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       After reading this chapter, you should know the 
answers to these questions:
•    What makes images a challenging type of data 

to be processed by computers when compared 
to non-image clinical data?  

•   Why are there many different imaging modal-
ities, and by what major two characteristics do 
they differ?  

•   How are visual and knowledge content in 
images represented computationally? How are 
these techniques similar to representation of 
non-image biomedical data?  

•   What sort of applications can be developed to 
make use of the semantic image content made 
accessible using the Annotation and Image 
Markup model?  

•   What are four different types of image pro-
cessing methods? Why are such methods 

assembled into a pipeline when creating imag-
ing applications?  

•   What is an imaging modality with high spatial 
resolution? What is a modality that provides 
functional information? Why are most imag-
ing modalities not capable of providing both?  

•   What is the goal in performing segmentation 
in image analysis? Why is there more than one 
segmentation method?  

•   What are two types of quantitative informa-
tion in images? What are two types of seman-
tic information in images? How might this 
information be used in medical applications?  

•   What is the difference between image regis-
tration and image fusion? What are examples 
of each?    

9.1    Introduction 

 Imaging plays a central role in the health care 
process. The fi eld is crucial not only to health 
care, but also to medical communication and 
education, as well as in research. In fact much of 
our recent progress, particularly in diagnosis, can 
be traced to the availability of increasingly 
sophisticated imaging techniques that not only 
show the structure of the body in incredible 
detail, but also show the function of the tissues 
within the body. 
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 Although there are many types (or modalities) 
of imaging equipment, the images the modalities 
produce are nearly always acquired in or con-
verted to digital form. The evolution of imaging 
from analog, fi lm-based acquisition to digital for-
mat has been driven by the necessities of cost 
reduction, effi cient throughput, and workfl ow in 
managing and viewing an increasing prolifera-
tion in the number of images produced per imag-
ing procedure (currently hundreds or even 
thousands of images). At the same time, having 
images in digital format makes them amenable to 
image processing methodologies for enhance-
ment, analysis, display, storage, and even 
enhanced interpretation. 

 Because of the ubiquity of images in biomedi-
cine, the increasing availability of images in digi-
tal form, the rise of high-powered computer 
hardware and networks, and the commonality of 
image processing solutions, digital images have 
become a core data type that must be considered 
in many biomedical informatics applications. 
Therefore, this chapter is devoted to a basic under-
standing of the unique aspects of images as a core 
data type and the unique aspects of imaging from 
an informatics perspective. Chapter   20    , on the 
other hand, describes the use of images and image 
processing in various applications, particularly 
those in radiology since that fi eld places the great-
est demands on imaging methods. 

 The topics covered by this chapter and Chap. 
  20     comprise the growing discipline of biomedi-
cal imaging informatics (Kulikowski  1997 ), a 
subfi eld of biomedical informatics (see Chap.   1    ) 
that has arisen in recognition of the common 
issues that pertain to all image modalities and 
applications once the images are converted to 
digital form. Biomedical imaging informatics is a 
dynamic fi eld, recently evolving from focusing 
purely on image processing to broader informat-
ics topics such as representing and processing the 
semantic contents (Rubin and Napel  2010 ). At 
the same time, imaging informatics shares com-
mon methodologies and challenges with other 
domains in biomedical informatics. By trying to 
understand these common issues, we can develop 
general solutions that can be applied to all 
images, regardless of the source. 

 The major topics in biomedical imaging infor-
matics include image acquisition, image content 
representation, management/storage of images, 
image processing, and image interpretation/
computer reasoning (Fig.  9.1 ).  Image acquisi-
tion  is the process of generating images from 
the modality and converting them to digital form 
if they are not intrinsically digital.  Image con-
tent representation  makes the information in 
images accessible to machines for processing. 
 Image management / storage  includes methods 
for storing, transmitting, displaying, retriev-
ing, and organizing images.  Image process-
ing  comprises methods to enhance, segment, 
visualize, fuse, or analyze the images.  Image 
interpretation / computer reasoning  is the pro-
cess by which the individual viewing the image 
renders an impression of the medical signifi cance 
of the results of imaging study, potentially aided 
by computer methods. Chapter   20     is primarily 
concerned with information systems for image 
management and storage, whereas this chapter 
concentrates on these other core topics in bio-
medical imaging informatics.

   An important concept when thinking about 
imaging from an informatics perspective is that 
images are an  unstructured data type ; as such, 
while machines can readily manage the raw 
image data in terms of storage/retrieval, they can-
not easily access image contents (recognize the 
type of image, annotations made on the image, or 
anatomy or abnormalities within the image). In 
this regard, biomedical imaging informatics 
shares much in common with natural language 
processing (NLP; Chap.   8    ). In fact, as the meth-
ods of computationally representing and process-
ing images is presented in this chapter, parallels 
to NLP should be considered, since there is syn-
ergy from an informatics perspective. 

 As in NLP, a major purpose of the methods of 
imaging informatics is to extract particular infor-
mation; in biomedical informatics the goal is 
often to extract information about the structure of 
the body and to collect features that will be useful 
for characterizing abnormalities based on mor-
phological alterations. In fact, imaging provides 
detailed and diverse information very useful for 
characterizing disease, providing an “imaging 
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phenotype” useful for characterizing disease, 
since “a picture is worth a thousand words. 1 ” 
However, to overcome the challenges posed by 
the unstructured image data type, recent work is 
applying semantic methods from biomedical 
informatics to images to make their content 
explicit for machine processing (Rubin and Napel 
 2010 ). Many of the topics in this chapter there-
fore involve how to represent, extract and charac-
terize the information that is present in images, 
such as anatomy and abnormalities. Once that 
task is completed, useful applications that pro-
cess the image contents can be developed, such 
as image search and decision support to assist 
with image interpretation. 

1   Frederick Barnard, “One look is worth a thousand 
words,” Printers’ Ink, December, 1921. 

 While we seek generality in discussing bio-
medical imaging informatics, many examples in 
this chapter are taken from a few selected 
domains such as brain imaging, which is part of 
the growing fi eld of  neuroinformatics  (Koslow 
and Huerta  1997 ). Though our examples are spe-
cifi c, we attempt to describe the topics in generic 
terms so that the reader can recognize parallels to 
other imaging domains and applications.  

9.2    Image Acquisition 

 In general, there are two different strategies in 
imaging the body: (1) delineate  anatomic struc-
ture  (anatomic/structural imaging), and (2) deter-
mine  tissue composition or function  (functional 
imaging) (Fig.  9.2 ). In reality, one does not 
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  Fig. 9.1    The major topics in biomedical imaging infor-
matics follow a workfl ow of activities and tasks com-
mencing with include image acquisition, followed by 

image content representation, management/storage of 
images, image processing, and image interpretation/com-
puter reasoning       
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choose between anatomic and functional imag-
ing; many modalities provide information about 
both morphology and function. However, in gen-
eral, each imaging modality is characterized pri-
marily as being able to render high-resolution 
images with good contrast resolution (anatomic 
imaging) or to render images that depict tissue 
function (functional imaging).

9.2.1      Anatomic (Structural) Imaging 

 Imaging the structure of the body has been and 
continues to be the major application of medical 
imaging, although, as described in Sect.  9.2.2 , 
functional imaging is a very active area of 
research. The goal of anatomic imaging is to 
accurately depict the structure of the body—the 
size and shape of organs—and to visualize abnor-
malities clearly. Since the goal in anatomic imag-
ing is to depict and understand the structure of 
anatomic entities accurately, high spatial resolu-
tion is an important requirement of the imaging 
method (Fig.  9.2 ). On the other hand, in anatomic 

imaging, recognizing tissue function (e.g., tissue 
ischemia, neoplasm, infl ammation, etc.) is not 
the goal, though this is crucial to functional imag-
ing and to patient diagnosis. In most cases, 
 imaging will be done using a combination of 
methods or modalities to derive both structural/
anatomic information as well as functional 
information.  

9.2.2     Functional Imaging 

 Many imaging techniques not only show the 
structure of the body, but also the function, where 
for imaging purposes function can be inferred by 
observing changes of structure over time. In 
recent years this ability to image function has 
greatly accelerated. For example, ultrasound and 
angiography are widely used to show the func-
tioning of the heart by depicting wall motion, and 
ultrasound Doppler can image both normal and 
disturbed blood fl ow (Mehta et al.  2000 ). 
Molecular imaging (Sect.  9.2.3 ) is increasingly 
able to depict the expression of particular genes 
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  Fig. 9.2    The various radiology imaging methods differ 
according to two major axes of information of images, 
spatial resolution (anatomic detail) and functional infor-

mation depicted (which represents the tissue composi-
tion—e.g., normal or abnormal). A sample of the more 
common imaging modalities is shown       
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superimposed on structural images, and thus can 
also be seen as a form of functional imaging. 

 A particularly important application of func-
tional imaging is for understanding the cognitive 
activity in the brain. It is now routinely possible 
to put a normal subject in a scanner, to give the 
person a cognitive task, such as counting or 
object recognition, and to observe which parts of 
the brain light up. This unprecedented ability to 
observe the functioning of the living brain opens 
up entirely new avenues for exploring how the 
brain works. 

 Functional brain imaging modalities can be 
classifi ed as  image - based  or  non - image based . In 
both cases it is taken as axiomatic that the func-
tional data must be mapped to the individual sub-
ject’s anatomy, where the anatomy is extracted 
from structural images using techniques des-
cribed in the previous sections. Once mapped to 
anatomy, the functional data can be integrated 
with other functional data from the same sub-
ject, and with functional data from other subjects 
whose anatomy has been related to a template 
or probabilistic atlas. Techniques for generat-
ing, mapping and integrating functional data are 
part of the fi eld of Functional Brain Mapping, 
which has become very active in the past few 
years, with several conferences (Organization for 
Human Brain Mapping  2001 ) and journals (Fox 
 2001 ; Toga et al.  2001 ) devoted to the subject. 

9.2.2.1    Image-Based Functional Brain 
Imaging 

 Image-based functional data generally come 
from scanners that generate relatively low- 
resolution volume arrays depicting spatially- 
localized activation. For example,  positron 
emission tomography  (PET) (Heiss and Phelps 
 1983 ; Aine  1995 ; Alberini et al.  2011 ) and  mag-
netic resonance spectroscopy  (MRS) (Ross and 
Bluml  2001 ) reveal the uptake of various meta-
bolic products by the functioning brain; and 
 functional magnetic resonance imaging  (fMRI) 
reveals changes in blood oxygenation that occur 
following neural activity (Aine  1995 ). The raw 
intensity values generated by these techniques 
must be processed by sophisticated statistical 
algorithms to sort out how much of the observed 

intensity is due to cognitive activity and how 
much is due to background noise. 

 As an example, one approach to fMRI imag-
ing is language mapping (Corina et al.  2000 ). The 
subject is placed in the  magnetic resonance 
imaging  (MRI) scanner and told to silently name 
objects shown at 3-s intervals on a head-mounted 
display. The actual objects (“on” state) are alter-
nated with nonsense objects (“off” state), and the 
fMRI signal is measured during both the on and 
the off states. Essentially the  voxel  values at the 
off (or control) state are subtracted from those at 
the on state. The difference values are tested for 
signifi cant difference from non-activated areas, 
then expressed as t-values. The voxel array of 
t-values can be displayed as an image. 

 A large number of alternative methods have 
been and are being developed for acquiring and 
analyzing functional data (Frackowiak et al. 
 1997 ). The output of most of these techniques is 
a low-resolution 3-D image volume in which 
each voxel value is a measure of the amount of 
activation for a given task. The low-resolution 
volume is then mapped to anatomy guided by a 
high-resolution structural MR dataset, using one 
of the linear registration techniques described in 
Sect.  9.4.7 . 

 Many of these and other techniques are imple-
mented in the SPM program (Friston et al.  1995 ), 
the AFNI program (Cox  1996 ), the Lyngby tool-
kit (Hansen et al.  1999 ), and several commercial 
programs such as Medex (Sensor Systems Inc. 
 2001 ) and Brain Voyager (Brain Innovation B.V. 
 2001 ). The FisWidgets project at the University 
of Pittsburgh is developing an approach that 
allows customized creation of graphical user 
interfaces in an integrated desktop environment 
(Cohen  2001 ). A similar effort (VoxBox) is 
underway at the University of Pennsylvania 
(Kimborg and Aguirre  2002 ). 

 The ultimate goal of functional neuroimaging 
is to observe the actual electrical activity of the 
neurons as they perform various cognitive tasks. 
fMRI, MRS and PET do not directly record elec-
trical activity. Rather, they record the results of 
electrical activity, such as (in the case of fMRI) 
the oxygenation of blood supplying the active 
neurons. Thus, there is a delay from the time of 
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 activity to the measured response. In other words 
these techniques have relatively poor temporal res-
olution (Sect.  9.2.4 ).  Electroencephalography  
(EEG) or  magnetoencephalography  (MEG), 
on the other hand, are more direct measures of 
electrical activity since they measure the elec-
tromagnetic fi elds generated by the electrical 
activity of the neurons. Current EEG and MEG 
methods involve the use of large arrays of scalp 
sensors, the output of which are processed in a 
similar way to CT in order to localize the source 
of the electrical activity inside the brain. In gen-
eral this “source localization problem” is under- 
constrained, so information about brain anatomy 
obtained from MRI is used to provide further 
constraints (George et al.  1995 ).   

9.2.3        Imaging Modalities 

 There are many different approaches that have 
been developed to acquire images of the body. A 
proliferation in imaging modalities refl ects the 
fact that there is no single perfect imaging modal-
ity; no single imaging technique satisfi es all the 
desiderata for depicting the broad variety of types 
of pathology, some of which are better seen on 
some modalities than on others. The primary 
 difference among the imaging modalities is the 
energy source used to generate the images. In 
radiology, nearly every type of energy in the elec-
tromagnetic spectrum has been used, in addition 
to other physical phenomena such as sound and 
heat. We describe the more common methods 
according to the type of energy used to create the 
image. 

9.2.3.1    Light 
 The earliest medical images used visible light to 
create photographs, either of gross anatomic 
structures or, if a microscope was used, of histo-
logical specimens. Light is still an important 
source for creation of images, and in fact optical 
imaging has seen a resurgence of interest and 
application for areas such as molecular imaging 
(Weissleder and Mahmood  2001 ; Ray  2011 ) and 
imaging of brain activity on the exposed surface 
of the cerebral cortex (Pouratian et al.  2003 ). 

Visible light is the basis for an emerging modal-
ity called “optical imaging” and has promising 
applications such as cancer imaging (Solomon, 
Liu et al.  2011 ). Visible light, however, does not 
allow us to see more than a short distance beneath 
the surface of the body; thus other modalities are 
used for imaging structures deep inside the body.  

9.2.3.2    X-Rays 
 X-rays were fi rst discovered in 1895 by Wilhelm 
Conrad Roentgen, who was awarded the 1901 
Nobel Prize in Physics for this achievement. The 
discovery caused worldwide excitement, espe-
cially in the fi eld of medicine; by 1900, there 
already were several medical radiological societ-
ies. Thus, the foundation was laid for a new 
branch of medicine devoted to imaging the struc-
ture and function of the body (Kevles  1997 ). 

 Radiography is the primary modality used in 
radiology departments today, both to record 
a static image (Fig.  9.3 ) as well as to produce a 
real-time view of the patient (fl uoroscopy) or a 
movie (cine). Both fi lm and fl uoroscopic screens 
were used initially for recording X-ray images, 
but the fl uoroscopic images were too faint to be 
used clinically. By the 1940s, however, television 
and image-intensifi er technologies were devel-
oped to produce clear real-time fl uorescent 

  Fig. 9.3    A radiograph of the chest (Chest X-ray) taken in 
the frontal projection. The image is shown as if the patient 
is facing the viewer. This patient has abnormal density in 
the left lower lobe       
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images. Today, a standard procedure for many 
types of examinations is to combine real-time 
television monitoring of X-ray images with the 
creation of selected higher resolution fi lm images. 
Until the early 1970s, fi lm and fl uoroscopy were 
the only X-ray modalities available. Recently, 
nearly all radiology departments have shifted 
away from acquiring radiographic images on fi lm 
(analog images) to using digital radiography 
(Korner et al.  2007 ) to acquire digital images.

