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After reading this chapter, you should know the 
answers to these questions:
•	 Why is natural language processing important?
•	 What are the potential uses for natural lan-

guage processing (NLP) in the biomedical and 
health domains?

•	 What forms of knowledge are used in NLP?
•	 What are the principal techniques of NLP?
•	 What are challenges for NLP in the clinical, 

biological, and health consumer domains?

8.1	 �Motivation for Natural 
Language Processing

Natural language is the primary means of 
human communication. In biomedical and health 
areas,1 knowledge and data are disseminated in 
textual form as articles in the scientific literature, 
as technical and administrative reports on the 
Web, and as textual fields databases. In health 
care facilities, patient information mainly occurs 
in narrative notes and reports. Because of the 
growing adoption of electronic health records and 

1 Unless stated otherwise, the general domain and the 
topics of text materials discussed in this chapter refer to 
biomedicine and health.

C. Friedman, PhD (*) • N. Elhadad, PhD 
Department of Biomedical Informatics,  
Columbia University, 622 West 168th Street,  
VC Bldg 5, New York 10032, NY, USA
e-mail: friedman@dbmi.columbia.edu;  
noemie@dbmi.columbia.edu

8

This chapter is adapted from an earlier version in the 
third edition authored by Carol Friedman and Stephen 
B. Johnson.

Natural Language Processing 
in Health Care and Biomedicine

Carol Friedman and Noémie Elhadad

the promise of health information exchange, it is 
common for a patient to have records at multiple 
facilities, and for a chart of a single patient at one 
institution to comprise several hundred notes. 
Because of the explosion of online textual infor-
mation available, it is difficult for scientists and 
health care professionals to keep up with the lat-
est discoveries, and they need help to find, man-
age, and analyze the enormous amounts of online 
knowledge and data. On the Web, individuals 
exchange and look for health-related informa-
tion, and health consumers and patients are often 
overwhelmed by the amount of the information 
available to them, whether in traditional websites 
or through online health communities. There is 
also much information disseminated verbally 
through scientific interactions in conferences, 
in care teams at hospitals, and in patient-doctor 
encounters. In this chapter however, we focus on 
the written form.

While there is valuable information conveyed 
in text, it is not in a format amenable to further 
computer processing. Texts are difficult to process 
reliably because of the inherent characteristics 
and variability of language. Since structured stan-
dardized data are more useful for most automated 
applications, a significant amount of manual work 
is currently devoted to mapping textual informa-
tion into a structured or coded representation: 
in  the clinical realm, for instance, professional 
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coders assign billing codes corresponding to 
diagnoses and procedures to hospital admissions; 
indexers at the National Library of Medicine 
assign MeSH terms to represent the main topics 
of scientific articles; and database curators extract 
genomic and phenotypic information on organ-
isms from the literature. Because of the over-
whelmingly large amount of textual information, 
manual work is very costly, time-consuming, and 
impossible to keep up to date. One aim of natural 
language processing (NLP) is to facilitate these 
tasks by enabling use of automated methods that 
represent the relevant information in the text with 
high validity and reliability.

Another aim of NLP is to help advance many 
of the fundamental aims of biomedical informat-
ics, which include the discovery and validation of 
scientific knowledge, improvement in the quality 
and cost of health care, and support to patients 
and health consumers.

The massive amounts of texts amassed 
through clinical care or published in the scien-
tific literature or on the Web can be leveraged 
to acquire and organize knowledge from the 
information conveyed in text, and to promote 
discovery of new phenomena. For instance, the 
information in patient notes, while not origi-
nally entered for discovery purposes, but rather 
for the care of individual patients, can be pro-
cessed, aggregated and mined to discover pat-
terns across patients. This process, commonly 
referred to as secondary use of data, shows much 
promise for some of the current challenges of 
informatics, such as comparative effectiveness 
research, phenotype definition, hypothesis 
generation for clinical research and understand-
ing of disease, and pharmacovigilance. For the 
literature, NLP can speed up the high through-
put access needed for scientific discoveries and 
their meta-analysis across individual articles, by 
identifying similar results across articles (i.e. 
recent treatments for diseases, reports of adverse 
drug events), and by connecting pieces of infor-
mation among articles (i.e. constructing biomo-
lecular pathways).

For clinicians interacting with an electronic 
health record and treating a particular patient, 

NLP can support several points in a clinician 
workflow: when reviewing the patient chart, 
NLP can be leveraged to aggregate and consoli-
date information spread across many notes and 
reports, and to highlight relevant facts about the 
patient. During the decision-making and actual 
care phase, information extracted through NLP 
from the notes can contribute to the decision sup-
port systems in the EHR. Finally, when health 
care professionals are documenting patient infor-
mation, higher quality notes can be generated 
with the help of NLP-based methods.

For quality and administrative purposes, NLP 
can signal potential errors, conflicting informa-
tion, or missing documentation in the chart. For 
public health administrators, EHR patient infor-
mation can be monitored for syndromic surveil-
lance through the analysis of ambulatory notes or 
chief complaints in the emergency room.

Finally, NLP can support health consumers 
and patients looking for information about a par-
ticular disease or treatment, through automated 
question understanding which can then facili-
tate better access to relevant information, tar-
geted to their information needs, and to their 
health literacy levels through the analysis of the 
topics conveyed in a document as well as the 
vocabulary used in the document.

Across all these use cases of NLP, the tech-
niques of natural language processing provide 
the means to bridge the gap between unstructured 
text and data by transforming the text to data in a 
computable format, allowing humans to interact 
using familiar natural language, while enabling 
computer applications to process data effectively 
and to provide users with easy access and synthe-
sis of the raw textual information. The next sec-
tion gives a more in-depth definition of NLP and 
a quick history of NLP in biomedicine and health. 
Section  8.3 presents some of the well-studied 
applications of NLP. Sections 8.4 and 8.5 intro-
duce linguistic background and ways in which 
linguistic knowledge is leveraged to build NLP 
tools. Section  8.5 also focuses on evaluation 
methodology for NLP-based systems. Section 8.6 
provides a discussion of the challenges entailed 
in processing texts in the biological, clinical and 
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general health domains, which are currently 
active areas of research in the NLP community. 
Finally Sect.  8.7 provides pointers to useful 
resources for NLP research and development.

8.2	 �What Is NLP

Natural language processing is currently a very 
active and exciting research area in informatics. 
The term NLP is often used to include a group of 
methods that involve the processing of unstruc-
tured text, although the methods themselves range 
widely in their use of knowledge of language. 
Some methods use minimal linguistic knowledge, 
and are based solely on the presence of words in 
text. For these methods, the only linguistic knowl-
edge needed is the knowledge of what constitutes 
a word; these methods often depend on a key-
word or bag-of-words approach. One example of 
a method that uses only words is a search engine 
that retrieves documents containing the presence 
of a combination of words in a collection, although 
these words may have no relation to each other 
in the retrieved documents. Another example is a 
machine learning method that uses words inde-
pendently of each other as features when building 
a statistical model. Other NLP methods contain 
more advanced knowledge of language, and these 
are the methods that are the focus of this chapter. 
Generally, these more advanced linguistic meth-
ods aim to determine some or all of the syntactic 
or semantic structure in text and to interpret some 
of the meaning of relevant information in text.

The reason why it is possible to process natu-
ral language using computational methods is that 
language is formulaic: it consists of discrete sym-
bols (words), and rules (a grammar) specifying 
how different linguistic elements can be com-
bined to create a sequence of words that repre-
sents a well-formed sentence or phrase that 
conveys a particular meaning. According to 
Harris (1982), it is possible to represent the con-
tent of a sentence in an operator argument struc-
ture, similar to formulations in predicate logic. 
The formulaic aspect of language can also explain 
why machine-learning approaches have been 

successful at some NLP tasks. In particular, pat-
terns, when present in large amounts of text can 
be detected automatically.

Early work in NLP began in the 1950s. In 
the 1960s and 1970s, some successful gen-
eral language NLP systems were developed 
that involved a very limited domain along with 
highly specific tasks, such as Eliza (Weizenbaum 
1966), SHRDLU (Winograd 1972), and LUNAR 
(Woods 1973). In the 1970s, the Linguistic 
String Project (LSP) under the leadership of 
Dr. Naomi Sager, a pioneer in NLP, developed 
a comprehensive computer grammar and parser 
of English (Grishman et al. 1973; Sager 1981), 
and also began work in NLP of clinical reports 
(Sager 1972, 1978; Sager et al. 1987) that con-
tinued into the 1990s. A number of other clini-
cal NLP systems were developed starting in the 
late 1980s and early 1990s, and are discussed 
in more detail by Spyns (Spyns 1996). Some 
clinical NLP systems that were associated with 
numerous publications in that period include 
SPRUS (which evolved into Symtext and then 
MPLUS) (Haug et  al. 1990, 1994; Christensen 
et  al. 2002), MedLEE (Friedman et  al. 1994; 
Hripcsak et al. 1995), the Geneva System (Baud 
et  al. 1992, 1998), MeneLAS (Zweigenbaum 
and Courtois 1998), and MEDSYNDIKATE 
(Hahn et  al. 2002). NLP processing of the lit-
erature started to take hold in the late 1990s 
with the large increase in publications concern-
ing biomolecular discoveries and the need to 
facilitate access to the information. Early work 
in the biomolecular NLP area involved identifi-
cation of biomolecular entities in text (Fukuda 
et  al. 1998; Jenssen and Vinterbo 2000), and 
then extraction of certain relations between the 
entities (Sekimizu et al. 1998; Rindflesch et al. 
2000; Humphreys et al. 2000; Park et al. 2001; 
Yakushiji et  al. 2001; Friedman et  al. 2001). 
Meanwhile, in the clinical literature, similar 
work was carried out to recognize mentions of 
disorders, findings, and treatments (Aronson 
2001) as well as certain relationships, such as 
diseases and their corresponding treatments in 
order to mine results conveyed across clinical 
studies (Srinivasan and Rindflesch 2002).

8  Natural Language Processing in Health Care and Biomedicine
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The assumption concerning much of the early 
NLP work was that successful NLP systems 
required substantial knowledge of language inte-
grated with real-world knowledge in order to 
process text and solve real-world problems. 
Thus, the primary focus of much of the early 
work concerned representation of syntactic and 
semantic knowledge, which was a complex task 
generally requiring linguistic expertise (Sager 
1981; Grishman and Kittredge 1986) along with 
development of rule-based systems that used the 
knowledge to parse and interpret the text. The 
trend started to shift in the biomedical domain 
from rule-based systems to probabilistic NLP 
systems in the early 2000s, likely due to the 
availability of large collections of annotated tex-
tual material in the general language domain 
(Marcus et al. 1993; Palmer et al. 2005) and in 
the biomolecular domain (Kim et al. 2003), to the 
rise of machine learning approaches that use the 
text collections to uncover patterns in text 
(Manning and Schütze 1999; Bishop 2007).

NLP is multi-disciplinary at its core, weaving 
together theories of linguistics, computation, rep-
resentation, and knowledge of biology, medicine 
and health. Within the computational field itself, 
NLP intersects with many fields of research, 
including computational linguistics, knowledge 
representation and reasoning, knowledge and 
information management, and machine and sta-
tistical learning. Furthermore, because NLP tools 
are often part of systems targeted at end-users, 
NLP also intersects with the field of human-
computer interaction and cognitive science. The 
inter-disciplinary nature of NLP has important 
implications for the design, development and 
evaluation of NLP-based systems. For instance, 
it would be impossible to perform a proper error 
analysis of an NLP tool without expertise in the 
domain, whether biological or clinical.

8.3	 �Applications of NLP

Natural language processing has a wide range of 
potential applications. The following are impor-
tant applications of NLP technology for biomedi-
cine and health:

•	 Information extraction, the most common 
application of NLP in biomedicine, locates 
and structures specific information in text, usu-
ally without performing a complete linguistic 
analysis of the text, but rather by looking for 
patterns in the text. Once textual information 
is extracted and structured it can be used for a 
number of different tasks. In biosurveillance, 
for instance, one can extract symptoms from 
a chief complaint field in a note written for 
a patient admitted to the emergency depart-
ment of a hospital (Chapman et al. 2004) or 
from ambulatory electronic health records 
(Hripcsak et  al. 2009). The extracted data, 
when collected across many patients, can 
help understand the prevalence as well as the 
progression of a particular epidemic. In biol-
ogy, biomolecular interactions extracted from 
one article or from different articles can be 
merged to construct biomolecular pathways. 
Figure 8.1 shows a pathway in the form of a 
graph that was created by extracting interac-
tions from one article published in the jour-
nal Cell (Maroto et  al. 1997). In the clinical 
domain, pharmacovigilance systems can use 
structured data obtained by means of NLP on 
huge numbers of patient records to discover 
adverse drug events (Wang et al. 2009a).

