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This book is dedicated to our Mechanisms
and Robotics research community.
With the strong foundation prepared by those
before us, we look to advance our field into
the 21st century.
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Chapter 1
Polynomials, Computers, and Kinematics
for the 21st Century

J. Michael McCarthy

1.1 Introduction

It is a regular practice to organize a session to discuss research directions in the the-
ory and practice, and such a panel was organized at the 2010 ASME Mechanisms
and Robotics Conference of the International Design Engineering Technical Con-
ferences. Unlike the usual format which has senior researchers advise their younger
colleagues of recent successes and current challenges, the session in 2010 included
our younger colleagues who took the opportunity to make their views known.

What our young colleagues had to say opened the eyes of many of us and moti-
vated the organization of an National Science Foundation Workshop on 21st Cen-
tury Kinematics held in conjunction with the 2012 Mechanisms and Robotics Con-
ference. Our younger colleagues conveyed their excitement regarding many new
and different opportunities for research built on theoretical and applied kinemat-
ics. However they expressed a clear frustration that the foundational material that
was readily available to an earlier generation has not been taught for decades, and
therefore seems lost to our younger colleagues and their students.

It took two years to organize, but the 2012 NSF Workshop is our response to
this concern. However, rather than revive the lessons and notes from the past, we
have sought to place that theory in a context that serves research goals in this new
century.

1.2 The Recent Past

In order to consider the needs for the 21st century, it seems reasonable to consider
the historical relationship between kinematics, mathematics and machine design.

J.M. McCarthy (�)
Robotics and Automation Laboratory, University of California, Irvine, USA
e-mail: jmmccart@uci.edu

J.M. McCarthy (ed.), 21st Century Kinematics,
DOI 10.1007/978-1-4471-4510-3_1, © Springer-Verlag London 2013
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2 J.M. McCarthy

Fig. 1.1 An engraving of
Watt’s steam engine
(R. Stuart 1824)

The following is taken from Editorials published in the February 2011 and May
2011 issues of the ASME Journal of Mechanisms and Robotics.

1.2.1 Polynomials and Kinematics

Mechanisms have been characterized by the curves that they trace since the time of
Archimedes [1]. In the 1800’s, F. Reuleaux, A.B.W. Kennedy and L. Burmester for-
malized this by applying the descriptive geometry of Gaspard Monge to the analysis
and synthesis of machines [2].

James Watt’s invention of a straight-line linkage to convert the linear expan-
sion of steam into the rotation of the great beam making the steam engine prac-
tical (Fig. 1.1) captured the imagination of the mathematician P.L. Chebyshev, who
introduced the mathematical analysis and synthesis of linkages.

About the same time, J.J. Sylvester, who introduced the Sylvester resultant for
the solution of polynomial equations, went on to lecture about the importance of
the Peaucellier linkage which generates a pure linear movement from a rotating
link [3]. Influenced by Sylvester, A.B. Kempe developed a method for designing a
linkage that traces a given algebraic curve [4] that even now inspires research at the
intersection of geometry [5, 6] and computation.

In the mid 1950’s, J. Denavit and R.S. Hartenberg introduced a matrix formu-
lation of the loop equations of a mechanism to obtain polynomials that define- its
movement [7]. During a speech in 1972, F. Freudenstein famously used the phrase
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“Mount Everest of kinematics” to describe the solution of these polynomials for the
7R spatial linkage [8]. In this context “solution” is not a single root but an algorithm
that yields all of the roots of the polynomial system, which in turn defines all of the
configurations of the linkage for a given input.

It was immediately recognized that the 7R analysis problem was equivalent to
solving the inverse kinematics for a general robot manipulator to obtain the config-
urations that are available to pick up an object. By the end of the 1970’s, J. Duffy [9]
had formulated an efficient set of equations for this problem, but it was not until the
late 1980’s when the degree 16 polynomial that yields the 16 robot configurations
was obtained by Q. Liao, H.Y. Lee and C.G. Liang [10].

By the mid-1990’s, computer algebra and sparse resultant techniques were the
most advanced tools for formulating and solving increasingly complex arrays of
polynomials obtained in the study of mechanisms and robotics systems [11, 12].
In 1996, M. Husty used computer algebra to reduce eight quadratic equations in
eight soma coordinates that locate the end-effector of a general six-legged Stewart
platform to a degree 40 polynomial [13], which allowed the calculation of the 40
configurations of the system.

1.2.2 Computers and Kinematics

In 1959 F. Freudenstein and G.N. Sandor [14] used the newly developed digital com-
puter and the loop equations of a linkage to determine its dimensions, initiating the
computer-aided design of mechanisms. Within two decades the computer solution
of the equations introduced by Denavit and Hartenberg was integral to the analysis
of complex machine systems [15, 16] and the control of robot manipulators [17].

R.E. Kaufman [18, 19] combined the computer’s ability to rapidly compute the
roots of polynomial equations with a graphical display to unite Freudenstein’s tech-
niques with the geometrical methods of Reuleaux and Burmester to form KINSYN,
an interactive computer graphics system for mechanism design (Fig. 1.2). This was
followed by A.G. Erdman’s LINCAGES system [20, 21] and K.J. Waldron’s REC-
SYN system [22], which combined sophisticated computer graphics and polynomial
solvers to implement Burmester’s strategy for linkage synthesis. Computerized link-
age synthesis was extended to spherical linkages [23, 24] and spatial linkages [25]
by the turn of the 21st century.

The pursuit of solutions to the design equations for the particularly challeng-
ing problem of finding a four-bar linkage that traces a curve through nine specified
points lead Freudenstein and B. Roth [26, 27] to develop a unique solution strategy,
now called numerical continuation. They started with a set of polynomials with a
known solution, which was then deformed slightly and the solution updated numer-
ically. Iterating this “parameter-perturbation procedure,” they obtained a sequence
of polynomials and solutions that converged to the target polynomials and the de-
sired solution. While this yielded the first solutions to the nine-point problem, their
heuristic deformation procedure could not find all of the solutions.
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Fig. 1.2 Roger Kaufman
using interactive computer
graphics for linkage synthesis
at MIT in 1970

By the 1980’s theoretical advances in numerical continuation yielded algorithms
that could reliably and efficiently find all solutions to small sets of polynomial equa-
tions [28, 29]. L.W. Tsai and A.P. Morgan [30] applied the polynomial continua-
tion routine SYMPOL to the eight quadratic polynomials of the inverse kinematics
problem for a general manipulator and obtained the 16 roots in four minutes. In
the early 1990’s, C.W. Wampler and A.P. Morgan [31] revisited Freudenstein and
Roth’s nine-point synthesis problem to obtain 1442 solutions, demonstrating that
polynomial continuation algorithms had come of age.

A few years later M. Raghavan and Roth [32, 33] included polynomial contin-
uation with resultant elimination among the strategies to obtain complete solutions
to kinematics problems. In fact, Raghavan [34] used polynomial continuation to ob-
tain 40 configurations for the general Stewart platform anticipating Husty’s degree
40 polynomial.

1.3 Recent Results

The past century shows that our ability to analyze and design mechanisms and
robotic systems of increasing complexity has depended on our ability to derive and
solve the associated increasingly complex polynomial systems. From this, we can
expect that advances in computer algebra and numerical continuation for the deriva-
tion and solution of the even more complex polynomial systems will advance re-
search in mechanisms and robotics.

Now examining recent research, we can identify three research trends that we
can expect to persist into the future. They are the analysis and synthesis of (i) spatial
mechanisms and robotic systems, (ii) compliant linkage systems, and (iii) tensegrity
and cable-driven systems. In each case, we find that researchers are formulating and
solving polynomial systems of total degrees that dwarf those associated with major
kinematics problems of the previous century.
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Fig. 1.3 A spatial one
degree-of-freedom linkage
formed from 5-5R chains

1.3.1 Analysis and Synthesis of Machine Systems

Early in the 2000’s, E. Lee and D. Mavroidis [35] formulated the synthesis of a
spatial serial chain as a generalized inverse kinematics problem, where in order to
position a serial chain in a required set of task positions one computes the dimen-
sions of the chain as well as its joint angles. About the same time general polynomial
continuation algorithms such as PHCpack [36, 37] and POLSYS [38] became avail-
able. Lee and Mavroidis used PHCpack to solve 13 polynomials in 13 unknowns
and obtained 36 sets of dimensions for spatial 3R chains that reach four required
task positions. This system of polynomials had a total degree of 1,417,174 and took
33 days to solve on a computer workstation [39].

In 2004, H. Su and colleagues reported that a parallel version of the POLSYS
code [40, 41] obtained 42,625 solutions to the RRS design problem consisting of
11 polynomials in 11 unknowns for a total degree of 4,194,304. The computation
time was 42 minutes on 128 nodes of the San Diego Supercomputer Center’s Blue
Horizon system.

A. Perez used dual quaternion coordinates to formulate the design equations for
general spatial serial chains and obtained 126 synthesis equations in 126 unknowns
for a spatial 5R chain that reaches a set of 21 task positions [42, 43] (Fig. 1.3). This
set of equations has been solved numerically to verify that they are correct, but so
far a complete solution has not been achieved.

A.J. Sommese and C.W. Wampler published their text [44] on the mathematical
theory of polynomial continuation and its applications to systems that arise in engi-
neering and science, which they term “numerical algebraic geometry.” This includes
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Fig. 1.4 A compliant
mechanism designed for use
as a gripper

the polynomial continuation algorithm HomLab, which has recently been upgraded
and renamed Bertini [45].

By 2008, Lee [46] found that the performance of polynomial continuation algo-
rithms had advanced to the point that on a Dell PC they averaged 15 continuation
paths per second for PHCpack and Bertini, and reached 150 paths per second for
some problems using their HOM4PS package. At computation speeds of 1500 paths
per second Su’s RRS synthesis problem could be achieved on a PC in 5 minutes.

Continued improvements in processing speed, parallel processing architectures,
and algorithm efficiency have the potential to yield such rapid solution of very large
polynomial systems that numerical analysis and synthesis of complex spatial linkage
systems can become practical and routine.

1.3.2 Compliant Mechanisms

In his speech of 1972, F. Freudenstein identified “a theory of kinematics of mech-
anisms with elasticity” as one of nine areas for future research. Initial work in this
area was limited to flexibility effects in the analysis of linkage movement [47],
but this evolved in the late 1980’s to yield a design theory for compliant link-
ages [48, 49]. In the 1990’s, compliant mechanisms found a wide range of appli-
cations including micro-mechanisms [50, 51], and by 2001, L. Howell presented a
complete design theory [52].

As the study of compliant mechanisms matured, it was shown that the flexibil-
ity in the links can be modeled by spring-loaded joints. This allowed kinematic
loop equations to be combined with static equilibrium for the analysis and synthesis
of these systems [53]. The result was the ability to design a linkage system with
compliance that resists displacement from specific configurations [54]. H.J. Su for-
mulated a system of polynomials for the synthesis of a four-bar compliant linkage
with three specified equilibrium positions [55, 56]. He obtained a 12 polynomials
with a total degree of 16,384, which was solved using polynomial continuation.

Current research directions in compliant linkage design include increasing the
ease of the design process and extending it to spatial linkages. As an example,
S. Ananthasuresh describes the sophistication of compliant mechanism synthesis
methods and proposes a simplified approach for planar linkages [57] (Fig. 1.4).
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Fig. 1.5 A three-strut
tensegrity system in its
unloaded and loaded
configurations

Similarly, C.P. Lusk [58, 59] describes the need for compliant linkages that are con-
structed in the plane by layered manufacturing but have the ability to move out of
the plane for operation.

It is clear that computer algebra and polynomial continuation that serve the needs
of design and analysis of mechanisms and robotics will also serve to advance the
analysis and design of compliant linkage systems.

1.3.3 Cable Robots and Tensegrity Systems

In the early 1990’s J. Duffy analyzed the stiffness of a Stewart platform supported
by compliant legs [60], and by 2000 he had formalized this into a theory of deploy-
able tensegrity structures with elastic ties [61]. A tensegrity structure [62, 63] is an
assembly of compression elements, or struts, and extension elements, called ties,
that form a stable structure.

C.D. Crane [64] considered the equilibrium configurations of a set of struts and
cable ties of a tensegrity system. His formulation yields 12 equations for a system of
three struts and nine cables (Fig. 1.5). This formulation also applies to cable systems
ranging from deployable structures [65] to cable manipulators [66]. In fact, Moon
et al. [67] construct spring-loaded actuators for a parallel mechanism to combine
tensegrity and compliant mechanism design.

Recently, V. Kumar formulated the problem of determining the equilibrium po-
sitions of objects supported by cables [68, 69] which yielded nine polynomials in
nine unknowns (Fig. 1.6). He reports that the complexity of the polynomials and
associated resultants overwhelmed his computer algebra software.

The lightweight mechanical structures that become possible with a combination
of actuators, cables, springs and struts motivate the integration of spatial robots and
compliant mechanisms into a new theory for the analysis and synthesis of tensegrity
systems.
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Fig. 1.6 Direct kinematic
analysis of a cable robotic
systems

1.4 Workshop on 21st Century Kinematics

Solutions to the inverse kinematics of a general serial chain robot and to the direct
kinematics of the general Stewart-Gough platform, which yielded polynomials of
degree 16 and degree 40, respectively, were major advances in the last century. Less
than ten years later, researchers are deriving and solving polynomial systems for
the analysis and design of robotic systems, compliant mechanisms and tensegrity
systems that have total degrees in the millions. Advances in computational speed
and effective algorithms to process these solutions promise new technologies and
products well into the 21st Century.

The analysis and design of innovative mechanical systems yield increasingly
complex systems of polynomials that characterize these devices. At the same time
increasingly sophisticated computational tools are being developed for numerical
algebraic geometry that can assist derivation and solution of these polynomial sys-
tems. It is now routine for kinematics researchers to derive polynomial systems that
dwarf landmark problems of the recent past.

Discussions at the 2010 and 2011 ASME Mechanisms and Robotics Conference
resulted in a proposal for NSF workshop to advance the analysis and design of
innovative machine systems. This workshop echoes the NSF supported 1963 Yale
Mechanisms Teachers Conference that taught a generation of university educators
the fundamental principles of kinematic theory.
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Our Workshop on 21st Century Kinematics focuses on algebraic problems in
the analysis and synthesis of mechanisms and robots, compliant mechanisms and
tensegrity and cable-driven systems. The presentations are:

1. Computer-aided invention of mechanisms and robots, J. Michael McCarthy (Pro-
fessor, University of California, Irvine)

2. Mechanism synthesis for modeling human movement, Vincenzo Parenti-Castelli
(Professor, University of Bologna)

3. Algebraic Geometry and Kinematic Synthesis, Manfred Husty (Professor, Uni-
versity of Innsbruck)

4. Numerical Algebraic Geometry and Kinematics, Charles Wampler (Technical
Fellow, General Motors Research and Development)

5. Kinematic analysis of cable robotic systems, Vijay Kumar (Professor, University
of Pennsylvania)

6. Kinematic synthesis of compliant mechanisms, Larry Howell (Professor, Brigh-
am Young University)

7. Protein Kinematics, Kazem Kazerounian (Professor, University of Connecticut)

The workshop presentations will be made available on-line. This book has been
prepared to provide the background materials for each of these presentations.

Acknowledgements The author gratefully acknowledges National Science Foundation grant
CMMI 1068497 which provided support for materials in this book as part of the Workshop on
21st Century Kinematics. In addition, the leadership of Michael Stanisic and James Schmiedeler
and Phil Vogelwede, organizers of the 2012 ASME Design Engineering Technical Conferences,
the support of Jian Dai, Stephen Cranfield, and Carl Nelson, who are responsible for the ASME
Mechanisms and Robotics Conference, and attention to detail by Erin Dolan, who managed the
execution of the Workshop are gratefully acknowledged.
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Chapter 2
Kinematic Synthesis

J. Michael McCarthy

2.1 Kinematics Equations of a Serial Chain

To study the relative movement at each joint of a spatial linkage,1 we introduce three
4 × 4 matrices that we call coordinate screw displacements. Each of these matrices
defines a translation along one coordinate axis combined with a rotation about that
axis. This is the movement allowed by an RP open chain that has the axis of the
revolute joint parallel to the guide of the slider. This assembly is called a cylindric
joint, or C-joint, because trajectories traced by points in the moving body lie on
cylinders about the joint axis.

Let S1 be the axis of a cylindric joint that connects a link S1S2 to ground. Locate
the fixed frame F so that its z-axis is along S1 and its origin is the point p. Attach
the link frame B so that its z-axis is along S1 and its x-axis is along the common
normal N from S1 and S2. The displacement of B relative to F consists of a slide d

and rotation θ along and around the z-axis of F . Combine the rotation matrix and
translation vector for this displacement to form the 4 × 4 homogeneous transform,
given by

⎧
⎪⎪⎨

⎪⎪⎩

X

Y

Z

1

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 d

0 0 0 1

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

x

y

z

1

⎫
⎪⎪⎬

⎪⎪⎭

, (2.1)

or

X = [Z(θ, d)
]
x. (2.2)

1This chapter combines excerpts from J.M. McCarthy and G.S. Soh, Geometric Design of Link-
ages, Springer, 2010, and is based on the Ph.D. research by Alba Perez and Haijun Su. Reproduced
by kind permission of Springer © 2012.

J.M. McCarthy (�)
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This defines the transformation of coordinates x in B to X in F that represents the
movement allowed by a cylindric joint. Notice that we do not distinguish between
point coordinate vectors with and without the fourth component of 1. In what fol-
lows the difference should be clear from the context of our calculations.

The transform [Z(θ, d)] is the coordinate screw displacement about the z-axis.
We can define similar screw displacements [X(·, ·)] and [Y(·, ·)] about the x- and
y-axes,

[
X(θ, d)

]=

⎡

⎢
⎢
⎣

1 0 0 d

0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

[
Y(θ, d)

]=

⎡

⎢
⎢
⎣

cos θ 0 sin θ 0
0 1 0 d

− sin θ 0 cos θ 0
0 0 0 1

⎤

⎥
⎥
⎦ .

(2.3)

We use these coordinate screw displacements to formulate the kinematics equations
for spatial linkages.

It is useful to note that the inverse of a coordinate screw displacement can be
obtained by negating its parameters. For example,

[
Z(θ, d)−1]= [Z(−θ,−d)

]=

⎡

⎢
⎢
⎣

cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 −d

0 0 0 1

⎤

⎥
⎥
⎦ . (2.4)

Notice that [Z(θ, d)−1] is not the transpose of [Z(θ, d)].

2.1.1 The Denavit-Hartenberg Convention

A spatial open chain can be viewed as a sequence of joint axes Si connected by
common normal lines, Fig. 2.1. Let Aij be the common normal from joint axis Si

to Sj . The Denavit-Hartenberg convention attaches the link frame Bi such that its
z-axis is directed along the axis Si and its x-axis is directed along the common
normal Aij . This convention leaves undefined the initial and final coordinate frames
F and M . These frames usually have their z-axes aligned with the first and last axes
of the chain. However, their x-axes can be assigned any convenient direction.

This assignment of standard frames Bi allows us to define the 4 × 4 transforma-
tion [D] that locates the end-link of a spatial open chain as the sequence of trans-
formations

[D] = [Z(θ1, d1)
][

X(α12, a12)
][

Z(θ2, d2)
] · · · [X(αn−1,n, an−1,n)

][
Z(θn, dn)

]
,

(2.5)
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Fig. 2.1 Joint axes S1, S2,
and S3 and the link frames B1
and B2

where αij and aij are the twist angle and offset between the axes Si and Sj . This
matrix equation defines the kinematics equations of the open chain.

The 4 × 4 transform [Tj ] = [X(αij , aij )][Z(θj , dj )] is the transformation from
frame Bi to Bj . Equation (2.5) is often written as

[D] = [T1][T2] · · · [Tn]. (2.6)

Notice that [T1] = [Z(θ1, d1)].

2.2 The Product of Exponentials Form of the Kinematics
Equations

The synthesis equations for a spatial serial chain are obtained from the matrix ex-
ponential form of its kinematics equations. This form of the kinematics equations
replaces the Denavit-Hartenberg parameters with the coordinates of the n joint axes,
Si , i = 1, . . . n. It is the coordinates of these axes that are the unknowns of the design
problem.

Consider a displacement defined such that the moving body rotates the angle
φ and slides the distance k around and along the screw axis S = (S,C × S). Let
μ = k/φ, then we can introduce the screw J = (S,V) = (S,C × S + μS), where μ

is called the pitch of the screw. The components of J define the 4 × 4 twist matrix,

J =

⎡

⎢
⎢
⎣

0 −sz sy vx

sz 0 −sx vy

−sy sx 0 vz

0 0 0 0

⎤

⎥
⎥
⎦ , (2.7)

and we find that the 4 × 4 homogeneous transform representing a rotation φ and
a translation k about and along an axis S, [T (φ, k,S)], is defined as the matrix
exponential

[
T (φ, k,S)

]= eφJ . (2.8)
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The matrix exponential takes a simple form for the matrices [Z(θi, di)] and
[X(αi,i+1, ai,i+1)]. The screws defined for these two transformations are K =
(k, νk) and I = (ı, λı), where ν = di/θi and λ = ai,i+1/αi,i+1 are their respective
pitches. Thus, we have

[
Z(θi, di)

]= eθiK and
[
X(αi,i+1, ai,i+1)

]= eαi,i+1I , (2.9)

and the kinematics equations become

[D] = [G]eθ1Keα12I eθ2K . . . eαn−1,nI eθnK [H ]. (2.10)

This is one way to write the product of exponentials form of the kinematics equa-
tions. In the next section, we modify this slightly for use as our design equations.

2.2.1 Relative Displacements

If we choose a reference position for the end-effector, denoted by [D0], then the
associated joint angle vector θ0 can be determined, as well as the world frame coor-
dinates of each of the joint axes. The transformation [D0] is often selected to be the
configuration in which the joint parameters are zero and is called the zero reference
position by Gupta (1986) [1].

The displacement of the serial chain relative to this reference configuration is
defined by [D(Δθ)] = [D(θ)][D(θ0)]−1 and yields a convenient formulation for
the kinematics equations. Assume that [D0] is a general position of the end-effector
defined by joint parameters θ0, so Δθ = θ − θ0. Then, using the usual kinematics
equations, we have

[
D(Δθ)

] = ([G][Z(θ1, d1)
]
. . .
[
Z(θn, dn)

][H ])
([G][Z(θ10, d10)

]
. . .
[
Z(θn0, dn0)

][H ])−1
. (2.11)

In order to expand this equation, we introduce the partial displacements

[Ai0] = [G][Z(θ10, d10)
][

X(α12, a12)
]
. . .
[
X(αi−1,i , ai−1,i )

]
, (2.12)

where, for example,

[A10] = [G], and [A20] = [G][Z(θ10, d10)
][

X(α12, a12)
]
.

Now, insert the identity [Z(θi,0)]−1[Ai0]−1[Ai0][Z(θi0)] = [I ] after the first n − 1
joint transforms [Z(θi, di)] in (2.11), in order to obtain the sequence of terms

[
T (Δθi,Si )

]= [Ai0]
[
Z(θi, di)

][
Z(θi,0)

]−1[Ai0]−1 = [Ai0]
[
Z(Δθi,Δdi)

][Ai0]−1.

(2.13)
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The result is the relative transformation that takes the form
[
D(Δθ)

]= [T (Δθ1,S1)
][

T (Δθ2,S2)
]
. . .
[
T (Δθn,Sn)

]
, (2.14)

where Si are the Plucker coordinates of each joint axis obtained by transforming
the joint screw K to the world frame by the coordinate transformations defined in
(2.13).

Using the exponential form the transformations [T (Δθi,Si )], we write the rela-
tive kinematics equations (2.14) as

[
D(Δθ)

]= eΔθ1S1eΔθ2S2 . . . eΔθnSn, (2.15)

where the matrices Si are defined as

Si = Ai0KA−1
i0 . (2.16)

The product of exponentials form of the kinematics equations (2.10) is now obtained
as

[D] = [D(Δθ)
][D0] = eΔθ1S1eΔθ2S2 . . . eΔθnSn[D0]. (2.17)

The difference between this equation and (2.10) is that here the coordinates of the
joint axes of the serial chain are defined in the world frame.

2.3 The Even Clifford Algebra C+(P 3)

The Clifford algebra of the projective three space P 3 is a sixteen-dimensional vector
space with a product operation that is defined in terms of a scalar product, see Mc-
Carthy (1990) [2]. The elements of even rank form an eight-dimensional subalgebra
C+(P 3) that can be identified with the set of 4 × 4 homogeneous transforms.

The typical element of C+(P 3) can be written as the eight dimensional vector
given by

Â = a0 + a1i + a2j + a3k + a4ε + a5iε + a6jε + a7kε, (2.18)

where the basis elements i, j , and k are the well-known quaternion units, and ε is
called the dual unit. The quaternion units satisfy the multiplication relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and ijk = −1. (2.19)

The dual number ε commutes with i, j , and k, and multiplies by the rule ε2 = 0.
In our calculations, it is convenient to consider the linear combination of quater-

nion units to be a vector in three dimensions, so we use the notation A = a1i +
a2j + a3k and A◦ = a5i + a6j + a7k—the small circle superscript is often used to
distinguish coefficients of the dual unit. This allows us to write the Clifford algebra
element (2.18) as

Â = a0 + A + a4ε + A◦ε. (2.20)
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Now, collect the scalar and vector terms so this element takes the form

Â = (a0 + a4ε) + (A + A◦ε
)= â + A. (2.21)

The dual vector A = A + A◦ε can be identified with the pairs of vectors that define
lines and screws.

Using this notation the Clifford algebra product of elements Â = â + A and B̂ =
b̂ + B takes the form

Ĉ = (b̂ + B)(â + A) = (b̂â − B · A) + (âB + b̂A + B × A), (2.22)

where the usual vector dot and cross products are extended linearly to dual vectors.

2.3.1 Exponential of a Vector

The product operation in the Clifford algebra allows us to compute the exponential
of a vector θS, where |S| = 1, as

eθS = 1 + θS + θ2

2
S2 + θ3

3! S3 + · · · . (2.23)

Using (2.22) we can write S = 0 + S and compute

S2 = (0 + S)(0 + S) = −1, S3 = −S, S4 = 1, and S5 = S, (2.24)

which means we have

eθS =
(

1 − θ2

2
+ θ4

4! + · · ·
)

+
(

θ − θ3

3! + θ5

5! + · · ·
)

S

= cos θ + sin θS. (2.25)

This is the well-known unit quaternion that represents a rotation around the axis S
by the angle φ = 2θ . The rotation angle φ is double that given in the quaternion,
because the Clifford algebra form of a rotation requires multiplication by both Q =
cos θ + sin θS and its conjugate Q∗ = cos θ − sin θS. In particular, if x and X are
the coordinates of a point before and after the rotation, then we have the quaternion
coordinate transformation equation

X = QxQ∗. (2.26)

For this reason the quaternion is often written in terms of one-half the rotation angle,
that is Q = cos φ

2 + sin φ
2 S.
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2.3.2 Exponential of a Screw

The Plücker coordinates S = (S,C × S) of a line can be identified with the Clifford
algebra element S = S + εC × S. Similarly, the screw J = (S,V) = (S,C × S +μS)

becomes the element J = S + εV = (1 + με)S. Using the Clifford product we can
compute the exponential of the screw θJ,

eθJ = 1 + J + θ2

2
J2 + θ3

3! J3 + · · · . (2.27)

Notice that S2 = −1, therefore

J2 = −(1 + με)2 = −(1 + 2με), J3 = −(1 + 3με)S,

J4 = 1 + 4με, and J5 = (1 + 5με)S,
(2.28)

and, we obtain

eθJ =
(

1 − θ2

2
+ θ4

4! + · · ·
)

+
(

θ − θ3

3! + θ5

5! + · · ·
)

S

− θμε

(

θ − θ3

3! + · · ·
)

+ θμε

(

1 − θ2

2
+ · · ·

)

S

= (cos θ − d sin θε) + (sin θ + d cos θε)S. (2.29)

Let d = θμ be the slide along the screw axis associated with the angle θ . At this
point it is convenient to introduce the dual angle θ̂ = θ +dε, so we have the identities

sin θ̂ = sin θ + d cos θε, and cos θ̂ = cos θ − d sin θε, (2.30)

which are derived using the series expansions of sine and cosine.
Equation (2.29) introduces the unit dual quaternion which is identified with spa-

tial displacements. To see the relationship we factor out the rotation term to obtain

Q̂ = cos θ̂ + sin θ̂S = (1 + tε)(cos θ + sin θS), (2.31)

where

t = dS + sin θ cos θC × S − sin2 θ(C × S) × S. (2.32)

This vector is one-half the translation d = 2t of the spatial displacement associated
with this dual quaternion in the same way that we saw that the rotation angle is
φ = 2θ . This is because the Clifford algebra form of the transformation of line co-
ordinates x to X by the rotation φ around an axis S with the translation d involves
multiplication by both the Clifford algebra element Q̂ = cos θ̂ + sin θ̂S and its con-
jugate Q̂∗ = cos θ̂ − sin θ̂S, given by

X = Q̂xQ̂∗. (2.33)
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For this reason the unit dual quaternion is usually written in terms of the half rotation
angle and half displacement vector,

Q̂ = cos
φ̂

2
+ sin

φ̂

2
S =

(

1 + 1

2
dε

)(

cos
φ

2
+ sin

φ

2
S
)

, (2.34)

where

d = 2

(
k

2
S + sin

φ

2
cos

φ

2
C × S − sin2 φ

2
(C × S) × S

)

. (2.35)

Notice that we introduced the slide along S given by k = φμ, so we have the dual
angle φ̂ = φ + kε.

2.3.3 Clifford Algebra Kinematics Equations

The exponential of a screw defines a relative displacement from an initial position to
a final position in terms of a rotation around and slide along an axis. This means the
composition of Clifford algebra elements defines the relative kinematics equations
for a serial chain that are equivalent to (2.15) [21].

Consider the nC serial chain in which each joint can rotate an angle θi around,
and slide the distance di along, the axis Si , for i = 1, . . . , n. Let θ0 and d0 be the
joint parameters of this chain when in the reference configuration, so we have

Δθ̂ = (θ + dε) − (θ0 + d0ε) = (Δθ̂1,Δθ̂2, . . . ,Δθ̂n). (2.36)

Then, the movement from this reference configuration is defined by the kinematics
equation,

D̂(Δθ̂) = e
Δθ̂1

2 S1e
Δθ̂2

2 S2 · · · e Δθ̂n
2 Sn

=
(

c
Δθ̂1

2
+ s

Δθ̂1

2
S1

)(

c
Δθ̂2

2
+ s

Δθ̂2

2
S2

)

· · ·
(

c
Δθ̂n

2
+ s

Δθ̂n

2
Sn

)

.

(2.37)

Note that s and c denote the sine and cosine functions, respectively.

2.4 Design Equations for a Serial Chain

The goal of our design problem is to determine the dimensions of a spatial serial
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables.
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2.4.1 Specified Task Positions

Identify a set of task positions [Pj ], j = 1, . . . ,m. Then, the physical dimensions
of the chain are defined by the requirement that for each position [Pj ] there is a
joint parameter vector θ j such that the kinematics equations of the chain satisfy the
relations

[Pj ] = [D(θ j )
]
, i = 1, . . . ,m. (2.38)

Now, choose [P1] as the reference position and compute the relative displacements
[Pj ][P −1

1 ] = [P1j ], j = 2, . . . ,m.
For each of these relative displacements [P1j ] we can determine the dual unit

quaternion P̂1j = cos
Δφ̂1j

2 + sin
Δφ̂1j

2 P1j , j = 2, . . . ,m. The dual angle Δφ̂1j de-
fines the rotation about and slide along the axis P1j that defines the displacement
from the first to the j th position. Now writing (2.37) for the m− 1 relative displace-
ments, we obtain

P̂1j = e
Δθ̂1j

2 S1e
Δθ̂2j

2 S2 · · · e
Δθ̂nj

2 Sn , j = 2, . . . ,m. (2.39)

The result is 8(m − 1) design equations. The unknowns are the n joint axes Si ,
i = 1, . . . , n, and the n(m − 1) pairs of joint parameters Δθ̂ij = Δθij + Δdij ε.

2.4.2 The Independent Synthesis Equations

The eight components of the unit Clifford algebra kinematics equations (2.39) are
not independent. It is easy to see that a dual unit quaternion satisfies the identity,

Q̂Q̂∗ = e
Δφ̂
2 Se− Δφ̂

2 S = 1, (2.40)

which imposes a two constraints. Thus, only six of the eight synthesis equations
obtained for each relative task position are independent, which means there are only
6(n − 1) independent synthesis equations for an n position task. Furthermore, the
axis S has unit magnitude with means that only four of its six components are inde-
pendent.

In order to count the number of independent equations and unknowns in the
Clifford algebra synthesis equations, it is useful to identify the relationship between
the constraints on a dual unit quaternion and the constraints on the dual unit vector
that generates it. Therefore, we take a moment as verify

Remark 2.1 (Normality Condition) The dual quaternion arising from the product of
dual quaternions has unit magnitude if and only if each factor is the exponential of
dual unit vector.
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Proof For the screw displacement Q̂ = e
Δφ
2 S the unit condition yields,

Q̂Q̂∗ =
(

c
Δφ̂

2
+s

Δφ̂

2
S

)(

c
Δφ̂

2
−s

Δφ̂

2
S

)

= c
Δφ̂

2
c
Δφ̂

2
+s

Δφ̂

2
s
Δφ̂

2
S ·S. (2.41)

Notice that, if S · S = 1, then

Q̂Q̂∗ = c
Δφ̂

2
c
Δφ̂

2
+ s

Δφ̂

2
s
Δφ̂

2
= c

Δφ

2

2

+ s
Δφ

2

2

= 1. (2.42)

Now, for a dual quaternion obtained as the composition of transformations about n

joint axes, we have

Q̂Q̂∗ = (e Δφ1
2 S1 . . . e

Δφn
2 Sn

)(
e

Δφ1
2 S1 . . . e

Δφn
2 Sn

)∗
. (2.43)

Expand this product and use the associative property of the Clifford algebra to obtain

Q̂Q̂∗ = e
Δφ1

2 S1 . . .
(
e

Δφn
2 Sne

−Δφn
2 Sn

)
. . . e

−Δφ1
2 S1, (2.44)

such that the terms e
Δφn

2 Sne
−Δφn

2 Sn = 1 when Sn · Sn = 1. The result is

Q̂Q̂∗ = 1 ⇐⇒ Si · Si = 1, i = 1 . . . , n. (2.45)

�

This condition shows that six of the eight components of the dual quaternion
kinematics equations combine with the normal conditions on the Plücker coordi-
nates of the joint axes to define the minimum set of independent synthesis equations
for the serial chain problem.

2.4.3 Counting the Equations and Unknowns

Consider a spatial serial chain that consists of r revolute joints and p prismatic
joints. A purely prismatic joint is defined by the unit vector S that defines the slide
direction, so it has two independent parameters. The revolute joint axis is defined by
Plücker coordinate vectors, Si = S+C×Sε, that have four independent components
due to the normal conditions

|S| = 1 and S · (C × S) = 0. (2.46)

Thus, the joint axes that define this chain have K = 6r + 3p components, minus
2r + p Plücker constraints, which yields 4r + 2p independent unknowns.

Revolute and prismatic joints each have a single joint parameter, either a rotation
angle or slide distance, which means that our chain has (r + p)(m − 1) unknown
joint parameters that define the m relative positions.
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Table 2.1 The number of
task positions that determine
the structural parameters for
five degree-of-freedom serial
chains

Chain K Task positions Total equations

PRPRP 21 15 91

RPRPR 24 17 104

RRRRP 27 19 117

RRRRR 30 21 130

Subtracting the number of equations from the number of unknowns, we obtain

E = 4r + 2p + (r + p)(m − 1) − 6(m − 1)

= (3r + p + 6) + (r + p − 6)m, (2.47)

where E excess of unknowns over equations. This excess can be made to equal zero
for chains with degree of freedom dof = r + p ≤ 5, in which case we specify

m = 3r + p + 6 − c

6 − (r + p)
, (2.48)

task positions. If fewer than this number of task positions are defined, or if the chain
has six or more degrees of freedom, then we are free to select values for the excess
design parameters. In (2.48) we have added c to denote any extra constraint that
may be imposed on the axes. Table 2.1 presents the maximum number of positions
that can be defined for some chains with 5 degrees of freedom.

It is interesting to notice that, because the composition of displacements has
structure of semi-direct product, the rotations are obtained by operating rotations
only. A specific counting scheme can be generated for the rotations by consider-
ing the first quaternion of the dual quaternion only. We obtain that the maximum
number of task rotations is

mR = 3 + r

3 − r
. (2.49)

In some cases with r = 1 or 2, the rotation part of the design equations can be
used to determine the directions of these axes independently. Perez and McCarthy
[3] call these chains “orientation limited.”

2.5 Assembling the Design Equations

The structure of the Clifford algebra design equations provides a systematic ap-
proach to assembling the design equations for a broad range of serial chains. The
basic approach is to formulate the design equations for the nC serial chain, and then
(i) restrict the joint variables to form prismatic or sliding joints, and (ii) impose ge-
ometric conditions on the axes to form universal or spherical joints or to account for
specific geometry. The result is a systematic way of defining the design equations
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for a broad range of chains. Here we present the procedure for the 3C serial chain,
but it has been implemented in our numerical solver for the 2C, 4C and 5C cases, as
well.

2.5.1 The 3C Chain

The Clifford algebra form of the relative kinematics equations for the 3C chain can
be written as

D̂(Δθ̂) =
(

c
Δθ̂1

2
+ s

Δθ̂1

2
S1

)(

c
Δθ̂2

2
+ s

Δθ̂2

2
S2

)(

c
Δθ̂3

2
+ s

Δθ̂3

2
S3

)

, (2.50)

where Si = Si + S◦
i ε define the joint axes in the reference position, and Δθ̂i =

Δθi + Δdi define the rotation and slide of the cylindric joint around the ith axis.
Expand the right side of (2.50) using the Clifford product to obtain

D̂(Δθ̂) = (ĉ1ĉ2 − ŝ1ŝ2S1 · S2 + ŝ1ĉ2S1 + ĉ1ŝ2S2 + ŝ1ŝ2S1 × S2)(ĉ3 + ŝ3S3)

= ĉ1ĉ2ĉ3 − ŝ1ŝ2ĉ3S1 · S2 − ŝ1ĉ2ŝ3S1 · S3 − ĉ1ŝ2ŝ3S2 · S3

− ŝ1ŝ2ŝ3S1 × S2 · S3 + ŝ1ĉ2ĉ3S1 + ĉ1ŝ2ĉ3S2 + ĉ1ĉ2ŝ3S3

+ ŝ1ŝ2ĉ3S1 × S2 + ŝ1ĉ2ŝ3S1 × S3 + ĉ1ŝ2ŝ3S2 × S3

+ ŝ1ŝ2ŝ3
(
(S1 × S2) × S3 − (S1 · S2)S3

)
. (2.51)

For convenience, we have introduced the notation ĉi = cos Δθ̂i

2 and ŝi = sin Δθ̂i

2 .
Equation (2.51) can be written in matrix form to emphasize that it is the linear

combination of the eight monomials formed as products of the joint angles, which
we assemble into an array in reversed lexicographic order obtained by reading right
to left,

V̂ = (ĉ1ĉ2ĉ3, ŝ1ĉ2ĉ3, ĉ1ŝ2ĉ3, ĉ1ĉ2ŝ3, ŝ1ŝ2ĉ3, ŝ1ĉ2ŝ3, ĉ1ŝ2ŝ3, ŝ1ŝ2ŝ3)
T . (2.52)

To do this, we must introduce the vector form of the dual unit quaternion Q̂ =
cos Δθ̂

2 + sin Δθ̂
2 S given by

Q̂ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin Δθ̂
2 (Sx + S◦

xε)

sin Δθ̂
2 (Sy + S◦

yε)

sin Δθ̂
2 (Sz + S◦

z ε)

cos Δθ̂
2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=
{

sin Δθ̂
2 S

cos Δθ̂
2

}

. (2.53)

Collecting terms in (2.51), we obtain the matrix equation
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D̂(Δθ̂)

=
[

0 S1 S2 S3 S1 × S1 S1 × S3 S2 × S3 −(S1 · S2)S3 + (S1 × S2) × S3
1 0 0 0 −S1 · S2 −S1 · S3 −S2 · S3 −S1 × S2 · S3

]

V̂.

(2.54)

The Clifford algebra notation is compact in that each column of this matrix ac-
tually forms a column of four dual coefficients, or eight real coefficients if we write
the dual components of the dual quaternion after the real components, forming an
eight-dimensional vector. Similarly, each of the monomials in V̂ expands into four
real terms, which we can list as

N =
(

V,
Δd1

2
V,

Δd2

2
V,

Δd3

2
V
)

, (2.55)

where V is the array of real parts of V̂. Thus, (2.54) expands to an 8 × 32 matrix
equation. The number k of joint variable monomials in an nC serial chain is given
by

k = (n + 1)2n. (2.56)

Thus, these equations become 8 × 12 for 2C, 8 × 80 for 4C and 8 × 192 for 5C
chains.

The kinematics equations (2.54) can be used directly for the design of a 3C chain.
In what follows, we specialize these equations to obtain design equations for a vari-
ety of special serial chains.

2.5.2 RCC, RRC and RRR Chains

The ith cylindric joint in the 3C chain is converted to a revolute joint simply by set-
ting Δdi = 0. This can be done in seven different ways to define three permutations
of the RRC chain, three permutations of the RRC chain and the RRR chain [23–25].

For example, the monomials in (2.54) that define the RCC, CRC or CCR chains
are given by

RCC: N =
(

V,
Δd2

2
V,

Δd3

2
V
)

,

CRC: N =
(

V,
Δd1

2
V,

Δd3

2
V
)

,

CCR: N =
(

V,
Δd1

2
V,

Δd2

2
V
)

.

(2.57)
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Similarly, the RRC, RCR and CRR chains have the monomials

RRC: N =
(

V,
Δd3

2
V
)

,

RCR: N =
(

V,
Δd2

2
V
)

,

CRR: N =
(

V,
Δd1

2
V
)

.

(2.58)

Finally, the RRR chain is defined by the monomial list

RRR: N = V. (2.59)

Notice that if an nC chain is specialized to have r revolute joints, then the number
of monomials is given by

k = (n − r + 1)2n. (2.60)

2.5.3 PCC, PPC and PPP Chains

A two-step process is required to convert the ith cylindric joint to a prismatic joint.
The first step is to set Δθi = 0. The second step consists of specializing the joint
axis Si = Si , so that its dual part is zero. This latter constraint arises because the
pure translation defined by a prismatic joint depends only on the direction, not the
location in space, of its axis.

In order to define the monomials for the three permutations of the PCC chain, we
introduce W1 = (c1c2c3, c1s2c3, c1c2s3, c1s2s3), and similarly define W2 and W3,
where the subscript i indicates that we make si = 0. This allows us to define the
arrays of monomials,

PCC: N =
(

W1,
Δd1

2
W1,

Δd2

2
W1,

Δd3

2
W1

)

,

CPC: N =
(

W2,
Δd1

2
W2,

Δd2

2
W2,

Δd3

2
W2

)

,

CCP: N =
(

W3,
Δd1

2
W3,

Δd2

2
W3,

Δd3

2
W3

)

.

(2.61)

The monomials for the three permutations of the PPC chain are easily determined
by introducing the set of monomials W12 = (c1c2c3, c1c2s3), and similarly W13
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Table 2.2 Constraints that
specialize C-joints to R, P, T
and S joints

Joint Axes Constraints

R Si Δdi = 0

P Si Δθi = 0

C Si None

T Si , Si+1 Δdi = 0 , Δdi+1 = 0,
Si · Si+1 = 0

S Si , Si+1, Si+2 Δdi = 0, Δdi+1 = 0, Δdi+2 = 0
Si · Si+1 = 0, Si+1 · Si+2 = 0,
Si · Si+2 = 0

and W23,

PPC: N =
(

W12,
Δd1

2
W12,

Δd2

2
W12,

Δd3

2
W12

)

,

PCP: N =
(

W13,
Δd1

2
W13,

Δd2

2
W13,

Δd3

2
W13

)

,

CPP: N =
(

W23,
Δd1

2
W23,

Δd2

2
W23,

Δd3

2
W23

)

.

(2.62)

Finally, the PPP chain is defined by the monomial list

PPP: N =
(

(c1c2c3),
Δd1

2
(c1c2c3),

Δd2

2
(c1c2c3),

Δd3

2
(c1c2c3)

)

. (2.63)

The number of monomials in an nC chain with p of the joints restricted to be
prismatic is seen to be

k = (n + 1)2n−p. (2.64)

Table 2.2 summarizes the constraints needed to transform the C joint into the
most common types of joints. Notice that, for the spherical joint and other special
cases, we use the approach of adding constraints between consecutive joint axes.
This will not yield the minimum set of joint parameters, but it gives satisfactory
results with the numerical solver.

This approach to the formulation of the design equations for special cases of the
CCC chain can be extended to any nC chain [22].

2.6 The Synthesis of 5C and Related Chains

In this section, we present a numerical synthesis algorithm which uses the Clifford
algebra exponential design equations for the 5C serial chain, see Fig. 2.2. The spe-
cial cases of this chain include robots with up to five joints and up to ten degrees of
freedom.
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Fig. 2.2 The 5C serial robot

The design equations for a specific serial robot are be obtained from the 5C robot
equations by imposing conditions on some of the axes or joint variables. The kine-
matics equations for the 5C robot are given by

Q̂5C = e
Δθ̂1

2 S1e
Δθ̂2

2 S2e
Δθ̂3

2 S3e
Δθ̂4

2 S4e
Δθ̂5

2 S5, (2.65)

or

Q̂5C =
(

cos
Δθ̂1

2
+ sin

Δθ̂1

2
S1

)(

cos
Δθ̂2

2
+ sin

Δθ̂2

2
S2

)

· · ·
(

cos
Δθ̂5

2
+ sin

Δθ̂5

2
S5

)

. (2.66)

The kinematics equations for a serial chain consisting of revolute R, prismatic P,
universal T, cylindrical C or spherical S joints can be obtained from the 5C robot
using the approach presented in the previous section. For example, the kinematics
equation of the TPR serial chain are obtained by requiring the axes S1 and S2 to
be perpendicular and coincident, which is obtained by setting the joint variables d1,
d2, θ3 and d4 to zero. The extra joint is eliminated by setting θ5 and d5 to zero.
Other joints, like the helical H or planar E joints can also be modeled by imposing
constraints on the axes and joint parameters.

In order to facilitate the specialization of the general 5C robot to a specific serial
chain topology,the kinematics equations are organized as a linear combination of the
products of joint angles and slides, which form the monomials of these equations
with coefficients that are given by the structural parameters of the chain. In this
way, the kinematics equations of the 5C serial chain is a linear combination of 192
monomials, which can be organized into six sets of 32 products of sines and cosines
of the Δθi joint angles, given by,

V = (s1s2s3s4s5, (s1s2s3s4c5)5, (s1s2s3c4c5)10, (s1s2c3c4c5)10,

(s1c2c3c4c5)5, c1c2c3c4c5
)
, (2.67)

where ci = cos Δθi

2 , si = sin Δθi

2 . The notation ()j denotes j permutations of each
set of sines and cosines. The remaining five sets of monomials are obtained by
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multiplying V by the joint slides Δdi

2 , so we have a total set of monomials N, where

N =
(

V,
Δd1

2
V,

Δd2

2
V,

Δd3

2
V,

Δd4

2
V,

Δd5

2
V
)

. (2.68)

The kinematics equations of the 5C robot can now be written as the linear combina-
tion,

Q̂5C =
192∑

i=1

Kimi, mi ∈ N. (2.69)

The coefficients Ki are 8-dimensional vectors containing the structural variables
defining the joint axes.

This equation is adjusted to accommodate a revolute or prismatic joints inserted
as the j th joint axis by selecting the non-zero components of the vector N. Notice if
the j th C joint is restricted to be a revolute joint, then the slide Δdj is zero, which
eliminates 32 components in N. Similarly, if this joint is replaced by a prismatic
joint the angle becomes Δθj = 0, which eliminates 16 terms from the vector V.

In order to construct these equations start with the array L5C = {1,2, . . . ,192} of
indices that denote the components of N for the general 5C chain, sorted as shown
above. Next define the arrays LRj

, LPj
and LCj

that denote the non-zero compo-
nents of N for the cases when joint j is either a revolute, prismatic or cylindrical
joint, given by

LRj
=
{

i :
(

cos
Δθj

2
∧ sin

Δθj

2

)

∈ mi ∨ Δdj

2
/∈ mi

}

,

LPj
=
{

i :
(

Δdj

2
∧ cos

Δθj

2

)

∈ mi ∨ sin
Δθj

2
/∈ mi

}

,

LCj
=
{

i :
(

Δdj

2
∧ cos

Δθj

2
∧ sin

Δθj

2

)

∈ mi

}

,

(2.70)

where ∧ and ∨ are the logical or, and operations, respectively. Finally, compute
the array of indices L for a specific serial chain topology by intersecting the arrays
obtained for all of the joints, that is,

L =
5⋂

j=1

(LRj
∪ LPj

∪ LCj
), (2.71)

where LPj
= ∅ and LCj

= ∅ if j is a revolute joint, for example.
The kinematics equations for the specific serial chain is now given by

Q̂ =
∑

i∈L

Kimi. (2.72)
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Fig. 2.3 A planar 3R chain
in the reference configuration

The synthesis equations for the chain are obtained by equating the kinematics
equations in (2.72) to the set of task positions P̂1i , that is

Q̂ = P̂1i , i = 2, . . . ,m, (2.73)

where the maximum number of task positions, m, is obtained for the chosen topol-
ogy using (2.48) and (2.49). Additional constraint equations may be added to ac-
count for the specialized geometry of T and S joints or for any other geometric
constraint present in the robot.

These synthesis equations are solved to determine the joint axes Si in the refer-
ence configuration, as well as for values for the joint variables that ensure that the
serial chain reaches each of the task positions.

2.6.1 The Synthesis Process

It is possible to automate the generation of the synthesis equations as cases of the
four classes of 2C, 3C, 4C and 5C related serial chains. The synthesis equations can
then be solved numerically given a random start value. The input data consists of
a set of task positions and topology of the serial chain. The topology of the chains
is used to construct its kinematics equations Q̂. These equations are set equal to
the task positions P̂1i to yield the synthesis equations as the difference Q̂ − P̂1i ,
i = 2, . . . ,m. The numerical solver finds values for the components of the joint axes
and joint variables that minimize this difference.

It is not necessary that the numerical solver use the minimum set of design equa-
tions as defined by (2.48). In fact, it is convenient to use all 8(m − 1) + c synthesis
equations. For the cases of 3R, 4R and 5R serial chains this approach introduces
two, eight and 30 redundant equations, respectively. Experience shows that the ad-
ditional equations enhance the convergence of the numerical algorithm.

2.7 Planar Serial Chains

We now specialize the kinematics equations defined above to the case of planar
serial chains. It is convenient for our purposes to focus on chains consisting only of
revolute joints, the nR chain [22].
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The Plucker coordinates of the axis of a typical revolute joint in a planar chain
are given by J = (k,C × k), where k = (0,0,1) is directed along the z-axis of the
base frame, and C = (cx, cy,0) is the point of intersection of this axis with the x-y
plane. The associated twist matrix Ĵ is

Ĵ =

⎡

⎢
⎢
⎣

0 −1 0 −cy

1 0 0 cx

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ . (2.74)

Let the transformation to the base of the chain be a translation by the vector
G = (gx, gy,0), then he zero configuration of the nR planar chain has the points
Ci , i = 1, . . . , n on the joint axes Ji distributed along a line parallel to x-axis (see
Fig. 2.3), such that

C1 =
⎧
⎨

⎩

gx

gy

0

⎫
⎬

⎭
, C2 =

⎧
⎨

⎩

gz + a12
gy

0

⎫
⎬

⎭
, . . . ,

Cn =
⎧
⎨

⎩

gx + a12 + a23 + · · · + an−1,n

gy

0

⎫
⎬

⎭
.

(2.75)

Substituting these points into (2.74) we obtain a twist matrix Ĵi for each revolute
joint, and the product of exponentials kinematics equations

[
D(θ)

]= eΔθ1Ĵ1eΔθ2Ĵ2 . . . eΔθnĴn[D0]. (2.76)

The zero frame transformation [D0] can be define by introducing [C] which is the
translation by the vector c = (a12 + a23 + · · · + an−1,n)ı along the chain in the zero
configuration, so we have

[D0] = [G][C][H ]. (2.77)

The matrix exponential defining the rotation about J by the angle Δθ can be
computed using formulas in Murray et al. (1994) [4] to yield,

eΔθĴ =

⎡

⎢
⎢
⎣

cosΔθ − sinΔθ 0 (1 − cosΔθ)cx + sinΔθcy

sinΔθ cosΔθ 0 − sinΔθcx + (1 − cosΔθ)cy

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ . (2.78)

This matrix defines a displacement consisting of a planar rotation about the point C,
called the pole of the displacement.
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2.7.1 Complex Number Kinematics Equations

It is convenient at this point to introduce the complex numbers eiΔθ = cosΔθ +
i sinΔθ and C = cx + icy to simplify the representation of the displacement (2.78).

Let X1 = x + iy be the coordinates of a point in the world frame in the first
position and X2 = X + iY be its coordinates in the second position, then this trans-
formation becomes

X2 = eiΔθX1 + (1 − eiΔθ
)
C. (2.79)

The complex numbers [eiΔθ , (1 − eiΔθ )C] define the rotation and translation, that

form the planar displacement eΔθĴ . The point C is the pole of the displacement, and
the translation vector D associated with this displacement is given by

D = (1 − eiΔθ
)
C. (2.80)

The composition of the exponentials eθ1Ĉ1 and eθ2Ĉ2 that define rotations about
the points C1 and C2, respectively, yields

eφP̂ = eθ1Ĉ1eθ2Ĉ2 , or
[
eiφ,

(
1 − eiφ

)
P
]= [eiθ1,

(
1 − eiθ1

)
C1
][

eiθ2,
(
1 − eiθ2

)
C2
]

= [ei(θ1+θ2),
(
1 − eiθ1

)
C1 + eiθ1

(
1 − eiθ2

)
C2
]
. (2.81)

Here P denotes the pole of the composite displacement.
The complex form of the relative kinematics equations (2.15) is seen to be

[
D(Δθ)

]= [eiΔθ1 ,
(
1−eiΔθ1

)
C1
][

eiΔθ2,
(
1−eiΔθ2

)
C2
]
. . .
[
eiΔθn,

(
1−eiΔθn

)
Cn

]
.

