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After reading this chapter, you should know the 
answers to these questions:
•	 How is the concept of probability useful for 

understanding test results and for making 
medical decisions that involve uncertainty?

•	 How can we characterize the ability of a test to 
discriminate between disease and health?

•	 What information do we need to interpret test 
results accurately?

•	 What is expected-value decision making? 
How can this methodology help us to under-
stand particular medical problems?

•	 What are utilities, and how can we use them to 
represent patients’ preferences?

•	 What is a sensitivity analysis? How can we 
use it to examine the robustness of a decision 
and to identify the important variables in a 
decision?

•	 What are influence diagrams? How do they 
differ from decision trees?

3.1	 �The Nature of Clinical 
Decisions: Uncertainty 
and the Process of Diagnosis

Because clinical data are imperfect and outcomes 
of treatment are uncertain, health professionals 
often are faced with difficult choices. In this 
chapter, we introduce probabilistic medical rea-
soning, an approach that can help health care pro-
viders to deal with the uncertainty inherent in 
many medical decisions. Medical decisions are 
made by a variety of methods; our approach is 
neither necessary nor appropriate for all deci-
sions. Throughout the chapter, we provide simple 
clinical examples that illustrate a broad range of 
problems for which probabilistic medical reason-
ing does provide valuable insight.

As discussed in Chap. 2, medical practice is 
medical decision making. In this chapter, we look 
at the process of medical decision making. 
Together, Chaps. 2 and 3 lay the groundwork for 
the rest of the book. In the remaining chapters, 
we discuss ways that computers can help clini-
cians with the decision-making process, and we 
emphasize the relationship between information 
needs and system design and implementation.

The material in this chapter is presented in the 
context of the decisions made by an individual 
clinician. The concepts, however, are more 
broadly applicable. Sensitivity and specificity are 
important parameters of laboratory systems that 
flag abnormal test results, of patient monitoring 
systems (Chap. 19), and of information-retrieval 
systems (Chap. 21). An understanding of what 
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probability is and of how to adjust probabilities 
after the acquisition of new information is a foun-
dation for our study of clinical decision-support 
systems (Chap. 22). The importance of probabil-
ity in medical decision making was noted as long 
ago as 1922:

[G]ood medicine does not consist in the indiscrim-
inate application of laboratory examinations to a 
patient, but rather in having so clear a comprehen-
sion of the probabilities and possibilities of a case 
as to know what tests may be expected to give 
information of value (Peabody 1922).

If the test is positive, what is the likelihood that 
a donor actually has HIV? If the test is negative, 
how sure can you be that the person does not have 
HIV? On an intuitive level, these questions do not 
seem particularly difficult to answer. The test 
appears accurate, and we would expect that, if the 
test is positive, the donated blood specimen is 
likely to contain the HIV. Thus, we are surprised 
to find that, if only one in 1,000 donors actually is 
infected, the test is more often mistaken than it is 
correct. In fact, of 100 donors with a positive test, 
fewer than 10 would be infected. There would be 
ten wrong answers for each correct result. How 

are we to understand this result? Before we try to 
find an answer, let us consider a related example.

Should Mr. James undergo a third operation? 
The medications are not working; without sur-
gery, he runs a high risk of suffering a heart 
attack, which may be fatal. On the other hand, the 
surgery is hazardous. Not only is the surgical 
mortality rate for a third operation higher than 
that for a first or second one but also the chance 
that surgery will relieve the chest pain is lower 
than that for a first operation. All choices in 
Example 2 entail considerable uncertainty. 
Furthermore, the risks are grave; an incorrect 
decision may substantially increase the chance 
that Mr. James will die. The decision will be dif-
ficult even for experienced clinicians.

These examples illustrate situations in which 
intuition is either misleading or inadequate. 
Although the test results in Example 1 are appro-
priate for the blood bank, a clinician who uncriti-
cally reports these results would erroneously 
inform many people that they had the AIDS 
virus—a mistake with profound emotional and 
social consequences. In Example 2, the decision-
making skill of the clinician will affect a patient’s 
quality and length of life. Similar situations are 

Example 1

You are the director of a blood bank. All 
potential blood donors are tested to ensure 
that they are not infected with the human 
immunodeficiency virus (HIV), the caus-
ative agent of acquired immunodeficiency 
syndrome (AIDS). You ask whether use 
of the polymerase chain reaction (PCR), a 
gene-amplification technique that can diag-
nose HIV, would be useful to identify peo-
ple who have HIV. The PCR test is positive 
98 % of the time when antibody is present, 
and negative 99 % of the time antibody is 
absent.1

1The test sensitivity and specificity used in 
Example 1 are consistent with the reported values 
of the sensitivity and specificity of the PCR test for 
diagnosis of HIV early in its development (Owens 
et  al. 1996b); the test now has higher sensitivity 
and specificity.

Example 2

Mr. James is a 59-year-old man with coro-
nary artery disease (narrowing or block-
age of the blood vessels that supply the 
heart tissue). When the heart muscle does 
not receive enough oxygen (hypoxia) 
because blood cannot reach it, the patient 
often experiences chest pain (angina). Mr. 
James has twice undergone coronary artery 
bypass graft (CABG) surgery, a procedure 
in which new vessels, often taken from the 
leg, are grafted onto the old ones such that 
blood is shunted past the blocked region. 
Unfortunately, he has again begun to have 
chest pain, which becomes progressively 
more severe, despite medication. If the heart 
muscle is deprived of oxygen, the result can 
be a heart attack (myocardial infarction), in 
which a section of the muscle dies.
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commonplace in medicine. Our goal in this chap-
ter is to show how the use of probability and deci-
sion analysis can help to make clear the best 
course of action.

Decision making is one of the quintessential 
activities of the healthcare professional. Some 
decisions are made on the basis of deductive rea-
soning or of physiological principles. Many deci-
sions, however, are made on the basis of 
knowledge that has been gained through collec-
tive experience: the clinician often must rely on 
empirical knowledge of associations between 
symptoms and disease to evaluate a problem. 
A decision that is based on these usually imper-
fect associations will be, to some degree, uncer-
tain. In Sects. 3.1.1, 3.1.2 and 3.1.3, we examine 
decisions made under uncertainty and present an 
overview of the diagnostic process. As Smith 
(1985, p. 3) said: “Medical decisions based on 
probabilities are necessary but also perilous. 
Even the most astute physician will occasionally 
be wrong.”

3.1.1	 �Decision Making Under 
Uncertainty

Should Mr. Kirk be treated for blood clots? 
The main diagnostic concern is the recurrence of 
a blood clot in his leg. A clot in the veins of the 
leg can dislodge, flow with the blood, and cause a 
blockage in the vessels of the lungs, a potentially 
fatal event called a pulmonary embolus. Of 
patients with a swollen leg, about one-half actu-
ally have a blood clot; there are numerous other 
causes of a swollen leg. Given a swollen leg, 
therefore, a clinician cannot be sure that a clot is 
the cause. Thus, the physical findings leave con-
siderable uncertainty. Furthermore, in Example 
3, the results of the available diagnostic test are 
equivocal. The treatment for a blood clot is to 
administer anticoagulants (drugs that inhibit 
blood clot formation), which pose the risk of 
excessive bleeding to the patient. Therefore, cli-
nicians do not want to treat the patient unless they 
are confident that a thrombus is present. But how 
much confidence should be required before start-
ing treatment? We will learn that it is possible to 
answer this question by calculating the benefits 
and harms of treatment.

This example illustrates an important con-
cept: Clinical data are imperfect. The degree of 
imperfection varies, but all clinical data—includ-
ing the results of diagnostic tests, the history 
given by the patient, and the findings on physical 
examination—are uncertain.

3.1.2	 �Probability: An Alternative 
Method of Expressing 
Uncertainty

The language that clinicians use to describe a 
patient’s condition often is ambiguous—a factor 
that further complicates the problem of uncer-
tainty in medical decision making. Clinicians use 
words such as “probable” and “highly likely” to 
describe their beliefs about the likelihood of dis-
ease. These words have strikingly different mean-
ings to different individuals. Because of the 
widespread disagreement about the meaning of 
common descriptive terms, there is ample oppor-
tunity for miscommunication.

The problem of how to express degrees of 
uncertainty is not unique to medicine. How is it 
handled in other contexts? Horse racing has its 

Example 3

Mr. Kirk, a 33-year-old man with a history 
of a previous blood clot (thrombus) in a vein 
in his left leg, presents with the complaint 
of pain and swelling in that leg for the past 
5 days. On physical examination, the leg is 
tender and swollen to midcalf—signs that 
suggest the possibility of deep vein throm-
bosis.2 A test (ultrasonography) is per-
formed, and the flow of blood in the veins of 
Mr. Kirk’s leg is evaluated. The blood flow 
is abnormal, but the radiologist cannot tell 
whether there is a new blood clot.

2In medicine, a sign is an objective physical finding 
(something observed by the clinician) such as a 
temperature of 101.2 °F. A symptom is a subjective 
experience of the patient, such as feeling hot or 
feverish. The distinction may be blurred if the 
patient’s experience also can be observed by the 
clinician.

3  Biomedical Decision Making: Probabilistic Clinical Reasoning
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share of uncertainty. If experienced gamblers are 
deciding whether to place bets, they will find it 
unsatisfactory to be told that a given horse has a 
“high chance” of winning. They will demand to 
know the odds.

The odds are simply an alternate way to express 
a probability. The use of probability or odds as an 
expression of uncertainty avoids the ambiguities 
inherent in common descriptive terms.

3.1.3	 �Overview of the Diagnostic 
Process

In Chap. 2, we described the hypothetico-
deductive approach, a diagnostic strategy com-
prising successive iterations of hypothesis 
generation, data collection, and interpretation. 
We discussed how observations may evoke a 
hypothesis and how new information subse-
quently may increase or decrease our belief in 
that hypothesis. Here, we review this process 
briefly in light of a specific example. For the pur-
pose of our discussion, we separate the diagnos-
tic process into three stages.

The first stage involves making an initial judg-
ment about whether a patient is likely to have a 
disease. After an interview and physical exami-
nation, a clinician intuitively develops a belief 
about the likelihood of disease. This judgment 
may be based on previous experience or on 
knowledge of the medical literature. A clinician’s 
belief about the likelihood of disease usually is 
implicit; he or she can refine it by making an 
explicit estimation of the probability of disease. 
This estimated probability, made before further 
information is obtained, is the prior probability 
or pretest probability of disease.

How would the clinician evaluate this patient? 
The clinician would first talk to the patient about 
the quality, duration, and severity of his or her 
pain. Traditionally, the clinician would then 
decide what to do next based on his or her intu-
ition about the etiology (cause) of the chest pain. 
Our approach is to ask the clinician to make his 
or her initial intuition explicit by estimating the 
pretest probability of disease. The clinician in 
this example, based on what he or she knows 
from talking with the patient, might assess the 
pretest or prior probability of heart disease as 0.5 
(50  % chance or 1:1 odds; see Sect.  3.2). We 
explore methods used to estimate pretest proba-
bility accurately in Sect. 3.2.

After the pretest probability of disease has 
been estimated, the second stage of the diagnos-
tic process involves gathering more information, 
often by performing a diagnostic test. The clini-
cian in Example 4 ordered a test to reduce the 
uncertainty about the diagnosis of heart disease. 
The positive test result supports the diagnosis of 
heart disease, and this reduction in uncertainty is 
shown in Fig.  3.1a. Although the clinician in 
Example 4 chose the exercise stress test, there 
are many tests available to diagnose heart dis-
ease, and the clinician would like to know which 
test he or she should order next. Some tests 
reduce uncertainty more than do others (see 
Fig. 3.1b), but may cost more. The more a test 
reduces uncertainty, the more useful it is. In 
Sect. 3.3, we explore ways to measure how well 
a test reduces uncertainty, expanding the con-
cepts of test sensitivity and specificity first intro-
duced in Chap. 2.

Example 4

Mr. Smith, a 60-year-old man, complains to 
his clinician that he has pressure-like chest 
pain that occurs when he walks quickly. 
After taking his history and examining him, 
his clinician believes there is a high enough 
chance that he has heart disease to warrant 

ordering an exercise stress test. In the stress 
test, an electrocardiogram (ECG) is taken 
while Mr. Smith exercises. Because the 
heart must pump more blood per stroke and 
must beat faster (and thus requires more 
oxygen) during exercise, many heart condi-
tions are evident only when the patient is 
physically stressed. Mr. Smith’s results 
show abnormal changes in the ECG during 
exercise—a sign of heart disease.
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Given new information provided by a test, the 
third step is to update the initial probability esti-
mate. The clinician in Example 4 must ask: 
“What is the probability of disease given the 
abnormal stress test?” The clinician wants to 
know the posterior probability, or post-test 
probability, of disease (see Fig.  3.1a). In 
Sect.  3.4, we reexamine Bayes’ theorem, intro-
duced in Chap. 2, and we discuss its use for cal-
culating the post-test probability of disease. As 
we noted, to calculate post-test probability, we 
must know the pretest probability, as well as the 
sensitivity and specificity, of the test.3

3.2	 �Probability Assessment: 
Methods to Assess Pretest 
Probability

In this section, we explore the methods that clini-
cians can use to make judgments about the proba-
bility of disease before they order tests. Probability 
is our preferred means of expressing uncertainty. 
In this framework, probability (p) expresses a cli-
nician’s opinion about the likelihood of an event as 
a number between 0 and 1. An event that is certain 
to occur has a probability of 1; an event that is cer-
tain not to occur has a probability of 0.4

The probability of event A is written p[A]. 
The sum of the probabilities of all possible, 
collectively exhaustive outcomes of a chance 
event must be equal to 1. Thus, in a coin flip,

a

b

Fig. 3.1  The effect of test 
results on the probability of 
disease. (a) A positive test 
result increases the 
probability of disease. (b) 
Test 2 reduces uncertainty 
about presence of disease 
(increases the probability of 
disease) more than test 1 
does

3Note that pretest and post-test probabilities correspond to 
the concepts of prevalence and predictive value. The latter 
terms were used in Chap. 2 because the discussion was 
about the use of tests for screening populations of patients; 
in a population, the pretest probability of disease is simply 
that disease’s prevalence in that population.

4We assume a Bayesian interpretation of probability; 
there are other statistical interpretations of probability.
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p pheads tails[ ] + [ ] = 1 0. .

	

The probability of event A and event B occur-
ring together is denoted by p[A&B] or by p[A,B].

Events A and B are considered independent 
if the occurrence of one does not influence the 
probability of the occurrence of the other. The 
probability of two independent events A and B 
both occurring is given by the product of the indi-
vidual probabilities:

	
p A,B p A p B[ ] = [ ]´ [ ]. 	

Thus, the probability of heads on two consec-
utive coin tosses is 0.5 × 0.5 = 0.25. (Regardless 
of the outcome of the first toss, the probability of 
heads on the second toss is 0.5.)

The probability that event A will occur given 
that event B is known to occur is called the condi-
tional probability of event A given event B, 
denoted by p[A|B] and read as “the probability of 
A given B.” Thus a post-test probability is a condi-
tional probability predicated on the test or finding. 
For example, if 30 % of patients who have a swol-
len leg have a blood clot, we say the probability of 
a blood clot given a swollen leg is 0.3, denoted:

	
p blood clot swollen leg| . .[ ] = 0 3

	

Before the swollen leg is noted, the pretest 
probability is simply the prevalence of blood 
clots in the leg in the population from which the 
patient was selected—a number likely to be much 
smaller than 0.3.

Now that we have decided to use probability 
to express uncertainty, how can we estimate 
probability? We can do so by either subjective or 
objective methods; each approach has advantages 
and limitations.

3.2.1	 �Subjective Probability 
Assessment

Most assessments that clinicians make about 
probability are based on personal experience. 
The clinician may compare the current problem 

to similar problems encountered previously and 
then ask: “What was the frequency of disease in 
similar patients whom I have seen?”