•	 The techniques for information extraction may 
be limited to the identification of names of 
people or places, dates, and numerical expres-
sions, or to certain types of terms in text (e.g. 
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Fig. 8.1  A graph showing interactions that were extracted 
from an article. A vertex represents a gene or protein, and 
an edge represents the interaction. The arrow represents 
the direction of the interaction so that the agent is repre-
sented by the outgoing end of the arrow and the target by 
the incoming end
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mentions of medications or proteins), which 
can then be mapped to canonical or standard-
ized forms. This is referred as named-entity 
recognition or named-entity normalization. 
More sophisticated techniques identify and 
represent the modifiers attached to a named 
entity. Such advanced methods are necessary 
for reliable retrieval of information because 
the correct interpretation of a term typically 
depends on its relation with other terms in a 
given sentence. For example, the term fever 
has different interpretations in no fever, high 
fever, fever lasted 2 days, and check for fever. 
Defining the types of modifiers of interest 
(e.g. no is a negation modifier, while lasted 2 
days is a temporal modifier), as well as tech-
niques to recognize them in text, is an active 
topic of research. Identifying relations among 
named entities is another important informa-
tion extraction method. For example, when 
extracting adverse events associated with a 
medication, the sentences “the patient devel-
oped a rash from amoxicillin” and “the patient 
came in with a rash and was given benadryl” 
must be distinguished. In both sentences, there 
is a relation between a rash and a drug, but the 
first sentence conveys a potential adverse drug 
event whereas the second sentence conveys 
a treatment for an adverse event. As entities 
are extracted within one document or across 
documents, one important step consists of 
reference resolution, that is, recognizing that 
two mentions in two different textual loca-
tions refer to the same entity. In some cases, 
resolving the references is very challenging. 
For instance, mentions of stroke in two dif-
ferent notes associated with the same patient 
could refer to the same stroke or two different 
strokes; additional contextual information and 
domain knowledge is often needed to resolve 
this problem.

•	 Information retrieval (IR) and NLP overlap 
in some of the methods that are used. IR is dis-
cussed in Chap. 21, but here we discuss basic 
differences between IR and NLP. IR meth-
ods are generally geared to help users access 
documents in large collections, such as elec-
tronic health records, the scientific literature, 

or the Web in general . This is a crucial appli-
cation in biomedicine and health, due to the 
explosion of information available in elec-
tronic form. The essential goal of information 
retrieval is to match a user’s query against a 
document collection and return a ranked list 
of relevant documents. A search is performed 
on an index of the document collection. The 
most basic form of indexing isolates simple 
words and terms, and therefore, uses mini-
mal linguistic knowledge. More advanced 
approaches use NLP-based methods similar 
to those employed in information extraction, 
identifying complex named entities and deter-
mining their relationships in order to improve 
the accuracy of retrieval. For instance, one 
could search for hypertension and have the 
search operate at the concept level, returning 
documents that mention the phrase high blood 
pressure in addition to the ones mentioning 
hypertension only. In addition, one could 
search for hypertension in a specific context, 
such as treatment or etiology.

•	 Question answering (QA) involves a process 
whereby a user submits a natural language 
question that is then automatically answered 
by a QA system. The availability of informa-
tion in journal articles and on the Web makes 
this type of application increasingly important 
as health care consumers, health care profes-
sionals, and biomedical researchers frequently 
search the Web to obtain information about a 
disease, a medication, or a medical procedure. 
A QA system can be very useful for obtain-
ing the answers to factual questions, like “In 
children with an acute febrile illness, what 
is the efficacy of single-medication therapy 
with acetaminophen or ibuprofen in reducing 
fever?” (Demner-Fushman and Lin 2007). QA 
systems provide additional functionalities to 
an IR system. In an IR system, the user has to 
translate a question into a list of keywords and 
generate a query, but this step is carried out 
automatically by a QA system. Furthermore, 
a QA system presents the user with an 
actual answer (often one or several passages 
extracted from the source documents), rather 
than a list of relevant source documents. QA 
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has focused on the literature thus far (Demner-
Fushman and Lin 2007; Cao et al. 2011).

•	 Text summarization takes one or several 
documents as input and produces a single, 
coherent text that synthesizes the main points 
of the input documents. Summarization helps 
users make sense of a large amount of data, by 
identifying and presenting the salient points 
in texts automatically. Summarization can be 
generic or query-focused (i.e. taking a particu-
lar information need into account when select-
ing important content of input documents). 
Query-focused summarization can be viewed 
as a post-processing of IR and QA: the relevant 
passages corresponding to an input question 
are further processed into a single, coherent 
text. Several steps are involved in the summa-
rization process: content selection (identify-
ing salient pieces of information in the input 
document(s)), content organization (identify-
ing redundancy and contradictions among the 
selected pieces of information, and ordering 
them so the resulting summary is coherent), 
and content re-generation (producing natural 
language from the organized pieces of infor-
mation). Like question answering, text sum-
marization has also focused on the literature 
(Elhadad et al. 2005; Zhang et al. 2011).

•	 Other tasks: Text generation formulates natu-
ral language sentences from a given source of 
information that is not directly readable by 
humans. Generation can be used to create a 
text from a structured database, such as sum-
marizing trends and patterns in laboratory data 
(Jordan et  al. 2001). Machine translation 
converts text in one language (e.g. English) 
into another (e.g. Spanish). These applications 
are important in multilingual environments in 
which human translation is too expensive or 
time consuming (Deleger et  al. 2009). Text 
readability assessment and simplification 
is becoming relevant to the health domain, as 
patients and health consumers access more 
and more medical information on the Web, 
but need support because their health literacy 
levels do not match the ones of the docu-
ments they read (Elhadad 2006; Keselman 
et al. 2007). Finally, sentiment analysis and 
emotion detection are slightly more recent 

applications of NLP and belong to the gen-
eral task of automated content analysis. There 
are promising research results showing that 
patients’ discourse can be analyzed automati-
cally to help detect their mental states (Pestian 
and Matykiewicz 2008).

8.4	 �Linguistic Levels 
of Knowledge and Their 
Representations

While current linguistic theories differ in certain 
details, there is broad consensus that linguistic 
knowledge consists of multiple levels: morphol-
ogy (words and meaningful parts of words), syntax 
(structure of phrases and sentences), semantics 
(meaning of words, phrases, and sentences), 
pragmatics (impact of context and of intent of the 
speaker on meaning), and discourse (paragraphs 
and documents). Human language processing 
may appear deceptively simple, because we are 
not conscious of the effort involved in learning 
and using language. However, a long process of 
acculturation is necessary to attain proficiency 
in speaking, reading, writing, and understanding 
with further intensive study to master a different 
language or the specialized languages of biologi-
cal science and medicine. This section introduces 
the types of knowledge entailed in each of the lev-
els as well as their representations. Traditionally, 
lexicography (the study of the morphology, syn-
tax and semantics of words), the development 
of rules, or grammars, and the acquisition of 
linguistic knowledge in general was performed 
by trained linguists through the careful, manual 
analysis of texts. This process is extremely time 
intensive and requires expertise. Therefore, more 
recent methods have leveraged machine-learning 
(ML) techniques to acquire linguistic knowledge, 
with the hope of reducing manual effort and 
dependence on linguistic expertise.

8.4.1	 �Morphology

Morphology concerns the combination of mor-
phemes (roots, prefixes, suffixes) to produce words 
or lexemes, where a lexeme generally constitutes 
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several forms of the same word (e.g. activate, 
activates, activating, activated, activation). Free 
morphemes can occur as separate words, while 
bound morphemes cannot (e.g. de- in detoxify, 
-tion in creation, -s in dogs). Inflectional mor-
phemes express grammatically required features 
or indicate relations between different words in 
the sentence, but do not change the basic syn-
tactic category; for example, big, bigg-er, bigg-
est are all adjectives. Derivational morphemes 
change the part of speech or the basic meaning 
of a word: thus -ation added to a verb may form 
a noun (activ-ation) and re-activate means acti-
vate again. Biomedical language has a very rich 
morphological structure especially for chemicals 
(e.g. Hydr-oxy-nitro-di-hydro-thym-ine) and pro-
cedures (hepatico-cholangio-jejuno-stom-y), but 
recognizing morphemes is complex. In the previ-
ous chemical example, the first split must be made 
after hydr- (because the -o- is part of –oxy), while 
the fifth split occurs after hydro-. In the procedure 
example, an automated morphological analyzer 
would have to distinguish stom (mouth) from tom 
(cut) in -stom. NLP systems in the biomedical 
domain do not generally incorporate morphologi-
cal knowledge. Instead many systems use regular 
expressions to represent what textual words consist 
of, and a lexicon to specify the words or lexemes 
in the domain and their linguistic characteristics.

Patterns are conveniently represented by the 
formalism known as a regular expression or 
equivalently, finite state automata (Jurafsky 
and Martin 2009, pp. 17–42). For example, 
the following simple regular expression repre-
sents what patterns are to be recognized as 
morphemes.

	 [ a z] | [ 0 9]-- ++ -- ++ 	

The vertical bar (|) separates alternative 
expressions, which in this case specify two dif-
ferent kinds of tokens (alphabetic and numeric). 
Expressions in square brackets represent a range 
or choice of characters. The expression [a-z] 
indicates a lower case letter, while [0–9] indi-
cates a digit. The plus sign denotes one or more 
occurrences of an expression. According to this 
regular expression, the sentence “patient’s wbc 
dropped to 12.” contains six morphemes, and the 
string patient’s would contain two morphemes, 

patient and s; in this case, the s is a morpheme 
denoting a possessive construct. This regular 
expression is very limited, and would not repre-
sent a comprehensive set of tokens found in text. 
For example, it does not represent other morpho-
logical variations, such as negation (n’t) or num-
bers with a decimal point (3.4).

More complex regular expressions can handle 
many of the morphological phenomena described 
above. However, situations that are locally 
ambiguous are more challenging, and representa-
tions that can encode more knowledge are prefer-
able. For instance, Markov processes (see Chap. 
3) that encode some level of context by assigning 
probabilities to the presence of individual mor-
phemes and to possible combinations of mor-
phemes, can help characterize morphological 
knowledge. While an important field of study, 
there has been little work concerning morphol-
ogy in the field of NLP in the biomedicine and 
health domains, especially for the English lan-
guage. Encoding morphological knowledge is 
necessary in languages that are morphologically 
rich (e.g. Turkish, German, and Hebrew).

8.4.2	 �Syntax

Syntax concerns the categorization of the words 
in the language, and the structure of the phrases 
and sentences. Each word belongs to one or more 
parts of speech in the language, such as noun 
(e.g. chest), adjective (e.g. mild), or tensed verb 
(e.g. improves), which are the elementary compo-
nents of the grammar and are generally specified 
in a lexicon. Words may also have subcategories, 
depending on the corresponding basic part of 
speech, which are usually expressed by inflec-
tional morphemes. For example, nouns have 
number (e.g. plural or singular as in legs, leg), 
person (e.g. first, second, third as in I, you, he, 
respectively), and case (e.g. subjective, objec-
tive, possessive as in I, me, my, respectively). 
Lexemes can consist of more than one word as in 
foreign phrases (ad hoc), prepositions (along 
with), and idioms (follow up, on and off). 
Biomedical lexicons tend to contain many multi-
word lexemes, e.g. lexemes in the clinical domain 
include multiword terms such as congestive heart 
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failure and diabetes mellitus, and in the biomo-
lecular domain include the gene named ALL1-
fused gene from chromosome 1q.

Lexemes combine (according to their parts of 
speech) in well-defined ways to form sequences 
of words or phrases, such as noun phrases (e.g. 
severe chest pain), adjectival phrases (e.g. pain-
ful to touch), or verb phrases (e.g. has increased). 
Each phrase generally consists of a main part of 
speech and modifiers, e.g. nouns are frequently 
modified by adjectives, while verbs are frequently 
modified by adverbs. The phrases then combine 
in well-defined ways to form sentences (e.g. “he 
complained of severe chest pain” is a well-formed 
sentence, but “he severe complained chest pain 
of” is not). General English imposes many restric-
tions on the formation of sentences, e.g. every 
sentence requires a verb, and count nouns (like 
cough) require an article (e.g., a or the). Clinical 
language, in contrast, is often telegraphic, relax-
ing many of these restrictions of the general 
language to achieve a highly compact form. For 
example, clinical language allows all of the fol-
lowing as sentences: “the cough worsened,” 
“cough worsening,” and “cough.” Because the 
community widely uses and accepts these alter-
nate forms, they are not considered ungrammati-
cal, but constitute a sublanguage (Grishman and 
Kittredge 1986; Kittredge and Lehrberger 1982; 
Friedman 2002). There are a wide variety of sub-
languages in the biomedical domain, each exhib-
iting specialized content and linguistic forms.

8.4.2.1	 �Representation of Syntactic 
Knowledge

Syntactic knowledge can be represented by means 
of a lexicon and a grammar. Representing such 
knowledge in a computable fashion is important, 
as it enables the creation of tools that parse the 
syntax of any given sentence, by matching the 
sentence against the lexicon and the grammar. A 
lexicon is used to delineate the lexemes along with 
their corresponding parts of speech and canonical 
forms so that each lexical entry assigns a word to 
one or more parts of speech, and also to a canoni-
cal form or lemma. For example, abdominal is 
an adjective where the canonical form is abdo-
men, and activation is a noun that is the nominal 

form of the verb activate. A grammar specifies 
the structure of the phrases and sentences in the 
language. It specifies how the words combine 
into well-formed structures through use of rules 
where categories combine with other categories 
or structures to produce a well-formed structure 
with underlying relations. A lexicon and gram-
mar should be compatible with each other in that 
the parts of speech or categories specified in the 
lexicon should be the same as those specified in 
the rules of the grammar. In many systems, the 
parts of speech are typically standard and are 
based on the parts of speech specified by the Penn 
Treebank Project (Marcus et al. 1993). Table 8.1 
provides some examples of Penn Treebank parts 
of speech, also called tags.

Generally, words combine to form phrases 
consisting of a head word and modifiers, and 
phrases combine to form sentences or clauses. 
For example, in English, there are noun phrases 
(NP) that contain a noun and optionally left and 
right modifiers, such as definite articles, adjec-
tives, or prepositional phrases (i.e. the patient, 
lower extremities, pain in lower extremities, chest 
pain), and verb phrases (VP), such as had pain, 
will be discharged, and denies smoking. Phrases 
and sentences can be represented as a sequence 
where each word is followed by its correspond-
ing part of speech. For example, Severe joint 
pain can be represented as Severe/JJ joint/NN 
pain/NN.