   X-ray imaging is a projection technique; an 
X-ray beam—one form of ionizing radiation—is 
projected from an X-ray source through a 
patient’s body (or other object) onto an X-ray 
array detector (a specially coated cassette that is 
scanned by a computer to capture the image in 
digital form), or fi lm (to produce an non-digital 
image). Because an X-ray beam is differentially 
absorbed by the various body tissues based on the 
thickness and atomic number of the tissues, the 
X-rays produce varying degrees of brightness 
and darkness on the radiographic image. The dif-
ferential amounts of brightness and darkness on 
the image are referred to as “image contrast;” dif-
ferential contrast among structures on the image 
is the basis for recognizing anatomic structures. 
Since the image in radiography is a projection, 
radiographs show a superposition of all the 
 structures traversed by the X-ray beam. 

  Computed radiography  (CR) is an imaging 
technique that directly creates digital radiographs 
from the imaging procedure. Storage phosphor 
replaces fi lm by substituting a reusable phosphor 
plate in a standard fi lm cassette. The exposed 
plate is processed by a reader system that scans 
the image into digital form, erases the plate, and 
packages the cassette for reuse. An important 
advantage of CR systems is that the cassettes are 
of standard size, so they can be used in any equip-
ment that holds fi lm-based cassettes (Horii  1996    ). 
More recently,  Digital Radiography  (DR) uses 
charge-coupled device (CCD) arrays to capture 
the image directly. 

 Radiographic images have very high spatial 
resolution because a high photon fl ux is used to 
produce the images, and a high resolution detec-
tor (fi lm or digital image array) that captures 
many line pairs per unit area is used. On the 

other hand, since the contrast in images is due to 
differences in tissue density and atomic number, 
the amount of functional information that can be 
derived from radiographic images is limited 
(Fig.  9.2 ). Radiography is also limited by rela-
tively poor contrast resolution (compared with 
other modalities such as  computed tomogra-
phy  (CT) or MRI), their use of ionizing radia-
tion, the challenge of spatial localization due to 
projection ambiguity, and their limited ability to 
depict physiological function. As described 
below, newer imaging modalities have been 
developed to increase contrast resolution, to 
eliminate the need for X-rays, and to improve 
spatial localization. A benefi t of radiographic 
images is that they can be generated in real time 
(fl uoroscopy) and can be produced using porta-
ble devices. 

 Computed Tomography (CT) is an important 
imaging method that uses X-ray imaging to pro-
duce cross sectional and volumetric images of 
the body (Lee  2006 ). Similar to radiography, 
X-rays are projected through the body onto an 
array of detectors; however, the beam and detec-
tors rotate around the patient, making numerous 
views at different angles of rotation. Using com-
puter reconstruction algorithms, an estimate of 
absolute density at each point (volume element 
or  voxel ) in the body is computed. Thus, the CT 
image is a computed image (Fig.  9.4 ); CT did not 
become practical for generating high quality 
images until the advent of powerful computers 

  Fig. 9.4    A CT image of the upper chest. CT images are 
slices of a body plane; in this case, a cross sectional (axial) 
image of the chest. Axial images are viewed from below 
the patient, so that the patient’s left is on viewer’s right. 
This image shows a cancer mass in the left upper lobe of 
the lung       
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and development of computer-based reconstruc-
tion techniques, which represent one of the most 
spectacular applications of computers in all of 
medicine (Buxton  2009 ). The spatial resolution 
of images is not as high in CT as it is in radiogra-
phy, however, due to the computed nature of the 
images, the contrast resolution and ability to 
derive functional information of tissues in the 
body is superior for CT than for radiography 
(Fig.  9.2 ).

9.2.3.3       Ultrasound 
 A common energy source used to produce 
images is  ultrasound , which developed from 
research performed by the Navy during World 
War II in which sonar was used to locate objects 
of interest in the ocean. Ultrasonography uses 
pulses of high-frequency sound waves rather 
than ionizing radiation to image body structures 
(Kremkau  2006 ). The basis of image generation 
is due to a property of all objects called acousti-
cal impedance. As sound waves encounter dif-
ferent types of tissues in a patient’s body 
(particularly interfaces where there is a chance 
in acoustical impedance), a portion of the wave 
is refl ected and a portion of the sound beam 
(which is now attenuated) continues to traverse 
into deeper tissues. The time required for the 
echo to return is proportional to the distance 
into the body at which it is refl ected; the ampli-
tude (intensity) of a returning echo depends on 
the acoustical properties of the tissues encoun-

tered and is represented in the image as bright-
ness (more echoes returning to the source is 
shown as image brightness). The system con-
structs two-dimensional images (B-scans) by 
displaying the echoes from pulses of multiple 
adjacent one-dimensional paths (A-scans). 
Ultrasound images are acquired as digital 
images from the outset, and saved on computer 
disks. They may also be recorded as frames in 
rapid succession (cine loops) for real- time imag-
ing. In addition, Doppler methods in ultrasound 
are used to measure and characterize the blood 
fl ow in blood vessels in the body (Fig.  9.5 ).

   Since the image contrast in ultrasound is 
based on differences in the acoustic impedance 
of tissue, ultrasound provides functional infor-
mation (e.g., tissue composition and blood 
fl ow). On the other hand, the fl ux of sound 
waves is not as dense as the photon fl ux 
used to produce images in radiography; thus 
ultrasound images are generally lower 
resolution images than other imaging modali-
ties (Fig.  9.2 ). 

 Current ultrasound machines are essentially 
specialized computers with attached peripherals, 
with active development of three-dimensional 
imaging. The ultrasound transducer now often 
sweeps out a 3-D volume rather than a 2-D plane, 
and the data are written directly into a three- 
dimensional array memory, which is displayed 
using volume or surface-based rendering tech-
niques (Ritchie et al.  1996 ).  

  Fig. 9.5    An ultrasound 
image of abdomen. Like CT 
and MRI, ultrasound images 
are slices of a body, but 
because a user creates the 
images by holding a probe, 
any arbitrary plane can be 
imaged (so long as the probe 
can be oriented to produce 
that plane). This image shows 
an axial slice through the 
pancreas, and fl ow in nearby 
blood vessels ( in color ) is 
seen due to Doppler effects 
incorporated into the imaging 
method       
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9.2.3.4    Magnetic Resonance Imaging 
(MRI) 

 Creation of images from the resonance phenom-
ena of unpaired spinning charges in a magnetic 
fi eld grew out of  nuclear magnetic resonance  
(NMR)  spectroscopy , a technique that has long 
been used in chemistry to characterize chemical 
compounds. Many atomic nuclei within the body 
have a net magnetic moment, so they act like tiny 
magnets. When a small chemical sample is 
placed in an intense, uniform magnetic fi eld, 
these nuclei line up in the direction of the fi eld, 
spinning around the axis of the fi eld with a fre-
quency dependent on the type of nucleus, on the 
surrounding environment, and on the strength of 
the magnetic fi eld. 

 If a radio pulse of a particular frequency is 
then applied at right angles to the stationary mag-
netic fi eld, those nuclei with rotation frequency 
equal to that of the radiofrequency pulse resonate 
with the pulse and absorb energy. The higher 
energy state causes the nuclei to change their ori-
entation with respect to the fi xed magnetic fi eld. 
When the radiofrequency pulse is removed, the 
nuclei return to their original aligned state (a pro-
cess called “relaxation”), emitting a detectable 
radiofrequency signal as they do so. Characteristic 
parameters of this signal—such as intensity, 
duration, and frequency shift away from the orig-
inal pulse—are dependent on the density and 
environment of the nuclei. In the case of tradi-
tional NMR spectroscopy, different molecular 
environments cause different frequency shifts 
(called chemical shifts), which we can use to 
identify the particular compounds in a sample. In 
the original NMR method, however, the signal is 
not localized to a specifi c region of the sample, so 
it is not possible to create an image. 

 Creation of medical images from NMR sig-
nals, known as Magnetic Resonance Imaging 
(MRI), had to await the development of computer- 
based reconstruction techniques, similar to CT. 
The basis of image formation in MRI is based on 
proton relaxation (referred to as T1 and T2 relax-
ation); differences in T1 and T2 are inherent 
properties of tissue and they vary among tissues. 
Thus, MRI provides detailed functional informa-
tion about tissue and can be valuable in clinical 

diagnosis (Fig.  9.6 ). At the same time, the fl ux of 
radiofrequency waves used to produce the images 
is high, and MRI thus has high spatial resolution 
(Fig.  9.2 ).

   Many new modalities are being developed 
based on magnetic resonance. For example, mag-
netic resonance arteriography (MRA) and venog-
raphy (MRV) are used to image blood fl ow (Lee 
 2003 ) and diffusion tensor imaging (DTI) is 
increasingly being used to image white matter 
fi ber tracts in the brain (Le Bihan et al.  2001 ; 
Hasan et al.  2010 ; de Figueiredo et al.  2011 ; 
Gerstner and Sorensen  2011 ).  

9.2.3.5    Nuclear Medicine Imaging 
 In  nuclear medicine imaging , the imaging 
approach is a reverse of the radiographic imag-
ing: instead of the imaging beam being outside 
the subject and projecting into the subject, the 
imaging source is inside the subject and projects 
out. Specifi cally, a radioactive isotope is chemi-
cally attached to a biologically active compound 
(such as an analogue of glucose) and then is 
injected into the patient’s peripheral circulation. 
The compound collects in the specifi c body com-
partments or organs (such as metabolically-active 
tissues), where it is stored or processed by the 

  Fig. 9.6    An MRI image of the knee. Like CT, MRI 
images are slices of a body. This image is in the saggital 
plane through the mid knee, showing in a tear in the pos-
terior cruciate ligament ( arrow )       
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body. The isotope emits radiation locally, and the 
radiation is measured using a special detector. 
The resultant nuclear-medicine image depicts the 
level of radioactivity that was measured at each 
spatial location of the patient. Because the counts 
are inherently quantized, digital images are pro-
duced. Multiple images also can be processed to 
obtain temporal dynamic information, such as the 
rate of arrival or of disappearance of isotope at 
particular body sites. 

 Nuclear medicine images, like radiographic 
images, are usually acquired as projections—a 
large planar detector is positioned outside the 
patient and it collects a projected image of all the 
radioactivity emitted from the patient. The 
images are similar in appearance to radiographic 
projection images. However, since the photon 
fl ux is extremely low (to minimize the radiation 
dose to the patient), the spatial resolution of 
nuclear medicine images is low. On the other 
hand, since the only places where radioisotope 
accumulates will be places in the body that are 
targeted by the injected agent, nearly all the 
information in nuclear medicine images is func-
tional information; thus nuclear imaging methods 
have high functional information and low spatial 
resolution (Fig.  9.2 ). Nuclear medicine tech-
niques have recently attracted much attention 
because of an explosion in novel imaging probes 
and targeting mechanisms to localize the imaging 
agent. 

 In addition to projection images, a computed 
tomography-like method called  single - photon 
emission computed tomography  (SPECT) 
(Alberini et al.  2011 ) has been developed. A cam-
era rotates around the patient similar to CT, pro-
ducing a computed volumetric image that may be 
viewed and navigated in multiple planes. A tech-
nique called Positron Emission Tomography 
(PET) uses a special type of radioactive isotope 
that emits positrons, which, upon encountering 
an electron, produces an annihilation event that 
sends out two gamma rays in opposite directions 
that are simultaneously detected on an annular 
detector array and used to compute a cross sec-
tional slice through the patient, similar to CT and 
SPECT (Fig.  9.7 ). These volumetric nuclear 
medicine imaging methods, like the projection 

methods, have high functional information and 
low spatial resolution. However, recently a newer 
modality called PET/CT has been developed that 
integrates a PET scanner and CT with image 
fusion (discussed below) to get the best of both 
worlds—functional information about lesions in 
the PET image plus spatial localization of the 
abnormality on the CT image (Figs.  9.8  and  9.2 ).

    A subdomain of nuclear imaging called 
 molecular imaging  has emerged that embodies 
this work on molecularly-targeted imaging (and 
therapeutic) agents (Weissleder and Mahmood 
 2001 ; Massoud and Gambhir  2003 ; Biswal et al. 
 2007 ; Hoffman and Gambhir  2007 ; Margolis 
et al.  2007 ; Ray and Gambhir  2007 ; Willmann 
et al.  2008 ; Pysz et al.  2010 ). Molecularly-tagged 
molecules are increasingly being introduced into 
the living organism, and imaged with optical, 
radioactive, or magnetic energy sources, often 
using reconstruction techniques and often in 3-D. 
It is becoming possible to combine gene sequence 

  Fig. 9.7    A PET image of the body in a patient with can-
cer in the left lung (same patient as in Fig.  9.4 ). This is a 
projection image taken in the frontal plane after injection 
of a radioactive isotope that accumulates in cancers. A 
 small black spot  in the left upper lobe is abnormal and 
indicates the cancer mass in the upper lobe of the left lung       
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information, gene expression array data, and 
molecular imaging to determine not only which 
genes are expressed, but where they are expressed 
in the organism (Kang and Chung  2008 ; Min and 
Gambhir  2008 ; Singh et al.  2008 ; Lexe et al. 
 2009 ; Smith et al.  2009 ; Harney and Meade 
 2010 ). These capabilities will become increas-
ingly important in the post-genomic era for deter-
mining exactly how genes generate both the 
structure and function of the organism.   

9.2.4     Image Quality 

9.2.4.1    Characteristics of Image 
Quality 

 The imaging modalities described above are 
complex devices with many parameters that need 
to be specifi ed in generating the image, and most 
of the parameters can have substantial impact on 
the following key characteristics of the fi nal 
image appearance: spatial resolution, contrast 
resolution, and temporal resolution, all of which 
have substantial impact on image quality and 
diagnostic value of the image. These characteris-
tics provide an objective means for comparing 
images formed by digital imaging modalities.
•     Spatial resolution  is related to the sharpness 

of the image; it is a measure of how well the 
imaging modality can distinguish points on 
the object that are close together. For a digital 
image, spatial resolution is generally related 
to the number of pixels per image area.  

•    Contrast resolution  is a measure of the abil-
ity to distinguish small differences in inten-
sity in different regions of the image, which 
in turn are related to differences in measur-
able parameters, such as X-ray attenuation. 
For digital images, the number of bits per 
pixel is related to the contrast resolution of an 
image.  

•    Temporal resolution  is a measure of the time 
needed to create an image. We consider an 
imaging procedure to be a real-time applica-
tion if it can generate images concurrent with 
the physical process it is imaging. At a rate of 
at least 30 images per second, it is possible to 
produce unblurred images of the beating 
heart.    
 Other parameters that are specifi cally relevant 

to medical imaging are the degree of invasive-
ness, the dosage of ionizing radiation, the degree 
of patient discomfort, the size (portability) of the 
instrument, the ability to depict physiologic func-
tion as well as anatomic structure, and the avail-
ability and cost of the procedure at a specifi c 
location. 

 A perfect imaging modality would produce 
images with high spatial, contrast, and temporal 
resolution; it would be available, low in cost, por-
table, free of risk, painless, and noninvasive; it 
would use nonionizing radiation; and it would 
depict physiological function as well as anatomic 
structure. As seen above, the different modalities 
differ in these characteristics and none is uni-
formly strong across all the parameters (Fig.  9.2 ).  

  Fig. 9.8    A PET/CT fused 
image. The axial slice from 
the PET study (Fig.  9.7 ) and 
the corresponding axial slice 
from the CT study (Fig.  9.4 ) 
are combined into a single 
image that has both good 
spatial resolution and 
functional information, 
showing that the lung mass 
has abnormal uptake of 
isotope, indicating it is 
metabolically active       
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9.2.4.2    Contrast Agents 
 One of the major motivators for development of 
new imaging modalities is the desire to increase 
contrast resolution. A contrast agent is a sub-
stance introduced into the body to enhance the 
imaging contrast of structures or fl uids in medical 
imaging. Contrast agents can be introduced in 
various ways, such as by injection, inspiration, 
ingestion, or enema. The chemical composition of 
contrast agents vary with modality so as to be 
optimally visible based on the physical basis of 
image formation. For example, iodinated contrast 
agents are used in radiography and CT because 
iodine has high atomic number, greatly attenuat-
ing X-rays, and thus greatly enhancing image 
contrast in any tissues that accumulate the  contrast 
agent. Contrast agents for radiography are referred 
to as “radiopaque” since they absorb X-rays and 
obscure the beam. Contrast agents in radiography 
are used to highlight the anatomic structures of 
interest (e.g., stomach, colon, urinary tract). In an 
imaging technique called angiography, a contrast 
agent is injected into the blood vessels to opacify 
them on the images. In pathology, histological 
staining agents such as haematoxylin and eosin 
(H&E) have been used for years to enhance con-
trast in tissue sections, and magnetic contrast 
agents such as gadolinium have been introduced 
to enhance contrast in MR images. 