(2.82)
If we define the relative displacement of the end-effector to be [D] = [eiΔφ, (1 −
eiΔφ)P], then we can expand this equation and equate the rotation and translation
components to obtain,

eiΔφ = eiΔθ1eiΔθ2 . . . eiΔθn = ei(Δθ1+Δθ2+···+Δθn),

(
1 − eiΔφ

)
P = (1 − eiΔθ1

)
C1 + eiΔθ1

(
1 − eiΔθ2

)
C2 + · · ·

+ ei(Δθ1+Δθ2+···+Δθn−1)
(
1 − eiΔθn

)
Cn. (2.83)

These complex vector equations can be used to design planar nR serial chains.
We will see shortly that they are exactly Sandor and Erdman’s standard form equa-
tions. However, in the next section we introduce an equivalent set of design equa-
tions using the Clifford algebra form of the kinematics equations.



2 Kinematic Synthesis 33

2.8 The Even Clifford Algebra C+(P 2)

The even Clifford algebra of the projective plane P 2 is a generalization of complex
numbers. It is a vector space with a product operation that is linked to a scalar
product. The elements of this Clifford algebra can be identified with the complex
vectors that define points in the plane, and with rotations and translations of these
coordinates. Our goal is a structure for the design equations that facilitates treating
the relative joint angles as design parameters and can be generalized to the design
of spatial serial chains [3].

Using homogeneous coordinates of points in the projective plane as the vectors
and a degenerate scalar product, we obtain an eight dimensional Clifford algebra,
C(P 2). See McCarthy (1990) [2]. This Clifford algebra has an even sub-algebra,
C+(P 2), which is a set of four dimensional elements of the form

A = a1iε + a2jε + a3k + a4. (2.84)

The basis elements iε, jε, k and 1 satisfy the following multiplication table,

iε jε k 1
iε 0 0 −jε iε

jε 0 0 iε jε

k jε −iε −1 k

1 iε jε k 1

(2.85)

Notice that the set of Clifford algebra elements z = x +ky formed using the basis
element k (k2 = −1) is isomorphic to the usual set of complex numbers. This means
that we have ekθ = cos θ + k sin θ .

Translation by the vector d = dx + kdy and rotation by the angle φ are repre-
sented by the Clifford algebra elements

T (d) = 1 + 1

2
diε and R(φ) = ekφ/2, (2.86)

and a general planar displacement D = T (d)R(φ) is given by

D =
(

1 + 1

2
diε

)

ekφ/2. (2.87)

McCarthy (1993) [12] shows that a displacement defined to be a rotation by Δθ

about a point C has the associated Clifford algebra element

D =
(

1 + 1

2

(
1 − ekΔθ

)
Ciε

)

ekΔθ/2, (2.88)

which is the Clifford algebra version of the matrix exponential (2.78). Expand this
equation to obtain the four dimensional vector

D = 1

2

(
e−kΔθ/2 − ekΔθ/2)Ciε + ekΔθ/2
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= − sin
Δθ

2
Cjε + ekΔθ/2

= cy sin
Δθ

2
iε − cx sin

Δθ

2
jε + sin

Δθ

2
k + cos

Δθ

2
. (2.89)

The components of this vector form the kinematic mapping used by Bottema and
Roth (1979) [26] to study planar displacements. Also see DeSa and Roth (1981) [5]
and Ravani and Roth (1983) [6].

2.8.1 Clifford Algebra Kinematics Equations

The relative kinematics equations of an nR planar chain (2.82) can be written in
terms of the Clifford algebra elements (2.89) to define,

− sin
Δφ

2
Pjε + ekΔφ/2 =

(

− sin
Δθ1j

2
C1jε + ekΔθ1/2

)

×
(

− sin
Δθ2

2
C2jε + ekΔθ2/2

)

· · ·
(

− sin
Δθn

2
Cnjε + ekΔθn/2

)

. (2.90)

Expand this equations and equate coefficients of the basis elements to obtain

ekΔφ/2 = ek(Δθ1+Δθ2+···+Δθn)/2,

sin
Δφ

2
P = sin

Δθ1

2
C1e

−k(Δθ2+···+Δθn)/2 + ekΔθ1/2 sin
Δθ2

2
C2e

−k(Δθ3+···+Δθn)/2

+ · · · + ek(Δθ1+Δθ2+···+Δθn−1)/2 sin
Δθn

2
Cn. (2.91)

These equations are equivalent to the complex vector equations presented above. In
fact, multiplication of (2.91) by ekΔφ/2 directly yields (2.83), note we must replace
k by in the usual complex number i.

2.9 Design Equations for the Planar nR Chain

The goal of our design problem is to determine the dimensions of the planar nR
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables [22].
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2.9.1 Relative Kinematics Equations for Specified Task Positions

Identify a set of planar task positions [Pj ], j = 1, . . . ,m. Then, the physical dimen-
sions of the chain are defined by the requirement that for each position [Pj ] there is
a joint parameter vector θ j such that the kinematics equations of the chain yield

[Pj ] = [D(θ j )
]
, i = 1, . . . ,m. (2.92)

Now, choose [P1] as the reference position and compute the relative displacements
[Pj ][P −1

1 ] = [P1j ], j = 2, . . . ,m. This formulation of the linkage design equations
can be found in Suh and Racliffe (1978) [7]. The result is the relative kinematics
equations

[P1j ] = eΔθ1j Ĵ1eΔθ2j Ĵ2 . . . eΔθnj Ĵn , j = 2, . . . ,m, (2.93)

where

Δθ j = θ j − θ1 = (Δθ1j , . . . ,Δθnj ).

The complex number form of (2.93) yields the equations

eiΔφj = ei(Δθ1j +Δθ2j +···+Δθnj ),

(
1 − eiΔφj

)
P1j = (1 − eiΔθ1j

)
C1 + eiΔθ1j

(
1 − eiΔθ2j

)
C2 + · · ·

+ ei(Δθ1j +Δθ2j +···+Δθn−1,j )
(
1 − eiΔθnj

)
Cn, j = 2, . . . ,m,

(2.94)

where Δφj = φj − φ1 and P1j is the pole of the relative displacement [P1j ]. These
are the equations we use to design the planar nR chain.

In terms of elements of the Clifford algebra we obtain the equivalent set of design
equations,

ekΔφj /2 = ek(Δθ1j +Δθ2j +···+Δθnj )/2,

sin
Δφj

2
P1j = sin

Δθ1j

2
C1e

−k(Δθ2j +···+Δθnj )/2

+ ekΔθ1j /2 sin
Δθ2j

2
C2e

−k(Δθ3j +···+Δθnj )/2

+ · · · + ek(Δθ1j +Δθ2j +···+Δθn−1,j )/2 sin
Δθnj

2
Cn, j = 2, . . . ,m.

(2.95)

Equations (2.95) allow the introduction of sin
Δθij

2 and cos
Δθij

2 as algebraic un-
knowns so these equations can be solved for the various joint angles as well as the
coordinates of the joints. This is demonstrated below in our algebraic solution of the
five position synthesis of a 2R chain.
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2.9.2 The Number of Design Positions and Free Parameters

If we specify m task positions, then (2.94) provide m − 1 rotation and 2(m − 1)

translation equations. The unknowns consist of the n(m − 1) relative joint angles,
and the 2n coordinates Ci , i = 1, . . . , n.

It is useful to notice that the rotation equations are solved independently, which
means that they determine m−1 of the relative joint angles. Thus, we have 2(m−1)

translation equations to solve for (n − 1)(m − 1) joint variables and 2n coordinates
Ci , that is

E = 2n + (n − 1)(m − 1) − 2(m − 1) = m(n − 3) + n + 3, (2.96)

where E excess of unknowns over equations.
Notice that except for n = 1 and n = 2 the excess of variables over equations is

greater than zero. For n = 1, we see that m = 2 yields an exact formula for what
is equivalent to the pole of a relative displacement. For n = 2, we find that an ex-
act solution is possible for m = 5, which is Burmester’s result that a 2R chain can
be designed to reach five specified positions (Burmester 1886 [8], Hartenberg and
Denavit 1964 [9]).

Now consider the case n = 3, which has six unknown coordinates Ci , i = 1,2,3,
and 2(m−1) joint variables that are determined by 2(m−1) equations. The excess is
E = 6 no matter how many positions are specified. In order to formulate this design
problem, we specify the m − 1 relative joint angles around C1. This is equivalent
to adding m − 1 design equations, which means that (2.47) takes the form E =
6 − (m − 1). The result is that given seven positions, m = 7, we obtain a set of
equations that determine the six coordinates Ci , i = 1,2,3.

2.9.3 The Standard Form Equations

The synthesis of planar 2R chains is the primary step in the design of four-bar link-
ages, which are constructed by joining the end links of two 2R chains to form the
floating link, or coupler. Specializing the relative kinematics equations (2.94) to this
case, we obtain

eiΔφj = ei(Δθ1j +Δθ2j ),

(
1 − eiΔφj

)
P1j = (1 − eiΔθ1j

)
C1 + eiΔθ1j

(
1 − eiΔθ2j

)
C2, j = 2, . . . ,m.

(2.97)

We now show that this is the standard form equation used by Sandor and Erdman
for planar mechanism synthesis.

The standard form equation is obtained by equating the relative displacement
vector between two positions to the difference of vectors along the chain in the two
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Fig. 2.4 Two positions of a
planar 2R chain

positions. See Fig. 2.4. Let C1 be the fixed pivot and C2 the moving pivot when the
tool frame of 2R chain is aligned with the first position.

Introduce the relative vectors W = C2 − C1 and Z = D1 − C2, where D1 is the
translation vector to the first task position. We can now form the vector equations

D1 = C1 + W + Z,

D2 = C1 + WeiΔθ12 + Zei(Δθ12+Δθ22),

· · ·
Dm = C1 + WeiΔθ1m + Zei(Δθ1m+Δθ2m).

(2.98)

Recall that multiplication by the complex exponential rotates a vector by an angle
measured relative to the x-axis of the fixed frame.

Subtract the first equation from the remaining m to obtain

δ1j = W
(
eiΔθ1j − 1

)+ Z
(
ei(Δθ1j +Δθ2j ) − 1

)
, j = 2, . . . ,m, (2.99)

where δ1j = Dj − D1. Notice that the rotation of the j th task frame relative to the
first position is

Δφj = Δθ1j + Δθ2j . (2.100)

Sandor and Erdman (1984) [11] call (2.99) the standard form equation and they use
it to formulate a range of linkage synthesis problems based on the planar 2R chain.

Now substitute the definition of the relative vectors W, Z and δij back into the
standard form equation to obtain

Dj − D1 = (C2 − C1)
(
eiΔθ1j − 1

)+ (D1 − C2)
(
ei(Δθ1j +Δθ2j ) − 1

)
,

and simplify to obtain

Dj − D1e
iΔφj = (1 − eiΔθ1j

)
C1 + eiΔθ1j

(
1 − eiΔθ2j

)
C2, j = 1, . . . ,m. (2.101)
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In order to show that this equation is identical to (2.97) we compute the pole P1j in
terms of the translation vectors Dj and D1.

Let [Dj ] = [eiφj ,Dj ], j = 1, . . . ,m, and compute

[D1j ] = [Dj ][D1]−1 = [ei(φj −φ1),Dj − D1e
i(φj −φ1)

]
. (2.102)

Now the pole P1j of this relative displacement is defined as the point that has the
same coordinates before and after the displacement, which means it satisfies the
condition

P1j = ei(φj −φ1)P1j + Dj − D1e
i(φj −φ1). (2.103)

Thus, we obtain
(
1 − eiΔφj

)
P1j = Dj − D1e

Δφj , (2.104)

and substituting this into (2.101), we find that the relative kinematics equations
(2.97) are exactly Sandor and Erdman’s standard form equations.

2.9.4 Synthesis of 3R Serial Chains

The planar 3R robot has three degrees of freedom and can reach any set of positions
within its workspace boundary. The design equations for m task positions take the
form

eiΔφj = ei(Δθ1j +Δθ2j +Δθ3j ),

(
1 − eiΔφj

)
P1j = (1 − eiΔθ1j

)
C1 + eiΔθ1j

(
1 − eiΔθ2j

)
C2

+ ei(Δθ1j +Δθ2j )
(
1 − eiΔθ3j

)
C3, j = 2, . . . ,m. (2.105)

We consider the design of this chain for three, five and seven task positions with the
condition that the relative joint angles around C1 are specified by the designer.

Three Task Positions If we specify three task positions, the result is four trans-
lation design equations, or two complex equations, which determine the six coordi-
nates of Ci and the 2(3 − 1) = 4 relative joint angles around C1 and C2. The joint
angles around C3 are determined by the rotation design equations.

If we specify the four unknown relative joint angles and C1, then these four de-
sign equations are linear in the coordinates of C2 and C3. The result is two complex
linear equations in two complex unknowns,

κ12 = eiΔθ12
(
1 − eiΔθ22

)
C2 + ei(Δθ12+Δθ22)

(
1 − eiΔθ32

)
C3,

κ13 = eiΔθ13
(
1 − eiΔθ23

)
C2 + ei(Δθ13+Δθ23)

(
1 − eiΔθ33

)
C3,

(2.106)

where κ1j are the known complex numbers,

κ1j = (1 − eiΔφj
)
P1j − (1 − eiΔθ1j

)
C1. (2.107)
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Five Task Positions If five task positions are specified, then we have eight transla-
tion design equations in fourteen unknowns, the six coordinate Ci and eight relative
joint angles. Now specify the coordinates of C1 and the four relative angles around
it to define six parameters. The result is the four complex equations

κ12 = eiΔθ12
(
1 − eiΔθ22

)
C2 + ei(Δθ12+Δθ22)

(
1 − eiΔθ32

)
C3,

· · ·
κ15 = eiΔθ15

(
1 − eiΔθ25

)
C2 + ei(Δθ15+Δθ25)

(
1 − eiΔθ35

)
C3,

(2.108)

where κ1j are known complex number defined by (2.107). These equations have
exactly the same structure as Sandor and Erdman’s standard form (2.101) for five
position synthesis and are solved in the same way.

Seven Task Positions If seven task positions are specified as well as the six rel-
ative joint angles around C1, then we obtain 12 translation design equations in the
twelve unknowns consisting of the six joint coordinates Ci and six relative joint
angles around C2. The result is six complex equations

(
1 − eiΔφ2

)
P12 = (1 − eiΔθ12

)
C1 + eiΔθ12

(
1 − eiΔθ22

)
C2

+ ei(Δθ12+Δθ22)
(
1 − eiΔθ32

)
C3,

· · ·
(
1 − eiΔφ7

)
P17 = (1 − eiΔθ17

)
C1 + eiΔθ17

(
1 − eiΔθ27

)
C2

+ ei(Δθ17+Δθ27)
(
1 − eiΔθ37

)
C3.

(2.109)

This problem has been solved using matrix resultants by Lin and Erdman (1987) [13]
and using homotopy continuation by Subbian and Flugrad (1994) [14].

2.9.5 Single DOF Coupled Serial Chains

Krovi et al. (2002) [15] expand the standard form equations to nR chains in which
the joints are coupled by cable transmissions so the system has one degree of free-
dom. They call the chain a single degree-of-freedom coupled serial chain, or SD-
CSC. We formulate an equivalent form of their design equations using the relative
kinematics equations (2.94).

Consider a planar nR serial chain in which each joint is connected to ground
through a series of cables and pulleys located at each joint. Let each pulley have the
same diameter and the cables routed through the links so they form parallelogram
linkages. The result is n drive pulleys at the base of the chain that control the angle
αi of the ith link relative to the x-axis of the world frame, which means each joint
angle is given by

θi = αi − αi−1. (2.110)
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We now introduce a single drive angle β such that each joint angle is given by
relation θi = Riβ , where Ri denotes a constant speed ratio. The relations (2.110)
yield the transmission matrix [C] to the base drive angles are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1
α2
...

αn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
1 1 · · · 0
... · · · ...

1 1 · · · 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

R1
R2
...

Rn

⎤

⎥
⎥
⎥
⎦

β, (2.111)

or

α = [C][R]β, (2.112)

where [R] is the column matrix formed by the speed ratios. Our formulation differs
slightly from Krovi et al. (2002) [15] in that we have added the drive variable β and
therefore an additional speed ratio R1.

Consider the design of an nR chain in which the speed ratios Ri , i = 1, . . . , n, are
specified. Substitute these speed ratios into the rotation term of the design equations
(2.94) to obtain

eiΔφj = ei(R1+R2+···+Rm)Δβj , j = 2, . . . ,m, (2.113)

where Δβj = βj − β1 is the relative rotation of the drive angle. We find for each
relative task position that

Δβj = Δφj

R1 + R2 + · · · + Rn

. (2.114)

Substitute this into the translation terms of (2.94) to define a linear equation in the
coordinates Ci , i = 1, . . . , n for each relative task position,

(
1 − eiΔφj

)
P1j = (1 − eiR1Δβj

)
C1 + eiR1Δβj

(
1 − eiR2Δβj

)
C2 + · · ·

+ ei(R1+R2+···+Rn−1)Δβj
(
1 − eiRnΔβj

)
Cn, j = 2, . . . ,m.

(2.115)

Given m = n + 1 task positions, we can solve these equations for the n complex
unknowns Ci . The result is a coupled serial nR chain designed to reach n + 1 arbi-
trarily specified task positions.

2.10 Reachable Surfaces

In this section, we consider the design of spatial serial chains that guide a body
such that a point in the body moves on a specific algebraic surface. The problem
originates with Schoenflies [16], who sought points that remained in a given config-
uration for a given set of spatial displacements. Burmester [8] applied this idea to
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planar mechanism design by seeking the points in a planar moving body that remain
on a circle. Chen and Roth [10] generalized this problem to find points and lines in
a moving body that take positions on surfaces associated with the articulated chains
used to build robot manipulators.

2.11 Spatial Serial Chains

For our purposes, we consider five degree-of-freedom spatial serial chains that in-
clude a spherical wrist. Thus, the reachable surface is traced by the point, P, at the
wrist center of this chain under the movement of two remaining joints. Considering
only, revolute and prismatic joints, we can enumerate the seven possibilities:

1. The PPS chain, for which the wrist center, P, lies on a plane—notice that the
angle between the slide can be any angle α except zero, similarly the distance ρ

between the slides can be any value because a prismatic joint guides all points in
the body in the same direction;

2. The TS chain that has P on a sphere—recall the T joint is constructed from two
perpendicular intersecting revolute joints, that is with link angle α = π/2 and
length ρ = 0;

3. The CS chain for which P lies on a cylinder—the C joint is constructed from a
PR chain for which direction of the prismatic slide is parallel to the axis of the
revolute joint, that is α = 0, note ρ can be any value;

4. The RPS chain that guides P on the surface of a right circular hyperboloid—the
link angle α can be any value except zero;

5. The PRS chain in which the angle between of the prismatic slide and the axis of
the revolute is not zero guides P on an elliptic cylinder—the link angle α can be
any value except zero;

6. The “right” RRS chain in which the revolute joints are perpendicular but do not
intersect traces has P trace a right circular torus—the linkage angle α = φ/2; and

7. The general RRS chain in which the revolute joint axes are not perpendicular nor
intersecting guides the wrist center on a general circular torus—the linkage angle
cannot be α = 0,π/2.

The result is seven articulated chains and the associated algebraic surfaces that
are reachable by their wrist centers, Table 2.3. These algebraic equations of these
surfaces can be used to formulate the synthesis equations for these seven spatial
serial chains. In what follows, we determine the number of free parameters for each
chain, the associated number of task positions that define these parameters, and
assemble the synthesis equations. These equations can be solved using numerical
homotopy.



42 J.M. McCarthy

Table 2.3 The basic serial
chains and their associated
reachable surfaces

Case Chain Angle Length Surface

1 PPS α �= 0 ρ Plane

2 TS α = π/2 ρ = 0 Sphere

3 CS α = 0 ρ Circular cylinder

4 RPS α �= 0 ρ Circular hyperboloid

5 PRS α �= 0 ρ Elliptic cylinder

6 Right RRS α = π/2 ρ Circular torus

7 RRS α ρ General torus

2.11.1 Linear Product Decomposition

The synthesis equations for the seven spatial serial chains describe above result in
polynomial systems of very high degree. Bezout’s theorem states that the number
of solutions to a polynomial system is less than or equal to the degree of the poly-
nomial system, which is obtained by multiplying the degrees of each of the polyno-
mials in the system. In what follows, we find that the synthesis equations of these
serial chains have so much internal structure that the total degree over-estimates the
number of solutions by two orders of magnitude.

In order to efficiently use numerical homotopy techniques to find all of the solu-
tions to our synthesis equations, it is useful to have a better estimate for the number
of solutions than the total degree. Here we present the linear product decomposi-
tion of a polynomial system and then use it to determine a bound on the number of
solutions for each of our systems of synthesis equations. The linear product decom-
position also serves as a convenient start system for numerical homotopy algorithms.

Morgan et al. [17] show that a “generic” system of polynomials that includes
every monomial of a specified system of polynomials will have as many or more
solutions as the specified polynomial system. The linear product decomposition of
a specified system of polynomials is a way of constructing this generic polynomial
system that includes all of the monomials of the specified system, so that it allows
convenient computation of the number of roots. Each polynomial in the linear prod-
uct decomposition consists of polynomials formed by the products of linear com-
binations of the variables and all of the monomials of the corresponding original
polynomial.

Let 〈x, y,1〉 represent the set of linear combinations of parameters x, y and 1,
which means a typical term is αx + βy + γ ∈ 〈x, y,1〉, where α, β and γ are arbi-
trary constants. Using this notation, we define the product of 〈x, y,1〉〈u,v,1〉 as the
set of linear combinations of the product of the elements of the two sets, that is

〈x, y,1〉〈u,v,1〉 = 〈xu,xv, yu, yv, x, y,u, v,1〉. (2.116)

This product commutes, which means 〈x〉〈y〉 = 〈y〉〈x〉, and it distributes over
unions, such that 〈x〉〈y〉∪ 〈x〉〈z〉 = 〈x〉(〈y〉∪ 〈z〉) = 〈x〉〈y, z〉. Furthermore, we rep-
resent repeated factors using exponents, so 〈x, y,1〉〈x, y,1〉 = 〈x, y,1〉2.
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In order to illustrate the construction of the linear product decomposition con-
sider the synthesis equations of the TS chain presented in the previous chapter, given
by

(
Pi − B

) · (Pi − B
)= R2, i = 1, . . . ,7, (2.117)

where the dot denotes the vector dot product. Now subtract the first equation from
the rest in order to eliminate R2. This reduces the problem to six equations in the
unknowns z = (x, y, z,u, v,w), given by

Sj (z) = (Pj+1 · Pj+1 − P1 · P1)− 2B · (Pj+1 − P1)= 0, j = 1, . . . ,6. (2.118)

We now focus attention on the monomials formed by the unknowns.
Recall that Pi = [Ai]p + di where [Ai] and di are known, so it is easy to see that

2B · (Pj+1 − P1) ∈ 〈u,v,w〉〈x, y, z,1〉. (2.119)

It is also possible to compute

Pj+1 · Pj+1 − P1 · P1 = 2dj+1 · [Aj+1]p − 2d1 · [A1]p + d2
j+1 − d2

1

∈ 〈x, y, z,1〉. (2.120)

Thus, we find that each of the equations in (2.118) has the monomial structure given
by

〈x, y, z,1〉 ∪ 〈u,v,w〉〈x, y, z,1〉 ⊂ 〈x, y, z,1〉〈u,v,w,1〉. (2.121)

This allows us to construct a generic set of polynomials as a product of linear factors
that contains our synthesis equations as a special case, that is

Q(z) =

⎧
⎪⎨

⎪⎩

(a1x + b1y + c1z + d1)(e1u + f1v + g1w + h1)
...

(a6x + b6y + c6z + d6)(e6u + f6v + g6w + h6)

⎫
⎪⎬

⎪⎭
= 0, (2.122)

where the coefficients are known constants. This is the linear product decomposition
of the synthesis equations for the TS chain.

This linear product decomposition provides a convenient way to determine a
bound on the number of solutions for the original polynomial system. This is done
by assembling all combinations of the linear factors, one from each equation, that
can be set to zero and solved for the unknown parameters. The number of combina-
tions that yield solutions is the LPD bound for the original polynomial system.

In the example above, select three factors aix + biy + ciz + di = 0 from the
six equations, and combine this with the three factors eiu + fiv + giw + hi = 0 in
the remaining equations. A solution of this set of six linear equations is a root of
(2.122). Thus, we find that this system has

(6
3

) = 20 solutions, which matches the
known result for (2.118).

In the following sections, we determine the synthesis equations for each of the
seven spatial serial chains with a reachable surface. We evaluate its total degree,
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Fig. 2.5 A sphere traced by a
point at the wrist center of a
TS serial chain

compute its linear product decomposition bound, and then numerically solve a
generic problem to find the number of articulated chains that reach a specified set of
displacements.

2.11.2 The Sphere

We now return to our opening example in which a point P = (X,Y,Z) constrained
to lie on a sphere of radius R around the point B = (u, v,w), Fig. 2.5. This means
its coordinates satisfy the equation

(X − u)2 + (Y − v)2 + (Z − w)2 − R2 = (P − B)2 − R2 = 0. (2.123)

We now consider Pi to be the image of a point p = (x, y, z) in a moving frame M

that takes positions in space defined by the displacements Q̂i , i = 1, . . . , n.
This problem has seven parameters, therefore we can evaluate (2.123) on n = 7

displacements. We reduced these equations to the set of six quadratic polynomials,

Sj : (Pj+12 − P12)− 2B · (Pj+1 − P1)= 0, j = 1, . . . ,6. (2.124)

This system has total degree of 26 = 64.
We have already seen that the system (2.124) has the linear product decomposi-

tion

Sj ∈ 〈x, y, z,1〉〈u,v,w,1〉|j = 0, j = 1, . . . ,6. (2.125)

From this we can compute the LPD bound
(6

3

) = 20. Parameter elimination yields
a univariate polynomial of degree 20, so we see that this bound is exact. Innocenti
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Fig. 2.6 The circular torus
traced by the wrist center of a
right RRS serial chain

[18] presents an example that results in 20 real roots. Also see Liao and McCarthy
[19] and Raghavan [20].

The conclusion is that given seven arbitrary spatial positions there can be as many
as 20 points in the moving body that have positions lying on a sphere. For each real
point, it is possible to determine an associated TS chain.

2.11.3 The Circular Torus

A circular torus is generated by sweeping a circle around an axis so its center
traces a second circle. Let the axis be L(t) = B + tG, with Plucker coordinates
G = (G,B × G). See Fig. 2.6. Introduce a unit vector v perpendicular to this axis so
the center of the generating circle is given by Q − B = ρv. Now define u to be the
unit vector in the direction G, then a point P on the torus is defined by the vector
equation,

P − B = ρv + R(cosφv + sinφu), (2.126)

where φ is the angle measured from v to the radius vector of the generating circle.
An algebraic equation of the torus is obtained from (2.126) by first computing

the magnitude

(P − B)2 = ρ2 + R2 + 2ρR cosφ. (2.127)

Next compute the dot product with u, to obtain

(P − B) · u = R sinφ. (2.128)

Finally, eliminate cosφ and sinφ from these equations, and the result is

G2((P − B)2 − ρ2 − R2)2 + 4ρ2((P − B) · G
)2 = 4ρ2G2R2. (2.129)

This is the equation of a circular torus. It has 11 parameters, the scalars ρ and R,
and the three vectors G, P and B.
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In contrast to what we have done previously, here we set the magnitude of G to
a constant, in order to simplify the polynomial (2.129),

G : G · G = 1. (2.130)

Unfortunately, this doubles the number of solutions since −G and G define the same
torus, however, it reduces this polynomial from degree sixth to degree four.

Let [Ti] = [Ai,di] be a specified set of displacements, so we have the 10 po-
sitions Pi = [Ti]p of a point p = (x, y, z) that is fixed in the moving frame M .
Evaluating (2.129) on these points, we obtain the polynomial system

Ti :
((

Pi − B
)2 − ρ2 − R2)2 + 4ρ2((Pi − B

) · G
)2 − 4ρ2R2 = 0, i = 1, . . . ,10,

G : G · G − 1 = 0.

(2.131)
The total degree of this system is 2(410) = 2,097,152.

In order to simplify the polynomials Ti we introduce the parameters

H = 2ρG and k1 = B2 − ρ2 − R2, (2.132)

which yields the identity

4ρ2R2 = H2
(

B2 − H2

4
− k1

)

. (2.133)

Substitute these relations into Ti to obtain

T ′
i : ((Pi

)2 − 2Pi · B + k1
)2 + ((Pi − B

) · H
)2 − H2

(

B2 − H2

4
− k1

)

= 0,

i = 1, . . . ,10. (2.134)

It is difficult to find a simplified formulation for these equations, even if we subtract
the first equation from the remaining in order to cancel terms.

Expanding the polynomial T ′
i and examining each of the terms, we can identify

the linear product decomposition

T ′
i ∈ 〈x, y, z,h1, h2, h3,1〉2〈x, y, z,h1, h2, h3, u, v,w, k1,1〉2. (2.135)

This allows us to compute the LPD bound on the number of roots as

LPD = 210
6∑

j=0

(
10

j

)

= 868,352. (2.136)

Our POLSYS_GLP algorithm obtained 94,622 real and complex solutions for a
random set of specified displacements. However, this problem needs further study
to provide an efficient way to evaluate and sort the large number of right RRS chains.
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2.12 Summary

The exponential form of the kinematics equations of the chain are reformulated us-
ing Clifford algebra exponentials to obtain an efficient and systematic set of design
equations. These design equations can be obtained as special cases of those for 2C,
3C, 4C and 5C serial chains. The solution process is demonstrated by determining
the structural parameters of a CCS serial chain so that it reaches an arbitrarily spec-
ified 12 position task trajectory. While individual solutions can be obtained numer-
ically, these synthesis equations have not yet been formulated for complete solution
by numerical homotopy. The complexity of this problem is illustrated by 5R chain
synthesis to reach 21 task positions, which requires the solution of 130 equations in
130 unknowns.

We have also formulated the synthesis equations the special cases of serial chains
that can position a spherical wrist center on an algebraic surface. A linear product
decomposition provides a bound for the number of solutions to these equations.
We focus on the SS and RRS which show the challenges of solving the synthesis
equations. While algebraic techniques yield 20 solutions for the SS chain, numerical
homotopy was needed to compute the over 90,000 solutions for the RRS chain.

This chapter shows that we can derive the synthesis equations for spatial serial
chains, however, they are complex and difficult to solve.
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Chapter 3
Synthesis of Spatial Mechanisms to Model
Human Joints

Vincenzo Parenti-Castelli and Nicola Sancisi

3.1 Introduction

The study of human diarthrodial joints has involved efforts of an impressive number
of researchers. Basic studies focused on experimental measurements of the relative
motion of the main bones of the joint under investigation. The measurements per-
formed in vitro (cadaver specimens) or in vivo (patients and volunteers) have the
following various purposes:

• to test and validate measurement techniques [1, 6] as well as define standardiza-
tion of diagnosis and rehabilitation procedures;

• to obtain a deeper knowledge on the behaviour of these joints which exhibit a
quite complicated anatomical structure [28, 30];

• to validate and improve mathematical models of the articulations [29, 58].

Mathematical models are among the most powerful tools for the functional analy-
sis of such a complicated biological structures and represent helpful tools for the
solution of important issues such as, for instance:

• definition of surgical and diagnostic procedures for joint disorders caused by in-
juries or diseases;

• designing prosthesis devices [12, 19];
• assessment of the role of the joint biological structures in the joint characteristics

in normal and pathological conditions [6].
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Plane and spatial mathematical models of joints have been presented in the litera-
ture [23, 29, 58]. Plane models proved to be of great usefulness. However, for many
joints they cannot take into account some complicated and subtle phenomena in-
volved in the joint motion since most of them intrinsically have a three-dimensional
motion.

The models presented in the literature are based on two different approaches. The
first one models the biological structures of the joint connections such as ligaments,
muscles, and articular surfaces by means of linear and non-linear elastic and dump-
ing elements, lumped or distributed parameters, and finds the relative motion of the
main bones by solving the equations of motion of the resulting model [1, 44, 56, 59].
The main bones are allowed to have up to six degrees of freedom (DOF) in their rel-
ative motion which finally depends on the external forces applied to the joint and
on the elastic and dumping characteristics of the joint connecting structures. These
models are computationally demanding but are also suitable to simulate the dynamic
behaviour of the joint in addition to its kinematic and static behaviour.

The second approach, instead, models the joint as a linkage or an equivalent
mechanism [29, 36, 58] whose geometry is based, as much as possible, on the joint
anatomical structures. The motion of the mechanism predicts the relative motion
of the joint main anatomical structures. These mechanisms are suitable to analyse
the passive motion of the joint, that is, the motion of the joint under virtually un-
loaded conditions (no external loads), which is believed to have a great relevance
for a deeper understanding of the joint kinematics [19]. Indeed, with regard to the
knee joint, as reported in [6], the actual motion patterns of the human knee joint de-
pend on a combination of its passive motion characteristics and the external loads.
Examples of equivalent mechanisms with one or more DOFs have been proposed in
the literature to account for the joint passive motion. Most of them are plane mech-
anisms and only a few are spatial. For example, one of the first spatial equivalent
mechanism (with one DOF) for the study of the knee passive motion was presented
in [58]. This model combined a relative simplicity with the ability to take the tibia-
femur spatial motion into good account.

This chapter summarizes the work done in the last decade by the first author and
his co-workers at DIEM (Department of Mechanical Engineering of the University
of Bologna) in collaboration with Istituto Ortopedico Rizzoli, which provided the
facilities for the experimental tests and measurements. The research work started
by adopting the second approach [58]. Since then much work was done, mainly on
the modelling of passive motion of the human knee and ankle joints. Remarkable
results were obtained and presented in [10, 14, 15, 37, 41, 45, 46, 48–50].

Passive motion involves only some anatomical structures, i.e. the main passive
structures of the joint. Instead, the modelling of kinetostatic and dynamic behaviour
of the joints involves all the anatomical structures, that comprise both passive (liga-
ments, tendons, and bones) and active (muscles) structures. In this case, ligament
elasticity is necessarily involved, thus making the models mathematically more
complicated since model elements would have a subtle relation with the anatom-
ical structures. This would make the outcomes of the models difficult to interpret
and the model itself less useful to surgeons and to prosthesis designers.
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In this context, a new approach has been devised for the kinematic, kinetostatic
and dynamic modelling of diarthrodial joints [17, 47, 52]. The approach makes it
possible to consider all the anatomical structures of a joint, both the passive and the
active ones, making their role in the kinematic and kinetostatic-dynamic behaviour
of the joint evident. The approach relies upon some basic hypotheses and is based on
three main steps from which, in order, three joint models of increasing complexity
can be obtained. More precisely, the first step models the joint passive motion, the
second step takes into account the kinetostatic behaviour of the joint under external
loads, and the third step considers the (dynamic) influence of the active elements
such as the muscles.

Among the three steps, the first one is perhaps the most challenging. It deals
indeed with the synthesis of a spatial parallel mechanism: this operation involves the
determination of a number of geometrical parameters that are coefficients of non-
linear closure equations. These parameters must be synthesized by an optimization
procedure which minimizes the errors between the relative pose of the relevant links
in the equivalent mechanism and the measured pose of the corresponding anatomical
elements in the natural joint. The final mechanism geometry has to be congruent
with the joint anatomy.

The chapter focuses in particular on this first model and reports its synthesis
for the knee, the ankle and the lower leg, showing the efficiency of these models.
Additional information are then reported regarding: (a) the kinematic modelling
of the joint when prosthetic design is the main target; (b) the second step of the
procedure, namely the kinetostatic model for the knee and ankle joints; (c) two
patents for the knee prosthesis design which are related to the proposed procedure.
Finally, some comments close the chapter.

3.2 New Sequential Approach

The new sequential approach relies upon experimental measurements and mechani-
cal models of the articulations [17, 47, 52]. Three different steps are involved in the
whole process. Each step refers to a model: each model is an evolution of the model
obtained at the previous step. A process of optimization makes it possible to define
the main geometric and structural parameters of the model at each step. The three
steps therefore provide three different models, which for convenience are called M1,
M2 and M3 respectively.

All models rely upon two basic rules:

• once a parameter has been identified at a particular step, it is not modified at the
next steps;

• parameters identified at each step must be chosen in a way that they do not alter
the results obtained at the previous steps.

These two rules guarantee that the results obtained at each step do not worsen those
already obtained at previous steps and, most importantly, they make it possible to
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choose new parameters without violating possible anatomical constraints satisfied
at previous steps.

In this sense, the proposed sequential approach is substantially an inductive
procedure that starts from the definition of a simple model that can replicate the
behaviour of the articulation under very strict conditions (with only some basic
anatomical structures considered). This preliminary model is then enriched, at each
step, by adding further anatomical structures which make the model progressively
more complex, i.e. more sophisticated, in order to obtain a more generalized model
which can replicate the behaviour of the joint under less restrictive conditions. The
three models identified at each step are the following:

STEP 1 (M1 model) This is the model of the passive motion of the articulation. It
refers to the joint’s main anatomical structures which are involved during the mo-
tion of the joint under virtually unloaded conditions. In practice they are the passive
structures that guide the motion of the joint: in most cases they are represented by
bones which are in mutual contact during the motion and ligaments that intercon-
nect the bones. Since no external force and moment are considered, the passive
structures involved do not normally provide forces. This allows the assumption
that all structures behave as rigid bodies. Thus, the M1 model can be represented
by an equivalent plane or spatial mechanism having rigid bodies. The geometric
parameters of the models are identified by an optimization process based on in vivo
measurements of the joint passive motion.

STEP 2 (M2 model) The M2 model comprises the M1 model with the addition of
the remaining passive structures, the ones that are not considered in the previous
step. External forces and moments are considered and all the passive structures in-
volved (both those of the M1 model and those added at this step) are now consid-
ered as elastic or viscoelastic structures. The physical model no longer has the fea-
ture of a rigid body equivalent mechanism, but it incorporates elastic/viscoelastic
elements. Once again, the model’s geometric and structural parameters are iden-
tified by mean of an optimization procedure based on experimental data collected
by in vivo experiments. The identification procedure is performed by satisfying the
rules of the sequential approach.

STEP 3 (M3 model) The M3 model comprises the M2 model with the addition of
all the active joint structures, i.e. mainly all muscles involved in the motion of
the joint. The physical model has similar rigid-elastic/viscoelastic features to the
M2 model but incorporates dynamic loads (inertia). Once again, an optimization
procedure makes it possible to identify the remaining geometrical and structural
parameters of the model.

At each step it is therefore possible to identify the role of the added structures.
In conclusion, the M1 model allows the study of the joint passive motion which

mainly comprises kinematic concepts; in fact, no forces are involved. The role of
the main passive structures, such as ligaments and bones, which guide the motion
of the joint under no external load is highlighted. The M2 model studies the mo-
tion and the stiffness of the joint under external loads. It allows considerations on
the joint stability, to understand the role that both the main and the secondary pas-
sive structures play on it. The model, in practice, is represented by a mechanical
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system with both rigid and elastic/viscoelastic links which allow kinematic, static
and kinetostatic analyses to be performed. The M3 model is the most complete and
complex model: it incorporates all the structures of the joint and allows kinematic,
static and dynamic analyses to be performed. The role of the active structures such
as the muscles is highlighted by this model.

Each model has its own advantages and disadvantages: M1 is simple and com-
putationally not too much expensive but provides a limited amount of information,
whilst M3 is computationally demanding but provides all the information related to
the behaviour of the joint.

Within this frame, for a joint different models M1 and its corresponding evolu-
tions M2 and M3 could be devised according to the purpose the model has to pur-
sue. Indeed, a deep investigation of the role of the main anatomical structures of the
joint would lead to a rather complex equivalent mechanism [10, 14, 37, 41, 46, 49],
while for prosthesis design purposes more simple equivalent mechanisms could suf-
fice [15, 45, 48, 50].

3.3 M1 Anatomical Models of the Passive Motion

In this section, models M1 for the detailed description of both the joint anatomical
structures and the joint passive motion are reported for three joints, namely the knee,
the ankle and the lower leg. The stage of M1 modelling comprises the following
basic steps: (a) to devise a mechanism topology whose links and constraints have
a one-to-one correspondence with the main anatomical structures; (b) to synthesize
the mechanism geometrical dimensions in order to obtain a mechanism which can
replicate the natural passive joint motion with a proper accuracy. The complexity of
the model to be devised at step (a) depends on the purpose the model has to have,
and its complexity, for a given accuracy of the mechanism to replicate the joint
passive motion, will greatly increase the difficulty of the dimensional synthesis of
the equivalent mechanism.

3.3.1 Anatomical Knee Model

The knee is a complex joint that exhibits a three-dimensional motion. It features two
main bones, the femur and tibia, interconnected by a number of ligaments, tendons,
and muscles that provide both mobility and stability.

3.3.1.1 Physical Foundations of the Model

The topology of the mechanism, its geometry and, as a consequence, its geometrical
parameters are devised from experimental observations on the clinical and kinematic
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Fig. 3.1 The knee joint [42]

characteristics of the joint. This aspect is important to relate the mathematical results
to the experimental ones, since physical significance is fundamental when the model
is used for the study of the joint, for surgical purposes or for prosthetic design. This
is an indirect way also to obtain a confirmation of the correctness of the model
assumptions.

The knee is a joint which allows the relative motion between three bones of the
legs, i.e. the femur, tibia and patella (Fig. 3.1). Two sub-joints can be recognized
according to the bones that enter into contact with each other during knee flexion:
the tibio-femoral joint (TF) allows the relative motion between the femur and tibia
and the patello-femoral joint (PF) allows the relative motion between the patella
and femur. These motions are guided in general by articular surfaces (the femur and
tibia condyles, the trochlea and the back surface of the patella), by passive structures
(such as the ligaments) and by active structures (such as the muscles).

The passive motion of the knee is thus the relative motion of the tibia, femur and
patella when no loads are applied to the joint. Several studies [19, 58] prove that
the motion of the TF during passive flexion is a one-DOF motion: once the flexion
angle is imposed on the joint, the corresponding pose (position and orientation) of
the tibia with respect to the femur is defined, both univocally and experimentally
replicable. The same result holds also for the relative motion of the patella and
femur [4]: although the PF is slightly more slack during passive flexion if compared
to the TF, experimental results prove that for a given flexion angle of the knee the
relative pose of the patella with respect to the femur is replicable. As a consequence,
the patella also has one DOF of unresisted motion with respect to the femur.

Moreover, since no forces are exerted on the joint, no forces can be exerted by the
passive structures of the knee to satisfy the equilibrium of the system composed by
the tibia, femur and patella. The internal forces due to the passive structures could be
internally autobalanced, thus invalidating the concept of totally unloaded condition,
but these circumstances would be extremely complex to achieve on the full flexion
range, even considering friction between articular components. As a consequence,
the ligaments cannot be tight during passive flexion: they can reach the limit length
between laxity and tension at the most (unloaded length). In particular, actually there
exist some articular components which persist in this last status during the complete
passive flexion: these structures are those which guide and affect the passive motion.
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All these observations involve important anatomical constraints which must be
considered and satisfied by the passive knee model: when no forces are applied to
the model of the knee, the relative motion of the tibia, femur and patella must be a
one-DOF motion, guided by passive structures that do not change their shape/length
during motion. The fundamental conclusion is that the passive motion of the knee
can be modelled by means of a rigid link mechanism, featuring elements that rep-
resent the passive structures that actually guide this motion; the relative motion of
the tibia, femur and patella can thus be obtained from the kinematic analysis of this
equivalent mechanism.

As a consequence, the problem of the knee model definition is reduced to the syn-
thesis of a particular equivalent mechanism, whose links correspond to the anatom-
ical structures that guide the passive motion of the knee. A further experimental
evidence makes it possible to simplify the definition of this equivalent mechanism.
If the tibia flexion angle is imposed, the TF pose is not influenced by the PF dur-
ing passive motion: a TF mechanism can be synthesized at first, that excludes the
patella; the PF mechanism can be defined subsequently [46, 49, 50].

In the last few years, a family of models was presented which can accurately
replicate the passive motion of the TF by means of three-dimensional rigid link
mechanisms [10, 37, 40, 41, 58]. The geometric and kinematic observations that
support these mechanisms are all similar. Experimental studies show that a bun-
dle of fibres of the anterior cruciate (ACL), one of the posterior cruciate (PCL)
and another one of the medial collateral (MCL) ligaments remain almost isomet-
ric during passive flexion. These bundles are called isometric fibres (IFs). Articular
contact is preserved on two points (one for the medial and the other for the lateral
condyles) during passive motion. All the other components of the TF do not con-
strain the passive motion further. As a consequence, the three IFs and the two pairs
of condyles are the anatomical structures which guide and affect the passive motion
of the TF [57]. Thus, a TF equivalent mechanism can be defined featuring two rigid
bodies (representing the tibia and femur), interconnected by three rigid binary links
(representing the three IFs) and by two pairs of surfaces in reciprocal contact at one
point (representing the articular surfaces). Mobility and a synthesis procedure of
this type of mechanisms have been investigated in [33].

Different mechanisms can be defined by improving the description of articular
surfaces [10, 37, 40, 41]. Accuracy does not increase with complexity all the time.
Numerical instabilities may arise indeed from the kinematic analysis of a too com-
plex mechanism and the number of parameters of the model makes the identifica-
tion from experimental results very difficult and time-expensive. The limitations of
higher order models were shown in [37]: the substitution of lower-order surfaces
with more complex ones did not produce particular benefits; on the contrary, the
use of b-splines brought computational and optimization instabilities that, paradox-
ically, gave worse results than those of simpler models. The approximation of the
articular surfaces with spheres [41] proved very efficient for the modelling of the
TF passive motion, providing a good balance between complexity of the model and
accuracy of the synthesized motion.

In this case, the two pairs of spherical surfaces can be substituted each by one
kinematically equivalent rigid link connecting two by two the centres of the spheres.
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Fig. 3.2 The 5-5 parallel
mechanism

The resulting mechanism is thus a 5-5 parallel mechanism (Fig. 3.2), featuring two
rigid bodies (i.e. the femur and tibia), interconnected by five rigid links (i.e. the IFs
and the articular contacts) through spherical pairs centred at the points Ai on the
tibia and Bi on the femur (i = 1, . . . ,5) [41].

The equivalent mechanism of the PF (Fig. 3.3) stems from similar considerations
with respect to the TF one [46, 49]. The contact between the patella and femur oc-
curs on a wide portion of their rigid articular surfaces for each flexion angle: this
observation suggests that this contact can be modelled by means of a lower pair. In
particular, the trochlea and the anterior portions of femoral condyles which are in-
volved in the contact can be approximated by a cylinder. Thus, the relative motion of
the patella and femur is almost cylindrical and occurs about an axis n1 fixed on the
femur, i.e. the axis of the approximating cylinder. Moreover, the particular shape
of the articular surfaces limits the mobility of the patella along the rotation axis:
the back surface of the patella fits—in a certain sense—the trochlea, the femoral
condyles and the intercondylar space, which serve as a sort of rail for the patella.
These considerations all lead to the conclusion that the contact between the patella
and femur can be modelled by a hinge joint which mutually connects the two bones.
A more accurate description of articular surfaces could improve the accuracy of the
mechanism also in this case. For instance, the patella-femur contact was modelled
also by a screw joint [50], in order to account for the orientation of the anatomical
rail which guides the patella motion, that is on a plane which is not perfectly orthog-
onal to the axis n1. However, the hinge joint model revealed accurate all the same,
and thus it is used here. As for the other passive structures, experimental results
from these and other authors [4] show that a bundle of fibres of the patellar liga-
ment remains almost isometric in passive flexion. Thus, it is possible to substitute
this bundle with a rigid link C1D1: this link is connected to the tibia and patella by
spherical pairs respectively centred in C1 and D1.

Finally, in order to obtain a complete kinematic model of the knee, it is necessary
to set the parameter of the motion whose value determines the configuration of the
joint. The flexion motion—when imposed by the muscles—can be seen as the result
of the action (lengthening or shortening) of the quadriceps on the patella. In other
words, the length of quadriceps fixes the configuration of the joint. This can be ac-
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Fig. 3.3 The kinematic model of the knee joint (a) and a detail of the patello-femoral joint (b).
The geometrical parameters of the patello-femoral joint are also represented

complished in the model, by substituting the quadriceps with a spherical-prismatic-
spherical group C2D2: this group is composed by two rigid members interconnected
by a prismatic pair, and it is connected to the femur and patella by spherical pairs
respectively centred in C2 and D2. It is worth noting that the quadriceps is actually
connected to both the femur and ilium; since the relative motion between the femur
and ilium is not considered in this study, these two bones can be seen as a single
rigid body.

The complete kinematic model of the knee in passive flexion is represented in
Fig. 3.3. It can be obtained by joining the TF and the PF equivalent mechanisms.
The linear displacement s of the prismatic joint defines the configuration of the knee
when the flexion angle is imposed by the quadriceps: it can be easily proved that the
complete mechanism has one DOF (ignoring idle inessential DOFs). In particular,
the motion that is obtained by leaving the prismatic pair idle reproduces the passive
motion of the knee. Moreover, it can be easily verified that the PF subchain, namely
the kinematic chain constituted by the link C1D1, the group C2D2 and the patella,
has zero DOFs with respect to the TF complex if the prismatic joints is idle. As a
consequence, the PF motion depends on the configuration of the TF, while the TF
motion is not influenced by the patella if tibia flexion is imposed: this is compatible
with the previous anatomical observations.

3.3.1.2 Mathematical Formulation

The mathematical model can be deduced from the closure equations of the equiva-
lent mechanism and the passive motion can be obtained by solving these equations.
Since the PF and the TF subchains are partially independent, their closure equations
are partially decoupled: the TF closure equations can be solved without considering
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Fig. 3.4 The three
anatomical frames St , Sf

and Sp represented together
with the tibial (light-grey),
femoral (dark-grey) and
patellar (black) articular
surfaces

the PF if tibia flexion is imposed; the PF closure equations are then solved sequen-
tially, after the TF motion has been obtained.

Three anatomical frames are defined and attached to the tibia, femur and patella
respectively (Fig. 3.4), to obtain the relative poses of the tibia, femur and patella
as a result of the model. The tibia anatomical frame (St ) is defined with origin
coincident with the tibia centre, i.e. the deepest point in the sulcus between the me-
dial and lateral tibial intercondylar tubercles; x-axis orthogonal to the plane defined
by the two malleoli and the tibia centre, anteriorly directed; y-axis directed from
the mid-point between the malleoli to the tibia centre; z-axis as a consequence, ac-
cording to the right hand rule. The femur anatomical frame (Sf ) is defined with
origin coincident with the mid-point between the lateral and medial epicondyles; x-
axis orthogonal to the plane defined by the two epicondyles and the head of femur,
i.e. the hip joint centre, anteriorly directed; y-axis directed from the origin to the
head of femur; z-axis as a consequence, according to the right hand rule. Likewise,
the patella anatomical frame (Sp) is defined with origin coincident with the mid-
point between the lateral and medial apices; x-axis orthogonal to the plane defined
by the lateral, medial and distal apices, anteriorly directed; y-axis directed from the
distal apex to the origin; z-axis as a consequence, according to the right hand rule.

A relative pose of the femur with respect to the tibia can be expressed by means of
the 3 × 3 rotation matrix Rtf for the transformation of vector components from Sf

to St , and the position Ptf of the origin of Sf in St . Matrix Rtf can be expressed
as a function of three angles α, β and γ :

Rtf =
⎡

⎣
cαcγ + sαsβsγ −sαcγ + cαsβsγ −cβsγ

sαcβ cαcβ sβ
cαsγ − sαsβcγ −sαsγ − cαsβcγ cβcγ

⎤

⎦ , (3.1)

where c(·) and s(·) indicate the cosine and sine of the angle (·) and α, β , γ repre-
sent the flexion, ab/adduction and in/external rotation angles of the femur and tibia,
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using a convention deduced by the Grood and Suntay joint coordinate system [20].
Equation (3.1) can be applied for right legs. Likewise, the matrix Rfp and the vec-
tor Pfp express a relative pose of the patella with respect to the femur; the matrix
Rfp can be represented by an expression similar to (3.1). Even though the Grood
and Suntay convention was originally defined for the TF, its application on different
joints (the PF included) is becoming an ordinary praxis in the scientific literature.

The geometrical parameters of the TF mechanism (Fig. 3.2) are the coordinates
of the points Ai and Bi (i = 1, . . . ,5) expressed respectively in St and Sf , and
the lengths Li (i = 1, . . . ,5) of links AiBi . Thus, the TF model is defined by 35
independent geometrical parameters. The relative poses of the femur and tibia can
be obtained by solving the closure equations of the TF mechanism. As previously
written, these equations can be solved independently from those of the PF model
since the relative motion of the TF is not influenced by that of the PF in passive
flexion, if tibia flexion is imposed. The closure equations of the TF model are:

‖Ai − Rtf Bi − Ptf ‖ = Li (i = 1, . . . ,5) (3.2)

that impose a constant distance Li between Ai and Bi . If the flexion angle α is
assigned (3.2) is a system of five equations in the five unknowns β , γ and Ptf

components. These parameters define the relative pose of the femur and tibia.
The geometrical parameters involved in the PF model (Fig. 3.3) are the compo-

nents of the unit vectors n1 and n2 of the hinge rotation axis expressed respectively
in Sf and Sp , the coordinates of the position vectors Q1 and Q2 of the intersec-
tions of the same axis with the x-y reference planes expressed respectively in Sf

and Sp , the coordinates of the insertion points C1 and D1 expressed respectively in
St and Sp , the fixed distance L between C1 and D1 and the fixed distance λ be-
tween Q1 and Q2. Since the norm of the hinge unit vector is unitary, the components
of the unit vectors n1 and n2 can be expressed as a function of two independent co-
ordinates only, for instance the azimuth δ and the altitude η, y-z being the horizontal
plane and z-axis the azimuth origin:

n1 =
⎛

⎝
sinη1

cosη1 sin δ1
cosη1 cos δ1

⎞

⎠ , n2 =
⎛

⎝
sinη2

cosη2 sin δ2
cosη2 cos δ2

⎞

⎠ . (3.3)

Furthermore, the coordinates of the position vectors Q1 and Q2 admit the following
representation:

Q1 =
⎛

⎝
Q1x

Q1y

0

⎞

⎠ , Q2 =
⎛

⎝
Q2x

Q2y

0

⎞

⎠ . (3.4)

From (3.3) and (3.4) and from the previous considerations, it follows that the PF
model is described by means of 16 independent geometrical parameters. It is worth
noting that the parameters which define the position of points C2 and D2 are not
taken into account since they are not necessary for the solution of the position anal-
ysis problem of the mechanism in passive flexion, if tibia flexion is imposed.
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The connection between the geometric parameters of the model and the kine-
matic parameters of the relative pose of the patella and femur is described by the
following expressions, which represent the closure equations of the PF model:

Rfpn2 = n1,

RfpQ2 + Pfp = λn1 + Q1,
∥
∥Rtf (RfpD1 + Pfp) + Ptf − C1

∥
∥= L.

