
149E.H. Shortliffe, J.J. Cimino (eds.), Biomedical Informatics,
DOI 10.1007/978-1-4471-4474-8_5, © Springer-Verlag London 2014

 After reading this chapter, you should know the
answers to these questions:
• What are the components of computer

architectures?
• How are medical data stored and manipulated

in a computer?
• How can information be displayed clearly?
• What are the functions of a computer’s operat-

ing system?
• What is the technical basis and business model

of cloud computing?
• What advantages does using a database man-

agement system provide over storing and
manipulating your own data directly?

• How do local area networks facilitate data
sharing and communication within health care
institutions?

• What are the maintenance advantages of
Software-as-a-Service?

• How can the confi dentiality of data stored in
distributed computer systems be protected?

• How is the Internet used for medical applica-
tions today?

• How are wireless, mobile devices, federated
and hosted systems changing the way the
Internet will be used for biomedical
applications?

5.1 Computer Architectures

 Architectures are the designs or plans of systems.
Architectures have both physical and conceptual
aspects. Computer architectures for health care
and biomedicine are the physical designs and
conceptual plans of computers and information
systems that are used in biomedical applications.

 Health professionals and the general public
encounter computers constantly. As electronic
health records are increasingly deployed, clini-
cians use information systems to record medical
observations, order drugs and laboratory tests,
and review test results. Physicians and patients
use personal computing environments such as
desktop computers, laptops, and mobile devices
to access the Internet, to search the medical lit-
erature, to communicate with colleagues and
friends, and to do their clinical and administra-
tive work. In fact, computers are ubiquitous,
touching every aspect of human life, and
increasingly image-intense, interactive, and
collaborative.

 J. C. Silverstein , MD, MS (*)
 Research Institute , NorthShore University
HealthSystem , 1001 University Place ,
 Evanston 60201 , IL , USA
 e-mail: jcs@uchicago.edu

 I. T. Foster , PhD
 Searle Chemistry Laboratory, Computation Institute ,
 University of Chicago and Argonne National
Laboratory , 5735 South Ellis Avenue ,
 Chicago 60637 , IL , USA
 e-mail: foster@uchicago.edu

 5

 This chapter is adapted from an earlier version in the third
edition authored by GioWiederhold and Thomas
C. Rindfl eisch.

 Computer Architectures for Health
Care and Biomedicine

 Jonathan C. Silverstein and Ian T. Foster

150

 Individual computers differ in speed, storage
capacity, and cost; in the number of users that
they can support; in the ways that they are inter-
connected; in the types of applications that they
can run; in the way they are managed and shared;
in the way they are secured; and in the way peo-
ple interact with them. On the surface, the differ-
ences among computers can be bewildering, but
the selection of appropriate hardware, software,
and the architecture under which they are assem-
bled is crucial to the success of computer applica-
tions. Despite these differences, however,
computers use the same basic mechanisms to
store and process information and to communi-
cate with the outside world whether desktop, lap-
top, mobile device, gaming system, digital video
recorder, or massive computer cluster. At the
conceptual level, the similarities among all these
computers greatly outweigh the differences.

 In this chapter, we will cover fundamental
concepts related to computer hardware, software,
and distributed systems (multiple computers
working together), including data acquisition,
processing, communications, security, and shar-
ing. We assume that you use computers but have
not been concerned with their internal workings
or how computers work together across the global
Internet. Our aim is to give you the background
necessary for understanding the underpinning
technical architecture of the applications dis-
cussed in later chapters. We will describe the
component parts that make up computers and
their assembly into complex distributed systems
that enable biomedical applications.

5.2 Hardware

 Early computers were expensive to purchase and
operate. Only large institutions could afford to
acquire a computer and to develop its software.
In the 1960s, the development of integrated cir-
cuits on silicon chips resulted in dramatic
increases in computing power per dollar. Since
that time, computer hardware has become dra-
matically smaller, faster, more reliable and
 personal. As computation, storage, and commu-
nication capabilities have increased so have data

volumes, particularly genomic and imaging data.
At the same time, software packages have been
developed that remove much of the burden of
writing the infrastructure of applications via
encapsulation or abstraction of underlying soft-
ware to “higher level” commands. The result is
that computers are increasingly complex in their
layered hardware and software architectures, but
simpler for individuals to program and to use.

 Essentially all modern general-purpose com-
puters have similar base hardware (physical
equipment) architectures. This is generally true
whether they are large systems supporting many
users, such as hospital information systems, indi-
vidual personal computers, laptops, mobile
devices, or even whole computers on one silicon
“chip” embedded in medical devices. The scale
of computing, memory, display and style of usage
largely distinguish different individual hardware
devices. Later we will discuss assemblies of
computers for complex applications.

 General computer architectures follow princi-
ples expressed by John von Neumann in 1945.
Figure 5.1 illustrates the confi guration of a simple
 von Neumann machine . Extending this to mod-
ern computers, they are composed of one or more
• Central processing units (CPUs) that per-

form general computation
• Computer memories that store programs and

data that are being used actively by a CPU
• Storage devices , such as magnetic disks and

tapes, optical disks , and solid state drives ,
that provide long-term storage for programs
and data

• Graphics processing units (GPUs) that per-
form graphic displays and other highly paral-
lel computations

• Input and output (I/O) devices, such as key-
boards, pointing devices, touch screens, con-
trollers, video displays, and printers, that
facilitate user interaction and storage

• Communication equipment, such as network
interfaces, that connect computers to networks
of computers

• Data buses , electrical pathways that transport
encoded information between these subsystems
 Most computers are now manufactured with

multiple CPUs on a single chip, and in some

J.C. Silverstein and I.T. Foster

151

cases multiple GPUs, as well as multiple layers
of memory, storage, I/O devices and communica-
tion interfaces. Multiple interconnected CPUs
with shared memory layers further enable paral-
lel processing (performing multiple computa-
tions simultaneously). The challenge then is for
the software to distribute the computation across
these units to gain a proportionate benefi t.

5.2.1 Central Processing Unit

 Although complete computer systems appear to
be complex, the underlying principles are simple.
A prime example is a processing unit itself. Here
simple components can be carefully combined to
create systems with impressive capabilities. The
structuring principle is that of hierarchical orga-
nization: primitive units (electronic switches) are
combined to form basic units that can store letters

and numbers, add digits, and compare values
with one another. The basic units are assembled
into registers capable of storing and manipulat-
ing text and large numbers. These registers in
turn are assembled into the larger functional units
that make up the central component of a com-
puter: the CPU.

 The logical atomic element for all digital com-
puters is the binary digit or bit . Each bit can
assume one of two values: 0 or 1. An electronic
switch that can be set to either of two states stores
a single bit value. (Think of a light switch that
can be either on or off.) These primitive units are
the building blocks of computer systems.
Sequences of bits (implemented as sequences of
switches) are used to represent larger numbers
and other kinds of information. For example, four
switches can store 2 4 , or 16, different combina-
tion of values: 0000, 0001, 0010, 0011, 0100,
0101, 0110, and so on, up to 1111. Thus, 4 bits

 Fig. 5.1 The von Neumann model: the basic architecture of most modern computers. The computer comprises a single
central processing unit (CPU), an area for memory, and a data bus for transferring data between the two

5 Computer Architectures for Health Care and Biomedicine

152

can represent any decimal value from 0 to 15;
e.g., the sequence 0101 is the binary (base 2)
representation of the decimal number 5—namely,
0 × 2 3 + 1 × 2 2 + 0 × 2 1 + 1 × 2 0 = 5. A byte is a
sequence of 8 bits; it can take on 2 8 or 256 values
(0–255).

 Groups of bits and bytes can represent not
only decimal integers but also fractional num-
bers, general characters (upper-case and lower-
case letters, digits, and punctuation marks),
instructions to the CPU, and more complex data
types such as pictures, spoken language, and the
content of a medical record. Figure 5.2 shows the
 American Standard Code for Information
Interchange (ASCII), a convention for repre-
senting 95 common characters using 7 bits. These
7 bits are commonly placed into an 8-bit unit, a
byte, which is the common way of transmitting
and storing these characters. The eighth bit may

be used for formatting information (as in a word
processor) or for additional special characters
(such as currency and mathematical symbols or
characters with diacritic marks), but the ASCII
base standard does not cover its use. Not all char-
acters seen on a keyboard can be encoded and
stored as ASCII. The Delete and Arrow keys are
often dedicated to edit functions, and the Control,
Escape, and Function keys are used to modify
other keys or to interact directly with programs.
A standard called Unicode represents characters
needed for foreign languages using up to 16 bits;
ASCII is a small subset of Unicode.

 The CPU works on data that it retrieves from
memory, placing them in working registers.
By manipulating the contents of its registers,
the CPU performs the mathematical and logi-
cal functions that are basic to information pro-
cessing: addition, subtraction, and comparison

 Fig. 5.2 The American
Standard Code for
Information Interchange
(ASCII) is a standard scheme
for representing alphanumeric
characters using 7 bits. The
upper-case and lower-case
alphabet, the decimal digits,
and common punctuation
characters are shown here
with their ASCII
representations

J.C. Silverstein and I.T. Foster

153

(“is greater than,” “is equal to,” “is less than”).
In addition to registers that perform computa-
tion, the CPU also has registers that it uses to
store instructions—a computer program is a set
of such instructions—and to control processing.
In essence, a computer is an instruction follower:
it fetches an instruction from memory and then
executes the instruction, which usually is an
operation that requires the retrieval, manipula-
tion, and storage of data into memory or regis-
ters. The processor often performs a simple loop,
fetching and executing each instruction of a pro-
gram in sequence. Some instructions can direct
the processor to begin fetching instructions from
a different place in memory or point in the pro-
gram. Such a transfer of fl ow control provides
fl exibility in program execution. Parallel fl ows
may also be invoked.

5.2.2 Memory

 The computer’s working memory stores the pro-
grams and data currently being used by the CPU.
Working memory has two parts: read - only
memory (ROM) and random - access memory
(RAM).

 ROM, or fi xed memory, is permanent and
unchanging. It can be read, but it cannot be
altered or erased. It is used to store a few crucial
programs that do not change and that must be
available at all times. One such predefi ned pro-
gram is the bootstrap sequence, a set of initial
instructions that is executed each time the com-
puter is started. ROM also is used to store pro-
grams that must run quickly—e.g., the base
graphics that run the Macintosh computer
interface.

 More familiar to computer programmers is
RAM, often just called memory . RAM can be
both read and written into. It is used to store the
programs, control values, and data that are in cur-
rent use. It also holds the intermediate results of
computations and the images to be displayed on
the screen. RAM is much larger than ROM. For
example, we might speak of a 2 gigabyte memory
chip. A kilobyte is 2 10 , or 10 3 , or 1,024 bytes; a
 megabyte is 2 20 , or 10 6 , or 1,048,576 bytes; and a

 gigabyte is 2 30 , or 10 9 , or 1,073,741,824 bytes.
Increasing powers of 2 10 , or 10 3 , are terabytes ,
 petabytes , and exabytes (10 18).

 A sequence of bits that can be accessed by the
CPU as a unit is called a word . The word size is
a function of the computer’s design. Early com-
puters had word sizes of 8 or 16 bits; newer,
faster computers had 32-bit and now 64-bit word
sizes that allow processing of larger chunks of
information at a time. The bytes of memory are
numbered in sequence. The CPU accesses each
word in memory by specifying the sequence
number, or address , of its starting byte.

5.2.3 Long-Term Storage

 The computer’s memory is relatively expensive,
being specialized for fast read–write access;
therefore, it is limited in size. It is also volatile :
its contents are changed when the next program
runs, and memory contents are not retained when
power is turned off. For many medical applica-
tions we need to store more information than can
be held in memory, and we want to save all that
information for a long time. To save valuable pro-
grams, data, or results we place them into long -
term storage .

 Programs and data that must persist over lon-
ger periods than in volatile memory are stored on
long-term storage devices, such as hard disks,
fl ash memory or solid state disks, optical disks,
or magnetic tape, each of which provide persis-
tent storage for less cost per byte than memory
and are widely available. The needed information
is loaded from such storage into working mem-
ory whenever it is used. Conceptually, long-term
storage can be divided into two types: (1) active
storage is used to store data that may need to be
retrieved with little delay, e.g., the medical record
of a patient who currently is being treated within
the hospital; and (2) archival storage is used to
store data for documentary or legal purposes,
e.g., the medical record of a patient who is
deceased.

 Computer storage also provides a basis for the
sharing of information. Whereas memory is dedi-
cated to an executing program, data written on

5 Computer Architectures for Health Care and Biomedicine

154

storage in fi le systems or in databases is avail-
able to other users or processes that can access
the computer’s storage devices. Files and data-
bases complement direct communication among
computer users and have the advantage that the
writers and readers need not be present at the
same time in order to share information.

5.2.4 Graphics Processing Unit

 Graphics processing units are specialized for
handling computation over many bytes simulta-
neously. They can be thought of as enabling of
simultaneous processing of many data elements
with tight coupling to their memory, or frame
buffers, but with limited instruction sets. This
allows rapid manipulation of many memory loca-
tions simultaneously, essential to their power for
computer graphics, but leaves less fl exibility in
general. For example, GPUs are much more effi -
cient than CPUs for video display, the primary
purpose for which they were invented, or for
highly parallel computation on a single machine,
such as comparing genomic sequences or image
processing. However, GPUs generally require
different, less mature, programming languages
and software architectures than CPUs making
them harder to use to date. Newer languages,
such as Open CL, enable some computer codes to
run over either CPUs or GPUs. When GPUs are
used for general computation, rather than for
video or graphics display, they are referred to as
general purpose GPUs or GPGPUs .

5.2.5 Input Devices

 Data and user-command entry remain the most
costly and awkward aspects of medical data pro-
cessing. Certain data can be acquired automati-
cally; e.g., many laboratory instruments provide
electronic signals that can be transmitted to com-
puters directly, and many diagnostic radiology
instruments produce output in digital form.
Furthermore, redundant data entry can be mini-
mized if data are shared among computers over
networks or across direct interfaces. The most

common instrument for data entry is the key-
board on which the user types. A cursor indi-
cates the current position on the screen. Most
programs allow the cursor to be moved with a
 pointing device , such as a mouse , track pad , or
touch screen , so that making insertions and cor-
rections is convenient. Systems developers con-
tinue to experiment with a variety of alternative
input devices that minimize or eliminate the need
to type.