 Although these methods have been very suc-
cessful, they generally are somewhat non- specifi c. 
In recent years, advances in molecular biology 
have led to the ability to design contrast agents 
that are highly specifi c for individual molecules. 
In addition to radioactively tagged molecules 
used in nuclear medicine, molecules are tagged 
for imaging by magnetic resonance and optical 
energy sources. Tagged molecules are imaged in 
2-D or 3-D, often by application of reconstruction 
techniques developed for clinical imaging. Tagged 
molecules have been used for several years  in 
vitro  by such techniques as immunocytochemistry 
(binding of tagged antibodies to antigen) (Van 
Noorden  2002 ) and  in situ  hybridization (binding 
of tagged nucleotide sequences to DNA or RNA) 
(King et al.  2000 ). More recently, methods have 
been developed to image these molecules in the 
living organism, thereby opening up entirely new 

avenues for understanding the functioning of the 
body at the molecular level (Biswal et al.  2007 ; 
Hoffman and Gambhir  2007 ; Margolis et al.  2007 ; 
Ray and Gambhir  2007 ; Willmann et al.  2008 ; 
Pysz et al.  2010 ).   

9.2.5     Imaging Methods in Other 
Medical Domains 

 Though radiology is a core domain and driver of 
many clinical problems and applications of medical 
imaging, several other medical domains are increas-
ingly relying on imaging to provide key information 
for biomedical discovery and clinical insight. The 
methods of biomedical informatics presented in this 
chapter, while focusing on radiology in our exam-
ples, are generalizable and applicable to these other 
domains. We briefl y highlight these other domains 
and the role of imaging in them. 

9.2.5.1    Microscopic/Cellular Imaging 
 At the microscopic level, there is a rapid growth 
in  cellular imaging  (Larabell and Nugent  2010 ; 
Toomre and Bewersdorf  2010 ; Wessels et al. 
 2010 ), including use of computational methods 
to evaluate the features in cells (Carpenter et al. 
 2006 ). The confocal microscope uses electronic 
focusing to move a two-dimensional slice plane 
through a three-dimensional tissue slice placed in 
a microscope. The result is a three-dimensional 
voxel array of a microscopic, or even submicro-
scopic, specimen (Wilson  1990 ; Paddock  1994 ). 
At the electron microscopic level electron tomog-
raphy generates 3-D images from thick electron- 
microscopic sections using techniques similar to 
those used in CT (Perkins et al.  1997 ).  

9.2.5.2    Pathology/Tissue Imaging 
 The radiology department was revolutionized by 
the introduction of digital imaging and  Picture 
Archiving and Communication Systems  (PACS). 
Pathology has likewise begun to shift from an ana-
log to a digital workfl ow (Leong and Leong  2003 ; 
Gombas et al.  2004 ). Pathology informatics is a 
rapidly emerging fi eld (Becich  2000 ; Gabril and 
Yousef  2010 ), with goals and research problems 
similar to those in radiology, such as managing 
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huge images, improving effi ciency of workfl ow, 
learning new knowledge by mining historical 
cases, identifying novel imaging features through 
correlative quantitative imaging analysis, and 
decision support. A particularly promising area 
is deriving novel quantitative image features from 
pathology images to improve characterization and 
clinical decision making (Giger and MacMahon 
 1996 ; Nielsen et al.  2008 ; Armstrong  2010 ). Given 
that pathology and radiology produce images that 
characterize phenotype of disease, there is tremen-
dous opportunity for information integration and 
 linkage among pathology, radiology, and molecu-
lar data for discovery.  

9.2.5.3    Ophthalmologic Imaging 
 Visualization of the retina is a core task of oph-
thalmology to diagnose disease and to monitor 
treatment response (Bennett and Barry  2009 ). 
Imaging modalities include retinal photography, 
autofl uorescence, and fl uorescein angiography. 
Recently, tomographic-based imaging has been 
introduced through a technique called  optical 
coherence tomography  (OCT; Fig.  9.9 ) 
(Figurska et al.  2010 ). This modality is showing 
great progress in evaluating a variety of retinal 
diseases (Freton and Finger  2012 ; Schimel et al. 
 2011 ; Sohrab et al.  2011 ). As with radiological 

imaging, a number of quantitative and automated 
segmentation methods are being created to evalu-
ate disease objectively (Cabrera Fernandez et al. 
 2005 ; Baumann et al.  2010 ; Hu et al.  2010a ,  b ). 
Likewise, image processing methods for image 
visualization and fusion are being developed, 
similar to those used in radiology.

9.2.5.4       Dermatologic Imaging 
 Imaging is becoming an important component of 
dermatology in the management of patients with 
skin lesions. Dermatologists frequently take pho-
tographs of patients with skin abnormalities, and 
while initially this was done for clinical docu-
mentation, increasingly this is done to leverage 
imaging informatics methods for training, to 
improve clinical care, for consultation, for moni-
toring progression or change in skin disease, and 
for image retrieval (Bittorf et al.  1997 ; Diepgen 
and Eysenbach  1998 ; Eysenbach et al.  1998 ; 
Lowe et al.  1998 ; Ribaric et al.  2001 ). Like radi-
ology and pathology, recent work is being done 
to extract quantitative features from the images 
to enable decision support (Seidenari et al.  2003 ).    

9.3     Image Content 
Representation 

 The image contents comprise two components of 
information, the  visual content  and the  knowledge 
content . The visual content is the raw values of 
the image itself, the information that a computer 
can access in a digital image directly. The knowl-
edge content arises as the observer, who has bio-
medical knowledge about the image content, 
views the visual information in the image. For 
example, a radiologist viewing a CT image of the 
upper abdomen immediately recognizes that the 
image contains the liver, spleen, and stomach 
(anatomic entities), as well as image abnormali-
ties such as a mass in the liver with rim enhance-
ment (imaging observation entities). Unlike the 
visual content, the knowledge content of images 
is not directly accessible to computers from the 
image itself. However, semantic methods are 
being developed to make this content machine- 
accessible (Sect.  9.3.2 ). In this section we describe 

  Fig. 9.9    An OCT image of the retina. Like ultrasound, 
OCT produces an image slice at any arbitrary angle 
(depending on how the light beam can be oriented), but it 
is limited to visualizing superfi cial structures due to poor 
penetration by light. In this image, the layered structure of 
the retina can be seen, as well as abnormalities (drusen)       
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imaging informatics methods for representing the 
visual and knowledge content of images. 

9.3.1    Representing Visual Content 
in Digital Images 

 The visual content of digital images typically is 
represented in a computer by a two-dimensional 
array of numbers (a bit map). Each element of the 
array represents the intensity of a small square 
area of the picture, called a picture element (or 
pixel). Each  pixel  element corresponds to a vol-
ume element (or  voxel ) in the imaged subject that 
produced the pixel. If we consider the image of a 
volume, then a three-dimensional array of num-
bers is required. Another way of thinking of a vol-
ume is that it is a stack of two-dimensional images. 
However, it is also important to be aware of the 
voxel dimensions that correspond to the pixels 
when doing this. In many 2-D imaging applica-
tions, the in-plane resolution (the size of the voxels 
in the x, y plane) is higher than the resolution in 
the z-axis (i.e., the slice thickness). This creates a 
problem when re-sampling the volume data to cre-
ate other projections, such as coronal or saggital 
from primary axial image data. If the dimensions 

of the voxels (and pixels) are uniform in all dimen-
sions, they are referred to as  isotropic . 

 We can store any image in a computer as a 
matrix of integers (or real-valued numbers), either 
by converting it from an analog to a digital repre-
sentation or by generating it directly in digital 
form. Once an image is in digital form, it can be 
handled just like all other data. It can be transmit-
ted over communications networks, stored com-
pactly in databases on magnetic or optical media, 
and displayed on graphics monitors. In addition, 
the use of computers has created an entirely new 
realm of capabilities for image generation and 
analysis: images can be computed rather than 
measured directly. Furthermore, digital images 
can be manipulated for display or analysis in ways 
not possible with fi lm-based images. 

 In addition to the 2D (slice) and 3D (vol-
ume) representation for image data, there can be 
additional dimensions to representing the visual 
content of images. It is often the case that multi-
modality data are required for the diagnosis; 
this can be a combination of varying modali-
ties, (e.g., CT and PET, CT and MRI) and can 
be a combination of imaging sequences  within  
a modality (e.g., T1, T2, or other sequences in 
MRI) (Fig.  9.10 ). Pixel (or voxel) content, from 

T1 SCAN
WITHOUT CONTRAST

T1 SCAN
WITHOUT CONTRAST

T2-SCANs

  Fig. 9.10    Multi-modality imaging. Images of the brain 
from three modalities (T1 without contrast, T1 with con-
trast, and T2) are shown. The patient has a lesion in the 
left occipital lobe that has distinctive image features on 

each of these modalities, and the combination of these dif-
ferent features on different modalities establishes charac-
teristic patterns useful in diagnosis       
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each of the respective acquisition modalities, are 
combined in what is known as a “feature-vector” 
in the multi-dimensional space. For example, a 
3-dimensional intensity-based feature vector, 
based on three MRI pulse sequences, can be 
defi ned as a set of three values for each pixel 
in the image, where the intensity of each pixel 
in each of the three MRI images is extracted 
and recorded (e.g., [Intensity(Sequence 1), 
Intensity(Sequence 2), Intensity(Sequence 3)]. 
Any imaging performed over time (e.g., cardiac 
echo videos) can be represented by the set of val-
ues at each time point, thus the time is added as 
an additional dimension to the representation.

   Finally, in addition to representing the visual 
content, medical images also need to represent 
certain information about that visual content 
(referred to as  image metadata ). Image metadata 
include such things as the name of the patient, 
date the image was acquired, the slice thickness, 
the modality that was used to acquire the image, 
etc. All image metadata are usually stored in the 
header of the image fi le. Given that there are 
many different types of equipment and software 
that produce and consume images, standards are 
crucial. For images, the Digital Imaging and 
Communications in Medicine (DICOM) stan-
dard is for distributing and viewing any kind of 
medical image regardless of the origin (Bidgood 
and Horii  1992 ). DICOM has become pervasive 
throughout radiology and is becoming a standard 
in other domains such as pathology, ophthalmol-
ogy, and dermatology. In addition to specifying a 
standard fi le syntax and metadata structure, 
DICOM specifi es a standard protocol for com-
municating images among imaging devices.  

9.3.2         Representing Knowledge 
Content in Digital Images 

 As noted above, the knowledge content related to 
images is not directly encoded in the images, but 
it is recognized by the observer of the images. 
This knowledge includes recognition of the ana-
tomic entities in the image, imaging observations 
and characteristics of the observations (some-
times called “fi ndings”), and interpretations 

(probable diseases). Representing this knowl-
edge in the imaging domain is similar to knowl-
edge representation in other domains of 
biomedical informatics (see Chap.   22    ). 
Specifi cally, for representing the entities in the 
domain of discourse, we adopt terminologies or 
ontologies. To make specifi c statements about 
individuals (images), we use information models 
that reference ontological entities as necessary. 

9.3.2.1    Knowledge Representation 
of Anatomy 

 Given segmented anatomical structures, whether 
at the macroscopic or microscopic level, and 
whether represented as 3-D surface meshes or 
extracted 3-D regions, it is often desirable to 
attach labels (names) to the structures. If the 
names are drawn from a controlled terminology 
or ontology, they can be used as an index into a 
database of segmented structures, thereby pro-
viding a qualitative means for comparing struc-
tures from multiple subjects. 

 If the terms in the vocabulary are organized so 
as to assert relationships true of all individuals 
(“ontologies”), they can support systems that 
manipulate and retrieve image contents in “intel-
ligent” ways. If anatomical ontologies are linked 
to other ontologies of physiology and pathology 
they can provide increasingly sophisticated 
knowledge about the  meaning  of the various 
images and other data that are increasingly 
becoming available in online databases. This 
kind of knowledge (by the computer, as opposed 
to the scientist) will be required in order to 
achieve the seamless integration of all forms of 
imaging and non-imaging data. 

 At the most fundamental level,  Nomina 
Anatomica  (International Anatomical Nomen-
clature Committee  1989 ) and its successor, 
 Terminologia Anatomica  (Federative Committee 
on Anatomical Terminology  1998 ) provide a 
classifi cation of offi cially sanctioned terms that 
are associated with macroscopic and microscopic 
anatomical structures. This canonical term list, 
however, has been substantially expanded by 
synonyms that are current in various fi elds, and 
has also been augmented by a large number of 
new terms that designate structures omitted from 
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Terminologia Anatomica. Many of these addi-
tions are present in various controlled terminolo-
gies (e.g., MeSH (National Library of Medicine 
 1999 ), SNOMED (Spackman et al.  1997 ), Read 
Codes (Schultz et al.  1997 ), GALEN (Rector 
et al.  1993 )). Unlike Terminologia these vocabu-
laries are entirely computer-based, and therefore 
lend themselves for incorporation in computer-
based applications. 

 The most complete primate  neuroanatomical  
terminology is NeuroNames, developed by 
Bowden and Martin at the University of 
Washington (Bowden and Martin  1995 ). 
NeuroNames, which is included as a knowledge 
source in the National Library of Medicine’s 
Unifi ed Medical Language System (UMLS) 
(Lindberg et al.  1993 ), is primarily organized as a 
part-of hierarchy of nested structures, with links 
to a large set of ancillary terms that do not fi t into 
the strict part-of hierarchy. Other neuroanatomi-
cal terminologies have also been developed 
(Paxinos and Watson  1986 ; Swanson  1992 ; 
Bloom and Young  1993 ; Franklin and Paxinos 
 1997 ; Bug et al.  2008 ). A challenge for biomedi-
cal informatics is either to come up with a single 
consensus terminology or to develop Internet 
tools that allow transparent integration of distrib-
uted but commonly agreed-on terminology, with 
local modifi cations. 

 Classifi cation and ontology projects to date 
have focused primarily on arranging the terms of 
a particular domain in hierarchies. As noted with 
respect to the evaluation of Terminologia 
Anatomica (Rosse  2000 ), insuffi cient attention 
has been paid to the relationships among these 
terms. These relationships are named (e.g., “ is - a ” 
and “ part - of ”) to indicate how the entities con-
nected by them are related (e.g., Left Lobe of 
Liver  part - of  Liver). Linking entities with rela-
tions encodes knowledge and is used by com-
puter reasoning applications in making 
inferences. Terminologia, as well as anatomy 
sections of the controlled medical terminologies, 
mix - is a - and - part of - relationships in the anat-
omy segments of their hierarchies. Although 
such heterogeneity does not interfere with using 
these term lists for keyword-based retrieval, 
these programs will fail to support higher level 

 knowledge (reasoning) required for knowledge-
based applications. To meet this gap, the 
Foundational Model of Anatomy (FMA) was 
developed to defi ne a comprehensive symbolic 
description of the structural organization of the 
body, including anatomical concepts, their pre-
ferred names and synonyms, defi nitions, attri-
butes and relationships (Rosse et al.  1998a ,  b ; 
Rosse and Mejino  2003 ) (Fig.  9.11 ).

   In the FMA, anatomical entities are arranged 
in class-subclass hierarchies, with inheritance of 
defi ning attributes along the  is - a  link, and other 
relationships (e.g., parts, branches, spatial adja-
cencies) represented as additional descriptors 
associated with the concept. The FMA currently 
consists of over 75,000 concepts, represented by 
about 120,000 terms, and arranged in over 2.1 
million links using 168 types of relationships. 
These concepts represent structures at all levels: 
macroscopic (to 1 mm resolution), cellular and 
macromolecular. Brain structures have been 
added by integrating NeuroNames with the FMA 
as a Foundational Model of Neuroanatomy 
(FMNA) (Martin et al.  2001 ). 

 The FMA can be useful for symbolically orga-
nizing and integrating biomedical information, 
particularly that obtained from images. But in 
order to answer non-trivial queries in neurosci-
ence and other basic science areas, and to develop 
“smart tools” that rely on deep knowledge, addi-
tional ontologies must also be developed (e.g., 
for physiological functions mediated by neu-
rotransmitters, and pathological processes and 
their clinical manifestations, as well for the 
radiological appearances with which they corre-
late). The relationships that exist among these 
concepts and anatomical parts of the body must 
also be explicitly modeled. Next-generation 
informatics efforts that link the FMA and other 
anatomical ontologies with separately developed 
functional ontologies will be needed in order to 
accomplish this type of integration.  

9.3.2.2    Knowledge Representation of 
Radiology Imaging Features 

 While FMA provides a comprehensive knowl-
edge representation for anatomy, it does not cover 
other portions of the radiology domain. As is 

D.L. Rubin et al.



