
Chapter 7

Direct Model Reference Adaptive Control:
Motivation and Introduction

7.1 Model Reference Control: Motivational Example

In the design of flight control systems, it is essential to provide closed-loop stability,

adequate command tracking performance, as well as robustness to model uncertainties,

control failures, and environmental disturbances. In the previous chapters, we

considered optimal linear quadratic regulator (LQR) control design techniques

that were suitable for flight control of aerial systems. These design methods relied

on the inherent robustness properties of LQR optimal controllers. It was shown that

with a proper selection of the LQR design tuning parameters (Q and R matrices),

one could achieve 6 dB gain margin, and at least 60� phase margin, at the system

control input break points.

It is also possible to show that LQR optimal controllers can tolerate time-state-

dependent nonlinear uncertainties that might be present in the system control

channels. These uncertainties are called “matched” since they appear only where

control inputs exist in the system dynamics. The matching conditions imply that if

the system uncertainties were known, a controller would have the ability to cancel

them out.

In the presence of matched uncertainties, a deterioration of the system baseline

closed-loop performance is inevitable. This is to be expected since the LQR

controllers are designed to be robust to the entire class of matched uncertainties.

However, they are not tuned to handle any specific uncertainty from this class. In

other words, these LQR controllers may become overly conservative.

We pose the question: “Can we restore a given baseline closed-loop performance

of the system, while operating under matched uncertainties?” The answer is “yes.”

This is the area where adaptive controllers are highly effective.

Throughout the chapters of Part II, we shall utilize the concept of a reference

model for specifying the desired closed-loop tracking performance. Fixed-gain

controllers, as well as adaptive systems, can be constructed using the reference

model-based design concept. We shall begin our discussions with a motivational

example.
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Example 7.1 Fixed-Gain Model Reference Control of Aircraft Roll Dynamics. The

roll dynamics of a conventional aircraft are controlled using differential motion of

ailerons and spoilers. Ailerons are movable surfaces that are mounted outboards on

the trailing edge of the wing, where they are placed symmetrically on each side of

the wing, with respect to the aircraft centerline (Fig 7.1).

Deflected differentially (e.g., downward on one side and upward on the other),

ailerons have the ability to increase the lift force on the downward deflected portion

of the wing and to decrease it on the other side. The two distinct lift forces will

create a rolling moment around the aircraft velocity vector placed at the aircraft

center of gravity. While ailerons can move up and down, spoilers can only be

deflected upward above the trailing edge of the wing to reduce the lift force and thus

to aid ailerons in providing roll control. As a result, the aircraft rotates around its

velocity vector. In this case, the aircraft roll dynamics can be approximated by a

scalar (first-order) ordinary differential equation (ODE) in the form

_p ¼ Lp pþ Lda da (7.1)

where p is the aircraft roll rate in stability axes (radians/s), da is the total differential
aileron-spoiler deflection (radians), Lp is the roll damping derivative, and Lda is the
dimensional rolling moment derivative with respect to differential aileron-spoiler

deflection, (the aileron-to-roll control effectiveness). For a conventional open-loop-

stable aircraft, the roll damping derivativeLp is negative, unless portions of the wing
are stalled, in which case the roll damping may become positive. Positive differen-

tial aileron-spoiler deflection is defined to produce positive rolling moment, and as

such, the aileron-to-roll control effectiveness Lda typically has positive values.

Strictly speaking, the roll dynamics approximation above is valid only for

sufficiently small values of p and da . In addition, it is assumed that the aircraft

yawing motion is suppressed by the rudder – a vertical tail mounted surface.

Readers who might be unfamiliar with the flight mechanics nomenclature may

consider (7.1) as a scalar ODE _x ¼ a xþ b u, with two constant parameters a ¼ Lp,
b ¼ Lda , whose state and control input are x ¼ p and u ¼ da, respectively.

Upward deflected
aileron decreases lift 

Downward deflected 
aileron increases lift 

+
−

p > 0Fig. 7.1 Lift forces arising

from positive differential

aileron deflection cause

aircraft to roll

counterclockwise (positive

roll rate)
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The control task of interest is to force the aircraft to roll like the reference model,

_pref ¼ aref pref þ bref pcmd (7.2)

with the prescribed values ofaref < 0 (the desired inverse time constant) andbref > 0

(the desired DC gain). The reference model (7.2) is driven by the commanded roll

rate pcmd and it calculates the reference roll rate pref . In essence, the reference model

(7.2) imbeds and defines the desired closed-loop command tracking performance.