 There are also three-dimensional pointing
devices, where an indicator, or just the user’s
own body, using optical capture, is positioned in
front of the screen, and a three-dimensional dis-
play may provide feedback to the user. Some
three- dimensional pointing devices used in med-
ical virtual-reality environments also provide
computer- controlled force or tactile feedback ,
so that a user can experience the resistance, for
example, of a simulated needle being inserted
for venipuncture or a simulated scalpel making a
surgical incision.

 In automatic speech recognition, digitized
voice signals captured through a microphone are
matched to the patterns of a vocabulary of known
words, and use grammar rules to allow recogni-
tion of sentence structures. The speech input is
then stored as ASCII-coded text. This technology
is improving in fl exibility and reliability, but
error rates remain suffi ciently high that manual
review of the resulting text is needed. This is eas-
ier for some users than typing.

5.2.6 Output Devices

 The presentation of results, or of the output , is
the complementary step in the processing of
medical data. Many systems compute informa-
tion that is transmitted to health care providers
and is displayed immediately on local personal
computers or printed so that action can be taken.
Most immediate output appears at its destination
on a display screen, such as the fl at-panel liquid
crystal display (LCD) or light - emitting diode
(LED) based displays of a personal computer
(PC). The near-realistic quality of computer dis-
plays enables unlimited interaction with text,

J.C. Silverstein and I.T. Foster

155

images, video, and interactive graphical ele-
ments. Graphical output is essential for summa-
rizing and presenting the information derived
from voluminous data.

 A graphics screen is divided into a grid of pic-
ture elements called pixels . One or more bits in
memory represent the output for each pixel. In a
black-and-white monitor, the value of each pixel
on the screen is associated with the level of inten-
sity, or gray scale. For example, 2 bits can distin-
guish 2 2 or 4 display values per pixel: black,
white, and two intermediate shades of gray. For
color displays, the number of bits per pixel, or bit
depth , determines the contrast and color resolu-
tion of an image. Three sets of multiple bits are
necessary to specify the color of pixels on LCDs,
giving the intensity for red, green, and blue com-
ponents of each pixel color, respectively. For
instance, three sets of 8 bits per pixel provide 2 24
or 16,777,216 colors. The number of pixels per
square inch determines the spatial resolution of
the image (Fig. 5.3). Both parameters determine
the size requirements for storing images. LCD
color projectors are readily available so that the
output of a workstation can also be projected
onto a screen for group presentations. Multiple
standard hardware interfaces, such as VGA and
HDMI also enable computers to easily display to
high defi nition and even stereoscopic televisions
(3DTVs). Much diagnostic information is
 produced in image formats that can be shown on
graphics terminals. Examples are ultrasound
observations, magnetic resonance images
(MRIs), and computed tomography (CT) scans.

 For portability and traditional fi ling, output is
printed on paper. Printing information is slower
than displaying it on a screen, so printing is best
done in advance of need. In a clinic, relevant por-
tions of various patient records may be printed on
high-volume printers the night before scheduled
visits. Laser printers use an electromechanically
controlled laser beam to generate an image on a
xerographic surface, which is then used to pro-
duce paper copies, just as is done in a copier.
Their spatial resolution is often better than that of
displays, allowing 600 dots (pixels) per inch
(commercial typesetting equipment may have a
resolution of several thousand dots per inch).

Color ink - jet printers are inexpensive, but the
ink cartridges raise the cost under high use. Liquid
ink is sprayed on paper by a head that moves back
and forth for each line of pixels. Ink- jet printers
have lower resolution than laser printers and are
relatively slow, especially at high resolution. Ink-
jet printers that produce images of photographic
quality are also readily available. Here the base
colors are merged while being sprayed so that true
color mixes are placed on the paper.

 Other output mechanisms are available to
computer systems and may be used in medical
applications, particularly sound, for alerts, feed-
back and instruction, such as for Automatic
External Defi brillators (AEDs). A computer can
produce sound via digital-to-analog conversion
(see Sect. 5.3). There are also 3D printers which
create objects.

5.2.7 Local Data Communications

 Information can be shared most effectively by
allowing access for all authorized participants
whenever and wherever they need it. Transmitting
data electronically among applications and com-
puter systems facilitates such sharing by mini-
mizing delays and by supporting interactive
collaborations. Videoconferencing is also sup-
ported on PCs. Transmitting paper results in a
much more passive type of information sharing.
Data communication and integration are critical
functions of health care information systems.
Modern computing and communications are
deeply intertwined.

 Computer systems used in health care are spe-
cialized to fulfi ll the diverse needs of health pro-
fessionals in various areas, such as physicians’
offi ces, laboratories, pharmacies, intensive care
units, and business offi ces. Even if their hardware
is identical, their content will differ, and some of
that content must be shared with other applica-
tions in the health care organization. Over time,
the hardware in the various areas will also
diverge—e.g., imaging departments will require
more capable displays and larger storage, other
areas will use more processor power. Demand for
growth and funding to accommodate change

5 Computer Architectures for Health Care and Biomedicine

156

 Fig. 5.3 Demonstration of how varying the number of
pixels and the number of bits per pixel affects the spatial
and contract resolution of a digital image. The image in
the upper right corner was displayed using a 256 x 256
array of pixels, 8 bits per pixel; the subject (Walt

Whitman) is easily discernible (Source: Reproduced with
permission from Price R.R., & James A.E. (1982). Basic
principles and instrumentation of digital radiography. In:
Price R.R., et al. (Eds.). Digital radiography: A focus on
clinical utility . Orlando: WB Saunders)

J.C. Silverstein and I.T. Foster

157

occurs at different times. Communication among
diverse systems bridges the differences in com-
puting environments.

 Communication can occur via telephone
lines, dedicated or shared wires, fi ber-optic
cables, infrared, or radio waves (wireless). In
each case different communication interfaces
must be enabled with the computer, different con-
ventions or communication protocols must be
obeyed, and a different balance of performance
and reliability can be expected. For example,
wired connections are typically higher volume
communication channels and more reliable.
However, communication paths can reach capac-
ity; so for example, a wired computer in a busy
hotel where the network is overloaded may com-
municate less reliably than a wireless smart
phone with a strong wireless signal. Thus, spe-
cifi c communication needs and network capabili-
ties and loads must always be considered when
designing applications and implementing them.

 The overall bit rate of a digital communica-
tion link is a combination of the rate at which
symbols can be transmitted and the effi ciency
with which digital information (in the form of
bits) is encoded in the symbols. There are many
available data transmission options for connect-
ing local networks (such as in the home).
 Integrated services digital network (ISDN)
and, later, digital subscriber line (DSL) tech-
nologies allow network communications using
conventional telephone wiring (twisted pairs).
These allow sharing of data and voice transmis-
sion ranging from 1 to 10 megabits per second
(Mbps), depending on the distance from the dis-
tribution center.

 In areas remote to wired lines, these digital ser-
vices may be unavailable, but the communica-
tions industry is broadening access to digital
services over wireless channels. In fact, in many
countries, usable wireless bandwidth exceeds
wired bandwidth in many areas. Transmission for
rapid distribution of information can occur via
cable modems using coaxial cable (up to 30
Mbps) or direct satellite broadcast. These alterna-
tives have a very high capacity, but all subscribers
then share that capacity. Also for DSL, digital
cable services and wireless services, transmission

speeds are often asymmetrical, with relatively
low-speed service used to communicate back to
the data source. This design choice is rationalized
by the assumption that most users receive more
data than they send, for example, in downloading
and displaying graphics, images, and video, while
typing relatively compact commands to make this
happen. This assumption breaks down if users
generate large data objects on their personal
machine that then have to be sent to other users. In
this case it may be more cost-effective in terms of
user time to purchase a symmetric communica-
tion service. Home networking has been further
expanded with the use of WiFi (IEEE 802.11 stan-
dard for wireless communications). Computers,
cell phones, and many personal health and fi tness
devices with embedded computers now support
WiFi to establish access to other computers and
the Internet, while Bluetooth is another wireless
protocol generally used for communicating
among computer components (such as wireless
headsets to cell phones and wireless keyboards to
computers).

 Frame Relay is a network protocol designed
for sending digital information over shared,
 wide - area networks (WANs). It transmits
variable- length messages or packets of informa-
tion effi ciently and inexpensively over dedicated
lines that may handle aggregate speeds up to 45
Mbps. Asynchronous Transfer Mode (ATM) is
a protocol designed for sending streams of small,
fi xed-length cells of information over very high-
speed dedicated connections—most often digital
optical circuits. The underlying optical transmis-
sion circuit sends cells synchronously and sup-
ports multiple ATM circuits. The cells associated
with a given ATM circuit are queued and pro-
cessed asynchronously with respect to each other
in gaining access to the multiplexed (optical)
transport medium. Because ATM is designed to
be implemented by hardware switches, informa-
tion bit rates over 10 gigabits per second (Gbps)
are typical.

 For communication needs within an offi ce, a
building, or a campus, installation of a local - area
network (LAN) allows local data communica-
tion without involving the telephone company or
 network access provider . Such a network is

5 Computer Architectures for Health Care and Biomedicine

158

dedicated to linking multiple computer nodes
together at high speeds to facilitate the sharing of
resources—data, software, and equipment—
among multiple users. Users working at individ-
ual workstations can retrieve data and programs
from network fi le servers : computers dedicated
to storing local fi les, both shared and private. The
users can process information locally and then
save the results over the network to the fi le server
or send output to a shared printer.

 There are a variety of protocols and technolo-
gies for implementing LANs, although the differ-
ences should not be apparent to the user. Typically
data are transmitted as messages or packets of
data; each packet contains the data to be sent, the
network addresses of the sending and receiving
nodes, and other control information. LANs are
limited to operating within a geographical area of
at most a few miles and often are restricted to a
specifi c building or a single department. Separate
remote LANs may be connected by bridges ,
routers, or switches (see below), providing con-
venient communication between machines on
different networks. The information technology
department of a health care organization typi-
cally takes responsibility for implementing and
linking multiple LANs to form an enterprise net-
work. Important services provided by such net-
work administrators include integrated access to
WANs, specifi cally to the Internet (see later dis-
cussion on Internet communication), service reli-
ability, and security.

 Early LANs used coaxial cables as the commu-
nication medium because they could deliver reli-
able, high-speed communications. With improved
communication signal–processing technologies,
however, twisted - pair wires (Cat-5 and better
quality) have become the standard. Twisted-pair
wiring is inexpensive and has a high bandwidth
(capacity for information transmission) of at least
100 Mbps. An alternate medium, fi ber - optic
cable , offers the highest bandwidth (over 1 bil-
lion bps or 1 Gbps) and a high degree of reliability
because it uses light waves to transmit informa-
tion signals and is not susceptible to electrical
interference. Fiber-optic cable is used in LANs
to increase transmission speeds and distances by
at least one order of magnitude over twisted-pair

wire. Splicing and connecting into optical cable
is more diffi cult than into twisted-pair wire,
however, so in-house delivery of networking ser-
vices to the desktop is still easier using twisted-
pair wires. Fiber-optic cable, twisted-pair wires,
and WiFi are often used in a complementary
fashion—fi ber-optic cable for the high-speed,
shared backbone of an enterprise network or
LAN and twisted-pair wires extending out from
side-branch hubs to bring service to small areas
and twisted-pair wires or WiFi to the individual
workstation.

 Rapid data transmission is supported by
LANs. Many LANs still operate at 10 Mbps, but
100-Mbps networks are now cost-effective. Even
at 10 Mbps, the entire contents of this book could
be transmitted in a few seconds. Multiple users
and high-volume data transmissions such as
video may congest a LAN and its servers, how-
ever, so the effective transmission speed seen by
each user may be much lower. When demand is
high, LANs can be duplicated in parallel.
Gateways, routers, and switches shuttle packets
among these networks to allow sharing of data
between computers as though the machines were
on the same LAN. A router or a switch is a spe-
cial device that is connected to more than one
network and is equipped to forward packets that
originate on one network segment to machines on
another network. Gateways perform routing and
can also translate packet formats if the two con-
nected networks run different communication
protocols.

 Messages also can be transmitted through the
air by radio, microwave, infrared, satellite signal,
or line-of-sight laser-beam transmission. Appli-
cation of these have many special trade-offs and
considerations. Broadband has a specifi c techni-
cal meaning related to parallelization of signal
transmission, but has been used more recently as
a term to refer to any relatively high bandwidth
network connection, such as cable service or
third generation (3G) or fourth generation (4G)
wireless cellular telephone services, which are
now widespread means of broadband Internet
access and communication.

 Wireless users of a hospital or clinic can use
these radio signals from portable devices to

J.C. Silverstein and I.T. Foster

159

 communicate with the Internet and, when autho-
rized, to servers that contain clinical data and
thus can gain entry to the LANs and associated
services. Hospitals have many instruments that
generate electronic interference, and often have
reinforced concrete walls, so that radio transmis-
sion may not be reliable internally over long dis-
tances. In fact, in many medical settings the use
of cellular or similar radio technologies was also
prohibited for a time for perhaps justifi ed fear of
electromagnetic interference with telemetry or
other delicate instruments. You experience elec-
tromagnetic interference when proximity of a
cell phone causes public address speakers to
make chattering sounds. These features and short
battery life had made portable wireless devices
weakly fi t computers in medical applications
until recently. Now, with: (1) better battery life
due to improvements in battery technology; (2)
smarter wireless radio use by the portable devices
(e.g. cellular phones, tablet computers), which
decrease the radio transmission power when they
have stronger wireless signals (also reducing the
risk for electromagnetic interference); (3) more
reliable hospital wireless networks; and (4) better
applications; portable wireless devices (e.g. tab-
let computers) are exploding in use in hospital
environments.