301

 discussed in Chap.   7    , there are controlled termi-
nologies in other domains, such as MeSH, 
SNOMED, and related terminologies in the 
UMLS (Cimino  1996 ; Bodenreider  2008 ); how-
ever, these lack terminology specifi c to radiology 
for describing the features seen in imaging. The 
Radiological Society of North America (RSNA) 
recently developed RadLex, a controlled 
 terminology for radiology (Langlotz  2006 ; Rubin 
 2008 ). The primary goal of RadLex is to provide 
a means for radiologists to communicate clear, 
concise, and orderly descriptions of imaging 
fi ndings in understandable, unambiguous lan-
guage. Another goal is to promote an orderly 

thought process and logical assessments and rec-
ommendations based on observed imaging fea-
tures based on terminology-based description of 
radiology images and to enable decision support 
(Baker et al.  1995 ; Burnside et al.  2009 ). Another 
goal of RadLex is to enable radiology research; 
data mining is facilitated by the use of standard 
terms to code large collections of reports and 
images (Channin et al.  2009a ,  b ). 

 RadLex includes thousands of descriptors of 
visual observations and characteristics for 
describing imaging abnormalities, as well as 
terms for naming anatomic structures, radiology 
imaging procedures, and diseases (Fig.  9.12 ). 

  Fig. 9.11    The Foundational Model Explorer, a Web 
viewer for the frame-based University of Washington 
Foundational Model of Anatomy (FMA). The left panel 
shows a hierarchical view along the part of link. 
Hierarchies along other links, such as is-a, branch-of, 
tributary-of, can also be viewed in this panel. The right 

hand panel shows the detailed local and inherited attri-
butes (slots) associated with a selected structure, in this 
case the thoracic vertebral column (Photograph courtesy 
of the Structural Informatics Group, University of 
Washington)       

 

9 Biomedical Imaging Informatics

http://dx.doi.org/10.1007/978-1-4471-4474-8_7


302

Each term in RadLex contains a unique identifi er 
as well as a variety of attributes such as defi ni-
tion, synonyms, and foreign language equiva-
lents. In addition to a lexicon of standard terms, 
the RadLex ontology includes term relation-
ships—links between terms to relate them in 
various ways to encode radiological knowledge. 
For example, the  is - a  relationship records sub-
sumption. Other relationships include part-of, 
connectivity, and blood supply. These 
 relationships are enabling computer-reasoning 
applications to process image-related data anno-
tated with RadLex.

   RadLex has been used in several imaging 
informatics applications, such as to improve 
search for radiology information. RadLex-based 
indexing of radiology journal fi gure captions 
achieved very high precision and recall, and sig-
nifi cantly improved image retrieval over 
keyword- based search (Kahn and Rubin  2009 ). 
RadLex has been used to index radiology reports 
(Marwede et al.  2008 ). Work is underway to 
introduce RadLex controlled terms into radiol-
ogy reports to reduce radiologist variation in 

use of terms for describing images (Kahn et al. 
 2009 ). Tools are beginning to appear enabling 
radiologists to annotate and query image data-
bases using RadLex and other controlled termi-
nologies (Rubin et al.  2008 ; Channin et al. 
 2009a ,  b ). 

 In addition to RadLex, there are other impor-
tant controlled terminologies for radiology. The 
Breast Imaging Reporting and Data System 
(BI-RADS) is a lexicon of descriptors and a 
reporting structure comprising assessment cate-
gories and management recommendations cre-
ated by the American College of Radiology 
(D’Orsi and Newell  2007 ). Terminologies are 
also being created in other radiology imaging 
domains, including the Fleischner Society 
Glossary of terms for thoracic imaging (Hansell 
et al.  2008 ), the Nomenclature of Lumbar Disc 
Pathology (Appel  2001 ), terminologies for 
image guided tumor ablation (Goldberg et al. 
 2009 ) and transcatheter therapy for hepatic 
malignancy (Brown et al.  2009 ), and the CT 
Colonography Reporting and Data System 
(Zalis et al.  2005 ).  

  Fig. 9.12    RadLex contolled terminology (  http://radlex.
org    ). RadLex includes term hierarchies for describing 
anatomy (“anatomical entity”), imaging observations 
(“imaging observation”) and characteristics (“imaging 
observation characteristic”), imaging procedures and pro-
cedure steps (“procedure step”), diseases (“pathophysio-

logic process”), treatments (“treatment”), and components 
of radiology reports (“report”). Each term includes defi ni-
tions, preferred name, image exemplars, and other term 
metadata and relationships such as subsumption (Figure 
reprinted with permission from  Rubin 2011 )       
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9.3.2.3    Semantic Representation 
of Image Contents 

 While ontologies and controlled terminologies 
are useful for representing knowledge related to 
images, they do not provide a means to directly 
encode assertions for recording the semantic con-
tent in images. For example, we may wish to 
record the fact that “there is a mass 4 × 5 cm in 
size in the right lobe of the liver.” The representa-
tion of this semantic image content certainly will 
use ontologies and terminologies to record the 
entities to which such assertions refer; however, 
an  information model  is required to provide the 
required grammar and syntax for recording such 
assertions. There are two approaches to recording 
these assertions, no formal information model 
(narrative text) and a formal information model. 

   Narrative Text 
 In the current workfl ow, nearly all semantic image 
content is recorded in narrative text (radiology 
reports). The advantage of text reports is that they 
are simple, quick to produce (the radiologist 
speaks freely into a microphone), and they can be 
expressive, capturing the subtle nuances (and 
ambiguities) that the English language provides. 
There are several downsides, however. First, text 
reports are unstructured; there is no adherence to 
controlled terminology and not consistent struc-
ture that would permit reliable information extrac-
tion. Second, the reports may be incomplete, 
vague, or contradictory. Further, free text is chal-
lenging for computers (see Chap.   8    ), which makes 
it diffi cult to leverage free text in applications. 
Finally, radiology images and the corresponding 
radiologist report are currently disconnected; e.g., 
the report may describe a mass in an organ, and 
the image may contain a  region of interest  (ROI) 
measuring the lesion, but there is no information 
directly linking the description of the lesion in the 
report with the ROI in the image. Such linkage 
could enable applications such as content-based 
image retrieval, as described below.  

   Information Model 
 An information model provides an explicit speci-
fi cation of the types of data to be collected and the 
syntax by which it will be saved. So-called 

“semantic annotation” methods are being devel-
oped to adapt the semantic content about images 
that would have been put into narrative text so that 
it can instead be put in structured annotations 
compliant with the information model. The infor-
mation model conveys the pertinent image infor-
mation explicitly and in human-readable and 
machine accessible format. For example, a 
semantic annotation might record the coordinates 
of the tip of an arrow and indicate the organ (ana-
tomic location) and imaging observations (e.g., 
mass) in that organ. These annotations can be 
recorded in a standard, searchable format, such as 
the Annotation and Image Markup (AIM) schema, 
recently developed by the National Cancer 
Institute’s Cancer Biomedical Informatics Grid 
(caBIG) initiative (Channin et al.  2009a ,  b ; Rubin 
et al.  2009b ). AIM captures a variety of informa-
tion about image annotations, e.g., ROIs, lesion 
identifi cation, location, measurements, method of 
measurement, and other qualitative and quantita-
tive features (Channin et al.  2009a ,  b ). 

 The AIM information model includes use of 
controlled terms as semantic descriptors of 
lesions (e.g., RadLex). It also provides a syntax 
associating an ROI in an image with the afore-
mentioned information, enabling raw image data 
to be linked with semantic information, and thus 
bridges the current disconnect between semantic 
terms and the lesions in images being described. 
In conjunction with RadLex, the AIM informa-
tion model provides a standard syntax (in XML 
schema) to create a structured representation of 
the semantic contents of images (Fig.  9.13 ). Once 
the semantic contents are recorded in AIM (as 
XML instances of the AIM XML schema), appli-
cations can be developed for image query and 
analysis. Tools for creating semantic annotation 
of images as part of the routine clinical and 
research workfl ow is underway (Rubin et al. 
 2008 ). Automated semantic image annotation 
methods are also being pursued (Carneiro, Chan 
et al.  2007 ; Mechouche et al.  2008 ; Yu and Ip 
 2008 ) that will ultimately make the process of 
generating this structured information effi cient.

   In addition, tools to facilitate creating seman-
tic annotations on images as part of the image 
viewing workfl ow are being developed. One such 
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tool, the electronic Imaging Physician Annotation 
Device (ePAD, formerly called iPAD; (Rubin 
et al.  2008 )), a plug in to the Osirix image view-
ing program, is freely available. The ePAD tool 
permits the user to draw image annotations in a 
manner in which they are accustomed while 
viewing images, while simultaneously collecting 
semantic information about the image and the 
image region directly from the image itself as 
well as from the user using a structured reporting 
template (Fig.  9.14 ). The tool also features a 
panel to provide feedback so as to ensure com-
plete and valid annotations. Image annotations 
are saved in the AIM XML format.

   By making the semantic content of images 
explicit and machine-accessible, these structured 
annotations of images will help radiologists ana-
lyze data in large databases of images. For exam-
ple, cancer patients often have many serial 
imaging studies in which a set of lesions is evalu-
ated at each time point. Automated methods will 
be able to use semantic image annotations to iden-
tify the measurable lesions at each time point and 
produce a summary of, and automatically reason 
about, the total tumor burden over time, helping 
physicians to determine how well patients are 
responding to treatment (Levy and Rubin  2008 ).   

9.3.2.4    Atlases 
 Spatial representations of anatomy, in the form of 
segmented regions on 2-D or 3-D images, or 3-D 
surfaces extracted from image volumes, are often 
combined with symbolic representations to form 
digital atlases. A digital atlas (which for this 
chapter refers to an atlas created from 3-D image 
data taken from real subjects, as opposed to art-
ists’ illustrations) is generally created from a 
single individual, which therefore serves as a 
“canonical” instance of the species. Traditionally, 
atlases have been primarily used for education, 
and most digital atlases are used the same way. 

 As an example in 2-D, the Digital Anatomist 
Interactive Atlases (Sundsten et al.  2000 ) were 
created by outlining ROIs on 2-D images (many 
of which are snapshots of 3-D scenes generated 
by reconstruction from serial sections) and label-
ing the regions with terminology from the FMA. 
The atlases, which are available on the web, per-
mit interactive browsing, where the names of 
structures are given in response to mouse clicks; 
dynamic creation of “pin diagrams”, in which 
selected labels are attached to regions on the 
images; and dynamically-generated quizzes, in 
which the user is asked to point to structures on 
the image (Brinkley et al.  1997 ). 

Image

Text Report

The Pixel at the tip of the arrow
[coordinates (x,y)

in this Image
[DICOM: 1.2.814.234543.232243]
represents an Hypodense Mass

[RID243, RID118]
[2D measurement ] 4.5 x 3.5 cm

in the Right Lobe
[SNOMED:A3310657]

of the Liver
[SNOMED:A2340017]

Likely
[RID:392]

a Metastasis
[SNOMED:A7726439]

‘’There is a
hypodense mass
measuring 4.5 x 3.5
cm in the right lobe
of the liver, likely a
metastasis.’’

Terminology Semantic Annotation

  Fig. 9.13    Semantic annotation of images. The radiolo-
gist’s image annotation (left) and interpretation (middle) 
associated with the annotation are not represented in a form 
such that the detailed content is directly accessible. The 
same information can be put into a structured representa-

tion as a semantic annotation (right), comprising terms 
from controlled terminologies (Systematized Nomenclature 
of Medicine (SNOMED) and RadLex) as well as numeric 
values (coordinates and measurements) (Figure reprinted 
with permission from (Rubin and Napel  2010 )       
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 As an example 3-D, the Digital Anatomist 
Dynamic Scene Generator (DSG, Fig.  9.15 ) cre-
ates interactive 3-D atlases “on-the-fl y” for 
viewing and manipulation over the web 
(Brinkley et al.  1999 ; Wong et al.  1999 ). In this 
case the 3-D scenes generated by reconstruction 
from serial sections are broken down into 3-D 
 “primitive” meshes, each of which corresponds 
to an individual part in the FMA. In response to 
commands such as “Display the branches of the 
coronary arteries” the DSG looks up the 
branches in the FMA, retrieves the 3-D model 
primitives associated with those branches, deter-
mines the color for each primitive based on its 
type in the FMA is-a hierarchy, renders the 
assembled scene as a 2-D snapshot, then sends it 
to a web-browser, where the user may change 

the camera parameters, add new structures, or 
select and highlight structures.

   An example of a 3-D brain atlas created from 
the Visible Human is Voxelman (Hohne et al. 
 1995 ), in which each voxel in the Visible Human 
head is labeled with the name of an anatomic 
structure in a “generalized voxel model” (Hohne 
et al.  1990 ), and highly-detailed 3-D scenes are 
dynamically generated. Several other brain 
atlases have also been developed, primarily for 
educational use (Johnson and Becker  2001 ; 
Stensaas and Millhouse  2001 ). 

 Atlases have also been developed for integrat-
ing functional data from multiple studies (Bloom 
and Young  1993 ; Toga et al.  1994 ,  1995 ; 
Swanson  1999 ; Fougerousse et al.  2000 ; Rosen 
et al.  2000 ; Martin and Bowden  2001 ). In their 

  Fig. 9.14    The electronic Imaging Physician Annotation 
Device (ePAD). This tool creates structured semantic 
annotations on images using a graphical interface to mini-
mize impact on image viewing workfl ow. The user views 
the image in and draws a region of interest ( left ). ePAD 
incorporates ontologies so that users can specify con-

trolled terms as values in making their annotations ( pull 
down panel on right ). As they make their annotation, they 
receive feedback to ensure data entries are complete and 
that there are no violations of pre-specifi ed annotation 
logic ( panel on lower right ). The ePAD tool saves image 
annotations in the AIM information model XML format       
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original published form these atlases permit 
manual drawing of functional data, such as neu-
rotransmitter distributions, onto hardcopy print-
outs of brain sections. Many of these atlases 
have been or are in the process of being con-
verted to digital form. The Laboratory of 
Neuroimaging (LONI) at the University of 
California Los Angeles has been particularly 
active in the development and analysis of digital 
atlases (Toga  2001 ), and the California Institute 
of Technology Human Brain Project has released 
a web-accessible 3-D mouse atlas acquired with 
micro-MR imaging (Dhenain et al.  2001 ). 

 The most widely used human brain atlas is the 
Talairach atlas, based on post mortem sections 
from a 60-year-old woman (Talairach and 
Tournoux  1988 ). This atlas introduced a propor-
tional coordinate system (often called “Talairach 
space”) which consists of 12 rectangular regions 
of the target brain that are piecewise affi ne trans-
formed to corresponding regions in the atlas. 
Using these transforms (or a simplifi ed single 
affi ne transform based on the anterior and poste-
rior commissures) a point in the target brain can 
be expressed in Talairach coordinates, and 
thereby related to similarly transformed points 

  Fig. 9.15    The Digital Anatomist Dynamic Scene 
Generator. This-scene was created by requesting the fol-
lowing structures from the scene generator server: the 
parts of the aorta, the branches of the ascending aorta, the 
tributaries of the right atrium, the branches of the tracheo-
bronchial tree, and the parts of the thoracic vertebral col-
umn. The server was then requested to rotate the camera 
45°, and to provide the name of a structure selected with 

the mouse, in this case the third thoracic vertebra. The 
selected structure was then hidden (note the gap indicated 
by the  arrow ). The  left frame  shows a partial view of the 
FMA part of hierarchy for the thoracic vertebral column. 
Checked structures are associated with three-dimensional 
“primitive” meshes that were loaded into the scene 
(Photograph courtesy of the Structural Informatics Group, 
University of Washington)       
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from other brains. Other human brain atlases 
have also been developed (Schaltenbrand and 
Warren  1977 ; Hohne et al.  1992 ; Caviness et al. 
 1996 ; Drury and Van Essen  1997 ; Van Essen and 
Drury  1997 ).    

9.4      Image Processing 

  Image processing  is a form of  signal processing  
in which computational methods are applied to 
an input image to produce an output image or a 
set of characteristics or parameters related to the 
image. Most image processing techniques involve 
treating the image as a two-dimensional signal 
and analyzing it using signal-processing tech-
niques or a variety of other transformations or 
computations. There are a broad variety of image 
processing methods, including transformations to 
enhance visualization, computations to extract 
features, and systems to automate detection or 
diagnose abnormalities in the images. The latter 
two methods, referred to as computer-assisted 
detection and diagnosis (CAD) is discussed in 
Sect.  9.5.2 . In this section we discuss the former 
methods, which are more elemental and generic 
processing methods. 