To make these subjective assessments of prob-
ability, people rely on several discrete, often 
unconscious mental processes that have been 
described and studied by cognitive psychologists 
(Tversky and Kahneman 1974). These processes 
are termed cognitive heuristics.

More specifically, a cognitive heuristic is a men-
tal process by which we learn, recall, or process 
information; we can think of heuristics as rules of 
thumb. Knowledge of heuristics is important 
because it helps us to understand the underpinnings 
of our intuitive probability assessment. Both naive 
and sophisticated decision makers (including clini-
cians and statisticians) misuse heuristics and there-
fore make systematic—often serious—errors when 
estimating probability. So, just as we may underes-
timate distances on a particularly clear day (Tversky 
and Kahneman 1974), we may make mistakes in 
estimating probability in deceptive clinical situa-
tions. Three heuristics have been identified as 
important in estimation of probability:
	1.	 Representativeness. One way that people esti-

mate probability is to ask themselves: What is 
the probability that object A belongs to class 
B? For instance, what is the probability that 
this patient who has a swollen leg belongs to 
the class of patients who have blood clots? To 
answer, we often rely on the representative-
ness heuristic in which probabilities are 
judged by the degree to which A is representa-
tive of, or similar to, B. The clinician will 
judge the probability of the development of a 
blood clot (thrombosis) by the degree to which 
the patient with a swollen leg resembles the 
clinician’s mental image of patients with a 
blood clot. If the patient has all the classic 
findings (signs and symptoms) associated 
with a blood clot, the clinician judges that the 
patient is highly likely to have a blood clot. 
Difficulties occur with the use of this heuristic 
when the disease is rare (very low prior prob-
ability, or prevalence); when the clinician’s 
previous experience with the disease is atypi-
cal, thus giving an incorrect mental represen-
tation; when the patient’s clinical profile is 
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atypical; and when the probability of certain 
findings depends on whether other findings 
are present.

	2.	 Availability. Our estimate of the probability of 
an event is influenced by the ease with which 
we remember similar events. Events more 
easily remembered are judged more probable; 
this rule is the availability heuristic, and it is 
often misleading. We remember dramatic, 
atypical, or emotion-laden events more easily 
and therefore are likely to overestimate their 
probability. A clinician who had cared for a 
patient who had a swollen leg and who then 
died from a blood clot would vividly remem-
ber thrombosis as a cause of a swollen leg. 
The clinician would remember other causes of 
swollen legs less easily, and he or she would 
tend to overestimate the probability of a blood 
clot in patients with a swollen leg.

	3.	 Anchoring and adjustment. Another com-
mon heuristic used to judge probability is 
anchoring and adjustment. A clinician 
makes an initial probability estimate (the 
anchor) and then adjusts the estimate based 
on further information. For instance, the cli-
nician in Example 4 makes an initial estimate 
of the probability of heart disease as 0.5. If 
he or she then learns that all the patient’s 
brothers had died of heart disease, the clini-
cian should raise the estimate because the 
patient’s strong family history of heart dis-
ease increases the probability that he or she 
has heart disease, a fact the clinician could 
ascertain from the literature. The usual mis-
take is to adjust the initial estimate (the 
anchor) insufficiently in light of the new 
information. Instead of raising his or her esti-
mate of prior probability to, say, 0.8, the 
clinician might adjust it to only 0.6.
Heuristics often introduce error into our judg-

ments about prior probability. Errors in our initial 
estimates of probabilities will be reflected in the 
posterior probabilities even if we use quantitative 
methods to derive those posterior probabilities. 
An understanding of heuristics is thus important 
for medical decision making. The clinician can 
avoid some of these difficulties by using pub-
lished research results to estimate probabilities.

3.2.2	 �Objective Probability 
Estimates

Published research results can serve as a guide 
for more objective estimates of probabilities. We 
can use the prevalence of disease in the popula-
tion or in a subgroup of the population, or clinical 
prediction rules, to estimate the probability of 
disease.

As we discussed in Chap. 2, the prevalence is 
the frequency of an event in a population; it is a 
useful starting point for estimating probability. 
For example, if you wanted to estimate the 
probability of prostate cancer in a 50-year-old 
man, the prevalence of prostate cancer in men of 
that age (5–14 %) would be a useful anchor point 
from which you could increase or decrease the 
probability depending on your findings. Estimates 
of disease prevalence in a defined population 
often are available in the medical literature.

Symptoms, such as difficulty with urination, 
or signs, such as a palpable prostate nodule, can 
be used to place patients into a clinical subgroup 
in which the probability of disease is known. For 
patients referred to a urologist for evaluation of a 
prostate nodule, the prevalence of cancer is about 
50 %. This approach may be limited by difficulty 
in placing a patient in the correct clinically 
defined subgroup, especially if the criteria for 
classifying patients are ill-defined. A trend has 
been to develop guidelines, known as clinical 
prediction rules, to help clinicians assign patients 
to well-defined subgroups in which the probabil-
ity of disease is known.

Clinical prediction rules are developed from 
systematic study of patients who have a particu-
lar diagnostic problem; they define how clini-
cians can use combinations of clinical findings to 
estimate probability. The symptoms or signs that 
make an independent contribution to the proba-
bility that a patient has a disease are identified 
and assigned numerical weights based on statisti-
cal analysis of the finding’s contribution. The 
result is a list of symptoms and signs for an indi-
vidual patient, each with a corresponding numer-
ical contribution to a total score. The total score 
places a patient in a subgroup with a known prob-
ability of disease.

3  Biomedical Decision Making: Probabilistic Clinical Reasoning
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What is the probability that Ms. Troy will suf-
fer a cardiac complication? Clinical prediction 
rules have been developed to help clinicians to 
assess this risk (Palda and Detsky 1997). 
Table 3.1 lists clinical findings and their corre-
sponding diagnostic weights. We add the diag-
nostic weights for each of the patient’s clinical 
findings to obtain the total score. The total score 
places the patient in a group with a defined prob-
ability of cardiac complications, as shown in 
Table 3.2. Ms. Troy receives a score of 20; thus, 
the clinician can estimate that the patient has a 
27  % chance of developing a severe cardiac 
complication.

Objective estimates of pretest probability are 
subject to error because of bias in the studies on 
which the estimates are based. For instance, pub-
lished prevalence data may not apply directly to a 

particular patient. A clinical illustration is that 
early studies indicated that a patient found to 
have microscopic evidence of blood in the urine 
(microhematuria) should undergo extensive tests 
because a significant proportion of the patients 
would be found to have cancer or other serious 
diseases. The tests involve some risk, discomfort, 
and expense to the patient. Nonetheless, the 
approach of ordering tests for any patient with 
microhematuria was widely practiced for some 
years. A later study, however, suggested that the 
probability of serious disease in asymptomatic 
patients with only microscopic evidence of blood 
was only about 2  % (Mohr et  al. 1986). In the 
past, many patients may have undergone unnec-
essary tests, at considerable financial and per-
sonal cost.

What explains the discrepancy in the estimates 
of disease prevalence? The initial studies that 
showed a high prevalence of disease in patients 
with microhematuria were performed on patients 
referred to urologists, who are specialists. 
The primary care clinician refers patients whom 
he or she suspects have a disease in the special-
ist’s sphere of expertise. Because of this initial 
screening by primary care clinicians, the special-
ists seldom see patients with clinical findings 
that imply a low probability of disease. Thus, 
the prevalence of disease in the patient popula-
tion in a specialist’s practice often is much higher 
than that in a primary care practice; studies per-
formed with the former patients therefore almost 
always overestimate disease probabilities. This 
example demonstrates referral bias. Referral 
bias is common because many published studies 
are performed on patients referred to specialists. 

Table 3.1  Diagnostic weights for assessing risk of car-
diac complications from noncardiac surgery

Clinical finding Diagnostic weight

Age greater than 70 years 5
Recent documented heart attack
>6 months previously 5
<6 months previously 10
Severe angina 20
Pulmonary edemaa

Within 1 week 10
Ever 5
Arrhythmia on most recent ECG 5
>5 PVCs 5
Critical aortic stenosis 20
Poor medical condition 5
Emergency surgery 10

Source: Modified from Palda et al. (1997)
ECG electrocardiogram, PVCs premature ventricular con-
tractions on preoperative electrocardiogram
aFluid in the lungs due to reduced heart function

Table 3.2  Clinical prediction rule for diagnostic weights 
in Table 3.1

Total score
Prevalence (%) of cardiac 
complicationsa

0–15 5
20–30 27
>30 60

Source: Modified from Palda et al. (1997)
aCardiac complications defined as death, heart attack, or 
congestive heart failure

Example 5

Ms. Troy, a 65-year-old woman who had a 
heart attack 4 months ago, has abnormal 
heart rhythm (arrhythmia), is in poor medi-
cal condition, and is about to undergo elec-
tive surgery.

D.K. Owens and H.C. Sox
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Thus, one may need to adjust published estimates 
before one uses them to estimate pretest proba-
bility in other clinical settings.

We now can use the techniques discussed in this 
part of the chapter to illustrate how the clinician in 
Example 4 might estimate the pretest probability of 
heart disease in his or her patient, Mr. Smith, who 
has pressure-like chest pain. We begin by using the 
objective data that are available. The prevalence of 
heart disease in 60-year-old men could be our start-
ing point. In this case, however, we can obtain a 
more refined estimate by placing the patient in a 
clinical subgroup in which the prevalence of disease 
is known. The prevalence in a clinical subgroup, 
such as men with symptoms typical of coronary 
heart disease, will predict the pretest probability 
more accurately than would the prevalence of heart 
disease in a group that is heterogeneous with respect 
to symptoms, such as the population at large. We 
assume that large studies have shown the prevalence 
of coronary heart disease in men with typical symp-
toms of angina pectoris to be about 0.9; this preva-
lence is useful as an initial estimate that can be 
adjusted based on information specific to the 
patient. Although the prevalence of heart disease in 
men with typical symptoms is high, 10 % of patients 
with this history do not have heart disease.

The clinician might use subjective methods to 
adjust his or her estimate further based on other 
specific information about the patient. For exam-
ple, the clinician might adjust his or her initial 
estimate of 0.9 upward to 0.95 or higher based on 
information about family history of heart disease. 
The clinician should be careful, however, to avoid 
the mistakes that can occur when one uses heuris-
tics to make subjective probability estimates. In 
particular, he or she should be aware of the ten-
dency to stay too close to the initial estimate 
when adjusting for additional information. By 
combining subjective and objective methods for 
assessing pretest probability, the clinician can 
arrive at a reasonable estimate of the pretest prob-
ability of heart disease.

In this section, we summarized subjective 
and objective methods to determine the pretest 
probability, and we learned how to adjust the 
pretest probability after assessing the specific 

subpopulation of which the patient is representa-
tive. The next step in the diagnostic process is 
to gather further information, usually in the form 
of formal diagnostic tests (laboratory tests, X-ray 
studies, etc.). To help you to understand this step 
more clearly, we discuss in the next two sections 
how to measure the accuracy of tests and how to 
use probability to interpret the results of the tests.

3.3	 �Measurement of the 
Operating Characteristics 
of Diagnostic Tests

The first challenge in assessing any test is to 
determine criteria for deciding whether a result is 
normal or abnormal. In this section, we present 
the issues that you need to consider when making 
such a determination.

3.3.1	 �Classification of Test Results 
as Abnormal

Most biological measurements in a population 
of healthy people are continuous variables that 
assume different values for different individuals. 
The distribution of values often is approximated 
by the normal (gaussian, or bell-shaped) distribu-
tion curve (Fig. 3.2). Thus, 95 % of the popula-
tion will fall within two standard deviations of 
the mean. About 2.5 % of the population will be 
more than two standard deviations from the mean 
at each end of the distribution. The distribution of 
values for ill individuals may be normally distrib-
uted as well. The two distributions usually over-
lap (see Fig. 3.2).

How is a test result classified as abnormal? 
Most clinical laboratories report an “upper limit 
of normal,” which usually is defined as two stan-
dard deviations above the mean. Thus, a test 
result greater than two standard deviations above 
the mean is reported as abnormal (or positive); a 
test result below that cutoff is reported as normal 
(or negative). As an example, if the mean choles-
terol concentration in the blood is 220 mg/dl, a 
clinical laboratory might choose as the upper 
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limit of normal 280 mg/dl because it is two stan-
dard deviations above the mean. Note that a cut-
off that is based on an arbitrary statistical criterion 
may not have biological significance.

An ideal test would have no values at which 
the distribution of diseased and nondiseased peo-
ple overlap. That is, if the cutoff value were set 
appropriately, the test would be normal in all 
healthy individuals and abnormal in all individu-
als with disease. Few tests meet this standard. If a 
test result is defined as abnormal by the statistical 
criterion, 2.5 % of healthy individuals will have 
an abnormal test. If there is an overlap in the dis-
tribution of test results in healthy and diseased 
individuals, some diseased patients will have a 
normal test (see Fig. 3.2). You should be familiar 
with the terms used to denote these groups:
•	 A true positive (TP) is a positive test result 

obtained for a patient in whom the disease is 
present (the test result correctly classifies the 
patient as having the disease).

•	 A true negative (TN) is a negative test result 
obtained for a patient in whom the disease is 
absent (the test result correctly classifies the 
patient as not having the disease).

•	 A false positive (FP) is a positive test result 
obtained for a patient in whom the disease is 
absent (the test result incorrectly classifies the 
patient as having the disease).

•	 A false negative (FN) is a negative test result 
obtained for a patient in whom the disease is 
present (the test result incorrectly classifies 
the patient as not having the disease).

Figure 3.2 shows that varying the cutoff point 
(moving the vertical line in the figure) for an 
abnormal test will change the relative proportions 
of these groups. As the cutoff is moved further up 
from the mean of the normal values, the number 
of FNs increases and the number of FPs decreases. 
Once we have chosen a cutoff point, we can con-
veniently summarize test performance—the abil-
ity to discriminate disease from nondisease—in a 
2 × 2 contingency table, as shown in Table 3.3. 
The table summarizes the number of patients in 
each group: TP, FP, TN, and FN. Note that the sum 
of the first column is the total number of diseased 
patients, TP + FN. The sum of the second col-
umn is the total number of nondiseased patients, 
FP + TN. The sum of the first row, TP + FP, is 
the total number of patients with a positive test 
result. Likewise, FN + TN gives the total number 
of patients with a negative test result.

A perfect test would have no FN or FP results. 
Erroneous test results do occur, however, and you 
can use a 2 × 2 contingency table to define the 
measures of test performance that reflect these 
errors.

Table 3.3  A 2 × 2 contingency table for test results

Results of test
Disease 
present

Disease 
absent Total

Positive result TP FP TP + FP
Negative result FN TN FN + TN

TP + FN FP + TN

TP true positive, TN true negative, FP false positive, FN 
false negative

Fig. 3.2  Distribution of test 
results in healthy and 
diseased individuals. Varying 
the cutoff between “normal” 
and “abnormal” across the 
continuous range of possible 
values changes the relative 
proportions of false positives 
(FPs) and false negatives 
(FNs) for the two 
populations
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3.3.2	 �Measures of Test Performance

Measures of test performance are of two types: 
measures of agreement between tests or mea-
sures of concordance, and measures of disagree-
ment or measures of discordance. Two types of 
concordant test results occur in the 2 × 2 table in 
Table 3.3: TPs and TNs. The relative frequencies 
of these results form the basis of the measures of 
concordance. These measures correspond to the 
ideas of the sensitivity and specificity of a test, 
which we introduced in Chap. 2. We define each 
measure in terms of the 2 × 2 table and in terms of 
conditional probabilities.

The true-positive rate (TPR), or sensitivity, 
is the likelihood that a diseased patient has a pos-
itive test. In conditional-probability notation, 
sensitivity is expressed as the probability of a 
positive test given that disease is present:

	
p positive test disease| .[ ] 	

Another way to think of the TPR is as a ratio. 
The likelihood that a diseased patient has a posi-
tive test is given by the ratio of diseased patients 
with a positive test to all diseased patients:

TPR
number of diseased patients with positive test

totalnumber of
=

ddiseased patients








.