5.3 Data Acquisition and Signal
Processing Considerations

 A prominent theme of this book is that capturing
and entering data into a computer manually is
diffi cult, time-consuming, error-prone, and
expensive. Real - time acquisition of data from
the actual source by direct electrical connections
to instruments can overcome these problems.
Direct acquisition of data avoids the need for
people to measure, encode, and enter the data
manually. Sensors attached to a patient convert
biological signals—such as blood pressure, pulse
rate, mechanical movement, and electrocardio-
gram (ECG)—into electrical signals, which are
transmitted to the computer. The signals are sam-
pled periodically and are converted to digital rep-
resentation for storage and processing. Automated

data-acquisition and signal-processing tech-
niques are particularly important in patient-
monitoring settings (see Chap. 19). Similar
techniques also apply to the acquisition and pro-
cessing of human voice input.

 Most naturally occurring signals are analog
signals —signals that vary continuously. The fi rst
bedside monitors, for example, were wholly ana-
log devices. Typically, they acquired an analog
signal (such as that measured by the ECG) and
displayed its level on a dial or other continuous
display (see, for example, the continuous signal
recorded on the ECG strip shown in Fig. 19.4).

 The computers with which we work are digi-
tal computers . A digital computer stores and
processes values in discrete values collected at
discrete points and at discrete times. Before com-
puter processing is possible, analog signals must
be converted to digital units. The conversion pro-
cess is called analog - to - digital conversion
(ADC). You can think of ADC as sampling and
rounding—the continuous value is observed
(sampled) at some instant and is rounded to the
nearest discrete unit (Fig. 5.4). You need one bit
to distinguish between two levels (e.g., on or off);
if you wish to discriminate among four levels,
you need two bits (because 2 2 = 4), and so on.

 Two parameters determine how closely the
digital data represent the original analog signal:

2.0

Analog
representation

2-bit digital
representation

11

10

01

00

1.0

0.0

–1.0

–2.0

 Fig. 5.4 Analog-to-digital conversion (ADC). ADC is a
technique for transforming continuous-valued signals to
discrete values. In this example, each sampled value is
converted to one of four discrete levels (represented by 2
bits)

5 Computer Architectures for Health Care and Biomedicine

http://dx.doi.org/10.1007/978-1-4471-4474-8_19
http://dx.doi.org/10.1007/978-1-4471-4474-8_19#Fig4

160

the precision with which the signal is recorded
and the frequency with which the signal is sam-
pled. The precision is the degree to which a digi-
tal estimate of a signal matches the actual analog
value. The number of bits used to encode the digi-
tal estimate and their correctness determines pre-
cision; the more bits, the greater the number of
levels that can be distinguished. Precision also is
limited by the accuracy of the equipment that con-
verts and transmits the signal. Ranging and cali-
bration of the instruments, either manually or
automatically, is necessary for signals to be repre-
sented with as much accuracy as possible.
Improper ranging will result in loss of informa-
tion. For example, a change in a signal that varies
between 0.1 and 0.2 V will be undetectable if the
instrument has been set to record changes between
−2.0 and 2.0 in 0.5 V increments. Figure 5.5
shows another example of improper ranging.

 The sampling rate is the second parameter
that affects the correspondence between an ana-
log signal and its digital representation. A sam-
pling rate that is too low relative to the rate with
which a signal changes value will produce a poor

representation (Fig. 5.6). On the other hand,
oversampling increases the expense of process-
ing and storing the data. As a general rule, you
need to sample at least twice as frequently as the
highest-frequency component that you need to
observe in a signal. For instance, looking at an
ECG, we fi nd that the basic contraction repetition
frequency is at most a few per second, but that the
 QRS wave within each beat (see Sect. 17.5) con-
tains useful frequency components on the order
of 150 cycles per second, i.e., the QRS signal
rises and falls within a much shorter interval than

Analog
representation

2-bit digital
representation

11

10

01

00

2.0

1.0

0.0

–1.0

–2.0

 Fig. 5.5 Effect on precision of ranging. The amplitude of
signals from sensors must be ranged to account, for exam-
ple, for individual patient variation. As illustrated here,
the details of the signal may be lost if the signal is insuf-
fi ciently amplifi ed. On the other hand, over amplifi cation
will produce clipped peaks and troughs

a

b

c

 Fig. 5.6 The greater the sampling rate is, the more
closely the sampled observations will correspond to the
underlying analog signal. The sampling rate in (a) is high-
est; that in (b) is lower; and that in (c) is the lowest. When
the sampling rate is very low (as in c), the results of the
analog-to-digital conversion (ADC) can be misleading.
Note the degradation of the quality of the signal from (a)
to (c)

J.C. Silverstein and I.T. Foster

http://dx.doi.org/10.1007/978-1-4471-4474-8_17.5

161

the basic heart beat. Thus, the ECG data- sampling
rate should be at least 300 measurements per sec-
ond. The rate calculated by doubling the highest
frequency is called the Nyquist frequency . The
ideas of sampling and signal estimation apply
just as well to spatially varying signals (like
images) with the temporal dimension replaced by
one or more spatial dimensions.

 Another aspect of signal quality is the amount
of noise in the signal—the component of the
acquired data that is not due to the specifi c phe-
nomenon being measured. Primary sources of
noise include random fl uctuations in a signal
detector or electrical or magnetic signals picked
up from nearby devices and power lines. Once
the signal has been obtained from a sensor, it
must be transmitted to the computer. Often, the
signal is sent through lines that pass near other
equipment. En route, the analog signals are
 susceptible to electromagnetic interference.
Inaccuracies in the sensors, poor contact between
sensor and source (e.g., the patient), and distur-
bances from signals produced by processes other
than the one being studied (e.g., respiration inter-
feres with the ECG) are other common sources of
noise.

 Three techniques, often used in combination,
minimize the amount of noise in a signal before
its arrival in the computer:
 1. Shielding , isolation, and grounding of cables

and instruments carrying analog signals all
reduce electrical interference. Often, two
twisted wires are used to transmit the signal—
one to carry the actual signal and the other to
transmit the ground voltage at the sensor. At
the destination, a differential amplifi er mea-
sures the difference. Most types of interfer-
ence affect both wires equally; thus, the
difference should refl ect the true signal. The
use of glass fi ber-optic cables, instead of cop-
per wires, for signal transmission eliminates
interference from electrical machinery,
because optical signals are not affected by
relatively slow electrical or magnetic fi elds.

 2. For robust transmission over long dis-
tances, analog signals can be converted into
a frequency- modulated representation. An
FM signal represents changes of the signal

as changes of frequency rather than of ampli-
tude. Frequency modulation (FM) reduces
noise greatly, because interference directly
disturbs only the amplitude of the signal.
As long as the interference does not cre-
ate amplitude changes near the high carrier
frequency, no loss of data will occur during
transmission.
 Conversion of analog signals to digital form

provides the most robust transmission. The
closer to the source the conversion occurs,
the more reliable the data become. Digital
transmission of signals is inherently less
noise-sensitive than is analog transmission:
interference rarely is great enough to change
a 1 value to a 0 value or vice versa.
Furthermore, digital signals can be coded,
permitting detection and correction of trans-
mission errors. Placing a microprocessor
near the signal source is now the most com-
mon way to achieve such a conversion. The
development of digital signal processing
(DSP) chips—also used for computer voice
mail and other applications—facilitates
such applications.

 3. Filtering algorithms can be used to reduce
the effect of noise. Usually, these algorithms
are applied to the data once they have been
stored in memory. A characteristic of noise is
its relatively random pattern. Repetitive sig-
nals, such as an ECG, can be integrated over
several cycles, thus reducing the effects of
random noise. When the noise pattern differs
from the signal pattern, Fourier analysis can
be used to fi lter the signal; a signal is decom-
posed into its individual components, each
with a distinct period and amplitude. (The
article by Wiederhold and Clayton (1985) in
the Suggested Readings explains Fourier anal-
ysis in greater detail.) Unwanted components
of the signal are assumed to be noise and are
eliminated. Some noise (such as the 60-cycle
interference caused by a building’s electrical
circuitry) has a regular pattern. In this case,
the portion of the signal that is known to be
caused by interference can be fi ltered out.
 Once the data have been acquired and cleaned

up, they typically are processed to reduce

5 Computer Architectures for Health Care and Biomedicine

162

their volume and to abstract information
for use by interpretation programs. Often,
the data are analyzed to extract important
parameters, or features, of the signal—e.g.,
the duration or intensity of the ST segment
of an ECG. The computer also can analyze
the shape of the waveform by comparing
one part of a repetitive signal to another,
e.g., to detect ECG beat irregularities, or by
comparing a waveform to models of known
patterns, or templates. In speech recogni-
tion , the voice signals can be compared
with stored profi les of spoken words.
Further analysis is necessary to determine
the meaning or importance of the signals—
e.g., to allow automated ECG-based car-
diac diagnosis or to respond properly to the
words recognized in a spoken input.

5.4 Internet Communication

 External routers link the users on a LAN to a
 regional network and then to the Internet . The
Internet is a WAN that is composed of many
regional and local networks interconnected by
long-range backbone links , including interna-
tional links. The Internet was begun by the National
Science Foundation in the 1980s, a period in which
various networking approaches were overtaken by
a common protocol designed and inspired by mili-
tary considerations to enable scalability and robust-
ness to failure of individual links in the network.

 All Internet participants agree on many stan-
dards. The most fundamental is the protocol suite
referred to as the Transmission Control
Protocol / Internet Protocol (TCP / IP). Data
transmission is always by structured packets, and
all machines are identifi ed by a standard for IP
addresses. An Internet address consist of a
sequence of four 8-bit numbers, each ranging
from 0 to 255— most often written as a dotted
sequence of numbers: a.b.c.d. Although IP
addresses are not assigned geographically (the
way ZIP codes are), they are organized hierarchi-
cally, with a fi rst component identifying a net-
work, a second identifying a subnet, and a third
identifying a specifi c computer. Computers that

are permanently linked into the Internet may have
a fi xed IP address assigned, whereas users whose
machines reach the Internet by making a wireless
connection only when needed, may be assigned a
temporary address that persists just during a con-
nected session. The Internet is in the process of
changing to a protocol (IPv6) that supports 64-bit
IP addresses, because the worldwide expansion of
the Internet, the block address assignment pro-
cess, and proliferation of networked individual
computer devices are exhausting the old 32-bit
address space. While the changeover is complex
and has been moving slowly for more than a
decade, much work has gone into making this
transition transparent to the user.

 Because 32-bit (and 64-bit) numbers are diffi -
cult to remember, computers on the Internet also
have names assigned. Multiple names may be
used for a given computer that performs distinct
services. The names can be translated to IP
addresses—e.g., when they are used to designate
a remote machine—by means of a hierarchical
name management system called the Domain
Name System (DNS). Designated computers,
called name - servers , convert a name into an IP
address before the message is placed on the net-
work; routing takes place based on only the
numeric IP address. Names are also most often
expressed as dotted sequences of name segments,
but there is no correspondence between the four
numbers of an IP address and the parts of a name.
The Internet is growing rapidly; therefore, peri-
odic reorganizations of parts of the network are
common. Numeric IP addresses may have to
change, but the logical name for a resource can
stay the same and the (updated) DNS can take
care of keeping the translation up to date. This
overall process is governed today by the Internet
Corporation for Assigned Names and Numbers
(ICANN). Three conventions are in use for com-
posing Internet names from segments:
 1. Functional convention: Under the most com-

mon convention for the United States, names
are composed of hierarchical segments increas-
ing in specifi city from right to left, beginning
with one of the top-level domain- class identifi -
ers—e.g., computer.institution.class (ci.uchi-
cago.edu) or institution.class (whitehouse.gov).

J.C. Silverstein and I.T. Foster

163

Initially the defi ned top-level domain classes
were .com, .edu, .gov, .int, .mil, .org, and .net
(for commercial, educational, government,
international organizations, military, non-
profi t, and ISP organizations, respectively).
As Internet use has grown, many more classes
have been added. Other conventions have
evolved as well: www was often used as a pre-
fi x to name the World Wide Web (WWW)
services on a computer (e.g., www.nlm.nih.
gov).

 2. Geographic convention: Names are composed
of hierarchical segments increasing in speci-
fi city from right to left and beginning with
a two-character top-level country domain
identifi er—e.g., institution.town.state.coun-
try (cnri.reston.va.us or city.paloalto.ca.us).
Many countries outside of the United States
use a combination of these conventions, such
as csd.abdn.ac.uk, for the Computer Science
Department at the University of Aberdeen (an
academic institution in the United Kingdom).
Note that domain names are case - insensitive ,
although additional fi elds in a URL, such as
fi le names used to locate content resources,
may be case - sensitive .

 3. Attribute list address (X.400) convention:
Names are composed of a sequence of attribute-
value pairs that specifi es the components
needed to resolve the address— e.g.,/C = GB/
A D M D = B T / P R M D = AC / O = A b d n /
OU = csd/, which is equivalent to the address
csd.abdn.ac.uk. This convention derives from
the X.400 address standard that is used mainly
in Europe. It has the advantage that the address
elements (e.g., /C for Country name, /ADMD
for Administrative Management Domain
name, and /PRMD for Private Management
Domain name) are explicitly labeled and may
come in any order. Country designations differ
as well. However, this type of address is gener-
ally more diffi cult for humans to understand
and has not been adopted broadly in the Internet
community.
 An institution that has many computers may

provide a service whereby all communications
(e.g., incoming e-mails) go to a single address
(e.g., uchicago.edu or apple.com), and then local

tables are used to direct each message to the right
computer or individual. Such a scheme insulates
outside users from internal naming conventions
and changes, and can allow dynamic machine
selection for the service in order to distribute
loading. Such a central site can also provide a
fi rewall—a means to attempt to keep viruses and
unsolicited and unwanted connections or mes-
sages (spam) out. The nature of attacks on net-
works and their users is such that constant
vigilance is needed at these service sites to pre-
vent system and individual intrusions.