 The rapidly increasing number and types of 
digital images has created many opportunities for 
image processing, since one of the great advan-
tages of digital images is that they can be manip-
ulated just like any other kind of data. This 
advantage was evident from the early days of 
computers, and success in processing satellite 
and spacecraft images generated considerable 
interest in biomedical image processing, includ-
ing automated image analysis to improve radio-
logical interpretation. Beginning in the 1960s, 
researchers devoted a large amount of work to 
this end, with the hope that eventually much of 
radiographic image analysis could be improved. 
One of the fi rst areas to receive attention was 
automated interpretation of chest X-ray images, 
because, previously, most patients admitted to a 
hospital were subjected to routine chest X-ray 
examinations. (This practice is no longer consid-
ered cost effective except for selected subgroups 
of patients.) Subsequent research, however, con-

fi rmed the diffi culty of completely automating 
radiographic image interpretation, and much of 
the initial enthusiasm stagnated long ago. 
Currently, there is less emphasis on completely 
automatic interpretation and more on systems 
that aid the user of images, except in specialized 
use cases. 

 Medical image processing utilizes tools simi-
lar to general image processing. But there are 
unique features to the medical imagery that pres-
ent different, and often more diffi cult, challenges 
from those that exist in general image processing 
tasks. To begin with, the images analyzed all rep-
resent the 3D body; thus, the information extracted 
(be it in 2D or 3D) is based on a 3D volumetric 
object. The images themselves are often taken 
from multi-modalities (CT, MRI, PET), where 
each modality has its own unique physical charac-
teristics, leading to unique noise, contrast and 
other issues that need to be addressed. The fusion 
of information across several modalities is a chal-
lenge that needs to be addressed as well. 

 When analyzing the data, it is often desirable 
to segment and characterize specifi c organs. The 
human body organs, or various tissue of interest 
within them, cannot be described with simple 
geometrical rules, as opposed to objects and 
scenes in non-medical images that usually can be 
described with such representations. This is 
mainly because the objects and free-form sur-
faces in the body cannot easily be decomposed 
into simple geometric primitives. There is thus 
very little use of geometric shape models that can 
be defi ned from  a-priori  knowledge. Moreover, 
when trying to model the shape of an organ or a 
region, one needs to keep in mind that there are 
large inter-person variations (e.g., in the shape 
and size of the heart, liver and so on), and, as we 
are frequently analyzing images of patients, there 
is a large spectrum of abnormal states that can 
greatly modify tissue properties or deform struc-
tures. Finally, especially in regions of interest 
that are close to the heart, complex motion pat-
terns need to be accounted for as well. These 
issues make medical image processing a very 
challenging domain. 

 Although completely automated image- 
analysis systems are still in the future, the 
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widespread availability of digital images, com-
bined with image management systems such as 
PACS (Chap.   20    ) and powerful workstations, 
has led to many applications of image process-
ing techniques. In general, routine techniques 
are available on the manufacturer’s worksta-
tions (e.g., a vendor-provided console for 
an MR machine or an ultrasound machine), 
whereas more advanced image-processing 
algorithms are available as software packages 
that run on independent workstations. 

 The primary uses of image processing in the 
clinical environment are for image enhancement, 
screening, and quantitation. Software for such 
image processing is primarily developed for use 
on independent workstations. Several journals 
are devoted to medical image processing (e.g., 
 IEEE Transactions on Medical Imaging ,  Journal 
of Digital Imaging ,  Neuroimage ), and the num-
ber of journal articles is rapidly increasing as 
digital images become more widely available. 
Several books are devoted to the spectrum of 
digital imaging processing methods (Yoo  2004 ; 
Gonzalez et al.  2009 ), and the reader is referred 
to these for more detailed reading on these topics. 
We describe a few examples of image-processing 
techniques in the remainder of this section. 

9.4.1    Types of Image-Processing 
Methods 

 Image processing methods are applied to repre-
sentations of image content (Sect.  9.3 ). One may 
use the very low-level, pixel representation. The 
computational effort is minimal in the represen-
tation stage, with substantial effort (computa-
tional cost) in further analysis stages such as 
segmentation of the image, matching between 
images, registration of images, etc. A second 
option is to use a very high-level image content 
representation, in which each image is labeled 
according to its semantic content (medical image 
categories such as “abdomen vs chest”, “healthy 
vs pathology”). In this scenario, a substantial 
computational effort is needed in the representa-
tion stage, including the use of automated image 
segmentation methods to recognize ROIs as well 

as advanced learning techniques to classify the 
regions of image content. Further analysis can 
utilize knowledge resources such as ontologies, 
linked to the images using category labels. 
A mid-level representation exists, that balances 
the above two options, in which a transition is 
made from pixels to semantic features. Feature 
vectors are used to represent the spectrum of 
image content compactly and subsequent analy-
sis is done on the feature vector representation. 

 Much of the current work uses the mid-level 
representation. In such work, a transition is made 
from pixel values to features, including: inten-
sity, color, texture and in some cases also spatial 
coordinates or relative location features. Several 
main issues need to be addressed when selecting 
the feature set and the representation scheme: 
defi ning a global image representation (such as a 
histogram representation) or a more localized 
region-based representation, selecting a feature 
set that is robust or fl exible to variability across 
the image archive, invariance issues such as the 
degree of sensitivity to rotation and scale. Some 
work has raised the issue of a hierarchical repre-
sentation, such that images can be compared on 
the organ level in the categorization stage and on 
the pathology level in a higher-up stage of pro-
cessing. In any scheme suggested, the representa-
tion needs to be general enough to accommodate 
multiple modalities and robust enough to handle 
the large variability of the data. 

 Image processing is the foundation for cre-
ating image-based applications, such as image 
enhancement to facilitate human viewing, to 
show views not present in the original images, 
to fl ag suspicious areas for closer examination 
by the clinician, to quantify the size and shape 
of an organ, and to prepare the images for inte-
gration with other information. To create such 
applications, several types of image process-
ing are generally performed sequentially in 
an  image processing pipeline , although some 
processing steps may feed back to earlier ones, 
and the specifi c methods used in a pipeline var-
ies with the application. Most image processing 
pipelines and applications generalize from two-
dimensional to three-dimensional images, though 
three- dimensional images pose unique image 
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processing opportunities and challenges. Image 
processing pipelines are generally built using 
one or more of the following fundamental image 
processing methods:  global processing ,  image 
enhancement ,  image rendering / visualization , 
 image quantitation , image  segmentation , 
image  registration , and  image reasoning  (e.g., 
classifi cation). In the remainder of this section 
we describe these methods, except for image rea-
soning which is discussed in Sect.  9.5 .  

9.4.2    Global Processing 

 Global processing involves computations on the 
entire image, without regard to specifi c regional 
content. The purpose is generally to enhance an 
image for human visualization or for further 
analysis by the computer (“pre-processing”). 
A simple but important example of global image 
processing is gray-scale windowing of CT 
images. The CT scanner generates pixel values 
( Hounsfi eld numbers , or CT numbers) in the 
range of −1,000 to +3,000. Humans, however, 
cannot distinguish more than about 100 shades of 
gray. To appreciate the full precision available 
with a CT image, the operator can adjust the mid-
point and range of the displayed CT values. By 
changing the level and width (i.e., intercept and 
slope of the mapping between pixel value and 
displayed gray scale or, roughly, the brightness 
and contrast) of the display, radiologists enhance 
their ability to perceive small changes in contrast 
resolution within a subregion of interest. 

 Other types of global processing change the 
pixel values to produce an overall enhancement 
or desired effect on the image:  histogram equal-
ization ,  convolution , and  fi ltering . In histogram 
equalization, the pixel values are changed, 
spreading out the most frequent intensity values 
to increase the global contrast of the image. It is 
most effective when the usable data of the image 
are represented by a narrow range of contrast val-
ues. Through this adjustment, the intensities can 
be better distributed on the histogram, improving 
image contrast by allowing for areas of lower 
local contrast to gain a higher contrast. In convo-
lution and fi ltering, mathematical functions are 

applied to the entire image for a variety of pur-
poses, such as de-noising, edge enhancement, 
and contrast enhancement.  

9.4.3    Image Enhancement 

 Image enhancement uses global processing to 
improve the appearance of the image either for 
human use or for subsequent processing by com-
puter. All manufacturers’ consoles and indepen-
dent image-processing workstations provide 
some form of image enhancement. We have 
already mentioned CT windowing. Another tech-
nique is unsharp masking, in which a blurred, or 
“unsharp,” positive is created to be used as a  
“mask” that is combined with the original image, 
creating the illusion that the resulting image is 
sharper than the original. The technique increases 
local contrast and enhances the visibility of fi ne- 
detail (high-frequency) structures. Histogram 
equalization spreads the image gray levels 
throughout the visible range to maximize the vis-
ibility of those gray levels that are used fre-
quently. Temporal subtraction subtracts a 
reference image from later images that are regis-
tered to the fi rst. A common use of temporal sub-
traction is  digital - subtraction angiography  
(DSA) in which a background image is subtracted 
from an image taken after the injection of con-
trast material.  

9.4.4     Image Rendering/
Visualization 

 Image rendering and visualization refer to a vari-
ety of techniques for creating image displays, 
diagrams, or animations to display images more 
in a different perspective from the raw images. 
Image volumes are comprised of a stack of 2-D 
images. If the voxels in each image are isotropic, 
then a variety of arbitrary projections can be 
derived from the volume, such as a sagittal or 
coronal view, or even curved planes. A technique 
called maximum intensity projection (MIP) and 
minimum intensity projection (MinIP) can also 
be created in which imaginary rays are cast 
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through the volume, recording the maximum or 
minimum intensity encountered along the ray 
path, respectively, and displaying the result as a 
2-D image. 

 In addition to these planar visualizations, the 
volume can be visualized directly in its entirety 
using  volume rendering  techniques (Foley et al. 
 1990 ; Lichtenbelt et al.  1998 ) (Fig.  9.16 ) which 
project a two-dimensional image directly from a 
three-dimensional voxel array by casting rays 
from the eye of the observer through the volume 
array to the image plane. Because each ray passes 
through many voxels, some form of segmentation 
(usually simple thresholding) often is used to 
remove obscuring structures. As workstation 
memory and processing power have advanced, 
volume rendering has become widely used to dis-
play all sorts of three-dimensional voxel data—

ranging from cell images produced by confocal 
microscopy, to three-dimensional ultrasound 
images, to brain images created from MRI 
or PET.

   Volume images can also be given as input to 
image-based techniques for warping the image 
volume of one structure to other. However, more 
commonly the image volume is processed in 
order to extract an explicit  spatial  (or quantita-
tive) representation of anatomy (Sect.  9.4.5 ). 
Such an explicit representation permits improved 
visualization, quantitative analysis of structure, 
comparison of anatomy across a population, and 
mapping of functional data. It is thus a compo-
nent of most research involving 3-D image 
processing.  

9.4.5         Image Quantitation 

 Image quantitation is the process of extracting 
useful numerical parameters or deriving calcula-
tions from the image or from ROIs in the image. 
These values are also referred to as “quantitative 
imaging features.” These parameters may them-
selves be informative—for example, the volume 
of the heart or the size of the fetus. They also may 
be used as input into an automated classifi cation 
procedure, which determines the type of object 
found. For example, small round regions on chest 
X-ray images might be classifi ed as tumors, 
depending on such features as intensity, perime-
ter, and area. 

 Mathematical models often are used in con-
junction with image quantitation. In classic 
pattern- recognition applications, the mathemati-
cal model is a classifi er that assigns a label to the 
image; e.g., to indicate if the image contains an 
abnormality, or indicates the diagnosis underly-
ing an abnormality. 

9.4.5.1    Quantitative Image Features 
 Quantitation uses global processing and segmen-
tation to characterize regions of interest in the 
image with numerical values. For example, heart 
size, shape, and motion are subtle indicators of 
heart function and of the response of the heart to 
therapy (Clarysse et al.  1997 ). Similarly, fetal 

  Fig. 9.16    Three-dimensional ultrasound image of a 
fetus, in utero. The ultrasound probe sweeps out a three- 
dimensional volume rather than the conventional two- 
dimensional plane. The volume can be rendered directly 
using volume-rendering techniques, or as in this case, 
fetal surfaces can be extracted and rendered using surface- 
rendering techniques (Source:   http://en.wikipedia.org/
wiki/File:3dultrasound_20_weeks.jpg)           
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head size and femur length, as measured on ultra-
sound images, are valuable indicators of fetal 
well-being (Brinkley  1993b ). 

 Image features/descriptors are derived from 
visual cues contained in an image. Two types of 
quantitative image features are  photometric  fea-
tures, which exploit color and texture cues, derived 
directly from raw pixel intensities, and g eometric  
features, which use shape-based cues. While color 
is one of the visual cues often used for content 
description (Hersh et al.  2009 ), most medical 
images are grayscale. Texture features encode spa-
tial organization of pixel values of an image region. 
Shape features describe in quantitative terms the 
contour of a lesion and complement the informa-
tion captured by color or texture. In addition, the 
histogram of pixel values within an ROI or trans-
forms on those values is commonly performed to 
compute quantitative image features. 

 Quantitative image features are commonly 
represented by feature-vectors in a N-dimensional 
space, where each dimension of the feature vec-
tor describes an aspect of the individual pixel 
(e.g., color, texture, etc.) (Haralick and Shapiro 
 1992 ) Image analysis tasks that use the quantita-
tive features, such as segmentation and classifi ca-
tion are then approached in terms of distance 
measurements between points (samples) in the 
chosen N-dimensional feature space.  

9.4.5.2     Image Patches 
 In the last several years, “patch-based” represen-
tations and “bag-of-features” classifi cation tech-
niques have been proposed and used as an 
approach to processing image contents (Jurie and 
Triggs  2005 ; Nowak et al.  2006 ; Avni  2009 ). An 
overview of the methodology is shown in 
Fig.  9.17 . In these approaches, a shift is made 
from the pixel as being the atomic entity of com-
putation to a “patch” – a small window centered 
on the pixel, thus region-based information is 
included. A very large set of patches is extracted 
from an image. Each small patch shows a local-
ized “glimpse” at the image content; the collec-
tion of thousands and more such patches, 
randomly selected, have the capability to identify 
the entire image content (similar to a puzzle 
being formed from its pieces).

   The patch size needs to be larger than a few 
pixels across, in order to capture higher-level 
semantics such as edges or corners. At the same 
time, the patch size should not be too large if it is 
to serve as a common building block of many 
images. Patch extraction approaches include 
using a regular sampling grid, a random selection 
of points, or the selection of points with high 
information content using salient point detectors, 
such as SIFT (Lowe  1999 ). Once patches are 
selected, the information content within a patch 
is extracted. It is possible to take the patch infor-
mation as a collection of pixel values, or to shift 
the representation to a different set of features 
based on the pixels, such as SIFT features. 
Frequently, the dimensionality of the representa-
tion is reduced via dimensionality reduction tech-
niques, such as principal-component analysis 
(PCA) (Duda et al.  2001 ). In addition to patch 
content information represented either by PCA 
coeffi cients or SIFT descriptors, it is possible to 
add the patch center coordinates to the feature 
vector. This addition introduces spatial informa-
tion into the image representation, without the 
need to model explicitly the spatial dependency 
between patches. Special care needs to be taken 
when combining features of different units, such 
as coordinates and PCA coeffi cients. The relative 
feature weights are often tuned experimentally 
on a cross-validation set. 

 A fi nal step in the process is to learn a diction-
ary of words over a large collection of patches, 
extracted from a large set of images. The vector 
represented patches are converted into “visual 
words” which form a representative “dictionary”. 
A visual word can be considered as a representa-
tive of several similar patches. A frequently-used 
method is to perform K-means clustering (Bishop 
 1995 ) over the vectors of the initial collection, 
and then cluster them into K groups in the feature 
space. The resultant cluster centers serve as a 
vocabulary of K visual words, with K often in the 
hundreds and thousands). 

 Once a global dictionary is learned, each 
image is represented as a collection of words 
(also known as a “bag of words”, or “bag of fea-
tures”), using an indexed histogram over the 
defi ned words. Various image processing tasks 
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can then be undertaken, ranging from the catego-
rization of the image content, giving the image a 
“high-level,” more semantic label, the matching 
between images, or between an image and an 
image class, using patches for image segmenta-
tion and region-of-interest detection within an 
image. For these various tasks, images are com-
pared using a distance measure between the rep-
resentative histograms. In categorizing an image 
as belonging to a certain image class, well-known 
classifi ers, such as the k- nearest neighbor and 
support-vector machines (SVM) (Vapnik  2000 ), 
are used. 

