
185E.H. Shortliffe, J.J. Cimino (eds.), Biomedical Informatics,
DOI 10.1007/978-1-4471-4474-8_6, © Springer-Verlag London 2014

 After reading this chapter, you should know the
answers to these questions:
• What key functions do software applications

perform in health care?
• How are the components of the software

development life cycle applied to health care?
• What are the trade-offs between purchasing

commercial, off-the-shelf systems and devel-
oping custom applications?

• What are important considerations in compar-
ing commercial software products?

• Why do systems in health care, both internally-
developed and commercially-purchased, require
continued software development?

6.1 How Can a Computer System
Help in Health Care?

 Chapter 5 discusses basic concepts related to
computer and communications hardware and
software. In this chapter, we focus on the software

applications and components of health care infor-
mation systems, and describe how they are used
and applied to support health care delivery. We
give examples of some basic functions that may
be performed by health information systems, and
discuss important considerations in how the soft-
ware may be acquired, implemented and used.
This understanding of how a system gets put to
use in health care settings will help as you read
about the various specifi c applications in the
chapters that follow.

 Health care is an information-intensive fi eld.
Clinicians are constantly collecting, gathering,
reviewing, analyzing and communicating infor-
mation from many sources to make decisions.
Humans are complex, and individuals have many
different characteristics that are relevant to health
care and that need to be considered in decision-
making. Health care is complex, with a huge
body of existing knowledge that is expanding at
ever-increasing rates. Health care information
software is intended to facilitate the use of this
information at various points in the delivery pro-
cess. Software defi nes how data are obtained,
organized and processed to yield information.
Software, in terms of design, development, acqui-
sition, confi guration and maintenance, is there-
fore a major component of the fi eld. Here we

 A. B. Wilcox , PhD (*) • S. P. Narus , PhD
 Department of Medical Informatics ,
 Intermountain Healthcare ,
 5171 South Cottonwood St ,
 Murray, UT 84107, USA
 e-mail: aw115@columbia.edu; scott.narus@hsc.utah.edu

 D. K. Vawdrey , PhD
 Department of Biomedical Informatics ,
 Columbia University , 622 W. 168th Street, VC-5 ,
 New York, NY10032 , USA
 e-mail: david.vawdrey@dbmi.columbia.edu

 6

 The authors gratefully acknowledge the co-authors of the
previous chapter edition titled “System Design and
Engineering in Health Care,” GioWiederhold and Edward
H. Shortliffe.

 Software Engineering for Health
Care and Biomedicine

 Adam B. Wilcox , Scott P. Narus ,
and David K. Vawdrey

http://dx.doi.org/10.1007/978-1-4471-4474-8_5

186

provide an introduction to the practical consider-
ations regarding health information software.
This includes both understanding of general soft-
ware engineering principles, and then specifi -
cally how these principles are applied to health
care settings.

 To this aim, we fi rst describe the major soft-
ware functions within a health care environment
or health information system. While not all func-
tions can be covered in detail, some specifi c
examples are given to indicate the breadth of soft-
ware applications as well as to provide an under-
standing of their relevance. We also describe the
software development life cycle, with specifi c
applications to health care. We then describe
important considerations and strategies for acquir-
ing and implementing software in health care set-
tings. Finally, we discuss emerging software
engineering infl uences and issues and their impact
on health information systems. Each system can
be considered in regard to what it would take to
make it functional in a health care system, and
what advantages and disadvantage the software
may have, based on how it was created and imple-
mented. Understanding this will help you identify
the risks and benefi ts of various applications, so
that you can identify how to optimize the positive
impact of health information systems.

6.2 Software Functions in
Health Care

6.2.1 Cases Study of Health Care
Software

 The following case study illustrates many impor-
tant functions of health care software.

 James Johnson is a 42 - year old man living
in a medium - sized western U . S . city . He is
married and has two children . He has Type -
 II diabetes , but it is currently well-controlled
and he has no other health concerns . There
is some history of cardiovascular disease in

his family . James has a primary care physi-
cian , Linda Stark , who practices at a clinic
that is part of a larger health delivery net-
work , Generation Healthcare System
(GHS). GHS includes a physician group ,
 primary and specialty care clinics , a ter-
tiary care hospital and an affi liated health
insurance plan .

 James needs to make an appointment
with Dr . Stark . He logs into the GHS patient
portal and uses an online scheduling appli-
cation to request an appointment . While in
the patient portal , James also reviews results
from his most recent visit and prints a copy
of his current medication list in order to dis-
cuss the addition of an over -the - counter
supplement he recently started taking .

 Before James arrives for his visit , the
clinic ’ s scheduling system has already
alerted the staff of James ’ s appointment
and the need to collect information related
to his diabetes . Upon his arrival , Dr . Stark ’ s
nurse gathers the requested diabetes infor-
mation and other vital signs data and enters
these into the electronic health record
(EHR). In the exam room , Dr . Stark reviews
James ’ s history , the new information gath-
ered today , and recommendations and
reminders provided by the EHR on a report
tailored to her patient ’ s medical history .
 They both go over James ’ s medication list
and Dr . Stark notes that , according to the
EHR ’ s drug interaction tool , the supple-
ment he is taking may have an interaction
with one of his diabetes medications . One of
the reminders suggests that James is due for
an HbA1c test and Dr . Stark orders this in
the EHR . Dr . Stark ’ s nurse , who has been
alerted to the lab test order , draws a blood
sample from James . Before the appointment
ends , Dr . Stark completes and signs his
progress note and forwards a visit summary
for James to review on the patient portal .

 A few days after his appointment , James
receives an email from GHS that alerts him
to an important piece of new information in

A.B. Wilcox et al.

187

his patient record . Logging into the patient
portal application , James sees that his HbA1c
test is back . The test indicates that the result is
elevated . Dr . Stark has added a note to the
result saying that she has reviewed the lab and
would like to refer James to the GHS Diabetes
Specialty Clinic for additional follow - up .
 James uses the messaging feature in the
patient portal to respond to Dr . Stark and
arrange for an appointment . James also clicks
on an infobutton next to the lab result to
obtain more information about the abnormal
value . He is linked to patient - focused material
about HbA1c testing , common causes for high
results , and common ways this might be
addressed . Lastly , James reviews the visit
summary note from his appointment with Dr .
 Stark to remind him about suggestions she
had for replacing his supplement .

 At his appointment with the Diabetes
Specialty Clinic , James notes that they have
access to all the information in his record .
 A diabetes care manager reviews the important
aspects of James ’ s medical history . She sug-
gests more frequent monitoring of his labora-
tory test results to see if he is able to control his
diabetes without changes to his medications .
 She highlights diet and exercise suggestions in
his patient portal record that have been shown
to help . The care manager sends a summary of
the visit to Dr . Stark so that Dr . Stark knows
that James did follow - up with the Clinic .

 A year later , James is experiencing greater
diffi culty controlling his diabetes . Dr . Stark and
the Diabetes Care Manager have continued to
actively monitor his HbA1c and other labora-
tory test results , and occasionally make changes
to his treatment regimen . They are able to use the
EHR to track and graph laboratory test results
and correlate them with changes in medications .
 Due to family problems , James struggles with
adherence to his medication regimen , and he is
not maintaining a healthy diet . As a result , his
blood sugar has become seriously unstable and
he is taken to the GHS hospital emergency
department . Doctors in the ED are able to access

his electronic record through a Web - based inter-
face to the clinic EHR . His medication and lab
history , as well as notes from Dr . Stark and the
care manager , help them quickly assess his con-
dition and develop a plan . James is admitted as
an inpatient for overnight observation and ,
 again , doctors and nurses on the ward are able
to access his full record and record new observa-
tions and treatments , which are automatically
shared with the outpatient EHR . They are also
able to reconcile his outpatient prescriptions
with his inpatient medications to ensure continu-
ity . James is stabilized by the next day . He
receives new discharge medications , which
simultaneously discontinue his existing orders .

 Because Dr . Stark is listed as James ’ s pri-
mary care physician , she is notifi ed both at
admission and discharge of his current status .
 She is able to review his discharge summary in
the EHR . She instructs her staff to send a mes-
sage through the patient portal to James to let
him know she had reviewed his inpatient record
and to schedule a follow - up appointment .

 The GMS EHR is also part of a statewide
 health information exchange (HIE), which
allows medical records to be easily shared
with health care providers outside a patient ’ s
primary care provider . This means that if
James should need to visit a hospital , emer-
gency department or specialty care clinic out-
side the GMS network , his record would be
available for review and any information
entered by these outside providers would be
available to Dr . Stark and the rest of the GMS
network . In James ’ s state , the local and state
health departments are also linked to the HIE .
 This allows clinics , hospitals and labs to elec-
tronically submit information to the health
departments for disease surveillance and case
reporting purposes .

 Back at home , James ’ s wife , Gina , is able
to view his record on the GHS patient portal
because he has granted her proxy access to
his account . This allows her to see the note
from Dr . Stark and schedule the follow - up
appointment . Gina also views the discharge

6 Software Engineering for Health Care and Biomedicine

188

 This fi ctional case study highlights many of
the current goals for improving health care deliv-
ery, including: improved access to care, increased
patient engagement, shared patient-provider
decision-making, better care management, medi-
cation reconciliation, improved transitions of
care, and research recruitment. In the case study,
each of these goals required software to make
health information accessible to the correct indi-
viduals at the proper time.

