
Chapter 3

Command Tracking and the Robust

Servomechanism

3.1 Introduction

Most industrial control problems require the control system to accurately track

commands. This requirement distinguishes these problems from regulation in

which the state is driven to zero. From classical control theory, we know that in

order to track a constant command with zero error, we need to add integral error

control action into the controller. For single-input single-output (SISO) systems, the

loop transfer function L(s) can be written as

LðsÞ ¼ K b0s
m þ � � � þ bm�1sþ 1ð Þ

sp a0sn þ � � � þ an�1sþ 1ð Þ (3.1)

where the gain K and the polynomial coefficients ai and bi are real constants. The
type of the control system depends upon the order p of the pole of L(s) at s ¼ 0. The

number of finite zeros, their location, or the location of the poles are not important

to specify the system type. The system type p, where p ¼ 0; 1; 2; � � � indicates how
many integrators are present in the control system. We know that in order to track a

constant command rðtÞ ¼ constant , and to produce zero steady-state error, an

integrator is needed, p � 1, creating (at a minimum) a type 1 system. In order to

track a type 1 input, the control system will need two integrators, creating a type 2

system. Thus, to track commands accurately, the class of commanded signals must

be known, and the controller must be augmented with enough integrators to

produce zero steady-state errors.

When these integrators are added to the control system for command tracking,

they also provide disturbance rejection within the same class, that is, a type 1 control

system can track constant commands and reject constant disturbances. Similarly, a

type 2 system can track ramp inputs and reject ramp disturbances.

Basically, the augmentation of the system with these integrators for command

tracking requires embedding into the system a model of the class of signals that

the system will track. This is often referred to as the internal model principle [1].
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For instance, when tracking a constant command and adding a single integrator, we

have embedded the command generation internal model _r ¼ 0 into the system.

In the previous chapter, we have illustrated the use of linear quadratic optimal

control theory to design a controller and examined the excellent stability properties

provided by that method. The linear quadratic regulator (LQR) forces the system

state to go to zero, forming a type 0 control system. If one wants to track a constant

command using such an LQR controller, the system would have a steady-state

offset error to the command. We know from Eq. (3.1) that in order to track a

constant command with zero error, we need to add an integrator, creating a type

1 control system.

A natural extension of the LQR method presented in the previous chapter would

be to add an integral control action into the controller to produce zero steady errors,

while tracking constant commands. The number of integrators that would need to

be added depends upon the commanded signal (whether it is a constant, a ramp, or

other type of signal).

This chapter presents a systematic process for building an augmented state space

model called the servomechanism design model [2]. This state space description

embeds a model of the class of signals to be tracked, such that when optimal control

theory is applied, the state regulation provides accurate tracking of the selected

class of external commands. This system is then decomposed into two parts: a servo

tracking controller for command following and a state feedback component for

stabilization. In aerospace, this approach is often used to design flight control

systems for both manned and unmanned aerial vehicles. The resulting control

architecture provides accurate command tracking and a robust control system

design with predictable and robust performance. The meaning of controller robust-

ness was introduced in Chap. 2. It requires the minimum singular value of the return

difference matrix having magnitude greater than 1. This topic of robustness in the

frequency domain is covered in great detail later in Chap. 5.

3.2 The Servomechanism Design Model

Consider the following finite dimensional linear-time-invariant state space model:

_x ¼ Axþ Buþ Ew

y ¼ Cxþ Du ð3:2Þ

with an unknown bounded disturbance w and with the signals x 2 Rnx ; u 2 Rnu ; and
y 2 Rny representing the system state, control, and output, respectively. We assume

that the system is both controllable and observable. We would like a preselected

subset of the output vector y to track the command input vector r 2 Rnr , and we

assume that the dimension of r is less than or equal to the number of the system

outputs (i.e., ny � nr). It is also assumed that the pth order differential equation for

r(t) is given, with the following model:
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r
ðpÞ ¼

Xp
i¼1

ai r
p�ið Þ

(3.3)

where the scalar coefficients ai are known and the superscript (i) denotes the ith

derivative. Using the model in (3.3), examples for typical signals are shown in

Table 3.1.

