
Chapter 1
Doubly Periodic Functions

In this chapter we present meromorphic functions on the complex plane which are
periodic in two different directions, hence the wording ‘doubly periodic’. These are
constructed using infinite sums. The dependence of these sums on the periods leads
us to the notion of a modular form.

1.1 Definition and First Properties

We recall the notion of a meromorphic function. Let D be an open subset of the
complex plane C. A meromorphic function f on D is a holomorphic function
f : D � P → C, where P ⊂ D is a countable subset and the function f has poles
at the points of P .

The set of poles P can be empty, so every holomorphic function is an example
of a meromorphic function. An accumulation point of poles is always an essential
singularity. As we do not allow essential singularities, this means that the set P has
no accumulation points inside D, so poles can accumulate only on the boundary
of D.

Let ̂C = C ∪ {∞} be the one-point compactification of the complex plane, also
called the Riemann sphere (see Exercise 1.1). Let f be meromorphic on D and let
P be its set of poles. We extend f to a map f : D → ̂C, by setting f (p) = ∞ for
every p ∈ P .

A meromorphic function can thus be viewed as an everywhere defined, ̂C-valued
map.

For a point p ∈ D and a meromorphic function f on D, there exists exactly one
integer r ∈ Z such that f (z) = h(z)(z − p)r , where h is a function that is holomor-
phic and non-vanishing at p. This integer r is called the order of f at p. For this we
write

r = ordp f.

Note: the order of f at p is positive if p is a zero of f , and negative if p is a pole
of f .

A. Deitmar, Automorphic Forms, Universitext,
DOI 10.1007/978-1-4471-4435-9_1, © Springer-Verlag London 2013

1

http://dx.doi.org/10.1007/978-1-4471-4435-9_1


2 1 Doubly Periodic Functions

Definition 1.1.1 A lattice in C is a subgroup Λ of the additive group (C,+) of the
form

Λ = Λ(a,b) = Za ⊕Zb = {ka + lb : k, l ∈ Z},
where a, b ∈ C are supposed to be linearly independent over R. In this case one says
that the lattice is generated by a and b, or that a, b is a Z-basis of the lattice.

A lattice has many sublattices; for example, Λ(na,mb) is a sublattice of Λ(a,b)

for any n,m ∈ N. A subgroup Σ ⊂ Λ is a sublattice if and only if the quotient group
Λ/Σ is finite (see Exercise 1.3). For instance, one has

Λ(a,b)/Λ(ma,nb) ∼= Z/mZ×Z/nZ.

Definition 1.1.2 Let Λ be a lattice in C. A meromorphic function f on C is said to
be periodic with respect to the lattice Λ if

f (z + λ) = f (z)

for every z ∈C and every λ ∈ Λ. If f is periodic with respect to Λ, then it is so with
respect to every sublattice. A function f is called doubly periodic if there exists a
lattice Λ with respect to which f is periodic (see Exercise 1.2).

Proposition 1.1.3 A doubly periodic function which is holomorphic is necessarily
constant.

Proof Let f be holomorphic and doubly periodic. Then there is a lattice Λ =
Λ(a,b) with f (z + λ) = f (z) for every λ ∈ Λ. Let

F = F(a, b) = {ta + sb : 0 ≤ s, t < 1}.
The set F is a bounded subset of C, so its closure F is compact. The set F is called
a fundamental mesh for the lattice Λ.

Two points z,w ∈C are said to be congruent modulo Λ if z − w ∈ Λ.

To conclude the proof of the proposition, we need a lemma.

Lemma 1.1.4 Let F be a fundamental mesh for the lattice Λ ⊂ C. Then
C = F + Λ, or more precisely, for every z ∈ C there is exactly one λ ∈ Λ such that
z + λ ∈F . Equivalently, we can say that for every z ∈ C there is exactly one w ∈ F
such that z − w ∈ Λ.
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Proof of the Lemma Let a, b be the Z-basis of Λ, which defines the fundamental
mesh F , so F = F(a, b). Since a and b are linearly independent over R, they form
a basis of C as an R-vector space. Thus, for a given z ∈ C there are uniquely de-
termined r, v ∈ R with z = ra + vb. There are uniquely determined m,n ∈ Z and
t, s ∈ [0,1) such that

r = m + t and v = n + s.