 In today’s health care system, few individu-
als enjoy the interaction with software depicted
in the case study with James Johnson. Although
the functions described in the scenario exist
at varying levels of maturity, most health care
delivery institutions have not connected all
the functions together as described. The cur-
rent role of software engineering in health care
is therefore twofold: to design and implement
software applications that provide required
functions, and to connect these functions in a
seamless experience for both the clinicians and
the patients.

 The case study also highlights the usefulness
of several functions provided by health care soft-
ware applications for clinicians, patients, and
administrators. Some of these functions include:
 1. Acquiring and storing data
 2. Summarizing and displaying data
 3. Facilitating communication and information

exchange
 4. Generating alerts, reminders, and other forms

of decision support
 5. Supporting educational, research, and public

health initiatives

6.2.2 Acquiring and Storing Data

 The amount of data needed to describe the state
of even a single person is huge. Health profes-
sionals require assistance with data acquisition to
deal with the data that must be collected and
 processed. One of the fi rst uses of computers in a
medical setting was the automatic analysis of
specimens of blood and other body fl uids by
instruments that measure chemical concentra-
tions or that count cells and organisms. These
systems generated printed or electronic results to
health care workers and identifi ed values that
were outside normal limits. Computer-based
patient monitoring that collected physiological
data directly from patients were another early
application of computing technology (see Chap.
 19). These systems provided frequent, consistent
collection of vital signs, electrocardiograms
(ECGs), and other indicators of patient status.
More recently, researchers have developed medi-
cal imaging applications as described in Chaps. 9
and 20 , including computed tomography (CT),
magnetic resonance imaging (MRI), and digital
subtraction angiography. The calculations for
these computationally intensive applications can-
not be performed manually; computers are
required to collect and manipulate millions of
individual observations.

 Early computer-based medical instruments
and measurement devices provided results only
to human beings. Today, most instruments can
transmit data directly into the EHR, although the
interfaces are still awkward and poorly standard-
ized (see Chaps. 4 and 7). Computer-based

instructions that were electronically sent to
James ’ s patient record . As she looks deeper
into information about diabetes that GHS had
automatically linked to James ’ s record , Gina
sees a note about a research study into genetic
links with diabetes . Concerned about their
two children , Gina discusses the study with
James , and he reviews the on - line material

about the study . Growing interested in the
possible benefi ts of the research , James
enrolls electronically in the study and is later
contacted by a study coordinator . Because
GHS researchers are conducting the study ,
 relevant parts of James ’ s EHR can be easily
shared with the research data tracking
system .

A.B. Wilcox et al.

http://dx.doi.org/10.1007/978-1-4471-4474-8_19
http://dx.doi.org/10.1007/978-1-4471-4474-8_9
http://dx.doi.org/10.1007/978-1-4471-4474-8_20
http://dx.doi.org/10.1007/978-1-4471-4474-8_4
http://dx.doi.org/10.1007/978-1-4471-4474-8_7

189

 systems that acquire information, such as one’s
health history, from patients are also data-
acquisition systems; they free health profession-
als from the need to collect and enter routine
demographic and history information.

 Various departments within a hospital use com-
puter systems to store clinical data. For instance,
clinical laboratories use information systems to
keep track of orders and specimens and to report
test results; most pharmacy and radiology depart-
ments use computers to perform analogous func-
tions. Their systems may connect to outside services
(e.g., pharmacy systems are typically connected to
one or more drug distributors so that ordering and
delivery are rapid and local inventories can be kept
small). By automating processing in areas such as
these, health care facilities are able to speed up ser-
vices, reduce direct labor costs, and minimize the
number of errors.

6.2.3 Summarizing and
Displaying Data

 Computers are well suited to performing tedious
and repetitive data-processing tasks, such as col-
lecting and tabulating data, combining related
data, and formatting and producing reports. They
are particularly useful for processing large vol-
umes of data.

 Raw data as acquired by computer systems are
detailed and voluminous. Data analysis systems
must aid decision makers by reducing and pre-
senting the intrinsic information in a clear and
understandable form. Presentations should use
graphs to facilitate trend analysis and compute
secondary parameters (means, standard devia-
tions, rates of change, etc.) to help spot abnor-
malities. Clinical research systems have modules
for performing powerful statistical analyses over
large sets of patient data. The researcher, how-
ever, should have insight into the methods being
used. For clinicians, graphical displays are useful
for interpreting data and identifying trends.

 Fast retrieval of information is essential to all
computer systems. Data must be well organized
and indexed so that information recorded in an

EHR system can be easily retrieved. Here the
variety of users must be considered. Getting
cogent recent information about a patient enter-
ing the offi ce differs from the needs that a
researcher will have in accessing the same data.
The query interfaces provided by EHRs and clin-
ical research systems assist researchers in retriev-
ing pertinent records from the huge volume of
patient information. As discussed in Chap. 21 ,
bibliographic retrieval systems are an essential
component of health information services.

6.2.4 Facilitating Communication
and Information Exchange

 In hospitals and other large-scale health care
institutions, myriad data are collected by multi-
ple health professionals who work in a variety of
settings; each patient receives care from a host of
providers—nurses, physicians, technicians, phar-
macists, and so on. Communication among the
members of the team is essential for effective
health care delivery. Data must be available to
decision makers when and where they are needed,
independent of when and where they were
obtained. Computers help by storing, transmit-
ting, sharing, and displaying those data. As
described in Chaps. 2 and 12 , the patient record is
the primary vehicle for communication of clini-
cal information. The limitation of the traditional
paper-based patient record is the concentration of
information in a single location, which prohibits
simultaneous entry and access by multiple peo-
ple. Hospital information systems (HISs; see
Chap. 13) and EHR systems (Chap. 12) allow
distribution of many activities, such as admis-
sion, appointment, and resource scheduling;
review of laboratory test results; and inspection
of patient records to the appropriate sites.

 Information necessary for specifi c decision-
making tasks is rarely available within a single
computer system. Clinical systems are installed
and updated when needed, available, and
affordable. Furthermore, in many institutions,
inpatient, outpatient, and fi nancial activities are
supported by separate organizational units.

6 Software Engineering for Health Care and Biomedicine

http://dx.doi.org/10.1007/978-1-4471-4474-8_21
http://dx.doi.org/10.1007/978-1-4471-4474-8_2
http://dx.doi.org/10.1007/978-1-4471-4474-8_12
http://dx.doi.org/10.1007/978-1-4471-4474-8_13
http://dx.doi.org/10.1007/978-1-4471-4474-8_12

190

Patient treatment decisions require inpatient
and outpatient information. Hospital adminis-
trators must integrate clinical and fi nancial
information to analyze costs and to evaluate the
effi ciency of health care delivery. Similarly, cli-
nicians may need to review data collected at
other health care institutions, or they may wish
to consult published biomedical information.
Communication networks that permit sharing
of information among independent computers
and geographically distributed sites are now
widely available. Actual integration of the
information they contain requires additional
software, adherence to standards, and opera-
tional staff to keep it all working as technology
and systems evolve.

6.2.5 Generating Alerts, Reminders,
and Other Forms of Decision
Support

 In the end, all the functions of storing, displaying
and transmitting data support decision making by
health professionals, patients, and their caregiv-
ers. The distinction between decision-support
systems and systems that monitor events and
issue alerts is not clear-cut; the two differ primar-
ily in the degree to which they interpret data and
recommend patient-specifi c action. Perhaps the
best-known examples of decision-support sys-
tems are the clinical consultation systems or
event-monitoring systems that use population
statistics or encode expert knowledge to assist
physicians in diagnosis and treatment planning
(see Chap. 22). Similarly, some nursing informa-
tion systems help nurses to evaluate the needs of
individual patients and thus assist their users in
allocating nursing resources. Chapter 22 dis-
cusses systems that use algorithmic, statistical, or
artifi cial-intelligence (AI) techniques to provide
advice about patient care.

 Timely reactions to data are crucial for quality
in health care, especially when a patient has
unexpected problems. Data overload, created by
the ubiquity of information technology, is as
 detrimental to good decision making as is data
insuffi ciency. Data indicating a need for action

may be available but are easily overlooked by
overloaded health professionals. Surveillance
and monitoring systems can help people cope
with all the data relevant to patient management
by calling attention to signifi cant events or situa-
tions, for example, by reminding doctors of the
need to order screening tests and other preventive
measures (see Chaps. 12 and 22) or by warning
them when a dangerous event or constellation of
events has occurred.

 Laboratory systems routinely identify and fl ag
abnormal test results. Similarly, when patient-
monitoring systems in intensive care units detect
abnormalities in patient status, they sound alarms
to alert nurses and physicians to potentially dan-
gerous changes. A pharmacy system that main-
tains computer-based drug-profi le records for
patients can screen incoming drug orders and
warn physicians who order a drug that interacts
with another drug that the patient is receiving or
a drug to which the patient has a known allergy or
sensitivity. By correlating data from multiple
sources, an integrated clinical information sys-
tem can monitor for complex events, such as
interactions among patient diagnosis, drug regi-
men, and physiological status (indicated by labo-
ratory test results). For instance, a change in
cholesterol level can be due to prednisone given
to an arthritic patient and may not indicate a
dietary problem.