The polynomial formed by the Laplace transformation of (3.3) is

aðsÞ ¼ sp þ
Xp
i¼1

ais
p�i; (3.4)

and it gives a known class of inputs without the knowledge of their magnitudes. Our

control goal is to track this command with zero steady-state error. For disturbance

inputs, we assume the same model as r(t):

w
ðpÞ ¼

Xp
i¼1

ai w
p�ið Þ

(3.5)

where w0 ¼ wð0Þ is unknown.
Let us define the tracking error signal as

e ¼ yc � r (3.6)

where yc 2 Rnr is the subset of the output y to be controlled and e 2 Rnr . The error

signal is defined here as e ¼ yc � r so that we can apply negative feedback of the

errors and their derivatives in forming the feedback control. We will also arrange

the output vector so that the first nr variables in y defineyc. Thus,

y ¼ yTc yTnc
� �T

(3.7)

where ync are output variables that are not controlled. The model for yc 2 Rnr is

yc ¼ Ccxþ Dcu (3.8)

Table 3.1 Internal models for command generation

Command signal r(t) Differential equation Model parameters

Constant
_r ¼ 0

p ¼ 1, a1 ¼ 0

Ramp
€r ¼ 0

p ¼ 2, a1 ¼ a2 ¼ 0

Sinusoid
€r ¼ �o2

0r p ¼ 2; a1¼ 0; a2¼� o2
0
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This is the regulated system output. Tracking in yc is the same as regulation

in e; therefore, the objective is to make the error approach zero e ! 0 yc ! rð Þ, as
t ! 1, in the presence of unmeasurable disturbance w, in a robust manner with

respect to the plant description. Taking (3.6) and differentiating p times, the

resulting differential equation for the error may be written as

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ yc

ðpÞ �
Xp
i¼1

ai yc
p�ið Þ � r

ðpÞ �
Xp
i¼1

ai r
p�ið Þ

 !
(3.9)

From (3.3), the bracketed term in the right side of (3.9) will be zero. Using (3.8),

we have

yc
p�ið Þ ¼ Cc x

p�ið Þ þDc u
p�ið Þ

(3.10)

Substituting this into (3.9) yields

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ Cc x

ðpÞ �
Xp
i¼1

ai x
p�ið Þ

" #
þ Dc u

ðpÞ �
Xp
i¼1

ai u
p�ið Þ

" #
(3.11)

This system represents a set of coupled ordinary differential equations. Let x and
m be defined as

x ¼ x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

(3.12)

m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

(3.13)

The error equation is

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ Ccxþ Dcm (3.14)

Differentiating (3.12), we get

_x ¼ x
pþ1ð Þ �

Xp
i¼1

ai x
p�iþ1ð Þ

(3.15)
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Using (3.2) for _x results in

_x ¼ A x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x

þ B u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m

þ E w
ðpÞ �

Xp
i¼1

ai w
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

(3.16)

where (3.5) shows the last term to be zero. We can rewrite (3.16) as

_x ¼ Axþ Bm (3.17)

which is the original system model minus the disturbances.

The servomechanism design model is formed by creating a new state space

model, containing the error dynamics and the system model from (3.17). The new

state vector is z, and its components are the errorse; � � � ; e
p�1ð Þ

, with the vector x. The
error is a linear combination of x and m from (3.14). Augmenting z with these

derivatives and x defines z to be

z ¼

e
_e
..
.

e
p�1ð Þ

x

2
666664

3
777775 (3.18)

This new state vector z has dimension nx þ p� nrð Þ. Differentiating (3.18) yields
the servomechanism design model:

_z ¼ ~Azþ ~Bm (3.19)

where ~A and ~B are given by

~A ¼

0 I 0 � � � 0 0

0 0 I 0 0

. .
.

0 0 0 I 0

apI ap�1I � � � a2I a1I Cc

0 � � � � � � � � � 0 A

2
6666664

3
7777775

~B ¼

0

0

..

.

0

Dc

B

2
6666664

3
7777775 (3.20)

The robust servomechanism LQR solution is obtained by applying linear

quadratic regulator theory to (3.19). By regulating z, we regulate to zero both e,
its p� 1ð Þ derivatives, and x. In steady state, this allows the state vector x to be

nonzero, in which case, Ccxþ Dcu ¼ r. This control formulation adds the desired

integral control action acting on the command error.
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3.2.1 Controllability of the Servomechanism Design Model

If we apply the Hautus controllability tests to the servomechanism design model in

(3.19), for the system to be controllable, we must have

rank sI � ~Aj ~B� � ¼ nx þ nr � p (3.21)

where s evaluates at each of the eigenvalues of ~A. This matrix has nx þ nr � p rows
that must all be independent to have full rank. To derive this requirement, simply

use elementary row and column operations to transform sI � ~Aj ~B� �
into the

following:

sI � ~A ~B
� � ¼

sI �I 0 0 0 0

0 sI �I 0 0 0

0 0 sI �I 0 0

0 0 0
aðsÞ
sp I �C D

0 0 0 0 sI � A B

2
6666664

3
7777775

aðsÞ ¼ sp �
Xp
i¼1

ais
p�i (3.22)

Clearly, the firstnr � p� 1ð Þ rows are independent. From the last row, sI � AjB½ �
must be full rank which says that the original system model must be controllable.