This implies

z = ra + vb = ma + nb
︸ ︷︷ ︸

∈Λ

+ ta + sb
︸ ︷︷ ︸

∈F
and this representation is unique. �

We now show the proposition. As the function f is holomorphic, it is continuous,
so f (F) is compact, hence bounded. For an arbitrary z ∈ C there is, by the lemma,
a λ ∈ Λ with z+λ ∈F , so f (z) = f (z+λ) ∈ f (F), which means that the function
f is bounded, hence constant by Liouville’s theorem. �

Proposition 1.1.5 Let F be a fundamental mesh of a lattice Λ ⊂ C and let f be an
Λ-periodic meromorphic function. Then there is w ∈ C such that f has no pole on
the boundary of the translated mesh Fw = F + w. For every such w one has

∫

∂Fw

f (z) dz = 0,

where ∂Fw is the positively oriented boundary of Fw .

Proof If f had poles on the boundary of Fw for every w, then f would have un-
countably many poles, contradicting the meromorphicity of the function f . We can
therefore choose w in such a way that no poles of f are located on the boundary
of Fw .

The path of integration ∂Fw is composed of the paths γ1, γ2, γ3, γ4 as in the picture.
The path γ3 is the same as γ1, only translated by b ∈ Λ and running in the reverse
direction. The function f does not change when one translates the argument by b

and the change of direction amounts to a change of sign in the integral. Therefore
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we get
∫

γ1

f (z) dz +
∫

γ3

f (z) dz = 0 and similarly
∫

γ2

f (z) dz +
∫

γ4

f (z) dz = 0,

which together give
∫

∂Fw
f (z) dz = 0 as claimed. �

Proposition 1.1.6 Let f 
= 0 be a meromorphic function, periodic with respect to
the lattice Λ ⊂ C and let F be a fundamental mesh for the lattice Λ. For every
w ∈C we have

∑

z∈Fw

resz(f ) = 0.

Proof In case there is no pole on the boundary of Fw , the assertion follows from
the last proposition together with the residue theorem. It follows in general, since
the sum does not depend on w, as congruent points have equal residues. Hence we
have

∑

z∈Fw

resz(f ) =
∑

z∈CmodΛ

resz(f ). �

Proposition 1.1.7 Let F be a fundamental mesh for the lattice Λ ⊂ C and let f 
= 0
be a Λ-periodic meromorphic function. Then for every w ∈ C the number of zeros
of f in Fw equals the number of poles of f in Fw . Here zeros and poles are both
counted with multiplicities, so a double pole, for instance, is counted twice.

Proof A complex number z0 is a zero or a pole of f of order k ∈ Z if the function f ′
f

has a pole at z0 of residue k. Hence the assertion follows from the last proposition,
since the function f ′

f
is doubly periodic with respect to the lattice Λ as well. �

1.2 The ℘-Function of Weierstrass

Except for constant functions, we have not yet seen any doubly periodic function.
In this section we are going to construct some by giving Mittag-Leffler sums which
have poles at the lattice points.

We first need a criterion for the convergence of the series that we consider. We
prove this in a sharper form than is needed now, which will turn out useful later. Let
b ∈ C � {0} be a fixed number. For every a ∈ C � Rb the set Λa = Za ⊕ Zb is a
lattice.

Lemma 1.2.1 Let Λ ⊂ C be a lattice and let s ∈ C. The series
∑

λ∈Λ
λ
=0

1

|λ|s
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converges absolutely if Re(s) > 2. Furthermore, fix b ∈ C � {0} and consider the
lattice Λa for a ∈ C � Rb. The sum

∑

λ∈Λa,λ
=0
1

|λ|s converges uniformly for all
(a, s) ∈ C × {Re(s) ≥ α}, where C is a compact subset of C�Rb and α > 2.

