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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and

develop. In common with general scientific investigation, new ideas, concepts, and

interpretations emerge quite spontaneously, and these are then discussed, used,

discarded, or subsumed into the prevailing subject paradigm. Sometimes, these

innovative concepts coalesce into a new subdiscipline within the broad subject

tapestry of control and signal processing. This preliminary battle between old and

new usually takes place at conferences, through the Internet and in the journals of

the discipline. After a little more maturity has been acquired by the new concepts,

then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when

sufficient material has evolved for the topic to be taught as a specialized tutorial

workshop or as a course to undergraduate, graduate, or industrial engineers.

Advanced Textbooks in Control and Signal Processing is designed as a vehicle

for the systematic presentation of course material for both popular and innovative

topics in the discipline. It is hoped that prospective authors will welcome

the opportunity to publish a structured and systematic presentation of some of the

newer emerging control and signal processing technologies in the textbook series.

An aim of the Advanced Textbooks in Control and Signal Processing series is to
create a library that covers all the main subjects to be found in the control and signal

processing fields. It is a growing but select series of high-quality books that now

covers some fundamental topics and many more advanced topics in these areas.

We are therefore very fortunate to have this textbook from Eugene Lavretsky and

Kevin Wise on Robust and Adaptive Control with Aerospace Applications enter

the series. In many ways, this textbook is a departure for the series since it deals

with the fundamental topics of robust and adaptive control and has very strong

material from the aerospace applications field. Thus, it is possible to see clearly how

the stringent performance requirements of the applications motivate and are met

by the control theory developments. From the aerospace control applications, the

reader will appreciate the industrial context where aircraft operates across a wide

range of flight conditions, giving rise to many design points. The aerospace industry

solves this problem by using many strategically selected control design points
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and gain schedules the resulting controllers. Another part of the design context is

the need for control designs that are able to track a range of reference signals while

remaining robust to both parametric and nonparametric model uncertainties. These

issues are all considered in Part I of the text under the title of Robust Control.
One of the questions arising from the application of gain schedules is whether it

is possible to reduce the number of controllers being used and still meet the system

performance requirements. This is a serious practical question, and the authors find

a solution in the methods of model reference adaptive control (MRAC) that form

Part II of the textbook: Robust Adaptive Control. These chapters follow a sequence

of developments, each one dealing with some practical aspect of MRAC, and

illustrated by very appropriate case study examples. The techniques of Lyapunov

stability theory are important tools in these developments and the whole of Chap. 8 is

devoted to this topic. These tools are then used to provide a variety of performance

guarantees for the adaptive control algorithms. Beginning from state feedback

MRAC, the chapter sequence moves on, adding integral control, followed by

inculcating robustness, and then improving the adaptation dynamics and

culminating in the use of output feedback, which is the contribution of the last

chapter (Chap. 14). All the chapters are supported by reference lists and sets of

exercises for the reader.

Since it is not often that the textbook series contains a volume from writers who

are based in industry, it is also fitting to say something about the authors in this

Foreword.

Dr. Eugene Lavretsky is a Boeing Senior Technical Fellow at Boeing Research

and Technology, Huntington Beach, California, USA. He has been responsible for

the flight control systems of several advanced aircraft and has published numerous

technical articles on control and aerospace topics. He is a senior member of the

IEEE and was a recipient of the AIAA Mechanics and Control of Flight Award

(2009), the IEEE Control System Magazine Outstanding Paper Award (2011), and

the AACC Control Engineering Practice Award (2012), for his work in the aero-

space field.

Dr. Kevin A. Wise is a Boeing Senior Technical Fellow at Boeing Phantom

Works, St. Louis, Missouri, USA. He has been responsible for a wide range of

aerospace developments including flight control systems, ejector seat systems, and

autonomy in unmanned aerial vehicles. Dr. Wise is a fellow of the IEEE and has

received both IFAC (2007) and AIAA (2004) awards for his work and publications.

Both authors have taught the material of this textbook in graduate-level courses at

US universities.

This new textbook is an excellent addition to the Advanced Textbooks in Control
and Signal Processing series.

Industrial Control Centre M.J. Grimble

Glasgow, Scotland, U.K. M.A. Johnson

May 2012
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Preface

After working in the aerospace industry for close to a quarter of a century, both of

us felt strongly about writing this book, with the main goal to share our lessons

learned and design insights into the development and analysis of robust and

adaptive control systems. Our focus is on the systems that are practical yet have a

formal basis for performing their design, analysis, and performance evaluations.

During our professional careers at the Boeing Company, we have had a multitude of

opportunities to design and flight test guidance, navigation, and control (GN&C)

algorithms for a variety of platforms, ranging from commercial aircraft to fully

autonomous experimental aerial vehicles. Over time and after numerous trade

studies, we have collected a number of GN&C methods that have performed well

on a variety of aircraft systems. So, we decided to write this book and share with the

reader our experiences and lessons learned in the design, analysis, and evaluation of

control technologies, with an emphasis on flight systems. The latter is not a

prerequisite for understanding the book material, as these methods and design

insights apply to all control systems. Aerospace applications and examples

presented in this book are rather a motivation to challenges in constructing reliable

and numerically efficient control algorithms.

Many parts of this book are based on undergraduate and graduate control courses

that we have taught over the years at the Washington University in Saint Louis, the

University of Missouri – Rolla, the Southern Illinois University in Edwardsville

MO, and at the California Institute of Technology (Caltech). As such, the book

material is quite suitable for senior undergraduate and graduate students, as well as

for practicing engineers and research scientists, who have had an exposure to basic

principles in controls and dynamics, such as an undergraduate level control course,

covering classical methods (root locus, Bode diagrams, and Nyquist plots).

In addition, we assume that the reader has a basic understanding of linear algebra,

ordinary differential equations, and is familiar with using state space methods for

analysis and numerical modeling of dynamical systems. These are the prerequisites.

Motivated and driven by aerospace applications, this book focuses on systems

whose dynamics are continuous. Extensions of these methodologies to discrete and
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hybrid systems are possible and can be found elsewhere in the vast literature

devoted to control of dynamical systems.

Overall, this book is self-contained while covering theoretical development and

practical applications of formal methods in robust and optimal linear control, robust

stability analysis, Lyapunov stability theory, and model reference adaptive control

(MRAC). Throughout this book, we present detailed simulation examples and case

studies to illustrate key design steps and the benefits of applying robust and

adaptive control methodologies to transport aircraft and experimental aerial

platforms.

There are two major parts in this book. Part I presents robust control design and

analysis methods for linear time-invariant systems. Part II focuses on MRAC

methods for systems with nonlinear and uncertain dynamics.

Readers will benefit from the two-part distinct structure of this book. Such an

arrangement enables a seamless transition from the classical linear control concepts

to the state of the art in adaptive systems while illustrating each design with realistic

aerospace applications. Also, the two-part book organization allows us to present

self-contained material, covering linear and robust adaptive control techniques for

dynamical systems that operate in the presence of uncertainties. Toward that end,

we consistently give structured descriptions of both classical and advanced control

techniques, key design procedures and guidelines, worked examples, and Matlab

simulations. Each part ends with a set of educational and challenging exercises that

are directly related to the material presented. All these features constitute the book’s

educational value.

Part I begins with an introduction to challenges in control design, analysis, and

simulation of aerial vehicles. General aviation background and current trends that

lead to the need for more advanced control are discussed. Also presented is a brief

survey of control-theoretic methods for existing and future aerial vehicles. The

theoretical portion of Part I starts with the introduction of robust and optimal linear

control methods for linear systems. Command tracking using linear quadratic

regulators (LQR) with integral action is presented. This part also covers two output

feedback design methods, such as projective control and linear quadratic Gaussian

control with Loop Transfer Recovery (LQG/LTR). These algorithms are employed

to develop baseline control architectures for linear systems with known dynamics.

Part II begins with self-contained material on the design and analysis of adaptive

state feedback controllers for linear and nonlinear uncertain dynamical systems in

continuous-time domain. An overview of Lyapunov stability theory is given,

followed by theoretical fundamentals for MRAC systems. Next, approximation

properties of artificial neural networks and their applications to the design of direct

adaptive systems are introduced, and several approximation-based MRAC methods

are discussed. The part proceeds with the development of state feedback adaptive

augmentation architectures for robust baseline linear controllers, followed by

extensions and modifications to achieve transient performance in adaptive systems,

as well as to accommodate output feedback constraints. In this part, we also present

adaptive augmentation design methods to combine robust baseline controllers with

adaptive feedback.
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Throughout this book, we discuss motivations to the design, analysis, and

implementation of robust and adaptive controllers, with the aim to addressing

realistic challenges that often arise in the flight control of aerial vehicles and

other systems.
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Part I

Robust Control



Chapter 1

Introduction

1.1 Why Robust and Adaptive Control?

Robust control can be thought of as an online policy capable of regulating systems

(plants) whose dynamics may contain bounded (in some sense) uncertainties. Such

an algorithm would often utilize feedback–feedforward state-output connections to

generate appropriate control inputs so that the plant output moves along the

prescribed “trajectories.” The main idea here is to design a control system that

would work satisfactory for a set of plants, whether linear or nonlinear, while

assuming the worst-case conditions on the “unknown unknowns” in the system

dynamics.

Discarding ad hoc designs, it would be safe to say that all formal and reliable

control methods are model based. We often start with a mathematical model that

resembles the process of interest in a selected domain of operation. The model may

or may not be accurate in capturing significant and other effects in the process

dynamics. In order to overcome potential modeling deficiencies, we seek a robust

solution, designed based on the model, yet capable of controlling the real process,

and not just the model. We would also want a controller whose performance

“gracefully degrades” in the presence of uncertainties. The graceful degradation

property is highly desirable, since it becomes the only assurance that the controller

would not abruptly break down, if and when the system encounters slightly

unprecedented events during its intended operation.

Embedding robustness properties into a control solution should be treated as one

of the main criteria in any design. For example, achieving closed-loop stability and

tracking performance, while providing adequate stability margins, are the main

goals, especially when dealing with linear system approximations of real processes.

In Part I, we will present various methods and techniques to achieve this goal.

Once a robust control solution is found, one may wonder if its robustness

properties and applicability domains can be further extended to cover a wider

class of uncertainties in the process dynamics. In Part II of this book, we will

attempt to address this problem using methods from adaptive systems. We shall

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_1,
# Springer-Verlag London 2013

3



employ nonlinear design tools and show that indeed it is possible to construct

adaptive controllers that would cope with unbounded state-dependent nonlinear

uncertainties.

What is the difference between robust and adaptive controllers? A robust

controller is designed to operate under the worst-case condition assumption. Such

a controller may use excessive actions to regulate the process. In contrast, an

adaptive controller would try to perform an online estimation of the process

uncertainty and then produce a control input to anticipate, overcome, or minimize

the undesirable deviations from the prescribed closed-loop plant behavior. In

addition to their adaptive properties, these controllers can be constructed to

“learn” or equivalently to remember. Learning refers to remembering/recognizing

certain patterns and acting based on prior knowledge or “memory.” A tracking error

integrator in the feedback loop is a simple example of a learning controller. It

accumulates and integrates regulation errors based on previous and current data.

Adaptive controllers are nonlinear extensions of linear feedback integrators. In

other words, adaptive loops form their output by integrating nonlinear functions

of the system tracking errors.

We would like to emphasize that adaptive control is not the ultimate solution for

all problems. This concept represents merely another formal method to design

controllers for a wide class of process uncertainties and with performance

guarantees.

Our professional experience comes from the design of robust and adaptive flight

controllers for a variety of airborne platforms. Most of them are in operation today.

Over the years, we have found that it is not robust versus adaptive but rather a

combination of both controllers that works best, in the sense of maintaining closed-

loop stability, enforcing robustness to uncertainties, and delivering the desired

performance in the presence of unanticipated events. The (Robust + Adaptive)

architecture combination is our “secret” control design recipe that we would like

to share with the reader.

1.2 About This Book

The book is written to provide a self-contained introduction to linear robust control

methods, followed by an exploration of adaptive systems. Part I is solely devoted to

robust control methods for linear-time-invariant continuous systems. This part can

be taught in a semester-long course to students who have had a basic introduction to

control systems. Part II covers a series of topics in adaptive control in a progressive

complexity, starting with the detailed introduction to model reference adaptive

controllers for linear systems and ending with the adaptive output feedback control

methods for a class of nonlinear uncertain dynamics. The mathematical

prerequisites for this part consist of basic concepts in linear algebra and ordinary
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differential equations. Prior to adaptive control, we give an introduction and an

overview of the Lyapunov’s stability theory, which becomes the essential tool for

the development of all design and analysis methods in this part of the book. The

contents here can be covered within a semester. It is also possible to condense the

material for use in a 9- to 10-week graduate-level course.

The two parts of the book can be combined in a single course arrangement,

whereby selected linear control methods from Part I are taught, followed by a subset

of adaptive control techniques. For example, one may elect to start with linear

optimal control and then discuss methods to combine robust and adaptive

controllers into a single system capable of mitigating a wide range of uncertainties.

Finally, the book can serve as an ample reference for research scientists and

control practitioners, who are interested in the development and application of

robust linear and/or adaptive control methods to control a wide variety of systems.

1.3 Aircraft Flight Dynamics Equations of Motion

Inspired and motivated by aerospace applications, we would like to introduce the

reader to modeling aerial vehicles, such as aircraft. In our opinion, these models

give rise to many interesting and challenging control problems. Even if the reader is

not all too familiar with aerospace-related applications, we believe that the material

of this section would still be beneficial. It can serve as an example, revealing the

intricacies and complex nature of modeling to support control synthesis for realistic

systems and processes.

Toward that end, we begin with the rigid aircraft six-degrees-of-freedom

(6-DoF) equations of motion [1–3]. These dynamics can be obtained based on

Newton’s second law of motion, written in the aircraft-fixed body axes coordinate

system, as shown in Fig. 1.1.

The aircraft dynamics (treated as a rigid body) are comprised of three transla-

tional and three rotational degrees of freedom, resulting in the 6-DoF motion.

The translational motion is described by (1) the forward velocity u (positive

along the fuselage-body x-axis), (2) the lateral velocity v (positive along the right-

wing-body y-axis), and (3) the vertical velocity w (positive down and along the

body z-axis).
The three rotational degrees of freedom are represented by (1) the body roll rate

p (around the body x-axis), (2) the body pitch rate q (around the body y-axis), and
(3) the body yaw rate r (around the body z-axis). Positive angular rates (p, q, r)
result in the counterclockwise rotations around their respective axis (x, y, z).

With the body axes coordinate frame fixed at the aircraft center of gravity (CG),

the 6-DoF aircraft equations of motion can be written as

1.3 Aircraft Flight Dynamics Equations of Motion 5
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wherem is the aircraft mass,J 2 R3�3 is the vehicle inertia matrix, and Fx; Fy; Fz

� �
and �L; M; Nð Þ are the body (x, y, z) – components of the forces and moments (due

to aerodynamics and propulsion) acting on the aircraft. An expression with the

square brackets a� b½ � represents the cross-product of two vectors a and b. This
expression is also known as the vector product. This is a vector whose magnitude is

ak k bk k sin y, where y is the angle between a and b (positive counterclockwise from
a to b). Its direction is perpendicular to the plane of a and b and is given by the right-
hand rule.

In (1.1),~g is the gravity vector, and g ¼ ~gk k denotes its magnitude. The gravity

vector is expressed in the aircraft-fixed body axes coordinates, in terms of the

vehicle bank angle ’ (positive – aircraft right wing down), the pitch angle y
(positive – aircraft nose up), and the true heading angle C (positive – clockwise

rotation of the aircraft nose from the true north direction) (Fig. 1.2).