 The routing of packets of information between
computers on the Internet is the basis for a rich
array of information services. Each such service—
be it resource naming, electronic mail, fi le transfer,
remote computer log in, World Wide Web, or
another service— is defi ned in terms of sets of
protocols that govern how computers speak to
each other. These worldwide inter- computer link-
age conventions allow global sharing of informa-
tion resources, as well as personal and group
communications. The Web’s popularity and grow-
ing services continues to change how we deal with
people, form communities, make purchases, enter-
tain ourselves, and perform research. The scope of
all these activities is more than we can cover in this
book, so we restrict ourselves to topics important
to health care. Even with this limitation, we can
only scratch the surface of many topics.

 Regional and national networking services are
now provided by myriad commercial communica-
tions companies, and users get access to the regional
networks through their institutions or privately by
paying an Internet service provider (ISP), who in
turn gets WAN access through a network access
provider (NAP). There are other WANs besides the
Internet, some operated by demanding commercial
users, and others by parts of the federal government,
such as the Department of Defense, the National
Aeronautics and Space Administration, and the
Department of Energy. Nearly all countries have
their own networks connected to the Internet so that
information can be transmitted to most computers
in the world. Gateways of various types connect all
these networks, whose capabilities may differ. It is
no longer possible to show the Internet map on a
single diagram.

5 Computer Architectures for Health Care and Biomedicine

http://www.nlm.nih.gov/
http://www.nlm.nih.gov/

164

5.5 Software

 All the functions performed by the hardware of a
computer system are directed by computer pro-
grams, or software (e.g. data acquisition from
input devices, transfer of data and programs to
and from working memory, computation and
information processing by the CPU, formatting
and presentation of results via the GPU, exchange
of data across networks).

5.5.1 Programming Languages

 In our discussion of the CPU in Sect. 5.2 , we
explained that a computer processes information
by manipulating words of information in regis-
ters. Instructions that tell the processor which
operations to perform also are sequences of 0’s
and 1’s, a binary representation called machine
language or machine code or just code .
Machine- code instructions are the only instruc-
tions that a computer can process directly. These
binary patterns, however, are diffi cult for people
to understand and manipulate. People think best
symbolically. Thus, a fi rst step toward making
programming easier and less error prone was the
creation of an assembly language. Assembly lan-
guage replaces the sequences of bits of machine-
language programs with words and abbreviations
meaningful to humans; a programmer instructs
the computer to LOAD a word from memory,
ADD an amount to the contents of a register,
STORE it back into memory, and so on. A pro-
gram called an assembler translates these
instructions into binary machine-language repre-
sentation before execution of the code. There is a
one-to-one correspondence between instructions
in assembly and machine languages. To increase
effi ciency, we can combine sets of assembly
instructions into macros and thus reuse them. An
assembly-language programmer must consider
problems on a hardware-specifi c level, instruct-
ing the computer to transfer data between regis-

ters and memory and to perform primitive
operations, such as incrementing registers, com-
paring characters, and handling all processor
exceptions (Fig. 5.7).

 On the other hand, the problems that the users
of a computer wish to solve are real-world prob-
lems on a higher conceptual level. They want to
be able to instruct the computer to perform tasks
such as to retrieve the latest trends of their test
results, to monitor the status of hypertensive
patients, or to order new medications. To make
communication with computers more under-
standable and less tedious, computer scientists
developed higher-level, user-oriented symbolic -
programming languages .

 Using a higher-level language, such as one of
those listed in Table 5.1 , a programmer defi nes
variables to represent higher-level entities and
specifi es arithmetic and symbolic operations
without worrying about the details of how the
hardware performs these operations. The details

 Fig. 5.7 An assembly-language program and a corre-
sponding machine-language program to add two numbers
and to store the result.

J.C. Silverstein and I.T. Foster

165

of managing the hardware are hidden from the
programmer, who can specify with a single state-
ment an operation that may translate to thousands
of machine instructions. A compiler is used to
translate automatically a high-level program into
machine code. Some languages are interpreted
instead of compiled. An interpreter converts and
executes each statement before moving to the
next statement, whereas a compiler translates all
the statements at one time, creating a binary pro-
gram, which can subsequently be executed many
times. MUMPS (M) is an interpreted language,
LISP may either be interpreted or compiled, and

FORTRAN routinely is compiled before execu-
tion. Hundreds of languages have been devel-
oped—here we touch on only a few that are
important from a practical or conceptual level.

 Each statement of a language is characterized
by syntax and semantics. The syntactic rules
describe how the statements, declarations, and
other language constructs are written—they
defi ne the language’s grammatical structure.
Semantics is the meaning given to the various
syntactic constructs. The following sets of state-
ments (written in Pascal, FORTRAN, COBOL,
and LISP) all have the same semantics:

 Table 5.1 Distinguishing features of 17 common programming languages

 Programming
language

 First
year

 Primary application
domain Type Operation

 Type
checks

 Procedure
call method

 Data management
method

 FORTRAN 1957 Mathematics Procedural Compiled Weak By reference Simple fi les
 COBOL 1962 Business Procedural Compiled Yes By name Formatted fi les
 Pascal 1978 Education Procedural Compiled Strong By name Record fi les
 Smalltalk 1976 Education Object Interpreted Yes By defi ned

methods
 Object
persistence

 PL/l 1965 Math, business Procedural Compiled Coercion By reference Formatted fi les
 Ada 1980 Math, business Procedural Compiled Strong By name Formatted fi les
 Standard ML 1989 Logic, math Functional Compiled Yes By value Stream fi les
 MUMPS (M) 1962 Data handling Procedural Interpreted No By reference Hierarchical fi les
 LISP 1964 Logic Functional Either No By value Data persistence
 C 1976 Data handling Procedural Compiled Weak By reference Stream fi les
 C++ 1986 Data handling Hybrid Compiled Strong By reference Object fi les
 Java 1995 Data display Object Either Strong By value Object classes
 JavaScript 1995 Interactive Web Object Interpreted Weak By value or

reference
 Context-specifi c
object classes

 Perl 1987 Text processing Hybrid Interpreted Dynamic By reference Stream fi les
 Python 1990 Scripting Hybrid Interpreted Dynamic By reference Stream fi les
 Erlang 1986 Real-time systems Functional;

concurrent
 Compiled Dynamic By reference Stream fi les

C := A + B C := A + B LN IS The value (SETQC

PRINTF C WRITE10, is NNN.FFF

"

"() PPLUSA B)

no layout 6c10 ADD A TO B,GIVING C (format file

choice FORM

()

AAT MOVE CTO LN 6 The value

The valueis F5.2 WRITE LN is ~ 5,2F C)

"

" " "()

5 Computer Architectures for Health Care and Biomedicine

166

 Each set of statements instructs the computer
to add the values of variables A and B, to assign
the result to variable C, and to write the result onto
a fi le. Each language has a distinct syntax for indi-
cating which operations to perform. Regardless of
the particular language in which a program is
written, in the end, the computer executes similar
(perhaps exactly the same) instructions to manip-
ulate sequences of 0’s and 1’s within its registers.

 Computer languages are tailored to handle
specifi c types of computing problems, as shown
in Table 5.1 , although all these languages are suf-
fi ciently fl exible to deal with nearly any type of
problem. Languages that focus on a fl exible, gen-
eral computational infrastructure, such as C or
Java have to be augmented with large collections
of libraries of procedures, and learning the spe-
cifi c libraries takes more time than does learning
the language itself. Languages also differ in
usability. A language meant for education and
highly reliable programs will include features to
make it foolproof, by way of checking that the
types of values, such as integers, decimal num-
bers, and strings of characters, match throughout
their use—this is called type checking . Such fea-
tures may cause programs to be slower in execu-
tion, but more reliable. Without type checking,
smart programmers can instruct the computers to
perform some operations more effi ciently than is
possible in a more constraining language.

 Sequences of statements are grouped into pro-
cedures . Procedures enhance the clarity of larger
programs and also provide a basis for reuse of the
work by other programmers. Large programs are in
turn mainly sequences of invocations of such pro-
cedures, some coming from libraries (such as for-
mat in LISP) and others written for the specifi c
application. These procedures are called with argu-
ments —e.g., the medical record number of a
patient—so that a procedure to retrieve a value,
such as the patient’s age might be: age (medical
record number). An important distinction among
languages is how those arguments are transmitted.
Just giving the value in response to a request is the
safest method. Giving the name provides the most
information to the procedure, and giving the refer-
ence (a pointer to where the value is stored) allows
the procedure to go back to the source, which can
be effi cient but also allows changes that may not be

wanted. Discussions about languages often empha-
size these various features, but the underlying con-
cern is nearly always the trade-off of protection
versus power.

 Programmers work in successively higher lev-
els of abstraction by writing, and later invoking,
standard procedures in the form of functions and
subroutines. Within these they may also have
routines that spawn other routines, called
 threads . Threads allow multiple execution units,
or concurrency, in programming, and as systems
scale they become increasingly important, par-
ticularly as multiple functions are being run over
the same data simultaneously. Built-in functions
and subroutines create an environment in which
users can perform complex operations by speci-
fying single commands. Tools exist to combine
related functions for specifi c tasks—e.g., to build
a forms interface that displays retrieved data in a
certain presentation format.

 Specialized languages can be used directly by
nonprogrammers for well-understood tasks,
because such languages defi ne additional proce-
dures for specialized tasks and hide yet more detail.
For example, users can search for, and retrieve data
from, large databases using the Structured Query
Language (SQL) of database management systems
(discussed later in this section). With the help of
statistical languages, such as SAS or R, users can
perform extensive statistical calculations, such as
regression analysis and correlation. Other users
may use a spreadsheet program, such as Excel, to
record and manipulate data with formulas in the
cells of a spreadsheet matrix. In each case, the
physical details of the data storage structures and
the access mechanisms are hidden from the user.

 The end users of a computer may not even be
aware that they are programming per se, if the
language is so natural that it matches their needs
in an intuitive manner. Moving icons on a screen
and dragging and dropping them into boxes or
onto other icons is a form of programming sup-
ported by many layers of interpreters and
compiler- generated code. If the user saves a
 script (a keystroke-by-keystroke record) of the
actions performed for later reuse, then he or she
has created a program. Some systems allow such
scripts to be viewed and edited for later updates
and changes; e.g., there is a macro function

J.C. Silverstein and I.T. Foster

167

available in the Microsoft Excel spreadsheet and
on Macintosh computers via AppleScript.

 Even though many powerful languages and
packages handle these diverse tasks, we still face
the challenge of incorporating multiple functions
into a larger system. It is easy to envision a sys-
tem where a Web browser provides access to sta-
tistical results of data collected from two related
databases. Such interoperation is not simple;
however, modern layers of software coupled with
programming expertise now make such complex
interactions routine in health information sys-
tems and our everyday lives.

5.5.2 Data Management

 Data provide the infrastructure for recording and
sharing information. Data become information
when they are organized to affect decisions,
actions, and learning (see Chap. 2). Accessing and
moving data from the points of collection to the
points of use are among the primary functions of
computing in medicine. These applications must
deal with large volumes of varied data and manage
them, for persistence, on external storage. The
mathematical facilities of computer languages are
based on common principles and are, strictly
speaking, equivalent. The same conceptual basis is
not available for data management facilities. Some
languages allow only internal structures to be
made persistent; in that case, external library pro-
grams are used for handling storage.

 Handling data is made easier if the language
supports moving structured data from internal mem-
ory to external, persistent storage. Data can, for
instance, be viewed as a stream, a model that matches

well with data produced by some instruments, by
TCP connections over the Internet, or by a ticker
tape. Data can also be viewed as records, matching
well with the rows of a table (Table 5.2); or data can
be viewed as a hierarchy, matching well with the
structure of a medical record, including patients,
their visits, and their fi ndings during a visit.

 If the language does not directly support the best
data structure to deal with an application, additional
programming must be done to construct the desired
structure out of the available facilities. The resulting
extra layer, however, typically costs effort (and
therefore money) and introduces inconsistencies
among applications trying to share information.

5.5.3 Operating Systems

 Users ultimately interact with the computer
through an operating system (OS): a program
that supervises and controls the execution of all
other programs and that directs the operation of
the hardware. The OS is software that is typically
included with a computer system and it manages
the resources, such as memory, storage, and
devices for the user. Once started, the kernel of the
OS resides in memory at all times and runs in the
background. It assigns the CPU to specifi c tasks,
supervises other programs running in the com-
puter, controls communication among hardware
components, manages the transfer of data from
input devices to output devices, and handles the
details of fi le management such as the creation,
opening, reading, writing, and closing of data fi les.
In shared systems, it allocates the resources of the
system among the competing users. The OS insu-
lates users from much of the complexity of han-
dling these processes. Thus, users are able to
concentrate on higher-level problems of informa-
tion management. They do get involved in specify-
ing which programs to run and in giving names to
the directory structures and fi les that are to be
made persistent. These names provide the links to
the user’s work from one session to another.
Deleting fi les that are no longer needed and
archiving those that should be kept securely are
other interactions that users have with the OS.

 Programmers can write application pro-
grams to automate routine operations that store

 Table 5.2 A simple patient data fi le containing records
for four pediatric patients

 Record number Name Sex Date of Birth

 22-546-998 Adams, Clare F 11 Nov 1998
 62-847-991 Barnes, Tanner F 07 Dec 1997
 47-882-365 Clark, Laurel F 10 May 1998
 55-202-187 Davidson, Travis M 10 Apr 2000

 Note: The key fi eld of each record contains the medical
record number that uniquely identifi es the patient. The
other fi elds of the record contain demographic
information

5 Computer Architectures for Health Care and Biomedicine

http://dx.doi.org/10.1007/978-1-4471-4474-8_2

168

and organize data, to perform analyses, to facili-
tate the integration and communication of infor-
mation, to perform bookkeeping functions, to
monitor patient status, to aid in education—in
short, to perform all the functions provided by
medical computing systems. These programs are
then fi led by the OS and are available to its users
when needed.