6.2.6 Supporting Educational,
Research, and Public Health
Initiatives

 Rapid growth in biomedical knowledge and in
the complexity of therapy management has
 produced an environment in which students can-
not learn all they need to know during training—
they must learn how to learn and must make a
lifelong educational commitment. Today, physi-
cians and nurses have available a broad selection
of computer programs designed to help them to
acquire and maintain the knowledge and skills
they need to care for their patients. The simplest
programs are of the drill-and-practice variety;
more sophisticated programs can help students to

A.B. Wilcox et al.

http://dx.doi.org/10.1007/978-1-4471-4474-8_22
http://dx.doi.org/10.1007/978-1-4471-4474-8_22
http://dx.doi.org/10.1007/978-1-4471-4474-8_12
http://dx.doi.org/10.1007/978-1-4471-4474-8_22

191

learn complex problem-solving skills, such as
diagnosis and therapy management (see Chap.
 21). Computer-aided instruction provides a valu-
able means by which health professionals can
gain experience and learn from mistakes without
endangering actual patients. Clinical decision-
support systems and other systems that can
explain their recommendations also perform an
educational function. In the context of real patient
cases, they can suggest actions and explain the
reasons for those actions.

 Surveillance also extends beyond the health
care setting. Appearances of new infectious dis-
eases, unexpected reactions to new medications,
and environmental effects should be monitored.
Thus the issue of data integration has a national
or global scope (see the discussion of the National
Health Information Infrastructure in Chaps. 1 and
 16 that deals with public health informatics).

6.3 Software Development
and Engineering

 Clearly, software can be used in many different
ways to manage and manipulate health informa-
tion to facilitate health care delivery. However,
just using a computer or a software program
does not improve care. If critical information is
unavailable, or if processes are not organized to
operate smoothly, a computer program will only
expose challenges and waste time of clinical staff
that could be better applied in delivering care. To
be useful, software must be developed with an
understanding of its role in the care setting, be
geared to the specifi c functions that are required,
and it must be developed correctly. To be used,
software must be integrated to support the users’
workfl ow. We will discuss both aspects of soft-
ware engineering – development and integration.

6.3.1 Software Development

 Software development can be a complex,
resource-intensive undertaking, particularly in
environments like health care where safety and
security provide added risk. The software

 development life cycle (SDLC) is a framework
imposed over software development in order to
better ensure a repeatable, predictable process
that controls cost and improves quality of the
software product (usually an application). SDLC
is a subset of the systems development life cycle,
focusing on the software component of a larger
system. In practice, and particularly in heath
care, software development encompasses more
than just the software, often stretching into areas
such as process re-engineering in order to maxi-
mize the benefi ts of the software product.
Although SDLC most literally applies to an in-
house development project, all or most of the life
cycle framework is also relevant to shared devel-
opment and even purchase of commercial off-
the- shelf (COTS) software. The following is an
overview of the phases of the SDLC.

6.3.1.1 Planning/Analysis
 The software development life cycle begins with
the formation of a project goal during the plan-
ning phase. This goal typically derives from an
organization’s or department’s mission/vision,
focusing on a particularly need or outcome. This
is sometimes called project conceptualization.
Planning includes some initial scoping of the
project as well as resource identifi cation (includ-
ing funding). It is important that the project’s
scope also addresses what is not in the project in
order to create appropriate expectations for the
fi nal product. A detailed analysis of current pro-
cesses and needs of the target users is often done.
As part of the analysis, specifi c user requirements
are gathered. Depending on the development pro-
cess, this might include either detailed instruc-
tions on specifi c functions and operating
parameters or more general user stories that
explain in simple narrative the needs, expected
workfl ow and outcomes for the software. It is
important that real users of the system are con-
sulted, as well as those in the organization who
will implement and maintain the software. The
decision of whether to develop the software in-
house, partner with a developer, or purchase a
vendor system will likely determine the level of
detail needed in the requirements. Vendors will
want very specifi c requirements that allow them

6 Software Engineering for Health Care and Biomedicine

http://dx.doi.org/10.1007/978-1-4471-4474-8_21
http://dx.doi.org/10.1007/978-1-4471-4474-8_1
http://dx.doi.org/10.1007/978-1-4471-4474-8_16

192

to properly scope and price their work. The
requirements document will usually become part
of a contract with a vendor and will be used to
determine if the fi nal product meets the agreed
specifi cation for the software. In-house develop-
ment can have less detailed requirements, as the
contract to build the software is with the organi-
zation itself, and can allow some evolution of the
requirements as the project progresses. However,
the more fl exibility that is allowed and the longer
changes or enhancements are permitted, the
higher the likelihood of “scope creep” and sched-
ule and cost overruns.

 Other tasks performed during analysis include
an examination of existing products and potential
alternative solutions, and, particularly for large
projects, a cost/benefi t analysis. A signifi cant and
frequently overlooked aspect of the planning and
analysis phase is to determine outcome measures
that can be used during the life cycle to demon-
strate progress and success or failure of the proj-
ect. These measures can be refi ned and details
added as the project progresses. The planning
and analysis phase typically ends when a deci-
sion to proceed is made, along with at least a
rough plan of how to implement the next steps in
the SDLC. If the organization decides to purchase
a solution, a request for proposals (RFP) that
contains the requirements document is released
to the vendor community.

 The planning and analysis stage of software
development is perhaps both the most diffi cult and
the most important stage in the development life-
cycle as it is applied to health care. Requirements
for software in health care are inherently diffi cult
to defi ne for many reasons. Health care practice is
constantly changing, and as new therapies or
approaches are discovered and validated, these
new advancements can change how care is prac-
ticed. In addition, the end users of health care soft-
ware are comparatively advanced relative to other
industries. Unlike industries where front-line
workers may be directed by supervisors with more
advanced training and greater fl exibility in deci-
sion making, in health care the front-line workers
are often physicians, who are the most advance-
trained workers in the system (although not neces-
sarily the most advanced with respect to computer

literacy) and require the greatest fl exibility for
decisions. This fl exibility makes it diffi cult to
defi ne workfl ows or even get indications of the
workfl ows being followed, since physicians will
not always make explicit what actions or plans are
being pursued. This fl exibility is important for
patient care, because it allows front-line clinicians
to adapt appropriately to different settings, staffi ng
levels, and specialties. The need for fl exibility is
such that defi ning requirements for software that
could reduce fl exibility is criticized as “cookbook”
medicine, and a common reason for resistance to
software adoption. However, this resistance is not
just characteristic of software – clinical guidelines
and other approaches to structured or formalized
care processes are also criticized, and the chal-
lenge of applying discovered knowledge to clini-
cal care processes remains diffi cult.

 Over time, however, there have been some suc-
cessful efforts that have defi ned standard require-
ments for health information software. Among
the most notable efforts have been in the EHRs,
where groups have created lists of requirements
and certifi ed systems that match those require-
ments. The Certifi cation Commission for Health
Information Technology (CCHIT) began in 2004
and has emerged as perhaps the most notable of
these efforts. CCHIT defi nes criteria for elec-
tronic health records’ functionality, interoperabil-
ity and security (Leavitt and Gallagher 2006). In
addition, because CCHIT released criteria in dif-
ferent stages, it gave a preliminary prioritization
of EHR functions. Later, the certifi cation approach
was adopted by the Offi ce of the National
Coordinator of Health Information Technology
(ONC) in 2010, when they created a list of EHR
functions that were most related to “meaningful
use” of EHRs (Blumenthal and Tavenner 2010).
These efforts have been signifi cant in creating a
consistent set of functions that have been subse-
quently incorporated into software products
(Mostashari 2011).

6.3.1.2 Design
 During the Design phase, potential software solu-
tions are explored. System architectures are
examined for their abilities to meet the needs
stated in the requirements. Data storage and

A.B. Wilcox et al.

193

interface technologies are researched for appro-
priate fi t. User front-end solutions are investi-
gated to assess capabilities for required user input
and data display functions. Other details, such as
security, performance, internationalization, etc.,
are also addressed during design. Analysts with
domain knowledge in the target environment are
often employed during this phase in order to
translate user requirements into suitable propos-
als. Simple mock-ups of the proposed system
may be developed, particularly for user-facing
components, in order to validate the design and
identify potential problems and missing informa-
tion. Closely related to this, an integrated, auto-
mated testing architecture, with appropriate
testing scripts/procedures, may be designed in
this phase in order to ensure the software being
developed is both high quality and responsive to
the requirements. The depth and completeness of
the design is contingent on the software develop-
ment process, as well as other factors. In some
cases, the entire design is completed before mov-
ing on to software coding. In other development
strategies, a high-level system architecture is
designed but the details of the software compo-
nents are delayed until each component or com-
ponent feature is being programmed. The pros
and cons of these approaches are discussed later
in this chapter. For vendor-developed systems,
the purchasing organization will often hold
design reviews and demonstrations of mock-ups
or prototypes with the vendor to assess the solu-
tions. In the case of pre-built COTS software, the
purchasing organization relies on the vendor’s
system description and reviews from third par-
ties, supplemented by system demonstrations, to
determine the appropriateness of the design. As
with the Analysis phase, it is important to include
the target users and IT operations personnel in
the design reviews.

 Ideally, the software could be designed solely
around the care requirements and the use of
information. However, rarely are the clinical
requirements of the use case the only consider-
ation. In the design phase, other requirements
are considered, such as the software cost and
how it integrates with an existing health IT strat-
egy of an organization. Resources applied to a

 development project are not available for other
potential projects, so costs are always infl uen-
tial. The design phase must consider various
alternatives to meet the most important require-
ments, recognizing trade-offs and contingency
approaches. Additional considerations are how
the software will support long-term factors, not
just the immediate requirements that have been
identifi ed. Clinicians and clinical workfl ow ana-
lysts are often the primary participants in the
requirements analysis stage, whereas informati-
cians are more prominent in the design phase.
This is because during this latter phase the clinical
goals and strategies are considered together with
what can be vastly different design approaches,
and the ability to consider the various strengths
and weaknesses of these different approaches is
critical. Often, design considerations are between
custom development, purchasing niche applica-
tions, or purchasing components of a monolithic
EHR. The considerations of development versus
COTS software is discussed in more detail in the
Acquisition Strategy Sect. 6.3.3.1 below.