The field of computer science provides a num-
ber of formalisms that can be used to represent 
syntactic linguistic knowledge. These include 
symbolic or logical formalisms (e.g. regular 
expressions and context free grammars) and 
statistical formalisms (e.g. probabilistic con-
text free grammars). Simple phrases, which 
are phrases that do not contain right modifiers, 
can be represented using regular expressions. 
When using regular expressions to represent the 
syntax of simple phrases, syntactic categories are 
used in the expression. An example of a regu-
lar expression (using the Penn Treebank parts of 
speech defined in Table 8.1) for a simple noun 
phrase is:

	
DT?JJ * NN * NN | NNS( ) 	
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This structure specifies a simple noun phrase 
as consisting of an optional determiner (i.e. 
a, the, some, no), followed by zero or more 
adjectives, followed by zero or more singular 
nouns, and terminated by a singular or plural 
noun. For example, the above regular expres-
sion would match the noun phrase “no/DT 
usual/JJ congestive/JJ heart/NN failure/NN 
symptoms/NNS” but would not match “heart/NN 
the/DT unusual/JJ” because in the above regu-
lar expression the cannot occur in the middle 
of a noun phrase. In addition, the above regu-
lar expression does not cover many legitimate 
simple noun phrases, such as “3/CD days/NNS”, 
“her/PRP$ arm/NN”, and “pain/NN and/CC 
fever/NN”.

A complex noun phrase with right modifi-
ers, however, cannot be handled using a regular 
expression because a right modifier may con-
tain nested structures, such as nested preposi-
tional phrases or nested relative clauses. More 
complex language structures, like phrases 
with right modifiers, can be represented by a 
context-free grammar (CFG) or by equiva-
lent formalisms (Jurafsky and Martin 2009, 
pp 386–421). A CFG is concerned with how 
sequences of words combine to form phrases 
or constituents. A very simple grammar of 
English is shown in Fig. 8.2. Context-free rules 
use part-of-speech tags (see Table  8.1) and 

the operators found in regular expressions. The 
difference is that each rule has a non-terminal 
symbol on the left side (S, NP, VP, PP) that rep-
resents a syntactic structure, and consists of a 
rule that specifies a sequence of grammar sym-
bols (non-terminal and terminal) on the right 
side. Thus, in Fig.  8.2, the S (sentence) rule 
contains a sequence consisting of the symbols 
NP, followed by VP, which in turn are followed 
by a literal that is a ‘.’. Additionally, other rules 
may refer to these symbols or to the atomic 
parts of speech. In the NP rule there is an 
optional determiner DT as well as an optional 
prepositional phrase PP, which in turn contains 
an embedded NP to define noun phrases such as 
“the pain”, “pain”, “pain in arm”, and “pain in 
elbow of left arm”.

CFG grammar rules generally give rise to 
many possible structures for a parse tree, which 
represent sequences of alternative choices of 
rules in the grammar, but some choices are more 
likely than others. For example, in the sentence 
“she experienced pain in chest”, it is more likely 
that in chest modifies pain and not experienced. 
The preferences can be represented using a prob-
abilistic context free grammar that associates a 
probability with each choice in a rule (Jurafsky 
and Martin 2009, pp 459–479). The grammar 
shown in Fig. 8.2 can be augmented with prob-
abilities for each rule (see Fig. 8.3). The number 
indicates the probability of including the given 
category in the parse tree. For example, the prob-
ability assigned to having a determiner (DT) in a 
NP can be 0.9 (and conversely not having a DT 
at the beginning of a NP has a probability of 0.1). 
The probability of a present tense verb (VBZ) is 
0.4, while a past tense verb (VBD) is 0.6. The 

Table 8.1  Description of some part-of-speech tags from 
the Penn Treebank

Tag Meaning (example)

CC Conjunction (and)
CD Cardinal number (2)
DT Article (the)
IN Preposition (of)
JJ Adjective (big)
NN Singular noun (pain)
NNS Plural noun (arms)
PP$ Possessive pronoun (her)
PRP Personal pronoun (she)
VB Infinitive verb (fall)
VBD Past-tense verb (fell)
VBG Progressive verb form (falling)
VBN Past participle (fallen)
VBZ Present-tense verb (falls)

S → NP VP .
NP → DT? JJ* (NNNNS) CONJN* PP*  NP and NP
VP  → (VBZVBP) NP? PP*
PP  → IN NP
CONJN → and (NNNNS)

Fig. 8.2  A simple syntactic context-free grammar of 
English. A sentence is represented by the rule S, a noun 
phrase by the rule NP, a verb phrase by VP, and a preposi-
tional phrase by PP. Terminal symbols in the grammar that 
correspond to syntactic parts of speech, are underlined in 
the figure
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probabilities are usually estimated from a large 
corpus of text that has been annotated with the 
correct syntactic structures.

Recently, there has been increased interest in 
the dependency grammar formalism (Jurafsky 
and Martin 2009, 414–416), which focuses 
on how words relate to other words, although 
there are many different theories and forms of 
dependency grammars. Dependency is a binary 
asymmetrical relation between a head and its 
dependents or modifiers. The head of a sentence is 
usually a tensed verb. Thus, unlike CFGs, depen-
dency structures do not contain phrasal struc-
tures but are basically directed relations between 
words. For example, in the sentence, The patient 
had pain in lower extremities, the head of the sen-
tence is the verb had, which has two arguments, a 
subject noun patient and an object noun extremi-
ties, the modifies or is dependent on patient, and 
in is dependent on pain, extremities is dependent 
on in, and lower is dependent on extremities. As 
such, in a dependency grammar, the relations 
among words and the concept of head in particu-
lar (e.g. extremities is the head of lower) is closer 
to the semantics of a sentence. We introduce the 
concept of semantics next.

8.4.3	 �Semantics

Semantics concerns the meaning or interpreta-
tion of words, phrases and sentences, generally 
associated with real-world applications. There 
are many different theories for representation of 
meaning, such as logic-based, frame-based, or 
conceptual graph formalisms. In this section, 
we discuss semantics involved in interpretation of 
the text in order to accomplish practical tasks, and 
do not aim to discuss representation of complete 

meaning. Each word has one or more meanings 
or word senses (e.g. capsule, as in renal capsule, 
vitamin B12 capsule, or shoulder capsule), and 
other terms may modify the senses (e.g. no, as 
in no fever, or last week as in fever last week). 
Additionally, the meanings of the words combine 
to form a meaningful sentence, as in there was 
thickening in the renal capsule). Representation 
of the semantics of general language is extremely 
important, but the underlying concepts are not 
as clear or uniform as those concerning syntax. 
Interpreting the meaning of words and text for 
general language is very challenging, but inter-
preting the meaning of text within a sublanguage 
is more feasible. More specifically, biomedical 
sublanguages are easier to interpret than general 
languages because they exhibit more restrictive 
semantic patterns that can be represented more 
easily (Harris et  al. 1989; Harris 1991; Sager 
et  al. 1987). Sublanguages tend to have a rela-
tively small number of well-defined semantic 
types (e.g. medication, gene, disease, body part, 
or organism) and a small number of semantic 
patterns (e.g. medication-treats-disease, gene-
interacts with-gene).

8.4.3.1	 �Representation of Semantic 
Knowledge

Semantic interpretations must be assigned to 
individual terms (e.g. single words or multi-
word terms that function as single words) that 
are then combined into larger semantic structures 
(Jurafsky and Martin 2009, pp 545–580). The 
notion of what constitutes an individual term is 
not straightforward, particularly in the biomedi-
cal domain where there are many multi-word 
terms that have specific meanings that are dif-
ferent from the combined meanings of the parts. 
For example, burn in heart burn has a different 
meaning than in finger burn. Semantic informa-
tion about words can be maintained in a lexicon 
or a domain-specific dictionary. A semantic 
type or class is usually a broad class that is 
associated with a specific domain and includes 
many instances, while a semantic sense distin-
guishes individual word meanings (Jurafsky and 
Martin 2009, pp 611–617). For example, heart 
attack, myocardial infarct, and systemic lupus 

S → NP VP .
NP → DT?.9 JJ*.8 (NN.6NNS) PP*.8

VP  → (VBZ.4VBD) NP?.9 PP*.7

PP  → IN NP

Fig. 8.3  A simple probabilistic context-free grammar of 
English. Probabilities for each rule are part of the gram-
mar and are derived from a large corpus annotated with 
syntactic information
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eryhtematosus (SLE) all have the same seman-
tic type (disease); heart attack and myocardial 
infarct share the same semantic sense (they are 
synonymous) that is distinct from the sense of 
SLE (a different condition).

A lexicon containing semantic knowledge may 
be created manually by a linguist, or be derived 
from external knowledge sources. Examples 
of semantic knowledge sources are the Unified 
Medical Language System (UMLS) (Lindberg 
et  al. 1993), which assigns semantic types to 
terms, such as disease, procedure, or medica-
tion, and also specifies the sense of the concept 
through a unique concept identifier (CUI), and 
GenBank (Benson et  al. 2003), which lists the 
names of genes and also specifies a unique identi-
fier for each gene concept. While external sources 
can save a substantial effort, the types and senses 
provided may not be the appropriate granularity 
for the text being analyzed. Narrow categories 
may be too restrictive, and broad categories may 
introduce ambiguities. Morphological knowledge 
can be helpful in determining semantic types in 
the absence of lexical information. For example, 
in the clinical domain, suffixes like –itis and -osis 
indicate diseases, while -otomy and ectomy indi-
cate procedures. However, such techniques can-
not determine the specific sense of a word.

Semantic structures consisting of seman-
tic relations can be identified using regular 
expressions, which specify patterns of semantic 
types that are relevant in a specific domain, and 
that are associated with a real-word interpreta-
tion. The expressions may be semantic and look 
only at the semantic categories of the words in 
the sentence. For example, this method may 
be applied in the biomolecular domain to iden-
tify interactions between genes or proteins. For 
example, the regular expression

	
GENE | PROT MFUN GENE | PROT[ ] [ ] 	

will match sentences consisting of very simple 
gene or protein interactions (e.g. Pax-3/GENE 
activated/MFUN Myod/GENE). In this case, 
the elements of the pattern consist of seman-
tic classes: gene (GENE), molecular function 
(MFUN), and protein (PROT). This pattern is 

very restrictive, and regular expressions that skip 
over parts of the sentence can be written to detect 
relevant patterns for a broader variety of text, 
although it will incur some loss of specificity and 
precision while achieving increased sensitivity. 
For example, the regular expression

GENE | PROT .* MFUN.* GENE | PROT[ ] [ ]

specifies a pattern that provides for skipping over 
terms in the text. The dot (.) matches any tag, and 
the asterisk (*) allows for an arbitrary number of 
occurrences. Using the above expression, the inter-
pretation of the interaction, Pax-3 activated Myod 
would be obtained for the sentence “Pax-3/GENE, 
only when activated/MFUN  by Myod/GENE, 
inhibited/MFUN phosphorylation/MFUN”. In 
this example, the match does not capture the 
information correctly because “only when” was 
skipped. The correct interpretation of the indi-
vidual interactions in this sentence should be 
“Myod activated Pax-3”, and “Pax-3 inhibited 
phosphorylation”. Note that the simple regular 
expression shown above does not provide for the 
latter pattern (i.e. GENE-MFUN-MFUN), for the 
connective relation only when, or for the passive 
structure activated by.

Frequently, simple semantic relations are not 
represented using regular expressions. Instead, 
relations and the roles of the elements in the rela-
tion are specified by manual or semi-automated 
annotation so that machine-learning methods 
could be leveraged to develop models that detect 
the relations. For example, interaction type rela-
tions could be annotated so that it has an element 
that is an agent, and an element that is a target. 
Therefore, the above sentence would be anno-
tated as consisting of two relations: an interaction 
relation inhibit where the agent is Pax-3 and the 
target is phosphorylation, and an interaction rela-
tion activate where the agent is Myod and the tar-
get is Pax-3.

More complex semantic structures contain-
ing nesting can be represented using a semantic 
grammar, which is a context free grammar based 
on semantic categories. As shown in Fig. 8.4, a 
simple semantic grammar for clinical texts might 
define a clinical sentence as a Finding, which 
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consists of optional degree information and 
optional change information followed by a symp-
tom. Such a semantic grammar can parse the 
sentence “increased/CHNG tenderness/SYMP”, 
a typical sentence in the clinical domain, which 
often omits subjects and verbs.

NLP systems can represent more complex 
language structures by integrating syntactic and 
semantic structures into the grammar (Friedman 
et  al. 1994). In this case, the grammar would 
be similar to that shown in Fig.  8.4, but the 
rules would also include syntactic structures. 
Additionally, the grammar rule may also specify 
the representational output form that represents 
the underlying interpretation of the relations. For 
example, in Fig. 8.4, the rule for Finding would 
specify an output form denoting that SYMP is 
the primary finding and the other elements are 
the modifiers.

More comprehensive syntactic structures can 
be recognized using a broad-coverage CFG of 
English that is subsequently combined with a 
semantic component (Sager et  al. 1987). After 
the syntactic structures are recognized, they are 
followed by syntactic rules that regularize the 
structures. For example, passive sentences, such 
as “the chest x-ray was interpreted by a radiolo-
gist”, would be transformed to the active form 
(e.g. “a radiologist interpreted the chest x-ray”). 
Another set of semantic rules would then operate 
on the regularized syntactic structures to interpret 
their semantic relations.