The three Euler angles ’; y; cð Þ give inertial angular orientation of the aircraft,
if treated as a rigid body moving in the three-dimensional inertial space [1–3]. In

other words, these angles describe the instantaneous orientation of the aircraft

Vertical
stabilizer

Left aileron

Right aileron
Rudder

Elevator

Horizontal
stabilizer

Body
z–axis 

Body
x–axis 

Body
y–axis 

Yaw 
Roll 

Pitch
CG 

Fig. 1.1 Definition of rigid aircraft configuration, controls, axes, and degrees of freedom
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body-fixed coordinate system with respect to the Earth-fixed (inertial) frame of

reference. The following kinematic relations describe dynamics of the Euler angles

versus the aircraft body angular rates p; q; rð Þ:

_’
_y
_c

0
@

1
A ¼ 1 sin’ tan y cos’ tan y

0 cos’ � sin’
0 sin’

cos y
cos’
cos y

0
@

1
A p

q
r

0
@

1
A (1.2)

According to (1.1) and (1.2), the aircraft 6-DoF system state vector is

~x ¼ u; v; w; p; q; r; ’; y; cð ÞT

with nx ¼ 9 states in the system dynamics.

Shown in Fig. 1.1, the aircraft primary control inputs consist of (1) the left and

right ailerons dleft ail; dright ail
� �

, (2) the horizontal stabilizer dh, (3) the elevator de,
(3) the vertical stabilizer dv, and (4) the rudder dr. Unless the aircraft is a glider, it
would have yet another primary control input – the thrust force dth, which is created
either by propellers or jet engines, mounted at specific locations on the vehicle

airframe.

The horizontal stabilizer is a slow-movable surface, whose main purpose is to

trim/equalize the aircraft longitudinal forces and moments while the elevator

controls the pitching motion of the aircraft. The vertical stabilizer is a fixed surface

designed to enforce lateral–directional stability, while the rudder controls the

aircraft yawing motion.

For a conventional aircraft, the differential aileron da ¼ dleft ail � dright ail is the
primary roll control device, the elevator de is for pitch control, the rudder dr controls
the yaw motion, and the thrust force dth provides airspeed control. Disregarding the
slow-moving horizontal stabilizer and the vertical rudder surfaces, the vector

~u ¼ dth; da; de; drð ÞT

qHorizon j

Side view Front view
y

Top view

True north

Fig. 1.2 Front, side, and top views of an aircraft in a bank, pitch, and yaw, respectively
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with nu ¼ 4 defines the aircraft primary control inputs for airspeed, roll, pitch, and

yaw, in that order. Through appropriate selection of individual controls, the aircraft

dynamics can be modified to fly and maneuver the aircraft.

The system output signals can be defined based on the availability of physical

measurement devices that are installed on the aircraft. For example, the body

angular rates (p, q, r) are measured by rate gyroscopes that are usually located

near the vehicle CG. Also, the same devices would be configured to provide the

three Euler angles ’; y; cð Þ. In addition, every aircraft is typically equipped with

at least three accelerometer devices that provide online measurements of longitudi-

nal, lateral, and vertical loads, denoted by Ax; Ay; Az

� �
. Each device measures an

acceleration component (in ft/s/s or g-s) at the point of installation and along its

corresponding axis

Ax ¼ Fx

m g
; Ay ¼ Fy

m g
; Az ¼ Fz

m g

Furthermore, an aircraft measurement system would include three aero-data

measurements. They are (1) the true airspeed VT, (2) the angle-of-attack (AOA) a,
and (3) the angle of sideslip (AOS) b. Their formal definitions (disregarding

wind-gust components) and pictorial representations are given below (Fig. 1.3).

VT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
; a ¼ arctan

w

u

� �
; b ¼ arcsin

v

VT

� 	

Combining all these measurements gives the system output

~y ¼ Ax; Ay; Az; VT; b; a; p; q; r; ’; y; c
� �

with ny ¼ 12 components.

The aerodynamic forces are often resolved into two perpendicular components,

the lift and the drag, as shown in Fig. 1.4.

Body
z–axis 

Body
x–axis 

Body
y–axis 

CG 

VT

α

b

Fig. 1.3 Aircraft aero

measurements: true airspeed,

angle of attack, and angle of

sideslip
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The aerodynamic lift force is perpendicular to the vehicle true airspeed vectorVT,

while the drag force resists the vehicle motion along the airspeed direction. Both

forces primarily depend on the angle-of-attack a, dynamical pressure �Q ¼ 1
2
rV2

T ,

where r is the air density, altitude h, as well as on the aircraft control settings. If we
now decompose the total forces into aerodynamic and propulsive components,

Fx ¼ Xa þ XT ; Fy ¼ Ya þ YT ; Fz ¼ Za þ ZT (1.3)

then the aerodynamic forces Xa; Ya; Zað Þcan easily be written in terms of lift and

drag:

Xa ¼ L sin a� D cos b cos a

Ya ¼D sin b

Za ¼� L cos a� D cos b sin a ð1:4Þ

It is not too difficult to rewrite the aircraft translational dynamics (1.1) in terms

of lift, drag, true airspeed, and angle of attack. The corresponding equations can be

found in any textbook on flight dynamics. We shall use these relations in deriving

simplified models for control.

In general, the aircraft equations of motion (1.1) represent a continuous

dynamical multi-input multi-output system in the form

_~x ¼ f ~x;~uð Þ
~y ¼ h ~x;~uð Þ (1.5)

with the state~x 2 R9, with the control input ~u 2 R4, and with the output ~y 2 R12.

Strictly speaking, another set of equations ought to be added to the aircraft

dynamics. These are the three relations that connect the aircraft body-fixed

velocities (u, v, w) with the northeast-altitude inertial velocities _x; _y; _h
� �

. In

essence, the inertial velocities are computed by transforming the body-fixed veloc-

ity vector u v wð ÞT from the body-fixed into the Earth-fixed coordinates,

VT

L

D a

x

y
z

b

Fig. 1.4 Aerodynamic lift

and drag forces
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and of course, the aircraft inertial positions (x, y, h) are derived as the integrals of

the corresponding velocities. The inertial speeds and positions are needed to design

guidance algorithms for steering the vehicle along the prescribed trajectories. Also,

these quantities become important during landing and takeoff phases of flight. The

three inertial velocities and positions can be added to the system output ~y. In that

case, the aircraft dynamics would become 12-dimensional, with the extended state

vector

~X ¼ u; v; w; p; q; r; ’; y; c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~x

; x; y; h

0
@

1
A

T

and with the redefined 18-dimensional system output
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It turns out that an attempt to use the fully coupled aircraft 6-DoF model (1.1) for

control design would most likely result in an impractical control solution of

unnecessary complexity and with an undesirable high sensitivity due to model

parameters. This phenomenon immediately presents a modeling-for-control chal-

lenge: How detailed does a control-oriented model need to be so that the resulting

control solution is simple, robust, effective, and works per design specifications,

when applied to the real process or system? The answer to this question of course

depends on the application of interest. In the next section, we will construct

simplified flight dynamics models for control design purposes.

1.4 Simplified Flight Dynamics for Control Design

The aircraft 6-DoF motion (1.1) can be decomposed into a mean or a steady-state

around an operating point (trim) and perturbation dynamics around the trim

conditions. Such a decomposition allows one to reduce the overall nonlinear fully

coupled 6-DoF aircraft dynamics into a tractable form, suitable for control design

and analysis. The notion of “trimming an aircraft” refers to finding a balance, or

equilibrium, between aerodynamic, propulsive, and gravitational forces and

moments that are constantly acting on the vehicle. In flight, an aircraft is trimmed
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by setting its primary controls to values that would result in the desired steady-state

flight conditions. The trim function would be performed by a pilot or by an

automatic flight control system.

In mathematical terms, we are looking for a system equilibrium pair ~xeq; ~ueq
� �

in

(1.5), such that the translational and angular accelerations are zeroed out,
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or, equivalently 0 ¼ f ~xeq; ~ueq
� �

. An aircraft would have many distinct equilibrium

throughout the vehicle flight operational envelope (Fig. 1.5).

These trim points would depend first hand on altitude and airspeed. Based on

available trim flight conditions, the main idea behind constructing control-oriented

models and then performing flight control design consists of several distinct steps.

These are the following:

1. Cover the flight envelope with a dense set of trim points.

2. Write simplified linear models around each of the trim point.

3. Use these dynamics to design fixed-point flight controllers per point.

4. Interpolate (i.e., gain schedule based on flight conditions) to combine linear

controllers.

The result is a gain-scheduled flight control system that would be valid for the

entire operational envelope. In what follows, we will concentrate on Step 2 and

derive linear models (deviation dynamics from equilibrium) for a selected trim

point.

When a conventional aircraft is trimmed wings-level, at selected flight

conditions, the vehicle dynamics naturally decouples into longitudinal and

lateral–directional modes. We are going to derive each of these separately.

Altitude

Airspeed

Propulsion limit

Airspeed limit

Max altitude limit

Angle of attack limit

Fig. 1.5 Aircraft operational

flight envelope, as a function

of altitude and airspeed

1.4 Simplified Flight Dynamics for Control Design 11



1.4.1 Longitudinal Dynamics

The aircraft longitudinal dynamics describe changes in forward, vertical, and pitching

motion of the vehicle. These dynamics can be further decomposed into fast and slow

components or modes. The former is called the short period, and the latter is the

phugoid. Typically, there would be a timescale separation between the two modes.

The short period describes fast coupling between the aircraft angle of attack and the

pitch rate. On the other hand, the phugoid represents a much slower (when compared

to the short period) dynamical interchange between the vehicle altitude and the

airspeed or, equivalently, between the aircraft potential and kinetic energy levels.

The short-period and the phugoid modes can be revealed after the aircraft model

is linearized around a trim point (an equilibrium). For clarity of presentation, we

assume that the thrust line is aligned with the vehicle x-axis. Then, the aircraft

longitudinal equations of motion are
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(1.7)

where V0 is the trimmed airspeed and a0 is trimmed angle of attack, g0 ¼ y0 � a0 is
the trimmed flight path angle (see Fig. 1.6), and y0 is the trimmed pitch angle. The

model states vT; a; q; yð Þ and the control inputs dth; deð Þ are incremental due to

their trimmed values. Also, in (1.7), the matrix components represent constant (for

fixed flight conditions) stability and control derivatives of the aircraft forces and

moments, with respect to the longitudinal states and control inputs. When aircraft

specific values of these derivatives are substituted into the model (1.7), most often

the open-loop system eigenvalues will consist of a fast (short-period) and a slow

(phugoid) pairs of complex conjugate numbers. Such a modal decomposition

explains the timescale separation in the longitudinal dynamics of an aircraft, such

as (1.7).

The short-period mode is defined by the dynamics of a and q. Extracting those

from the model (1.7), yields

_a

_q

 !
¼

Za
V0

1þ Zq

V0

Ma Mq

 !
a

q

 !
þ

Zde
V0

Mde

 !
de (1.8)

These dynamics describe aircraft motion on a short interval of time, due to

elevator input. Throughout the book, we shall utilize the short-period system quite

often in our exploration of robust and adaptive control design and analysis methods.

The aircraft phugoid motion can be derived by setting _a ¼ _q ¼ 0 in (1.7), solving

for the corresponding “fast steady-state” values (a, q), and then substituting them

into the remaining dynamics of vT and y.
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We leave the phugoid derivations to the reader and turn our attention back to the

short-period dynamics (1.8). Let us now introduce the flight path angle g. This is
the angle between the aircraft airspeed vector and the horizon. For small angles,

the following relationship connects the angle-of-attack a, the pitch angle y , and
flight path angle g,

a ¼ y� g (1.9)

and it is depicted in Fig. 1.6 below.

Multiplying both sides of (1.9) by true airspeed VT gives the vertical speed in

inertial space:

_h ¼ VT g ¼ VT y� að Þ (1.10)

For small angles and assuming that the true airspeed is constant, we can

differentiate (1.10) with respect to time, use a-dynamics from (1.8), and finally

compute (approximately) the vertical acceleration az in body axes:

Az � �€h ¼ �V _y� _a
� �

¼ V _a� qð Þ ¼ Za aþ Zd de (1.11)

In several of our upcoming design studies and examples, we shall treat this

signal as an output of the aircraft longitudinal dynamics (1.8):

Az ¼ Za 0ð Þ a
q

� 	
þ Zd de (1.12)

Sometimes, we choose to utilize Az , rather than a, as the preferred state

component. Differentiating (1.11) and solving for a in (1.12)

a ¼ Az � Zd de
Za

(1.13)

gives

_Az ¼ Za _aþ Zd
_de ¼ Za

V
Za aþ Zd deð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

az

þ Za qþ Zd
_de

¼ Za

V
Az þ Za qþ Zd

_de (1.14)

VT

a

x

−g

qHorizon

Fig. 1.6 Aircraft

longitudinal motion and

related angles
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and then the pitch dynamics become

_q ¼ Ma aþMq qþMd de ¼ Ma
Az � Zd de

Za

� 	
þMq qþMd de

¼ Ma

Za
Az þMq qþ Md �Ma Zd

Za

� 	
de (1.15)

Collecting (1.14) and (1.15), we can rewrite the short-period dynamics (1.8) in

terms of the new state components Az; qð Þ:

_Az

_q

� 	
¼

Za
V Za
Ma
Za

Mq

 !
Az

q

� 	
þ 0

Md � Ma Zd
Za

� 	
de þ Zd

0

� 	
_de (1.16)

We immediately note that presence of the control rate _de in (1.16) will require the
addition of an actuator model. The latter can be modeled by a second-order ordinary

differential equation, with a specified natural frequency o and a damping ratio x.
The model is driven by the elevator command dcmde ; its dynamics are

€de ¼ �2 xo _de þ o2 dcmde � de
� �

(1.17)

Combining (1.16) with (1.17), we arrive at the following four-dimensional

system

_Az

_q
_de
€de

0
BB@

1
CCA ¼

Za
V Za 0 Zd

Ma
Za

Mq Md � Ma Zd
Za

0

0 0 0 1

0 0 �o2 �2 xo

0
BB@

1
CCA

Az

q
de
_de

0
BB@

1
CCAþ

0

0

0

o2

0
BB@

1
CCA dcmde (1.18)

that describes the short-period dynamics, driven by an elevator command through

actuation. Such a model is very helpful in flight control applications whereby angle-

of-attack measurements are not available (or deemed unreliable). The trade-off here

is that the model order has increased twice. In addition, the actuator position and the

rate may not be available as measurements.