We can determine these numbers for our 
example from the 2 × 2 table (see Table 3.3). The 
number of diseased patients with a positive test is 
TP. The total number of diseased patients is the 
sum of the first column, TP + FN. So,

	
TPR

TP

TP FN
=

+
.
	

The true-negative rate (TNR), or specificity, 
is the likelihood that a nondiseased patient has a 
negative test result. In terms of conditional prob-
ability, specificity is the probability of a negative 
test given that disease is absent:

	
p negative test nodisease| .[ ] 	

Viewed as a ratio, the TNR is the number of 
nondiseased patients with a negative test divided 
by the total number of nondiseased patients:

TNR

Number of nondiseased patients
with negative test

Totalnumber
=

oof nondiseased patients
















.

From the 2 × 2 table (see Table 3.3),

	
TNR

TN

TN FP
=

+ 	
The measures of discordance—the false-

positive rate (FPR) and the false-negative rate 
(FNR)—are defined similarly. The FNR is the 
likelihood that a diseased patient has a negative 
test result. As a ratio,

FNR =

Number of diseased patients
with negative test

Totalnumber of diiseased patients

=
FN

FN + TP
.

















The FPR is the likelihood that a nondiseased 
patient has a positive test result:

FPR =

Number of nondiseased patients
with positive test

Totalnumber oof nondiseased patients

FP
FP + TN

= .

















Example 6

Consider again the problem of screening 
blood donors for HIV. One test used to 
screen blood donors for HIV antibody is an 
enzyme-linked immunoassay (EIA). So 
that the performance of the EIA can be 
measured, the test is performed on 400 
patients; the hypothetical results are shown 
in the 2 × 2 table in Table 3.4.5

5This example assumes that we have a perfect 
method (different from EIA) for determining the 
presence or absence of antibody. We discuss the 
idea of gold-standard tests in Sect. 3.3.4. We have 
chosen the numbers in the example to simplify the 
calculations. In practice, the sensitivity and speci-
ficity of the HIV EIAs are greater than 99 %.
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To determine test performance, we calculate the 
TPR (sensitivity) and TNR (specificity) of the EIA 
antibody test. The TPR, as defined previously, is:

	

TP

TP FN+
=

+
=98

98 2
0 98. .

	
Thus, the likelihood that a patient with the HIV 

antibody will have a positive EIA test is 0.98. If 
the test were performed on 100 patients who truly 
had the antibody, we would expect the test to be 
positive in 98 of the patients. Conversely, we 
would expect two of the patients to receive incor-
rect, negative results, for an FNR of 2  %. (You 
should convince yourself that the sum of TPR and 
FNR by definition must be 1: TPR + FNR = 1.)

And the TNR is:

	

TN

TN FP+
=

+
=297

297 3
0 99.

	
The likelihood that a patient who has no HIV 

antibody will have a negative test is 0.99. 
Therefore, if the EIA test were performed on 100 
individuals who had not been infected with HIV, 
it would be negative in 99 and incorrectly posi-
tive in 1. (Convince yourself that the sum of TNR 
and FPR also must be 1: TNR + FPR = 1.)

3.3.3	 �Implications of Sensitivity 
and Specificity: How 
to Choose Among Tests

It may be clear to you already that the calculated 
values of sensitivity and specificity for a 
continuous-valued test depend on the particular 
cutoff value chosen to distinguish normal and 

abnormal results. In Fig. 3.2, note that increasing 
the cutoff level (moving it to the right) would 
decrease significantly the number of FP tests but 
also would increase the number of FN tests. 
Thus, the test would have become more specific 
but less sensitive. Similarly, a lower cutoff value 
would increase the FPs and decrease the FNs, 
thereby increasing sensitivity while decreasing 
specificity. Whenever a decision is made about 
what cutoff to use in calling a test abnormal, an 
inherent philosophic decision is being made 
about whether it is better to tolerate FNs (missed 
cases) or FPs (nondiseased people inappropri-
ately classified as diseased). The choice of cutoff 
depends on the disease in question and on the 
purpose of testing. If the disease is serious and if 
lifesaving therapy is available, we should try to 
minimize the number of FN results. On the other 
hand, if the disease in not serious and the therapy 
is dangerous, we should set the cutoff value to 
minimize FP results.

We stress the point that sensitivity and speci-
ficity are characteristics not of a test per se but 
rather of the test and a criterion for when to call 
that test abnormal. Varying the cutoff in Fig. 3.2 
has no effect on the test itself (the way it is per-
formed, or the specific values for any particular 
patient); instead, it trades off specificity for sen-
sitivity. Thus, the best way to characterize a test 
is by the range of values of sensitivity and speci-
ficity that it can take on over a range of possible 
cutoffs. The typical way to show this relationship 
is to plot the test’s sensitivity against 1 minus 
specificity (i.e., the TPR against the FPR), as the 
cutoff is varied and the two test characteristics 
are traded off against each other (Fig. 3.3). The 
resulting curve, known as a receiver-operating 
characteristic (ROC) curve, was originally 
described by researchers investigating methods 
of electromagnetic-signal detection and was later 
applied to the field of psychology (Peterson and 
Birdsall 1953; Swets 1973). Any given point 
along an ROC curve for a test corresponds to 
the test sensitivity and specificity for a given 
threshold of “abnormality.” Similar curves can 
be drawn for any test used to associate observed 
clinical data with specific diseases or disease 
categories.

Table 3.4  A 2 × 2 contingency table for HIV anti-
body EIA

EIA test 
result

Antibody 
present

Antibody 
absent Total

Positive 
EIA

98 3 101

Negative 
EIA

2 297 299

100 300

EIA enzyme-linked immunoassay
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Suppose a new test were introduced that com-
peted with the current way of screening for the 
presence of a disease. For example, suppose a 
new radiologic procedure for assessing the pres-
ence or absence of pneumonia became available. 
This new test could be assessed for trade-offs in 
sensitivity and specificity, and an ROC curve 
could be drawn. As shown in Fig. 3.3, a test has 
better discriminating power than a competing test 
if its ROC curve lies above that of the other test. 
In other words, test B is more discriminating than 
test A when its specificity is greater than test A’s 
specificity for any level of sensitivity (and when 
its sensitivity is greater than test A’s sensitivity 
for any level of specificity).

Understanding ROC curves is important in 
understanding test selection and data interpreta-
tion. Clinicians should not necessarily, however, 
always choose the test with the most discriminat-
ing ROC curve. Matters of cost, risk, discomfort, 
and delay also are important in the choice about 
what data to collect and what tests to perform. 
When you must choose among several available 
tests, you should select the test that has the high-
est sensitivity and specificity, provided that other 
factors, such as cost and risk to the patient, are 

equal. The higher the sensitivity and specificity 
of a test, the more the results of that test will 
reduce uncertainty about probability of disease.

3.3.4	 �Design of Studies  
of Test Performance

In Sect. 3.3.2, we discussed measures of test per-
formance: a test’s ability to discriminate disease 
from no disease. When we classify a test result as 
TP, TN, FP, or FN, we assume that we know with 
certainty whether a patient is diseased or healthy. 
Thus, the validity of any test’s results must be 
measured against a gold standard: a test that reveals 
the patient’s true disease state, such as a biopsy of 
diseased tissue or a surgical operation. A gold-
standard test is a procedure that is used to define 
unequivocally the presence or absence of disease. 
The test whose discrimination is being measured is 
called the index test. The gold-standard test usu-
ally is more expensive, riskier, or more difficult to 
perform than is the index test (otherwise, the less 
precise test would not be used at all).

The performance of the index test is measured 
in a small, select group of patients enrolled in a 
study. We are interested, however, in how the test 
performs in the broader group of patients in 
which it will be used in practice. The test may 
perform differently in the two groups, so we 
make the following distinction: the study popu-
lation comprises those patients (usually a subset 
of the clinically relevant population) in whom 
test discrimination is measured and reported; the 
clinically relevant population comprises those 
patients in whom a test typically is used.

3.3.5	 �Bias in the Measurement  
of Test Characteristics

We mentioned earlier the problem of referral 
bias. Published estimates of disease prevalence 
(derived from a study population) may differ 
from the prevalence in the clinically relevant 
population because diseased patients are more 
likely to be included in studies than are nondis-
eased patients. Similarly, published values of 

Fig. 3.3  Receiver operating characteristic (ROC) curves 
for two hypothetical tests. Test B is more discriminative 
than test A because its curve is higher (e.g., the false-
positive rate (FPR) for test B is lower than the FPR for test 
A at any value of true-positive rate (TPR)). The more dis-
criminative test may not always be preferred in clinical 
practice, however (see text)
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sensitivity and specificity are derived from study 
populations that may differ from the clinically 
relevant populations in terms of average level of 
health and disease prevalence. These differences 
may affect test performance, so the reported val-
ues may not apply to many patients in whom a 
test is used in clinical practice.

The experience with CEA has been repeated 
with numerous tests. Early measures of test dis-
crimination are overly optimistic, and subsequent 
test performance is disappointing. Problems arise 
when the TPR and TNR, as measured in the study 
population, do not apply to the clinically relevant 
population. These problems usually are the result 
of bias in the design of the initial studies—
notably spectrum bias, test referral bias, or test 
interpretation bias.

Spectrum bias occurs when the study popula-
tion includes only individuals who have advanced 
disease (“sickest of the sick”) and healthy volun-
teers, as is often the case when a test is first being 
developed. Advanced disease may be easier to 
detect than early disease. For example, cancer is 
easier to detect when it has spread throughout the 
body (metastasized) than when it is localized to, 
say, a small portion of the colon. In contrast to the 
study population, the clinically relevant popula-
tion will contain more cases of early disease that 

are more likely to be missed by the index test 
(FNs). Thus, the study population will have an 
artifactually low FNR, which produces an arti-
factually high TPR (TPR = 1−FNR). In addition, 
healthy volunteers are less likely than are patients 
in the clinically relevant population to have other 
diseases that may cause FP results6; the study 
population will have an artificially low FPR, and 
therefore the specificity will be overestimated 
(TNR = 1−FPR). Inaccuracies in early estimates 
of the TPR and TNR of the CEA were partly due 
to spectrum bias.

Test-referral bias occurs when a positive 
index test is a criterion for ordering the gold stan-
dard test. In clinical practice, patients with nega-
tive index tests are less likely to undergo the gold 
standard test than are patients with positive tests. 
In other words, the study population, comprising 
individuals with positive index–test results, has a 
higher percentage of patients with disease than 
does the clinically relevant population. Therefore, 
both TN and FN tests will be underrepresented in 
the study population. The result is overestimation 
of the TPR and underestimation of the TNR in 
the study population.

Test-interpretation bias develops when the 
interpretation of the index test affects that of the 
gold standard test or vice versa. This bias causes 
an artificial concordance between the tests (the 
results are more likely to be the same) and spuri-
ously increases measures of concordance—the 
sensitivity and specificity—in the study popula-
tion. (Remember, the relative frequencies of TPs 
and TNs are the basis for measures of concor-
dance). To avoid these problems, the person 
interpreting the index test should be unaware of 
the results of the gold standard test.

6Volunteers are often healthy, whereas patients in the 
clinically relevant population often have several diseases 
in addition to the disease for which a test is designed. 
These other diseases may cause FP test results. For exam-
ple, patients with benign (rather than malignant) enlarge-
ment of their prostate glands are more likely than are 
healthy volunteers to have FP elevations of prostate-
specific antigen (Meigs et  al. 1996), a substance in the 
blood that is elevated in men who have prostate cancer. 
Measurement of prostate-specific antigen is often used to 
detect prostate cancer.

Example 7

In the early 1970s, a blood test called the 
carcinoembryonic antigen (CEA) was 
touted as a screening test for colon can-
cer. Reports of early investigations, per-
formed in selected patients, indicated that 
the test had high sensitivity and specific-
ity. Subsequent work, however, proved the 
CEA to be completely valueless as a screen-
ing blood test for colon cancer. Screening 
tests are used in unselected populations, 
and the differences between the study and 
clinically relevant populations were partly 
responsible for the original miscalculations 
of the CEA’s TPR and TNR (Ransohoff 
and Feinstein 1978).
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To counter these three biases, you may need to 
adjust the TPR and TNR when they are applied to 
a new population. All the biases result in a TPR 
that is higher in the study population than it is in 
the clinically relevant population. Thus, if you 
suspect bias, you should adjust the TPR (sensitiv-
ity) downward when you apply it to a new 
population.

Adjustment of the TNR (specificity) depends 
on which type of bias is present. Spectrum bias 
and test interpretation bias result in a TNR that is 
higher in the study population than it will be in 
the clinically relevant population. Thus, if these 
biases are present, you should adjust the specific-
ity downward when you apply it to a new popula-
tion. Test-referral bias, on the other hand, 
produces a measured specificity in the study pop-
ulation that is lower than it will be in the clini-
cally relevant population. If you suspect test 
referral bias, you should adjust the specificity 
upward when you apply it to a new population.

3.3.6	 �Meta-Analysis  
of Diagnostic Tests

Often, there are many studies that evaluate the 
sensitivity and specificity of the same diagnostic 
test. If the studies come to similar conclusions 
about the sensitivity and specificity of the test, 
you can have increased confidence in the results 
of the studies. But what if the studies disagree? 
For example, by 1995, over 100 studies had 
assessed the sensitivity and specificity of the 
PCR for diagnosis of HIV (Owens et al. 1996a, 
b); these studies estimated the sensitivity of PCR 
to be as low as 10 % and to be as high as 100 %, 
and they assessed the specificity of PCR to be 
between 40 and 100 %. Which results should you 
believe? One approach that you can use is to 
assess the quality of the studies and to use the 
estimates from the highest-quality studies.

For evaluation of PCR, however, even the 
high-quality studies did not agree. Another 
approach is to perform a meta-analysis: a study 
that combines quantitatively the estimates from 
individual studies to develop a summary ROC 
curve (Moses et al. 1993; Owens et al. 1996a, b; 

Hellmich et  al. 1999; Leeflang et  al. 2008). 
Investigators develop a summary ROC curve by 
using estimates from many studies, in contrast to 
the type of ROC curve discussed in Sect. 3.3.3, 
which is developed from the data in a single 
study. Summary ROC curves provide the best 
available approach to synthesizing data from 
many studies.

Section 3.3 has dealt with the second step in 
the diagnostic process: acquisition of further 
information with diagnostic tests. We have 
learned how to characterize the performance of a 
test with sensitivity (TPR) and specificity (TNR). 
These measures reveal the probability of a test 
result given the true state of the patient. They do 
not, however, answer the clinically relevant ques-
tion posed in the opening example: Given a posi-
tive test result, what is the probability that this 
patient has the disease? To answer this question, 
we must learn methods to calculate the post-test 
probability of disease.

3.4	 �Post-test Probability: Bayes’ 
Theorem and Predictive 
Value

The third stage of the diagnostic process (see 
Fig. 3.1a) is to adjust our probability estimate to 
take into account the new information gained 
from diagnostic tests by calculating the post-test 
probability.

3.4.1	 �Bayes’ Theorem

As we noted earlier in this chapter, a clinician can 
use the disease prevalence in the patient popula-
tion as an initial estimate of the pretest risk of 
disease. Once clinicians begin to accumulate 
information about a patient, however, they revise 
their estimate of the probability of disease. The 
revised estimate (rather than the disease preva-
lence in the general population) becomes the pre-
test probability for the test that they perform. 
After they have gathered more information with 
a diagnostic test, they can calculate the post-test 
probability of disease with Bayes’ theorem.
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Bayes’ theorem is a quantitative method for 
calculating post-test probability using the pretest 
probability and the sensitivity and specificity of 
the test. The theorem is derived from the defini-
tion of conditional probability and from the prop-
erties of probability (see the Appendix to this 
chapter for the derivation).