(3.5)

The first two vectorial equations constrain the axis identified by n1 and Q1 to be co-
incident with that identified by n2 and Q2. Moreover, the second vectorial equation
imposes a constant distance between Q1 and Q2. The last scalar equation ensures
that the distance between C1 and D1 remains constant. If the relative motion of the
femur and tibia is given, i.e. if Rtf and Ptf are known from (3.2), (3.5) is a system
of seven equations in six unknowns, namely the three components of Pfp and the
angles α, β , γ which define Rfp , as in (3.1). However, in the first vectorial expres-
sion of (3.5) only two out of three equations are independent, since n1 and n2 both
have unitary norms. Thus, given Rtf and Ptf , (3.5) makes it possible to find the
relative poses of the patella and femur at each assigned flexion angle.

Equations (3.2) and (3.5) are the closure equations of the knee joint in passive
motion. By assigning the flexion angle α, they make it possible to find the relative
poses of the patella, femur and tibia. As previously anticipated, points C2 and D2
have no influence on the closure equations of the mechanism in passive flexion. If
the prismatic joint displacement s is required, it is sufficient to solve the position
analysis problem and then to evaluate the distance between the points C2 and D2.

3.3.1.3 Experimental Sessions

Experimental sessions were carried out, in order to evaluate the accuracy of the pas-
sive knee model. Geometrical data were measured on several specimens to obtain a
first approximation of the geometrical parameters of the mechanism; the experimen-
tal motion of the patella, femur and tibia during passive flexion was also recorded.
In particular, an opto-electronic system was used to collect the articular surfaces of
the patella, femur and tibia as clouds of points (Fig. 3.4); the ligament attachment
areas and the anatomical landmarks were recorded in the same way. The same opto-
electronic system was used to obtain the relative poses between the patella, femur
and tibia in passive flexion.

The anatomical landmarks were used to define the reference frames St , Sf and
Sp . Straightforward algebraic manipulations then made it possible to obtain the
experimental values of the components of vectors Pfp and Ptf , of the angles α, β ,
γ which define the matrix Rfp , and of the analogous angles which define the matrix
Rtf , as in (3.1). These kinematic parameters are used to compare the synthesized
motion with the experimental one during the optimization procedure and, as a final
objective, to verify the accuracy of the proposed model.
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The experimental data were processed to obtain a preliminary estimate of the
geometrical parameters of the knee model. As for the TF mechanism, by analysing
the passive motion and knowing the ligament attachment areas, it was possible to
determine the attachments of ligament isometric fibres, i.e. the points Ai and Bi (i =
1,2,3) which showed the minimum distance variation during the entire motion. The
tibia and femoral articular surfaces of the TF were approximated by spheres by the
least-square method: the centres of these spheres were used to obtain a first estimate
of the remaining points Ai and Bi (i = 4,5). The link length Li (i = 1, . . . ,5) were
obtained as the distance between Ai and Bi at full extension.

Similarly, an estimate of the PF parameters was deduced from the experimental
data by considering the physical foundations of the model, described in Sect. 3.3.1.1.
The femoral articular surfaces of the PF were approximated by a best-fitting cylinder
in Sf : the axis of the cylinder made it possible to obtain n1 and Q1. The transforma-
tion of vector components in Sp (an intermediate relative pose between the patella
and femur was chosen along the flexion arc) allowed n2 and Q2 to be defined; the
distance between Q1 and Q2 set the λ parameter. Finally, the attachment areas of the
patellar ligament was analysed: the attachment points of the ligament isometric fibre
C1 and D1 were the points which showed the minimum distance variation during
the full flexion range. Their mean distance during passive flexion defined L.

3.3.1.4 Parameter Optimization

The preliminary estimate of the geometrical parameters is only a rough approxima-
tion of the final model: these parameters have to be optimized in order to best-fit
the experimental results [45]. In particular, the TF mechanism was optimized at
first; the PF model was then sequentially optimized, starting from the obtained TF
model [46, 49]. The optimization procedure could also be extended to the whole
mechanism, slightly improving the result accuracy: the sequential optimization was
preferred just to simplify the procedure, since the final results would be very similar
to the presented ones; moreover, a sequential optimization is more congruent with
the independence between the TF and PF.

The optimization technique applied to the TF and PF mechanisms are substan-
tially similar (Fig. 3.5). The preliminary estimate of the geometrical parameters q0
is passed to an objective function. The model is defined within the function, by
means of q0 and other parameters (vector p in Fig. 3.5) which are not optimized.
The passive motion of the joint is obtained by solving the closure equations at the
experimental flexion angles; the simulated motion x is then compared with the ex-
perimental one x� and the differences are quantified by an index F . The value of this
index leads the optimization algorithm to define a second guess q1 inside the search
domain, that is passed again to the objective function. This iteration is repeated until
the minimum value of F is reached. The final set of parameters qf is the solution of
the optimization problem. To keep the physical consistency of the knee model, the
optimization search domain is bounded, having the preliminary estimate q0 as the
central value: every parameter qn has to fall within the interval [q0n − δn, q0n + δn].
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Fig. 3.5 The optimization procedure for the identification of the TF and PF mechanisms

The bounds δn are set in such a way that the final geometrical parameters of the
model are not too far from their preliminary estimate.

As regards the TF mechanism, for each optimization iteration, the closure equa-
tions (3.2) are solved at all experimental flexion angles. The relative poses of the
femur and tibia computed from the model are iteratively compared with the exper-
imental ones: the sum of the weighted squared errors between the poses represents
the error index F which has to be minimized. In particular, if xjk is the computed
value of the j th unknown (j = 1, . . . ,5) of the system (3.2), obtained at the kth
flexion angle (k = 1, . . . ,m), the contribution of xjk to the value of F is:

εjk = (xjk − x�
jk)

2

x2
jd

, (3.6)

where x�
jk is the corresponding experimental value of the unknown. The weights

xjd are necessary, in order to account for the different sizes and dimensions of the
unknowns. The weights are chosen as:

xjd = max{xjk, k = 1, . . . ,m} − min{xjk, k = 1, . . . ,m}. (3.7)

Thus, the error εjk is a sort of per cent error, with respect to the maximum range
xjd of the j th pose parameter. The mechanism closure is not guaranteed for all sets



3 Synthesis of Spatial Mechanisms to Model Human Joints 63

of geometrical parameters: if the model closure equations cannot be solved at all
flexion angles, an arbitrary high value is assigned to the index F . Thus, the complete
algorithm for the computation of F is:

F =
5∑

j=1

m∑

k=1

εjk if closure succeeds,

F = X otherwise,

(3.8)

where X is an arbitrary high value.
The objective function is highly non-linear and, because of the bifurcation

of (3.8), it has many discontinuities. Quasi-Newton methods are powerful optimiza-
tion algorithms which can efficiently find the minimum value of non-linear func-
tions; unfortunately—like all deterministic algorithms which make use of deriva-
tives of the objective function—they show numerical instabilities when solving
discontinuous problems. Thus, a first approximation of the optimum solution is
found by means of a genetic algorithm, which does not make use of derivatives.
The bounded genetic algorithm makes it possible to find a feasible solution within
the bounds, namely a geometry of the TF mechanism whose closure equations are
satisfied at all flexion angles. The preliminary solution is then iteratively refined
by means of a quasi-Newton algorithm: the search for the optimum solution is
carried out by finding the minimum within bigger and bigger domains inside the
bounds, and by keeping the algorithm on continuous zones of the objective func-
tion.

The optimization technique applied to the PF mechanism is substantially the
same as the TF. The poses of the optimized TF model at the experimental flex-
ion angles are used to solve (3.5). An error index F similar to (3.8), that compares
the computed and the experimental motion of the patella, is then reduced to a min-
imum.

3.3.1.5 Results

The results of the optimization procedure are reported in Table 3.1 for a representa-
tive specimen [49]. A few geometrical parameters lie on the bounds of the domain,
but in general all of them remain close to the preliminary estimate. These geomet-
rical parameters are reported as an example and are strictly related to the anatomy
of the considered specimen. A similar procedure could be used to define a sort of
generic mechanism of an average knee; however, since the model strongly relies on
anatomy, an average knee geometry should be determined.

The values of the five pose parameters of Sf in St during knee passive motion
are reported in Figs. 3.6(a) and 3.7(a): the dotted lines are the experimental data,
while the solid ones are the results of the model. The corresponding values of the
six pose parameters of Sp in Sf are presented in Figs. 3.6(b) and 3.7(b).
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Table 3.1 Geometrical parameters of the knee model after optimization: Ai , C1 refer to St , Bi ,
n1, Q1 to Sf , and n2, Q2, D1 to Sp

x [mm] y [mm] z [mm] Length [mm] δ [rad] η [rad]

A1 13.30 0.68 −3.80 – – –

A2 −19.92 −10.83 −3.38 – – –

A3 14.65 −97.29 −9.88 – – –

A4 8.31 −47.21 20.55 – – –

A5 −3.61 28.79 −32.49 – – –

B1 −8.06 0.51 10.50 – – –

B2 −2.66 −1.16 −4.23 – – –

B3 1.15 4.21 −46.77 – – –

B4 −4.23 2.12 23.12 – – –

B5 2.28 6.37 −18.28 – – –

L1 – – – 29.28 – –

L2 – – – 35.47 – –

L3 – – – 128.88 – –

L4 – – – 70.35 – –

L5 – – – 11.55 – –

Q1 6.46 15.47 0 – – –

Q2 −44.10 10.40 0 – – –

C1 19.88 −25.00 10.00 – – –

D1 2.41 −26.00 −5.00 – – –

L – – – 40.02 – –

λ – – – −1.76 – –

n1 – – – – −0.13 0.06

n2 – – – – −0.30 0.29

These results show that the kinematic model of the knee joint can accurately re-
produce the relative motion of the patella, femur and tibia in passive flexion. The
accuracy of the model and the closeness between the preliminary estimate of the
geometrical parameters and their optimized values is an indirect confirmation of the
correctness of the model physical foundations. In particular, the considered struc-
tures seem to be those most responsible for the knee passive motion: this aspect
shows the important role these structures have to stabilize and to restrain the human
knee.

Finally, it is worth noting that the proposed knee mechanism is a purely kinematic
model which can replicate the joint passive motion. The model could be used to
predict the behaviour of the joint under different loading conditions, but in general
the model accuracy could be reduced: the considered articular structures cannot be
considered rigid (as supposed in the model) when relatively high loads are applied
to the real knee. In this case, indeed, the natural motion of the joint deviates from the
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Fig. 3.6 Comparison of the positions of parameters of the femur, tibia and patella in relative
motion. Dot = experimental data; solid = synthesized motion
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Fig. 3.7 Comparison of the orientation of the femur, tibia and patella in relative motion.
Dot = experimental data; solid = synthesized motion
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passive one, and other ligaments and bundles could be recruited together with the
ones considered in the model. However, as reported in the introduction, the proposed
rigid-link mechanism can be generalized to other loading conditions by means of the
sequential procedure described in Sect. 3.2 [17, 47, 52]. In this sense, this model M1
is the foundation or the first step to obtain more generic models that can replicate
the knee behaviour even when loads are applied to the joint.

3.3.2 Anatomical Ankle Model

The ankle joint complex is an anatomical structure that comprises two joints, namely
the tibiotalar joint, connecting the tibia above, the fibula laterally and the talus be-
low, and the subtalar joint, connecting the talus above and the calcaneus below. This
human joint has been an important subject of study for many decades, for its fun-
damental role in human locomotion. Great interest has been devoted, in particular,
to the mechanical behaviour of this joint. Kinematic, static and dynamic analyses
of the ankle have been the main focus of a large amount of work, thanks also to
the modern instrumentation that has made it possible to collect and evaluate many
data. The effective advance in laboratory techniques, both in vivo and in vitro ex-
periments, has allowed the development of relevant models that describe the ankle
motion under virtually unloaded condition (passive motion) or in response to exter-
nal loads.

Not many studies up to now have developed a kinematic, static or dynamic model
of the ankle joint involving all the main anatomical structures (such as bones, liga-
ments, tendons, cartilage, . . . ) that play an important role in the ankle’s mechanical
behaviour [7, 9, 11, 14, 15, 22, 25, 31, 43, 54, 55]. Following a similar approach
as that adopted for the knee in the previous sections, a one-DOF equivalent spa-
tial mechanism is presented which overcomes the limitations of the previous mod-
els [11, 29, 30] and makes it possible to replicate very well the passive motion of
the joint [14, 16].

3.3.2.1 Physical Foundations of the Model

Based on a careful inspection of the tibiocalcaneal interface, the talus and the
tibio/fibula bones (modelled as rigid bodies) have been considered in mutual con-
tact at three points. The portion of each contact surface has been approximated by
a spherical surface. More precisely, the areas of the surfaces of the mating bones
which come into contact during the passive motion were digitized. Three contact
points were selected and the corresponding contact areas (a cloud of digitized points
for each area) approximated by best fit spherical surfaces. The three contact areas
were identified at the lateral malleolus (a pyramidal process on the lateral surface
of the lower extremity of fibula), at the internal region of the inferior surface of the
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Fig. 3.8 Schematic of the
ankle complex joint

distal tibia articulate with the talus surface, and at the medial malleolus (a pyramidal
process on the medial surface of the lower extremity of tibia).

Moreover, experimental data showed that some fibres of the calcaneofibular lig-
ament (CaFiL) and the tibiocalcaneal ligament (TiCaL) are nearly isometric during
the ankle passive motion.

Based on these observations and assumptions a schematic of the ankle joint is
shown in Fig. 3.8. Here the two talocalcaneal and tibiofibular segments feature three
sphere-to-sphere contact points where points Ai , and Bi , i = 3,4,5, represent the
centres of the mating spherical surfaces fixed to the talus/calcaneus and tibia/fibula
respectively, while points Ai , and Bi , i = 1,2, represent the insertion points on
the two segments of two isometric fibres of the two ligaments CaFiL and TiCaL
respectively.

Inspection of Fig. 3.8, when considering, for instance, the tibio/fibula segment as
a fixed body, and the isometric fibres as connected to the bones by spherical pairs
centred at points Ai and Bi , i = 1,2, reveals that the schematic represents a spa-
tial mechanism with one-DOF. Indeed, Kutzbach’s formula [27] provides one-DOF
considering that the rotations of the two ligaments about the respective axes A1B1
and A2B2 are inessential to the relative position of the two segments. In particu-
lar the talocalcaneal segment has a one-DOF motion with respect to the tibiofibular
segment.

During the relative motion of the two ankle segments each pair of mating spher-
ical surfaces maintains the contact, therefore the distance AiBi , i = 3,4,5, is con-
stant. Moreover the distance AiBi , i = 1,2 is also constant during the passive mo-
tion since it represents the length of the ligament isometric fibre. As a consequence,
each pair of points (Ai , Bi ), with Ai and Bi , i = 1,2, . . . ,5, respectively fixed to the
tibiofibular and talocalcaneal segments, maintains a constant mutual distance during
motion.

Based on this consideration, the equivalent mechanism of Fig. 3.8 can be more
synthetically represented again, likewise the knee, by a 5-5 mechanism (Fig. 3.2).
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Fig. 3.9
Stereophotogrammetric
system for the ankle complex
joint

3.3.2.2 Mathematical Formulation

The 5-5 mechanism is then taken as the equivalent mechanism of the ankle joint.
Therefore, its mathematical model is the same as that of the knee joint reported in
the previous section. The mechanism closure equations are the analogous of (3.2).

3.3.2.3 Experimental Session

Similarly to the procedure adopted for the knee, experimental measurements were
conducted with a number of specimens in order to obtain the physical data neces-
sary to synthesize the equivalent mechanism. In particular, the tibia was fixed to a
workbench table while the foot was free to move with respect to the tibia. A pin
drilled along the calcaneus longitudinal axis and protruding from the posterior sur-
face came into contact with a rigid link, connected to the workbench by a revolute
pair, which supported and drove the pin to move, thus producing the desired passive
motion of the calcaneus with respect to the tibia/fibula.

Likewise the knee, a standard stereophotogrammetric system was used as the ac-
quisition system for both recording the relative position of the talocalcaneal segment
with respect to the tibiofibular segment and digitizing points of interest (Fig. 3.9).
The equipment comprises a camera system, two trackers fixed to the tibia and the
talus respectively and a pointer to digitize points. The system can recognize the pose
of the two trackers and pointer in a definite workspace.

Details on the chosen anatomical reference system (Sf for the tibia and Sc for the
talus) are reported in [14]. In order to define the orientation of the talus with respect
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Table 3.2 Geometrical data
of the 5-5 mechanism
obtained by the optimization
procedure

x [mm] y [mm] z [mm] Length [mm]

A1 −2.535 −7.566 23.137 –

A2 1.854 1.523 −32.627 –

A3 9.764 0.824 39.475 –

A4 −4.378 3.931 −15.235 –

A5 3.234 −5.489 −11.928 –
cB1 −46.464 −24.569 24.599 –
cB2 −25.048 −27.721 −32.399 –
cB3 −31.147 −11.216 49.764 –
cB4 −38.116 3.455 −20.625 –
cB5 −21.908 1.048 −8.352 –

L1 – – – 19.229

L2 – – – 22.705

L3 – – – 13.176

L4 – – – 15.228

L5 – – – 13.430

to the tibia, a sequence-independent joint coordinate system [20] was chosen. The
three rotation axes that define the system were chosen as follows: the yf axis of Sf

fixed to the tibia as the first one, the zc axis of Sc fixed to the talus as the second
one, finally an axis coincident with the shortest distance straight line of the other
two axes as the third one.

Three angles about these axes are defined: the ankle dorsiflexion(+)/plantar-
flexion(−) angle γ about the z-axis of Sc, the ankle internal(+)/external(−) ro-
tation angle α about the y-axis of Sf , and the ankle pronation(+)/supination(−)

angle β about a floating axis defined by the cross vector product of the unit vectors
of the z-axis of Sf and the unit vector of the y-axis of Sc.

3.3.2.4 Parameter Optimization

The synthesis of the ankle 5-5 mechanism model can be performed by the same
procedure adopted for the knee (Sect. 3.3.1.4).

3.3.2.5 Results

The geometry of the equivalent 5-5 mechanism obtained by the optimization proce-
dure is reported in Table 3.2. Vectors with a left hand superscript c(·) are measured
in Sc, the remaining vectors are measured in Sf . The results of the ankle passive mo-
tion simulation obtained by the 5-5 mechanism are compared with those obtained
by measurements. In particular, Figs. 3.10 and 3.11 show the positions x, y, and z

of the origin of the reference system Sc with respect to Sf , and the angles α and β
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Fig. 3.10 Passive motion simulation: x, (a), y, (b), and z, (c) versus ankle’s flexion angle γ

respectively versus the ankle flexion angle γ . All figures show both the simulation
and the experimental results. In particular the experimental results are identified by
the symbol Δ and interpolated by a dotted line. The interpolation makes it possible
to use a higher number of (interpolated) experimental data, which may be useful for
the optimal synthesis of the equivalent 5-5 geometry.

Inspection of the figures shows that the equivalent spatial mechanism replicates
the passive motion of the human ankle very well. In particular the discrepancy on
the position is contained within about 2.5 mm, specifically within 1 mm for the
displacement x, within 1 mm for the displacement y, and within 2 mm for the dis-
placement z; while the discrepancy on the rotation is lower than 1 degree for the
intra/extra rotation α, and lower than 0.5 degrees for the prono/supination β .

3.3.3 Anatomical Lower Leg Model

For a better understanding of the ankle complex behaviour and role in human loco-
motion, it is necessary to study the interaction of the anatomical elements of the
joint with the others that constitute the whole leg. One example is a new com-
putational model of the lower limb presented in [32] and developed to study the
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Fig. 3.11 Passive motion simulation: angles β , (a), and α, (b), versus ankle’s flexion angle γ

effects of a syndesmotic injury on the relative motion between tibia and fibula,
and the ankle inversion stability. The anatomical elements modelled are several
bones (the whole tibia and fibula, talus and calcaneus, navicular, cuneiform and
metatarsal bones), several ligaments and the interosseus membrane. In particular,
bones are represented with rigid bodies in mutual contact—ignoring articular carti-
lage deformation—and ligaments and the interosseus membrane by linear springs.
This new computational model seems to be almost an exception, because the great
majority of kinematic or dynamic models of the human lower limb that can be found
in the literature represent the ankle joint as an ideal hinge joint or a spherical joint
that links together two rigid segments corresponding to the foot and the lower limb
[5, 8, 18, 21, 24, 26, 34, 35, 53].

In this section the ankle joint complex kinematic behaviour is modelled by a
spatial mechanism that takes into account several anatomical structures of the lower
leg: the main ligaments and the articular contacts. The proposed approach will be
shown to represent a valid procedure for future developments of complete models
of the whole human lower limb.

More specifically, this section will focus on the kinematic modelling of the ar-
ticulation that involves four bones: tibia, fibula, talus and calcaneus (see Fig. 3.12).
In this anatomical complex (defined as TFC for brevity), the ankle joint plays a
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Fig. 3.12 The four bones of
the TFC complex. TT, HF,
LM and MM are the
anatomical points for the
definition of the tibia
anatomical frame

fundamental role. In particular, the aim is the development of a model for the TFC
complex passive motion simulation. Thus, a one-DOF spatial equivalent mechanism
of the TFC complex is presented [3], following an approach similar to that adopted
for the knee and the ankle joints. The geometry of the devised mechanism relies
upon the anatomical structures of the TFC complex: namely, on the talus, tibia and
fibula articular surfaces on one hand and on the main ligaments of the articulation on
the other hand. The optimal geometry of the mechanism is found, likewise the knee
and ankle models, by an iterative refinement process that relies upon the compari-
son of simulation results with experimental data of the talus, tibia and fibula bones
passive motion.

3.3.3.1 Physical Foundations of the Model

Starting from experimental observations and previous studies, the TFC is modelled
by a one-DOF equivalent spatial mechanism to simulate the passive motion of the
complex.

In particular, the talus and calcaneus are considered as a single body, likewise
in the ankle kinematic model, and all the bones are modelled as rigid bodies. The
contacts between the bone articular surfaces are modelled in the same way as done
in the previous sections for the model of the ankle complex passive motion. Specifi-
cally, the talus and the tibia bones are considered in mutual contact at two points (at
the medial malleolus and at the internal region of the inferior surface of the distal
tibia articulated with the talus surface), while the talus and the fibula bones are con-
sidered in mutual contact at one point (at the lateral malleolus). The portion of each
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contact surface is approximated by a spherical surface. Moreover, based on a careful
inspection of the proximal part of the tibia and the fibula, only one point of contact
is considered between the two bones. Thus, the connection between tibia and fibula
bones surfaces at the proximal end is modelled as a plane-to-sphere contact higher
pair. For the generation of these kinematic pairs, the approach used is the follow-
ing: the areas of the surfaces of the mating bones which come into contact during
the passive motion were digitized and approximated by best fit spherical or plane
surfaces.

Furthermore, experimental data [30] showed that some fibres of the calcaneofibu-
lar ligament (CaFiL) and the tibiocalcaneal ligament (TiCaL) are almost isometric
during the ankle passive motion. This means that these two ligaments can be rep-
resented as two rigid rods. For the other main four ligaments of the talocrural joint
(i.e. the anterior tibiotalar ligament ant-TaTiL, posterior tibiotalar ligament post-
TaTiL, anterior talofibular ligament ant-TaFiL, posterior talofibular ligament post-
TaFiL), there are as yet no experimental data that prove the existence of isometric
fibres during passive motion; however good results of previous studies that mod-
elled the isometric fibres of TiCaL and CaFiL ligaments as rigid rods suggest that
the other ligaments could also be represented by rigid rods. Finally, the interosseus
membrane between the tibia and fibula is simply represented as a single isometric
constraining fibre, and modelled as a single rigid rod.

Based on these observations and assumptions, a schematic representation of the
TFC complex is shown in Fig. 3.13, where every rigid link represents a specific
anatomical element. Here the three talo/calcaneal, fibular and tibia segments feature
three sphere-to-sphere contact points and one plane-to-sphere contact point, where
points Ai and Bi , i = 4,5, represent the centres of the mating spherical surfaces
fixed to the tibia and talus/calcaneus respectively. Points C9 and D9 represent the
centres of the mating spherical surfaces fixed to the fibula and talus/calcaneus re-
spectively, and point C represents the centre of the mating spherical surface fixed
to the tibia. Moreover, points Ai and Bi , i = 1,2,3, represent the insertion points
on the tibia and talus/calcaneus segments of the isometric fibre of the TiCaL liga-
ment and of the ant-TaTiL and post-TaTiL ligaments, points Cj and Dj , j = 6,7,8,
represent the insertion points on the fibula and talus/calcaneus segments of the iso-
metric fibre of the CaFiL ligament and of the ant-TaFiL and post-TaFiL ligaments.
Points C10 and A10 represent the insertion points on the fibula and tibia segments of
the interosseus membrane fibre.

Inspection of Fig. 3.13, when considering, for instance, the tibia segment as a
fixed body, and the ligament fibres as connected to the bones by spherical pairs
centred at points Ai and Bi , i = 1,2,3, Cj and Dj , j = 6,7,8, and C10 and A10,
reveals that the schematic represents a spatial mechanism with one DOF, as can be
shown by Kutzbach’s formula [27] here reported:

l = λ(n − 1) −
m∑

k=1

(λ − lk), (3.9)

where l is the degree of freedom of the mechanism, λ is the dimension of the space
of motion, n is the number of mechanism members, lk is the degree of freedom of
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Fig. 3.13 Schematic of the
TFC complex

the kth kinematic pair, k = 1,2, . . . ,m, and m is the number of kinematic pairs of
the mechanism. Indeed, because in this case λ is 6 and the mechanism (Fig. 3.13)
is composed of 9 members (n = 9) and 18 kinematic pairs (m = 18), that are 14
spherical pairs with 3 DOFs and 4 higher pairs with 1 DOF, Kutzbach’s formula
provides 8 DOFs (l = 8). But noting that the rotations of the ligaments about the
respective axes AiBi , i = 1,2,3, CjDj , j = 6,7,8, and C10A10 are inessential to
the relative position of the segments, 7 DOFs have to be not considered and therefore
l = 1 is the result of the computation. In particular, the talo/calcaneal segment has
a one-DOF motion with respect to the tibia segment because the two segments are
constrained by two sphere-on-sphere high pairs and three rigid rods linked to the
bone segments by spherical pairs: this means that the fibula segment is dragged
by the relative motion between tibia and talus/calcaneus segments during the ankle
passive flexion.

During the relative motion of the three TFC segments each pair of mating spher-
ical surfaces remains in contact; therefore the distances AiBi , i = 4,5, C9D9 are
constant. Moreover, the distances AiBi , i = 1,2,3, CjDj , j = 6,7,8, and C10A10

are also constant during the passive motion, since they represent the lengths of the
rigid rods modelling the isometric ligament fibres. As a consequence, each pair of
points (Ai , Bi ), (Cj , Dj ), and (C10, A10), with Ai , i = 1,2, . . . ,5, and A10 fixed
to the tibia segment, Cj , j = 6,7,8,9, and C10 fixed to the fibula segment, and fi-
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Fig. 3.14 The equivalent
mechanism of the TFC
complex

nally Bi , i = 1,2, . . . ,5, and Dj , j = 6,7,8,9, fixed to the talo/calcaneal segment,
respectively maintains a constant mutual distance during motion.

Based on this consideration, the equivalent mechanism of Fig. 3.13 can be more
synthetically represented by the mechanism shown in Fig. 3.14. Here, the meaning
of the points Ai , i = 1,2, . . . ,5, A10, Cj , j = 6,7,8,9, C10, Bi , i = 1,2, . . . ,5,
Dj , j = 6,7,8,9, and C is the same as in Fig. 3.13. The elements Li = AiBi ,
i = 1,2, . . . ,5, Lj = CjDj , j = 6,7,8,9 and L10 = A10C10 can be regarded as
constant length rigid links connected to two bone segments by spherical pairs cen-
tred at points Ai and Bi , i = 1,2, . . . ,5, Cj and Dj , j = 6,7,8,9, and A10 and
C10, respectively. As a result, the mechanism has one DOF and in particular it
provides the movable talo/calcaneal segment with one DOF with respect to the
tibia base (rotation of links about the axes defined by their ending points (Ai , Bi ),
(Cj , Dj ) and (A10, C10) respectively is irrelevant to the relative mobility of the
three main segments). In the following considerations, for the sake of simplicity,
this latter mechanism will be considered as the equivalent mechanism of the TFC
complex.

3.3.3.2 Mathematical Formulation

The mathematical model of the one-DOF equivalent mechanism shown in Fig. 3.14,
i.e. the model that provides the relationship between the independent variable of
motion and the dependent ones, which define the configuration of the mechanism,
is provided by the closure equations of the mechanism. The equations make it possi-
ble to find the relative position of the three bones (tibia, fibula and talus/calcaneus)
during the ankle passive flexion. It is important to note that, with the relative po-
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sition of the considered bones, the position of the other anatomical elements (such
as for example the ligament insertion points) can also be easily found. In particu-
lar, in the equivalent mechanism shown in Fig. 3.14, each rigid rod constrains the
distance between the two rod ending points to not change during motion; moreover,
the plane-to-sphere contact higher pair causes a specific constrained relative motion
between the two segments in contact, namely the tibia and fibula (as will be shown
below).

In fact, with reference to Fig. 3.14, it can be noted that each pair of points
(Ai , Bi ), i = 1,2, . . . ,5, (Cj , Dj ), j = 6,7,8,9, and (A10, C10) is constrained
to maintain a constant mutual distance Li , Lj and L10 respectively during motion.
This makes it possible to write:

‖Ai − Rtc · Bi − ptc‖2 = L2
i (i = 1, . . . ,5),

‖Dj − Rcf · Cj − pcf ‖2 = L2
j (j = 6, . . . ,9),

‖A10 − Rtf · C10 − ptf ‖2 = L2
10,

(3.10)

where Ai is the position vector of the point Ai measured in the reference sys-
tem St , Bi and Dj are respective the position vectors of the points Bi and Dj

measured in the reference system Sc, and Cj is the position vector of the point
Cj measured in the reference system Sf . The Cartesian reference systems St , Sc

and Sf are embedded in the tibia, talus/calcaneus and fibula segments respectively
(see Figs. 3.13 and 3.14). The generic vector pij represents the position of the
origin Oj of the generic reference system Sj with respect to the generic refer-
ence system Si ; the generic matrix Rij is the orthogonal rotation matrix 3 × 3
that transforms the components of a vector measured in the generic reference
frame Sj into the components of the same vector measured in the generic ref-
erence frame Si (the indices c, t and f refer to Sc, St and Sf reference sys-
tems respectively). The matrix Rij can be expressed as a function of three pa-
rameters that represent the orientation of the reference system Sj with respect
to Si .

The plane-to-sphere articular contact between tibia and fibula in the proximal
end can be represented by constraining the centre of the sphere to move on a plane
parallel to the articulating plane that approximates the fibula surface in the proximal
end. Hereafter, n denotes the unit vector perpendicular to the plane in contact with
the sphere, C the centre of the sphere, H a point of the plane the point C belongs to.
Therefore, the plane-to-sphere contact constrains the vector n to be perpendicular
to the segment CH , as it is expressed by (3.11):

tn · (C −t H
)= 0 (3.11)

with
tn = Rtf · n,

tH = Rtf · H + ptf ,
(3.12)
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where the vector n is measured in the reference system Sf , H is the position vector
of the point H measured in the reference system Sf , C is the position vector of the
point C measured in the reference system St , and the matrix Rtf and the vector ptf

have the same meaning as explained above.
The system of (3.10) and (3.11) represents the closure equations of the mecha-

nism. When considering the tibia as a fixed body, for a given geometry, this system
can be regarded as a system of eleven nonlinear equations in twelve variables, that
are the three components of vector ptf , the three orientation parameters that define
the rotation matrix Rtf , the three components of vector ptc and the three orientation
parameters that define the rotation matrix Rtc. By simple matrix operations, pcf and
Rcf can be easy calculated using the vectors ptf and ptc, and the matrices Rtf and
Rtc. Given the angle that measures the ankle flexion—i.e. the rotation between talus
and tibia in the sagittal plane—, the remaining eleven variables can be found by
solving the system of (3.10) and (3.11).

3.3.3.3 Experimental Session

In order to obtain the physical data necessary to synthesize the equivalent mech-
anism of the TFC complex, data from previous experimental sessions were used.
With the experimental procedure shown in [14], the talocrural joint articular sur-
faces and the insertion areas of the CaFiL and TiCaL ligaments were obtained; the
desired passive motion of the talus and the fibula with respect to the tibia were also
measured.

The tibia anatomical frame (St ) and the talus anatomical frame (Sc) were defined
as described in [3]. The absence of many experimental anatomical data of the fibula
bone made it impossible to define an anatomical frame embedded in the fibula; the
reference frame of the tracker fixed to the fibula bone was thus considered as the
reference frame Sf .

A sequence-independent joint coordinate system [20] was adopted in order to
describe the orientation of the talus with respect to the tibia. The three following
rotation axes were chosen: the zt axis of St fixed to the tibia as the first one, the yc

axis of Sc fixed to the talus as the second one, finally an axis coincident with the
shortest distance straight line of the other two axes as the third one. Three angles
about these axes were defined: the ankle dorsiflexion(+)/plantarflexion(−) angle
γ about the z-axis of St , the ankle internal(+)/external(−) rotation angle α about
the y-axis of Sc, and the ankle pronation(+)/supination(−) angle β about a floating
axis defined by the cross vector product of the unit vectors of the z-axis of St and
the unit vector of the y-axis of Sc. Based on these conventions, the rotation matrix
Rct defined above was obtained.

The joint coordinate system that defines the orientation of the fibula with respect
to the tibia was chosen in the same way as the one of the talus with respect to the
tibia.
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Table 3.3 Geometrical data
of the mechanism obtained by
the optimization procedure

x [mm] y [mm] z [mm] length [mm]

A1 1.229 13.886 36.510 –

A2 1.595 21.155 28.081 –

A3 3.949 15.083 33.483 –

A4 4.182 7.767 11.833 –

A5 12.559 −4.194 −3.713 –

A10 13.012 103.576 −18.510 –

B1 −14.209 −21.473 29.893 –

B2 −7.881 −21.839 10.398 –

B3 −26.293 −23.727 30.431 –

B4 −14.086 −14.815 9.891 –

B5 −11.713 −14.214 −3.319 –

D6 −47.171 −38.379 −7.023 –

D7 −7.715 −15.388 −14.858 –

D8 −87.580 19.809 30.818 –

D9 −22.168 −17.236 −47.668 –

C6 −30.924 159.337 −9.505 –

C7 −16.073 138.232 1.342 –

C8 −24.561 148.129 −21.234 –

C9 −51.610 129.629 −0.988 –

C10 −11.765 40.672 −16.166 –

H 8.719 −187.044 −11.502 –

n −0.261 0.041 – –

C 16.276 341.897 −49.550 –

L1 – – – 25.980

L2 – – – 32.667

L3 – – – 35.141

L4 – – – 8.927

L5 – – – 10.591

L6 – – – 35.372

L7 – – – 14.489

L8 – – – 87.383

L9 – – – 15.162

L10 – – – 15.112

3.3.3.4 Parameter Optimization

Based on the topology of the TFC equivalent mechanism, its dimensional synthesis
has been performed by the same procedure adopted for the knee and ankle mecha-
nisms, as reported in Sect. 3.3.1.4.
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Fig. 3.15 Passive motion simulation of the talus/calcaneus respect to the tibia: x, (a), y, (b), and
z, (c) versus ankle’s flexion angle γ

3.3.3.5 Results

The geometry of the equivalent mechanism obtained by the optimization procedure
is reported in Table 3.3. The distance between corresponding points in the initial
mechanism and in the final mechanism is generally low, about 1–9 mm for the liga-
ment insertions, and about 2–11 mm for the centres of the sphere.

The results of the ankle passive motion simulation (the relative passive mo-
tion between talo/calcaneal and tibia segments) obtained by the model (equivalent
mechanism) were compared with those obtained by measurements. In particular,
Figs. 3.15 and 3.16 show the positions x, y, and z of the origin of the reference
system Sc with respect to St , and the angles α and β , respectively versus the ankle
flexion angle γ . All figures show both the simulation and the experimental results.
In particular, the experimental results are identified by the symbol Δ and interpo-
lated by a dotted line. The interpolation makes it possible to use a higher number
of (interpolated) experimental data, which may be useful for the optimal synthesis
of the equivalent mechanism geometry. Inspection of the figures shows that the new
equivalent spatial mechanism replicates the passive motion of the human ankle quite
well.
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Fig. 3.16 Passive motion simulation of the talus/calcaneus respect to the tibia: angles β , (a), and
α, (b), versus ankle’s flexion angle γ

3.4 M1 Models for Prosthetic Design

When the aim of the modelling is to get a useful tool for prosthesis design, there is no
longer the need to have a one-to-one correspondence between the joint anatomical
structures and the corresponding mechanism links, but the mechanism has to be
still capable to replicate the passive motion of the main bones of the joints. In this
case the equivalent mechanisms can be simpler from a mechanical point of view
than those presented in the previous sections and prove to be more efficient for the
prosthesis design.

Within this frame, new simplified M1 mechanisms have been synthesized both
for the knee and the ankle joint [15, 45, 48], which showed to be very efficient for
the prosthesis design. Indeed, based on this idea, two patents were also devised [38,
39] which respectively provide some basic concepts [38] and a few solutions of
innovative knee prosthesis [39].

Further papers [13, 47, 52] presented the model M2 for the knee and the ankle,
making it possible to identify the joint stiffness and enlightening the role the differ-
ent anatomical structures play for the joint stability. Moreover, recent papers shed
light on the inherent overcontrained nature of the human joint [2, 51].
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3.5 Conclusions

The chapter reported an overview of an efficient three step procedure for the def-
inition of the kinematic, kinetostatic, and dynamic models of diarthrodial joints.
Mainly focused on the kinematic model, which is the most difficult step that in-
volves the synthesis of spatial mechanisms, the chapter reports the models of the
knee, ankle and lower leg. Few additional information and comments are reported
on the kinematic models and on the design of knee prosthesis.
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Chapter 4
Kinematics and Algebraic Geometry

Manfred L. Husty and Hans-Peter Schröcker

4.1 Kinematic Mapping

A fundamental concept of relating mechanical structures with algebraic varieties
is Study’s representation of Euclidean displacements sometimes called kinematic
mapping [30, 31]. It associates to every Euclidean displacement γ a point c in real
projective space P 7 of dimension seven or, more precisely, a point on the Study
quadric S ⊂ P 7. Sometimes it will be necessary to use also the complex extension
P 7(C) of the seven dimensional projective space. There exist other kinematic map-
pings besides Study’s [3, 11, 25, 37] but these topics are beyond the scope of the
present text.

Within the kinematics community more often four by four matrices incorporating
translational and rotational part of the motion are used (4.2). Matrix elements are the
design parameters of the mechanism (often called Denavit-Hartenberg parameters)
and sines and cosines of the motion parameters. To move to algebra one either uses
tangent half substitution transforming sines and cosines to algebraic values or one
adds the identity sin2 + cos2 = 1.

A formal definition of Study’s kinematic mapping is given below in Sect. 4.1.1.
Our description is based on the original works of Study [30, 31] and Blaschke [4].
These are comprehensive and deep but not always easily readable texts and, unfor-
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tunately, only available in German.1 Modern references on the same topic include
[18] or [27].

4.1.1 Study’s Kinematic Mapping

Euclidean three space is the three dimensional real vector space R3 together with
the usual scalar product xT y =∑3

i=1 xiyi . A Euclidean displacement is a mapping

γ : R3 → R
3, x �→ Ax + a (4.1)

where A ∈ SO(3) is a proper orthogonal three by three matrix and a ∈ R
3 is a vector.

The entries of A fulfill the well-known orthogonality condition AT · A = I3, where
I3 is the three by three identity matrix.

The group of all Euclidean displacements is denoted by SE(3). It is a convenient
convention to write (4.1) as product of a four by four matrix and a four dimensional
vector according to2

[
1
x

]

�→
[

1 oT

a A

]

·
[

1
x

]

. (4.2)

Study’s kinematic mapping κ maps an element α of SE(3) to a point x ∈ P 7.
If the homogeneous coordinate vector of x is [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]T ,
the kinematic pre-image of x is the displacement α described by the transformation
matrix

1

Δ

⎡

⎢
⎢
⎣

Δ 0 0 0
p x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

r 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

⎤

⎥
⎥
⎦ (4.3)

where

p = 2(−x0y1 + x1y0 − x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0 − x3y1),

r = 2(−x0y3 − x1y2 + x2y1 + x3y0),

(4.4)

and Δ = x2
0 + x2

1 + x2
2 + x2

3 . The lower three by three sub-matrix is a proper orthog-
onal matrix if and only if

x0y0 + x1y1 + x2y2 + x3y3 = 0 (4.5)

1An English translation of Blaschke’s work is in preparation: W. Blaschke, Kinematics and Quater-
nions, translated by M. Husty and P. Zsombor-Murray, Springer 2013.
2Note that homogeneous coordinates in this chapter are written in the European notation, with
homogenizing coordinate on first place.
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and not all xi are zero. When these conditions are fulfilled we call [x0 : · · · : y3]T
the Study parameters of the displacement α.

The important relation (4.5) defines a quadric S ⊂ P 7 and the range of κ is this
quadric minus the three dimensional subspace defined by

E : x0 = x1 = x2 = x3 = 0. (4.6)

We call S the Study quadric and E the exceptional or absolute generator.
The parameterization (4.3) of SE(3) may look rather artificial and complicated

but it has an important feature: The composition of displacements in Study parame-
ters is bilinear (see Sect. 4.1.2). In [30] Study shows that

• this requirement cannot be fulfilled with a smaller number of parameters and
• the representation of Euclidean displacements is unique, up to linear parameter

transformations and transformations via identically fulfilled relations between the
parameters.

Moreover, the Study parameters are closely related to the ring of biquaternions or
dual quaternions as we shall rather say. The relation between Study parameters and
dual quaternions will be discussed in Sect. 4.1.4.

For the description of a mechanical device in P 7 we usually need the inverse
of the map given by (4.3) and (4.4), that is, we need to know how to compute the
Study parameters from the entries of the matrix A = [aij ]i,j=1,...,3 and the vec-
tor a = [a1, a2, a3]T . Mostly in kinematics literature a rather complicated and not
singularity-free procedure, based on the Cayley transform of a skew symmetric ma-
trix into an orthogonal matrix (see [10] or [2], p. 81), is used. The best way of doing
this was, however, already known to Study himself. He showed that the homoge-
neous quadruple x0 : x1 : x2 : x3 can be obtained from at least one of the following
proportions:

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13

= a13 − a31 : a12 + a21 : 1 − a11 + a22 − a33 : a23 + a32

= a21 − a12 : a31 + a13 : a23 − a32 : 1 − a11 − a22 + a33. (4.7)

In general, all four proportions of (4.7) yield the same result. If, however, 1 + a11 +
a22 + a33 = 0 the first proportion yields 0 : 0 : 0 : 0 and is invalid. We can use the
second proportion instead as long as a22 +a33 is different from zero. If this happens
we can use the third proportion unless a11 + a33 = 0. In this last case we resort to
the last proportion which yields 0 : 0 : 0 : 1. Having computed the first four Study



88 M.L. Husty and H.-P. Schröcker

parameters the remaining four parameters y0 : y1 : y2 : y3 can be computed from

2y0 = a1x1 + a2x2 + a3x3,

2y1 = −a1x0 + a3x2 − a2x3,

2y2 = −a2x0 − a3x1 + a1x3,

2y3 = −a3x0 + a2x1 − a1x2.

(4.8)

Example 4.1 A rotation about the z-axis through the angle ϕ is described by the
matrix

⎡

⎢
⎢
⎣

1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

⎤

⎥
⎥
⎦ . (4.9)

Its kinematic image, computed via (4.7) and (4.8) is

r = [1 + cosϕ : 0 : 0 : sinϕ : 0 : 0 : 0 : 0]. (4.10)

As ϕ varies in [0,2π), r describes a straight line on the Study quadric which reads
after algebraization

r = [1 : 0 : 0 : u : 0 : 0 : 0 : 0]. (4.11)

Example 4.2 A special one parameter motion is defined by the matrix

⎡

⎢
⎢
⎣

1 0 0 0
0 cos t − sin t 0
0 sin t cos t 0

sin t
2 0 0 1

⎤

⎥
⎥
⎦ . (4.12)

Its kinematic image, computed via (4.7) and (4.8) reads

r =
[

2 + 2 cos t : 0 : 0 : 2 sin t : sin
t

2
sin t : 0 : 0 : −1

2
sin

t

2
(2 + 2 cos t)

]

. (4.13)

After algebraization and some manipulation we obtain

r = [−1 + u4 : 0 : 0 : −2u
(
1 + u2) : 2u2 : 0 : 0 : u(1 − u2)], (4.14)

which represents a rational curve of degree four on the Study quadric. The motion
corresponding to this curve is a special case of the well known Bricard motions
where all point-paths are spherical curves (see [5, p. 324]).
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4.1.2 Fixed and Moving Frame

Suppose that α : x �→ y = Ax + a is a Euclidean displacement. The vectors x and
y are elements of R3 but in kinematics it is advantageous to consider them as ele-
ments of two distinct copies of R3, called the moving space and the fixed space. The
description of α in Study parameters depends on the choice of coordinate frames—
moving frame and fixed or base frame—in both spaces. In kinematics, the moving
frame is the space attached to a mechanism’s output link, and the fixed space is the
space where the mechanism itself is located (see Sect. 4.3). It is crucial for the fol-
lowing to know how changes of the fixed and moving frame act on the Study coor-
dinates. Both types of transformations induce transformations of the Study quadric
and thus impose a geometric structure on P 7. Kinematic mapping is constructed
such that these transformations act linearly on the Study parameters (that is, they
are projective transformations in P 7). We are going to compute their coordinate
representations.

Consider a Euclidean displacement described by a four by four transformation
matrix X, as in (4.3). It maps a point (1,a)T to (1,a′) = X · (1,a)T . Now we change
coordinate frames in fixed and moving space and compute the matrix Y such that
(1,b′)T = Y · (1,b)T is the representation of the displacement in the new fixed co-
ordinate frame and the old moving coordinate frame. This is slightly different from
the typical change of coordinates known from linear algebra where one describes
the new transformation in terms of new coordinates in both spaces but more suitable
for application in kinematics, in particular for describing the position of the end ef-
fector tool or for concatenation of simple mechanisms. If the changes of coordinates
in fixed and moving frame are described by

(1,a)T = M · (1,b)T ,
(
1,b′)T = F · (1,a′)T , (4.15)

we have Y = F · X · M. Denote now by y, x, f = [f0, . . . , f7]T and m =
[m0, . . . ,m7]T the corresponding Study vectors. Straightforward computation (or
skillful use of dual quaternions, see Sect. 4.1.4) yields

y = Tf Tmx, Tm =
[

A O
B A

]

, Tf =
[

C O
D C

]

, (4.16)

where

A =

⎡

⎢
⎢
⎣

m0 −m1 −m2 −m3
m1 m0 m3 −m2
m2 −m3 m0 m1
m3 m2 −m1 m0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

m4 −m5 −m6 −m7
m5 m4 m7 −m6
m6 −m7 m4 m5
m7 m6 −m5 m4

⎤

⎥
⎥
⎦ ,

C =

⎡

⎢
⎢
⎣

f0 −f1 −f2 −f3
f1 f0 −f3 f2
f2 f3 f0 −f1
f3 −f2 f1 f0

⎤

⎥
⎥
⎦ , D =

⎡

⎢
⎢
⎣

f4 −f5 −f6 −f7
f5 f4 −f7 f6
f6 f7 f4 −f5
f7 −f6 f5 f4

⎤

⎥
⎥
⎦ ,

(4.17)

and O is the four by four zero matrix.
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Fig. 4.1 Relative position of
two lines Z and L (courtesy
Martin Pfurner)

The matrices Tm and Tf commute (this means it does not matter which coordi-
nate transformation is performed first) and they induce transformations of P 7 that
fix the Study quadric S, the exceptional generator E, and the exceptional or absolute
quadric F ⊂ E, defined by the equations

F : x0 = x1 = x2 = x3 = 0, y2
0 + y2

1 + y2
2 + y2

3 = 0. (4.18)

The quadrics S and F and the three space E are special objects in the geometry of
the kinematic image space. Later we will describe a mechanism by its constraint
equation(s) which will correspond to a subvariety V of P 7. A non-generic posi-
tion of V with respect to these objects distinguishes its kinematic properties from a
projectively equivalent subvariety W .

Example 4.3 In Example 4.1 we saw that the kinematic image of a continuous rota-
tion about the z-axis is a straight line on the Study quadric. From the considerations
in this section it follows immediately that the kinematic image of a continuous rota-
tion about an arbitrary axis is a straight line.

Consider now a straight line L ⊂ R
3 and denote the foot points of the common

perpendicular to L and the z-axis Z by fL and fZ . Assuming the common perpen-
dicular of Z and L points in direction of the x-axis, the relative position of L with
respect to Z can be specified by the z-coordinate d of fZ , the distance a between
fZ and fL and the angle α between Z and L (Fig. 4.1). The numbers d , a and α are
called the Denavit-Hartenberg parameters of the relative position of the line L with
respect to the z-axis (see [32, Sect. 2.3]).

The displacement that transforms the standard coordinate frame to the coordinate
frame with origin fL, x-axis in direction of the common perpendicular, and z-axis
in direction of L in matrix form reads

G =

⎡

⎢
⎢
⎣

1 0 0 0
a 1 0 0
0 0 cosα − sinα

d 0 sinα cosα

⎤

⎥
⎥
⎦ . (4.19)

Its Study vector is

g = [2γ,2 sinα,0,0, a sinα,−aγ,−d sinα,−dγ ]T (4.20)
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where γ = 1 + cosα. The kinematic image of the rotation about L is Tf · r where
Tf is obtained by substituting the components of g into (4.16). The result is

r′ = [2γ, 2 sinα, −2 sinαu, 2γ u, a sinα + dγ u, −aγ − d sinαu,

− d sinα + aγ u, −dγ + a sinαu], (4.21)

which is again linear in the motion parameter u.

4.1.3 Planar and Spherical Kinematic Mapping

The restriction of Study’s kinematic mapping to certain three-spaces on the Study
quadric yields elements of two important subgroups of SE(3), the group of planar
Euclidean displacements SE(2) and the special orthogonal group SO(3) whose el-
ements are pure rotations without any translational component. Both groups are of
relevance in kinematics. Their kinematic mappings will be introduced in this sub-
section.

The planar Euclidean motion group SE(2) can be embedded into SE(3) by sub-
stituting x1 = x2 = y0 = y3 = 0 into (4.3). This yields the matrix parameterization

1

x2
0 + x2

3

⎡

⎣
x2

0 + x2
3 0 0

−2(x0y1 − x3y2) x2
0 − x2

3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3

⎤

⎦ (4.22)

of SE(2) (we omit the last row and the last column). The group SE(2) can be con-
sidered as kinematic pre-image of the three space x1 = x2 = y0 = y3 = 0, minus its
intersection with the exceptional generator E, and we identify this three space with
P 3. We describe its points by homogeneous coordinates [x0 : x3 : y1 : y2]T .

The geometry of P 3 as range of planar kinematic mapping is governed by a
change of coordinates in the moving or fixed frame or, equivalently, by its absolute
figure consisting of the line x0 = x3 = 0 (the intersection of P 3 with the exceptional
generator E) and the absolute points [0 : 0 : 1 : ±i]T (the intersection of P 3 with
the absolute quadric F ). This geometry is called quasielliptic (see for example [6,
p. 399]).

The spherical motion group SO(3) can be embedded into SE(3) via

1

Δ

⎡

⎣
x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

⎤

⎦ (4.23)

where Δ = x2
0 + x2

1 + x2
2 + x2

3 . It is the kinematic pre-image of the three space y0 =
y1 = y2 = y3 = 0. The absolute figure is the exceptional quadric x2

0 +x2
1 +x2

2 +x2
3 =

0 and the corresponding geometry is elliptic (see for example [9, Chap. VII]).
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4.1.4 Euclidean Displacements and Dual Quaternions

Kinematic mapping is closely related to quaternion algebra. This relation shall be
illustrated in this section. The set of quaternions H is the vector space R

4 together
with the quaternion multiplication

(a0, a1, a2, a3) � (b0, b1, b2, b3) = (a0b0 − a1b1 − a2b2 − a3b3,

a0b1 + a1b0 + a2b3 − a3b2,

a0b2 − a1b3 + a2b0 − a3b1,

a0b3 − a1b2 − a2b1 + a3b0). (4.24)

The triple (H,+, �) (with component wise addition) forms a skew field. The real
numbers can be embedded into this field via x �→ (x,0,0,0), and vectors x ∈ R

3

are identified with quaternions of the shape (0,x).
Every quaternion is a unique linear combination of the four basis quaternions 1 =

(1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), and k = (0,0,0,1). Their multiplication
table is

� 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Conjugate quaternion and norm are defined as

A = (a0,−a1,−a2,−a3), ‖A‖ =
√

A � A =
√

a2
0 + a2

1 + a2
2 + a2

3 . (4.25)

Quaternions are closely related to spherical kinematic mapping.3 Consider a vec-
tor a = [a1, a2, a3]T and a matrix X of the shape (4.23). Then the product b = X · a
can also be written as

B = X � A � X (4.26)

where X = (x0, x1, x2, x3), ‖X‖ = 1 and A = (0,a), B = (0,b). In other words,
spherical displacements can also be described by unit quaternions and spherical
kinematic mapping maps a spherical displacement to the corresponding unit quater-
nion.