1.4.2 Lateral–Directional Dynamics

We begin with the kinematics of the Euler roll equation from (1.2):

_’ ¼ pþ tan y q sin ’þ r cos ’ð Þ (1.19)
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Let y0 denote the trimmed pitch angle. Then, linear approximation of (1.19)

around ’0 ¼ p0 ¼ q0 ¼ r0 ¼ 0 can be written as

_’ ¼ pþ r tan y0 (1.20)

Stability axis roll and yaw rates ps; rsð Þ are related to the body axis roll and yaw
rates p; rð Þ in the following way:

ps ¼ p cos aþ r sin a

rs ¼ r cos a� p sin a (1.21)

Let a0 denote the trimmed angle of attack (AOA). Then, a linear approximation

of (1.21) is of the form

ps ¼ p cos a0 þ r sin a0
rs ¼ r cos a0 � p sin a0 (1.22)

Solving (1.22) for p; rð Þ yields

p ¼ ps cos a0 � rs sin a0
r ¼ rs cos a0 þ ps sin a0 (1.23)

Substituting (1.23) into (1.20) results in

_’ ¼ ps cos a0 � rs sin a0 þ rs cos a0 þ ps sin a0ð Þ tan y0
¼ cos a0 þ sin a0 tan y0ð Þ ps þ cos a0 tan y0 � sin a0ð Þ rs (1.24)

As we have previously noted, the following relation exists between the flight

path angle, the pitch angle, and the angle of attack (at zero bank and sideslip

angles):

a0 ¼ y0 � g0 (1.25)

Substituting (1.25) into (1.24) gives

_’ ¼ cos a0 þ sin a0 tan y0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cos g0
cos y0

ps þ cos a0 tan y0 � sin a0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sin g0
cos y0

rs

¼ cos g0
cos y0

ps þ
sin g0
cos y0

rs ð1:26Þ
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Assuming small angles, the angle of sideslip dynamics can be written as

_b ¼ 1

V0

Yb bþ Yp ps þ Yr rs þ Ydail dail þ Ydrud drud
� �þ g cos y0

V0

� 	
’� rs (1.27)

where the right-hand side of the equation depends on the derivatives of the side-

force Y, computed with respect to the lateral–directional states b; ps; rs; ’ð Þ and
the control inputs dail; drudð Þ . Using (1.26) and (1.27), the aircraft lateral–dir-

ectional linearized dynamics are

_’ ¼ cos g0
cos y0

ps þ
sin g0
cos y0

rs

_b ¼ g cos y0
V

’þ Yb

V
bþ Yp

V
ps þ

Yr

V
� 1

� 	
rs þ Ydail

V
dail þ Ydrud

V
drud

_ps ¼ Lb bþ Lp ps þ Lr rs þ Ldail dail þ Ldrud drud
_rs ¼ Nb bþ Np ps þ Nr rs þ Ndail dail þ Ndrud drud ð1:28Þ

We can easily rewrite (1.28) in matrix form:

_’

_b

_ps

_rs

0
BBBB@

1
CCCCA¼

0 0
cos g0
cosy0

sin g0
cosy0

gcosy0
V0

Yb

V0

Yp

V0

Yr

V0
�1

0 Lb Lp Lr

0 Nb Np Nr

0
BBBBB@

1
CCCCCA

’

b

ps

rs

0
BBBB@

1
CCCCAþ

0 0
Ydail
V0

Ydrud
V0

Ldail Ldrud

Ndail Ndrud

0
BBBB@

1
CCCCA

dail
drud

 !
(1.29)

When the airspeed is sufficiently high, the gravity term in (1.29) becomes

negligible: g cos y0
V0
� 0. In this case, the bank dynamics can be eliminated:

_b
_ps
_rs

0
@

1
A ¼

Yb

V0

Yp

V0

Yr

V0
� 1

Lb Lp Lr
Nb Np Nr

0
@

1
A b

ps
rs

0
@

1
Aþ

Ydail
V0

Ydrud
V0

Ldail Ldrud
Ndail Ndrud

0
@

1
A dail

drud

� 	
(1.30)

The resulting third-order lateral–directional linear model would be suitable for a

control design where the goal is to regulate the vehicle roll and yaw rates, as well as

the angle of sideslip.

1.4.3 Model Generalizations for Adaptive Control Design

The aircraft short-period dynamics (1.8), as well as the lateral–directional models

(1.29) and (1.30), represent linear-time-invariant controllable systems:

_x ¼ A xþ B u (1.31)
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with the n-dimensional state x, the m-dimensional control u, the p-dimensional

output

y ¼ C xþ Du (1.32)

and with the matrices A; B; C; Dð Þ of the corresponding dimensions. In Part I, we

will discuss various methods to design robust linear controllers and to analyze their

performance.

Then, in Part II, we will focus our attention on adaptive control techniques, with

the goal of maintaining closed-loop stability and robustness in the presence of

unexpected events. Specifically, we shall insert uncertainties into (1.31) and (1.32)

and consider a class of dynamical systems in the form

_x ¼ A xþ BL uþ f ðxÞð Þ (1.33)

where the m� mð ÞmatrixLmodels control actuation failures and them-dimensional

vector function f ðxÞ represents all other “unknown unknowns” in the system

dynamics. The uncertain model (1.33) is our attempt to embed an extra realism

into the “ideal” system (1.31). The uncertainties in (1.33) are called “matched,” in

the sense that they enter the system dynamics through control channels. So, as long

as L is invertible, the system controllability property is not affected. It so happens

that the matched uncertainty assumption implies existence of at least one control

solution, capable of steering the system state along the desired trajectories.

We shall also consider regulation problems with non-matched but bounded

uncertainties, such as time-dependent noise and environmental disturbances,

represented by an n-dimensional uniformly bounded piecewise continuous vector

function xðtÞ:

_x ¼ A xþ BL uþ f ðxÞð Þ þ xðtÞ (1.34)

Again, we would like to point out that the assumed boundedness of xðtÞ does not
destroy the system controllability. So, the unwanted effects caused by bounded

noise and disturbances can be mitigated through proper control synthesis. In Part II,

we will explore robust and adaptive methods to control uncertain systems, such as

(1.33) and (1.34).

Readers who are interested in adaptive control may find the matched uncertainty

assumption to be quite restrictive. Some may even argue that there are many

dynamical systems arising from realistic applications that do not satisfy the

matching conditions. Be as it may, in aerospace applications, matched uncertainties

are of primary concern, and that explains our interest in the control of uncertain

systems such as (1.34). Finally, we would like to note that most of the adaptive

control methods presented in this book can be extended to handle systems with non-

matched uncertain dynamics, but these extensions are outside of the book scope.
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1.5 Control-Oriented Models for Linear-Time-Invariant

Systems

In this section, we present state space linear-time-invariant plant and controller

models for control design and analysis that will be used in subsequent chapters.

Models for closed-loop simulation and frequency domain analysis at both the plant

input and plant output are also derived.

The plant model is

_x ¼ Apxþ Bpu

y ¼ Cpxþ Dpu (1.35)

where x 2 Rnx is the state, u 2 Rnu the control, and y 2 Rny the output. The real

matrices Ap;Bp;Cp;Dp

� �
are of appropriate dimension and describe the dynamics of

the plant.

The controller model is

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r (1.36)

where xc 2 Rnxc is the controller state vector, u the control input from (1.35), y the
output from (1.35), and r 2 Rnr represents the external, possibly time-varying,

command vector. The real matrices Ac;Bc1 ;Bc2 ;Cc;Dc1 ;Dc2ð Þ are of appropriate

dimension and describe the controller dynamics (1.36).

In order to cast a commonly used static proportional state feedback controller

such as

u ¼ �K x (1.37)

into the form of (1.36), we first choose Cp ¼ Inx�nx ; Dp ¼ 0nx�nu in (1.35). This

gives y ¼ x. Then, we define Cc ¼ �K in (1.36) and set the rest of the matrices in

that equation to zero.

Next, we will connect the generic controller (1.36) to the plant model (1.35) and

then derive state space models for the closed-loop system and the loop gain at the

plant input and output break points. When building these models, one should

simulate the closed-loop system to make sure the model is correctly connected

with the minus signs inserted where appropriate (to represent negative feedback).

After that, we would use the system loop gain models to compute the necessary

frequency responses. Note that both the plant and the controller may have

feedforward connections, with nonzero D matrices. The feedforward terms must

be properly handled when forming the closed-loop system dynamics.

18 1 Introduction



We will start with substituting the plant output equation into the control law:

u ¼ Ccxc þ Dc1yþ Dc2r

u ¼ Ccxc þ Dc1 Cpxþ Dpu
� �þ Dc2r

I � Dc1Dp

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Z

u ¼ Ccxc þ Dc1Cpxþ Dc2r

u ¼ Z�1 Ccxc þ Dc1Cpxþ Dc2r
� � ð1:38Þ

We must assume that matrix Z in (1.38) is invertible. This makes the overall

problem formulation well-posed. Substituting (1.38) into the plant model (1.35)

yields

_x ¼ Apxþ BpZ
�1 Ccxc þ Dc1Cpxþ Dc2r
� �

_x ¼ Ap þ BpZ
�1Dc1Cp

� �
xþ BpZ

�1Ccxc þ BpZ
�1Dc2r ð1:39Þ

We can also substitute the system output y into the controller:

_xc ¼ Acxc þ Bc1 Cpxþ Dpu
� �þ Bc2r

_xc ¼ Acxc þ Bc1 Cpxþ DpZ
�1 Ccxc þ Dc1Cpxþ Dc2r
� �� �þ Bc2r

_xc ¼ Ac þ Bc1DpZ
�1Cc

� �
xc þ Bc1 I þ DpZ

�1Dc1

� �
Cpxþ Bc2 þ Bc1DpZ

�1Dc2

� �
r

(1.40)

Let us define an augmented state vector in the form

xa ¼ xT xTc

 �T

(1.41)

Then, the closed-loop system dynamics can be written as

_x
_xc

� 

¼ Ap þ BpZ

�1Dc1Cp BpZ
�1Cc

Bc1 I þ DpZ
�1Dc1

� �
Cp Ac þ Bc1DpZ

�1Cc

� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Acl

x
xc

� 


þ BpZ
�1Dc2

Bc2 þ Bc1DpZ
�1Dc2

� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bcl

r (1.42)

or equivalently

_xa ¼ Acl xa þ Bcl r (1.43)
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This is the closed-loop model. Its output can be easily defined as follows:

y¼CpxþDpu

¼CpxþDpZ
�1 CcxcþDc1CpxþDc2r
� �

¼ CpþDpZ
�1Dc1Cp DpZ

�1Cc


 � x

xc

� 

þ DpZ

�1Dc2


 �
r

IþDpZ
�1Dc1

� �
Cp DpZ

�1Cc


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ccl

x

xc

� 

þ DpZ

�1Dc2


 �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Dcl

r (1.44)

and so the closed-loop system output becomes

y ¼ Ccl xa þ Dcl r (1.45)

Equations (1.43) and (1.45) give the state space model Acl;Bcl;Ccl;Dclð Þ for the
closed-loop system.

The loop gain model at the plant input is formed to support frequency domain

analysis of the design at the plant input loop break point. In this model, we treat the

control input to the plant as the model input uin . The control output from the

controller becomes the model output uout. Also, we neglect the command vector r.
In this case, the plant and controller models are

_x ¼ Apxþ Bpuin

y ¼ Cpxþ Dpuin (1.46)

and

_xc ¼ Acxc þ Bc1y

uout ¼ Ccxc þ Dc1y (1.47)

We can connect these two systems with uin as the input and uout as the output

_xc ¼ Acxc þ Bc1 Cpxþ Dpuin
� � ¼ Acxc þ Bc1Cpxþ Bc1Dpuin

uout ¼ Ccxc þ Dc1 Cpxþ Dpuin
� �þ Dc2r ¼ Ccxc þ Dc1Cpxþ Dc1Dpuin ð1:48Þ

and rewrite these relations in matrix form.

_x

_xc

� 

¼ Ap 0

Bc1Cp Ac

� 

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ALi

x

xc

� 

þ Bp

Bc1Dp

� 

|fflfflfflfflffl{zfflfflfflfflffl}

BLi

uin

uout ¼ Dc1Cp Cc½ �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
CLi

x

xc

� 

þ Dc1Dp


 �
|fflfflfflffl{zfflfflfflffl}

DLi

uin (1.49)
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The system loop gain at the plant input is

LiðsÞ ¼ CLi sI � ALið Þ�1BLi þ DLi (1.50)

and it is defined by the matrix quadruple ALi;BLi;CLi;DLið Þ.
Similarly, the loop gain model at the plant output is formed to support frequency

domain analysis of the design at the plant output loop break point. In this model, we

treat the plant output feeding the controller as the model input, yin, the plant output
from the plant as the model output, yout , and neglect the command vector r. The
plant and controller models are

_x ¼ Apxþ Bpu

yout ¼ Cpxþ Dpu (1.51)

and

_xc ¼ Acxc þ Bc1yin

u ¼ Ccxc þ Dc1yin (1.52)

Connecting these two systems with yin as the input and yout as the output yields

_x ¼ Apxþ Bp Ccxc þ Dc1yinð Þ ¼ Apxþ BpCcxc þ BpDc1yin
yout ¼ Cpxþ Dp Ccxc þ Dc1yinð Þ ¼ Cpxþ DpCcxc þ DpDc1yin

+
_x
_xc

� 

¼ Ap BpCc

0p Ac

� 

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ALo

x
xc

� 

þ BpDc1

Bc1

� 

|fflfflfflfflffl{zfflfflfflfflffl}

BLo

yin

yout ¼ Cp DpCc½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
CLo

x
xc

� 

þ DpDc1


 �
|fflfflfflffl{zfflfflfflffl}

DLo

yin

(1.53)

So, the loop gain at the plant output is defined by ALo;BLo;CLo;DLoð Þ:

LoðsÞ ¼ CLo sI � ALoð Þ�1BLo þ DLo (1.54)

The derived loop gains, (1.50) and (1.54), become essential tools to analyze

relative stability properties of closed-loop linear systems in frequency domain.

1.6 Norms of Vectors and Matrices in Euclidean Spaces

This chapter presents a brief overview of norms for vectors and matrices. We shall

use these concepts very often throughout the book.
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The n-dimensional Euclidean space Rn is a collection of all n-dimensional

vectors x ¼ x1 . . . xnð ÞT , whose components xi are real numbers, where the

upper-script “T” denotes the transposition operator, which turns a row vector into a

column vector and vice versa. Ifn ¼ 1, we get the one-dimensional Euclidean space

of real numbers R ¼ R1.

The set of all n� mð Þ-real matrices, with n rows and m columns, defines the

n� mð Þ-dimensional Euclidean space Rn�m. Elements of a Euclidean space can be

added, subtracted, and multiplied by a scalar.

The inner product of two vectors x and y from Rn equals the sum of products of

their corresponding components: xT y ¼Pn
i¼1

xi yi . The product of two matrices

A ¼ Rn�m and B ¼ Rm�p is the matrix C ¼ Rn�p, whose i; jð Þth element is the inner

product of the ith row of A and jth column of B.
For a vector x 2 Rn, its length (or magnitude) is given by the norm xk k – a real-

valued function from Rn to R, with the following properties:

1. For any x 2 Rn, xk k � 0.

2. xk k ¼ 0 if and only if x is the zero vector in Rn.

3. For any two vectors x and y from Rn , the triangular inequality holds xþ yk k
� xk k þ yk k.

4. For any real constant l 2 R and any vector x 2 Rn, l xk k ¼ lj j xk k.
In the forthcoming design and analysis of adaptive controllers, we will encounter

the class of vector p-norms:

xk kp ¼
Xn
i¼1

xij jp
 !1

p

; 1 � p<1 (1.55)

For notational sake, we would often drop the lower-script “p” and write xk k.
Given a vector p-norm xk k, the induced matrix norm

Ak k ¼ sup
x 6¼0

A xk k
xk k ¼ max

xk k¼1
A xk k (1.56)

clearly depends on the selected vector p-norm.

For a matrix A ¼ ai j

 � 2 Rn�m, the Frobenius norm is defined by

Ak kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr AT A
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i; j

a2i j

s
(1.57)

with trðÞ denoting the trace of a matrix, which is equal to the sum of the matrix

diagonal elements.
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The following statements are well-known [9] and are listed here without proof:

• For the vector 1-norm xk k1 ¼
Pn
i¼1

xij j, the corresponding induced matrix norm is

equal to the maximum absolute column sum, that is, Ak k1 ¼ max
1�j�m

Pn
i¼1

ai j

����
����.

• For the vector 2-norm xk k2 ¼
Pn
i¼1

x2i , the induced matrix norm is equal to the

maximum singular value of A, that is, Ak k2 ¼ smaxðAÞ.
• For the vector1-norm xk k1 ¼ max

1�i�n
xij j, the induced matrix norm is equal to the

maximum absolute row sum, that is, Ak k1 ¼ max
1�i�n

Pm
j¼1

ai j

�����
�����.

• The induced matrix norm satisfies A xk kp � Ak kp xk kp, and for any two compat-

ibly dimensioned matrices, A and B, one also has ABk kp � Ak kp Bk kp.
• The Frobenius norm is not an induced norm of any vector norm, but it is

compatible with the 2-norm in the sense that A xk k2 � Ak kF xk k2.
• For any two compatibly dimensioned matrices A and B, the Frobenius inner

product is defined as A; Bh iF ¼ trace AT B
� �

.

