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       After reading this chapter, you should know the 
answers to these questions:
•    What are the components of computer 

architectures?  
•   How are medical data stored and manipulated 

in a computer?  
•   How can information be displayed clearly?  
•   What are the functions of a computer’s operat-

ing system?  
•   What is the technical basis and business model 

of cloud computing?  
•   What advantages does using a database man-

agement system provide over storing and 
manipulating your own data directly?  

•   How do local area networks facilitate data 
sharing and communication within health care 
institutions?  

•   What are the maintenance advantages of 
Software-as-a-Service?  

•   How can the confi dentiality of data stored in 
distributed computer systems be protected?  

•   How is the Internet used for medical applica-
tions today?  

•   How are wireless, mobile devices, federated 
and hosted systems changing the way the 
Internet will be used for biomedical 
applications?    

5.1    Computer Architectures 

    Architectures are the designs or plans of systems. 
Architectures have both physical and conceptual 
aspects. Computer architectures for health care 
and biomedicine are the physical designs and 
conceptual plans of computers and information 
systems that are used in biomedical applications. 

 Health professionals and the general public 
encounter computers constantly. As electronic 
health records are increasingly deployed, clini-
cians use information systems to record medical 
observations, order drugs and laboratory tests, 
and review test results. Physicians and patients 
use personal computing environments such as 
desktop computers, laptops, and mobile devices 
to access the Internet, to search the medical lit-
erature, to communicate with colleagues and 
friends, and to do their clinical and administra-
tive work. In fact, computers are ubiquitous, 
touching every aspect of human life, and 
increasingly image-intense, interactive, and 
collaborative. 
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 Individual computers differ in speed, storage 
capacity, and cost; in the number of users that 
they can support; in the ways that they are inter-
connected; in the types of applications that they 
can run; in the way they are managed and shared; 
in the way they are secured; and in the way peo-
ple interact with them. On the surface, the differ-
ences among computers can be bewildering, but 
the selection of appropriate hardware, software, 
and the architecture under which they are assem-
bled is crucial to the success of computer applica-
tions. Despite these differences, however, 
computers use the same basic mechanisms to 
store and process information and to communi-
cate with the outside world whether desktop, lap-
top, mobile device, gaming system, digital video 
recorder, or massive computer cluster. At the 
conceptual level, the similarities among all these 
computers greatly outweigh the differences. 

 In this chapter, we will cover fundamental 
concepts related to computer hardware, software, 
and distributed systems (multiple computers 
working together), including data acquisition, 
processing, communications, security, and shar-
ing. We assume that you use computers but have 
not been concerned with their internal workings 
or how computers work together across the global 
Internet. Our aim is to give you the background 
necessary for understanding the underpinning 
technical architecture of the applications dis-
cussed in later chapters. We will describe the 
component parts that make up computers and 
their assembly into complex distributed systems 
that enable biomedical applications.  

5.2    Hardware 

 Early computers were expensive to purchase and 
operate. Only large institutions could afford to 
acquire a computer and to develop its software. 
In the 1960s, the development of integrated cir-
cuits on silicon chips resulted in dramatic 
increases in computing power per dollar. Since 
that time, computer hardware has become dra-
matically smaller, faster, more reliable and 
 personal. As computation, storage, and commu-
nication capabilities have increased so have data 

volumes, particularly genomic and imaging data. 
At the same time, software packages have been 
developed that remove much of the burden of 
writing the infrastructure of applications via 
encapsulation or abstraction of underlying soft-
ware to “higher level” commands. The result is 
that computers are increasingly complex in their 
layered hardware and software architectures, but 
simpler for individuals to program and to use. 

 Essentially all modern general-purpose com-
puters have similar base hardware (physical 
equipment) architectures. This is generally true 
whether they are large systems supporting many 
users, such as hospital information systems, indi-
vidual personal computers, laptops, mobile 
devices, or even whole computers on one silicon 
“chip” embedded in medical devices. The scale 
of computing, memory, display and style of usage 
largely distinguish different individual hardware 
devices. Later we will discuss assemblies of 
computers for complex applications. 

 General computer architectures follow princi-
ples expressed by John von Neumann in 1945. 
Figure  5.1  illustrates the confi guration of a simple 
 von Neumann machine . Extending this to mod-
ern computers, they are composed of one or more
•      Central processing units  ( CPUs ) that per-

form general computation  
•    Computer memories  that store programs and 

data that are being used actively by a CPU  
•    Storage devices , such as  magnetic disks  and 

tapes,  optical disks , and  solid state drives , 
that provide long-term storage for programs 
and data  

•    Graphics processing units  ( GPUs ) that per-
form graphic displays and other highly paral-
lel computations  

•    Input  and  output  (I/O) devices, such as key-
boards, pointing devices, touch screens, con-
trollers, video displays, and printers, that 
facilitate user interaction and storage  

•    Communication  equipment, such as network 
interfaces, that connect computers to networks 
of computers  

•    Data buses , electrical pathways that transport 
encoded information between these subsystems    
 Most computers are now manufactured with 

multiple CPUs on a single chip, and in some 
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cases multiple GPUs, as well as multiple layers 
of memory, storage, I/O devices and communica-
tion interfaces. Multiple interconnected CPUs 
with shared memory layers further enable  paral-
lel processing  (performing multiple computa-
tions simultaneously). The challenge then is for 
the software to distribute the computation across 
these units to gain a proportionate benefi t. 

5.2.1    Central Processing Unit 

 Although complete computer systems appear to 
be complex, the underlying principles are simple. 
A prime example is a processing unit itself. Here 
simple components can be carefully combined to 
create systems with impressive capabilities. The 
structuring principle is that of hierarchical orga-
nization: primitive units (electronic switches) are 
combined to form basic units that can store letters 

and numbers, add digits, and compare values 
with one another. The basic units are assembled 
into  registers  capable of storing and manipulat-
ing text and large numbers. These registers in 
turn are assembled into the larger functional units 
that make up the central component of a com-
puter: the CPU. 

 The logical atomic element for all digital com-
puters is the  binary digit  or  bit . Each bit can 
assume one of two values: 0 or 1. An electronic 
switch that can be set to either of two states stores 
a single bit value. (Think of a light switch that 
can be either on or off.) These primitive units are 
the building blocks of computer systems. 
Sequences of bits (implemented as sequences of 
switches) are used to represent larger numbers 
and other kinds of information. For example, four 
switches can store 2 4 , or 16, different combina-
tion of values: 0000, 0001, 0010, 0011, 0100, 
0101, 0110, and so on, up to 1111. Thus, 4 bits 

  Fig. 5.1    The von Neumann model: the basic architecture of most modern computers. The computer comprises a single 
central processing unit (CPU), an area for memory, and a data bus for transferring data between the two       
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can represent any decimal value from 0 to 15; 
e.g., the sequence 0101 is the  binary  (base 2) 
representation of the decimal number 5—namely, 
0 × 2 3  + 1 × 2 2  + 0 × 2 1  + 1 × 2 0  = 5. A byte is a 
sequence of 8 bits; it can take on 2 8  or 256 values 
(0–255). 

 Groups of bits and bytes can represent not 
only decimal integers but also fractional num-
bers, general characters (upper-case and lower- 
case letters, digits, and punctuation marks), 
instructions to the CPU, and more complex data 
types such as pictures, spoken language, and the 
content of a medical record. Figure  5.2  shows the 
 American Standard Code for Information 
Interchange  ( ASCII ), a convention for repre-
senting 95 common characters using 7 bits. These 
7 bits are commonly placed into an 8-bit unit, a 
byte, which is the common way of transmitting 
and storing these characters. The eighth bit may 

be used for formatting information (as in a word 
processor) or for additional special characters 
(such as currency and mathematical symbols or 
characters with diacritic marks), but the ASCII 
base standard does not cover its use. Not all char-
acters seen on a keyboard can be encoded and 
stored as ASCII. The Delete and Arrow keys are 
often dedicated to edit functions, and the Control, 
Escape, and Function keys are used to modify 
other keys or to interact directly with programs. 
A standard called  Unicode  represents characters 
needed for foreign languages using up to 16 bits; 
ASCII is a small subset of Unicode.

   The CPU works on data that it retrieves from 
memory, placing them in working registers. 
By manipulating the contents of its registers, 
the CPU performs the mathematical and logi-
cal functions that are basic to information pro-
cessing: addition, subtraction, and comparison 

  Fig. 5.2    The American 
Standard Code for 
Information Interchange 
(ASCII) is a standard scheme 
for representing alphanumeric 
characters using 7 bits. The 
upper-case and lower-case 
alphabet, the decimal digits, 
and common punctuation 
characters are shown here 
with their ASCII 
representations       
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(“is greater than,” “is equal to,” “is less than”). 
In addition to registers that perform computa-
tion, the CPU also has registers that it uses to 
store instructions—a computer program is a set 
of such instructions—and to control processing. 
In essence, a computer is an instruction follower: 
it fetches an instruction from memory and then 
executes the instruction, which usually is an 
operation that requires the retrieval, manipula-
tion, and storage of data into memory or regis-
ters. The processor often performs a simple loop, 
fetching and executing each instruction of a pro-
gram in sequence. Some instructions can direct 
the processor to begin fetching instructions from 
a different place in memory or point in the pro-
gram. Such a transfer of fl ow control provides 
fl exibility in program execution. Parallel fl ows 
may also be invoked.  

5.2.2    Memory 

 The computer’s working memory stores the pro-
grams and data currently being used by the CPU. 
Working memory has two parts:  read - only 
memory  ( ROM ) and  random - access memory  
( RAM ). 

 ROM, or fi xed memory, is permanent and 
unchanging. It can be read, but it cannot be 
altered or erased. It is used to store a few crucial 
programs that do not change and that must be 
available at all times. One such predefi ned pro-
gram is the  bootstrap  sequence, a set of initial 
instructions that is executed each time the com-
puter is started. ROM also is used to store pro-
grams that must run quickly—e.g., the base 
graphics that run the Macintosh computer 
interface. 

 More familiar to computer programmers is 
RAM, often just called  memory . RAM can be 
both read and written into. It is used to store the 
programs, control values, and data that are in cur-
rent use. It also holds the intermediate results of 
computations and the images to be displayed on 
the screen. RAM is much larger than ROM. For 
example, we might speak of a 2 gigabyte memory 
chip. A  kilobyte  is 2 10 , or 10 3 , or 1,024 bytes; a 
 megabyte  is 2 20 , or 10 6 , or 1,048,576 bytes; and a 

 gigabyte  is 2 30 , or 10 9 , or 1,073,741,824 bytes. 
Increasing powers of 2 10 , or 10 3 , are  terabytes , 
 petabytes , and  exabytes  (10 18 ). 

 A sequence of bits that can be accessed by the 
CPU as a unit is called a  word . The  word size  is 
a function of the computer’s design. Early com-
puters had word sizes of 8 or 16 bits; newer, 
faster computers had 32-bit and now 64-bit word 
sizes that allow processing of larger chunks of 
information at a time. The bytes of memory are 
numbered in sequence. The CPU accesses each 
word in memory by specifying the sequence 
number, or  address , of its starting byte.  

5.2.3    Long-Term Storage 

 The computer’s memory is relatively expensive, 
being specialized for fast read–write access; 
therefore, it is limited in size. It is also  volatile : 
its contents are changed when the next program 
runs, and memory contents are not retained when 
power is turned off. For many medical applica-
tions we need to store more information than can 
be held in memory, and we want to save all that 
information for a long time. To save valuable pro-
grams, data, or results we place them into  long - 
term   storage . 

 Programs and data that must persist over lon-
ger periods than in volatile memory are stored on 
long-term storage devices, such as hard disks, 
fl ash memory or solid state disks, optical disks, 
or magnetic tape, each of which provide persis-
tent storage for less cost per byte than memory 
and are widely available. The needed information 
is loaded from such storage into working mem-
ory whenever it is used. Conceptually, long-term 
storage can be divided into two types: (1)  active 
storage  is used to store data that may need to be 
retrieved with little delay, e.g., the medical record 
of a patient who currently is being treated within 
the hospital; and (2)  archival storage  is used to 
store data for documentary or legal purposes, 
e.g., the medical record of a patient who is 
deceased. 

 Computer storage also provides a basis for the 
sharing of information. Whereas memory is dedi-
cated to an executing program, data written on 
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storage in  fi le systems  or in  databases  is avail-
able to other users or processes that can access 
the computer’s storage devices. Files and data-
bases complement direct communication among 
computer users and have the advantage that the 
writers and readers need not be present at the 
same time in order to share information.  

5.2.4    Graphics Processing Unit 

 Graphics processing units are specialized for 
handling computation over many bytes simulta-
neously. They can be thought of as enabling of 
simultaneous processing of many data elements 
with tight coupling to their memory, or frame 
buffers, but with limited instruction sets. This 
allows rapid manipulation of many memory loca-
tions simultaneously, essential to their power for 
computer graphics, but leaves less fl exibility in 
general. For example, GPUs are much more effi -
cient than CPUs for video display, the primary 
purpose for which they were invented, or for 
highly parallel computation on a single machine, 
such as comparing genomic sequences or image 
processing. However, GPUs generally require 
different, less mature, programming languages 
and software architectures than CPUs making 
them harder to use to date. Newer languages, 
such as Open CL, enable some computer codes to 
run over either CPUs or GPUs. When GPUs are 
used for general computation, rather than for 
video or graphics display, they are referred to as 
general purpose GPUs or  GPGPUs .  

5.2.5    Input Devices 

 Data and user-command entry remain the most 
costly and awkward aspects of medical data pro-
cessing. Certain data can be acquired automati-
cally; e.g., many laboratory instruments provide 
electronic signals that can be transmitted to com-
puters directly, and many diagnostic radiology 
instruments produce output in digital form. 
Furthermore, redundant data entry can be mini-
mized if data are shared among computers over 
networks or across direct interfaces. The most 

common instrument for data entry is the  key-
board  on which the user types. A  cursor  indi-
cates the current position on the screen. Most 
programs allow the cursor to be moved with a 
 pointing device , such as a  mouse ,  track pad ,  or 
touch screen , so that making insertions and cor-
rections is convenient. Systems developers con-
tinue to experiment with a variety of alternative 
input devices that minimize or eliminate the need 
to type. 