 PCs typically operate as single - user systems ,
whereas servers are multiuser systems . In a mul-
tiuser system, all users have simultaneous access to
their jobs ; users interact through the OS, which
switches resources rapidly among all the jobs that
are running. Because people work slowly compared
with CPUs, the computer can respond to multiple
users, seemingly at the same time. Thus, all users
have the illusion that they have the full attention of
the machine, as long as they do not make very heavy
demands. Such shared resource access is important
where databases must be shared, as we discuss
below in Database Management Systems. When it
is managing sharing, the OS spends resources for
queuing, switching, and re-queuing jobs. If the total
demand is too high, the overhead increases dispro-
portionately and slows the service for everyone.
High individual demands are best allocated to dis-
tributed systems (discussed in Sect. 5.6), or to dedi-
cated machines where all resources are prioritized
to a primary user.

 Because computers need to perform a
variety of services, several application pro-
grams reside in main memory simultaneously.
 Multiprogramming permits the effective use of
multiple devices; while the CPU is executing one
program, another program may be receiving input
from external storage, and another may be gener-
ating results on a printer. With the use of multiple
simultaneous programs executing in one system
it becomes important to ensure one program does
not interfere with another or with the OS. Thus,
 protected memory comes in to play. Protected
memory is only available to the program that allo-
cated it. Web browsers and the Apple iOS (operat-
ing system for smart phones and tablets) similarly
protect one process from another for security
(unless authorized by the user). In multiprocess-
ing systems, several processors (CPUs) are used
by the OS within a single computer system, thus
increasing the overall processing power. Note,
however, that multiprogramming does not neces-
sarily imply having multiple processors.

 Memory may still be a scarce resource, espe-
cially under multiprogramming. When many
programs and their data are active simultane-
ously, they may not all fi t in the physical memory
on the machine at the same time. To solve this
problem, the OS will partition users’ programs
and data into pages , which can be kept in tempo-

 Fig. 5.8 Virtual-memory
system. Virtual memory
provides users with the
illusion that they have many
more addressable memory
locations than there are in
real memory—in this case,
more than fi ve times as much.
Programs and data stored on
peripheral disks are swapped
into main memory when they
are referenced; logical
addresses are translated
automatically to physical
addresses by the hardware

J.C. Silverstein and I.T. Foster

169

rary storage on disk and are brought into main
memory as needed. Such a storage allocation is
called virtual memory . Virtual memory can be
many times the size of real memory, so users can
allocate many more pages than main memory can
hold. Also individual programs and their data can
use more memory than is available on a specifi c
computer. Under virtual memory management,
each address referenced by the CPU goes through
an address mapping from the virtual address of
the program to a physical address in main
 memory (Fig. 5.8). When a memory page is ref-
erenced that is not in physical storage, the CPU
creates space for it by swapping out a little-used
page to secondary storage and bringing in the
needed page from storage. This mapping is han-
dled automatically by the hardware on most
machines but still creates signifi cant delays, so
the total use of virtual memory must be limited to
a level that permits the system to run effi ciently.

 A large collection of system programs are
generally associated with the kernel of an OS.
These programs include utility programs, such as
 graphical user interface (GUI) routines; secu-
rity management; compilers to handle programs
written in higher-level languages; debuggers for
newly created programs; communication soft-
ware; diagnostic programs to help maintain the
computer system; and substantial libraries of
standard routines (such as for listing and viewing
fi les, starting and stopping programs, and check-
ing on system status). Modern software libraries
include tools such as sorting programs and pro-
grams to perform complex mathematical func-
tions and routines to present and manipulate
graphical displays that access a variety of appli-
cation programs, handle their point-and-click
functions, allow a variety of fonts, and the like.

5.5.4 Database Management
Systems

 Throughout this book, we emphasize the impor-
tance to good medical decision making of timely
access to relevant and complete data from diverse
sources. Computers provide the primary means
for organizing and accessing these data; however,
the programs to manage the data are complex and

are diffi cult to write. Database technology sup-
ports the integration and organization of data and
assists users with data entry, long-term storage,
and retrieval. Programming data management
software is particularly diffi cult when multiple
users share data (and thus may try to access data
simultaneously), when they must search through
voluminous data rapidly and at unpredictable
times, and when the relationships among data
elements are complex. For health care
 applications, it is important that the data be com-
plete and virtually error-free. Furthermore, the
need for long-term reliability makes it risky to
entrust a medical database to locally written pro-
grams. The programmers tend to move from
project to project, computers will be replaced,
and the organizational units that maintain the
data may be reorganized.

 Not only the individual data values but also
their meanings and their relationships to other
data must be stored. For example, an isolated
data element (e.g., the number 99.7) is useless
unless we know that that number represents a
human’s body temperature in degrees Fahrenheit
and is linked to other data necessary to interpret
its value—the value pertains to a particular
patient who is identifi ed by a unique medical
record number, the observation was taken at a
certain time (02:35, 7 Feb 2000) in a certain way
(orally), and so on. To avoid loss of descriptive
information, we must keep together clusters of
related data throughout processing. These rela-
tionships can be complex; e.g., an observation
must be linked not only to the patient but also to
the person recording the observation, to the
instrument that he used to acquire the values, and
to the physical state of the patient.

 The meaning of data elements and the rela-
tionships among those elements are captured in
the structure of the database. Databases are col-
lections of data, typically organized into fi elds,
records, and fi les (see Table 5.2), as well as
descriptive metadata. The fi eld is the most primi-
tive building block; each fi eld represents one data
element. For example, the database of a hospi-
tal’s registration system typically has fi elds such
as the patient’s identifi cation number, name, date
of birth, gender, admission date, and admitting
diagnosis. Fields are usually grouped together to

5 Computer Architectures for Health Care and Biomedicine

170

form records . A record is uniquely identifi ed by
one or more key fi elds —e.g., patient identifi ca-
tion number and observation time. Records that
contain similar information are grouped in fi les .
In addition to fi les about patients and their diag-
noses, treatments, and drug therapies, the data-
base of a health care information system will
have separate fi les containing information about
charges and payments, personnel and payroll,
inventory, and many other topics. All these fi les
relate to one another: they may refer to the same
patients, to the same personnel, to the same ser-
vices, to the same set of accounts, and so on.

 Metadata describes where in the record spe-
cifi c data are stored, and how the right record can
be located. For instance, a record may be located
by searching and matching patient ID in the record.
The metadata also specifi es where in the record the
digits representing the birth date are located and
how to convert the data to the current age. When
the structure of the database changes—e.g.,
because new fi elds are added to a record—the
metadata must be changed as well. When data are
to be shared, there will be continuing requirements
for additions and reorganizations to the fi les and
hence the metadata. The desire for data indepen-
dence —i.e., keeping the applications of one set of
users independent from changes made to applica-
tions by another group—is the key reason for using
a database management system for shared data.

 A database management system (DBMS) is
an integrated set of programs that helps users to
store and manipulate data easily and effi ciently.
The conceptual (logical) view of a database pro-
vided by a DBMS allows users to specify what
the results should be without worrying too much
about how they will be obtained; the DBMS han-
dles the details of managing and accessing data.
A crucial part of a database kept in a DBMS is
the schema , containing the needed metadata.
A schema is the machine-readable defi nition of
the contents and organization of the records of all
the data fi les. Programs are insulated by the
DBMS from changes in the way that data are
stored, because the programs access data by fi eld
name rather than by address. A DBMS also pro-
vides facilities for entering, editing, and retriev-
ing data. Often, fi elds are associated with lists or
ranges of valid values; thus, the DBMS can detect

and request correction of some data-entry errors,
thereby improving database integrity.

 Users retrieve data from a database in either of
two ways. Users can query the database directly
using a query language to extract information in
an ad hoc fashion—e.g., to retrieve the records of
all male hypertensive patients aged 45–64 years
for inclusion in a retrospective study. Figure 5.9
shows the syntax for such a query using SQL.
Query formulation can be diffi cult, however;
users must understand the contents and underly-
ing structure of the database to construct a query
correctly. Often, database programmers formu-
late the requests for health professionals.

 To support occasional use, front - end applica-
tions to database systems can help a user retrieve
information using a menu based on the schema.
More often, transactional applications, such as a
drug order–entry system, will use a database sys-
tem without the pharmacist or ordering physician
being aware of the other’s presence. The
medication- order records placed in the database by
the physician create communication transactions
with the pharmacy; then, the pharmacy application
creates the daily drug lists for the patient care units.

 Some database queries are routine requests—
e.g., the resource utilization reports used by
health care administrators and the end-of-month
fi nancial reports generated for business offi ces.
Thus, DBMSs often also provide an alternative,
simpler means for formulating such queries,
called report generation . Users specify their
data requests on the input screen of the report-
generator program. The report generator then pro-
duces the actual query program using information

 Fig. 5.9 An example of a simple database query written
in Structured Query Language (SQL). The program will
retrieve the records of males whose age is between 45 and
64 years and whose systolic blood pressure is greater than
140 mmHg

J.C. Silverstein and I.T. Foster

171

stored in the schema, often at predetermined
intervals. The reports are formatted such that they
can be distributed without modifi cation. The
report-generation programs can extract header
information from the schema. Routine report
generation should, however, be periodically
reviewed in terms of its costs and benefi ts.
Reports that are not read are a waste of computer,
natural, and people resources. A reliable database
will be able to provide needed and up-to-date
information when that information is required.

 Many DBMSs support multiple views , or mod-
els, of the data. The data stored in a database have
a single physical organization, yet different user
groups can have different perspectives on the con-
tents and structure of a database. For example, the
clinical laboratory and the fi nance department
might use the same underlying database, but only
the data relevant to the individual application area
are available to each group. Basic patient informa-
tion will be shared; the existence of other data is
hidden from groups that do not need them.
Application-specifi c descriptions of a database are
stored in such view schemas . Through the views,
a DBMS controls access to data. Thus, a DBMS
facilitates the integration of data from multiple
sources and avoids the expense of creating and
maintaining multiple fi les containing redundant
information. At the same time, it accommodates
the differing needs of multiple users. The use of
database technology, combined with communica-
tions technology (see the following discussion on
Software for Network Communications), will
enable health care institutions to attain the benefi ts
both of independent, specialized applications and
of large integrated databases.

 Database design and implementation has
become a highly specialized fi eld. An introduc-
tion to the topic is provided by Garcia-Molina
et al. (2002). Wiederhold’s book (1981) discusses
the organization and use of databases in health
care settings. Most medical applications use stan-
dard products from established vendors. However,
these databases and application architectures are
inherently oriented toward the transactions needed
for the workfl ows of the applications, one patient
at a time. Thus, these are called on line transac-
tion processing (OLTP) systems, typically
designed for use by thousands of simultaneous

users doing simple repetitive queries. Data ware-
housing or on line analytic processing (OLAP)
systems focus on use of DBMS differently, for
querying across multiple patients simultaneously,
typically by few users for infrequent, but complex
queries, often for research. To achieve both of
these architectural goals, hospital information
systems will duplicate the data in two separate
DBMS with different data architectures. Thus
computer architectures may require the coordina-
tion of multiple individual computer systems,
especially when both systems use data derived
from a single source.

5.5.5 Software for Network
Communications

 The ability of computers to communicate with
each other over local and remote networks brings
tremendous power to computer users. Internet
communications make it possible to share data
and resources among diverse users and institu-
tions around the world. Network users can access
shared patient data (such as a hospital’s medical
records) or international databases (such as bib-
liographic databases of scientifi c literature or
genomics databases describing what is known
about the biomolecular basis of life and disease).
Networks make it possible for remote users to
communicate with one another and to collabo-
rate. In this section, we introduce the important
concepts that will allow you to understand net-
work technology.

5.5.5.1 The Network Stack
 Network power is realized by means of a large
body of communications software. This software
handles the physical connection of each com-
puter to the network, the internal preparation of
data to be sent or received over the network, and
the interfaces between the network data fl ow and
applications programs. There are now tens of
millions of computers of different kinds on the
Internet and hundreds of programs in each
machine that service network communications.
Two key ideas make it possible to manage the
complexity of network software: network service
stacks and network protocols. These strategies

5 Computer Architectures for Health Care and Biomedicine

172

allow communication to take place between any
two machines on the Internet, ensure that appli-
cation programs are insulated from changes in
the network infrastructure, and make it possible
for users to take advantage easily of the rapidly
growing set of information resources and ser-
vices. The network stack serves to organize
communications software within a machine.
Network software is made modular by dividing
the responsibilities for network communications
into different levels, with clear interfaces between
the levels. The four-level network stack for TCP/
IP is shown in Fig. 5.10 , which also compares
that stack to the seven-level stack defi ned by the
International Standards Organization.

 At the lowest level—the Data Link and
Physical Transport level—programs manage the
physical connection of the machine to the net-
work, the physical-medium packet formats, and
the means for detecting and correcting errors.
The Network level implements the IP method of
addressing packets, routing packets, and con-
trolling the timing and sequencing of transmis-
sions. The Transport level converts packet-level
communications into several services for the
Application level, including a reliable serial
byte stream (TCP), a transaction-oriented User

Datagram Protocol (UDP), and newer services
such as real-time video.

 The Application level is where programs run
that support electronic mail, fi le sharing and trans-
fer, Web posting, downloading, browsing, and
many other services. Each layer communicates
with only the layers directly above and below it and
does so through specifi c interface conventions. The
network stack is machine- and OS-dependent—
because it has to run on particular hardware and to
deal with the OS on that machine (fi ling, input–out-
put, memory access, etc.). But its layered design
serves the function of modularization. Applications
see a standard set of data-communication services
and do not each have to worry about details such as
how to form proper packets of an acceptable size
for the network, how to route packets to the desired
machine, how to detect and correct errors, or how
to manage the particular network hardware on the
computer. If a computer changes its network con-
nection from a wired to a wireless network, or if the
 topology of the network changes, the applications
are unaffected. Only the lower level Data Link and
Network layers need to be updated.