Proof Let α and C be as in the lemma. We can assume Re(s) > 0, because otherwise
the series cannot converge as the sequence of its summands does not tend to zero.
Further it suffices to consider the case s ∈ R since for s ∈ C the absolute value of
|λ|−s equals |λ|−Re(s). So, assuming s > 0, the function x → xs is monotonically
increasing for x > 0. Let F(a) be a fundamental mesh for the lattice Λa and let

ψa,s(z) =
∑

λ∈Λa
λ
=0

1

|λ|s 1F(a)+λ(z).

We then have
∣

∣F(a)
∣

∣

∑

λ∈Λa
λ
=0

1

|λ|s =
∫

C

ψa,s(x + iy) dx dy,

where |F(a)| is the area of the fundamental mesh F(a). The continuous map
a → |F(a)| assumes its minimum and maximum values on the compact set C.
One has ψa,s ≤ ψa,α if s ≥ α, so it suffices to show the uniform convergence of
∫

C
ψa,α(z) dx dy in a.
Let r > 0 be so large that for every a ∈ C the diameter of the fundamental mesh

F(a),

diam
(

F(a)
) = sup

{|z − w| : z,w ∈F(a)
}

is less than r . For every z ∈ C we have ψa,α(z) = 1
|λa,z|s for some λa,z ∈ Λa with

|z − λa,z| < r . For every a ∈ C and z ∈ C with |z| ≥ r one has the inequality

|λa,z| = |λa,z − z + z| ≤ |λa,z − z| + |z| < r + |z| ≤ 2|z|.
On the other hand, for |z| ≥ 2r we have

|λa,z| =
∣

∣λa,z − z − (−z)
∣

∣ ≥ ∣

∣|λa,z − z| − |z|∣∣ ≥ 1

2
|z|.

Let R = 2r . For |z| ≥ R we have 1
2s |z|−s ≤ ψa,α(z) ≤ 2s |z|−s for every a ∈ C.

The continuous map a → ∫

|z|≤R
ψa,α(z) dx dy is bounded on the compact set C.

Therefore the series converges uniformly for a ∈ C, if
∫

|z|>R
1

|z|α dx dy < ∞. We
now use polar coordinates on C. Recall that the map P : (0,∞) × (−π,π] → C,
given by

P(r, θ) = reiθ = r cos θ + ir sin θ

is a bijection onto the image C� {0}. The Jacobian determinant of this map is r , so
we get, by the change of variables formula,

∫

C×
f (x + iy) dx dy =

∫ π

−π

∫ ∞

0
f

(

reiθ
)

r dr dθ
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for every integrable function f . Therefore
∫

|z|>R

1

|z|α dx dy = 2π

∫ ∞

R

r1−α dr,

which gives the claim. �

The following theorem contains the definition of the Weierstrass ℘-function.

Theorem 1.2.2 Let Λ be a lattice in C. The series

℘(z)
def= 1

z2
+

∑

λ∈Λ�{0}

1

(z − λ)2
− 1

λ2

converges locally uniformly absolutely in C � Λ. It defines a meromorphic
Λ-periodic function, called the Weierstrass ℘-function.

Proof For |z| < 1
2 |λ| we have |λ − z| ≥ 1

2 |λ|. Further it holds that |2λ − z| ≤ 5
2 |λ|.

So that
∣

∣

∣

∣

1

(z − λ)2
− 1

λ2

∣

∣

∣

∣

=
∣

∣

∣

∣

λ2 − (z − λ)2

λ2(z − λ)2

∣

∣

∣

∣

=
∣

∣

∣

∣

z(2λ − z)

λ2(z − λ)2

∣

∣

∣

∣

≤ |z| 5
2 |λ|

|λ|2 1
4 |λ|2 = 10|z|

|λ|3 .

