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        After reading this chapter, you should know the 
answers to these questions:
•    How can cognitive science theory meaning-

fully inform and shape design, development 
and assessment of healthcare information 
systems?  

•   What are some of the ways in which cognitive 
science differs from behavioral science?  

•   What are some of the ways in which we can 
characterize the structure of knowledge?  

•   What are the basic HCI and cognitive science 
methods that are useful for healthcare infor-
mation system evaluation and design?  

•   What are some of the dimensions of differ-
ence between experts and novices?  

•   What are the attributes of system usability?  
•   What are the gulfs of execution and evalua-

tion? What role do these considerations play 
in system design?  

•   Why is it important to consider cognition and 
human factors in dealing with issues of patient 
safety?    

4.1     Introduction 

    Enormous advances in health information 
 technologies and more generally, in computing 
over the course of the past two decades have 
begun to permeate diverse facets of clinical prac-
tice. The rapid pace of technological develop-
ments such as the Internet, wireless technologies, 
and hand-held devices, in the last decade affords 
signifi cant opportunities for supporting, enhanc-
ing and extending user experiences, interac-
tions and communications (Rogers  2004 ). These 
advances coupled with a growing computer lit-
eracy among healthcare professionals afford the 
potential for great improvement in healthcare. 
Yet many observers note that the healthcare sys-
tem is slow to understand information technology 
and effectively incorporate it into the work envi-
ronment (Shortliffe and Blois  2001 ). Innovative 
technologies often produce profound cultural, 
social, and cognitive changes. These transfor-
mations necessitate adaptation at many different 
levels of aggregation from the individual to the 
larger institution, sometimes causing disruptions 
of workfl ow and user dissatisfaction. 

 Similar to other complex domains, biomedi-
cal information systems embody ideals in design 
that often do not readily yield practical solutions 
in implementation. As computer-based systems 
infi ltrate clinical practice and settings, the conse-
quences often can be felt through all levels of the 
organization. This impact can have deleterious 
effects resulting in systemic ineffi ciencies and 
suboptimal practice, which can lead to frustrated 
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healthcare practitioners, unnecessary delays in 
healthcare delivery, and even adverse events 
(Lin et al.  1998 ; Weinger and Slagle  2001 ). In 
the best-case scenario, mastery of the system 
necessitates an individual and collective learn-
ing curve yielding incremental improvements in 
performance and satisfaction. In the worst-case 
scenario, clinicians may revolt and the hospital 
may be forced to pull the plug on an expensive 
new technology. How can we manage change? 
How can we introduce systems that are designed 
to be more intuitive and also implemented to be 
coherent with everyday practice? 

4.1.1     Introducing Cognitive Science 

  Cognitive science  is a multidisciplinary domain of 
inquiry devoted to the study of cognition and its 
role in intelligent agency. The primary disciplines 
include cognitive psychology, artifi cial intelli-
gence, neuroscience, linguistics, anthropology, and 
philosophy. From the perspective of informatics, 
cognitive science can provide a framework for the 
analysis and modeling of complex human perfor-
mance in technology-mediated settings. Cognitive 
science incorporates basic science research focus-
ing on fundamental aspects of cognition (e.g., 
attention, memory, reasoning, early language 
acquisition) as well as applied research. Applied 
cognitive research is focally concerned with the 
development and evaluation of useful and usable 
cognitive artifacts.  Cognitive artifacts  are human-
made materials, devices, and systems that extend 
people’s abilities in perceiving objects, encoding 
and retrieving information from memory, and 
problem-solving (Gillan and Schvaneveldt  1999 ). 
In this regard, applied cognitive research is closely 
aligned with the disciplines of  human-computer 
interaction  (HCI) and  human factors . It also has 
a close affi liation with educational research. In 
everyday life, we interact with cognitive artifacts to 
receive and/or manipulate information so as to 
alter our thinking processes and offl oad effort-
intensive cognitive activity to the external world, 
thereby reducing mental workload. 

 The past couple of decades have produced 
a cumulative body of experiential and practical 

knowledge about system design and implementa-
tion that can guide future initiatives. This prac-
tical knowledge embodies the need for sensible 
and intuitive user interfaces, an understanding of 
workfl ow, and the ways in which systems impact 
individual and team performance. However, 
experiential knowledge in the form of anec-
dotes and case studies is inadequate for produc-
ing robust generalizations or sound design and 
implementation principles. There is a need for a 
theoretical foundation. Biomedical informatics 
is more than the thin intersection of biomedi-
cine and computing (Patel and Kaufman  1998 ). 
There is a growing role for the social sciences, 
including the cognitive and behavioral sciences, 
in biomedical informatics, particularly as they 
pertain to human-computer interaction and other 
areas such as  information retrieval  and  decision 
support . In this chapter, we focus on the foun-
dational role of cognitive science in biomedical 
informatics research and practice. Theories and 
methods from the cognitive sciences can illumi-
nate different facets of design and implementation 
of information and knowledge-based systems. 
They can also play a larger role in characteriz-
ing and enhancing human performance on a wide 
range of tasks involving clinicians, patients and 
healthy consumers of biomedical information. 
These tasks may include developing training pro-
grams and devising measures to reduce errors or 
increase effi ciency. In this respect, cognitive sci-
ence represents one of the component basic sci-
ences of biomedical informatics (Shortliffe and 
Blois  2001 ).  

4.1.2     Cognitive Science and 
Biomedical Informatics 

 How can cognitive science theory meaning-
fully inform and shape design, development 
and assessment of health-care information sys-
tems? Cognitive science provides insight into 
principles of system  usability  and  learnabil-
ity , the mediating role of technology in clinical 
performance, the process of medical judgment 
and  decision- making, the training of healthcare 
 professionals, patients and health consumers, and 
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the design of a safer workplace. The central argu-
ment is that it can inform our understanding of 
human performance in technology-rich health-
care environments (Carayon  2007 ). 

 Precisely how will cognitive science theory 
and methods make such a signifi cant contribution 
towards these important objectives? The transla-
tion of research fi ndings from one discipline into 
practical concerns that can be applied to another 
is rarely a straight-forward process (Rogers 
 2004 ). Furthermore, even when scientifi c knowl-
edge is highly relevant in principle, making that 
knowledge effective in a design context can be a 
signifi cant challenge. In this chapter, we discuss 
(a) basic cognitive science research and theories 
that provide a foundation for understanding the 
underlying mechanisms guiding human perfor-
mance (e.g., fi ndings pertaining to the structure 
of human memory), and (b) research in the areas 
of  medical errors  and  patient safety  as they 
interact with health information technology), 

 As illustrated in Table  4.1 , there are correspon-
dences between basic cognitive science research, 
medical cognition and cognitive research in 
biomedical informatics along several dimen-
sions. For example, theories of human memory 
and knowledge organization lend themselves to 
characterizations of expert clinical knowledge 
that can then be contrasted with representation 

of such knowledge in clinical systems. Similarly, 
research in text comprehension has provided 
a theoretical framework for research in under-
standing biomedical texts. This in turn has infl u-
enced applied cognitive research on information 
retrieval (Chap.   21    ) from biomedical knowl-
edge sources and research on  health literacy . 
Similarly, theories of problem solving and rea-
soning can be used to understand the processes 
and knowledge associated with diagnostic and 
therapeutic reasoning. This understanding pro-
vides a basis for developing biomedical  artifi cial 
intelligence and decision support systems.

   In this chapter, we demonstrate that cognitive 
research, theories and methods can contribute to 
applications in informatics in a number of ways 
including: (1) seed  basic research fi ndings  that can 
illuminate dimensions of design (e.g., attention 
and memory, aspects of the visual system), (2) pro-
vide an  explanatory vocabulary  for characterizing 
how individuals process and communicate health 
information (e.g., various studies of medical cog-
nition pertaining to doctor-patient interaction), (3) 
present an  analytic framework  for identifying 
problems and modeling certain kinds of user inter-
actions, (4) characterize the relationship between 
health information technology, human factors 
and patient safety, (5) provide  rich descriptive 
accounts  of clinicians employing technologies in 

   Table 4.1    Correspondences between cognitive science, medical cognition and applied cognitive research in medical 
informatics   

 Cognitive Science  Medical Cognition  Biomedical Informatics 

 Knowledge organization
and human memory 

 Organization of clinical
and basic science knowledge 

 Development and use of medical
knowledge bases 

 Problem solving, Heuristics/
reasoning strategies 

 Medical problem solving
and decision making 

 Medical artifi cial intelligence/decision
support systems/medical errors 

 Perception/attention  Radiologic and
dermatologic diagnosis 

 Medical imaging systems 

 Text comprehension  Learning from medical texts  Information retrieval/digital libraries/
health literacy 

 Conversational analysis  Medical discourse  Medical natural language processing 
 Distributed cognition  Collaborative practice

and research in health care 
 Computer-based provider order
entry systems 

 Coordination of theory
and evidence 

 Diagnostic and therapeutic
reasoning 

 Evidence-based clinical guidelines 

 Diagrammatic reasoning  Perceptual processing
of patient data displays 

 Biomedical information visualization 
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the context of work, and (6) furnish a generative 
approach for novel designs and productive applied 
research programs in informatics (e.g., interven-
tion strategies for supporting low literacy popula-
tions in health information seeking). 

 Since the last edition of this text, there has 
been a signifi cant growth in cognitive research 
in biomedical informatics. We conducted an 
informal comparison of studies across three lead-
ing informatics journals, Journal of Biomedical 
Informatics, Journal of the American Medical 
Informatics Association and the International 
Journal of Medical Informatics of two time peri-
ods over the last decade, the fi rst being 2001–
2005 and the second 2006–2010. A keyword 
search of ten common terms (e.g., cognition, 
usability testing and human factors) found an 
increase of almost 70 % in the last 5 years over 
the previous 5 years. Although this doesn’t con-
stitute a rigorous systematic analysis, it is sug-
gestive of a strong growth of cognitive research 
in informatics. 

 The social sciences are constituted by multi-
ple frameworks and approaches.  Behaviorism  
constitutes a framework for analyzing and modi-
fying behavior. It is an approach that has had an 
enormous infl uence on the social sciences for 
most of the twentieth Century. Cognitive science 
partially emerged as a response to the limitations 
of behaviorism. The next section of the chapter 
contains a brief history of the cognitive and 
behavioral sciences that emphasizes the points of 
difference between the two approaches. It also 
serves to introduce basic concepts in the study of 
cognition.   

4.2     Cognitive Science: The 
Emergence of an 
Explanatory Framework 

   Cognitive science is, of course, not really a new 
discipline, but recognition of a fundamental set of 
common concerns shared by the disciplines of psy-
chology, computer science, linguistics, economics, 
epistemology, and the social sciences generally. 
All of these disciplines are concerned with 
 information processing systems, and all of them 

are concerned with systems that are adaptive-that 
are what they are from being ground between the 
nether millstone of their physiology or hardware, 
as the case may be, and the upper millstone of a 
complex environment in which they exist. Herbert 
A. Simon ( 1980 . P 33) (H. A. Simon  1980 ) 

   In this section, we sketch a brief history of the 
emergence of cognitive science in view to differ-
entiate it with competing theoretical frameworks 
in the social sciences. The section also serves to 
introduce core concepts that constitute an explan-
atory framework for cognitive science. 

 Behaviorism is the conceptual framework 
underlying a particular science of behavior (Zuriff 
 1985 ). This framework dominated experimental 
and applied psychology as well as the social sci-
ences for the better part of the twentieth century 
(Bechtel et al.  1998 ). Behaviorism represented an 
attempt to develop an objective, empirically based 
science of behavior and more specifi cally, learn-
ing. Empiricism is the view that experience is the 
only source of knowledge (Hilgard and Bower 
 1975 ). Behaviorism endeavored to build a com-
prehensive framework of scientifi c inquiry around 
the experimental analysis of observable behavior. 
Behaviorists eschewed the study of thinking as an 
unacceptable psychological method because it 
was inherently subjective, error prone, and could 
not be subjected to empirical validation. Similarly, 
hypothetical constructs (e.g., mental processes as 
mechanisms in a theory) were discouraged. All 
constructs had to be specifi ed in terms of opera-
tional defi nitions so they could be manipulated, 
measured and quantifi ed for empirical investiga-
tion (Weinger and Slagle  2001 ). Radical behav-
iorism as espoused by B.F. Skinner proposed that 
behavioral events may be understood and ana-
lyzed entirely in relation to past and present envi-
ronment and evolutionary history without any 
reference to internal states (Baum  2011 ). 

 Behavioral theories of learning emphasized 
the correspondence between environmental stim-
uli and the responses emitted. These studies gen-
erally attempted to characterize the changing 
relationship between stimulus and response 
under different reinforcement and punishment 
contingencies. For example, a behavior that was 
followed by a satisfying state of affairs is more 
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likely to increase the frequency of the act. 
According to behavior theories, knowledge is 
nothing more than sum of an individual’s learn-
ing history and transformations of mental states 
play no part in the learning process. 

 For reasons that go beyond the scope of this 
chapter, classical behavioral theories have been 
largely discredited as a comprehensive unify-
ing theory of behavior. However, behaviorism 
continues to provide a theoretical and method-
ological foundation in a wide range of social sci-
ence disciplines. For example, behaviorist tenets 
continue to play a central role in public health 
research. In particular, health behavior research 
places an emphasis on antecedent variables and 
environmental contingencies that serve to sustain 
unhealthy behaviors such as smoking (Sussman 
 2001 ). Around 1950, there was an increasing 
dissatisfaction with the limitations and method-
ological constraints (e.g., the disavowal of the 
unobserved such as mental states) of behavior-
ism. In addition, developments in logic, infor-
mation theory, cybernetics, and perhaps most 
importantly the advent of the digital computer, 
aroused substantial interest in “information pro-
cessing (Gardner  1985 ). 

 Newell and Simon ( 1972 ) date the beginning 
of the “cognitive revolution” to the year 1956. 
They cite Bruner, Goodnow and Austin’s “Study 
of Thinking,” George Miller’s infl uential journal 
publication “The magic number seven” in psy-
chology, Noam Chomsky’s writings on syntactic 
grammars in linguistics (see Chap.   8    ), and their 
own logic theorist program in computer science 
as the pivotal works. Cognitive scientists placed 
“thought” and “mental processes” at the center of 
their explanatory framework. 

 The “computer metaphor” provided a 
 framework for the study of human cognition as 
the manipulation of “symbolic structures.” It also 
provided the foundation for a model of memory, 
which was a prerequisite for an information pro-
cessing theory (Atkinson and Shiffrin  1968 ). The 
implementation of models of human performance 
as computer programs provided a measure of 
objectivity and a  suffi ciency test  of a theory and 
also serves to increase the objectivity of the study 
of mental processes (Estes  1975 ). 

 Arguably, the most signifi cant landmark pub-
lication in the nascent fi eld of cognitive science is 
Newell and Simon’s “Human Problem Solving” 
(Newell and Simon  1972 ). This was the culmina-
tion of more than 15 years of work on problem 
solving and research in artifi cial intelligence. It 
was a mature thesis that described a theoretical 
framework, extended a language for the study of 
cognition, and introduced protocol-analytic 
methods that have become ubiquitous in the 
study of high-level cognition. It laid the founda-
tion for the formal investigation of symbolic- 
information processing (more specifi cally, 
problem solving). The development of models of 
human information processing also provided a 
foundation for the discipline of human-computer 
interaction and the fi rst formal methods of analy-
sis (Card et al.  1983 ). 

 The early investigations of problem solving 
focused primarily on investigations of experi-
mentally contrived or toy-world tasks such as 
elementary deductive logic, the Tower of Hanoi, 
illustrated in Fig.  4.1 , and mathematical word 
problems (Greeno and Simon  1988 ). These tasks 
required very little background knowledge and 
were well structured, in the sense that all the vari-
ables necessary for solving the problem were 
present in the problem statement. These tasks 
allowed for a complete description of the task 
environment; a step-by-step description of the 
sequential behavior of the subjects’ performance; 
and the modeling of subjects' cognitive and overt 
behavior in the form of a computer simulation. 
The Tower of Hanoi, in particular, served as an 
important test bed for the development of an 
explanatory vocabulary and framework for ana-
lyzing problem solving behavior.

   The Tower of Hanoi (TOH) is a relatively 
straight-forward task that consists of three pegs 
(A, B, and C) and three or more disks that vary in 
size. The goal is to move the three disks from peg 
A to peg C one at a time with the constraint that a 
larger disk can never rest on a smaller one. 
Problem solving can be construed as  search  in a 
 problem space . A problem space has an  initial 
state , a  goal state , and a  set of operators . 
Operators are any moves that transform a given 
state to a successor state. For example, the fi rst 
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move could be to move the small disk to peg B or 
peg C. In a three-disk TOH, there are a total of 27 
possible states representing the complete prob-
lem space. TOH has 3 n  states where  n  is the num-
ber of disks. The minimum number of moves 
necessary to solve a TOH is 2 n−1 . Problem solvers 
will typically maintain only a small set of states 
at a time. 