Recall that a conditional probability is the 
probability that event A will occur given that 
event B is known to occur (see Sect. 3.2). In gen-
eral, we want to know the probability that disease 
is present (event A), given that the test is known 
to be positive (event B). We denote the presence 
of disease as D, its absence as − D, a test result as 
R, and the pretest probability of disease as p[D]. 
The probability of disease, given a test result, is 
written p[D|R]. Bayes’ theorem is:

	

p D R
p D p R D

p D R D p D p R D
|

|

| |
[ ] =

[ ]× [ ]
[ ]× [ ] + −[ ]× −[ ]p

	

We can reformulate this general equation in 
terms of a positive test, (+), by substituting 
p[D|+] for p[D|R], p[+|D] for p[R|D], p[+| − D] 
for p[R| − D], and 1 − p[D] for p[− D]. From 
Sect.  3.3, recall that p[+|D] = TPR and 
p[+| − D] = FPR. Substitution provides Bayes’ 
theorem for a positive test:

	

p D
p D

p D p D
| +[ ] =

[ ]×

[ ]× + − [ ]( )×
TPR

TPR FPR1
	

We can use a similar derivation to develop 
Bayes’ theorem for a negative test:

	

p D
p D

p D p D
| −[ ] =

[ ]×

[ ]× + − [ ]( )×
FNR

FNR TNR1
	

Thus, the positive test raised the post-test 
probability to 0.98 from the pretest probability of 
0.95. The change in probability is modest because 
the pretest probability was high (0.95) and 
because the FPR also is high (0.20). If we repeat 
the calculation with a pretest probability of 0.75, 
the post-test probability is 0.91. If we assume the 
FPR of the test to be 0.05 instead of 0.20, a pre-
test probability of 0.95 changes to 0.996.

3.4.2	 �The Odds-Ratio Form of 
Bayes’ Theorem and 
Likelihood Ratios

Although the formula for Bayes’ theorem is 
straightforward, it is awkward for mental calcula-
tions. We can develop a more convenient form of 
Bayes’ theorem by expressing probability as 
odds and by using a different measure of test dis-
crimination. Probability and odds are related as 
follows:

	

odds

odds

odds

=

=
+

p

p

p

1

1

−
,

.
	

Thus, if the probability of rain today is 0.75, 
the odds are 3:1. Thus, on similar days, we should 
expect rain to occur three times for each time it 
does not occur.

Example 8

We are now able to calculate the clinically 
important probability in Example 4: the 
post-test probability of heart disease after a 
positive exercise test. At the end of 
Sect. 3.2.2, we estimated the pretest prob-
ability of heart disease as 0.95, based on 

the prevalence of heart disease in men who 
have typical symptoms of heart disease and 
on the prevalence in people with a family 
history of heart disease. Assume that the 
TPR and FPR of the exercise stress test are 
0.65 and 0.20, respectively. Substituting in 
Bayes’ formula for a positive test, we 
obtain the probability of heart disease given 
a positive test result:

	

p D |
. .

. . . .
.+[ ] = ´

´ + ´
=

0 95 0 65

0 95 0 65 0 05 0 20
0 98
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A simple relationship exists between pretest 
odds and post-test odds:

	 post-test odds pretest odds likelihood ratio= × 	

	 or 	

	

p

p

p

p

p

p

D R

D R

D

D

R D

R D

|

|

|

|
.

[ ]
−[ ] =

[ ]
−[ ] ×

[ ]
−[ ] 	

This equation is the odds-ratio form of 
Bayes’ theorem.7 It can be derived in a straight-
forward fashion from the definitions of Bayes’ 
theorem and of conditional probability that we 
provided earlier. Thus, to obtain the post-test 
odds, we simply multiply the pretest odds by the 
likelihood ratio (LR) for the test in question.

The LR of a test combines the measures of test 
discrimination discussed earlier to give one num-
ber that characterizes the discriminatory power of 
a test, defined as:

	

LR
R D

=
[ ]

−[ ]
p

p

|

|R D
	

	 or 	

	

LR
probabilityof result in diseased people

probabilityof result i
=

nn nondiseased people
	

The LR indicates the amount that the odds of 
disease change based on the test result. We can use 
the LR to characterize clinical findings (such as a 
swollen leg) or a test result. We describe the per-
formance of a test that has only two possible out-
comes (e.g., positive or negative) by two LRs: one 
corresponding to a positive test result and the other 
corresponding to a negative test. These ratios are 
abbreviated LR + and LR−, respectively.

	

LR

probability that test
is positive in diseased people

probabili
+ =

tty that test
is positive in nondiseased people

TPR

FP

















=
RR

	

In a test that discriminates well between dis-
ease and nondisease, the TPR will be high, the 
FPR will be low, and thus LR + will be much 
greater than 1. An LR of 1 means that the proba-
bility of a test result is the same in diseased and 
nondiseased individuals; the test has no value. 
Similarly,

	

LR

probability that test
is negative in diseased people

probabili
− =

tty that test
is negative in nondiseased people

FNR

TN

















=
RR

	

A desirable test will have a low FNR and a 
high TNR; therefore, the LR − will be much less 
than 1.

As expected, this result agrees with our earlier 
answer (see the discussion of Example 8).

The odds-ratio form of Bayes’ theorem allows 
rapid calculation, so you can determine the prob-
ability at, for example, your patient’s bedside. 

7Some authors refer to this expression as the odds-
likelihood form of Bayes’ theorem.

Example 9

We can calculate the post-test probability 
for a positive exercise stress test in a 60 
year-old man whose pretest probability is 
0.75. The pretest odds are:

odds or= = = =p

p1

0 75

1 0 75

0 75

0 25
3 3 1

− −
.

.

.

.
, :

The LR for the stress test is:

LR
TPR

FPR
+ = = =0 65

0 20
3 25

.

.
.

We can calculate the post-test odds of a 
positive test result using the odds-ratio 
form of Bayes’ theorem:

post-test odds = × =3 3 25 9 75 1. . :

We can then convert the odds to a 
probability:

p =
+

=
+

=odds

odds1

9 75

1 9 75
0 91

.

.
.
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The LR is a powerful method for characteriz-
ing the operating characteristics of a test: if you 
know the pretest odds, you can calculate the post-
test odds in one step. The LR demonstrates that a 
useful test is one that changes the odds of disease.

3.4.3	 �Predictive Value of a Test

An alternative approach for estimation of the 
probability of disease in a person who has a posi-
tive or negative test is to calculate the predictive 
value of the test. The positive predictive value 
(PV+) of a test is the likelihood that a patient who 
has a positive test result also has disease. Thus, 
PV + can be calculated directly from a 2 × 2 con-
tingency table:

	
PV

number of diseased patients with positive test

totalnumber of p
+ =

aatients with a positive test 	

From the 2 × 2 contingency table in Table 3.3,

	 PV
TP

TP FP
+ =

+
	

The negative predictive value (PV−) is the 
likelihood that a patient with a negative test does 
not have disease:

	

PV
number of nondiseased patients with negative test

Totalnumber
− =

oof patients with a negative test 	

From the 2 × 2 contingency table in Table 3.3,

	
PV

TN

TN FN
− =

+ 	

It is worth reemphasizing the difference 
between PV and sensitivity and specificity, given 
that both are calculated from the 2 × 2 table and 
they often are confused. The sensitivity and 
specificity give the probability of a particular test 
result in a patient who has a particular disease 
state. The PV gives the probability of true dis-
ease state once the patient’s test result is known.

The PV + calculated from Table 3.4 is 0.97, so 
we expect 97 of 100 patients with a positive index 
test actually to have antibody. Yet, in Example 1, 
we found that fewer than one of ten patients with 
a positive test were expected to have antibody. 
What explains the discrepancy in these examples? 
The sensitivity and specificity (and, therefore, the 
LRs) in the two examples are identical. The dis-
crepancy is due to an extremely important and 
often overlooked characteristic of PV: the PV of a 
test depends on the prevalence of disease in the 
study population (the prevalence can be calculated 
as TP + FN divided by the total number of patients 
in the 2 × 2 table). The PV cannot be generalized 
to a new population because the prevalence of dis-
ease may differ between the two populations.

The difference in PV of the EIA in Example 1 
and in Example 6 is due to a difference in the 
prevalence of disease in the examples. The prev-
alence of antibody was given as 0.001 in Example 
1 and as 0.25 in Example 6. These examples 
should remind us that the PV + is not an intrinsic 
property of a test. Rather, it represents the post-
test probability of disease only when the preva-
lence is identical to that in the 2 × 2 contingency 
table from which the PV + was calculated. Bayes’ 
theorem provides a method for calculation of the 
post-test probability of disease for any prior 

Example 10

We can calculate the PV of the EIA test 
from the 2 × 2 table that we constructed in 
Example 6 (see Table 3.4) as follows:

PV+ =
+

=98

98 3
0 97.

PV− =
+

=297

297 2
0 99.

The probability that antibody is present 
in a patient who has a positive index test 
(EIA) in this study is 0.97; about 97 of 100 
patients with a positive test will have anti-
body. The likelihood that a patient with a 
negative index test does not have antibody 
is about 0.99.
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probability. For that reason, we prefer the use of 
Bayes’ theorem to calculate the post-test proba-
bility of disease.

3.4.4	 �Implications of Bayes’ 
Theorem

In this section, we explore the implications of 
Bayes’ theorem for test interpretation. These 
ideas are extremely important, yet they often are 
misunderstood.

Figure 3.4 illustrates one of the most essential 
concepts in this chapter: The post-test probability 
of disease increases as the pretest probability of 
disease increases. We produced Fig. 3.4a by cal-
culating the post-test probability after a positive 
test result for all possible pretest probabilities of 
disease. We similarly derived Fig. 3.4b for a neg-
ative test result.

The 45-degree line in each figure denotes a test 
in which the pretest and post-test probability are 
equal (LR = 1), indicating a test that is useless. The 
curve in Fig.  3.4a relates pretest and post-test 
probabilities in a test with a sensitivity and speci-
ficity of 0.9. Note that, at low pretest probabilities, 
the post-test probability after a positive test result 
is much higher than is the pretest probability. At 
high pretest probabilities, the post-test probability 
is only slightly higher than the pretest probability.

Figure  3.4b shows the relationship between 
the pretest and post-test probabilities after a neg-
ative test result. At high pretest probabilities, the 
post-test probability after a negative test result is 
much lower than is the pretest probability. A neg-
ative test, however, has little effect on the post-
test probability if the pretest probability is low.

This discussion emphasizes a key idea of this 
chapter: the interpretation of a test result depends 
on the pretest probability of disease. If the pretest 
probability is low, a positive test result has a large 
effect, and a negative test result has a small effect. If 
the pretest probability is high, a positive test result 
has a small effect, and a negative test result has 
a large effect. In other words, when the clinician 
is almost certain of the diagnosis before testing 
(pretest probability nearly 0 or nearly 1), a confir-
matory test has little effect on the posterior prob-
ability (see Example 8). If the pretest probability is 

intermediate or if the result contradicts a strongly 
held clinical impression, the test result will have a 
large effect on the post-test probability.

Note from Fig. 3.4a that, if the pretest proba-
bility is very low, a positive test result can raise 
the post-test probability into only the intermediate 

a

b

Fig. 3.4  Relationship between pretest probability and 
post-test probability of disease. The dashed lines corre-
spond to a test that has no effect on the probability of dis-
ease. Sensitivity and specificity of the test were assumed to 
be 0.90 for the two examples. (a) The post-test probability 
of disease corresponding to a positive test result (solid 
curve) was calculated with Bayes’ theorem for all values of 
pretest probability. (b) The post-test probability of disease 
corresponding to a negative test result (solid curve) was 
calculated with Bayes’ theorem for all values of pretest 
probability (Source: Adapted from Sox, H.C. (1987). 
Probability theory in the use of diagnostic tests: Application 
to critical study of the literature. In: Sox H.C. (Ed.), 
Common diagnostic tests: Use and interpretation (pp. 
1–17). American College of Physicians, with permission)
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range. Assume that Fig. 3.4a represents the rela-
tionship between the pretest and post-test proba-
bilities for the exercise stress test. If the clinician 
believes the pretest probability of coronary artery 
disease is 0.1, the post-test probability will be 
about 0.5. Although there has been a large change 
in the probability, the post-test probability is in 
an intermediate range, which leaves considerable 
uncertainty about the diagnosis. Thus, if the pre-
test probability is low, it is unlikely that a positive 
test result will raise the probability of disease suf-
ficiently for the clinician to make that diagnosis 
with confidence. An exception to this statement 
occurs when a test has a very high specificity (or 
a large LR+); e.g., HIV antibody tests have a 
specificity greater than 0.99, and therefore a posi-
tive test is convincing. Similarly, if the pretest 
probability is very high, it is unlikely that a nega-
tive test result will lower the post-test probability 
sufficiently to exclude a diagnosis.

Figure  3.5 illustrates another important con-
cept: test specificity affects primarily the inter-
pretation of a positive test; test sensitivity affects 
primarily the interpretation of a negative test. In 
both parts (a) and (b) of Fig. 3.5, the top family of 
curves corresponds to positive test results and the 
bottom family to negative test results. Figure 3.5a 
shows the post-test probabilities for tests with 
varying specificities (TNR). Note that changes in 
the specificity produce large changes in the top 
family of curves (positive test results) but have 
little effect on the lower family of curves (nega-
tive test results). That is, an increase in the speci-
ficity of a test markedly changes the post-test 
probability if the test is positive but has relatively 
little effect on the post-test probability if the test 
is negative. Thus, if you are trying to rule in a 
diagnosis,8 you should choose a test with high 

specificity or a high LR+. Figure 3.5b shows the 
post-test probabilities for tests with varying sen-
sitivities. Note that changes in sensitivity produce 

a

b

Fig. 3.5  Effects of test sensitivity and specificity on post-
test probability. The curves are similar to those shown in 
Fig. 3.4 except that the calculations have been repeated 
for several values of the sensitivity (TPR true-positive 
rate) and specificity (TNR true-negative rate) of the test. 
(a) The sensitivity of the test was assumed to be 0.90, and 
the calculations were repeated for several values of test 
specificity. (b) The specificity of the test was assumed to 
be 0.90, and the calculations were repeated for several 
values of the sensitivity of the test. In both panels, the top 
family of curves corresponds to positive test results, and 
the bottom family of curves corresponds to negative test 
results (Source: Adapted from Sox (1987). Probability 
theory in the use of diagnostic tests: Application to criti-
cal study of the literature. In: Sox (Ed.), Common diag-
nostic tests: Use and interpretation (pp. 1–17), American 
College of Physicians, with permission)

8In medicine, to rule in a disease is to confirm that the 
patient does have the disease; to rule out a disease is to 
confirm that the patient does not have the disease. A doctor 
who strongly suspects that his or her patient has a bacterial 
infection orders a culture to rule in his or her diagnosis. 
Another doctor is almost certain that his or her patient has 
a simple sore throat but orders a culture to rule out strepto-
coccal infection (strep throat). This terminology oversim-
plifies a diagnostic process that is probabilistic. Diagnostic 
tests rarely, if ever, rule in or rule out a disease; rather, the 
tests raise or lower the probability of disease.
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large changes in the bottom family of curves 
(negative test results) but have little effect on the 
top family of curves. Thus, if you are trying to 
exclude a disease, choose a test with a high sensi-
tivity or a high LR−.

3.4.5	 �Cautions in the Application 
of Bayes’ Theorem

Bayes’ theorem provides a powerful method for 
calculating post-test probability. You should be 
aware, however, of the possible errors you can 
make when you use it. Common problems are 
inaccurate estimation of pretest probability, 
faulty application of test-performance measures, 
and violation of the assumptions of conditional 
independence and of mutual exclusivity.

Bayes’ theorem provides a means to adjust an 
estimate of pretest probability to take into account 
new information. The accuracy of the calculated 
post-test probability is limited, however, by the 
accuracy of the estimated pretest probability. 
Accuracy of estimated prior probability is 
increased by proper use of published prevalence 
rates, heuristics, and clinical prediction rules. In a 
decision analysis, as we shall see, a range of prior 
probability often is sufficient. Nonetheless, if the 
pretest probability assessment is unreliable, 
Bayes’ theorem will be of little value.