The control task amounts to finding da that would force the aircraft roll rate p track
any bounded, possibly time-varying, reference command pref . This is the model

reference control design task. Sometimes, it is also referred to as the model

following control. Using this concept allows the designer to create controllers

whose main task is to asymptotically match a given reference model behavior.

Let us now explore details of the model reference control design.

Comparing the roll dynamics (7.1) to that of the reference model (7.2), it is easy

to see that a control solution can be formulated in the feedback-feedforward form

da ¼ aref � Lp
Lda

� �
pþ bref

Lda

� �
pcmd (7.3)

where kp ¼ aref�Lp
Lda

� �
is the roll rate feedback gain, and kpcmd ¼ bref

Lda

� �
is the com-

mand feedforward gain. In fact, substituting the controller (7.3) into the roll

dynamics (7.1), gives the desired closed-loop system dynamics.

_p ¼ aref pþ bref pcmd (7.4)

In order to formally assess if (7.4) indeed converges to (7.2), we first define the

roll rate tracking error,

e ¼ p� pref (7.5)

and then compute the tracking error dynamics by differentiating e with respect to

time, while substituting (7.4) and (7.2).

_e ¼ _p� _pref ¼ aref p� pref
� � ¼ aref e (7.6)

Since by definition aref < 0 (e.g., the reference model is exponentially stable),

the error dynamics (7.6) are globally exponentially stable. Therefore, given any

initial values pð0Þ and pref ð0Þ, the tracking error eðtÞ will converge to the origin

exponentially fast,

eðtÞ ¼ exp aref t
� �

eð0Þ (7.7)
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starting at any initial tracking error value eð0Þ ¼ pð0Þ � pref ð0Þ. So, the aircraft roll
ratepðtÞwill track the reference roll ratepref ðtÞ, with the exponentially fast decaying
tracking error eðtÞ,

pðtÞ ¼ pref ðtÞ þ exp aref t
� �

pð0Þ � pref ð0Þ
� �

(7.8)

and this closed-loop tracking performance is valid for any constant or bounded

time-varying command pcmd ¼ pcmdðtÞ. The command tracking problem is solved.

The corresponding closed-loop system block diagram with the fixed-gain model

reference controller (7.3) is shown in Fig. 7.2.

The model reference controller (7.3) is by no means unique in solving the

command tracking problem of interest. Other solutions can be found. For example,

any controller in the form

da ¼ kp pþ kpcmd pcmd � ke p� pref
� �

(7.9)

solves the same tracking problem, where ke � 0 represents the error feedback gain.

However, does the error feedback in (7.9) give any advantage over the original

controller (7.3)? In order to answer that question, let us calculate the error dynamics

obtained using the modified controller (7.9).

_e ¼ aref � ke
� �

e (7.10)

Consequently,

pðtÞ ¼ pref ðtÞ þ exp aref � ke
� �

t
� �

pð0Þ � pref ð0Þ
� �

(7.11)

By definition, the error dynamics (7.10) define the transients that are incurred by

the system while tracking a given reference command pref ðtÞ. It is now evident that

choosing ke > 0 sufficiently large will allow the designer to obtain any desired (fast)

transient dynamics. This constitutes the primary advantage of using an error

feedback gain in the fixed-gain model reference controller (7.9). Figure 7.3 shows

the resulting closed-loop system diagram.

Reference Model

p

pref

kpcmd

pk

pcmd

da Roll Dynamics

+

+

Fig. 7.2 Block diagram of the closed-loop roll dynamics with fixed-gain model reference

controller obtained in Example 7.1
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Of course, practical limitations, as well as stability robustness considerations,

will place upper and lower limits on the selection of the controller gains. Eventu-

ally, these restrictions will dictate the trade-off between achievable transients in the

closed-loop system and adequate stability robustness margins. □

7.2 Introduction to Direct Model Reference Adaptive Control

In the roll control example above, we have assumed that the system dynamics (7.1)

(defined by the aircraft aerodynamics) were completely known. Then, we utilized

the roll dampingLp and the aileron control effectiveness Lda to design the two fixed-
gain model reference controllers, (7.3) and (7.9).