• According to the Schwartz inequality,

trace AT B
� ��� �� ¼ A; Bh iF

�� �� � Ak kF Bk kF (1.58)

• For any two co-dimensional vectors a and b, the trace identity relation is

aT b ¼ tr b aT
� �

(1.59)

1.7 Summary

Robust and adaptive control of continuous dynamical systems is the focus of this

book. We have presented a concise self-contained introduction into the underlying

theory and methods while emphasizing how to design and analyze practical control

systems for multi-input multi-output systems with nonlinear and uncertain dynam-

ics. Our true inspiration comes from aerospace applications. During our profes-

sional careers, we have been fortunate to have had the opportunity to design control

systems for various types of aerial platforms, most of which were tested in flight and

others went into production. In this chapter, we have added examples of flight

dynamics models to later demonstrate a variety of robust and adaptive control

technologies. We hope that readers would find these dynamics interesting and

ever challenging.
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1.8 Exercises

Exercise 1.1. For the aircraft longitudinal dynamics (1.7), compute (analytically)

open-loop system eigenvalues and eigenvectors. Determine the short-period and the

phugoid modes of the system. Find sufficient conditions for a timescale separation

between the two longitudinal modes. Compute the short-period eigenvalues using

the open-loop approximation of the short-period dynamics (1.8). Compare the

original short-period modes versus their approximations.

Exercise 1.2. Consider the longitudinal dynamics

_V
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_y

0
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1
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�0:038 18:984 0 �32:174
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0 0

0
BB@

1
CCA dth

de

� 	

representative of a transport aircraft, trimmed at V0 ¼ 250 ft/s, and flying at a low

altitude. In the model, all angles and angular rates are in radians, airspeed is in ft/s,

throttle is in lbs, and elevator deflections are in radians. Compute open-loop system

eigenvalues. Extract the short-period dynamics. Compute and compare the

approximated short-period modes to the original ones. Also, compare the numerically

computed modes to the analytical predictions from Exercise 1.1. Simulate open-loop

system responses due to elevator and thrust step inputs. Identify (numerically)

a timescale separation between the short period and phugoid. Introduce vertical

acceleration Az, as defined in (1.12), and simulate its response due to a negative step

input in the elevator (trailing edge up). Observe the initial tendency of Az. When the

elevator is deflected trailing edge up to pitch the vehicle nose up, there is a small

instant decrease in the vertical acceleration. Then,Az starts to increase, resulting in the

aircraft pitch-up motion. This transient is caused by the elevator deflecting upward

and creating a small negative lift increment. As a result, the vertical acceleration

momentarily goes into the “wrong” direction before it reverses and builds up. These

dynamics can also be explained by the fact that there is a nonminimum phase zero

(with a positive real part) in the transfer function from de to Az . It is important

to understand that all tail-driven aerial vehicles have similar characteristics. This

phenomenon becomes very important during control design.

Exercise 1.3. For the aircraft lateral–directional dynamics (1.29), compute (ana-

lytically) the open-loop system eigenvalues and eigenvectors. Also, compute the

modal characteristics for the simplified dynamics (1.30). Compare the original data

versus their approximations.

Exercise 1.4. The lateral–directional dynamics of a passenger aircraft, in a cruise

configuration, are given below:
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where the roll and sideslip angles are in radians, the angular rates are in rad/s, and

the aileron and rudder deflections are in radians. Compute open-loop system

eigenvalues and compare the data to the analytical predictions from Exercise 1.3.

Simulate open-loop system response due to aileron and rudder step inputs. Observe

the roll rate response due to aileron and the coupling between the roll and yaw rates

(called the “Dutch roll” mode). These dynamics are fast when compared to the

much slower changes in the roll angle (called the “roll subsidence” mode). Similar

to short period, the roll rate and the Dutch roll modes are the main quantities for

stabilization and regulation. This task is often accomplished during the so-called

inner-loop control design phase, where the angular rates are stabilized via feedback

connections, driving the aileron and the rudder. For the inner-loop design, the bank

dynamics are ignored, and the three-dimensional lateral–directional model (1.30) is

utilized. Extract these dynamics from the model data and simulate responses of the

simplified model due to the same step inputs in aileron and rudder. Compare and

discuss simulation results.
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Chapter 2

Optimal Control and the Linear

Quadratic Regulator

2.1 Introduction

Control systems must provide stability and performance in the presence of model

uncertainty and neglected dynamics. This has proven to be a significant challenge,

and as our understanding of dynamics and control has improved, aerospace has

been able to develop new aircraft designs that are faster, have greater performance,

and perform robustly in very large flight envelopes. These advancements built upon

the foundation created by classical methods but were powered by computer-aided

design tools which greatly expanded the engineer’s ability to solve larger, more

complex problems using advanced techniques.

In general, designing flight control systems using conventional (classical) analytical

methods involves iterative single-loop design analyses that are costly in time and

manpower. These systems were often designed by discretizing the flight envelope at

specific points, designing the control system at these points, and guaranteeing robust-

ness to parameter variations by designing large single-loop stability margins and

evaluating the design through simulation. These methods worked well on aircraft

that were open-loop stable, but as new designs emerged that were open-loop unstable

in multiple axes, multi-input multi-output (MIMO) design methods were needed.

In the 1970s and 1980s, the question of robust stability and performance was

raised, and new control system design and analysis methods emerged, called modern

control. These advancements provided the theoretical mathematics required for

optimizing the controller design for MIMO systems, with evaluation of stability

and robustness to parameter uncertainties. Using methods for characterizing model

uncertainties, controller robustness properties were evaluated, and iterative design

tools emerged to achieve robust stability and performance. These modern methods

allowed the control system designer to understand and directly address stability and

robustness concerns for open-loop unstable MIMO systems. With computer-aided

design tools, engineers could readily pose and solve “optimal control” problems for

complex systems and implement the control across a large flight envelope using gain

scheduling.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_2,
# Springer-Verlag London 2013
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Optimal control problems arise in designing a control in order to minimize a

performance index. There are many classes of problems for nonlinear or linear

systems, dealing with time-variant or time-invariant dynamics, over a fixed time

interval or infinite time and with different types of performance indexes. Optimal

control problems are in general very difficult to solve, except for linear systems

with a quadratic performance index. These problems are well understood and

produce control laws that have very interesting properties, such as excellent gain

and phase margins.

One of the key challenges in using optimal control theory is transforming

frequency domain performance and stability requirements from classical control

into time domain requirements. A multivariable optimal controller design using a

quadratic performance index optimizes the design in the time domain. Satisfying

frequency domain requirements, such as bandwidth, noise sensitivity, etc., using the

optimization performance index, is a challenge. Similarly, quantifying the degree of

robustness required to overcome parameter uncertainties is not well-posed in the

problem setup.

The key to using optimal control theory is to develop a method to tune the design

parameters to achieve the desired performance and stability in the control system

(and robustness). This is the goal for this chapter and the next. This chapter

introduces optimal control theory, the linear quadratic regulator, and the all impor-

tant matrix Riccati equation. We will discuss in detail some of the excellent

properties that optimal controllers produce, which makes them a favorite in many

aerospace control problems. Chapter 3 takes the optimal control principles and the

regulator framework and extends them to command following design problems. It

is this command following challenge that is most common in aerospace flight

control systems.

2.2 Optimal Control and the Hamilton–Jacobi–Bellman

Equation

The derivation of the Hamilton–Jacobi–Bellman (HJB) partial differential equation

for optimal control problems will allow us to understand how optimal control

regulator problems are posed and how we can form an optimal control from a

performance index minimization problem. Optimal control problems are in general

very difficult to solve. There are many books available on the subject. Athans and

Falb [1], Kwakernaak and Sivan [2], and Anderson and Moore [3] are three excellent

textbooks that deal with necessary and sufficiency conditions, differentiability and

continuity assumptions, problem setup, derivations, and solutions for most optimal

control problems that can be solved analytically. We will begin by deriving the HJB

partial differential equation in a general setting and will then focus on linear systems

with quadratic performance indices. We shall only provide a generic framework for

derivation of optimal control policies. Readers interested in details are referred to

now-classical control textbooks, such as [1–3].
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2.2.1 The Hamilton–Jacobi–Bellman Equation

We begin by considering a dynamic nonlinear system in the form

_x ¼ f x; u; tð Þ; x t0ð Þ ¼ x0 (2.1)

where x 2 Rnx is the system state and u 2 Rnu is the control input. The system starts

at time t0, with the initial state x0. We suppose that f x; u; tð Þ is continuously

differentiable in all arguments. This assumption is sufficient for the initial value

problem (2.1) to have the unique solution on a finite time interval [4]. We also

assume that T is small enough to reside within the time interval, where the system

solutions are defined. We are interested in “optimally” controlling the system

dynamics, starting from x0 and driving the system state to a designated location.

The notion of optimality is defined through the integral cost performance index

J ¼
ðT
t0

L x tð Þ; u tð Þ; tð Þdtþ S xðTÞð Þ (2.2)

evaluated along the system trajectories x(t) due to applied control input u(t). The
instant costL x; u; tð Þ and the terminal cost S xðTÞð Þ are defined as scalar nonnegative
functions of their arguments. Essentially, the cost J is our cumulative measure of

the overall efforts (controls) and the state-energy spent to steer the system from its

initial state x0 to a neighborhood of the terminal manifold S xðTÞð Þ ¼ 0.

For example, if the system dynamics are scalar, then we can utilize quadratic

instant and terminal costs, L x; u; tð Þ ¼ x2 tð Þ þ q u2 tð Þ and S xðTÞð Þ ¼ w x2ðTÞ, with
positive weights q; wð Þ. In this case,L x; u; tð Þcan be thought of as the instant kinetic
energy of the system, while the terminal cost S xðTÞð Þ measures how close we can

drive the system state to the origin in T seconds or less. So, by appropriately

choosing the weights q; wð Þ, we can emphasize the importance of minimizing the

kinetic energy spent, while regulating the system state to zero. Later on, we shall

address optimal control problems with quadratic cost.

Given the system dynamics (2.1), the control challenge of interest is to find an

optimal control policy u* to minimize the cost index J over the time interval t0; T½ �.
When used in (2.1), the optimal control u* produces the optimal state trajectory x*
over t0; T½ �. Clearly, the cost index J in (2.2) depends on the system initial state x t0ð Þ,
the control policy u �ð Þ ¼ uðtÞjt0btbT , and on the initial time t0:

J ¼ J x t0ð Þ; u �ð Þ; t0ð Þ (2.3)

Let J* denote the optimal (minimum) cost, when using the optimal control

policy u*:
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J� x0; t0ð Þ ¼
ðT
t0

L x� tð Þ; u� tð Þ; tð Þdtþ S x�ðTÞð Þ ¼ min
u t0 ;T½ �

J x0; u; t0ð Þ (2.4)

We see that the optimal performance index J* is also a function of the control

u t0;T½ �, the initial state, and time:

J� x0; t0ð Þ ¼ min
u t0 ;T½ �

J x t0ð Þ; u �ð Þ; t0ð Þ ¼ min
u t0 ;T½ �

ðT
t0

L x; u; tð Þdtþ S xðTÞð Þ
2
4

3
5 (2.5)

Suppose that we start the system at an arbitrary initial condition x and at time t.
Then, the optimal cost to go from x is

J� x; tð Þ ¼ min
u t;T½ �

ðT
t

L x; u; tð Þdtþ S xðTÞð Þ
2
4

3
5 (2.6)

We can break (2.6) into two integrals, from t; t1½ � to t1; T½ �,

J� x; tð Þ ¼ min
u t;T½ �

ðt1
t

L x; u; tð Þdtþ
ðT
t1

L x; u; tð Þdtþ S xðTÞð Þ
2
4

3
5 (2.7)

and then explicitly write the minimization operation over the two intervals:

J� x; tð Þ ¼ min
u t;t1½ �

min
u t1 ;T½ �

ðt1
t

L x; u; tð Þdtþ
ðT
t1

L x; u; tð Þdtþ S xðTÞð Þ
2
4

3
5 (2.8)

The main idea here is to divide the integral into time slices and then at each slice

choose the optimal control that minimizes the overall cost J. This argument leads

the Principle of Optimality developed by Richard Ernest Bellman in the late 1950s.

Here is the original formulation of the principle, as it appears in [5]:

Principle of Optimality. An optimal policy has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.
The Principle of Optimality tells us that the optimal cost to go from x at time t to

a terminal state x(T) can be computed by minimizing the sum of (a) the cost to go

from x ¼ xðtÞ to x1 ¼ x t1ð Þ and (b) the optimal cost from x1 onward. So formally

speaking, we can move the min operation inside the brackets:
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J� x; tð Þ ¼ min
u t;t1½ �

ðt1
t

L x; u; tð Þdtþ min
u t1 ;T½ �

ðT
t1

L x; u; tð Þdtþ S xðTÞð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J� x1;t1ð Þ

2
6666664

3
7777775

(2.9)

Now, we can see that inside the brackets, the second integral is the optimal cost

to go from x1 to x(T):

J� x; tð Þ ¼ min
u t;t1½ �

ðt1
t

L x; u; tð Þdtþ J� x1; t1ð Þ
2
4

3
5 (2.10)

We define t1 ¼ tþ Dt and substitute it into (2.10):

J� x; tð Þ ¼ min
u t;tþDt½ �

ðtþDt
t

L x; u; tð Þdtþ J� x tþ Dtð Þ; tþ Dtð Þ
2
4

3
5 (2.11)

Assuming that all functions are smooth, we can expand the right-hand side of

(2.11) in a Taylor series

J� xðtÞ; tð Þ

¼ min
u t;tþDt½ �

L x; u; tð ÞDtþ J� x; tð Þ þ @J� x; tð Þ
@x

� �T

Dxþ @J� x; tð Þ
@t

Dtþ O Dt2
� �
|fflfflffl{zfflfflffl}
H:O:T:

2
64

3
75
ð2:12Þ

where O Dt2ð Þ denotes high-order terms (H.O.T.) in the Taylor expansion. Here, we

define

@J�

@x
x; tð Þ ¼ @J�

@x1
� � � @J�

@xnx

h i
2 R1�nx (2.13)

as a row vector. We will denote the transpose asrxJ
� x; tð Þ a column vector. We can

cancel J� x; tð Þon each side, since it does not depend onu t; tþ Dt½ �, divide both sides
by Dt, and get

0 ¼ min
u t; tþDt½ �

L x; u; tð Þ þ @J� x; tð Þ
@x

Dx
Dt
þ @J� x; tð Þ

@t
þ O Dtð Þ

� �
(2.14)
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Letting Dt! 0 gives

� @J� x; tð Þ
@t

¼ min
u

L xðtÞ; u; tðtÞð Þ þ @J� x; tð Þ
@x

_xðtÞ|{z}
f x;u;tð Þ

2
64

3
75 (2.15)

where the system state is defined by (2.1). We now introduce the Hamiltonian

H x;rxJ
� x; tð Þ; u; tð Þ ¼ L x; u; tð Þ þ @J� x; tð Þ

@x
f x; u; tð Þ: (2.16)

and rewrite (2.15) as

� @J� x; tð Þ
@t

¼ min
u

H x;rxJ
� x; tð Þ; u; tð Þ (2.17)

Due to the assumed smoothness of all the functions, it follows that to minimizeH
with respect to the control u, we can compute the function gradient and then equate

it to zero:

rHu x;rxJ
� x; tð Þ; u; tð Þ ¼ 0 (2.18)

That is, every component of the gradient vectorrHu must vanish at the point of

optimum. In addition, one needs to check if the derivative of the gradient (a matrix)
@2H
@ u2 is positive semidefinite, which would indicate that the point of optimum is the

true minima of the Hamiltonian. This inequality is known as the Legendre–Clebsch

condition.

Formulation (2.18) allows the functional minimization problem, such as (2.4), to

be transformed into a function minimization, which can be solved using ordinary

calculus. Let

H� x;rxJ
� x; tð Þ; tð Þ � min

u
H x;rxJ

� x; tð Þ; u; tð Þ½ � (2.19)

If we can solve (2.18) for the optimal control u ¼ u� and substitute it back into

(2.17), we get the HJB partial differential equation (PDE), whose solution is the

optimal cost J� xðtÞ; tð Þ:

� @J� x; tð Þ
@t

¼ H� x; rxJ
� x; tð Þ; tð Þ (2.20)

We need a boundary condition for (2.20) to be well-posed. Setting t0 ¼ T in the

cost index (2.2) yields

J� xðTÞ; Tð Þ ¼ S xðTÞð Þ (2.21)
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Using Bellman’s Principle of Optimality, we have arrived at sufficient

conditions for optimal control solution to exist. The latter is defined by the HJB

equation (2.20) together with its boundary condition (2.21). The sufficiency of

(2.20), and (2.21) for control optimality means that if we can solve the former for

J� x; tð Þ and calculate u�ðtÞ, then the latter constitutes the optimal control policy for

the system (2.1), with respect to the cost index (2.2).