In order to describe general Euclidean displacements we have to extend the con-
cept of quaternions. A dual quaternion Q is a quaternion over the ring of dual
numbers, that is, it can be written as

Q = Q0 + εQ1, (4.27)

3For more detailed explanations see [4] or [27].
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where ε2 = 0. The algebra of dual quaternions has eight basis elements 1, i, j, k, ε,
εi, εj, and εk and the multiplication table

� 1 i j k ε εi εj εk
1 1 i j k ε εi εj εk
i i −1 k −j εi −ε1 εk −εj
j j −k −1 i εj −εk −ε1 εi
k k j −i −1 εk εj −εi −ε1
ε1 ε εi εj εk 0 0 0 0
εi εi −ε1 εk −εj 0 0 0 0
εj εj −εk −ε1 εi 0 0 0 0
εk εk εj −εi −ε1 0 0 0 0

Dual quaternions know two types of conjugation. The conjugate quaternion and the
conjugate dual quaternion of a dual quaternion Q = x0 + εy0 + x + εy are defined
as

Q = x0 + εy0 − x − εy and Qe = x0 − εy0 + x − εy, (4.28)

respectively. The norm of a dual quaternion is

‖Q‖ =
√

QQ. (4.29)

With these definitions, the equation b = X · a where X is a matrix of the shape
(4.3) can be written as

B = Xe � A � X (4.30)

where X = x + εy, ‖X‖ = 1, x = (x0, . . . , x3)
T , y = (y0, . . . , y3)

T , and x · y = 0.
The last condition is precisely the Study condition (4.5). A and B are dual quater-
nions of the type: A = 1 + εa, B = 1 + εb.

In other words, Euclidean displacements can also be described by unit dual
quaternions that satisfy the Study condition and kinematic mapping maps a Eu-
clidean displacement to the corresponding unit dual quaternion. The algebra of dual
quaternions provides a convenient way of computing in Study coordinates (see for
example [27, Chap. 9]).

4.1.5 Geometry of the Study Quadric

The topic of Sect. 4.1.2 was the geometry of the Study quadric S induced by coor-
dinate changes in the fixed and in the moving space. Here we study the projective
properties of S as hyper-quadric of seven dimensional projective space P 7. Our
description follows [27, Sect. 11.2].

Lines in the Study quadric S correspond either to a one parameter set of rota-
tions (see Example 4.1 resp. Example 4.3) or to a one parameter set of translations.
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Lines through the identity ([1 : 0 : · · · : 0]) correspond to one-parameter subgroups
of SE(3) and are either rotation or translation subgroups.

The maximal subspaces of S are of dimension three (“3-planes”). More precisely,
S is swept by two six dimensional families of 3-planes, called the A-planes and the
B-planes. The A-planes and the B-planes are translates of the A-planes and the
B-planes passing through the identity. Those 3-planes passing through the identity
are the three dimensional subgroups of SE(3). They can be identified with SO(3)

(the group of pure rotations) and with SE(2) (the group of planar Euclidean trans-
formations). It is important to note that the exceptional three-space E, defined by
x0 = x1 = x2 = x3 = 0, is an A-plane. The intersection of two A-planes or two B-
planes is either empty or a one dimensional subspace. The intersection of an A-plane
and a B-plane is either a point or a two dimensional plane. Whether an A-plane cor-
responds to SO(3) or SE(2) just depends on the intersection of the plane with E.
In case of a point intersection the A-planes correspond to SO(3) and its translates;
A-planes having line intersection with E correspond to SE(2) and its translates.
General B-planes correspond to rotations about the axes in a plane, composed with
a fixed displacement. The only B-plane that intersects the exceptional generator in
a plane corresponds to the subgroup of all translations. All these cases belong of
course to interesting kinematic configurations, but it would be beyond the scope of
this paper to discuss all the possibilities. From algebraic point of view most atten-
tion has to be paid to the exceptional generator E because points in this space do
not correspond to valid transformations in the pre-image space.

4.2 Some Basics from Algebraic Geometry

Before we can go into the discussion of how algebraic concepts can be used in
mechanism analysis or synthesis we need to collect some basic concepts of this field.
In this introduction only the most important definitions and theorems are given.
We follow closely [7], which is an excellent introduction to algebraic geometry.
More detailed descriptions and also the proofs for the theorems can be found there.
Another source on the basics of this topic with references to engineering problems
is [29, Chap. 12].

Examples in this section were computed using Maple 15 with its packages
Groebner and PolynomialIdeals.4 The first package contains the low-
level commands, the second package is newer and contains the more sophisticated
ones. There are also other software packages like e.g. Mathematica, Singular or
Macaulay 2 which could have been used for these computations.

In the following all algebraic equations are polynomials in the ring K[x] =
K[x1, . . . , xn] where K is a field like Q (the rational numbers) or C (the complex
numbers).

4Note that in the examples of this section often only the input of maple is displayed. To obtain the
results one has to type these commands into Maple.
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4.2.1 Ideals and Affine Varieties

At first polynomial ideals are defined which are the basic objects for everything else.

Definition 4.1 A set I ⊆ K[x] is called an ideal if the following conditions are
fulfilled:

• ∀f,g ∈ I : f + g ∈ I

• ∀f ∈ I and ∀h ∈ K[x] : hf ∈ I

It follows that almost all ideals are infinite sets of polynomials and cannot be
written down as a whole. The sole exception is the ideal {0} which is also a proper
subset resp. subideal of all other ideals because 0 is contained in every ideal. There
is also an ideal which is a proper superset resp. superideal of them, namely the ideal
which contains the constant polynomial 1 and with it all polynomials of K[x].

Using Definition 4.1 it is possible now to define the ideal generated by a set of
given polynomials f1, . . . , fs .

Definition 4.2 Let f1, . . . , fs be polynomials in K[x]. Then the set

〈f1, . . . , fs〉 =
{

g ∈ K[x] : g =
s∑

i=1

hifi and h1, . . . , hs ∈ K[x]
}

is the ideal generated by f1, . . . , fs .

The ideal generated by the given polynomials is the set of all combinations of
these polynomials using coefficients from K[x]. The polynomials f1, . . . , fs form
a so called basis of the ideal. Due to the fact that the same ideal can be generated
by another set of polynomials, such a basis is not unique. Furthermore the ideal is
obviously finitely generated and it can be shown that every ideal of K[x] can be
generated by a finite set of polynomials (Hilbert Basis Theorem). So the two special
ideals mentioned above can be written as 〈0〉 and 〈1〉.

Example 4.4 A circle is to be intersected with an ellipse. The algebraic equations
of both objects are f1 = (x1 − 1)2 + (x2 − 2)2 − 4 = 0 and f2 = x2

1 + 3x2
2 − 5 = 0.

Using Maple one has to type the following to define the corresponding ideal:

with(PolynomialIdeals);
I1:=<(x[1]-1)^2+(x[2]-2)^2-4,x[1]^2+3*x[2]^2-5>;

All commands in the package Groebner allow to use the notation [. . . ] instead of
< · · · >.

As it was mentioned above such a basis is not unique. For example the ideals
〈f1, f2〉 and 〈f1 −f2, f2〉 are the same. But how can this be found out for two given
ideals, if the are equal or not?
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Two ideals I and J are equal if each element of I is contained in J and vice
versa. It is sufficient to test if the basis of one ideal is contained in the other, and
vice versa.

To find out if a given polynomial is a member of an ideal it is necessary to test if
the polynomial can be written as a combination of the ideal’s basis. How this can be
done in a systematic way will be explained later.

Before that affine varieties are introduced.

Definition 4.3 For a given ideal I = 〈f1, . . . , fs〉 ⊆ K[x] the set

V(I ) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s
}⊆ Kn

is called the affine variety of the ideal I .

For each ideal I = 〈f1, . . . , fs〉 there exist a unique variety V(I ) which is the set
of all solutions of the polynomials equations f1 = 0, . . . , fs = 0, the so called van-
ishing set. It follows immediately that all bases of the ideal describe the same variety.
In general the variety of an ideal is the more interesting thing, not the ideal itself,
because the variety is exactly the set of solutions of the input equations f1, . . . , fs .
It has to be mentioned explicitly that the variety does not contain information about
the multiplicity of solutions. It is just a set of points in K[x], nothing more.

Two special varieties are ∅ and Kn which are the vanishing sets of the ideals 〈1〉
and 〈0〉 which appeared earlier.

Example 4.5 A circle with center (0,0) and a line are given by x2
1 + x2

2 − 1 = 0
and x1 + x2 − 1 = 0. Then the ideal generated by these two equations is given by
I = 〈x2

1 + x2
2 − 1, x1 + x2 − 1〉 and the corresponding variety is {(1,0), (0,1)}.

It is also possible that different ideals describe the same variety. This is related to
the fact that solutions can appear with higher multiplicities.

Example 4.6 The following polynomial ideals I and I ′ are given, each by two pos-
sible bases.

I = 〈x2
1 + x2

2 − 1, x1 + x2 − 1
〉= 〈x2

2 − x2, x1 + x2 − 1
〉
,

I ′ = 〈(x2
1 + x2

2 − 1
)2

, x1 + x2 − 1
〉= 〈x4

2 − 2x3
2 + x2

2 , x1 + x2 − 1
〉
.

It can easily be seen that V(I ) = V(I ′) = {(1,0), (0,1)} but the ideals are not equal
because x2

2 −x2 cannot be written as a combination of x4
2 −2x3

2 +x2
2 and x1 +x2 −1.

To test if two ideals describe the same variety radicals are introduced.

Definition 4.4 Let I ⊆ K[x] be an ideal. The set
√

I := {f ∈ K[x] : ∃m ∈N,m ≥ 1 with f m ∈ I
}

is called the radical of I .
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The computation of the radical of an ideal I can be seen as reducing I down to
the most important things, relevant for its vanishing set. In the example above it is√

I = √
I ′ = I .

Example 4.7 The ideal I = 〈(2x1 − x2 − 2)x1, (2x1 − x2 − 2)x2
2〉 is given, where

its vanishing set V(I ) is the line described by 2x1 − x2 − 2 and the isolated point
(0,0). To be exact, there are two copies of the point (0,0) when multiplicities are
taken into account.

Computation of the radical using Maple leads to the slightly simpler ideal
√

I =
〈−(2x1 + x2)(2x1 − x2 − 2),−(2x1 − x2 − 2)x1〉 which has the same vanishing
set, but now the point (0,0) does not appear with higher multiplicity. The code for
Maple is the following:

with(PolynomialIdeals);
I1:=<(2*x[1]-x[2]-2)*x[1], (2*x[1]-x[2]-2)*x[2]^2>;
rad:=factor(Radical(I1));

rad := 〈−(2x1 − x2 − 2)x1,−(2x1 + x2)(2x1 − x2 − 2)
〉
.

Next some operations are given which can be applied to varieties.
Let I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt 〉 be ideals with corresponding varieties

V = V(I ) and W = V(J ). Then the union and intersection of V and W can be
described as follows:

V ∩ W = V
(〈f1, . . . , fs, g1, . . . , gt 〉

)
,

V ∪ W = V
(〈figj : 1 ≤ i ≤ s,1 ≤ j ≤ t〉).

The first equality is quite clear, if one is searching for the solutions two systems
have in common, the equations are combined and the resulting system is examined.
The second equality can be used to construct varieties which are a composition of
simpler varieties.

Example 4.8 Three very simple varieties are given to show what happens, when
varieties are intersected or joined.

V1 = V
(〈x1〉

)
, V2 = V

(〈x2〉
)
,

V1 ∩ V2 = V
(〈x1, x2〉

)= {(0,0)
}
, V1 ∪ V2 = V

(〈x1x2〉
)
.

What happens when two varieties are joined where one is a subset of the other
variety?

V1 ∪ V
(〈x1, x2〉

)= V
(〈
x2

1 , x1x2
〉)
.

It can easily be seen that the vanishing set is the same, but when multiplicities are
taken into account the point (0,0) appears twice.
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We come back to the different ways to generate an ideal. As already mentioned
there are lots of different bases which describe all the same ideal, e.g. the ideals

I = 〈f1, f2, f3〉 ⊆ K[x1, x2, x3, x4],
I ′ = 〈f1, x

2
2f1 − f2,2f3 + (x3 + 5)f2 − f1

〉
.

It can easily be verified that each combination of the generators of I ′ can be written
as a combination of generators of I and vice versa.

But what to do when the ideals are more complex? It is necessary to have a
systematic way for testing if a polynomial is a combination of some other polyno-
mials. Therefore the concept of multivariate division with remainder is introduced,
which is similar to the well known univariate division with remainder which shall
be treated first. Let f,g ∈ K[x1] be univariate polynomials with g �= 0. Then there
exist unique polynomials q and r such that

f = qg + r

with either r = 0 or deg(r) < deg(g). In the corresponding algorithm an appropriate
multiple of g is subtracted from f such that the monomial with highest degree is
canceled from f . This procedure is repeated until the remainder is either 0 or has
degree less than deg(g).

Example 4.9 Here an example with f = 2x2 − 3x − 7 and g = x + 5:

f − 2xg = 2x2 − 3x − 7 − 2x(x + 5) = −13x − 7,

(−13x − 7) − (−13)g = −13x − 7 + 13x + 65 = 58.

It follows that q = 2x − 13 and 58. To get these results with Maple the commands
would be

quo(f,g,x); rem(f,g,x);

The process stops when the highest monomial of the remainder is not divisible
by the highest monomial of g. So in the univariate case the degree of monomials can
be seen as a natural order on the set of monomials, which guides the user trough the
algorithm.

In the following termorders are introduced which allow ordering of a multivari-
ate polynomial’s monomials. With these termorders an analogous algorithm can be
defined for multivariate polynomials.

Definition 4.5 Let xα = x
α1
1 . . . x

αn
n and xβ = x

β1
1 . . . x

βn
n be monomials in K[x] =

K[x1, . . . , xn]. To order these monomials a monomial ordering or termorder >x

on the set of monomials in K[x] is defined by an ordering > on the n-tuples α,β ∈
Z

n
≥0 which has to fulfill the following conditions:

• is a total ordering on Z
n
≥0
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• if α > β and γ ∈ Z
n
≥0, then α + γ > β + γ

• every nonempty subset of Zn
≥0 has a smallest element under >.

If such an ordering > on Z≥0 is given the monomials are ordered using the following
equivalence:

xα >x xβ ⇐⇒ α > β.

Therefore monomials are ordered by comparing the ordered n-tuples constructed
from the powers of each variable. Next the most important termorderings are given.

Definition 4.6 (Lexicographic Order) Let α = (α1, . . . , αn) and β = (β1, . . . , βn)

be elements of Zn
≥0. We define α >lex β if the leftmost nonzero entry of the vector-

difference α − β ∈ Z
n is positive.

In Maple this ordering specified by plex, for example a lexicographic ter-
morder for polynomials containing the unknowns {x1, x2, x3} could be specified
to be plex(x[3],x[1],x[2]).

Example 4.10 How this ordering looks like for monomials in K[x1, x2] can be seen
in the following. It is a sketch how the set of all monomials is ordered, first the
2-tuples are given, then the corresponding monomials starting with the smallest.

(0,0) <lex (0,1) <lex (0,2) . . . <lex (1,0) <lex (1,1) <lex (1,2) . . . ,

1 <lex x2 <lex x2
2 · · · <lex x1 <lex x1x2 <lex x1x

2
2 . . . .

Maple has the command TestOrder to test if a monomial is smaller than another
one.

with(Groebner);
TestOrder(x[1]*x[2],x[2]^5,plex(x[1],x[2]));
TestOrder(x[2]^4,x[1]^2*x[2],plex(x[1],x[2]));

The result of the first test will be false, the second result will be true.

There are other term orderings such as Graded Lex Order (in Maple grlex)
or Graded Reverse Lex Order (in Maple tdeg). For their definition the reader is
referred to [7, pp. 54–61].

All these orderings can also be combined which leads to the so called Product
Orders. An example for a product order on K[x1, x2, x3, x4] in Maple would be
prod(plex(x[1],x[2]),tdeg(x[3],x[4])). This means that monomi-
als are first compared using the plex order, ties are broken using the tdeg order.
Even more than two partial orders are allowed.

It has to be noted explicitly that also the ordering of the variables can be varied,
not only the type. All in all there are lots of different ways to define an order for
ordering monomials.

Before the multivariate polynomial division can be defined another definition is
necessary.
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Definition 4.7 Let f ∈ K[x] be a polynomial with f =∑α aαxα and let >x be a
monomial ordering on K[x]. We define the leading monomial LM(f ) as the highest
monomial of f with respect to >x , the leading coefficient LC(f ) as the coefficient
of the highest monomial, and the leading term as LT(f ) = LC(f ) · LM(f ).

The most important notion in this definition is the leading monomial. It will
appear quite often in the following definitions and examples.

Example 4.11 Determine the degree deg(f ), LM(f ), LC(f ) and LT(f ) of the poly-
nomial f = x2

1x3
2 −5x1x2x3 +4x3

1x2
3 using the termorder >grlex on K[x]. The result

is

deg(f ) = 5, LM(f ) = x3
1x2

3 , LC(f ) = 4, LT(f ) = 4x3
1x2

3 .

To obtain these results with Maple the following commands have to be used:

with(Groebner);
f:=x[1]^2*x[2]^3-5*x[1]*x[2]*x[3]+4*x[1]^3*x[3]^2;
degree(f,[x[1],x[2],x[3]]);
LeadingMonomial(f,grlex(x[1],x[2],x[3]));
LeadingCoefficient(f,grlex(x[1],x[2],x[3]));
LeadingTerm(f,grlex(x[1],x[2],x[3]));

For the leading term Maple does not return the product but the pair LC(f ),LM(f ).
If the termorder plex(x[2],x[3],x[1]) is used instead the results are as fol-
lows:

deg(f ) = 5, LM(f ) = x2
1x3

2 , LC(f ) = 1, LT(f ) = x2
1x3

2 .

Now all ingredients are defined to introduce the multivariate division.

Definition 4.8 Let F = [f1, . . . , fs] be an ordered list of polynomials in K[x] and
>x a monomial order. Then every polynomial f ∈ K[x] can be written in the form

f = a1f1 + · · · + asfs + r

where all ai and r are elements of K[x] and r is either 0 or a polynomial where no
monomial is divisible by any of LM(f1), . . . ,LM(fs). r is called a remainder of f
on division by F .

Example 4.12 As an example the polynomial f = x2
1x2 + x1x

2
2 + x2

2 is divided by
the polynomials f1 = x1x2 − 1 and f2 = x2

2 − 1, where the termorder >lex is used
in K[x1, x2].

f = x2
1x2 + x1x

2
2 + x2

2 , r = 0, a1 = 0, a2 = 0,

f ← x1x
2
2 + x1 + x2

2 , r = 0, a1 = x1, a2 = 0,
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f ← x1 + x2
2 + x2, r = 0, a1 = x1 + x2, a2 = 0,

f ← x2
2 + x2, r = x1, a1 = x1 + x2, a2 = 0,

f ← x2 + 1, r = x1, a1 = x1 + x2, a2 = 1

f ← 1, r = x1 + x2, a1 = x1 + x2, a2 = 1,

f ← 0, r = x1 + x2 + 1, a1 = x1 + x2, a2 = 1.

It follows that f can be written as

f = a1f1 + a2f2 + r = (x1 + x2)(x1x2 − 1) + (1)
(
x2

2 − 1
)+ (x1 + x2 + 1)

where no monomial in the remainder x1 +x2 +1 is divisible by LM(f1) or LM(f2).

It has to be said clearly that the result r is a remainder of f on division by the
list F . If f1 is exchanged with f2 the following result is obtained:

f = a′
1f1 + a′

2f2 + r ′ = (x1 + 1)
(
x2

2 − 1
)+ (x1)(x1x2 − 1) + (2x1 + 1).

So the remainder r depends on the order of the polynomials in the list F and of
course, on the monomial order which has to be chosen first of all.

Using the multivariate division the notion of reduction can be defined.

Definition 4.9 Let F = [f1, . . . , fs] be an ordered list of polynomials in K[x],
f ∈ K[x] and >x a monomial order. Then we call the process of dividing f by

F reduction and denote the remainder with f
F

. The choice of a monomial order is
required to be able to compute the remainder.

This reduction will be used quite often in the following definitions and examples.
But before that the corresponding Maple command is given.

Example 4.13 The polynomial f = x2
1x2 + x1x

2
2 + x2

2 has to be divided by the
polynomials f1 = x1x2 − 1 and f2 = x2

2 − 1, using the termorder >lex in K[x1, x2].
with(Groebner);
f:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2;
f1:=x[1]*x[2]-1; f2:=x[2]^2-1;
r:=Reduce(f,[f1,f2],plex(x[1],x[2]),’s’,’a’);

The result is a remainder r , a list of quotients a and a number s such that

f =
2∑

i=1

aifi + r

s
.

For this example:

r = x1 + x2 + 1, a = [x1 + x2,1], s = 1.
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The necessity of a monomial order will not be mentioned explicitly from now
on. Next we define interreduction.

Definition 4.10 Let F = [f1, . . . , fs] be an ordered list of polynomials in K[x].
The process of replacing each polynomial fi by fi

F\{fi } is called interreduction of
the list F .

This means that every polynomial in F is reduced with respect to all the other
elements of the list. An important property if an interreduction is that the original
set of polynomials and the result of the interreduction generate the same ideal. In-
terreduction can sometimes be used to simplify generating sets (bases) of an ideal,
to obtain shorter polynomials. The right choice of the monomial order is important.

Example 4.14 The ideal I = 〈(x1 − 1)2 + (x2 + 5)2 − 6,2x2
1 + 2x2

2 − 4〉 is interre-
duced. The appropriate commands are the following:

with(Groebner);
I1:=[(x[1]-1)^2+(x[2]+5)^2-6,2*x[1]^2+2*x[2]^2-5];
ir:=InterReduce(I1,plex(x[1],x[2]));

And the result is

ir = [416x2
2 + 1800x2 + 1985,4x1 − 20x2 − 45

]
.

We come back to ideals generated by a set of polynomials. There was already
the question posed how one could decide if a given polynomial f is an element of
I = 〈f1, . . . , fs〉. The concept of reduction would be a good method to answer that
question. That this concept is not the best solution is shown explicitly in [7, p. 67],
because if all remainders of the reduction are zero, then one knows that the tested
polynomial is in the given ideal, but if some remainders are not zero the question
is still open. The zero result of the reduction is just a sufficient but not a necessary
condition for ideal membership.

Now standard bases are defined which are “much better” representatives (gen-
erators) for an ideal. They are still dependent from a chosen monomial order but
nevertheless very useful to deduce information about the ideal and the correspond-
ing variety.

4.2.2 Standard Bases

Definition 4.11 For a fixed monomial order and an ideal I ∈ K[x] a finite subset
G = {g1, . . . , gt } of I is called a Groebner basis or standard basis if

〈
LM(g1), . . . ,LM(gt )

〉= 〈LM(I )
〉

where LM(I ) is the ideal generated by all the leading terms of the elements of I .
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With other words a basis is also a Groebner basis if the leading monomials of the
generators generate the same ideal as the leading monomials of all ideal elements.

Using a Groebner basis we get a better result for the ideal-membership-question.

Theorem 4.1 Let G = {g1, . . . , gt } ⊆ K[x] be a Groebner basis of an ideal I and

f ∈ K[x]. The polynomial f is an element of I if and only if f
G = 0.

Summarizing the procedure for the ideal-membership-question is the following:
first a termorder is fixed, then a Groebner basis of the ideal is computed and after
that the polynomial f is reduced with respect to this basis. f is exactly only then an
element of I if the result of the reduction is 0.

It has to be mentioned that the result of a reduction with respect to a Groebner
basis is independent of the order of the basis elements, this was not the case when
the reduction was done with respect to a normal basis.

Example 4.15 Let I = 〈f1, f2〉 = 〈x1x2 + 1, x2
2 − 1〉 be an ideal in K[x] and

p1 = x1f1 + x2f2 and p2 = x2f1 + x1f2 polynomials which are definitely elements
of I . Now a Groebner basis is computed wrt. plex(x[1],x[2]) and p1,p2 are
reduced with that basis.

with(Groebner);with(PolynomialIdeals):
f1:=x[1]*x[2]+1; f2:=x[2]^2-1;
G:=Basis(<f1,f2>,plex(x[1],x[2]));
p1:=x[1]*f1+x[2]*f2; p2:=x[2]*f1+x[1]*f2;
Reduce(p1,G,plex(x[1],x[2]));
Reduce(p2,G,plex(x[1],x[2]));

The Groebner basis is

G = 〈x2
2 − 1, x1 + x2

〉

and now the expected results are obtained:

p1
F = 0, p2

F = 0.

The package PolynomialIdeals contains also two commands for testing if a
polynomial or an ideal is contained in another ideal. They are used as follows:

IdealMembership(p1,G); IdealContainment(<p1,p2>,G);

The result of both commands will be true.

Now some remarks about Groebner bases:

• The number of polynomials in a Groebner basis can be very large, it depends on
the complexity of the ideal and, of course, on the chosen monomial order. It is
quite possible that only a part of the Groebner basis would be enough to generate
the ideal I , but then the relevant condition 〈LM(g1), . . . ,LM(gt )〉 = 〈LM(I )〉 is
no more fulfilled.
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• There are different methods to compute Groebner bases.
• The monomial order >lex (in Maple plex) tends to be expensive in general,

whereas the order >grevlex (in Maple tdeg) tends to be “relatively” cheap. If the
type of order is chosen the computational costs can again be influenced by the
order of unknowns.

• The typical way to order the polynomials in a basis is by sorting them wrt. the
leading monomials, starting with the smallest one.

Example 4.16 Now as an example reduced Groebner bases are computed for the
ideal

I = 〈x2
1x2 + x1x

2
2 + x2

2x3, x1x2 − x3, x
2
2 − 1

〉

using different termorders:

>lex in K[x1, x2, x3]:
G = {x3

3 + 2x2
3 , x2x3 + x2

3 + x3, x
2
2 − 1, x1 + x2

3 + x3
}
.

>lex in K[x3, x1, x2]:
G = {x2

2 − 1, x2
1 + x1x2 + x1, x3 − x1x2

}
.

>grlex in K[x1, x2, x3]:

G = {x2
3 + x1 + x3, x2x3 − x1, x

2
2 − 1, x1x3 + x1 + x3, x1x2 − x3, x

2
1 + x1 + x3

}
.

The code for Maple looks as follows:

f1:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2*x[3];
f2:=x[1]*x[2]-x[3]; f3:=x[2]^2-1;
Basis(<f1,f2,f3>,plex(x[1],x[2],x[3]));
Basis(<f1,f2,f3>,plex(x[3],x[1],x[2]));
Basis(<f1,f2,f3>,grlex(x[1],x[2],x[3]));

It is no coincidence that in all the bases wrt. to >lex the first polynomial is uni-
variate. This is because the lex-orders have the so called elimination property.

4.2.3 Elimination

First of all the so called elimination ideals are defined.

Definition 4.12 Let I be an ideal in K[x] = K[x1, . . . , xn] and 1 ≤ l < n. Then the
ideal Il = I ∩ K[xl+1, . . . , xn] is called the l-th limination ideal of I . Il contains
all elements of I which do not contain the variables x1, . . . , xl .
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If a termorder has the elimination property, then a basis wrt. this order can be
used to extract bases for the elimination ideals.

Theorem 4.2 Let G = {g1, . . . , gt } ⊆ K[x1, . . . , xn] be a Groebner basis of an ideal
I with respect to >lex. Furthermore let H = {h1, . . . , hk} be the first k polynomials
of G which do not contain the unknowns x1, . . . , xl . Then H is a Groebner basis of
the l-th elimination ideal Il .

It follows an example where it can be seen more clearly what this means.

Example 4.17 The ideal I = 〈x2
1x2 + x1x

2
2 + x2

2x3, x1x2 − x3, x
2
2 − 1〉 is given with

the Groebner basis wrt. plex(x[1],x[2],x[3])

G = 〈x3
3 + 2x2

3 , x2x3 + x2
3 + x3, x

2
2 − 1, x1 + x2

3 + x3
〉
.

Then the following generators are all Groebner bases of the corresponding elimina-
tion ideal:

I2 = 〈x3
3 + 2x2

3

〉
, I1 = 〈x3

3 + 2x2
3 , x2x3 + x2

3 + x3, x
2
2 − 1

〉
.

There is also another command to do the elimination directly. It is contained in the
package PolynomialIdeals and to compute I1 directly from the input polyno-
mials it is used as follows:

EliminationIdeal(<f1,f2,f3>,{x[2],x[3]});

The second argument gives the unknowns which shall not be eliminated. Further-
more no termorder has to be chosen, this is done by Maple internally. Unfortunately
this choice is session-dependent.

It can easily be seen that with these elimination ideals it is quite easy to solve a
system of equations with only finitely many solutions.

Example 4.18 Here once again the Groebner basis G from above including I2
and I1.

I2 = 〈x3
3 + 2x2

3

〉
, I1 = 〈x3

3 + 2x2
3 , x2x3 + x2

3 + x3, x
2
2 − 1

〉
,

G = 〈x3
3 + 2x2

3 , x2x3 + x2
3 + x3, x

2
2 − 1, x1 + x2

3 + x3
〉
.

Now the system can be solved step by step by solving the partial systems and ex-
tending the solutions.

with(Groebner):with(PolynomialIdeals):
f1:=x[1]^2*x[2]+x[1]*x[2]^2+x[2]^2*x[3];
f2:=x[1]*x[2]-x[3]; f3:=x[2]^2-1;
I0:=<f1,f2,f3>;
G:=<op(Basis(I0,plex(x[1],x[2],x[3])))>;



106 M.L. Husty and H.-P. Schröcker

NumberOfSolutions(I0);
I2:=EliminationIdeal(<f1,f2,f3>,{x[3]});
I1:=EliminationIdeal(<f1,f2,f3>,{x[2],x[3]});
L1:={solve(Generators(I2),{x[3]})};
L2:=map(y->op(map(z->z union y,

{solve(eval(Generators(I1),y), {x[2]})})),L1);
L3:=map(y->op(map(z->z union y,

{solve(eval(Generators(G),y), {x[1]})})),L2);

The result for the vanishing set is V(I ) = {(−2,1,−2), (0,−1,0), (0,1,0)}, where
the second solution has multiplicity 2.

How does the variety of the l-th elimination ideal V(Il) correspond to the original
variety V(I )?

Theorem 4.3 The variety V(Il) ∈ Kn−l is the smallest variety (wrt. inclusion)
which contains π(V(I )), where π(V(I )) is the orthonormal projection of V(I ) onto
the subspace generated by equations x1 = · · · = xl = 0.

It is important to note that the equality V(Il) = π(V(I )) only holds when I is a
projective variety and Il a projective elimination ideal. This means that here it can
happen that a solution of Il can not be extended to a solution of Il−1.

Another application of elimination is implicitization. The following example
shows how a variety can be deduced from a parametrisation.

Example 4.19 A parametrisation of a planar curve is given.

x1 = 6t2

t3 + 1
, x2 = 6t

t3 + 1
.

For all values of t ∈ R a point of the curve is obtained. To compute the smallest
variety which contains all these points (should be a cubic curve), the following code
could be used:

with(Groebner);with(PolynomialIdeals):
par1:=x[1]-6*t^2/(t^3+1);
par2:=x[2]-6*t/(t^3+1);
J:=<numer(par1),numer(par2)>;
G:=Basis(J,plex(t,x[1],x[2]));
J1:=<G[1]>;

The first elimination ideal J1 = 〈x[1]3 + x[2]3 + 6 ∗ x[1] ∗ x[2]〉 has exactly the
cubic curve as vanishing set.
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4.2.4 Dimension, Primary Decomposition

It happens quite often that one is primarily interested in the dimension of a variety.
Here is an example where the variety contains parts with different dimensions, and
it is shown how the dimension is computed.

Example 4.20 The ideal I = 〈(2x1 − x2 − 2)x1, (2x1 − x2 − 2)x2
2〉 is given. V(I )

consists of a line and an isolated point. Using the Hilbert polynomial (see [7,
Chap. 9] the dimension is computed (which should be 1).

with(PolynomialIdeals):
I1:=<(2*x[1]-x[2]-2)*x[1], (2*x[1]-x[2]-2)*x[2]^2>;
HilbertDimension(I1,{x[1],x[2]});

If a variety contains parts with different dimensions, then the dimension of the
whole variety is defined to be the largest of these numbers.

As already mentioned it is possible that an ideal describes a variety which is
made up of some simpler varieties, e.g. the variety from the example above. It is the
union of a line and an isolated point. The question is how such a decomposition can
be found, if there is one.

Definition 4.13 A primary decomposition of a given ideal I is an expression of
I as an intersection of primary ideals, namely I =⋂r

i=1 Qi . Such a decomposition
is called minimal if the radicals

√
Qi are all different and Qi �

⋂
i �=j Qj . Fur-

thermore if no radical
√

Qi is strictly contained in another radical
√

Qj , then the
primary components Qi are uniquely determined.

The radicals
√

Qi =: Pi are the corresponding prime ideals.

It follows an example where the variety can be decomposed into three different
parts.

Example 4.21 A rather large ideal J is given.

J = 〈4x3
2x1

3 + 4x3
2x1x2

2 + 4x3
4x1 − 16x1x3

2 + 5x3
2x2x1

2 + 5x3
2x2

3

+ 5x3
4x2 − 20x2x3

2 − 6x3
2x1

2 − 6x3
2x2

2 − 6x3
4 + 24x3

2,

4x1
4 + 4x1

2x2
2 + 4x3

2x1
2 + 2x1

2 + 5x1
3x2 + 5x1x2

3 + 5x1x2x3
2

− 20x1x2 − 18x1
3 − 18x1x2

2 − 18x1x3
2 + 72x1 − 15x2x1

2 − 15x2
3

− 15x2x3
2 + 60x2 + 18x2

2 + 18x3
2 − 72

〉
.

Using the command

PrimaryDecomposition(J);
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Table 4.1 Important joint types

Name Abbr. Dof Relative motion

Revolute R 1 Rotation about fixed axis

Prismatic P 1 Translation in fixed direction

Cylindrical C 2 Rotation about and translation along fixed axis

Helical H 1 Rotation about and translation along fixed, linear relation between
translation distance and rotation angle

Spherical S 3 Rotation about axes through fixed point

the primary decomposition is computed and the result is

Q1 = 〈4x1 + 5x2 − 6〉, Q2 = 〈x1
2 + x2

2 + x3
2 − 4

〉
, Q3 = 〈x3

2, x1 − 3
〉
,

which means that V(I ) can be decomposed into a line, a sphere and an isolated point
which appears with multiplicity 2.

Such decompositions are quite convenient if the variety has to be intersected with
other varieties, because then each of the components can be treated separately. The
worst case is that one has to deal with an ideal which is primary or even prime. In
this case one has to take the ideal as a whole. We shall see later, that the exactly
this decomposition of ideal leads to surprising new results in the analysis of lower
dimensional parallel manipulators.

4.3 Mechanism Theory

We start this section with a brief definition of basic concepts in mechanism science.
Our terminology follows that of [32, Sect. 1.2]. The fundamental object in compu-
tational kinematics is a mechanism. This is an object consisting of several links that
are connected by joints.

A link is a collection of mechanical parts such that no relative motion between
the individual members can occur. A joint is a connection between two links. It
restricts the relative motion that is possible between the two links. The joints can be
classified according to the nature of this restriction. The number of free parameters
to describe this relative motion is called the degree of freedom of the joint. A listing
of the most important joint types, their usual abbreviation, their degree of freedom,
and a short description is given in Table 4.1.

It is important to note that the kinematic image of all joints in Table 4.1—with
exception of the helical joint—is an algebraic variety. We restrict ourselves to alge-
braic joints only. Luckily helical joints are of little relevance in practice.

A collection of links that are connected by joints is called a kinematic chain.
A kinematic chain can be represented by a graph [32, Sect. 7.3.2] where the links
are the vertices and the joints are the edges. In a closed-loop kinematic chain every



4 Kinematics and Algebraic Geometry 109

Fig. 4.2 3R-linkage

Fig. 4.3 3RPR-platform

link is connected to every other link by at least two paths, in an open-loop kinematic
chain every link is connected to every other link by exactly one path. Of course there
are also hybrid versions.

Finally, a mechanism is a kinematic chain where one of the links (the base) is
fixed to the ground or, in mathematical terminology, to a base frame coordinate sys-
tem. The remaining links are grouped into input links and output links. Input links
are actuated and move with respect to the fixed link and the output links perform an
according motion.

An example of a mechanism, a so-called planar 3R-linkage, is depicted in
Fig. 4.2. It consists of three revolute joints a, b, and c, connected by links of con-
stant lengths. The joint a is fixed to the ground, b and c can move along the paths
imposed by the links ab and bc, respectively. Attached to the last joint is the end
effector tool. Typically, one is interested in the motion of the end effector tool with
respect to the base. The set of all poses the end effector can attain is called the mech-
anism’s workspace. The workspace is a subset of the Study quadric (or of planar or
spherical kinematic image space).

In Fig. 4.3 we see a planar 3RPR-platform. It consists of three legs, each com-
posed of a revolute joint (R), a prismatic joint (P) and a further revolute joint (R).
Three revolute joints (a0, b0, c0) are fixed to the ground, three of them (a, b, c)
are attached to the end effector frame. This mechanism is actuated by changing the
lengths of the prismatic joints. It has a three dimensional workspace, that is repre-
sented by a three dimensional variety on the Study quadric.

The spatial counterpart to a 3RPR-platform is known as Stewart-Gough plat-
form. It consists of six legs and each leg is composed of a spherical, a prismatic
and a spherical joint (Fig. 4.4). Between any two corresponding spherical joints a
prismatic joint is inserted. The spherical joints can rotate freely about their center,
the prismatic joints can extend or shrink in one direction (the direction of the link in
our case).
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Fig. 4.4 A general
Stewart-Gough platform

Fig. 4.5 A planar four-bar
mechanism

Figure 4.5 depicts a planar four-bar linkage, a further common linkage type. It
consists of four revolute joints connected by bars of fixed lengths. Two revolute
joints a, b are fixed to the base frame, the two remaining joints c, d are attached to
the end effector frame. The “missing” fourth bar is the ideal connection between a
and b. The four-bar motion depends only on one free parameter, the rotation of the
driving crank. We say that the mechanism has one degree of freedom. This is in con-
trast to 3R- and 3RPR-manipulators which have three degrees of freedom and can, at
least theoretically, generate the complete group of planar Euclidean displacements.
The kinematic image of the four-bar linkage is a curve on the Study quadric

4.4 Constraint Varieties

In this section we demonstrate how kinematic mapping can be used to translate
mechanisms to algebraic varieties5 in P 7. These varieties describe the possible con-
figurations of the mechanism and are called constraint varieties. We start by com-
puting the kinematic images of fundamental building blocks of mechanisms (see
Table 4.1). Then we demonstrate how to combine these elements in order to de-
scribe more complex mechanisms. The corresponding algebraic operations involve
intersection of varieties and implicitization.

5In Sect. 4.2 we have defined affine varieties. When all defining polynomials of the variety are
homogeneous then the zero set of these polynomials is called projective variety. Because in mech-
anism analysis affine as well as projective varieties occur we use the generic term algebraic variety
in this section.
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4.4.1 Kinematic Image of Elementary Joints

4.4.1.1 Revolute Joints

A parametrized representation of the kinematic image of a revolute joint has al-
ready been computed in Examples 4.1 and 4.3. It is a straight line and computing
its algebraic equations is elementary. Still, we will show how to carry out these
computations explicitly because this demonstrates a general procedure for obtain-
ing constraint varieties. Consider the kinematic image (4.11). It is given in a normal
form and we see that it is described by six linear equations

H1(x) : x1 = 0, H2(x) : x2 = 0, K0(x) : y0 = 0,

K1(x) : y1 = 0, K2(x) : y2 = 0, K3(x) : y3 = 0.
(4.31)

In order to obtain the constraint variety of a revolute joint in general position we
have to transform the hyperplanes Hi(x), Kj(x) via the projective transforma-
tion Tf . This is done by substituting T−1

f x for x. The new equations are

H ′
i (x) = Hi

(
T−1

f x
)
, K ′

j (x) = Kj

(
T−1

f x
)
. (4.32)

This procedure not only works for linear equations but for algebraic equations of
arbitrary degree. Changes of coordinates in the moving frame are performed by
using Tm instead of Tf .

4.4.1.2 Concatenation of Elementary Joints

A mechanism generally will consist of combinations of elementary joints which act
either in series or parallel. Therefore it is crucial to devise a procedure in which the
constraint variety of a given concatenation of elementary joints can be computed.
Such a procedure was developed in [34] and is called implicitization algorithm. We
give here a brief outline of this algorithm. For a more elaborate treatment we refer
to the paper.

We know already that the kinematic image of every concatenation of an arbitrary
number of elementary joints will correspond to an algebraic variety, a subset of the
Study quadric. By performing the forward kinematics using the usual procedure in
multiplying rotation or translation matrices and coordinate transformation matrices
we end up with a parametric representation of the chain. Note that for this process on
can use the best adapted coordinate system, because a general pose of the chain with
respect to an arbitrary coordinate system can be obtained later by performing trans-
formations (4.17), which will not change the degree of the constraint polynomials.
The algebraic variety is obtained by eliminating the parameters from the parametric
representation. A simple example was shown in Example 4.19. In multi-parameter
systems elimination is in general not possible, because the degree of the system
increases with every elimination step. Therefore we present an alternative approach.
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From the parametric representation of the chain in Cartesian space the represen-
tation in the kinematic image space has to be computed using (4.7) and (4.8). Half
tangent substitution transforms the rotation angles ui into algebraic parameters ti
and one ends up with eight parametric equations of the form:

x0 = f0(t1, . . . , tn), x1 = f1(t1, . . . , tn), . . . , y3 = f8(t1, . . . , tn).

These equations will be rational having a denominator of the form (1 + t2
1 ) · · ·

(1 + t2
n) which can be canceled because the Study parameters xi, yi are homo-

geneous. The same can be done with a possibly appearing common factor of all
parametric expressions. We assume now that we have been arriving at the simplest
possible parametric representation of the kinematic chain.

We have already seen that there exists a one-to-one correspondence from all spa-
tial transformations to the Study quadric which lives in P 7. Particularly this means
that a tuple of Study parameters describing a transformation is a projective point and
consequently always only unique up to scalar multiples. If we have a transformation
parametrized by n parameters t1, . . . , tn we obtain by kinematic mapping a set of
corresponding points in P 7 and we ask now for the smallest variety V ∈ P 7 (with
respect to inclusion) which contains all these points.

What do we know about this variety? What can be said definitely is that its ideal
consists of homogeneous polynomials and contains x0y0 + x1y1 + x2y2 + x3y3, i.e.
the equation for the Study quadric S. In the following it is shown how additional
equations can be computed which are necessary to describe V . It should be noted
that the minimum number necessary to describe V corresponds to the number of
parameters, which in turn correspond to the degrees of freedom (dof) of the kine-
matic chain. If the number of generic parameters is n then m = 6 − n polynomials
are necessary to describe V . This is of course a rough statement, because different
numbers can appear when special situations (e.g. redundant dofs) are in place.

Now we are searching for homogeneous polynomials which vanish on all points
that can be obtained from the parameterization of the kinematic chain, i.e. polyno-
mials in x0, x1, x2, x3, y0, y1, y2, y3 which are 0 when the expressions of the param-
eterization are substituted. One possibility to find such polynomials is the follow-
ing: A general ansatz of a homogeneous polynomial in x0, x1, x2, x3, y0, y1, y2, y3
with given degree n is made and then the Study parameters of the parametric rep-
resentation are substituted. The resulting expression f is treated as a polynomial
f (t1, . . . tn). Due to the fact that f has to vanish for all values of the ti , it has to be
the zero polynomial. It follows that all coefficients of f have to vanish. This means
that, after extraction of these coefficients, one obtains a system of linear equations
where the unknowns are the

(
n+7
n

)
coefficients from the general ansatz. This system

can be solved (assuming that the design parameters ai, di and αi are generic) and the
solution can be substituted into the ansatz. The result is an expression r describing
all homogeneous polynomials of degree n which vanish on the points of V . An im-
portant point is that if the solution of the linear system is positive dimensional, the
corresponding parameters also appear in the final expression, i.e. the expression r

itself is parametrized.



4 Kinematics and Algebraic Geometry 113

More details on this algorithm can be found in [34] and as an example how it can
be used for the description of the constraints of a 5-RPUR parallel manipulator is
shown in [21].

4.4.1.3 Path Constraints

So far, we have demonstrated how to operate on a “joint level” in order to compute
constraint varieties. This is suitable for serial manipulators. When describing paral-
lel manipulators it is often favorable to start with a “path constraint” and then the
implicitization algorithm can be avoided. Consider, for example, the four-bar mech-
anism of Fig. 4.5. The coupler motion is completely defined by the condition that
the two points have circular trajectories. Every “circle constraint” translates into a
constraint surface in the quasielliptic space of planar Euclidean displacements. The
kinematic pre-image of their intersection curve is the four-bar motion.

As an example we compute the algebraic equation of the surface of all planar
displacements, such that the point (a, b)T moves on a circle with center (ξ, η)T and
of radius �. Using the matrix X of (4.22) the circle constraint reads

∥
∥X · (1, a, b)T − (1, ξ, η)T

∥
∥2 − �2 = 0. (4.33)

This is equivalent to a homogeneous polynomial of degree two in x0, x3, y1, and y2.
Hence the circle constraint surface is a quadric surface in P 3.

4.4.2 Mechanism Analysis

The topic of mechanism analysis is the investigation of properties a certain mech-
anism exhibits. Thereby, the mechanism type and its dimensions are known. Ques-
tions of interest concern the relation of joint parameters to the position and orien-
tation of the end effector, the topology and size of the workspace, and its singular
positions (singular in kinematic sense, not in the sense of algebraic geometry).

4.4.2.1 Direct and Inverse Kinematics

Direct and inverse kinematics are two basis tasks of mechanism analysis. Usually
the direct kinematics problem is relatively easy for serial manipulators but often
difficult for parallel manipulators. Conversely, the inverse kinematics problem is
usually simple for parallel manipulators and often complicated for parallel manipu-
lators.

Consider for example an 6R serial chain. If the rotation angles of the individual
joints are known, computing the end effector frame is just a matter of multiplying
consecutive transformation matrices [23, Sect. 4.4] (direct kinematics). Conversely,
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it is not obvious at all how to choose the joint angles such that the end effector
attains a certain specified pose (inverse kinematics).

On the other hand, computing the leg lengths of a Stewart-Gough platform (SGP)
is trivial when the pose of the moving platform—and hence also the locations of
the anchor points—in space is given (inverse kinematics). The direct kinematics
problem of finding the possible poses to a given sequence of leg lengths is difficult.
It amounts to computing the intersection points of six sphere constraint surfaces and
the Study quadric and has 40 solutions over C. We give a short sketch of the solution
algorithm.

If a point of the moving system is constrained to remain on a sphere we obtain
the following “canonical” constraint equation using the implicitization algorithm:

(

y2
0 + y2

1 + y2
2 + y2

3 − 1

4
R2(x2

0 + x2
1 + x2

2 + x2
3

)
)

λ

+ (x0y0 + x1y1 + x2y2 + x3y3)μ = 0. (4.34)

In the canonical form the origin of moving and fixed coordinate system coincide
with the centers of the spherical joint in base and platform. To obtain the constraint
equation of a general leg one has to perform the coordinate transformations (4.7)
and (4.8) which translate the origins to the center of the spherical joints in base
(A,B,C) and platform (a, b, c) of the general leg.

h : R
(
x2

0 + x2
1 + x2

2 + x2
3

)+ 4
(
y2

0 + y2
1 + y2

2 + y2
3

)− 2x2
0(Aa + Bb + Cc)

+ 2x2
1(−Aa + Bb + Cc) + 2x2

2(Aa − Bb − Cc) + 2x2
3(Aa + Bb + Cc)

+ 2x2
3(Aa + Bb − Cc) + 4

[
x0x1(Bc − Cb) + x0x2(Ca − Ac)

+ x0x3(Ab − Ba) − x1x2(Ab + Ba) − x1x3(Ac + Ca)

− x2x3(Bc + Cb) + (x0y1 − y0x1)(A − a) + (x0y2 − y0x2)(B − b)

+ (x0y3 − y0x3)(C − c) + (x1y2 − y1x2)(C + c) − (x1y3 − y1x3)(B + b)

+ (x2y3 − y2x3)(A + a)
]= 0. (4.35)

In this equation we have seven design constants: the length of the leg is encoded
in R, the coordinates of the sphere center in the base are A, B , C and the center of
the spherical joint on the platform are a, b, c. The direct kinematics problem is now
transformed into an algebraic intersection problem of seven quadratic varieties (six
constraint equations and the Study quadric S). The count of the number of solutions
is not as easy because a simple check of (4.35) shows that each of the equations
contains the absolute quadric F in the exceptional generator E : x0 = x1 = x2 =
x3 = 0. A proof for the existence of 40 solutions in the allowed part of S can be
found in [36] or [27]. The solution algorithm is straightforward: take differences of
the constraint equations, which are linear in yi , solve for the yi , substitute in the
remaining equations. Three essentially different equations remain. They are in the
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Fig. 4.6 SNU-3-UPU. The
numbers at the first limb
describe the order of the
rotational axes of the U-joints

general case of degree (8,4,4). Using resultants or Gröbner bases the univariate
polynomial of degree 40 can be computed and solved numerically.

The use of primary decomposition of the ideal of constraint equations will be
shown with the analysis of the so called SNU-3-UPU parallel manipulator. It con-
sists of three identical UPU-legs (universal-prismatic-universal-joint). The anchor
points on base and platform are located at the vertices of an equilateral triangle.
First and fourth revolute joint as well as second and third revolute joint are parallel
(Fig. 4.6).

It can easily be seen that each of the leg link-combinations reduces the degrees
of freedom of the platform by two. The first restriction is the condition of constant
distance between Ai and Bi . Therefore we can use the constraint equation (4.35) and
obtain three sphere constraint equations g1, g2, g3. The second constraint is induced
by the two U-joints: the platform cannot rotate about the axis of the limb. From this
fact it follows that the vertices Ai , Bi and the circum-centres of base and platform
have to form a planar quadrangle. But such a condition can easily be translated to
an equation, because it is fulfilled if and only if the determinant of the 4 × 4-matrix
built by these four points vanishes.

So for each limb we take the coordinates of Ai , Bi , the origin of Σ0 and the origin
of Σ1 with respect to Σ0, build the 4 × 4-matrix and compute its determinant. Here
it is not necessary to normalize the coordinates. After removal of non-vanishing
factors these determinants are reduced with the polynomial x0y0 + x1y1 + x2y2 +
x3y3 with respect to the total degree order x0 � x1 � x2 � x3 � y0 � y1 � y2 � y3

which has the effect that the result can be again factorized and the smaller factor
−(x2

0 + x2
1 + x2

2 + x2
3) can be removed. We obtain the following equations which



116 M.L. Husty and H.-P. Schröcker

are again quadratic and completely independent from all design parameters.

g4 : 4x1y1 + x2y2 + √
3x2y3 + √

3x3y2 + 3x3y3 = 0, (4.36)

g5 : 4x1y1 + x2y2 − √
3x2y3 − √

3x3y2 + 3x3y3 = 0, (4.37)

g6 : x1y1 + x2y2 = 0. (4.38)

The Study-quadric equation and a normalization condition

g7 : x0y0 + x1y1 + x2y2 + x3y3 = 0, g8 : x2
0 + x2

1 + x2
2 + x2

3 − 1 = 0

complete the system and we have the ideal

I = 〈g1, g2, g3, g4, g5, g6, g7, g8〉.
One could try to solve this system immediately, but in this case it makes sense
to perform some simplification before. An inspection of the equations in the ideal
shows that g4, g5, g6 are free of design parameters. Therefore we look at the ideal

J = 〈g4, g5, g6, g7〉
and perform a primary decomposition. This shows that it can be written in a very
simple way:

J =
10⋂

i=1

Ji

with

J1 = 〈y0, y1, y2, y3〉, J2 = 〈x0, y1, y2, y3〉,
J3 = 〈y0, x1, y2, y3〉, J4 = 〈x0, x1, y2, y3〉,

J5 = 〈y0, y1, x2, x3〉, J6 = 〈x0, y1, x2, x3〉, J7 = 〈y0, x1, x2, x3〉,
J8 = 〈x2 − ix3, y2 + iy3, x0y0 + x3y3, x1y1 + x3y3〉,
J9 = 〈x2 + ix3, y2 − iy3, x0y0 + x3y3, x1y1 + x3y3〉,

J10 = 〈x0, x1, x2, x3〉.
To compute this decomposition the software Singular was used, a very powerful
tool to do computations with polynomials. Actually all these ideals are prime ideals
and there are no embedded components. It has to be noted that an ideal has to be
very special to allow such a decomposition in so many small components. For the
zero set or vanishing set V (J ) of J it follows that

V (J ) =
10⋃

i=1

V (Ji ).
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Table 4.2 Dimensions of
component intersections

K1 K2 K3 K4 K5 K6 K7

K1 3 2 2 1 1 0 0

K2 2 3 1 2 0 1 −1

K3 2 1 3 2 0 −1 1

K4 1 2 2 3 −1 −1 −1

K5 1 0 0 −1 3 2 2

K6 0 1 −1 −1 2 3 −1

K7 0 −1 1 −1 2 −1 3

Now we add the remaining equations and by writing Ki := Ji ∪ 〈g1, g2, g3, g8〉
the vanishing set of the essential system I can be written as

V (I ) = V
(
J ∪ 〈g1, g2, g3, g8〉

)= V (J ) ∩ V
(〈g1, g2, g3, g8〉

)

=
(

10⋃

i=1

V (Ji )

)

∩ V
(〈g1, g2, g3, g8〉

)=
10⋃

i=1

(
V (Ji ) ∩ V

(〈g1, g2, g3, g8〉
))

=
10⋃

i=1

V
(
Ji ∪ 〈g1, g2, g3, g8〉

)=
10⋃

i=1

V (Ki ).