Using Lemma 1.2.1, we get locally uniform convergence.
The way the sum is formed, it is not immediate that the ℘-function is actually

periodic. For this we first show that it is an even function:

℘(−z) = 1

z2
+

∑

λ∈Λ�{0}

1

(z + λ)2
− 1

λ2
= 1

z2
+

∑

λ∈Λ�{0}

1

(z − λ)2
− 1

λ2
= ℘(z),

by replacing λ in the sum with −λ. Since the series converges locally uniformly, and
the summands are holomorphic, we are allowed to differentiate the series term-wise.
Its derivative,

℘′(z) = −2
∑

λ∈Λ

1

(z − λ)3
,

is Λ-periodic. Hence for λ ∈ Λ� 2Λ the function ℘(z + λ) − ℘(z) is constant. We
compute this constant by setting z = −λ

2 to get ℘(λ
2 )−℘(−λ

2 ) = 0, as ℘ is even. �

Theorem 1.2.3 (Laurent-expansion of ℘) Let r = min{|λ| : λ ∈ Λ � {0}}. For
0 < |z| < r one has

℘(z) = 1

z2
+

∞
∑

n=1

(2n + 1)G2n+2z
2n,

where the sum Gk = Gk(Λ) = ∑

λ∈Λ�{0} 1
λk converges absolutely for k ≥ 4.



1.3 The Differential Equation of the ℘-Function 7

Proof For 0 < |z| < r and λ ∈ Λ� {0} we have |z/λ| < 1, so

1

(z − λ)2
= 1

λ2(1 − z
λ
)2

= 1

λ2

(

1 +
∞
∑

k=1

(k + 1)

(

z

λ

)k
)

,

and so

1

(z − λ)2
− 1

λ2
=

∞
∑

k=1

k + 1

λk+2
zk.

We sum over all λ and find

℘(z) = 1

z2
+

∞
∑

k=1

(k + 1)
∑

λ
=0

1

λk+2
zk = 1

z2
+

∞
∑

k=1

(k + 1)Gk+2z
k,

where we have changed the order of summation, as we may by absolute conver-
gence. This absolute convergence follows from

∞
∑

k=1

k + 1

|λ|k+2
|z|k ≤ 1

|λ|3
∞
∑

k=1

k + 1

|λ|k−1
|z|k

and Lemma 1.2.1. Since ℘ is even, the Gk+2 vanish for odd k. �

1.3 The Differential Equation of the ℘-Function

The differential equation of the ℘-function connects doubly periodic functions to
elliptic curves, as explained in the notes at the end of this chapter.

Theorem 1.3.1 The ℘-function satisfies the differential equation
(

℘′(z)
)2 = 4℘3(z) − 60G4℘(z) − 140G6.

Proof We show that the difference of the two sides has no pole, i.e. is a holomorphic
Λ-periodic function, hence constant.

If z 
= 0 is small we have

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 + · · · ,
so

(

℘′(z)
)2 = 4

z6
− 24G4

z2
− 80G6 + · · · .

On the other hand,

4℘3(z) = 4

z6
+ 36G4

z2
+ 60G6 + · · · ,
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so that

(

℘′(z)
)2 − 4℘3(z) = −60G4

z2
− 140G6 + · · · .

We finally get

(

℘′(z)
)2 − 4℘3(z) + 60G4℘(z) = −140G6 + · · ·

where the left-hand side is a holomorphic Λ-periodic function, hence constant. If
on this right-hand side we put z = 0, we see that this constant is −140G6. �

1.4 Eisenstein Series

For a ring R we denote by M2(R) the set of all 2 × 2 matrices with entries from R.
In a linear algebra course you prove that a matrix

(

a b
c d

) ∈ M2(R) is invertible if and
only if its determinant is invertible in R, i.e. if ad − bd ∈ R×. You may have done
this for R being a field only, but for a ring it is just the same proof. Let GL2(R) be
the group of all invertible matrices in M2(R). It contains the subgroup SL2(R) of
all matrices of determinant 1. Consider the example R = Z. We have Z× = {1,−1}.
So GL2(Z) is the group of all integer matrices with determinant ±1. The subgroup
SL2(Z) is therefore a subgroup of index 2.