Considering the last two rows, if s ¼ si such that a sið Þ ¼ 0 (a zero of a(s)), then we

must have

rank
�Cc Dc

siI � A B

� �� �
¼ nx þ nr (3.23)

For this to occur, the multivariable zeros or transmission zeros of the original

system must not equal any zeros of a(s) and nu � nr . To summarize are the

following:

1. The original system (A, B) must be controllable.

2. The number of controls must be greater than the number of signals to track,

nu � nr.
3. The original system A;B;Cc;Dcð Þmust not have any transmission zeros common

with the polynomial a(s).

For control design, we can often relax the controllability requirement to that of

stabilizability. For stabilizability, the original system (A, B) must be stabilizable,

and conditions (2) and (3) above must also be satisfied.
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Example 3.1 Constant Command Tracking Consider a constant command r.
According to (3.4), this gives _r ¼ 0 (p ¼ 1), with a1 ¼ 0. The command error is

e ¼ yc � r. The servomechanism design model using (3.19) is given by

_z ¼ ~Azþ ~Bmz ¼ e

_x

� �
;m ¼ _u

~A ¼ 0 Cc

0 A

� �
; ~B ¼ Dc

B

� �
(3.24)

Example 3.2 Sinusoidal Command Tracking Consider a sinusoidal command rðtÞ ¼
sin otð Þ . This gives €r ¼ �o2r , p ¼ 2ð Þ , with a1¼ 0; a2¼� o2

0 , (see Eq. (3.4)). The

command error is e ¼ yc � r. The state space system using (3.19) is given by

_z ¼ ~Azþ ~Bmz ¼ e

x

� �
; x ¼ €x� o2x; m ¼ €u� o2u;

~A ¼
0 1 0

�o2 0 Cc

0 0 A

2
64

3
75; ~B ¼

0

Dc

B

2
64

3
75 (3.25)

Example 3.3 Constant Command Tracking in a Scalar System Knowledge from

classical control tells us that a type 1 controller is needed to track a constant

command. Using a scalar system, this example will build a state space model and

illustrate how to design an integral control for tracking constant commands.

Consider the following scalar system:

_x ¼� 2xþ uþ w

y ¼x ð3:26Þ

where x is the state, u is the control, and w is a nonmeasurable constant disturbance.

Hence, A ¼ [�2], B ¼ [1], E ¼ [1], C ¼ [1], and D ¼ [0]. The goal is for the

output y (same as the state x) to track a constant command r, with zero steady-state

error. The constant command is modeled using (3.3) as

_r ¼ 0; p ¼ 1; a1 ¼ 0 (3.27)

The robust servo design model is

_z ¼ ~Azþ ~Bm (3.28)

with
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~A ¼ 0 C
0 A

� �
¼ 0 1

0 �2

� �
; ~B ¼ D

B

� �
¼ 0

1

� �
(3.29)

in which we see that ~A; ~B
� �

form a controllable pair. The feedback control law is

m ¼ �Kz. It is desired that the closed-loop dynamics have a characteristic polynomial

of fclðsÞ ¼ sþ 2ð Þ2 þ 4 ¼ s2 þ 4sþ 8 (pole placement problem). The feedback

control is

m ¼ � K1 K2½ � e
_x

� �
(3.30)

The closed-loop system is _z ¼ A� BKð Þz with characteristic polynomial

fclðsÞ¼ det sI � ~Aþ ~BK
� �

. Substitute for ~A; ~B
� �

keeping the gains as parameters,

expand the determinant, and equate to the desired closed-loop characteristic

polynomial

det sI � ~Aþ ~BK
� � ¼ s2 þ 2þ K2ð Þsþ K1 ¼ s2 þ 4sþ 8 (3.31)

Equating coefficients of s yields two equations in the two unknown gains that

can be solved for the gains K1 K2½ � ¼ 8 2½ �. The control u ¼ R m and is

u ¼ �K

ð
z dt ¼� 8 2½ �

R
e dt

x

� �

¼� 8

ð
e dt� 2xþ constant of integration ð3:32Þ

In the implementation, the constant of integration is ignored. Figure 3.1

illustrates the system, (controller, plant, and disturbance).