 In recent years, using patches or bags-of- 
visual-words (BoW) has successfully been 

applied to general scene and object recognition 
tasks (Fei-Fei and Perona  2005 ; Varma and 
Zisserman  2003 ; Sivic and Zisserman  2003 ; 
Nowak et al.  2006 ; Jiang et al.  2007 ). These 
approaches are now gradually emerging in medi-
cal tasks as well. For example, in (André et al. 
 2009 ) BoW is used as the representation of endo-
microscopic images and achieves high accuracy 
in the tasks of classifying the images into neo-
plastic (pathological) and benign. In (Bosch et al. 
 2006 ) an application to texture representation for 
mammography tissue classifi cation and segmen-
tation is presented. The use of BoW techniques 
for large scale radiograph archive categorization 
can be found in the ImageCLEF competition, in a 
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  Fig. 9.17    A block diagram of the patch-based image rep-
resentation. A radiographic image is shown with a set of 
patches indicated for processing the image data. 
Subsequent image processing is performed on each patch, 
and on the entire set of patches, rather than on individual 

pixels in the image. A dictionary of visual words is 
learned from a large set of images, and their respective 
patches. Further analysis of the image content can then be 
pursued based on a histogram across the dictionary words 
(Figure courtesy of Greenspan)       
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task to classify over 12,000 X-ray images to 196 
different (organ-level) categories (Tommasi et al. 
 2010 ). This competition provides an important 
benchmarking tool to assess different feature sets 
as well as classifi cation schemes on large archives 
of Radiographs. It is interesting to note that in the 
last few years, approaches based on local patch 
representation achieved the highest scores for 
categorization accuracy (Deselaers et al.  2006 ; 
Caputo et al.  2008 ; Greenspan et al.  2011 ). 
Current challenges entail extending from auto-
matic classifi cation of organs in X-ray data, to the 
identifi cation and labeling of pathologies – 
achieving automatic healthy vs. pathology 
diagnostic- level categorization, as well as pathol-
ogy level discrimination (e.g., work in Chest 
radiographs (Greenspan et al.  2011 )).   

9.4.6    Image Segmentation 

 Segmentation of images involves the extraction 
of ROIs from the image. The ROIs usually cor-
respond to anatomically meaningful structures, 
such as organs or parts of organs, or they may 
be lesions or other types of regions in the image 
pertinent to the application. The structures may 
be delineated by their borders, in which case 

edge- detection techniques (such as edge-follow-
ing algorithms) are used, or by their composi-
tion in the image, in which case region-detection 
techniques (such as texture analysis) are used 
(Haralick and Shapiro  1992 ). Neither of these 
techniques has been completely successful as 
fully automated image segmentation methods; 
regions often have discontinuous borders or non-
distinctive internal composition. Furthermore, 
contiguous regions often overlap. These and 
other complications make segmentation the most 
diffi cult subtask of the medical image processing 
problem. Because segmentation is diffi cult for a 
computer, it is usually performed either by hand 
or in a semi-automated manner with assistance by 
a human through operator-interactive approaches 
(Fig.  9.18 ). In both cases, segmentation is time 
intensive, and it therefore remains a major bottle-
neck that prevents more widespread application 
of image processing techniques.

   A great deal of progress has been made in 
automated segmentation in the brain, partially 
because the anatomic structures tend to be repro-
ducibly positioned across subjects and the con-
trast delineation among structures is often good. 
In addition, MRI images of brain tend to be high 
quality. Several software packages are currently 
available for automatic segmentation, particularly 

  Fig. 9.18    Image segmentation. This fi gure illustrates the 
process of segmenting and labeling the chambers of the 
heart. On the  left , a cross sectional atlas image of the heart 
has been segmented by hand and each chamber was 
labeled ( RAA  right atrial appendage,  RA  right atrium,  LA  

left atrium,  RV  right ventricle,  LV  left ventricle). The 
boundary of each circumscribed anatomic region can be 
converted into a digital mask ( right ) which can be used in 
different applications where labeling anatomic structures 
in the image is needed       

 

9 Biomedical Imaging Informatics



314

for normal macroscopic brain anatomy in cortical 
and sub-cortical regions (Collins et al.  1995 ; 
Friston et al.  1995 ; Subramaniam et al.  1997 ; 
Dale et al.  1999 ; MacDonald et al.  2000 ; Brain 
Innovation B.V.  2001 ; FMRIDB Image Analysis 
Group  2001 ; Van Essen et al.  2001 ; Hinshaw 
et al.  2002 ). The Human Brain Project’s Internet 
Brain Segmentation Repository (Kennedy  2001 ) 
has been developing a repository of segmented 
brain images to use in comparing these different 
methods. 

 Popular segmentation techniques include 
reconstruction from serial sections, region-based 
methods, edge-based methods, model or 
knowledge- based methods, and combined 
methods. 

9.4.6.1    Region-Based and Edge-Based 
Segmentation 

 In region-based segmentation, voxels are grouped 
into contiguous regions based on characteristics 
such as intensity ranges and similarity to neigh-
boring voxels (Shapiro and Stockman  2001 ). A 
common initial approach to region-based seg-
mentation is fi rst to classify voxels into a small 
number of tissue classes. In brain MR images, a 
common class separation is into: gray matter, 
white matter, cerebrospinal fl uid and background. 
One then uses these classifi cations as a basis for 
further segmentation (Choi et al.  1991 ; Zijdenbos 
et al.  1996 ). Another region-based approach is 
called region-growing, in which regions are 
grown from seed voxels manually or automati-
cally placed within candidate regions (Davatzikos 
and Bryan  1996 ; Modayur et al.  1997 ). The 
regions found by any of these approaches are 
often further processed by mathematical mor-
phology operators (Haralick  1988 ) to remove 
unwanted connections and holes (Sandor and 
Leahy  1997 ). 

 Edge-based segmentation is the complement 
to region-based segmentation: intensity gradients 
are used to search for and link organ boundar-
ies. In the 2-D case, contour-following connects 
 adjacent points on the boundary. In the 3-D 
case, isosurface-following or marching-cubes 
(Lorensen and Cline  1987 ) methods connect bor-
der voxels in a region into a 3-D surface mesh. 

 Both region-based and edge-based segmenta-
tion are essentially low-level techniques that only 
look at local regions in the image data.  

9.4.6.2    Model- and Knowledge-Based 
Segmentation 

 A popular alternative method for medical image 
segmentation that is popular in brain imaging is 
the use of deformable models. Based on pioneer-
ing work called “Snakes” by Kass, Witkin and 
Terzopoulos (Kass et al.  1987 ), deformable mod-
els have been developed for both 2-D and 3-D. In 
the 2-D case the deformable model is a contour, 
often represented as a simple set of linear seg-
ments or a spline, which is initialized to approxi-
mate the contour on the image. The contour is then 
deformed according to a cost function that includes 
both intrinsic terms limiting how much the contour 
can distort, and extrinsic terms that reward close-
ness to image borders. In the 3-D case, a 3-D sur-
face (often a triangular mesh) is deformed in a 
similar manner. There are several examples of 
using deformable models for brain segmentation 
(Davatzikos and Bryan  1996 ; Dale et al.  1999 ; 
MacDonald et al.  2000 ; Van Essen et al.  2001 ). 

 An advantage of deformable models is that 
the cost function can include knowledge of the 
expected anatomy of the brain. For example, the 
cost function employed in the method developed 
by MacDonald (MacDonald et al.  2000 ) includes 
a term for the expected thickness of the brain cor-
tex. Thus, these methods can become somewhat 
knowledge-based, where knowledge of anatomy 
is encoded in the cost function. 

 An alternative knowledge-based approach 
explicitly records shape information in a geomet-
ric constraint network (GCN) (Brinkley  1992 ), 
which encodes local shape variation based on a 
training set. The shape constraints defi ne search 
regions on the image in which to search for edges. 
Found edges are then combined with the shape 
constraints to deform the model and reduce the 
size of search regions for additional edges 
(Brinkley  1985 ,  1993a ,  b ). The advantage of this 
sort of model over a pure deformable model is 
that knowledge is explicitly represented in the 
model, rather than implicitly represented in the 
cost function.  
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9.4.6.3    Combined Methods 
 Most brain segmentation packages use a combina-
tion of methods in a sequential pipeline. For exam-
ple, a GCN model has been used to represent the 
overall cortical “envelope”, excluding the detailed 
gyri and sulci (Hinshaw et al.  2002 ). The model is 
semi-automatically deformed to fi t the cortex, then 
used as a mask to remove non- cortex such as the 
skull. Isosurface-following is then applied to the 
masked region to generate the detailed cortical 
surface. The model is also used on aligned MRA 
and MRV images to mask out non-cortical veins 
and arteries prior to isosurface- following. The 
extracted cortical, vein and artery surfaces are then 
rendered to produce a composite visualization of 
the brain as seen at neurosurgery (Fig.  9.9 ). 

 MacDonald et al. describe an automatic multi- 
resolution surface deformation technique called 
ASP (Anatomic Segmentation using Proximities), 
in which an inner and outer surface are progres-
sively deformed to fi t the image, where the cost 
function includes image terms, model-based 
terms, and proximity terms (MacDonald et al. 
 2000 ). Dale et al. describe an automated approach 
that is implemented in the FreeSurfer program 
(Dale et al.  1999 ; Fischl et al.  1999 ). This method 
initially fi nds the gray-white boundary, then fi ts 
smooth gray-white (inner) and white-CSF (outer) 
surfaces using deformable models. Van Essen 
et al. describe the SureFit program (Van Essen 
et al.  2001 ), which fi nds the cortical surface mid-
way between the gray-white boundary and the 
gray-CSF boundary. This mid-level surface is cre-
ated from probabilistic representations of both 
inner and outer boundaries that are determined 
using image intensity, intensity gradients, and 
knowledge of cortical topography. Other software 
packages also combine various methods for seg-
mentation (Davatzikos and Bryan  1996 ; Brain 
Innovation B.V.  2001 ; FMRIDB Image Analysis 
Group  2001 ; Sensor Systems Inc.  2001 ; Wellcome 
Department of Cognitive Neurology  2001 ).  

9.4.6.4    Parametric and Non-Parametric 
Clustering for Segmentation 

 The core operation in a segmentation task is the 
division of the image into a fi nite set of regions, 
which are smooth and homogeneous in their 

 content and their representation. When posed in 
this way, segmentation can be regarded as a prob-
lem of fi nding clusters in a selected feature space. 

 The segmentation task can be seen as a combi-
nation of two main processes: (a) The generation 
of an image representation over a selected feature 
space. This can be termed the modeling stage. 
The model components are often viewed as 
groups, or  clusters  in the high-dimensional space. 
(b) The assignment of pixels to one of the model 
components or segments. In order to be directly 
relevant for a segmentation task, the clusters in 
the model should represent homogeneous regions 
of the image. In general, the better the image 
modeling, the better the segmentation produced. 
Since the number of clusters in the feature space 
is often unknown, segmentation can be regarded 
as an  unsupervised clustering  task in the high- 
dimensional feature space. 

 There is a large body of work on  clustering 
algorithms . We can categorize them into three 
broad classes: (a) deterministic algorithms, (b) 
probabilistic model-based algorithms, and (c) 
graph-theoretic algorithms. The simplest of these 
are the deterministic algorithms such as k-means 
(Bishop  1995 ), mean-shift (Comaniciu and Meer 
 2002 ), and agglomerative methods (Duda et al. 
 2001 ). For certain data distributions, i.e., distri-
butions of pixel feature vectors in a feature space, 
such algorithms perform well. For example, 
k-means provides good results when the data is 
convex or blob-like and the agglomerative 
approach succeeds when clusters are dense and 
there is no noise. These algorithms, however, 
have a diffi cult time handling more complex 
structures in the data. Further, they are sensitive 
to initialization (e.g., choice of initial cluster cen-
troids). The probabilistic algorithms, on the other 
hand, model the distribution in the data using 
parametric models (McLachlan and Peel  2000 ). 
Such models include auto-regressive (AR) mod-
els, Gaussian mixture models (GMM), Markov 
random fi elds (MRF), conditional random fi elds, 
etc. Effi cient ways of estimating these models are 
available using maximum likelihood algorithms 
such as the Expectation-maximization (EM) 
algorithm (Dempster et al.  1977 ). While probabi-
listic models offer a principled way to explain the 
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structures present in the data, they could be 
restrictive when more complex structures are 
present. Another type of clustering algorithms is 
non-parametric in that this class imposes no prior 
shape or structure on the data. Examples of these 
are graph-theoretic algorithms based on spectral 
factorization (e.g., (Ng et al.  2001 ; Shi and Malik 
 2000 )). Here, the image data are modeled as a 
graph. The entire image data along with a global 
cost function are used to partition the graph, with 
each partition now becoming an image segment. 
In this approach, global considerations determine 
localized decisions. Moreover, such optimization 
procedures are often compute-intensive. 

 Consider an example application in brain 
image segmentation using parametric modeling 
and clustering. The tissue and lesion segmenta-
tion problem in Brain MRI is a well-studied topic 
of research. In such images, there is interest in 
three main tissue types: white matter (WM), gray 
matter (GM) and cerebro-spinal fl uid (CSF). The 
volumetric analysis of such tissue types in vari-
ous part of the brain is useful in assessing the 
progress or remission of various diseases, such as 
Alzheimer’s disease, epilepsy, sclerosis and 
schizophrenia. A segmentation example is shown 
in Fig.  9.19 . In this example, images from three 
MRI imaging sequences are input to the system, 
and the output is a segmentation map, with differ-
ent colors representing three different normal 
brain tissues, as well as a separate color to indi-
cate regions of abnormality (multiple-sclerosis 
lesions).

   Various approaches to the segmentation task 
are reviewed in (Pham et al.  2000 ). Among the 
approaches used are pixel-level intensity based 
clustering, such as K-means and Mixture of 
Gaussians modeling (e.g., (Kapur et al.  1996 )). In 
this approach, the intensity feature is modeled by 
a mixture of Gaussians, where each Gaussian is 
assigned a semantic meaning, such as one of the 
tissue regions (or lesion). Using pattern recogni-
tion methods and learning, the Gaussians can be 
automatically extracted from the data, and once 
defi ned, the image can be segmented into the 
respective regions. 

 Algorithms for tissue segmentation using 
pixel-level intensity-based classifi cation often 
exhibit high sensitivity to various noise artifacts, 
such as intra-tissue noise, inter-tissue intensity 
contrast reduction, partial-volume effects and oth-
ers. Due to the artifacts present, classical voxel-
wise intensity-based classifi cation methods, 
including the K-means modeling and Mixture of 
Gaussians modeling, often give unrealistic results, 
with tissue class regions appearing granular, frag-
mented, or violating anatomical constraints. 
Specifi c works can be found addressing various 
aspects of these concerns (e.g., partial- volume 
effect quantifi cation (Dugas- Phocion et al.  2004 )). 

 One way to address the smoothness issue is to 
add spatial constraints. This is often done during a 
pre-processing phase by using a statistical atlas, or 
as a post-processing step via Markov Random Field 
models. A statistical atlas provides the prior proba-
bility for each pixel to originate from a particular 

T1 T2 PD
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Truth

  Fig. 9.19    Brain MRI segmentation example. Brain slice 
from multiple acquisition sequences (with 9 % noise) was 
taken from BrainWEB (  http://www.bic.mni.mcgill.ca/
brainweb/    ). From  left  to  right : T1-, T2-, and proton den-

sity ( PD )-weighted image. Segmentation of the images is 
shown on the  right :  Blue : CSF,  Green : Gray matter (GM), 
 Yellow : white matter (WM),  Red : Multiple-sclerosis 
lesions (MSL) (Friefeld et al.  2009 )       
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tissue class (e.g., (Van Leemput et al.  1999 ; 
Marroquin et al.  2002 ; Prastawa et al.  2004 )). 

 Algorithms exist that use the maximum-a- 
posteriori (MAP) criterion to augment intensity 
information with the atlas. However, registration 
between a given image and the atlas is required, 
which can be computationally prohibitive 
(Rohlfi ng and Maurer  2003 ). Further, the quality 
of the registration result is strongly dependent on 
the physiological variability of the subject and 
may converge to an erroneous result in the case 
of a diseased or severely damaged brain. Finally, 
the registration process is applicable only to 
complete volumes. A single slice cannot be regis-
tered to the atlas. Therefore it cannot be seg-
mented using these state-of-the-art algorithms. 

 Segmentation can also be improved using a 
post-processing phase in which smoothness and 
immunity to noise can be achieved by modeling 
the interactions among neighboring voxels. Such 
interactions can be modeled using a Markov 
Random Field (MRF), and thus this technique has 
been used to improve segmentation (Held et al. 
 1997 ; Van Leemput et al.  1999 ; Zhang et al.  2001 ). 