The representation of a probabilistic CFG that 
contains semantic information would be similar 
to that of a CFG for syntax, but it would require a 
large corpus that has been annotated with both 

syntactic and semantic information. Since a 
semantic grammar is domain and/or application 
specific, annotation involving the phrase struc-
ture would be costly and not portable, and there-
fore is not generally done.

8.4.4	 �Pragmatics and Discourse

Pragmatics concerns how knowledge concern-
ing the intent of the author of the text, or more 
generally the context in which the text is written, 
influences the meaning of a sentence or a text. For 
example, in a mammography report mass gener-
ally denotes breast mass, whereas a radiological 
report of the chest denotes mass in lung. In yet a 
different genre of texts, like a religious journal, it 
is likely to denote a ceremony. Similarly, in a 
health care setting, he drinks heavily, is assumed 
to be referring to alcohol and not water. In these 
two examples, pragmatics influences the meaning 
of individual words. It can also influence the 
meaning of larger linguistic units. For instance, 
when physicians document the chief-complaint 
section of a note, they list symptoms and signs, as 
reported by the patient. The presence of a particu-
lar symptom, however, does not imply that the 
patient actually has the symptom. Rather, it is 
understood implicitly by both the author of the 
note and its reader that this is the patient’s impres-
sion rather than the truth. Thus, the meaning of 
the chief-complaint section of a note is quite dif-
ferent from the assessment and plan, for instance. 
Another pragmatic consideration is the interpre-
tation of pronouns and other referential expres-
sions (there, tomorrow). For example, in the two 
following sentences “An infiltrate was noted in 
right upper lobe. It was patchy”, the pronoun it 
refers to infiltrate and not lobe. In a sentence con-
taining the term tomorrow, it would be necessary 
to know when the note was written in order to 
interpret the actual date denoted by tomorrow.

In the biomedical domain, pragmatics is taken 
into account, but knowledge about the pragmat-
ics of the domain is not modeled explicitly. In 
NLP applications limited to a specific subdo-
main, it can be encoded through the semantic 
lexicon (like the one described in Sect. 8.4.3) and 
rules about the discourse of a text.

S → Finding .
Finding → DegreePhrase? ChangePhrase? SYMP
ChangePhrase  → NEG? CHNG
DegreePhrase  → DEGR  NEG

Fig. 8.4  A simple semantic context-free grammar for the 
English clinical domain. A sentence S consists of a Finding 
that consists of an optional DegreePhrase, an optional 
ChangePhrase and a Symptom. The DegreePhrase con-
sists of a degree type word or a negation type word; the 
ChangePhrase consists of an optional negation type word 
followed by a change type word. The terminal symbols in 
the grammar correspond to semantic parts of speech and 
are underlined
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While sentences in isolation convey individual 
pieces of information, sentences together com-
bine to form a text, obeying a discourse structure 
(e.g. a group of sentences about the same topic 
can be grouped into coherent paragraphs, whereas 
a dialogue between a physician and a patient can 
be structured as a sequence of conversation 
turns). Complete analysis of a text requires anal-
ysis of relationships between sentences and larger 
units of discourse, such as paragraphs and sec-
tions (Jurafsky and Martin 2009, pp 681–723).

There has been much work regarding discourse 
in computational linguistics and in NLP in the 
general domain. One of the most important mech-
anisms in language for creating linkages between 
sentences is the use of referential expressions, 
which include pronouns (he, she, her, himself), 
proper nouns (Dr. Smith, Atlantic Hospital) and 
noun phrases modified by the definite article or a 
demonstrative (the left breast, this medication, that 
day, these findings). Coreference chains provide 
a compact representation for encoding the words 
and phrases in a text that all refer to the same entity. 
Figure 8.5 shows a text and the coreference chains 
corresponding to two entities in the discourse. 
Each referential expression has a unique referent 
that must be identified in order to make sense of 
the text. In the figure, the proper noun Dr. Smith 
refers to the physician who is treating the patient. 
In the first two sentences, his and he refer to the 
patient, while he refers to the physician in the 
fourth sentence. In that figure, there also are sev-
eral definite noun phrases (e.g. the epithelium, the 
trachea, and the lumen) that have to be resolved. 
In this case, the referents are parts of the patient’s 
body and are not mentioned previously in the text.

8.5	 �NLP Techniques

Most NLP systems are designed with separate 
modules that handle different functions. The 
modules typically roughly coincide with the lin-
guistic levels described in Sect. 8.4. In general, 
the output from each lower level serves as input 
to the next higher level. For example, the output 
of tokenization transforms a textual string into 
tokens that will undergo lexical analysis to deter-
mine their parts of speech and possibly other 
properties as specified in a lexicon; the parts of 
speech along with the corresponding lexical defi-
nitions will then be the input to syntactic analysis 
that will determine the structure of the sentence; 
the structure will be the input to semantic analy-
sis that will interpret the meaning. Each system 
packages these processing steps somewhat dif-
ferently. At each stage of processing, the module 
for that stage aims to regularize the data in some 
aspect to reduce variety while preserving the 
informational content as much as possible.

8.5.1	 �Low-Level Text Processing

In addition to different linguistic levels intro-
duced in the previous section, there is an addi-
tional practical level involved in NLP that 
pertains to the low-level processing of an input 
file. Text processing, as it is commonly referred 
to, is a sometimes-tedious part of developing an 
NLP system, but it is a critical one, as it impacts 
the processing at all the subsequent linguistic 
levels. Below, we review a few of the characteris-
tics of low-level text that need to be considered 
when implementing an NLP system or when pre-
paring input for an off-the-shelf NLP system.

8.5.1.1	 �File Formats
Documents in a corpus (a collection of docu-
ments, plural: corpora) can be stored using differ-
ent formats. In some EHRs, for instance, it is not 
uncommon to have patient notes stored in Rich 
Text Format (RTF). PubMed citations can be 
downloaded from the Web in an Extensible 
Markup Language (XML) format, whereas full-
text articles from PubMed can be Hypertext 
Markup Language (HTML) files, and Twitter 

[Mr. Jones’s1] laboratory values on admission were notable
for a chest x-ray showing a right upper lobe pneumonia. 
[He1] underwent upper endoscopy with dilatation. It was 
noted that [his1] respiratory function became compromised 
each time the balloon was dilated. Subsequently, 
[Dr. Smith2] saw [him1] in consultation. [He2] performed a 
bronchoscopy and verified that there was an area of tumor.
It had not invaded the epithelium or the trachea. But it did
partially occlude the lumen.

Fig. 8.5  A text and two coreference chains, one about the 
patient and one about the clinician. Brackets denotes the 
span of the reference, and the indices inside the brackets 
refer to the entity. Note that even though we show two 
chains only, there are many other entities in the text (such 
as “laboratory values,” “chest x-ray, and “tumor”)
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feeds can come in the XML-based Really Simple 
Syndication (RSS) format. While there is no 
established way to convert one format into another 
or to clean up HTML tags, there are several pack-
ages available in many programming languages 
that can help deal with different file formats.

8.5.1.2	 �Character Sets and Encodings
Characters can be encoded in different ways in a 
computer (e.g. ASCII, which contains 128 char-
acters, or Unicode, which contains over 100,000 
characters). Knowing the character encoding 
used in a document is essential to recognize the 
characters and process the text further.

8.5.2	 �Document Structure

Journal articles generally have well-defined sec-
tion headers, associated with the informational 
content (e.g. Introduction, Background, Methods, 
Results) and other information, such as refer-
ences and data about the authors and their affilia-
tions. In clinical reports, there often are 
well-defined sections (e.g. History of Present 
Illness, Past Medical History, Family History, 
Allergies, Medications, Assessment and Plan) 
that would be important for an NLP system to 
recognize. For example, medications mentioned 
in the Medication Section have been prescribed 
to patients whereas medications mentioned in the 
Allergy Section should not be. Within sections, 
other document-level constructs must be identi-
fied, such as paragraphs, tables in various for-
mats, and (often nested) list items. In many cases 
however, a text comes “raw,” that is, without any 
formatting information, or with some idiosyn-
cratic formatting. In the clinical domain, for 
instance, there is evidence that many typed notes 
have no explicit section headers.

Tokens. The next step in processing generally 
consists of separating the cleaned up ASCII text, 
which is usually one large string at this stage, into 
individual units called tokens (a process called 
tokenization), which include morphemes, words 
(often morpheme sequences), numbers, symbols 
(e.g. mathematical operators), and punctuation. 
The notion of what constitutes a token is far 
from trivial. The primary indication of a token 

in general English is the occurrence of white 
space before and after it; however there are many 
exceptions: a token may be followed by certain 
punctuation marks without an intervening space, 
such as by a period, comma, semicolon, or ques-
tion mark, or may have a ‘-‘in the middle. In bio-
medicine, periods and other punctuation marks 
can be part of words (e.g. q.d. meaning every day 
in the clinical domain or M03F4.2A, a gene name 
that includes a period), and are used inconsis-
tently, thereby complicating the tokenization pro-
cess. For instance, in the string “5 mg. given” the 
tokenization process determines whether to keep 
the string “mg.” as one token or two (“mg” and 
“.”). In addition, chemical and biological names 
often include parentheses, commas and hyphens 
(for example, “(w)adh-2”) that also complicate 
the tokenization process.

Symbolic approaches to tokenization are 
generally based on pattern matching using reg-
ular expressions, but most current approaches 
use statistical methods. One method consists of 
comparing which alternatives are most frequent 
in a correctly-tokenized corpus (e.g. is the token 
M03F4.2A more frequent than the two tokens 
M03F4 and 2A one next to another, but separated 
by a white space).

8.5.2.1	 �Sentence Boundaries 
Detecting the beginning and end of a sentence 
may seem like an easy task, but is a highly 
domain-dependent one. Not all sentences end 
with a punctuation mark (this is especially true in 
texts with minimal editing, such as online patient 
posts and clinical notes entered by physicians). 
Conversely, the presence of a period does not 
necessarily mean the end of a sentence (as dis-
cussed in tokenization). While there are statisti-
cally trained models available for general NLP, 
they are based on an annotated corpus of general 
language text, and do not perform as well on bio-
medical and health-related text. Therefore, many 
NLP systems rely on hand-built rules to detect an 
end of sentence.

8.5.2.2	 �Case
Most NLP techniques operate on words as their 
smallest unit of processing. The definition of a 
word is not trivial, however. One question is 
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whether to consider strings with different cases 
the same. In some situations, it makes sense to 
keep all tokens in lowercase, as it reduces varia-
tions in vocabulary. But in others, it might hinder 
further NLP: there are many acronyms that, when 
lowercased, might be confused with regular 
words, such as TEN, which is an abbreviation for 
toxic epidermal necrosis.

8.5.3	 �Syntax

There are generally two tasks involved in syn-
tactic analysis: one involves determining the 
syntactic categories or parts of speech of the 
words, and the other involves determining and 
representing the structures of the sentences.

8.5.3.1	 �Output of Syntactic Parse
Applying grammar rules to a given sentence is 
called parsing, and if the grammar rules can be 
satisfied, the grammar yields a nested structure 
that can be represented graphically as a parse 
tree. For example, based on the CFG shown in 
Fig.  8.2, the sentence “the patient had pain in 
lower extremities” would be parsed successfully 
and would be assigned the parse tree shown in 
Fig.  8.6. Alternatively, brackets can be used to 

represent the nesting of phrases instead of a parse 
tree. Subscripts on the brackets specify the type 
of phrase or tag:

S

NP

DT NN VBD NN IN JJ NNS

The patient had pain in lower extremities

NP

PP

NP

VP

Fig. 8.6  A parse tree for the sentence the patient had pain 
in lower extremities according to the context-free gram-
mar shown in Fig. 8.2. Notice that the terminal nodes in 
the tree correspond to the syntactic categories of the 
words in the sentence

DT NN VBD NN IN JJ NNS

NMOD SUBJ OBJ NMOD PMOD

NMOD

The patient had pain in lower extremities

Fig. 8.7  A parse tree for the sentence the patient had pain 
in lower extremities in a dependency grammar framework

	 [ [  [ ][ ]][ [ ]S NP DT NN VP VBD the  patient  had 	

	 [  [  pain][ [ in]  [  [ lower][ extremities]]]]]]NP NN PP IN NP JJ NNS 	

The following shows an example of a 
parse in the biomolecular domain for the 

sentence Activation of Pax-3 blocks Myod 
phosphorylation:

	 [ [ [ ] [ [ ] [ [ ]]]]S NP NN PP IN NP NN Activation of Pax - 3 	
	 [ [ ] [ [ ] [ ]]]]VP VBZ NP JJ NNblocks Myod phosphorylation 	

When a dependency grammar is used, the rep-
resentation of the parsed structure would be dif-
ferent from the structure generated by a CFG, 
and would reflect relations between words instead 
of structures. Figure 8.7 shows a representation 
of a dependency structure for the same sentence 
as the one illustrated in Fig. 8.6. In this example, 
the noun patient and the noun pain are the subject 
and object arguments of the verb had, and thus 

are both dependent on the verb. Similarly, the 
determiner the modifies (i.e. is dependent on) 
patient, and the preposition in modifies pain.