A second potential mistake that you can make 
when using Bayes’ theorem is to apply published 
values for the test sensitivity and specificity, or 
LRs, without paying attention to the possible 
effects of bias in the studies in which the test per-
formance was measured (see Sect.  3.3.5). With 
certain tests, the LRs may differ depending on the 
pretest odds in part because differences in pretest 
odds may reflect differences in the spectrum of 
disease in the population.

A third potential problem arises when you use 
Bayes’ theorem to interpret a sequence of tests. If 
a patient undergoes two tests in sequence, you 
can use the post-test probability after the first test 
result, calculated with Bayes’ theorem, as the 
pretest probability for the second test. Then, you 
use Bayes’ theorem a second time to calculate the 
post-test probability after the second test. This 
approach is valid, however, only if the two tests 

are conditionally independent. Tests for the same 
disease are conditionally independent when the 
probability of a particular result on the second 
test does not depend on the result of the first test, 
given (conditioned on) the disease state. 
Expressed in conditional probability notation for 
the case in which the disease is present,

	

p
second test positive first test positive
and disease present

|





= p
second test positive first test negative
and disease present

|





= [ ]p second test positive disease present| . 	

If the conditional independence assump-
tion is satisfied, the post-test odds = pretest 
odds × LR1 × LR2. If you apply Bayes’ theorem 
sequentially in situations in which conditional 
independence is violated, you will obtain inac-
curate post-test probabilities (Gould 2003).

The fourth common problem arises when you 
assume that all test abnormalities result from one 
(and only one) disease process. The Bayesian 
approach, as we have described it, generally pre-
sumes that the diseases under consideration are 
mutually exclusive. If they are not, Bayesian 
updating must be applied with great care.

We have shown how to calculate post-test 
probability. In Sect. 3.5, we turn to the problem 
of decision making when the outcomes of a clini-
cian’s actions (e.g., of treatments) are uncertain.

3.5	 �Expected-Value Decision 
Making

Medical decision-making problems often cannot 
be solved by reasoning based on pathophysiol-
ogy. For example, clinicians need a method for 
choosing among treatments when the outcome 
of the treatments is uncertain, as are the results 
of a surgical operation. You can use the ideas 
developed in the preceding sections to solve such 
difficult decision problems. Here we discuss two 
methods: the decision tree, a method for repre-
senting and comparing the expected outcomes 
of each decision alternative; and the threshold 
probability, a method for deciding whether new 
information can change a management decision. 
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These techniques help you to clarify the decision 
problem and thus to choose the alternative that is 
most likely to help the patient.

3.5.1	 �Comparison of Uncertain 
Prospects

Like those of most biological events, the out-
come of an individual’s illness is unpredictable. 

How can a clinician determine which course of 
action has the greatest chance of success?

Which of the two therapies is preferable? 
Example  11 demonstrates a significant fact: a 
choice among therapies is a choice among gam-
bles (i.e., situations in which chance determines 
the outcomes). How do we usually choose among 
gambles? More often than not, we rely on 
hunches or on a sixth sense. How should we 
choose among gambles? We propose a method 

Example 11

There are two available therapies for a fatal 
illness. The length of a patient’s life after 
either therapy is unpredictable, as illustrated 
by the frequency distribution shown in Fig. 3.6 
and summarized in Table 3.5. Each therapy is 
associated with uncertainty: regardless of 
which therapy a patient receives, he will die 
by the end of the fourth year, but there is no 
way to know which year will be the patient’s 
last. Figure  3.6 shows that survival until the 
fourth year is more likely with therapy B, but 
the patient might die in the first year with 

therapy B or might survive to the fourth year 
with therapy A.

Fig. 3.6  Survival after therapy for a fatal disease. Two therapies are available; the results of either are 
unpredictable

Table 3.5  Distribution of probabilities for the two 
therapies in Fig. 3.7

Probability 
of death

Years after 
therapy Therapy A Therapy B

1 0.20 0.05
2 0.40 0.15
3 0.30 0.45
4 0.10 0.35
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for choosing called expected-value decision mak-
ing: we characterize each gamble by a number, 
and we use that number to compare the gambles.9 
In Example 11, therapy A and therapy B are both 
gambles with respect to duration of life after ther-
apy. We want to assign a measure (or number) to 
each therapy that summarizes the outcomes such 
that we can decide which therapy is preferable.

The ideal criterion for choosing a gamble should 
be a number that reflects preferences (in medicine, 
often the patient’s preferences) for the outcomes of 
the gamble. Utility is the name given to a measure 
of preference that has a desirable property for deci-
sion making: the gamble with the highest utility 
should be preferred. We shall discuss utility briefly 
(Sect. 3.5.4), but you can pursue this topic and the 
details of decision analysis in other textbooks (see 
Suggested Readings at the end of this chapter).10 We 
use the average duration of life after therapy (sur-
vival) as a criterion for choosing among therapies; 
remember that this model is oversimplified, used 
here for discussion only. Later, we consider other 
factors, such as the quality of life.

Because we cannot be sure of the duration of 
survival for any given patient, we characterize a 
therapy by the mean survival (average length of 
life) that would be observed in a large number of 
patients after they were given the therapy. The 
first step we take in calculating the mean survival 
for a therapy is to divide the population receiving 
the therapy into groups of patients who have sim-
ilar survival rates. Then, we multiply the survival 
time in each group11 by the fraction of the total 
population in that group. Finally, we sum these 
products over all possible survival values.

We can perform this calculation for the thera-
pies in Example 11. Mean survival for therapy 
A = (0.2 × 1.0) + (0.4 × 2.0) + (0.3 × 3.0) + (0.1 × 4.0) 

= 2.3 years. Mean survival for therapy B = (0.05  
× 1.0) + (0.15 × 2.0) + (0.45 × 3.0) + (0.35 × 4.0)  
= 3.1 years.

Survival after a therapy is under the control of 
chance. Therapy A is a gamble characterized by 
an average survival equal to 2.3 years. Therapy B 
is a gamble characterized by an average survival 
of 3.1 years. If length of life is our criterion for 
choosing, we should select therapy B.

3.5.2	 �Representation of Choices 
with Decision Trees

The choice between therapies A and B is repre-
sented diagrammatically in Fig. 3.7. Events that 
are under the control of chance can be represented 
by a chance node. By convention, a chance node 
is shown as a circle from which several lines ema-
nate. Each line represents one of the possible out-
comes. Associated with each line is the probability 
of the outcome occurring. For a single patient, 
only one outcome can occur. Some physicians 
object to using probability for just this reason: 
“You cannot rely on population data, because 
each patient is an individual.” In fact, we often 
must use the frequency of the outcomes of many 
patients experiencing the same event to inform 
our opinion about what might happen to an indi-
vidual. From these frequencies, we can make 
patient-specific adjustments and thus estimate the 
probability of each outcome at a chance node.

A chance node can represent more than just an 
event governed by chance. The outcome of a 
chance event, unknowable for the individual, can 
be represented by the expected value at the 
chance node. The concept of expected value is 
important and is easy to understand. We can cal-
culate the mean survival that would be expected 
based on the probabilities depicted by the chance 
node in Fig.  3.7. This average length of life is 
called the expected survival or, more generally, 
the expected value of the chance node. We calcu-
late the expected value at a chance node by the 
process just described: we multiply the survival 
value associated with each possible outcome by 

9Expected-value decision making had been used in many 
fields before it was first applied to medicine.
10A more general term for expected-value decision mak-
ing is expected utility decision making. Because a full 
treatment of utility is beyond the scope of this chapter, we 
have chosen to use the term expected value.
11For this simple example, death during an interval is 
assumed to occur at the end of the year.
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the probability that that outcome will occur. We 
then sum the product of probability times sur-
vival over all outcomes. Thus, if several hundred 
patients were assigned to receive either therapy A 
or therapy B, the expected survival would be 2.3 
years for therapy A and 3.1 years for therapy B.

We have just described the basis of expected-
value decision making. The term expected value 
is used to characterize a chance event, such as 
the outcome of a therapy. If the outcomes of a 
therapy are measured in units of duration of sur-
vival, units of sense of well-being, or dollars, the 
therapy is characterized by the expected dura-
tion of survival, expected sense of well-being, 
or expected monetary cost that it will confer on, 
or incur for, the patient, respectively.

To use expected-value decision making, we fol-
low this strategy when there are therapy choices 
with uncertain outcomes: (1) calculate the expected 
value of each decision alternative and then (2) pick 
the alternative with the highest expected value.

3.5.3	 �Performance of a Decision 
Analysis

We clarify the concepts of expected-value deci-
sion making by discussing an example. There are 
four steps in decision analysis:
	1.	 Create a decision tree; this step is the most dif-

ficult, because it requires formulating the 
decision problem, assigning probabilities, and 
measuring outcomes.

	2.	 Calculate the expected value of each decision 
alternative.

	3.	 Choose the decision alternative with the high-
est expected value.

	4.	 Use sensitivity analysis to test the conclusions 
of the analysis.
Many health professionals hesitate when they 

first learn about the technique of decision analy-
sis, because they recognize the opportunity for 
error in assigning values to both the probabili-
ties and the utilities in a decision tree. They rea-
son that the technique encourages decision 
making based on small differences in expected 
values that are estimates at best. The defense 
against this concern, which also has been recog-
nized by decision analysts, is the technique 
known as sensitivity analysis. We discuss this 
important fourth step in decision analysis in 
Sect. 3.5.5.

The first step in decision analysis is to create a 
decision tree that represents the decision prob-
lem. Consider the following clinical problem.

Fig. 3.7  A chance-node 
representation of survival 
after the two therapies in 
Fig. 3.6. The probabilities 
times the corresponding 
years of survival are summed 
to obtain the total expected 
survival

Example 12

The patient is Mr. Danby, a 66-year-old 
man who has been crippled with arthritis of 
both knees so severely that, while he can 
get about the house with the aid of two 
canes, he must otherwise use a wheelchair. 
His other major health problem is emphy-
sema, a disease in which the lungs lose 
their ability to exchange oxygen and car-
bon dioxide between blood and air, which 
in turn causes shortness of breath (dys-
pnea). He is able to breathe comfortably 
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Using the conventions of decision analysis, 
the internist sketches the decision tree shown in 
Fig. 3.8. According to these conventions, a square 
box denotes a decision node, and each line ema-
nating from a decision node represents an action 
that could be taken.

According to the methods of expected-value 
decision making, the internist first must assign a 
probability to each branch of each chance node. 
To accomplish this task, the internist asks several 
orthopedic surgeons for their estimates of the 
chance of recovering full function after surgery 
(p[full recovery] = 0.60) and the chance of devel-
oping infection in the prosthetic joint 
(p[infection] = 0.05). She uses her subjective esti-
mate of the probability that the patient will die 
during or immediately after knee surgery 
(p[operative death] = 0.05).

Next, she must assign a value to each out-
come. To accomplish this task, she first lists the 
outcomes. As you can see from Table  3.6, the 
outcomes differ in two dimensions: length of life 
(survival) and quality of life (functional status). 
To characterize each outcome accurately, the 
internist must develop a measure that takes into 
account these two dimensions. Simply using 
duration of survival is inadequate because Mr. 
Danby values 5 years of good health more than 
he values 10 years of poor health. The internist 
can account for this trade-off factor by converting 
outcomes with two dimensions into outcomes 
with a single dimension: duration of survival in 
good health. The resulting measure is called a 
quality-adjusted life year (QALY).12

She can convert years in poor health into years 
in good health by asking Mr. Danby to indicate 
the shortest period in good health (full mobility) 
that he would accept in return for his full expected 
lifetime (10 years) in a state of poor health (status 
quo). Thus, she asks Mr. Danby: “Many people 
say they would be willing to accept a shorter life 
in excellent health in preference to a longer life 
with significant disability. In your case, how 
many years with normal mobility do you feel is 
equivalent in value to 10 years in your current 
state of disability?” She asks him this question 
for each outcome. The patient’s responses are 
shown in the third column of Table  3.6. The 
patient decides that 10 years of limited mobility 
are equivalent to 6 years of normal mobility, 

12QALYs commonly are used as measures of utility 
(value) in medical decision analysis and in health policy 
analysis.

when he is in a wheelchair, but the effort of 
walking with canes makes him breathe 
heavily and feel uncomfortable. Several 
years ago, he seriously considered knee 
replacement surgery but decided against it, 
largely because his internist told him that 
there was a serious risk that he would not 
survive the operation because of his lung 
disease. Recently, however, Mr. Danby’s 
wife had a stroke and was partially para-
lyzed; she now requires a degree of assis-
tance that the patient cannot supply given 
his present state of mobility. He tells his 
doctor that he is reconsidering knee 
replacement surgery.

Mr. Danby’s internist is familiar with 
decision analysis. She recognizes that this 
problem is filled with uncertainty: Mr. 
Danby’s ability to survive the operation is in 
doubt, and the surgery sometimes does not 
restore mobility to the degree required by 
such a patient. Furthermore, there is a small 
chance that the prosthesis (the artificial 
knee) will become infected, and Mr. Danby 
then would have to undergo a second risky 
operation to remove it. After removal of the 
prosthesis, Mr. Danby would never again be 
able to walk, even with canes. The possible 
outcomes of knee replacement include 
death from the first procedure and death 
from a second mandatory procedure if the 
prosthesis becomes infected (which we will 
assume occurs in the immediate postopera-
tive period, if it occurs at all). Possible func-
tional outcomes include recovery of full 
mobility or continued, and unchanged, poor 
mobility. Should Mr. Danby choose to 
undergo knee replacement surgery, or 
should he accept the status quo?
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whereas 10 years of wheelchair confinement are 
equivalent to only 3 years of full function. 
Figure  3.9 shows the final decision tree—com-
plete with probability estimates and utility values 
for each outcome.13

The second task that the internist must under-
take is to calculate the expected value, in healthy 
years, of surgery and of no surgery. She calcu-
lates the expected value at each chance node, 
moving from right (the tips of the tree) to left (the 
root of the tree). Let us consider, for example, the 
expected value at the chance node representing 
the outcome of surgery to remove an infected 
prosthesis (Node A in Fig. 3.9). The calculation 
requires three steps:

	1.	 Calculate the expected value of operative 
death after surgery to remove an infected 
prosthesis. Multiply the probability of opera-
tive death (0.05) by the QALY of the out-
come—death (0 years): 0.05 × 0 = 0 QALY.

	2.	 Calculate the expected value of surviving sur-
gery to remove an infected knee prosthesis. 
Multiply the probability of surviving the oper-
ation (0.95) by the number of healthy years 
equivalent to 10 years of being wheelchair-
bound (3 years): 0.95 × 3 = 2.85 QALYs.

	3.	 Add the expected values calculated in step 1 
(0 QALY) and step 2 (2.85 QALYs) to obtain 
the expected value of developing an infected 
prosthesis: 0 + 2.85 = 2.85 QALYs.
Similarly, the expected value at chance node B 

is calculated: (0.6 × 10) + (0.4 × 6) =8.4 QALYs. 
To obtain the expected value of surviving knee 
replacement surgery (Node C), she proceeds as 
follows:
	1.	 Multiply the expected value of an infected pros-

thesis (already calculated as 2.85 QALYs) by 
the probability that the prosthesis will become 
infected (0.05): 2.85 × 0.05 =0.143 QALYs.

	2.	 Multiply the expected value of never 
developing an infected prosthesis (already 
calculated as 8.4 QALYs) by the probability 
that the prosthesis will not become infected 
(0.95): 8.4 × 0.95 = 7.98 QALYs.

	3.	 Add the expected values calculated in step 1 
(0.143 QALY) and step 2 (7.98 QALYs) to get 
the expected value of surviving knee replace-
ment surgery: 0.143 + 7.98 = 8.123 QALYs.