 Internet protocols (see Sect. 5.3) are shared
conventions that serve to standardize commu-
nications among machines—much as, for two

 Fig. 5.10 TCP/IP network service level stack and corre-
sponding levels of the Open Systems Interconnection (OSI)
Reference model developed by the International Standards
Organization (ISO). Each level of the stack specifi es a pro-
gressively higher level of abstraction. Each level serves the
level above and expects particular functions or services

from the level below it. SMTP Simple Mail Transport
Protocol, FTP File Transfer Protocol, DNS Domain Name
System, TCP Transmission Control Protocol, UDP User
Datagram Protocol, IP Internet Protocol, ICMP Internet
Control Message Protocol, ARP Address Resolution
Protocol, RARP Reverse Address Resolution Protocol

J.C. Silverstein and I.T. Foster

173

people to communicate effectively, they must
agree on the syntax and meaning of the words
they are using, the style of the interaction (lecture
versus conversation), a procedure for handling
interruptions, and so on. Protocols are defi ned
for every Internet service (such as routing, elec-
tronic mail, and Web access) and establish the
conventions for representing data, for request-
ing an action, and for replying to a requested
action. For example, protocols defi ne the format
conventions for e-mail addresses and text mes-
sages (RFC822), the attachment of multimedia
content (Multipurpose Internet Mail Extensions
(MIME)), the delivery of e-mail messages
(Simple Mail Transport Protocol (SMTP)), the
transfer of fi les (File Transfer Protocol (FTP)),
connections to remote computers (SSH), the
formatting of Web pages (Hypertext Markup
Language (HTML)), the exchange of routing
information, and many more. By observing these
protocols, machines of different types can com-
municate openly and can interoperate with each
other. When requesting a Web page from a server
using the Hypertext Transfer Protocol (HTTP),
the client does not have to know whether the
server is a UNIX machine, a Windows machine,
or a mainframe running VMS—they all appear
the same over the network if they adhere to the
HTTP protocol. The layering of the network
stack is also supported by protocols. As we said,
within a machine, each layer communicates with
only the layer directly above or below. Between
machines, each layer communicates with only its
peer layer on the other machine, using a defi ned
protocol. For example, the SMTP application on
one machine communicates with only an SMTP
application on a remote machine. Similarly, the
Network layer communicates with only peer
Network layers, for example, to exchange rout-
ing information or control information using the
Internet Control Message Protocol (ICMP).

 We briefl y describe four of the basic services
available on the Internet: electronic mail, FTP,
SSH, and access to the World Wide Web.

5.5.5.2 Electronic Mail
 Users send to and receive messages from other
users via electronic mail, mimicking use of the
postal service. The messages travel rapidly:

except for queuing delays at gateways and receiv-
ing computers, their transmission is nearly
instantaneous. Electronic mail was one of the
fi rst protocols invented for the Internet (around
1970, when what was to become the Internet was
still called the ARPANET). A simple e-mail
message consists of a header and a body . The
header contains information formatted according
to the RFC822 protocol, which controls the
appearance of the date and time of the message,
the address of the sender, addresses of the recipi-
ents, the subject line, and other optional header
lines. The body of the message contains free text.
The user addresses the e-mail directly to the
intended reader by giving the reader’s account
name or a personal alias followed by the IP
address or domain name of the machine on which
the reader receives mail—e.g., JohnSmith@
domain.name. If the body of the e-mail message
is encoded according to the MIME standard it
may also contain arbitrary multimedia informa-
tion, such as drawings, pictures, sound, or video.
Mail is sent to the recipient using the SMTP stan-
dard. It may either be read on the machine hold-
ing the addressee’s account or it may be
downloaded to the addressee’s local computer for
reading.

 It is easy to broadcast electronic mail by send-
ing it to a mailing list or a specifi c list - server ,
but electronic mail etiquette conventions dictate
that such communications be focused and rele-
vant. Spamming , which is sending e-mail solici-
tations or announcements to broad lists, is
annoying to recipients, but is diffi cult to prevent.
Conventional e-mail is sent in clear text over the
network so that anyone observing network traffi c
can read its contents. Protocols for encrypted
e-mail, such as Privacy-Enhanced Mail (PEM) or
encrypting attachments, are also available, but
are not yet widely deployed. They ensure that the
contents are readable by only the intended recipi-
ents. Because secure email is generally not in
use, communication of protected health informa-
tion from providers to patients is potentially in
violation of the HIPAA regulations in that the
information is not secure in transit. It remains
less clear, however, if it is appropriate for physi-
cians to answer direct questions from patients
in email, given that the patient has begun the

5 Computer Architectures for Health Care and Biomedicine

174

insecure communication. Large health systems
have generally deployed secure communication
portals over the Web (where both participants
must authenticate to the same system) to over-
come this.

5.5.5.3 File Transfer Protocol (FTP)
 FTP facilitates sending and retrieving large
amounts of information—of a size that is uncom-
fortably large for electronic mail. For instance,
programs and updates to programs, complete
medical records, papers with many fi gures or
images for review, and the like could be trans-
ferred via FTP. FTP access requires several steps:
(1) accessing the remote computer using the IP
address or domain name; (2) providing user iden-
tifi cation to authorize access; (3) specifying the
name of a fi le to be sent or fetched using the fi le-
naming convention at the destination site; and (4)
transferring the data. For open sharing of informa-
tion by means of FTP sites, the user identifi cation
is by convention “anonymous” and the requestor’s
e-mail address is used as the password. Secure
FTP (SFTP) uses the same robust security mech-
anism as SSH (below), but provides poor perfor-
mance. Globus Online is a SaaS data movement
solution (see Sect. 5.7.4) that provides both secu-
rity and high performance.

5.5.5.4 SSH
 Secure Shell allows a user to log in on a remote
computer securely over unsecured networks using
public-key encryption (discussed in next section).
If the log-in is successful, the user becomes a
fully qualifi ed user of the remote system, and the
user’s own machine becomes a relatively passive
terminal in this context. The smoothness of such a
terminal emulation varies depending on the dif-
ferences between the local and remote computers.
Secure Shell replaced Telnet which was used for
terminal emulation until network security became
important. Secure Shell enables complete com-
mand line control of the remote system to the
extent the user’s account is authorized.

5.5.5.5 World Wide Web (WWW)
 Web browsing facilitates user access to remote
information resources made available by Web

servers. The user interface is typically a Web
browser that understands the World Wide Web
protocols. The Universal Resource Locator
(URL) is used to specify where a resource is
located in terms of the protocol to be used, the
domain name of the machine it is on, and the name
of the information resource within the remote
machine. The Hyper Text Markup Language
(HTML) describes what the information should
look like when displayed. HTML supports con-
ventional text, font settings, headings, lists, tables,
and other display specifi cations. Within HTML
documents, highlighted buttons can be defi ned
that point to other HTML documents or services.
This hypertext facility makes it possible to create
a web of cross- referenced works that can be navi-
gated by the user. HTML can also refer to subsid-
iary documents that contain other types of
information—e.g., graphics, equations, images,
video, speech— that can be seen or heard if the
browser has been augmented with helpers or
 plug - ins for the particular format used. The
 Hyper Text Transfer Protocol (HTTP) is used
to communicate between browser clients and
servers and to retrieve HTML documents. Such
communications can be encrypted to protect sen-
sitive contents (e.g., credit card information or
patient information) from external view using
protocols such as Secure Sockets Layer (SSL :
recently renamed to Transport Level Security ,
 TLS) which is used by the HTTPS protocol (and
generally shows a “lock” icon when the browser
is securely communicating with the host in the
URL).

 HTML documents can also include small pro-
grams written in the Java language, called applets ,
which will execute on the user’s computer when
referenced. Applets can provide animations and
also can compute summaries, merge information,
and interact with selected fi les on the user’s com-
puter. The Java language is designed such that
operations that might be destructive to the user’s
machine environment are blocked, but download-
ing remote and untested software still represents a
substantial security risk (see Sect. 5.3). The
JavaScript language, distinct from the Java lan-
guage (unfortunately similarly named) runs in the
browser itself (much like protected memory), thus

J.C. Silverstein and I.T. Foster

175

reducing this security risk, and is becoming
increasingly powerful, enhancing substantially
the capabilities and capacity of the Web browser
as a computer platform.

 HTML captures many aspects of document
description from predefi ned markup related to
the appearance of the document on a display to
markup related to internal links, scripts, and other
semantic features. To separate appearance-related
issues from other types of markup, to provide
more fl exibility in terms of markup types, and to
work toward more open, self-defi ning document
descriptions, a more powerful markup frame-
work, called eXtensible Markup Language
(XML), has emerged. Coupled with JavaScript,
XML further enhances the capabilities of the
Web browser itself as a computer platform.

5.5.5.6 Client-Server Interactions
 A client–server interaction is a generalization of
the four interactions we have just discussed,
involving interactions between a client (request-
ing) machine and a server (responding) machine.
A client – server interaction, in general, supports
collaboration between the user of a local machine
and a remote computer. The server provides infor-
mation and computational services according to
some protocol, and the user’s computer—the cli-
ent—generates requests and does complementary
processing (such as displaying HTML documents
and images). A common function provided by
servers is database access. Retrieved information
is transferred to the client in response to requests,
and then the client may perform specialized anal-
yses on the data. The fi nal results can be stored
locally, printed, or mailed to other users.

5.6 Data and System Security

 Medical records contain much information about
us. These documents and databases include data
ranging from height and weight measurements,
blood pressures, and notes regarding bouts with
the fl u, cuts, or broken bones to information
about topics such as fertility and abortions, emo-
tional problems and psychiatric care, sexual
behaviors, sexually transmitted diseases, human

immunodefi ciency virus (HIV) status, substance
abuse, physical abuse, and genetic predisposition
to diseases. Some data are generally considered to
be mundane, others highly sensitive. Within the
medical record, there is much information about
which any given person may feel sensitive. As
discussed in Chap. 10 , health information is con-
fi dential, and access to such information must be
controlled because disclosure could harm us, for
example, by causing social embarrassment or
prejudice, by affecting our insurability, or by lim-
iting our ability to get and hold a job. Medical
data also must be protected against loss. If we are
to depend on electronic medical records for care,
they must be available whenever and wherever we
need care, and the information that they contain
must be accurate and up to date. Orders for tests
or treatments must be validated to ensure that they
are issued by authorized providers. The records
must also support administrative review and pro-
vide a basis for legal accountability. These
requirements touch on three separate concepts
involved in protecting health care information.

 Privacy refers to the desire of a person to con-
trol disclosure of personal health and other infor-
mation. Confi dentiality applies to information—in
this context, the ability of a person to control the
release of his or her personal health information to
a care provider or information custodian under an
agreement that limits the further release or use of
that information. Security is the protection of pri-
vacy and confi dentiality through a collection of
policies, procedures, and safeguards. Security
measures enable an organization to maintain the
integrity and availability of information systems
and to control access to these systems’ contents.
Health privacy and confi dentiality are discussed
further in Chap. 10 .

 Concerns about, and methods to provide, secu-
rity are part of most computer systems, but health
care systems are distinguished by having especially
complex considerations for the use and release of
information. In general, the security steps taken in
a health care information system serve fi ve key
functions (National Research Council, 1997),
namely availability, accountability, perimeter con-
trol, role-limited access, and comprehensibility and
control. We discuss each of these functions in turn.

5 Computer Architectures for Health Care and Biomedicine

http://dx.doi.org/10.1007/978-1-4471-4474-8_10
http://dx.doi.org/10.1007/978-1-4471-4474-8_10

176

5.6.1 Availability

 Availability ensures that accurate and up-to-date
information is available when needed at appro-
priate places. It is primarily achieved to protect
against loss of data by ensuring redundancy—
performing regular system backups. Because
hardware and software systems will never be per-
fectly reliable, information of long-term value is
copied onto archival storage, and copies are kept
at remote sites to protect the data in case of disas-
ter. For short-term protection, data can be written
on duplicate storage devices. Critical medical
systems must be prepared to operate even during
environmental disasters. If one of the storage
devices is attached to a remote processor, addi-
tional protection is conferred. Therefore, it is also
important to provide secure housing and alterna-
tive power sources for CPUs, storage devices,
network equipment, etc. It is also essential to
maintain the integrity of the information system
software to ensure availability. Backup copies
provide a degree of protection against software
failures; if a new version of a program damages
the system’s database, the backups allow opera-
tors to roll back to the earlier version of the soft-
ware and database contents.

 Unauthorized software changes—e.g., in the
form of viruses or worms —are also a threat.
A virus may be attached to an innocuous program
or data fi le, and, when that program is executed
or data fi le is opened, several actions take place:
 1. The viral code copies itself into other fi les

residing in the computer.
 2. It attaches these fi les to outgoing messages, to

spread itself to other computers.
 3. The virus may collect email addresses to fur-

ther distribute its copies.
 4. The virus may install other programs to

destroy or modify other fi les, often to escape
detection.

 5. A program installed by a virus may record
keystrokes with passwords or other sensitive
information, or perform other deleterious
actions.
 A software virus causes havoc with computer

operations, even if it does not do disabling dam-
age, by disturbing operations and system access

and by producing large amounts of Internet traf-
fi c as it repeatedly distributes itself (what is called
a denial of service attack). To protect against
viruses, all programs loaded onto the system
should be checked against known viral codes and
for unexpected changes in size or confi guration.
It is not always obvious that a virus program has
been imported. For example, a word-processing
document may include macros that help in for-
matting the document. Such a macro can also
include viral codes, however, so the document
can be infected. Spreadsheets, graphical presen-
tations, and so on are also subject to infection by
viruses.

5.6.2 Accountability

 Accountability for use of medical data can be
promoted both by surveillance and by technical
controls. It helps to ensure that users are respon-
sible for their access to, and use of, information
based on a documented need and right to know.
Most people working in a medical environment
are highly ethical. In addition, knowledge that
access to, and use of, data records are being
watched, through scanning of access audit
trails , serves as a strong impediment to abuse.
Technical means to ensure accountability
include two additional functions: authentication
and authorization.
 1. The user is authenticated through a positive

and unique identifi cation process, such as
name and password combination.

 2. The authenticated user is authorized within
the system to perform only certain actions
appropriate to his or her role in the health care
system—e.g., to search through certain medi-
cal records of only patients under his or her
care.
 Authentication and authorization can be per-

formed most easily within an individual com-
puter system, but, because most institutions
operate multiple computers, it is necessary to
coordinate these access controls consistently
across all the systems. Enterprise-wide and
remote access-control standards and systems are
available and are being deployed extensively.