So, instead of studying the system as a whole, we can look for solutions of the
smaller systems Ki . Then the solution of system I is the union of the solutions of
the sub-systems.

It can easily be seen that the last set V (K10) is empty because K10 contains
equations {x0, x1, x2, x3, x

2
0 + x2

1 + x2
2 + x2

3 − 1} which cannot vanish simultane-
ously. Moreover the systems V (K8) and V (K9) yield only complex solutions.
Therefore it is only necessary to study systems K1, . . . ,K7. We can say that the
workspace of the manipulator consists of seven components, whose complete de-
scription can be obtained by adding the remaining polynomials g1, g2, g3, g8 to the
polynomials of each component. A complete kinematic description of all compo-
nents can be found in [33]. The dimensions of the different intersections of the
components are listed in Table 4.2. The numbers in this table refer to the dimen-
sion of the respective variety where a transition from one component into the other
component is possible: 0 stands for a single point, 1 for a curve and 2 for a two
dimensional variety.

4.4.2.2 Algebraic Definition of Degrees of Freedom

There is a long history in defining and computing the degree of freedom of a me-
chanical system. Historically most of the developed formulas determine the topo-
logical structure and fail whenever special design parameters cause anomalies. Our
informal definition at the beginning of Sect. 4.3 is an example of that. Exceptional,
pathological or overconstrained mechanisms need special treatment. An overview
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of most of the classical concepts starting with Euler’s formula up to the most recent
developments can be found in [1].

Within the setting of algebraic geometry and the theory developed in this chapter
it is natural to define the degree of freedom of a mechanism as the Hilbert dimension
of the algebraic variety associated with the mechanical device. Caution has to be
taken with respect to reality of the variety and its intersection with the exceptional
generator E.

Applying this definition to the direct kinematics of the Stewart-Gough platform
we obtain a zero dimensional component which determines the 40 discrete solutions.
That is, for fixed leg lengths the degree of freedom is, in general, zero. However, the
Hilbert dimension of the ideal spanned by the six sphere constraint equations and
the Study condition (4.5) is two because every sphere constraint variety contains
the exceptional quadric F . This problem can be overcome easily by adding a nor-
malizing condition (either x0 = 1 or x2

0 + x2
1 + x2

2 + x2
3 = 1) which removes the

exceptional generator from the ideal. Note that the actual degree of freedom of a
Stewart-Gough platform with fixed leg lengths can be greater than zero. This inter-
esting phenomenon will be the topic in Sect. 4.4.2.3.

4.4.2.3 Mechanism Singularities

The singular configurations of a mechanism are an important topic in mechanism
analysis. The precise definition and classification of mechanism singularities is far
beyond the scope of this article (compare [38] and the references therein). In par-
ticular, singular configurations of a mechanism do not necessarily correspond to
singularities of the mechanism’s constraint varieties. To obtain a formal definition
of singularity in kinematics we can follow the exposition in [8] and apply the results
herein to the constraint varieties of the mechanism. Let V ∈ kn be a constraint vari-
ety and let p = [p0, . . . , p7]T be a point on V . The tangent space of V at p, denoted
Tp(V ), is the variety

TP (V ) = V
(
dp(f )

) : f ⊂ I(V) (4.39)

of linear forms of all polynomials contained in the ideal I(V) in point p (see [8,
p. 486]). With this definition we can immediately link the tangent space to the local
degree of freedom of the mechanism: The local degree of freedom is defined as
dimTp(V ) (see also [35]). Computationally the differentials are to be taken with
respect to the Study parameters xi, yi . In kinematics these differentials are collected
in the Jacobian matrix of the manipulator

J(fj ) =
(

∂fj

xi

,
∂fj

yi

)

, (4.40)

where fj are polynomials describing the constraints, the Study condition, and a nor-
malizing condition. The normalizing condition has to be added to avoid dimensional
problems coming from the exceptional generator E. In a nonsingular position of the
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Fig. 4.7 Singular configuration of a planar 3RPR-mechanism and singularity surface

mechanism the Jacobian J will have maximal rank. A singular position is character-
ized by rank deficiency of J and the defect is directly related to the local degree of
freedom.

It should be noted that singularity of mechanisms has different meaning when
applied to serial or parallel robots. In case of a serial manipulator singularity means
loss of mobility, whereas in case of parallel manipulators singularity means gain of
mobility. Singular or near-singular configurations have to be avoided because of un-
predictable behavior of the platform, because its resistance towards forces in certain
directions becomes very weak, and because the effect to manufacturing tolerances
increases. The kinematic image of all singular configurations constitutes the manip-
ulator’s singularity surface.

There is a vast literature on singularities of mechanisms. In this paper we confine
ourselves to discussing singularities by means of a few examples. Some of them
will show that not always the tangent space of the constraint varieties has to be
computed. In these cases geometric consideration can replace the computation.

A planar 3RPR-platform (Fig. 4.3) is in a singular configuration, if the straight
lines determined by the axes of its three legs intersect in a common point. It can be
shown that this corresponds to configurations where two solutions of the direct kine-
matics problem coincide. Therefore, the mechanisms behavior in a singular configu-
ration is unpredictable. This is illustrated in Fig. 4.7. The manipulator is in a singular
configuration because the three legs meet in a common point m. Suppose now that
we want to actuate the manipulator by changing the length of the leg through c0
while keeping fixed the remaining two leg lengths. This inverse kinematics problem
has two solutions in the vicinity of the singular configurations.

The singularity surface Φ of a planar 3RPR-manipulator is depicted in Fig. 4.7.
Its equation is found by writing the positions of a1, b1, and c1 in general form (using
(4.22)) and expanding the concurrency condition of three lines. In [14] it was shown
that the algebraic variety describing the singularities in the kinematic image space is
a rational surface of degree four. Knowledge of geometric properties of Φ is helpful
for singularity avoiding motion planing.

A SGP parallel manipulator is in a singular configuration when the Jacobian ma-
trix (4.40) is rank deficient. There is again a simple geometric explanation for the
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Fig. 4.8 Griffis-Duffy
platform

singularity. Consider the axes of the legs of the manipulator. They are linearly de-
pendent if they lie in a linear complex, a linear congruence or are lines on a quadric
surface (see [24] for a definition of these concepts). There are more degenerate
cases, which will not be mentioned here, but all cases are treated exhaustively in
[22]. Because of the condition det J = 0 all singular positions of the manipulator
belonging to rank deficiency 1 of J are on a degree 12 hyper-surface in P 7. Higher
rank defect of J can be expressed by the vanishing of certain sub-determinants and
corresponds to an algebraic variety as well. Little is known on that.

If det J ≡ 0, which means that the manipulator is singular independently of the
position, then the manipulator is called architectural singular. One would expect
that there are too many conditions that have to be fulfilled to allow this phenomenon.
But surprisingly this is not the case. In [15] and [17] it is shown that for general SGP
with arbitrarily distributed centers of the spherical joints architectural singularity is
only possible for very degenerate designs. In the case of spherical joint centers being
distributed in two planes four algebraic conditions are found which determine the
locations of the anchor points in the two planes.

Self-motions of SGP occur when the mechanism moves without changing the leg
length, that is with locked actuators. Algebraically this happens when the six con-
straint varieties and the Study quadric S determine at least a one dimensional ideal.
The most famous example of this behavior is the Griffis-Duffy platform (Fig. 4.8).
The ideal of constraint equations for some special design parameters of this platform
reads

G :=
[

−4x2y3 + 12x1y0 + 4y2x3 + 4
√

3x1x2,8
√

3x2y0,−4x2y3 − 12x1y0

+ 4y2x3 + 4
√

3x1x2,−2

3

√
3
(√

3x2y3 − 3
√

3x1y0 − √
3y2x3 + √

3x2
2

+ √
3x2

3 − 3x1x2 + 3x2y0 − 3y3x1 + 3x3y1
)
,4

√
3y0(

√
3x1 + x2),
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4y2
0 + 4y2

1 + 4y2
3 + 4y2

2 + x2
3(2 − R) + x2

1(2 − R) + x2
2(2 − R)

+ 2
√

3x3y1 + 6x1y0 + 2y2x3 + 2
√

3x2y0 − 2x2y3 − 2
√

3y3x1 + x2
1 − x2

3

+ 2
√

3x1x2 − x2
2 , x1y1 + x2y2 + x3y3,−1 + x2

1 + x2
2 + x2

3

]

computing the Hilbert Dimension yields

H:=HilbertDimension(F,tdeg(x1,x2,x3,y0,y1,y2,y3))

H := 1.

Depending on the special design variables the constraint varieties determine var-
ious types of one dimensional ideals (see [16] and [28]). It also can happen that the
ideal consist of different components having different dimensions.

A simple example is the planar 3RPR-platform, when the base anchor points and
the platform anchor points form two congruent triangles and the legs have the same
length. The three constraint quadrics in the kinematic image space have a circle
in common and four more points, of which two are the absolute points. The circle
corresponds to the possible parallel-bar motion and the two points correspond to
two rigid assembly modes. Self motions of platforms can be linked to an old and
famous question in kinematics which was the topic of a competition of the French
academy of science in 1904. For historical references see [13].

Acknowledgement The authors thank M. Pfurner and D. Walter for their agreement to use com-
mon results for this paper.
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Chapter 5
Applying Numerical Algebraic Geometry
to Kinematics

Charles W. Wampler and Andrew J. Sommese

5.1 Introduction

Advances in algorithms and computer speed have brought about a new paradigm
in kinematics. The proportion of effort a kinematician must exert in heavy manipu-
lations of algebraic expressions is greatly diminished through the use of computer
algorithms, and instead the kinematician may concentrate on formulating the prob-
lem and interpreting the answer so as to analyze a geometrically constrained motion
or to design a device to produce desired motions. This way of working requires,
however, an understanding of what kind of results the computer algorithms are ca-
pable of providing and how to use them effectively. This article condenses material
from [48] providing the schema of a mechanism space that encapsulates most of the
sorts of questions arising in kinematics and then summarizes how numerical alge-
braic geometry, a computational approach based on polynomial continuation, can be
applied to solving such problems. In addition to [48], the application of polynomial
continuation to kinematics has been addressed specifically in the tutorials [36, 45]
and in substantial portions of the monograph [38].

Some notable milestones in the application of polynomial continuation to kine-
matics include early demonstrations that the inverse kinematics problem of gen-
eral six-revolute serial-chain manipulators has 16 solutions [41], that the forward
kinematics problem of general Stewart-Gough platforms has 40 solutions [32], and
that the nine-point path synthesis problem for four-bar linkages has 1442 triples of
Roberts-cognate solutions [46, 47]. Some indication of the difficulty of these prob-
lems is that the one with the lowest root count, the “6R problem,” was once declared,
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in the equivalent form of the 7R spatial loop, the “Mount Everest of kinematics”
[12]. While the nine-point path synthesis problem was not fully solved until nearly
70 years after its first statement in 1923 [1], the eventual cracking of the problem
was presaged by partial solutions generated in 1963, in the early days of applying
computers to kinematics, with a heuristic version of continuation [34]. With sub-
sequent improvements in the technique of continuation and increases in computer
speed, even the nine-point problem is now a routine calculation used as a test case
for software packages in numerical continuation. (At present, it is still beyond the
range of symbolic methods in computer algebra.)

These early successes all share the property that the questions to be answered
have a finite number of solutions. In other words, the solution sets to be computed
are zero-dimensional. But it is common in kinematics to explore problems having
higher-dimensional solution sets. Examples include the motion curve traced out by a
1-degree-of-freedom (1DOF) mechanism, the boundary of the reachable workspace
of a robot, or sets of design alternatives that satisfy an under-specified precision-
point mechanism synthesis problem. (An example of the latter case is the classical
center-point/circle-point Burmester curves for four given locations of a body in the
plane [10].) Algebraic curves, surfaces, and beyond are all of interest in the field.

An approach for consistent treatment of higher-dimensional cases was begun
in [37], where the term “numerical algebraic geometry” was coined. The essential
construct in the approach is a witness set, in which general linear equations are ap-
pended to slice out a finite number of representative points, called witness points,
on a higher-dimensional algebraic set. Many properties of the set can be gleaned
from its witness set, and the set can be explored by tracking the witness points as
the linear slicing space is moved continuously. The solution set of a system of poly-
nomial equations can be factored into its irreducible components, each represented
by a witness set, and given witness sets for two or more irreducible components,
algorithms exist for finding their intersection.

The main techniques of numerical algebraic geometry are freely available in the
software package Bertini [4, 5]. PHCpack [42] also implements some algorithms of
the field, while Hom4PS2 [16], POLSYS_PLP [50], and POLSYS_GLP [40] offer
only algorithms for computing isolated solutions.

This chapter first describes a way of viewing problems from kinematics in terms
of mappings between algebraic spaces. Mechanisms, including robots, that consist
of rigid links connected by the most common kinds of joints have kinematic rela-
tions that are naturally polynomial. After establishing this basic framework, atten-
tion shifts to the algorithms of numerical algebraic geometry and how to use them.
Beginning with the following section, the remainder of this chapter is excerpted
from [48], with permission, edited for continuity.

5.2 Notation

This chapter uses the following notations.

• I = √−1, the imaginary unit.
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• For polynomial system F = {f1, . . . , fn}, F :CN → C
n, and y ∈C

n,

V (F ) = V (f1, . . . , fn) := {x ∈C
N
∣
∣ F(x) = 0

}
.

• “DOF” means “degree(s)-of-freedom.”
• T

k is the k-dimensional torus, the cross product of k circles.
• C

∗, pronounced “Cee-star,” is C \ 0, the complex plane omitting the origin.
• P

n is n-dimensional projective space, the set of lines through the origin of Cn+1.
• Points in P

n may be written as homogeneous coordinates [x0, . . . , xn], not all
zero. The coordinates are interpreted as ratios, so [x0, . . . , xn] = [λx0, . . . , λxn]
for any λ ∈C

∗.
• A quaternion u is written in terms of the elements 1, i, j,k as

u = u01 + u1i + u2j + u3k, u0, u1, u2, u3 ∈ C.

A quaternion u with u0 = 0 can be interpreted as an ordinary spatial vector. We
use u ∗ v to denote the quaternion product and u′ to denote quaternion conjuga-
tion.

5.3 Algebraic Kinematics

Kinematicians are quite accustomed to writing problems as systems of polynomial
equations. For example, we often begin with a standard Denavit-Hartenberg formu-
lation in which for each rotational joint angle θi , the trigonometric functions sin θi

and cos θi appear. But by the simple maneuver of defining variables

ci = cos θi, si = sin θi,

and appending the trigonometric identity

c2
i + s2

i = 1,

such expressions become polynomial. In this section, we step back a moment to see
why so many problems in kinematics are algebraic at their core.

5.3.1 Rigid-Body Motion Spaces

Consider first that the six-dimensional set of rigid-body transformations in three-
space, SE(3). The defining properties of SE(3) are that each transformation must:

• preserve distances between points (the body is rigid), and
• preserve handedness (the body does not transmute into its mirror image).

The notation SE(3) stands for ‘special Euclidean transforms on 3-space’.
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At root, rigid-body transforms are algebraic because squared distances are alge-
braic. Translation by a vector p ∈ R3 and orthogonal transformation by a matrix
C ∈ O(3) = {C ∈ R

3×3 | CT C = I } preserve distance, but to preserve handedness,
C must be restricted to SO(3) by requiring detC = 1.

The most useful representations of SE(3) are as follows.

• (p,C) ∈ R
3 × SO(3), where SO(3) = {C ∈ R

3×3 | CT C = I,detC = 1}. This
acts on a vector v ∈R

3 to transform it to u = Cv + p.
• The 4 × 4 homogeneous transform version of this, where (p,C) are placed in a

matrix so that the transform operation becomes
[

u
1

]

=
[
C p
0 1

][
v
1

]

.

• Study coordinates [e, g] ∈ S2
6 ⊂ P

7, where e = (e0, e1, e2, e3), g = (g0, g1, g2, g3)

and S2
6 is the six-dimensional hypersurface given by the equation

e0g0 + e1g1 + e2g2 + e3g3 = 0, (5.1)

known as the Study quadric. Interpreting e and g as quaternions, the transform
operation is

u = (e ∗ v ∗ e′ + g ∗ e′)/
(
e ∗ e′).

In all three cases, the representations live on an algebraic set. The transform op-
eration is also algebraic in the first two cases and equations involving the Study
transform operation become algebraic after clearing e ∗ e′ from denominators.

There are several subgroups of SE(3) that are of interest. Most prominent is
SE(2), the set of planar rigid-body transformations, with representations as follows.

• (p,C) ∈ R
2 × SO(2), where SO(2) = {C ∈ R

2×2 | CT C = I,detC = 1}. The
transform rule looks identical to the spatial case: u = Cv + p.

• The unit-circle form {(x, y, s, c) ∈ R
4 | c2 + s2 = 1}. This is the same as the

former with p = xi + yj and

C =
[
c −s

s c

]

.

• The tangent half-angle form (x, y, t) ∈R
3, in which rotations become

C = 1

1 + t2

[
1 − t2 −2t

2t 1 − t2

]

.

• Isotropic coordinates {(p, p̄, θ, θ̄ ) ∈ C4 | θ θ̄ = 1}. Real transforms must satisfy
p∗ = p̄ and θ∗ = θ̄ . The action of transform (p, p̄, θ, θ̄ ) on a vector given by
isotropic coordinates (v, v̄) is the vector (u, ū) given by

(u, ū) = (p + θv, p̄ + θ̄ v̄).
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Again, each of these representations lives on an algebraic set and has an algebraic
transform operation (after clearing denominators in the tangent half-angle form).
Clearly, SE(2) is a three-dimensional space.

Another subspace of interest is the set of spherical transforms, that is, just SO(3),
another three-dimensional space. This is SE(3) with the translational portion set
identically to zero. The terminology “spherical” derives from the fact that this is
the set of motions allowed by a spherical ball set in a spherical socket of the same
diameter.

It is useful to note that since points transform algebraically, so do lines and
planes, as these may be formed as linear combinations of two or three points, respec-
tively. Labeling the points that define them, the order of the points defines an orien-
tation for the lines and planes. Unbound unit vectors also transform algebraically,
that is, by ignoring translation and applying only rotation.

5.3.2 Algebraic Joints

A mechanism is a collection of rigid bodies connected by joints. Without the joints,
each body could move with six degrees of freedom anywhere in SE(3). Typically,
we declare one body to be “ground” and measure the locations of all the other bod-
ies relative to it, so a collection of n bodies lives in SE(3)n−1. Joints are surfaces
of contact between bodies that constrain the motion of the mechanism to a subset
of SE(3)n−1. Algebraic joints are those which constrain a mechanism to algebraic
subsets of SE(3)n−1.

The most important joints for building mechanisms are the lower-order pairs.
These are pairs of identical surfaces that can stay in full contact while still allow-
ing relative motion. In other words, they are formed by a surface that is invariant
under certain continuous sets of displacements. The lower-order pairs form six pos-
sible joint types, having the following standard symbols: R, revolute; P, prismatic;
H, helical (screw); C, cylindrical; E, plane; and S, Spherical. The importance of the
lower-order pairs derives from the fact that surface-to-surface contact spreads forces
of contact over a larger area, reducing stresses that might wear out the machinery.

Fortunately—from the viewpoint of an algebraic geometer—five of these six
joint types are algebraic. The exception is the H joint, which produces a transla-
tion proportional to rotation angle θ along with a rotation that depends on cos θ

and sin θ . The mixture of θ with cos θ and sin θ makes the motion non-algebraic.
An alternative line of reasoning is to observe that a helix and a plane containing
its symmetry axis intersect in an infinite number of isolated points. Any algebraic
curve in R

3 intersects a plane in at most a finite number of isolated points. However,
helical joints are rarely used as a direct motion constraint in a manner that impacts
kinematic analysis. Instead, screws are usually used to transmit power along a pris-
matic joint. Consequently, the geometric motion of a great many mechanisms is
governed by algebraic joints.

To demonstrate that a joint type is algebraic, one may write down the constraint
conditions it imposes between the transforms for the two bodies in contact, say A
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and B . The algebraic lower-order pairs can be reduced to equating some combina-
tion of points, lines, or planes. As these are all transformed algebraically, equating
them gives an algebraic constraint. In brief, one may confirm algebraicity for each
joint by noting the following equivalences:

R: equate a point and an oriented line through it in A to similar in B ,
P: equate a line and an oriented plane containing it in A to similar in B ,
C: equate a line of A to one of B ,
E: equate a plane of A to one of B , and
S: equate a point of A to one of B .

This suffices to show that the lower-order pairs R, P, C, E, and S are all algebraic.
Each joint can be described either extrinsically in terms of the constraint it im-

poses, as above, or intrinsically in terms of the freedom it allows between the trans-
form for, say, body B relative to body A. Using 4×4 transform notation, and letting
iT j be the transform for frame j relative to frame i, one has

0T B = 0T AAT B. (5.2)

Suppose that the joint between A and B is the kth joint of a mechanism, an algebraic
lower-order pair. Then, the relative transform AT B can be written as

AT B = AkXBk, (5.3)

where Ak and Bk are constant transforms describing the location of the joint in
bodies A and B , resp., and X is variable of the form

X =

⎡

⎢
⎢
⎣

cos θ − sin θ 0 a

sin θ cos θ 0 b

0 0 1 c

0 0 0 1

⎤

⎥
⎥
⎦ . (5.4)

For each joint type, the contents of X vary as follows.

R: Use (5.4) with a = b = c = 0, leaving θ as the joint variable.
P: Use (5.4) with θ = a = b = 0, leaving c as the joint variable.
C: Use (5.4) with a = b = 0, leaving θ and c both as joint variables.
E: Use (5.4) with c = 0, leaving θ , a, and b all as joint variables.
S: Use

X =
[
C 0
0 1

]

with C ∈ SO(3) as the joint freedom.

The foregoing descriptions are meant mainly to show that the kinematic relations
of rigid-body mechanisms involving only algebraic joints are all algebraic. Other
formulations can sometimes be more succinct or convenient. When modeling the
joints with a low number of freedoms (R, P, C) it is usually more convenient to use an
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intrinsic formulation, while S joints are usually best modeled extrinsically. In some
cases, one may avoid introducing transforms for some of the links altogether. For
example, see Sect. 5.3.5.5 for a formulation of the kinematics of the Stewart-Gough
platform that avoids introducing any transforms for the links that compose the legs.

5.3.3 Mechanism Types, Families, and Spaces

Having shown that mechanisms built with rigid links and algebraic joints have kine-
matic relations that are polynomial, we move on to show that a wide variety of
kinematics problems can be placed into a common format involving mappings be-
tween algebraic sets. To do so, we need the definitions of a mechanism type and a
mechanism family.

Definition 5.1 A mechanism type is defined by the number of links, nL, and a sym-
metric nL ×nL adjacency matrix T whose (i, j)th element denotes the type of joint
between links i and j , one of R, P, H, C, E, S, or ∅, where ∅ indicates no connection.
By convention, all diagonal elements are ∅.

(Each joint appears twice in the matrix: Ti,j = Tj,i are the same joint.) We as-
sume here that the joints are limited to the lower-order pairs, but the list of pos-
sibilities could be extended. The enumeration of all possible mechanism types for
each value of nL without double-counting mechanisms that are isomorphic under
renumbering of the links is a problem in discrete mathematics. Choosing a prospec-
tive mechanism type is the first step in a mechanism design effort, and methods
for guiding the enumeration of promising alternatives fall into the category of type
synthesis. In this paper, we assume that this crucial step is already done so that we
begin with a mechanism type.

Each mechanism type has an associated parameter space. We have seen in
Sect. 5.3.2 one way to model each of the algebraic lower-order pairs, R, P, C, E,
and S, extrinsically in terms of feature points, oriented lines, and oriented planes.
Alternatively, in the intrinsic formulation of (5.3), the transforms Ak and Bk param-
eterize the joints. The cross-product space of all these geometric features forms a
universal parameter space for the mechanism type. One may choose to model the
joints in a more parsimonious way, but we assume that in the alternative model there
still exists a parameterization for each joint and an associated parameter space for
all the joints taken together. For example, for a succession of R and P joints, the
Denavit-Hartenberg (D-H) formalism gives a minimal parameterization. (See [22]
or any modern kinematics textbook for a definition.) The D-H parameters are link
lengths, link offsets, and link twist angles. Treating the twists as unit circles, the
parameter space becomes algebraic.

Definition 5.2 A universal mechanism family (T ,Q) is a mechanism type T with
an associated parameter space Q describing the geometry of the joints. We assume
that Q is irreducible.
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If one has a parameter space Q that is not irreducible, each irreducible component
should be considered to define a separate universal mechanism family.

Definition 5.3 A mechanism family (T ,Q′) is a subset of a universal mechanism
family (T ,Q) restricted to an irreducible algebraic subset Q′ ⊂ Q.

Examples of the common sorts of algebraic restrictions that define a mechanism
family include the condition that the axes of two R joints in a certain link must be
parallel, perpendicular, or intersecting, etc. As a particular example, consider that
the universal family of spatial 3R serial-link chains includes the family of 3R planar
robots, wherein the R joints are all parallel. One should appreciate that there can be
subfamilies within families, and so on.

For certain mechanisms, all points of the links move in parallel planes, hence
the links move in SE(2) and the mechanism is said to be planar. In particular, a
mechanism family wherein all joints are either rotational R with axis parallel to the
world z-direction or prismatic P with axis perpendicular to the world z-direction is
planar.

Definition 5.4 The link space Z for an n link mechanism is SE(3)n−1, where one of
the links is designated as ground (p,C) = (0, I ). Any of the isomorphic represen-
tations of SE(3) from Sect. 5.3.1 can be used as models of SE(3). If the mechanism
family is planar, then Z = SE(2)n−1 in any of its isomorphic representations from
Sect. 5.3.1.

Definition 5.5 The mechanism space M of a mechanism family (T ,Q) is the subset
of Z × Q that satisfies the joint constraints.

Proposition 5.1 If a mechanism family is built with only the algebraic joints R, P,
C, E, and S, then its mechanism space is algebraic.

Proof Section 5.3.1 shows that Z is algebraic and Q is algebraic by assumption.
That is, Z and Q are sets defined by algebraic equations. Section 5.3.2 shows that
the algebraic joints impose algebraic constraints on the coordinates of Z and Q, and
hence all the defining equations for M are algebraic. �

Definition 5.6 A mechanism is a member of a mechanism family (T ,Q) given by
a set of parameters q ∈ Q.

5.3.4 Kinematic Problems in a Nutshell

In this section, we present an abstract formulation that summarizes all the main
types of geometric problems that arise in kinematics. In the next section, we will
discuss more concretely how to map a mechanism into this formulation.
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The key to our formulation is the following diagram:

X� J
M �K

Y

Q
�

πM

������
X × Q

Ĵ
������

Y × Q

K̂	π1

π2

	π4

π3

� �
(5.5)

The main elements of the diagram are four sets X,M,Y,Q and three maps
J,K,πM . The four sets are as follows.

• X is the input space of the mechanism. In robotics, it is usually called the “joint
space.” Its coordinates are typically quantities that we command by controlling
motors or other actuators.

• Y is the output space, often called the “operational space” in robotics. Its coordi-
nates are the final output(s) we wish to obtain from the mechanism, such as the
location of a robot’s hand.

• Q is the parameter space of a family of mechanisms. It is the set of parameters
necessary to describe the geometry of the joints in each link. Each point in Q is
therefore a specific mechanism with designated link lengths, etc. The whole set Q

constitutes a family of mechanisms, such as the set of all 6R robot arms, with the
coordinates of Q representing all possible link lengths, etc. We assume that Q is
an irreducible algebraic subset of some Cm, that is, it is an irreducible component
of V (G) for some system of algebraic functions G : Cm → C

m′
. If V (G) has

more than one irreducible component, then each such component is considered a
different family of mechanisms.

• M is the mechanism space, which describes all possible configurations of the
mechanism for all possible parameters. Let Z be the space of all possible lo-
cations of the links when they are disconnected. That is, for an N -link spatial
mechanism with one link designated as ground, Z = SE(3)N−1. Then, M is the
subset of Z × Q where the link locations satisfy the constraints imposed by the
joints between them. Let F : Z × Q → C

c be a set of polynomials defining the
joint constraints. Then, M = V (F ) ∩ V (G) is an extrinsic representation of M .
Each point (z, q) ∈ M is a specific mechanism q ∈ Q in one of its assembly con-
figurations z ∈ Z. In some cases, it is more natural to describe M intrinsically
via an irreducible set, say Θ , that parameterizes the freedoms of the joints of
the mechanism, so that Z becomes Θ × SE(3)N−1. We will use this, for exam-
ple, to describe M for 6R serial-link robots. In such a representation, F includes
the equations that define Θ along with the equations relating link poses to joint
freedoms and equations for the constraints imposed by closing kinematic loops.
Formulating such equations is part of the art of kinematics, and we will not delve
into it in this paper beyond what is necessary to present specific examples.

After choosing a representation for SE(3), and if present, for the joint freedom space
Θ , the space Z is a subspace of some Euclidean space, Z ⊂ C

ν , and z ∈ Z has
coordinates z = (z1, . . . , zν).

Three maps are defined on M , as follows.
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• J : M → X is the input map, which extracts from M the input values. The symbol
J acknowledges that the inputs are usually a set of joint displacements.

• K : M → Y is the output map, which extracts from M the output values.
• πM : M → Q is a projection that extracts the parameters from M . It is the natural

projection operator on Z × Q restricted to M given by πM : (z, q) �→ q .

If the maps F,G,J,K are merely analytic (instead of algebraic) and the spaces
X,M,Y,Q are analytic, the above framework still applies, and we may pose ques-
tions in the analytic setting. In particular, H joints are analytic but not algebraic.
The advantage of restricting to the algebraic setting is the existence of a much more
powerful algebraic theory that enables the use of algebraic techniques, including
numerical algebraic geometry, to be employed in answering the questions.

The commutative diagram is completed by defining Ĵ := (J,πM) and K̂ :=
(K,πM) and the associated natural projections π1,π2,π3,π4.

It should be understood that M characterizes a family of mechanisms, such as the
family of spatial 6R serial-link robots, the family of planar four-bar linkages, or the
family of Stewart-Gough platforms. Maps J and K are tailored to an application
of the mechanism. For a four-bar function generator, J gives the input angle and
K gives the output angle, while for a four-bar path generator, K gives instead the
position of the coupler point.

Using the diagram of (5.5) succinctly summarizes the algebraic setting of almost
all kinematic problems. The problems can be broadly classified into three types of
problems:

• Analysis (mobility analysis, forward and inverse kinematics, workspace analy-
sis),

• Synthesis (precision point problems), and
• Exceptional mechanisms.

We describe each of these in more detail next.

5.3.4.1 Analysis

In analysis problems, one has a specific mechanism, say q∗ ∈ Q, and one wishes to
analyze some aspect of its motion.

Definition 5.7 The motion of a mechanism given by parameters q∗ ∈ Q in a family
with mechanism space M is π−1

M (q∗) = M ∩ V (q − q∗) ⊂ Z × Q. This can also be
called the motion fiber over q∗.

In the following, it is also convenient to define the inverses of J and K :

J−1(x) = {(z, q) ∈ M
∣
∣ J (z, q) = x

}
, K−1(y) = {(z, q) ∈ M

∣
∣ K(z, q) = y

}
.

These are defined for x ∈ X and y ∈ Y , respectively. In the set J−1(x) for a partic-
ular x ∈ X, q is not fixed, so this inverse applies across a whole mechanism family.
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When we wish to address just one particular mechanism, q∗, we want to consider
the inverse of Ĵ instead:

Ĵ−1(x, q∗)= {(z, q) ∈ M
∣
∣ Ĵ (z, q) = (x, q∗)}.

Similarly, we have:

K̂−1(y, q∗)= {(z, q) ∈ M
∣
∣ K̂(z, q) = (y, q∗)}.

The basic problems in analysis are as follows.

• Motion decomposition of a mechanism breaks π−1
M (q∗) into its irreducible com-

ponents, often called assembly modes by kinematicians. (See Sect. 5.6 for a de-
scription of irreducible components.) The numerical irreducible decomposition
of π−1

M (q∗) finds the dimension and degree of each assembly mode and provides
a set of witness points on each.

• Motion decomposition of a mechanism family breaks M into its irreducible com-
ponents. If A ⊂ M is one of these components, then πM(A) ⊂ Q is the subfamily
of mechanisms that can be assembled in that mode, dimπM(A) is the dimension
of the subfamily, and dimA − dimπM(A) is the mobility of that mode.

• Mobility analysis seeks to find the degrees of freedom (DOFs) of the mechanism,
that is, mobility is dimπ−1

M (q∗). As the dimension of an algebraic set is always
taken to be the largest dimension of any of its components, this definition of
mobility picks out the assembly mode (or modes) having the largest number of
DOFs. There are simple formulas, known as the Gruebler-Kutzbach formulas,
that correctly estimate the mobility for a wide range of mechanisms, and even
more mechanisms submit to refined analysis based on displacement group theory,
but there exist so-called “paradoxical” mechanisms that have higher mobility than
these methods predict. To handle all cases, one needs to analyze the equations
defining M in more detail taking into account that q∗ may be on a subset of Q

having exceptional mobility.
• Local mobility analysis finds the mobility of a mechanism in a given assembly

configuration. That is, given (z∗, q∗) ∈ Z × Q, one wishes to find

Local mobility := dim(z∗,q∗) π
−1
M

(
q∗). (5.6)

A mechanism can have more than one assembly mode, corresponding to the ir-
reducible components of π−1

M (q∗). The local mobility is the dimension of the
assembly mode that contains the given configuration, z∗, or if there is more than
one such mode, the largest dimension among these.

• Forward kinematics seeks to find the output that corresponds to a given input
x∗ for a mechanism q∗. That is, for x∗ ∈ X and q∗ ∈ Q, one wishes to find

FK
(
x∗, q∗) := K

(
Ĵ−1(x∗, q∗)). (5.7)

Example: given the joint angles of a particular 6R serial-link robot, find its hand
pose.
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• Inverse kinematics is similar to forward kinematics but goes from output to in-
put. For y∗ ∈ Y and q∗ ∈ Q find

IK
(
y∗, q∗) := J

(
K̂−1(y∗, q∗)). (5.8)

Example: given the hand pose of a particular 6R serial-link robot, find all sets of
joint angles that reach that pose.

• Singularity analysis finds configurations where the maps lose rank. If we have
found a motion decomposition of the mechanism, then for each assembly mode
A ⊂ π−1

M (q∗) there is an associated input space J (A) and an output space K(A).
The input and output maps have Jacobian matrices ∂J/∂z and ∂K/∂z. Assume
for the moment that A is a reduced algebraic set. (For example, V (x − y) is
a reduced line in the (x, y)-plane, while the double line V ((x − y)2) is non-
reduced.) For generic points (z, q∗) ∈ A, the Jacobian matrices have a constant
rank, say rank[∂J/∂z(z, q∗)] = rJ and rank[∂K/∂z(z, q∗)] = rK . Then, there
may be input and output singularities, as follows.

Input Singularities: {(z, q∗) ∈ A | rank ∂J
∂z

(z, q∗) < rJ }. In the common case that
∂J/∂z is square and generically full rank, these are the special configurations
where, to first order, the mechanism can move without any change in its input.

Output Singularities: {(z, q∗) ∈ A | rank ∂K
∂z

(z, q∗) < rK }. In the common case
that ∂K/∂z is square and generically full rank, these are the special configura-
tions where, to first order, the mechanism can move without any change in its
output.

If A is a non-reduced assembly mode, one might wish to consider the input and
output singularities of the reduction of A, which can be analyzed via a deflation
of A. (See Sect. 5.6.3.)

• Workspace analysis seeks to find all possible outputs of a robot or mechanism.
Ignoring limits on the inputs, this is just the set K(π−1

M (q∗)). The main concern
in practice is the set of outputs for real assembly configurations, so letting AR

denote the real points in an assembly mode A, the corresponding workspace is
K(AR). Output singularities and joint limits induce boundaries in the workspace.
Example 1: for a 6R serial-link robot, find all possible poses that the hand can
reach.
Example 2: for a given four-bar linkage with output defined as the position of its
coupler point, find the coupler curve.
Example 3: for a 6-SPS (Stewart-Gough) platform robot with limits on the leg
lengths, find all possible poses of the moving platform.

The motion of a mechanism over the complexes contains its real motion, but the
extraction of the real motion from the complex one can be difficult, all the more so
as the dimensionality of the motion grows. See Sect. 5.6.5 for a discussion.

The problems presented above mainly concern the geometry of a mechanism’s
motion, where principally angles, positions, and poses enter the picture. As indi-
cated by the questions of singularity analysis, one may also be concerned with dif-
ferential relations between these, so that joint rates, linear velocity, and angular ve-
locity may become objects of study. Since these are all related to the mechanism
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space M through its derivatives, these too fit into the algebraic setting, as do static
forces and torques, through the principles of virtual work.

5.3.4.2 Synthesis

While analysis determines how a mechanism moves, synthesis finds mechanisms
that move in a specified way. Synthesis problems begin with a set of desired out-
puts or a set of input/output pairs and seek to find the mechanisms that will pro-
duce these. Synthesis tends to be harder than analysis because one must consider
the ability of the mechanism to reach each desired state. In essence, we must
consider multiple copies of M simultaneously. The relevant construction in alge-
braic geometry is called the fiber product. Instead of studying M , one works with
M ×Q M = V (F (z1;q),F (z2;q)), which comprises two copies of the motion for
the same mechanism. Clearly, the fiber product operation can be extended to triple
fiber products and higher. Forming the k-fold fiber product

Mk
Q := M ×Q · · · ×Q M

︸ ︷︷ ︸
k times

,

if πM,k is the projection from Mk
Q that picks out its parameters, q , then π−1

M,k(q
∗) for

q∗ ∈ Q gives back k copies of the motion fiber over q∗. We may also define a map
Kk acting on Mk

Q to produce k outputs and a map JKk acting on Mk
Q to produce k

input/output pairs.
With these maps, we may define several kinds of synthesis problems. The follow-

ing problems are known as precision point problems, since there is a set of specified
points which the mechanism must interpolate exactly.

• Output synthesis seeks mechanisms that can reach a set of specified outputs. For
(y1, . . . , yk) ∈ Y k , we wish to find the set

{
q ∈ Q

∣
∣ Kk

(
π−1

M,k(q)
)= (y1, . . . , yk)

}
.

Kinematicians distinguish between different types of output synthesis.

Path synthesis finds mechanisms where the path of a point of the mechanism
interpolates a set of given points. In this case, K is defined on M such that
Y ⊂ C

3.
Body guidance In this case, the output is the pose of one body of the mechanism,

that is, Y ⊂ SE(3). The purpose of the mechanism is to guide that body through
a set of specified poses.

• Input/output synthesis seeks mechanisms that produce a coordinated in-
put/output relationship specified by a set of input/output pairs. For ((x1, y1), . . . ,

(xk, yk)) ∈ (X × Y)k , we wish to find the set
{
q ∈ Q

∣
∣ JKk

(
π−1

M,k(q)
)= ((x1, y1), . . . , (xk, yk)

)}
.
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A common case is a 1DOF mechanism, such as a four-bar, with the input being
the angle of one link with respect to ground. Then, with K defined as in a path
synthesis problem, the input/output problem becomes path synthesis with timing.
Similarly, one can have body guidance with timing. (The nomenclature derives
from an assumption that the input moves at a constant rate.) If the input and
output are both angles of the mechanism, then input/output synthesis becomes
function generation, as the precision points approximate some desired functional
relationship between input and output.

What makes these problems difficult is that the whole system of equations defining
M is repeated k times, increasing the total degree of the system exponentially in k.

For any precision point problem, there is a maximum number of precision points
that can be specified. Roughly speaking, this is the total number of independent
parameters in the mechanism family under consideration divided by the number
of constraints placed on the parameters by each precision point. If more than the
maximum number of precision points is specified, then there will in general be no
mechanism that interpolates them exactly. One may then reformulate the problem by
defining an error metric and seek mechanisms whose motion best fits the specified
approximation points. This is analogous to finding a best-fit line that approximates
three or more points.

We should note that all these synthesis problems have been formulated only at
the geometric level. It is also possible to specify motions at the level of velocity or
acceleration or to mix specifications at several levels. For a 1DOF motion, differen-
tial relations can be approximated by limits as precision points approach each other.
For this reason, classical synthesis theory sometimes distinguishes between finitely-
separated precision points and infinitesimally-separated precision points. We will
not discuss synthesis problems involving differential relations further here.

5.3.4.3 Exceptional Mechanisms

While M describes the motion of an entire family of mechanisms, π−1
M (q∗) is the

motion of a particular mechanism in the family. For any generic q ∈ Q, attributes
such as the mobility of the mechanism or the local mobilities of its assembly modes
all stay constant. However, there may be algebraic subsets of Q where mobilities
increase. These exceptional mechanisms are often called “overconstrained mecha-
nisms,” as a slight perturbation of the parameters off of the exceptional set into a
generic position suddenly brings in extra constraints that reduce mobility. One may
define subsets of M where the local mobility is constant, that is,

D∗
k = {(z, q) ∈ M

∣
∣ dim(z,q) π

−1
M (q) = k

}
. (5.9)

The closures of these, Dk = D∗
k , are algebraic sets. When Dj ⊂ Dk , j > k, we say

that Dj is an exceptional set of mechanisms, a family of overconstrained mecha-
nisms.
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The discovery of exceptional mechanisms is perhaps the most difficult kind of
kinematics problem. One may think of these as a kind of synthesis problem where
the only thing that is specified about the motion is its mobility. As in the precision-
point synthesis problems, it turns out that fiber products play a central role. We leave
further discussion of this to Sect. 5.6.6.

5.3.5 Fitting into the Nutshell

Sections 5.3.1 and 5.3.2 show that any mechanism composed of n rigid links con-
nected by any combination of R, P, C, E, or S joints leads to a set of constraint
equations that is algebraic in the link locations (pj ,Cj ) ∈ SE(3), j = 1, . . . , n and
is also algebraic in the parameters defining the joints. In Sects. 5.3.3, 5.3.4, we put
forward a schema that formulates a wide variety of kinematics problems in terms of
spaces X,M,Y,Q and maps J,K,π between them. In this section, we will detail
how some example mechanism types fit into this schema.

5.3.5.1 Planar 3R Robots

Consider first the universal family of 3R planar serial-link robots. These have nL = 4
links, one of which is ground. The adjacency matrix has R in each element of the
super- and sub-diagonals and ∅ everywhere else. Since the mechanism is planar, the
link space is Z = SE(2)3. Using the reference frames as indicated in Fig. 5.1, we
have coordinates for Z as

z1 = (Px,Py, x1, y1), z2 = (Qx,Qy, x2, y2),

z3 = (Rx,Ry, x3, y3),
(5.10)

where (Px,Py) are the coordinates of point P , etc., and xj = cosφj , yj = sinφj ,
j = 1,2,3. Here, φ1, φ2, φ3 are the absolute rotation angles of the links. Accord-
ingly, the algebraic equations defining the link space Z are

x2
j + y2

j − 1 = 0, j = 1,2,3. (5.11)

The parameters of the mechanism are just the link lengths (a, b, c), so the parameter
space Q is C3. In the plane, the constraint imposed on two links by a rotational joint
is the coincidence of the point of connection. Point O = (0,0) in the ground must
coincide with point (−a,0) in the reference frame of link 1:

(0,0) = (Px − ax1,Py − ay1). (5.12)

Similarly, the other two joints impose the constraints

(Px,Py) = (Qx − bx2,Qy − by2) and (Qx,Qy) = (Rx − cx3,Ry − cy3).

(5.13)
Accordingly, (5.11)–(5.13) define the mechanism space M .
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Fig. 5.1 Planar 3R robot
with reference frames

To complete the picture, we need the maps πM,J,K . The projection πM : M →
Q simply picks out the parameters:

π : (z1, z2, z3, a, b, c) �→ (a, b, c). (5.14)

Assuming the input space X = T
3 is the relative rotation angles (θ1, θ2, θ3) repre-

sented by cosine/sine pairs, the difference formulas for cosine and sine give

J : (z1, z2, z3, a, b, c) �→ (
(x1, y1), (x2x1 + y2y1, y2x1 − x2y1),

(x3x2 + y3y2, y3x2 − x3y2)
)
. (5.15)

Finally, assuming the output space Y = SE(2) is the location of reference frame 3,
the output map is

K : (z1, z2, z3, a, b, c) �→ (z3). (5.16)

If instead the robot is applied to just positioning point R in the plane, we have
Y = C

2 with the output map

K ′ : (z1, z2, z3, a, b, c) �→ (Rx,Ry). (5.17)

With these definitions, the problems of forward kinematics, inverse kinematics,
reachable workspace, and exceptional sets all fit neatly into the nutshell schema.

5.3.5.2 Spatial 6R Robots

The case of spatial 6R robots is quite similar to the 3R planar case, but we shall
choose to handle the joint constraints by introducing variables implicitly model-
ing the freedom of the joints rather than explicitly writing constraint equations.
A 6R serial-link chain has nL = 7 links, one of which is ground. The adjacency
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matrix has entries of R on the super- and sub-diagonals and ∅ elsewhere. Let the
link space be Z = T

6 × SE(3)6, with unit circle representations of the joint angles
and 4 × 4 homogeneous transforms for the link locations, so that Z is represented
as z = {(cj , sj ,

0T j ), j = 1, . . . ,6} with

c2
j + s2

j − 1 = 0, j = 1, . . . ,6. (5.18)

The first factor of Z is precisely the joint space X = T
6 and the output is the loca-

tion of the “hand,” the last frame in the chain, 0T 6. The link parameters are 4 × 4
transforms Aj ∈ SE(3), j = 0,1, . . . ,6. One can use general transforms, but the
Denavit-Hartenberg formalism shows that by choosing reference directions aligned
with joint axes and their common normals, it suffices to parameterize the Aj as

Aj =

⎡

⎢
⎢
⎣

1 0 0 aj

0 αj −βj −βjdj

0 βj αj αjdj

0 0 0 1

⎤

⎥
⎥
⎦ , j = 0, . . . ,6. (5.19)

In this expression, (αj ,βj ) are a cosine/sine pair for the twist of link j , aj is the
length of the link (along its x-direction), and dj is the link offset distance (along its
z-direction). To keep Aj in SE(3), these must satisfy

α2
j + β2

j − 1 = 0, j = 0, . . . ,6. (5.20)

With this parameterization, the parameter space is Q = T7 × C14 with coordinates
q = {(αj ,βj , aj , dj ), j = 0, . . . ,7}. Joint rotations Rz(cj , sj ) of the form

Rz(c, s) =

⎡

⎢
⎢
⎣

c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (5.21)

alternate with relative link displacements Aj to give the transforms of the link loca-
tions as

0T 1 = A0Rz(c1, s1)A1,
0T j = 0T j−1R(cj , sj )Aj , j = 2, . . . ,6. (5.22)

Combining these gives

0T 6 = K6R(z, q) := A0

6∏

j=1

Rz(cj , sj )Aj . (5.23)

Equations (5.18)–(5.21) define the mechanism space M in terms of coordinates
(z, q). The associated maps from M to Q, X = T

6, and Y = SE(3) are

πM : (z, q) �→ q, J : (z, q) �→ (
(cj , sj ), j = 1, . . . ,6

)
,

K = K6R : (z, q) �→ 0T 6.
(5.24)
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Fig. 5.2 Vector diagram of a
four-bar linkage

5.3.5.3 Four-Bar Linkages

The four-bar has four links with four R joints. If we call the ground link 0, the
two links connected to ground as links 1 and 2, and the coupler as link 3, then
the adjacency matrix has entries T1,3 = T2,3 = T0,1 = T0,2 = R. Using isotropic

coordinates (see Sect. 5.3.1), let (φ, φ̄) represent the orientation of the coupler link
and let (θ1, θ̄1) and (θ2, θ̄2) be the rotations of links 1 and 2, and let (p, p̄) be the
coupler point position. [Recall that in isotropic coordinates, we represent a vector,
say a = αi + βj, by a complex number a = α + βI and its conjugate ā = α −
βI.] Hence, the link space Z is given by coordinates z = (p, p̄, φ, φ̄, θ1, θ̄1, θ2, θ̄2)

subject to the unit length conditions of

φφ̄ = θ1θ̄1 = θ2, θ̄2 = 1. (5.25)

Referring to Fig. 5.2, a four-bar can be parameterized by Q = C
10 with coordi-

nates q = (a1, ā1, a2, ā2, b1, b̄1, b2, b̄2, �1, �2). With these notations, the mechanism
space for four-bar linkages is the solution set of the equations

�1θ1 = p + φb1 − a1, �1θ̄1 = p̄ + φ̄b̄1 − ā1,

�2θ2 = p + φb2 − a2, �2θ̄2 = p̄ + φ̄b̄2 − ā2,

θ1θ̄1 = 1, θ2θ̄2 = 1, φφ̄ = 1.

(5.26)

The input and output spaces and their associated maps depend on the applica-
tion of the mechanism. For path generation, we have output Y = C

2 with map
K = Kpath : (z, q) �→ (p, p̄). For body guidance, Y = SE(2) with K = Kguide :
(z, q) �→ (p, p̄, φ, φ̄). If timing along the coupler curve or timing of the body mo-
tion are of concern, we may name the angle of one of the links connected to ground
as input, say X = T

1 given by J : (z, q) �→ (θ1, θ̄1). For function generation, the in-
put is the angle of link 1 and the output is the angle of link 2, so J : (z, q) �→ (θ1, θ̄1)

and K = Kfcn : (z, q) �→ (θ2, θ̄2).
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Fig. 5.3 3-RPR planar
platform robot

The raw equation sets that come out of the above formulation often benefit from
further algebraic manipulation before submitting the system to a numerical solution
procedure. In particular, for the path synthesis problem, it can be beneficial to elim-
inate some variables. In the nine-point path synthesis problem—in general, nine is
the maximal number of precision points that can be exactly interpolated—we wish
to find parameters q such that the coupler curve Kpath(π

−1
M (q)) ⊂ C

2 passes through
points (pi, p̄i), i = 0, . . . ,8. With a little algebra, this can be reduced to solving a
system of eight polynomials

fcc(pj , p̄j ;q) = 0, j = 1, . . . ,8, (5.27)

each of degree seven. See [46, 48] for derivations, based on a similar formulation
from Roth and Freudenstein [34].

5.3.5.4 Planar 3-RPR Platforms

A 3-RPR planar platform robot has a moving triangle supported from a stationary
triangle by three RPR legs, as in Fig. 5.3. Coordinates for the mechanism space
M of the 3-RPR planar platform are an extension of those for the four-bar with
a3, ā3, θ3, θ̄3, �3 appended with the additional equations:

�3θ3 = p − a3, �3θ̄3 = p̄ − ā3, and θ3θ̄3 = 1. (5.28)

However, there is a shuffle in which coordinates are parameters and which are vari-
ables of the motion. The new maps are

π : (z, q) �→ (a1, ā1, a2, ā2, a3, ā3, b1, b̄1, b2, b̄2),

J : (z, q) �→ (�1, �2, �3),

K : (z, q) �→ (p, p̄, φ, φ̄).

(5.29)
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5.3.5.5 Stewart-Gough Platforms

For the forward and inverse kinematics problems of the 6-SPS platform, we do not
need to explicitly represent transforms for the upper and lower leg segments. It is
enough to use the leg lengths and the transform for the moving platform. Hence,
the link space is Z = C6 × SE(3), and if we use Study coordinates for SE(3), the
space is Z = C6 × S2

6 , where S2
6 ⊂ P7 is the Study quadric given by (5.1). With

leg lengths L1, . . . ,L6, the coordinates of Z are (L1, . . . ,L6), [e, g]. The parameter
space Q consists of the vectors aj ,bj ∈C

3, j = 1, . . . ,6, that specify the centers of
the S joints in the base and moving platforms. The mechanism space M is given by
the Study quadric along with the leg-length equations

L2
i = ∥∥(g ∗ e′ + e ∗ bj ∗ e′)/

(
e ∗ e′)− aj

∥
∥2

2, j = 1, . . . ,6, (5.30)

which after expanding and clearing denominators becomes for j = 1, . . . ,6

0 = g ∗ g′ + (bj ∗ b′
j + aj ∗ a′

j − L2
j

)
e ∗ e′ + (g ∗ b′

j ∗ e′ + e ∗ bj ∗ g′)

− (g ∗ e′ ∗ a′
j + aj ∗ e ∗ g′)− (e ∗ bj ∗ e′ ∗ a′

j + aj ∗ e ∗ b′
j ∗ e′). (5.31)

The input space X = C
6 is the set of leg lengths L1, . . . ,L6, and the output space

is Y = S2
6 is the Study quadric for the transform of the moving platform. The maps

J,K are the associated natural projections.

5.4 Overview: Numerical Algebraic Geometry

The fundamental problem in numerical algebraic geometry is to numerically com-
pute and manipulate the solution set of a system of polynomials

f (x) := [f1(x), . . . , fn(x)
]
, (5.32)

where x = (x1, . . . , xN) ∈ C
N . As we have seen in the preceding sections, problems

in kinematics often concern parameterized systems, that is, polynomial systems of
the form

f (x, q) := [f1(x, q), . . . , fn(x, q)
]

(5.33)

with x ∈ C
N and q ∈ Q, where Q is an irreducible algebraic set. We may have

simply Q = C
M , a Euclidean space of M independent parameters, but we may also

have a Q formed with elements from SE(3) or the unit circle. It is important to
note that in practice, an engineer might not know the exact twist angle of a link,
but when it comes to solving the associated polynomial system, it is known that the
sine/cosine pair of the angle must lie on the unit circle.

Historically, within numerical algebraic geometry, the problem of finding iso-
lated solutions for square systems, i.e., systems such as (5.32) in the case n = N ,
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came first. The most basic tool is homotopy continuation (or continuation for short),
which consists of studying a square system of polynomials f (x) by starting with a
simpler system g(x) that we know how to solve and deforming g(x) and the solu-
tions of g(x) = 0 to f (x) and the solutions of f (x) = 0. A good source for explica-
tion of this basic approach is the book [24], with more modern treatments given in
[19, 38].

The solution of non-square systems (n �= N in (5.32)) came considerably later
than methods for square systems. The techniques we employ always reformulate
such problems to reduce them once again to finding isolated solutions.