8.5.3.2	 �Part-of-Speech Tagging 
and Lexical Lookup

Once text is tokenized, an NLP system needs to 
identify the words or multi-word terms known to 
the system, and determine their categories and 
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canonical forms. Many systems carry out tokeni-
zation on complete words and perform part-of-
speech tagging, and then some form of lexical 
look up immediately afterwards. This requires 
that the tagger and lexicon contain all the possi-
ble combinations of morphemes. A few systems 
perform morphological analysis during tokeniza-
tion. In that case, the lexicon only needs entries 
for roots, prefixes, and suffixes, with additional 
entries for irregular forms. For example, the lexi-
con would contain entries for the roots abdomen 
(with variant abdomin-) and activat-, the adjec-
tive suffix -al, verb suffix -e, and noun suffix -ion.

Part-of-speech tagging is not straightforward 
because a word may be associated with more 
than one part of speech. For example, stay may 
be a noun (as in her hospital stay) or a verb (as in 
refused to stay). Without resolution, such ambi-
guities can lead to creating different structures 
for the sentence causing inaccuracies in parsing 
and interpretation, resulting in a substantial 
decrease in performance. For example, when eat-
ing occurs before a noun, it can be an adjective 
(JJ) that modifies the noun, or it can be a verb 
form (VBG) with the noun as object:
She/PRP denied/VBD eating/JJ difficulties/NN
She/PRP denied/VBD eating/VBG food/NN

In the first example, the patient is having a dif-
ficulty associated with eating, whereas in the sec-
ond the patient is denying the act of eating food. 
Various methods for part-of-speech tagging may 
be used to resolve ambiguities by considering 
the surrounding words. A rule-based approach 
generally consists of rules based on the word 
that precedes or follows the current word. For 
example, if stay follows the or her, a rule may 
specify that it should be tagged as a noun, but if it 
follows to it should be tagged as a verb.

Currently, the most widely used approaches 
are statistically based part-of-speech taggers. One 
type of approach is based on Markov models (as 
described above for morphology). In this case, the 
transition matrix specifies the probability of one 
part of speech following another (see Table 8.2):

The following sentence shows the  cor-
rect assignment of part-of-speech tags: Rheu
matology/NN consult/NN continued/VBD to/TO 
follow/VB patient/NN.

This assignment is challenging for a computer, 
because consult can be tagged VB (Orthopedics 
asked to consult), continued can be tagged VBN 
(penicillin was continued), and to can be tagged 
IN. However, probabilities can be calculated for 
these sequences using the matrix in Table  8.2 
(these were estimated from a large corpus of clin-
ical text). By multiplying the transitions together, 
a probability for each sequence can be obtained 
(as described above for morphology), and is 
shown in Table 8.3. Note that the correct assign-
ment has the highest probability.

8.5.3.3	 �Parsing
Many NLP systems perform some type of syntac-
tic parsing to determine the structure of the sen-
tence. Some systems perform partial parsing or 
shallow parsing, and are based on a number of 
different methods (Jurafsky and Martin 2009; pp 
450–458). Partial parsing systems determine the 
structure of local phrases, such as simple noun 
phrases (i.e. noun phrases without right adjuncts) 
and simple adjectival phrases but do not deter-
mine relations among the phrases. Determining 
non-recursive phrases where each phrase corre-
sponds to a specific part of speech is also called 

Table 8.2  Transition probabilities for part-of-speech tags

NN VB VBD VBN TO IN

NN 0.34 0.00 0.22 0.02 0.01 0.40
VB 0.28 0.01 0.02 0.27 0.04 0.39
VBD 0.12 0.01 0.01 0.62 0.05 0.19
VBN 0.21 0.00 0.00 0.03 0.11 0.65
TO 0.02 0.98 0.00 0.00 0.00 0.00
IN 0.85 0.00 0.02 0.05 0.00 0.08

Table 8.3  Probabilities of alternative part-of-speech tag 
sequences

Part of speech tag sequence Probability

NN NN VBD TO VB NN 0.001149434
NN NN VBN TO VB NN 0.000187779
NN VB VBN TO VB NN 0.000014194
NN NN VBD IN VB NN 0.000005510
NN NN VBN IN VB NN 0.000001619
NN VB VBD TO VB NN 0.000000453
NN VB VBN IN VB NN 0.000000122
NN VB VBD IN VB NN 0.000000002
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chunking. These systems tend to be robust 
because it is easier to recognize isolated phrases 
than it is to recognize complete sentences, but 
typically they lose some information. For exam-
ple, in amputation below knee, the two noun 
phrases amputation and knee would be extracted, 
but the relation below might not be. Rule-based 
methods use regular expressions that are manu-
ally created, while statistical models are devel-
oped based on an annotated corpus.

Complete syntactic parsing recognizes and 
determines the structure of a complete sen-
tence. A system based on a CFG tries to find a 
match between the sentence and the grammar 
rules. Therefore, parsing can be thought of as a 
search problem that tries to fit the sequence of 
part-of-speech tags associated with the sen-
tence to all possible combinations of 
grammar rules. There are a number of different 
approaches to parsing, such as searching 
through the rules in a top-down or bottom-up 
fashion, or using dynamic programming meth-
ods for efficiency, as in the Cocke–Younger–
Kasami (CYK), Earley, or chart parsing 
methods (Jurafsky and Martin 2009; pp 
427–450).

Additionally, grammar rules generally give 
rise to many possible structures for a parse tree 
(structural ambiguity) because the sequence of 
alternative choices of rules in the grammar can 
yield different groupings of phrases based on 
syntax alone. For example, sentence 1a below 
corresponds to a parse based on the grammar 
rules shown in Fig. 8.2 where the VP rule con-
tains a PP (e.g. denied in the ER) and the NP 
rule contains only a noun (e.g. pain). Sentence 
1b corresponds to the same atomic sequence of 
syntactic categories but the parse is different 
because the VP rule contains only a verb (e.g. 
denied) and the NP contains a noun followed by 
a PP (e.g. pain in the abdomen). Prepositions 

and conjunctions are also a frequent cause of 
ambiguity. In 2a, the NP consists of a conjunc-
tion of the head nouns so that the left adjunct 
(e.g. pulmonary) is distributed across both 
nouns (i.e. this is equivalent to an interpretation 
pulmonary edema and pulmonary effusion), 
whereas in 2b, the left adjunct pulmonary is 
attached only to edema and is not related to ane-
mia. In 3a the NP in the prepositional phrase PP 
contains a conjunction (i.e. this is equivalent to 
pain in hands and pain in feet) whereas in 3b 
two NPs are also conjoined but the first NP con-
sists of pain in hands and the second consists of 
fever.
	1a.	 Denied [pain] [in the ER]
	1b.	 Denied [pain [in the abdomen]]
	2a.	 Pulmonary [edema and effusion]
	2b.	 [Pulmonary edema] and anemia
	3a.	 Pain in [hands and feet]
	3b.	 [Pain in hands] and fever

More complex forms of ambiguity do not 
exhibit differences in parts of speech or in group-
ing, but require determining deeper syntactic 
relationships. For example, when a verb ending 
in –ing is followed by of, the following noun can 
be either the subject or object of the verb.
Feeling of lightheadedness improved.
Feeling of patient improved.

Statistical approaches provide one method 
of addressing parsing ambiguity, and provide 
a mechanism where it is possible to prefer the 
more likely parses over less likely ones based on 
the probability of a parse tree that is the prod-
uct of the probabilities of each grammar rule 
used to make it. For example, there are two ways 
to parse x-ray shows patches in lung using this 
grammar (shown below). The first interpretation 
in which shows is modified by lung has probabil-
ity 3.48 × 10−8, while the second interpretation in 
which patches is modified by lung has probabil-
ity 5.97 × 10−8.

	 [ [ NN 0.1  0.2  0.6  0.2] [ VBZ [ NN 0.1  0.2  0.S NP VP NP´́ ´́ ´́ ´́ ´́ 66  0.2] 
[ IN [ NN 0.1 0.2 0.6 0.2]]  0.4 .9 .7 ]]PP NP

´́
´́ ´́ ´́ ´́ ´́

	

	
[ [ ] 

[ [ [ [
S NP

VP NP PP NP

 NN 0.1 0.2 0.6 0.2 
VBZ IN NN 0.1 0.2 0
´́ ´́ ´́

´́ ´́ ..6 0.2 NN 0.1 0.2 0.6 0.8 0.4 0.9 0.3´́ ´́ ´́ ´́ ´́ ´́] ] ]] 	
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The probabilities are generally established 
based on a large corpus that has been parsed and 
annotated correctly. Therefore, it is critical that the 
corpus be of a genre similar to the text to be parsed; 
otherwise, performance will likely deteriorate.

8.5.4	 �Semantics

Semantic analysis involves steps analogous to 
those described above for syntax. First, seman-
tic interpretations must be assigned to individual 
words, and then, these are combined into larger 
semantic structures, including modifications 
and relations. There are a number of formalisms 
for representing information in language (see 
Jurafsky and Martin 2009; pp 545–580), such 
as database tables, XML, frames, conceptual 
graphs, or predicate logic. Below, we discuss a 
few general approaches within this domain.

NLP systems may capture the clinical infor-
mation at many different levels of granularity. 
One level of coarse granularity consists of clas-
sification of reports. For example, several sys-
tems (Aronow et al. 1995; Aronow et al. 1999) 
classified reports as positive or negative for spe-
cific clinical conditions, such as breast cancer. 
Another level of granularity that is useful for 
information retrieval and indexing, captures rele-
vant terms by mapping the information to a 
controlled vocabulary, such as the UMLS 
(Aronson 2001; Nadkarni et al. 2001), but modi-
fier relations are not captured. A more specific 
level of granularity also captures positive and 
negative modification (Mutalik et  al. 2001; 
Chapman et al. 2001) or temporal status (Harkema 
et al. 2009). An even more specific level of granu-
larity captures a comprehensive set of modifiers 
associated with the term, facilitating reliable 
information extraction (Friedman et al. 2004).

8.5.4.1	 �Output of Semantic 
Interpretation

Typically within a specific domain, semantic 
interpretation is limited in the sense that NLP 
systems in that domain do not attempt to capture 
the complete meaning of information in the text, 
but instead aim to capture limited relevant ele-
ments of the text. This process involves several 

representational aspects: word sense, relevant 
information that modifies or changes the underly-
ing meaning of the word senses, well-defined 
relations in the domain, and relevant information 
that modifies the relations.

Representation of word senses is usually 
achieved by means of the many controlled vocab-
ularies or ontologies in the domain that associate 
words or terms with unique meanings, or con-
cepts, and have corresponding codes. Therefore, 
semantic interpretation of a word or term entails 
mapping it to a code that represents its concept. 
As with parts of speech, many words have more 
than one semantic interpretation or sense; an 
NLP system must determine which of these is 
intended in the given context and map the sense 
to a well-defined concept. For example, growth 
can be either an abnormal physiologic process 
(e.g. for a tumor) or a normal one (e.g. for a 
child). The word left can indicate laterality (pain 
in left leg) or an action (patient left hospital).

Relations between words may be represented 
a number of different ways. One very general 
representational form is a frame-based represen-
tation in which the frame contains slots consist-
ing of predefined types of information, which 
may be optional (Minsky 1975). In addition, 
relations between the slots are predetermined. 
Thus, a frame may be used to represent a simple 
concept along with its modifiers. For example, a 
frame representing a patient’s condition, could 
have a slot for the condition, such as cough, and 
additional slots that modify cough, such as a slot 
for severity as in severe cough, a slot for tempo-
ral information, as in cough for 4 days, a slot for 
type of cough, as in productive cough, and a slot 
for negation, as in denies cough (Friedman et al. 
2004). A frame may also contain more complex 
information associated with relations between 
entities. For example, an interaction frame could 
be defined to contain a slot for the interaction, 
a slot for the agent, a slot for the target, and 
slots that modify the relation, such as a negation 
slot to represent an interaction that is negated, 
or a degree slot to represent the strength of an 
interaction.

Another representation could be a predicate-
argument form where the interpretation of the 
predicate and the roles of the arguments are 
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specified. Representation of an interaction 
between biomolecular substances could be Inte
raction(Agent,Target). For example, Wnt blocks 
Pax-3 could be represented as block(Wnt,Pax-3) 
or the arguments could be codes uniquely defin-
ing those substances. Similarly, relations between 
medications and conditions can be represented 
as a predicate, such as treat, prevent, or causes, 
where the first argument could be the medication 
or a corresponding code, and the second argu-
ment could be the condition or its code.

8.5.4.2	 �Word Sense Interpretation
The problem of determining the correct sense of 
a term can involve matching a word to a con-
cept in an ontology or controlled vocabulary 
in the given domain. For example, the UMLS 
identifies unique concepts, along with their 
variant and synonymous forms, and it would 
be straightforward to match the word cough in 
text to the concept cough (i.e. C0010200) in 
the UMLS. However, a word may have more 
than one sense, and the process of determin-
ing the correct sense is called word sense dis-
ambiguation (WSD). For example, MS could 
be mapped to C0026269, which corresponds 
to mitral stenosis, or to C0026769, which cor-
responds to multiple sclerosis. However, the 
underlying interpretation may not be in the 
UMLS, as in the sense Ms (the honorific title). 
WSD is much harder than syntactic disambigua-
tion because there is no well-established notion 
of word sense, different lexicons or ontologies 
recognize different distinctions, and the space of 
word senses is substantially larger than that of 
syntactic categories. Words may be ambiguous 
within a particular domain, across domains, or 
in the natural language (e.g., English) in general. 
Abbreviations are notoriously ambiguous. The 
ambiguity problem is particularly troublesome 
in the biomolecular domain because biomolecu-
lar symbols in many model organism databases 
consist of three letters, and are ambiguous with 
other English words, and also with different 
gene symbols of different model organisms. For 
example, nervous and to are English words that 
are also the names of genes. When writing about 
a specific organism, authors use alias names that 
may correspond to different genes. For example, 

in articles associated with the mouse, according 
to the Mouse Genome Database (MGD) (Blake 
et  al. 2003), authors may use the term fbp1 to 
denote different genes.