3.3 The Robust Servomechanism LQR

In Chap. 2, it was shown that the state feedback infinite-time linear quadratic

regulator has excellent stability and robustness properties. In this section, this

approach is applied to the servomechanism design model from the previous section

-

x y = x

++

+ +

−2a1 = 0

s−1 ur +

y

−e

Integral Error
Control

Embeds Internal
Model

State Feedback
Stability

s−1

w

-

+ +

2

u + Kxx
8

Kx = K2

K1

Fig. 3.1 Example 3.3 block diagram of the control and system dynamics
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to form the robust servomechanism LQR (RSLQR). The RSLQR gain matrix Kc

that is produced from the solution of the algebraic Riccati equation forms the state

feedback control given as

m ¼ �Kcz (3.33)

which, when integrated p times, is implemented using integral control for command

tracking and state feedback for stabilization.

The RSLQR design problem uses the servomechanism design model written as

_z ¼ ~Azþ ~Bm (3.34)

where z and m are defined in (3.18) and (3.13), respectively. LQR control theory is

applied to (3.34), using the performance index (PI),

J ¼
ð1
0

zTQzþ mTRm
� �

dt (3.35)

whereQ ¼ QT � 0;R ¼ RT>0, ~A; ~B
� �

is stabilizable, and ~A;Q
1
2

	 

is detectable. For

the infinite-time problem, the optimal steady-state control law for m using state

feedback is formed by solving the algebraic Riccati equation (ARE) using Q and R
from (3.35), given as

P ~Aþ ~ATP� P ~BR�1 ~BTPþ Q ¼ 0 (3.36)

The resulting steady-state nu � nr þ nxð Þ-dimensional feedback controller gain

matrix is

Kc ¼ R�1 ~BTP (3.37)

with the state feedback control given asm ¼ �Kcz. The gain matrixKc is partitioned

in the same manner as the vector z in (3.18), written as

Kc ¼ Kp Kp�1 � � � K1 Kx½ � (3.38)

Substituting the definition of z into (3.33) yields

m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ ¼ �

Xp
i¼1

Ki e
p�ið Þ � Kx x

ðpÞ �
Xp
i¼1

ai x
p�ið Þ

" #
(3.39)

Integrating (3.39) p-times gives the control solution u for the original system

model in (3.2) as
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u ¼ �Kxxþ
Xp
i¼1

s�i ai u
p�ið Þ þKx x

p�ið Þ
� �

� Ki e
p�ið Þ

� �
(3.40)

Figure 3.2 is a block diagram illustrating the system of (3.2) (represented as G)
connected to the robust servomechanism state feedback control law.

The state feedback term �Kxxð Þ enforces closed-loop stability of the plant. The

p integrators and their gains provide integral error control, and the coefficients ai
embed the internal model of the signal being tracked. So, the closed-loop system is

_z ¼ ~A� ~BKc

� �
zþ Fr (3.41)

where F ¼ �Inu�nu 0nu�nx½ �T . The RSLQR closed-loop design using state

feedback is guaranteed to be globally exponentially stable, and it will force the

system-regulated output track the command signal rðtÞ, with zero steady-state error.
In Chap. 1, we introduced plant (1.35) and controller (1.36) state space models.

These models were then coupled to form a closed-loop simulation model and loop

gain frequency domain analysis models. We want to implement the RSLQR control

from (3.40) using the controller given by

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r ð3:42Þ

The control in (3.40) is a state feedback control y ¼ xð Þ. Substituting into (3.42),
we have

_xc ¼ Acxc þ Bc1xþ Bc2r

u ¼ Ccxc þ Dc1xþ Dc2r (3.43)

-

u y• • •

• • •

• • •

-

+

+

+

+

+

+

+ +

Kp K2 K1

Kx

ap

a2

a1

s−1 s−1 s−1
G x

u + Kx x

r

cy

−e
Integral Error

Control

Embeds Internal
Model

State Feedback
Stability

Fig. 3.2 Robust servomechanism block diagram
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with

Ac Bc1 Bc2

Cc Dc1 Dc2

� �

¼

0 Inr � � � 0

..

. . .
. � � � 0

0 0 � � � Inr
apInr � DcKp � � � � � � a1Inr � DcK1

2
66664

3
77775

0

..

.

0

Cc � DcKx

2
66664

3
77775

0

..

.

