Chapter 19

Non-Linear Signal Processing Techniques
Applied on EMG Signal for Muscle
Fatigue Analysis During Dynamic
Contraction

Ram Kinker Mishra and Rina Maiti

Abstract In the field of ergonomics, biomechanics, sports and rehabilitation
muscle fatigue is regarded as an important aspect for study. Work postures are
basically dynamic in nature. Classical signal processing techniques used to
understand muscle behavior are mainly based on spectral based parameters esti-
mation, and mostly applied during static contraction. But fatigue analysis in
dynamic conditions is of utmost requirement because of its daily life applicability.
It is really difficult to consistently find the muscle fatigue during dynamic con-
traction due to the inherent non stationarity time-variant nature and associated
noise in the signal along with complex physiological changes in muscles. Now-
adays, different non-linear signal processing techniques are adopted to find out the
consistent and robust indicator for muscle fatigue under dynamic condition con-
sidering the high degree of non stationarity in the signal. In this paper, various
nonlinear signal processing methods, applied on surface EMG signal for muscular
fatigue analysis, under dynamic contraction are discussed.

19.1 Introduction

Electromyographic (EMG) signal is an evaluation tool in the field of sports science,
physical therapy, biomechanics, ergonomics, occupational health and rehabilitation.
There are three applications which dominate the use of the surface EMG signal in
these fields: its use as an indicator for the initiation of muscle activation, its
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relationship to the force produced by a muscle, and its use as an index of the fatigue
processes occurring within a muscle. Muscle fatigue is defined as inability of produce
the required power output for a given stimulus. This condition is characterized by a
notable change in physiological and biochemical processes which includes recruit-
ment of larger motor unit, reduction in muscle conduction velocity, alteration of
blood flow, decreased mean power frequency of EMG signal, increased hydrogen ion
and other metabolites etc. The study of muscle fatigue has two important applica-
tions. First, it can be used to identify weak muscles. The most famous application isin
the analysis of low back pain patients. Second, it can be used to prove the efficiency of
strength training exercises [1], [2]. Surface EMG technique for monitoring the
fatigue using different computation methodologies has drawn attention of many
researchers to under-stand more insights about the events occurring inside the
muscle. Different authors use different objective criteria to indirectly quantify or
identify fatigue related phenomena. For the study of surface EMG and its quantifi-
cation there is a variety of signal processing tools available. Among them spectral
analysis technique is the traditional technique most commonly used for muscle
fatigue assessment [3], [4]. But spectral technique is reliable only during the static
muscle contraction not during dynamic contraction. The reason behind it is the non
stationarity induced in the signal during dynamic contraction. Stationarity of the
signal is the basic requirement for the spectral analysis techniques. But in daily
routine dynamic muscle contraction are most common and thus is a bigger matter of
concern. In order to quantify surface EMG during dynamic condition various non-
linear signal processing techniques have been used. In present study, a review of
different non-linear and non-stationary signal processing methodologies related to
fatigue estimation along with their merits and demerits are presented.

19.2 Characteristics of EMG

Muscular fatigue is generally analyzed on recorded surface EMG (1) during static
contraction or (2) during dynamic contraction, discussed below. During isometric
muscle contraction, the joint angle and muscle length are constant. So, recorded
EMG signal during this contraction can be assumed to be wide sense stationary
signal. Fatigue condition can be identified as a change in power spectrum result,
given in Fig. 19.1 [5]. This assumption is not true during dynamic muscle con-
traction, so dynamic field postures are simulated in a set of static conditions and
fatigue is estimated [6].

In the field, the physical working postures are generally dynamic in nature,
where both joint angle and muscle length vary. During dynamic contraction,
because of physical (from the skin—electrode interface) and physiological con-
straints, causes the non-stationarity in the EMG signal, which makes it challenging
to reliably estimate the fatigue indices. Various authors have attempted to estimate
fatigue indices assuming following different conditions.
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19.3 Non-Linear and Non-Stationary Signal Processing
Techniques

Random discharge of active motor units imposes non-stationarity of the EMG
signals, whereas non-linear characteristics are caused by functional interference
between different muscles, changes of signal sources and paths to recording
electrodes, variable electrode interface etc. All the classical methods use different
assumptions before processing the signal. To better understand the system
dynamics, different nonlinear time series analysis methods have been employed as
alternatives in determining EMG-based fatigue indices.

19.3.1 Recurrence Plot

In a chaotic system, at any time instant, the phase space trajectory will follow
roughly equal to the phase space area [7]. Therefore, quantification of recurrences
and line segments of the phase space trajectory in recurrence plot (RP) method is
used to capture nonlinearity of a non-stationary system.