Fig. 3.8  Decision tree for 
knee replacement surgery. 
The box represents the 
decision node (whether to 
have surgery); the circles 
represent chance nodes

Table 3.6  Outcomes for Example 12

Survival 
(years) Functional status

Years of full 
function 
equivalent to 
outcome

10 Full mobility (successful 
surgery)

10

10 Poor mobility (status 
quo or unsuccessful 
surgery)

6

10 Wheelchair-bound 
(the outcome if a second 
surgery is necessary)

3

0 Death 0

13In a more sophisticated decision analysis, the clinician 
also would adjust the utility values of outcomes that 
require surgery to account for the pain and inconvenience 
associated with surgery and rehabilitation.
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The clinician performs this process, called 
averaging out at chance nodes, for node D as 
well, working back to the root of the tree, until 
the expected value of surgery has been calcu-
lated. The outcome of the analysis is as follows. 
For surgery, Mr. Danby’s average life expec-
tancy, measured in years of normal mobility, is 
7.7. What does this value mean? It does not mean 
that, by accepting surgery, Mr. Danby is guaran-
teed 7.7 years of mobile life. One look at the 
decision tree will show that some patients die in 
surgery, some develop infection, and some do not 
gain any improvement in mobility after surgery. 
Thus, an individual patient has no guarantees. If 
the clinician had 100 similar patients who under-
went the surgery, however, the average number 
of mobile years would be 7.7. We can understand 
what this value means for Mr. Danby only by 
examining the alternative: no surgery.

In the analysis for no surgery, the average 
length of life, measured in years of normal mobil-
ity, is 6.0, which Mr. Danby considered equiva-
lent to 10 years of continued poor mobility. Not 

all patients will experience this outcome; some 
who have poor mobility will live longer than, and 
some will live less than, 10 years. The average 
length of life, however, expressed in years of nor-
mal mobility, will be 6. Because 6.0 is less than 
7.7, on average the surgery will provide an out-
come with higher value to the patient. Thus, the 
internist recommends performing the surgery.

The key insight of expected-value decision mak-
ing should be clear from this example: given the 
unpredictable outcome in an individual, the best 
choice for the individual is the alternative that gives 
the best result on the average in similar patients. 
Decision analysis can help the clinician to identify 
the therapy that will give the best results when aver-
aged over many similar patients. The decision anal-
ysis is tailored to a specific patient in that both the 
utility functions and the probability estimates are 
adjusted to the individual. Nonetheless, the results 
of the analysis represent the outcomes that would 
occur on average in a population of patients who 
have similar utilities and for whom uncertain events 
have similar probabilities.

Fig. 3.9  Decision tree for knee-replacement surgery. 
Probabilities have been assigned to each branch of each 
chance node. The patient’s valuations of outcomes 

(measured in years of perfect mobility) are assigned to 
the tips of each branch of the tree
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3.5.4	 �Representation of Patients’ 
Preferences with Utilities

In Sect.  3.5.3, we introduced the concept of 
QALYs, because length of life is not the only out-
come about which patients care. Patients’ prefer-
ences for a health outcome may depend on the 
length of life with the outcome, on the quality of 
life with the outcome, and on the risk involved in 
achieving the outcome (e.g., a cure for cancer 
might require a risky surgical operation). How 
can we incorporate these elements into a decision 
analysis? To do so, we can represent patients’ 
preferences with utilities. The utility of a health 
state is a quantitative measure of the desirability 
of a health state from the patient’s perspective. 
Utilities are typically expressed on a 0 to 1 scale, 
where 0 represents death and 1 represents ideal 
health. For example, a study of patients who had 
chest pain (angina) with exercise rated the utility 
of mild, moderate, and severe angina as 0.95, 
0.92, and 0.82 (Nease et al. 1995), respectively. 
There are several methods for assessing utilities.

The standard-gamble technique has the stron-
gest theoretical basis of the various approaches to 
utility assessment, as shown by Von Neumann and 
Morgenstern and described by Sox et al. (1988). 
To illustrate use of the standard gamble, suppose 
we seek to assess a person’s utility for the health 
state of asymptomatic HIV infection. To use the 
standard gamble, we ask our subject to compare 
the desirability of asymptomatic HIV infection to 
those of two other health states whose utility we 
know or can assign. Often, we use ideal health 
(assigned a utility of 1) and immediate death 
(assigned a utility of 0) for the comparison of 
health states. We then ask our subject to choose 
between asymptomatic HIV infection and a gam-
ble with a chance of ideal health or immediate 
death. We vary the probability of ideal health and 
immediate death systematically until the sub-
ject is indifferent between asymptomatic HIV 
infection and the gamble. For example, a subject 
might be indifferent when the probability of ideal 
health is 0.8 and the probability of death is 0.2. 
At this point of indifference, the utility of the 
gamble and that of asymptomatic HIV infection 
are equal. We calculate the utility of the gamble 

as the weighted average of the utilities of each 
outcome of the gamble [(1 × 0.8) + (0 × 0.2)] = 0.8. 
Thus in this example, the utility of asymptom-
atic HIV infection is 0.8. Use of the standard 
gamble enables an analyst to assess the utility of 
outcomes that differ in length or quality of life. 
Because the standard gamble involves chance 
events, it also assesses a person’s willingness to 
take risks—called the person’s risk attitude.

A second common approach to utility assess-
ment is the time-trade-off technique (Sox et al. 
1988; Torrance and Feeny 1989). To assess the 
utility of asymptomatic HIV infection using the 
time-trade-off technique, we ask a person to 
determine the length of time in a better state of 
health (usually ideal health or best attainable 
health) that he or she would find equivalent to a 
longer period of time with asymptomatic HIV 
infection. For example, if our subject says that 8 
months of life with ideal health was equivalent to 
12 months of life with asymptomatic HIV infec-
tion, then we calculate the utility of asymptom-
atic HIV infection as 8 ÷ 12 = 0.67. The 
time-trade-off technique provides a convenient 
method for valuing outcomes that accounts for 
gains (or losses) in both length and quality of life. 
Because the time trade-off does not include gam-
bles, however, it does not assess a person’s risk 
attitude. Perhaps the strongest assumption under-
lying the use of the time trade-off as a measure of 
utility is that people are risk neutral. A risk-
neutral decision maker is indifferent between 
the expected value of a gamble and the gamble 
itself. For example, a risk-neutral decision maker 
would be indifferent between the choice of living 
20 years (for certain) and that of taking a gamble 
with a 50 % chance of living 40 years and a 50 % 
chance of immediate death (which has an 
expected value of 20 years). In practice, of 
course, few people are risk-neutral. Nonetheless, 
the time-trade-off technique is used frequently to 
value health outcomes because it is relatively 
easy to understand.

Several other approaches are available to 
value health outcomes. To use the visual analog 
scale, a person simply rates the quality of life 
with a health outcome (e.g., asymptomatic HIV 
infection) on a scale from 0 to 100. Although the 
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visual analog scale is easy to explain and use, it 
has no theoretical justification as a valid measure 
of utility. Ratings with the visual analog scale, 
however, correlate modestly well with utilities 
assessed by the standard gamble and time trade-
off. For a demonstration of the use of standard 
gambles, time trade-offs, and the visual analog 
scale to assess utilities in patients with angina, 
see Nease et  al. (1995); in patient living with 
HIV, see Joyce et  al. (2009) and (2012). Other 
approaches to valuing health outcomes include 
the Quality of Well-Being Scale, the Health 
Utilities Index, and the EuroQoL (see Gold et al. 
1996, ch. 4). Each of these instruments assesses 
how people value health outcomes and therefore 
may be appropriate for use in decision analyses 
or cost-effectiveness analyses.

In summary, we can use utilities to represent 
how patients value complicated health outcomes 
that differ in length and quality of life and in risk-
iness. Computer-based tools with an interactive 
format have been developed for assessing utili-
ties; they often include text and multimedia pre-
sentations that enhance patients’ understanding 
of the assessment tasks and of the health out-
comes (Sumner et  al. 1991; Nease and Owens 
1994; Lenert et al. 1995).

3.5.5	 �Performance of Sensitivity 
Analysis

Sensitivity analysis is a test of the validity of the 
conclusions of an analysis over a wide range of 
assumptions about the probabilities and the val-
ues, or utilities. The probability of an outcome 
at a chance node may be the best estimate that 
is available, but there often is a wide range of 
reasonable probabilities that a clinician could use 
with nearly equal confidence. We use sensitiv-
ity analysis to answer this question: Do my con-
clusions regarding the preferred choice change 
when the probability and outcome estimates 
are assigned values that lie within a reasonable 
range?

The knee-replacement decision in Example 12 
illustrates the power of sensitivity analysis. If the 
conclusions of the analysis (surgery is preferable 

to no surgery) remain the same despite a wide 
range of assumed values for the probabilities 
and outcome measures, the recommendation 
is trustworthy. Figures  3.10 and 3.11 show the 
expected survival in healthy years with surgery 
and without surgery under varying assumptions 
of the probability of operative death and the prob-
ability of attaining perfect mobility, respectively. 
Each point (value) on these lines represents one 
calculation of expected survival using the tree in 
Fig. 3.8. Figure 3.10 shows that expected survival 
is higher with surgery over a wide range of opera-
tive mortality rates. Expected survival is lower 
with surgery, however, when the operative mor-
tality rate exceeds 25 %. Figure 3.11 shows the 
effect of varying the probability that the opera-
tion will lead to perfect mobility. The expected 
survival, in healthy years, is higher for surgery as 
long as the probability of perfect mobility exceeds 
20 %, a much lower figure than is expected from 
previous experience with the operation. (In 
Example 12, the consulting orthopedic surgeons 
estimated the chance of full recovery at 60 %.) 
Thus, the internist can proceed with confidence 

Fig. 3.10  Sensitivity analysis of the effect of operative 
mortality on length of healthy life (Example 12). As the 
probability of operative death increases, the relative val-
ues of surgery versus no surgery change. The point at 
which the two lines cross represents the probability of 
operative death at which no surgery becomes preferable. 
The solid line represents the preferred option at a given 
probability
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to recommend surgery. Mr. Danby cannot be sure 
of a good outcome, but he has valid reasons for 
thinking that he is more likely to do well with 
surgery than he is without it.

Another way to state the conclusions of a sen-
sitivity analysis is to indicate the range of proba-
bilities over which the conclusions apply. The 
point at which the two lines in Fig. 3.10 cross is 
the probability of operative death at which the 
two therapy options have the same expected sur-
vival. If expected survival is to be the basis for 
choosing therapy, the internist and the patient 
should be indifferent between surgery and no 
surgery when the probability of operative death is 
25  %.14 When the probability is lower, they 
should select surgery. When it is higher, they 
should select no surgery.

The approach to sensitivity analyses we have 
described enables the analyst to understand how 
uncertainty in one, two, or three parameters 
affects the conclusions of an analysis. But in a 
complex problem, a decision tree or decision 
model may have a 100 or more parameters. The 
analyst may have uncertainty about many param-
eters in a model. Probabilistic sensitivity analy-
sis is an approach for understanding how the 
uncertainty in all (or a large number of) model 
parameters affects the conclusion of a decision 
analysis. To perform a probabilistic sensitivity 
analysis, the analyst must specify a probability 
distribution for each model parameter. The ana-
lytic software then chooses a value for each 
model parameter randomly from the parameter’s 
probability distribution. The software then uses 
this set of parameter values and calculates the 
outcomes for each alternative. For each evalua-
tion of the model, the software will determine 
which alternative is preferred. The process is 
usually repeated 1,000–10,000 times. From the 
probabilistic sensitivity analysis, the analyst can 
determine the proportion of times an alternative 
is preferred, accounting for all uncertainty in 
model parameters simultaneously. For more 
information on this advanced topic, see the arti-
cle by Briggs and colleagues referenced at the 
end of the chapter.

3.5.6	 �Representation of Long-Term 
Outcomes with Markov 
Models

In Example 12, we evaluated Mr. Danby’s decision 
to have surgery to improve his mobility, which was 
compromised by arthritis. We assumed that each of 
the possible outcomes (full mobility, poor mobil-
ity, death, etc.) would occur shortly after Mr. 
Danby took action on his decision. But what if we 
want to model events that might occur in the dis-
tant future? For example, a patient with HIV infec-
tion might develop AIDS 10–15 years after 
infection; thus, a therapy to prevent or delay the 
development of AIDS could affect events that 
occur 10–15 years, or more, in the future. A similar 

Fig. 3.11  Sensitivity analysis of the effect of a success-
ful operative result on length of healthy life (Example 12). 
As the probability of a successful surgical result increases, 
the relative values of surgery versus no surgery change. 
The point at which the two lines cross represents the prob-
ability of a successful result at which surgery becomes 
preferable. The solid line represents the preferred option 
at a given probability

14An operative mortality rate of 25  % may seem high; 
however, this value is correct when we use QALYs as the 
basis for choosing treatment. A decision maker perform-
ing a more sophisticated analysis could use a utility func-
tion that reflects the patient’s aversion to risking death.
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problem arises in analyses of decisions regarding 
many chronic diseases: we must model events that 
occur over the lifetime of the patient. The decision 
tree representation is convenient for decisions for 
which all outcomes occur during a short time hori-
zon, but it is not always sufficient for problems that 
include events that could occur in the future. How 
can we include such events in a decision analysis? 
The answer is to use Markov models (Beck and 
Pauker 1983; Sonnenberg and Beck 1993; Siebert 
et al. 2012).

To build a Markov model, we first specify the 
set of health states that a person could experience 
(e.g., Well, Cancer, and Death in Fig. 3.12). We 
then specify the transition probabilities, which 
are the probabilities that a person will transit 
from one of these health states to another during 
a specified time period. This period—often 1 
month or 1 year—is the length of the Markov 
cycle. The Markov model then simulates the 
transitions among health states for a person (or 
for a hypothetical cohort of people) for a speci-
fied number of cycles; by using a Markov model, 
we can calculate the probability that a person will 
be in each of the health states at any time in the 
future. As an illustration, consider a simple 

Markov model that has three health states: Well, 
Cancer, and Death (see Fig. 3.12). We have speci-
fied each of the transition probabilities in 
Table 3.7 for the cycle length of 1 year. Thus, we 
note from Table 3.7 that a person who is in the 
well state will remain well with probability 0.9, 
will develop cancer with probability 0.06, and 
will die from non-cancer causes with probability 
0.04 during 1 year. The calculations for a Markov 
model are performed by computer software. 
Based on the transition probabilities in Table 3.7, 
the probabilities that a person remains well, 
develops cancer, or dies from non-cancer causes 
over time is shown in Table  3.8. We can also 
determine from a Markov model the expected 
length of time that a person spends in each health 
state. Therefore, we can determine life expec-
tancy, or quality-adjusted life expectancy, for any 
alternative represented by a Markov model.

In decision analyses that represent long-term 
outcomes, the analysts will often use a Markov 
model in conjunction with a decision tree to 
model the decision (Owens et al. 1995; Salpeter 
et  al. 1997; Sanders et  al. 2005). The analyst 
models the effect of an intervention as a change 
in the probability of going from one state to 
another. For example, we could model a cancer-
prevention intervention (such as screening for 
breast cancer with mammography) as a reduc-
tion in the transition probability from Well to 
Cancer in Fig.  3.12. (See the articles by Beck 
and Pauker (1983) and Sonnenberg and Beck 
(1993) for further explanation of the use of 
Markov models.)

Fig. 3.12  A simple Markov model. The states of health 
that a person can experience are indicated by the circles; 
arrows represent allowed transitions between health states

Table 3.7  Transition probabilities for the Markov model 
in Fig. 3.13

Health state transition Annual probability

Well to well 0.9
Well to cancer 0.06
Well to death 0.04
Cancer to well 0.0
Cancer to cancer 0.4
Cancer to death 0.6
Death to well 0.0
Death to cancer 0.0
Death to death 1.0
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3.6	 �The Decision Whether 
to Treat, Test, or Do Nothing

The clinician who is evaluating a patient’s symp-
toms and suspects a disease must choose among 
the following actions:
	1.	 Do nothing further (neither perform additional 

tests nor treat the patient).
	2.	 Obtain additional diagnostic information 

(test) before choosing whether to treat or do 
nothing.