In most optimal control problems, we would be interested in the calculation of

the optimal control policy u* rather than the optimal cost J*. Solving (2.20) is still

quite difficult, even for low-order problems, in that we still must solve a PDE for the

cost function J� x; tð Þ.
As derived, the optimal policy u�ðtÞ represents an open-loop control strategy, in

the sense that u* is computed as a function of time t. For practical applications, we
would really want a feedback control policy, such as u� ¼ u�ðxÞ , to enforce

robustness and reduce sensitivity of the solution to uncertainties that may exist in

the system dynamics. We will see that if the dynamics are linear and the perfor-

mance index penalty function L x; u; tð Þ is quadratic, then the problem is easily

solved, and the resulting optimal feedback control and the closed-loop system have

very useful properties, with formal assurances of stability, performance, and

robustness. In the forthcoming chapters, we shall derive and exploit these properties

in our use of optimal control to maximize performance and robustness, while

minimizing the control effort.

2.2.2 Summary

Example 2.1 In this example, we will set up (but not solve) the HJB equation.

Consider the system

_x1 ¼ x2

_x2 ¼� 2x1 � 3x2 þ u ð2:22Þ

Dynamics : _x ¼ f x; uð Þ x t0ð Þ ¼ x0

Performance index : J x; u; tð Þ ¼ RT
t

L x; u; tð Þdtþ S xðTÞð Þ
Optimal Cost : J� x; tð Þ ¼ min

u t;T½ �
J½ �

Hamiltonian : H x; u; tð Þ ¼ L x; u; tð Þ þ @J� x;tð Þ
@x f x; uð Þ

Optimal control :rHu x; u; tð Þ ¼ 0) u�ðtÞ ) H� x; u�; tð Þ
HJB - Equation : � @J� x;tð Þ

@t ¼ H� x;rxJ
� x; tð Þ; tð Þ

J� xðTÞ; Tð Þ ¼ S xðTÞð Þ
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where xð0Þ ¼ 1 2½ �T , with the performance index

J ¼
ð1
0

x41 þ u2
� �

dtþ x21ð1Þ þ x22ð1Þ (2.23)

For this problem, L x; u; tð Þ ¼ x41 þ u2 and S xðTÞð Þ ¼ x21ð1Þ þ x22ð1Þ ¼ xTð1Þxð1Þ.
The Hamiltonian is

H x; u;rxJ
�; tð Þ ¼ L x; u; tð Þ þ @J�

@x
f x; uð Þ

¼ x41 þ u2 þ @J�

@x1
_x1 þ @J�

@x2
_x2

¼ x41 þ u2 þ @J�

@x1
x2ð Þ þ @J�

@x2
�2x1 � 3x2 þ uð Þ ð2:24Þ

Now, we minimize the Hamiltonian by differentiating the right-hand side of

(2.24) with respect to the control and then equating the resulting derivative to zero.

Thus,

rHu ¼ 0 ¼ 2u� þ @J�

@x2

� �
) u� ¼ � 1

2

@J�

@x2

� �
(2.25)

Substituting the optimal solution back into (2.24), we get

H� x;rxJ
�; tð Þ ¼ x41 þ

1

4

@J�

@x2

� �2

þ @J�

@x1
x2 � 2

@J�

@x2
x1 � 3

@J�

@x2
x2 � 1

2

@J�

@x2
(2.26)

The HJB equation is then

� @J�

@t
¼ H� x;rxJ

� x; tð Þ; tð Þ

¼ x41 þ
1

4

@J�

@x2

� �2

þ @J�

@x1
x2 � @J�

@x2
2x1 � 3x2 � 1

2

� �
(2.27)

with the boundary condition J� x; Tð Þ ¼ x21ðTÞ þ x22ðTÞ.
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2.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is one of the most widely used control design

methods in aerospace. Trade studies have been performed comparing properties of

controllers (performance, robustness, control usage) in many different applications.

For example, we have found that flight control systems designed using the LQR

method have excellent performance, robustness, and minimize the control usage.

This method is easily extended (in the next chapter) to produce command tracking

controllers.

Consider the linear nonautonomous system

_x ¼ AðtÞxþ BðtÞu x t0ð Þ ¼ x0 x 2 Rnx ; u 2 Rnu (2.28)

with the quadratic performance index

J ¼
ðT
t0

xTQ xþ uTR u
� �

dtþ xTðTÞQT xðTÞ (2.29)

where the cost weight matrices Q; R; QTð Þ are symmetric positive semidefinite,

positive definite, and positive semidefinite, respectively:

Q ¼ QTr0; R ¼ RT>0; QT ¼ QT
Tr0 (2.30)

The weights Q and R can be time varying if needed. To have a well-posed

problem, we would require the pair (A, B) to be controllable and the pair A;Q1=2

 �

to be observable. Weaker conditions, such as stabilizable (A, B) and detectable

A;Q1=2

 �

, are also acceptable. The need for controllability of the system dynamics

should be obvious. Clearly, the control cannot stabilize the system and perform as

desired if the dynamics are not controllable. Detectability of modes through the

performance index guarantees that the unstable modes are penalized, producing a

control that will minimize their contribution to the index. We will see that the

numerical choices of the matrices Q and R are very important in achieving perfor-

mance and robustness in the closed-loop system.

Following (2.16), the LQR Hamiltonian is

H ¼ xTQxþ uTRuþ @J�

@x
AðtÞxþ BðtÞuð Þ (2.31)

Taking the gradient of H with respect to u and equating it to zero produces

@H

@u
¼ 2Ruþ BTrxJ

� x; tð Þ ¼ 0 (2.32)
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where the optimal control is

u� ¼ �1
2
R�1BTrxJ

� x; tð Þ (2.33)

Substituting u* back into (2.20) yields the HJB equation

� @J�

@t
¼ xTQxþ 1

4

@J�

@x
BR�1BTrxJ

� þ @J�

@x
Ax� 1

2

@J�

@x
BR�1BTrxJ

� (2.34)

which, in this form, is still quite difficult to solve. Fortunately, one can show that the

optimal cost J* is a quadratic time-varying function of the system state [3,

Sect. 2.3]:

J� ¼ J� xðtÞ; tð Þ ¼ xðtÞTPðtÞ xðtÞ (2.35)

where PðtÞ ¼ PTðtÞ>0. Substituting (2.35) into (2.34), we get

@J� x; tð Þ
@t

¼ xT _PðtÞx rxJ
� x; tð Þ ¼ 2PðtÞx (2.36)

Substituting (2.36) back into (2.34) and factoring out x on both sides, we get

xT � _PðtÞ � PðtÞA� ATPðtÞ � Qþ PðtÞBR�1BTPðtÞ� 

x ¼ 0 (2.37)

with the boundary condition PðTÞ ¼ QT. Since this must be satisfied for any state x,
the following initial value problem must be true:

� _PðtÞ ¼PðtÞAþ ATPðtÞ þ Q� PðtÞBR�1BTPðtÞ
PðTÞ ¼QT ð2:38Þ

The time-varying matrix ordinary differential equation in (2.38) is called the

Riccati equation. Substituting (2.36) into (2.33) yields the optimal control policy

u� x; tð Þ ¼ �1
2
R�1BT @J

� x; tð Þ
@x

¼ �R�1BTPðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
KðtÞ

x ¼ �KðtÞ x (2.39)

in state feedback form. Note that in (2.38), the Riccati equation is integrated

backward in time. Then, the optimal control u� x; tð Þ with the feedback gains K(t)
are formed using (2.39). For real time operations, these gains must be stored in a

lookup table, and the feedback control law would be implemented by looking up the

gains in the table. This is gain scheduling.

Continuing on, we substitute the optimal control (2.39) into the system dynamics

(2.28) and obtain the closed-loop system:
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_x ¼ AðtÞxþ BðtÞu x t0ð Þ ¼ x0

uðtÞ ¼ �KðtÞx
_x ¼ AðtÞ � BðtÞKðtÞð Þx ð2:40Þ

2.3.1 Summary

2.4 Infinite-Time LQR Problem

In this section, we consider the quadratic performance index on an infinite time

interval:

J ¼
ð1
0

xTQ xþ uTR u
� �

dt Q ¼ QTr 0; R ¼ RT>0 (2.41)

where the final time T ¼ 1. The state dynamics for this problem are assumed to be

linear-time-invariant:

_x ¼ Axþ Bu A;B� constant x 2 Rnx ; u 2 Rnu (2.42)

with (A, B) stabilizable and A;Q1=2

 �

detectable. It is possible to show that the

corresponding Riccati equation

� _PðtÞ ¼ PðtÞAþ ATPðtÞ þ Q� PðtÞBR�1BTPðtÞ (2.43)

with the limiting boundary condition

lim
T!1

PðTÞ ¼ 0nx�nx (2.44)

Dynamics : _x ¼ AðtÞxþ BðtÞu x t0ð Þ ¼ x0

Performance index : J ¼ RT
t0

xTQxþ uTRuð Þdtþ xTðTÞQTxðTÞ

Riccati Equation :
� _PðtÞ ¼ PðtÞAþ ATPðtÞ þ Q� PðtÞBR�1BTPðtÞ
PðTÞ ¼ QT

	

Optimal Control : u� ¼ �R�1BTPðtÞx ¼ �KðtÞx

Closed - Loop System : _x ¼ AðtÞ � BðtÞKðtÞð Þx; xð0Þ ¼ x0
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has the unique solution [3]. Moreover, in the limit as t! �1ð Þ, this solution tends
to a constant symmetric positive definite matrix, which can be found by solving the

algebraic Riccati equation (ARE)

PAþ ATP� PBR�1BTPþ Q ¼ 0 (2.45)

with the LQR-optimal control policy in feedback form

u ¼ �R�1BTP|fflfflfflffl{zfflfflfflffl}
K

x ¼ �K x (2.46)

where K 2 Rnu�nx is a constant matrix of the LQR-optimal feedback gains.

In industrial applications with nonlinear process control, the system models are

often linearized at the designated operating conditions. Then, LQR-based controllers

can be designed at each operating point. The resulting constant feedback gains K
would be stored in a table and recalled (looked up) in real time for implementation.

As we have already mentioned, this is the gain-scheduling control concept.

Substituting the optimal feedback control (2.46) into the open-loop dynamics

(2.42) gives the closed-loop system:

_x ¼ A� BKð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Acl

x ¼ Aclx (2.47)

The LQR formulation guarantees the closed-loop system (2.47), whose dynam-

ics are described by the constant matrix Acl, to be stable [3]. This means the

eigenvalues of Acl lie in the left half complex plane Re l Aclð Þð Þ<0. The system

state is regulated to zero, x! 0 as t!1, which implies u! 0 as t!1.

It is often desirable when simulating the dynamics to compute and examine the

peak values of the optimal control u and its rate _u. If we differentiate u, we get

_u ¼ �K _x ¼ �K A� BKð Þx ¼ �K Acl x (2.48)

We can form a closed-loop simulation model, with outputs x, u, and _u, as

_x ¼Axþ Bu u ¼ �Kx
_x ¼ A� BKð Þ x ¼ Aclx

y ¼
x

u

_u

2
64
3
75 ¼

I

�K
�KAcl

2
64

3
75x ð2:49Þ

In real-life applications, and especially in flight control, it is critical to prevent

saturation of the control surface positions and rates. When this happens, nonlinear

effects begin to dominate the system response, stability is no longer guaranteed, and

the system could depart. We can see from (2.49) that large gains K may cause large
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control positions and rates. Thus, high gains are undesirable in most industrial

control applications. From (2.46), we see that K gets large as P gets large. From

(2.45), we see that it is the choice of the weightsQ and R in the ARE that determines

how large the gains will be.

2.4.1 Summary

Example 2.2 In this example, we wish to solve for the optimal control and examine

the properties of the closed-loop system. Consider the following linear-time-invariant

model

_x ¼ Axþ Bu A ¼ 0 1

0 �1
� �

B ¼ 0

1

� �
(2.50)

with the performance index

J ¼
Z1
0

x21 þ ru2
� �

dt Q ¼ 1 0

0 0

� �
R ¼ r (2.51)

The eigenvalues of the open-loop system are l ¼ 0 and l ¼ �1 . In the

performance index, the state penalty matrix Q penalizes the first state of the system.

The control penalty r is left as a parameter so we can see how small and large values

of r change the closed-loop dynamics. It is always important to check if the design

problem is well-posed. Conditions on the plant and on the performance index for a

well-posed problem require to check if the unstable modes of the system are

Dynamics : _x ¼ Axþ Bu xð0Þ ¼ x0

Performance index : J ¼ R1
0

xTQ xþ uTR uð Þdt
Algebraic Riccati Equation : PAþ ATP� PBR�1BTPþ Q ¼ 0

Optimal Control : u ¼ �R�1BTP x ¼ �Kx
Closed - Loop System : _x ¼ A� BKð Þx; xð0Þ ¼ x0

Simulation output : y ¼
x
u
_u

2
4
3
5 ¼ I

�K
�KAcl

2
4

3
5x
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controllable and if the unstable modes are observable through the state penalty

matrix. In other words, we need to verify if (A, B) is stabilizable and A;Q
1
2


 �
is

detectable. First, we compute the controllability matrix:

Pc ¼ B AB½ � ¼ 0 1

1 �1
� �

RK¼2
(2.52)

Since this matrix has full rank, the system is controllable. So any unstable modes

are controllable. Next, we can factor the state penalty matrix into square roots

Q ¼ Q
1
2


 �T
Q

1
2¼ 1 0

0 0

� �
1 0

0 0

� �
¼ 1 0

0 0

� �
(2.53)

and then check the observability using the square root of Q:

Q
1
2

Q
1
2A

" #
¼

1 0

0 0

0 1

0 0

2
664

3
775
RK¼2

(2.54)

Since this matrix also has full rank, all modes of the system are observable

through the penalty matrix. Now, we can solve the ARE

PAþ ATP� PBR�1BTPþ Q ¼ 0 (2.55)

for P, using A, B, Q, and R ¼ r. Let P ¼ p1 p2
p2 p3

� �
. Then the ARE is

p1 p2
p2 p3

� �
0 1

0 �1
� �

þ 0 0

1 �1
� �

p1 p2
p2 p3

� �
� p1 p2

p2 p3

� �
0

1

� �
1
r 0 1½ �

� p1 p2
p2 p3

� �
þ 1 0

0 0

�
¼ 0

�
(2.56)

Since the Riccati matrix P must be real symmetric and positive definite, from

(2.56) we can derive three equations for p1, p2, and p3. These are

� p2
2

r
þ 1 ¼ 0

l� p2 �
p2p3

r
¼ 0

2 p2 � p3ð Þ � p2
3

r
¼ 0 ð2:57Þ

The first equation gives p2 ¼
ffiffi
r
p

(both positive and negative values of m must

be checked to see which is the solution). Using p2 ¼
ffiffi
r
p

, p1 and p3 are
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p3 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffi

r
p

s
� 1

 !

p1 ¼
ffiffi
r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffi

r
p

s
ð2:58Þ

The constant state feedback gain matrix is

K ¼ R�1BTP ¼ 2ffiffi
r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffi

r
p

q
� 1

h i
(2.59)

The closed-loop state dynamics are always stable with characteristic equations

fclðsÞ ¼ s2 þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffi

r
p

s
þ 1ffiffi

r
p (2.60)

By varying the control penalty r in (2.60), we can compute a root locus (Fig 2.1)

to show how the numerical choice of R impacts the closed-loop system dynamics.