In reality, aerodynamic parameters are rarely known exactly. This type of

uncertainty is called parametric. If the true parameters are substantially different

from their assumed constant values, controllers such as (7.9) can lead to instabilities

in the system. Even when the system remains stable in the presence of parametric

uncertainties, its closed-loop tracking performance may deteriorate to a point of

becoming unacceptable.

Robustness considerations may not always solve the parameter sensitivity prob-

lem. Often, robust controllers will have a conservatism built into their design, and

as such, they may not be able to provide adequate tracking performance, when

operating under specific parametric uncertainties. This leads to the idea of adding a

gain adaptation mechanism and arriving at model reference adaptive controllers.

Example 7.2 Model Reference Adaptive Control of Aircraft Roll Dynamics Suppose
that the two aerodynamic parameters, Lp and Lda , in the roll dynamics (7.1) are

constant but otherwise completely unknown, with the exception that we do know

the sign of the aileron control effectiveness Lda (it is positive for a conventional

aircraft). The control task remains the same as in Example 7.1 – we need to find da
such that p tracks pref , which in turn is driven by a bounded possibly time-varying

command pcmd .

Reference Model

p

e

pref

kpcmd

pcmd

kp

ke

da Roll Dynamics

+
−−

++

Fig. 7.3 Closed-loop system block diagram with fixed-gain model reference controller and error

feedback obtained in Example 7.1
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The main control challenge here is to achieve the desired closed-loop tracking

performance, specified by the reference model (7.2) while operating in the presence

of constant parametric uncertainties Lp and Lda .
In the forthcoming chapters, we will exploit Lyapunov-based methods that allow

us to design adaptive controllers with formal guarantees of closed-loop stability,

boundedness, and tracking performance. In the meantime, we shall outline main

ideas in the design of adaptive systems.

If we knew the roll dynamics model parameters, then a feedback-feedforward

controller in the form similar to (7.3)

da ¼ kp pþ kpcmd pcmd (7.12)

would have solved the tracking problem. Since the system parameters are unknown,

the ideal controller gains,kp andkpcmd, cannot be computed directly as in Example 7.1.

Instead, we consider an adaptive controller in the form

da ¼ k̂p pþ k̂pcmd pcmd (7.13)

where k̂p; k̂pcmd
� �

represent the estimated feedback and feedforward gains, in that

order. Substituting (7.13) into (7.1) gives the closed-loop system.

_p ¼ Lp þ Lda k̂p
� �

pþ Lda k̂pcmd
� �

pcmd (7.14)

Using parameterization (7.3), the reference model dynamics (7.2) can be equiv-

alently written in terms of the ideal unknown gains as

_pref ¼ Lp þ Lda kp
� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

aref

pref þ Lda kpcmd
� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bref

pcmd (7.15)

We now define the gain estimation errors,

Dkp ¼ k̂p � kp; Dkpcmd ¼ k̂pcmd � kpcmd (7.16)

and rewrite the closed-loop system (7.14) in the following form:

_p ¼ Lp þ Lda kp
� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

aref

pþ Lda kpcmd
� �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bref

pcmd þ Lda Dkp pþ Dkpcmd pcmd
� �

(7.17)

Subtracting (7.15) from (7.17) gives the tracking error dynamics.

_e ¼ aref eþ Lda Dkp pþ Dkpcmd pcmd
� �

(7.18)
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There are three error signals in the error dynamics (7.18): (1) the roll rate

tracking error e, (2) the feedback gain estimation errorDkp, and (3) the feedforward
gain estimation error Dkpcmd . We are going to devise adaptive laws for changing the

gains k̂p; k̂pcmd

� �
; such that all these three errors tend to zero, globally and

asymptotically.

In order to do that, we first define a scalar function V, representative of the total
“kinetic energy” of all the errors in the system.

V e; Dkp; Dkpcmd
� � ¼ e2

2
þ Ldaj j

2 gp
Dk2p þ

Ldaj j
2 gpcmd

Dk2pcmd (7.19)

The “energy” function represents a weighted sum of squares of all the errors in

the system. This is the so-called Lyapunov function candidate, and the positive

constant scalar weights gp; gpcmd
� �

will eventually become the rates of adaptation.