For k ∈ N, k ≥ 4 the series Gk(Λ) = ∑

λ∈Λ�{0} λ−k converges. The set wΛ is
again a lattice if w ∈ C× and we have

Gk(wΛ) = w−kGk(Λ).

Recall for α,β ∈C, linearly independent over R we have the lattice

Λ(α,β) = Zα ⊕Zβ.

If z is a complex number with Im(z) > 0, then z and 1 are linearly independent
over R. We define the Eisenstein series as a function on the upper half plane

H = {

z ∈C : Im(z) > 0
}

by

Gk(z) = Gk

(

Λ(z,1)
) =

∑

(m,n) 
=(0,0)

1

(mz + n)k
,
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where the sum runs over all m,n ∈ Z which are not both zero. Using matrix multi-
plication, we can write mz + n = (z 1)

(

m
n

)

. The group Γ0 = SL2(Z) acts on the set

of pairs
(

m
n

)

by multiplication from the left. For γ = (

a b
c d

) ∈ Γ0 we have

Gk(z) =
∑

m,n

(

(z 1)

(

m

n

))−k

=
∑

m,n

(

(z 1)γ t

(

m

n

))−k

=
∑

m,n

(

(z 1)

(

a c

b d

)(

m

n

))−k

=
∑

m,n

(

(az + b, cz + d)

(

m

n

))−k

= (cz + d)−k
∑

m,n

((

az + b

cz + d
,1

)(

m

n

))−k

= (cz + d)−kGk

(

az + b

cz + d

)

,

or

Gk

(

az + b

cz + d

)

= (cz + d)kGk(z).

Proposition 1.4.1 If k ≥ 4 is even, then

lim
y→∞Gk(iy) = 2ζ(k),

where

ζ(s) =
∞
∑

n=1

1

ns
, Re(s) > 1,

is the Riemann zeta function. (See Exercise 1.4.)

Proof One has

Gk(iy) = 2ζ(k) +
∑

(m,n)
m 
=0

1

(miy + n)k
.

We show that the second summand tends to zero for y → ∞. Consider the estimate
∣

∣

∣

∣

∑

(m,n)
m 
=0

1

(miy + n)k

∣

∣

∣

∣

≤
∑

(m,n)
m 
=0

1

nk + mkyk
.

Here, every summand on the right-hand side is monotonically decreasing in as y →
∞ and tends to zero. Further, the right-hand side converges for every y > 0, so we
conclude by dominated convergence, that the entire sum tends to zero as y → ∞. �

1.5 Bernoulli Numbers and Values of the Zeta Function

We have seen that Eisenstein series assume zeta-values ‘at infinity’. We shall need
the following exact expressions for these zeta-values later. We now define the
Bernoulli numbers Bk .
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Lemma 1.5.1 For k = 1,2,3, . . . there are uniquely determined rational numbers
Bk such that for |z| < 2π one has

z

ez − 1
+ z

2
= z

2

ez + 1

ez − 1
= 1 −

∞
∑

k=1

(−1)kBk

z2k

(2k)! .

The first of these numbers are B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , B5 = 5
66 .

Proof Let f (z) = z
ez−1 + z

2 = z
2

ez+1
ez−1 . Then f is holomorphic in {|z| < 2π}, so its

power series expansion converges in this circle. We show that f is an even function:

f (−z) = − z

2

e−z + 1

e−z − 1
= − z

2

1 + ez

1 − ez
= f (z).