 The search process involves fi nding a solution 
strategy that will minimize the number of steps. 
The metaphor of movement through a problem 
space provides a means for understanding how 
an individual can sequentially address the chal-
lenges they confront at each stage of a problem 
and the actions that ensue. We can characterize 
the problem-solving behavior of the subject at a 
local level in terms of state transitions or at a 
more global level in terms of  strategies . For 
example,  means ends analysis  is a commonly 
used strategy for reducing the difference between 
the start state and goal state. For instance, mov-
ing all but the largest disk from peg A to peg B is 
an interim goal associated with such a strategy. 
Although TOH bears little resemblance to the 
tasks performed by either clinicians or patients, 
the example illustrates the process of analyzing 
task demands and task performance in human 
subjects. 

 The most common method of data analysis is 
known as  protocol analysis  1  (Newell and Simon 
 1972 ). Protocol analysis refers to a class of 

1   The term protocol refers to that which is produced by a 
subject during testing (e.g., a verbal record). It differs 
from the more common use of protocol as defi ning a code 
or set of procedures governing behavior or a situation. 

 techniques for representing verbal  think-aloud 
protocols  (Greeno and Simon  1988 ). Think 
aloud protocols are the most common source of 
data used in studies of problem solving. In these 
studies, subjects are instructed to verbalize their 
thoughts as they perform a particular experimen-
tal task. Ericsson and Simon ( 1993 ) specify the 
conditions under which verbal reports are accept-
able as legitimate data. For example, retrospec-
tive think-aloud protocols are viewed as 
somewhat suspect because the subject has had 
the opportunity to reconstruct the information in 
memory and the verbal reports are inevitably dis-
torted. Think aloud protocols recorded in concert 
with observable behavioral data such as a sub-
ject's actions provide a rich source of evidence to 
characterize cognitive processes. 

 Cognitive psychologists and linguists have 
investigated the processes and properties of lan-
guage and memory in adults and children for many 
decades. Early research focused on basic labora-
tory studies of list learning or processing of words 
and sentences (as in a sentence completion task) 
(Anderson  1983 ). Beginning in the early 1970s, 
van Dijk and Kintsch ( 1983 ) developed an infl uen-
tial method of analyzing the process of  text com-
prehension  based on the realization that text can 
be described at multiple levels of realization from 
surface codes (e.g., words and syntax) to deeper 
level of semantics. Comprehension refers to cog-
nitive processes associated with understanding or 
deriving  meaning from text, conversation, or other 
 informational resources. It involves the processes 
that people use when trying to make sense of a 
piece of text, such as a sentence, a book, or a ver-
bal utterance. It also involves the fi nal product of 

  Fig. 4.1    Tower of Hanoi task illustrating a start state and a goal state       
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such processes, which is, the mental representa-
tion of the text, essentially what people have 
understood. 

 Comprehension often precedes problem solv-
ing and decision making, but is also dependent 
on perceptual processes that focus attention, the 
availability of relevant knowledge, and the abil-
ity to deploy knowledge in a given context. In 
fact, some of the more important differences in 
medical problem solving and decision making 
arise from differences in knowledge and compre-
hension. Furthermore, many of the problems 
associated with decision making are the result of 
either lack of knowledge or failure to understand 
the information appropriately. 

 The early investigations provided a well- 
constrained artifi cial environment for the devel-
opment of the basic methods and principles of 
problem solving. They also provide a rich explan-
atory vocabulary (e.g., problem space), but were 
not fully adequate in accounting for cognition 
in knowledge-rich domains of greater complex-
ity and involving uncertainty. In the mid to late 
1970s, there was a shift in research to complex 
“real- life” knowledge-based domains of enquiry 
(Greeno and Simon  1988 ). Problem-solving 
research was studying performance in domains 
such as physics (1980), medical diagnoses 
(Elstein et al.  1978 ) and architecture (Akin  1982 ). 
Similarly the study of text comprehension shifted 
from research on simple stories to technical and 
scientifi c texts in a range of domains including 
medicine. This paralleled a similar change in 
artifi cial intelligence research from “toy pro-
grams” to addressing “real-world” problems and 
the development of expert systems (Clancey and 
Shortliffe  1984 ). The shift to real-world  problems 
in cognitive science was spearheaded by research 
exploring the nature of expertise. Most of the 
early investigations on expertise involved labo-
ratory experiments. However, the shift to knowl-
edge-intensive domains provided a theoretical 
and methodological foundation to conduct both 
basic and applied research in  real-world settings 
such as the workplace (Vicente  1999 ) and the 
classroom (Bruer  1993 ). These areas of applica-
tion provided a fertile test bed for assessing and 
extending the cognitive science framework.  

 In recent years, the conventional information- 
processing approach has come under criticism 
for its narrow focus on the rational/cognitive 
processes of the solitary individual. One of the 
most compelling proposals has to do with a shift 
from viewing cognition as a property of the soli-
tary individual to viewing cognition as distrib-
uted across groups, cultures, and artifacts. This 
claim has signifi cant implications for the study 
of collaborative endeavors and human-computer 
interaction. We explore the concepts underlying 
 distributed cognition  in greater detail in a subse-
quent section.  

4.3     Human Information 
Processing 

 It is well known that product design often fails to 
adequately consider cognitive and physiological 
constraints and imposes an unnecessary burden 
on task performance (Preece et al.  2007 ). 
Fortunately, advances in theory and methods pro-
vide us with greater insight into designing sys-
tems for the human condition. 

 Cognitive science serves as a basic science 
and provides a framework for the analysis and 
modeling of complex human performance. A 
computational theory of mind provides the fun-
damental underpinning for most contemporary 
theories of cognitive science. The basic premise 
is that much of human cognition can be charac-
terized as a series of operations or computations 
on mental representations.  Mental represen-
tations  are internal cognitive states that have 
a certain correspondence with the external 
world. For example, they may refl ect a clini-
cian’s hypothesis about a patient’s condition 
after noticing an abnormal gait as he entered 
the clinic. These are likely to elicit further infer-
ences about the patient’s underlying condition 
and may direct the physician’s information-
gathering strategies and contribute to an evolv-
ing problem representation. 

 Two interdependent dimensions by which 
we can characterize cognitive systems are: (1) 
architectural theories that endeavor to provide 
a unifi ed theory for all aspects of cognition and 
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(2) distinction the different kinds of knowl-
edge necessary to attain competency in a given 
domain. Individuals differ substantially in terms 
of their knowledge, experiences, and endowed 
capabilities. The architectural approach capital-
izes on the fact that we can characterize certain 
regularities of the human information processing 
system. These can be either structural regulari-
ties—such as the existence of and the relations 
between perceptual, attentional, and memory 
systems and memory capacity limitations—
or processing regularities, such as processing 
speed, selective attention, or problem solving 
strategies. Cognitive systems are characterized 
functionally in terms of the capabilities they 
enable (e.g., focused attention on selective visual 
features), the way they constrain human cogni-
tive performance (e.g. limitations on memory), 
and their development during the lifespan. In 
regards to the lifespan issue, there is a growing 
body of literature on cognitive aging and how 
aspects of the cognitive system such as atten-
tion, memory, vision and motor skills change 
as a function of aging (Fisk et al.  2009 ). This 
basic science research is of growing importance 
to informatics as we seek to develop e-health 
applications for seniors, many of whom suffer 
from chronic health conditions such as arthritis 
and diabetes. A graphical user interface or more 
generally, a website designed for younger adults 
may not be suitable for older adults. 

 Differences in knowledge organization are 
a central focus of research into the nature of 
expertise. In medicine, the expert-novice para-
digm has contributed to our understanding of the 
nature of medical expertise and skilled clinical 
performance. 

4.3.1     Cognitive Architectures and 
Human Memory Systems 

 Fundamental research in perception, cognition, 
and psychomotor skills over the course of the last 
50 years has provided a foundation for design 
principles in human factors and human-computer 
interaction. Although cognitive guidelines have 
made signifi cant inroads in the design commu-

nity, there remains a signifi cant gap in applying 
basic cognitive research (Gillan and Schvaneveldt 
 1999 ). Designers routinely violate basic assump-
tions about the human cognitive system. There 
are invariably challenges in applying basic 
research and theory to applications. A more 
human-centered design and cognitive research 
can instrumentally contribute to such an endeavor 
(Zhang et al.  2004 ). 

 Over the course of the last 25 years, there have 
been several attempts to develop a unifi ed theory 
of cognition. The goal of such a theory is to pro-
vide a single set of mechanisms for all cognitive 
behaviors from motor skills, language, memory, 
to decision making, problem solving and com-
prehension (Newell  1990 ). Such a theory pro-
vides a means to put together a voluminous and 
seemingly disparate body of human experimental 
data into a coherent form. Cognitive architecture 
represents unifying theories of cognition that are 
embodied in large-scale computer simulation 
programs. Although there is much plasticity evi-
denced in human behavior, cognitive processes 
are bound by biological and physical constraints. 
Cognitive architectures specify functional rather 
than biological constraints on human behavior 
(e.g., limitations on working memory). These 
constraints refl ect the information-processing 
capacities and limitations of the human cogni-
tive system. Architectural systems embody a 
relatively fi xed permanent structure that is (more 
or less) characteristic of all humans and doesn’t 
substantially vary over an individual’s lifetime. 
It represents a scientifi c hypothesis about those 
aspects of human cognition that are relatively 
constant over time and independent of task 
(Carroll  2003 ). Cognitive architectures also play 
a role in providing blueprints for building future 
intelligent systems that embody a broad range 
of capabilities similar to those of humans (Duch 
et al.  2008 ). 

 Cognitive architectures include short-term 
and long-term memories that store content about 
an individual’s beliefs, goals, and knowledge, the 
representation of elements that are contained in 
these memories as well as their organization into 
larger-scale structures (Langley et al.  2009 ). An 
extended discussion of architectural theories and 
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systems is beyond the scope of this chapter. 
However, we employ the architectural frame of 
reference to introduce some basic distinctions in 
memory systems. Human memory is typically 
divided into at least two structures:  long-term 
memory  and  short-term/working memory . 
Working memory is an emergent property of 
interaction with the environment. Long-term 
memory (LTM) can be thought of as a repository 
of all knowledge, whereas working memory 
(WM) refers to the resources needed to maintain 
information active during cognitive activity (e.g., 
text comprehension). The information main-
tained in working memory includes stimuli from 
the environment (e.g., words on a display) and 
knowledge activated from long-term memory. In 
theory, LTM is infi nite, whereas WM is limited to 
fi ve to ten “chunks” of information. A chunk is 
any stimulus or patterns of stimuli that has 
become familiar from repeated exposure and is 
subsequently stored in memory as a single unit 
(Larkin et al.  1980 ). Problems impose a varying 
 cognitive load  on working memory. This refers 
to an excess of information that competes for few 
cognitive resources, creating a burden on work-
ing memory (Chandler and Sweller  1991 ). For 
example, maintaining a seven-digit phone num-
ber in WM is not very diffi cult. However, to 
maintain a phone number while engaging in con-
versation is nearly impossible for most people. 
Multi-tasking is one factor that contributes to 
cognitive load. The structure of the task environ-
ment, for example, a crowded computer display 
is another contributor. High velocity/high work-
load clinical environments such as intensive care 
units also impose cognitive loads on clinicians 
carrying out task.  

4.3.2     The Organization of 
Knowledge 

 Architectural theories specify the structure and 
mechanisms of memory systems, whereas theo-
ries of knowledge organization focus on the 
 content. There are several ways to characterize 
the kinds of knowledge that reside in LTM and 
that support decisions and actions. Cognitive 

psychology has furnished a range of domain- 
independent constructs that account for the 
variability of mental representations needed to 
engage the external world. 

 A central tenet of cognitive science is that 
humans actively construct and interpret infor-
mation from their environment. Given that envi-
ronmental stimuli can take a multitude of forms 
(e.g., written text, speech, music, images, etc.), 
the cognitive system needs to be attuned to differ-
ent representational types to capture the essence 
of these inputs. For example, we process written 
text differently than we do mathematical equa-
tions. The power of cognition is refl ected in the 
ability to form abstractions - to represent percep-
tions, experiences and thoughts in some medium 
other than that in which they have occurred with-
out extraneous or irrelevant information (Norman 
 1993 ). Representations enable us to remem-
ber, reconstruct, and transform events, objects, 
images, and conversations absent in space and 
time from our initial experience of the phenom-
ena. Representations refl ect states of knowledge. 

  Propositions  are a form of natural language 
representation that captures the essence of an 
idea (i.e., semantics) or concept without explicit 
reference to linguistic content. For example, 
“hello”, “hey”, and “what’s happening” can typi-
cally be interpreted as a greeting containing iden-
tical propositional content even though the literal 
semantics of the phrases may differ. These ideas 
are expressed as language and translated into 
speech or text when we talk or write. Similarly, 
we recover the propositional structure when we 
read or listen to verbal information. Numerous 
psychological experiments have demonstrated 
that people recover the gist of a text or spoken 
communication (i.e., propositional structure) not 
the specifi c words (Anderson  1985 ; van Dijk and 
Kintsch  1983 ). Studies have also shown the indi-
viduals at different levels of expertise will differ-
entially represent a text (Patel and Kaufman 
 1998 ). For example, experts are more likely to 
selectively encode relevant propositional infor-
mation that will inform a decision. On the other 
hand, non-experts will often remember more 
information, but much of the recalled informa-
tion may not be relevant to the decision (Patel 
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and Groen  1991a ,  b ). Propositional representa-
tions constitute an important construct in theories 
of comprehension and are discussed later in this 
chapter. 

 Propositional knowledge can be expressed 
using a predicate calculus formalism or as a 
semantic network. The predicate calculus rep-
resentation is illustrated below. A subject’s 
response, as given on Fig.  4.2 , is divided into 
sentences or segments and sequentially analyzed. 
The formalism includes a head element of a seg-
ment and a series of arguments. For example in 
proposition 1.1, the focus is on a female who 
has the attributes of being 43 years of age and 
white. The TEM:ORD or temporal order relation 
indicates that the events of 1.3 (GI upset) pre-
cede the event of 1.2 (diarrhea). The formalism 
is informed by an elaborate propositional lan-
guage (Frederiksen  1975 ) and was fi rst applied to 
the medical domain by Patel and her colleagues 
(Patel et al.  1986 ). The method provides us with 
a detailed way to characterize the information 
subjects understood from reading a text, based on 
their summary or explanations.

   Kintsch ( 1998 ) theorized that comprehension 
involves an interaction between what the text 
conveys and the schemata in long-term memory. 
Comprehension occurs when the reader uses 
prior knowledge to process the incoming infor-
mation presented in the text. The text information 
is called the  textbase  (the propositional content of 
the text). For instance, in medicine the textbase 
could consist of the representation of a patient 
problem as written in a patient chart. The situa-
tion model is constituted by the textbase repre-
sentation plus the domain-specifi c and everyday 
knowledge that the reader uses to derive a broader 
meaning from the text. In medicine, the situation 
model would enable a physician to draw 
 inferences from a patient’s history leading to a 
diagnosis, therapeutic plan or prognosis (Patel 

and Groen  1991a ,  b ). This situation model is typ-
ically derived from the general knowledge and 
specifi c knowledge acquired through medical 
teaching, readings (e.g., theories and fi ndings 
from biomedical research), clinical practice (e.g., 
knowledge of associations between clinical fi nd-
ings and specifi c diseases, knowledge of medica-
tions or treatment procedures that have worked in 
the past) and the textbase representation. Like 
other forms of knowledge representation, the sit-
uation model is used to “fi t in” the incoming 
information (e.g., text, perception of the patient). 
Since the knowledge in LTM differs among phy-
sicians, the resulting situation model generated 
by any two physicians is likely to differ as well. 
Theories and methods of text comprehension 
have been widely used in the study of medical 
cognition and have been instrumental in charac-
terizing the process of guideline development 
and interpretation (Arocha et al.  2005 ). 

  Schemata  represent higher-level knowledge 
structures. They can be construed as data struc-
tures for representing categories of concepts 
stored in memory (e.g., fruits, chairs, geometric 
shapes, and thyroid conditions). There are sche-
mata for concepts underlying situations, events, 
sequences of actions and so forth. To process 
information with the use of a schema is to deter-
mine which model best fi ts the incoming infor-
mation. Schemata have constants (all birds have 
wings) and variables (chairs can have between 
one and four legs). The variables may have asso-
ciated default values (e.g., birds fl y) that repre-
sent the prototypical circumstance. 

 When a person interprets information, the 
schema serves as a “fi lter” for distinguishing rel-
evant and irrelevant information. Schemata can 
be considered as generic knowledge structures 
that contain slots for particular kinds of 
 propositions. For instance, a schema for myocar-
dial infarction may contain the fi ndings of “chest 

  Fig. 4.2    Propositional 
analysis of a think-aloud 
protocol of a primary care 
physician       
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pain,” “sweating,” “shortness of breath,” but not 
the fi nding of “goiter,” which is part of the 
schema for thyroid disease. 