J.C. Silverstein and I.T. Foster

177

5.6.3 Perimeter Defi nition

 Perimeter defi nition requires that you know who
your users are and how they are accessing the
information system. It allows the system to con-
trol the boundaries of trusted access to an infor-
mation system, both physically and logically. For
health care providers within a small physician
practice, physical access can be provided with a
minimum of hassle using simple name and pass-
word combinations. If a clinician is traveling or
at home and needs remote access to a medical
record, however, greater care must be taken to
ensure that the person is who he or she claims to
be and that communications containing sensitive
information are not observed inappropriately. But
where is the boundary for being considered a
trusted insider? Careful control of where the net-
work runs and how users get outside access is
necessary. Most organizations install a fi rewall
to defi ne the boundary: all sharable computers of
the institution are located within the fi rewall.
Anyone who attempts to access a shared system
from the outside must fi rst pass through the fi re-
wall, where strong authentication and protocol
access controls are in place. Having passed this
authentication step, the user can then access
enabled services within the fi rewall (still limited
by the applicable authorization controls). Even
with a fi rewall in place, it is important for enter-
prise system administrators to monitor and ensure
that the fi rewall is not bypassed. For example, a
malicious intruder could install a new virus
within the perimeter, install or use surreptitiously
a wireless base station, or load unauthorized
software.

 Virtual Private Network (VPN) technolo-
gies offer a powerful way to let bona fi de users
access information resources remotely. Using a
client–server approach, an encrypted communi-
cation link is negotiated between the user’s client
machine and an enterprise server. This approach
protects all communications and uses strong
authentication to identify the user. No matter how
secure the connection is, however, sound security
ultimately depends on responsible users and care
that increasingly portable computers (laptops,
tablets, or handheld devices) are not lost or stolen

so that their contents are accessible by unauthor-
ized people. This is the single most common
mechanism by which HIPAA violations occur.
Health systems are therefore requiring whole
machine encryption on portable devices.

 Strong authentication and authorization con-
trols depend on cryptographic technologies.
 Cryptographic encoding is a primary tool for
protecting data that are stored or are transmitted
over communication lines. Two kinds of cryptog-
raphy are in common use— secret-key cryptogra-
phy and public-key cryptography. In secret - key
cryptography , the same key is used to encrypt
and to decrypt information. Thus, the key must
be kept secret, known to only the sender and
intended receiver of information. In public - key
cryptography , two keys are used, one to encrypt
the information and a second to decrypt it. One is
kept secret. The other one can be made publicly
available. It is thus asymmetric and one end of
the transaction can be proven to have been done
by a specifi c entity. By using this twice (four
keys), one can certify both the sender and
receiver. This arrangement leads to important
services in addition to the exchange of sensitive
information, such as digital signatures (to certify
authorship), content validation (to prove that the
contents of a message have not been changed),
and nonrepudiation (to ensure that an action can-
not be denied as having been done by the actor).
Under either scheme, once data are encrypted, a
key is needed to decode and make the informa-
tion legible and suitable for processing.

 Keys of longer length provide more security,
because they are harder to guess. Because pow-
erful computers can help intruders to test mil-
lions of candidate keys rapidly, single-layer
encryption with keys of 56-bit length (the length
prescribed by the 1975 Data Encryption
Standard (DES)) are no longer considered
secure, and keys of 128 and even 256 bits are
routine. If a key is lost, the information
encrypted with the key is effectively lost as
well. If a key is stolen, or if too many copies of
the key exist for them to be tracked, unauthor-
ized people may gain access to information.
Holding the keys in escrow by a trusted party
can provide some protection against loss.

5 Computer Architectures for Health Care and Biomedicine

178

 Cryptographic tools can be used to control
authorization as well. The authorization informa-
tion may be encoded as digital certifi cates , which
then can be validated with a certifi cation author-
ity and checked by the services so that the ser-
vices do not need to check the authorizations
themselves. Centralizing authentication and
authorization functions simplifi es the coordina-
tion of access control, allows for rapid revocation
of privileges as needed, and reduces the possibil-
ity of an intruder fi nding holes in the system.
A central authentication or authorization server
must itself be guarded and managed with extreme
care, however, so that the chain of access-control
information is not broken. Modern browsers con-
tain the public certifi cates for major certifi cate
authorities thus enabling them to check the verac-
ity of Web sites using HTTPS (enabling the
locked browser icon discussed earlier).

5.6.4 Role-Limited Access

 Role - limited access control is based on extensions
of authorization schemes. It allows access for per-
sonnel to only that information essential to the per-
formance of their jobs and limits the real or
perceived temptation to access information beyond
a legitimate need. Even when overall system
access has been authorized and is protected, fur-
ther checks must be made to control access to spe-
cifi c data within the record. A medical record is
partitioned according to access criteria based upon
use privileges; the many different collaborators in
health care all have diverse needs for the informa-
tion collected in the medical record. Examples of
valid access privileges include the following:
• Patients: the contents of their own medical

records
• Community physicians: records of their patients
• Specialty physicians: records of patients

referred for consultations
• Public health agencies: incidences of commu-

nicable diseases
• Medical researchers: consented data, or by

waiver of authorization for patient groups
approved by an Institutional Review Board
(IRB)

• Billing clerks: records of services, with sup-
porting clinical documentation as required by
insurance companies

• Insurance payers: justifi cations of charges
 Different types of information kept in medical

records have different rules for release, as deter-
mined by state and federal law such as provisions
of the Health Insurance Portability and Account-
ability Act (HIPAA) and as set by institutional
policy following legal and ethical considerations
and the IRB.

5.6.5 Comprehensibility and
Control

 Comprehensibility and Control ensures that
record owners, data stewards, and patients can
understand and have effective control over appro-
priate aspects of information confi dentiality and
access. From a technological perspective, while
authentication and access control are important
control mechanisms, audit trails are perhaps the
most important means for allowing record own-
ers and data stewards to understand whether data
is being accessed correctly or incorrectly. Many
hospitals also allow employees to review who has
accessed their personal records. This ability both
reassures employees and builds awareness of the
importance of patient privacy.

 An audit trail contains records indicating what
data was accessed, when, by who, from where,
and if possible some indication of the reason for
the access. If backed by strong authentication and
protected against improper deletion, such records
can both provide a strong disincentive for
improper access (because individuals will know
that accesses will be recorded) and allow respon-
sible parties to detect inadequate controls.

5.7 Distributed System
Architectures

 As noted in Sect. 5.5.5 , computer networks have
become fundamental to both health care and bio-
medical research, allowing for quasi- instantaneous
information sharing and communication within

J.C. Silverstein and I.T. Foster

179

and between clinical and research institutions.
Applications such as the Web, email, videocon-
ferencing, and SSH for remote access to comput-
ers are all widely used to reduce barriers associated
with physical separation.

 As health care becomes more information
driven, we see increased interest in not just
enabling ad hoc access to remote data, but in link-
ing diverse information systems into distributed
systems . A distributed system links multiple
computer systems in such a way that they can
function, to some extent at least, as a single infor-
mation system. The systems to be linked may live
within a single institution (e.g., an electronic med-
ical record system operated by a hospital’s infor-
mation technology services organization, a
pathology database operated by the Department
of Pathology, and a medical PACS system oper-
ated by the Department of Radiology); within
multiple institutions of similar type (e.g., elec-
tronic medical record systems operated by differ-
ent hospitals); or within institutions of quite
different types (e.g., a hospital and a third-party
cloud (see Sect. 5.7.5) service provider). They
may be linked for a range of reasons: for example,
to federate database systems, so as to permit fed-
erated queries (see Sect. 5.7.2) across different
databases—e.g., to fi nd records corresponding to
multiple admissions for a single patient at differ-
ent hospitals, or to identify potential participants
in a clinical trial; to enable cross- institutional
workfl ows, such as routing of infectious disease
data to a public health organization; or to out-
source expensive tasks to third- party providers, as
when a medical center maintains an off-site
backup of its databases in a cloud provider.

 Distributed systems can be challenging to
construct and operate. They are, fi rst of all, net-
worked systems, and thus are inevitably subject
to a wide range of failures. Yet more seriously,
they commonly span administrative boundaries,
and in the absence of strong external control and/
or incentives, different administrative units tend
to adopt distinct and incompatible technical solu-
tions, information representations, policies, and
governance structures. These problems seem to
be particularly prevalent within health care,
which despite much effort towards standardiza-

tion over many decades, remains dominated by
non-standards-based products. This situation can
make even point-to-point integration of two sys-
tems within a single hospital challenging; the
creation of large-scale distributed systems that
span many institutions remains diffi cult.

 To illustrate the types of problems that may
exist, consider a distributed system that is
intended to provide a unifi ed view of electronic
medical records maintained in databases D A and
D B at two hospitals, H A and H B . We may fi nd that:
• Databases D A and D B use different database

management systems (see Sect. 5.4), with dif-
ferent access protocols and query languages

• Databases D A and D B use different schemas and
vocabularies to represent patient information

• Hospitals H A and H B assign different identifi -
ers to the same patient

• Hospital H A does not allow remote access to
its electronic medical record system, restrict-
ing access to computers located within its fi re-
wall (see Sect. 5.4)

• Hospital H B interprets HIPAA rules as prevent-
ing information about its patients to be shared
with personnel who are not H B employees

• Hospitals H A and H B both have a governance
structure that reviews proposed changes to
computer and data systems ahead of imple-
mentation, but neither includes representation
from the developers of the distributed system.
 As this brief and partial list shows, the devel-

opment of a successful distributed system can
require solutions to a wide range of heterogeneity
problems, including syntactic (e.g., different for-
mats used to represent data in databases), seman-
tic (e.g., different meanings assigned to a clinical
diagnosis), policy, and governance. The use of
appropriate distributed system technologies can
assist with overcoming these problems, but any
effective and robust solution must take into
account all aspects of the problem.

5.7.1 Distributed System
Programming

 To build a distributed system, it must be possi-
ble for a program running on one computer to

5 Computer Architectures for Health Care and Biomedicine

180

issue a request that results in a program being
run in another computer. Various approaches
have been pursued over the years to this distrib-
uted system programming problem. All seek
to hide heterogeneity across different platforms
via the introduction of a standardized remote
procedure call mechanism. Under the covers,
communication typically occurs via the Internet
protocols described in Sect. 5.5.5 ; distributed
system programming methods build on that
base to allow a programmer to name a remote
procedure that is to be called (e.g., “query data-
base”), specify arguments to that procedure
(e.g., “fi nd patients with infl uenza”), specify
how results are to be returned, provide required
security credentials, and so forth—all without
the programmer needing to know anything
about how the remote program is implemented.
Other related methods may allow a programmer
to discover what procedures are supported by a
particular remote system, or alternatively what
remote system should be contacted for a partic-
ular purpose.

 One distributed system programming
approach on which much effort has been spent
is CORBA , the Common Object Request
Broker Architecture. Starting in the mid 1990s,
numerous technology providers and adopters
formed the Object Management Group (OMG)
to defi ne standards for describing remotely
accessible procedures (an Interface Defi nition
Language: IDL) and for invoking those proce-
dures over a network. Building on that base, a
wide range of other standards have been devel-
oped defi ning interaction patterns important for
different fi elds. In the fi eld of health care, the
CORBAmed activity defi ned a range of specifi -
cations for such things as personal identifi ca-
tion and medical image access. Unfortunately,
while CORBA has had some success in certain
industries (e.g., manufacturing), a combination
of technical limitations in its specifi cations and
inter-company confl ict (e.g., Microsoft never
adopted CORBA) had prevented it from having
broad impact as a distributed system program-
ming technology.

 In the mid 2000s, a new technology called
 Web Services emerged that implemented simi-

lar concepts to those found in CORBA, but in a
simpler and more fl exible form. Web Services
uses XML (Sect. 5.5.5.5) to encode remote pro-
cedure calls and HTTP (Sect. 5.5.5.5) to com-
municate them, and defi nes an IDL called Web
Services Description Language (WSDL). These
technologies have seen wide use in many areas,
including biomedical research, with many
research datasets and analytic procedures being
made accessible over the network via Web
Service interfaces. However, adoption within
clinical systems remains modest for reasons
listed above.

 Over the past 5 years, the commercial and
consumer Web/Cloud market — as typifi ed, for
example, by the likes of Google, Facebook,
Twitter, and Amazon — has largely converged on
a yet simpler architectural approach for defi ning
interfaces to services. This approach is based on
a small set of protocol standards and methodolo-
gies, namely REST and HTTP, JSON and XML,
TLS, and O Auth 2.0. These same methods are
seeing increasingly widespread use in health care
as well, due to their simplicity and the substantial
investment in relevant technologies occurring
within industry. At the core of this approach is
 REpresentational State Transfer (REST), an
HTTP-based approach to distributed system
architecture in which components are modeled as
 resources that are named by URLs and with
which interaction occurs through standard HTTP
actions (POST, GET, PUT, DELETE). For exam-
ple, Table 5.3 illustrates a simple REST encoding
of an interface to a medical record system. This
interface models patients as resources with the
following form, where {patient-id} is the patient
identifi er:
 /patients/{patient-id}

 Table 5.3 Example REST representation of a patient
record interface. On the left, the format of each request;
on the right, a brief description

 Request Description

 GET/patients Retrieve list of patients
 GET or POST/patients/
{patient-id}

 Get/put profi le for a
specifi c patient

 GET/patients/{patient-id}/
lab results

 Request lab results for a
specifi c patient

J.C. Silverstein and I.T. Foster

181

 Thus, to request all patients that we have per-
mission to see we send the following HTTP
request:
 GET/patients/

while to obtain the profi le for a specifi c patient
named NAME we send this request:
 GET/patients/NAME

and to update that profi le we send the request:
 POST/patients/NAME

 REST and HTTP defi ne how to name resources
(URLs) and messaging semantics, but not how to
encode message contents. Two primary message
encoding schemes are used: Java Script Object
Notation (JSON) and XML. The following is a
potential JSON encoding of a response to a GET/
patients/request. The response provides a list of
patient identifi ers plus (because there may be many
more patients that can fi t in a single response)
information regarding the number of patients
included in this response (X), an offset that can be
provided in a subsequent request to get new patients
(Y), and the number of patients remaining (Z):
 {"patients":
 {"list":[list of patients],
 "count":X,
 "offset":Y,
 "remain":Z}
 }

5.7.2 Distributed Databases

 Distributed databases are a special case of a dis-
tributed system. The problem here is to enable
queries against data located in multiple databases.
Two different methods are commonly used. In a
 data warehouse approach, an extract -transform -
load (ETL) process is used to extract data from
the various sources, transform it as required to fi t
the schema and semantics used by the data ware-
house, and then load the transformed data into the
data warehouse. In a federated query approach, a
query is dispatched to the different databases,
applied to each of them independently, and then
the results combined to get the complete answer.
Intermediate components called mediators may
be used to convert between different syntaxes and
semantics used in different systems.