The root locus data in Fig. 2.1 are the result of changing the control penalty r
from 0.001 to 100. For large values of r (small gains), the closed-loop poles are near

the open-loop poles ( r ¼ 100 , K ¼ 0:1 0:0954½ � ), producing a slow system

response. For small values of r (large gains), the roots follow asymptotes into the

left half plane, and the response gets fast (r ¼ 0:01, K ¼ 31:6228 7:0153½ �). In
general, the values of the optimal feedback gains are proportional to the relative

magnitude of Q and R. For a fixed R, large values of Q heavily penalize the state
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Fig. 2.1 Example 2.2 root locus varying the LQR control penalty parameter
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(relative to the control), the resulting optimal feedback gains grow large, and the

closed-loop system response gets fast. On the other hand, small values ofQ penalize

the control more than the state, resulting in smaller control efforts. This also keeps

the gains small, producing a slower response. □

2.5 Guaranteed Stability Margins for State Feedback LQR

The LQR solution has excellent stability robustness properties at the input to the

plant. This can be shown by examining the return difference matrix in the frequency

domain. Readers who are not familiar with frequency domain analysis of multi-

input multi-output linear-time-invariant systems should see Chap. 5 and then return

to this section.

Consider the following LTI system:

_x ¼ Axþ Bu x 2 Rnx u 2 Rnu (2.61)

along with the infinite-time LQR problem

J ¼
Z1
0

xTQxþ uTRu
� �

dt (2.62)

with the weightsQ ¼ QT 	 0 andR ¼ RT>0. Suppose that (A, B) is stabilizable and

A;Q1 2=

 �

is detectable. The ARE is

PAþ ATP� PBR�1BTPþ Q ¼ 0 (2.63)

and the corresponding optimal state feedback control is given by

u ¼ �R�1BTPx ¼ �Kx (2.64)

Substituting (2.64) into (2.61) yields the closed-loop system

_x ¼ A� BKð Þx ¼ Aclx (2.65)

Of particular interest are frequency domain properties provided by the LQR state

feedback controller (2.64). First, we introduce the loop transfer function L(s), with
the loop break point at the plant input. For the state feedback system shown in

Fig 2.2, the loop gain is

LðsÞ ¼ K sI � Að Þ�1B (2.66)
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Wedefine the open-loop dynamicsFðsÞ ¼ sI � Að Þ�1 and its transposed conjugate
F� ¼ FT �sð Þ. Using the ARE (2.63), we add and subtract (s P) from both sides and

rearrange the terms. We get

P sI � Að Þ þ �sI � AT
� �

Pþ PBR�1BTP ¼ Q (2.67)

insert F ¼ sI � Að Þ�1 , left-multiply by BF� , where �ð Þ� denotes complex

conjugate transpose, right-multiply by FB, and arrive at

BTPFBþ BTF�PBþ BTF�PBR�1BTPFB ¼ BTF�QFB (2.68)

We then add R>0 from the performance index (2.62) to both sides and note that

K ¼ R�1BTP and LðsÞ ¼ K sI � Að Þ�1B ¼ KFB ¼ R�1BTPFB . Substituting L(s)
into (2.68) gives

RR�1BTPFB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
LðsÞ

þBTF�PBR�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
LT �sð Þ

Rþ BTF�PBR�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
LT �sð Þ

RR�1BTPFB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
LðsÞ

þR

¼ BTF�QFBþ R (2.69)

Simplifying (2.69), we obtain

Rþ RLðsÞ þ LT �sð ÞRþ LT �sð ÞRLðsÞ ¼ BTF�QFBþ R (2.70)

which can be further reduced to

I þ LðsÞð Þ�R I þ LðsÞð Þ ¼ Rþ BTF�QFB (2.71)

where I þ LðsÞð Þ is the return difference matrix, computed at the system input break

point. The termBTF�QFB is a Hermitian positive semidefinite matrix. By removing

this term on the right side, we form the inequality

I þ LðsÞð Þ�R I þ LðsÞð Þ 	 R (2.72)

If we assume an equal penalty on each control, that is, R ¼ rI, r>0, then,

(sI − A−1)
−

x
B

K

u

Loop Break Point

X

Fig. 2.2 Block diagram of the state feedback architecture
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I þ LðsÞð Þ� I þ LðsÞð Þ 	 I (2.73)

which tells us information about the magnitude of the return difference matrix. For

single input systems, where nu ¼ 1 , this is equivalent to the Nyquist locus not

entering a unit circle centered about �1; j0ð Þ. For multi-input system, where nu>1,

this says that the minimum singular value of the return difference matrix (versus

frequency) always has a magnitude greater than one. These properties are shown in

Fig. 2.3.

This implies a minimum gain margin of �6;þ1½ � dB and a phase margin of at

least 60
. This property is what makes the LQR so attractive in industrial

applications. Often, for open-loop unstable design problems, it is very difficult to

achieve the desired gain and phase margins. This property is guaranteed (under the

assumptions shown) for any choice of Q matrix. However, experience has shown

that large feedback gains seldom work in practice. Because of modeling errors,

unmodeled dynamics, noise, actuator rate saturation, and other disturbances, these

excellent margins are not always realized in the physical system. So, special care

must be taken to avoid large control gains (leading to a high bandwidth design) in

most physical systems, and especially in aerospace applications.

There are many practical “rules-of-thumb” for selecting the LQRweight matrices.

In the next chapter, a designmethod for tuning the LQR solution to achieve the desired

performance and robustness without large gains will be given. We will also discuss

how the eigenvalues of the closed-loop system evolve with the numerical choices

made for the penalty matrices.

2.6 LQR Design and Asymptotic Properties

The numerical values in the LQR penalty matrices Q and R determine the

eigenstructure of the closed-loop system A� BKcð ÞV ¼ VL . This eigenstructure

specifies the system performance and robustness properties. It is very important to

properly choose the numerical values for elements in Q and R, and more impor-

tantly, it is quintessential to learn how to exploit these matrices to tune the control

Re

Im

-1

L ( jω)
Nyquist Loci Never 

Enters Unit Disk 
Centered at (–1,j0)

Single Input Systems

0 db

( I+L)σ

ω

Min Singular Value of
Return Difference Is
Greater Than One

Multi-Input Systems

Fig. 2.3 Frequency domain analysis of optimal state feedback loop transfer functions
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feedback gains and to achieve the desired performance and robustness in the

resulting closed-loop system.

In this section, we shall investigate how the eigenstructure evolves, as the

weighting matrices are varied numerically. Readers interested in detailed asymp-

totic analysis may find it in Kwakernaak and Sivan [1].

Consider the following LTI system:

_x ¼ Axþ Bu x 2 Rnx u 2 Rnu (2.74)

with the infinite-time quadratic cost index

J ¼
Z1
0

xTQxþ uTRu
� �

dt (2.75)

whereQ ¼ QT 	 0; R ¼ RT>0, (A, B) stabilizable, and A;Q1 2=

 �

detectable. We

assume that there are no transmission zeros on the jo axis. Then, the ARE for this

optimal control problem is

PAþ ATP� PBR�1BTPþ Q ¼ 0 (2.76)

Associated with this ARE is the 2nx � 2nx Hamiltonian matrix H given by

H ¼ A �BR�1BT

�Q �AT

� �
(2.77)

which can be used to determine the solution to the ARE. The optimal state feedback

control is given by

u ¼ �R�1BTPx ¼ �Kx (2.78)

which when substituted into (2.74) yields the closed-loop system

_x ¼ A� BKð Þx ¼ Aclx (2.79)

The nx eigenvalues of the closed-loop system l Aclð Þ are the stable eigenvalues of
the Hamiltonian matrix H. In fact, the Hamiltonian matrix H has 2nx eigenvalues of
which nx have negative real parts (stable) and nx have positive real parts (unstable,
but stable backward in time). Let

fclðsÞ ¼ det sI � Aþ BK½ � (2.80)

then,
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det sI � H½ � ¼ fclðsÞfcl �sð Þ (2.81)

The asymptotic properties we desire to explore are those associated with the

migration of these eigenvalues, as the numerical values in the LQR penalty matrices

Q and R are varied. We can examine these eigenvalues (roots of fclðsÞ) through
the polynomial formed by expanding the det sI � H½ � . We begin with some

elementary row and column operations on H. First, we multiply the first row of

H by � Q sI � Að ÞH�1 and add it to the second row. This yields

det sI � H½ � ¼ det
sI � A BR�1BT

Q sI þ AT

" #

¼ det
sI � A BR�1BT

0 sI þ AT
� �� Q sI � Að Þ�1BR�1BT

" #
ð2:82Þ

Then,

det sI � H½ � ¼ det sI � A½ � det sI þ AT
� �� Q sI � Að Þ�1BR�1BT
h i

¼ det sI � A½ � det sI þ AT
� �

I � sI þ AT
� ��1

Q sI � Að Þ�1BR�1BT
n oh i

¼ det sI � A½ � det sI þ AT
� 


det I � sI þ AT
� ��1

Q sI � Að Þ�1BR�1BT
h i

ð2:83Þ

We factor the Q and BR�1BT into products of two square roots: Q ¼ QT
1Q1 and

BR�1BT ¼ R1R
T
1 . Next, using the identity det I � AB½ � ¼ det I � BA½ �, we get

det I � sI þ AT
� ��1

QT
1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

B

Q1 sI � Að Þ�1R1R
T
1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

2
64

3
75

¼ det I � Q1 sI � Að Þ�1R1R
T
1 sI þ AT
� ��1

QT
1

h i (2.84)

and so,

det sI � H½ �

¼ det sI � A½ � det sI þ AT
� 


det I � Q1 sI � Að Þ�1R1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H1ðsÞ

RT
1 sI þ AT
� ��1

QT
1

2
64

3
75

¼ fðsÞ �1ð Þnxf �sð Þ det I þ H1ðsÞHT
1 �sð Þ� 
 ð2:85Þ
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where fðsÞ ¼ det sI � A½ �. Thus,

fclðsÞfcl �sð Þ ¼ fðsÞf �sð Þ det I þ H1ðsÞHT
1 �sð Þ� 


(2.86)

Let

det H1ðsÞ½ � ¼ cðsÞ
fðsÞ (2.87)

and consider the performance cost index

J ¼
ð1
0

xTQxþ r2uTRu
� �

dt (2.88)

with a positive scalar weightr>0. We are interested in the behavior asr! 0 and as

r!1. The zeros of (2.86) are also the zeros of

fðsÞf �sð Þ det rI þ H1ðsÞH1 �sð Þ½ � (2.89)

As r! 0 , some of the roots will go to infinity. Those that stay finite will

approach the transmission zeros of the transfer function matrix H1ðsÞ and their

negative values. These finite zeros control the dynamic response of the optimal

regulator. Asr!1, the roots offclðsÞare thenx stable roots offðsÞf �sð Þ. That is,
if the roots of fðsÞ have positive real part, then the mirror image of them in f �sð Þ
will become the stable roots in fclðsÞ.

We see that shaping the zeros of H1ðsÞ plays a crucial role in the design of the

optimal control. This is done through selection of the LQR penalty matrix weights

Q and R. Later in Chap. 3, we will use this fact to tune the design of optimal

controllers to achieve performance and robustness.

2.7 Conclusions

In this chapter, we briefly discussed optimal control theory and the linear quadratic

regulator. Many control systems today are designed using this method due to the

frequency domain guarantees and the ease of the design. In the next chapter, we

shall extend the regulator architecture to command tracking systems.
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2.8 Exercises

Exercise 2.1. Consider

_x1 ¼ x2
_x2 ¼ �2x1 � 3x2 þ u

t0 ¼ 0

T ¼ 1
xð0Þ ¼ 1

2

� �

J ¼
ZT
0

x41 þ u2
� �

dtþ x21ðTÞ þ x22ðTÞ

Set up (but not solve) the HJB equation with the corresponding boundary conditions.

Exercise 2.2. Given

_x ¼ �xþ u

J ¼
Z1
0

x2 þ u2
� �

dtþ x2ð1Þ

use the ARE to find the optimal feedback control u�ðtÞ ¼ �K xðtÞ. Draw the closed-

loop system block diagram.

Exercise 2.3. For

_x1 ¼ x2

_x2 ¼ x1 þ u

J ¼
ð1
0

x21 þ u2
� �

dt

find the LQR-optimal control policy u to minimize the cost J.

Exercise 2.4. Consider the longitudinal aircraft dynamics given in Chap. 1,

Exercise 1.2. This linear model represents the aircraft incremental dynamics,

with respect to a trim condition. Design an infinite-time LQR to regulate the

state vector to zero. Simulate the design with an initial state vector

xð0Þ ¼ 10 ft/s 0:1 rad 0:1 rad/s 0 rad½ �.
Exercise 2.5. Consider a second-order system modeled by the input-output equa-

tion €y ¼ u. A feedback controller u ¼ �k1y� k2 _y is to be designed such that the

performance index
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J ¼
ð1
0

4y2 þ u2
� �

dt

is minimized.

1. Find k1 and k2.
2. What are the closed-loop eigenvalues?

Exercise 2.6. Consider the linear system _x ¼ Axþ Bu with LQR performance

index

J ¼ 1
2

ð1
0

q xTQxþ r uTRu
� �

dt

where Q ¼ QT 	 0, R ¼ RT>0, and A;Q
1
2


 �
observable. Use the state feedback

control u ¼ �Kx with K ¼ R�1BTP, where P is the ARE solution matrix. What

happens to the eigenvalues of the closed-loop system as

1.
q! 0

2.
r! 0

Exercise 2.7. Consider the following scalar linear quadratic command tracking

problem:

_x ¼ u

J ¼ 1

2

ZT
0

x� rð Þ2 þ ru2
h i

dtþ 1

2
qT xðTÞ � rðTÞð Þ2

with qT>0; r>0; T fixed, and a known reference (command) input r(t).

1. What is the HJB equation for this problem? (Eliminate u). Include boundary

conditions.

2. Find a solution for J* in the form

J� x; tð Þ ¼ 1
2
PðtÞx2 þ gðtÞxþ wðtÞ

Find differential equations for P, g, and w, such that the HJB equation is satisfied.

Include boundary conditions. Derive but do not solve the related equations.

2.8 Exercises 49



References

1. Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications.

Dover Books on Engineering, New York (2006)

2. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, New York (1972)

3. Anderson, B.D.O., Moore, J.B.: Optimal Control, Linear Quadratic Methods. Dover, Mineola

(1990)

4. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (1996). 07458

5. Bellman, R.E.: Dynamic Programming. Dover, Mineola (2003)

50 2 Optimal Control and the Linear Quadratic Regulator



Chapter 3

Command Tracking and the Robust

Servomechanism

3.1 Introduction

Most industrial control problems require the control system to accurately track

commands. This requirement distinguishes these problems from regulation in

which the state is driven to zero. From classical control theory, we know that in

order to track a constant command with zero error, we need to add integral error

control action into the controller. For single-input single-output (SISO) systems, the

loop transfer function L(s) can be written as

LðsÞ ¼ K b0s
m þ � � � þ bm�1sþ 1ð Þ

sp a0sn þ � � � þ an�1sþ 1ð Þ (3.1)

where the gain K and the polynomial coefficients ai and bi are real constants. The
type of the control system depends upon the order p of the pole of L(s) at s ¼ 0. The

number of finite zeros, their location, or the location of the poles are not important

to specify the system type. The system type p, where p ¼ 0; 1; 2; � � � indicates how
many integrators are present in the control system. We know that in order to track a

constant command rðtÞ ¼ constant , and to produce zero steady-state error, an

integrator is needed, p � 1, creating (at a minimum) a type 1 system. In order to

track a type 1 input, the control system will need two integrators, creating a type 2

system. Thus, to track commands accurately, the class of commanded signals must

be known, and the controller must be augmented with enough integrators to

produce zero steady-state errors.

When these integrators are added to the control system for command tracking,

they also provide disturbance rejection within the same class, that is, a type 1 control

system can track constant commands and reject constant disturbances. Similarly, a

type 2 system can track ramp inputs and reject ramp disturbances.

Basically, the augmentation of the system with these integrators for command

tracking requires embedding into the system a model of the class of signals that

the system will track. This is often referred to as the internal model principle [1].