 The schematic and propositional representa-
tions refl ect abstractions and don’t necessarily 
preserve literal information about the external 
world. Imagine that you are having a conversa-
tion at the offi ce about how to rearrange the fur-
niture in your living room. To engage in such a 
conversation, one needs to be able to construct 
images of the objects and their spatial arrange-
ment in the room.  Mental images  are a form of 
internal representation that captures perceptual 
information recovered from the environment. 
There is compelling psychological and neuropsy-
chological evidence to suggest that mental 
images constitute a distinct form of mental repre-
sentation (Bartolomeo  2008 ) Images play a par-
ticularly important role in domains of visual 
diagnosis such as dermatology and radiology. 

  Mental models  are an analogue-based con-
struct for describing how individuals form inter-
nal models of systems. Mental models are 
designed to answer questions such as “how does 
it work?” or “what will happen if I take the fol-
lowing action?” “Analogy” suggests that the rep-
resentation explicitly shares the structure of the 
world it represents (e.g., a set of connected visual 
images of a partial road map from your home to 
your work destination). This is in contrast to an 
abstraction-based form such as propositions or 
schemas in which the mental structure consists of 
either the gist, an abstraction, or summary repre-
sentation. However, like other forms of mental 
representation, mental models are always incom-
plete, imperfect and subject to the processing 
limitations of the cognitive system. Mental mod-
els can be derived from perception, language or 
from one’s imagination (Payne  2003 ).  Running  
of a model corresponds to a process of mental 
simulation to generate possible future states of a 
system from observed or hypothetical state. For 
example, when one initiates a Google Search, 
one may reasonably anticipate that system will 
return a list of relevant (and less than relevant) 
websites that correspond to the query. Mental 
models are a particularly useful construct in 
understanding human-computer interaction. 

 An individual’s mental models provide pre-
dictive and explanatory capabilities of the func-
tion of a physical system. More often the 
construct has been used to characterize models 
that have a spatial and temporal context, as is the 
case in reasoning about the behavior of electrical 
circuits (White and Frederiksen  1990 ). The 
model can be used to simulate a process (e.g., 
predict the effects of network interruptions on 
getting cash from an ATM machine). Kaufman, 
Patel and Magder ( 1996 ) characterized clini-
cians’ mental models of the cardiovascular sys-
tem (specifi cally, cardiac output). The study 
characterized the development of understanding 
of the system as a function of expertise. The 
research also documented various conceptual 
fl aws in subjects’ models and how these fl aws 
impacted subjects’ predictions and explanations 
of physiological manifestations. Figure  4.3  illus-
trates the four chambers of the heart and blood 
fl ow in the pulmonary and cardiovascular sys-
tems. The claim is that clinicians and medical 
students have variably robust representations of 
the structure and function of the system. This 
model enables prediction and explanation of the 
effects of perturbations in the system on blood 
fl ow and on various clinical measures such as left 
ventricular ejection fraction.

    Conceptual  and  procedural  knowledge pro-
vide another useful way of distinguishing the 
functions of different forms of representation. 
 Conceptual knowledge  refers to one’s under-
standing of domain-specifi c concepts.  Procedural 
knowledge  is a kind of knowing related to how 
to perform various activities. There are numerous 
technical skills in medical contexts that neces-
sitate the acquisition of procedural knowledge. 
Conceptual knowledge and procedural knowl-
edge are acquired through different learning 
mechanisms. Conceptual knowledge is acquired 
through mindful engagement with materials in 
a range of contexts (from reading texts to con-
versing with colleagues). Procedural knowl-
edge is developed as a function of deliberate 
practice that results in a learning process known 
as  knowledge compilation  (Anderson  1983 ). 
However, the development of skills may involve 
a transition from a declarative or interpretive stage 
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toward increasingly proceduralized stages. For 
example, in learning to use an electronic health 
record (EHR) system designed to be used as part of 
a consultation, a less experienced user will need to 
attend carefully to every action and input, whereas, 
a more experienced user of this system can more 
effortlessly interview a patient and simultaneously 
record patient data (Kushniruk et al.  1996 ; Patel 
et al.  2000b ). Procedural knowledge supports 
more effi cient and automated action, but is often 
used without conscious awareness. 

 Procedural knowledge is often modeled in 
cognitive science and in artifi cial intelligence as 
a production  rule,  which is a condition-action 
rule that states “if the conditions are satisfi ed, 

then execute the specifi ed action” (either an 
inference or overt behavior). Production rules 
are a common method for representing knowl-
edge in medical expert systems such as MYCIN 
(Davis et al.  1977 ). 

 In addition to differentiating between proce-
dural and conceptual knowledge, one can differ-
entiate  factual knowledge  from conceptual 
knowledge. Factual knowledge involves merely 
knowing a fact or set of facts (e.g., risk factors for 
heart disease) without any in-depth understand-
ing. Facts are routinely disseminated through a 
range of sources such as pamphlets and websites. 
The acquisition of factual knowledge alone is not 
likely to lead to any increase in understanding or 
behavioral change (Bransford et al. ( 1999 ). The 
acquisition of conceptual knowledge involves the 
integration of new information with prior 
 knowledge and necessitates a deeper level of 
understanding. For example, risk factors may be 
associated in the physician’s mind with biochem-
ical mechanisms and typical patient manifesta-
tions. This is contrast to a new medical student 
who may have largely factual knowledge. 

 Thus far, we have only considered domain- 
general ways of characterizing the organization 
of knowledge. In view to understand the nature 
of medical cognition, it is necessary to charac-
terize the domain-specifi c nature of knowledge 
organization in medicine. Given the vastness 
and complexity of the domain of medicine, this 
can be a rather daunting task. Clearly, there is 
no single way to represent all biomedical (or 
even clinical) knowledge, but it is an issue of 
considerable importance for research in bio-
medical informatics. Much research has been 
conducted in biomedical artifi cial intelligence 
with the aim of developing biomedical ontolo-
gies for use in knowledge-based systems. Patel 
et al. ( 1997 ) address this issue in the context of 
using empirical evidence from psychological 
experiments on medical expertise to test the 
validity of the AI systems.  Biomedical taxono-
mies ,  nomenclatures  and  vocabulary  systems 
such as UMLS or SNOMED (see Chap.   7    ) are 
engaged in a similar pursuit. 

 We have employed an epistemological frame-
work developed by Evans and Gadd ( 1989 ). They 

  Fig. 4.3    Schematic model of circulatory and cardiovascu-
lar physiology. The diagram illustrates various structures 
of the pulmonary and systemic circulation system and the 
process of blood fl ow. The illustration is used to exemplify 
the concept of mental model and how it could be applied to 
explaining and predicting physiologic behavior       
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proposed a framework that serves to characterize 
the knowledge used for medical understanding 
and problem solving, and also for differentiating 
the levels at which biomedical knowledge may be 
organized. This framework represents a formal-
ization of biomedical knowledge as realized in 
textbooks and journals, and can be used to pro-
vide us with insight into the organization of clini-
cal practitioners’ knowledge (see Fig.  4.4 ).

   The framework consists of a hierarchical 
structure of concepts formed by  clinical observa-
tions  at the lowest level, followed by  fi ndings , 
 facets , and  diagnoses . Clinical observations are 
units of information that are recognized as poten-
tially relevant in the problem-solving context. 
However, they do not constitute clinically useful 
facts. Findings are composed of observations that 
have potential clinical signifi cance. Establishing 
a fi nding refl ects a decision made by a physician 
that an array of data contains a signifi cant cue or 
cues that need to be taken into account. Facets 
consist of clusters of fi ndings that indicate an 
underlying medical problem or class of prob-
lems. They refl ect general pathological descrip-
tions such as left-ventricular failure or thyroid 
condition. Facets resemble the kinds of constructs 
used by researchers in medical artifi cial intelli-
gence to describe the partitioning of a problem 
space. They are interim hypotheses that serve to 
divide the information in the problem into sets of 
manageable sub-problems and to suggest possi-
ble solutions. Facets also vary in terms of their 
levels of abstraction. Diagnosis is the level of 
classifi cation that subsumes and explains all lev-

els beneath it. Finally, the systems level consists 
of information that serves to contextualize a par-
ticular problem, such as the ethnic background of 
a patient.   

4.4     Medical Cognition 

 The study of expertise is one of the principal par-
adigms in problem-solving research. Comparing 
experts to novices provides us with the opportu-
nity to explore the aspects of performance that 
undergo change and result in increased problem- 
solving skill (Lesgold  1984 ; Glaser  2000 ). It also 
permits investigators to develop domain-specifi c 
models of competence that can be used for 
assessment and training purposes. 

 A goal of this approach has been to character-
ize expert performance in terms of the knowledge 
and cognitive processes used in comprehension, 
problem solving, and decision making, using 
carefully developed laboratory tasks (Chi and 
Glaser  1981 ), (Lesgold et al.  1988 ). deGroot’s 
( 1965 ) pioneering research in chess represents 
one of the earliest characterizations of expert- 
novice differences. In one of his experiments, 
subjects were allowed to view a chess board for 
5–10 seconds and were then required to repro-
duce the position of the chess pieces from mem-
ory. The grandmaster chess players were able to 
reconstruct the mid-game positions with better 
than 90 % accuracy, while novice chess players 
could only reproduce approximately 20 % of the 
 correct positions. When the chess pieces were 

  Fig. 4.4    Epistemological 
frameworks representing the 
structure of medical knowl-
edge for problem solving       
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placed on the board in a random confi guration, 
not encountered in the course of a normal chess 
match, expert chess masters’ recognition ability 
fell to that of novices. This result suggests that 
superior recognition ability is not a function of 
superior memory, but is a result of an enhanced 
ability to recognize typical situations (Chase and 
Simon  1973 ). This phenomenon is accounted for 
by a process known as “chunking.” It is the most 
general representational construct that makes the 
fewest assumptions about cognitive processing. 

 It is well known that knowledge-based differ-
ences impact the problem representation and 
determine the strategies a subject uses to solve a 
problem. Simon and Simon ( 1978 ) compared a 
novice subject with an expert subject in solving 
textbook physics problems. The results indicated 
that the expert solved the problems in one quarter 
of the time required by the novice with fewer 
errors. The novice solved most of the problems 
by working  backward  from the unknown prob-
lem solution to the givens of the problem state-
ment. The expert worked  forward  from the givens 
to solve the necessary equations and determine 
the particular quantities they are asked to solve 
for. Differences in the directionality of reasoning 
by levels of expertise has been demonstrated in 
diverse domains from computer programming 
(Perkins et al.  1990 ) to medical diagnoses (Patel 
and Groen  1986 ). 

 The expertise paradigm spans the range of 
content domains including physics (Larkin et al. 
 1980 ), sports (Allard and Starkes  1991 ), music 
(Sloboda  1991 ), and medicine (Patel et al.  1994 ). 
Edited volumes (Ericsson  2006 ; Chi et al.  1988   
Ericsson and Smith  1991 ; Hoffman  1992 ) provide 
an informative general overview of the area. This 
research has focused on differences between sub-
jects varying in levels of expertise in terms of 
memory, reasoning strategies, and in particular 
the role of domain specifi c knowledge. Among 
the expert’s characteristics uncovered by this 
research are the following: (1) experts are capable 
of perceiving large patterns of meaningful infor-
mation in their domain, which novices cannot 
perceive; (2) they are fast at processing and at 
deployment of different skills required for 
 problem solving; (3) they have superior  short-term 

and long-term memories for materials (e.g., clini-
cal fi ndings in medicine) within their domain of 
expertise, but not outside of it; (4) they typically 
represent problems in their domain at deeper, 
more principled levels whereas novices show a 
superfi cial level of representation; (5) they spend 
more time assessing the problem prior to solving 
it, while novices tend to spend more time working 
on the solution itself and little time in problem 
assessment; (6) individual experts may differ sub-
stantially in terms of exhibiting these kinds of per-
formance characteristics (e.g., superior memory 
for domain materials). 

 Usually, someone is designated as an expert 
based on a certain level of performance, as exem-
plifi ed by Elo ratings in chess; by virtue of being 
certifi ed by a professional licensing body, as in 
medicine, law, or engineering; on the basis of 
academic criteria, such as graduate degrees; or 
simply based on years of experience or peer eval-
uation (Hoffman et al.  1995 ). The concept of an 
expert, however, refers to an individual who sur-
passes competency in a domain (Sternberg and 
Horvath  1999 ). Although competent performers, 
for instance, may be able to encode relevant 
information and generate effective plans of action 
in a specifi c domain, they often lack the speed 
and the fl exibility that we see in an expert. 
A domain expert (e.g., a medical practitioner) 
possesses an extensive, accessible knowledge 
base that is organized for use in practice and is 
tuned to the particular problems at hand. In the 
study of medical expertise, it has been useful to 
distinguish different types of expertise. 

 Patel and Groen ( 1991a ,  b ) distinguished 
between general and specifi c expertise, a distinc-
tion supported by research indicating differences 
between subexperts (i.e., experts physicians who 
solve a case outside their fi eld of specialization) 
and experts (i.e., domain specialist) in terms of 
reasoning strategies and organization of knowl-
edge. General expertise corresponds to expertise 
that cuts across medical subdisciplines (e.g., 
general medicine). Specifi c expertise results 
from detailed experience within a medical sub-
domain, such as cardiology or endocrinology. An 
individual may possess both, or only generic 
expertise. 
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 The development of expertise can follow a 
somewhat unusual trajectory. It is often assumed 
that the path from novice to expert goes through 
a steady process of gradual accumulation of 
knowledge and fi ne-tuning of skills. That is, as a 
person becomes more familiar with a domain, his 
or her level of performance (e.g., accuracy, qual-
ity) gradually increases. However, research has 
shown that this assumption is often incorrect 
(Lesgold et al.  1988 ; Patel et al.  1994 ). Cross- 
sectional studies of experts, intermediates, and 
novices have shown that people at intermediate 
levels of expertise may perform more poorly than 
those at lower level of expertise on some tasks. 
Furthermore, there is a longstanding body of 
research on learning that has suggested that the 
learning process involves phases of error-fi lled 
performance followed by periods of stable, rela-
tively error-free performance. In other words, 
human learning does not consist of the gradually 
increasing accumulation of knowledge and fi ne- 
tuning of skills. Rather, it requires the arduous 
process of continually learning, re-learning, and 
exercising new knowledge, punctuated by peri-
ods of apparent decrease in mastery and declines 
in performance, which may be necessary for 
learning to take place. Figure  4.5  presents an 
illustration of this learning and developmental 
phenomenon known as the  intermediate effect .

   The intermediate effect has been found in a 
variety of tasks and with a great number of 
 performance indicators. The tasks used include 
comprehension and explanation of clinical prob-
lems, doctor-patient communication, recall and 
explanation of laboratory data, generation of 
diagnostic hypotheses, and problem solving 
(Patel and Groen  1991a ,  b ). The performance 
indicators used have included recall and infer-
ence of medical- text information, recall and 
inference of diagnostic hypotheses, generation of 
clinical fi ndings from a patient in doctor-patient 
interaction, and requests for laboratory data, 
among others. The research has also identifi ed 
developmental levels at which the intermediate 
phenomenon occurs, including senior medical 
students and residents. It is important to note, 
however, that in some tasks, the development is 
 monotonic . For instance, in diagnostic accuracy, 
there is a gradual increase, with an intermediate 
exhibiting higher degree of accuracy than the 
novice and the expert demonstrating a still higher 
degree than the intermediate. Furthermore, when 
relevancy of the stimuli to a problem is taken into 
account, an appreciable monotonic phenomenon 
appears. For instance, in recall studies, novices, 
intermediates, and experts are assessed in terms 
of the total number of propositions recalled 
showing the typical non-monotonic effect. 
However, when propositions are divided in terms 
of their relevance to the problem (e.g., a clinical 
case), experts recall more relevant propositions 
than intermediates and novices, suggesting that 
intermediates have diffi culty separating what is 
relevant from what is not. 

 During the periods when the intermediate 
effect occurs, a reorganization of knowledge and 
skills takes place, characterized by shifts in per-
spectives or a realignment or creation of goals. 
The intermediate effect is also partly due to the 
unintended changes that take place as the person 
reorganizes for intended changes. People at 
intermediate levels typically generate a great 
deal of irrelevant information and seem incapa-
ble of discriminating what is relevant from what 
is not. As compared to a novice student (Fig.  4.6 ), 
the reasoning pattern of an intermediate student 
shows the generation of long chains of  discussion 

  Fig. 4.5    Schematic representation of intermediate effect. 
The straight line gives a commonly assumed representa-
tion of performance development by level of expertise. 
The curved line represents the actual development from 
novice to expert. The Y-axis may represent any of a num-
ber of performance variables such as the number of errors 
made, number of concepts recalled, number of conceptual 
elaborations, or number of hypotheses generated in a vari-
ety of tasks       
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  Fig. 4.6    Problem interpretations by a novice medical stu-
dent. The given information from patient problem is rep-
resented on the  right side of the fi gure  and the new 
generated information is given on the  left side , informa-
tion in the box represents diagnostic hypothesis. 
Intermediate hypothesis are represented as  solid dark 

 circles  ( fi lled ). Forward driven or data driven inference 
 arrows  are shown from left to right ( solid dark line ). 
Backward or hypothesis driven inference  arrows  are 
shown from right to left ( solid light line ).  Thick solid dark 
line  represents rule out strategy       

evaluating multiple hypotheses and reasoning in 
haphazard direction (Fig.  4.7 ). A well-structured 
knowledge structure of a senior level student 
leads him more directly to a solution (Fig.  4.8 ). 
Thus, the intermediate effect can be explained as 
a function of the learning process, maybe as a 
necessary phase of learning. Identifying the fac-
tors involved in the intermediate effect may help 
in improving performance during learning 
(e.g., by designing decision-support systems or 

intelligent tutoring systems that help the user in 
focusing on relevant information).