6.3.1.3 Development
 Coding of the software is done during the
Development phase of the SDLC. The software
engineers use the requirements and system
designs as they program the code. Analysts help
resolve questions about requirements and designs
for the programmers when it is unclear how soft-
ware might address a particular feature. The soft-
ware process defi nes the pace and granularity of
the development. In some cases, an entire soft-
ware component or system is developed at once
by the team. In other cases, the software is bro-
ken down into logical pieces and the program-
mers only work on the features that are relevant
to the piece they are currently working on. As
software components are completed, unit tests
are run to confi rm the component is free of known
bugs and produces expected outputs or results.

 In health care, development includes coding of
custom software as well as confi guration of COTS
software. Health care practices across institutions
(and even within larger organizations) are so vari-
able that all software requires some level –often
substantial – of confi guration. Confi guration can

6 Software Engineering for Health Care and Biomedicine

194

range from assigning local values to generic vari-
ables within the software, to complete develop-
ment of documentation templates, reports, and
terminology. In fact, confi guration can be so con-
siderable that institutions name the software sepa-
rately as their own confi guration, with all the
content that the users interact with being defi ned
locally. This confi guration is often done using
tools built specifi cally for the commercial soft-
ware, which facilitate the integration of the con-
fi guration products into the software infrastructure.
The tools can be complex, requiring signifi cant
training for developers. Typically, tools work well
for basic confi guration and may also have
advanced functionality that can confi gure more
complicated templates or reports. The most inten-
sive time investment for confi guration is typically
when the tools do not directly support certain con-
fi gurations, and developers must fi nd approaches
to creatively adapt the development “around the
tools.”

6.3.1.4 Integration and Test
 For complex software projects consisting of sev-
eral components and/or interfaces with outside
systems, an Integration phase in the SDLC is
employed to tie together the various pieces. Some
aspects of the integration software are likely done
during the Development phase by simulating or
mocking the outputs to, and inputs from, other
systems. During Integration, these connections
are fi nalized. Simulations are run to demonstrate
functional integration of the various system com-
ponents. Once the various components are inte-
grated, a thorough testing regimen is conducted
in order to prove the end-to-end operation of the
entire software system. Specifi c test scenarios are
run with known inputs and expected outputs.
This is typically done in a safe, non-operational
environment in order to avoid confl icts or issues
with real-world people (e.g., patients and clini-
cians) and environments, although some inbound
information from live systems may be used to
verify scenarios that are diffi cult to simulate.

 Testing and integration in health care are simi-
lar to other complex environments, in that it can
be diffi cult to create a testing environment that
matches the dynamics of the real-world setting.

Generally, testing is done around multiple use
cases or case studies, using data to support the
cases. In the real world, however, there may be
data and information that don’t match the case
studies, since both people and health care are
complex. As a result, internally-developed appli-
cations are often provisionally used in a “pilot”
phase as part of testing. For COTS software,
companies may use simulation laboratories that
try to mimic the clinical environment, or work
with specifi c health care organizations as devel-
opment and testing partners. Later, however, this
can lead to challenges if data representing the
dynamics of one organization are not easily trans-
ferrable, and software must be further tested with
new environments. Issues with software transfer-
ability between institutions have been demon-
strated in studies, even for specifi c applications
(Hripcsak et al. 1998). Another challenge is that
with current privacy laws, organizations are more
reluctant to release data to vendors for testing.

6.3.1.5 Implementation
 Once the software passes integration testing it
moves to the implementation phase. In this phase,
the software is installed in the live environment.
In preparation for installation, server hardware,
user devices, network infrastructure, facilities
changes, etc., may need to be implemented and
tested, too. In addition, user training will be per-
formed in the weeks before the software goes
live. Any changes to policies and procedures
required by the software will also be imple-
mented in the build-up to installation.

 Health care presents interesting consider-
ations in each phase of the software development
cycle, but the challenges have been more visible
in implementation than any other phase. This
may be because health IT, while intended to facil-
itate more effi cient workfl ows with information,
is still disruptive. Disruption happens most dur-
ing implementation, when clinicians actually
begin using the software, and studies have shown
that during this time clinical productivity does
decline (Shekelle et al. 2006). If users do not per-
ceive that the benefi ts are suffi cient to justify this
disruption, or if the effi ciency does not improve
quickly enough after the initial implementation,

A.B. Wilcox et al.

195

they may choose to disregard the software or
even revolt against its implementation. There
have been prominent examples in biomedical
informatics of software implementations failing
during implementation (Bates 2006 ; Smelcer
et al. 2009), and even studies demonstrating harm
(Han et al. 2005). Because of these risks, health
IT professionals need to be fl exible in implemen-
tation, and adapt the implementation strategies to
how the system is adopted. Users have been
shown to use health IT software in different ways
for different benefi ts, and may need incentives or
prodding to advance to different levels of use.

6.3.1.6 Verifi cation and Validation
 To ensure that the software satisfi es the original
requirements for the system and meets the need
of the organization, a formal verifi cation and val-
idation of the software is performed. The imple-
menting organization will verify that the software
has the features and performs all the functions
specifi ed in the requirements document. The soft-
ware is also validated to show that it performs
according to specifi ed operational requirements,
that it produces valid outputs, and that it can be
operated in a safe manner. For purchased soft-
ware, the verifi cation and validation phase is
used by the purchasing organization in order to
offi cially accept the software.

 Since clinicians often use software at different
levels or in different ways, tracking patterns of
use can be an important approach for verifi cation
and validation of software in health care.
Additionally, because they have experience work-
ing in complicated environments, users can be
good at identifying inconsistencies in data or soft-
ware functions. Two approaches that have been
used and can be successful for validation are mon-
itoring use, and facilitating user feedback.

6.3.1.7 Operations and Maintenance
 Software eventually enters an operations and
maintenance (O&M) phase where it is being reg-
ularly used to support the operational needs of
the organization. During this phase, an O&M
team will ensure that the software is operating as
desired and will be fi elding the support needs of
the users. Updates may need to be installed as

new versions of the software are released. This
may require new integration and testing, imple-
mentation, and verifi cation and validation steps.
Ongoing training will be required for new users
and system updates. The O&M team may con-
duct regular security reviews of the system and
its use. Data repositories and software interfaces
will be monitored for proper operation and con-
tinued information validity. Software bugs and
feature enhancement requests will be collected.
These may drive an entire new development life
cycle as new requirements persuade an organiza-
tion to explore signifi cant upgrades to its current
software or even an entirely new system.

 Maintenance is a demanding task in health
information software. It involves correcting
errors; adapting confi gurations and software to
growth, new standards, and new regulations; and
linking to other information sources. Maintenance
tasks can exceed by more than double the initial
acquisition costs, making it a substantial consid-
eration that should affect software design. COTS
suppliers often provide maintenance services for
15–30 % of the purchase price annually, but cus-
tom development or confi guration maintenance
must be supported by the purchasing organiza-
tion. If the software is not maintained, it can
quickly become unusable in a health care setting.

6.3.1.8 Evaluation
 An important enhancement to the SDLC sug-
gested by Thompson et al. (1999) is the inclusion
of an evaluation process during each of the
phases of the life cycle. The evaluation is infl u-
enced by risk factors that may affect a particular
SDLC segment. An organization might perform
formative evaluations during each phase, depend-
ing on specifi c needs, in order to assess the inputs,
processes and resources employed during devel-
opment. During Verifi cation and Validation or
O&M, a summative evaluation may be performed
to assess the outcome effects, organizational
impact, and cost-benefi t of the software solution.

 Health IT is considered an intervention into the
health care delivery system, so evaluations have
been done and published as comparative stud-
ies in clinical literature (Bates et al. 1998 ; Evans
et al. 1998 ; Hunt et al. 1998). These evaluations

6 Software Engineering for Health Care and Biomedicine

196

and syntheses of multiple studies have identi-
fi ed areas of impact and areas where the effect
of health IT software is inconsistent. Researchers
have also noted that most of these studies have
occurred in institutions where software was
developed internally, with disproportionate
under-representation of COTS software systems
in evaluations, especially considering that most
health care institutions use COTS rather than
internal development (Chaudhry et al. 2006). It
is hoped that the existing evaluations can be a
model for software evaluations of COTS, to clar-
ify their impact on care.

6.3.2 Software Development
Models

 Different software development processes or
methods can be used in an SDLC. The software
development process describes the day-to-day
methodology followed by the development team,
while the life cycle describes a higher-level view
that encompasses aspects that take place well
before code is ever written and after an applica-
tion is in use. The following are two of the most
common examples of different development pro-
cesses in clinical information systems
development.

6.3.2.1 Waterfall Model
 The Waterfall model of software development
suggests that each step in the process happens
sequentially, as shown in Fig. 6.1 . The term
“Waterfall” refers to the analogy of water cascad-
ing downward in stages. A central concept of the
Waterfall methodology is to solidify all of the
requirements, establish complete functional
specifi cations, and create the fi nal software
design prior to performing programming tasks.
This concept is referred to as “Big Design Up
Front,” and refl ects the thinking that time spent
early-on making sure requirements and design
are correct saves considerable time and effort
later. Steve McConnell, an expert in software
development, estimated that “… a requirements
defect that is left undetected until construction or

maintenance will cost 50–200 times as much to
fi x as it would have cost to fi x at requirements
time” (McConnell 1996).