We can easily evaluate the time derivative of V.

_V e; Dkp; Dkpcmd
� � ¼ e _eþ Ldaj j

gp
Dkp

_̂
kp þ Ldaj j

gpcmd
Dkpcmd

_̂
kpcmd (7.20)

This is the system “power.” Substituting (7.18) into (7.20) yields the time

derivative of V , along the trajectories of the error dynamics (7.18) but without

explicit knowledge of these trajectories.

_V e; Dkp; Dkpcmd
� � ¼ aref e

2

þ e Lda Dkp pþ Dkpcmd pcmd
� �þ Ldaj j

gp
Dkp

_̂
kp þ Ldaj j

gpcmd
Dkpcmd

_̂
kpcmd (7.21)

Rearranging terms, we further get

_V e; Dkp; Dkpcmd
� � ¼ aref e

2

þ Dkp Ldaj j sgn Ldað Þ p eþ
_̂
kp
gp

 !
þ Dkpcmd Ldaj j sgn Ldað Þ pcmd eþ

_̂
kpcmd
gpcmd

 !

(7.22)

We want the energy functionV to dissipate in time. It is then sufficient to require

that its derivative _V (the system power) be nonpositive, when evaluated along the

system trajectories. The nonpositivity of _V can be easily achieved if we select the

following adaptive laws:

_̂
kp ¼ �gp p e sgn Ldað Þ
_̂
kpcmd ¼ �gpcmd pcmd e sgn Ldað Þ (7.23)
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or, equivalently,

_̂
kp ¼ �gp p e

_̂
kpcmd ¼ �gpcmd pcmd e (7.24)

thus making the second and the third terms in (7.22) disappear. Then,

_V e; Dkp; Dkpcmd
� � ¼ aref e

2 � 0 (7.25)

and consequently, the system kinetic energy V is a nonincreasing function of time.

This fact immediately implies that all the signals in the error dynamics (7.18), such

as e; Dkp; Dkpcmd
� �

, are bounded functions of time. Furthermore, since the ideal

gains kp; kpcmd
� �

are constant, the adaptive gains k̂p; k̂pcmd
� �

are also bounded.

The stable (by design) reference model (7.2), when driven by a bounded

command pcmd , gives a bounded output pref . Also, e was proven to be bounded.

Then, the roll rate p is bounded. Consequently, the control input da in (7.13) and the
roll acceleration _p in the system dynamics (7.1) are bounded. Furthermore, since _pref
is bounded, then _e is bounded, and so

€V e; Dkp; Dkpcmd
� � ¼ 2 aref e _e (7.26)

is a uniformly bounded function of time. The latter implies that _V is a uniformly

continuous function of time.

By definition (7.19), V � 0 and because of (7.25), V is a nonincreasing function

of time. Therefore, V tends to a limit as t ! 1, where the function limiting value

may not necessarily be zero.

We have shown that0 � lim
t!1V eðtÞ; DkpðtÞ; DkpcmdðtÞ

� �
<1and _V are uniformly

continuous. According to Barbalat’s lemma (see Chap. 8), these two facts imply that

the system power _V in (7.25) asymptotically tends to zero, which in turn means

lim
t!1 eðtÞ ¼ 0 (7.27)

Thus, the adaptive controller (7.13), along with the adaptive laws (7.24), forces

p track its reference signal pref asymptotically and for any initial conditions

(globally). At the same time, all signals in the corresponding closed-loop system

remain uniformly bounded. These arguments prove closed-loop stability and

tracking performance of the closed-loop system with the adaptive controller. The

corresponding block diagram is shown in Fig. 7.4.

As seen from the figure, the closed-loop system is comprised of the original roll

dynamics (7.1) operating under the adaptive controller (7.13), with the reference

model dynamics (7.2), and using the adaptive laws (7.24). Here, the external input

is the roll rate command pcmd .
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_p ¼ Lp þ Lda k̂p
� �

pþ Lda k̂pcmd pcmd

_pref ¼ aref pref þ bref pcmd

_̂
kp ¼ �gp p p� pref

� �
_̂
kpcmd ¼ �gpcmd pcmd p� pref

� �
(7.28)

Equivalently, this system can be written in terms of the tracking and parameter

estimation errors.