     There are situations, however, in which the 
intermediate effect disappears. Schmidt reported 
that the intermediate recall phenomenon disap-
pears when short text-reading times are used. 
Novices, intermediates, and experts given only 
a short time to read a clinical case (about thirty 
 seconds) recalled the case with increasing accu-
racy. This suggests that under time-restricted 

  Fig. 4.7    Problem interpreta-
tions by an intermediate 
medical student       
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conditions, intermediates cannot engage in extra-
neous search. In other words, intermediates that 
are not under time pressure process too much 
irrelevant information whereas experts do not. 
On the other hand, novices lack the knowledge to 
do much searching. Although intermediates may 
have most of the pieces of knowledge in place, 
this knowledge is not suffi ciently well orga-
nized to be effi ciently used. Until this knowledge 
becomes further organized, the intermediate is 
more likely to engage in unnecessary search. 

 The intermediate effect is not a one-time 
 phenomenon. Rather, it occurs repeatedly at stra-
tegic points in a student or physician’s training 
and follow periods in which large bodies of new 
knowledge or complex skills are acquired. These 
periods are followed by intervals in which there 
is a decrement in performance until a new level 
of mastery is achieved. 

4.4.1     Expertise in Medicine 

 The systematic investigation of medical expertise 
began more than 50 years ago with research by 
Ledley and Lusted ( 1959 ) into the nature of clini-
cal inquiry. They proposed a two-stage model of 
clinical reasoning involving a hypothesis gen-
eration stage followed by a hypothesis evalua-
tion stage. This latter stage is most amenable to 

formal decision analytic techniques. The earli-
est empirical studies of medical expertise can 
be traced to the works of Rimoldi ( 1961 ) and 
Kleinmuntz ( 1968 ) who conducted experimen-
tal studies of diagnostic reasoning by contrast-
ing students with medical experts in simulated 
problem- solving tasks. The results emphasized 
the greater ability of expert physicians to selec-
tively attend to relevant information and narrow 
the set of diagnostic possibilities (i.e., consider 
fewer hypotheses). 

 The origin of contemporary research on medi-
cal thinking is associated with the seminal work 
of Elstein, Shulman, and Sprafka ( 1978 ) who 
studied the problem solving processes of 
 physicians by drawing on then contemporary 
methods and theories of cognition. This model of 
problem solving has had a substantial infl uence 
both on studies of medical cognition and medical 
education. They were the fi rst to use experimen-
tal methods and theories of cognitive science to 
investigate clinical competency. 

 Their research fi ndings led to the development 
of an elaborated model of  hypothetico- deductive 
reasoning , which proposed that physicians rea-
soned by fi rst generating and then testing a set of 
hypotheses to account for clinical data (i.e., rea-
soning from hypothesis to data). First, physicians 
generated a small set of hypotheses very early in 
the case, as soon as the fi rst pieces of data became 

  Fig. 4.8    Problem interpreta-
tions by a senior medical 
student       
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available. Second, physicians were selective in 
the data they collected, focusing only on the rel-
evant data. Third, physicians made use of a 
hypothetico- deductive method of diagnostic rea-
soning. The hypothetico-deductive process was 
viewed as consisting of four stages: cue acquisi-
tion, hypothesis generation, cue interpretation, 
and hypothesis evaluation. Attention to initial 
cues led to the rapid generation of a few select 
hypotheses. According to the authors, each cue 
was interpreted as positive, negative or non- 
contributory to each hypothesis generated. They 
were unable to fi nd differences their diagnostic 
reasoning strategies between superior physicians 
(as judged by their peers) and other physicians 
(Elstein et al.  1978 ). 

 The previous research was largely modeled after 
early problem-solving studies in  knowledge- lean 
tasks. Medicine is clearly a knowledge-rich 
domain and a different approach was needed. 
Feltovich, Johnson, Moller, and Swanson ( 1984 ), 
drawing on models of knowledge representation 
from medical artifi cial intelligence, characterized 
fi ne-grained differences in knowledge organization 
between subjects of different levels of expertise in 
the domain of pediatric cardiology. For example, 
novice’s knowledge was described as “classically-
centered”, built around the prototypical instances 
of a disease category. The disease models were 
described as sparse and lacking cross-referencing 
between shared features of disease categories in 
memory. In contrast, experts’ memory store of dis-
ease models was found to be extensively cross-ref-
erenced with a rich network of connections among 
diseases that can present with similar symptoms. 
These differences accounted for subjects’ infer-
ences about  diagnostic cues and evaluation of 
competing hypotheses. 

 Patel and colleagues studied the knowledge- 
based solution strategies of expert cardiologists 
as evidenced by their pathophysiological expla-
nations of a complex clinical problem (Patel 
and Groen  1986 ). The results indicated that 
subjects who accurately diagnosed the prob-
lem, employed a forward-oriented (data-driven) 
reasoning strategy—using patient data to lead 
toward a complete diagnosis (i.e., reasoning from 
data to hypothesis). 

 This is in contrast to subjects who misdiag-
nosed or partially diagnosed the patient problem. 
They tended to use a backward or hypothesis- 
driven reasoning strategy. The results of this 
study presented a challenge to the hypothetico- 
deductive model of reasoning as espoused by 
Elstein, Shulman, and Sprafka ( 1978 ), which did 
not differentiate expert from non-expert reason-
ing strategies. 

 Patel and Groen ( 1991a ,  b ) investigated the 
nature and directionality of clinical reasoning in 
a range of contexts of varying complexity. The 
objectives of this research program were both to 
advance our understanding of medical expertise 
and to devise more effective ways of teaching 
clinical problem solving. It has been established 
that the patterns of data-driven and hypothesis-
driven reasoning are used differentially by nov-
ices and experts. Experts tend to use data-driven 
 reasoning, which depends on the physician pos-
sessing a highly organized knowledge base about 
the patient’s disease (including sets of signs and 
symptoms). Because of their lack of substantive 
knowledge or their inability to distinguish rele-
vant from irrelevant knowledge, novices and 
intermediates use more hypothesis-driven rea-
soning resulting often in very complex reasoning 
patterns. The fact that experts and novices reason 
differently suggests that they might reach differ-
ent conclusions (e.g., decisions or understand-
ings) when solving medical problems. Similar 
patterns of reasoning have been found in other 
domains (Larkin et al.  1980 ). Due to their exten-
sive knowledge base and the high level inferences 
they make, experts typically skip steps in their 
reasoning. 

 Although experts typically use data-driven 
reasoning during clinical performance, this type 
of reasoning sometimes breaks down and the 
expert has to resort to hypothesis-driven reason-
ing. Although data-driven reasoning is highly 
effi cient, it is often error prone in the absence of 
adequate domain knowledge, since there are no 
built-in checks on the legitimacy of the infer-
ences that a person makes. Pure data-driven rea-
soning is only successful in constrained 
situations, where one’s knowledge of a problem 
can result in a complete chain of inferences from 
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the initial problem statement to the problem solu-
tion, as illustrated in Fig.  4.9 . In contrast, 
hypothesis- driven reasoning is slower and may 
make heavy demands on working memory, 
because one has to keep track of such things as 
goals and hypotheses. It is, therefore, most likely 
to be used when domain knowledge is inadequate 
or the problem is complex. Hypothesis-driven 
reasoning is usually exemplary of a  weak method  
of problem solving in the sense that is used in the 
absence of relevant prior knowledge and when 
there is uncertainty about problem solution. In 
problem-solving terms, strong methods engage 
knowledge whereas weak methods refer to gen-
eral strategies. Weak does not necessarily imply 
ineffectual in this context.

   Studies have shown that the pattern of data- 
driven reasoning breaks down in conditions of 
case complexity, unfamiliarity with the prob-
lem, and uncertainty (Patel et al.  1990 ). These 
conditions include the presence of “loose ends” 
in explanations, where some particular piece of 
information remains unaccounted for and isolated 
from the overall explanation. Loose ends trigger 
explanatory processes that work by hypothesizing 
a disease, for instance, and trying to fi t the loose 
ends within it, in a hypothesis- driven reasoning 
fashion. The presence of loose ends may foster 
learning, as the person searches for an explana-
tion for them. For instance, a  medical student or 

a physician may encounter a sign or a symptom 
in a patient problem and look for information that 
may account for the fi nding by searching for sim-
ilar cases seen in the past,  reading a specialized 
medical book, or consulting a domain expert. 

 However, in some circumstances, the use of 
data-driven reasoning may lead to a heavy cogni-
tive load. For instance, when students are given 
problems to solve while training in the use of 
problem solving strategies, the situation produces 
a heavy load on cognitive resources and may 
diminish students’ ability to focus on the task. 
The reason is that students have to share cogni-
tive resources (e.g., attention, memory) between 
learning to solve the problem-solving method 
and learning the content of the material. It has 
been found that when subjects used a strategy 
based on the use of data-driven reasoning, they 
were more able to acquire a schema for the prob-
lem. In addition, other characteristics associated 
with expert performance were observed, such as 
a reduced number of moves to the solution. 
However, when subjects used a hypothesis- driven 
reasoning strategy, their problem solving perfor-
mance suffered (Patel et al.  1990 ). 

 Visual diagnosis has also been an active area of 
inquiry in medical cognition. Studies have inves-
tigated clinicians at varying levels of expertise in 
their ability to diagnose skin lesions presented on 
a slide. The results revealed a monotonic increase 

  Fig. 4.9    Diagrammatic representation of data-driven 
( top down ) and hypothesis-driven ( bottom - up ) reasoning. 
From the presence of vitiligo, a prior history of progres-
sive thyroid disease, and examination of the thyroid (clini-
cal fi ndings on the  left side of fi gure ), the physician 
reasons forward to conclude the diagnosis of Myxedema 

( right of fi gure ). However, the anomalous fi nding of respi-
ratory failure, which is inconsistent with the main diagno-
sis, is accounted for as a result of a hypometabolic state of 
the patient, in a backward-directed fashion.  COND  refers 
to a conditional relation,  CAU  indicates a causal relation, 
and  RSLT  identifi es a resultive relation       
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in accuracy as a function of expertise. In a classi-
fi cation task, novices categorized lesions by their 
surface features (e.g., “scaly lesions”), interme-
diates grouped the slides according to diagnosis 
and expert dermatologists organized the slides 
according to superordinate categories, such as 
viral infections, that refl ected the underlying 
pathophysiological structure. 

 The ability to abstract the underlying princi-
ples of a problem is considered to be one of the 
hallmarks of expertise, both in medical problem 
solving and in other domains (Chi and Glaser 
 1981 ). Lesgold et al. ( 1988 ) investigated the 
abilities of radiologists at different levels of 
expertise, in the interpretation of chest x-ray pic-
tures. The results revealed that the experts were 
able to rapidly invoke the appropriate schema 
and initially detect a general pattern of disease, 
which resulted in a gross anatomical localization 
and served to constrain the possible interpreta-
tions. Novices experienced greater diffi culty 
focusing in on the important structures and were 
more likely to maintain inappropriate interpreta-
tions despite discrepant fi ndings in the patient 
history. 

 Crowley, Naus, Stewart, and Friedman ( 2003 ) 
employed a similar protocol-analytic approach to 
the Lesgold study to examine differences in 
expertise in breast pathology. The results sug-
gests systematic differences between subjects at 
varying levels of expertise corresponding to 
accuracy of diagnosis, and all aspects of task per-
formance including microscopic search, feature 
detection, feature identifi cation and data interpre-
tation. The authors propose a model of visual 
diagnostic competence that involves develop-
ment of effective search strategies, fast and accu-
rate recognition of anatomic location, acquisition 
of visual data interpretation skills and explicit 
feature identifi cation strategies that results from a 
well-organized knowledge base. 

 The study of medical cognition has been sum-
marized in a series of articles (Patel et al.  1994 ) 
and edited volumes (e.g., Evans and Patel  1989 ). 
Other active areas of research include medical 
text comprehension, therapeutic reasoning and 
mental models of physiological systems. Medical 
cognition remains an active area of research and 
continues to inform debates regarding medical 

curricula and approaches to learning (Patel et al. 
 2005 ; Schmidt and Rikers  2007 ).   

4.5     Human Computer 
Interaction 

  Human computer interaction  (HCI) is a mul-
tifaceted discipline devoted to the  study and 
practice of  design and usability (Carroll  2003 ). 
The history of computing and more generally, 
the history of artifacts design, are rife with 
stories of dazzlingly powerful devices with 
remarkable capabilities that are thoroughly 
unusable by anyone except for the team of 
designers and their immediate families. In 
the Psychology of Everyday Things, Norman 
( 1988 ) describes a litany of poorly designed 
artifacts ranging from programmable VCRs 
to answering machines and water faucets that 
are inherently non-intuitive and very diffi cult 
to use. Similarly, there have been numerous 
innovative and promising medical information 
technologies that have yielded decidedly sub-
optimal results and deep user  dissatisfaction 
when implemented in practice. At minimum, 
diffi cult interfaces result in steep learning 
curves and structural ineffi ciencies in task per-
formance. At worst, problematic interfaces can 
have serious consequences for patient safety 
(Lin et al.  1998 ; Zhang et al.  2004 ; Koppel 
et al.  2005 ) (see Chap.   11    ). 

 Twenty years ago, Nielsen ( 1993 ) reported 
that around 50 % of software code was devoted 
to the user interface and a survey of develop-
ers indicated that, on average, 6 % of their 
project budgets were spent on usability evalua-
tion. Given the ubiquitous presence of graphi-
cal user interfaces (GUI), it is likely that more 
than 50 % of code is now devoted to the GUI. 
On the other hand, usability evaluations have 
greatly increased over the course of the last 10 
years (Jaspers  2009 ). There have been numerous 
texts devoted to promoting effective user inter-
face design (Preece et al.  2007 ; Shneiderman 
 1998 ) and the importance of enhancing the user 
experience has been widely acknowledged by 
both consumers and producers of information 
technology (see Chap.   11    ). Part of the impetus is 
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that usability has been demonstrated to be highly 
cost effective. Karat ( 1994 ) reported that for 
every dollar a company invests in the usability 
of a product, it receives between $10 and $100 
in benefi ts. Although much has changed in the 
world of computing since Karat’s estimate (e.g., 
the fl ourishing of the World Wide Web), it is 
very clear that investments in usability still yield 
substantial rates of return (Nielsen et al.  2008 ). 
It remains far more costly to fi x a problem after 
product release than in an early design phase. In 
our view, usability evaluation of medical infor-
mation technologies has grown substantially in 
prominence. The concept of usability as well as 
the methods and tools to measure and promote it 
are now “touchstones in the culture of comput-
ing” (Carroll  2003 ). 

 Usability methods have been used to evaluate 
a wide range of medical information technolo-
gies including infusion pumps (Dansky et al. 
 2001 ), ventilator management systems, physician 
order entry (Ash et al.  2003a ; Koppel et al.  2005 ), 
pulmonary graph displays (Wachter et al.  2003 ), 
information retrieval systems, and research web 
environments for clinicians (Elkin et al.  2002 ). In 
addition, usability techniques are increasingly 
used to assess patient-centered environments 
(Cimino et al.  2000 ; Kaufman et al.  2003 ; Chan 
and Kaufman  2011 ). The methods include obser-
vations, focus groups, surveys and experiments. 
Collectively, these studies make a compelling 
case for the instrumental value of such research 
to improve effi ciency, user acceptance and rela-
tively seamless integration with current workfl ow 
and practices. 

 What do we mean by usability? Nielsen 
( 1993 ) suggests that usability includes the fol-
lowing fi ve attributes: (1)  learnability : system 
should be relatively easy to learn, (2)  effi ciency : 
an experienced user can attain a high level of pro-
ductivity, (3)  memorability : features supported 
by the system should be easy to retain once 
learned, (4)  errors : system should be designed to 
minimize errors and support error detection and 
recovery, and (5)  satisfaction : the user experience 
should be subjectively satisfying. 