 There are also three-dimensional pointing 
devices, where an indicator, or just the user’s 
own body, using optical capture, is positioned in 
front of the screen, and a three-dimensional dis-
play may provide feedback to the user. Some 
three- dimensional pointing devices used in med-
ical virtual-reality environments also provide 
computer- controlled force or  tactile feedback , 
so that a user can experience the resistance, for 
example, of a simulated needle being inserted 
for venipuncture or a simulated scalpel making a 
surgical incision. 

 In automatic speech recognition, digitized 
voice signals captured through a microphone are 
matched to the patterns of a vocabulary of known 
words, and use grammar rules to allow recogni-
tion of sentence structures. The speech input is 
then stored as ASCII-coded text. This technology 
is improving in fl exibility and reliability, but 
error rates remain suffi ciently high that manual 
review of the resulting text is needed. This is eas-
ier for some users than typing.  

5.2.6    Output Devices 

 The presentation of results, or of the  output , is 
the complementary step in the processing of 
medical data. Many systems compute informa-
tion that is transmitted to health care providers 
and is displayed immediately on local personal 
computers or printed so that action can be taken. 
Most immediate output appears at its destination 
on a display screen, such as the fl at-panel  liquid 
crystal display  ( LCD ) or  light - emitting diode  
( LED ) based displays of a personal computer 
(PC). The near-realistic quality of computer dis-
plays enables unlimited interaction with text, 
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images, video, and interactive graphical ele-
ments. Graphical output is essential for summa-
rizing and presenting the information derived 
from voluminous data. 

 A graphics screen is divided into a grid of pic-
ture elements called  pixels . One or more bits in 
memory represent the output for each pixel. In a 
black-and-white monitor, the value of each pixel 
on the screen is associated with the level of inten-
sity, or gray scale. For example, 2 bits can distin-
guish 2 2  or 4 display values per pixel: black, 
white, and two intermediate shades of gray. For 
color displays, the number of bits per pixel, or  bit 
depth , determines the  contrast  and  color resolu-
tion  of an image. Three sets of multiple bits are 
necessary to specify the color of pixels on LCDs, 
giving the intensity for red, green, and blue com-
ponents of each pixel color, respectively. For 
instance, three sets of 8 bits per pixel provide 2 24  
or 16,777,216 colors. The number of pixels per 
square inch determines the  spatial resolution  of 
the image (Fig.  5.3 ). Both parameters determine 
the size requirements for storing images. LCD 
color projectors are readily available so that the 
output of a workstation can also be projected 
onto a screen for group presentations. Multiple 
standard hardware interfaces, such as VGA and 
HDMI also enable computers to easily display to 
high defi nition and even stereoscopic televisions 
(3DTVs). Much diagnostic information is 
 produced in image formats that can be shown on 
graphics terminals. Examples are ultrasound 
observations, magnetic resonance images 
(MRIs), and computed tomography (CT) scans.

   For portability and traditional fi ling, output is 
printed on paper. Printing information is slower 
than displaying it on a screen, so printing is best 
done in advance of need. In a clinic, relevant por-
tions of various patient records may be printed on 
high-volume printers the night before scheduled 
visits.  Laser printers  use an electromechanically 
controlled laser beam to generate an image on a 
xerographic surface, which is then used to pro-
duce paper copies, just as is done in a copier. 
Their spatial resolution is often better than that of 
displays, allowing 600 dots (pixels) per inch 
(commercial typesetting equipment may have a 
resolution of several thousand dots per inch). 

Color  ink - jet printers  are inexpensive, but the 
ink cartridges raise the cost under high use. Liquid 
ink is sprayed on paper by a head that moves back 
and forth for each line of pixels. Ink- jet printers 
have lower resolution than laser printers and are 
relatively slow, especially at high resolution. Ink-
jet printers that produce images of photographic 
quality are also readily available. Here the base 
colors are merged while being sprayed so that true 
color mixes are placed on the paper. 

 Other output mechanisms are available to 
computer systems and may be used in medical 
applications, particularly sound, for alerts, feed-
back and instruction, such as for Automatic 
External Defi brillators (AEDs). A computer can 
produce sound via digital-to-analog conversion 
(see Sect.  5.3 ). There are also 3D printers which 
create objects.  

5.2.7    Local Data Communications 

 Information can be shared most effectively by 
allowing access for all authorized participants 
whenever and wherever they need it. Transmitting 
data electronically among applications and com-
puter systems facilitates such sharing by mini-
mizing delays and by supporting interactive 
collaborations. Videoconferencing is also sup-
ported on PCs. Transmitting paper results in a 
much more passive type of information sharing. 
Data communication and integration are critical 
functions of health care information systems. 
Modern computing and communications are 
deeply intertwined. 

 Computer systems used in health care are spe-
cialized to fulfi ll the diverse needs of health pro-
fessionals in various areas, such as physicians’ 
offi ces, laboratories, pharmacies, intensive care 
units, and business offi ces. Even if their hardware 
is identical, their content will differ, and some of 
that content must be shared with other applica-
tions in the health care organization. Over time, 
the hardware in the various areas will also 
diverge—e.g., imaging departments will require 
more capable displays and larger storage, other 
areas will use more processor power. Demand for 
growth and funding to accommodate change 
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  Fig. 5.3    Demonstration of how varying the number of 
pixels and the number of bits per pixel affects the spatial 
and contract resolution of a digital image. The image in 
the upper right corner was displayed using a 256 x 256 
array of pixels, 8 bits per pixel; the subject (Walt 

Whitman) is easily discernible (Source: Reproduced with 
permission from Price R.R., & James A.E. (1982). Basic 
principles and instrumentation of digital radiography. In: 
Price R.R., et al. (Eds.).  Digital radiography: A focus on 
clinical utility . Orlando: WB Saunders)       
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occurs at different times. Communication among 
diverse systems bridges the differences in com-
puting environments. 

  Communication  can occur via telephone 
lines, dedicated or shared wires, fi ber-optic 
cables, infrared, or radio waves (wireless). In 
each case different communication interfaces 
must be enabled with the computer, different con-
ventions or communication protocols must be 
obeyed, and a different balance of performance 
and reliability can be expected. For example, 
wired connections are typically higher volume 
communication channels and more reliable. 
However, communication paths can reach capac-
ity; so for example, a wired computer in a busy 
hotel where the network is overloaded may com-
municate less reliably than a wireless smart 
phone with a strong wireless signal. Thus, spe-
cifi c communication needs and network capabili-
ties and loads must always be considered when 
designing applications and implementing them. 

 The overall  bit rate  of a digital communica-
tion link is a combination of the rate at which 
symbols can be transmitted and the effi ciency 
with which digital information (in the form of 
bits) is encoded in the symbols. There are many 
available data transmission options for connect-
ing local networks (such as in the home). 
 Integrated services digital network  ( ISDN ) 
and, later,  digital subscriber line  ( DSL ) tech-
nologies allow network communications using 
conventional telephone wiring (twisted pairs). 
These allow sharing of data and voice transmis-
sion ranging from 1 to 10  megabits  per second 
(Mbps), depending on the distance from the dis-
tribution center. 

 In areas remote to wired lines, these digital ser-
vices may be unavailable, but the communica-
tions industry is broadening access to digital 
services over wireless channels. In fact, in many 
countries, usable wireless bandwidth exceeds 
wired bandwidth in many areas. Transmission for 
rapid distribution of information can occur via 
cable modems using coaxial cable (up to 30 
Mbps) or direct satellite broadcast. These alterna-
tives have a very high capacity, but all subscribers 
then share that capacity. Also for DSL, digital 
cable services and wireless services, transmission 

speeds are often asymmetrical, with relatively 
low-speed service used to communicate back to 
the data source. This design choice is rationalized 
by the assumption that most users receive more 
data than they send, for example, in downloading 
and displaying graphics, images, and video, while 
typing relatively compact commands to make this 
happen. This assumption breaks down if users 
generate large data objects on their personal 
machine that then have to be sent to other users. In 
this case it may be more cost-effective in terms of 
user time to purchase a symmetric communica-
tion service. Home networking has been further 
expanded with the use of WiFi (IEEE 802.11 stan-
dard for wireless communications). Computers, 
cell phones, and many personal health and fi tness 
devices with embedded computers now support 
WiFi to establish access to other computers and 
the Internet, while Bluetooth is another wireless 
protocol generally used for communicating 
among computer components (such as wireless 
headsets to cell phones and wireless keyboards to 
computers). 

  Frame Relay  is a network protocol designed 
for sending digital information over shared, 
 wide - area networks  ( WANs ). It transmits 
variable- length messages or packets of informa-
tion effi ciently and inexpensively over dedicated 
lines that may handle aggregate speeds up to 45 
Mbps.  Asynchronous Transfer Mode  ( ATM ) is 
a protocol designed for sending streams of small, 
fi xed-length cells of information over very high- 
speed dedicated connections—most often digital 
optical circuits. The underlying optical transmis-
sion circuit sends cells synchronously and sup-
ports multiple ATM circuits. The cells associated 
with a given ATM circuit are queued and pro-
cessed asynchronously with respect to each other 
in gaining access to the multiplexed (optical) 
transport medium. Because ATM is designed to 
be implemented by hardware switches, informa-
tion bit rates over 10 gigabits per second (Gbps) 
are typical. 

 For communication needs within an offi ce, a 
building, or a campus, installation of a  local - area 
network  ( LAN ) allows local data communica-
tion without involving the telephone company or 
 network access provider . Such a network is 
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dedicated to linking multiple computer nodes 
together at high speeds to facilitate the sharing of 
resources—data, software, and equipment—
among multiple users. Users working at individ-
ual workstations can retrieve data and programs 
from network  fi le servers : computers dedicated 
to storing local fi les, both shared and private. The 
users can process information locally and then 
save the results over the network to the fi le server 
or send output to a shared printer. 

 There are a variety of  protocols  and technolo-
gies for implementing LANs, although the differ-
ences should not be apparent to the user. Typically 
data are transmitted as messages or  packets  of 
data; each packet contains the data to be sent, the 
network addresses of the sending and receiving 
nodes, and other control information. LANs are 
limited to operating within a geographical area of 
at most a few miles and often are restricted to a 
specifi c building or a single department. Separate 
remote LANs may be connected by  bridges , 
routers, or switches (see below), providing con-
venient communication between machines on 
different networks. The information technology 
department of a health care organization typi-
cally takes responsibility for implementing and 
linking multiple LANs to form an enterprise net-
work. Important services provided by such net-
work administrators include integrated access to 
WANs, specifi cally to the Internet (see later dis-
cussion on Internet communication), service reli-
ability, and security. 

 Early LANs used coaxial cables as the commu-
nication medium because they could deliver reli-
able, high-speed communications. With improved 
communication signal–processing technologies, 
however,  twisted - pair wires  (Cat-5 and better 
quality) have become the standard. Twisted-pair 
wiring is inexpensive and has a high  bandwidth  
(capacity for information transmission) of at least 
100 Mbps. An alternate medium,  fi ber - optic 
cable , offers the highest bandwidth (over 1 bil-
lion bps or 1 Gbps) and a high degree of reliability 
because it uses light waves to transmit informa-
tion signals and is not susceptible to electrical 
interference. Fiber-optic cable is used in LANs 
to increase transmission speeds and distances by 
at least one order of magnitude over twisted-pair 

wire. Splicing and connecting into optical cable 
is more diffi cult than into twisted-pair wire, 
however, so in-house delivery of networking ser-
vices to the desktop is still easier using twisted-
pair wires. Fiber-optic cable, twisted-pair wires, 
and WiFi are often used in a complementary 
fashion—fi ber-optic cable for the high-speed, 
shared backbone of an enterprise network or 
LAN and twisted-pair wires extending out from 
side-branch hubs to bring service to small areas 
and twisted-pair wires or WiFi to the individual 
workstation. 

 Rapid data transmission is supported by 
LANs. Many LANs still operate at 10 Mbps, but 
100-Mbps networks are now cost-effective. Even 
at 10 Mbps, the entire contents of this book could 
be transmitted in a few seconds. Multiple users 
and high-volume data transmissions such as 
video may congest a LAN and its servers, how-
ever, so the effective transmission speed seen by 
each user may be much lower. When demand is 
high, LANs can be duplicated in parallel. 
Gateways, routers, and switches shuttle packets 
among these networks to allow sharing of data 
between computers as though the machines were 
on the same LAN. A  router  or a  switch  is a spe-
cial device that is connected to more than one 
network and is equipped to forward packets that 
originate on one network segment to machines on 
another network.  Gateways  perform routing and 
can also translate packet formats if the two con-
nected networks run different communication 
protocols. 

 Messages also can be transmitted through the 
air by radio, microwave, infrared, satellite signal, 
or line-of-sight laser-beam transmission. Appli-
cation of these have many special trade-offs and 
considerations.  Broadband  has a specifi c techni-
cal meaning related to parallelization of signal 
transmission, but has been used more recently as 
a term to refer to any relatively high bandwidth 
network connection, such as cable service or 
third generation (3G) or fourth generation (4G) 
wireless cellular telephone services, which are 
now widespread means of broadband Internet 
access and communication. 

 Wireless users of a hospital or clinic can use 
these radio signals from portable devices to 
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 communicate with the Internet and, when autho-
rized, to servers that contain clinical data and 
thus can gain entry to the LANs and associated 
services. Hospitals have many instruments that 
generate electronic interference, and often have 
reinforced concrete walls, so that radio transmis-
sion may not be reliable internally over long dis-
tances. In fact, in many medical settings the use 
of cellular or similar radio technologies was also 
prohibited for a time for perhaps justifi ed fear of 
electromagnetic interference with telemetry or 
other delicate instruments. You experience elec-
tromagnetic interference when proximity of a 
cell phone causes public address speakers to 
make chattering sounds. These features and short 
battery life had made portable wireless devices 
weakly fi t computers in medical applications 
until recently. Now, with: (1) better battery life 
due to improvements in battery technology; (2) 
smarter wireless radio use by the portable devices 
(e.g. cellular phones, tablet computers), which 
decrease the radio transmission power when they 
have stronger wireless signals (also reducing the 
risk for electromagnetic interference); (3) more 
reliable hospital wireless networks; and (4) better 
applications; portable wireless devices (e.g. tab-
let computers) are exploding in use in hospital 
environments.   