 The waterfall model provides a structured, lin-
ear approach that is easy to understand.
Application of the model is best suited to soft-
ware projects with stable requirements that can
be completely designed in advance. In practice, it
may not be possible to create a complete design
for software a priori. Requirements and design
specifi cations can change even late in the devel-
opment process. Clients may not know exactly
what requirements they need before reviewing a
working prototype. In other cases, software
developers may identify problems during the
implementation that necessitate reworking the
design or modifying the requirements.

6.3.2.2 Agile Models
 In contrast to the Waterfall model, modern soft-
ware development approaches have attempted to
provide more fl exibility, particularly in terms of
involving the customer throughout the process.
In 2001, a group of software developers pub-
lished the Manifesto for Agile Software
Development, which emphasizes iterative, incre-
mental development and welcomes changes to
software requirements even late in the develop-
ment process (Beck et al. 2001).

 Agile development eschews long-term plan-
ning in favor of short iterations that usually last
from 1 to 4 weeks. During each iteration, a small
collaborative team (typically fi ve to ten people)
conducts planning, requirements analysis, design,
coding, unit testing, and acceptance testing activ-
ities with direct involvement of a customer repre-
sentative. Multiple iterations are required to
release a product, and larger development efforts
involve several small teams working toward a
common goal. The agile method is value-driven,
meaning that customers set priorities at the begin-
ning of each iteration based on perceived busi-
ness value.

 Agile methods emphasize face-to-face com-
munication over written documents. Frequent
communication exposes problems as they arise
during the development process. Typically, a

A.B. Wilcox et al.

197

 formal meeting is held each morning during
which team members report to each other what
they did the previous day, what they intend to
do today, and what their roadblocks are. The
brief meeting, sometimes called a “stand-up,”
“scrum,” or “huddle,” usually lasts 5–15 minutes,
and includes the development team, customer
representatives and other stakeholders. A com-
mon implementation of agile development is
Extreme Programming.

6.3.3 Software Engineering

 The software development life cycle can be used
to actually create the software, and understanding
it is critical for those developing software in bio-
medical informatics. However, as the fi eld has
expanded, software has matured to the point that
it is developed by and available from commercial
companies, so that software development has
become less of a concern for most of the fi eld. A
more important consideration in biomedical
informatics has been the strategy of whether to
develop and how to develop. Software vendors
can spread development costs over multiple
organizations, rather than one organization hav-
ing to fund the full development, which can make
purchasing software economically advantageous.
On the other hand, as biomedical informatics
remains an emerging fi eld, the core require-
ments for the software continue to change, and

sometimes organizations need specifi c capabili-
ties that are not met by existing vendor software
options. In addition to software development,
informaticians often need to participate in soft-
ware acquisition, and subsequent enhancements
to the acquired software.

6.3.3.1 Software Acquisition
 In health care information technology applica-
tions, the next signifi cant question is whether to
develop the software internally, or purchase an
existing system from a vendor. As illustrated
above, this “build vs. buy” is a core decision in
design, and infl uences most of the other consider-
ations about software.

 Considerations for purchasing software begin
with how the software will be selected. Software
can be a component of a monolithic vendor sys-
tem, be a secondary application sold by the same
vendor as the EHR, or be “best-of-breed,” mean-
ing the software that meets the requirements best,
independent of its architecture or source. Another
consideration is whether the software needs to
integrate with other applications. Some specialty
applications are suffi cient with minimal data
sharing with other software, while other applica-
tions must be tightly integrated with existing sys-
tems to achieve a benefi t. Two examples are a
picture archiving and communications system
(PACS) and a laboratory information system
(LIS). The most important requirement for the
PACS may be allowing access to images for a

Requirements

Verification

Maintenance

Implementation

Design

 Fig. 6.1 The Waterfall
model of software
development

6 Software Engineering for Health Care and Biomedicine

198

radiologist, who can then separately document a
report. On the other hand, the LIS may need
greater integration if the users require lab data to
be stored in the EHR. Another consideration,
related to integration, is the storage mechanism.
A stand-alone system will likely have a separate
database, while an integrated system may be able
to store and retrieve data using a data repository.
User interface deployment is also important, and
possibilities include Web-based clients, thin cli-
ents (e.g., Citrix), and locally-installed thick -
client applications. Functionality may be more
available with a thick client, but Web-based and
thin clients are easier to update and distribute to
users. Finally, security and privacy consider-
ations are critical in health care, and can infl u-
ence both the requirements and design of
software. Security considerations can include
whether user authentication is shared with other
applications, or what data access events are
audited for identifying potential security threats.

 With some notable exceptions, most health
care delivery organizations today use commer-
cial – as opposed to locally developed – EHRs.
But in reality, there is a mix between building and
buying. As mentioned, organizations using com-
mercial systems still require substantial local
confi guration that ranges from application-
specifi c parameter confi guration to arranging
multiple software applications to link together.
There is no single solution, commercial or
internally- developed, that meets all the health
information needs of most health care organiza-
tions, and most implementations involve a mix-
ture of software from multiple vendors. While
there can be advantages to allowing best-of-
breed, recently we have observed a trend among
organizations to consolidate as much functional-
ity as possible with one vendor. Another observed
trend is for organizations that build systems to
consider purchasing COTS, due to the substantial
maintenance costs and increased functionality of
the vendor solutions. Over time, organizations
are expected to move from internally-developed
to COTS as functionality of commercial software
becomes more advanced.

 Usually, if vendor software exists that meets
the requirements, it is more cost-effi cient to

 purchase the software than build it internally.
This is because the vendor can spread develop-
ment costs over multiple organizations, rather
than one organization having to fund the full
development. In fact, few organizations have the
existing infrastructure and personnel to consider
internal development for anything other than
small applications. However, those few institu-
tions with developed EHRs and health informa-
tion systems are notable for the success of their
software. So while the costs may be higher for
internal development, the benefi ts may also be
higher. Still, these institutions have invested
decades in building an infrastructure that makes
these benefi ts possible, and it is unlikely that
other organizations can afford the time invest-
ment to follow the same model. Even within his-
torically internally- developing organizations,
buying systems that can integrate with the exist-
ing system is more effi cient than development.
An appropriate guide is therefore, “Buy where
you can, build where you can’t.”

 Once an organization decides to acquire a
health information system, there are many other
decisions beyond whether to build or buy. (In
fact, since the costs in time and money are pro-
hibitive for internal development, the decision to
buy is typically the easiest decision to make.) The
next decision is what commercial system to pur-
chase. There is a wide variation in the functional-
ities between different EHR systems, even though
certifi cation efforts have defi ned basic functions
that each system should have. Even systems with
the same certifi ed functions may approach the
functions so differently that some implementa-
tions will be incongruent to an organization. The
main factors an organization should consider
when choosing which system are (a) the core
functionality of the software, including integra-
tion with other systems, (b) total system cost, (c)
the service experience of other customers, and
(d) the system’s certifi cation status. Some organi-
zations have performed systematic reviews of
different commercial software offerings that can
be a helpful start to identify possible vendors and
understand variations between systems. For
example, KLAS Research publishes periodic
assessments of both software functions and

A.B. Wilcox et al.

199

 vendor performance that can be used to identify
potential software products. However, since sys-
tems are complex, it is important to meet with
and discuss experiences with actual organiza-
tions that have used the software. This is typi-
cally done through site visits to existing customer
organizations. It is also common for organiza-
tions to make a broad request of vendors for pro-
posals to address a specifi c software need,
especially when the needs are not standard com-
ponents of EHR software.

 After a commercial product is selected, an
organization must then choose how extensive the
software will be. EHR companies typically have
a core EHR system, with additional modules that
have either been developed or acquired and inte-
grated into their system. The set of modules used
by each institution varies. One organization may
use the core EHR system and accompanying
modules for certain specialties, such as internal
medicine and family practice, while choosing to
purchase separate best-of breed software for other
specialties, like obstetrics/gynecology and emer-
gency medicine, even when the core EHR vendor
has functional modules for those areas. Another
organization may choose to purchase and imple-
ment all specialty systems offered from the core
EHR vendor, and only purchase other software if
a similar module is not available from the vendor.
These decisions also must be made for all ancil-
lary systems, including laboratory, pharmacy,
radiology, etc. This is both a pre- implementation
decision and a long-term strategy. Once the EHR
is implemented, many specialties that were not
included in the initial implementation plan may
request software and data integration, depending
on the success of the EHR implementation.

 For organizations that choose components of
multiple vendor offerings to any degree, they will
need to also address how to integrate the compo-
nents together so that they are not disruptive to
the users’ workfl ow. There are various strategies
that can be pursued to integrate modules, either at
the user context (user authentication credentials
are maintained), the application view (one appli-
cation is viewable as a component within another
application), or at the data (data are exchanged
between the applications). If components are not

integrated, a user must access each application
separately, by opening the software application,
logging into each separately, and selecting the
patient within each. When data are integrated at
the user context, a user moves between both
applications, but the user and patient context are
shared. This “single sign-on” approach alleviates
one of the main barriers to the user, by facilitat-
ing the login and patient selection, while retain-
ing all the functionality of each system. The
 Clinical Context Object Workgroup (CCOW)
is a common protocol for single sign-on imple-
mentations in health care.