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_3,
# Springer-Verlag London 2013
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For instance, when tracking a constant command and adding a single integrator, we

have embedded the command generation internal model _r ¼ 0 into the system.

In the previous chapter, we have illustrated the use of linear quadratic optimal

control theory to design a controller and examined the excellent stability properties

provided by that method. The linear quadratic regulator (LQR) forces the system

state to go to zero, forming a type 0 control system. If one wants to track a constant

command using such an LQR controller, the system would have a steady-state

offset error to the command. We know from Eq. (3.1) that in order to track a

constant command with zero error, we need to add an integrator, creating a type

1 control system.

A natural extension of the LQR method presented in the previous chapter would

be to add an integral control action into the controller to produce zero steady errors,

while tracking constant commands. The number of integrators that would need to

be added depends upon the commanded signal (whether it is a constant, a ramp, or

other type of signal).

This chapter presents a systematic process for building an augmented state space

model called the servomechanism design model [2]. This state space description

embeds a model of the class of signals to be tracked, such that when optimal control

theory is applied, the state regulation provides accurate tracking of the selected

class of external commands. This system is then decomposed into two parts: a servo

tracking controller for command following and a state feedback component for

stabilization. In aerospace, this approach is often used to design flight control

systems for both manned and unmanned aerial vehicles. The resulting control

architecture provides accurate command tracking and a robust control system

design with predictable and robust performance. The meaning of controller robust-

ness was introduced in Chap. 2. It requires the minimum singular value of the return

difference matrix having magnitude greater than 1. This topic of robustness in the

frequency domain is covered in great detail later in Chap. 5.

3.2 The Servomechanism Design Model

Consider the following finite dimensional linear-time-invariant state space model:

_x ¼ Axþ Buþ Ew

y ¼ Cxþ Du ð3:2Þ

with an unknown bounded disturbance w and with the signals x 2 Rnx ; u 2 Rnu ; and
y 2 Rny representing the system state, control, and output, respectively. We assume

that the system is both controllable and observable. We would like a preselected

subset of the output vector y to track the command input vector r 2 Rnr , and we

assume that the dimension of r is less than or equal to the number of the system

outputs (i.e., ny � nr). It is also assumed that the pth order differential equation for

r(t) is given, with the following model:
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r
ðpÞ ¼

Xp
i¼1

ai r
p�ið Þ

(3.3)

where the scalar coefficients ai are known and the superscript (i) denotes the ith

derivative. Using the model in (3.3), examples for typical signals are shown in

Table 3.1.

The polynomial formed by the Laplace transformation of (3.3) is

aðsÞ ¼ sp þ
Xp
i¼1

ais
p�i; (3.4)

and it gives a known class of inputs without the knowledge of their magnitudes. Our

control goal is to track this command with zero steady-state error. For disturbance

inputs, we assume the same model as r(t):

w
ðpÞ ¼

Xp
i¼1

ai w
p�ið Þ

(3.5)

where w0 ¼ wð0Þ is unknown.
Let us define the tracking error signal as

e ¼ yc � r (3.6)

where yc 2 Rnr is the subset of the output y to be controlled and e 2 Rnr . The error

signal is defined here as e ¼ yc � r so that we can apply negative feedback of the

errors and their derivatives in forming the feedback control. We will also arrange

the output vector so that the first nr variables in y defineyc. Thus,

y ¼ yTc yTnc
� �T

(3.7)

where ync are output variables that are not controlled. The model for yc 2 Rnr is

yc ¼ Ccxþ Dcu (3.8)

Table 3.1 Internal models for command generation

Command signal r(t) Differential equation Model parameters

Constant
_r ¼ 0

p ¼ 1, a1 ¼ 0

Ramp
€r ¼ 0

p ¼ 2, a1 ¼ a2 ¼ 0

Sinusoid
€r ¼ �o2

0r p ¼ 2; a1¼ 0; a2¼� o2
0
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This is the regulated system output. Tracking in yc is the same as regulation

in e; therefore, the objective is to make the error approach zero e! 0 yc ! rð Þ, as
t!1, in the presence of unmeasurable disturbance w, in a robust manner with

respect to the plant description. Taking (3.6) and differentiating p times, the

resulting differential equation for the error may be written as

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ yc

ðpÞ �
Xp
i¼1

ai yc
p�ið Þ � r

ðpÞ �
Xp
i¼1

ai r
p�ið Þ

 !
(3.9)

From (3.3), the bracketed term in the right side of (3.9) will be zero. Using (3.8),

we have

yc
p�ið Þ ¼ Cc x

p�ið Þ þDc u
p�ið Þ

(3.10)

Substituting this into (3.9) yields

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ Cc x

ðpÞ �
Xp
i¼1

ai x
p�ið Þ

" #
þ Dc u

ðpÞ �
Xp
i¼1

ai u
p�ið Þ

" #
(3.11)

This system represents a set of coupled ordinary differential equations. Let x and
m be defined as

x ¼ x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

(3.12)

m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

(3.13)

The error equation is

e
ðpÞ �

Xp
i¼1

ai e
p�ið Þ ¼ Ccxþ Dcm (3.14)

Differentiating (3.12), we get

_x ¼ x
pþ1ð Þ �

Xp
i¼1

ai x
p�iþ1ð Þ

(3.15)
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Using (3.2) for _x results in

_x ¼ A x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x

þ B u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m

þ E w
ðpÞ �

Xp
i¼1

ai w
p�ið Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

(3.16)

where (3.5) shows the last term to be zero. We can rewrite (3.16) as

_x ¼ Axþ Bm (3.17)

which is the original system model minus the disturbances.

The servomechanism design model is formed by creating a new state space

model, containing the error dynamics and the system model from (3.17). The new

state vector is z, and its components are the errorse; � � � ; e
p�1ð Þ

, with the vector x. The
error is a linear combination of x and m from (3.14). Augmenting z with these

derivatives and x defines z to be

z ¼

e
_e
..
.

e
p�1ð Þ

x

2
666664

3
777775 (3.18)

This new state vector z has dimension nx þ p� nrð Þ. Differentiating (3.18) yields
the servomechanism design model:

_z ¼ ~Azþ ~Bm (3.19)

where ~A and ~B are given by

~A ¼

0 I 0 � � � 0 0

0 0 I 0 0

. .
.

0 0 0 I 0

apI ap�1I � � � a2I a1I Cc

0 � � � � � � � � � 0 A

2
6666664

3
7777775

~B ¼

0

0

..

.

0

Dc

B

2
6666664

3
7777775

(3.20)

The robust servomechanism LQR solution is obtained by applying linear

quadratic regulator theory to (3.19). By regulating z, we regulate to zero both e,
its p� 1ð Þ derivatives, and x. In steady state, this allows the state vector x to be

nonzero, in which case, Ccxþ Dcu ¼ r. This control formulation adds the desired

integral control action acting on the command error.
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3.2.1 Controllability of the Servomechanism Design Model

If we apply the Hautus controllability tests to the servomechanism design model in

(3.19), for the system to be controllable, we must have

rank sI � ~Aj ~B� � ¼ nx þ nr � p (3.21)

where s evaluates at each of the eigenvalues of ~A. This matrix has nx þ nr � p rows
that must all be independent to have full rank. To derive this requirement, simply

use elementary row and column operations to transform sI � ~Aj ~B� �
into the

following:

sI � ~A ~B
� � ¼

sI �I 0 0 0 0

0 sI �I 0 0 0

0 0 sI �I 0 0

0 0 0
aðsÞ
sp I �C D

0 0 0 0 sI � A B

2
6666664

3
7777775

aðsÞ ¼ sp �
Xp
i¼1

ais
p�i (3.22)

Clearly, the firstnr � p� 1ð Þ rows are independent. From the last row, sI � AjB½ �
must be full rank which says that the original system model must be controllable.

Considering the last two rows, if s ¼ si such that a sið Þ ¼ 0 (a zero of a(s)), then we

must have

rank
�Cc Dc

siI � A B

� �� �
¼ nx þ nr (3.23)

For this to occur, the multivariable zeros or transmission zeros of the original

system must not equal any zeros of a(s) and nu � nr . To summarize are the

following:

1. The original system (A, B) must be controllable.

2. The number of controls must be greater than the number of signals to track,

nu � nr.
3. The original system A;B;Cc;Dcð Þmust not have any transmission zeros common

with the polynomial a(s).

For control design, we can often relax the controllability requirement to that of

stabilizability. For stabilizability, the original system (A, B) must be stabilizable,

and conditions (2) and (3) above must also be satisfied.
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Example 3.1 Constant Command Tracking Consider a constant command r.
According to (3.4), this gives _r ¼ 0 (p ¼ 1), with a1 ¼ 0. The command error is

e ¼ yc � r. The servomechanism design model using (3.19) is given by

_z ¼ ~Azþ ~Bmz ¼ e

_x

� �
;m ¼ _u

~A ¼ 0 Cc

0 A

� �
; ~B ¼ Dc

B

� �
(3.24)

Example 3.2 Sinusoidal Command Tracking Consider a sinusoidal command rðtÞ ¼
sin otð Þ . This gives €r ¼ �o2r , p ¼ 2ð Þ , with a1¼ 0; a2¼� o2

0 , (see Eq. (3.4)). The

command error is e ¼ yc � r. The state space system using (3.19) is given by

_z ¼ ~Azþ ~Bmz ¼ e

x

� �
; x ¼ €x� o2x; m ¼ €u� o2u;

~A ¼
0 1 0

�o2 0 Cc

0 0 A

2
64

3
75; ~B ¼

0

Dc

B

2
64

3
75 (3.25)

Example 3.3 Constant Command Tracking in a Scalar System Knowledge from

classical control tells us that a type 1 controller is needed to track a constant

command. Using a scalar system, this example will build a state space model and

illustrate how to design an integral control for tracking constant commands.

Consider the following scalar system:

_x ¼� 2xþ uþ w

y ¼x ð3:26Þ

where x is the state, u is the control, and w is a nonmeasurable constant disturbance.

Hence, A ¼ [�2], B ¼ [1], E ¼ [1], C ¼ [1], and D ¼ [0]. The goal is for the

output y (same as the state x) to track a constant command r, with zero steady-state

error. The constant command is modeled using (3.3) as

_r ¼ 0; p ¼ 1; a1 ¼ 0 (3.27)

The robust servo design model is

_z ¼ ~Azþ ~Bm (3.28)

with
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~A ¼ 0 C
0 A

� �
¼ 0 1

0 �2
� �

; ~B ¼ D
B

� �
¼ 0

1

� �
(3.29)

in which we see that ~A; ~B
� �

form a controllable pair. The feedback control law is

m ¼ �Kz. It is desired that the closed-loop dynamics have a characteristic polynomial

of fclðsÞ ¼ sþ 2ð Þ2 þ 4 ¼ s2 þ 4sþ 8 (pole placement problem). The feedback

control is

m ¼ � K1 K2½ � e
_x

� �
(3.30)

The closed-loop system is _z ¼ A� BKð Þz with characteristic polynomial

fclðsÞ¼ det sI � ~Aþ ~BK
� �

. Substitute for ~A; ~B
� �

keeping the gains as parameters,

expand the determinant, and equate to the desired closed-loop characteristic

polynomial

det sI � ~Aþ ~BK
� � ¼ s2 þ 2þ K2ð Þsþ K1 ¼ s2 þ 4sþ 8 (3.31)

Equating coefficients of s yields two equations in the two unknown gains that

can be solved for the gains K1 K2½ � ¼ 8 2½ �. The control u ¼ R m and is

u ¼ �K
ð
z dt ¼� 8 2½ �

R
e dt

x

� �

¼� 8

ð
e dt� 2xþ constant of integration ð3:32Þ

In the implementation, the constant of integration is ignored. Figure 3.1

illustrates the system, (controller, plant, and disturbance).

3.3 The Robust Servomechanism LQR

In Chap. 2, it was shown that the state feedback infinite-time linear quadratic

regulator has excellent stability and robustness properties. In this section, this

approach is applied to the servomechanism design model from the previous section

-

x y = x

++

+ +

−2a1 = 0

s−1 ur +

y

−e

Integral Error
Control

Embeds Internal
Model

State Feedback
Stability

s−1

w

-

+ +

2

u + Kxx
8

Kx = K2

K1

Fig. 3.1 Example 3.3 block diagram of the control and system dynamics
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to form the robust servomechanism LQR (RSLQR). The RSLQR gain matrix Kc

that is produced from the solution of the algebraic Riccati equation forms the state

feedback control given as

m ¼ �Kcz (3.33)

which, when integrated p times, is implemented using integral control for command

tracking and state feedback for stabilization.

The RSLQR design problem uses the servomechanism design model written as

_z ¼ ~Azþ ~Bm (3.34)

where z and m are defined in (3.18) and (3.13), respectively. LQR control theory is

applied to (3.34), using the performance index (PI),

J ¼
ð1
0

zTQzþ mTRm
� �

dt (3.35)

whereQ ¼ QT � 0;R ¼ RT>0, ~A; ~B
� �

is stabilizable, and ~A;Q
1
2

	 

is detectable. For

the infinite-time problem, the optimal steady-state control law for m using state

feedback is formed by solving the algebraic Riccati equation (ARE) using Q and R
from (3.35), given as

P ~Aþ ~ATP� P ~BR�1 ~BTPþ Q ¼ 0 (3.36)

The resulting steady-state nu � nr þ nxð Þ-dimensional feedback controller gain

matrix is

Kc ¼ R�1 ~BTP (3.37)

with the state feedback control given asm ¼ �Kcz. The gain matrixKc is partitioned

in the same manner as the vector z in (3.18), written as

Kc ¼ Kp Kp�1 � � � K1 Kx½ � (3.38)

Substituting the definition of z into (3.33) yields

m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ ¼ �

Xp
i¼1

Ki e
p�ið Þ � Kx x

ðpÞ �
Xp
i¼1

ai x
p�ið Þ

" #
(3.39)

Integrating (3.39) p-times gives the control solution u for the original system

model in (3.2) as
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u ¼ �Kxxþ
Xp
i¼1

s�i ai u
p�ið Þ þKx x

p�ið Þ
� �

� Ki e
p�ið Þ

� �
(3.40)

Figure 3.2 is a block diagram illustrating the system of (3.2) (represented as G)
connected to the robust servomechanism state feedback control law.

The state feedback term �Kxxð Þ enforces closed-loop stability of the plant. The

p integrators and their gains provide integral error control, and the coefficients ai
embed the internal model of the signal being tracked. So, the closed-loop system is

_z ¼ ~A� ~BKc

� �
zþ Fr (3.41)

where F ¼ �Inu�nu 0nu�nx½ �T . The RSLQR closed-loop design using state

feedback is guaranteed to be globally exponentially stable, and it will force the

system-regulated output track the command signal rðtÞ, with zero steady-state error.
In Chap. 1, we introduced plant (1.35) and controller (1.36) state space models.

These models were then coupled to form a closed-loop simulation model and loop

gain frequency domain analysis models. We want to implement the RSLQR control

from (3.40) using the controller given by

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r ð3:42Þ

The control in (3.40) is a state feedback control y ¼ xð Þ. Substituting into (3.42),
we have

_xc ¼ Acxc þ Bc1xþ Bc2r

u ¼ Ccxc þ Dc1xþ Dc2r (3.43)

-

u y• • •

• • •

• • •

-

+

+

+

+

+

+

+ +

Kp K2 K1

Kx

ap

a2

a1

s−1 s−1 s−1
G x

u + Kx x

r

cy

−e
Integral Error

Control

Embeds Internal
Model

State Feedback
Stability

Fig. 3.2 Robust servomechanism block diagram
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with

Ac Bc1 Bc2

Cc Dc1 Dc2

� �

¼

0 Inr � � � 0

..

. . .
. � � � 0

0 0 � � � Inr
apInr � DcKp � � � � � � a1Inr � DcK1

2
66664

3
77775

0

..

.

0

Cc � DcKx

2
66664

3
77775

0

..

.