 Even with growth of usability research, there 
remain formidable challenges to designing and 
developing usable systems. This is exemplifi ed 

by the events at Cedar Sinai Medical Center in 
which a decision was made to suspend use of a 
computer-based physician order entry system just 
a few months after implementation. Physicians 
complained that the system, which was designed 
to reduce medical errors, compromised patient 
safety, took too much time and was diffi cult to 
use (Benko  2003 ). To provide another example, 
we have been working with a mental health 
computer-based patient record system that is 
rather comprehensive and supports a wide range 
of functions and user populations (e.g., physi-
cians, nurses, and administrative staff). However, 
clinicians fi nd it exceptionally diffi cult and 
time-consuming to use. The interface is based 
on a form (or template) metaphor and is neither 
user- nor task-centered. The interface emphasizes 
completeness of data entry for administrative 
purposes rather than the facilitation of clinical 
communication and is not optimally designed 
to support patient care (e.g., effi cient informa-
tion retrieval and useful summary reports). In 
general, the capabilities of this system are not 
readily usefully deployed to improve human 
 performance. We further discuss issues of EHRs 
in a  subsequent section. 

 Innovations in technology guarantee that 
usability and interface design will be a perpetu-
ally moving target. In addition, as health infor-
mation technology reaches out to populations 
across the digital divide (e.g., seniors and low 
literacy patient populations), there is a need to 
consider new interface requirements. Although 
evaluation methodologies and guidelines for 
design yield signifi cant contributions, there is a 
need for a scientifi c framework to understand the 
nature of user interactions.  Human computer 
interaction  (HCI) is a multifaceted discipline 
devoted to the study and practice of usability. 
HCI has emerged as a central area of both com-
puter science, development and applied social 
science research (Carroll  2003 ). 

 HCI has spawned a professional orientation 
that focuses on practical matters concerning the 
integration and evaluation of applications of 
technology to support human activities. There are 
also active academic HCI communities that have 
contributed signifi cant advances to the science of 
computing. HCI researchers have been devoted 
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to the development of innovative design concepts 
such as  virtual reality ,  ubiquitous computing , 
 multimodal interfaces ,  collaborative work-
spaces , and  immersive environments . HCI 
research has been instrumental in transforming 
the software engineering process towards a more 
user-centered iterative system development (e.g., 
rapid prototyping). HCI research has also been 
focally concerned with the cognitive, social, and 
cultural dimensions of the computing experience. 
In this regard, it is concerned with developing 
analytic frameworks for characterizing how tech-
nologies can be used more productively across a 
range of tasks, settings, and user populations. 

 Carroll ( 1997 ) traces the history of HCI back 
to the 1970s with the advent of  software psy-
chology , a behavioral approach to understanding 
and furthering software design. Human factors, 
ergonomics, and industrial engineering research 
were pursuing some of the same goals along 
parallel tracks. In the early 1980s, Card et al. 
( 1983 ) envisioned HCI as a test bed for apply-
ing cognitive science research and also furthering 
theoretical development in cognitive science. The 
Goals, Operators, Methods, and Selection Rules 
(GOMS) approach to modeling was a direct out-
growth of this initiative. GOMS is a powerful 
predictive tool, but it is limited in scope to the 
analysis of routine skills and expert performance. 
Most medical information technologies such as 
provider-order entry systems, engage complex 
cognitive skills. 

 HCI research has embraced a diversity of 
approaches with an abundance of new theoreti-
cal frameworks, design concepts, and analyti-
cal foci (Rogers  2004 ). Although we view this 
as an exciting development, it has also con-
tributed to a certain scientifi c fragmentation 
(Carroll  2003 ). Our own research is grounded 
in a cognitive engineering framework, which 
is an  interdisciplinary approach to the develop-
ment of principles, methods and tools to assess 
and guide the design of computerized systems to 
support human  performance (Roth et al.  2002 ). 
In  supporting performance, the focus is on cog-
nitive functions such as attention, perception, 
memory, comprehension, problem solving, and 
decision making. The approach is centrally con-
cerned with the analysis of cognitive tasks and 

the processing constraints imposed by the human 
cognitive system. 

 Models of  cognitive engineering  are typi-
cally predicated on a cyclical pattern of interac-
tion with a system. This pattern is embodied in 
Norman’s ( 1986 ) seven stage model of action, 
illustrated in Fig.  4.10 . The action cycle begins 
with a  goal , for example, retrieving a patient’s 
medical record. The goal is abstract and indepen-
dent of any system. In this context, let’s presup-
pose that the clinician has access to both a paper 
record and an electronic record. The second stage 
involves the formation of an  intention , which in 
this case might be to retrieve the record online. 
The intention leads to the  specifi cation of an 
action  sequence, which may include logging onto 
the system (which in itself may necessitate 
 several actions), engaging a search facility to 
retrieve information, and entering the patient’s 
medical record number or some other identifying 
information. The specifi cation results in  execut-
ing an action , which may necessitate several 
behaviors. The system responds in some fashion 
(or doesn’t respond at all). The user may or may 
not perceive a change in system state (e.g., sys-
tem provides no indicators of a wait state). The 

  Fig. 4.10    Norman’s seven stage model of action       

 

V.L. Patel and D.R. Kaufman



131

perceived system response must then be  inter-
preted  and  evaluated  to determine whether the 
goal has been achieved. This will then determine 
whether the user has been successful or whether 
an alternative course of action is necessary.

   A complex task will involve substantial nest-
ing of subgoals, involving a series of actions 
that are necessary before the primary goal can 
be achieved. To an experienced user, the action 
cycle may appear to be completely seamless. 
However to a novice user, the process may  break 
down at any of the seven stages. There are two 
primary means in which the action cycle can 
break down. The  gulf of execution  refl ects the 
difference between the goals and intentions of 
the user and the kinds of actions enabled by the 
system. A user may not know the appropriate 
action sequence or the interface may not provide 
the prerequisite features to make such sequences 
transparent. For example, many systems require a 
goal completion action, such as pressing “Enter”, 
after the primary selection had been made. This 
is a source of confusion, especially for novice 
users. The  gulf of evaluation  refl ects the degree 
to which the user can interpret the state of the 
system and determine how well their expecta-
tions have been met. For example, it is some-
times diffi cult to interpret a state transition and 
determine whether one has arrived at the right 
place. Goals that necessitate multiple state or 
screen transitions are more likely to present diffi -
culties for users, especially as they learn the sys-
tem. Bridging gulfs involves both bringing about 
changes to the system design and educating users 
to foster competencies that can be used to make 
better use of system resources. 

 Gulfs are partially attributable to differences 
in the designer’s model and the users’ mental 
models. The designer’s model is the conceptual 
model of intent of the system, partially based 
on an estimation of the user population and task 
requirements (Norman  1986 ). The users’ men-
tal models of system behavior are developed 
through interacting with similar systems and 
gaining an understanding of how actions (e.g., 
clicking on a link) will produce predictable and 
desired outcomes. Graphical user interfaces that 
involve direct manipulation of screen objects 
represent an attempt to reduce the  distance 

between a designer’s and users' model. The 
distance is more diffi cult to close in a system 
of greater complexity that incorporates a wide 
range of functions, like many medical informa-
tion technologies. 

 Norman’s theory of action has given rise to (or 
in some case reinforced) the need for sound 
design principles. For example, the state of a sys-
tem should be plainly  visible  to the user. There is 
a need to provide good mappings between the 
actions (e.g., clicking on a button) and the results 
of the actions as refl ected in the state of the sys-
tem (e.g., screen transitions). Similarly, a well- 
designed system will provide full and continuous 
feedback so that the user can understand whether 
one’s expectations have been met. 

 The model has also informed a range of cog-
nitive task-analytic usability evaluation methods 
such as the cognitive walkthrough (Polson et al. 
 1992 ), described below. The study of human per-
formance is predicated on an analysis of both the 
information-processing demands of a task and 
the kinds of domain-specifi c knowledge required 
performing it. This analysis is often referred to 
as  cognitive task analysis . The principles and 
methods that inform this approach can be applied 
to a wide range of tasks, from the analysis of 
written guidelines to the investigation of EHR 
systems. Generic tasks necessitate similar cog-
nitive demands and have a common underlying 
structure that involves similar kinds of reasoning 
and patterns of inference. For example, clinical 
tasks in medicine include diagnostic reasoning, 
therapeutic reasoning, and patient monitoring 
and management. Similarly, an admission order- 
entry task can be completed using written orders 
or one of many diverse computer-based order- 
entry systems. The underlying task of communi-
cating orders in view to admit a patient remains 
the same. However, the particular implementa-
tion will greatly impact the performance of the 
task. For example, a system may eliminate the 
need for redundant entries and greatly facilitate 
the process. On the other hand, it may introduce 
unnecessary complexity leading to suboptimal 
performance. 

 These are a class of usability evaluation meth-
ods performed by expert analysts or reviewers 
and unlike usability testing, don’t typically 
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involve the use of subjects (Nielsen  1994 )). The 
 cognitive walkthrough  (CW) and the heuristic 
evaluation are the most commonly used inspec-
tion methods.  Heuristic evaluation  (HE) is a 
method by which an application is evaluated on 
the basis of a small set of well-tested design prin-
ciples such as visibility of system status, user 
control and freedom, consistency and standards, 
fl exibility and effi ciency of use (Nielsen  1993 ). 
We illustrate HE in the context of a human  factors 
study later in the chapter. The CW is a cognitive 
task analytic method that has been applied to the 
study of usability and learnability of several dis-
tinct medical information technologies 
(Kushniruk et al.  1996 ). The purpose of a CW is 
to characterize the cognitive processes of users 
performing a task. The method involves identify-
ing sequences of actions and goals needed to 
accomplish a given task. The specifi c aims of the 
procedure are to determine whether the typical 
user’s background knowledge and the cues gen-
erated by the interface are likely to be suffi cient 
to produce the correct goal-action sequence 
required to perform a task. The method is 
intended to identify potential usability problems 
that may impede the successful completion of a 
task or introduce complexity in a way that may 
frustrate real users. The method is performed by 
an analyst or group of analysts ‘walking through’ 
the sequence of actions necessary to achieve a 
goal. Both behavioral or physical actions such as 
mouse clicks and cognitive actions (e.g., infer-
ence needed to carry out a physical action) are 
coded. The principal assumption underlying this 
method is that a given task has a specifi able goal- 
action structure (i.e., the ways in which a user’s 
objectives can be translated into specifi c actions). 
As in Norman’s model, each action results in a 
system response (or absence of one), which is 
duly noted. 

 The CW method assumes a cyclical pattern of 
interaction as described previously. The codes for 
analysis include  goals,  which can be decomposed 
into a series of  subgoals  and  actions.  For exam-
ple, opening an Excel spreadsheet (goal) may 
involve locating an icon or shortcut on one’s 
desktop (subgoal) and double clicking on the 
application (action). The system response (e.g., 

change in screen, update of values) is also char-
acterized and an attempt is made to discern 
potential problems. This is illustrated below in a 
partial walkthrough of an individual obtaining 
money from an automated teller system.
    Goal:  Obtain $80 Cash from Checking Account

    1.     Action:  Enter Card (Screen 1)
    System response:  Enter PIN > (Screen 2)      

   2.     Subgoal:  Interpret prompt and provide 
input   

   3.     Action:  Enter “Pin” on Numeric keypad   
   4.     Action:  Hit Enter (press lower white but-

ton next to screen)
    System response:  “Do you Want a Printed 

Transaction Record”.
   Binary Option: Yes or No (Screen 3)         

   5.     Subgoal:  Decide whether a printed record 
is necessary    

   6.     Action:  Press Button Next to No Response
    System response:  Select Transaction-8 Choices 

(Screen 4)      
   7.     Subgoal:  Choose Between Quick Cash 

and Cash Withdrawal   
   8.     Action:  Press Button Next to Cash 

Withdrawal
    System response:  Select Account (Screen 5)      

   9.     Action:  Press Button Next to Checking
    System response:  Enter Dollar Amounts in 

Multiples of 20 (Screen 6)      
   10.     Action:  Enter $80 on Numeric Key Pad   
   11.     Action:  Select Correct    
     The walkthrough of the ATM reveals that 

process of obtaining money from the ATM 
necessitated a minimum of eight actions, fi ve 
goals and subgoals, and six screen transitions. 
In general, it is desirable to minimize the num-
ber of actions necessary to complete a task. In 
addition, multiple screen transitions are more 
likely to confuse the user. We have employed a 
similar approach to analyze the complexity of a 
range of medical information technologies 
including EHRs, a home telecare system, and 
infusion pumps used in intensive care settings. 
The CW process emphasizes the sequential pro-
cess, not unlike problem solving, involved in 
completing a computer- based task. The focus is 
more on the process rather than the content of 
the displays. 
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  Usability testing  represents the gold standard 
in usability evaluation methods. It refers to a 
class of methods for collecting empirical data of 
representative users performing representative 
tasks. It is known to capture a higher percentage 
of the more serious usability problems and pro-
vides a greater depth of understanding into the 
nature of the interaction (Jaspers  2009 ). Usability 
testing commonly employs video capture of users 
performing the tasks as well as video-analytic 
methods of analysis (Kaufman et al.  2003 ; 
Kaufman et al.  2009 ). It involves in-depth testing 
of a small number of subjects. The assumption is 
that a test can be perfectly valid with as few as 
fi ve or six subjects. In addition, fi ve or six sub-
jects may fi nd upwards of 80 % of the usability 
problems. A typical usability testing study will 
involve fi ve to ten subjects who are asked to think 
aloud as they perform the task. 

 It’s not uncommon to employ multiple meth-
ods such as the cognitive walkthrough and 
usability testing (Beuscart-Zephir et al.  2005a , 
 b ). The methods are complementary and serve as 
a means to triangulate signifi cant fi ndings. 
Kaufman et al. ( 2003 ) conducted a cognitive 
evaluation of the IDEATel home telemedicine 
system (Shea et al.  2002 ;  2009 ); Starren et al. 
 2002 ; Weinstock et al.  2010 ) with a particular 
focus on a) system usability and learnability, and 
b) the core competencies, skills and knowledge 
necessary to productively use the system. The 
study employed both a cognitive walkthrough 
and in-depth usability testing. The focal point of 
the intervention was the home telemedicine unit 
(HTU), which provided the following functions: 
(1) synchronous video-conferencing with a 
nurse case manager, (2) electronic transmission 
of fi ngerstick glucose and blood pressure read-
ings, (3) email to a physician and nurse case 
manager, (4) review of one’s clinical data and (5) 
access to Web-based educational materials (see 
Chap.   18     for more details on IDEATel). The 
usability study revealed dimensions of the inter-
face that impeded optimal access to system 
resources. In addition, signifi cant obstacles cor-
responding to perceptual- motor skills, mental 
models of the system, and health literacy were 
documented.  

4.6     Human Factors Research 
and Patient Safety 

   Human error in medicine, and the adverse events 
which may follow, are problems of psychology and 
engineering not of medicine “(Senders, 1993)” 
(cited in (Woods et al.  2007 ). 

    Human factors  research is a discipline devoted 
to the study of technology systems and how 
people work with them or are impacted by these 
technologies (Henriksen  2010 ). Human factors 
research discovers and applies information 
about human behavior, abilities, limitations, and 
other characteristics to the design of tools, 
machines, systems, tasks, and jobs, and environ-
ments for productive, safe, comfortable, and 
effective human use (Chapanis  1996 ). In the 
context of healthcare, human factors is con-
cerned with the full complement of technologies 
and systems used by a diverse range of individu-
als including clinicians, hospital administrators, 
health consumers and patients (Flin and Patey 
 2009 ). Human factors work approaches the 
study of health practices from several perspec-
tives or levels of analysis. The focus is on the 
ways in which organizational, cultural, and pol-
icy issues inform and shape healthcare pro-
cesses. A full exposition of human factors in 
medicine is beyond the scope of this chapter. 
For a detailed treatment of these issues, the 
reader is referred to the Handbook of Human 
Factors and Ergonomics in Health Care and 
Patient Safety (Carayon  2007 ). The focus in this 
chapter is on cognitive work in human factors 
and healthcare, particularly in relation to issues 
having to do with patient safety. We recognize 
that patient safety is a systemic challenge at a 
multiple levels of aggregation beyond the indi-
vidual. It is clear that understanding, predicting 
and transforming human performance in any 
complex setting requires a detailed understand-
ing of both the setting and the factors that infl u-
ence performance (Woods et al.  2007 ). 

 Our objective in this section is to introduce a 
theoretical foundation, establish important con-
cepts and discuss illustrative research in  patient 
safety . Human factors and human computer 
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interaction are different disciplines with dif-
ferent histories and different professional and 
academic societies. HCI is more focused on com-
puting and cutting-edge design and technology, 
whereas human factors focus on a broad range 
of systems that include, but are not restricted to 
computing technologies (Carayon  2007 ). Patient 
safety is one of the central issues in human fac-
tors research and we address this issue in greater 
detail in a subsequent section. Both human fac-
tors and HCI employ many of the same  methods 
of evaluation and both strongly emphasize a 
user-centered approach to design and a systems-
centered approach to the study of technology use. 
Researchers and professionals in both domains 
draw on certain theories including cognitive 
engineering. The categorization of information 
technology-based work as either human factors 
or HCI is sometimes capricious. 