0

�Inr

2
66664

3
77775

�Kp � � � �K2 �K1½ � �Kx½ � 0½ �

2
66666664

3
77777775

(3.44)

Example 3.4 The Robust Servo Controller for Example 3.3 In Example 3.3, the

control u was given as

u ¼ �8

ð
e dt� 2x (3.45)

The state space model for the controller using (3.44) is

Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼ 0½ � 1½ � �1½ �

�8½ � �2½ � 0½ �
� �

(3.46)

In industrial applications, the commanded signal r(t) is often assumed to be a

constant. For example, in flight control, such a command could represent the stick

force coming from a pilot or the guidance command coming from the outer-loop

steering algorithms. Even though these command signals are not actually constant,

designing and implementing a type 1 control system has proven very effective in

most applications, and the RSLQR will provide zero steady-state error command

tracking.

To achieve good transient response characteristics, tuning of the LQR PI matrices

Q and R is required. Understanding how these matrices affect the control gains and

how the control gains influence the closed-loop system response is key to achieving a

good design.

It is important in the design of a realistic control system to be mindful of the

“size” of the feedback gains in Kc . In aerospace applications, gains that are too

large amplify sensor noise, drive the actuators with high rates, and cause issues

and challenges with flexible body dynamics, called structural mode interaction.

The feedback gains Kc depend upon the numerical values in Q and R. As Qk k2
becomes large, the gains get large; as Rk k2 is made small, the gains get large; thus,

Kck k2 � Qk k2= Rk k2.
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3.3.1 Summary

Dynamics: _x ¼ Axþ Buþ Ew

y ¼ Cxþ Du

Command model: r
ðpÞ ¼

Xp
i¼1

ai r
p�ið Þ

; Disturbance model: w
ðpÞ ¼

Xp
i¼1

ai w
p�ið Þ

State model: x ¼ x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

; Control model: m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

Augmented state vector: z ¼ e _e � � � e
p�1ð Þ

x
h i

Performance index: J ¼
Z1
0

zTQzþ mTRm
� �

dt Q ¼ QT � 0;R ¼ RT > 0

Control design model: _z ¼ ~Azþ ~Bm; ~A; ~B
� �

controllable: ~A;Q
1
2

	 

detectable:

~A ¼

0 I 0 � � � 0 0

0 0 I 0 0

. .
.

0 0 0 I 0

apI ap�1I � � � a2I a1I C

0 � � � � � � � � � 0 A

2
6666666664

3
7777777775
; ~B ¼

0

0

..

.

0

D

B

2
6666666664

3
7777777775

ARE: P ~Aþ ~A
T
Pþ Q� P ~BR�1 ~B

T
P ¼ 0 m ¼ �R�1 ~B

T
Pz ¼ �Kcz

Control: u ¼ �Kxxþ
Xp
i¼1

s�i ai u
p�ið Þ þKx x

p�ið Þ
� �

� Ki e
p�ið Þ

� �
Controller: _xc ¼ Acxc þ Bc1xþ Bc2r

u ¼ Ccxc þ Dc1xþ Dc2r

Ac Bc1 Bc2

Cc Dc1 Dc2

� �

¼

0 Inr � � � 0

..

. . .
. � � � 0

0 0 � � � Inr
apInr � DcKp � � � � � � a1Inr � DcK1

2
66664

3
77775

0

..

.

0

Cc � DcKx

2
66664

3
77775

0

..

.

0

�Inr

2
66664

3
77775

�Kp � � � �K2 �K1½ � �Kx½ � 0½ �

2
66666664

3
77777775
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The following example will illustrate how to choose parameters within Q and how

to select a design that performs well, has a reasonable bandwidth, and does not

result in high actuator rates. The processes for selecting the LQR penalty weights

form LQR design charts that show important time domain and frequency domain

metrics plotted versus loop gain crossover frequency. Viewing this information,

while using the design charts, allows the control system engineer to select the

desired bandwidth of the design and to perform the necessary trade studies required

to meet the desired closed-loop system performance design goals. This process also

prevents large feedback gains from being selected, which can introduce challenges

later in the simulation and analysis of the control system.

Example 3.5 LQR Q-Matrix Parameter Selection Using Design Charts Consider

the pitch-plane dynamics of an unmanned aircraft (Fig. 3.3), given as

_a ¼ Za

V
aþ Zd

V
dþ q

_q ¼ MaaþMddþMqq ð3:47Þ

It is desired to design an acceleration command r ¼ Azc flight control system. We

will assume that the command is constant and will design an RSLQR controller

with integral control. We will design a constant gain matrix Kc for a single flight

condition and will assume gain scheduling will be used to interpolate the gains

between conditions (other design points). Normal acceleration Az ft=s
2ð Þ is given by

Az ¼ �V _g ¼ VZaaþ VZdd (3.48)