Semantic disambiguation of lexemes can be 
performed using similar rule-based or statistical 
methods described above for syntax. Rules can 
assign semantic types using contextual knowl-
edge of other nearby words and their types. For 
example, discharge from hospital and discharge 
from eye can be disambiguated depending on 
whether the noun following discharge is an insti-
tution or a body location. However, statistical 
approaches are generally used to determine the 
most likely assignment of semantic types based 
on contextual information, such as surrounding 
words (Jurafsky and Martin 2009, pp 637–667). 
As with statistical methods for morphology and 
syntax, large amounts of training data are 
required to provide sufficient instances of the 
different senses for each ambiguous word. This 
is extremely labor intensive because it means 
that a large manually annotated corpus for each 
ambiguous word must be collected where opti-
mally each sense occurs numerous times, 
although in certain cases automated annotation 
is possible.

8.5.4.3	 �Interpretation of Relations 
among Words

Similar to syntactic analysis of simple phrases, 
semantic analysis can also be achieved using reg-
ular expressions. An alternate, robust method for 
processing sentences with regular expressions, 
which is often employed in general, uses cascad-
ing finite state automatas (FSAs) (Hobbs et al. 
1996). In this technique, a series of different 
FSAs are employed so that each performs a spe-
cial tagging function. The tagged output of one 
FSA becomes the input to a subsequent FSA. For 
example, one FSA may perform tokenization and 
lexical lookup, another may perform partial pars-
ing to identify syntactic phrases, such as noun 
phrases and verb phrases, the next may perform 
named entity recognition (NER), and the next 
may recognize semantic relations, determine the 
roles of the entities, and map the entities to a 
predicate-argument or frame-based structure. In 
some cases, the patterns for the semantic relations 
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will be based on a combination of syntactic 
phrases and their corresponding semantic classes, 
as shown below. The pattern for biomolecular 
interactions might then be represented using a 
combination of tags:

	
NP VP NPGENE|PROT MFUN GENE|PROT[ ] [ ].. ..∗ ∗

	

The advantage of cascading FSA systems is that 
they are relatively easy to adapt to different infor-
mation extraction tasks because the FSAs that are 
domain independent (tokenizing and phrasal FSAs) 
remain the same while the domain-specific compo-
nents (Semantic patterns) change with the domain 
and or the extraction task. These types of systems 
have been widely used in the 1990s to extract 
highly specific information, such as detection of 
terrorist attacks, identification of joint mergers, and 
changes in corporation management (Sundheim 
1991, 1992, 1994, 1996, Grishman and Sundheim 
1996). They are generally used to extract informa-
tion from the literature, but they may not be accu-
rate enough for clinical applications.

Complete parsing, similar to the methods 
used for syntactic parsing, can be used in sys-
tems that have a context-free semantic grammar. 
For example, the sentence No increased tender-
ness would be parsed correctly using the simple 
grammar shown in Fig.  8.4, where there is a 
finding that consists of a changephrase that has 
a negation (e.g. no) that modifies the change (e.g. 
increased), and the changephrase is followed by 
a symptom (e.g. tenderness). Therefore, no mod-
ifies the change and not the symptom. Note that 
ambiguity is possible in this grammar because 
a sentence such as No/NEG increased/CHNG 
tenderness/SYMP could be parsed by satisfying 
other rules. In an incorrect parse, the degree-
phrase (e.g. no) and the changephrase (e.g. 
increased) both modify tenderness; in this inter-
pretation the symptom is negated and the change 
information is not.

8.5.5	 �Discourse

We focus in this section on one particular task as 
an example of discourse processing: automated 
resolution of referential expressions.

8.5.5.1	 �Automated Resolution 
of Referential Expressions

Coreference resolution can draw on both syn-
tactic and semantic information in the text. 
Syntactic information for resolving referential 
expressions includes:
•	 Agreement of syntactic features between the 

referential phrase and potential referents
•	 Recency of potential referents (nearness to 

referential phrase)
•	 Syntactic position of potential referents (e.g. 

subject, direct object, object of preposition)
•	 The pattern of transitions of topics across the 

sentences
Syntactic features that aid the resolution 

include such distinctions as singular/plural, ani-
mate/inanimate, and subjective/objective/posses-
sive. For example, pronouns in the text in Fig. 8.5 
carry the following features: he (singular, animate, 
subjective), his (singular, animate, possessive) 
and it (singular, inanimate, subjective/objec-
tive). Animate pronouns (he, she, her) almost 
always refer humans. The inanimate pronoun it 
usually refers to things (e.g. it had not invaded), 
but sometimes does not refer to anything when 
it occurs in “cleft” constructions: it was noted, it 
was decided to and it seemed likely that.

Referential expressions are usually very close 
to their referents in the text. In it had not invaded, 
the pronoun refers to the immediately preceding 
noun phrase area of tumor. The pronoun in it did 
partially occlude has the same referent, but in 
this case there are two intervening nouns: epithe-
lium or trachea. Thus, a rule that assigns pro-
nouns to the most recent noun would work for the 
first case, but not for the second.

The syntactic position of a potential referent is 
an important factor. For example, a referent in 
subject position is a more likely candidate than 
the direct object, which in turn is more likely than 
an object of a preposition. In the fifth sentence of 
the text above, the pronoun he could refer to the 
patient or to the physician. The proper noun Dr. 
Smith is the more likely candidate, because it is 
the subject of the preceding sentence.

Centering theory accounts for reference by 
noting how the center (focus of attention) of each 
sentence changes across the discourse (Grosz et al. 
1995). In our example text, the patient is the center 
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of the first three sentences, the physician is the 
center of the fourth and fifth sentence, and the area 
of tumor is the center of the last sentence. In this 
approach, resolution rules attempt to minimize the 
number of changes in centers. Thus, in the above 
text it is preferable to resolve he in sentence five as 
the physician rather than the patient because it 
results in smoother transition of centers.

Semantic information for resolving referential 
expressions involves consideration of the seman-
tic type of the expression, and how it relates to 
potential referents (Hahn et al. 1999):
•	 semantic type is the same as the potential 

referent
•	 semantic type is a subtype or a parent of the 

potential referent
•	 semantic type has a close semantic relation-

ship with the potential referent
For example, in the example text, the definite 

noun phrase the balloon must be resolved. If the 
phrase a balloon occurred previously, this would 
be the most likely referent. Since there is no pre-
vious noun of similar type, it is necessary to 
establish a semantic relationship with a preced-
ing noun. The word dilation is the best candidate 
because a balloon is a medical device used by 
that procedure.

8.5.6	 �Evaluation Metrics

Evaluating the performance of an NLP system is 
critical whether the NLP system is targeted for an 
end user directly or is part of a larger application. 
Evaluation generally involves obtaining a refer-
ence standard with which the system can be 
compared against. In the clinical domain, creat-
ing such reference standards can be a challenge, 
because of the need for anonymized patient 
information so the reference standard (also called 
gold standard) can be shared among researchers 
at different institutions. When a reference stan-
dard is created, it is important to further reliabil-
ity and to reduce subjectivity and bias by relying 
on multiple experts, by measuring the inter-rater 
agreement, and by randomly selecting text 
instances (Friedman et  al. 1998, Hripcsak and 
Wilcox 2002). There are basically two types of 
evaluation, extrinsic and intrinsic.

In an extrinsic evaluation, the NLP system 
is part of a bigger application that is intended 
to achieve a real-world task, and the aim of 
the evaluation is to measure performance of 
the overall task. Therefore, the output of the 
NLP system is not evaluated independently. A 
reference standard is generally created using 
domain experts, who manually perform the 
task by reading the text, or the reference stan-
dard may already exist from another study. For 
instance, an NLP system may be part of a clini-
cal decision support system aimed at identify-
ing patients with pneumonia based on textual 
radiology reports. A reference standard would 
be created consisting of radiology reports that 
would have been randomly selected and then 
reviewed manually as denoting or not denoting 
pneumonia. Domain experts are best to use to 
obtain a reference standard since they routinely 
read clinical reports and interpret the informa-
tion in them. A substantial portion of the results 
of an extrinsic evaluation may be attribut-
able to the decision support component, which 
generally will include reasoning based on the 
information extracted by the NLP system. For 
example, reasoning may be necessary in order 
to associate extracted findings, such as infiltrate 
and consolidation, with pneumonia. In such an 
evaluation, an error analysis would be needed 
to differentiate NLP errors from errors in the 
decision support component of the system.

In an intrinsic evaluation, the output of the 
NLP system is evaluated by comparing the out-
put against a reference standard, which generally 
has been manually annotated so that it is deemed 
accurate. The extent of differences in results 
obtained by the NLP system and the reference 
standard are then computed. Evaluation may be 
performed for each component of the NLP sys-
tem, or for the overall results. Depending on the 
evaluation design and NLP task, annotation gen-
erally requires linguistic expertise and may also 
require domain expertise. Therefore, an intrinsic 
evaluation that focuses on performance of the 
NLP system is helpful for advancing NLP devel-
opment. However, generating the reference stan-
dard is generally time-consuming, and may not 
adequately reflect the information needed for a 
subsequent real-world application.
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There are three basic quantitative measures 
used to assess performance in an extrinsic or 
intrinsic evaluation. They are all calculated from 
the number of true positives (TP), true nega-
tives (TN), and false negatives (FN).

Recall is the percentage of results that should 
have been obtained according to the test set that 
actually were obtained by the system:
Recall = Number of correct results obtained by 

system (TP)/
Number of results specified in gold standard 

(TP + FN)
Precision is the percent of results that the sys-

tem obtained that were actually correct according 
to the test set:
Precision = Number of correct results obtained by 

system (TP)/
Total number of results obtained by system 

(TP + FP)
There is usually a tradeoff between recall and 

precision, with higher precision usually being 
attainable at the expense of recall, and vice versa. 
The F measure is a combination of both mea-
sures and can be used to weigh the importance 
of one measure over the other by giving more 
weight to one. If both measures are equally 
important, the F measure is the harmonic mean 
of the two measures.

When reporting results, an error analysis 
provides much insight into ways to improve a 
system. This process involves determining rea-
sons for errors in recall and in precision. In an 
extrinsic evaluation, some errors could be due 
to the NLP system and other errors could be 
due to the subsequent application component. 
Some NLP errors in recall (i.e. false negatives) 
could be due to failure of the NLP system to 
tokenize the text correctly, to recognize a word, 
to detect a relevant pattern, or to correctly inter-
pret the meaning of a word or a structure cor-
rectly. Some errors in precision could be due to 
errors in interpreting the meaning of a word or 
structure or to loss of important information. 
Errors caused by the application component 
could be due to failure to access the extracted 
information properly or failure of the reasoning 
component.

8.6	 �Issues for NLP in 
Biomedicine and Health

Natural language processing is challenging for 
general language, but there are issues that are 
particularly germane to the domains of biomedi-
cine and health. We list a few of them in this 
section.

8.6.1	 �Patient Privacy and Ethical 
Concerns

As an NLP system deals with patient informa-
tion, its designers must remain cognizant of the 
privacy and ethical concerns entailed in handling 
protected health information. In the clinical 
domain for instance, the Health Insurance 
Portability and Accountabiliy Act (HIPAA; see 
Chap. 10) regulates the protection of patient-
sensitive information (see Chap. 10 for a detailed 
description of privacy matters in the clinical 
domain). Online, patients provide much informa-
tion about their own health in blogs and online 
communities. While there are no regulations in 
place concerning online patient-provided infor-
mation, researchers have established guidelines 
for the ethical study and processing of patient-
generated speech (Eysenbach and Till 2001).

8.6.2	 �Good System Performance

If the output of an NLP system is to be used to 
help manage and improve the quality of health 
care and to facilitate research, it must have high 
enough performance for the intended application. 
Evidently different applications require varying 
levels of performance; however, the performance 
must generally not be significantly worse than 
that of domain experts. This requirement means 
that before an NLP-based system can be used for 
a practical task, it must be evaluated carefully, 
both intrinsically and extrinsically, in the setting 
where the system will be used. For instance, if a 
system is designed for clinicians in the ICU, test-
ing its use with primary care physicians might 

C. Friedman and N. Elhadad

http://dx.doi.org/10.1007/978-1-4471-4474-8_10
http://dx.doi.org/10.1007/978-1-4471-4474-8_10


277

not be a reliable evaluation. This point is valid for 
the biological and health consumer domains as 
well (Caporaso et al. 2008).

8.6.3	 �System Interoperability

NLP-based systems are often part of larger appli-
cations. There must be seamless integration of the 
NLP component into its parent application. This 
point is valid for any domain, but becomes par-
ticularly relevant in the clinical domain, where 
NLP is typically part of the electronic record. In 
practice, the following might have to be ensured, 
depending on the particular task of the application:
•	 The system has to follow standards for 

interoperability among different health infor-
mation technology systems, such as Health 
Level 7 (HL7) and the Clinical Document 
Architecture (CDA; see Chap. 7). This is par-
ticularly important for information that per-
tains to a patient, but is not part of the notes 
per se. Similarly, the system has to be aware of 
the controlled terminologies in use in the insti-
tution (e.g. SNOMED-CT and ICD-9-CM; 
see Chap. 7), so that its input and output are 
understood by the clinical information system.