At first sight, the case of n > N (more equations than unknowns) would seem
to be numerically unstable, as a small perturbation of the system can obliterate a
solution. The is true for any solution sets of dimension greater than N − n. The fact
that saves the day is that the existence of such solutions depends on the parameters
lying exactly on a parameter space, and we assume we know the exact equations
that define that space. Consider a pair of parameters that should lie on a unit circle.
When we work numerically, the pair will rarely lie exactly on the circle, but the
exact unit circle condition is known, and by using extra digits, the pair of parameters
can be placed as close as needed to the true parameter space. Thus, to make the
computation of sets of dimension greater than N − n robust, the Bertini software
package [4] implements adaptive multiprecision arithmetic (see Sect. 5.5.5) that
adjusts the number of digits as needed. This same technology stabilizes the numerics
of isolated singular and near-singular roots of square systems.

To provide a complete ability to solve systems of polynomials, one must be able
to deal not just with isolated roots but also with higher-dimensional solution sets
(curves, surfaces, etc.). Obviously, this arises when n < N , as there are not enough
equations to determine an isolated root.1 The approach of dealing with this in nu-
merical algebraic geometry is a data structure called a witness set in which extra
linear equations are introduced in order to cut out general isolated points on the
higher dimensional sets. These points can then be computed using the techniques
for finding isolated solution points. To cut out isolated points on a set of dimen-
sion m, one must augment the original system with N −m general linear equations.
Thus, if the solution set is has dimension m > N − n, the augmented system has
n + m > N equations, which has the potential for being numerically unstable. The
procedure for stabilizing this situation depends on randomization, as described in
Sect. 5.5.11.

5.5 Finding Isolated Roots

In this section we briefly discuss the continuation method of finding isolated solu-
tions of a polynomial system (5.32). Various aspects of how this process is made

1At least not in complex space. In real space, singular isolated roots are possible with n < N . See
Sect. 5.6.5.
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robust and efficient are highlighted. From the viewpoint of a user of software pack-
ages for continuation, a few things, particularly the division of variables into groups
for multihomogenization, requires some level of expertise from the user, but most
of these measures can be automated without user input. The motivation for a user to
understand the basic solution processes is for making an informed choices of which
software to use, as discussed further in Sect. 5.7, and which algorithms to use within
a chosen software package. Although it will not be addressed here, advanced users
may also change configuration settings that can affect the speed and robustness to
adapt performance to the specific needs of their applications.

5.5.1 Homotopy

For the square case of N polynomials in N unknowns, one of the most classical
homotopies is the total-degree homotopy that uses the “γ trick” of [26]:

H(x, t) := (1 − t)

⎡

⎢
⎣

f1(x)
...

fN(x)

⎤

⎥
⎦+ γ t

⎡

⎢
⎣

g1(x)
...

gN(x)

⎤

⎥
⎦ , (5.34)

where each polynomial gj has degree the same as fj and the solution set of the
system (g1(x), . . . , gN(x)) = 0 consists of d1 · · ·dN nonsingular isolated solutions.
When γ is chosen as a random complex number, then with probability one, the
homotopy satisfies the properties:

1. {(x, t)|t ∈ (0,1];x ∈ C
N ;H(x, t) = 0} is a union of d1 · · ·dN full-rank paths,

say x1(t), . . . , xd1···dN
(t), starting at the solutions of H(x,1) = 0; and

2. the set of limits limt→0 xj (t) that are finite include all the isolated solutions of
H(x,0) = 0.

This theory justifies the use of the very simple start system defined by gj (x) =
x

dj

j − 1, j = 1, . . . ,N .

5.5.2 Multihomogeneous Homotopies

Constructing good homotopies with the number of paths not too different from the
number of isolated solutions of f was an important research topic at the end of
the 20th century. There is detailed discussion of this topic in [38, Chap. 8]. For
systems that are not too large, which includes many mechanism systems, multiho-
mogeneous formulations can be quite useful. Multihomogeneous homotopies were
first proposed in [25] and discussed in [38, §8.4].

For a hint of what difference the selection of homotopy can make, consider
the 3-RPR forward kinematics problem of Sect. 5.3.5.4, which is to solve the 10
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equations (5.26, 5.28) for the 10 unknowns (θ1, θ2, θ2, φ,p, θ̄1, θ̄2, θ̄2, φ̄, p̄). Six of
the equations are linear but the four unit-length equations are degree 2, for a to-
tal degree of 16. Yet, as a 2-homogeneous system, with variables divided into two
groups as (θ1, θ2, θ2, φ,p), (θ̄1, θ̄2, θ̄2, φ̄, p̄), the system has at most

(4
2

)= 6 isolated
roots, which is in fact the exact root count for general cases. In the Bertini software
package, the move from a total degree homotopy to a 2-homogeneous one is done
by simply using two separate variable_group statements to declare the vari-
ables.

A more impressive example is the nine-point path synthesis problem mentioned
in Sect. 5.3.5.3. In the Roth-Freudenstein formulation of (5.27), the total degree of
the system is 78 = 5,764,801. An alternative in [46] uses a 2-homogeneous for-
mulation of the problem that has a root count of just 286,720. A special homotopy
that takes advantage of a 2-way symmetry reduces the number of paths to 143,360,
which is about one-fortieth (1/40) that of the total degree homotopy. This formula-
tion lead to the first complete solution of this classical problem in kinematics.

5.5.3 Sparse Homotopies

A polynomial of degree d in N variables can have
(
N+d

N

)
different monomials but

problems arising in applications typically have many fewer than this. Multihomo-
geneous homotopies take advantage of sparseness associated to limited mixing of
products between variables within groups. This is a common occurrence in kinemat-
ics, but it does not capture all the kinds of sparseness that may arise. In particular,
in a multihomogeneous formulation, variable groupings stay fixed across the whole
system of polynomials.

Linear product homotopies capture sparseness at a finer scale, including, for ex-
ample, groupings of variables that change from one polynomial to the next. The
main alternatives are laid out in [38, Chap. 8], based on theory developed in [43]
and generalized in [29]. Versions of this are available in POLSYS_PLP [50] and
POLSYS_GLP [40].

Polyhedral homotopies take full advantage of any sparse structure in a polyno-
mial system. While the multihomogeneous and linear product homotopies require
the user to identify good groupings of the variables—no efficient method is known
for finding the best groupings—the polyhedral method completely automates the
creation of a homotopy with the minimal number of paths for systems with the
sparse structure of the target system. The leading approach for polyhedral homo-
topies is described in [20] and is implemented in HOM4PS2 [16].

Unfortunately, the formation of a polyhedral homotopy depends on an intri-
cate combinatorial calculation, called the mixed volume, whose complexity grows
rapidly with the number of variables and which is not easily parallelizable. So while
it is an excellent approach for small to medium size problems, it becomes untenable
for large ones.
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5.5.4 Regeneration Homotopy

For larger systems, the regeneration approach scales up more readily than the poly-
hedral approach [13, 14]. Moreover, it can take advantage of structure in the sys-
tem beyond just sparsity. In particular, the coefficients that appear in a polynomial
system may satisfy interrelationships that reduce the root count. In the kinematics
context, this might arise as parameters that satisfy a unit circle condition or that
lie in SE(3). Regeneration does not build this structure into the homotopy from the
beginning, as is done in the sparse homotopies, but rather it discovers structure by
treating the system equation-by-equation. Regeneration methods are available in the
Bertini software package.

5.5.5 Adaptive Multiprecision

Higher-precision arithmetic (i.e., greater than double precision) makes the basic pro-
cess of path tracking more bulletproof, while adaptive multiprecision, in which pre-
cision is adjusted up or down as needed, accomplishes this goal with greater effi-
ciency. Consider the nine-point path-synthesis problem for four-bars just mentioned
above. Of the 143,360 paths in the homotopy used in [46], all but 4326 end on
various degenerate sets. The 4326 roots of interest appear in a three-way symme-
try, as expected from the classical result known as Roberts cognates [10, 33]. The
original computations in 1992 on this problem were conducted in double precision
followed by a check for any points missing from the expected symmetry groups.
Reruns in extended precision cleaned up any paths having questionable numerical
stability, filling in the missing points and thereby establishing with high confidence
that the solution list was complete. More recent experiments with a path-tracker
having adaptive multiprecision found that in order to be tracked accurately, 0.83 %
of the paths required precision higher than double precision somewhere in the mid-
dle of the paths before returning to double precision (see [7, §5.3]). This approach
consistently finds the entire solution set without requiring any reruns or other cor-
rective actions. Although in the early 1990s, this was an extraordinarily difficult
computation, we now use this problem as a moderately difficult test system.

5.5.6 Parallelism

One of the highly advantageous features of polynomial continuation is that all the
paths of a homotopy can be tracked independently. For many algorithms in the field,
this makes the bulk of the computation “embarrassingly parallel.” The Bertini soft-
ware package offers a parallel version for the Linux operating system [4]. Unfortu-
nately, it is much harder to efficiently parallelize the steps that set up a polyhedral
homotopy, so that, as of this writing, the leading polyhedral package, Hom4PS2
[16], is only available for single-processor systems.
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5.5.7 Solutions at Infinity

One difficulty in path tracking is paths that go to infinity as t → 0. Tracking such
a path may be computationally expensive as it is infinitely long and numerical con-
ditioning may be poor as the magnitudes of the solution variables grow. Morgan’s
projective transformation trick [23] is to work on a random coordinate patch in the
projective space containing C

N . This maneuver keeps the magnitude of the variables
and the path lengths finite. It is common for polynomial continuation packages, such
as Bertini, to perform homogenization automatically.

5.5.8 Multiplicities and Deflation

It is widely appreciated that for a polynomial in one variable, the multiplicity of
a solution is governed by the number of derivatives that vanish there. In several
variables, multiplicity still makes sense, but directional derivatives and algebraic
relations between them come into play, so the situation is more complicated.

For the moment, consider only isolated solutions of a polynomial system. (We
take up multiplicity as it applies to higher-dimensional sets in Sect. 5.6.3.) When the
multiplicity μ of solution z∗ is greater than one, z∗ is said to be a singular solution.
Such solutions are difficult to work with numerically. A primary problem is that the
vanishing derivatives ruin the convergence properties of Newton’s method near the
singular point. For this reason, tracking paths to z∗ from a good homotopy for z∗ is
computationally expensive and often impossible in double precision. To deal with
these points effectively, we use endgames (see Sect. 5.5.9) and adaptive precision
(see Sect. 5.5.5).

Deflation is another approach for dealing with singular points [11, 13, 17, 18,
30, 31]. Since singularities are caused by the vanishing of derivatives, deflation is a
process for re-establishing regularity by including equations that are only satisfied
by solutions with derivatives that vanish to the correct order at the singular point.
The main difficulty with this procedure lies in determining the rank of certain ma-
trices formed from derivatives of the equations. This leads to a vicious circle, since
computing the singular solution accurately is the initial objective, and one needs an
accurate value for the solution to determine the ranks. The upshot is that for iso-
lated solution points the cost of computing a deflation system often dwarfs the cost
of computing the point accurately using the endgame methods in the next subsec-
tion. Yet, deflation can be of great service when working with higher dimensional
solution sets of multiplicity greater than one. (See Sect. 5.6.3.)

5.5.9 Endgames

Let H(x, t) = 0 be a homotopy, and let z(t) with t ∈ (0, t] be one of its solution
paths. Endgames refer to the process of computing x∗ := limt→0 z(t). We may as-
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sume by using Morgan’s projective transformation trick, Sect. 5.5.7, that x∗ is finite,
i.e., x∗ ∈ C

N . However, when x∗ is singular, more than one path may be converging
to the same spot, and all those paths become more and more difficult to track as t

approaches zero.
There are several ways to circumvent this problem, but all depend on the fact

that instead of just tracking t along the real line, we can consider what happens
as t moves into the complex plane near the origin. One of the most effective ways
of computing x∗ is to track t in a small circle around the origin and to compute a
Cauchy integral [28], parallelized in [2].

5.5.10 Parameter Homotopy

The schema for kinematics problems in Sect. 5.3.4 shows that they naturally arise as
systems of parameterized polynomials. This fact can be used to reduce the compu-
tational cost of solving more than one problem from the same parameterized fam-
ily [27]. The power of this concept when applied to finding isolated roots derives
from the fact that once one has solved a single general example from a parameter-
ized family, one has a bound on the number of isolated roots of any other member
of the family. Moreover, one can find all isolated roots of any subsequent examples
in a parameter homotopy that tracks solutions from the first example as the parame-
ters are moved along a general, continuous, path in parameter space, starting at the
parameters of the first example and ending at those of the new target system.

As a first example, consider the forward kinematics problem for general Stewart-
Gough (6-SPS) platforms, given by (5.1, 5.31). These are 7 equations in [e, g] ∈ P

7,
all quadratic. One can solve a general member of this family using a total-degree
homotopy having 27 = 128 paths and find the problem has just 40 solutions. One
can solve any other example in the family with a coefficient-parameter homotopy
that has just 40 paths. Moreover, there are several different subfamilies of inter-
est wherein some of the S joints coincide. One of these is the octahedral family
where the base and moving links are both triangles, with two legs terminating at
each vertex. For this family, the problem has only 16 roots, appearing in a two-way
symmetry. (Reflection of the mechanism through the plane of the base does not alter
the geometry.) Since a coefficient-parameter homotopy respects this symmetry, only
eight paths need to be tracked. As discussed in [38, §7.7], after solving one general
member of any Stewart-Gough subfamily, the remaining ones can be solved with an
optimal number of paths by coefficient-parameter homotopy. Although these prob-
lems are all simple enough that a elimination approach can be devised—and this has
been done for most cases—each special case requires a new derivation. In contrast,
homotopy methods cover all the cases seamlessly.

A more extreme illustration of the power of the coefficient-parameter homotopy
technique is provided by the nine-point path-synthesis problem for four-bars. As we
mentioned earlier, the best multihomogeneous formulation found for the problem
has 143,360 paths of which only 4326 have finite endpoints. So after a one-time
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execution of that homotopy for a general example, all subsequent examples can be
solved with a coefficient-parameter homotopy having only 4326 paths. But the story
gets even better, because the 4326 solutions appear in a three-way symmetry called
Robert’s cognates [33]. The coefficient-parameter homotopy respects this symme-
try, so only one path in each symmetry group needs to be tracked, resulting in a
homotopy with only 1442 paths. This is nearly a 100-fold decrease in the number of
paths compared to the original multihomogeneous homotopy (which was already a
40-fold decrease from the total degree homotopy).

5.5.11 Randomization

Situations may arise where the number of equations, n, is greater than the number
of variables, N . A case in point is the 6R inverse kinematics problem, which is to
(5.23) for (ci, si), i = 1, . . . ,6 subject to the unit circle conditions, c2

i + s2
i = 1,

i = 1, . . . ,6. Since the transform equation (5.23) is equivalent to 12 polynomials
(the bottom row of the 4 × 4 matrices is trivial), we have altogether 18 equations
in only 12 variables. Even so, we expect solutions, because each transform lives on
SE(3), so the equations are compatible. We have seen that polynomial continuation
is capable of finding all isolated solutions in the square case (n = N ), but n > N

requires extra measures.
Sometimes, one can pick out a subset of equations and be sure of getting all iso-

lated roots, the remaining equations being redundant. But this takes extra knowledge
about the structure of the system, because there exist systems where solving a subset
does not work. An example is the system

xy = 0, x(x − y − 1) = 0, y(x − y − 1) = 0, (5.35)

which has 3 isolated roots, (0,0), (1,0), and (0,1), whereas each subsystem formed
by any two of the three equations has only one isolated root.

A method which does work in general is to take N random linear combinations
of the equations. With probability one, this preserves all isolated roots of the orig-
inal system, although it may introduce additional extraneous roots. In the case of
(5.35), the randomized system has four isolated roots: the original three and an ex-
traneous one that depends on the random coefficients chosen in forming the linear
combinations. We call this process randomization.

An important property of randomization is that it numerically stabilizes solu-
tions. Numerical evaluation of a polynomial inevitably introduces small perturba-
tions: the evaluation is not exact. In a strict sense, the numerically evaluated system,
consisting of n > N randomly perturbed equations, will have no solutions. But a
perturbed randomized system, being square, still has exact solutions, and these will
be close to the solutions to the original exact system.

A similar trick works for higher dimensional sets. The case of isolated solutions
for n > N is the m = 0 special case of a solution set of dimension m with m >
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N − n. With probability one, a system of N − m random linear combinations of the
original n equations preserves all solution sets of dimension m, but may introduce
extraneous sets at that dimension as well. This leads us into the next topic: positive-
dimensional solution sets.

5.6 Computing Positive-Dimensional Sets

We already mentioned in Sect. 5.4 that in numerical algebraic geometry, positive-
dimensional sets (curves, surfaces, etc.) are represented by witness sets. An irre-
ducible algebraic set is an algebraic set that cannot be expressed as a union of a
finite number of proper algebraic subsets. One of the main goals in numerical alge-
braic geometry is to compute, for a given polynomial system F , all the irreducible
components of V (F ). This is called the numerical irreducible decomposition, and
it consists of one witness set for each irreducible component of V (F ). In kinemat-
ics, when F(z, q) = 0 is the polynomial system for a mechanism family, as in the
schema presented in Sect. 5.3.4, then for a particular mechanism, say q∗ ∈ Q, the
irreducible components of V (F (z, q∗)) are the assembly modes of the mechanism.
Although it may seem nonintuitive, the assembly modes might not all have the same
dimension: the same mechanism can sometimes have a different number of DOFs
depending on which mode it is assembled in. It is even possible for such assembly
modes to meet, meaning that a mechanism could change its number of DOFs at
certain special configurations. Such mechanisms have been called “kinematotropic”
mechanisms [51].

A witness set, A , for an m-dimensional irreducible algebraic set A ⊂ C
N is a

data structure having three members:

• a polynomial system F such that A is an irreducible component of V (F ),
• a generic linear space L ⊂ C

N of dimension N − m (equivalently, m random
linear equations), and

• the set of isolated points W = L ∩ A.

We usually write this as the triple A = {F,L,W }, and by context, L may mean
either the set of linear equations or the linear space they define. In the numerical
irreducible decomposition of V (F ), F itself plays the role of the first member, the
random linear equations are constructed by use of a random number generator, and
the witness points W are found by polynomial continuation. When m = N − n,
the system formed by appending m linear equations to the original n equations of
F produces a square system, so W can be found using a conventional homotopy.
When m > N − n, randomization is used, as described in Sect. 5.5.11, to produce a
system of only N −m equations so that once again we obtain a square system when
the linear equations are appended.

A complete description of the procedures for computing a numerical irreducible
decomposition are beyond the scope of this chapter. In short, one proceeds by test-
ing every possible dimension m and factoring the witness points at each dimension
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Fig. 5.4 Griffis-Duffy
platform of Type I

according to the irreducible components. In numerical work, the use of intersections
with a linear spaces to find higher dimensional sets was first proposed in [37], where
the term numerical algebraic geometry was coined. See [38] for a full exposition or
[48] for a briefer summary of the various techniques used to make computation of
the numerical irreducible decomposition practical. The current preferred approach
for descending through the dimensions is the regenerative cascade [14], which is the
default method in the Bertini software package.

One interesting example of the application of the numerical irreducible decom-
position is a special case of the Stewart-Gough platform called the Griffis-Duffy
Type I architecturally-singular platform. These have base and moving platforms that
are equilateral triangles, with legs connecting vertices of the base to midpoints of
the moving platform and vice versa in a cyclic pattern [15, 36]. No matter what the
leg lengths are, a general case of this type of platform has a motion curve in Study
coordinates of degree 28. This is illustrated in Fig. 5.4, where the path of a small
sphere attached to the moving plate is shown. This path has degree 40 in R

3. For a
special case of this in which the two triangles are congruent and the leg lengths are
equal, this curve factors into five pieces: four sextics and one quartic. The numerical
irreducible decomposition is able to find all of these [36].

5.6.1 Membership Tests

If one has a witness set A = {F,L,W }, as above, for m-dimensional irreducible
component A ⊂ V (F ) and a point z∗ ∈ V (F ), it can sometimes be of interest to
know if z∗ is in A. The main membership tests used in practice are variants of the
monodromy membership test (see [38, Chap. 15.4] for details). In short, we form a
linear system L′(z) = B(z − z∗) = 0 (so z∗ is a solution) with B a random matrix in
C

m×N and set up a homotopy

H(z, t) = {F(z), tL(z) + (1 − t)L′(z)
}= 0 (5.36)
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where L is the system of linear equations from A . Then, z∗ ∈ A if and only if one
of the homotopy paths starting from the points in W for t = 1 lands on z∗ as t → 0.
The Bertini package provides this test.

5.6.2 Component Sampling

It can also be of interest to generate additional points on an irreducible component,
that is, to sample the component. To do so randomly, one merely follows the same
homotopy as in (5.36), except that L′ is chosen completely at random. This func-
tionality is also provided by Bertini.

5.6.3 Deflation Revisited

Just as isolated solution points may appear with multiplicity greater than one (dou-
ble points, triple points, etc.), positive-dimensional irreducible solution components
also may appear with higher multiplicity. Such solution components are said to be
nonreduced. The generic multiplicity of an irreducible component is the same as
the multiplicity of the witness points W considered as isolated solutions of the aug-
mented system {F,L} = 0. The methods for deflating isolated solutions mentioned
in Sect. 5.5.8 can be applied to the augmented system at the witness points, and the
conditions placed on derivatives can be carried forward as L is deformed. Deflation
is necessary to efficiently carry out monodromy membership or component sam-
pling on a nonreduced irreducible component, as otherwise the homotopy paths of
(5.36) would be singular at every step along t .

5.6.4 Local Dimension

Given a solution x∗ of a polynomial system f (x) = 0, it can be of interest to deter-
mine the local dimension at x∗ of the solution set V (f ). This means the dimension
of the irreducible component of V (f ) that contains x∗, or if there is more than
one such component, the largest dimension among them. This has a technical use
in computing the numerical irreducible decomposition, where points must be sorted
by dimension. The method in [3] handles this task.

The determination of local dimension also has direct applicability to kinematics
in finding the local mobility of a mechanism in some given pose, as defined in (5.6).
The rank of the Jacobian matrix tells a kinematician how many infinitesimal DOFs
exist, but does not indicate how many of these extend to finite motion DOFs. To
settle the issue often requires the computation of higher order derivatives. In general,
without computing an irreducible decomposition for the whole solution set, one



5 Applying Numerical Algebraic Geometry to Kinematics 155

does not have enough information to limit the number of derivatives that must be
checked, but pre-specifying the order of the derivatives keeps computation finite and
yields the depth-bounded local dimension [44]. For large enough depth, this is the
correct local dimension, but even if one stops short of the theoretically sufficient
depth, one may obtain a practically sufficient result, as the difference between an
infinitesimal DOF associated to a very high multiplicity and a true finite DOF can
become academic. A high multiplicity isolated root in the rigid-body model may in
fact exhibit substantial motion when small elastic deformations of the links, which
are always present in a physical device, enter the picture. See [44] for the method
and some kinematic examples.

5.6.5 Real Sets

Throughout this article we have dealt almost exclusively with complex solutions,
even though isolated and positive dimensional real solutions are the main interest
for most applications.

For isolated solutions, we may simply pick the isolated real solutions out of the
isolated complex solutions. For positive dimensional sets, extra work is required,
and the complexity of extracting a complete description of the real set, every start
and stop and every self-crossing, can be high. One illustration of the difficulty is
that in singular situations, the real and complex dimensions can differ. For example,
consider the equation x2 +y2 = 0, which when considered in complex space defines
a pair of lines (namely, x = ±Iy), but which only has an isolated real solution at the
origin, where the lines cross in a singularity.

One-dimensional sets (curves) are relatively straightforward [21]. The key notion
is to consider a family of parallel hyperplanes sweeping across RN . Each hyperplane
that kisses the curve in a tangency marks a turning point in the real curve, and in
between, the planes cut the curve transversely. Thus, every arc of the real curve
is found by first solving for the tangency condition and then slicing the curve in
between the turning points. Isolated real points, if they exist, are found as real tan-
gencies that have no incoming real arcs. Recently, an algorithm has been developed
along similar lines for solving the more difficult problem of finding the real points
in a complex surface [9].

In Sect. 5.6, we illustrated the Griffis-Duffy Type I platform robot, a special
case of the Stewart-Gough (6-SPS) platform, and mentioned that the motion for the
Griffis-Duffy Type II subcase factors into five pieces: four sextics and one quartic.
In [21], an even more special example of a Griffis-Duffy Type II robot is considered,
one whose leg lengths are all equal to the altitude of the base and moving triangles
(which are congruent equilateral triangles). This robot is unusual in that it can fold
up into the plane with both triangles coinciding. Its motion is a curve that factors
even more finely than general Type II cases into three double lines, three quadrics,
and four quartics. (The sum of the degrees 3 · 2 + 3 · 2 + 4 · 4 = 28 is the same
as the degree of the irreducible curve in the Type I case.) Numerical irreducible
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Fig. 5.5 Selected poses of
the foldable Stewart-Gough
platform. From [21] by
permission, © AMS

decomposition finds this factorization, and the technique sketched above extracts
the real curves inside these complex factors. Poses on two of these motion curves
are shown in Fig. 5.5.

5.6.6 Exceptional Sets

Many problems may be rephrased as a problem of finding the set of parameters
where some exceptional behavior occurs. An interesting case in kinematics is find-
ing overconstrained mechanisms, i.e., mechanisms of a given family that have more
degrees of freedom than most of the other mechanisms in the family.

A smattering of planar and spatial overconstrained mechanisms are known, in-
cluding, for example, the Bennett [8] spatial four-bar and the Griffis-Duffy Type
I and II 6-SPS mechanisms mentioned above. However, to date, investigations of
overconstrained mechanisms have employed specialized arguments for the specific
mechanism family under consideration. The fiber product approach to finding ex-
ceptional sets described in [39] has the potential to provide a general approach ap-
plicable to many mechanism families. Implementation of that approach in a form
that can handle mechanisms of an interesting level of complexity is still a research
topic.

5.7 Software

There are several software packages that compute isolated solutions of polyno-
mial systems, Bertini [4], HOM4PS-2.0 [16], Hompack90 [49] and its extensions
[40, 50], and PHCpack [42]. Hompack90 has general parallel tracking facilities.
HOM4PS-2.0 has the best implementation of polyhedral methods, but is not a par-
allel code. Only Bertini and PHCpack implement algorithms of numerical algebraic
geometry for positive-dimensional solution sets.

PHCpack and Bertini both allow the user to define their own homotopy and pre-
scribed start points, but HOM4PS-2.0 currently does not.
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HOM4PS-2.0 uses only double precision arithmetic to perform computations.
To varying degrees, both PHCpack and Bertini have the capability of using higher
precision arithmetic. PHCpack does not currently have the capability of adapting
the precision based on the local conditioning of the homotopy path. This means that
more human interaction is needed to verify that the precision is set appropriately to
accurately and reliably perform the requested computations.

The more advanced algorithms of numerical algebraic geometry (including the
powerful equation-by-equation methods for finding isolated solutions) place strong
requirements on the underlying numerical software [5]. For example, without secure
path-tracking and adaptive precision, computing the numerical irreducible decom-
position for systems that involve more than a few variables is not possible.

Only Bertini gives the numerical irreducible decomposition directly. Exceptional
features of Bertini include:

• secure path-tracking;
• adaptive multiprecision [6, 7];
• utilities for working with polynomial systems given as straight-line programs;
• the numerical irreducible decomposition [35, 38];
• equation-by-equation methods such as regeneration [13, 14];
• local dimension testing [3] (see Sect. 5.6.4); and
• various endgames (see Sect. 5.5.9) including the Cauchy endgame [28], and a

parallel endgame based on it [2].

5.8 Conclusions

This chapter shows how problems in kinematics can be formulated as algebraic sys-
tems, thereby introducing the concept of a mechanism space and its associated input
and output maps. This provides a framework for understanding the definitions of a
variety of kinematics problems, including analysis problems, such as the forward
and inverse kinematics problems for robots, and synthesis problems that seek to
design mechanisms that produce a desired motion.

Since algebraic kinematics is a subset of algebraic geometry, the computational
tools for systems of polynomials can be applied. In particular, numerical algebraic
geometry, based on polynomial continuation, has matured into a set of tools for find-
ing and manipulating solution sets of any dimension. Since the bulk of computation
is spent tracking a large number of independent homotopy paths, the methods nat-
urally scale to large parallel computing environments, well suited for the needs of
21st-century kinematicians.
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Chapter 6
The Kinematics of 3-D Cable-Towing Systems

Qimi Jiang and Vijay Kumar

6.1 Introduction

Helicopters are used to transport payloads suspended via cables to hard-to-access
environments in emergency response, construction, mining and military operations
[1, 6, 20]. The dynamics and stability of aerial towed-cable-body systems are dis-
cussed in [20] and the trajectory control for a payload suspended from a cable from
a helicopter is analyzed in [14]. In this chapter, we are interested in the mechanics
of payloads suspended by multiple cables in three dimensions. The case with six
cables with stationary anchors is addressed in the literature on cable-actuated plat-
forms [5, 19]. Indeed the kinematic analysis has much in common with the analysis
of cable-actuated parallel manipulators in three dimensions [2, 4, 5]. However, the
key difference is that the payload pose in our case is determined by the robots’
positions and the payload pose in parallel mechanisms is realized by changing the
lengths of multiple cables.

When the number of cables is reduced from six to five, the conditions for equi-
librium become more interesting. If the line vectors are linearly independent and the
cables are taut, the line vectors and the gravity wrench axis must belong to the same
linear complex [7]. The payload is free to instantaneously twist about the reciprocal
screw axis. With four cables, under similar assumptions on linear independence and
positive tension, the line vectors and the gravity wrench must belong to the same
linear congruence. The unconstrained freedoms correspond (instantaneously) to a
set of twists whose axes lie on a cylindroid. In the three-cable case, all three cables
and the gravity wrench axis must lie on the same regulus—the generators of a hyper-
boloid which is a ruled surface [16]. Of course, in all of these cases there are special
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Fig. 6.1 3-D towing of a
triangular payload with three
aerial robots [13]

configurations in which the screw systems assume special forms [7]. The arguments
for the single cable and the two cable cases are similar, but in these cases, the cables
and the center of mass must lie on the same vertical plane for equilibrium.

In this chapter, we address the manipulation and transportation of a payload sus-
pended from aerial robots via cables. In previous work [3, 13]1 (also see Fig. 6.1)
we formulated the dynamics, control and planning problems for such systems. In
this chapter, we present an overview of the kinematics of 3-D aerial manipulation.
We are interested in (a) the inverse kinematics problem, the problem of determining
the positions of the aerial robots to which the cables are attached given the de-
sired position and orientation of the payload suspended by cables; and (b) the direct
kinematics problem, the problem of determining the position and orientation of the
suspended payload for a given position of the aerial robots.

In Sect. 6.2, we formulate the conditions for static equilibrium and the geometric
constraints that are at the heart of this analysis. In Sect. 6.3, we address the direct
kinematics problem where we will limit ourselves to the case with vertical planes of
symmetry. We show how to solve the inverse kinematics using dialytic elimination
in Sect. 6.4. In Sect. 6.5 we discuss constraints on solutions imposed by limitations
on cable tensions. Finally, we conclude the chapter with a few remarks about open
problems in Sect. 6.7.

6.2 The Conditions of Equilibrium and Constraint

In Fig. 6.2 we show the general case of a payload suspended by cables from n

aerial robots. Suppose that the position of robot Qi in the inertial frame is qi =
[xqi, yqi, zqi]T . The positions of the attachment point Pi in the inertial and body-

1Taken from [3], reprinted with kind permission © Sage 2012.
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Fig. 6.2 A payload
suspended in three
dimensions by multiple aerial
robots

fixed frames are pi = [xpi, ypi, zpi]T and p̃i = [x̃pi , ỹpi, z̃pi]T respectively. The
positions of the center of mass of the payload in the inertial and body-fixed frames
are r = [x, y, z]T and r̃ = [x̃, ỹ, z̃]T respectively. If the length of cable i is given by
li , the unit wrench of cable i with respect to the origin O of the inertial frame can
be given as

wi = 1

li

[
qi − pi

pi × qi

]

. (6.1)

The wrench caused by the weight of the payload with respect to the origin O is

G = −mg

[
e3

r × e3

]

, (6.2)

where mg is the weight of the payload and e3 is the unit vector [0,0,1]T . If the
tension of cable i is given by Ti , the static equilibrium condition of the payload can
be given as

[w1 w2 . . . wn]
⎡

⎢
⎣

T1
T2
...Tn

⎤

⎥
⎦+ G = 0. (6.3)

Also, the cable lengths should satisfy the following geometric constraints:

‖qi − pi‖ = li (i = 1,2, . . . , n). (6.4)

6.3 Direct Kinematics

This section addresses the direct kinematics problem which can be described as
follows [10, 11]: Given the positions of the aerial robots, find the possible positions
and orientations of the payload, that satisfy (6.3) and (6.4).
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Fig. 6.3 Four-bar linkage
(payload suspended from two
robots)

The general case with three robots was formulated in [11]. The resulting set
of equations is quite unwieldy and does not lend itself to a closed form solution.
For simplicity, we address the direct kinematics problem for the symmetric case
here. The payload is a regular polygon suspended from n identical cables and we
consider the case where the n robots form a regular polygon on a horizontal plane.
The motion of such a 3-D cable system has several vertical planes of symmetry.
In each plane the motion can be described in terms of the motion of an equivalent
planar 4-bar linkage. Hence, an analytic algorithm based on resultant elimination
can be used to determine all possible equilibrium configurations of the planar 4-bar
linkage, which then offers a basis for solving the direct kinematics problem of the
3-D cable system with symmetric geometry.

We start with the planar abstraction which takes the form of a four bar linkage in
Fig. 6.3, in which we assume Q1 and Q2, the two robots, are on the same horizontal
plane. The lengths of the four bars are |Q1Q2| = l0, |P1Q1| = l1, |P2Q2| = l2, and
|P1P2| = ld respectively. The center of mass of the payload, the coupler P1P2, is C

and |P1C| = lc. Also, the masses of the cables (the input and output bars) can be
neglected. If Q1 is chosen as the origin O and Q1Q2 as the x axis of the frame, the
coordinates of P1 and P2 can be respectively given as

p1 = q1 + l1[cosα1, sinα1]T = q1 + l1[x1, z1]T ,

p2 = q2 + l2[cosα2, sinα2]T = q2 + l2[x2, z2]T ,
(6.5)

where

x2
1 + z2

1 = 1,

x2
2 + z2

2 = 1.
(6.6)

Referring to (6.3), the equilibrium condition for the planar 4-bar linkage can be
given as

x1T1 + x2T2 = 0,

z1T1 + z2T2 + mg = 0, (6.7)

l0ldz2T2 + mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

] = 0.

From the third equation of (6.7), one gets

T2 = −mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

]
/(l0ldz2). (6.8)
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Substituting T2 into the first equation of (6.7), one gets

T1 = −mg
[
l1(ld − lc)x1 + l2lcx2 + l0lc

]
x2/(l0ldx1z2). (6.9)

Then, substituting T1 and T2 into the second equation of (6.7), one gets

[
l1(lc − ld )x1x2 − l2lcx

2
2 − l0lcx2

]
z1

− [l1(lc − ld )x2
1 − l2lcx1x2 + l0(ld − lc)x1)z2 = 0. (6.10)

Also, the coordinates of P1 and P2 should satisfy the geometric constraint |P1P2| =
ld , hence

l1l2z1z2 + l1l2x1x2 + l0(l1x1 − l2x2) + g0 = 0, (6.11)

where

g0 = [l2
d − l2

0 − l2
1

(
x2

1 + z2
1

)− l2
2

(
x2

2 + z2
2

)]
/2. (6.12)

From the trigonometric identities given by (6.6), it is clear that g is a constant.
Now, we have four equations consisting of (6.6), (6.10) and (6.11) in four unknowns
(x1, z1, x2, z2). In order to solve this nonlinear system, elimination algorithms are
used. From (6.11), one gets

z2 = −[l1l2x1x2 + l0(l1x1 − l2x2) + g
]
/(l1l2z1). (6.13)

Substituting (6.13) into (6.10) and the second equation of (6.6), one gets

[
l2
1 l2(lc − ld )x1x2 − l1l

2
2 lcx

2
2 − l1l2lcl0x2

]
z2

1 + [l2
1 l2(lc − ld )x2 + l2

1(lc − ld )l0
]
x3

1

+ [l0l1l2(2ld − 3lc)x2 − l1l
2
2 lcx

2
2

]
x2

1 + l1
[
(ld − lc)l

2
0 + (lc − ld )g

]
x2

1

+ l2
2 lcl0x1x

2
2 + l2

[
(lc − ld )l2

0 − lcg
]
x1x2 + (ld − lc)l0gx1 = 0, (6.14)

(
l2
1 l2

2x2
2 + 2l2

1 l2l0x2 + l2
1 l2

0

)
x2

1 − 2l1l
2
2 l0x1x

2
2 + 2l1l2

(
g − l2

0

)
x1x2 + 2l1l0gx1

+ (l2
1 l2

2x2
2 − l2

1 l2
2

)
z2

1 + l2
2 l2

0x2
2 − 2l2l0bx2 + g2 = 0.

It can be seen that there is only one quadratic term in z1 in every equation of (6.14).
Referring to the first equation of (6.6), z2

1 can be substituted by (1 − x2
1 ). Hence,

(6.14) becomes

l2
{
2l0l1(ld − lc)x

2
1 + [(lc − ld )

(
l2
0 + l2

1

)− lcg
]
x1 − l1lcl0

}
x2

+ (l2
2 lcl0x1 − l1l

2
2 lc
)
x2

2 + (ld − lc)
[−l0l

2
1x3

1 + l1
(
l2
0 − g

)
x2

1 + l0gx1
]= 0,

l2
2

(
l2
0 + l2

1 − 2l1l0x1
)
x2

2 + 2l2
[
l2
1 l0x

2
1 + l1

(
g − l2

0

)
x1 − l0g

]
x2

+ (l2
1 l2

0 + l2
1 l2

2

)
x2

1 + 2l1l0gx1 − l2
1 l2

2 + g2 = 0.

(6.15)
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Table 6.1 Real solutions of the equilibrium problem of the planar 4-bar linkage shown in Fig. 6.4

No. x1 x2 z1 z2 No. x1 x2 z1 z2

1 0.826 0.127 0.564 0.992 9 0.332 −0.777 0.943 0.630

2 0.826 0.127 −0.564 −0.992 10 0.332 −0.777 −0.943 −0.630

3 0.777 −0.332 0.630 0.943 11 0.180 −0.180 0.984 0.984

4 0.777 −0.332 −0.630 −0.943 12 0.180 −0.180 −0.984 −0.984

5 0.620 −0.620 0.785 0.785 13 −1 NA NA NA

6 0.620 −0.620 −0.785 −0.785 14 −1 NA NA NA

7 −0.127 −0.826 0.992 0.564 15 1 2.116 0 NA

8 −0.127 −0.826 −0.992 −0.564 16 1 2.116 0 NA

In order to eliminate x2 from (6.15), the resultant algorithm is used [17]. This
leads to the following 8 degree polynomial equation in x1:

G8x
8
1 +G7x

7
1 +G6x

6
1 +G5x

5
1 +G4x

4
1 +G3x

3
1 +G2x

2
1 +G1x1 +G0 = 0, (6.16)

where G0,G1, . . . ,G8 are constant coefficients.
In principle, up to 8 solutions in x1 can be found from (6.16). For every solu-

tion of x1 substituted into (6.15), one corresponding solution in x2 can be obtained.
Then, up to two solutions of z1 can be obtained by substituting a solution of x1 into
the first equation of (6.6). Finally, a corresponding solution of z2 can be obtained
by (6.13). It seems that the total number of solutions are 16. However, the compu-
tational results show that the maximal number of real solutions is no more than 12,
a result that is consistent with the reasoning in [12]. This point can be demonstrated
by an example for which the geometric parameters are l0 = 4 m, l1 = 5 m, l2 = 5 m,
ld = 2.2 m, lc = 1.1 m, mg = 10 N and the results are listed in Table 6.1.

When x1 = −1, two real solutions (1.800, −1.124) can be obtained for x2 from
the first equation of (6.15). However, no real solutions can be found for x2 from the
second equation of (6.15). When x1 = 1, the corresponding real solutions can be
found for x2 and z1, but no real solutions can be found for z2. In other words, when
x1 = ±1, there is no real solutions for the problem. Hence, the total number of real
solutions of the considered problem is only 12. The corresponding equilibrium con-
figurations are shown in Fig. 6.4 in which the thick solid lines represent the coupler,
the thin solid lines represent the input or output links (cables) with positive tensions,
and the dashed lines represent the input or output links (cables) with negative ten-
sions. Since cable tensions cannot be negative, only the four solutions (Nos. 4, 6, 10
and 12) listed in Table 6.1 make physical sense.

We use the methodology for determining equilibrium configurations of the planar
4-bar linkage to solve the direct kinematics problem of a homogeneous, regular,
polygonal payload suspended by n identical cables with n robots forming a regular,
horizontal polygon. Take the case with six robots as an example. Thus, the six aerial
robots (Q1, Q2, Q3, Q4, Q5, Q6) lie in the same horizontal plane and form a regular
hexagon with side length lq . The attachment points (P1, P2, P3, P4, P5, P6) of the
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Fig. 6.4 Twelve equilibrium
configurations of the planar
4-bar linkage

Table 6.2 Geometric
parameters of equivalent
planar 4-bar linkages for case
with 6 robots

No. l0 l1 l2 ld lc

1 2lq l l 2lp lp

2
√

3lq

√
4l2−(lq−lp)2

2

√
4l2−(lq−lp)2

2

√
3lp

√
3lp
2

Fig. 6.5 A homogeneous,
regular polygonal payload
(P1P2P3P4P5P6) suspended
from six robots Q1, Q2, Q3,
Q4, Q5, and Q6 arranged on
the verticals of a horizontal
regular polygon

payload also form a regular hexagon with side length lp , and the center of mass
of the payload coincides with the centroid of hexagon P1P2P3P4P5P6. Also, the
cables have the same length l.

An equilibrium configuration for this geometry is shown in Fig. 6.5. There are
six vertical planes of symmetry that fall into two classes. In the first class, every
vertical plane of symmetry, e.g., Q1P1P4Q4, passes through the diagonal lines of
regular hexagons Q1Q2Q3Q4Q5Q6 and P1P2P3P4P5P6. In the second class, every
vertical plane of symmetry, e.g., Q7P7P8Q8, passes through the middle points of
the opposite sides of regular hexagons Q1Q2Q3Q4Q5Q6 and P1P2P3P4P5P6. If
the payload swings in one of these six vertical planes of symmetry, it is equivalent
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Fig. 6.6 Four equilibrium configurations of a payload suspended from six robots determined by
the equivalent planar four bar linkage in the plane Q1P1P4Q4

to the motion of a 4-bar linkage in the same plane. The geometric parameters of two
classes equivalent planar 4-bar linkages are listed in Table 6.2.

If l, lq and lp are respectively given by 12 m, 4 m and 1 m, four equilibrium con-
figurations can be determined in every vertical plane of symmetry of the first class
using the corresponding equivalent planar 4-bar linkage. Figure 6.6 shows the four
equilibrium configurations in the vertical plane Q1P1P4Q4. In every configuration
except configuration 1 which coincides with the initial configuration, there are four
cables (P2Q2, P3Q3, P5Q5 and P6Q6) are slack and represented by the dashed
lines.

Also, four equilibrium configurations can be determined in every vertical plane
of symmetry of the second class using the corresponding equivalent planar 4-bar
linkage. Figure 6.7 shows the four equilibrium configurations in the vertical plane
Q7P7P8Q8. In every configuration except configuration 1 which coincides with the
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Fig. 6.7 Four equilibrium configurations of a payload suspended from six robots determined by
the equivalent planar four bar linkage in the plane Q7P7P8Q8

initial configuration, there are two cables (P3Q3 and P6Q6) are slack and repre-
sented by the dashed lines.

However, configurations found by the four-bar linkage abstraction are only a sub-
set of equilibrium configurations. This is easily seen in Fig. 6.8 in which every pair
opposite cables intersects. Hence, the total number of equilibrium configurations for
the case with six robots is at least 20.

In [11], we provide a more exhaustive analysis of such systems by considering
case studies with n = 3, 4, 5, and 6.

6.4 Inverse Kinematics

In this section, we present an efficient analytic algorithm based on Dialytic elimi-
nation to solve this inverse kinematics problem which can be described as follows
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Fig. 6.8 The equilibrium
configuration with six robots
in which every pair of
opposite cables intersect each
other

[8, 9]:2 Given a desired position and orientation of the payload (r,R), find the po-
sitions of the aerial robots (qi , i = 1,2, . . . , n) that satisfy (6.3) and (6.4).

To maintain a desired position and orientation, the payload needs at least three
attachment points. Thus, for the cases with 1 and 2 robots, the inverse kinematics
problem, in general, has no solution. However, for the cases with 3 or more robots,
there are infinitely many solutions, because the number of unknowns is greater than
the sum of the number of equations of static equilibrium and the number of con-
straints.

For the case with three robots, if the tensions Ti (i = 1,2,3) of three cables are
given, there are 9 unknowns (xqi, yqi, zqi , i = 1,2,3) in 9 equations given by (6.3)
and (6.4). Hence, it should be possible to find a finite number of solutions for the
inverse kinematics problem.

From (6.3), one gets

s1x1 + s2x2 + s3x3 = 0,

s1y1 + s2y2 + s3y3 = 0,

s1z1 + s2z2 + s3z3 = mg,

−s6y1 + s5z1 − s9y2 + s8z2 − s12y3 + s11z3 = t1,

s6x1 − s4z1 + s9x2 − s7z2 + s12x3 − s10z3 = t2,

−s5x1 + s4y1 − s8x2 + s7y2 − s11x3 + s10y3 = 0,

(6.17)

where s1, s2, . . . , s12, t1, t2 are constants or functions of Ti (i = 1,2,3), and xi =
xqi − xpi , yi = yqi − ypi and zi = zqi − zpi (i = 1,2,3). From (6.4), one gets

x2
i + y2

i + z2
i = l2

i (i = 1,2,3). (6.18)

2Taken from [8, 9], reprinted with kind permission © ASME 2012.
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Hence, the problem reduces to solving the 9 unknowns (xi, yi, zi , i = 1,2,3)

using the 9 equations given by (6.17) and (6.18). Once xi, yi, zi (i = 1,2,3) are
known, the position coordinates xqi , yqi , zqi ( i = 1,2,3) of the robots can be easily
obtained.

As long as the tensions of the cables are not zero, the six equations in (6.17)
are linear independent in z1, y2, z2, x3, y3, z3. Hence, we can eliminate these six
unknowns from (6.17) and (6.18). From (6.17), one obtains

z1 = t17x1 + t18y1 + t19x2 + t20,

y2 = −(t4x1 + t8y1 + t6x2)/t9,

x3 = −(s1x1 + s2x2)/s3,

y3 = t11x1 + t12y1 + t13x2,

z2 = t21x1 + t22y1 + t23x2 + t24,

(6.19)

where ti are constants for given tensions. Then, substituting (6.19) into (6.18), one
gets

aix
2
1 + biy

2
1 + cix

2
2 + dix1y1 + eiy1x2 + fix2x1 + gix1 + hiy1 + iix2 + ji = 0,

(6.20)
where ai, bi, . . . , ji (i = 1,2,3) are constants for given tensions.

The polynomial system given by (6.20) consists of 3 quadratic equations in x1, y1
and x2. The total degree of this polynomial system is 8. According to Bezout’s
theorem, this system has at most 8 isolated solutions in the complex space.

This section presents an analytic algorithm to address the general case of the
above inverse kinematics problem. The proposed algorithm is based on Roth’s Di-
alytic elimination approach [18]. The three equations given by (6.20) are actually
the general expressions of three quadratic surfaces. To find the solutions of (6.20)
is to find all common intersection points of three quadratic surfaces. In [18], Roth
proposed a Dialytic elimination approach to eliminate two unknowns without in-
creasing the power products and without increasing the degree of the system. The
principle is based on the fact that the derivatives of the determinant of the Jaco-
bian of a system of equations written in terms of homogeneous coordinates have the
same zeros as the original system of equations. Here, Roth’s approach is modified
and used to solve (6.20) for the general case.

Suppose that x2 is suppressed, (6.20) can be written as

aix
2
1 + biy

2
1 + dix1y1 + kix1 + uiy1 + vi = 0, (6.21)

where ki = fix2 + gi , ui = eix2 + hi and vi = cix
2
2 + iix2 + ji (i = 1,2,3).

Now, there are three equations and six power products. Hence, at least three more
equations are needed. Rewriting (6.21) into the form with homogeneous coordinates
by substituting x1 = X/T , y1 = Y/T and then multiplying by T 2, one gets

aiX
2 + biY

2 + diXY + kiXT + uiYT + viT
2 = 0. (6.22)
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If the left-hand side of (6.22) is given by Fi (i = 1,2,3), (6.22) can be re-written as

FiXX + FiY Y + FiT T = 0, (6.23)

where

FiX = ∂Fi

∂X
= 2aiX + diY + kiT ,

FiY = ∂Fi

∂Y
= 2biY + diX + uiT ,

FiT = ∂Fi

∂T
= kiX + uiY + 2viT .

(6.24)

Hence, (6.23) can be re-written in the following matrix form:

JX1 = 0, (6.25)

where X1 = [X,Y,T ]T and J is the Jacobian matrix:

J =
⎡

⎣
F1X F1Y F1T

F2X F2Y F2T

F3X F3Y F3T

⎤

⎦ . (6.26)

In order to make X1 to be not a zero vector, the determinant of the above Jacobian
matrix must be zero:

|J| = 0. (6.27)

Thus,

∂|J|
∂X

= 3AX2 + 2BXY + 2CXT + DY 2 + ET 2 + FYT = 0,

∂|J|
∂Y

= BX2 + 2DXY + FXT + 3GY 2 + 2HYT + IT 2 = 0, (6.28)

∂|J|
∂T

= CX2 + 2EXT + FXY + HY 2 + 2IYT + 3JT 2 = 0,

where A,B, . . . ,K are functions of x2. The six equations in (6.22) and (6.28) can
be written in the following matrix form:

MX2 = 0, (6.29)

where X2 = [X2, Y 2,XY,XT ,YT ,T 2]T . In order to make X2 to be not a zero vec-
tor, the determinant of matrix M must be zero. This determinant is an eight-degree
polynomial in x2. The coefficients of this polynomial are functions of the coeffi-
cients of the original three equations. Hence, x2 can be easily solved with Matlab.
For every real root x2 substituted into (6.29), a linear system in (x2

1 , y2
1 , x1y1, x1, y1)

will be available by setting T to 1. Then, a solution of x1 and y1 can be obtained
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Fig. 6.9 Possible workspace
of the tensions (mg is the
weight of the payload)

by solving this linear system. When x1, y1 and x2 are available, the other six un-
knowns (z1, y2, z2, x3, y3, z3) can be calculated with (6.19). When xi , yi and
zi (i = 1,2,3) are available, the position coordinates (xqi, yqi, zqi , i = 1,2,3) of
the robots can be obtained. Theoretically speaking, there are up to eight common in-
tersection points of three quadratic surfaces. The case studies conducted later show
that usually only six or less real solutions can be found by (6.20) for the 3-D cable
towing.

The above algorithm can solve the general inverse kinematics problem. Unfor-
tunately, it fails in the special case with the attachment points lie in the horizontal
plane which is discussed in greater detail in [9].

Referring to Fig. 6.9, in order to address the cooperation in the manipulation task,
it is useful to define the so-called tension ratio. If the payload capacity of robot Qi

is Timax, the tension ratio of cable i can be defined as

cri = Ti/Timax. (6.30)

If all robots were to share the load equally, normalized to their strengths, the tension
ratios cri (i = 1,2,3) should be the same. Otherwise, the robots are not, strictly
speaking, cooperating in a fair way. In the case with three robots, we want cr1 =
cr2 = cr3 = cr , which corresponds to the line EO inside the rectangular cuboid
in Fig. 6.9. E represents the point with the maximal tension ratio cr = 1. At this
point, the tension of every cable reaches the payload capacity of every robot. In this
condition of maximal cooperation, the tensions can be directly obtained from the
tension ratio cr .

For the 3-D cooperative towing with three aerial robots, the body-fixed frame can
be chosen by taking P1 as the origin Õ , P1P2 as the x̃ axis and triangle P1P2P3 as
the Õx̃ỹ plane.

Suppose that the attachment points (P1, P2, P3) of the payload form an arbitrary
triangle. Their coordinates in the body-fixed frame are given by p̃1 = [0,0,0]T m,
p̃2 = [1,0,0]T m and p̃3 = [0.8,0.7,0]T m. The center of mass does not lie in the
plane of triangle P1P2P3. Instead, its position in the body-fixed frame is given by
r̃ = [0.7,0.2,−0.3]T m. The lengths of three cables are l1 = l2 = l3 = 1.5 m. The
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Table 6.3 Solutions for a general payload with cr = 0.9, φ = 25◦, θ = 15◦ and ψ = −5◦

No. 1 2 3 4 5 6

xq1(m) −0.024 −0.590 1.783 1.469 −0.111 −0.456

yq1(m) 1.473 −0.319 0.527 1.294 1.428 1.159

zq1(m) 2.621 1.845 1.738 2.196 2.618 2.560

xq2(m) 2.385 0.650 0.030 1.039 2.548 2.489

yq2(m) 1.453 1.464 0.085 1.656 −0.166 −0.244

zq2(m) 1.790 2.186 1.630 2.195 0.937 0.911

xq3(m) 0.588 2.531 1.293 0.646 0.510 0.821

yq3(m) 0.071 1.405 1.977 0.028 1.522 1.791

zq3(m) 1.979 2.214 2.781 1.944 2.728 2.794

weight of the payload is mg = 100 N. The payload capacities of three robots are
respectively T1max = 60 N, T2max = 70 N and T3max = 80 N. In this very general
case, if the position of the payload is chosen as r = [1,1,1]T m and the tension
ratios are chosen as the same with cr = 0.9 and the desired orientation is given by
(φ = 25◦, θ = 15◦, ψ = −5◦), six solutions for the inverse kinematics problem
can be found and listed in Table 6.3, which corresponds to the four configurations
as shown in Fig. 6.10.