We can introduceAz directly as a state variable by replacing the angle-of-attack a
state. Differentiate (3.48) to form the differential equation for _Az and then substitute

for _a from (3.47). This produces

_Az ¼ZaAz þ VZaqþ VZd
_de

_q ¼ Ma

VZa
Az þMqqþ Md �MaZd

Za

� �
de ð3:49Þ

Body

Body

Body

CG 

VT

α

β

Fig. 3.3 Unmanned aircraft
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Next, introduce a second-order actuator model for the elevator. This is given as

€de ¼ �2zaoa
_de þ oa

2 dc � deð Þ (3.50)

Combining (3.49) and (3.50) forms the plant model written in matrix form as

_Az

_q
_de
€de

2
664

3
775 ¼

Za VZa 0 VZd

Ma VZa= Mq Md � MaZd
Za

	 

0

0 0 0 1

0 0 �oa
2 �2zaoa

2
664

3
775

Az

q
de
_de

2
664

3
775þ

0

0

0

oa
2

2
664

3
775dc
(3.51)

Since r ¼ constant, _r ¼ 0, and p ¼ 1, then we need to add an integrator to form

our type 1 controller. The state vector (Eq. 3.18) for the robust servomechanism

design model is

z ¼ e _xT
� �T

(3.52)

with the design model _z ¼ ~Azþ ~Bm given as

_e
€Az

€q
€de
de

2
66664

3
77775 ¼

0 1 0 0 0

0 Za VZa 0 VZd

0 Ma VZa= Mq Md � MaZd
Za

	 

0

0 0 0 0 1

0 0 0 �oa
2 �2zaoa

2
66664

3
77775

e
_Az

_q
_de
€de

2
66664

3
77775þ

0

0

0

0

oa
2

2
66664

3
77775 _dc
(3.53)

where z ¼ e _Az _q _de €de
� �T 2 R5. At a flight condition of Mach 0.3, 5,000 ft

altitude, and a trim angle-of-attack a of 5 degrees, the plant model data (stability

and control derivatives) are

Za ¼� 1:05273 1/sð Þ
Zd ¼� 0:0343 1/sð Þ
Ma ¼� 2:3294 1=s2

� �
Mq ¼� 1:03341 1=s2

� �
Md ¼� 1:1684 1=s2

� �
V ¼ 329:127 ft/sð Þ
oa ¼ 2p � 13: rad=sð Þ
za ¼ 0:6 ð3:54Þ
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Substituting the data into (3.53) yields

~A ¼

0 1 0 0 0

0 �1:053 �346:5 0 �11:29
0 0:007 �1:033 �1:093 0

0 0 0 0 1

0 0 0 �6672: �98:02

2
66664

3
77775 ~B ¼

0

0

0

0

6672:

2
66664

3
77775 (3.55)

If we check the controllability of the pair ~A; ~B
� �

, we find the system to be

controllable.

The objective in the design of the gain matrix is to track the acceleration

command with zero error without using large gains. The design begins by equating

R ¼ 1 and selecting a Q matrix that penalizes the error state e in (3.53). Thus, the

performance index in (3.35) is

J ¼
ð1
0

zTQzþ m2
� �

dt (3.56)

We start by inserting the parameter q11 in the (1,1) element

zTQz ¼ zT

q11
0 0

0

0 0

0

2
66664

3
77775

e
_q
_Az
_de
€de

2
66664

3
77775; (3.57)

and set the other matrix elements to zero. This will penalize the error in tracking the

command. Substituting (3.57) into (3.56) gives the performance index as

J ¼
ð1
0

q11e
2 þ m2

� �
dt (3.58)

If we check the observability of the pair ~A;Q
1
2

	 

, we find the system to be

observable through this choice of Q.
The LQR design charts are formed by sweeping q11 values from small to large,

solving for the feedback gains for each value of q11, and examining the closed-loop

system properties. The computation steps are the following:

1. Set the value of q11 in Q from (3.57).

2. Solve the ARE in (3.36) for P.
3. Compute the feedback gain matrix Kc in (3.37).

4. Form the closed-loop system in (3.41).
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5. Simulate the closed-loop system to a step command and extract time domain

performance metrics. These are rise time, settling time, percent command

overshoot, percent command undershoot, max control, and control rate.

6. Evaluate the loop transfer function at the plant input and extract frequency

domain metrics. These are loop gain crossover frequency, minimum singular

values of I þ L and I þ L�1 (L at the plant input) versus frequency, and Sk k1 and

Tk k1 for the commanded variable (S and T are formed using L at the plant

output).