 The fi eld of human factors is guided by prin-
ciples of engineering and applied cognitive psy-
chology (Chapanis  1996 ). Human factors analysis 
applies knowledge about the strengths and limi-
tations of humans to the design of interactive 
systems, equipment, and their environment. The 
objective is to ensure their effectiveness, safety, 
and ease of use. Mental models and issues of 
decision making are central to human factors 
analysis. Any system will be easier and less bur-
densome to use to the extent that that it is co-
extensive with users’ mental models. Human 
factors focus on different dimensions of cogni-
tive capacity, including memory, attention, and 
workload. Our perceptual system inundates us 
with more stimuli than our cognitive systems can 
possibly process. Attentional mechanisms enable 
us to selectively prioritize and attend to certain 
stimuli and attenuate other ones. They also have 
the property of being sharable, which enables us 
to multitask by dividing our attention between 
two activities. For example, if we are driving on a 
highway, we can easily have a conversation with 
a passenger at the same time. However, as the 
skies get dark or the weather changes or suddenly 
you fi nd yourself driving through winding moun-
tainous roads, you will have to allocate more of 
your attentional resources to driving and less to 
the conversation. 

 Human factors research leverages theories and 
methods from cognitive engineering to character-
ize human performance in complex settings and 
challenging situations in aviation, industrial pro-
cess control, military command control and space 
operations (Woods et al.  2007 ). The research has 
elucidated empirical regularities and provides 
explanatory concepts and models of human per-
formance. This enables us to discern common 
underlying patterns in seemingly disparate 
 settings (Woods et al.  2007 ). 

4.6.1     Patient Safety 

   When human error is viewed as a cause rather than 
a consequence, it serves as a cloak for our igno-
rance. By serving as an end point rather than a 
starting point, it retards further understanding. 
(Henriksen  2008 ) 

   Patient safety refers to the prevention of health-
care errors, and the elimination or mitigation of 
patient injury caused by healthcare errors (Patel 
and Zhang  2007 ). It has been an issue of consid-
erable concern for the past quarter century, but 
the greater community was galvanized by the 
Institute of Medicine Report, “To Err is Human,” 
released in 1999. This report communicated the 
surprising fact that 98,000 preventable deaths 
every single year in the United States are attribut-
able to human error, which makes it the 8th lead-
ing cause of death in this country. Although one 
may argue over the specifi c numbers, there is no 
disputing that too many patients are harmed or 
die every year as a result of human actions or 
absence of action. 

 The Harvard Medical Practice Study was pub-
lished several years prior to the IOM report and 
was a landmark study at the time. Based on an 
extensive review of patient charts in New York 
State, they were able to determine that an adverse 
event occurred in almost 4 % of the cases (Leape 
et al.  1991 ). An adverse event refers to any unfa-
vorable change in health or side effect that occurs 
in a patient who is receiving the treatment. They 
further determined that almost 70 % of these 
adverse events were caused by errors and 25 % of 
all errors were due to negligence. 
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 We can only analyze errors after they hap-
pened and they often seem to be glaring blunders 
after the fact. This leads to assignment of blame 
or search for a single cause of the error. However, 
in hindsight, it is exceedingly diffi cult to recreate 
the situational context, stress, shifting attention 
demands and competing goals that characterized 
a situation prior to the occurrence of an error. 
This sort of retrospective analysis is subject to 
hindsight bias.  Hindsight bias  masks the dilem-
mas, uncertainties, demands and other latent con-
ditions that were operative prior to the mishap. 
Too often the term ‘human error’  connotes blame 
and a search for the guilty culprits,  suggesting 
some sort of human defi ciency or irresponsible 
behavior. Human factors researchers recognized 
that this approach error is inherently incomplete 
and potentially misleading. They argue for the 
need for a more comprehensive systems-centered 
approach that recognizes that error could be 
attributed to a multitude of factors as well as the 
interaction of these factors. Error is the failure of 
a planned sequence of mental or physical activi-
ties to achieve its intended outcome when these 
failures cannot be attributed to chance (Arocha 
et al.  2005 ; Reason  1990 ). Reason ( 1990 ) intro-
duced an important distinction between  latent  
and  active failures . Active failure represents 
the face of error. The effects of active failure are 
immediately felt. In healthcare, active errors are 
committed by providers such as nurses, physi-
cians, or pharmacists who are actively respond-
ing to patient needs at the “sharp end”. The latent 
conditions are less visible, but equally impor-
tant. Latent conditions are enduring systemic 
problems that may not be evident for some time, 
combine with other system problems to weaken 
the system’s defenses and make errors possible. 
There is a lengthy list of potential latent condi-
tions including poor interface design of impor-
tant technologies, communication breakdown 
between key actors, gaps in supervision, inad-
equate training, and absence of a safety culture 
in the workplace—a culture that emphasizes safe 
practices and the reporting of any conditions that 
are potentially dangerous. 

 Zhang, Patel, Johnson, and Shortliffe ( 2004 ) 
have developed a taxonomy of errors partially 

based on the distinctions proposed by Reason 
( 1990 ). We can further classify errors in terms of 
 slips  and  mistakes  (Reason  1990 ). A slip occurs 
when the actor selected the appropriate course 
of action, but it was executed inappropriately. 
A mistake involves an inappropriate course of 
action refl ecting an erroneous judgment or infer-
ence (e.g., a wrong diagnosis or misreading of an 
x-ray). Mistakes may either be knowledge-based 
owing to factors such as incorrect knowledge or 
they may be rule-based, in which case the cor-
rect knowledge was available, but there was 
a problem in applying the rules or  guidelines. 
They further characterize medical errors as a 
progression of events. There is a period of time 
when everything is operating smoothly. Then 
an unsafe practice unfolds resulting in a kind of 
error, but not necessarily leading to an adverse 
event. For example, if there is a system of checks 
and balances that is part of routine practice or if 
there is systematic supervisory process in place, 
the vast majority of errors will be trapped and 
defused in this middle zone. If these measures or 
practices are not in place, an error can propagate 
and cross the boundary to become an adverse 
event. At this point, the patient has been harmed. 
In addition, if an individual is subject to a heavy 
workload or intense time pressure, then that will 
increase the potential for an error, resulting in an 
adverse event. 

 The notion that human error should not be tol-
erated is prevalent in both the public and personal 
perception of the performance of most clinicians. 
However, researchers in other safety-critical 
domains have long since abandoned the quest for 
zero defect, citing it as an impractical goal, and 
choosing to focus instead on the development of 
strategies to enhance the ability to recover from 
error (Morel et al.  2008 ). Patel and her colleagues 
conducted empirical investigations into error 
detection and recovery by experts (attending phy-
sicians) and non-experts (resident trainees) in the 
critical care domain, using both laboratory-based 
and naturalistic approaches (Patel et al.  2011 ). 
These studies show that expertise is more closely 
tied to ability to detect and recover from errors 
and not so much to the ability not to make errors. 
The study results show that both the experts and 
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non-experts are prone to commit and recover 
from errors, but experts’ ability to detect and 
recover from knowledge based errors is better 
than that of trainees. Error detection and correc-
tion in complex real-time critical care situations 
appears to induce certain urgency for quick action 
in a high alert condition, resulting in rapid detec-
tion and correction. Studies on expertise and 
understanding of the limits and failures of human 
decision-making are important if we are to build 
robust decision-support systems to manage the 
boundaries of risk of error in decision making 
(Patel and Cohen  2008 ). 

 There has been a wealth of studies  regarding 
patient safety and medical errors in a range of 
contexts. Holden and Karsh ( 2007 ) argue that 
much of the work is atheoretical in nature and 
that this diminishes the potential generalizability 
of the lessons learned. They propose a multifac-
eted theoretical framework incorporating theories 
from different spheres of research including moti-
vation, decision-making, and social- cognition. 
They also draw on a sociotechnical approach, 
which is a perspective that interweaves technol-
ogy, people, and the social context of interaction 
for the design of systems. The end result is a 
model that can be applied to health information 
technology usage behavior and that guides a set 
of principles for design and implementation. The 
authors propose that through iterative testing of 
the model, the efforts of researchers and practi-
tioners will yield greater success in the under-
standing, design, and implementation of health 
 information technology.  

4.6.2     Unintended Consequences 

 It is widely believed that health information 
technologies have the potential to transform 
healthcare in a multitude of ways including the 
reduction of errors. However, it is increasingly 
apparent that technology-induced errors are 
deeply consequential and have had deleterious 
consequences for patient safety. Ash, Stavri, and 
Kuperman ( 2003b ) were among the fi rst to give 
voice to this problem in the informatics com-
munity. They also endeavored to describe and 

enumerate the primary kinds of errors caused 
by health information systems, those related to 
entering and retrieving information and those 
related to communication and coordination. 
The authors characterize several problems that 
are not typically found in usability studies. For 
example, many interfaces are not suitable for 
settings that are highly interruptive (e.g., a clut-
tered display with too many options). They also 
characterize a problem in which an informa-
tion entry screen that is highly structured and 
requires completeness of entry can cause cogni-
tive overload. 

 Medical devices include any healthcare 
product, excluding drugs, that are used for the 
purpose of prevention, diagnosis, monitoring, 
treatment or alleviation of an illness (Ward and 
Clarkson  2007 ). There is considerable evidence 
that suggests that medical devices can also cause 
substantial harm (Jha et al.  2010 ). It has been 
reported that more than one million adverse med-
ical device events occur annually in the United 
States (Bright and Brown  2007 ). Although medi-
cal devices are an integral part of medical care in 
hospital settings, they are complex in nature and 
clinicians often do not receive adequate training 
(Woods et al.  2007 ). In addition, many medical 
devices such as such as smart infusion pumps, 
patient controlled analgesia (PCA) devices, and 
bar coded medication administration systems 
have been partially automated and offer a com-
plex programmable interface (Beuscart-Zephir 
et al.  2005a ,  2007 ). Although this affords oppor-
tunities to facilitate clinical care and medical 
decision making, it may add layers of complexity 
and uncertainty. 

 There is evidence to suggest that a poorly 
designed user interface can present substantial 
challenges even for the well-trained and highly 
skilled user (Zhang et al.  2003 ). Lin and col-
leagues ( 1998 ) conducted a series of studies on 
a patient controlled analgesic or PCA device, 
a method of pain relief that uses disposable or 
electronic infusion devices and allows patients 
to self-administer analgesic drugs as required. 
The device is programmed by a nurse or techni-
cian and this limits the maximum level of drug 
administration to keep the dose within safe lev-
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els. Lin and colleagues investigated the effects 
of two interfaces to a commonly used PCA 
device including the original interface. Based on 
a  cognitive task analysis , they redesigned the 
original interface so that it was more in line with 
sound human factors principles. As described 
previously, cognitive task analysis is a method 
that breaks a task into sets of subtasks or steps 
(e.g., a single action), the system responses (e.g., 
changes in the display as a result of an action) 
and inferences that are needed to interpret the 
state of the system. It is an effective gauge of the 
complexity of a system. For  example, a simple 
task that necessitates 25 steps or more to com-
plete using a given system is likely to be unnec-
essarily complex. On the basis of the cognitive 
task analysis, they found the existing PCA inter-
face to be problematic in several different ways. 
For example, the structure of many subtasks in 
the programming sequence was unnecessarily 
complex. There was a lack of information avail-
able on the screen to provide meaningful feed-
back and to structure the user experience (e.g., 
negotiating the next steps). For example, a nurse 
would not know that he or she was on the third of 
fi ve screens or when they were half way through 
the task. 

 On the basis of the CTA analysis, Lin and 
colleagues ( 1998 ) also redesigned the interface 
according to sound human factors principles. 
The new system was designed to simplify the 
entire process and provide more consistent feed-
back. It’s important to note that the revised screen 
was a computer simulation and was not actually 
implemented in the physical device. They con-
ducted a cognitive study with 12 nurses com-
paring simulations of the old and new interface. 
They found that programming the new interface 
was 15 % faster. The average workload rating 
for the old interface was twice as high. The new 
interface led to 10 errors as compared to 20 for 
the old one. This is a compelling demonstration 
that medical equipment can be made safer and 
more effi cient by adopting sound human factors 
design principles. 

 This methodology embodies a particular phi-
losophy that emphasizes simplicity and function-
ality over intricacy of design and presentation. 

Zhang and colleagues employed a modifi ed heu-
ristic evaluation method (see section 4.5, above) 
to test the safety of two infusion pumps (Zhang 
et al.  2003 ). On the basis of an analysis by 4 
evaluators, a total of 192 violations with the user 
interface design were documented. Consistency 
and visibility (the ease in which a user can dis-
cern the system state) were the most widely 
documented violations. Several of the violations 
were classifi ed as problems of substantial sever-
ity. Their results suggested that one of the two 
pumps was likely to induce more medical errors 
than the other ones. 

 It is clear that usability problems are 
 consequential and have the potential to impact 
patient safety. Kushniruk et al. ( 2005 ) exam-
ined the relationship between particular kinds 
of usability problems and errors in a handheld 
prescription writing application. They found 
that particular usability problems were associ-
ated with the occurrence of error in entering 
medication. For example, the problem of inap-
propriate default values automatically populat-
ing the screen was found to be correlated with 
errors in entering wrong dosages of medica-
tions. In addition, certain types of errors were 
associated with mistakes (not detected by users) 
while others were associated with slips pertain-
ing to unintentional errors. Horsky et al. ( 2005 ) 
analyzed a problematic medication order placed 
using a CPOE system that resulted in an overdose 
of potassium chloride being administered to an 
actual patient. The authors used a range of inves-
tigative methods including inspection of system 
logs, semi- structured interviews, examination of 
the electronic health record, and cognitive evalu-
ation of the order entry system involved. They 
found that the error was due to a confl uence of 
factors including problems associated with the 
display, the labeling of functions and ambiguous 
dating of the dates in which a medication was 
administered. The poor interface design did not 
provide assistance with the decision-making pro-
cess, and in fact, its design served as a hindrance, 
where the interface was a poor fi t for the  concep-
tual operators  utilized by clinicians when calcu-
lating medication dosage (i.e., based on volume 
not duration). 
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 Koppel and colleagues ( 2005 ) published an 
infl uential study examining the ways in which 
computer-provider order-entry systems (CPOE) 
facilitated medical errors. The study, which was 
published in JAMA (Journal of the American 
Medical Association), used a series of methods 
including interviews with clinicians, observa-
tions and a survey to document the range of 
errors. According to the authors, the system 
facilitated 22 types of medication error and 
many of them occurred with some frequency. 
The errors were classifi ed into two broad cate-
gories: (1) information errors generated by 
 fragmentation of data and failure to integrate the 
hospital’s  information systems and (2) human-
machine interface fl aws refl ecting machine rules 
that do not correspond to work organization or 
usual behaviors. 

 It is a well-known phenomenon that users 
come to rely on technology and often treat it as 
an authoritative source that can be implicitly 
trusted. This can result in information/fragmenta-
tion errors. In this case, clinicians relied on CPOE 
displays to determine the minimum effective dose 
or a routine dose for a particular kind of patient. 
However, there was a discrepancy between their 
expectations and the dose listing. The dosages 
listed on the display were based on the pharma-
cy’s warehousing and not on clinical guidelines. 
For example, although normal dosages are 20 or 
30 mg, the pharmacy might stock only 10-mg 
doses, so 10-mg units are displayed on the CPOE 
screen. Clinicians mistakenly assumed that this 
was the minimal dose. Medication discontinuation 
failures are a commonly documented problem with 
CPOE systems. The system expects a clinician to 
(1) order new medications and (2) cancel existing 
orders that are no longer operative. Frequently, cli-
nicians fail to cancel the existing orders leading to 
duplicative medication orders and thereby increas-
ing the possibility of medical errors. Perhaps, a 
reminder that prior orders exist and may need to 
be canceled may serve to mitigate this problem. 

 As is the case with other clinical information 
systems, CPOE systems suffer from a range of 
usability problems. The study describes three 
kinds of problems. When selecting a patient, it is 
relatively easy to select the wrong patient because 

names and drugs are close together, the font is 
small, and, patients’ names do not appear on all 
screens. On a similar note, physicians can order 
medications at computer terminals not yet 
“logged out” by the previous physician. This can 
result in either unintended patients receiving 
medication or patients not receiving the intended 
medication. When patients undergo surgery, the 
CPOE system cancels their previous medica-
tions. Physicians must reenter CPOE and reacti-
vate each previously ordered medication. Once 
again, a reminder to do so may serve to reduce 
the frequency of such mistakes. 

 The growing body of research on unintended 
consequences spurred the American Medical 
Informatics Association to devote a policy meet-
ing to consider ways to understand and dimin-
ish their impact (Bloomrosen et al.  2011 ). The 
matter is especially pressing given the increased 
implementation of health information tech-
nologies nationwide including ambulatory care 
practices that have little experience with health 
information technologies. The authors outline 
a series of recommendations, including a need 
for more cognitively-oriented research to guide 
study of the causes and mitigation of unintended 
consequences resulting from health information 
technology implementations. These changes 
could facilitate improved management of those 
consequences, resulting in enhanced perfor-
mance, patient safety as well as greater user 
acceptance.  