 These two approaches have various advan-
tages and disadvantages. The data warehouse
requires a potentially expensive ETL process,
requires storage for a separate copy of all relevant
data, and may not be up to date with all source
databases. However, it can permit highly effi cient
queries against the entirety of the data. The feder-
ated query approach can provide access to the lat-
est data from each source database, but requires
potentially complex mediator technology.

5.7.3 Parallel Computing

 Parallel computers combine many microproces-
sors and/or GPUs (see Sect. 5.2) to provide an
aggregate computing capacity greater than that of
a single workstation. The largest such systems
available today have more than one million pro-
cessing cores. While systems of that scale are not
used in medicine, parallel computers are becom-
ing more commonly used in biomedical comput-
ing as a means of performing large-scale
computational simulations and/or analyzing large
quantities of data. In basic research, parallel
computers are used for such purposes as mining
clinical records, genome sequence analysis, pro-
tein folding, simulation studies of cell mem-
branes, and modeling of blood fl ow. In
translational research, parallel computers are
commonly used to compute parameters for com-
puter programs that are then used in clinical set-
tings, for example, for computed aided diagnosis
of mammograms.

 When computing over large quantities of
data, it is often useful to employ a parallel
database management system . These systems
support the same SQL query language as
sequential database management systems (see
Sect. 5.5.4 .) but can run queries faster when
using multiple processors. Another increasingly
popular approach to parallel data analysis is to
use the MapReduce model, popularized by
Google and widely available via the free
 Hadoop software. MapReduce programs may
be less effi cient than equivalent SQL programs
but do not require that data be loaded into a
database prior to processing.

5 Computer Architectures for Health Care and Biomedicine

182

5.7.4 Grid Computing

 Grid computing technologies allow for the fed-
eration of many computers and/or data resources
in such a way that they can be used in an inte-
grated manner. Grid computing is the foundation,
for example, for the worldwide distributed sys-
tem that analyzes data from the Large Hadron
Collider (LHC) in Geneva, Switzerland. The 10
or more petabytes (10 × 10 15 bytes) produced per
year at the LHC is distributed to several hundred
institutions worldwide for analysis. Each institu-
tion that participates in this worldwide system
has its own local computer system administration
team, user authentication system, accounting sys-
tem, and so forth. Grid technologies bridge these
institutional barriers, allowing a user to authenti-
cate once (to “the grid”), and then submit jobs for
execution at any or all computers in the grid.

 Grid computing is used in many academic
campuses to link small and large computer clus-
ters and even idle desktop computers for parallel
computing applications. But its biggest use in
research is to enable sharing of large quantities of
data across institutional boundaries. By address-
ing the challenges of authentication, access con-
trol, and high-speed data movement, grid
computing technologies make it possible, for
example, to acquire genome sequence from a
commercial sequencing provider, transport that
data over the network to a cloud computing pro-
vider (see Sect. 5.7.5), perform analysis there,
and then load results into a database at a research-
er’s home institution.

5.7.5 Cloud Computing

 The late 2000s saw the emergence of success-
ful commercial providers of on-demand com-
puting and software services. This concept is
certainly not new: for example, McCarthy fi rst
referred to “utility computing” in 1961, various
time sharing services provided computing over
the network in the 1970s and 1980s, and grid
computing provided such services in the 1990s
and 2000s. However, it is clear that—perhaps
driven by a combination of quasi-ubiquitous

high-speed Internet, vastly increased demand
from e- commerce, powerful lightweight Web
protocols, and an effective business model—
cloud computing has achieved large-scale adop-
tion in ways that previous efforts had not. The
implications of these developments for medical
informatics will surely be profound.

 The National Institutes of Standards and
Technology (NIST) defi nes cloud computing as
“a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of
confi gurable computing resources (e.g., net-
works, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and
released with minimal management effort or ser-
vice provider interaction” (Mell and Grance,
 2011). They distinguish between three distinct
types of cloud service (see Fig. 5.11):
• Software as a Service (SaaS) allows the con-

sumer to use the provider’s applications run-
ning on a cloud infrastructure. Examples
include Google mail, Google Docs, Salesforce.
com customer relationship management, and a
growing number of electronic medical record
and practice management systems.

• Platform as a Service (PaaS) allows the con-
sumer to deploy consumer-created or acquired
applications onto the cloud infrastructure, cre-
ated using programming languages, libraries,
services, and tools supported by the provider.
Google’s App Engine and Salesforce’s Force.
com are examples of such platforms.

• Infrastructure as a Service (IaaS) allows the
consumer to provision processing, storage,
networks, and other fundamental computing
resources on which the consumer is able to
deploy and run arbitrary software. Amazon
Web Services and Microsoft Azure are popu-
lar IaaS providers.
 Each level of the stack can, and often does, build

on services provided by the level below. For exam-
ple, Google Mail is a SaaS service that runs on
compute and storage infrastructure services oper-
ated by Google; Globus Online is a SaaS research
data management service that runs on infrastruc-
ture services operated by Amazon Web Services.

 NIST further distinguishes between public
cloud providers, which deliver such capabilities

J.C. Silverstein and I.T. Foster

183

to anyone, and private cloud providers, which
provide such on-demand services for consumers
within an organization.

 Benefi ts claimed for cloud computing include
increased reliability, higher usability, and reduced
cost relative to equivalent software deployed and
operated within the consumer’s organization, due
to expert operations and economies of scale.
(IaaS providers such as Amazon charge for com-
puting and storage on a per-usage basis.) Potential
drawbacks include security challenges associated
with remote operations, lock-in to a remote cloud
provider, and potentially higher costs if usage
becomes large.

 Outside health care, cloud computing has
proven particularly popular among smaller busi-
nesses, who fi nd that they can outsource essen-
tially all routine information technology functions
(e.g., email, Web presence, accounting, billing,
customer relationship management) to SaaS pro-
viders. Many companies also make considerable
use of IaaS from the likes of Amazon Web
Services and Microsoft Azure for compute- and
data-intensive computations that exceed local
capacity. In research, we see the emergence of a

growing number of both commercial and non-
profi t SaaS offerings designed to accelerate com-
mon research tasks. For example, Mendeley
organizes bibliographic information, while
Globus Online provides research data manage-
ment services.

 Similarly, in health care, we see many inde-
pendent physicians and smaller practices adopt-
ing SaaS electronic medical record systems. The
relatively high costs and specialized expertise
required to operate in-house systems, plus a per-
ception that SaaS providers do a good job of
addressing usability and security concerns, seem
to be major drivers of adoption. Similarly, a
growing number of biomedical researchers are
using IaaS for data- and compute-intensive
research. Meanwhile, some cloud providers (e.g.,
Microsoft) are prepared to adhere to security and
privacy provisions defi ned in HIPAA and the
HITECH act. Nevertheless, while some hospitals
are using IaaS for remote backup (e.g., by storing
encrypted database dumps), there is not yet any
signifi cant move to outsource major hospital
information systems.

5.8 Summary

 As we have discussed in this chapter, the synthe-
sis of large-scale information systems is accom-
plished through the careful construction of
hierarchies of hardware and software. Each suc-
cessive layer is more abstract and hides many of
the details of the preceding layer. Simple meth-
ods for storing and manipulating data ultimately
produce complex information systems that have
powerful capabilities. Communication links that
connect local and remote computers in arbitrary
confi gurations, and the security mechanisms that
span these systems, transcend the basic hardware
and software hierarchies. Thus, without worrying
about the technical details, users can access a
wealth of computational resources and can per-
form complex information management tasks,
such as storing and retrieving, communicating,
authorizing, and processing information. As the
technology landscape evolves and computer
architectures continuously increase in complexity,

 Fig. 5.11 The NIST taxonomy of cloud providers. SaaS,
PaaS, and IaaS providers each offer different types of ser-
vices to their clients. Cloud services are distinguished by
their Web 2.0 interfaces, which can be accessed either via
Web browsers or (for access from other programs or
scripts) via simple APIs

5 Computer Architectures for Health Care and Biomedicine

184

they will also increasingly, necessarily, hide that
complexity from the user. Therefore, it is para-
mount that systems designers, planners, and
implementers remain suffi ciently knowledgeable
about the underlying mechanisms and distin-
guishing features of computing architectures so
as to make optimal technology choices.

 Suggested Readings

 Council, N.R. (1997). For the record: Protecting elec-
tronic health information . Washington, DC: National
Academy Press. This report documents an extensive
study of current security practices in US health care
settings and recommends signifi cant changes. It sets
guidelines for policies, technical protections, and legal
standards for acceptable access to, and use of, health
care information. It is well suited for lay, medical, and
technical readers who are interested in an overview of
this complex topic.

 Garcia-Molina, H., Ullman, J.D., & Widom, J.D. (2008).
 Database systems: The complete book (2nd ed.).
Englewood Cliffs: Prentice-Hall. The fi rst half of the
book provides in-depth coverage of databases from the
point of view of the database designer, user, and appli-
cation programmer. It covers the latest database stan-
dards SQL:1999, SQL/PSM, SQL/CLI, JDBC, ODL,
and XML, with broader coverage of SQL than most
other texts. The second half of the book provides in-
depth coverage of databases from the point of view of
the DBMS implementer. It focuses on storage struc-
tures, query processing, and transaction management.
The book covers the main techniques in these areas
with broader coverage of query optimization than
most other texts, along with advanced topics including
multidimensional and bitmap indexes, distributed
transactions, and information-integration techniques.

 Hennessy, J.L., & Patterson, D.A. (2011). Computer
architecture: a quantitative approach (5th ed.). San
Francisco: Morgan Kaufmann. This technical book
provides an in-depth explanation of the physical and
conceptual underpinnings of computer hardware and
its operation. It is suitable for technically oriented
readers who want to understand the details of com-
puter architecture.

 Mell, P. and Grance, T. (2011). The NIST defi nition of
cloud computing . NIST Special Publication 800–145,
National Institute of Standards and Technology. This
brief document provides a concise and clear defi nition
of cloud computing.

 Tanenbaum, A., & Wetherall, D. (2010). Computer net-
works (5th ed.). Englewood Cliffs: Prentice-Hall. The
heavily revised edition of a classic textbook on com-
puter communications, this book is well organized,
clearly written, and easy to understand. It fi rst
describes the physical layer of networking and then

works up to network applications, using real-world
example networks to illustrate key principles. Covers
applications and services such as email, the domain
name system, the World Wide Web, voice over IP, and
video conferencing.

 Teorey, T., Lightstone, S., Nadeau, T., & Jagadish, H.
(2011). Database modeling and design: Logical
design (5th ed.). San Francisco: Elsevier. This text
provides and excellent and compact coverage of mul-
tiple topics regarding database architectures, including
core concepts, universal modeling language, normal-
ization, entity-relationship diagrams, SQL, and data
warehousing.

 Wiederhold, G., & Clayton, P.D. (1985). Processing bio-
logical data in real time. M.D. Computing, 2 (6),
16–25. This article discusses the principles and prob-
lems of acquiring and processing biological data in
real time. It covers much of the material discussed in
the signal- processing section of this chapter and it pro-
vides more detailed explanations of analog-to-digital
conversion and Fourier analysis.

 Questions for Discussion

 1. What are four considerations in decid-
ing whether to keep data in active versus
archival storage?

 2. Explain how operating systems and
cloud architectures insulate users from
hardware changes.

 3. Discuss what characteristics determine
whether computer clusters or cloud
architectures are better for scaling a
given computational problem.

 4. Explain how grid computing facilitates
federation of resources.

 5. Describe the architectural advantages
and disadvantages of different comput-
ing environments.

 6. Explain how REST and XML enable
fl exibility, modularity, and scale.

 7. How can you prevent inappropriate
access to electronic medical record
information? How can you detect that
such inappropriate access might have
occurred?

 8. You are asked whether a medical prac-
tice should outsource its information
technology functions to third party
cloud providers. What factors would
enter into your recommendation?

J.C. Silverstein and I.T. Foster

	5: Computer Architectures for Health Care and Biomedicine
	5.1	 Computer Architectures
	5.2	 Hardware
	5.2.1	 Central Processing Unit
	5.2.2	 Memory
	5.2.3	 Long-Term Storage
	5.2.4	 Graphics Processing Unit
	5.2.5	 Input Devices
	5.2.6	 Output Devices
	5.2.7	 Local Data Communications

	5.3	 Data Acquisition and Signal Processing Considerations
	5.4	 Internet Communication
	5.5	 Software
	5.5.1	 Programming Languages
	5.5.2	 Data Management
	5.5.3	 Operating Systems
	5.5.4	 Database Management Systems
	5.5.5	 Software for Network Communications
	5.5.5.1	 The Network Stack
	5.5.5.2	 Electronic Mail
	5.5.5.3	 File Transfer Protocol (FTP)
	5.5.5.4	 SSH
	5.5.5.5	 World Wide Web (WWW)
	5.5.5.6	 Client-Server Interactions

	5.6	 Data and System Security
	5.6.1	 Availability
	5.6.2	 Accountability
	5.6.3	 Perimeter Definition
	5.6.4	 Role-Limited Access
	5.6.5	 Comprehensibility and Control

	5.7	 Distributed System Architectures
	5.7.1	 Distributed System Programming
	5.7.2	 Distributed Databases
	5.7.3	 Parallel Computing
	5.7.4	 Grid Computing
	5.7.5	 Cloud Computing

	5.8	 Summary
	Suggested Readings