7. Loop back to step 1 and increase q11 until the numerical range is complete.

For this command tracking system, it is desired to track the acceleration command

with zero error, and minimize the rise time and settling time, all in response to the

command, without driving the control surface actuators with large gains. Large gains

will cause large actuator deflections and rates, which are not desirable. This creates a

trade study, in which the bandwidth must be limited in order not to exceed actuator

limitations. Also, large gains amplify sensor noise, reduce stability margins, and

make the system sensitive to unmodeled high-frequency dynamics (like flexible body

modes).

For this flight condition, the range of the LQR penalty q11 is selected to be

q11 ¼ 10�2; 10
0:5

h i
, using 100 design points. For a linear system, the response

will depend upon the location of the closed-loop poles in the s-plane. Looping

through the above calculations, the eigenvalues of the closed-loop system matrix
~A� ~BKc

� �
are plotted to form a root locus. The data are shown in Fig. 3.4.
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Fig. 3.4 RSLQR short-period dynamics root locus. Actuator poles at �49.0 	65.3j not shown
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Also plotted are the open-loop poles (diamonds), the commanded variableAz de= ,

and the system transfer function zeros, which include a nonminimum phase zero

(right half plane (RHP) zero). The open-loop dynamics are stable at this flight

condition, with the poles located in the left half plane (LHP). The two finite zeros

of the acceleration transfer function are �6.73 and 5.69. As discussed in Chap. 2

on asymptotic properties of regulators and the root square locus, Fig. 3.4 shows

the RHP zero at 5.69 mirrored into the LHP. Two of the closed-loop poles, one from

the integrator and the other from the short period, are approaching this region on the

negative real axis. The remaining short-period pole moves out to infinity along the

negative real axis. The control actuator poles, not shown in the figure, move toward

infinity along asymptotes at 45 degrees.

The time domain performance metrics of interest here are 63% rise time, 95%

settling time, percent overshoot, percent undershoot (because the system is

nonminimum phase), max actuator deflection, and max actuator rate in response to

a constant step command. The frequency domain performance metrics are loop gain

crossover frequency oc in Hz, the minimum of the minimum singular value of the

return difference dynamics, denoted�s I þ Lð Þ, and the minimum of the minimum

singular value of the stability robustness matrix I þ L�1, denoted s I þ L�1
� �

. The

metric s I þ Lð Þ ¼ 1 Sk k= 1 and s I þ L�1
� � ¼ 1 Tk k= 1 (see Chap. 5, Sect. 5.2 for

definitions). These metrics, plotted versus oc, are used to determine how the

increasing bandwidth of the system affects the system characteristics, indicating a

desired value for q11.
As with most control system design procedures, there is not a single answer to

determining a set of gains that are acceptable. It is for the designer to make a

reasonable selection. Once a suitable design is chosen, the associated gain matrix Kc

is then stored in a table to create a gain-scheduled control for real-time implemen-

tation. Figure 3.5 shows the rise time and settling time plotted against loop gain

crossover frequency oc.

As oc increases, the system responds more quickly to the step command. As

seen from the figure, there is a diminishing return in terms of speed of response as

the bandwidth increases. This is also evident from the root locus in Fig. 3.4. As the

dominant poles approach the zero locations at �6.73 and �5.69, the change in

the pole location diminishes with the increasing gains. The poles headed toward

infinity along the asymptotes continue to move, but their contribution to the

response elt
� �

dies quickly as the eigenvalues get large and negative. This indicates

that large gains are not needed to make the system respond quickly.

Figure 3.6 shows the percent overshoot, percent undershoot, max elevon (tail

actuated control surface) deflection per g commanded, and max elevon rate per g

commanded versus the loop gain crossover frequency oc.

At lower values of oc, the response slightly overshoots the command, causing an

overshoot. Command overshoot in flight control systems needs to be minimized in

order to maintain limits and placards on the aircraft. As the integrator gain increases

(as q11 increases), above 2.1 Hz oc, the response has no command overshoot. This

metric by itself indicates a desire for larger gains. The percent undershoot,
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characteristic of nonminimum phase responses, continues to increase with increasing

oc. This response characteristic is undesirable and also needs to be minimized.

Unfortunately, it increases with increasing oc. This metric indicates a desire for

lower gains. Both the max deflection and max rate increase with increasing oc. It is

critical in flight control systems not to have excessive deflections and rates in response

to changes in the command. Electric actuators typically used in unmanned aircraft

systems draw current proportional to the peak rate (at these normal operating

conditions). High rates then cause significant power draw. Also, if the surface

becomes rate saturated, this nonlinear effect can significantly degrade stability. As

shown in the figure, the deflection and rate increase almost exponentially with

increasing oc. These metrics also indicate a need for lower gains. As seen in this

figure, some of the metrics tend toward increasing the gains, and some tend toward

decreasing the gains.