_e ¼ aref þ Lda Dkp
� �

eþ Lda Dkp pref þ Dkpcmd pcmd
� �

d

dt
Dkp
� � ¼ �gp eþ pref

� �
e

d

dt
Dkcmdð Þ ¼ �gpcmd pcmd e (7.29)

If instead of command tracking, the state regulation is of interest, then pref
¼ pcmd ¼ 0, and so k̂pcmd ¼ kpcmd ¼ 0. In this case, the closed-loop systems (7.28)

and (7.29) simplify to the following time-invariant second-order inherently nonlin-

ear dynamics,

_p ¼ Lp þ Lda k̂p
� �

p

_̂
kp ¼ �gp p

2 (7.30)

Reference Model

p

−gpcmd

pk

pcmd

da

e

kpcmd1
s

1
s

pref

+−

++

�

�

�

�−gpRoll Dynamics

Fig. 7.4 Model reference adaptive controller obtained in Example 7.2
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These relations reveal the essential mechanism of adaptive control. The time-

varying adaptive feedback gain k̂pðtÞwill monotonically decrease its value until

Lp þ Lda k̂p
� �

becomes negative, and as a result, the roll ratepðtÞwill asymptotically

converge to zero. In (7.30), the constant gp > 0 defines the rate of adaptation in the

sense that large values of gp will force the adaptive gain k̂pðtÞ to decrease faster.

In summary, using energy-based arguments, we have shown that the adaptive

controller (7.12) and (7.24) provides the desired model reference-based closed-loop

tracking performance for the system (7.1) while operating in the presence of the

parametric uncertainties Lp; Lda
� �

. □

7.3 Direct Model Reference Adaptive Control of Scalar
Linear Systems with Parametric Uncertainties

Let us now generalize and summarize the results obtained in Example 7.2 while

restating them for a generic class of scalar linear-time-invariant uncertain systems

in the form

_x ¼ a xþ b u (7.31)

where x 2 R is the systems state, u 2 R is the control input, and a; bð Þ represent the
parametric uncertainties, (constant and unknown), with the known sgnb.

First, we choose the desired reference model,

_xref ¼ aref xref þ bref r (7.32)

with aref < 0 . This model is driven by any bounded, possibly time-varying,

reference command r. The model parameters aref ; bref
� �

must be chosen such that

xref tracks r , with the designer specified criteria. For example, one might set bref
¼ �aref in order to enforce the unity DC gain from r to xref . Also, the value of aref

		 		
can be chosen such that the desired inverse time constant of the reference model is

achieved.

Second, we define the model reference adaptive controller as a linear combina-

tion of feedback and feedforward terms,

u ¼ k̂x xþ k̂r r (7.33)

where k̂x; k̂r
� �

are the two adaptive gains, whose adaptive law dynamics are

constructed similar to (7.24).

_̂
kx ¼ �gx x x� xref

� �
sgnðbÞ

_̂
kr ¼ �gr r x� xref

� �
sgnðbÞ (7.34)
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In (7.34), positive scalars gx; grð Þ are called the rates of adaptation. The larger

their values, the faster the system will adapt to the parametric uncertainties.

This particular controller is called “direct” to indicate that the controller gains

are adapted in (7.34) directly in order to enforce the desired closed-loop tracking

performance. Alternatively, indirect adaptive controllers can be designed to esti-

mate the unknown plant parameters a; bð Þonline and then use their estimated values

to calculate controller gains.

Finally, using energy-based arguments, we can formally prove that the adaptive

controller (7.33) and (7.34) provides the desired closed-loop tracking performance,

in the sense that the system state x globally asymptotically tracks the state xref of the
reference model (7.32) while keeping all signals in the corresponding closed-loop

dynamics uniformly bounded in time.

A few immediate remarks are in order:

• The direct model reference adaptive controller (7.33) and (7.34) operates using

only available (online measured) signals in the system. The latter consists of:

(a) the system state x, (b) the state of the reference model xref , (c) the tracking
error e ¼ x� xref , and (d) the sign of the control effectiveness sgnb.

• All signals in the closed-loop system remain uniformly bounded in time.