5.3    Data Acquisition and Signal 
Processing Considerations 

 A prominent theme of this book is that capturing 
and entering data into a computer manually is 
diffi cult, time-consuming, error-prone, and 
expensive.  Real - time acquisition  of data from 
the actual source by direct electrical connections 
to instruments can overcome these problems. 
Direct acquisition of data avoids the need for 
people to measure, encode, and enter the data 
manually. Sensors attached to a patient convert 
biological signals—such as blood pressure, pulse 
rate, mechanical movement, and electrocardio-
gram (ECG)—into electrical signals, which are 
transmitted to the computer. The signals are sam-
pled periodically and are converted to digital rep-
resentation for storage and processing. Automated 

data-acquisition and signal-processing tech-
niques are particularly important in patient- 
monitoring settings (see Chap.   19    ). Similar 
techniques also apply to the acquisition and pro-
cessing of human voice input. 

 Most naturally occurring signals are  analog 
signals —signals that vary continuously. The fi rst 
bedside monitors, for example, were wholly ana-
log devices. Typically, they acquired an analog 
signal (such as that measured by the ECG) and 
displayed its level on a dial or other continuous 
display (see, for example, the continuous signal 
recorded on the ECG strip shown in Fig.   19.4    ). 

 The computers with which we work are  digi-
tal computers . A digital computer stores and 
processes values in discrete values collected at 
discrete points and at discrete times. Before com-
puter processing is possible, analog signals must 
be converted to digital units. The conversion pro-
cess is called  analog - to - digital conversion  
( ADC ). You can think of ADC as sampling and 
rounding—the continuous value is observed 
(sampled) at some instant and is rounded to the 
nearest discrete unit (Fig.  5.4 ). You need one bit 
to distinguish between two levels (e.g., on or off); 
if you wish to discriminate among four levels, 
you need two bits (because 2 2  = 4), and so on.

   Two parameters determine how closely the 
digital data represent the original analog signal: 

2.0

Analog
representation

2-bit digital
representation

11

10

01

00

1.0

0.0

–1.0

–2.0

  Fig. 5.4    Analog-to-digital conversion (ADC). ADC is a 
technique for transforming continuous-valued signals to 
discrete values. In this example, each sampled value is 
converted to one of four discrete levels (represented by 2 
bits)       
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the precision with which the signal is recorded 
and the frequency with which the signal is sam-
pled. The  precision  is the degree to which a digi-
tal estimate of a signal matches the actual analog 
value. The number of bits used to encode the digi-
tal estimate and their correctness determines pre-
cision; the more bits, the greater the number of 
levels that can be distinguished. Precision also is 
limited by the accuracy of the equipment that con-
verts and transmits the signal. Ranging and cali-
bration of the instruments, either manually or 
automatically, is necessary for signals to be repre-
sented with as much accuracy as possible. 
Improper ranging will result in loss of informa-
tion. For example, a change in a signal that varies 
between 0.1 and 0.2 V will be undetectable if the 
instrument has been set to record changes between 
−2.0 and 2.0 in 0.5 V increments. Figure  5.5  
shows another example of improper ranging.

   The  sampling rate  is the second parameter 
that affects the correspondence between an ana-
log signal and its digital representation. A sam-
pling rate that is too low relative to the rate with 
which a signal changes value will produce a poor 

representation (Fig.  5.6 ). On the other hand, 
oversampling increases the expense of process-
ing and storing the data. As a general rule, you 
need to sample at least twice as frequently as the 
highest-frequency component that you need to 
observe in a signal. For instance, looking at an 
ECG, we fi nd that the basic contraction repetition 
frequency is at most a few per second, but that the 
 QRS wave  within each beat (see Sect.   17.5    ) con-
tains useful frequency components on the order 
of 150 cycles per second, i.e., the QRS signal 
rises and falls within a much shorter interval than 
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  Fig. 5.5    Effect on precision of ranging. The amplitude of 
signals from sensors must be ranged to account, for exam-
ple, for individual patient variation. As illustrated here, 
the details of the signal may be lost if the signal is insuf-
fi ciently amplifi ed. On the other hand, over amplifi cation 
will produce clipped peaks and troughs       

a
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c

  Fig. 5.6    The greater the sampling rate is, the more 
closely the sampled observations will correspond to the 
underlying analog signal. The sampling rate in ( a ) is high-
est; that in ( b ) is lower; and that in ( c ) is the lowest. When 
the sampling rate is very low (as in  c ), the results of the 
analog-to-digital conversion (ADC) can be misleading. 
Note the degradation of the quality of the signal from ( a ) 
to ( c )       
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the basic heart beat. Thus, the ECG data- sampling 
rate should be at least 300 measurements per sec-
ond. The rate calculated by doubling the highest 
frequency is called the  Nyquist frequency . The 
ideas of sampling and signal estimation apply 
just as well to spatially varying signals (like 
images) with the temporal dimension replaced by 
one or more spatial dimensions.

   Another aspect of signal quality is the amount 
of  noise  in the signal—the component of the 
acquired data that is not due to the specifi c phe-
nomenon being measured. Primary sources of 
noise include random fl uctuations in a signal 
detector or electrical or magnetic signals picked 
up from nearby devices and power lines. Once 
the signal has been obtained from a sensor, it 
must be transmitted to the computer. Often, the 
signal is sent through lines that pass near other 
equipment. En route, the analog signals are 
 susceptible to electromagnetic interference. 
Inaccuracies in the sensors, poor contact between 
sensor and source (e.g., the patient), and distur-
bances from signals produced by processes other 
than the one being studied (e.g., respiration inter-
feres with the ECG) are other common sources of 
noise. 

 Three techniques, often used in combination, 
minimize the amount of noise in a signal before 
its arrival in the computer:
    1.     Shielding , isolation, and grounding of cables 

and instruments carrying analog signals all 
reduce electrical interference. Often, two 
twisted wires are used to transmit the signal—
one to carry the actual signal and the other to 
transmit the ground voltage at the sensor. At 
the destination, a differential amplifi er mea-
sures the difference. Most types of interfer-
ence affect both wires equally; thus, the 
difference should refl ect the true signal. The 
use of glass fi ber-optic cables, instead of cop-
per wires, for signal transmission eliminates 
interference from electrical machinery, 
because optical signals are not affected by 
relatively slow electrical or magnetic fi elds.   

   2.    For robust transmission over long dis-
tances, analog signals can be converted into 
a frequency- modulated representation. An 
FM signal represents changes of the signal 

as changes of frequency rather than of ampli-
tude.  Frequency modulation  ( FM ) reduces 
noise greatly, because interference directly 
disturbs only the amplitude of the signal. 
As long as the interference does not cre-
ate amplitude changes near the high carrier 
frequency, no loss of data will occur during 
transmission.
   Conversion of analog signals to digital form 

provides the most robust transmission. The 
closer to the source the conversion occurs, 
the more reliable the data become. Digital 
transmission of signals is inherently less 
noise-sensitive than is analog transmission: 
interference rarely is great enough to change 
a 1 value to a 0 value or vice versa. 
Furthermore, digital signals can be coded, 
permitting detection and correction of trans-
mission errors. Placing a microprocessor 
near the signal source is now the most com-
mon way to achieve such a conversion. The 
development of  digital signal processing  
( DSP ) chips—also used for computer voice 
mail and other applications—facilitates 
such applications.      

   3.     Filtering algorithms  can be used to reduce 
the effect of noise. Usually, these algorithms 
are applied to the data once they have been 
stored in memory. A characteristic of noise is 
its relatively random pattern. Repetitive sig-
nals, such as an ECG, can be integrated over 
several cycles, thus reducing the effects of 
random noise. When the noise pattern differs 
from the signal pattern, Fourier analysis can 
be used to fi lter the signal; a signal is decom-
posed into its individual components, each 
with a distinct period and amplitude. (The 
article by Wiederhold and Clayton ( 1985 ) in 
the Suggested Readings explains Fourier anal-
ysis in greater detail.) Unwanted components 
of the signal are assumed to be noise and are 
eliminated. Some noise (such as the 60-cycle 
interference caused by a building’s electrical 
circuitry) has a regular pattern. In this case, 
the portion of the signal that is known to be 
caused by interference can be fi ltered out.     
 Once the data have been acquired and cleaned 

up, they typically are processed to reduce 
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their volume and to abstract information 
for use by interpretation programs. Often, 
the data are analyzed to extract important 
parameters, or features, of the signal—e.g., 
the duration or intensity of the ST segment 
of an ECG. The computer also can analyze 
the shape of the waveform by comparing 
one part of a repetitive signal to another, 
e.g., to detect ECG beat irregularities, or by 
comparing a waveform to models of known 
patterns, or templates. In  speech recogni-
tion , the voice signals can be compared 
with stored profi les of spoken words. 
Further analysis is necessary to determine 
the meaning or importance of the signals—
e.g., to allow automated ECG-based car-
diac diagnosis or to respond properly to the 
words recognized in a spoken input.  

5.4    Internet Communication 

  External routers  link the users on a LAN to a 
 regional network  and then to the  Internet . The 
Internet is a WAN that is composed of many 
regional and local networks interconnected by 
long-range  backbone links , including interna-
tional links. The Internet was begun by the National 
Science Foundation in the 1980s, a period in which 
various networking approaches were overtaken by 
a common protocol designed and inspired by mili-
tary considerations to enable scalability and robust-
ness to failure of individual links in the network. 

 All Internet participants agree on many stan-
dards. The most fundamental is the protocol suite 
referred to as the  Transmission Control 
Protocol / Internet Protocol  ( TCP / IP ). Data 
transmission is always by structured packets, and 
all machines are identifi ed by a standard for IP 
addresses. An  Internet address  consist of a 
sequence of four 8-bit numbers, each ranging 
from 0 to 255— most often written as a dotted 
sequence of numbers: a.b.c.d. Although IP 
addresses are not assigned geographically (the 
way ZIP codes are), they are organized hierarchi-
cally, with a fi rst component identifying a net-
work, a second identifying a subnet, and a third 
identifying a specifi c computer. Computers that 

are permanently linked into the Internet may have 
a fi xed IP address assigned, whereas users whose 
machines reach the Internet by making a wireless 
connection only when needed, may be assigned a 
temporary address that persists just during a con-
nected session. The Internet is in the process of 
changing to a protocol (IPv6) that supports 64-bit 
IP addresses, because the worldwide expansion of 
the Internet, the block address assignment pro-
cess, and proliferation of networked individual 
computer devices are exhausting the old 32-bit 
address space. While the changeover is complex 
and has been moving slowly for more than a 
decade, much work has gone into making this 
transition transparent to the user. 

 Because 32-bit (and 64-bit) numbers are diffi -
cult to remember, computers on the Internet also 
have names assigned. Multiple names may be 
used for a given computer that performs distinct 
services. The names can be translated to IP 
addresses—e.g., when they are used to designate 
a remote machine—by means of a hierarchical 
name management system called the  Domain 
Name System  (DNS). Designated computers, 
called  name - servers , convert a name into an IP 
address before the message is placed on the net-
work; routing takes place based on only the 
numeric IP address. Names are also most often 
expressed as dotted sequences of name segments, 
but there is no correspondence between the four 
numbers of an IP address and the parts of a name. 
The Internet is growing rapidly; therefore, peri-
odic reorganizations of parts of the network are 
common. Numeric IP addresses may have to 
change, but the logical name for a resource can 
stay the same and the (updated) DNS can take 
care of keeping the translation up to date. This 
overall process is governed today by  the Internet 
Corporation for Assigned Names and Numbers  
( ICANN ). Three conventions are in use for com-
posing Internet names from segments:
    1.    Functional convention: Under the most com-

mon convention for the United States, names 
are composed of hierarchical segments increas-
ing in specifi city from right to left, beginning 
with one of the top-level domain- class identifi -
ers—e.g., computer.institution.class (ci.uchi-
cago.edu) or institution.class (whitehouse.gov). 
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Initially the defi ned top-level domain classes 
were .com, .edu, .gov, .int, .mil, .org, and .net 
(for commercial, educational, government, 
international organizations, military, non-
profi t, and ISP organizations, respectively). 
As Internet use has grown, many more classes 
have been added. Other conventions have 
evolved as well: www was often used as a pre-
fi x to name the  World Wide Web  ( WWW ) 
services on a computer (e.g.,   www.nlm.nih.
gov    ).   

   2.    Geographic convention: Names are composed 
of hierarchical segments increasing in speci-
fi city from right to left and beginning with 
a two-character top-level country domain 
identifi er—e.g., institution.town.state.coun-
try (cnri.reston.va.us or city.paloalto.ca.us). 
Many countries outside of the United States 
use a combination of these conventions, such 
as csd.abdn.ac.uk, for the Computer Science 
Department at the University of Aberdeen (an 
academic institution in the United Kingdom). 
Note that domain names are  case - insensitive , 
although additional fi elds in a URL, such as 
fi le names used to locate content resources, 
may be  case - sensitive .   

   3.    Attribute list address (X.400) convention: 
Names are composed of a sequence of attribute- 
value pairs that specifi es the components 
needed to resolve the address— e.g.,/C = GB/
A D M D  =  B T / P R M D  =  AC / O  =  A b d n /
OU = csd/, which is equivalent to the address 
csd.abdn.ac.uk. This convention derives from 
the X.400 address standard that is used mainly 
in Europe. It has the advantage that the address 
elements (e.g., /C for Country name, /ADMD 
for Administrative Management Domain 
name, and /PRMD for Private Management 
Domain name) are explicitly labeled and may 
come in any order. Country designations differ 
as well. However, this type of address is gener-
ally more diffi cult for humans to understand 
and has not been adopted broadly in the Internet 
community.    
  An institution that has many computers may 

provide a service whereby all communications 
(e.g., incoming e-mails) go to a single address 
(e.g., uchicago.edu or apple.com), and then local 

tables are used to direct each message to the right 
computer or individual. Such a scheme insulates 
outside users from internal naming conventions 
and changes, and can allow dynamic machine 
selection for the service in order to distribute 
loading. Such a central site can also provide a 
fi rewall—a means to attempt to keep viruses and 
unsolicited and unwanted connections or mes-
sages (spam) out. The nature of attacks on net-
works and their users is such that constant 
vigilance is needed at these service sites to pre-
vent system and individual intrusions. 