	3.	 Treat without obtaining more information.
When the clinician knows the patient’s true state, 

testing is unnecessary, and the doctor needs only to 
assess the trade-offs among therapeutic options (as 
in Example 12). Learning the patient’s true state, 
however, may require costly, time-consuming, and 
often risky diagnostic procedures that may give 
misleading FP or FN results. Therefore, clinicians 
often are willing to treat a patient even when they 
are not absolutely certain about a patient’s true 
state. There are risks in this course: the clinician 
may withhold therapy from a person who has the 
disease of concern, or he may administer therapy to 
someone who does not have the disease yet may 
suffer undesirable side effects of therapy.

Deciding among treating, testing, and doing 
nothing sounds difficult, but you have already 
learned all the principles that you need to solve 
this kind of problem. There are three steps:
	1.	 Determine the treatment threshold probability 

of disease.
	2.	 Determine the pretest probability of disease.
	3.	 Decide whether a test result could affect your 

decision to treat.
The treatment threshold probability of dis-

ease is the probability of disease at which you 
should be indifferent between treating and not 
treating (Pauker and Kassirer 1980). Below the 
treatment threshold, you should not treat. Above 
the treatment threshold, you should treat 
(Fig. 3.13). Whether to treat when the diagnosis 
is not certain is a problem that you can solve with 
a decision tree, such as the one shown in Fig. 3.14.

You can use this tree to learn the treatment 
threshold probability of disease by leaving the 
probability of disease as an unknown, setting the 
expected value of surgery equal to the expected 
value for medical (i.e., nonsurgical, such as drugs 
or physical therapy) treatment, and solving for 
the probability of disease. (In this example, sur-
gery corresponds to the “treat” branch of the tree 

Table 3.8  Probability  
of future health states  
for the Markov model  
in Fig. 3.12

Health 
state Probability of health state at end of year

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

Well 0.9000 0.8100 0.7290 0.6561 0.5905 0.5314 0.4783
Cancer 0.0600 0.0780 0.0798 0.0757 0.0696 0.0633 0.0572
Death 0.0400 0.1120 0.1912 0.2682 0.3399 0.4053 0.4645

Fig. 3.13  Depiction  
of the treatment threshold 
probability. At probabilities 
of disease that are less than 
the treatment threshold 
probability, the preferred 
action is to withhold therapy. 
At probabilities of disease 
that are greater than the 
treatment threshold 
probability, the preferred 
action is to treat
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in Fig.  3.14, and nonsurgical intervention cor-
responds to the “do not treat” branch.) Because 
you are indifferent between medical treatment 
and surgery at this probability, it is the treat-
ment threshold probability. Using the tree com-
pletes step 1. In practice, people often determine 
the treatment threshold intuitively rather than 
analytically.

An alternative approach to determination of 
the treatment threshold probability is to use the 
equation:

	
p* ,=

+
H

H B 	

where p* = the treatment threshold probability, 
H = the harm associated with treatment of a non-
diseased patient, and B = the benefit associated 
with treatment of a diseased patient (Pauker and 
Kassirer 1980; Sox et al. 1988). We define B as 
the difference between the utility (U) of diseased 
patients who are treated and diseased patients 
who are not treated (U[D, treat] − U[D, do not 

treat], as shown in Fig. 3.14). The utility of dis-
eased patients who are treated should be greater 
than that of diseased patients who are not treated; 
therefore, B is positive. We define H as the differ-
ence in utility of nondiseased patients who are 
not treated and nondiseased patients who are 
treated (U[−D, do not treat] − U[−D, treat], as 
shown in Fig.  3.14). The utility of nondiseased 
patients who are not treated should be greater 
than that of nondiseased patients who are treated; 
therefore, H is positive. The equation for the 
treatment threshold probability fits with our intu-
ition: if the benefit of treatment is small and the 
harm of treatment is large, the treatment thresh-
old probability will be high. In contrast, if the 
benefit of treatment is large and the harm of treat-
ment is small, the treatment threshold probability 
will be low.

Once you know the pretest probability, you 
know what to do in the absence of further infor-
mation about the patient. If the pretest probability 
is below the treatment threshold, you should not 
treat the patient. If the pretest probability is above 
the threshold, you should treat the patient. Thus 
you have completed step 2.

One of the guiding principles of medical deci-
sion making is this: do not order a test unless it 
could change your management of the patient. In 
our framework for decision making, this principle 
means that you should order a test only if the test 
result could cause the probability of disease to 
cross the treatment threshold. Thus, if the pretest 
probability is above the treatment threshold, a 
negative test result must lead to a post-test prob-
ability that is below the threshold. Conversely, 
if the pretest probability is below the threshold 
probability, a positive result must lead to a post-
test probability that is above the threshold. In 
either case, the test result would alter your deci-
sion of whether to treat the patient. This analysis 
completes step 3.

To decide whether a test could alter manage-
ment, we simply use Bayes’ theorem. We calcu-
late the post-test probability after a test result that 
would move the probability of disease toward the 
treatment threshold. If the pretest probability is 
above the treatment threshold, we calculate the 
probability of disease if the test result is negative. 

Fig. 3.14  Decision tree with which to calculate the treat-
ment threshold probability of disease. By setting the utili-
ties of the treat and do not treat choices to be equal, we can 
compute the probability at which the clinician and patient 
should be indifferent to the choice. Recall that p 
[−D] = 1 − p [D]
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If the pretest probability is below the treatment 
threshold, we calculate the probability of disease 
if the test result is positive.

To decide whether this strategy is correct, you 
take the following steps:
	1.	 Determine the treatment threshold probability 

of pulmonary embolus.
	2.	 Estimate the pretest probability of pulmonary 

embolus.
	3.	 Decide whether a test result could affect your 

decision to treat for an embolus.
First, assume you decide that the treatment 

threshold should be 0.10 in this patient. What 
does it mean to have a treatment threshold prob-
ability equal to 0.10? If you could obtain no fur-
ther information, you would treat for pulmonary 
embolus if the pretest probability was above 0.10 
(i.e., if you believed that there was greater than a 
1 in 10 chance that the patient had an embolus), 
and would withhold therapy if the pretest proba-
bility was below 0.10. A decision to treat when 
the pretest probability is at the treatment thresh-
old means that you are willing to treat nine 
patients without pulmonary embolus to be sure of 
treating one patient who has pulmonary embolus. 
A relatively low treatment threshold is justifiable 
because treatment of a pulmonary embolism with 
blood-thinning medication substantially reduces 
the high mortality of pulmonary embolism, 
whereas there is only a relatively small danger 

(mortality of less than 1 %) in treating someone 
who does not have pulmonary embolus. Because 
the benefit of treatment is high and the harm of 
treatment is low, the treatment threshold proba-
bility will be low, as discussed earlier. You have 
completed step 1.

You estimate the pretest probability of pul-
monary embolus to be 0.05, which is equal to a 
pretest odds of 0.053. Because the pretest prob-
ability is lower than the treatment threshold, you 
should do nothing unless a positive CTA scan 
result could raise the probability of pulmonary 
embolus to above 0.10. You have completed 
step 2.

To decide whether a test result could affect 
your decision to treat, you must decide whether a 
positive CTA scan result would raise the proba-
bility of pulmonary embolism to more than 0.10, 
the treatment threshold. You review the literature 
and learn that the LR for a positive CTA scan is 
approximately 21 (Stein et al. 2006).

A negative CTA scan result will move the 
probability of disease away from the treatment 
threshold and will be of no help in deciding what 
to do. A positive result will move the probability 
of disease toward the treatment threshold and 
could alter your management decision if the post-
test probability were above the treatment thresh-
old. You therefore use the odds-ratio form of 
Bayes’ theorem to calculate the post-test proba-
bility of disease if the lung scan result is reported 
as high probability.

	

Post-test odds pretest odds LR= ×
= × =0 053 21 1 11. . . 	

A post-test odds of 1.1 is equivalent to a prob-
ability of disease of 0.53. Because the post-test 
probability of pulmonary embolus is higher than 
the treatment threshold, a positive CTA scan 
result would change your management of the 
patient, and you should order the lung scan. You 
have completed step 3.

This example is especially useful for two rea-
sons: first, it demonstrates one method for mak-
ing decisions and second, it shows how the 
concepts that were introduced in this chapter all 
fit together in a clinical example of medical deci-
sion making.

Example 13

You are a pulmonary medicine specialist. 
You suspect that a patient of yours has a 
pulmonary embolus (blood clot lodged in 
the vessels of the lungs). One approach is 
to do a computed tomography angiography 
(CTA) scan, a test in which a computed 
tomography (CT) of the lung is done after a 
radiopaque dye is injected into a vein. The 
dye flows into the vessels of the lung. The 
CT scan can then assess whether the blood 
vessels are blocked. If the scan is negative, 
you do no further tests and do not treat the 
patient.

D.K. Owens and H.C. Sox
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3.7	 �Alternative Graphical 
Representations for Decision 
Models: Influence Diagrams 
and Belief Networks

In Sects. 3.5 and 3.6, we used decision trees to 
represent decision problems. Although decision 
trees are the most common graphical representa-
tion for decision problems, influence diagrams 
are an important alternative representation for 
such problems (Nease and Owens 1997; Owens 
et al. 1997).

As shown in Fig.  3.15, influence diagrams 
have certain features that are similar to decision 
trees, but they also have additional graphical ele-
ments. Influence diagrams represent decision 
nodes as squares and chance nodes as circles. In 
contrast to decision trees, however, the influence 
diagram also has arcs between nodes and a 
diamond-shaped value node. An arc between two 
chance nodes indicates that a probabilistic rela-
tionship may exist between the chance nodes 
(Owens et  al. 1997). A probabilistic relation-
ship exists when the occurrence of one chance 
event affects the probability of the occurrence of 
another chance event. For example, in Fig. 3.15, 
the probability of a positive or negative PCR test 
result (PCR result) depends on whether a person 
has HIV infection (HIV status); thus, these nodes 
have a probabilistic relationship, as indicated by 
the arc. The arc points from the conditioning 
event to the conditioned event (PCR test result 
is conditioned on HIV status in Fig. 3.15). The 
absence of an arc between two chance nodes, 
however, always indicates that the nodes are 
independent or conditionally independent. Two 
events are conditionally independent, given a 
third event, if the occurrence of one of the events 
does not affect the probability of the other event 
conditioned on the occurrence of the third event.

Unlike a decision tree, in which the events 
usually are represented from left to right in the 
order in which the events are observed, influence 
diagrams use arcs to indicate the timing of events. 
An arc from a chance node to a decision node 
indicates that the chance event has been observed 
at the time the decision is made. Thus, the arc 
from PCR result to Treat? in Fig. 3.15 indicates 

that the decision maker knows the PCR test result 
(positive, negative, or not obtained) when he or 
she decides whether to treat. Arcs between deci-
sion nodes indicate the timing of decisions: the 
arc points from an initial decision to subsequent 
decisions. Thus, in Fig. 3.15, the decision maker 
must decide whether to obtain a PCR test before 
deciding whether to treat, as indicated by the arc 
from Obtain PCR? to Treat?

The probabilities and utilities that we need to 
determine the alternative with the highest expected 
value are contained in tables associated with 
chance nodes and the value node (Fig. 3.16). These 
tables contain the same information that we would 
use in a decision tree. With a decision tree, we can 
determine the expected value of each alternative 
by averaging out at chance nodes and folding back 
the tree (Sect. 3.5.3). For influence diagrams, the 
calculation of expected value is more complex 
(Owens et  al. 1997), and generally must be per-
formed with computer software. With the appro-
priate software, we can use influence diagrams to 
perform the same analyses that we would perform 
with a decision tree. Diagrams that have only 
chance nodes are called belief networks; we use 
them to perform probabilistic inference.

Why use an influence diagram instead of a 
decision tree? Influence diagrams have both 
advantages and limitations relative to decision 
trees. Influence diagrams represent graphically the 
probabilistic relationships among variables 
(Owens et al. 1997). Such representation is advan-
tageous for problems in which probabilistic condi-
tioning is complex or in which communication of 
such conditioning is important (such as may occur 
in large models). In an influence diagram, probabi-
listic conditioning is indicated by the arcs, and 
thus the conditioning is apparent immediately by 
inspection. In a decision tree, probabilistic condi-
tioning is revealed by the probabilities in the 
branches of the tree. To determine whether events 
are conditionally independent in a decision tree 
requires that the analyst compare probabilities of 
events between branches of the tree. Influence dia-
grams also are particularly useful for discussion 
with content experts who can help to structure a 
problem but who are not familiar with decision 
analysis. In contrast, problems that have decision 
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alternatives that are structurally different may be 
easier for people to understand when represented 
with a decision tree, because the tree shows the 

structural differences explicitly, whereas the influ-
ence diagram does not. The choice of whether to 
use a decision tree or an influence diagram depends 

Fig. 3.15  A decision tree 
(top) and an influence 
diagram (bottom) that 
represent the decisions to test 
for, and to treat, HIV 
infection. The structural 
asymmetry of the alternatives 
is explicit in the decision 
tree. The influence diagram 
highlights probabilistic 
relationships. HIV human 
immunodeficiency virus, 
HIV+ HIV infected, 
HIV− not infected with HIV, 
QALE quality-adjusted life 
expectancy, PCR polymerase 
chain reaction. Test results 
are shown in quotation marks 
(“HIV+”), whereas the true 
disease state is shown 
without quotation marks 
(HIV+) (Source: Owens 
et al. (1997). Reproduced 
with permission)
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on the problem being analyzed, the experience of 
the analyst, the availability of software, and the 
purpose of the analysis. For selected problems, 
influence diagrams provide a powerful graphical 
alternative to decision trees.

3.8	 �Other Modeling Approaches

We have described decision trees, Markov models 
and influence diagrams. An analyst also can 
choose several other approaches to modeling. The 
choice of modeling approach depends on the 
problem and the objectives of the analysis. 
Although how to choose and design such models 
is beyond our scope, we note other type of models 
that analysts use commonly for medical decision 
making. Microsimulation models are individual-
level health state transition models, similar to 
Markov models, that provide a means to model 
very complex events flexibly over time. They are 
useful when the clinical history of a problem is 
complex, such as might occur with cancer, heart 

disease, and other chronic diseases. Dynamic 
transmission models are particularly well-suited 
for assessing the outcomes of infectious diseases. 
These models divide a population into compart-
ments (for example, uninfected, infected, recov-
ered, dead), and transitions between compartments 
are governed by differential or difference equa-
tions. The rate of transition between compart-
ments depends in part on the number of individuals 
in the compartment, an important feature for 
infectious diseases in which the transmission may 
depend on the number of infected or susceptible 
individuals. Discrete event simulation models 
also are often used to model interactions between 
people. These models are composed of entities (a 
patient) that have attributes (clinical history), and 
that experience events (a heart attack). An entity 
can interact with other entities and use resources. 
For more information on these types of models, 
we suggest a recent series of papers on best mod-
eling practices; the paper by Caro and colleagues 
noted in the suggested readings at the end of the 
chapter is an overview of this series of papers.

Fig. 3.16  The influence diagram from Fig. 3.15, with the 
probability and value tables associated with the nodes. 
The information in these tables is the same as that associ-
ated with the branches and endpoints of the decision tree 
in Fig. 3.15. HIV human immunodeficiency virus, HIV+ 
HIV infected, HIV− not infected with HIV, QALE quality-

adjusted life expectancy, PCR polymerase chain reaction, 
NA not applicable, TX+ treated, TX− not treated. Test 
results are shown in quotation marks (“HIV+”), and the 
true disease state is shown without quotation marks 
(HIV+) (Source: Owens et al.. (1997). Reproduced with 
permission)

3  Biomedical Decision Making: Probabilistic Clinical Reasoning



104

3.9	 �The Role of Probability 
and Decision Analysis 
in Medicine

You may be wondering how probability and deci-
sion analysis might be integrated smoothly into 
medical practice. An understanding of probabil-
ity and measures of test performance will prevent 
any number of misadventures. In Example 1, we 
discussed a hypothetical test that, on casual 
inspection, appeared to be an accurate way to 
screen blood donors for previous exposure to the 
AIDS virus. Our quantitative analysis, however, 
revealed that the hypothetical test results were 
misleading more often than they were helpful 
because of the low prevalence of HIV in the clini-
cally relevant population. Fortunately, in actual 
practice, much more accurate tests are used to 
screen for HIV.