Figure 3.7 shows two frequency response metrics: the minimum of the minimum

singular value of the return difference dynamics s I þ Lð Þ and the minimum of the

minimum singular value of the stability robustness matrix s I þ L�1
� �

.

As is characteristic of LQR state feedback designs (discussed in Chap. 2), the �s
I þ Lð Þ is equal to unity for all q11 design values. This metric is not particularly useful

for developing state feedback designs but is critical when output feedback is used.

The s I þ L�1
� �

, which is the inverse of the infinity norm of the complementary

sensitivity function, is a measure of the damping in the dominant poles of the closed-

loop system. We would like to maximize s I þ L�1
� �

. The figure shows that this

metric tends to favor larger gains.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

wc Hz

T
r 

T
s 

(s
ec

)

1 2 3 4

Performance increases as 
the bandwidth increases

Diminishing return in performance 
for higher bandwidths

Fig. 3.5 Rise time (blue) and settling time (red) versus loop gain crossover frequency

68 3 Command Tracking and the Robust Servomechanism

http://dx.doi.org/10.1007/978-1-4471-4396-3_2


In balancing the positive and negative trends indicated by these metrics, a design

condition q11 ¼ 0:2448 was selected. This is the value of q11 where the percent

overshoot first approaches zero. For this design condition, the states Az, q, de, and _de
are plotted versus time in Fig. 3.8.

Note that there is no overshoot to the unit command. For this approach flight

condition, the response is quick, without the use of large gains.

The gain matrixKc is

Kc ¼ 0:4948 0:1790� 14:0605 2:2089 0:0018½ � (3.59)

The controller implementing this design is

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r (3.60)

where y ¼ Az q de _de
� �T

, r ¼ Azc, and
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Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼ 0½ � 1 0 0 0½ � �1½ �

�0:4948½ � �0:179 14:0605 �2:2089 �0:0018½ � 0½ �
� �

(3.61)

3.4 Conclusions

Depending upon the signal to be tracked, a certain number of integrators are needed

to provide zero steady-state tracking error. In this chapter, we discussed how to

formulate this problem within a state space framework and how to use optimal

control to design the command tracking control system. In Chap. 2, we discussed

the excellent frequency domain properties of LQR controllers. For our robust

servomechanism controllers, we have these same excellent properties.

One of the key takeaways from the chapter should be the development of design

charts for selecting numerical weights in optimal control problems. It is very easy to

use too large of numerical weightings in the LQR performance index, and these

large weights would lead to high gains. It is critical to be able to determine the

bandwidth that is needed in the design to meet performance requirements and not to

drive the control actuation system too hard.

3.5 Exercises

Exercise 3.1. A linearized suspended ball model is described by

_x ¼ 0 1

1 0

� �
xþ 0

1

� �
u

(a) Use state feedback to stabilize the system producing closed-loop eigenvalues at

�1, �1/2.

(b) The ball position x1 can be measured using a photocell, but the velocity x2 is
more difficult to obtain. Suppose, therefore, that y ¼ x1. Design a full-order

observer having poles at �4 and �5 and use the observer feedback to produce

closed-loop eigenvalues at �1/2, �1, �4, �5.

(c) Repeat (b) using a first-order observer with pole at �6. Give a block diagram

showing the controller as a single transfer function.

(d) Repeat this same design problem using the robust servo approach, obtaining

integral control.
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Exercise 3.2. Consider the design of a longitudinal (pitch-plane) autopilot. Using

the robust servo formulation, design a pitch autopilot commanding a constant

angle-of-attack a. Use the following dynamic model as the nominal plant model:

_a
_q

� �
¼

Za
V 1

Ma 0

� �
a
q

� �
þ

Zd
V
Md

� �
de

and use data for Za
V ¼ �1:21; Zd

V ¼ �0:1987;Ma ¼ 44:2506; (Md ¼ �97:2313).

(a) Design the autopilot to track a constant angle-of-attack command. Use the LQR

approach outlined in Sect. 3.2.

(b) Design an autopilot to track a sinusoidal angle-of-attack command.

Exercise 3.3. Consider the longitudinal dynamics of a transport aircraft as given in

Chap. 1, Exercise 1.2. Design a robust servo LQR control to track a constant speed

command and a constant angle-of-attack command.

Exercise 3.4. Consider the lateral-directional dynamics of a transport aircraft as

given in Chap. 1, Exercise 1.4. Design a robust servo LQR control to track a

constant stability axis roll-rate ps command (see Eq. (1.22)). Assume a0 ¼ 6 deg .
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