First step in generating Recurrence plot, involves transformation of a
uni-dimensional time series data, X into a multidimensional form as follows:

X" = (Xi, Xiva, Xivody - - Xit(m-1)d) (19.1)

Where, d denotes time delay, m is the embedded dimension. These parameters
should be selected with care otherwise non-optimal embedding parameters can
cause result in discrete diagonal lines with smaller blocks [8]. Then a symmetric
matrix of distances (e.g., Euclidean distances) can be constructed by computing
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Fig. 19.2 a EMG signal
obtained for 238 s. during
isometric contraction for
endurance test. b %
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increased with progression of
fatigue linearly fitted in
3steps[10]
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distances between all pairs of embedded vectors. In the recurrence plot, the color
of the pixels corresponds to the magnitude of data values (either actual or based on
threshold) in a two-dimensional array and the coordinates correspond to the
locations of the data values in the array. From the graphs, percent of determinism
(%DET) is calculated as the ratio of number of selected (active) points on diagonal
lines (>2) and total number active points. Percentage of recurrence (%REC) is
calculated as the ratio of total number of active points and total number of points.
Farina et al. have shown that %DET and %REC are good indicators in determining
the muscle fatigue [8], whereas Yiwei et al. [9] have emphasized on %DET in
determining muscle fatigue, similarly shown in Figs. 19.2 and 19.3.

19.3.2 Entropy

Entropy is generally used to quantify the randomness and complexity in signal. In
particular, it is used to characterize non-periodic, random phenomena and indicates
the rate of information production in relation to the dynamic systems [11].
Especially, when dealing with surface EMG of muscle fatigue, previous non-linear
techniques shows a wide statistical variation in result, which causes difficulties in
proper identification of muscle fatigue. Another problem is the unavoidable noise
associated with this signal. To solve these problems, Pincus [12] developed
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Fig. 19.3 Recurrence Plot
for a first 1.024 s and b last
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approximate entropy (ApEn) to measure the system complexity, which is appli-
cable to noisy and short datasets.

Algorithm for calculating approximate entropy (ApEn) is shown below:

From a time series {u(i): 1 < i < N} a vector sequence, x}" is formed defined
as:

X' ={u(@),u(i+1)...u(i+m—1)}, wherel <i<N-m+1 (19.2)

Where Distance, d7 between xj* and x}" is defined as

dy = d|x'x| = max fuli+k) = ulj+ ) (19.3)

ke (Ov 71)
Probability for similarity between the two different vectors x;" and x;* can be
calculated as:

1 N—m+1

J=LJ7t
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Where, © is the Heaviside function:

_J 1ifz<0
0(z) = {Oifz >0 (19.5)

Tolerance, r is defined as: r = k.std (t) Where, k is a constant kK > 0 and std (.)
represents the standard deviation of the time series. Logarithmic average over all
the vectors of probability, C'(i) calculated as:

— 1
1 N—m+

(I)’”(r):m > [y (i) (19.6)
i=1

ApEn for different epoch signal can be defined as:
ApEn(m,r,N) = ®"(r) — @1 (r) (19.7)

ApEn calculation is basically based on Heaviside function, which may not be
sensitive enough to the minor changes in the signal complexity. Therefore, the
fatigue condition can be separated from non-fatigued state, but Hongbo et al. [13]
have shown that ApEn is insensitive to the change in muscle fatigue, and they have
used Fuzzy Approximate Entropy (fApEn) to improve the result. A comparative
result is given in Fig. 19.4. fApEn is based on the similar algorithm as of ApEn
except it uses ambiguous boundaries. The soft and continuous boundary of a fuzzy
membership function makes the fApEn statistics decrease smoothly and mono-
tonically when there is a slight increase in the tolerance r.

Distance, Djj between x;* and x]" is determined by a fuzzy membership function
on normalized data by removing the effect of baseline, where r is having similarity
degree,

D = u(dy,r) (19.8)

i’

Comparing of fApEn with ApEn; fApEn showed better monotonicity, relatively
more consistency and more robustness to noise while characterizing signals with
different complexities.