 A deeper level of integration is at the applica-
tion view. In this case, one application will have
an integrated viewer to another application, that
shares user and patient context, but is accessible
through the user’s main workfl ow system. The
integrated viewer functions within the primary
application, but acts as a portal to the data in the
secondary application. With this approach, the
user workfl ow is retained in one system, but
some of the functionality in the secondary system
may be reduced because the integrated viewers
are not full applications.

 The deepest level of integration is at the data,
where actual data elements from one system are
also stored in the other system. With this
approach, one system is determined to be the
main repository, and data from the other systems
are automatically stored into the repository. This
approach has the advantage of the most complete
use of data, e.g., decision support logic can use
data from multiple systems, which can be more
accurate. The disadvantage is that the integration
can be expensive, requiring new interfaces for
each integrated system.

 Another and often overlooked consideration of
EHR software modules is the data analytics mod-
ule, usually in conjunction with a data warehouse.
EHR systems generally include a reporting func-
tion, where specifi c reports can be confi gured to
extract data stored in the system. However, these
systems often don’t facilitate ad hoc reports that
are commonly needed for more complicated data
analysis. Additionally, if modules from multiple
software vendors are used, the data reporting
 functions will not work unless data are fully

6 Software Engineering for Health Care and Biomedicine

200

 integrated. A solution is to use a separate data
warehouse and analysis system, with functions to
create ad hoc reports, that can integrate data from
multiple systems. Data integration with ware-
houses is less expensive than with repositories,
because the data do not need to be synchronized.
Instead, data can be extracted in batches from
source systems, transformed to the warehouse data
model, and then loaded into the warehouse at peri-
odic intervals. The greatest cost of the integration
is the data transformation, but this transformation
is similar to what is required when receiving data
through a real-time interface.

 The incentives for Meaningful Use have
important infl uences on the systems that are
installed by an institution. As mentioned above,
the ONC created a list of important EHR func-
tions. They also created a requirement that an
organization must use a “certifi ed” system – i.e.,
one that has demonstrated it provides those func-
tions – to receive the incentives, and other crite-
ria that the functions must be used in clinical
care. As a result, health care organizations are
now more likely to choose among those that are
certifi ed, and are also more likely to implement
functions that support the Meaningful Use
measures.

6.3.3.2 Case Studies of EHR Adoption
 Consider the following case studies of institu-
tions adopting EHR systems. All examples are
fi ctional, but refl ect the reality of the issues with
EHR software.

 Hospital A had been using information sys-
tems for many years , dating back to when
some researchers in the cardiology depart-
ment built a small system to integrate data
from the purchased laboratory and phar-
macy information systems . Over time , the
infection control group for the hospital
began using the system , and contributed
efforts to expand its functionality . Other
departments began developing decision
support rules , and the system continued to
grow . Eventually , the institution made a

commitment to redevelop the infrastructure
to support a much larger group of users
and functions , and named it A - Chart .
 Satisfaction with the system was high
where it had been initially developed , and
with other related specialties . However ,
 over time there was disproportionate devel-
opment in these areas , and clinicians in
other specialties complained about the
rudimentary functions , especially when
compared to existing vendor systems for
their specialty . As a result , the organiza-
tion decided to purchase a new vendor sys-
tem . This made the other specialties happy ,
 but was a big concern to the groups that
had been using A - Chart for years . These
clinicians feared that they would have to
reconfi gure their complicated decision sup-
port rules with a new system , or worse , that
functionality would no longer be sup-
ported . To alleviate concerns , representa-
tives from each department were asked to
participate in both drafting a Request for
Proposals and then reviewing the propos-
als from four different vendors . Many clini-
cians liked System X , but in the end the
hospital chose System Y , which seemed to
have most of the same functions but was
more affordable . However , System Y did
not include a laboratory system , so the hos-
pital purchased a separate laboratory sys-
tem and built interfaces to connect it with
the core EHR .

 Integrated Delivery System (IDS) B had
a different history of its EHRs . Years ago , it
existed as a separate system of hospitals
and clinics . Shortly after the merger of
these institutions , both the hospitals and
clinics purchased separate EHRs , InPatSys
and CliniCare . At the time , the institution
felt that each would be best off with a best -
of - breed system , to support the different
workfl ows , and there was no system that
both sides of the organization could toler-
ate . Years later , as IDS B began to integrate
care between the hospitals and clinics , the

A.B. Wilcox et al.

201

 In practice, organizations rarely adopt a
complete “build” or a complete “buy” strat-
egy. EHR vendors have come a long way in
the last 5–10 years in creating systems that
meet the standard and even non-standard
needs in health care. Still, no system exists to
date that can fully address all information
needs for an organization, in part because the
information needs expand as more data are
stored and are available. Additionally, EHR
strategies become malleable over time, as
commercial software capabilities increase and
data become more consistent. As indicated
through some of the examples above, organi-
zational strategies may change over time to
adapt to these capabilities and needs.

 One consideration that is not always stated in
the software selection process, but is signifi cant
in its infl uence over the decision, is how the
organization will pay for the application. In
organizations where software purchases are
requested from the information technology
department and budget, overall maintenance
costs are considered more prominently, and
software that integrates with and is a component
of the overall EHR vendor offering is often
selected. However, if a clinical department has
direct control over their spending for the soft-
ware, functionality becomes a greater concern.
An additional case study illustrates this
situation.

clinicians and administrators became
increasingly frustrated at how different the
InPatSys and CliniCare systems were , and
that they had to use two separate systems to
care for the same patients . A team was
formed to evaluate the options , and the
CliniCare system was eventually replaced
by OutPatSys , the outpatient version of
InPatSys . To prevent losing data as they
moved from one system to the other , the
IDS IT department prepared the OutPatSys
system by loading existing laboratory
results and vital sign measurements from
CliniCare . Then they purchased CCOW
software to allow single sign - on between
systems during the fi rst 6 months of
OutPatSys implementation , while they
transformed the other data from CliniCare .

 Community Hospital C (CHC) had var-
ious niche information systems throughout
its organization , but no EHR to organize it
all together . With the availability of
Meaningful Use incentives , the hospital
determined it needed to fi nally acquire a
commercial EHR . A leadership team of
four people visited six different hospitals
to look at how various EHRs were used .
 Finally , the hospital made a decision to
purchase eCompuChart , because it was
among the best systems and seemed best
adapted to their community size . CHC
hired a new chief information offi cer who
had recently implemented eCompuChart
at a community hospital in a neighboring
state . They also promoted Dr . Jones , who
had recently moved from another hospital
that had also used eCompuChart , to chief
medical information offi cer (CMIO). Then
they contracted with DigiHealth , a con-
sulting company with experience in imple-
menting EHRs , to plan and coordinate the
implementation with the new CMIO and
CIO . Based on DigiHealth ’ s recommen-
dations , all existing overlapping systems
were replaced with modules from eCom-
puChart , to simplify maintenance .

 Hospital D has recently decided to pur-
chase eCompuChart as an overall clinical
information system strategy . eCompuChart
has award - winning software for the emer-
gency department and intensive care units .
 However , there were strong complaints
about its capabilities for labor and delivery
management and radiology . After consid-
ering capabilities of best - of - breed options
and their ability to integrate with eCompu-
Chart , Hospital D eventually made a split
decision . The labor and delivery module
for eCompuChart was purchased because

6 Software Engineering for Health Care and Biomedicine

202

6.3.3.3 Enhancing Acquired Software
 Although most institutions will choose to acquire
a system rather than building it from scratch,
software engineering is still required to make the
systems function effectively. This involves more
than just installing and confi guring the software
to the local environment. There is still a signifi -
cant need for software development in imple-
menting COTS, because (1) applications must be
integrated with existing systems, and (2) health
care institutions increasingly develop custom
applications that supplement commercial
systems.

6.3.3.4 Integration with existing
systems

 In all but the most basic health care information
technology environments, multiple software
applications are used for treatment, payment, and
operations purposes. A partial list of applications
that might be used in a hospital environment is
shown in Table 6.1 .

 To facilitate the sharing of information among
various software applications, standards have
emerged for exchanging messages and defi ning
clinical terminology (see Chap. 7). Message
exchange between different software applica-
tions enables the following scenario:
 1. A patient is admitted to the hospital. A regis-

tration clerk uses the bed management system
to assign the patient’s location and attending
physician of record.

 2. The physician orders a set of routine blood
tests for the patient in the inpatient EHR com-
puterized order entry module.

 3. The request for blood work is sent electroni-
cally to the laboratory information system,
where the blood specimen is matched to the
patient using a bar code.

 4. The results of the laboratory tests are sent to
the results review module of the EHR
 Message exchange is an effective means of

integrating disparate software applications in
health care when the users rely primarily on a
single “workfl ow system” (e.g., physician uses
the inpatient EHR and the laboratory technician
uses the LIS). Because message exchange is han-
dled by a sophisticated “interface engine” (see
Chap. 7), little software development in the tradi-
tional sense is typically required. When a user
accesses multiple workfl ow systems to perform a
task, message exchange may not be suffi cient and
a deeper level of integration may be required. For
example, consider the following addition to the
previously described scenario:
 5. The physician reviews the patient’s blood

work and notes that the patient may be
 suffering from renal insuffi ciency as evi-
denced by his elevated creatinine level.

