(z̃p3 − z̃) − xq3,

u32 = r21(x̃p3 − x̃) + r22(ỹp3 − ỹ) + r23(z̃p3 − z̃) − yq3,

u33 = r31(x̃p3 − x̃) + r32(ỹp3 − ỹ) + r33(z̃p3 − z̃) − zq3,

u41 = r11(x̃p4 − x̃) + r12(ỹp4 − ỹ) + r13(z̃p4 − z̃) − xq4,

u42 = r21(x̃p4 − x̃) + r22(ỹp4 − ỹ) + r23(z̃p4 − z̃) − yq4,

u43 = r31(x̃p4 − x̃) + r32(ỹp4 − ỹ) + r33(z̃p4 − z̃) − zq4,

(6.55)

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given by (6.36).
From (6.54), one gets

x2 + 2u11x + y2 + 2u12y + z2 + 2u13z = U1,

x2 + 2u21x + y2 + 2u22y + z2 + 2u23z = U2,

x2 + 2u31x + y2 + 2u32y + z2 + 2u33z = U3,

x2 + 2u41x + y2 + 2u42y + z2 + 2u43z = U4,

(6.56)

where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23,

U3 = l2
3 − u2

31 − u2
32 − u2

33,

U4 = l2
4 − u2

41 − u2
42 − u2

43.

(6.57)
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From the first three equations of (6.56), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1,

2(u31 − u11)x + 2(u32 − u12)y + 2(u33 − u13)z = U3 − U1.
(6.58)

Hence,

x = −u32u23 + u32u13 + u12u23 + u22u33 − u22u13 − u12u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

+ u32U2 − u32U1 − u12U2 − u22U3 + u22U1 + u12U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
,

y = u31u23 − u31u13 − u11u23 − u21u33 + u21u13 + u11u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

− u31U2 − u31U1 − u11U2 − u21U3 + u21U1 + u11U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
.

(6.59)

Substitute (6.59) into the first and the fourth equations of (6.56), one gets

F(z,u11, . . . , u43) = F(z,φ, θ,ψ) = 0,

G(z,u11, . . . , u43) = G(z,φ, θ,ψ) = 0.
(6.60)

From (6.60), one gets

∂z

∂θ
= (FφGθ − FθGφ)/(FzGφ − FφGz),

∂z

∂ψ
= (FφGψ − FψGφ)/(FzGφ − FφGz).

(6.61)

Hence,

∂2z

∂θ2
= [

(FφθGθ + FφGθθ − FθθGφ − FθGφθ )(FzGφ − FφGz)

− (FφGθ − FθGφ)(FzθGφ + FzGφθ − FφθGz − FφGzθ )
]

/(FzGφ − FφGz)
2,

∂2z

∂θ∂ψ
= [

(FφψGθ + FφGθψ − FθψGφ − FθGφψ)(FzGφ − FφGz)

− (FφGθ − FθGφ)(FzψGφ + FzGφψ − FφψGz − FφGzψ)
]

/(FzGφ − FφGz)
2,

∂2z

∂ψ∂θ
= [

(FφθGψ + FφGψθ − FψθGφ − FψGφθ )(FzGφ − FφGz)

− (FφGψ − FψGφ)(FzθGφ + FzGφθ − FφθGz − FφGzθ )
]

/(FzGφ − FφGz)
2, (6.62)
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Table 6.6 Eigenvalues of
Hessian matrices of the
equilibrium configurations in
Fig. 6.7

Configuration 1 2 3 4

λ1 1.549 8.852 0.203 −0.024

λ2 0.159 0.289 −0.499 −0.340

∂2z

∂ψ2
= [

(FφψGψ + FφGψψ − FψψGφ − FψGφψ)(FzGφ − FφGz)

− (FφGψ − FψGφ)(FzψGφ + FzGφψ − FφψGz − FφGzψ)
]

/(FzGφ − FφGz)
2.

Equation (6.60) shows that both F and G are functions of (z,φ, θ,ψ ). Their
derivatives with respect to (z,φ, θ , ψ ) can be derived using the chain rule. Substitut-
ing (6.62) into (6.53), we can obtain a Hessian matrix which can be used to analyze
the stability of the equilibrium configurations as shown in Fig. 6.7. Although the
configuration of the payload as shown in Fig. 6.7(a) coincides with its initial con-
figuration as shown in Fig. 6.5, this configuration is obtained by supposing that the
payload is suspended with four cables. Hence, the stability analysis of this configu-
ration can be conducted by supposing that the payload is suspended with only four
relevant cables. If this configuration under this condition is stable, its corresponding
initial configuration should be more stable.

For every equilibrium configuration, the positions of four relevant robots and four
relevant attachment points and the center of mass as well as the orientation angles
of the payload are know. Substituting all these parameters into (6.62) and then into
(6.53), a Hessian matrix is available. The eigenvalues of the Hessian matrix can be
easily evaluated by the package Matlab.

Table 6.6 lists the eigenvalues of the Hessian matrices of the four equilibrium
configurations as shown in Fig. 6.7. From this table, it can be seen that configura-
tions 1 and 2 are stable. But the other two configurations are unstable.

6.7 Conclusions

Aerial manipulation and transport with multiple aerial robots has many applica-
tions. We derived a mathematical model that captures the kinematic constraints and
conditions of static equilibrium. We showed how to obtain solutions for the direct
kinematics and inverse kinematics, and provided a methodology to analyze the me-
chanics underlying stable equilibria of the underactuated system. The application of
these ideas to multi-quadrotor control and planning are discussed in [3, 13]. Experi-
mental studies of the stability of the system are presented in [11] and conditions for
uniqueness of the direct kinematics solution are established in [3].

This line of inquiry has several possible directions of future research. Clearly the
general direct kinematics problem is still unsolved, even for the three robot case.
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Because the system is under actuated, it is necessary to consider the dynamics of
the system to determine the stability of the true dynamical system instead of merely
considering the static stability. This has important implications for control. More
generally, one can envision cable-actuated parallel manipulators where the anchor
point is position controlled in two or three dimensions allowing the payload to be
manipulated without spooling cables to change the cable length or requiring me-
chanical linkages directly attached to the payload.
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