Therefore there is such an expression with Bk ∈C.
Let g(z) = z

ez−1 = ∑∞
k=0 ckz

k . We show that the ck are all rational numbers. The
equation z = g(z)(ez − 1) gives

z =
∞
∑

n=0

zn

(

n−1
∑

j=0

cj

(n − j)!

)

.

So c0 = 1 and for every n ≥ 2 the number cn−1 is a rational linear combination of
the cj with j < n − 1. Inductively we conclude cj ∈ Q. �

Proposition 1.5.2 For every natural number k one has

ζ(2k) = 22k−1

(2k)! Bkπ
2k.

The first values are ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 .

Proof By definition, the cotangent function satisfies

z cot z = zi
eiz + e−iz

eiz − e−iz
.

Replacing z by z/2i, this becomes

z

2i
cot

(

z

2i

)

= z

2

ez + 1

ez − 1
= f (z),

so that

z cot z = 1 −
∞
∑

k=1

Bk

22kz2k

(2k)! .

The partial fraction expansion of the cotangent function (Exercise 1.8) is

π cot(πz) = 1

z
+

∞
∑

m=1

(

1

z + m
+ 1

z − m

)

.
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Therefore

z cot z = 1 + 2
∞
∑

n=1

z2

z2 − n2π2
= 1 − 2

∞
∑

n=1

∞
∑

k=1

z2k

n2kπ2k
,

from which we get
∞
∑

k=1

Bk

22kz2k

(2k)! = 2
∞
∑

n=1

∞
∑

k=1

z2k

n2kπ2k
.

Comparing coefficients gives the claim. �

1.6 Exercises and Remarks

Exercise 1.1 The one-point compactification ̂C = C ∪ {∞} of C has the following
topology. Open sets are

• open subsets of C, or
• sets V which contain ∞ and have the property that C � V is a compact subset

of C.

Show that ̂C is compact. Consider the three-dimensional space C×R and let

S = {

(z, t) ∈C×R : |z|2 + t2 = 1
}

.

Then S is the two-dimensional sphere. Consider the point N = (0,1) ∈ S, called the
north pole. Show that for every z ∈ C the line through z and N meets the sphere S

in exactly one other point φ(z). Show that the resulting map φ : C → S � {N} is a
homeomorphism which extends to a homeomorphism ̂C → S by sending ∞ to N .
This homeomorphism is the reason why ̂C is also called the Riemann sphere.

Exercise 1.2 Let a ∈ C� {0}. A function f on C is called simply periodic of pe-
riod a, or a-periodic, if f (z + a) = f (z) for every z ∈ C. Show that if a, b ∈ C are
linearly independent over R, then a function f is Λ(a,b)-periodic if and only if it is
a-periodic and b-periodic simultaneously. This explains the notion doubly periodic.

Exercise 1.3 A subgroup Λ ⊂ C of the additive group (C,+) is called a discrete
subgroup if Λ is discrete in the subset topology, i.e. if for every λ ∈ Λ there exists
an open set Uλ ⊂ C such that Λ ∩ Uλ = {λ}. Show

1. A subgroup Λ ⊂ C is discrete if and only if there is an open set U0 ⊂ C with
U0 ∩ Λ = {0}.

2. If Λ ⊂ C is a discrete subgroup, then there are three possibilities: either Λ = {0},
or there is a λ0 ∈ Λ with Λ = Zλ0, or Λ is a lattice.

3. A discrete subgroup Λ ⊂ C is a lattice if and only if the quotient group C/Λ is
compact in the quotient topology.

4. If Λ ⊂ C is a lattice, then a subgroup Σ ⊂ Λ is a lattice if and only if it has
finite index, i.e. if the group Λ/Σ is finite.
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Exercise 1.4 Show that the sum defining the Riemann zeta function, ζ(s) =
∑∞

n=1 n−s , converges absolutely for Re(s) > 1. One can adapt the proof of
Lemma 1.2.1.