19.3.3 Huang-Hilbert Transform

Huang et al. [14] have proposed the Huang-Hilbert transform method (HHT) as a
new tool for the analysis of nonlinear and non-stationary data. Unlike the Fourier
transform, which is predicated on a priori selection of basis functions that are
either of infinite length or have fixed finite widths, Empirical Mode Decomposition
(EMD) decomposes a signal into finite basis functions called the intrinsic mode
functions (IMFs) (fission process). EMD assumes that data have many different
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Fig. 19.4 a Actual EMG
signals, b the estimation of
fApEn, ¢ ApEn d MNF. The
EMBG signals were recorded
from the biceps during the
static isometric contraction
from non-fatigue to
exhaustion state [12]
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coexisting modes of oscillation, one superimposing on the others. EMD decom-
position and separates a time series into a finite number of its individual charac-
teristic oscillations (as shown in Fig. 19.5) in order to define a meaningful
instantaneous frequency (as shown in Fig. 19.6). After EMD of time series,
x (f) can thus be expressed as follows:

x(t) = Z Ci(t) + ra(t) (19.9)
=1

Where, n is the number of IMFs, C;(t) are the IMFs and r,(¢) is the final
residue.

The first component has the smallest time scale, which corresponds to the
fastest time variation of data. Since the decomposition is based on the local
characteristic time scale of the data to yield adaptive basis, it is applicable to non-
linear and non-stationary data in general and in particular, fatigue EMG data
considered in the following section. The second step of the HHT is Hilbert
transform (HT). HT of the time series, x(t) is the convolution with 1/zt, Shown as:

HIx(1)] = x(1) *%:%p / %d; (19.10)

—00

Where, P indicates the Cauchy principle value. Then we define the mean
instantaneous frequency, MIF () of ¢,(t) with m data points as the weighed mean
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Fig. 19.5 9 different sets of IMFs of EMG data with 500 ms analysis window. The 9th mode is
residue, which was not considered during Hilbert transform [15]
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of instantaneous frequency, w;(f) and amplitude, a;(¢) of hilbert spectrum com-
puted as:

iy @(D)a; (i)
> ar(i)

The mean frequency of the original signal is defined by:

MIF (j) = (19.11)



19 Non-Linear Signal Processing Techniques 201

2t llaj||MIF (J)
21 gl
By means of the combination of the amplitude and the derivative of the phase

(i.e. the instantaneous frequency) of each component, it is possible to obtain the
resulting amplitude, time, and frequency representation of the original series:

MIF =

(19.12)

x(t) = Realzn;aj(t)exp (i/wj(t)dt)) (19.13)

HHT is applicable on non-linear and non-stationary signal and it can capture the
non-linear dynamics in a better way than the power spectrum analysis especially
for fatigue estimation during dynamic contraction [15].

19.3.4 Interpretation of Results

Muscular fatigue is characterized by a complex combination of physiological and
biochemical process induced by physical exercise. During dynamic contraction,
alteration of mean power frequency is not universally accepted conclusion.
Different authors adopt different methodologies to estimate muscular fatigue
during dynamic contraction in separate ways. Using Recurrence Quantification
Analysis (RQA), researchers assume EMG signal as nonlinear deterministic cha-
otic system and try to capture the increase in motor unit synchronization (from the
nature of the recurrence plot) and reduction in conduction velocity (from the slope
of the determinism) related to fatigue in an effective way. Approximate entropy,
Fuzzy Approximate Entropy and Huang-Hilbert Transformation work on non-
linear and non-stationary signal based on local time scale input data at any point,
therefore the output does not suffer the problem of spectral leakage, unlike power
spectral analysis. The result of Approximate Entropy often corrupt with inherent
non-linear dynamics of EMG data during dynamic contraction along with due to
noise, short data length etc. as it access the complexity and/or regularity based on
Heaviside function However, Fuzzy Approximate Entropy is more robust than
Approximate Entropy to estimate inherent dynamics and stochastic behaviors
(Fig. 19.4). Different authors highlight that during dynamic muscle contraction,
the non-stationarity dynamics is better captured by Huang-Hilbert Transformation
from the slope and higher resolution of the time—frequency analysis. In compar-
ison, Fig. 19.6 shows a clear and gradual decline in mean frequency than observed
by power spectrum analysis result (Fig. 19.1). According to Srhoj-Egekher et al.
[16], during dynamic contraction the local maxima of median frequency are
directly correlated with the number of active muscle fiber, and it declines during
fatigue [16]. In conclusion, future work will include a broader comparison of these
methods to other new and established fatigue indices.
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19.4 Conclusion

Efficient signal processing techniques have made it possible to detect fatigue from
EMG signal with a limited degree of reliability during static contraction. In order
to improve the reliability of fatigue indicator different non-linear signal processing
techniques like Recurrence plot and Hilbert-Huang transform have shown prom-
ising results. Therefore, use of above mentioned techniques for non-linear and
non-stationary surface EMG signal will provide another dimension for the muscle
fatigue analysis. These techniques can be helpful to find out the most consistent
and robust indicator for muscle fatigue during dynamic contraction.
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