4.6.3     External Representations 
and Information Visualization 

 To reiterate, internal representations refl ect mental 
states that correspond to the external world. The 
term external representation refers to any object 
in the external world which has the potential to 
be internalized. External representations such as 
images, graphs, icons, audible sounds, texts with 
symbols (e.g., letters and numbers), shapes and 
textures are vital sources of knowledge, means 
of communication and cultural transmission. The 
classical model of information- processing cog-
nition viewed external  representations as mere 
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inputs to the mind (Zhang  1997 ). For example, 
the visual system would process the informa-
tion in a display that would serve as input to the 
cognitive system for further processing (e.g., 
classifying dermatological lesions), leading to 
knowledge being retrieved from memory and 
resulting in a decision or action. These external 
representations served as a stimulus to be inter-
nalized (e.g., memorized) by the system. The 
hard work is then done by the machinery of the 
mind, which develops an internal copy of a slice 
of the external world and stores it as a mental rep-
resentation. The appropriate internal representa-
tion is then retrieved when needed. 

 This view has changed considerably. Norman 
( 1993 ) argues that external representations play 
a critical role in enhancing cognition and intel-
ligent behavior. These durable representations (at 
least those that are visible) persist in the external 
world and are continuously available to augment 
memory, reasoning, and computation. Consider a 
simple illustration involving multi-digit multipli-
cation with a pencil and paper. First, imagine cal-
culating 37 × 93 without any external aids. Unless 
you are unusually skilled in such computations, 
they will exert a reasonably heavy load on work-
ing memory in relatively short order. One may 
have to engage in a serial process of calculation 
and maintain partial products in working mem-
ory (e.g., 3 × 37 = 111). Now consider the use of 
pencil and paper as illustrated below.

 3  7 
 x  9  3 
 1  1  1 

 3  3  3 
 3  4  4  1 

   The individual brings to the task knowledge 
of the meaning of the symbols (i.e., digits and 
their place value), arithmetic operators, and 
addition and multiplication tables (that enable a 
look-up from memory). The external representa-
tions include the positions of the symbols, the 
partial products of interim calculations and their 
spatial relations (i.e., rows and columns). The 
visual representation, by holding partial results 
outside the mind, extends a person’s working 

memory (Card et al.  1999 ). Calculations can rap-
idly become computationally prohibitive with-
out recourse to cognitive aids. The offl oading of 
computations is a central argument in support of 
distributed cognition, which is the subject of the 
next section. 

 It is widely understood that not all representa-
tions are equal for a given task and individual. 
The  representational effect  is a well-documented 
phenomenon in which different representations 
of a common abstract structure can have a sig-
nifi cant effect on reasoning and decision making 
(Zhang and Norman  1994 ). For example, differ-
ent forms of graphical displays can be more or 
less effi cient for certain tasks. A simple  example 
is that Arabic numerals are more effi cient for 
arithmetic (e.g., 37 × 93) than Roman numer-
als (XXXVII × XCIII) even though the repre-
sentations or symbols are  identical in meaning. 
Similarly, a digital clock provides an easy read-
out for precisely determining the time (Norman 
 1993 ). On the other hand, an analog clock pro-
vides an interface that enables one to more read-
ily determine time intervals (e.g., elapsed or 
remaining time) without recourse to calculations. 
Larkin and Simon ( 1987 ) argued that effective 
displays facilitate problem-solving by allowing 
users to substitute perceptual operations (i.e., rec-
ognition processes) for effortful symbolic opera-
tions (e.g., memory retrieval and computationally 
intensive reasoning) and that displays can reduce 
the amount of time spent searching for critical 
information. Research has demonstrated that dif-
ferent forms of graphical representations such as 
graphs, tables and lists can dramatically change 
decision-making strategies (Kleinmuntz and 
Schkade  1993 ; Scaife and Rogers  1996 ). 

 Medical prescriptions are an interesting case 
in point. Chronic illness affects over 100 million 
individuals in the United States, many of whom 
suffer from multiple of these individuals suffer 
from multiple affl ictions and must adhere to 
complex medication regimens. There are various 
pill organizers and mnemonic devices designed 
to promote patient compliance. Although these 
are helpful, prescriptions written by clinicians 
are inherently hard for patients to follow. The 
following prescriptions were given to a patient 

4 Cognitive Science and Biomedical Informatics



140

following a mild stroke (Day, 1988 reported in 
Norman  1993 ).

 Inderal  –1 tablet 3 times a day 
 Lanoxin  –1 tablet every AM 
 Carafate  –1 tablet before meals and at bedtime 
 Zantac  –1 tablet every 12 h (twice a day) 
 Quinaglute  –1 tablet 4 times a day 
 Coumadin  –1 tablet a day 

   The physician’s list is concise and presented 
in a format whereby a pharmacist can readily fi ll 
the prescription. However, the organization by 
medication does not facilitate a patient’s deci-
sion of what medications to take at a given time 
of day. Some computation, memory retrieval 
(e.g., I took my last dose of Lanoxin 6 h ago) 
and inference (what medications to bring when 
leaving one’s home for some duration of hours) 
are necessary to make such a decision. Day 
proposed an alternative tabular representation 
(Table  4.2 ).

   In this matrix representation in Table  4.2 , 
the items can be organized by time of day (col-
umns) and by medication (rows). The patient 
can simply scan the list by either time of day 
or medication. This simple change in represen-
tation can transform a cognitively taxing task 

into a simpler one that facilitates search (e.g., 
when do I take Zantac) and computation (e.g., 
how many pills are taken at dinner time). Tables 
can support quick and easy lookup and embody 
a compact and effi cient representational device. 
However, a particular external representation 
is likely to be effective for some populations 
of users and not others (Ancker and Kaufman 
 2007 ). For example, reading a table requires 
a certain level of numeracy that is beyond the 
abilities of certain patients with very basic edu-
cation. Kaufman and colleagues ( 2003 ) charac-
terized the diffi culties some older adult patients 
experienced in dealing with numeric data, espe-
cially when represented in tabular form. For 
example, when reviewing their blood glucose or 
blood pressure values, several patients appeared 
to lack an abstract understanding of covaria-
tion and how it can be expressed as a functional 
 relationship in a tabular format (i.e., cells and 
rows) as illustrated in Fig.  4.11 . Others had dif-
fi culty establishing the correspondence between 
the values expressed on the interface of their 
blood pressure monitoring device and math-
ematical representation in tabular format (sys-
tolic/diastolic). The familiar monitoring device 
provided an easy readout and patients could 
readily make appropriate inferences (e.g., sys-
tolic value is higher than usual) and take appro-
priate measures. However, when interpreting 
the same values in a table, certain patients had 
diffi culty recognizing anomalous or abnormal 
results even when these values were rendered as 
salient by a color–coding scheme.

   The results suggest that even the more literate 
patients were challenged when drawing infer-
ences over bounded periods of time. They tended 
to focus on discrete values (i.e., a single reading) 

    Table 4.2    Tabular representation of medications   

 Breakfast  Lunch  Dinner  Bedtime 

 Lanoxin  X 
 Inderal  X  X  X 
 Quinaglute  X  X  X  X 
 Carafate  X  X  X  X 
 Zantac  X  X 
 Coumadin  X 

  Adapted from Norman ( 1988 )  

  Fig. 4.11    Mapping values between blood pressure monitor and IDEATel Table       
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in noting whether it was within their normal or 
expected range. In at least one case, the problems 
with the representation seemed to be related to 
the medium of representation rather than the 
form of representation. One patient experienced 
considerable diffi culty reading the table on the 
computer display, but maintained a daily diary 
with very similar representational properties. 

 Instructions can be embodied in a range 
of external representations from text to list 
of procedures to diagrams exemplifying the 
steps. Everyday nonexperts are called upon to 
follow instructions in a variety of application 
domains (e.g., completing income-tax forms, 
confi guring and using a digital video recorder 
(DVR), cooking something for the fi rst time, 
or interpreting medication instructions), where 
correct  processing of information is necessary 
for proper functioning. The comprehension of 
written information in such cases frequently 
involves both quantitative and qualitative rea-
soning, as well as a minimal familiarity with 
the application domain. This is nowhere more 
apparent, and critical, than in the case of over-
the-counter pharmaceutical labels, the correct 
understanding of which often demands that the 
user translate minimal, quantitative formulas 
into qualitative, and frequently complex, proce-
dures. Medical errors involving the use of ther-
apeutic drugs are amongst the most frequent. 

 The calculation of dosages for pharmaceuti-
cal instructions can be remarkably complex. 
Consider the following instructions for an over-
the- counter cough syrup.

  Each teaspoonful (5 mL) contains 15 mg of dextro-
methorphan hydrobromide U.S.P., in a palatable 
yellow, lemon fl avored syrup. DOSAGE ADULTS: 
1 or 2 teaspoonfuls three or four times daily. 
 DOSAGE CHILDREN: 1 mg/kg of body weight 
daily in 3 or 4 divided doses. 

   If you wish to administer medication to a 22 lb 
child three times a day and wish to determine the 
dosage, the calculations are as follows:

  

22lbs / 2.2lbs / kg 1mg / kg / day /15mg /
tsp / 3doses / day 2 / 9 tsp / dose

×
=    

  Patel, Branch, and Arocha ( 2002a ) studied 48 
lay subjects’ responses to this problem. The 

majority of participants (66.5 %) were unable to 
correctly calculate the appropriate dosage of 
cough syrup. Even when calculations were cor-
rect, they were unable to estimate the actual 
amount to administer. There were no signifi cant 
differences based on cultural or educational 
background. One of the central problems is that 
there is a signifi cant mismatch between the 
designer’s conceptual model of the pharmaceuti-
cal text and procedures to be followed and the 
user’s mental model of the situation. 

  Diagrams  are tools that we use daily in com-
munication, information storage, planning, and 
problem-solving. Diagrammatic representations 
are not new devices for communicating ideas. 
They of course have a long history as tools of 
 science and cultural inventions that augment 
thinking. For example, the earliest maps, a graph-
ical representation of regions of geographical 
space, date back thousands of years. The phrase 
“a picture is worth 10,000 words” is believed to 
be an ancient Chinese proverb (Larkin and Simon 
 1987 ). External representations have always been 
a vital means for storing, aggregating and com-
municating patient data. The psychological study 
of information displays similarly has a long his-
tory dating back to Gestalt psychologists begin-
ning around the turn of the twentieth century. 
They produced a set of laws of pattern percep-
tion for describing how we see patterns in visual 
images (Ware  2003 ). For example, the  law of 
proximity  states that visual entities that are close 
together are perceptually grouped. The  law of 
symmetry  indicates that symmetric objects are 
more readily perceived. 

 Advances in graphical user interfaces afford 
a wide range of novel external representations. 
Card and colleagues ( 1999 ) defi ne  information 
visualization  as “the use of computer-supported, 
interactive, visual representations of abstract data 
to amplify cognition”. Information visualization 
of medical data is a vigorous area of research and 
application (Kosara and Miksch  2002 ; Starren and 
Johnson  2000 ). Medical data can include single 
data elements or more complex data structures. 
Representations can also be characterized as either 
numeric (e.g., laboratory data) or non- numeric 
information such as symptoms and diseases. Visual 
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representations may be either static or dynamic 
(changing as additional temporal data become 
available). EHRs need to include a wide range of 
data representation types, including both numeric 
and nonnumeric (Tang and McDonald  2001 ). EHR 
data representations are employed in a wide range 
of clinical, research and administrative tasks by 
different kinds of users. Medical imaging systems 
are used for a range of purposes including visual 
diagnosis (e.g., radiology), assessment and plan-
ning, communication, and education and training 
(Greenes and Brinkley  2001 ). The purposes of 
these representations are to display and manipulate 
digital images to reveal different facets of anatomi-
cal structures in either two or three dimensions. 

 Patient monitoring systems employ static and 
dynamic representations (e.g., continuously 
updated observations) for the presentation of the 
presentation of physiological parameters such as 
heart rate, respiratory rate, and blood pressure 
(Gardner and Shabot  2001 ) (see Chap.   19    ). As 
discussed previously, Lin et al. found that that the 
original display of a PCA device introduced sub-
stantial cognitive complexity into the task and 
impacted performance (Lin et al.  1998 ). They 
also demonstrated that redesigning interface in a 
manner consistent with human factors principles 
could lead to signifi cantly faster, easier, and more 
reliable performance. 

 Information visualization is an area of great 
importance in bioinformatics research, particu-
larly in relation to genetic sequencing and align-
ment. The tools and applications are being 
produced at a very fast pace. Although there is 
tremendous promise in such modeling systems, 
we know very little about what constitutes a 
usable interface for particular tasks. What sorts 
of competencies or prerequisite skills are neces-
sary to use such representations effectively? 
There is a signifi cant opportunity for cognitive 
methods and theories to play an instrumental role 
in this area. 

 In general, there have been relatively few cog-
nitive studies characterizing how different kinds 
of medical data displays impact performance. 
However, there have been several efforts to 
develop a typology of medical data representa-
tions. Starren and Johnson ( 2000 ) proposed a tax-

onomy of data representations. They characterized 
fi ve major classes of representation types includ-
ing list, table, graph, icon, and generated text. 
Each of these data types has distinct measure-
ment properties (e.g., ordinal scales are useful for 
categorical data) and they are variably suited for 
different kinds of data, tasks and users. The 
authors propose some criteria for evaluating the 
effi cacy of a representation including: (1) latency 
(the amount of time it takes a user to answer a 
question based on information in the representa-
tion), (2) accuracy, and (3) compactness (the rela-
tive amount of display space required for the 
representation). Further research is needed to 
explore the cognitive consequences of different 
forms of external medical data representations. 
For example, what inferences can be more  readily 
gleaned from a tabular representation versus a 
line chart? How does confi guration of objects in 
a representation affect latency? 

 At present, computational advances in infor-
mation visualization have outstripped our 
understanding of how these resources can be 
most effectively deployed for particular tasks. 
However, we are gaining a better understanding 
of the ways in which external representations can 
amplify cognition. Card et al. ( 1999 ) propose 
six major ways: (1) by increasing the memory 
and processing resources available to the users 
(offl oading cognitive work to a display), (2) by 
reducing the search for information (grouping 
data strategically), (3) by using visual presen-
tations to enhance the detection of patterns, (4) 
by using perceptual attention mechanisms for 
monitoring (e.g., drawing attention to events that 
require immediate attention), and (5) by encod-
ing information in a manipulable medium (e.g., 
the user can select different possible views to 
highlight variables of interest).  

4.6.4     Distributed Cognition and 
Electronic Health Records 

 In this chapter, we have considered a classical 
model of information-processing cognition in 
which mental representations mediate all activity 
and constitute the central units of analysis. The 
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analysis emphasizes how an individual formu-
lates internal representations of the external 
world. To illustrate the point, imagine an expert 
user of a word processor who can effortlessly 
negotiate tasks through a combination of key 
commands and menu selections. The traditional 
cognitive analysis might account for this skill by 
suggesting that the user has formed an image or 
schema of the layout structure of each of eight 
menus, and retrieves this information from mem-
ory each time an action is to be performed. For 
example, if the goal is to “insert a clip art icon”, 
the user would simply recall that this is subsumed 
under pictures that are the ninth item on the 
“Insert” menu and then execute the action, 
thereby achieving the goal. However, there are 
some problems with this model. Mayes, Draper, 
McGregor, and Koatley ( 1988 ) demonstrated that 
even highly skilled users could not recall the 
names of menu headers, yet they could routinely 
make fast and accurate menu selections. The 
results indicate that many or even most users 
relied on cues in the display to trigger the right 
menu selections. This suggests that the display 
can have a central role in controlling interaction 
in graphical user interfaces. 

 As discussed, the conventional information- 
processing approach has come under criticism 
for its narrow focus on the rational/cognitive 
processes of the solitary individual. In the previ-
ous section, we consider the relevance of external 
representations to cognitive activity. The emerg-
ing perspective of  distributed cognition  offers 
a more far-reaching alternative. The distributed 
view of cognition represents a shift in the study 
of cognition from being the sole property of the 
individual to being “stretched” across groups, 
material artifacts and cultures (Hutchins  1995 ; 
Suchman  1987 ). This viewpoint is increasingly 
gaining acceptance in cognitive science and 
human-computer interaction research. In the dis-
tributed approach to HCI research, cognition is 
viewed as a process of coordinating distributed 
internal (i.e., knowledge) and external representa-
tions (e.g., visual displays, manuals). Distributed 
cognition has two central points of inquiry, one 
that emphasizes the inherently social and collab-
orative nature of cognition (e.g., doctors, nurses 

and technical support staff in neonatal care unit 
jointly contributing to a decision process), and 
one that characterizes the mediating effects of 
technology or other artifacts on cognition. 