•	 The system has to be aware of the information 
storage strategies of the clinical information 
system. As of this date, there is no established 
structure across different institutions, and so 
care has to be given to understanding the 
structure of a particular institution in which 
the NLP system will be deployed. For instance, 
it is possible that different note types and 
reports are stored in different ways in the clin-
ical information system, and the NLP system 
will have to acknowledge this in its workflow. 
Furthermore, within a given note, there might 
be institution-specific conventions concerning 
the overall format and use of abbreviations. 
Figure 8.8 shows portions of a cardiac cather-
ization report. Some of the sections contain 
free text (i.e. procedures performed, com-
ments, general conclusions), some consist of 
structured fields (i.e. height, weight) that are 
separated from each other by white space, and 

some consist of tabular data (i.e. blood pres-
sure). The NLP system has to be able to recog-
nize and handle these different formats.

•	 The system has to generate output that can be 
stored in a clinical data repository (CDR) or 
clinical data warehouse (CDW). This is espe-
cially true for NLP systems that are deployed 
as part of an operational clinical application 
or research application. As for clinical infor-
mation systems, there is no established data-
base schema for the type of rich information 
found in clinical records. Depending on the 
type of NLP (i.e. information extraction vs. 
full syntactic parsing vs. semantic parsing), 
there might be some loss of information when 
storing the output of the NLP system in a 
database.

8.6.4	 �Misspellings and 
Typographical Errors

Clinicians, when typing free-text in the EHR, 
do so under time pressure and generally do not 
have the time to proofread their notes carefully. 

Procedures performed: Right Heart Catheterization
Pericardiocentesis

Complications: None
Medications given during procedure: None
Hemodynamic data
Height (cm): 180               Weight (kg): 74.0
Body surface area (sq. m): 1.93        Hemoglobin (gm/dL):
Heart rate: 102

Pressure (mmHg)

Sys  Dias  Mean  Sat

RA 14 13 8
RV 36 9 12
PA 44 23 33 62%
PCW 25 30 21

Conclusions: Post Operative Cardiac Transplant
Abnormal Hemodynamics
Pericardial Effusion
Successful Pericardiocentesis

General Comments:
  1600cc of serosanguinous fluid were drained from the
  pericardial sac with improvement in hemodynamics.

Fig. 8.8  A portion of a sample cardiac catherization 
report
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In  addition, they frequently use abbreviations 
(e.g. HF for Hispanic female or heart failure, 2/2 
for secondary to or a date), many of which are 
non-standard and ambiguous. For patients and 
health consumers, when posting content online, 
misspellings, typographical errors, and non-stan-
dard abbreviations are pervasive like in the rest 
of the social Web. In a breast cancer online com-
munity, for instance, we found frequent spelling 
variations for the drug tamoxifen (e.g. tamoxifin 
and tamaxifen) as well as abbreviations. Ignoring 
these variations may cause an NLP system to 
lose or misinterpret information. At the same 
time, errors can be introduced when correcting 
the typos automatically. For instance, it is not 
trivial to correct hyprtension automatically with-
out additional knowledge because it may refer to 
hypertension or hypotension. This type of error is 
troublesome not only for automated systems, but 
also for clinicians when reading a note, as this 
phenomenon is aggravated by the large amount 
of short, misspelled words in notes.

8.6.5	 �Expressiveness Vs. Ease 
of Access

Natural language is very expressive. There are 
often several ways to express a particular medical 
concept as well as numerous ways to express 
modifiers for that concept. For example, ways to 
express severity include faint, mild, borderline, 
1+, 3rd degree, severe, extensive, mild, and mod-
erate. This expressive power makes it challeng-
ing to build information extraction systems that 
capture all modifiers of a concept with high 
recall. Often, to complicate matters, modifiers 
can be composed or nested. For instance in the 
phrase “no improvement in pneumonia,” improve-
ment is a change modifier that modifies the con-
cept pneumonia, and no is a negation marker that 
modifies improvement (not pneumonia). In this 
situation, an information extraction system that 
detects changes concerned with pneumonia 
would have to look for primary findings associ-
ated with pneumonia, filter out cases not associ-
ated with a current episode, look for a change 

modifier of the finding, and, if there is one, make 
sure there is no negation modifier on the change 
modifier. An alternative representation would 
facilitate retrieval by flattening the nesting. In 
this case, some information may be lost but ide-
ally only information that is not critical. For 
example, slightly improved may not be clinically 
different from improved depending on the appli-
cation. Since this type of information is fuzzy 
and imprecise, the loss of information may not be 
significant. However, the loss of a negation mod-
ifier would be significant, and those cases should 
be handled specially. Another such example con-
cerns hedging, which frequently occurs in radiol-
ogy reports as well as in scientific articles. This 
tradeoff between capturing the full expressive 
power of natural language and ease of access 
when extracting information influences design 
choices for an NLP system and depends on the 
overall task for which the system is built.

8.6.6	 �Reliance on Medical 
Knowledge and Reasoning

Whether in biomedical, clinical or health con-
sumer texts, there is much implicit knowledge 
present in the text. In some systems, recover-
ing the missing information can be important. 
For instance, the phrase “I have a temperature” 
as written by a patient online can mean I have a 
fever, but “I have a temperature of 98.6” means 
no fever. Inferring the presence of fever from the 
presence and/or value of a numerical modifier 
requires external medical knowledge. Similarly 
in the clinical domain, interpreting the findings 
extracted from a chest radiological report, or 
inferring that a patient is depressed based on the 
fact that an anti-depressant is prescribed (even 
though there is no explicit mention of depres-
sion in a note) requires extensive medical knowl-
edge. Such knowledge can be quite complex. 
Ontologies contain some of this knowledge, 
encoded through entities and relations (e.g. par-
ent–child, part of) between the entities. But the 
ontology may not be complete enough for par-
ticular tasks, both in the coverage of entities and 
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relations, and such knowledge would have to be 
acquired. One way to do so is to leverage knowl-
edge from experts and encode manual rules. 
For instance, a rule that detects a comorbidity 
of neoplastic disease based on information in a 
discharge summary, could consist of a Boolean 
combination of over 200 terms (Chuang et  al. 
2002). Another approach is to leverage machine-
learning techniques and learn rules from exam-
ples of texts. In a supervised framework, for such 
rules to be learned, a large number of training 
and testing instances must be annotated. The cost 
(both from a financial and time standpoint) to 
annotate these instances depends on many fac-
tors, including the difficulty of the task and level 
of medical expertise needed to carry out accurate 
annotation, the degree of subjectivity entailed in 
the task, the number of instances needed to anno-
tated and the easy access to annotators. Whether 
medical knowledge should be encoded directly 
or learned through examples is a question that 
is beyond the focus of this chapter. Thus far, the 
most promising approaches in NLP are hybrid 
ones that combine existing medical knowledge 
with knowledge mined from text.

8.6.7	 �Domains and Subdomains

As discussed earlier in this chapter, the fact that 
texts belong to a particular domain, be it clinical, 
biological or related to health consumers, allows 
us to capture domain-specific characteristics in 
the lexicon, the grammar, and the discourse 
structure. Thus, the more specific the domain of a 
text, the more knowledge can be encoded to help 
its processing, but the NLP system would then be 
very limited and specialized. For instance, in the 
domain of online patient discourse, patients dis-
cussing breast cancer among their peers online 
rely on a very different set of terms than caregiv-
ers of children on the autism spectrum. One could 
develop a lexicon for each subdomain, e.g. online 
breast cancer patients and online autism caregiv-
ers. But maintaining separate lexicons can be 
inefficient and error prone, since there can be a 
significant amount of overlap among terms across 

subdomains. Conversely, if a single lexicon is 
developed for all subdomains, ambiguity can 
increase as terms can have different meanings in 
different subdomains. For example, in the emer-
gency medicine domain shock will more likely 
refer to a procedure used for resuscitating a 
patient, or to a critical condition brought about by 
a drop in blood flow, whereas in psychiatry notes 
it will more likely denote an emotional response 
or electric shock therapy. Deciding on whether to 
model a domain as a whole or to focus on its sub-
domains independently of each other is a trad-
eoff. Careful determination of the use cases of a 
system can help determine the best choice for the 
system.

8.6.7.1	 �Dynamic Nature of Biomedical 
and Health Domains

Change is a natural phenomenon of human lan-
guage. With time, new concepts enter the lan-
guage and obsolete terms fall out of use. The 
biomedical and health domains are highly 
dynamic in the influx of new terms (e.g. new 
drug names, but also sometimes new disease 
names, like SARS and H1N1). The biomolecular 
domain is particularly dynamic. For example, for 
the week ending July 20, 2003, the Mouse 
Genome Informatics Website (Blake et al. 2003) 
reported 104 name changes related to the mouse 
alone. If the other organisms being actively 
sequenced were also considered, the number of 
name changes during that week would be much 
larger. Related to the language change is the 
sheer number of entities relevant to the biomo-
lecular domain. Table 8.4 shows the approximate 
numbers for some different types of entities in 
the biomolecular domain. The number of entities 
is actually larger because not all types are shown 
in the table (i.e. small molecules, cell lines, genes 
and proteins of all organisms). Having such a 
large number of names means the NLP system 
must have a very large knowledge base of names 
or be capable of dynamically recognizing the 
type by considering the context. When entities 
are dynamically recognized without use of a 
knowledge source, identifying them within an 
established nomenclature system is not possible.
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8.6.8	 �Polysemy

Biomedical and health terms are often ambiguous. 
This is particularly pervasive in the biomolecular 
domain because of the high number of acronyms 
and abbreviations. Short symbols consisting of 
two to three letters are frequently used that corre-
spond to names of biomolecular entities. Since the 
number of different combinations consisting of 
only a few letters is relatively small, individual 
names often correspond to different meanings. 
For example, to, a very frequent English word, 
corresponds to two different Drosophila genes 
and to the mouse gene tryptophan 2,3-dioxygen-
ase. To further complicate matters, the names of 
genes in different model organism groups are 
established independently of each other, leading 
to names that are the same but which represent 
different entities. The ambiguity problem is actu-
ally worse if the entire domain is considered. For 
example, cad represents over 11 different biomo-
lecular entities in Drosophila and the mouse but it 
also represents the clinical concept coronary 
artery disease. Another contributing factor to the 
ambiguity problem is due to the different naming 
conventions for the organisms. These conventions 
were not developed for NLP purposes but for con-
sistency within individual databases. For example, 
Flybase states that “Gene names must be concise. 
They should allude to the gene’s function, mutant 
phenotype or other relevant characteristic. The 
name must be unique and not have been used pre-
viously for a Drosophila gene.” This rule is fairly 
loose and leads to ambiguities.

8.6.9	 �Synonymy

Complementary to the phenomenon of polysemy, 
there are often terms that are different variations 
of the same concepts. For instance, the term blood 

sugar is often used by health consumers to refer to 
a glucose measurement, but it is used rarely if ever 
in the clinical literature or in clinical notes. 
Synonymy occurs across domains, but is also 
present within a single domain. In the biomolecu-
lar domain, for instance, names are created within 
the model organism database communities, but 
they are not necessarily exactly the same as the 
names used by authors when writing journal arti-
cles. There are many ways authors vary names 
(particularly long names), which leads to difficul-
ties in named entity recognition. This is also true 
in the medical domain but the problem is exacer-
bated in the biomolecular domain because of the 
frequent use of punctuations and other special 
types of symbols. Some of the more common 
types of variations are due to punctuations and use 
of blanks (bmp-4, bmp 4, bmp4), numerical varia-
tions (syt4, syt IV), variations containing Greek 
letters (iga, ig alpha), and word order differences 
(phosphatidylinositol 3-kinase, catalytic, alpha 
polypeptide, catalytic alpha polypeptide phospha-
tidylinositol 3-kinase). Low-level text processing 
can resolve some of these types of synonymy.

8.6.10	 �Complexity of Biological 
Language

The semantic interpretation of biological language 
is complex. In clinical text, the important source 
of information typically occurs in noun phrases 
that consist of descriptive information that corre-
sponds to named entities and their modifiers. In 
biomolecular text, important information often 
involves interactions that are highly nested, corre-
sponding to verb phrases, which are more complex 
structures than noun phrases and are often highly 
nested. Although syntactically the interaction 
may occur as a noun, it is generally a nominalized 
verb, and thus, has arguments that are important 
to capture along with their order (e.g. Raf-1 acti-
vates Mek-1 has a different meaning than Mek-1 
activates Raf-1). In addition, the argument may 
also be another interaction. Thus a typical sen-
tence usually contains several nested interactions. 
For example, the sentence “Bad phosphorylation 
induced by interleukin-3 (il-3) was inhibited by 
specific inhibitors of phosphoinositide 3-kinase 

Table 8.4  The approximate number of some types of 
biomolecular entities

Type of entity Number

Gene 3.5 × 104 (human only)
Protein >105 (human only)
Cell type 106

Species 107
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(pi 3-kinase)” consists of four interactions (and 
also two parenthesized expressions specifying 
abbreviated forms). The interaction and the argu-
ments are illustrated in Table 8.5. The nested rela-
tions can be illustrated more clearly as a tree (see 
Fig. 8.9). Notice that the arguments of some inter-
actions are also interactions (i.e. the second argu-
ment of induce is phosphorylate). Also note that 
an argument that is not specified in the sentence is 
represented by a “?” in the figure.