Six sequences of configurations can be obtained by reducing cr from 1 along line
EO in Fig. 6.9. These sequences are shown in Fig. 6.11 in which sequences 1 and 2
correspond to a range of cr ∈ [0.532,1], sequences 3 and 4 correspond to a range of
cr ∈ [0.575,1], and sequences 5 to 6 correspond to a range of cr ∈ [0.9,1]. In other
words, when the tension ratio cr is less than 0.9 and greater than 0.575, the inverse
kinematics problem has only four solutions. When the tension ratio cr is less than
0.575, the inverse kinematics problem has only two solutions. In this general case,
the minimal tension ratio cr = 0.532 can also be obtained numerically using a line
search. Obviously, in the general case, the minimal tension ratio 0.532 is greater
than 0.472 calculated with cr

∑3
i=1 Timax = mg. Also, when cr reaches its minimal

valid value 0.532, the three cables do not lie in vertical positions, see the dashed
lines in Figs. 6.11(a) and (b).

6.5 The Set of Valid Tensions

For a given set of tensions, we can find several equilibrium configurations. However,
the tensions cannot be chosen arbitrarily. The tension of every cable should be in a
range from a positive lower threshold to the payload capacity Timax of the robot,
i.e., Ti ∈ [0, Timax]. In the case with three robots, it would seem that any point in
the rectangular cuboid with side length Timax (i = 1,2,3) as shown in Fig. 6.9 is a
valid choice of tensions. However, this is not true. First, the tensions of three cables
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Fig. 6.10 Configurations for a general payload in a general configuration (r = [1,1,1]T m,
φ = 25◦, θ = 15◦ and ψ = −5◦), with cr = 0.9

should satisfy the following condition:

3∑

i=1

Ti ≥ mg. (6.31)
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Fig. 6.11 Sequences of configurations for a general configuration (r = [1,1,1]T m,
φ = 25◦, θ = 15◦ and ψ = −5◦), with different tension ratios

This condition shows that the possible work point for the tensions should be in the
region above the plane ABC with

∑3
i=1 Ti = mg. However, even in this region, not

every point represents a valid set of tensions. For instance, in general, points on the
boundary FGHIJKF are not realistic if a desired orientation is specified.

Accordingly, we determine the tension workspace, the set of valid tensions. First,
the vertex E in Fig. 6.9 should be a valid point. Otherwise, the tension workspace
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Fig. 6.12 Tension workspace for an equilateral triangle payload with φ = 25◦, θ = 15◦, ψ = −5◦

is the null set. Second, the tension workspace should lie in the half plane above
the plane ABC defined

∑3
i=1 Ti = mg. Hence, it should be closed by three planes,

each perpendicular to one of the axes, and a surface that lies above ABC as shown in
Fig. 6.12. To compute the boundary of this workspace, we start from cr = 1 (which
corresponds to point E in Fig. 6.9) and gradually decrease cr with a small step size,
Δcr , along different rays in the workspace numerically. See Fig. 6.12. More details
are available in [9].

6.6 Stability Analysis

The equilibrium configurations have been obtained from the case studies in both
direct and inverse kinematics analysis. However, we have not discussed the stability
of the equilibrium points. Clearly the payload will not stay in configurations that are
unstable. Thus it is necessary to able to find solutions that are stable.

The obvious approach to analyze the stability is to derive the Hessian matrix of
the system. If all eigenvalues λi (i = 1,2, . . . , n) of the Hessian matrix are strictly
positive, the corresponding equilibrium configuration can be regarded as stable. Oth-
erwise, the configuration is either unstable (one of the eigenvalues is strictly nega-
tive) or requires higher order analysis (all eigenvalues are non negative).

The position and orientation of the payload can be defined by the position r =
[x, y, z]T of its center of mass and the rotation matrix R in which there are three
orientation angles (φ, θ,ψ). Hence, six variable (x, y, z,φ, θ,ψ) can be used to
define the position and orientation of the payload.

6.6.1 Case with Two Cables

In the equilibrium configurations as shown in Figs. 6.6(b), (c) and (d), the payload
is suspended by only two cables. Considering the geometric constraints imposed by



178 Q. Jiang and V. Kumar

the two cables, the payload has four degrees of freedom. Hence, only four of the six
variables (x, y, z,φ, θ,ψ) are independent. Referring to the geometric constraints
given by (6.4), the coordinate x can be eliminated and z can be expressed as the
function of (y,φ, θ,ψ), which are used as four independent variables. The potential
energy of the payload can be given by

V = mgz = mgz(y,φ, θ,ψ). (6.32)

Hence, the Hessian matrix can be given as

H = mg

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2z

∂y2
∂2z

∂y∂φ
∂2z

∂y∂θ
∂2z

∂y∂ψ

∂2z
∂φ∂y

∂2z

∂φ2
∂2z

∂φ∂θ
∂2z

∂φ∂ψ

∂2z
∂θ∂y

∂2z
∂θ∂φ

∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂y

∂2z
∂ψ∂φ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.33)

Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2,
(6.34)

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2,

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

(6.35)

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given as follows:

r11 = cos θ cosψ,

r12 = sinφ sin θ cosψ − cosφ sinψ,

r11 = cosφ sin θ cosψ + sinφ sinψ,

r21 = cos θ sinψ,

r22 = sinφ sin θ sinψ + cosφ cosψ, (6.36)

r23 = cosφ sin θ sinψ − sinφ cosψ,

r31 = − sin θ,
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r32 = sinφ cos θ,

r33 = cosφ cos θ.

Subtracting the first equation of (6.34) from the second equation of (6.34), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1, (6.37)

where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23.
(6.38)

From (6.37), one gets

x = [(l2
2 − u2

21 − u2
22 − u2

23 − l2
1 + u2

11 + u2
12 + u2

13

)
/2

− (u22 − u12)y − (u23 − u13)z
]
/(u21 − u11). (6.39)

Substituting (6.39) into the first equation of (6.34), one gets

F = F(y, z,u11, . . . , u23) = F(y, z,φ, θ,ψ). (6.40)

So,

∂z

∂y
= −Fy/Fz,

∂z

∂φ
= −Fφ/Fz,

∂z

∂θ
= −Fθ/Fz,

∂z

∂ψ
= −Fψ/Fz.

(6.41)

Therefore,

∂2z

∂y2
= −FyyFz − FyFzy

F 2
z

,
∂2z

∂y∂φ
= −FyφFz − FyFzφ

F 2
z

,

∂2z

∂y∂θ
= −FyθFz − FyFzθ

F 2
z

,
∂2z

∂y∂ψ
= −FyψFz − FyFzψ

F 2
z

,

∂2z

∂φ∂y
= −FφyFz − FφFzy

F 2
z

,
∂2z

∂φ2
= −FφφFz − FφFzφ

F 2
z

,

∂2z

∂φ∂θ
= −FφθFz − FφFzθ

F 2
z

,
∂2z

∂φ∂ψ
= −FφψFz − FφFzψ

F 2
z

,

∂2z

∂θ∂y
= −FθyFz − FθFzy

F 2
z

,
∂2z

∂θ∂φ
= −FθφFz − FθFzφ

F 2
z

,

(6.42)

∂2z

∂θ2
= −FθθFz − FθFzθ

F 2
z

,
∂2z

∂θ∂ψ
= −FθψFz − FθFzψ

F 2
z

,
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Table 6.4 Eigenvalues of the Hessian matrices of the equilibrium configurations with two cables

Configuration Fig. 6.6(a) Fig. 6.6(b) Fig. 6.6(c) Fig. 6.6(d)

λ1 1.635 0.092 0.091 0.091

λ2 0.344 +0.000 0.000 9.214

λ3 0.086 9.039 −0.150 −0.150

λ4 +0.000 −0.367 −0.153 −0.153

∂2z

∂ψ∂y
= −FψyFz − FψFzy

F 2
z

,
∂2z

∂ψ∂φ
= −FψφFz − FψFzφ

F 2
z

,

∂2z

∂ψ∂θ
= −FψθFz − FψFzθ

F 2
z

,
∂2z

∂ψ2
= −FψψFz − FψFzψ

F 2
z

.

If F is directly expressed as the function of (y, z,φ, θ,ψ), the expression of F

is so complicated that standard symbolic manipulation packages cannot handle the
derivation. Hence, all derivatives (Fy , Fz, Fφ , Fθ , Fψ , Fzy , Fzφ , Fzθ , Fzψ , Fyy , Fyφ ,
Fyθ , Fyψ , Fφy , Fφφ , Fφθ , Fφψ , Fθy , Fθφ , Fθθ , Fθψ , Fψy , Fψφ , Fψθ , Fψψ ) of F

with respect to (y, z,φ, θ,ψ) have to be computed individually and pieced together
using the chain rule. Even so, the expressions of some second order derivatives are
still very complicated. Substituting (6.42) into (6.33), the Hessian matrix is obtained
and the eigenvalues of the Hessian matrix are determined.

Now the above developed approach is used to analyze the stability of the equilib-
rium configurations as shown in Fig. 6.6. Although the configuration of the payload
as shown Fig. 6.6(a) coincides with its initial configuration as shown in Fig. 6.5,
this configuration is obtained by supposing that the payload is suspended with two
cables. Hence, the stability analysis of this configuration can be conducted by sup-
posing that the payloads is suspended with only two relevant cables. If this config-
uration under this condition is stable, its corresponding initial configuration should
be more stable.

For every equilibrium configuration as shown in Fig. 6.6, the positions of two
relevant robots and two relevant attachment points and the center of mass as well
as the orientation angles of the payload are know. Substituting all these parameters
into (6.42) and then into (6.33), a Hessian matrix is available. The eigenvalues of
the Hessian matrix can be easily evaluated by the package Matlab.

Table 6.4 lists the eigenvalues of the Hessian matrices of these equilibrium con-
figurations. From this table, it can be seen that the configurations as shown in
Fig. 6.6(a) are stable. But other configurations are unstable.

6.6.2 Case with Three Cables

In the equilibrium configurations as shown in Fig. 6.10, the payload is suspended
by three cables. Considering the geometric constraints imposed by the three ca-
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bles, the payload has three degrees of freedom. Hence, three of the six variables
(x, y, z,φ, θ,ψ) are independent.

Referring to the geometric constraints given by (6.4), the coordinates (x, y) can
be eliminated and z can be expressed as the function of the orientation angles
(φ, θ,ψ), which are used as three independent variables. The potential energy of
the payload can be given by

V = mgz = mgz(φ, θ,ψ). (6.43)

Hence, the Hessian matrix can be given as

H = mg

⎡

⎢
⎢
⎢
⎣

∂2z

∂φ2
∂2z

∂φ∂θ
∂2z

∂φ∂ψ

∂2z
∂θ∂φ

∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂φ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤

⎥
⎥
⎥
⎦

. (6.44)

Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2, (6.45)

(x + u31)
2 + (y + u32)

2 + (z + u33)
2 = l2

3,

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2, (6.46)

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

u31 = r11(x̃p3 − x̃) + r12(ỹp3 − ỹ) + r13(z̃p3 − z̃) − xq3,

u32 = r21(x̃p3 − x̃) + r22(ỹp3 − ỹ) + r23(z̃p3 − z̃) − yq3,

u33 = r31(x̃p3 − x̃) + r32(ỹp3 − ỹ) + r33(z̃p3 − z̃) − zq3,

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given by (6.36).
Respectively subtracting the first equation of (6.45) from the second and the third
equations of (6.45), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1,

2(u31 − u11)x + 2(u32 − u12)y + 2(u33 − u13)z = U3 − U1,
(6.47)
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where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23, (6.48)

U3 = l2
3 − u2

31 − u2
32 − u2

33.

From (6.47), one gets

x = −u32u23 + u32u13 + u12u23 + u22u33 − u22u13 − u12u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

+ u32U2 − u32U1 − u12U2 − u22U3 + u22U1 + u12U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
,

y = u31u23 − u31u13 − u11u23 − u21u33 + u21u13 + u11u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

− u31U2 − u31U1 − u11U2 − u21U3 + u21U1 + u11U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
.

(6.49)

Substituting (6.49) into the first equation of (6.45), one gets

F(z,u11, . . . , u33) = F(z,φ, θ,ψ) = 0. (6.50)

So,

∂z

∂φ
= −Fφ/Fz,

∂z

∂θ
= −Fθ/Fz,

∂z

∂ψ
= −Fψ/Fz. (6.51)

Hence,

∂2z

∂φ2
= −FφφFz − FφFzφ

F 2
z

,

∂2z

∂φ∂θ
= −FφθFz − FφFzθ

F 2
z

,

∂2z

∂φ∂ψ
= −FφψFz − FφFzψ

F 2
z

,

∂2z

∂θ∂φ
= −FθφFz − FθFzφ

F 2
z

,

∂2z

∂θ2
= −FθθFz − FθFzθ

F 2
z

, (6.52)
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Table 6.5 Eigenvalues of
Hessian matrices of the
equilibrium configurations in
Fig. 6.10

No. 1 2 3 4 5 6

λ1 2.789 1.345 1.101 0.625 11.001 29.549

λ2 0.495 0.729 0.428 0.080 0.823 0.844

λ3 0.009 0.196 0.043 −0.350 0.450 0.689

∂2z

∂θ∂ψ
= −FθψFz − FθFzψ

F 2
z

,

∂2z

∂ψ∂φ
= −FψφFz − FψFzφ

F 2
z

,

∂2z

∂ψ∂θ
= −FψθFz − FψFzθ

F 2
z

,

∂2z

∂ψ2
= −FψψFz − FψFzψ

F 2
z

.

Equation (6.50) shows that F is a function of (z,φ, θ,ψ). Its derivatives with
respect to (z,φ, θ,ψ) can be derived using the chain rule. Substituting (6.52) into
(6.44), we can obtain a Hessian matrix which can be used to analyze the stability of
the equilibrium configurations. For every equilibrium configuration, the positions of
three relevant robots and three relevant attachment points and the center of mass as
well as the orientation angles of the payload are know. Substituting all these param-
eters into (6.52) and then into (6.44), a Hessian matrix is available. The eigenvalues
of the Hessian matrix can be easily evaluated by the package Matlab.

Table 6.5 lists the eigenvalues of the Hessian matrices of the six equilibrium con-
figurations as shown in Fig. 6.10. From this table, it can be seen that configurations
1, 2, 3, 5 and 6 are stable. Only configuration 4 is unstable.

6.6.3 Case with Four Cables

In the equilibrium configurations as shown in Figs. 6.7(b), (c) and (d), the payload
is suspended by four cables. Considering the geometric constraints imposed by the
four cables, the payload has two degrees of freedom. Hence, only two of the six vari-
ables (x, y, z,φ, θ,ψ) are independent. If (θ,ψ) are used as the two independent
variables, the Hessian matrix can be given by

H = mg

⎡

⎣

∂2z

∂θ2
∂2z

∂θ∂ψ

∂2z
∂ψ∂θ

∂2z

∂ψ2

⎤

⎦ . (6.53)
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Now, the focus is how to obtain the above Hessian matrix. From (6.4), one gets

(x + u11)
2 + (y + u12)

2 + (z + u13)
2 = l2

1,

(x + u21)
2 + (y + u22)

2 + (z + u23)
2 = l2

2,

(x + u31)
2 + (y + u32)

2 + (z + u33)
2 = l2

3,

(x + u41)
2 + (y + u42)

2 + (z + u43)
2 = l2

4,

(6.54)

where

u11 = r11(x̃p1 − x̃) + r12(ỹp1 − ỹ) + r13(z̃p1 − z̃) − xq1,

u12 = r21(x̃p1 − x̃) + r22(ỹp1 − ỹ) + r23(z̃p1 − z̃) − yq1,

u13 = r31(x̃p1 − x̃) + r32(ỹp1 − ỹ) + r33(z̃p1 − z̃) − zq1,

u21 = r11(x̃p2 − x̃) + r12(ỹp2 − ỹ) + r13(z̃p2 − z̃) − xq2,

u22 = r21(x̃p2 − x̃) + r22(ỹp2 − ỹ) + r23(z̃p2 − z̃) − yq2,

u23 = r31(x̃p2 − x̃) + r32(ỹp2 − ỹ) + r33(z̃p2 − z̃) − zq2,

u31 = r11(x̃p3 − x̃) + r12(ỹp3 − ỹ) + r13(z̃p3 − z̃) − xq3,

u32 = r21(x̃p3 − x̃) + r22(ỹp3 − ỹ) + r23(z̃p3 − z̃) − yq3,

u33 = r31(x̃p3 − x̃) + r32(ỹp3 − ỹ) + r33(z̃p3 − z̃) − zq3,

u41 = r11(x̃p4 − x̃) + r12(ỹp4 − ỹ) + r13(z̃p4 − z̃) − xq4,

u42 = r21(x̃p4 − x̃) + r22(ỹp4 − ỹ) + r23(z̃p4 − z̃) − yq4,

u43 = r31(x̃p4 − x̃) + r32(ỹp4 − ỹ) + r33(z̃p4 − z̃) − zq4,

(6.55)

and rij (i, j = 1,2,3) are the entries of the rotation matrix R and given by (6.36).
From (6.54), one gets

x2 + 2u11x + y2 + 2u12y + z2 + 2u13z = U1,

x2 + 2u21x + y2 + 2u22y + z2 + 2u23z = U2,

x2 + 2u31x + y2 + 2u32y + z2 + 2u33z = U3,

x2 + 2u41x + y2 + 2u42y + z2 + 2u43z = U4,

(6.56)

where

U1 = l2
1 − u2

11 − u2
12 − u2

13,

U2 = l2
2 − u2

21 − u2
22 − u2

23,

U3 = l2
3 − u2

31 − u2
32 − u2

33,

U4 = l2
4 − u2

41 − u2
42 − u2

43.

(6.57)
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From the first three equations of (6.56), one gets

2(u21 − u11)x + 2(u22 − u12)y + 2(u23 − u13)z = U2 − U1,

2(u31 − u11)x + 2(u32 − u12)y + 2(u33 − u13)z = U3 − U1.
(6.58)

Hence,

x = −u32u23 + u32u13 + u12u23 + u22u33 − u22u13 − u12u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

+ u32U2 − u32U1 − u12U2 − u22U3 + u22U1 + u12U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
,

y = u31u23 − u31u13 − u11u23 − u21u33 + u21u13 + u11u33

u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
z

− u31U2 − u31U1 − u11U2 − u21U3 + u21U1 + u11U3

2(u21u32 − u21u12 − u11u32 − u22u31 + u22u11 + u12u31
.

(6.59)

Substitute (6.59) into the first and the fourth equations of (6.56), one gets

F(z,u11, . . . , u43) = F(z,φ, θ,ψ) = 0,

G(z,u11, . . . , u43) = G(z,φ, θ,ψ) = 0.
(6.60)

From (6.60), one gets

∂z

∂θ
= (FφGθ − FθGφ)/(FzGφ − FφGz),

∂z

∂ψ
= (FφGψ − FψGφ)/(FzGφ − FφGz).

(6.61)

Hence,

∂2z

∂θ2
= [(FφθGθ + FφGθθ − FθθGφ − FθGφθ )(FzGφ − FφGz)

− (FφGθ − FθGφ)(FzθGφ + FzGφθ − FφθGz − FφGzθ )
]

/(FzGφ − FφGz)
2,

∂2z

∂θ∂ψ
= [(FφψGθ + FφGθψ − FθψGφ − FθGφψ)(FzGφ − FφGz)

− (FφGθ − FθGφ)(FzψGφ + FzGφψ − FφψGz − FφGzψ)
]

/(FzGφ − FφGz)
2,

∂2z

∂ψ∂θ
= [(FφθGψ + FφGψθ − FψθGφ − FψGφθ )(FzGφ − FφGz)

− (FφGψ − FψGφ)(FzθGφ + FzGφθ − FφθGz − FφGzθ )
]

/(FzGφ − FφGz)
2, (6.62)
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Table 6.6 Eigenvalues of
Hessian matrices of the
equilibrium configurations in
Fig. 6.7

Configuration 1 2 3 4

λ1 1.549 8.852 0.203 −0.024

λ2 0.159 0.289 −0.499 −0.340

∂2z

∂ψ2
= [(FφψGψ + FφGψψ − FψψGφ − FψGφψ)(FzGφ − FφGz)

− (FφGψ − FψGφ)(FzψGφ + FzGφψ − FφψGz − FφGzψ)
]

/(FzGφ − FφGz)
2.

Equation (6.60) shows that both F and G are functions of (z,φ, θ,ψ ). Their
derivatives with respect to (z,φ, θ , ψ ) can be derived using the chain rule. Substitut-
ing (6.62) into (6.53), we can obtain a Hessian matrix which can be used to analyze
the stability of the equilibrium configurations as shown in Fig. 6.7. Although the
configuration of the payload as shown in Fig. 6.7(a) coincides with its initial con-
figuration as shown in Fig. 6.5, this configuration is obtained by supposing that the
payload is suspended with four cables. Hence, the stability analysis of this configu-
ration can be conducted by supposing that the payload is suspended with only four
relevant cables. If this configuration under this condition is stable, its corresponding
initial configuration should be more stable.

For every equilibrium configuration, the positions of four relevant robots and four
relevant attachment points and the center of mass as well as the orientation angles
of the payload are know. Substituting all these parameters into (6.62) and then into
(6.53), a Hessian matrix is available. The eigenvalues of the Hessian matrix can be
easily evaluated by the package Matlab.

Table 6.6 lists the eigenvalues of the Hessian matrices of the four equilibrium
configurations as shown in Fig. 6.7. From this table, it can be seen that configura-
tions 1 and 2 are stable. But the other two configurations are unstable.

6.7 Conclusions

Aerial manipulation and transport with multiple aerial robots has many applica-
tions. We derived a mathematical model that captures the kinematic constraints and
conditions of static equilibrium. We showed how to obtain solutions for the direct
kinematics and inverse kinematics, and provided a methodology to analyze the me-
chanics underlying stable equilibria of the underactuated system. The application of
these ideas to multi-quadrotor control and planning are discussed in [3, 13]. Experi-
mental studies of the stability of the system are presented in [11] and conditions for
uniqueness of the direct kinematics solution are established in [3].

This line of inquiry has several possible directions of future research. Clearly the
general direct kinematics problem is still unsolved, even for the three robot case.
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Because the system is under actuated, it is necessary to consider the dynamics of
the system to determine the stability of the true dynamical system instead of merely
considering the static stability. This has important implications for control. More
generally, one can envision cable-actuated parallel manipulators where the anchor
point is position controlled in two or three dimensions allowing the payload to be
manipulated without spooling cables to change the cable length or requiring me-
chanical linkages directly attached to the payload.
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Chapter 7
Compliant Mechanisms

Larry L. Howell

7.1 Introduction

Compliant mechanisms1 gain their motion from the deflection of elastic mem-
bers. Examples of compliant mechanisms are shown in Fig. 7.1. Because compli-
ant mechanisms gain their motion from the constrained bending of flexible parts,
they can achieve complex motion from simple topologies. Traditional mechanisms
use rigid parts connected at articulating joints (such as hinges, axles, or bearings),
which usually requires assembly of components and results in friction at the con-
necting surfaces [21, 31, 46]. Because traditional bearings are not practical in many
situations (e.g. microelectro-mechanical systems) and lubrication can be problem-
atic, friction and wear present major difficulties. Compliant mechanisms also offer
an opportunity to achieve complex motions within the limitations of micro- and
nano-fabrication.

Nature provides an example of how to effectively create controlled motion. Most
moving components in nature are flexible instead of stiff, and the motion comes
from bending the flexible parts instead of rigid parts connected with hinges (for
example, consider hearts, elephant trunks, and bee wings). The smaller the speci-
men, the more likely it is to use the deflection of flexible components to obtain its
motion [21].

7.1.1 Advantages of Compliant Mechanisms

Some of the advantages of compliant mechanisms include the following:

1This section is based on “Compliant Mechanisms” by L.L. Howell in Encyclopedia of Nanotech-
nology, Editor: B. Bhusham, © Springer, 2012, used with permission.
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Fig. 7.1 Example compliant mechanisms. (a) An artificial spinal disc. (b) A compliant centrifugal
clutch. (c) A lamina emergent mechanism. (d) A compliant constant-force exercise machine

Can Be Made From One Layer of Material Compliant mechanisms can be fabri-
cated from a single layer. This makes them compatible with many common micro-
electromechanical system (MEMS) fabrication methods, such as surface microma-
chining, bulk micromachining, and LIGA. For example, consider the folded beam
suspension shown in Fig. 7.2. This device is often used as a suspension element
in MEMS systems. It offers a simple approach for constrained linear motion, and
also integrates a return spring function. The device can achieve large deflections
with reasonable off-axis stiffness. The compliant mechanism makes it possible to
do these functions with a single layer of material.

No Assembly Required Compliant mechanisms that gain all of their motion from
the deflection of flexible components are “fully compliant mechanisms,” where de-
vices that combine both traditional and compliant elements are called “partially
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Fig. 7.2 A folded-beam
suspension is an example of a
widely used compliant
mechanism in
microelectromechanical
systems (MEMS)
applications

Fig. 7.3 This scanning
electron micrograph shows a
thermal actuator that uses
multiple layers of compliant
elements to achieve large
amplification with a small
footprint

compliant mechanisms”. Fully compliant mechanism can usually be fabricated
without assembly of different components.

Compact Some compliant mechanisms can also be designed to have a small foot-
print. Various strategies can be used to decrease the size of a mechanism. Figure 7.3
shows a thermal actuator that uses multiple layers to achieve a small footprint.

Friction-Free Motion Because compliant mechanisms gain their motion from de-
flection of flexible members rather than from traditional articulating joints, it is pos-
sible to reduce or eliminate the friction associated with rubbing surfaces. This results
in reduced wear and eliminates the need for lubrication, as described next.

Wear-Free Motion Wear can be particularly problematic in biomedical applica-
tions, precision mechanisms, and at small scales. The elimination of friction can
result in the elimination of wear at the connecting surfaces of joints. For devices
that are intended to undergo many cycles of motion, eliminating friction can dra-
matically increase the life of the system.

No Need for Lubrication Another consequence of eliminating friction is that lu-
bricants are not needed for the motion. This is particularly important in biomedical
implants, space applications, and at small scales where lubrication can be problem-
atic.
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Fig. 7.4 The cantilever of an
atomic force microscope
(AFM) is an example of
compliance employed in high
precision instruments

High Precision Flexures have long been used in high precision instruments be-
cause of the repeatability of their motion. Some reasons for compliant mechanisms
precision are the backlash-free motion inherent in compliant mechanisms and the
wear-free and friction-free motion described above. The cantilever associated with
an atomic force microscope (Fig. 7.4) is an example application.

Integrated Functions Like similar systems in nature, compliant mechanisms have
the ability to integrate multiple functions into few components. For example, com-
pliant mechanisms often provide both the motion function and a return-spring func-
tion. Thermal actuators are another example of integration of functions, as described
later.

High Reliability The combination of highly constrained motion of compliant
mechanisms and wear-free motion result in high reliability of compliant mecha-
nisms.

7.1.2 Challenges of Compliant Mechanisms

Compliant mechanisms have many advantages, but they also have some significant
challenges. A few of these are discussed below [21]:

Limited Rotation One drawback of compliant mechanisms is that most are unable
to undergo continuous rotation. Also, if a fully compliant mechanism is constructed
from a single layer of material, then special care has to be taken to ensure that
moving segments of the compliant mechanism do not collide with other segments
of the same mechanism.

Dependence on Material Properties The performance of compliant mechanisms
is highly dependent on the material properties, which are not always well known.

Nonlinear Motions The deflections experienced by compliant mechanisms of-ten
extend beyond the range of linearized beam equations. This can make their analysis
and design more complicated.

Fatigue Analysis Because most compliant mechanisms undergo repeated load-
ing, it is important to consider the fatigue life of the device. An understanding of
how to achieve controlled compliant mechanism motion and the associated stresses,



7 Compliant Mechanisms 193

makes it possible to design compliant mechanisms with the desired fatigue life. In-
terestingly, because of the types of materials used and their purity, many MEMS
compliant mechanisms will either fail on their first loading cycle or will have in-
finite fatigue life. Because of the low inertia of MEMS devices, it is often easy to
quickly test a MEMS device to many millions of cycles. Factors such as stress con-
centrations, the operating temperature, and other environment conditions can affect
the fatigue life.

Difficult Design Integration of functions into fewer components, nonlinear dis-
placements, dependence on material properties, the need to avoid self collisions
during motion, and designing for appropriate fatigue life, all combine to make the
design of compliant mechanisms nontrivial and often difficult.

7.1.3 Analysis and Design of Compliant Mechanisms

Multiple approaches are available for the analysis and design of compliant mecha-
nisms. Three of the most developed approaches are described below.

7.1.3.1 Finite Element Analysis

Finite element methods are the most powerful and general methods available to an-
alyze compliant mechanisms. Commercial software is currently available that has
the capability of analyzing the large, nonlinear deflections often associated with
compliant mechanisms. The general nature of the method makes it applicable for a
wide range of geometries, materials, and applications. Increasingly powerful com-
putational hardware has made it possible to analyze even very complex compliant
mechanisms. It is also possible to use finite element methods in the design of com-
pliant mechanisms, particularly once a preliminary design has been determined. But
in the early phases of design, other methods (or hybrid methods) are often preferred
so that many design iterations can be quickly analyzed.

7.1.3.2 Topology Optimization

Suppose that all that is known about a design is the desired performance and de-
sign domain. Topology optimization shows promise for designing compliant mech-
anisms under such conditions. The advantage is that very little prior knowledge
about the resulting compliant mechanism is needed, and any biases of the designer
are eliminated [10]. Topology optimization is often integrated with finite element
methods to consider many possible ways of distributing material with the design
domain. This has the potential to find designs that would not otherwise be discov-
ered by other methods. Infinite possible topologies are possible and finite element
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Fig. 7.5 The pseudo-rigid-body model of the compliant parallel-guiding mechanism consists of
appropriately located pin joints and torsional springs. (This device is a building block of other
devices, such as the folded-beam suspension)

methods can be employed to evaluate the different possibilities. The resolution of
the design domain mesh can be a limiting factor, but once a desirable topology is
identified, it can be further refined using other approaches.

7.1.3.3 Pseudo-Rigid-Body Model

The pseudo-rigid-body model is used to model compliant mechanisms as traditional
rigid-body mechanisms, which opens up the possibility of using the design and
analysis methods developed for rigid-body mechanisms in the design of compli-
ant mechanisms [10]. With the pseudo-rigid-body model approach, flexible parts
are modeled as rigid links connected at appropriately placed pins, with springs to
represent the compliant mechanisms resistance to motion. Extensive work has been
done to develop pseudo-rigid-body models for a wide range of geometries and load-
ing conditions. Consider a simple example. The mechanism shown in Fig. 7.5 has
a rigid shuttle that is guided by two flexible legs. (Note that the folded-beam sus-
pension in Fig. 7.2 has four of these devices connected in series and parallel.) The
pseudo-rigid-body model of the mechanism models the flexible legs as rigid links
connected at pin joints with torsional springs. Using appropriately located joints
and appropriately sized springs, this model is very accurate well into the nonlinear
range. For example, if the flexible legs are single walled carbon nanotubes, compar-
isons to molecular simulations have shown the pseudo-rigid-body model to provide
accurate results [18]. The advantages of the pseudo-rigid-body model are realized
during the early phases of design where many design iterations can be quickly eval-
uated, traditional mechanism design approaches can be employed, and motions can
be easily visualized.

The pseudo-rigid-body model approach is described in more detail in the follow-
ing section. When the configuration of a compliant device is already known, nonlin-
ear finite element analysis may be used to analyze its behavior. However, if instead
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Fig. 7.6 Examples of flexible segments and their pseudo-rigid-body models. (a) A small-length
flexural pivot, (b) its pseudo-rigid-body model, (c) a fixed-pinned segment, (d) its pseudo-rigid-
body model

of knowing the device configuration, all that is known is the task that must be per-
formed and the configuration and dimensions must be synthesized, then nonlinear
finite element analysis alone is not a realistic approach because of the many iter-
ations and computation required. Recently, the pseudo-rigid-body model has been
developed for the analysis and design of compliant mechanisms. The pseudo-rigid-
body model concept analyzes large-deflection beams as rigid links with appropri-
ately placed pin joints and torsional springs. The result is that an otherwise com-
plicated compliant mechanism may be modeled as a rigid-link mechanism. This
unification of compliant mechanism theory and traditional rigid-link mechanism
theory allows the vast amount of knowledge available for the design of rigid-link
mechanisms to be applied to compliant mechanisms.

Individual Flexible Segments Pseudo-rigid-body models have been developed
for various types of compliant segments, two of which will be reviewed here.

Small-Length Flexural Pivots [20] The simplest segment is the small-length flex-
ural pivot. Consider a flexible segment that has a much smaller length than the more
rigid section, as illustrated in Fig. 7.6(a). The motion of the end of the beam is due
to elastic deflection of the flexible segment, which is amplified by the rigid-body
rotation of the rigid segment. This motion can be modeled by a pin joint located at
the center of the flexible segment, as shown in Fig. 7.6(b). The resistance to motion
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is modeled by a torsional spring. The length of the pseudo-rigid link, r , is

r = L + l

2
, (7.1)

where l is the length of the flexible segment and L is the length of the rigid segment.
The value of the torsional spring constant, K , is

K = EI

l
, (7.2)

where E is the Youngs modulus, and I is the area moment of inertia. This model is
quite accurate for large deflections for cases where L is much greater than l.

Fixed-Pinned Segment [19] A long, flexible, cantilever beam with a force at the
free end is shown in Fig. 7.6(c). The end of the beam follows a path that is very
nearly circular for a very large deflection. This implies that the deflection can be
accurately modeled by two rigid links pinned at the center of the circular path.
Figure 7.6(d) shows the pseudo-rigid-body model for the beam. The location of
the characteristic pivot is defined by the nondimensional “characteristic radius fac-
tor,” γ . The length of the pseudo-rigid link, r , is

r = γ l. (7.3)

The resistance to deflection is modeled by a torsional spring with a torsional spring
constant, K , of

K = γKΘ

EI

l
. (7.4)

The deflections of the beam are now easily calculated. The vertical deflection, b, is

b = γ l sinΘ, (7.5)

where Θ is the angle of the pseudo-rigid-link. The horizontal deflection, a, is

a = l(1 − γ ) cosΘ. (7.6)

Typical values of Kγ and Θ are 0.85 and 2.65, respectively. The boundary con-
ditions for the fixed-pinned beam described earlier are one end fixed (force and
moment reactions), and the other end pinned (force reactions only).

Other Segments Pseudo-rigid-body models have been developed for other types
of segments, including fixed-guided segments, functionally binary pinned-pinned
segments, beams loaded with a moment at the end, and beams with follower loads.

Mechanisms. The real power of the pseudo-rigid-body model for individual seg-
ments is realized when they are applied to compliant mechanisms that contain such
elements. For example, consider the compliant bistable mechanism illustrated in
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Fig. 7.7 (a) A bistable
compliant mechanism and
(b) its pseudo-rigid-body
model

Fig. 7.7(a). Since the flexible segments have the geometry and boundary condi-
tions of the fixed-pinned segment discussed earlier, they can be modeled using the
pseudo-rigid-body model for that segment. The resulting pseudo-rigid-body model
for the mechanism is shown in Fig. 7.7(b). This mechanism will be discussed in
more detail as an example.

Example model. Consider a brief example for the compliant, micro, bistable
mechanism illustrated in Fig. 7.7(a) [29]. Its corresponding pseudo-rigid-body
model is shown in Fig. 7.7(b). The torsional spring constants are calculated from
the geometry and material properties. The potential energy, V , for the mechanism is

V = 1

2
(K2ψ2 + K3ψ3), (7.7)

where Ki is the spring constant for joint i, and

ψ2 = (θ2 − θ20) − (θ3 − θ30) and ψ3 = (θ4 − θ40) − (θ3 − θ30) (7.8)

and θi is the angle of link i, which can be found using traditional kinematic analysis.
The input torque, M2, is

M2 = dV

dθ2
= K2ψ2(1 − h32) + K3ψ3(h42 − h32), (7.9)

where

h32 = r2 sin(θ4 − θ2)

r3 sin(θ3 − θ4)
and h42 = r2 sin(θ3 − θ2)

r4 sin(θ4 − θ3)
. (7.10)

The second derivative of the potential energy (the stiffness) is

d2V

dθ2
2

= K2
(
1 − 2h32 + h2

32 − ψ2h
′
32

)

+ K3
[
h2

42 − 2h42h32 + h2
32 + ψ3

(
h′

42 − h′
23

)]
, (7.11)
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where

h′
32 = dh32

dθ2
= r2

r3

[
cos(θ4 − θ2)

sin(θ3 − θ4)
(h42 − 1) − sin(θ4 − θ2) cos(θ3 − θ4)

sin2(θ3 − θ4)
(h32 − h42)

]

,

(7.12)

h′
42 = dh42

dθ2
= r2

r4

[
cos(θ3 − θ2)

sin(θ3 − θ4)
(h32 − 1) − sin(θ3 − θ2) cos(θ3 − θ4)

sin2(θ3 − θ4)
(h32 − h42)

]

.

(7.13)
The potential energy curve (equation (7.9)), the required crank torque (equation
(7.11)), and the second derivative of potential energy (equation (7.13)) are particu-
larly useful in defining the mechanism behavior. The input torque is zero at points of
relative minimum (stable equilibrium position) or maximum (unstable equilibrium)
potential energy. The global minimum of potential energy occurs when the mecha-
nism is in its undeflected position. This position is shown in solid lines in Fig. 7.7(a).
The second stable equilibrium position has some energy stored but is a local mini-
mum of potential energy and therefore is a stable equilibrium position. The energy
stored is evident in the deflected member shown in dashed lines in Fig. 7.7(a).

7.2 Example Compliant Mechanism Research Areas

There are many active research topics in compliant mechanisms and new ar-
eas continue to be discovered. A subset of topics is mentioned here and then
three examples are discussed in more depth. Compliant mechanism design meth-
ods have been an important area of research. This includes optimization meth-
ods [10, 11, 23, 27, 43, 45, 48, 50, 56], design of precision flexures [6, 16, 17,
31, 46, 54], building blocks [30], and the pseudo-rigid-body model approach dis-
cussed previously. Classes of compliant mechanisms studied include multistable
mechanisms [4, 5, 28, 33, 41], metamorphic mechanisms [8, 9, 52], contact-aided
compliant mechanisms [3, 13, 34, 35], compliant joints [40, 49, 55], medical de-
vices [7, 36], origami inspired mechanisms [12] and statically balanced mecha-
nisms [14, 42]. Analysis of nonlinear deflections [2, 15] and dynamics of compliant
mechanisms [51, 53] are two of many analysis topics under study. Three examples of
compliant mechanism research areas are provided next, including microelectrome-
chanical systems (MEMS), biomedical implants, and lamina emergent mechanisms.

7.2.1 Microelectromechanical Systems (MEMS)

Compliant mechanisms2 are well suited for application at the micro scale. The fact
that they can be fabricated from a single layer makes them compatible with many

2This section is based on Compliant Mechanisms, by L.L. Howell in Encyclopedia of Nanotech-
nology, Editor: B. Bhusham, Springer, 2012, used with permission.
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Fig. 7.8 Texas Instruments
Digital Micromirror Device
(DMD™) uses compliant
torsion hinges to facilitate
mirror motion. (Illustration
courtesy of Texas
Instruments)

MEMS fabrication methods. The elimination of assembly and friction is also impor-
tant for micro devices. Examples of MEMS compliant mechanisms are shown here
to illustrate their properties and to demonstrate a few applications.

Digital Micromirrors One of the most visible commercially available microelec-
tromechanical systems is Texas Instruments Digital Micromirror Device (DMD™)
which is used in applications such as portable projectors. The DMD is a rectangular
array of moving micromirrors that is combined with a light source, optics, and elec-
tronics to project high quality color images. Figure 7.8 shows the architecture of a
single DMD pixel. A 16 micrometer square aluminum mirror is rigidly attached to a
platform (the “yoke”). Flexible torsion hinges are used to connect the yoke to rigid
posts. An applied voltage creates an electrostatic force that causes the mirror to ro-
tate about the torsion hinges. When tilted in the on position, the mirror directs light
from the light source to the projection optics and the pixel appears bright. When
the mirror is tilted in the off position, the light is directed away from the projection
optics and the pixel appears dark. The micromirrors can be combined in an array on
a chip, and each micromirror is associated with the pixel of a projected image. The
torsion hinges use compliance to obtain motion while avoiding rubbing parts that
cause friction and wear. The hinges can be deflected thousands of times per second
and infinite fatigue life is essential.
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Fig. 7.9 The strain on a
compliant diaphragm of a
piezoresistive pressure
sensors results in a detectable
change in resistance, which is
correlated with the pressure

Fig. 7.10 This accelerometer
makes use of compliant legs
that deflect under inertial
loads. The deflection results
in a detectable change in
capacitance and is correlated
with the corresponding
acceleration

Piezoresistive Pressure Sensors A sensor is a device that responds to a physi-
cal input (such as motion, radiation, heat, pressure, magnetic field), and transmits a
resulting signal that is usually used for detection, measurement, or control. Advan-
tages of MEMS sensors are their size and their ability to be more closely integrated
with their associated electronics. Piezoresistive sensing methods are among the most
commonly employed sensing methods in MEMS. Piezoresistance is the change in
resistivity caused by mechanical stresses applied to a material. Bulk micromachined
pressure sensors have been commercially available since the 1970s. A typical de-
sign is illustrated in Fig. 7.9. A cavity is etched to create a compliant diaphragm that
deflects under pressure. Piezoresistive elements on the diaphragm change resistance
as the pressure increases; this change in resistance is measured and is correlated
with the corresponding pressure.

Capacitive Acceleration Sensors Accelerometers are another example of com-
mercially successful MEMS sensors. Applications include automotive airbag safety
systems, mobile electronics, hard drive protection, gaming, and others. Figure 7.10
illustrates an example of a surface micromachined capacitive accelerometer. Ac-
celeration causes a displacement of the inertial mass connected to the compliant
suspension, and the capacitance change between the comb fingers is detected.
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Fig. 7.11 A schematic of a
thermomechanical in-plane
microactuor (TIM) that uses
compliant expansion legs to
amplify the motion caused by
thermal expansion

Thermal Actuators A change in temperature causes an object to undergo a
change in length, where the change is proportional to the material coefficient of
thermal expansion [22]. This length change is usually too small to be useful in
most actuation purposes. Therefore, compliant mechanisms can be used to amplify
the displacement of thermal actuators. Figure 7.11 illustrates an example of using
compliant mechanisms to amplify thermal expansion in microactuators. Figure 7.12
shows a scanning electron micrograph of a Thermomechanical In-plane Microactu-
ator (TIM) illustrated in Fig. 7.11. It consists of thin legs connecting both sides of a
center shuttle. The leg ends not connected to the shuttle are anchored to bond pads
on the substrate and are fabricated at a slight angle to bias motion in the desired
direction. As voltage is applied across the bond pads, electric current flows through
the thin legs. The legs have a small cross sectional area and thus have a high electri-
cal resistance, which causes the legs to heat up as the current passes through them.
The shuttle moves forward to accommodate the resulting thermal expansion. Ad-
vantages of this device include its ability to obtain high deflections and large forces,
as well as its ability to provide a wide range of output forces by changing the number
of legs in the design.

7.2.2 Biomedical Compliant Mechanisms

Compliant mechanisms are well suited for application in biomedical applications
because of their low wear, the ability to be fabricated of biocompatible materials,
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Fig. 7.12 A scanning
electron micrograph of a
thermal actuator illustrated in
Fig. 7.11

and their compactness. There are many possible research areas and applications, and
one implant is described here as a illustrative example.

The design objective of the spinal implant is to restore healthy physiologic
biomechanics to the degenerated spinal segment. Because the healthy motion and
the degree of mechanical dysfunction of the spine varies significantly from person
to person [37, 39], the device is tailorable to the needs of the patient via surgeonse-
lectable inserts. There may also be therapeutic benefits to intentional adjustment of
the devices stiffness to induce and support remodeling of the surrounding tissue ar-
chitecture [44]. This example discusses the design and validation of a spinal implant
capable of nonlinear stiffness and adjustability, including analytical and numerical
models, benchtop, and cadaveric testing results.

Example Implant Design A compliant mechanism3 was designed as a spinal
implant to share load with a damaged or diseased intervertebral spinal disc, as shown
in Fig. 7.13.

The baseline configuration of the spinal implant is based on the lamina emergent
torsional (LET) joint [47]. The LET geometry offers advantages in terms of manu-
facturability and independently controlled flexibility in multiple directions [24, 25].
The device consists of a LET joint that has been split into two parts that are indepen-
dently attached to the vertebral pedicles. The vertebra themselves act as semirigid
connections between the two parts of the LET joint. The attachment to the verte-
bral pedicles is accomplished via pedicle screws. Each half of the baseline device

3This section is based on “Spinal Implant Development, Modeling, and Testing to Achieve Cus-
tomizable and Nonlinear Stiffness” by E. Dodgen, E. Stratton, A.E. Bowden, L.L. Howell, in Jour-
nal of Medical Devices, vol. 6, doi:10.1115/1.4006543, 2012. Used with kind permission © ASME.

http://dx.doi.org/10.1115/1.4006543
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Fig. 7.13 Prototype of the baseline configuration

Fig. 7.14 Deflected positions
of the baseline configuration

configuration is composed of two attachment posts, two flexures, and a central con-
necting beam. The two flexures and the central connecting beam form a C-shape.
The bilateral components are positioned on either side of the two vertebral bodies
to which they are attached. Optional inserts adjust the force-deflection response of
the flexures to meet the target spinal kinetic response deemed appropriate for the
individual patient. Figure 7.14 shows the baseline configuration deflected in the two
modes of loading for which it was designed.

The optional contact-aided insert design is configured as two parts which connect
together and attach to the central connecting beams of the baseline device. The
elliptical contact surfaces of the inserts are designed such that as the flexures of
the baseline configuration deflect during spinal motion, they come into contact with
the surfaces, altering the force deflection relationship in a controlled and specific
manner, as shown in Figs. 7.15 and 7.16.

Through alteration of the elliptical parameters for the contact surfaces, the insert
can be modified to provide a wide range of variability in stiffness. The intended use
is for clinicians to select the desired insert configurations appropriate to the patient
pathology. If the response of the implant needs to be modified due to changes in the
patient pathology, then the insert can be replaced without changes to the pedicular
attachment sites. Figure 7.17 displays a prototype of the insert and how it attaches to
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Fig. 7.15 Contact-aided flexure shown deflected on a circular contact profile

Fig. 7.16 Contact-aided
flexure and two different
contact profiles

Fig. 7.17 Contact-aided
attachment for baseline
configuration

the baseline configuration of the implant. The dimensions of the baseline configu-
ration and the semimajor a and semiminor b axes of the elliptic surfaces are shown
in Fig. 7.18. The surfaces of the insert are positioned such that the flexures come
into contact with them as the device is pulled in tension (i.e., during flexion and
during contralateral bending) or compressed (i.e., during extension and during ipsi-
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Fig. 7.18 Baseline
configuration with contact
surface dimensions defined

lateral bending). The elliptical geometry of the insert used in conjunction with the
flexures geometry defines the stiffness of the implant. The ideal design performance
of the device was evaluated using analytical modeling, finite element modeling, and
benchtop testing of prototypes.

7.2.3 Lamina Emergent Mechanisms (LEMS)

Lamina emergent mechanisms (LEMs)4 are mechanical devices fabricated from
planar materials (laminae) with motion that emerges out of the fabrication plane.
They achieve their motion from the deflection of flexible members (and are there-
fore compliant mechanisms [21]) and are monolithic within each planar layer. The
attraction of LEMs lies in their potential to perform sophisticated mechanical tasks
with simple topology. The ability to fabricate them from planar layers of material
makes it possible to pursue manufacturing using simplified processes common to
sheet materials. Thus, LEMs offer the potential for high performance, compact de-
vices that can be fabricated at low manufacturing cost, but with the tradeoff of chal-
lenging design issues. The development of fundamental principles in LEMs has the
potential to release a flood of new LEM applications [26]. Consider some generic
examples of LEMs. Figure 7.19(a) shows a pantograph mechanism (a multidegree-
of-freedom device used for scaling force or motion) and Fig. 7.19(b) shows a mul-
tistage mechanism. Plan views of the devices are shown on the left and prototypes
on the right. Figure 7.20(a) is a scanning electron micrograph of a rigid-link, three-
degrees-of-freedom micromechanism[32] that is fabricated using planar layers of
material and has motion out of the plane. A compliant counterpart is shown in
Fig. 7.20(b).

4This section is based on “Lamina Emergent Mechanisms and Their Basic Elements,” by J.O.
Jacobsen, B.G. Winder, L.L. Howell, and S.P. Magleby, Journal of Mechanisms and Robotics,
vol. 2, No. 1, 011003-1 to 011003-9, 2010. Used with kind permission © ASME.
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7.2.3.1 Advantages of LEMs

The interest in LEMs comes from the advantages inherent in their nature: being
fabricated in a plane, having a flat initial state, and being monolithic. Each of these
characteristics and its associated advantages are briefly described below.

Fabricated in a Plane The fact that LEMs can be fabricated from planar layers
influences both what processes can be used for their manufacture and what materi-
als may be used in their construction. The use of low-cost, high-quality sheet goods
has the potential to dramatically reduce cost for high-volume production. At the
microlevel, LEMS can be fabricated using single-layer MEMS fabrication meth-
ods and materials, which offers significant cost and reliability advantages. It also
provides opportunities for complex out-of-plane motion with only a single layer.

At the macrolevel, manufacturing processes used to make static structures or
components for assembly can be used to create mechanisms capable of sophisti-

Fig. 7.19 Examples of
LEMs, including
(a) a pantograph mechanism,
and (b) a multiple stage
platform. In both (a) and (b)
the darker sections in the
schematics are flexible
elements. The pictures on the
right are polypropylene
models

Fig. 7.20 Scanning electron micrographs (SEMs) of (a) a rigid-link three-degrees-of-freedom mi-
croplatform made using multiplelayers, and (b) a compliant counterpart
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cated motions and complex tasks. Example processes include stamping, fine blank-
ing, laser cutting, water jet cutting, plasma cutting, and wire electrical discharge
machining (EDM). Some of these processes, such as stamping, offer significant cost
advantages for high-volume production.

Flat Initial State The potential for many LEMs to have a flat initial state provides
opportunities for extreme compactness. Compact mechanisms are particularly at-
tractive in applications with highly constrained space. Another advantage is found
in applications where it is important for the device to be compact during transport
and then deployed when at its location of operation. An obvious advantage of a
flat initial state is compact packaging and shipping, which can mean a significant
reduction in the cost of handling, storing, and shipping high volumes of devices.

Not all LEMs will be flat after fabrication because some may be shaped using the
same processes used to create the mechanism (e.g., stamping operations). There is
also the possibility of using residual stresses in MEMS processes to move the after-
fabricated position out of plane. But the nonflat mechanisms still have the charac-
teristic of being monolithic, which is discussed next.

Monolithic The single-piece, or monolithic, nature of LEMs brings with it many
of the characteristics of compliant mechanisms in general. The creation of con-
trolled motion without pin joints provides opportunities for increased precision be-
cause of the elimination of backlash and wear. Weight can be reduced by using
compliant mechanisms, and friction between rubbing parts can be reduced or elim-
inated. While multilayer LEMs require assembly, for monolithic devices, assembly
of mechanism parts is often unnecessary.

7.2.3.2 Challenges of Lamina Emergent Mechanism Design

Taking advantage of the benefits of lamina emergent mechanisms often requires
overcoming their inherent challenges. First, the desired motions are often too large
to be modeled using linearized equations such as those commonly used in beam
equations or linear finite element analysis. Thus, any successful modeling approach
must be capable of addressing the intrinsic nonlinearities of the problem. Second,
there are singularities inherent in LEM analysis because of the planar nature of the
fabricated position. LEMs are change-point mechanisms in their fabricated state,
and multiple motions are possible for a given input. Third, unlike those in rigid-
body mechanisms, the motions in LEMs are highly coupled with stress, fatigue, and
energy stored in a system.

By leveraging the unique performance and cost-saving characteristics possible
with LEMs, many innovations become possible. Improvements can be made to ex-
isting products, and new products with unprecedented performance can be created.
Products that were economically impractical with other technologies could become
viable in a competitive marketplace with LEM technology.
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Fig. 7.21 Cereal boxes and
other packaging could be
used to create entertaining
games for children

7.2.3.3 Potential Applications of LEMs

Various categories of opportunities5 are enabled by combining the advantages of the
different functional characteristics of LEMs. Descriptions of these opportunities are
below.

Disposable Mechanisms By using low-cost, planar manufacturing techniques to
create mechanisms with little or no assembly required, production of LEMs can
be very inexpensive. Flat initial states can further reduce costs through compact
shipping. Such low-cost mechanisms could be considered disposable.

There are many possible applications for disposable LEMs. Sterile products
could use emerging packaging so that opening the packaging causes a motion to
present the non-sterile end to the user for easy removal. Cereal boxes and other card-
board packaging could have LEMs that emerge into entertaining games for children
(see Fig. 7.21).

Radio frequency identification is becoming more common in credit cards, allow-
ing users to complete transactions more quickly and easily. However, this can also
be a source for identity theft by scanning a card in someones pocket. A LEM could
be used as a credit card Faraday cage to cover the chip until the device is deployed
for use (see Fig. 7.22). Alternatively, the receiving or signaling circuits could remain
open until the user actuates a LEM to make electrical contact during a credit card
transaction. The low cost of these devices allows companies to continue mailing
credit card offers that are often viewed as disposable.

Novel Arrays An array in this context is defined as a patterned arrangement, nor-
mally in rows and columns. LEMs that are composed of an array of mechanisms

5This section is based on “Identifying Potential Applications for Lamina Emergent Mechanisms
Using Technology Push Product Development,” by N.B. Albrechtsen, S.P. Magleby, and L.L. How-
ell, in Proceedings of the ASME International Design Engineering Technical Conferences, Mon-
treal, Quebec, Aug. 15–18, 2010, DETC2010-28531, used with permission. Used with kind per-
mission © ASME.
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Fig. 7.22 A LEM used as a
Faraday cage to cover the
radio frequency identification
chip on credit cards to prevent
identity theft

Fig. 7.23 A television where
each pixel is a LEM, creating
a moving, three-dimensional
image

could benefit from all three functional characteristics. If a large array with many
mechanisms required manual assembly, the labor costs associated with production
might preclude that product from becoming economically viable. By using a stamp-
ing process, eliminating assembly through compliance, and transporting compactly
in the flat initial state, price can be reduced significantly. LEMs may enable many
novel arrays that were previously cost prohibitive.