Exercise 1.5 Show that the Riemann zeta function ζ(s) = ∑∞
n=1 n−s has the Euler

product

ζ(s) =
∏

p

1

1 − p−s
, Re(s) > 1,

where the product runs over all prime numbers p. (Hint: consider the sequence
sN(s) = ∏

p≤N
1

1−p−s . Using the geometric series, write 1
1−p−s = ∑∞

k=0 p−ks and
use absolute convergence of the Dirichlet series defining ζ(s).)

Exercise 1.6 Let α,β,α′β ′ ∈ C with C = Rα + Rβ = Rα′ + Rβ ′. Show that the
lattices Λ(α,β) and Λ(α′, β ′) coincide if and only if there is

(

a b
c d

) ∈ GL2(Z) with
(

α′

β ′

)

=
(

a b

c d

)(

α

β

)

.

Exercise 1.7 Let f be meromorphic on C and Λ-periodic for a lattice Λ. Let Fw =
F +w a translated fundamental mesh for Λ, such that there are no poles or zeros of
f on the boundary ∂Fw . Let S(0) be the sum of all zeros of f in F , counted with
multiplicities. Let S(∞) be the sum of all poles of f in F , also with multiplicities.
Show:

S(0) − S(∞) ∈ Λ.

(Integrate the function zf ′(z)/f (z).)

Exercise 1.8 Prove the partial fraction expansion of the cotangent:

π cot(πz) = 1

z
+

∞
∑

m=1

(

1

z + m
+ 1

z − m

)

.

(The difference of the two sides is periodic and entire. Show that it is bounded and
odd.)

Exercise 1.9 Let z,w ∈ C and let ℘ be the Weierstrass ℘-function for a lattice Λ.
Show that ℘(z) = ℘(w) if and only if z + w or z − w is in the lattice Λ.

Exercise 1.10 Let ℘ be the Weierstrass ℘-function for a lattice Λ.

(a) Let a1, . . . , an and b1, . . . , bm be complex numbers. Show that the function

f (z) =
∏n

i=1 ℘(z) − ℘(ai)
∏m

j=1 ℘(z) − ℘(bj )

is even and Λ-periodic.
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(b) Show that every even Λ-periodic function is a rational function of ℘.
(c) Show that every Λ-periodic meromorphic function is of the form R(℘(z)) +

℘′(z)Q(℘(z)), where R and Q are rational functions.

Exercise 1.11 (Residue theorem for circle segments) Let r0 > 0 and let f be a
holomorphic function on the set {z ∈ C : 0 < |z| < r0}, which has a simple pole at
z = 0. Let a, b : [0, r0) → (−π,π) be continuous functions with a(r) ≤ b(r) for
every 0 ≤ r < r0 and for 0 < r < r0 let γr : (a(r), b(r)) → C the circle segment
γr(t) = reit . Show:

lim
r→0

1

2πi

∫

γr

f (z) dz = b(0) − a(0)

2π
resz=0 f (z).

Exercise 1.12 Let (an) be a sequence in C. Show that there exists an r ∈R∪{±∞},
such that for every s ∈ C with Re(s) > r and for no s with Re(s) < r the Dirichlet
series

∑∞
n=1 ann

−s converges absolutely.

Remarks Putting g4 = 15G4 and g6 = 35G6 one sees that (x, y) = (℘,℘′/2)

satisfies the polynomial equation

y2 = x3 − g4x − g6.

This means that the map z → (℘ (z),℘′(z)/2) maps the complex manifold C/Λ

bijectively onto the elliptic curve given by this equation. Indeed, every elliptic curve
is obtained in this way, so elliptic curves are parametrized by lattices. The book
[Sil09] gives a good introduction to elliptic curves.

The Riemann zeta function featured in this section has a meromorphic extension
to all of C and satisfies a functional equation, as shown in Theorem 6.1.3. The
famous Riemann hypothesis says that every zero of the function ζ(s) in the strip
0 < Re(s) < 1 has real part 1

2 . This hypothesis is considered the hardest problem of
all mathematics.
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