 The routing of packets of information between 
computers on the Internet is the basis for a rich 
array of information services. Each such service—
be it resource naming, electronic mail, fi le transfer, 
remote computer log in, World Wide Web, or 
another service— is defi ned in terms of sets of 
protocols that govern how computers speak to 
each other. These worldwide inter- computer link-
age conventions allow global sharing of informa-
tion resources, as well as personal and group 
communications. The Web’s popularity and grow-
ing services continues to change how we deal with 
people, form communities, make purchases, enter-
tain ourselves, and perform research. The scope of 
all these activities is more than we can cover in this 
book, so we restrict ourselves to topics important 
to health care. Even with this limitation, we can 
only scratch the surface of many topics. 

 Regional and national networking services are 
now provided by myriad commercial communica-
tions companies, and users get access to the regional 
networks through their institutions or privately by 
paying an  Internet service provider  ( ISP ), who in 
turn gets WAN access through a  network access 
provider  (NAP). There are other WANs besides the 
Internet, some operated by demanding commercial 
users, and others by parts of the federal government, 
such as the Department of Defense, the National 
Aeronautics and Space Administration, and the 
Department of Energy. Nearly all countries have 
their own networks connected to the Internet so that 
information can be transmitted to most computers 
in the world. Gateways of various types connect all 
these networks, whose capabilities may differ. It is 
no longer possible to show the Internet map on a 
single diagram.  
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5.5    Software 

 All the functions performed by the hardware of a 
computer system are directed by computer pro-
grams, or software (e.g. data acquisition from 
input devices, transfer of data and programs to 
and from working memory, computation and 
information processing by the CPU, formatting 
and presentation of results via the GPU, exchange 
of data across networks). 

5.5.1    Programming Languages 

 In our discussion of the CPU in Sect.  5.2 , we 
explained that a computer processes information 
by manipulating words of information in regis-
ters. Instructions that tell the processor which 
operations to perform also are sequences of 0’s 
and 1’s, a binary representation called  machine 
language  or  machine code  or just  code . 
Machine- code instructions are the only instruc-
tions that a computer can process directly. These 
binary patterns, however, are diffi cult for people 
to understand and manipulate. People think best 
symbolically. Thus, a fi rst step toward making 
programming easier and less error prone was the 
creation of an assembly language.  Assembly lan-
guage  replaces the sequences of bits of machine- 
language programs with words and abbreviations 
meaningful to humans; a programmer instructs 
the computer to LOAD a word from memory, 
ADD an amount to the contents of a register, 
STORE it back into memory, and so on. A pro-
gram called an  assembler  translates these 
instructions into binary machine-language repre-
sentation before execution of the code. There is a 
one-to-one correspondence between instructions 
in assembly and machine languages. To increase 
effi ciency, we can combine sets of assembly 
instructions into  macros  and thus reuse them. An 
assembly-language programmer must consider 
problems on a hardware-specifi c level, instruct-
ing the computer to transfer data between regis-

ters and memory and to perform primitive 
operations, such as incrementing registers, com-
paring characters, and handling all processor 
exceptions (Fig.  5.7 ).

   On the other hand, the problems that the users 
of a computer wish to solve are real-world prob-
lems on a higher conceptual level. They want to 
be able to instruct the computer to perform tasks 
such as to retrieve the latest trends of their test 
results, to monitor the status of hypertensive 
patients, or to order new medications. To make 
communication with computers more under-
standable and less tedious, computer scientists 
developed higher-level, user-oriented  symbolic - 
programming   languages . 

 Using a higher-level language, such as one of 
those listed in Table  5.1 , a programmer defi nes 
variables to represent higher-level entities and 
specifi es arithmetic and symbolic operations 
without worrying about the details of how the 
hardware performs these operations. The details 

  Fig. 5.7    An assembly-language program and a corre-
sponding machine-language program to add two numbers 
and to store the result.       
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of managing the hardware are hidden from the 
programmer, who can specify with a single state-
ment an operation that may translate to thousands 
of machine instructions. A compiler is used to 
translate automatically a high-level program into 
machine code. Some languages are interpreted 
instead of compiled. An  interpreter  converts and 
executes each statement before moving to the 
next statement, whereas a compiler translates all 
the statements at one time, creating a binary pro-
gram, which can subsequently be executed many 
times. MUMPS (M) is an interpreted language, 
LISP may either be interpreted or compiled, and 

FORTRAN routinely is compiled before execu-
tion. Hundreds of languages have been devel-
oped—here we touch on only a few that are 
important from a practical or conceptual level.

   Each statement of a language is characterized 
by syntax and semantics. The syntactic rules 
describe how the statements, declarations, and 
other language constructs are written—they 
defi ne the language’s grammatical structure. 
Semantics is the meaning given to the various 
syntactic constructs. The following sets of state-
ments (written in Pascal, FORTRAN, COBOL, 
and LISP) all have the same semantics:

    Table 5.1    Distinguishing features of 17 common programming languages   

 Programming 
language 

 First 
year 

 Primary application 
domain  Type  Operation 

 Type 
checks 

 Procedure 
call method 

 Data management 
method 

 FORTRAN  1957  Mathematics  Procedural  Compiled  Weak  By reference  Simple fi les 
 COBOL  1962  Business  Procedural  Compiled  Yes  By name  Formatted fi les 
 Pascal  1978  Education  Procedural  Compiled  Strong  By name  Record fi les 
 Smalltalk  1976  Education  Object  Interpreted  Yes  By defi ned 

methods 
 Object 
persistence 

 PL/l  1965  Math, business  Procedural  Compiled  Coercion  By reference  Formatted fi les 
 Ada  1980  Math, business  Procedural  Compiled  Strong  By name  Formatted fi les 
 Standard ML  1989  Logic, math  Functional  Compiled  Yes  By value  Stream fi les 
 MUMPS (M)  1962  Data handling  Procedural  Interpreted  No  By reference  Hierarchical fi les 
 LISP  1964  Logic  Functional  Either  No  By value  Data persistence 
 C  1976  Data handling  Procedural  Compiled  Weak  By reference  Stream fi les 
 C++  1986  Data handling  Hybrid  Compiled  Strong  By reference  Object fi les 
 Java  1995  Data display  Object  Either  Strong  By value  Object classes 
 JavaScript  1995  Interactive Web  Object  Interpreted  Weak  By value or 

reference 
 Context-specifi c 
object classes 

 Perl  1987  Text processing  Hybrid  Interpreted  Dynamic  By reference  Stream fi les 
 Python  1990  Scripting  Hybrid  Interpreted  Dynamic  By reference  Stream fi les 
 Erlang  1986  Real-time systems  Functional; 

concurrent 
 Compiled  Dynamic  By reference  Stream fi les 
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  Each set of statements instructs the computer 
to add the values of variables A and B, to assign 
the result to variable C, and to write the result onto 
a fi le. Each language has a distinct syntax for indi-
cating which operations to perform. Regardless of 
the particular language in which a program is 
written, in the end, the computer executes similar 
(perhaps exactly the same) instructions to manip-
ulate sequences of 0’s and 1’s within its registers. 

 Computer languages are tailored to handle 
specifi c types of computing problems, as shown 
in Table  5.1 , although all these languages are suf-
fi ciently fl exible to deal with nearly any type of 
problem. Languages that focus on a fl exible, gen-
eral computational infrastructure, such as C or 
Java have to be augmented with large collections 
of libraries of procedures, and learning the spe-
cifi c libraries takes more time than does learning 
the language itself. Languages also differ in 
usability. A language meant for education and 
highly reliable programs will include features to 
make it foolproof, by way of checking that the 
types of values, such as integers, decimal num-
bers, and strings of characters, match throughout 
their use—this is called  type checking . Such fea-
tures may cause programs to be slower in execu-
tion, but more reliable. Without type checking, 
smart programmers can instruct the computers to 
perform some operations more effi ciently than is 
possible in a more constraining language. 

 Sequences of statements are grouped into  pro-
cedures . Procedures enhance the clarity of larger 
programs and also provide a basis for reuse of the 
work by other programmers. Large programs are in 
turn mainly sequences of invocations of such pro-
cedures, some coming from libraries (such as for-
mat in LISP) and others written for the specifi c 
application. These procedures are called with  argu-
ments —e.g., the medical record number of a 
patient—so that a procedure to retrieve a value, 
such as the patient’s age might be: age (medical 
record number). An important distinction among 
languages is how those arguments are transmitted. 
Just giving the value in response to a request is the 
safest method. Giving the name provides the most 
information to the procedure, and giving the refer-
ence (a pointer to where the value is stored) allows 
the procedure to go back to the source, which can 
be effi cient but also allows changes that may not be 

wanted. Discussions about languages often empha-
size these various features, but the underlying con-
cern is nearly always the trade-off of protection 
versus power. 

 Programmers work in successively higher lev-
els of abstraction by writing, and later invoking, 
standard procedures in the form of functions and 
subroutines. Within these they may also have 
routines that spawn other routines, called 
 threads . Threads allow multiple execution units, 
or concurrency, in programming, and as systems 
scale they become increasingly important, par-
ticularly as multiple functions are being run over 
the same data simultaneously. Built-in functions 
and subroutines create an environment in which 
users can perform complex operations by speci-
fying single commands. Tools exist to combine 
related functions for specifi c tasks—e.g., to build 
a forms interface that displays retrieved data in a 
certain presentation format. 

 Specialized languages can be used directly by 
nonprogrammers for well-understood tasks, 
because such languages defi ne additional proce-
dures for specialized tasks and hide yet more detail. 
For example, users can search for, and retrieve data 
from, large databases using the Structured Query 
Language (SQL) of database management systems 
(discussed later in this section). With the help of 
statistical languages, such as SAS or R, users can 
perform extensive statistical calculations, such as 
regression analysis and correlation. Other users 
may use a spreadsheet program, such as Excel, to 
record and manipulate data with formulas in the 
cells of a spreadsheet matrix. In each case, the 
physical details of the data storage structures and 
the access mechanisms are hidden from the user. 

 The end users of a computer may not even be 
aware that they are programming per se, if the 
language is so natural that it matches their needs 
in an intuitive manner. Moving icons on a screen 
and dragging and dropping them into boxes or 
onto other icons is a form of programming sup-
ported by many layers of interpreters and 
compiler- generated code. If the user saves a 
 script  (a keystroke-by-keystroke record) of the 
actions performed for later reuse, then he or she 
has created a program. Some systems allow such 
scripts to be viewed and edited for later updates 
and changes; e.g., there is a macro function 
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available in the Microsoft Excel spreadsheet and 
on Macintosh computers via AppleScript. 

 Even though many powerful languages and 
packages handle these diverse tasks, we still face 
the challenge of incorporating multiple functions 
into a larger system. It is easy to envision a sys-
tem where a Web browser provides access to sta-
tistical results of data collected from two related 
databases. Such interoperation is not simple; 
however, modern layers of software coupled with 
programming expertise now make such complex 
interactions routine in health information sys-
tems and our everyday lives.  

5.5.2      Data Management 

 Data provide the infrastructure for recording and 
sharing information. Data become information 
when they are organized to affect decisions, 
actions, and learning (see Chap.   2    ). Accessing and 
moving data from the points of collection to the 
points of use are among the primary functions of 
computing in medicine. These applications must 
deal with large volumes of varied data and manage 
them, for persistence, on external storage. The 
mathematical facilities of computer languages are 
based on common principles and are, strictly 
speaking, equivalent. The same conceptual basis is 
not available for data management facilities. Some 
languages allow only internal structures to be 
made persistent; in that case, external library pro-
grams are used for handling storage. 

 Handling data is made easier if the language 
supports moving structured data from internal mem-
ory to external, persistent storage. Data can, for 
instance, be viewed as a stream, a model that matches 

well with data produced by some instruments, by 
TCP connections over the Internet, or by a ticker 
tape. Data can also be viewed as records, matching 
well with the rows of a table (Table  5.2 ); or data can 
be viewed as a hierarchy, matching well with the 
structure of a medical record, including patients, 
their visits, and their fi ndings during a visit.

   If the language does not directly support the best 
data structure to deal with an application, additional 
programming must be done to construct the desired 
structure out of the available facilities. The resulting 
extra layer, however, typically costs effort (and 
therefore money) and introduces inconsistencies 
among applications trying to share information.  

5.5.3       Operating Systems 

 Users ultimately interact with the computer 
through an  operating system  ( OS ): a program 
that supervises and controls the execution of all 
other programs and that directs the operation of 
the hardware. The OS is software that is typically 
included with a computer system and it manages 
the resources, such as memory, storage, and 
devices for the user. Once started, the  kernel  of the 
OS resides in memory at all times and runs in the 
background. It assigns the CPU to specifi c tasks, 
supervises other programs running in the com-
puter, controls communication among hardware 
components, manages the transfer of data from 
input devices to output devices, and handles the 
details of fi le management such as the creation, 
opening, reading, writing, and closing of data fi les. 
In shared systems, it allocates the resources of the 
system among the competing users. The OS insu-
lates users from much of the complexity of han-
dling these processes. Thus, users are able to 
concentrate on higher-level problems of informa-
tion management. They do get involved in specify-
ing which programs to run and in giving names to 
the directory structures and fi les that are to be 
made persistent. These names provide the links to 
the user’s work from one session to another. 
Deleting fi les that are no longer needed and 
archiving those that should be kept securely are 
other interactions that users have with the OS. 

 Programmers can write  application pro-
grams  to automate routine operations that store 

    Table 5.2    A simple patient data fi le containing records 
for four pediatric patients   

 Record number  Name  Sex  Date of Birth 

 22-546-998  Adams, Clare  F  11 Nov 1998 
 62-847-991  Barnes, Tanner  F  07 Dec 1997 
 47-882-365  Clark, Laurel  F  10 May 1998 
 55-202-187  Davidson, Travis  M  10 Apr 2000 

  Note: The key fi eld of each record contains the medical 
record number that uniquely identifi es the patient. The 
other fi elds of the record contain demographic 
information  
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and organize data, to perform analyses, to facili-
tate the integration and communication of infor-
mation, to perform bookkeeping functions, to 
monitor patient status, to aid in education—in 
short, to perform all the functions provided by 
medical computing systems. These programs are 
then fi led by the OS and are available to its users 
when needed. 