• The system state x tracks the state of the reference model xref ; globally and

asymptotically. However, a characterization of the system transient dynamics in

model reference adaptive control remains an open problem.

• The adaptive parameters k̂x; k̂r
� �

are not guaranteed to converge to their true

unknown values kx; krð Þ nor are they assured to converge to constant values in

any way. All that is known is that these parameters remain uniformly bounded in

time. Sufficient conditions for parameter convergence are known as persistency

of excitation [1, 2]. It turns out that for a first-order linear system such as (7.1),

persistent excitation is guaranteed if the commanded signal rðtÞ contains at least
one sinusoidal component. In this case, the two adaptive gains k̂x; k̂r

� �
will

converge to their true constant unknown values, exponentially fast.

7.4 Historical Roots and Foundations of Model Reference
Adaptive Control

The adaptive control development was largely motivated in the early 1950s by the

design of autopilots for aircraft that operated in a wide flight envelope, with a large

range of speeds and altitudes. Different flight conditions caused the aircraft dynam-

ics to change significantly. This phenomenon called for flight controllers that could

accommodate drastic changes in the aircraft aerodynamic and propulsive forces and

moments. Adaptive control was proposed as one of the design approaches to

solving the flight control problem.

The concept of a model-reference adaptive system (MRAS) was originally

proposed in 1958 by Whitaker et al. at MIT [3, 4]. The main idea behind this
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concept was to specify the desired command-to-output performance of a servo-

tracking system using a differential or a difference equation (the reference model)

that would define the ideal response of the system due to external commands. This

control concept was later called “explicit model following,” and the corresponding

architecture became known as the model reference adaptive control (MRAC).

Shortly after its introduction, the first proof of MRAC closed-loop stability using

Lyapunov theory was given in 1965 by Butchart and Shackcloth, at the IFAC

Symposium on Adaptive Control [5], and in 1966 by Parks [6].

In the following years, adaptive control theory for a broad class of multi-input

multi-output uncertain dynamical systems was extensively developed and well

documented in several now-classical textbooks [1, 2, 7, 8].

7.5 Exercises

Exercise 7.1. Consider the aircraft roll dynamics from Example 7.1. Given the roll

damping Lp ¼ �0:8 (s�1) and the aileron effectiveness Lda ¼ 1:6 (s�1), design a

fixed-gain model reference controller in the form of (7.3) to recover the reference

model dynamics (7.2), with aref ¼ �2, bref ¼ 2. Also, design a fixed-gain controller

with error feedback in the form of (7.9). Choose several bounded time-varying roll

rate commands. Simulate the closed-loop system response, with each of the two

controllers active (one at a time). Compare the two controllers and comment on the

achieved closed-loop system stability, robustness, tracking, and transient

properties.

Exercise 7.2. Derive relations (7.28), (7.29), and (7.30).

Exercise 7.3. Assume that the constant roll dynamics data Lp; Lda
� �

from Example

7.1 are unknown and that only the sign of Lda is known to be positive. Using the

same reference model parameters, design an adaptive roll rate tracking controller in

the form of (7.13), (7.14), (7.15), (7.16), (7.17), (7.18), (7.19), (7.20), (7.21), (7.22),

and (7.23). Choose various roll rate commands and simulate the resultant closed-

loop system performance. Compare fixed-gain versus adaptive controller

performances and comment on your results.

Exercise 7.4. Consider a scalar dynamical system described by the first-order

differential equation

_x ¼ a xþ b u; xð0Þ ¼ x0

where a ¼ 2 and b ¼ 3 represent unknown constant parameters. It is assumed that

sgnb ¼ 1 is known. The goal is to design a controller such that the system state

tracks the state of the reference model,
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_xref ¼ rðtÞ � xref

where r ¼ rðtÞ is the commanded reference input (a bounded signal). Assuming that

the system dynamics are known, design a fixed-gain command tracking controller.

Then, design a direct model reference adaptive controller. Simulate the closed-loop

system dynamics for both controllers, starting from different initial conditions and

using three different reference commands: (a) a step-input, (b) a series of steps, and

(c) a sum of sinusoids. Tune your adaptive design (i.e., select rates of adaptation).

Compare tracking performance of the two closed-loop systems and their

corresponding control signals. Comment on your results.
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