 6. The physician would like to review a trend of
the patient’s creatinine over the past 3 years.
Because the hospital installed their commer-
cial EHR less than a year ago, data from prior
to that time are available in a legacy results
review system that was developed locally. The
physician logs into the legacy application
(entering her username and password),
searches for the correct patient, and reviews
the patient’s creatinine history.

 Table 6.1 Partial list of software applications that may
be used in a hospital setting

 System Primary users

 Inpatient EHR (results
review, order entry,
documentation)

 Physicians, nurses,
allied health
professionals

 Pharmacy information
system

 Pharmacists, pharmacy
technicians

 Laboratory information
system

 Laboratory technicians,
phlebotomists

 Radiology information
system

 Radiologists, radiology
technicians

 Pathology information
system

 Pathologists

 Registration/bed
management

 Registration staff

 Hospital billing system Medical coders
 Professional services billing
system

 Physicians, medical
coders

other systems with more elaborate func-
tionality could not integrate data as well
with the overall EHR . On the other hand , a
separate best - of - breed system was pur-
chased for radiology , because interfaces
between the systems were seen as an
acceptable solution for integrating data .

A.B. Wilcox et al.

http://dx.doi.org/10.1007/978-1-4471-4474-8_7
http://dx.doi.org/10.1007/978-1-4471-4474-8_7

203

 While it may seem preferable in this scenario
to load all data from the legacy system into the
new EHR, commercial applications may not sup-
port importing such data for various reasons. To
simplify and improve the user experience for
reviewing information from a legacy application
within a commercial EHR, one group of informa-
ticians created the custom application shown in
Fig. 6.2 . The application is accessed by clicking
a link within the commercial EHR and does not
require login or patient look-up.

 In an example of a more sophisticated level of
“workfl ow integration” is shown in Fig. 6.3 . In
this example, informaticians developed a custom
billing application within an inpatient commer-
cial EHR. Users of the application were part of a
physician practice that used a different outpatient
EHR with a professional billing module with
which they were already familiar. When the phy-
sicians in the practice rounded on their patients
who were admitted to the hospital, they docu-
mented their work by writing notes within the
inpatient EHR, and then used their outpatient
EHR to submit their professional service charges.
This practice not only required a separate login to
submit a bill, but also required duplicate patient
lists to be maintained in each application, as well
as a duplicate problem list for each patient to be
managed in each application. The integrated
charge application was accessed from the inpa-
tient EHR but provided the same look-and-feel as

the outpatient EHR billing module. Charges were
submitted through the outpatient EHR infrastruc-
ture and would appear as normal charges in the
outpatient system, with the substantial improve-
ment of displaying the information (note name,
author, and time) for the documentation that sup-
ported the charge.

6.3.3.5 Development of Custom
Applications That Supplement
or Enhance Commercial
Systems

 Commercial EHRs frequently provide customers
with the ability to develop custom software mod-
ules. Some EHRs provide a fl exible clinical deci-
sion support infrastructure that allows customers
to develop modules that execute medical logic to
generate alerts, reminders, corollary orders, and so
on. Vendors may also provide customers with
tools to access the EHR database, which allows
development of stand-alone applications that make
use of EHR data. Additionally, vendors may foster
development of custom user interfaces within the
EHR by providing an application programming
interface through which developers can obtain
information on user and patient context.

 The ability to provide patient-specifi c clinical
decision support is one of the key benefi ts of
EHRs. Many commercial EHRs either directly
support or have been infl uenced by the Arden
Syntax for Medical Logic Modules (Pryor and

 Fig. 6.2 Example screen from a custom lab summary display application integrated into a commercial EHR. The
application shows a longitudinal view of laboratory results that can span multiple patient encounters

6 Software Engineering for Health Care and Biomedicine

204

Hripcsak 1993). The Arden Syntax is part of the
 Health Level Seven (HL7) family of standards.
It encodes medical knowledge as Medical Logic
Modules (MLMs), which can be triggered by
various events within the EHR (e.g., the placing
of a medication order) and execute serially as a
sequence of instructions to access and manipu-
late data and generate output. MLMs have been
used to generate clinical alerts and reminders, to
screen for eligibility in clinical research studies,
to perform quality assurance functions, and to
provide administrative support (Dupuits 1994 ;
Ohno-Machado et al. 1999 ; Jenders and Shah
 2001 ; Jenders 2008). Although one goal of the
Arden Syntax was to make knowledge portable,
MLMs developed for one environment are not
easily transferrable to another. Developers of
clinical decision support logic require skills in
both computer programming as well as medical
knowledge representation.

 An example of a standalone, locally devel-
oped software application that relies on EHR

data is shown in Fig. 6.4 . The Web-based appli-
cation, EpiPortal™, provides a comprehensive,
electronic hospital epidemiology decision sup-
port system. The application can be accessed
from a Web browser or directly from within the
EHR. It relies on EHR data such as microbiology
results, clinician orders, and bed tracking
 information to provide users with timely infor-
mation related to infection control and
prevention.

 In some cases, it is desirable to develop cus-
tom applications to address specifi c clinical needs
that are not met by a commercial EHR. For exam-
ple, most commercial EHRs lack dedicated tools
to support patient handoff activities. For hospital-
ized patients, handoffs between providers affect
continuity of care and increase the risk of medical
errors. Informaticians at one academic medical
center developed a collaborative application sup-
porting patient handoff that is fully integrated
with a commercial EHR (Fred et al. 2009). An
example screen from the application is shown in

 Fig. 6.3 Example screen from a custom billing application integrated into a commercial EHR. This replaced a separate
application that was not integrated into the clinicians’ workfl ow

A.B. Wilcox et al.

205

Fig. 6.5 . The application creates user- customizable
printed reports with automatic inclusion of patient
allergies, active medications, 24-hour vital signs,
recent common laboratory test results, isolation
requirements, code status, and other EHR data.
The application is currently used extensively at
several academic medical centers by thousands of
physicians, nurses, medical students, pharma-
cists, social workers, and others.

6.4 Emerging Infl uences and
Issues

 Several trends in software engineering are begin-
ning to signifi cantly infl uence biomedical infor-
mation systems. While many of the trends may
not be considered new to software engineering in
general, they are more novel to the biomedical
environment because of the less rapid and less
broad adoption of information technology in this
fi eld. One area in particular that has received
growing attention is service oriented architec-
tures (SOA). Sometimes called “software as a
service”, SOA is a software design framework
that allows specifi c processing or information
functions (services) to run on an independent

computing platform that can be called by simple
messages from another computer application.
For example, an EHR application might have
native functionality to maintain a patient’s medi-
cation list, but might call a drug-drug interaction
program running on a third party system to check
the patient’s medications for potential interac-
tions. This allows the EHR provider to off-load
developing this functionality, while the drug-
drug interaction service provider can concentrate
efforts on this focused task, and in particular on
ensuring that the drug interaction database is kept
up-to-date for all users of the service. Since the
service is independent of any EHR application,
many different EHR providers can call the same
service, as can other applications such as patient
health record (PHR) applications that are focused
on consumer functionality. (SOA might also be
grouped with the more recent computer phrase
“cloud computing”, which includes providing
functional services to other applications, but also
encompasses running entire applications and
storing data in offsite or disconnected locations.)

 The important property of SOA that makes
this paradigm appealing to software designers is
the use of open, discoverable message formats.
These message formats describe the published

 Fig. 6.4 Example screen from a standalone, software application thatrelies on EHR data to provide a comprehensive,
electronic hospital epidemiology decision support system (Courtesy of New York-Presbyterian Hospital)

6 Software Engineering for Health Care and Biomedicine

206

name of the service (e.g., “Get Drug Interactions”)
as well as the service inputs and outputs. In the
case of our drug interaction service example, the
input would be the medications of interest and
the output would be the interacting drugs and a
description of the interaction(s). Although the
services might be designed according to a propri-
etary application programming interface
(API), modern implementations of SOA make
use of open internet standards, particularly the
 Hypertext Transfer Protocol (HTTP), so that
service providers can offer their services to a

wider audience of consumers. One of the more
widely used SOA protocols for the World-Wide
Web is the Simple Object Access Protocol
(SOAP), which uses HTTP and the Extensible
Markup Language (XML) to describe the mes-
sage format. SOAP also uses a simple mecha-
nism, Web Services Discovery Language
(WSDL), to allow service consumers to discover
the format and functionality of a service. It is
easy to imagine how an EHR or other biomedical
application might be designed to allow use of
SOA services to provide signifi cant additional

 Fig. 6.5 Example screen from a custom patient handoff
application integrated into a commercial EHR. The appli-
cation creates user-customizable printed reports with

 automatic inclusion of patient allergies, active medications,
24-h vital signs, recent common laboratory test results, iso-
lation requirements, code status, and other EHR data

A.B. Wilcox et al.

207

functionality, and how an application developer
might allow an application user to confi gure a
personal version of the program to call “favorite”
or custom services to support specifi c needs.

 Another important trend in clinical informa-
tion systems is the development of local, regional
and statewide health information exchanges
(HIE). The HIE allows health organizations to
share information about patients through a com-
mon electronic framework. The HIE is typically
an independent or co-owned entity that provides
the exchange service to the partner organizations.
The HIE can support a query interface so that a
provider can use a local EHR to search for patient
data across the partner network. A subscription
model can also be used to deliver relevant data as
it is produced (e.g., lab results, consultation
reports, etc.) to a provider on the exchange net-
work with a need to receive that information. The
HIE will often publish APIs for accessing the
exchange, which could be Web-based SOA ser-
vices, for example. The HIE makes it much more
effi cient to share patient information between
organizations versus trying to create point-to-
point interfaces between all the clinical informa-
tion systems a particular provider might need to
communicate with. Often, a large health organi-
zation will have an interface engine to link
together the many disparate information systems
that support clinical operations. Interfaces from
the engine can be developed to support the
incoming and outgoing messages from the local
organization to the HIE. An important aspect of
the HIE is its ability to transform or map a mes-
sage from one organization’s internal format and
content to a representation that can be consumed
by other organizations. The HIE might require
that each data provider on the exchange use stan-
dard message formats and terminologies before
sending information, or the HIE might handle the
data translations using a central terminology and
data model mapping capability.