 PCs typically operate as  single - user systems , 
whereas servers are  multiuser systems . In a mul-
tiuser system, all users have simultaneous access to 
their  jobs ; users interact through the OS, which 
switches resources rapidly among all the jobs that 
are running. Because people work slowly compared 
with CPUs, the computer can respond to multiple 
users, seemingly at the same time. Thus, all users 
have the illusion that they have the full attention of 
the machine, as long as they do not make very heavy 
demands. Such shared resource access is important 
where databases must be shared, as we discuss 
below in Database Management Systems. When it 
is managing sharing, the OS spends resources for 
queuing, switching, and re-queuing jobs. If the total 
demand is too high, the overhead increases dispro-
portionately and slows the service for everyone. 
High individual demands are best allocated to dis-
tributed systems (discussed in Sect.  5.6 ), or to dedi-
cated machines where all resources are prioritized 
to a primary user. 

 Because computers need to perform a 
variety of services, several application pro-
grams reside in main memory simultaneously. 
 Multiprogramming  permits the effective use of 
multiple devices; while the CPU is executing one 
program, another program may be receiving input 
from external storage, and another may be gener-
ating results on a printer. With the use of multiple 
simultaneous programs executing in one system 
it becomes important to ensure one program does 
not interfere with another or with the OS. Thus, 
 protected memory  comes in to play. Protected 
memory is only available to the program that allo-
cated it. Web browsers and the Apple iOS (operat-
ing system for smart phones and tablets) similarly 
protect one process from another for security 
(unless authorized by the user). In  multiprocess-
ing  systems, several processors (CPUs) are used 
by the OS within a single computer system, thus 
increasing the overall processing power. Note, 
however, that multiprogramming does not neces-
sarily imply having multiple processors. 

 Memory may still be a scarce resource, espe-
cially under multiprogramming. When many 
programs and their data are active simultane-
ously, they may not all fi t in the physical memory 
on the machine at the same time. To solve this 
problem, the OS will partition users’ programs 
and data into  pages , which can be kept in tempo-

  Fig. 5.8    Virtual-memory 
system. Virtual memory 
provides users with the 
illusion that they have many 
more addressable memory 
locations than there are in 
real memory—in this case, 
more than fi ve times as much. 
Programs and data stored on 
peripheral disks are swapped 
into main memory when they 
are referenced; logical 
addresses are translated 
automatically to physical 
addresses by the hardware       
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rary storage on disk and are brought into main 
memory as needed. Such a storage allocation is 
called  virtual memory . Virtual memory can be 
many times the size of real memory, so users can 
allocate many more pages than main memory can 
hold. Also individual programs and their data can 
use more memory than is available on a specifi c 
computer. Under virtual memory management, 
each address referenced by the CPU goes through 
an address mapping from the  virtual address  of 
the program to a physical address in main 
 memory (Fig.  5.8 ). When a memory page is ref-
erenced that is not in physical storage, the CPU 
creates space for it by swapping out a little-used 
page to secondary storage and bringing in the 
needed page from storage. This mapping is han-
dled automatically by the hardware on most 
machines but still creates signifi cant delays, so 
the total use of virtual memory must be limited to 
a level that permits the system to run effi ciently.

   A large collection of  system programs  are 
generally associated with the  kernel  of an OS. 
These programs include utility programs, such as 
 graphical user interface  ( GUI ) routines; secu-
rity management; compilers to handle programs 
written in higher-level languages;  debuggers  for 
newly created programs; communication soft-
ware; diagnostic programs to help maintain the 
computer system; and substantial libraries of 
standard routines (such as for listing and viewing 
fi les, starting and stopping programs, and check-
ing on system status). Modern software libraries 
include tools such as sorting programs and pro-
grams to perform complex mathematical func-
tions and routines to present and manipulate 
graphical displays that access a variety of appli-
cation programs, handle their point-and-click 
functions, allow a variety of fonts, and the like.  

5.5.4      Database Management 
Systems 

 Throughout this book, we emphasize the impor-
tance to good medical decision making of timely 
access to relevant and complete data from diverse 
sources. Computers provide the primary means 
for organizing and accessing these data; however, 
the programs to manage the data are complex and 

are diffi cult to write. Database technology sup-
ports the integration and organization of data and 
assists users with data entry, long-term storage, 
and retrieval. Programming data management 
software is particularly diffi cult when multiple 
users share data (and thus may try to access data 
simultaneously), when they must search through 
voluminous data rapidly and at unpredictable 
times, and when the relationships among data 
elements are complex. For health care 
 applications, it is important that the data be com-
plete and virtually error-free. Furthermore, the 
need for long-term reliability makes it risky to 
entrust a medical database to locally written pro-
grams. The programmers tend to move from 
project to project, computers will be replaced, 
and the organizational units that maintain the 
data may be reorganized. 

 Not only the individual data values but also 
their meanings and their relationships to other 
data must be stored. For example, an isolated 
data element (e.g., the number 99.7) is useless 
unless we know that that number represents a 
human’s body temperature in degrees Fahrenheit 
and is linked to other data necessary to interpret 
its value—the value pertains to a particular 
patient who is identifi ed by a unique medical 
record number, the observation was taken at a 
certain time (02:35, 7 Feb 2000) in a certain way 
(orally), and so on. To avoid loss of descriptive 
information, we must keep together clusters of 
related data throughout processing. These rela-
tionships can be complex; e.g., an observation 
must be linked not only to the patient but also to 
the person recording the observation, to the 
instrument that he used to acquire the values, and 
to the physical state of the patient. 

 The meaning of data elements and the rela-
tionships among those elements are captured in 
the structure of the database.  Databases  are col-
lections of data, typically organized into fi elds, 
records, and fi les (see Table  5.2 ), as well as 
descriptive metadata. The  fi eld  is the most primi-
tive building block; each fi eld represents one data 
element. For example, the database of a hospi-
tal’s registration system typically has fi elds such 
as the patient’s identifi cation number, name, date 
of birth, gender, admission date, and admitting 
diagnosis. Fields are usually grouped together to 
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form  records . A record is uniquely identifi ed by 
one or more  key fi elds —e.g., patient identifi ca-
tion number and observation time. Records that 
contain similar information are grouped in  fi les . 
In addition to fi les about patients and their diag-
noses, treatments, and drug therapies, the data-
base of a health care information system will 
have separate fi les containing information about 
charges and payments, personnel and payroll, 
inventory, and many other topics. All these fi les 
relate to one another: they may refer to the same 
patients, to the same personnel, to the same ser-
vices, to the same set of accounts, and so on. 

  Metadata  describes where in the record spe-
cifi c data are stored, and how the right record can 
be located. For instance, a record may be located 
by searching and matching patient ID in the record. 
The metadata also specifi es where in the record the 
digits representing the birth date are located and 
how to convert the data to the current age. When 
the structure of the database changes—e.g., 
because new fi elds are added to a record—the 
metadata must be changed as well. When data are 
to be shared, there will be continuing requirements 
for additions and reorganizations to the fi les and 
hence the metadata. The desire for  data indepen-
dence —i.e., keeping the applications of one set of 
users independent from changes made to applica-
tions by another group—is the key reason for using 
a database management system for shared data. 

 A  database management system  ( DBMS ) is 
an integrated set of programs that helps users to 
store and manipulate data easily and effi ciently. 
The conceptual (logical) view of a database pro-
vided by a DBMS allows users to specify what 
the results should be without worrying too much 
about how they will be obtained; the DBMS han-
dles the details of managing and accessing data. 
A crucial part of a database kept in a DBMS is 
the  schema , containing the needed metadata. 
A schema is the machine-readable defi nition of 
the contents and organization of the records of all 
the data fi les. Programs are insulated by the 
DBMS from changes in the way that data are 
stored, because the programs access data by fi eld 
name rather than by address. A DBMS also pro-
vides facilities for entering, editing, and retriev-
ing data. Often, fi elds are associated with lists or 
ranges of valid values; thus, the DBMS can detect 

and request correction of some data-entry errors, 
thereby improving database integrity. 

 Users retrieve data from a database in either of 
two ways. Users can query the database directly 
using a query language to extract information in 
an ad hoc fashion—e.g., to retrieve the records of 
all male hypertensive patients aged 45–64 years 
for inclusion in a retrospective study. Figure  5.9  
shows the syntax for such a query using SQL. 
Query formulation can be diffi cult, however; 
users must understand the contents and underly-
ing structure of the database to construct a query 
correctly. Often, database programmers formu-
late the requests for health professionals.

   To support occasional use,  front - end applica-
tions  to database systems can help a user retrieve 
information using a menu based on the schema. 
More often, transactional applications, such as a 
drug order–entry system, will use a database sys-
tem without the pharmacist or ordering physician 
being aware of the other’s presence. The 
medication- order records placed in the database by 
the physician create communication transactions 
with the pharmacy; then, the pharmacy application 
creates the daily drug lists for the patient care units. 

 Some database queries are routine requests—
e.g., the resource utilization reports used by 
health care administrators and the end-of-month 
fi nancial reports generated for business offi ces. 
Thus, DBMSs often also provide an alternative, 
simpler means for formulating such queries, 
called  report generation . Users specify their 
data requests on the input screen of the report- 
generator program. The report generator then pro-
duces the actual query program using information 

  Fig. 5.9    An example of a simple database query written 
in Structured Query Language (SQL). The program will 
retrieve the records of males whose age is between 45 and 
64 years and whose systolic blood pressure is greater than 
140 mmHg       
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stored in the schema, often at predetermined 
intervals. The reports are formatted such that they 
can be distributed without modifi cation. The 
report-generation programs can extract header 
information from the schema. Routine report 
generation should, however, be periodically 
reviewed in terms of its costs and benefi ts. 
Reports that are not read are a waste of computer, 
natural, and people resources. A reliable database 
will be able to provide needed and up-to-date 
information when that information is required. 

 Many DBMSs support multiple  views , or mod-
els, of the data. The data stored in a database have 
a single physical organization, yet different user 
groups can have different perspectives on the con-
tents and structure of a database. For example, the 
clinical laboratory and the fi nance department 
might use the same underlying database, but only 
the data relevant to the individual application area 
are available to each group. Basic patient informa-
tion will be shared; the existence of other data is 
hidden from groups that do not need them. 
Application-specifi c descriptions of a database are 
stored in such  view schemas . Through the views, 
a DBMS controls access to data. Thus, a DBMS 
facilitates the integration of data from multiple 
sources and avoids the expense of creating and 
maintaining multiple fi les containing redundant 
information. At the same time, it accommodates 
the differing needs of multiple users. The use of 
database technology, combined with communica-
tions technology (see the following discussion on 
Software for Network Communications), will 
enable health care institutions to attain the benefi ts 
both of independent, specialized applications and 
of large integrated databases. 

 Database design and implementation has 
become a highly specialized fi eld. An introduc-
tion to the topic is provided by Garcia-Molina 
et al. ( 2002 ). Wiederhold’s book ( 1981 ) discusses 
the organization and use of databases in health 
care settings. Most medical applications use stan-
dard products from established vendors. However, 
these databases and application architectures are 
inherently oriented toward the transactions needed 
for the workfl ows of the applications, one patient 
at a time. Thus, these are called  on line transac-
tion processing  ( OLTP ) systems,  typically 
designed for use by thousands of  simultaneous 

users doing simple repetitive queries. Data ware-
housing or  on line analytic processing  ( OLAP ) 
systems focus on use of DBMS differently, for 
querying across multiple patients simultaneously, 
typically by few users for infrequent, but complex 
queries, often for research. To achieve both of 
these architectural goals, hospital information 
systems will duplicate the data in two separate 
DBMS with different data architectures. Thus 
computer architectures may require the coordina-
tion of multiple individual computer systems, 
especially when both systems use data derived 
from a single source.  

5.5.5    Software for Network 
Communications 

 The ability of computers to communicate with 
each other over local and remote networks brings 
tremendous power to computer users. Internet 
communications make it possible to share data 
and resources among diverse users and institu-
tions around the world. Network users can access 
shared patient data (such as a hospital’s medical 
records) or international databases (such as bib-
liographic databases of scientifi c literature or 
genomics databases describing what is known 
about the biomolecular basis of life and disease). 
Networks make it possible for remote users to 
communicate with one another and to collabo-
rate. In this section, we introduce the important 
concepts that will allow you to understand net-
work technology. 

5.5.5.1    The Network Stack 
 Network power is realized by means of a large 
body of communications software. This software 
handles the physical connection of each com-
puter to the network, the internal preparation of 
data to be sent or received over the network, and 
the interfaces between the network data fl ow and 
applications programs. There are now tens of 
millions of computers of different kinds on the 
Internet and hundreds of programs in each 
machine that service network communications. 
Two key ideas make it possible to manage the 
complexity of network software: network service 
stacks and network protocols. These strategies 
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allow communication to take place between any 
two machines on the Internet, ensure that appli-
cation programs are insulated from changes in 
the network infrastructure, and make it possible 
for users to take advantage easily of the rapidly 
growing set of information resources and ser-
vices. The  network stack  serves to organize 
communications software within a machine. 
Network software is made modular by dividing 
the responsibilities for network communications 
into different levels, with clear interfaces between 
the levels. The four-level network stack for TCP/
IP is shown in Fig.  5.10 , which also compares 
that stack to the seven-level stack defi ned by the 
International Standards Organization.

   At the lowest level—the Data Link and 
Physical Transport level—programs manage the 
physical connection of the machine to the net-
work, the physical-medium packet formats, and 
the means for detecting and correcting errors. 
The Network level implements the IP method of 
addressing packets, routing packets, and con-
trolling the timing and sequencing of transmis-
sions. The Transport level converts packet-level 
communications into several services for the 
Application level, including a reliable serial 
byte stream (TCP), a transaction-oriented User 

Datagram Protocol (UDP), and newer services 
such as real-time video. 

 The Application level is where programs run 
that support electronic mail, fi le sharing and trans-
fer, Web posting, downloading, browsing, and 
many other services. Each layer communicates 
with only the layers directly above and below it and 
does so through specifi c interface conventions. The 
network stack is machine- and OS-dependent—
because it has to run on particular hardware and to 
deal with the OS on that machine (fi ling, input–out-
put, memory access, etc.). But its layered design 
serves the function of modularization. Applications 
see a standard set of data-communication services 
and do not each have to worry about details such as 
how to form proper packets of an acceptable size 
for the network, how to route packets to the desired 
machine, how to detect and correct errors, or how 
to manage the particular network hardware on the 
computer. If a computer changes its network con-
nection from a wired to a wireless network, or if the 
 topology  of the network changes, the applications 
are unaffected. Only the lower level Data Link and 
Network layers need to be updated. 