 Finally, there are algorithms that use deform-
able models to incorporate tissue boundary infor-
mation (McInerney and Terzopoulos  1997 ). They 
often imply inherent smoothness but require 
careful initialization and precisely calibrated 
model parameters in order to provide consistent 
results in the presence of a noisy environment. 

 In yet another approach, the image representa-
tion is augmented to include spatial information in 
the feature space, and GMM clustering is utilized to 
provide coherent clusters in feature space that cor-
respond to coherent spatial localized regions in the 
image space. In this methodology, the atlas pre-pro-
cessing step and the smoothing post-processing are 
not required components. For regions of complex 
shapes in the image plane, for which a single con-
vex hull is not suffi cient (will cover two or more 
different segments of the image), a plausible 
approach is to utilize very small spatial supports per 
Gaussian. This in turn implies the use of a large 
number of Gaussians, a modeling that was shown to 
be useful in the brain segmentation task (Greenspan 
et al.  2006 ) as well as extended to multiple- sclerosis 
lesion modeling task (Friefeld et al.  2009 ).   

9.4.7     Image Registration 

 The growing availability of 3-D and higher 
dimensionality structural and functional images 
leads to exciting opportunities for realistically 
observing the structure and function of the body. 
Nowhere have these opportunities been more 
widely exploited than in brain imaging. 
Therefore, this section concentrates on 3-D brain 
imaging, with the recognition that many of the 
methods developed for the brain have been or 
will be applied to other areas as well. 

 The basic 2-D image processing operations of 
global processing, segmentation, feature detec-
tion, and classifi cation generalize to higher 
dimensions, and are usually part of any image 
processing application. However, 3-D and higher 
dimensionality images give rise to additional 
informatics issues, which include image  registra-
tion  (which also occurs to a lesser extent in 2-D), 
 spatial  representation of anatomy,  symbolic  rep-
resentation of anatomy, integration of spatial and 
symbolic anatomic representations in  atlases , 
anatomical  variation , and  characterization  of 
anatomy. All but the fi rst of these issues deal pri-
marily with anatomical structure, and therefore 
could be considered part of the fi eld of structural 
informatics. They could also be thought of as 
being part of imaging informatics and 
 neuroinformatics . 

 As noted previously, 3-D image volume data 
are represented in the computer by a 3-D volume 
array, in which each voxel represents the image 
intensity in a small volume of space. In order to 
depict anatomy accurately, the voxels must be 
accurately registered (or located) in the 3-D vol-
ume ( voxel registration ), and separately acquired 
image volumes from the same subject must be 
registered with each other ( volume registration ). 

9.4.7.1    Voxel Registration 
 Imaging modalities such as CT, MRI, and confo-
cal microscopy (Sects.  9.2.3  and  9.2.5 ) are inher-
ently 3-D: the scanner generally outputs a series 
of image slices that can easily be reformatted as a 
3-D volume array, often following alignment 
algorithms that compensate for any patient 
motion during the scanning procedure. For this 
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reason, almost all CT and MR manufacturers’ 
consoles contain some form of three-dimensional 
reconstruction and visualization capabilities. 

 As noted in Sect.  9.4.4 , two-dimensional 
images can be converted to 3-D volumes if they 
are closely spaced parallel sections through a tis-
sue or whole specimen and contain isotropic vox-
els. In this case the problem is how to align the 
sections with each other. For whole sections 
(either frozen or fi xed), the standard method is to 
embed a set of thin rods or strings in the tissue 
prior to sectioning, to manually indicate the loca-
tion of these  fi ducials  on each section, then to 
linearly transform each slice so that the corre-
sponding fi ducials line up in 3-D (Prothero and 
Prothero  1986 ). A popular current example of 
this technique is the Visible Human, in which a 
series of transverse slices were acquired, then 
reconstructed to give a full 3-D volume (Spitzer 
and Whitlock  1998 ) (Chap.   20    ). 

 It is diffi cult to embed fi ducial markers at the 
microscopic level, so intrinsic tissue landmarks 
are often used as fi ducials, but the basic principle 
is similar. However, in this case tissue distortion 
may be a problem, so non-linear transformations 
may be required. For example Fiala and Harris 
(Fiala and Harris  2001 ) have developed an inter-
face that allows the user to indicate, on electron 
microscopy sections, corresponding centers of 
small organelles such as mitochondria. A non- 
linear transformation (warp) is then computed to 
bring the landmarks into registration. 

 An approach being pursued (among other 
approaches) by the National Center for 
Microscopy and Imaging Research 2  combines 
reconstruction from thick serial sections with 
electron tomography (Soto et al.  1994 ). In this 
case the tomographic technique is applied to each 
thick section to generate a 3-D digital slab, after 
which the slabs are aligned with each other to 
generate a 3-D volume. The advantages of this 
approach over the standard serial section method 
are that the sections do not need to be as thin, and 
fewer of them need be acquired. 

 An alternative approach to 3-D voxel registra-
tion from 2-D images is stereo-matching, a tech-

2   http://ncmir.ucsd.edu/  (accessed 4/26/13). 

nique developed in computer vision that acquires 
multiple 2-D images from known angles, fi nds 
corresponding points on the images, and uses the 
correspondences and known camera angles to 
compute 3-D coordinates of pixels in the matched 
images. The technique is being applied to the 
reconstruction of synapses from electron micro-
graphs by a Human Brain Project collaboration 
between computer scientists and biologists at the 
University of Maryland (Agrawal et al.  2000 ).  

9.4.7.2    Volume Registration 
 A related problem to that of aligning individual 
sections is the problem of aligning separate 
image volumes from the same subject, that is, 
 intra - subject  alignment. Because different image 
modalities provide complementary information, 
it is common to acquire more than one kind of 
image volume on the same individual. This 
approach has been particularly useful for brain 
imaging because each modality provides differ-
ent information. For example, PET (Sect.  9.2.3 ) 
provides useful information about function, but 
does not provide good localization with respect 
to the anatomy. Similarly, MRV and MRA 
(Sect.  9.2.3 ) show blood fl ow but do not provide 
the detailed anatomy visible with standard MRI. 
By combining images from these modalities with 
MRI, it is possible to show functional images in 
terms of the underlying anatomy, thereby provid-
ing a common neuroanatomic framework. 

 The primary problem to solve in multimodality 
image fusion is volume registration—that is, the 
alignment of separately acquired image volumes. In 
the simplest case, separate image volumes are 
acquired during a single sitting. The patient’s head 
may be immobilized, and the information in the 
image headers may be used to rotate and resample 
the image volumes until all the voxels correspond. 
However, if the patient moves, or if examinations 
are acquired at different times, other registration 
methods are needed. When intensity values are sim-
ilar across modalities, registration can be performed 
automatically by intensity-based optimization 
methods (Woods et al.  1992 ; Collins et al.  1994 ). 
When intensity values are not similar (as is the case 
with MRA, MRV and MRI), images can be aligned 
to templates of the same modalities that are already 
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aligned (Woods et al.  1993 ; Ashburner and Friston 
 1997 ). Alternatively, landmark-based methods can 
be used. The landmark-based methods are similar to 
those used to align serial sections (see earlier dis-
cussion of voxel registration in this section), but in 
this case the landmarks are 3-D points. The Montreal 
Register Program (MacDonald  1993 ) is an example 
of such a program.    

9.5     Image Interpretation 
and Computer Reasoning 

 The preceding sections of this chapter as well as 
Chap.   20     describe informatics aspects of image 
generation, storage, manipulation, and display of 
images. Rendering an interpretation is a crucial 
fi nal stage in the chain of activities related to 
imaging.  Image interpretation  is this fi nal stage 
in which the physician has direct impact on the 
clinical care process, by rendering a professional 
opinion as to whether abnormalities are present 
in the image and the likely signifi cance of those 
abnormalities. The process of image interpreta-
tion requires reasoning—to draw inferences from 
facts; the facts are the image abnormalities 
detected and the known clinical history, and the 
inferred information is the diagnosis and man-
agement decision (what to do next, such as 
another test or surgery, etc.). Such reasoning usu-
ally entails uncertainty, and optimally would be 
carried out using probabilistic approaches (Chap. 
  3    ), unless certain classic imaging patterns are 
recognized. In reality, radiology practice is usu-
ally carried out without formal probabilistic 
models that relate imaging observations to the 
likelihood of diseases. However, variation in 
practice is a known problem in image interpreta-
tion (Robinson  1997 ), and methods to improve 
this process are desirable. 

 Informatics methods can enhance radiological 
interpretation of images in two major ways: (1) 
image retrieval systems and (2) decision support 
systems. The concept of  image retrieval  is simi-
lar to that of information retrieval (see Chap.   21    ), 
in which the user retrieves a set of documents 
pertinent to a question or information need. The 
information being sought when doing image 

retrieval is images with specifi c content—typi-
cally to fi nd images that are similar in some ways 
to a query image (e.g., to fi nd images in the PACS 
containing similar-appearing abnormalities to 
that in an image being interpreted). Finding 
images containing similar content is referred to 
as  content based image retrieval  (CBIR). By 
retrieving similar images and then looking at the 
diagnosis of those patients, the radiologist can 
gain greater confi dence in interpreting the images 
from patients whose diagnosis is not yet known. 

 As with the task of medical diagnosis (Chap. 
  22    ), radiological diagnosis can be enhanced 
using  decision support systems , which assist the 
physician through a process called  computer rea-
soning . In computer reasoning, the machine takes 
in the available data (the images and possibly 
other clinical information), performs a variety of 
image processing methods (Sect.  9.4 ), and uses 
one or more types of knowledge resources and/or 
mathematical models to render an output com-
prising either a decision or a ranked list of possi-
ble choices (e.g., diagnoses or locations on the 
image suspected of being abnormal). 

 There are two types of decision support in radi-
ology,  computer - assisted detection  (CAD) and 
 computer - assisted diagnosis  (CADx). In the for-
mer, the computer locates ROIs in the image 
where abnormalities are suspected and the radi-
ologist must evaluate their medical signifi cance. 
In CADx, the computer is given an ROI corre-
sponding to a suspected abnormality (possible 
with associated clinical information) and it out-
puts the likely diagnoses and possibly manage-
ment recommendations (ideally with some sort of 
confi dence rating as well as explanation facility). 

 In this section we describe informatics meth-
ods for image retrieval and decision support 
(computer reasoning with images). 

9.5.1    Content-Based Image 
Retrieval 

 Since a key aspect of radiological interpretation is 
recognizing characteristic patterns in the imaging 
features which suggest the diagnosis, searching 
databases for similar images with known diagnoses 
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could be an effective strategy to improving diag-
nostic accuracy. CBIR is the process of performing 
a match between images using their visual content. 
A query image can be presented as input to the sys-
tem (or a combination of a query image and the 
patient’s clinical record), and the system searches 
for similar cases in large archive settings (such as 
PACS) and returns a ranked list of such similar data 
(images). This task requires an informative repre-
sentation for the image data, along with similarity 
measures across image data. CBIR methods are 
already useful in non-medical applications such as 
consumer imaging and on the Web (Wang et al. 
 1997 ; Smeulders et al.  2000 ; Datta et al.  2008 ). 

 There has also been ongoing work to develop 
CBIR methods in radiology. The approach gener-
ally is based on deriving quantitative characteris-
tics from the images (e.g., pixel statistics, spatial 
frequency content, etc.; Sect.  9.4.5 ), followed by 
application of similarity metrics to search data-
bases for similar images (Lehmann et al.  2004 ; 
Muller et al.  2004 ; Greenspan and Pinhas  2007 ; 
Datta et al.  2008 ; Deserno et al.  2009 ). The focus 
of the current work is on entire images, describing 
them with sets of numerical features, with the 
goal of retrieving similar images from medical 
collections (Hersh et al.  2009 ) that provide bench-
marks for image retrieval. However, in many 
cases only a particular region of the image is of 
interest when seeking similar images (e.g., fi nd-
ing images containing similar-appearing lesions 
to those in the query image). More recently, 
“localized” CBIR methods are being developed in 
which a part of the image containing a region of 
interest is analyzed (Deselaers et al.  2007 ; 
Rahmani et al.  2008 ; Napel et al.  2010 ). 

 There are several unsolved challenges in CBIR. 
First, CBIR has been largely focused on query 
based on single 2-D images; methods need to be 
developed for 3D retrieval in which a volume is the 
query “image.” A second challenge is the need to 
integrate images with non-image clinical data to 
permit retrieval based on entire patient cases and not 
single images (e.g., the CBIR method should take 
into consideration the clinical history in addition to 
the image appearance in retrieving a similar “case”). 

 Another limitation of current CBIR is that 
image semantics is not routinely included. The 

information reported by the radiologist (“seman-
tic features”), is complementary to the quantita-
tive data contained in image pixels. One approach 
to capturing image semantics is analyzing and 
processing “visual words” in images, captured as 
image patches or codebooks (Sect.  9.4.5 ). These 
techniques have been shown to perform well in 
CBIR applications (Qiu  2002 ). Another approach 
to capture image semantics is to use the radiolo-
gist’s imaging observations as image features. 
Several studies have found that combining the 
semantic information obtained from radiologists’ 
imaging reports or annotations with the pixel- 
level features can enhance performance of CBIR 
systems (Ruiz  2006 ; Zhenyu et al.  2009 ; Napel 
et al.  2010 ). The knowledge representation meth-
ods described in Sects.  9.3.2  and  9.4.5  make it 
possible to combine these types of information.  

9.5.2    Computer-Based Inference 
with Images and Knowledge 

 Though image retrieval described above (and 
information retrieval in general) can be helpful to 
a practitioner interpreting images, it does not 
directly answer a specifi c question at hand, such 
as, “what is the diagnosis in this patient” or “what 
imaging test should I order next?” Answering 
such questions requires reasoning, either by the 
physician with all the available data, or by a com-
puter, using physician inputs and the images. As 
the use of imaging proliferates and the number of 
images being produced by imaging modalities 
explodes, it is becoming a major challenge for 
practicing radiologists to integrate the multitude 
of imaging data, clinical data, and soon molecu-
lar data, to formulate an accurate diagnosis and 
management plan for the patient. Computer- 
based inference systems (decision support sys-
tems) can help radiologists understand the 
biomedical import of this information and to pro-
vide guidance (Hudson and Cohen  2009 ). 

 There are two major approaches to computer-
ized reasoning systems for imaging decision sup-
port, quantitative imaging-based methods (CAD/
CADx) and knowledge-based computer reason-
ing systems. 

D.L. Rubin et al.



321

9.5.2.1    Quantitative Imaging 
Computer Reasoning Systems 
(CAD/CADx) 

 The process of deriving quantitative image fea-
tures was described in Sect.  9.4.5 . Quantitative 
imaging applications such as CAD and CADx 
use these quantifi able features extracted from 
medical images for a variety of decision support 
applications, such as the assessment of an abnor-
mality to suggest a diagnosis, or to evaluate the 
severity, degree of change, or status of a disease, 
injury, or chronic condition. In general, the quan-
titative imaging computer reasoning systems 
apply a mathematical model (e.g., a  classifi er ) or 
other machine learning methods to obtain a deci-
sion output based on the imaging inputs. 

   CAD 
 In CAD applications, the goal is to scan the 
image and identify suspicious regions that may 
represent regions of disease in the patient. A 
common use for CAD is  screening , the task of 
reviewing many images and identifying those 
that are suspicious and require closer scrutiny by 
a radiologist (e.g., mammography interpreta-
tion). Most CAD applications comprise an image 
processing pipeline (Sect.  9.4 ) that uses global 
processing, segmentation, image quantitation 
with feature extraction, and classifi cation to 
determine whether an image should be fl agged 
for careful review by a radiologist or pathologist. 
In CAD and in screening in general, the goal is to 
detect disease; thus, the tradeoff favors having 
false positive instead of missing false negatives. 
Thus CAD systems tend to fl ag a reasonable 
number of normal images (false positives) and 
they miss very few abnormal images (false nega-
tives). If the number of fl agged images is small 
compared with the total number of images, then 
automated screening procedures can be economi-
cally viable. On the other hand, too many false 
positives are time-consuming to review and less-
ens user confi dence in the CAD system; thus for 
CAD to be viable, they must minimize the num-
ber of false positives as well as false negatives. 

 CAD techniques for screening have been 
applied successfully to many different types of 
images (Doi  2007 ), including mammography 

images for identifying mass lesions and clusters 
of microcalcifi cations, chest X-rays and CT of 
the chest to detect small cancerous nodules, and 
volumetric CT images of the colon (“virtual 
colonscopy”) to detect polyps. In addition, CAD 
methods have been applied to Papanicolaou 
(Pap) smears for cancerous or precancerous cells 
(Giger and MacMahon  1996 ), as well as to many 
other types of non-radiologic images.  