8.6.11	 �Interactions among Linguistic 
Levels

While the earlier sections of this chapter have 
introduced each linguistic level on its own, it 
should be clear through the many examples pre-
sented throughout the chapter that processing of 
language is not as simple as applying a pipeline 
of independent modules- one to determine tokens, 
one to assign part-of-speech tags to tokens and to 
parse the syntax, one to interpret the meaning of a 
sentence, one to resolve the discourse-level charac-
teristics of the text, and so on. In reality, all linguis-

tic levels influence each other. Low-level decisions 
about how to tokenize a string impact named-entity 
recognition; determining which sense to attribute 
to a named entity depends on its place in the syn-
tactic tree, the pragmatics of the text, and its place 
in the discourse structure. Determining how to 
model these interactions is one of the primary open 
research questions of natural language processing.

8.7	 �Resources for NLP 
in Biomedicine and Health

One of the ways for the field to make progress is 
for different teams of researchers to share their 
datasets, tools and resources. Shared datasets allow 
different research teams to test and compare their 
systems on the same data. Annotated shared datas-
ets are critical, as they allow teams to train their 
systems as well. As such, they are very valuable to 
the community. In recent years, there has been a 
strong push in the biological and clinical NLP 
communities to create publicly available resources 
and tools, and to conduct community challenges. 
We present a few of them here but, because of the 
explosion of resources in the field, this list is bound 
to be obsolete. We therefore encourage the reader 
to check the literature and the Web for the latest.

8.7.1	 �Databases and Lexicons

•	 UMLS (Including the Metathesaurus, 
Semantic Network, the Specialist Lexicon) – 
Can be used as a knowledge base and resource 
for a lexicon. The Specialist lexicon provides 
detailed syntactic knowledge for words and 
phrases, and includes a comprehensive medical 
vocabulary. It also provides a set of tools to 
assist in NLP, such as a lexical variant genera-
tor, an index of words corresponding to UMLS 
terms, a file of derivational variants (e.g. 

Table 8.5  Nested interactions 
extracted from the sentence Bad 
phosphorylation induced by 
interleukin-3 ( il-3 ) was inhibited 
by specific inhibitors of 
phosphoinositide 3-kinase  
(pi 3-kinase )

Interaction Argument 1 (agent) Argument 2 (target) Interaction id

Phosphorylate ? Bad 1
Induce Interleukin-1 1 2
Inhibit ? Phosphoinositide 3-kinase 3
Inhibit 3 1

A ‘?’ denotes that the argument was not present in the sentence

Inhibit

Inhibit Induce

PhosphorylateI1-3? Pi-3 kinase

Bad?

Fig. 8.9  A tree showing the nesting of biomolecular 
interactions that are in the sentence “Bad phosphorylation 
induced by interleukin-3 (il-3) was inhibited by specific 
inhibitors of phosphoinositide 3-kinase (pi 3-kinase)”
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abdominal, abdomen), spelling variants (e.g. 
fetal, foetal), and a set of neoclassical forms 
(e.g. heart, cardio). The UMLS Metathesaurus 
provides the concept identifiers, while the 
Semantic Network specifies the semantic cat-
egories for the concepts. The UMLS also con-
tains the terminology associated with various 
languages (e.g. French, German, Russian). 
The UMLS is the union of several vocabular-
ies that are particularly useful for NLP, such as 
SNOMED-CT, LOINC, and MeSH.

•	 MedDRA and RxNorm are terminologies spe-
cific to adverse event terminology and medi-
cations. They are particularly helpful in the 
clinical domain, in pharmacovigilance and in 
pharmacogenomics.

•	 Biological databases. These include Model 
Organism Databases, such as Mouse Genome 
Informatics (Blake et  al. 2003), the Flybase 
Database (FlyBase Consortium 2003), the 
WormBase Database (Harris et al. 2003), and 
the Saccharomyces Database (Issel-Tarver 
et al. 2001), as well as more general databases 
GenBank (Benson et  al. 2003), Swiss-Prot 
(Boeckmann et  al. 2003), LocusLink (Pruitt 
and Maglott 2001), and the Gene Ontology 
(GO 2003).

8.7.2	 �Corpora

•	 PubMed Central2 provides full-text articles in 
biomedicine and health. PubMED provides 
abstracts and useful meta-information, such as 
MeSH indexes, and journal types.

•	 The MIMIC II database collects de-identified 
data about patients in the intensive care unit 
(Saeed et  al. 2002). Along with ICU-specific 
structured data and times series, there are nurs-
ing notes, progress notes and reports available.

•	 The Pittsburgh Note Repository3 provides de-
identified clinical notes of many different 
types. Some of the notes have been annotated 
with specific semantic information as part of 
community challenges.

2 http://www.ncbi.nlm.nih.gov/pmc (Accessed 4/26/13).
3 http://www.dbmi.pitt.edu/nlpfront. (Accessed 4/26/13).

8.7.3	 �Community Challenges and 
Annotated Corpora

In biology, the GENIA corpus contains articles 
annotated with syntactic, semantic and discourse 
information (Kim et al. 2003). The BioCreAtIvE 
challenges have provided annotated articles with 
biologically relevant named-entities and entity-
fact associations, such as protein-functional 
term association (Hirschman et  al. 2005). The 
BioScope corpus provides texts annotated with 
hedging and negation information (Vincze et al. 
2008). As part of yearly community challenges 
in the clinical domain, there are several corpora 
currently available with different types of anno-
tations. The earliest is a collection of radiology 
reports with ICD-9-CM codes (Pestian et  al. 
2007). The i2b2 community challenges have 
provided clinical notes annotated with smoking 
status (Uzuner et al. 2008), obesity and co-mor-
bidities (Uzuner 2009), medications mentions 
(Uzuner et  al. 2010), assertions (Uzuner et  al. 
2011), and more recently co-references. There 
are several corpora specific to word sense disam-
biguation (WSD) for different semantic classes. 
The National Library of Medicine provides an 
annotated WSD dataset for 50 frequently occur-
ring ambiguous terms based on the 1998 version 
of MEDLINE (Weeber et al. 2001).

8.7.3.1	 �Annotation Schema
In the same way terminologies like the UMLS 
provide an established organization for concepts 
in the language, community efforts have just 
started to create established representations for 
certain aspects of information, such as the differ-
ent modifiers of concepts and the relations among 
concepts that can occur in texts. There had been 
early efforts by a large number of researchers 
called The Canon group to create such standard 
(Evans et al. 1994). That effort resulted in a com-
mon model for radiological reports of the chest 
(Friedman et  al. 1995), but the model was not 
actually utilized by the different researchers.

8.7.3.2	 �Tools
Since the NLP field is currently a very active 
area of research, and new tools are continually 
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being developed; we point the reader to ORBIT 
(Online Registry of Biomedical Informatics 
Tools4). It provides a repository of tools, main-
tained by the community, and is a good place to 
get access to the most recent tools. In the general 
NLP domain, there are a few valuable suites of 
tools available, including NLTK,5 LingPipe,6 and 
OpenNLP.7 Finally, UIMA8 is a general frame-
work for text analysis that is gaining popularity 
in NLP.

Suggested Readings

Harris, Z., Gottfried, M., Ryckmann, T., Mattick, P., Jr., 
Daladier, A., Harris, T. N., & Harris, S. (1989). The 
form of information in science: Analysis of an immu-
nology sublanguage. Reidel/Dordrecht: Boston Studies 
in the Philosophy of Science. This book offers an in-
depth description of methods for analyzing the lan-
guages of biomedical science. It provides detailed 
descriptions of linguistic structures found in science 
writing and the mapping of the information to a com-
pact formal representation. The book includes an 
extensive analysis of 14 full-length research articles 
from the field of immunology, in English and in French.

Sager, N., Friedman, C., & Lyman, M. S. (1987). Medical 
language processing: Computer management of nar-
rative data. New York: Addison-Wesley. This book 
describes early techniques used by the Linguistic 
String Project, a pioneering language processing effort 
in the biomedical field, explaining how biomedical 
text can be automatically analyzed and the relevant 
content summarized.

Jurafsky, D., & Martin, J. H. (2009). Speech and language 
processing. An introduction to natural language 
processing, computational linguistics and speech rec-
ognition. Upper Saddle River: Prentice Hall.

Manning, C., Raghavan, P., & Schütze, H. (2008). 
Introduction to information retrieval. New York: 
Cambridge University Press.

Manning, C., & Schütze, H. (1999). Foundations of statis-
tical natural language processing. Cambridge, MA: 
MIT Press. NLP is a very active field of research in the 
general domain. Many of the applications and tech-
niques described in this chapter are investigated in 
other domains. For a review of NLP methods in the 

4 orbit.nlm.nih.gov (Accessed 4/19/13).
5 www.nltk.org (Accessed 4/18/13).
6 www.alias-i.com/lingpipe/ (Accessed 4/18/13).
7 http://incubator.apache.org/opennlp/ (Accessed 4/19/13).
8 http://uima.apache.org/index.html (Accessed 4/19/13).

general domain, we refer the reader to the above three 
textbooks.

Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency 
parsing. Synthesis lecture on human language tech-
nology. Morgan & Claypool.This book provides an 
in-depth review of dependency parsing in the general 
domain.

Palmer, M., Gilder, D., & Xue, N. (2010). Semantic role 
labeling. Synthesis lectures in human language tech-
nology. Morgan & Claypool.This book provides an 
in-depth discussion of semantic parsing.

Questions for Discussion

	1.	 Develop a regular expression to regular-
ize the tokens in lines four to nine of the 
cardiac catheterization report shown in 
Fig.  8.8 (Complications through Heart 
Rate).

	2.	 Create a lexicon for the last seven lines 
of the cardiac catheterization report 
shown in Fig. 8.8 (Conclusions through 
the last sentence). For each word, deter-
mine all the parts of speech that apply, 
using the tags in Table 8.1. Which words 
have more than one part of speech? 
Choose eight clinically relevant words 
in that section of the report, and sug-
gest appropriate semantic categories for 
them that would be consistent with the 
SNOMED-CT terminology and with 
the UMLS semantic network.

	3.	 Using the grammar in Fig. 8.3, draw a 
parse tree for the last sentence of cardiac 
catheterization report shown in Fig. 8.8.

	4.	 Using the grammar in Fig.  8.4, draw 
parse trees for the following sentences: 
no increase in temperature; low grade 
fever; marked improvement in pain; not 
breathing. (Hint: some lexemes have 
more than one word.)

	5.	 Identify all the referential expressions 
in the text below and determine the cor-
rect referent for each. Assume that the 
compute attempts to identify referents 
by finding the most recent noun phrase. 
How well does this resolution rule 
work? Suggest a more effective rule.
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The patient went to receive the AV 
fistula on December 4. However, he 
refuses transfusion. In the operating 
room it was determined upon initial 
incision that there was too much edema 
to successfully complete the operation 
and the incision was closed with staples. 
It was well tolerated by the patient.

	6.	 In the two following scenarios, an out-
of-the-shelf NLP system that identifies 
terms and normalizes them against 
UMLS concepts, is applied to a large 
corpus of texts. In the first scenario, the 
corpus consists of patient notes. Looking 
at the frequency of different concepts, 

you notice that there is a large number of 
patients with the concept C0019682 
(HIV) present, much larger than the reg-
ular incidence of HIV in the population 
reported in the literature. In the second 
scenario, the corpus consists of full-text 
biology articles published in PubMED 
Central. Looking at the frequency of dif-
ferent concepts, you notice that the failed 
axon connection (fax) gene is one of the 
most frequently mentioned genes in your 
corpus. Describe how you would check 
the validity of these results. For both 
cases, discuss what could explain the 
high frequency counts.

C. Friedman and N. Elhadad


	8: Natural Language Processing in Health Care and Biomedicine
	8.1	 Motivation for Natural Language Processing
	8.2	 What Is NLP
	8.3	 Applications of NLP
	8.4	 Linguistic Levels of Knowledge and Their Representations
	8.4.1	 Morphology
	8.4.2	 Syntax
	8.4.2.1	 Representation of Syntactic Knowledge

	8.4.3	 Semantics
	8.4.3.1	 Representation of Semantic Knowledge

	8.4.4	 Pragmatics and Discourse

	8.5	 NLP Techniques
	8.5.1	 Low-Level Text Processing
	8.5.1.1	 File Formats
	8.5.1.2	 Character Sets and Encodings

	8.5.2	 Document Structure
	8.5.2.1	 Sentence Boundaries
	8.5.2.2	 Case

	8.5.3	 Syntax
	8.5.3.1	 Output of Syntactic Parse
	8.5.3.2	 Part-of-Speech Tagging and Lexical Lookup
	8.5.3.3	 Parsing

	8.5.4	 Semantics
	8.5.4.1	 Output of Semantic Interpretation
	8.5.4.2	 Word Sense Interpretation
	8.5.4.3	 Interpretation of Relations among Words

	8.5.5	 Discourse
	8.5.5.1	 Automated Resolution of Referential Expressions

	8.5.6	 Evaluation Metrics

	8.6	 Issues for NLP in Biomedicine and Health
	8.6.1	 Patient Privacy and Ethical Concerns
	8.6.2	 Good System Performance
	8.6.3	 System Interoperability
	8.6.4	 Misspellings and Typographical Errors
	8.6.5	 Expressiveness Vs. Ease of Access
	8.6.6	 Reliance on Medical Knowledge and Reasoning
	8.6.7	 Domains and Subdomains
	8.6.7.1	 Dynamic Nature of Biomedical and Health Domains

	8.6.8	 Polysemy
	8.6.9	 Synonymy
	8.6.10	 Complexity of Biological Language
	8.6.11	 Interactions among Linguistic Levels

	8.7	 Resources for NLP in Biomedicine and Health
	8.7.1	 Databases and Lexicons
	8.7.2	 Corpora
	8.7.3	 Community Challenges and Annotated Corpora
	8.7.3.1	 Annotation Schema
	8.7.3.2	 Tools


	Suggested Readings