  Internet protocols (see Sect.  5.3 ) are shared 
conventions that serve to standardize commu-
nications among machines—much as, for two 

  Fig. 5.10    TCP/IP network service level stack and corre-
sponding levels of the Open Systems Interconnection (OSI) 
Reference model developed by the International Standards 
Organization (ISO). Each level of the stack specifi es a pro-
gressively higher level of abstraction. Each level serves the 
level above and expects particular functions or services 

from the level below it.  SMTP  Simple Mail Transport 
Protocol,  FTP  File Transfer Protocol,  DNS  Domain Name 
System,  TCP  Transmission Control Protocol,  UDP  User 
Datagram Protocol,  IP  Internet Protocol,  ICMP  Internet 
Control Message Protocol,  ARP  Address Resolution 
Protocol,  RARP  Reverse Address Resolution Protocol       
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people to communicate effectively, they must 
agree on the syntax and meaning of the words 
they are using, the style of the interaction (lecture 
versus conversation), a procedure for handling 
interruptions, and so on. Protocols are defi ned 
for every Internet service (such as routing, elec-
tronic mail, and Web access) and establish the 
conventions for representing data, for request-
ing an action, and for replying to a requested 
action. For example, protocols defi ne the format 
conventions for e-mail addresses and text mes-
sages (RFC822), the attachment of multimedia 
content (Multipurpose Internet Mail Extensions 
(MIME)), the delivery of e-mail messages 
(Simple Mail Transport Protocol (SMTP)), the 
transfer of fi les (File Transfer Protocol (FTP)), 
connections to remote computers (SSH), the 
formatting of Web pages (Hypertext Markup 
Language (HTML)), the exchange of routing 
information, and many more. By observing these 
protocols, machines of different types can com-
municate openly and can interoperate with each 
other. When requesting a Web page from a server 
using the Hypertext Transfer Protocol (HTTP), 
the client does not have to know whether the 
server is a UNIX machine, a Windows machine, 
or a mainframe running VMS—they all appear 
the same over the network if they adhere to the 
HTTP protocol. The layering of the network 
stack is also supported by protocols. As we said, 
within a machine, each layer communicates with 
only the layer directly above or below. Between 
machines, each layer communicates with only its 
peer layer on the other machine, using a defi ned 
protocol. For example, the SMTP application on 
one machine communicates with only an SMTP 
application on a remote machine. Similarly, the 
Network layer communicates with only peer 
Network layers, for example, to exchange rout-
ing information or control information using the 
Internet Control Message Protocol (ICMP). 

 We briefl y describe four of the basic services 
available on the Internet: electronic mail, FTP, 
SSH, and access to the World Wide Web.  

5.5.5.2    Electronic Mail 
 Users send to and receive messages from other 
users via electronic mail, mimicking use of the 
postal service. The messages travel rapidly: 

except for queuing delays at gateways and receiv-
ing computers, their transmission is nearly 
instantaneous. Electronic mail was one of the 
fi rst protocols invented for the Internet (around 
1970, when what was to become the Internet was 
still called the  ARPANET ). A simple e-mail 
message consists of a  header  and a  body . The 
header contains information formatted according 
to the RFC822 protocol, which controls the 
appearance of the date and time of the message, 
the address of the sender, addresses of the recipi-
ents, the subject line, and other optional header 
lines. The body of the message contains free text. 
The user addresses the e-mail directly to the 
intended reader by giving the reader’s account 
name or a personal alias followed by the IP 
address or domain name of the machine on which 
the reader receives mail—e.g., JohnSmith@
domain.name. If the body of the e-mail message 
is encoded according to the MIME standard it 
may also contain arbitrary multimedia informa-
tion, such as drawings, pictures, sound, or video. 
Mail is sent to the recipient using the SMTP stan-
dard. It may either be read on the machine hold-
ing the addressee’s account or it may be 
downloaded to the addressee’s local computer for 
reading. 

 It is easy to broadcast electronic mail by send-
ing it to a  mailing list  or a specifi c  list - server , 
but electronic mail etiquette conventions dictate 
that such communications be focused and rele-
vant.  Spamming , which is sending e-mail solici-
tations or announcements to broad lists, is 
annoying to recipients, but is diffi cult to prevent. 
Conventional e-mail is sent in clear text over the 
network so that anyone observing network traffi c 
can read its contents. Protocols for encrypted 
e-mail, such as Privacy-Enhanced Mail (PEM) or 
encrypting attachments, are also available, but 
are not yet widely deployed. They ensure that the 
contents are readable by only the intended recipi-
ents. Because secure email is generally not in 
use, communication of protected health informa-
tion from providers to patients is potentially in 
violation of the HIPAA regulations in that the 
information is not secure in transit. It remains 
less clear, however, if it is appropriate for physi-
cians to answer direct questions from patients 
in email, given that the patient has begun the 
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insecure communication. Large health systems 
have generally deployed secure communication 
portals over the Web (where both participants 
must authenticate to the same system) to over-
come this.  

5.5.5.3    File Transfer Protocol (FTP) 
 FTP facilitates sending and retrieving large 
amounts of information—of a size that is uncom-
fortably large for electronic mail. For instance, 
programs and updates to programs, complete 
medical records, papers with many fi gures or 
images for review, and the like could be trans-
ferred via FTP. FTP access requires several steps: 
(1) accessing the remote computer using the IP 
address or domain name; (2) providing user iden-
tifi cation to authorize access; (3) specifying the 
name of a fi le to be sent or fetched using the fi le- 
naming convention at the destination site; and (4) 
transferring the data. For open sharing of informa-
tion by means of FTP sites, the user identifi cation 
is by convention “anonymous” and the requestor’s 
e-mail address is used as the password.  Secure 
FTP  ( SFTP ) uses the same robust security mech-
anism as SSH (below), but provides poor perfor-
mance.  Globus Online  is a SaaS data movement 
solution (see Sect.  5.7.4 ) that provides both secu-
rity and high performance.  

5.5.5.4     SSH 
 Secure Shell allows a user to log in on a remote 
computer securely over unsecured networks using 
public-key encryption (discussed in next section). 
If the log-in is successful, the user becomes a 
fully qualifi ed user of the remote system, and the 
user’s own machine becomes a relatively passive 
terminal in this context. The smoothness of such a 
terminal emulation varies depending on the dif-
ferences between the local and remote computers. 
Secure Shell replaced Telnet which was used for 
terminal emulation until network security became 
important. Secure Shell enables complete com-
mand line control of the remote system to the 
extent the user’s account is authorized.  

5.5.5.5        World Wide Web (WWW) 
 Web  browsing  facilitates user access to remote 
information resources made available by Web 

servers. The user interface is typically a  Web 
browser  that understands the World Wide Web 
protocols. The  Universal Resource Locator  
( URL ) is used to specify where a resource is 
located in terms of the protocol to be used, the 
domain name of the machine it is on, and the name 
of the information resource within the remote 
machine. The  Hyper Text Markup Language  
( HTML ) describes what the information should 
look like when displayed. HTML supports con-
ventional text, font settings, headings, lists, tables, 
and other display specifi cations. Within HTML 
documents, highlighted  buttons  can be defi ned 
that point to other HTML documents or services. 
This  hypertext  facility makes it possible to create 
a web of cross- referenced works that can be navi-
gated by the user. HTML can also refer to subsid-
iary documents that contain other types of 
information—e.g., graphics, equations, images, 
video, speech— that can be seen or heard if the 
browser has been augmented with  helpers  or 
 plug - ins  for the particular format used. The 
 Hyper Text Transfer Protocol  ( HTTP ) is used 
to communicate between browser clients and 
servers and to retrieve HTML documents. Such 
communications can be  encrypted  to protect sen-
sitive contents (e.g., credit card information or 
patient information) from external view using 
protocols such as  Secure Sockets Layer  ( SSL : 
recently renamed to  Transport Level Security , 
 TLS ) which is used by the HTTPS protocol (and 
generally shows a “lock” icon when the browser 
is securely communicating with the host in the 
URL). 

 HTML documents can also include small pro-
grams written in the Java language, called  applets , 
which will execute on the user’s computer when 
referenced. Applets can provide animations and 
also can compute summaries, merge information, 
and interact with selected fi les on the user’s com-
puter. The Java language is designed such that 
operations that might be destructive to the user’s 
machine environment are blocked, but download-
ing remote and untested software still represents a 
substantial security risk (see Sect.  5.3 ). The 
JavaScript language, distinct from the Java lan-
guage (unfortunately similarly named) runs in the 
browser itself (much like protected memory), thus 
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reducing this security risk, and is becoming 
increasingly powerful, enhancing substantially 
the capabilities and capacity of the Web browser 
as a computer platform. 

 HTML captures many aspects of document 
description from predefi ned markup related to 
the appearance of the document on a display to 
markup related to internal links, scripts, and other 
semantic features. To separate appearance-related 
issues from other types of markup, to provide 
more fl exibility in terms of markup types, and to 
work toward more open, self-defi ning document 
descriptions, a more powerful markup frame-
work, called  eXtensible Markup Language  
(XML), has emerged. Coupled with JavaScript, 
XML further enhances the capabilities of the 
Web browser itself as a computer platform.  

5.5.5.6    Client-Server Interactions 
 A client–server interaction is a generalization of 
the four interactions we have just discussed, 
involving interactions between a client (request-
ing) machine and a server (responding) machine. 
A  client – server  interaction, in general, supports 
collaboration between the user of a local machine 
and a remote computer. The server provides infor-
mation and computational services according to 
some protocol, and the user’s computer—the cli-
ent—generates requests and does complementary 
processing (such as displaying HTML documents 
and images). A common function provided by 
servers is database access. Retrieved information 
is transferred to the client in response to requests, 
and then the client may perform specialized anal-
yses on the data. The fi nal results can be stored 
locally, printed, or mailed to other users.    

5.6     Data and System Security 

 Medical records contain much information about 
us. These documents and databases include data 
ranging from height and weight measurements, 
blood pressures, and notes regarding bouts with 
the fl u, cuts, or broken bones to information 
about topics such as fertility and abortions, emo-
tional problems and psychiatric care, sexual 
behaviors, sexually transmitted diseases, human 

immunodefi ciency virus (HIV) status, substance 
abuse, physical abuse, and genetic predisposition 
to diseases. Some data are generally considered to 
be mundane, others highly sensitive. Within the 
medical record, there is much information about 
which any given person may feel sensitive. As 
discussed in Chap.   10    , health information is con-
fi dential, and access to such information must be 
controlled because disclosure could harm us, for 
example, by causing social embarrassment or 
prejudice, by affecting our insurability, or by lim-
iting our ability to get and hold a job. Medical 
data also must be protected against loss. If we are 
to depend on electronic medical records for care, 
they must be available whenever and wherever we 
need care, and the information that they contain 
must be accurate and up to date. Orders for tests 
or treatments must be validated to ensure that they 
are issued by authorized providers. The records 
must also support administrative review and pro-
vide a basis for legal accountability. These 
requirements touch on three separate concepts 
involved in protecting health care information. 

  Privacy  refers to the desire of a person to con-
trol disclosure of personal health and other infor-
mation.  Confi dentiality  applies to information—in 
this context, the ability of a person to control the 
release of his or her personal health information to 
a care provider or information custodian under an 
agreement that limits the further release or use of 
that information.  Security  is the protection of pri-
vacy and confi dentiality through a collection of 
policies, procedures, and safeguards. Security 
measures enable an organization to maintain the 
integrity and availability of information systems 
and to control access to these systems’ contents. 
Health privacy and confi dentiality are discussed 
further in Chap.   10    . 

 Concerns about, and methods to provide, secu-
rity are part of most computer systems, but health 
care systems are distinguished by having especially 
complex considerations for the use and release of 
information. In general, the security steps taken in 
a health care information system serve fi ve key 
functions (National Research Council,  1997 ), 
namely availability, accountability, perimeter con-
trol, role-limited access, and comprehensibility and 
control. We discuss each of these functions in turn. 
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5.6.1    Availability 

  Availability  ensures that accurate and up-to-date 
information is available when needed at appro-
priate places. It is primarily achieved to protect 
against loss of data by ensuring redundancy—
performing regular system backups. Because 
hardware and software systems will never be per-
fectly reliable, information of long-term value is 
copied onto archival storage, and copies are kept 
at remote sites to protect the data in case of disas-
ter. For short-term protection, data can be written 
on duplicate storage devices. Critical medical 
systems must be prepared to operate even during 
environmental disasters. If one of the storage 
devices is attached to a remote processor, addi-
tional protection is conferred. Therefore, it is also 
important to provide secure housing and alterna-
tive power sources for CPUs, storage devices, 
network equipment, etc. It is also essential to 
maintain the integrity of the information system 
software to ensure availability. Backup copies 
provide a degree of protection against software 
failures; if a new version of a program damages 
the system’s database, the backups allow opera-
tors to roll back to the earlier version of the soft-
ware and database contents. 

 Unauthorized software changes—e.g., in the 
form of  viruses  or  worms —are also a threat. 
A virus may be attached to an innocuous program 
or data fi le, and, when that program is executed 
or data fi le is opened, several actions take place:
    1.    The viral code copies itself into other fi les 

residing in the computer.   
   2.    It attaches these fi les to outgoing messages, to 

spread itself to other computers.   
   3.    The virus may collect email addresses to fur-

ther distribute its copies.   
   4.    The virus may install other programs to 

destroy or modify other fi les, often to escape 
detection.   

   5.    A program installed by a virus may record 
keystrokes with passwords or other sensitive 
information, or perform other deleterious 
actions.    
  A software virus causes havoc with computer 

operations, even if it does not do disabling dam-
age, by disturbing operations and system access 

and by producing large amounts of Internet traf-
fi c as it repeatedly distributes itself (what is called 
a denial of service attack). To protect against 
viruses, all programs loaded onto the system 
should be checked against known viral codes and 
for unexpected changes in size or confi guration. 
It is not always obvious that a virus program has 
been imported. For example, a word-processing 
document may include macros that help in for-
matting the document. Such a macro can also 
include viral codes, however, so the document 
can be infected. Spreadsheets, graphical presen-
tations, and so on are also subject to infection by 
viruses.  

5.6.2    Accountability 

  Accountability  for use of medical data can be 
promoted both by surveillance and by technical 
controls. It helps to ensure that users are respon-
sible for their access to, and use of, information 
based on a documented need and right to know. 
Most people working in a medical environment 
are highly ethical. In addition, knowledge that 
access to, and use of, data records are being 
watched, through scanning of access  audit 
trails , serves as a strong impediment to abuse. 
Technical means to ensure accountability 
include two additional functions: authentication 
and authorization.
    1.    The user is  authenticated  through a positive 

and unique identifi cation process, such as 
name and password combination.   