 The distributed cognition perspective refl ects 
a spectrum of viewpoints on what constitutes 
the appropriate unit of analysis for the study 
of cognition. Let us fi rst consider a more radi-
cal departure from the classical model of infor-
mation-processing. Cole and Engestrom ( 1997 ) 
suggest that the natural unit of analysis for the 
study of human behavior is an activity system, 
comprising relations among individuals and their 
proximal, “culturally-organized environments”. 
A system consisting of individuals, groups of 
individuals, and technologies can be construed 
as a single indivisible unit of analysis. Berg is 
a leading proponent of the sociotechnical point 
view within the world of medical informatics. He 
argues that “work practices are conceptualized 
as networks of people, tools, organizational rou-
tines, documents and so forth” (Berg  1999 ). An 
emergency ward, outpatient clinic or obstetrics 
and gynecology department is seen as an inter-
related assembly of things (including humans) 
whose functioning is primarily geared to the 
delivery of patient care. Berg ( 1999 ) goes on 
to emphasize that the “elements that constitute 
these networks should then not be seen as dis-
crete, well-circumscribed entities with pre-fi xed 
characteristics (p 89). 

 In Berg’s view, the study of information sys-
tems must reject an approach that segregates 
individual and collective, human and machine, as 
well as the social and technical dimensions of IT. 
Although there are compelling reasons for adapt-
ing a strong socially-distributed approach, an 
individual’s mental representations and external 
representations are both instrumental tools in 
cognition (Park et al.  2001 ; Patel et al.  2002b ). 
This is consistent with a distributed cognition 
framework that embraces the centrality of exter-
nal representations as mediators of cognition, but 
also considers the importance of an individual’s 
internal representations (Perry  2003 ). 

 The mediating role of technology can be eval-
uated at several levels of analysis from the indi-
vidual to the organization. Technologies, whether 
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they be computer-based or an artifact in another 
medium, transform the ways individuals and 
groups think. They do not merely augment, 
enhance or expedite performance, although a 
given technology may do all of these things. The 
difference is not merely one of quantitative 
change, but one that is qualitative in nature. 

 In a distributed world, what becomes of the 
individual? We believe it is important to under-
stand how technologies promote enduring 
changes in individuals Salomon et al. ( 1991 ) 
introduce an important distinction in considering 
the mediating role of technology on individual 
performance, the effects with technology and the 
effects of technology. The former is concerned 
with the changes in performance displayed 
by users while equipped with the technology. 
For example, when using an effective medical 
information system, physicians should be able 
to gather information more systematically and 
effi ciently. In this capacity, medical information 
technologies may alleviate some of the cogni-
tive load associated with a given task and per-
mit physicians to focus on higher-order thinking 
skills, such as diagnostic hypothesis generation 
and evaluation. The effects of technology refer 
to enduring changes in general cognitive capaci-
ties (knowledge and skills) as a consequence 
of interaction with a technology. This effect is 

illustrated  subsequently in the context of the 
enduring effects of an EHR (see Chap.   12    ). 

 We employed a pen-based EHR system, DCI 
(Dossier of Clinical Information), in several of 
our studies (see Kushniruk et al.  1996 ). Using the 
pen or computer keyboard, physicians can 
directly enter information into the EHR, such as 
the patient’s chief complaint, past history, history 
of present illness, laboratory tests, and differen-
tial diagnoses. Physicians were encouraged to 
use the system while collecting data from patients 
(e.g., during the interview). The DCI system 
incorporates an extended version of the ICD-9 
vocabulary standard (see Chap.   7    ). The system 
allows the physician to record information about 
the patient’s differential diagnosis, the ordering 
of tests, and the prescription of medication. The 
system also provides supporting reference 
 information in the form of an integrated elec-
tronic version of the Merck Manual, drug mono-
graphs for medications, and information on 
laboratory tests. The graphical interface provides 
a highly structured set of resources for represent-
ing a clinical problem as illustrated in Fig.  4.12 .

   We have studied the use of this EHR in both 
laboratory-based research (Kushniruk et al. 
 1996 ) and in actual clinical settings using cogni-
tive methods (Patel et al.  2000 ). The laboratory 
research included a simulated doctor-patient 

  Fig. 4.12    Display of a 
structured electronic medical 
record with graphical 
capabilities       
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interview. We have observed two distinct patterns 
of EHR usage in the interactive condition, one in 
which the subject pursues information from the 
patient predicated on a hypothesis; the second 
strategy involves the use of the EHR display to 
provide guidance for asking the patient ques-
tions. In the screen-driven strategy, the clinician 
is using the structured list of fi ndings in the order 
in which they appear on the display to elicit 
information. All experienced users of this system 
appear to have both strategies in their repertoire. 

 In general, a screen-driven strategy can enhance 
performance by reducing the cognitive load 
imposed by information-gathering goals and allow 
the physician to allocate more cognitive resources 
toward testing hypotheses and rendering deci-
sions. On the other hand, this strategy can encour-
age a certain sense of  complacency. We observed 
both effective as well as  counter- productive uses 
of this screen-driven strategy. A more experienced 
user consciously used the strategy to structure the 
information-gathering process, whereas a novice 
user used it less discriminately. In employing this 
screen-driven strategy, the novice elicited almost 
all of the relevant fi ndings in a simulated patient 
encounter. However, she also elicited numerous 
irrelevant fi ndings and pursued incorrect hypoth-
eses. In this particular case, the subject became 
too reliant on the technology and had diffi culty 
imposing her own set of working hypotheses to 
guide the information- gathering and diagnostic-
reasoning processes. 

 The use of a screen-driven strategy is evidence 
of the ways in which technology transforms clini-
cal cognition, as evidenced in clinicians’ patterns 
of reasoning. Patel and colleagues ( 2000 ) 
extended this line of research to study the cogni-
tive consequences of using the same EHR system 
in a diabetes clinic. The study considered the fol-
lowing questions (1) How do physicians manage 
information fl ow when using an EHR system? (2) 
What are the differences in the way physicians 
organize and represent this information using 
paper-based and EHR systems, and (3) Are there 
long-term, enduring effects of the use of EHR 
systems on knowledge representations and clini-
cal reasoning? One study focused on an in-depth 
characterization of changes in knowledge organi-

zation in a single subject as a function of using 
the system. The study fi rst compared the contents 
and structure of patient records produced by the 
physician using the EHR system and paper-based 
patient records, using ten pairs of records 
matched for variables such as patient age and 
problem type. After having used the system for 6 
months, the physician was asked to conduct his 
next fi ve patient interviews using only hand-writ-
ten paper records. 

 The results indicated that the EHRs contained 
more information relevant to the diagnostic 
hypotheses. In addition, the structure and content 
of information was found to correspond to the 
structured representation of the particular 
medium. For example, EHRs were found to con-
tain more information about the patient’s past 
medical history, refl ecting the query structure of 
the interface. The paper-based records appear to 
better preserve the integrity of the time course of 
the evolution of the patient problem, whereas, 
this is notably absent from the EHR. Perhaps, the 
most striking fi nding is that, after having used the 
system for 6 months, the structure and content of 
the physician’s paper-based records bore a closer 
resemblance to the organization of information in 
the EHR than the paper-based records produced 
by the physician prior to exposure to the system. 
This fi nding is consistent with the enduring 
 effects of  technology even in absence of the par-
ticular system. 

 Patel et al. ( 2000 ) conducted a series of related 
studies with physicians in the same diabetes 
clinic. The results of one study replicated and 
extended the results of the single subject study 
(reported above) regarding the differential effects 
of EHRs on paper-based records on represented 
(recorded) patient information. For example, phy-
sicians entered signifi cantly more information 
about the patient’s chief complaint using the EHR. 
Similarly, physicians represented signifi cantly 
more information about the history of present 
illness and review of systems using paper-based 
records. It's reasonable to assert that such differ-
ences are likely to have an impact on clinical deci-
sion making. The authors also video- recorded and 
analyzed 20 doctor-patient computer interactions 
by 2 physicians with varying levels of expertise. 
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One of the physicians was an intermediate-level 
user of the EHR and the other was an expert user. 
The analysis of the physician- patient interactions 
revealed that the less expert subject was more 
strongly infl uenced by the structure and content of 
the interface. In particular, he was guided by the 
order of information on the screen when asking 
the patient questions and recording the responses. 
This screen-driven strategy is similar to what we 
documented in a previous study (Kushniruk et al. 
 1996 ). Although the expert user similarly used 
the EHR system to structure his questions, he 
was much less bound to the order and sequence 
of presented information on the EHR screen. This 
body of research documented both  effects with  
and  effects of  technology in the context of EHR 
use (Salomon et al.  1991 ). These include effects 
on  knowledge- organization and information-
gathering strategies. The authors conclude that 
given these potentially enduring effects, the use 
of a particular EHR will almost certainly have a 
direct effect on medical decision making. 

 The previously discussed research demon-
strates the ways in which information technolo-
gies can mediate cognition and even produce 
enduring changes in how one performs a task. 
What dimensions of an interface contribute to 
such changes? What aspects of a display are more 
likely to facilitate effi cient task performance and 
what aspects are more likely to impede it? 
Norman ( 1986 ) argued that well-designed arti-
facts could reduce the need for users to remember 
large amounts of information, whereas poorly 
designed artifacts increased the knowledge 
demands on the user and the burden of working 
memory. In the distributed approach to HCI 
research, cognition is viewed as a process of 
coordinating distributed internal and external 
representations and this in effect constitutes an 
indivisible information-processing system. 

 How do artifacts in the external world “partici-
pate” in the process of cognition? The ecological 
approach of perceptual psychologist Gibson was 
based on the analysis of invariant structures in the 
environment in relation to perception and action. 
The concept of  affordance  has gained substantial 
currency in human computer interaction. It has 
been used to refer to attributes of objects that 

enable individuals to know how to use them 
(Rogers  2004 ). When the affordances of an object 
are perceptually obvious, they render humans 
interactions with objects as effortless. For exam-
ple, one can often perceive the affordances of a 
door handle (e.g., afford turning or pushing 
downwards to open the door) or a water faucet. 
One the other hand, there are numerous artifacts 
in which the affordances are less transparent (e.g., 
door handles that appear to suggest a pulling 
motion but actually need to be pushed to open the 
door). External representations constitute affor-
dances in that they can be picked up, analyzed, 
and processed by perceptual systems alone. 
According to theories of distributed cognition, 
most cognitive tasks have an internal and external 
component (Hutchins  1995 ), and as a conse-
quence, the problem-solving process involves 
coordinating information from these representa-
tions to produce new information. 

 One of the appealing features of the distrib-
uted cognition paradigm is that it can be used to 
understand how properties of objects on the 
screen (e.g., links, buttons) can serve as external 
representations and reduce cognitive load. The 
distributed resource model proposed by Wright, 
Fields, & Harrison ( 2000 ) addresses the question 
of “what information is required to carry out 
some task and where should it be located: as an 
interface object or as something that is mentally 
represented to the user.” The relative difference 
in the distribution of representations (internal and 
external) is central to determining the effi cacy of 
a system designed to support a complex task. 
Wright, Fields, and Harrison ( 2000 ) were among 
the fi rst to develop an explicit model for coding 
the kinds of resources available in the environ-
ment and the ways in which they are embodied 
on an interface. 

 Horsky, Kaufman and Patel ( 2003a ) applied 
the distributed resource model and analysis to a 
provider order entry system. The goal was to ana-
lyze specifi c order entry tasks such as those 
involved in admitting a patient to a hospital and 
then to identify areas of complexity that may 
impede optimal recorded entries. The research 
consisted of two component analyses: a cognitive 
walkthrough evaluation that was modifi ed based 
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on the distributed resource model and a simu-
lated clinical ordering task performed by seven 
physicians. The CW analysis revealed that the 
confi guration of resources (e.g., very long menus, 
complexly confi gured displays) placed unneces-
sarily heavy cognitive demands on users, espe-
cially those who were new to the system. The 
resources model was also used to account for pat-
terns of errors produced by clinicians. The 
authors concluded that the redistribution and 
reconfi guration of resources may yield guiding 
principles and design solutions in the develop-
ment of complex interactive systems. 

 The distributed cognition framework has 
proved to be particularly useful in understanding 
the performance of teams or groups of  individuals 
in a particular work setting (Hutchins  1995 ). 
Hazlehurst and colleagues (Hazlehurst et al. 
 2003 ,  2007 ) have drawn on this framework to 
illuminate the ways in which work in healthcare 
settings is constituted using shared resources and 
representations. The  activity system  is the pri-
mary explanatory construct. It is comprises actors 
and tools, together with shared understandings 
among actors that structure interactions in a work 
 setting. The “propagation of representational 
states through activity systems” is used to explain 
cognitive behavior and investigate the organiza-
tion of system and human performance. Following 
Hazlehurst et al. ( 2007 , p. 540), “a  representa-
tional state  is a particular confi guration of an 
information-bearing structure, such as a monitor 
display, a verbal utterance, or a printed label, that 
plays some functional role in a process within the 
system.” The author has used the concept to 
explain the process of medication ordering in an 
intensive care unit and the coordinated communi-
cations of a surgical team in a heart room. 

 Kaufman and colleagues ( 2009 ) employed the 
concept of representational states to understand 
nursing workfl ow in a complex technology- 
mediated telehealth setting. They extended the 
construct by introducing the concept of the “state 
of the patient” as a kind of representational state 
that refl ects the knowledge about the patient 
embodied in different individuals and inscribed 
in different media (e.g., EHRs, displays, paper 
documents and blood pressure monitors) at a 

given point in time. The authors conducted a 
qualitative study of the ways in different media 
and communication practices shaped nursing 
workfl ow and patient-centered decision making. 
The study revealed barriers to the productive use 
of system technology as well as adaptations that 
circumvented such limitations. Technologies can 
be deployed more effectively to establish com-
mon ground in clinical communication and can 
serve to update the state of the patient in a more 
timely and accurate way. 

 The framework for distributed cognition is 
still an emerging one in human-computer interac-
tion. It offers a novel and potentially powerful 
approach for illuminating the kinds of diffi culties 
users encounter and fi nding ways to better struc-
ture the interaction by redistributing the resources. 
Distributed cognition analyses may also provide 
a window into why technologies sometimes fail 
to reduce errors or even contribute to them.   

4.7     Conclusion 

 Theories and methods from the cognitive sci-
ences can shed light on a range of issues pertain-
ing to the design and implementation of health 
information technologies. They can also serve an 
instrumental role in understanding and enhancing 
the performance of clinicians and patients as they 
engage in a range of cognitive tasks related to 
health. The potential scope of applied cognitive 
research in biomedical informatics is very broad. 
Signifi cant inroads have been made in areas such 
as EHRs and patient safety. However, there are 
promising areas of future cognitive research that 
remain largely uncharted. These include under-
standing how to capitalize on health information 
technology without compromising patient safety 
(particularly in providing adequate decision sup-
port), understanding how various visual repre-
sentations/graphical forms mediate reasoning in 
biomedical informatics and how these represen-
tations can be used by patients and health con-
sumers with varying degrees of literacy. These 
are only a few of the cognitive challenges related 
to harnessing the potential of cutting-edge tech-
nologies in order to improve patient safety.  
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   3.    Although diagrams and graphical 
 materials can be extremely useful to 
illustrate quantitative information, they 
also present challenges for low numer-
acy patients. Discuss the various con-
siderations that need to be taken into 
account in the development of effective 
quantitative representations for lower 
literacy populations.   

   4.    The use of electronic health records 
(EHR) has been shown to differentially 
affect clinical reasoning relative to paper 
charts. Briefl y characterize the effects 
they have on reasoning, including those 
that persist after the clinician ceases to 
use the system. Speculate about the 
potential impact of EMRs on patient care.   

   5.    A large urban hospital is planning to 
implement a provider order entry sys-
tem. You have been asked to advise them 
on system usability and to study the 
cognitive effects of the system on per-
formance. Discuss the issues involved 
and suggests some of the steps you 
would take to study system usability.   

   6.    Discuss some of the ways in which 
external representations can amplify 
cognition. How can the study of infor-
mation visualization impact the devel-
opment of representations and tools for 
biomedical informatics.   

   7.    “When human error is viewed as a cause 
rather than a consequence, it serves as 
a cloak for our ignorance” (Henriksen 
 2008 ). Discuss the meaning of this quote 
in the context of studies of patient safety.   

   8.    Koppel and colleagues ( 2005 ) docu-
mented two categories of errors in 
clinicians’ use of CPOE systems: 1) 
Information errors generated by frag-
mentation of data and 2) human- machine 
interface fl aws. What are the implications 
of these error types for system design?     

 Questions for Discussion 

     1.    What are some of the assumptions of 
the distribute cognition framework? 
What implications does this approach 
have for the evaluation of electronic 
health records?   

   2.    Explain the difference between the 
 effects of technology  and the  effects with 
technology . How can each of these 
effects contribute to improving patient 
safety and reducing medical errors?   
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