   CADx 
 In CADx applications, a suspicious region in the 
image has already been identifi ed (by the radiolo-
gist of a CAD application), and the goal is to 
evaluate it to render a diagnosis or differential 
diagnosis. CADx systems usually need to be pro-
vided an ROI, or they need to segment the image 
to locate specifi c organs and lesions in order to 
perform analysis of quantitative image features 
that are extracted from the ROI and use that to 
render a diagnosis. In general, a mathematical 
model is created to relate the quantitative (or 
semantic) features to the likely diagnoses. 
Probabilistic models have been particularly 
effective (Burnside et al.  2000 ,  2004a , b ,  2006 , 
 2007 ; Lee et al.  2009 ; Liu et al.  2009 ,  2011 ), 
because the image features are generated based 
on the underlying disease, so there is probabilis-
tic dependence on the disease and the  quantitative 
and perceived imaging features. In fact, it can be 
argued that radiological interpretation is funda-
mentally a Bayesian task (Lusted  1960 ; Ledley 
and Lusted  1991 ; Donovan and Manning  2007 ) 
(see Chaps.   3     and   22    ), and thus decision- support 
strategies based on Bayesian models may be 
quite effective. 

 CADx can be very effective in practice, reduc-
ing variation and improving positive predictive 
value of radiologists (Burnside et al.  2006 ). 
Deploying CADx systems, however, can be chal-
lenging. Since the inputs to CADx generally need 
to be structured (semantic features from the radi-
ologist and/or quantitative features from the 
image), a means of capturing the structured 
image information as part of the routine clinical 
workfl ow is required. A promising approach is to 
combine structured reporting with CADx 
(Fig.  9.20 ); the radiologist records the imaging 

9 Biomedical Imaging Informatics

http://dx.doi.org/10.1007/978-1-4471-4474-8_3
http://dx.doi.org/10.1007/978-1-4471-4474-8_22


322

observations with a data capture form, which pro-
vides the structured image content required to the 
CADx system. Ideally the output would be pre-
sented immediately to the radiologist as the 
report is generated so that the output of decision 
support can be incorporated into the radiology 
report. Such implementations will be greatly 
facilitated by informatics methods to extract and 
record the image information in structured and 
standard formats and with controlled terminolo-
gies (Sect.  9.3.2 ).

9.5.2.2        Knowledge-Based Reasoning 
with Images 

 The CAD and CADx systems do not require 
processing radiological knowledge (e.g., ana-
tomic knowledge) in order to carry out their 
tasks; they are based on quantitative modeling 

of relationships of images features to diagno-
ses. However, not all image-based reasoning 
problems are amenable to this approach. In 
particular, knowledge- based tasks such as rea-
soning about anatomy, physiology, and pathol-
ogy—tasks that entail symbolic manipulations 
of biomedical knowledge and application of 
logic—are best handled using different meth-
ods, such as ontologies and logical inference 
(see Chap.   22    ). 

 Knowledge-based computer reasoning appli-
cations use knowledge representations, gener-
ally ontologies, in conjunction with rules of 
logic to deduce information from asserted facts 
(e.g., from observations in the image). For 
example, an anatomy ontology may express the 
knowledge that “if a segment of a coronary 
artery is severed, then branches distal to the 

  Fig. 9.20    Bayesian network-based system for decision 
support in mammography CADx. The radiologist inter-
preting the image enters the radiology observations and 
clinical information (patient history) in a structured report-
ing Web- based data capture form to render the report. This 
form is sent to a server which inputs the observations into 

the Bayesian network to calculate posterior probabilities 
of disease. A list of diseases, ranked by the probability of 
each disease, is return to the user who can make a decision 
based on a threshold of probability of malignancy, or based 
on shared decision making with the patient (Figure 
reprinted with permission from ( Rubin 2011 ))       
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severed branch will not receive blood,” and “the 
anterior and lateral portions of the right ventri-
cle are supplied by branches of the right coro-
nary artery, with little or no collateral supply 
from the left coronary artery.” Using this knowl-
edge, and recognition via image processing that 
the right coronary artery is severed in an injury, 
a computer reasoning application could deduce 
that the anterior and lateral portions of the right 
ventricle will become ischemic (among other 
regions; Fig.  9.21 ). In performing this reason-
ing task, the application uses the knowledge to 
draw correct conclusions by manipulating the 
anatomical concepts and relationships using the 
rules of logical inference during the reasoning 
process.

   Computer reasoning with ontologies is per-
formed by one of two methods: (1)  reasoning by 
ontology query  and (2)  reasoning by logical 
inference . In reasoning by ontology query, the 
application traverse relationships that link par-
ticular entities in the ontology to directly answer 
particular questions about how those entities 
relate to each other. For example, by traversing 
the  part - of  relationship in an anatomy ontology, a 
reasoning application can infer that the left ven-
tricle and right ventricle are part-of the chest 
(given that the ontology asserts they are each part 
of the heart, and that the heart is part of the chest), 
without our needing to specify this fact explicitly 
in the ontology. 

 In reasoning by logical inference, ontologies 
that encode suffi cient information (“explicit 
semantics”) to apply generic reasoning engines 
are used. The Web Ontology Language (OWL) 
(Bechhofer et al.  2004 ; Smith et al.  2004 ; Motik 
et al.  2008 ) is an ontology language recom-
mended by the World Wide Web Consortium 
(W3C) as a standard language for the Semantic 
Web (World Wide Web Consortium W3C 
Recommendation 10 Feb  2004 ). OWL is similar 
to other ontology languages in that it can capture 
knowledge by representing the entities 
(“classes”) and their attributes (“properties”). In 
addition, OWL provides the capability of defi n-
ing “formal semantics” or meaning of the enti-
ties in the ontology. Entities are defi ned using 
logic statements that provide assertions about 

entities (“class axioms”) using  description log-
ics  (DL) (Grau et al.  2008 ). DLs provide a for-
malism enabling developers to defi ne precise 
semantics of knowledge in ontologies and to per-
form automated deductive reasoning (Baader 
et al.  2003 ). For example, an anatomy ontology 
in OWL could provide precise semantics for 
“hemopericardium,” by defi ning it as a pericar-
dial cavity that contains blood. 

 Highly optimized computer reasoning engines 
(“reasoners”) have been developed for OWL, 
helping developers to incorporate reasoning effi -
ciently and effectively in their applications 
(Tsarkov and Horrocks  2006 ; Motik et al.  2009 ). 
These reasoners work with OWL ontologies by 
evaluating the asserted logical statements about 
classes and their properties in the original ontol-
ogy (the “asserted ontology”), and they create a 
new ontology structure that is deduced from the 
asserted knowledge (the “inferred ontology”). 
This reasoning process is referred to as “auto-
matic classifi cation.” The inferences obtained 
from the reasoning process are obtained by que-
rying the inferred ontology and looking for 
classes (or individuals) that have been assigned 
to classes of interest in the ontology. For exam-
ple, an application was created to infer the conse-
quences of cardiac injury in this manner 
(Fig.  9.21 ). 

 Several knowledge-based image reasoning 
systems have been developed that use ontologies 
as the knowledge source to process the image 
content and derive inferences from them. These 
include: (1) reasoning about the anatomic conse-
quences of penetrating injury, (2) inferring and 
simulating the physiological changes that will 
occur given anatomic abnormalities seen in 
images, (3) automated disease grading/staging to 
infer the grade and/or stage of disease based on 
imaging features of disease in the body (4) surgi-
cal planning by deducing the functional signifi -
cance of disruption of white matter tracts in the 
brain, (5) inferring the types of information users 
seek based on analyzing query logs of image 
searches, and (6) inferring the response of dis-
ease in patients to treatment based on analysis of 
serial imaging studies. We briefl y describe these 
applications. 
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a

b

  Fig. 9.21    Knowledge-based reasoning with images in a 
task to predict the portions of the heart that will become 
ischemic after a penetrating injury that injures particular 
anatomic structures. The application allows the user to 
draw a trajectory of penetrating injury on the image, a 3-D 
rendering of the heart obtained from segmented CT 
images. The reasoning application automatically carries 
out two tasks. ( a ) The application fi rst deduces the ana-
tomic structures that will be injured consequent to the tra-
jectory ( arrow ,  right ) by interrogating semantic 

annotations on the image based on the trajectory of injury 
(injured anatomic structures shown in bold in the left 
panel). ( b ) The anatomic structures that are predicted to 
be initially injured are displayed in the volume rendering 
( dark gray  = total ischemia;  light gray  = partial ischemia). 
In this example, the right coronary artery was injured, and 
the reasoning application correctly inferred there will be 
total ischemia of the anterior and lateral wall of the right 
ventricle and partial ischemia of the posterior wall of the 
left ventricle       
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   Reasoning About Anatomic Consequences 
of Penetrating Injury 
 In this system, images were segmented and 
semantic annotations applied to identify cardiac 
structures. An ontology of cardiac anatomy in 
OWL was used to encode knowledge about ana-
tomic structures and the portions of them that are 
supplied by different arterial branches. Using 
knowledge about part-of relationships and con-
nectivity, the application uses the anatomy ontol-
ogy to infer the anatomic consequences of injury 
that are recognized on the input images (Fig.  9.21 ) 
(Rubin et al.  2004 ,  2005 ,  2006b ).  

   Inferring and Simulating the Physiological 
Changes 
 Morphological changes in anatomy have physio-
logical consequences. For example, if a hole 
appears in the septum dividing the atria or ven-
tricles of the heart (a septal defect), then blood 
will fl ow abnormally between the heart chambers 
and will produce abnormal physiological blood 
fl ow. The simulation community has created 
mathematical models to predict the physiological 
signals, such as time-varying pressure and fl ow, 
given particular parameters in the model such as 
capacitance, resistance, etc. The knowledge in 
these mathematical models can be represented 
ontologically, in which the entities correspond to 
nodes in the simulation model; the advantage is 
that a graphical representation of the ontology, 
corresponding to a graphical representation of 
the mathematical model, can be created. 
Morphological alterations seen in images can be 
directly translated into alterations in the ontologi-
cal representation of the anatomic structures, and 
simultaneously can update the simulation model 
appropriately to simulate the physiological con-
sequences of the morphological anatomic altera-
tion (Rubin et al.  2006a ). Such knowledge-based 
image reasoning methods could greatly enable 
functional evaluation of the static abnormalities 
seen in medical imaging.  

   Automated Disease Grading/Staging 
 A great deal of image-based knowledge is 
encoded in the literature and not readily available 
to clinicians needing to apply it. A good example 

of this is the criteria used to grade and stage dis-
ease based on imaging criteria. For example, 
there are detailed criteria specifi ed for staging 
tumors and grading the severity of disease. This 
knowledge has been encoded in OWL ontologies 
and used to automate grading of brain gliomas 
(Marquet et al.  2007 ) and staging of cancer 
(Dameron et al.  2006 ) based on the imaging fea-
tures detected by radiologists. This ontology- 
based paradigm could provide a good model for 
delivering current biomedical knowledge to prac-
titioners “just-in-time” to help them grade and 
stage disease as they view images and record 
their observations.  

   Surgical Planning 
 Understanding complex anatomic relationships 
and their functional signifi cance in the patient is 
crucial in surgical planning, particular for brain 
surgery, since there are many surgical approaches 
possible, and some will have less severe conse-
quences to patients than others. It can be chal-
lenging to be aware of all these relationships and 
functional dependencies; thus, surgical planning 
is an opportune area to develop knowledge-based 
image reasoning systems. The anatomic and 
functional knowledge can be encoded in an ontol-
ogy and used by an application to plan the opti-
mal surgical approach. In recent work, such an 
ontological model was developed to assess the 
functional sequelae of disruptions of motor 
 pathways in the brain, which could be used in the 
future to guide surgical interventions (Talos et al. 
 2008 ; Rubin et al.  2009a )  

   Inferring Types of Information Users Seek 
from Images 
 Knowledge-based reasoning approaches have 
been used to evaluate image search logs on Web 
sites that host image databases to ascertain the 
types of queries users submit. RadLex 
(Sect.  9.3.2 ) was used as the ontology, and by 
mapping the queries to leaf classes in RadLex 
and then traversing the subsumption relations, 
the types of queries could be deduced by interro-
gating the higher-level classes in RadLex (such 
as “visual observation” and “anatomic entity”) 
(Rubin et al.  2011 ).  
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   Inferring the Response of Disease 
Treatment 
 As mentioned above, the complex knowledge 
required to grade and stage disease can be repre-
sented using an ontology. Similarly, the criteria 
used to assess the response of patients to treat-
ment is also complex, evolving, and dependent 
on numerous aspects of image information. The 
knowledge needed to apply criteria of disease 
response assessment have been encoded onto-
logically, specifi cally in OWL, and used to 
determine automatically the degree of cancer 
response to treatment in patients (Levy et al. 
 2009 ; Levy and Rubin  2011 ). The inputs to the 
computerized reasoning method are the quanti-
tative information about lesions seen in the 
images, recorded as semantic annotations using 
the AIM information model (Sect.  9.3.2 ). This 
application demonstrates the potential for a 
streamlined workfl ow of radiology image inter-
pretation and lesion measurement automatically 
feeding into decision support to guide patient 
care.     

9.6    Conclusions 

 This chapter focuses on methods for computa-
tional representation and for processing images 
in biomedicine, with an emphasis on radiological 
imaging and the extraction and characterization 
of anatomical structure and abnormalities. It has 
been emphasized that the content of images is 
complex—comprising both quantitative and 
semantic information. Methods of making that 
content explicit and computationally-accessible 
have been described, and they are crucial to 
enable computer applications to access the “bio-
medical meaning” in images; presently, the vast 
archives of images are poorly utilized because 
the image content is not explicit and accessible. 
As the methods to extract quantitative and 
semantic image information become more wide-
spread, image databases will be as useful to the 
discovery process as the biological databases 
(they will even likely become linked), and an era 

of “data- driven” and “high-throughput  imaging” 
will be enabled, analogous to modern “high-
throughput” biology. In addition, the computa-
tional imaging methods will lead to applications 
that leverage the image content, such as CAD/
CADx and knowledge-based image reasoning 
that use image content to improve physicians’ 
capability to care for patients. 

 Though this chapter has focused on radiology, 
we stress that the biomedical imaging informat-
ics methods presented are generalizable and 
either have been or will be applied to other 
domains in which visualization and imaging are 
becoming increasingly important, such as micros-
copy, pathology, ophthalmology, and dermatol-
ogy. As new imaging modalities increasingly 
become available for imaging other and more 
detailed body regions, the techniques presented 
in this chapter will increasingly be applied in all 
areas of biomedicine. For example, the develop-
ment of molecular imaging methods is analogous 
to functional brain imaging, since functional 
data, in this case from gene expression rather 
than cognitive activity, can be mapped to an ana-
tomical substrate. 

 Thus, the general biomedical imaging infor-
matics methods described here will increas-
ingly be applied to diverse areas of biomedicine. 
As they are applied, and as imaging modalities 
continue to proliferate, a growing demand will 
be placed on leveraging the content in these 
images to characterize the clinical phenotype of 
disease and relate it to genotype and clinical 
data from patients to enhance research and clin-
ical care.  
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 Questions for Discussion 

     1.    How might you create an image pro-
cessing pipeline to build an image-anal-
ysis program looking for abnormal cells 

in a PAP smear? How would you collect 
and incorporate semantic features into 
the program?   

   2.    Why is segmentation so diffi cult to 
 perform? Give two examples of ways by 
which current systems avoid the prob-
lem of automatic segmentation.   

   3.    How might you build a decision-support 
system that is based on searching the 
hospital image archive for similar 
images and returning the diagnosis 
associated with the most similar images? 
How might you make use of the seman-
tic information in images in images to 
improve the accuracy of retrieval?   

   4.    Give an example of how knowledge 
about the problem to be solved (e.g., 
local anatomy in the image) could be 
used in future systems to aid in auto-
matic segmentation.   

   5.    Both images and free text share the char-
acteristic that they are unstructured infor-
mation; image processing methods to 
make the biomedical content in images 
explicit are very similar to related prob-
lems in natural language processing 
(NLP; Chap.   8    ). How are image process-
ing methods and NLP similar in terms of 
(1) computer representation of the raw 
content? (2) representation of the seman-
tic content? (3) processing of the content 
(e.g., what is the NLP equivalent of seg-
mentation, or the image processing 
equivalent of named entity recognition)?     
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