   2.    The authenticated user is  authorized  within 
the system to perform only certain actions 
appropriate to his or her role in the health care 
system—e.g., to search through certain medi-
cal records of only patients under his or her 
care.    
  Authentication and authorization can be per-

formed most easily within an individual com-
puter system, but, because most institutions 
operate multiple computers, it is necessary to 
coordinate these access controls consistently 
across all the systems. Enterprise-wide and 
remote access-control standards and systems are 
available and are being deployed extensively.  
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5.6.3    Perimeter Defi nition 

  Perimeter defi nition  requires that you know who 
your users are and how they are accessing the 
information system. It allows the system to con-
trol the boundaries of trusted access to an infor-
mation system, both physically and logically. For 
health care providers within a small physician 
practice, physical access can be provided with a 
minimum of hassle using simple name and pass-
word combinations. If a clinician is traveling or 
at home and needs remote access to a medical 
record, however, greater care must be taken to 
ensure that the person is who he or she claims to 
be and that communications containing sensitive 
information are not observed inappropriately. But 
where is the boundary for being considered a 
trusted insider? Careful control of where the net-
work runs and how users get outside access is 
necessary. Most organizations install a  fi rewall  
to defi ne the boundary: all sharable computers of 
the institution are located within the fi rewall. 
Anyone who attempts to access a shared system 
from the outside must fi rst pass through the fi re-
wall, where strong authentication and protocol 
access controls are in place. Having passed this 
authentication step, the user can then access 
enabled services within the fi rewall (still limited 
by the applicable authorization controls). Even 
with a fi rewall in place, it is important for enter-
prise system administrators to monitor and ensure 
that the fi rewall is not bypassed. For example, a 
malicious intruder could install a new virus 
within the perimeter, install or use surreptitiously 
a wireless base station, or load unauthorized 
software. 

  Virtual Private Network  ( VPN ) technolo-
gies offer a powerful way to let bona fi de users 
access information resources remotely. Using a 
client–server approach, an encrypted communi-
cation link is negotiated between the user’s client 
machine and an enterprise server. This approach 
protects all communications and uses strong 
authentication to identify the user. No matter how 
secure the connection is, however, sound security 
ultimately depends on responsible users and care 
that increasingly portable computers (laptops, 
tablets, or handheld devices) are not lost or stolen 

so that their contents are accessible by unauthor-
ized people. This is the single most common 
mechanism by which HIPAA violations occur. 
Health systems are therefore requiring whole 
machine encryption on portable devices. 

 Strong authentication and authorization con-
trols depend on cryptographic technologies. 
 Cryptographic encoding  is a primary tool for 
protecting data that are stored or are transmitted 
over communication lines. Two kinds of cryptog-
raphy are in common use— secret-key cryptogra-
phy and public-key cryptography. In  secret - key 
cryptography , the same key is used to encrypt 
and to decrypt information. Thus, the key must 
be kept secret, known to only the sender and 
intended receiver of information. In  public - key 
cryptography , two keys are used, one to encrypt 
the information and a second to decrypt it. One is 
kept secret. The other one can be made publicly 
available. It is thus asymmetric and one end of 
the transaction can be proven to have been done 
by a specifi c entity. By using this twice (four 
keys), one can certify both the sender and 
receiver. This arrangement leads to important 
services in addition to the exchange of sensitive 
information, such as digital signatures (to certify 
authorship), content validation (to prove that the 
contents of a message have not been changed), 
and nonrepudiation (to ensure that an action can-
not be denied as having been done by the actor). 
Under either scheme, once data are encrypted, a 
key is needed to decode and make the informa-
tion legible and suitable for processing. 

 Keys of longer length provide more security, 
because they are harder to guess. Because pow-
erful computers can help intruders to test mil-
lions of candidate keys rapidly, single-layer 
encryption with keys of 56-bit length (the length 
prescribed by the 1975  Data Encryption 
Standard  ( DES )) are no longer considered 
secure, and keys of 128 and even 256 bits are 
routine. If a key is lost, the information 
encrypted with the key is effectively lost as 
well. If a key is stolen, or if too many copies of 
the key exist for them to be tracked, unauthor-
ized people may gain access to information. 
Holding the keys in  escrow  by a trusted party 
can provide some protection against loss. 
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 Cryptographic tools can be used to control 
authorization as well. The authorization informa-
tion may be encoded as digital  certifi cates , which 
then can be validated with a certifi cation author-
ity and checked by the services so that the ser-
vices do not need to check the authorizations 
themselves. Centralizing authentication and 
authorization functions simplifi es the coordina-
tion of access control, allows for rapid revocation 
of privileges as needed, and reduces the possibil-
ity of an intruder fi nding holes in the system. 
A central authentication or authorization server 
must itself be guarded and managed with extreme 
care, however, so that the chain of access-control 
information is not broken. Modern browsers con-
tain the public certifi cates for major certifi cate 
authorities thus enabling them to check the verac-
ity of Web sites using HTTPS (enabling the 
locked browser icon discussed earlier).  

5.6.4    Role-Limited Access 

  Role - limited  access control is based on extensions 
of authorization schemes. It allows access for per-
sonnel to only that information essential to the per-
formance of their jobs and limits the real or 
perceived temptation to access information beyond 
a legitimate need. Even when overall system 
access has been authorized and is protected, fur-
ther checks must be made to control access to spe-
cifi c data within the record. A medical record is 
partitioned according to access criteria based upon 
use privileges; the many different collaborators in 
health care all have diverse needs for the informa-
tion collected in the medical record. Examples of 
valid access privileges include the following:
•    Patients: the contents of their own medical 

records  
•   Community physicians: records of their patients  
•   Specialty physicians: records of patients 

referred for consultations  
•   Public health agencies: incidences of commu-

nicable diseases  
•   Medical researchers: consented data, or by 

waiver of authorization for patient groups 
approved by an  Institutional Review Board  
( IRB )  

•   Billing clerks: records of services, with sup-
porting clinical documentation as required by 
insurance companies  

•   Insurance payers: justifi cations of charges    
 Different types of information kept in medical 

records have different rules for release, as deter-
mined by state and federal law such as provisions 
of the Health Insurance Portability and Account-
ability Act (HIPAA) and as set by institutional 
policy following legal and ethical considerations 
and the IRB.  

5.6.5    Comprehensibility and 
Control 

  Comprehensibility and Control  ensures that 
record owners, data stewards, and patients can 
understand and have effective control over appro-
priate aspects of information confi dentiality and 
access. From a technological perspective, while 
authentication and access control are important 
control mechanisms, audit trails are perhaps the 
most important means for allowing record own-
ers and data stewards to understand whether data 
is being accessed correctly or incorrectly. Many 
hospitals also allow employees to review who has 
accessed their personal records. This ability both 
reassures employees and builds awareness of the 
importance of patient privacy. 

 An audit trail contains records indicating what 
data was accessed, when, by who, from where, 
and if possible some indication of the reason for 
the access. If backed by strong authentication and 
protected against improper deletion, such records 
can both provide a strong disincentive for 
improper access (because individuals will know 
that accesses will be recorded) and allow respon-
sible parties to detect inadequate controls.   

5.7    Distributed System 
Architectures 

 As noted in Sect.  5.5.5 , computer networks have 
become fundamental to both health care and bio-
medical research, allowing for quasi- instantaneous 
information sharing and communication within 
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and between clinical and research institutions. 
Applications such as the Web, email, videocon-
ferencing, and SSH for remote access to comput-
ers are all widely used to reduce barriers associated 
with physical separation. 

 As health care becomes more information 
driven, we see increased interest in not just 
enabling ad hoc access to remote data, but in link-
ing diverse information systems into  distributed 
systems . A distributed system links multiple 
computer systems in such a way that they can 
function, to some extent at least, as a single infor-
mation system. The systems to be linked may live 
within a single institution (e.g., an electronic med-
ical record system operated by a hospital’s infor-
mation technology services organization, a 
pathology database operated by the Department 
of Pathology, and a medical PACS system oper-
ated by the Department of Radiology); within 
multiple institutions of similar type (e.g., elec-
tronic medical record systems operated by differ-
ent hospitals); or within institutions of quite 
different types (e.g., a hospital and a third-party 
cloud (see Sect.  5.7.5 ) service provider). They 
may be linked for a range of reasons: for example, 
to federate database systems, so as to permit fed-
erated queries (see Sect.  5.7.2 ) across different 
databases—e.g., to fi nd records corresponding to 
multiple admissions for a single patient at differ-
ent hospitals, or to identify potential participants 
in a clinical trial; to enable cross- institutional 
workfl ows, such as routing of infectious disease 
data to a public health organization; or to out-
source expensive tasks to third- party providers, as 
when a medical center maintains an off-site 
backup of its databases in a cloud provider. 

 Distributed systems can be challenging to 
construct and operate. They are, fi rst of all, net-
worked systems, and thus are inevitably subject 
to a wide range of failures. Yet more seriously, 
they commonly span administrative boundaries, 
and in the absence of strong external control and/
or incentives, different administrative units tend 
to adopt distinct and incompatible technical solu-
tions, information representations, policies, and 
governance structures. These problems seem to 
be particularly prevalent within health care, 
which despite much effort towards standardiza-

tion over many decades, remains dominated by 
non-standards-based products. This situation can 
make even point-to-point integration of two sys-
tems within a single hospital challenging; the 
creation of large-scale distributed systems that 
span many institutions remains diffi cult. 

 To illustrate the types of problems that may 
exist, consider a distributed system that is 
intended to provide a unifi ed view of electronic 
medical records maintained in databases D A  and 
D B  at two hospitals, H A  and H B . We may fi nd that:
•    Databases D A  and D B  use different database 

management systems (see Sect.     5.4 ), with dif-
ferent access protocols and query languages  

•   Databases D A  and D B  use different schemas and 
vocabularies to represent patient information  

•   Hospitals H A  and H B  assign different identifi -
ers to the same patient  

•   Hospital H A  does not allow remote access to 
its electronic medical record system, restrict-
ing access to computers located within its fi re-
wall (see Sect.  5.4 )  

•   Hospital H B  interprets HIPAA rules as prevent-
ing information about its patients to be shared 
with personnel who are not H B  employees  

•   Hospitals H A  and H B  both have a governance 
structure that reviews proposed changes to 
computer and data systems ahead of imple-
mentation, but neither includes representation 
from the developers of the distributed system.    
 As this brief and partial list shows, the devel-

opment of a successful distributed system can 
require solutions to a wide range of heterogeneity 
problems, including syntactic (e.g., different for-
mats used to represent data in databases), seman-
tic (e.g., different meanings assigned to a clinical 
diagnosis), policy, and governance. The use of 
appropriate distributed system technologies can 
assist with overcoming these problems, but any 
effective and robust solution must take into 
account all aspects of the problem. 

5.7.1    Distributed System 
Programming 

 To build a distributed system, it must be possi-
ble for a program running on one computer to 
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issue a request that results in a program being 
run in another computer. Various approaches 
have been pursued over the years to this  distrib-
uted system programming  problem. All seek 
to hide heterogeneity across different platforms 
via the introduction of a standardized remote 
procedure call mechanism. Under the covers, 
communication typically occurs via the Internet 
protocols described in Sect.  5.5.5 ; distributed 
system programming methods build on that 
base to allow a programmer to name a remote 
procedure that is to be called (e.g., “query data-
base”), specify arguments to that procedure 
(e.g., “fi nd patients with infl uenza”), specify 
how results are to be returned, provide required 
security credentials, and so forth—all without 
the programmer needing to know anything 
about how the remote program is implemented. 
Other related methods may allow a programmer 
to discover what procedures are supported by a 
particular remote system, or alternatively what 
remote system should be contacted for a partic-
ular purpose. 

 One distributed system programming 
approach on which much effort has been spent 
is  CORBA , the Common Object Request 
Broker Architecture. Starting in the mid 1990s, 
numerous technology providers and adopters 
formed the Object Management Group (OMG) 
to defi ne standards for describing remotely 
accessible procedures (an Interface Defi nition 
Language:  IDL ) and for invoking those proce-
dures over a network. Building on that base, a 
wide range of other standards have been devel-
oped defi ning interaction patterns important for 
different fi elds. In the fi eld of health care, the 
CORBAmed activity defi ned a range of specifi -
cations for such things as personal identifi ca-
tion and medical image access. Unfortunately, 
while CORBA has had some success in certain 
industries (e.g., manufacturing), a combination 
of technical limitations in its specifi cations and 
inter-company confl ict (e.g., Microsoft never 
adopted CORBA) had prevented it from having 
broad impact as a distributed system program-
ming technology. 

 In the mid 2000s, a new technology called 
 Web Services  emerged that implemented simi-

lar concepts to those found in CORBA, but in a 
simpler and more fl exible form. Web Services 
uses XML (Sect.  5.5.5.5 ) to encode remote pro-
cedure calls and HTTP (Sect.  5.5.5.5 ) to com-
municate them, and defi nes an IDL called Web 
Services Description Language ( WSDL ). These 
technologies have seen wide use in many areas, 
including biomedical research, with many 
research datasets and analytic procedures being 
made accessible over the network via Web 
Service interfaces. However, adoption within 
clinical systems remains modest for reasons 
listed above. 