 Software engineering is an ever-evolving disci-
pline, and new ideas are emerging rapidly in this
fi eld. It is less than 20 years since the fi rst graphi-
cal browser (Mosaic) was used to access the World
Wide Web, but today Web-based applications are

ubiquitous. Access to information through search
engines like Google has changed the way that
people fi nd and evaluate information. Social net-
working applications like Facebook have altered
our views on privacy and personal interaction. All
of these developments have shaped the develop-
ment of health care software, too. Today it is
unimaginable that an EHR would not support a
Web interface. Clinicians and consumers use the
Web to search for health- related information in
growing numbers and with growing expectations.
It is not atypical for patients to discuss health
issues in online forums and share intimate details
on sites like PatientsLikeMe. Two other emerging
developments in software engineering are also
driving clinical software development: applets
and open source .

 Applets, or “apps”, are small programs that
are designed to accomplish very focused tasks.
They are also designed to run in low resource
environments like smart phones and tablets. The
growth of the iPhone and iPad from Apple has
accelerated the growth in app development,
although some may argue that it is the boom in
app development by a wide variety of program-
mers and small software companies that has fed
the growth of smart phones and other smaller
computer devices. Other companies, like Google
and its Android operating system, have joined in
the app development frenzy. One of the appeals
of apps is that they are easily available: users can
fi nd apps in “app stores” and can download them
effortlessly, sometimes for free but often at very
low prices. This also makes apps very democratic
because many potential users can try a variety of
apps with very little investment and “vote” for
winners through online reviews, which
 encourages additional downloads by new users.
In the health software environment, many apps
have been developed for effi cient access to medi-
cal information, such as drug indexes and ana-
tomical viewers. Vendors are beginning to offer
apps that allow views into their EHR products.
EHR apps are also being written to reside entirely
on mobile devices like smart phones and tablets.
The question is whether the democratic nature of
apps that allows users to choose the solution that

6 Software Engineering for Health Care and Biomedicine

208

best fi ts their personal needs fi ts the model of a
health care organization that needs to standardize
on solutions in order to share information accu-
rately, safely and appropriately and have com-
mon training and support models. An effort by
researchers at Harvard, called SMArt
(Substitutable Medical Applications, reusable
technologies), is seeking to build a platform and
interface that allows software developers to
develop medical apps that can be easily plugged
together to support health care environments
(Kohane and Mandl 2011).

 Although the concept of open source software
development, or free sharing of intellectual ideas
and source code, has been around for many years,
and has led to many software advances, such as
 Linux and Apache , its use in the medical fi eld
has been more limited. Research communities,
particularly at universities, have been more sup-
portive of open source software in support of bio-
medical research. But software to support
medical operations has been largely dominated
by commercial systems that are closed and pro-
prietary. A notable exception is the open source
version of the Veterans Affairs EHR software,
VistA (Brown et al. 2003). Others have collabo-
rated on developing open source standards for
EHR components, interfaces and messaging
standards. Federal efforts to push interoperability
standards in health care IT are forcing vendors,
independent developers, and public researchers
to look to open source development. Other “spe-
cial needs” areas that aren’t supported widely by
software vendors are also potential areas of
growth for open source development.

6.5 Summary

 The goal of software engineering in health care
is to create a system that facilitates delivery of
care. Much has changed in the past decade with
EHRs, and today most institutions will purchase
rather than build an EHR. But engineering these
systems to facilitate care is still challenging, and
following appropriate software development

practices is increasingly important. The success
of a system depends on interaction among
designers of health care software applications
and those that use the systems. Communication
among the participants is very diffi cult when it
comes to commercial applications. Informaticians
have an important role to play in bridging the
gaps among designers and users that result from
the wide variety in background, education, expe-
rience, and styles of interaction. They can
improve the process of software development by
specifying accurately and realistically the need
for a system and of designing workable solutions
to satisfy those needs.

 Suggested Readings

 Carter, J. H. (2008). Electronic health records (2nd ed.).
Philadelphia: ACP Press. Written by a clinician and
for clinicians, this is a practical guide for the planning,
selection, and implementation of an electronic health
record. It fi rst describes the basic infrastructure of an
EHR, and then how they can be used effectively in
health care. The second half of the book is written
more as a workbook for someone participating in the
selection and implementation of an EHR.

 KLAS Reports. http://www.klasresearch.com/reports .
These reports are necessary tools for a project man-
ager who needs to know the latest industry and cus-
tomer information about vendor health information
technology products. The reports include information
on functionality available from vendors as well as cus-
tomer opinions about how vendors are meeting the
needs of organizations and whose products are the best
in a particular user environment.

 McConnell, S. (1996). Rapid development: Taming wild
software schedules . Redmond: Microsoft Press. For
those who would like a deeper understanding of soft-
ware development and project methodologies like
Agile, this is an excellent source. It is targeted to code
developers, system architects, and project managers.

 President’s Council of Advisors on Science and
Technology (2010 December). Report to the President
Realizing the Full Potential of Health Information
Technology to Improve Healthcare for Americans: the
Path Forward. http://www.whitehouse.gov/sites/
default/fi les/microsites/ostp/pcast-health-it-report.pdf .
This PCAST report focuses on what changes could be
made in the fi eld of electronic health records to make
them more useful and transformational in the future. It
gives a good summary of the current state of EHRs in
general, and compares the barriers to those faced in

A.B. Wilcox et al.

http://www.klasresearch.com/reports
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf

209

adopting information technology in other fi elds. Time
will tell if the suggestions really become the solution.

 Stead, W. W., & Lin, H. S. (Eds.). (2009). Computational
technology for effective health care: Immediate steps
and strategic directions . Washington, DC: National
Academies Press. This is a recent National Research
Council report about the current state of health infor-
mation technology and the vision of the Institute of
Medicine about how such technology could be used. It
can help give a good understanding of how health IT
could be used in health care, especially to technology
professionals without a health care background.

 Tang (Chair), P. C. (2003). Key capabilities of an elec-
tronic health record system . Washington, DC: National
Academies Press. This is a short, letter report from an
Institute of Medicine committee that briefl y describes
the core functionalities of an electronic health record
system. Much of the report is tables that list specifi c
capabilities of EHRs in some core functional areas,
and indicate their maturity in hospitals, ambulatory
care, nursing homes, and personal health records.

 Questions for Discussion
 1. Reread the hypothetical case study in

Sect. 6.2.1 .
 (a) What are three primary benefi ts of

the software used in James’s care?
 (b) How many different ways is James’s

information used to help manage
his care?

 (c) Without the software and infor-
mation, how might his care be
different?

 (d) How has health care that you have
experienced similar or different to
this example?

 2. For what types of software development
projects would an agile development
approach be better than a waterfall
approach? For what types of develop-
ment would waterfall be preferred?

 3. What are reasons an institution would
choose to develop software instead of
purchase it from a vendor?

 4. How is would various stages in the soft-
ware development life cycle be different
when developing software versus con-
fi guring or adding enhancements to an
existing software program?

 5. Reread the case studies in Sect. 6.3.3.2 .
 (a) What are the benefi ts and advan-

tages of the different approaches to
development and acquisition among
the scenarios?

 (b) What were the initial costs for each
institution for the software? Where
will most of the long-term costs be?

 6. In what ways might new trends in
 software (small “apps” that accomplish
focused tasks) change long-term
 strategies for electronic health record
architectures?

6 Software Engineering for Health Care and Biomedicine

	6: Software Engineering for Health Care and Biomedicine
	6.1	 How Can a Computer System Help in Health Care?
	6.2	 Software Functions in Health Care
	6.2.1	 Cases Study of Health Care Software
	6.2.2	 Acquiring and Storing Data
	6.2.3	 Summarizing and Displaying Data
	6.2.4	 Facilitating Communication and Information Exchange
	6.2.5	 Generating Alerts, Reminders, and Other Forms of Decision Support
	6.2.6	 Supporting Educational, Research, and Public Health Initiatives

	6.3	 Software Development and Engineering
	6.3.1	 Software Development
	6.3.1.1	 Planning/Analysis
	6.3.1.2	 Design
	6.3.1.3	 Development
	6.3.1.4	 Integration and Test
	6.3.1.5	 Implementation
	6.3.1.6	 Verification and Validation
	6.3.1.7	 Operations and Maintenance
	6.3.1.8	 Evaluation

	6.3.2	 Software Development Models
	6.3.2.1	 Waterfall Model
	6.3.2.2	 Agile Models

	6.3.3	 Software Engineering
	6.3.3.1	 Software Acquisition
	6.3.3.2	 Case Studies of EHR Adoption
	6.3.3.3	 Enhancing Acquired Software
	6.3.3.4	 Integration with existing systems
	6.3.3.5	 Development of Custom Applications That Supplement or Enhance Commercial Systems

	6.4	 Emerging Influences and Issues
	6.5	 Summary
	Suggested Readings