The need for knowledgeable interpretation of 
test results is widespread. The federal govern-
ment screens civil employees in “sensitive” posi-
tions for drug use, as do many companies. If the 
drug test used by an employer had a sensitivity 
and specificity of 0.95, and if 10 % of the employ-
ees used drugs, one-third of the positive tests 
would be FPs. An understanding of these issues 
should be of great interest to the public, and 
health professionals should be prepared to answer 
the questions of their patients.

Although we should try to interpret every kind 
of test result accurately, decision analysis has a 
more selective role in medicine. Not all clinical 
decisions require decision analysis. Some deci-
sions depend on physiologic principles or on 
deductive reasoning. Other decisions involve lit-
tle uncertainty. Nonetheless, many decisions 
must be based on imperfect data, and they will 
have outcomes that cannot be known with cer-
tainty at the time that the decision is made. 
Decision analysis provides a technique for man-
aging these situations.

For many problems, simply drawing a tree 
that denotes the possible outcomes explicitly will 
clarify the question sufficiently to allow you to 
make a decision. When time is limited, even a 
“quick and dirty” analysis may be helpful. By 
using expert clinicians’ subjective probability 
estimates and asking what the patient’s utilities 

might be, you can perform an analysis quickly 
and learn which probabilities and utilities are the 
important determinants of the decision.

Health care professionals sometimes express 
reservations about decision analysis because the 
analysis may depend on probabilities that must be 
estimated, such as the pretest probability. A 
thoughtful decision maker will be concerned that 
the estimate may be in error, particularly because 
the information needed to make the estimate often 
is difficult to obtain from the medical literature. 
We argue, however, that uncertainty in the clinical 
data is a problem for any decision-making method 
and that the effect of this uncertainty is explicit 
with decision analysis. The method for evaluating 
uncertainty is sensitivity analysis: we can exam-
ine any variable to see whether its value is critical 
to the final recommended decision. Thus, we can 
determine, for example, whether a change in pre-
test probability from 0.6 to 0.8 makes a difference 
in the final decision. In so doing, we often dis-
cover that it is necessary to estimate only a range 
of probabilities for a particular variable rather 
than a precise value. Thus, with a sensitivity anal-
ysis, we can decide whether uncertainty about a 
particular variable should concern us.

The growing complexity of medical decisions, 
coupled with the need to control costs, has led to 
major programs to develop clinical practice guide-
lines. Decision models have many advantages as 
aids to guideline development (Eddy 1992): they 
make explicit the alternative interventions, associ-
ated uncertainties, and utilities of potential out-
comes. Decision models can help guideline 
developers to structure guideline-development 
problems (Owens and Nease 1993), to incorporate 
patients’ preferences (Nease and Owens 1994; 
Owens 1998), and to tailor guidelines for specific 
clinical populations (Owens and Nease 1997). In 
addition, Web-based interfaces for decision mod-
els can provide distributed decision support for 
guideline developers and users by making the 
decision model available for analysis to anyone 
who has access to the Web (Sanders et al. 1999).

We have not emphasized computers in this 
chapter, although they can simplify many aspects 
of decision analysis (see Chap. 22). MEDLINE and 
other bibliographic retrieval systems (see Chap. 21) 
make it easier to obtain published estimates of 
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disease prevalence and test performance. Computer 
programs for performing statistical analyses can be 
used on data collected by hospital information sys-
tems. Decision analysis software, available for per-
sonal computers, can help clinicians to structure 
decision trees, to calculate expected values, and to 
perform sensitivity analyses. Researchers continue 
to explore methods for computer-based automated 
development of practice guidelines from decision 
models and use of computer-based systems to 
implement guidelines (Musen et al. 1996). With the 
growing maturity of this field, there are now com-
panies that offer formal analytical tools to assist 
with clinical outcome assessment and interpreta-
tion of population datasets.15

Medical decision making often involves 
uncertainty for the clinician and risk for the 
patient. Most health care professionals would 
welcome tools that help them make decisions 
when they are confronted with complex clinical 
problems with uncertain outcomes. There are 
important medical problems for which decision 
analysis offers such aid.

Suggested Readings

Briggs, A., Weinstein, M., Fenwick, E., Karnon, J., 
Sculpher, M., & Paltiel, A. (2012). Model parameter 
estimation and uncertainty analysis: A report of the 
ISPOR-SMDM modeling good research practices 
task force-6. Medical Decision Making, 32(5), 722–
732. This article describes best practices for estimating 
model parameters and for performing sensitivity 
analyses, including probabilistic sensitivity analysis.

Caro, J., Briggs, A., Siebert, U., & Kuntz, K. (2012). 
Modeling good research practices – overview: 
A  report of the ISPOR-SMDM modeling good 
research practices task force-1. Value in Health, 15, 
796–803. This paper is an introduction to a series of 
papers that describe best modeling practices.

Gold, M. R., Siegel, J. E., Russell, L. B., & Weinstein, 
M. C. (1996). Cost effectiveness in health and medi-
cine. New York: Oxford University Press. This book 
provides authoritative guidelines for the conduct 
of cost-effectiveness analyses. Chapter 4 discusses 
approaches for valuing health outcomes.

Hunink, M., Glasziou, P., Siegel, J., Weeks, J., Pliskin, J., 
Einstein, A., & Weinstein, M. (2001). Decision mak-
ing in health and medicine. Cambridge: Cambridge 

University Press. This textbook addresses in detail 
most of the topics introduced in this chapter.

Nease, R. F., Jr., & Owens, D. K. (1997). Use of influence 
diagrams to structure medical decisions. Medical 
Decision Making, 17(13), 263–275. This article pro-
vides a comprehensive introduction to the use of influ-
ence diagrams.

Owens, D. K., Schacter, R. D., & Nease, R. F., Jr. (1997). 
Representation and analysis of medical decision prob-
lems with influence diagrams. Medical Decision Making, 
17(3), 241–262. This article provides a comprehensive 
introduction to the use of influence diagrams.

Raiffa, H. (1970). Decision analysis: Introductory lec-
tures on choices under uncertainty. Reading: 
Addison-Wesley. This now classic book provides an 
advanced, nonmedical introduction to decision analy-
sis, utility theory, and decision trees.

Sox, H. C. (1986). Probability theory in the use of diagnostic 
tests. Annals of Internal Medicine, 104(1), 60–66. This 
article is written for clinicians; it contains a summary of 
the concepts of probability and test interpretation.

Sox, H. C., Higgins, M. C., & Owens, D. K. (2013). 
Medical decision making. Chichester: Wiley-
Blackwell. This introductory textbook covers the sub-
ject matter of this chapter in greater detail, as well as 
discussing many other topics.

Tversky, A., & Kahneman, D. (1974). Judgment under 
uncertainty: Heuristics and biases. Science, 185, 
1124. This now classic article provides a clear and 
interesting discussion of the experimental evidence 
for the use and misuse of heuristics in situations of 
uncertainty.

Questions for Discussion

	1.	 Calculate the following probabilities for 
a patient about to undergo CABG sur-
gery (see Example 2):
	(a)	 The only possible, mutually exclu-

sive outcomes of surgery are 
death, relief of symptoms (angina 
and dyspnea), and continuation of 
symptoms. The probability of death 
is 0.02, and the probability of relief 
of symptoms is 0.80. What is the 
probability that the patient will con-
tinue to have symptoms?

	(b)	 Two known complications of heart 
surgery are stroke and heart attack, 
with probabilities of 0.02 and 0.05, 
respectively. The patient asks what 
chance he or she has of having both 

15See, for example, the Archimedes tools described at 
http://archimedesmodel.com/.
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	(b)	 The man tells you that two people 
with whom he shared needles sub-
sequently died of AIDS. Which 
heuristic will be useful in making 
a subjective adjustment to the pre-
test probability in part (a)?

	(c)	 Use the sensitivity and specificity 
that you worked out in 2(a) to cal-
culate the post-test probability of 
the patient having HIV after a 
positive and negative test. Assume 
that the pretest probability is 0.10.

	(d)	 If you wanted to increase the post-
test probability of disease given a 
positive test result, would you 
change the TPR or TNR of the 
test?

	4.	 You have a patient with cancer who 
has a choice between surgery or che-
motherapy. If the patient chooses sur-
gery, he or she has a 2  % chance of 
dying from the operation (life expec-
tancy = 0), a 50  % chance of being 
cured (life expectancy = 15 years), 
and a 48  % chance of not being 
cured (life expectancy = 1 year). If 
the patient chooses chemotherapy, 
he or she has a 5 % chance of death 
(life expectancy = 0), a 65  % chance 
of cure (life expectancy = 15 years), 
and a 30 % chance that the cancer will 
be slowed but not cured (life expec-
tancy = 2 years). Create a decision tree. 

complications. Assume that the com-
plications are conditionally indepen-
dent, and calculate your answer.

	(c)	 The patient wants to know the 
probability that he or she will have 
a stroke given that he or she has a 
heart attack as a complication of 
the surgery. Assume that 1 in 500 
patients has both complications, 
that the probability of heart attack 
is 0.05, and that the events are inde-
pendent. Calculate your answer.

	2.	 The results of a hypothetical study to 
measure test performance of a diagnos-
tic test for HIV are shown in the 2 × 2 
table in Table 3.9.
	(a)	 Calculate the sensitivity, specificity, 

disease prevalence, PV+, and PV–.
	(b)	 Use the TPR and TNR calculated in 

part (a) to fill in the 2 × 2 table in 
Table 3.10. Calculate the disease 
prevalence, PV+, and PV–.

	3.	 You are asked to interpret the results 
from a diagnostic test for HIV in an 
asymptomatic man whose test was 
positive when he volunteered to donate 
blood. After taking his history, you 
learn that he has a history of intrave-
nous-drug use. You know that the 
overall prevalence of HIV infection in 
your community is 1 in 500 and that 
the prevalence in people who have 
injected drugs is 20 times as high as in 
the community at large.
	(a)	 Estimate the pretest probability 

that this man is infected with HIV.

Table 3.9  A 2 × 2 contingency table for the hypo-
thetical study in problem 2

PCR test 
result

Gold standard 
test positive

Gold standard 
test negative Total

Positive 
PCR

48 8 56

Negative 
PCR

2 47 49

Total 50 55 105

PCR polymerase chain reaction

Table 3.10  A 2 × 2 contingency table to complete 
for problem 2b

PCR test 
result

Gold 
standard test 
positive

Gold 
standard test 
negative Total

Positive 
PCR

x x x

Negative 
PCR

100 99,900 x

Total x x x

PCR polymerase chain reaction
x quantities that the question ask students to 
calculate
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�Appendix: Derivation  
of Bayes’ Theorem

Bayes’ theorem is derived as follows. We denote 
the conditional probability of disease, D, given a 
test result, R, p[D|R]. The prior (pretest) proba-
bility of D is p[D]. The definition of conditional 
probability is:

	

p
p

p
D R

R,D

R
|[ ] =

[ ]
[ ] 	

(3.1)

The probability of a test result (p[R]) is the 
sum of its probability in diseased patients and its 
probability in nondiseased patients:

	
p pR p R,D R D[ ] = [ ] + −[ ], .

	

Substituting into Equation 3.1, we obtain:
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(3.2)

Again, from the definition of conditional 
probability,
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These expressions can be rearranged:

	
p p pR,D D R D[ ] = [ ]× [ ]| ,

	
(3.3)

	
p p pR D D R D, | .−[ ] = −[ ]× −[ ] 	

(3.4)

Substituting Eqs. 3.3 and 3.4 into Eq. 3.2, we 
obtain Bayes’ theorem:

p
p p

p p p
D R

D R D

D R D p D R D
|

|

| |
[ ] [ ] [ ]

[ ] [ ] [ ] [ ]=
×

× + − × −

Calculate the expected value of each 
option in terms of life expectancy.

	5.	 You are concerned that a patient with a 
sore throat has a bacterial infection that 
would require antibiotic therapy (as 
opposed to a viral infection, for which 
no treatment is available). Your treat-
ment threshold is 0.4, and based on the 
examination you estimate the probabil-
ity of bacterial infection as 0.8. A test 
is available (TPR = 0.75, TNR = 0.85) 
that indicates the presence or absence 
of bacterial infection. Should you per-
form the test? Explain your reasoning. 
How would your analysis change if the 
test were extremely costly or involved 
a significant risk to the patient?

6.	 What are the three kinds of bias that 
can influence measurement of test per-
formance? Explain what each one is, 
and state how you would adjust the 
post-test probability to compensate for 
each.

	7.	 How could a computer system ease 
the task of performing a complex deci-
sion analysis?

	8.	 When you search the medical litera-
ture to find probabilities for patients 
similar to one you are treating, what is 
the most important question to con-
sider? How should you adjust proba-
bilities in light of the answer to this 
question?

	9.	 Why do you think clinicians sometimes 
order tests even if the results will not 
affect their management of the patient? 
Do you think the reasons that you iden-
tify are valid? Are they valid in only cer-
tain situations? Explain your answers. 
See the January 1998 issue of Medical 
Decision Making for articles that dis-
cuss this question.

	10.	 Explain the differences in three 
approaches to assessing patients’ 
preferences for health states: the stan-
dard gamble, the time trade-off, and 
the visual analog scale.

3  Biomedical Decision Making: Probabilistic Clinical Reasoning


	3: Biomedical Decision Making: Probabilistic Clinical Reasoning
	3.1	 The Nature of Clinical Decisions: Uncertainty and the Process of Diagnosis
	3.1.1	 Decision Making Under Uncertainty
	3.1.2	 Probability: An Alternative Method of Expressing Uncertainty
	3.1.3	 Overview of the Diagnostic Process

	3.2	 Probability Assessment: Methods to Assess Pretest Probability
	3.2.1	 Subjective Probability Assessment
	3.2.2	 Objective Probability Estimates

	3.3	 Measurement of the Operating Characteristics of Diagnostic Tests
	3.3.1	 Classification of Test Results as Abnormal
	3.3.2	 Measures of Test Performance
	3.3.3	 Implications of Sensitivity and Specificity: How to Choose Among Tests
	3.3.4	 Design of Studies of Test Performance
	3.3.5	 Bias in the Measurement of Test Characteristics
	3.3.6	 Meta-Analysis of Diagnostic Tests

	3.4	 Post-test Probability: Bayes’ Theorem and Predictive Value
	3.4.1	 Bayes’ Theorem
	3.4.2	 The Odds-Ratio Form of Bayes’ Theorem and Likelihood Ratios
	3.4.3	 Predictive Value of a Test
	3.4.4	 Implications of Bayes’ Theorem
	3.4.5	 Cautions in the Application of Bayes’ Theorem

	3.5	 Expected-Value Decision Making
	3.5.1	 Comparison of Uncertain Prospects
	3.5.2	 Representation of Choices with Decision Trees
	3.5.3	 Performance of a Decision Analysis
	3.5.4	 Representation of Patients’ Preferences with Utilities
	3.5.5	 Performance of Sensitivity Analysis
	3.5.6	 Representation of Long-Term Outcomes with Markov Models

	3.6	 The Decision Whether to Treat, Test, or Do Nothing
	3.7	 Alternative Graphical Representations for Decision Models: Influence Diagrams and Belief Networks
	3.8	 Other Modeling Approaches
	3.9	 The Role of Probability and Decision Analysis in Medicine
	Suggested Readings
	Appendix: Derivation of Bayes’ Theorem