 Over the past 5 years, the commercial and 
consumer Web/Cloud market — as typifi ed, for 
example, by the likes of Google, Facebook, 
Twitter, and Amazon — has largely converged on 
a yet simpler architectural approach for defi ning 
interfaces to services. This approach is based on 
a small set of protocol standards and methodolo-
gies, namely REST and HTTP, JSON and XML, 
TLS, and O Auth 2.0. These same methods are 
seeing increasingly widespread use in health care 
as well, due to their simplicity and the substantial 
investment in relevant technologies occurring 
within industry. At the core of this approach is 
 REpresentational State Transfer  ( REST ), an 
HTTP-based approach to distributed system 
architecture in which components are modeled as 
 resources  that are named by URLs and with 
which interaction occurs through standard HTTP 
actions (POST, GET, PUT, DELETE). For exam-
ple, Table  5.3  illustrates a simple REST encoding 
of an interface to a medical record system. This 
interface models patients as resources with the 
following form, where {patient-id} is the patient 
identifi er:
    /patients/{patient-id}    

   Table 5.3    Example REST representation of a patient 
record interface. On the left, the format of each request; 
on the right, a brief description   

 Request  Description 

 GET/patients  Retrieve list of patients 
 GET or POST/patients/
{patient-id} 

 Get/put profi le for a 
specifi c patient 

 GET/patients/{patient-id}/
lab results 

 Request lab results for a 
specifi c patient 
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 Thus, to request all patients that we have per-
mission to see we send the following HTTP 
request:
   GET/patients/   

while to obtain the profi le for a specifi c patient 
named NAME we send this request:
   GET/patients/NAME   

and to update that profi le we send the request:
   POST/patients/NAME    

 REST and HTTP defi ne how to name resources 
(URLs) and messaging semantics, but not how to 
encode message contents. Two primary message 
encoding schemes are used:  Java Script Object 
Notation  ( JSON ) and XML. The following is a 
potential JSON encoding of a response to a GET/
patients/request. The response provides a list of 
patient identifi ers plus (because there may be many 
more patients that can fi t in a single response) 
information regarding the number of patients 
included in this response (X), an offset that can be 
provided in a subsequent request to get new patients 
(Y), and the number of patients remaining (Z):
   {"patients":
   {"list":[list of patients],  
  "count":X,  
  "offset":Y,  
  "remain":Z}     
  }     

5.7.2     Distributed Databases 

 Distributed databases are a special case of a dis-
tributed system. The problem here is to enable 
queries against data located in multiple databases. 
Two different methods are commonly used. In a 
 data warehouse  approach, an  extract -transform    - 
load     ( ETL ) process is used to extract data from 
the various sources, transform it as required to fi t 
the schema and semantics used by the data ware-
house, and then load the transformed data into the 
data warehouse. In a  federated query  approach, a 
query is dispatched to the different databases, 
applied to each of them independently, and then 
the results combined to get the complete answer. 
Intermediate components called  mediators  may 
be used to convert between different syntaxes and 
semantics used in different systems. 

 These two approaches have various advan-
tages and disadvantages. The data warehouse 
requires a potentially expensive ETL process, 
requires storage for a separate copy of all relevant 
data, and may not be up to date with all source 
databases. However, it can permit highly effi cient 
queries against the entirety of the data. The feder-
ated query approach can provide access to the lat-
est data from each source database, but requires 
potentially complex mediator technology.  

5.7.3    Parallel Computing 

 Parallel computers combine many microproces-
sors and/or GPUs (see Sect.  5.2 ) to provide an 
aggregate computing capacity greater than that of 
a single workstation. The largest such systems 
available today have more than one million pro-
cessing cores. While systems of that scale are not 
used in medicine, parallel computers are becom-
ing more commonly used in biomedical comput-
ing as a means of performing large-scale 
computational simulations and/or analyzing large 
quantities of data. In basic research, parallel 
computers are used for such purposes as mining 
clinical records, genome sequence analysis, pro-
tein folding, simulation studies of cell mem-
branes, and modeling of blood fl ow. In 
translational research, parallel computers are 
commonly used to compute parameters for com-
puter programs that are then used in clinical set-
tings, for example, for computed aided diagnosis 
of mammograms. 

 When computing over large quantities of 
data, it is often useful to employ a  parallel 
database management system . These systems 
support the same SQL query language as 
sequential database management systems (see 
Sect.  5.5.4 .) but can run queries faster when 
using multiple processors. Another increasingly 
popular approach to parallel data analysis is to 
use the  MapReduce  model, popularized by 
Google and widely available via the free 
 Hadoop  software. MapReduce programs may 
be less effi cient than equivalent SQL programs 
but do not require that data be loaded into a 
database prior to processing.  
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5.7.4     Grid Computing 

 Grid computing technologies allow for the fed-
eration of many computers and/or data resources 
in such a way that they can be used in an inte-
grated manner. Grid computing is the foundation, 
for example, for the worldwide distributed sys-
tem that analyzes data from the Large Hadron 
Collider (LHC) in Geneva, Switzerland. The 10 
or more petabytes (10 × 10 15  bytes) produced per 
year at the LHC is distributed to several hundred 
institutions worldwide for analysis. Each institu-
tion that participates in this worldwide system 
has its own local computer system administration 
team, user authentication system, accounting sys-
tem, and so forth. Grid technologies bridge these 
institutional barriers, allowing a user to authenti-
cate once (to “the grid”), and then submit jobs for 
execution at any or all computers in the grid. 

 Grid computing is used in many academic 
campuses to link small and large computer clus-
ters and even idle desktop computers for parallel 
computing applications. But its biggest use in 
research is to enable sharing of large quantities of 
data across institutional boundaries. By address-
ing the challenges of authentication, access con-
trol, and high-speed data movement, grid 
computing technologies make it possible, for 
example, to acquire genome sequence from a 
commercial sequencing provider, transport that 
data over the network to a cloud computing pro-
vider (see Sect.  5.7.5 ), perform analysis there, 
and then load results into a database at a research-
er’s home institution.  

5.7.5      Cloud Computing 

 The late 2000s saw the emergence of success-
ful commercial providers of on-demand com-
puting and software services. This concept is 
certainly not new: for example, McCarthy fi rst 
referred to “utility computing” in 1961, various 
time sharing services provided computing over 
the network in the 1970s and 1980s, and grid 
computing provided such services in the 1990s 
and 2000s. However, it is clear that—perhaps 
driven by a combination of quasi-ubiquitous 

high-speed Internet, vastly increased demand 
from e- commerce, powerful lightweight Web 
protocols, and an effective business model—
cloud computing has achieved large-scale adop-
tion in ways that previous efforts had not. The 
implications of these developments for medical 
informatics will surely be profound. 

 The  National Institutes of Standards and 
Technology  (NIST) defi nes cloud computing as 
“a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of 
confi gurable computing resources (e.g., net-
works, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and 
released with minimal management effort or ser-
vice provider interaction” (Mell and Grance, 
 2011 ). They distinguish between three distinct 
types of cloud service (see Fig.  5.11 ):
•      Software as a Service  ( SaaS ) allows the con-

sumer to use the provider’s applications run-
ning on a cloud infrastructure. Examples 
include Google mail, Google Docs, Salesforce.
com customer relationship management, and a 
growing number of electronic medical record 
and practice management systems.  

•    Platform as a Service  ( PaaS ) allows the con-
sumer to deploy consumer-created or acquired 
applications onto the cloud infrastructure, cre-
ated using programming languages, libraries, 
services, and tools supported by the provider. 
Google’s App Engine and Salesforce’s Force.
com are examples of such platforms.  

•    Infrastructure as a Service  ( IaaS ) allows the 
consumer to provision processing, storage, 
networks, and other fundamental computing 
resources on which the consumer is able to 
deploy and run arbitrary software. Amazon 
Web Services and Microsoft Azure are popu-
lar IaaS providers.    
 Each level of the stack can, and often does, build 

on services provided by the level below. For exam-
ple, Google Mail is a SaaS service that runs on 
compute and storage infrastructure services oper-
ated by Google; Globus Online is a SaaS research 
data management service that runs on infrastruc-
ture services operated by Amazon Web Services. 

 NIST further distinguishes between public 
cloud providers, which deliver such capabilities 
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to anyone, and private cloud providers, which 
provide such on-demand services for consumers 
within an organization. 

 Benefi ts claimed for cloud computing include 
increased reliability, higher usability, and reduced 
cost relative to equivalent software deployed and 
operated within the consumer’s organization, due 
to expert operations and economies of scale. 
(IaaS providers such as Amazon charge for com-
puting and storage on a per-usage basis.) Potential 
drawbacks include security challenges associated 
with remote operations, lock-in to a remote cloud 
provider, and potentially higher costs if usage 
becomes large. 

 Outside health care, cloud computing has 
proven particularly popular among smaller busi-
nesses, who fi nd that they can outsource essen-
tially all routine information technology functions 
(e.g., email, Web presence, accounting, billing, 
customer relationship management) to SaaS pro-
viders. Many companies also make considerable 
use of IaaS from the likes of Amazon Web 
Services and Microsoft Azure for compute- and 
data-intensive computations that exceed local 
capacity. In research, we see the emergence of a 

growing number of both commercial and non- 
profi t SaaS offerings designed to accelerate com-
mon research tasks. For example, Mendeley 
organizes bibliographic information, while 
Globus Online provides research data manage-
ment services. 

 Similarly, in health care, we see many inde-
pendent physicians and smaller practices adopt-
ing SaaS electronic medical record systems. The 
relatively high costs and specialized expertise 
required to operate in-house systems, plus a per-
ception that SaaS providers do a good job of 
addressing usability and security concerns, seem 
to be major drivers of adoption. Similarly, a 
growing number of biomedical researchers are 
using IaaS for data- and compute-intensive 
research. Meanwhile, some cloud providers (e.g., 
Microsoft) are prepared to adhere to security and 
privacy provisions defi ned in HIPAA and the 
HITECH act. Nevertheless, while some hospitals 
are using IaaS for remote backup (e.g., by storing 
encrypted database dumps), there is not yet any 
signifi cant move to outsource major hospital 
information systems.   

5.8    Summary 

 As we have discussed in this chapter, the synthe-
sis of large-scale information systems is accom-
plished through the careful construction of 
hierarchies of hardware and software. Each suc-
cessive layer is more abstract and hides many of 
the details of the preceding layer. Simple meth-
ods for storing and manipulating data ultimately 
produce complex information systems that have 
powerful capabilities. Communication links that 
connect local and remote computers in arbitrary 
confi gurations, and the security mechanisms that 
span these systems, transcend the basic hardware 
and software hierarchies. Thus, without worrying 
about the technical details, users can access a 
wealth of computational resources and can per-
form complex information management tasks, 
such as storing and retrieving, communicating, 
authorizing, and processing information. As the 
technology landscape evolves and computer 
architectures continuously increase in  complexity, 

  Fig. 5.11    The NIST taxonomy of cloud providers. SaaS, 
PaaS, and IaaS providers each offer different types of ser-
vices to their clients. Cloud services are distinguished by 
their Web 2.0 interfaces, which can be accessed either via 
Web browsers or (for access from other programs or 
scripts) via simple APIs       
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they will also increasingly, necessarily, hide that 
complexity from the user. Therefore, it is para-
mount that systems designers, planners, and 
implementers remain suffi ciently knowledgeable 
about the underlying mechanisms and distin-
guishing features of computing architectures so 
as to make optimal technology choices.  

  Suggested Readings  

 Council, N.R. (1997).  For the record: Protecting elec-
tronic health information . Washington, DC: National 
Academy Press. This report documents an extensive 
study of current security practices in US health care 
settings and recommends signifi cant changes. It sets 
guidelines for policies, technical protections, and legal 
standards for acceptable access to, and use of, health 
care information. It is well suited for lay, medical, and 
technical readers who are interested in an overview of 
this complex topic. 

 Garcia-Molina, H., Ullman, J.D., & Widom, J.D. (2008). 
 Database systems: The complete book  (2nd ed.). 
Englewood Cliffs: Prentice-Hall. The fi rst half of the 
book provides in-depth coverage of databases from the 
point of view of the database designer, user, and appli-
cation programmer. It covers the latest database stan-
dards SQL:1999, SQL/PSM, SQL/CLI, JDBC, ODL, 
and XML, with broader coverage of SQL than most 
other texts. The second half of the book provides in-
depth coverage of databases from the point of view of 
the DBMS implementer. It focuses on storage struc-
tures, query processing, and transaction management. 
The book covers the main techniques in these areas 
with broader coverage of query optimization than 
most other texts, along with advanced topics including 
multidimensional and bitmap indexes, distributed 
transactions, and information-integration techniques. 

 Hennessy, J.L., & Patterson, D.A. (2011).  Computer 
architecture: a quantitative approach  (5th ed.). San 
Francisco: Morgan Kaufmann. This technical book 
provides an in-depth explanation of the physical and 
conceptual underpinnings of computer hardware and 
its operation. It is suitable for technically oriented 
readers who want to understand the details of com-
puter architecture. 

 Mell, P. and Grance, T. (2011).  The NIST defi nition of 
cloud computing . NIST Special Publication 800–145, 
National Institute of Standards and Technology. This 
brief document provides a concise and clear defi nition 
of cloud computing. 

 Tanenbaum, A., & Wetherall, D. (2010).  Computer net-
works  (5th ed.). Englewood Cliffs: Prentice-Hall. The 
heavily revised edition of a classic textbook on com-
puter communications, this book is well organized, 
clearly written, and easy to understand. It fi rst 
describes the physical layer of networking and then 

works up to network applications, using real-world 
example networks to illustrate key principles. Covers 
applications and services such as email, the domain 
name system, the World Wide Web, voice over IP, and 
video conferencing. 

 Teorey, T., Lightstone, S., Nadeau, T., & Jagadish, H. 
(2011).  Database modeling and design: Logical 
design  (5th ed.). San Francisco: Elsevier. This text 
provides and excellent and compact coverage of mul-
tiple topics regarding database architectures, including 
core concepts, universal modeling language, normal-
ization, entity-relationship diagrams, SQL, and data 
warehousing. 

 Wiederhold, G., & Clayton, P.D. (1985). Processing bio-
logical data in real time. M.D.  Computing, 2 (6), 
16–25. This article discusses the principles and prob-
lems of acquiring and processing biological data in 
real time. It covers much of the material discussed in 
the signal- processing section of this chapter and it pro-
vides more detailed explanations of analog-to-digital 
conversion and Fourier analysis.                

 Questions for Discussion 

     1.    What are four considerations in decid-
ing whether to keep data in active versus 
archival storage?   

   2.    Explain how operating systems and 
cloud architectures insulate users from 
hardware changes.   

   3.    Discuss what characteristics determine 
whether computer clusters or cloud 
architectures are better for scaling a 
given computational problem.   

   4.    Explain how grid computing facilitates 
federation of resources.   

   5.    Describe the architectural advantages 
and disadvantages of different comput-
ing environments.   

   6.    Explain how REST and XML enable 
fl exibility, modularity, and scale.   

   7.    How can you prevent inappropriate 
access to electronic medical record 
information? How can you detect that 
such inappropriate access might have 
occurred?   

   8.    You are asked whether a medical prac-
tice should outsource its information 
technology functions to third party 
cloud providers. What factors would 
enter into your recommendation?     
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