LEMs that use arrays are perhaps the largest group of potential applications for
the technology. A LEM printed circuit board could integrate a qwerty key-board
with its underlying circuitry into a single piece device. A television screen in which
each pixel could emerge from the viewing plane would create a more realistic three
dimensional experience (see Fig. 7.23). A similar array could be used to give tactile
responses to users in a virtual reality environment.

LEM arrays would experience widespread use if applied to electricity generation.
Energy could be harvested from urban pedestrian traffic, wind, waves, or highway
pavement compression.

Creating an array of small surfaces that can be oriented to face in different direc-
tions would be useful in many application areas. A guided LEM solar array would
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Fig. 7.24 A guided array of
solar panels mounted on a
vehicle

Fig. 7.25 Using LEMs, heat
fins could be reconfigured
into insulation, allowing a
dynamic thermal resistance

dramatically reduce the bulk of current solar trackers, perhaps allowing them to be
mounted on the surfaces of vehicles or buildings (see Fig. 7.24). A directional array
could be used to reflect, combine, and diffract various media such as waves, signals,
or light. A directional array could create dynamic acoustics, radar-diverting stealth
surfaces, improved satellites, or artistic lighting effects. The mechanism would even
have the ability provide a variable surface texture. This might be used to manipulate
drag characteristics for guiding projectiles, create air resistance for rapid braking, or
regulate flow rates in pipes. It could also be used to change the traction of contact
surfaces.

LEM arrays could become powerful tools to influence thermal properties. By
stacking layers of LEMs, a kinetic insulation could be possible. Deploying the
mechanisms would increase the amount of air contained in the insulation, thereby
increasing the thermal resistance. This is advantageous over existing kinetic insu-
lations because it only requires a simple mechanical input instead of pressuriza-
tion [38]. The layers of LEM insulation could even be reconfigured into heat fins,
converting the device from a heat shield into a heat sink (see Fig. 7.25).

Deployable rebar structures are another application that could benefit from a pat-
tern of co-planar joints. Current rebar structures require extensive manual assembly
that consists of fastening rods together using wire and hand tools. Instead, large
sections of rebar structures could be stamped and deployed into the desired config-
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Fig. 7.26 Microscopic
LEMs could be placed in the
bloodstream to erode plaques
from arteries

uration with one or two simple inputs. This could dramatically reduce labor costs
and the duration of construction projects, which may be particularly important for
rebuilding after a disaster.

Scaled Mechanisms The planar fabrication and potential to eliminate assembly
through compliance allows for scaling to very small sizes. Using micromachining
techniques, LEMs can be developed on the micro scale. In addition, mechanisms
that have been developed at the micro level can be scaled to fit larger applications.

Autonomous micro LEM devices could perform various operations on individ-
ual cells. Cells could be physically manipulated, tested for various diseases, and
individually medicated. A large number of micro cutting mechanisms in the blood-
stream could erode plaques from arterial walls, avoiding the need for invasive stents
or bypass surgery (see Fig. 7.26). Similar mechanisms could be used to clean indus-
trial piping. The devices could be removed from the process flow with magnets in
order to maintain production rates.

Surprising Motion LEMs can have complex, unusual, and non-intuitive motion.
A flat initial state causes LEM designs to have a very simple topology, and compli-
ance allows LEMs to be monolithic. Therefore, the complex motion emerging from
a single sheet of material is often impressive to users.

The complex motion that springs from a simple LEM can surprise users and
attract attention. This could be used in pop-up advertising that deploys when users
open a products packaging for the first time. This could also create entertaining three
dimensional board game layouts (see Fig. 7.27). Kits could be sold to help crafters
create emerging images in scrap book pages. LEM business cards would increase
interest and be memorable to potential customers.

Shock Absorbing The compliant nature of LEMs induces energy storage dur-
ing motion. Not all of the energy is stored in LEMs. Some of the energy can be
dissipated by conversion into heat and friction, giving LEMs an ability to dissipate
energy as well.
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Fig. 7.27 A surprising
three-dimensional board
game made with a LEM

Fig. 7.28 Shock absorbing
LEMs could allow better
control over the spring and
damping properties of athletic
turf or flooring

The energy absorption of LEMs can be useful in many shock-absorbing products.
Athletic flooring, turf, and footwear with a layer of energy absorbing LEMs could
allow more control over the spring and damping properties than current padding
(see Fig. 7.28).

This could reduce sports injuries that develop due to repeated impact. Protective
armor could be manufactured with multiple layers of energy absorbing and dissi-
pating LEMs, possibly improving upon current bullet-proof technologies [1]. A de-
ploying spring system that encases sensitive electronics could cushion against drops
that typically cause damage, and a flexible suspension matrix for crates of produce
could also reduce bruising and cracking in the fruit and egg industries. Cushioning
LEMs could be stamped into metal seating surfaces to allow a more comfortable
distribution of body pressure.

Deployable Mechanisms LEMs can be transported in their flat initial state and
then deployed onsite into an expanded configuration. This has the potential to dra-



7 Compliant Mechanisms 213

Fig. 7.29 Deployable
mechanisms could be the size
of a credit card to fit into a
wallet for emergencies.
Examples include (a) an
adrenaline injector or (b) an
inhaler

matically increase portability and decrease the cost of handling, storing, and ship-
ping LEMs.

Mechanisms and structures with significant empty space are prime candidates to
become deployable mechanisms. A deploying desk and chair could eliminate the
need for an extra room for a home office, making them more available to the general
population. International barge containers could be collapsed during return transport
to reduce the cost associated with shipping empty space. Temporary structures could
be LEMs, allowing innovative,deploying camping shelters, green houses, and field
medical rooms.

Many deployable devices could be the size of a credit card and easily carried in
a wallet for unexpected situations (see Fig. 7.29). A compact blood lancet for blood
testing would be useful for diabetes patients. Credit card sized adrenaline injectors
could be useful for people with serious allergies. A small inhaler could easily be
carried by asthma patients for use in case of emergencies. Even a single-exposure,
disposable camera could fit inside a wallet in case of unplanned photograph oppor-
tunities.

7.3 Conclusion

Compliant mechanisms provide significant benefits for motion applications. They
can be compatible with many fabrication methods, may not require assembly, have
friction-free and wear-free motion, provide high precision and high reliability, and
they can integrate multiple functions into fewer components. The major challenges
associated with compliant mechanisms come from the difficulty associated with
their design, limited rotation, and the need to ensure adequate fatigue life. It is likely
that compliant mechanisms will see increasing use in mechanical systems at all size
scales and in many application domains as more people understand their advantages
and have tools available for their development.
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Chapter 8
Protein Molecules: Evolution’s Design
for Kinematic Machines

Kazem Kazerounian and Horea T. Ilieş

8.1 Introduction

Can we design protein molecules that are capable of binding to, inhibiting, or stimu-
lating biomolecular targets within the body, enabling researchers to develop person-
alized pharmaceuticals, or design more effective cancer therapies? Can we create
DNA strands that function as electronic switches on a chip or bioreactor? Can we
predict the role of proteins in the mechanics of the living cells and cure and erad-
icate potentially fatal diseases like malaria? Can we use biomolecular systems to
create and store energy? Or, more broadly, can we engineer biomolecular artifacts?
These are some of the profound, yet largely unanswered, questions raised in recent
decades. So why try to answer them again? Simply stated, finding such answers is a
more critical endeavor for our society and a more tangible task than ever before. We
are reaching a time when engineers and scientists can integrate the most recent ad-
vances in science, engineering, computation, and experimental capabilities to break
physical scale barriers and produce revolutionary artifacts.

The biological role of a protein is determined by its function, which, in turn,
is largely determined by its structure. Understanding protein folding, structure and
compliance is of great importance since many neurodegenerative diseases, such as
Parkinson’s and Alzheimer’s, as well as many cancers, Cystic fibrosis or Type II
diabetes, are generated by protein misfolding and accumulation. Furthermore, such
an understanding would allow researchers to develop new molecular carriers whose
sole purpose would be to deliver drugs where they are needed. At the same time,
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the fact that proteins are the “nano devices” developed through evolution by na-
ture suggests that the development of biomimetic artificial nano machines based on
polypeptide building blocks is not only promising, but may also be the most practi-
cal approach to develop the nano-machines of the future.

A protein molecule can exist in a denatured state that may be loosely compared
to an open string, whose particular shape has no relevance to its state. However,
when placed in an appropriate environment (i.e., solvent, PH, and temperature as
found, for example, in a cell environment), the protein folds to a complex 3D shape,
also called the native state of the protein. This process may take anywhere between
a few nano seconds to a few seconds. A protein in the native state can be denatured
by changing some of the environment parameters such as solvent, PH or tempera-
ture. However, when placed back in the appropriate environment, the protein returns
again to its native state. The repeatability of this process indicates that the final three
dimensional structure (tertiary structure) of the protein is intrinsic to its primary
structure (amino acid sequence). Therefore, in principle, this must be a predictable
state. This prediction, however, remains a fundamental challenge in computational
biology, and it is even being referred to as the “grand challenge” of the century.

Protein folding occurs under the effect of inter-atomic forces (among protein
atoms as well as between protein atoms and the atoms of the solvent). The final
conformation is a relatively stable configuration for which the total potential en-
ergy is globally minimized or in other words, the system is in stable static equilib-
rium.

There are two basic primary approaches used in ab initio folding simulations.
The first approach attempts to change the geometry of a molecule in order to mini-
mize its potential energy, which is often formulated as an optimization problem [18].
The major drawback of optimization-based methods is that the search usually gets
trapped in the local optima of the energy landscape. The second approach is based
on the dynamics of the protein chain movements and utilizes Molecular Dynamic
Simulations (MDS). MDS in protein folding are also divided into two main groups:
(1) All atom dynamic simulations [11] and (2) Torsion angle dynamic simulations
[23]. In all atom dynamic simulations, the atoms are simulated individually. By con-
trast, in torsion angle (or atom group) dynamic simulations, the formulation is based
on the fixed bond lengths, bond angles, chirality, and planarity, which significantly
reduces the degrees of freedom and consequently the computational expense. In
MDS methods, the equations of motion for individual atoms or atom groups are in-
tegrated in the time domain. A more recent method, Successive Kineto-Static Fold
Compliance has been introduced as a promising alternative to Molecular Dynamic
Simulations [30, 31].

As recent reviews indicate [6, 17, 22], both approaches are still far from being
able to predict the structure of a protein in its native state if an approximate initial
guess is not available. On the other hand, both approaches are promising contenders
to the difficult task of performing global optimization on the energy landscape de-
fined by a protein and its environment.

Moreover, the study of protein folding and interactions must take into account
the protein flexibility. Clearly, rigid sub-regions within the structure of a protein
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stabilize its conformation. At the same time, flexible regions allow the proteins
to change their conformation in a manner consistent with the constrains imposed
by rigid sub-regions, and hence perform their biological tasks. Therefore, pre-
dicting protein flexibility is a key task for understanding their function. At the
same time, taking advantage of protein mobility analysis can lead to a more real-
istic as well as computationally faster simulation of protein molecules. The crit-
ical factor in protein mobility analysis is, arguably, the formation of hydrogen
bonds.

For the remainder of this chapter, we will discuss some of the central kinematic
elements that can be used to model protein chains and to study their folding and flex-
ibility. We will conclude with a look at the challenges and opportunities of studying
proteins with the help of modern kinematic tools.

8.2 Protein Model

8.2.1 Protein Molecule as a Kinematic Chain

The authors have successfully modeled the protein molecule as a kinematic chain
of rigid bodies connected by revolute joints [6, 30, 31, 46–48]. Our model, which
has been implemented in PROTOFOLD—our in-house protein folding simulation
framework, fully defines the kinematic structure of the backbone (main chain) of the
protein polymer at the Zero Position as follows. The backbone of a protein chain that
contains M residues (amino acids) is defined as a serial chain of N + 1 solid links
connected by N revolute joints (see for example Fig. 8.1). Since each residue has
two revolute joints N = 2M . The revolute joints in each amino acid are ϕi and ψi ,
i = 1,M . We introduce a uniform notation of these angles as θj , j = 1,N , where

θj = ϕi, (8.1)

θj+1 = ψi, ∀j = 2(i − 1) and i = 1,M. (8.2)

The N revolute joints and solid links connecting them within the N degree of
freedom serial linkage are kinematically defined by a set of unit vectors u and body
vectors b:

• u0j1—Unit vectors along the dihedral joints θj . The first index indicates that
we use the zero-position configuration; the second index corresponds to the joint
number, and the third index indicates the chain number (e.g., the index of the
main chain is 1; side chains have indices larger than 1). Thus, u0j1 corresponds
to the unit vector along the ith joint of the main chain. In this paper we only focus
on the main chain and, therefore, the third index will always be equal to 1.

• b0j1—Body vector connecting a point on the dihedral joint axis of the angle θj

(specifically, a Nitrogen atom if j is odd, and α-Carbon atom if j is even) to
a point on the dihedral joint axis of the angle θj+1 (an α-Carbon if j is odd,
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Fig. 8.1 A triad segment of
an amino acid chain with
dihedral angles as generalized
coordinates

and a Nitrogen atom of the next residue if j is even). The indices have the same
meaning as defined above.

Note that in this configuration (Zero-Position, which is not a native conforma-
tion) all dihedral angles θj are defined to be zero. Furthermore, our selection for the
biological reference conformation as our Zero configuration implies that the pair
of body vectors b0j1 and b0(j+1)1 are identical for all residues in the chain in this
conformation. Thus, u0j1 and b0j1 need to be defined only for one residue.

The backbone structure of the protein in any Non-Zero configuration (when the
values of the dihedral angles θj are non-zero) can be found by a series of successive
rotations:

bj1 = [Rθ1,u011][Rθ2,u021] . . . [Rθj ,u0j1]b0j1, (8.3)

where j denotes the j th solid link in the protein chain and R is the screw ro-
tation matrix of angle θj about axis u0j1. In every peptide plane, assumed to be
rigid body in our formulation, the above equations result in the computation of two
body vectors bj1 and b(j+1)1. A similar procedure is also implemented for the side
chains.

The reduction in the computational time between the linkage model that we use
and the standard all-atom models is tremendous. If we assume that each amino
residue in the chain, on average, has 10 atoms (most have more), then the num-
ber of optimization variables in the majority of ab initio methods reduces from
10 · 3 · N to 2N variables. Considering that most optimization methods have a com-
putational cost proportional to the square of the number of variables (global search
based methods such as simulated annealing and genetic algorithms excluded), the
expected computational time (number of cost evaluations) reduction is 152 or 225
times. Additionally, in evaluating the cost function, the bond and angle energies are
no longer needed. This argument does not take into account the computational time
of the direct kinematics.
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8.2.2 Amber Potential and Force Field

PROTOFOLD employs the AMBER atomic force model [10] to describe the system
energy of a given conformation. AMBER describes the total potential energy of the
protein chain as a sum of the electrostatic and van der Waals energies between all
atoms. Note that there are several terms in the force field that represent the bond an-
gle and length energy changes (spring like effects) that are automatically eliminated
due to the rigid body assumption of the peptide planes. Therefore:

Epotential =
∑

i<j

(
Aij

r12
ij

− Bij

r6
ij

+ qiqj

εrij

)

, (8.4)

where Aij and Bij are the van der Waals and London dispersion terms; qi and qj

are the partial atomic charges, and ε is the dielectric constant (see [10, 15]).
The force between any two atoms is the negative derivative of the potential en-

ergy between those same atoms. Thus,

Fij = −12Aij

r13
ij

+ 6Bij

r7
ij

− qiqj

εr2
ij

. (8.5)

The combined force applied to each atom i is then the sum of the forces exerted
by all other atoms j :

Fi =
N∑

j=1

Fij , i �= j. (8.6)

8.3 Folding via Successive Kineto-Static Fold Compliance

In our approach, known as Successive Kineto-Static Fold Compliance Method, the
conformational changes of the peptide chain are driven by an inter-atomic force field
without the need for Molecular Dynamic Simulation. Instead, the chain complies
under the Kineto-Static effect of the force field in such a manner that each rotat-
able joint changes by an amount proportional to the effective torque on that joint.
This process successively iterates until all of the joint torques have converged to
zero. The resulting conformation is in a minimum potential energy state. PROTO-
FOLD, our own protein simulation platform, uses this methodology. It has been
shown that PROTOFOLD is orders of magnitude more efficient and robust than
traditional Molecular Dynamics Simulation [45].

The main steps in Successive Kineto-Static Fold Compliance are therefore de-
scribed below:

1. At a given set of joint angles, calculate the Cartesian coordinates of all atoms
in the protein molecule (Direct Kinematics using Zero-Position formulation dis-
cussed above).
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2. Calculate all the inter-atomic forces in this conformation (using the Amber Force
Field model discussed below).

3. Calculate the equivalent joint torques (τj ) using the well known relation between
the end-effector forces and the joint forces in robotics.

4. Calculate an effective change in each joint variable, proportional to that joint’s
equivalent torque τj (Δθj = kτj ) and rotate each joint accordingly.

5. Go back to step 1 until all the joint equivalent torques have diminished to zero
(within some small prescribed error).

8.4 Mobility

8.4.1 Formation of Hydrogen Bonds

The first class of approaches identifies rigid domains by comparing two confor-
mations of a protein [38, 50], and require experimental observations of proteins
as well as knowledge of atom coordinates obtained by crystallographic or NMR
techniques. Hence, the applicability of these methods is limited to known protein
conformational states.

The second class of approaches predict rigid subsets of a protein by using a single
protein conformation. This class of approaches includes molecular dynamics [14,
33], normal mode analysis [13], graph theory based [28] and kinematics based [41]
methods.

We have developed a novel mobility analysis based on the kinematic role of hy-
drogen bonds in the 3D structure of protein molecules [41, 42]. Our method predicts
the formation of hydrogen bonds, and identifies the rigid regions inside the protein
molecule, as well as the under-constrained flexible regions.

The hydrogen bonds that form between atoms of the main chain are identified
using our geometric criteria proposed in [41], which are based on published exper-
imental results. These bonds increase the complexity of the open loop kinematic
chain of the protein structure, and form multiple closed sub-chains. We infer from
the Grübler-Kutzbach criterion that the closed loops that have at most six joints are
rigid, and can be therefore replaced by a single rigid link.

Lines 1 to 14 in Algorithm 8.1 outline the mobility analysis developed in [41].
This rigidity analysis method was applied to some candidate proteins to design and
fabricate a nanoparticle (a new vaccine for SARS) [44]. Our procedure, based on 3D
structure of protein molecules, predicted that only one of the candidates is capable
of producing a stable nanoparticle, which was in agreement with the experimental
results.

We have extended our existing mobility analysis framework to study bonds that
form with/between atoms of the protein’s side-chains, which have a prominent role
in determining flexible and rigid regions of protein molecules. We have also ex-
tended the identification of rigid closed loops from [41] to include non-rigid (under-
constrained) closed loops and develop constraint equations for closed loops with
one or more degrees of freedom.
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Table 8.1 Geometric criteria to detect hydrogen bonds

αo βo r (Å)

Main-chain main-chain [110,180] [110,180] <2.5

Main-chain side-chain and side-chain side-chain [90,180] [90,180] <2.5

We show (1) how under-constraint closed loops determine rigid regions of protein
molecules, and (2) that the flexible regions predicted by our method correlate well
with the experimental observations for several proteins. A key advantage of the
rigidity analysis is the reduction of the number of degrees of freedom in our protein
model by up to 80 %.

A hydrogen bond is an interaction between a hydrogen atom with an electroneg-
ative atom (such as nitrogen and oxygen). It is increasingly recognized that these
comparatively weak bonds are crucial for the stabilization and function of protein
molecules as well as protein folding. Many in-depth studies of the hydrogen bonds
that form in proteins [2, 5, 34, 36, 51] provided considerable insight into the geom-
etry of hydrogen bonds, and a comprehensive review of the geometry of hydrogen
bonds has been conducted in [41]. Table 8.1 represents the extended set of geo-
metric criteria. Observe that not all side-chains are participating in hydrogen bond
interactions. Specifically, donor side chains are: SER, THR, ASN, HIS, GLN, LYS,
ARG, and TYR, while the acceptor side chains are SER, THR, ASN, GLU, GLN,
ASP, TYR. Figures 8.2 and 8.3 show the geometry of hydrogen bonds and illustrate
the formation of closed loops by these bonds.

All computations described here have been performed within the PROTOFOLD
platform, our in-house developed protein simulation software [30].

Fig. 8.2 Geometric
parameters of hydrogen
bonds

Fig. 8.3 A loop generated by a hydrogen bond
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8.4.2 Mobility Analysis

The Grübler-Kutzbach criterion given in (8.7) prescribes the i degrees of freedom
(DOF) of a 3D mechanism with L links and Pi joints:

DOF = 6(L − 1) − 5P1 − 4P2 − 3P3 − 2P4 − P5. (8.7)

This criterion is applicable to generic structures [20] with no special symmetries that
generate geometric singularities. Since there are no known non-generic structures
that have been observed in experimental observations [28], we can assume, without
loss of generality that protein structures do not contain such singularities.

We compute the topological (connectivity) information, which is then parsed to
extract the closed loops whose degrees of freedom are determined from equation
(8.7). Note that due to the fact that our kinematic model only contains revolute joints
with one DOF, P2 = P3 = P4 = P5 = 0. Therefore, for a closed loop containing 6
links, i.e., L ≤ 6, the resulting number of degrees of freedom of a closed loop will
be zero or less. This, in turn, means that the loop is kinematically over-constrained,
and it can be considered a rigid body. Consequently, the loops having more than
6 links are under-constrained and hence flexible. For instance, a loop with 8 links
and 8 joints has 2 degrees of freedom, which means controlling any 2 of its joints
completely determines the angles in the other joints. In some cases these loops can
be connected to each other and share one or more links. In such a case, DOF of the
system can not be calculated using (8.7).

For non-rigid (NR) loops with shared links, we compute the number of DOF
based on (8.8):

DOF =
m∑

i=1

(DOF)i −
n∑

j=1

Pj , (8.8)

where (DOF)i is the number of degrees of freedom of the ith loop in the group of
connected loops and Pj represents the degrees of freedom that are ‘used’ by the j th
shared joint. There is no restriction on which closed loops may be used as long as
they collectively involve all links and joints. One can develop a proof of (8.8) based
on an analogy with geometric constraint equations [24].

We use (8.8) to calculate DOF of the group of NR loops. If the DOF of the group
of NR loops is less than 1, then all links of these loops are rigid. In such a case, all
links are replaced with one single rigid link. For a group of NR loops with n DOF
(n > 0), there are n free joints and the rest of the joints are constrained.

It has been well documented in the robotics literature that the velocity state of
the end effector (Ẋ) in a serial chain is related to the actuated joint rates (q̇) through
the conventional manipulator Jacobian matrix (8.9).

Ẋ = J q̇. (8.9)
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Fig. 8.4 Three non-rigid 3D loops connected to each other—Red circles show shared joints

For the ith revolute joint, the ith column of the Jacobian is:

J =
(

ui
ui ∗ PiPH

)

, (8.10)

where ui is a unit vector along the ith joint and PiPH is a vector connecting a point
on the ith joint to the end effector. For a closed loop the first link and the end effector
coincide (PH = P1), and therefore (8.10) can be written as

J =
(

ui
ui ∗ PiP1

)

. (8.11)

Furthermore, in the system of (8.9), Ẋ becomes zero and therefore system (8.9) is
rewritten as:

J q̇ = 0, (8.12)

J (Δθ) = 0. (8.13)

For small displacements, the system of (8.12) can be approximated by (8.13) to
compute the change of the joints angles. Our specific procedure can be intuitively
explained by examining a sample group of connected NR closed loops shown in
Fig. 8.4. This example contains 3 loops and 6 shared joints in 3D (the example in
Fig. 8.4 is shown in 2D for simplicity), and the link numbers are underlined. The
number of joints, links and DOF of each loop are listed in Table 8.2. Using (8.8)
the DOF for this group of NR loops is equal to 1. After computing the Jacobian for
each loop (shown in Fig. 8.5), we extend each Jacobian from 6 × n (n is number
of joints in the loop) to 6 × m (m is total number of joints in the group of loops).
A zero column has been added for each joint that does not belong to that loop in the
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Table 8.2 Loops in the
example of Fig. 8.4 Loop # Joints # Links # Loop DOF

Loop1 8 8 2

Loop2 8 8 2

Loop3 9 9 3

Fig. 8.5 J1, J2, J3 are Jacobian matrices for loops in example shown in Fig. 8.4. NewJ1, NewJ2
and NewJ3 are the extended Jacobian matrices

extended Jacobian matrix. All extended Jacobian matrices have been combined to
get the overall Jacobian matrix (shown in (8.14)).

NewJacobian =
⎡

⎣
[NewJ1]
[NewJ2]
[NewJ3]

⎤

⎦ . (8.14)

Once the overall Jacobian matrix has been computed, we detect which joints can
change freely. We can prescribe changes for the angles of the independent joints in
(8.15) and solve the system of linear (8.16).

[
C1 C2 C3 . . . C19

]

⎡

⎢
⎢
⎢
⎢
⎣

Δθ1
Δθ2
Δθ3
. . .

Δθ19

⎤

⎥
⎥
⎥
⎥
⎦

= 0, (8.15)

[
C2 C3 C4 . . . C19

]

⎡

⎢
⎢
⎢
⎢
⎣

Δθ2
Δθ3
Δθ4
. . .

Δθ19

⎤

⎥
⎥
⎥
⎥
⎦

= [C1Δθ1
]
. (8.16)

The choice of independent joints cannot be arbitrary because it can lead to an
ill-defined Jacobian matrix. If all diagonal elements in the upper triangular matrix
of the combined Jacobian matrix are non-zero then the matrix is well-defined and
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Algorithm 8.1: Pseudo-code of the proposed mobility analysis procedure
input : Protein structure
output: Rigid subsets & Change of joint angles

Find Hydrogen bonds;
Build connectivity matrix;
Remove loose-end links and update connectivity matrix;
Build topological graph;
Find all cycles in the graph;
for every loop detected do

Check loop rigidity according to Grübler-Kutzbach criterion
if Loop is rigid then

Replace links of the loop with one rigid link
Update connectivity matrix

else
Continue search until all links have been considered

Search for all non-rigid loops (NR loops)
for every NR loop detected do

Find Degrees of Freedom (n)
if NR loops are connected then

Calculate DOF of connected loops
if DOF is < 1 then

Replace links of the loop with one rigid link
else

Go to 25
Combine all extended Jacobian matrices of any connected NR loop and build a
single Jacobian matrix for a group of connected loops

else
Build a Jacobian matrix for a single loop

Find the upper triangle matrix of Jacobian matrix
if All diagonal elements of upper diagonal matrix are not zero then

Last n loops are given joints
else

Change the positions of columns in Jacobian matrix
Repeat 24 until given joints are found;

Replace independent joints angle change
Reduce the Jacobian matrix to new Jacobian
Calculate the change of the remaining joints angles

we can assume that the last n (number of DOF − 1 in this example) joints are
independent. Otherwise we have to switch columns until we eliminate all the zeroes
of the diagonal.

Solving the system of linear equations provides us with the change of the joint
angles. Assuming P1 as an independent joint in our example, we obtain 18 equations
and 18 unknowns (as shown in the system of (8.16)). Solving this system of linear
equations results in the values of all other joint angles. The pseudo-code of the
procedure is shown in Algorithm 8.1.
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Table 8.3 Modified mobility analysis results. The percentage in row VI shows the amount
of reduction in the number of DOF compared to row II. (‘MC-MC Hbonds’ represents main-
chain/main-chain hydrogen bonds)

Protein Name

1YVQ 2I88 1Z15 2HHB

I No. of amino acids 141 176 342 141

II Total No. of DOF 282 352 684 282

III No. of MC-MC Hbonds 90 98 140 82

IV No. of DOF considering just MC-MC Hbonds 52 79 303 64

V No. of all types of Hbonds 106 110 191 95

VI No. of DOF considering all types of Hbonds using
new mobility analysis

39
(86 %)

37
(89 %)

254
(62 % )

59
(79 %)

8.4.3 Results of Our Mobility Analysis

We have applied the mobility analysis procedure discussed above to study several
proteins obtained from PDB, namely 1YVQ, 2I88, 1Z15, 2HHB. The Cartesian co-
ordinates of all atoms except hydrogen atoms were obtained from PDB, and the
hydrogen atom positions were identified via PROTOFOLD. The structural proper-
ties and the DOF of each protein are shown in the first two rows of Table 8.3. The
comparison between rows III and V of this table shows the contribution of the hy-
drogen bonds formed with side-chains atoms. By considering all types of hydrogen
bonds as well as all types of loops (both over-constrained and under-constrained) we
reduce the total DOF of protein molecules by an average of 80 %. This reduction in
the number of degrees of freedom is in fact expected since the inclusion of hydrogen
bonds formed with side chain atoms reduce the flexibility of protein molecules.

To validate the results we have compared different conformational changes from
experimental observations for each protein, to infer which regions in the protein are
flexible or rigid. Figure 8.6 illustrates a protein molecule with 2 known 3D structures
in PDB (1YVQ and 1YVT). Figure 8.7 shows the deference between dihedral angles
of the two structures of this protein molecule. By comparing these two configura-
tions, one can conclude that relatively large changes in dihedral angles correspond
to flexible regions of the protein molecule. In the same figure we label the flexi-
ble domains predicted by the method proposed in this paper with red circles. These
results show that our method correctly predicts almost all of the expected flexible
domains for these molecules. The same technique has been applied to another pro-
tein molecule with 2 structures in PDB (2HHB and 1HHO), shown in Figs. 8.8
and 8.9.
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8.5 Mechanical Model for Hydrogen Bonds

In a broad sense, the difficulty and complexity of experimental studies aimed at
measuring the stiffness of protein molecules are inversely proportional to the size
of the molecules, while a larger molecules is computationally more expensive to
analyze. The stiffness of protein molecules has been studied experimentally by using
Atomic Force Microscopy (AFM) [19, 35, 39, 49], as well as laser tweezers [32].
Computational models have been developed to predict the mechanical properties of
molecules [9, 21, 27].

Fig. 8.6 The 3D structure of
1YVQ

Fig. 8.7 Rigid and flexible regions of 1YVQ
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One of the key mechanical properties of protein molecules is their stiffness,
which, in turn, is driven by essentially non-rigid hydrogen bonds. The authors and
their research group has recently proposed a novel mechanical model to capture the
flexibility of the hydrogen bond in terms of three interconnected springs. Under the
assumption of small displacements, the linear spring constants are determined based
on the available information in the literature about the energy of a hydrogen bond.
By computing the equivalent stiffness ellipsoid for each bond, one can predict the
stiffness of protein molecules. We estimated the stiffness of three protein molecules

Fig. 8.8 The 3D structure of
2HHB

Fig. 8.9 Rigid and flexible regions of 2HHB
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based on our mechanical model, which shows a reasonable agreement with data
obtained experimentally.

8.5.1 Hydrogen Bond Energy in the Literature

The hydrogen bond energy depends on the chemistry of the donor and acceptor
atoms as well as their relative position in space. Two commonly used energy func-
tions for the hydrogen bonds are the Morse function and the Lennard-Jones (LJ)
potential [12, 16, 25, 29], which require the determination of a number of constants.

The following model based on the LJ function has been described by Irbäck et
al. in [26] to describe the energy of hydrogen bonds for proteins in water:

ELJ = ε

[

5

(∑

hb

/r

)12

− 6

(∑

hb

/r

)10]

∗ g(α,β),

g(α,β) = (cosα cosβ)1/2 if α,β > 90◦,

g(α,β) = 0 if α,β < 90◦, (8.17)

where ELJ is the proposed energy function based on the LJ potential, and most
parameters are empirically defined based on protein folding simulations. In (8.17),∑

hb = 2 Å, and ε = 3.1 Å for bonds formed only with main chain atoms, and
ε = 2 Å for main chain-side chain bonds. Noted that this energy function depends
on distance r and angles α and β .

Two other angle-dependent models have been proposed by Park et al. [25] based
on the Morse function (8.18) and LJ function (8.19). The parameters in their models
come from Density Functional Theory (DFT) calculations, complemented with ge-
netic algorithms optimization. The model based on the Morse function is described
by:

EMorse = D0
[
1 − e−α(r−r0)

]2 ∗ g(α,β),

g(α,β) =
∑(

ai cosi θ + bi sini θ
) ∗
∑(

cj cosj θ + dj sinj θ
)
, (8.18)

where D0 = 7.785 kcal/mol, α = 1.234 Å
−1

, a1 = −0.106, b1 = 0.671, c1 = 1.494,
d1 = −1.494, a2 = −2.953, b2 = 2.976, c2 = −0.059, d2 = 2.906, a3 = 1.494,
b3 = −0.224, c3 = −0.482, and d3 = −1.918. Furthermore, the model using the LJ
potential is described by:

ELJ = v0
[
5(d0/d)12 − 6(d0/d)10)

] ∗ g(α,β),

g(α,β) =
∑(

ai cosi θ + bi sini θ
) ∗
∑(

cj cosj θ + dj sinj θ
)

(8.19)

where D0 = 9.663 kcal/mol, a1 = 0.153, b1 = −0.224, c1 = −0.106, d1 = −0.388,
a2 = −0.012, b2 = −0.624, c2 = 0.788, d2 = −0.224, a3 = 0.224, b3 = 2.989,
c3 = −0.765, and d3 = 0.341.
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Fig. 8.10 Different energy
functions of hydrogen bonds.
The horizontal axis is either
hydrogen bond length (r) for
the functions proposed by
Irbäck et al. and Park et al., or
donor-acceptor distance (d)

for the energy function
proposed by Dahiyat et al.

Another angle-dependent model has been suggested by Dahiyat et al. [12] that
is based on the potential function used in the DREIDING force field. To prevent
the occurrence of unfavorable hydrogen bond geometries, their model uses more
situation dependent terms in the energy function:

EHB = v0
[
5(d0/d)12 − 6(d0/d)10)

]
g(β,α,φ),

g(β,α,φ) = cos2 β cos2 (α − 109.5), for sp3donor − sp3acceptor,

g(β,α,φ) = cos2 β cos2 α, for sp3donor − sp2acceptor

g(β,α,φ) = cos4 β, for sp2donor − sp3acceptor,

g(β,α,φ) = cos2 β cos2(max[α,φ]), for sp2donor − sp2acceptor. (8.20)

The constants involved in the energy function described by (8.20) assume the values
v0 = 8 kcal/mol and d0 = 2.8 Å.

Figure 8.10 compares the energy functions from (8.17)–(8.20). In this figure we
included only the terms that define the bond energy due to positional coordinates and
neglect the angular coordinates, due to the fact that the latter have a considerably
lower influence on the total bond energy.

Since the energy from (8.17) assumes that the solvent can only be water, we
decided to focus on the models given in (8.18), (8.19) and (8.20). As already men-
tioned, Fig. 8.10 shows the Park et al. and Dahiyat et al.’s functions with the effect of
the angular coordinates neglected. Nevertheless, our numerical experiments indicate
that the angular terms in both (8.18) and (8.19) calculated with the set of constants
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Fig. 8.11 (A) The geometry
of hydrogen bonds. (B) The
equivalent mechanical model
of hydrogen bonds

reported in [25], as well as with a second set of constants obtained through pri-
vate communications with the authors, unexplainably distort the energy function.
Consequently, we decided to use the energy function proposed by Dahiyat et al.
(8.20) for the remainder of this work. This function considers hydrogen bonds of
protein molecules in any solvent, and the energy predicted is commonly regarded
in reasonable match with experimental data [28]. Importantly, the our mechanical
model presented below can be modified to fit the data provided by any other energy
function.

8.5.2 Equivalent Stiffness for Individual Hydrogen Bonds

In modeling the protein molecules the authors have previously considered hydrogen
bonds to act as rigid bodies (links) [41]. This assumption is valid for numerous ap-
plications when the geometry of the 3-D structure of the molecule is studied without
considering the effect of external forces. However, hydrogen bonds are flexible un-
der the effect of external and internal forces. We assume that the bond flexibility is
linear over small displacements, and we can therefore use linear springs as the basis
of our model. We note that we continued to treat covalent bonds as rigid bodies.

As mentioned above, we used the energy function given in (8.20) to determine
the spring stiffnesses in our model. In this equation the energy is a function of three
geometric parameters: donor-acceptor bond length (d), and the two angles (α&β)

shown in Fig. 8.11(A). To simplify the model, angular coordinates (α&β) in energy
function are replaced by the positional coordinates l and r , using the geometric
identities:

d2 = (NH)2 + r2 − 2r(NH) cos(β), (8.21)

l2 = (OC)2 + r2 − 2r(OC) cos(α). (8.22)

Figure 8.11(B) shows our proposed equivalent mechanical system of a hydrogen
bond, which consists of three interconnected linear springs. Our aim is to determine
the stiffness of each spring such that the energy of this system would be identical to
the energy of the bond itself predicted by (8.20). Under the assumption of small dis-
placements, the equivalent energy of the equivalent spring system can be calculated
by using Hooke’s law. The corresponding energy function can therefore be written
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as:

E = 0.5kl(l2 − l0)
2 + 0.5kr(r2 − r0)

2 + 0.5kd(d2 − d0)
2. (8.23)

A complete definition of the equivalent model requires the values of the six con-
stants (kr , r0, kl, l0, kd, d0). These values can be obtained by setting up an optimiza-
tion problem that minimizes the error between the bond energy obtained by em-
pirical studies (8.20) and our proposed model (8.23), evaluated for each individual
hydrogen bond. Observe that (8.23) contains the sum of positive values, and will
therefore be always positive, while the empirical function has both negative and
positive values. This discrepancy is due to different zero energy levels for calculat-
ing the energy and can be easily rectified by shifting the values of the energy along
the vertical axis so that all empirical energy values become positive.

Furthermore, we imposed the following constraints on the optimization problem:

• the energy computed at the configuration prior to the small displacements by both
methods ((8.20) and (8.23)) should be equal;

• the three spring constants (for the springs in Fig. 8.11) are the slope of the graph
describing each spring force versus inter-atomic separation distance [37], and

• the stiffness and the free length of each spring should be positive numbers.

Therefore, we formulate the optimization problem as follows:

minimize: M = 0.5kl(l2 − l0)
2 + 0.5kr(r2 − r0)

2 + 0.5kd(d2 − d0)
2

− E(d2, α2, β2),

subject to: H1 = 0.5kl(l1 − l0)
2 + 0.5kr(r1 − r0)

2 + 0.5kd(d1 − d0)
2

− E(d1, α1, β1),

H2 = kl − dEl/(l1 − l0),

H3 = kr − dEr/(r1 − r0),

H4 = kd − dEd/(d1 − d0), (8.24)

− kd + s2 ≤ 0,

− kd + p2 ≤ 0,

− kl + q2 ≤ 0,

− l0 + m2 ≤ 0,

− r0 + n2 ≤ 0,

− d0 + o2 ≤ 0.

This optimization problem is then solved using the Lagrange Multipliers
method [3]. Figure 8.12 shows the energy of the hydrogen bond versus the bond
length (r) obtained by empirical studies (first curve) and our optimized model (sec-
ond curve). As shown in Fig. 8.12, the proposed function can accurately estimate the
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Fig. 8.12 The new energy
function calculated vs. the LJ
function

empirical energy function for small variations of the bond length. Similar graphs are
obtained for energy versus the donor acceptor length (d) and the hydrogen acceptor
ancestor (l) [40].

Importantly, Fig. 8.12 implies that each individual hydrogen bond with specific
geometry can be modeled, for small displacements, as a combination of 3 linear
springs which provides an equivalent stiffness in any direction. This is a significant
step over the existing models, which considered the bond to be flexible only in the
bond direction and assumed the same stiffness for all bonds with different geometry
[8]. In the following section we show how we can use our model to compute the
bond stiffness for any direction of interest.

8.5.3 Equivalent Stiffness Ellipsoid

Computing the bond stiffness in any given direction requires the determination of
the stiffness matrix and, consequently, of the stiffness ellipsoid. The stiffness ma-
trix is computed by setting up the static equilibrium equations for our equivalent
mechanical system (Fig. 8.13). Link NH is assumed to be fixed and link OC is free
to move (from O1C1 to O2C2). The free body diagram of the system is shown in
Fig. 8.13(B). The static equilibrium equations are given by:

Fx = k1dxo cosα1
2 + k2dxo cosα2

2 + k3dxc cosα3
2

+ k1dyo cosα1 cosβ1 + k2dyo cosα2 cosβ2 + k3dyc cosα3 cosβ3

+ k1dzo cosα1 cosγ1 + k2dzo cosα2 cosγ2 + k3dzc cosα3 cosγ3, (8.25)

Fy = k1dxo cosα1 cosβ1 + k2dxo cosα2 cosβ2 + k3dxc cosα3 cosβ3

+ k1dyocosβ1
2 + k2dyocosβ2

2 + k3dyccosβ3
2

+ k1dzo cosβ1 cosγ1 + k2dzo cosβ2 cosγ2 + k3dzc cosβ3 cosγ3, (8.26)
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Fig. 8.13 A: Small
displacement of atoms result
in small change in the length
of springs B: Free body
diagram of link OC

Fz = k1dxo cosα1 cosγ1 + k2dxo cosα2 cosγ2 + k3dxc cosα3 cosγ3

+ k1dyo cosγ1 cosβ1 + k2dyo cosγ2 cosβ2 + k3dyc cosγ3 cosβ3

+ k1dzo cosγ1
2 + k2dzo cosγ2

2 + k3dzc cosγ3
2. (8.27)

The stiffness matrix can be obtained from:

⎛

⎝
Fx

Fy

Fz

⎞

⎠=
⎛

⎝
k11 k12 k13 k14 k15 k16
k21 k22 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36

⎞

⎠ ∗

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

dxo

dyo

dzo

dxc

dyc

dzc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.28)

and

F = KX. (8.29)

The maximum and minimum stiffness of the system at point C, and their cor-
responding directions can be computed from the stiffness matrix as follows: (1) a
unit displacement vector at point C is assumed; (2) the corresponding force required
to cause this displacement is calculated from (8.28); (3) the process of finding the
minimum and maximum possible force vectors is then setup as an optimization
problem:

minimize: F = KX,

subject to: XXT = I.
(8.30)

It can be shown that these maximum and minimum forces are the eigenvectors
of the KT K matrix, with the magnitudes of these forces being the square root of
the corresponding eigenvalues [43]. The three eigenvalues are the corresponding
lengths of the semi-principal axes of the stiffness ellipsoid, and the eigen vectors
are the directions of these semi-principal axes.

The stiffness of the bond in any other direction v can be computed by calculating
the length of the line segment obtained by intersecting the stiffness ellipsoid and the
line passing through the center of ellipsoid in the direction of v. Figure 8.14 shows
a schematic representation of the stiffness ellipsoid and its orientation with respect
to bond geometry.
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Fig. 8.14 A schematic presentation of stiffness ellipsoid and hydrogen bond

Table 8.4 Experimentally
obtained stiffnesses of
various bonds [4]

Bond type Bond stiffness (N/m)

Covalent 50–180

Metallic 15–75

Ionic 8–24

Hydrogen bond 6–3

Van der Walls 0.5–1

8.5.4 Model Validation

The modeling procedure described above has been used to estimate the stiffness
of several sample hydrogen bonds. Our baseline data is the experimentally obtained
stiffness values published in [4] for several different types of bonds and summarized
in Table 8.4. Note that the experimentally measured stiffness for hydrogen bonds is
3–6 (N/m).

The results of the estimates obtained with our model are summarized in Table 8.5
and includes the following parameters:

• the bond energy E (kCal/mol),
• the spring stiffness (N/m) for each of the three springs, kl , kr , and kd ,
• free length of springs (Å),
• eigen values of the stiffness matrix, which are the maximum, mean and minimum

stiffnesses of the bonds (N/m),
• the angle θ∗ between the direction of the maximum and the hydrogen bond direc-

tion (degrees),
• the hydrogen bond stiffness k∗∗ in bond (OH) direction (N/m).

We note that our predicted stiffness values shown in Table 8.5 range between
1.19–5.74 N/m, with an average of 3.43 N/m and standard deviation of 1.3 N/m
are in agreement with the experimentally obtained stiffness range of 3–6 N/m re-
ported in [4]. The data in Table 8.5 also shows that the predicted angle between
the maximum stiffness direction and the bond direction is between 5–10 degrees.
Furthermore, the data shows that the corresponding stiffness ellipsoids for all these
bonds are much longer in the direction of one semi-principal axis (i.e., the direction
of the maximum stiffness) than in the other two principal directions. Consequently,
we conclude that the stiffness of the hydrogen bond is much larger in the direction
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Table 8.5 Predicted stiffness values for a number of hydrogen bonds

E

(energy)
kl kr kd l0 r0 d0 maxk meank mink θ∗ k∗∗

−2.303 51 26.3 4.8 2.9 2.2 3 54.53 1.82 0.14 6.9 3.36

−2.29 40.9 8 1.7 2.8 2 2.9 34.16 0.49 0.07 10 1.19

−3.576 68.3 23.6 3 2.8 2 2.9 64.68 1.61 0.07 5.4 2.1

−3.232 111.2 37.9 6.9 2.8 1.9 2.8 104.51 2.03 0.14 7.9 4.83

−4.791 87.9 26.6 3.3 2.8 2 3 80.43 1.19 0.14 5.5 2.31

−4.843 127.7 28.8 3.9 2.8 1.8 2.9 109.69 1.26 0.21 6.4 2.73

−3.676 69.6 22.7 3.5 2.8 2 3 64.82 1.19 0.14 6.8 2.45

−2.238 57.1 41.9 6.5 2.9 2.2 3 70.56 3.15 0.14 5.1 4.55

−2.043 45.3 22.1 4.6 2.9 2.2 3 47.39 1.33 0.14 8.2 3.22

−3.04 62.1 26.4 4.4 2.9 2.1 3 62.23 1.61 0.21 6.7 3.08

−1.37 46.9 49.6 8.2 3.1 2.4 3.1 69.51 4.2 0.14 4.6 5.74

−2.856 60.1 27.7 4.8 2.9 2.1 3 61.81 1.61 0.14 6.9 3.36

−3.765 109.3 29.8 5.3 2.8 1.9 2.8 97.44 1.33 0.14 8 3.71

−1.172 39 37.3 7.7 3 2.4 3.1 54.53 2.87 0.28 6.1 5.39

of the bond than in a direction perpendicular to the bond. This implies that the α

helices are stiffer in the axial direction than in the lateral direction which confirms
the experimental observations [27].

Application to Protein Molecules The secondary structures of protein molecules
(α helices and β sheets) are stabilized by hydrogen bonds [7]. Hence, one can infer
that the stiffness of protein molecules is largely determined by hydrogen bonds. We
propose two methods to calculate the stiffness of secondary structures of protein
molecules.

First Approach: Hydrogen Bonds as Parallel Springs Figure 8.15(A) illus-
trates a schematic arrangement of hydrogen bonds in α helices. It is shown that in
each turn of α helix there are 3 to 4 hydrogen bonds [1]. Each turn has 3.6 residues
with 5.4 Å pitch along the helical axis [7]. The equivalent mechanical model is
shown in Fig. 8.15(B). In this model, hydrogen bonds in each turn are assumed to
be parallel and turns are connected in a serial form. Under these assumptions, the
stiffness of the entire α helix can be obtained from Hooke’s law given in (8.31).

Keq = 1/(1/kturn1 + 1/kturn2 + · · · + 1/kturn-end). (8.31)

Second Approach: Energy Analysis Based on the principle of superposition,
the total change of energy in the protein molecule should equal the summation of
the energy change of all individual hydrogen bonds. The stiffness of each hydrogen
bond is known (it can be determined as described in Sect. 8.5.2). To determine the
displacement of each bond from the total elongation of the secondary structure we
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Fig. 8.15 A schematic
arrangement of hydrogen
bonds in α helices

assume a uniform distribution of the total elongation to each turn. Hence, if the helix
is elongated by dl and the total number of turns is n, the axial elongation of each
turn will be dx = dl/n. By assuming that each bond in a given turn act as parallel
springs, the displacement of each bond will be dx. These individual bond elonga-
tions can be used together with (8.32) to compute the stiffness of the secondary
structure

(1/2)Keq(dl)
2 =

∑
(1/2)ki(dx)

2. (8.32)

Stiffness Prediction for Sample Proteins Now we can use both approaches dis-
cussed above to calculate the stiffness of several secondary structures for which
experimentally determined stiffness data is available in the literature. Table 8.6 lists
three proteins with their PDB (Protein Data Bank) code, the number of amino acids
and the number of detected hydrogen bonds (based on the geometric and energetic
criteria reported in [44]). We applied both methods to these three protein molecules
(Fig. 8.15).

The first molecule is a synthetic peptide, cysteine-lysine-cysteine (C3K30C)

specifically designed to study hydrogen bonding by Lantz et al. [35]. Under the
experimental conditions (explained in [35]) this synthetic peptide adopts the α he-
lix structure as a result of hydrogen bonding (31 bonds) within the molecule. The
peptide has a length of 53 Å and a diameter of approximately 15 Å. The stiffness
of this protein molecule was measured using force microscopy. Each molecule was
stretched from the α-helical state into a linear chain. The stiffness was found to
vary with molecule displacement. In order to conduct a meaningful comparison be-
tween our predicted stiffness of this protein molecule and the empirical measure-
ment reported in [35], only small displacements are considered. In particular, we
concentrate on deformation of 1 Å or smaller of the protein.
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Table 8.6 Properties of three
specific proteins PDB code # of amino acids # detected hydrogen bonds

Synthetic peptide 35 31

1gk6 53 42

1nkn 150 146

Table 8.7 Predicted and experimentally measured stiffnesses for different protein molecules
(N/m)

PDB code k from method # 1 k from method # 2 k reported in literature

Synthetic peptide 0.380 0.384 0.300–0.400 [35]

1gk6 0.520 0.524 0.571 [9]

1nkn 0.083 0.066 0.060–0.080 [27]

Under such a deformation, the protein molecule will maintain its helical shape
and the hydrogen bonds intact. The reported experimentally measured stiffness of
this protein molecule for a 1 Å elongation varies between 0.3–0.4 N/m. Our com-
putational analysis detects 31 hydrogen bonds by using our own hydrogen bond
formation criteria [41], and predicts the stiffness to be 0.38 N/m (based on the first
approach above), and 0.384 N/m (from the second approach based on energy anal-
ysis), which is in good agreement with the experimentally measured stiffness.

Furthermore, the elastic properties of characterized myosin II S2 sub domain
has been studied in [27] using molecular dynamics and normal mode analysis. The
specific protein molecule, whose PDB code is 1NKN PDB, is an 87 residue long
α-helix. We predicted 146 hydrogen bonds within this molecular structure. This
resulted in 0.088 N/m stiffness employing the first method and 0.066 N/m using the
second method, which are in good agreement with the stiffness predicted in [27] for
this protein molecule (0.06–0.08 N/m).

Finally, the force-extension behavior of α-helices, β-sheets and tropocollagen
domains has been studied in [9]. Their results are based on atomistic modeling
of nano-mechanical response of protein molecules at ultra-slow deformation rates.
The stiffness predicted for a molecule with helical structure (1GK6) in this study is
0.571 N/m. The predicted stiffness for this molecule using our proposed method is
0.52 N/m, see Table 8.7.

8.6 Concluding Reflections on Challenges and Opportunities

Life exists because a large number of protein nano-molecules function inside bio-
logical cells in a coordinated manner as articulated kinematic machines perform-
ing their task. While we understand the governing kinematics and, to some degree,
dynamics principles, it would be naïve to think that the mechanics of these nano-
machines is understood. We can however claim that we have begun to chart the
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road map for studying protein mechanics in terms of the systematic application of
the well-established classical mechanics (kinematics and dynamics). The simplicity
and robustness of these principles in an otherwise complex and difficult to model en-
vironment (internal and external to protein molecules) is a major asset for scientists.

In this chapter, we discussed some of the central kinematic elements that can
be used to model protein chains and to study their mobility, folding and flexibility.
We have used rigorous principles of mechanics in systematic and efficient manners.
One might fear that these rigorous kinematics methodologies deceptively present
the study of protein molecules as an easy task. That was neither our intention nor
it is true. However it is our hope that some of the readers of these pages come to
recognize that much of the great future of natural and synthetic biology and nano
technology rests in gaining an understanding of the geometry and motion of these
kinematic wonders of life. This is in disagreement with the belief many young sci-
entist may hold that kinematics does not play a fundamental role in their carriers.

A careful study of this chapter should persuade the reader of two things. First, we
have made significant strides in understanding the mechanics of protein molecules.
Second, there is a lot more left to be discovered. Central challenges in the study of
proteins are rooted in the cross disciplinary nature of the field. Future breakthroughs
will undoubtedly come from the emergence of high performance computing, ad-
vances in molecular biology and physical chemistry, science of microscopy and
material characterization, statistics, and modern kinematics. Institutions of higher
education must facilitate this exciting convergence of diverse disciplines, which will
require the non-trivial feat of a major rethinking of the educational framework in the
area of bio-nanotechnology.

Reciprocally, the science of modern kinematics will be propelled forward as
new kinematic tools are developed to tackle the complexities of modeling protein
molecules. In renaissance, the industrialization and emergence of complex machin-
ery fuelled the genesis of modern kinematics. Protein molecules, these engines of
life, will be the drivers of “post-modern kinematics”.
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0923158, and CMMI-1053077. Horea Ilieş was supported in part by the National Science Founda-
tion grants CMMI-0555937, CAREER award CMMI-0644769, CMMI-0856401, CMMI-0927105,
and CNS-0923158. The authors would like to gratefully acknowledge this financial support.

References

1. Ackbarow, T., Chen, X., Keten, S., Buehler, M.J.: Hierarchies, multiple energy barriers, and
robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains.
Proc. Natl. Acad. Sci. USA 104(42), 16,410–16,415 (2007)

2. Alexandrescu, A.T., Snyder, D.R., Abildgaard, F.: NMR of hydrogen bonding in cold-shock
protein A and an analysis of the influence of crystallographic resolution on comparisons of
hydrogen bond lengths. Protein Sci. 10(9), 1856–1868 (2001)



242 K. Kazerounian and H.T. Ilieş
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