0

�Inr

2
66664

3
77775

�Kp � � � �K2 �K1½ � �Kx½ � 0½ �

2
66666664

3
77777775

(3.44)

Example 3.4 The Robust Servo Controller for Example 3.3 In Example 3.3, the

control u was given as

u ¼ �8
ð
e dt� 2x (3.45)

The state space model for the controller using (3.44) is

Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼ 0½ � 1½ � �1½ �

�8½ � �2½ � 0½ �
� �

(3.46)

In industrial applications, the commanded signal r(t) is often assumed to be a

constant. For example, in flight control, such a command could represent the stick

force coming from a pilot or the guidance command coming from the outer-loop

steering algorithms. Even though these command signals are not actually constant,

designing and implementing a type 1 control system has proven very effective in

most applications, and the RSLQR will provide zero steady-state error command

tracking.

To achieve good transient response characteristics, tuning of the LQR PI matrices

Q and R is required. Understanding how these matrices affect the control gains and

how the control gains influence the closed-loop system response is key to achieving a

good design.

It is important in the design of a realistic control system to be mindful of the

“size” of the feedback gains in Kc . In aerospace applications, gains that are too

large amplify sensor noise, drive the actuators with high rates, and cause issues

and challenges with flexible body dynamics, called structural mode interaction.

The feedback gains Kc depend upon the numerical values in Q and R. As Qk k2
becomes large, the gains get large; as Rk k2 is made small, the gains get large; thus,

Kck k2 � Qk k2= Rk k2.
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3.3.1 Summary

Dynamics: _x ¼ Axþ Buþ Ew

y ¼ Cxþ Du

Command model: r
ðpÞ ¼

Xp
i¼1

ai r
p�ið Þ

; Disturbance model: w
ðpÞ ¼

Xp
i¼1

ai w
p�ið Þ

State model: x ¼ x
ðpÞ �

Xp
i¼1

ai x
p�ið Þ

; Control model: m ¼ u
ðpÞ �

Xp
i¼1

ai u
p�ið Þ

Augmented state vector: z ¼ e _e � � � e
p�1ð Þ

x
h i

Performance index: J ¼
Z1
0

zTQzþ mTRm
� �

dt Q ¼ QT � 0;R ¼ RT > 0

Control design model: _z ¼ ~Azþ ~Bm; ~A; ~B
� �

controllable: ~A;Q
1
2

	 

detectable:

~A ¼

0 I 0 � � � 0 0

0 0 I 0 0

. .
.

0 0 0 I 0

apI ap�1I � � � a2I a1I C

0 � � � � � � � � � 0 A

2
6666666664

3
7777777775
; ~B ¼

0

0

..

.

0

D

B

2
6666666664

3
7777777775

ARE: P ~Aþ ~A
T
Pþ Q� P ~BR�1 ~B

T
P ¼ 0 m ¼ �R�1 ~BT

Pz ¼ �Kcz

Control: u ¼ �Kxxþ
Xp
i¼1

s�i ai u
p�ið Þ þKx x

p�ið Þ
� �

� Ki e
p�ið Þ

� �

Controller: _xc ¼ Acxc þ Bc1xþ Bc2r

u ¼ Ccxc þ Dc1xþ Dc2r

Ac Bc1 Bc2

Cc Dc1 Dc2

� �

¼

0 Inr � � � 0

..

. . .
. � � � 0

0 0 � � � Inr
apInr � DcKp � � � � � � a1Inr � DcK1

2
66664

3
77775

0

..

.

0

Cc � DcKx

2
66664

3
77775

0

..

.

0

�Inr

2
66664

3
77775

�Kp � � � �K2 �K1½ � �Kx½ � 0½ �

2
66666664

3
77777775
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The following example will illustrate how to choose parameters within Q and how

to select a design that performs well, has a reasonable bandwidth, and does not

result in high actuator rates. The processes for selecting the LQR penalty weights

form LQR design charts that show important time domain and frequency domain

metrics plotted versus loop gain crossover frequency. Viewing this information,

while using the design charts, allows the control system engineer to select the

desired bandwidth of the design and to perform the necessary trade studies required

to meet the desired closed-loop system performance design goals. This process also

prevents large feedback gains from being selected, which can introduce challenges

later in the simulation and analysis of the control system.

Example 3.5 LQR Q-Matrix Parameter Selection Using Design Charts Consider

the pitch-plane dynamics of an unmanned aircraft (Fig. 3.3), given as

_a ¼ Za

V
aþ Zd

V
dþ q

_q ¼ MaaþMddþMqq ð3:47Þ

It is desired to design an acceleration command r ¼ Azc flight control system. We

will assume that the command is constant and will design an RSLQR controller

with integral control. We will design a constant gain matrix Kc for a single flight

condition and will assume gain scheduling will be used to interpolate the gains

between conditions (other design points). Normal acceleration Az ft=s
2ð Þ is given by

Az ¼ �V _g ¼ VZaaþ VZdd (3.48)

We can introduceAz directly as a state variable by replacing the angle-of-attack a
state. Differentiate (3.48) to form the differential equation for _Az and then substitute

for _a from (3.47). This produces

_Az ¼ZaAz þ VZaqþ VZd
_de

_q ¼ Ma

VZa
Az þMqqþ Md �MaZd

Za

� �
de ð3:49Þ

Body

Body

Body

CG 

VT

α

β

Fig. 3.3 Unmanned aircraft
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Next, introduce a second-order actuator model for the elevator. This is given as

€de ¼ �2zaoa
_de þ oa

2 dc � deð Þ (3.50)

Combining (3.49) and (3.50) forms the plant model written in matrix form as

_Az

_q
_de
€de

2
664

3
775 ¼

Za VZa 0 VZd

Ma VZa= Mq Md � MaZd
Za

	 

0

0 0 0 1

0 0 �oa
2 �2zaoa

2
664

3
775

Az

q
de
_de

2
664

3
775þ

0

0

0

oa
2

2
664

3
775dc
(3.51)

Since r ¼ constant, _r ¼ 0, and p ¼ 1, then we need to add an integrator to form

our type 1 controller. The state vector (Eq. 3.18) for the robust servomechanism

design model is

z ¼ e _xT
� �T

(3.52)

with the design model _z ¼ ~Azþ ~Bm given as

_e
€Az

€q
€de
de

2
66664

3
77775 ¼

0 1 0 0 0

0 Za VZa 0 VZd

0 Ma VZa= Mq Md � MaZd
Za

	 

0

0 0 0 0 1

0 0 0 �oa
2 �2zaoa

2
66664

3
77775

e
_Az

_q
_de
€de

2
66664

3
77775þ

0

0

0

0

oa
2

2
66664

3
77775 _dc

(3.53)

where z ¼ e _Az _q _de €de
� �T 2 R5. At a flight condition of Mach 0.3, 5,000 ft

altitude, and a trim angle-of-attack a of 5 degrees, the plant model data (stability

and control derivatives) are

Za ¼� 1:05273 1/sð Þ
Zd ¼� 0:0343 1/sð Þ
Ma ¼� 2:3294 1=s2

� �
Mq ¼� 1:03341 1=s2

� �
Md ¼� 1:1684 1=s2

� �
V ¼ 329:127 ft/sð Þ
oa ¼ 2p � 13: rad=sð Þ
za ¼ 0:6 ð3:54Þ
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Substituting the data into (3.53) yields

~A ¼

0 1 0 0 0

0 �1:053 �346:5 0 �11:29
0 0:007 �1:033 �1:093 0

0 0 0 0 1

0 0 0 �6672: �98:02

2
66664

3
77775 ~B ¼

0

0

0

0

6672:

2
66664

3
77775 (3.55)

If we check the controllability of the pair ~A; ~B
� �

, we find the system to be

controllable.

The objective in the design of the gain matrix is to track the acceleration

command with zero error without using large gains. The design begins by equating

R ¼ 1 and selecting a Q matrix that penalizes the error state e in (3.53). Thus, the

performance index in (3.35) is

J ¼
ð1
0

zTQzþ m2
� �

dt (3.56)

We start by inserting the parameter q11 in the (1,1) element

zTQz ¼ zT

q11
0 0

0

0 0

0

2
66664

3
77775

e
_q
_Az
_de
€de

2
66664

3
77775; (3.57)

and set the other matrix elements to zero. This will penalize the error in tracking the

command. Substituting (3.57) into (3.56) gives the performance index as

J ¼
ð1
0

q11e
2 þ m2

� �
dt (3.58)

If we check the observability of the pair ~A;Q
1
2

	 

, we find the system to be

observable through this choice of Q.
The LQR design charts are formed by sweeping q11 values from small to large,

solving for the feedback gains for each value of q11, and examining the closed-loop

system properties. The computation steps are the following:

1. Set the value of q11 in Q from (3.57).

2. Solve the ARE in (3.36) for P.
3. Compute the feedback gain matrix Kc in (3.37).

4. Form the closed-loop system in (3.41).
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5. Simulate the closed-loop system to a step command and extract time domain

performance metrics. These are rise time, settling time, percent command

overshoot, percent command undershoot, max control, and control rate.

6. Evaluate the loop transfer function at the plant input and extract frequency

domain metrics. These are loop gain crossover frequency, minimum singular

values of I þ L and I þ L�1 (L at the plant input) versus frequency, and Sk k1 and

Tk k1 for the commanded variable (S and T are formed using L at the plant

output).

7. Loop back to step 1 and increase q11 until the numerical range is complete.

For this command tracking system, it is desired to track the acceleration command

with zero error, and minimize the rise time and settling time, all in response to the

command, without driving the control surface actuators with large gains. Large gains

will cause large actuator deflections and rates, which are not desirable. This creates a

trade study, in which the bandwidth must be limited in order not to exceed actuator

limitations. Also, large gains amplify sensor noise, reduce stability margins, and

make the system sensitive to unmodeled high-frequency dynamics (like flexible body

modes).

For this flight condition, the range of the LQR penalty q11 is selected to be

q11 ¼ 10�2; 10
0:5

h i
, using 100 design points. For a linear system, the response

will depend upon the location of the closed-loop poles in the s-plane. Looping

through the above calculations, the eigenvalues of the closed-loop system matrix
~A� ~BKc

� �
are plotted to form a root locus. The data are shown in Fig. 3.4.
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Fig. 3.4 RSLQR short-period dynamics root locus. Actuator poles at �49.0 	65.3j not shown
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Also plotted are the open-loop poles (diamonds), the commanded variableAz de= ,

and the system transfer function zeros, which include a nonminimum phase zero

(right half plane (RHP) zero). The open-loop dynamics are stable at this flight

condition, with the poles located in the left half plane (LHP). The two finite zeros

of the acceleration transfer function are �6.73 and 5.69. As discussed in Chap. 2

on asymptotic properties of regulators and the root square locus, Fig. 3.4 shows

the RHP zero at 5.69 mirrored into the LHP. Two of the closed-loop poles, one from

the integrator and the other from the short period, are approaching this region on the

negative real axis. The remaining short-period pole moves out to infinity along the

negative real axis. The control actuator poles, not shown in the figure, move toward

infinity along asymptotes at 45 degrees.

The time domain performance metrics of interest here are 63% rise time, 95%

settling time, percent overshoot, percent undershoot (because the system is

nonminimum phase), max actuator deflection, and max actuator rate in response to

a constant step command. The frequency domain performance metrics are loop gain

crossover frequency oc in Hz, the minimum of the minimum singular value of the

return difference dynamics, denoted�s I þ Lð Þ, and the minimum of the minimum

singular value of the stability robustness matrix I þ L�1, denoted s I þ L�1
� �

. The

metric s I þ Lð Þ ¼ 1 Sk k= 1 and s I þ L�1
� � ¼ 1 Tk k= 1 (see Chap. 5, Sect. 5.2 for

definitions). These metrics, plotted versus oc, are used to determine how the

increasing bandwidth of the system affects the system characteristics, indicating a

desired value for q11.
As with most control system design procedures, there is not a single answer to

determining a set of gains that are acceptable. It is for the designer to make a

reasonable selection. Once a suitable design is chosen, the associated gain matrix Kc

is then stored in a table to create a gain-scheduled control for real-time implemen-

tation. Figure 3.5 shows the rise time and settling time plotted against loop gain

crossover frequency oc.

As oc increases, the system responds more quickly to the step command. As

seen from the figure, there is a diminishing return in terms of speed of response as

the bandwidth increases. This is also evident from the root locus in Fig. 3.4. As the

dominant poles approach the zero locations at �6.73 and �5.69, the change in

the pole location diminishes with the increasing gains. The poles headed toward

infinity along the asymptotes continue to move, but their contribution to the

response elt
� �

dies quickly as the eigenvalues get large and negative. This indicates

that large gains are not needed to make the system respond quickly.

Figure 3.6 shows the percent overshoot, percent undershoot, max elevon (tail

actuated control surface) deflection per g commanded, and max elevon rate per g

commanded versus the loop gain crossover frequency oc.

At lower values of oc, the response slightly overshoots the command, causing an

overshoot. Command overshoot in flight control systems needs to be minimized in

order to maintain limits and placards on the aircraft. As the integrator gain increases

(as q11 increases), above 2.1 Hz oc, the response has no command overshoot. This

metric by itself indicates a desire for larger gains. The percent undershoot,
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characteristic of nonminimum phase responses, continues to increase with increasing

oc. This response characteristic is undesirable and also needs to be minimized.

Unfortunately, it increases with increasing oc. This metric indicates a desire for

lower gains. Both the max deflection and max rate increase with increasing oc. It is

critical in flight control systems not to have excessive deflections and rates in response

to changes in the command. Electric actuators typically used in unmanned aircraft

systems draw current proportional to the peak rate (at these normal operating

conditions). High rates then cause significant power draw. Also, if the surface

becomes rate saturated, this nonlinear effect can significantly degrade stability. As

shown in the figure, the deflection and rate increase almost exponentially with

increasing oc. These metrics also indicate a need for lower gains. As seen in this

figure, some of the metrics tend toward increasing the gains, and some tend toward

decreasing the gains.

Figure 3.7 shows two frequency response metrics: the minimum of the minimum

singular value of the return difference dynamics s I þ Lð Þ and the minimum of the

minimum singular value of the stability robustness matrix s I þ L�1
� �

.

As is characteristic of LQR state feedback designs (discussed in Chap. 2), the �s
I þ Lð Þ is equal to unity for all q11 design values. This metric is not particularly useful

for developing state feedback designs but is critical when output feedback is used.

The s I þ L�1
� �

, which is the inverse of the infinity norm of the complementary

sensitivity function, is a measure of the damping in the dominant poles of the closed-

loop system. We would like to maximize s I þ L�1
� �

. The figure shows that this

metric tends to favor larger gains.
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68 3 Command Tracking and the Robust Servomechanism

http://dx.doi.org/10.1007/978-1-4471-4396-3_2


In balancing the positive and negative trends indicated by these metrics, a design

condition q11 ¼ 0:2448 was selected. This is the value of q11 where the percent

overshoot first approaches zero. For this design condition, the states Az, q, de, and _de
are plotted versus time in Fig. 3.8.

Note that there is no overshoot to the unit command. For this approach flight

condition, the response is quick, without the use of large gains.

The gain matrixKc is

Kc ¼ 0:4948 0:1790� 14:0605 2:2089 0:0018½ � (3.59)

The controller implementing this design is

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r (3.60)

where y ¼ Az q de _de
� �T

, r ¼ Azc, and
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Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼ 0½ � 1 0 0 0½ � �1½ �
�0:4948½ � �0:179 14:0605 �2:2089 �0:0018½ � 0½ �

� �
(3.61)

3.4 Conclusions

Depending upon the signal to be tracked, a certain number of integrators are needed

to provide zero steady-state tracking error. In this chapter, we discussed how to

formulate this problem within a state space framework and how to use optimal

control to design the command tracking control system. In Chap. 2, we discussed

the excellent frequency domain properties of LQR controllers. For our robust

servomechanism controllers, we have these same excellent properties.

One of the key takeaways from the chapter should be the development of design

charts for selecting numerical weights in optimal control problems. It is very easy to

use too large of numerical weightings in the LQR performance index, and these

large weights would lead to high gains. It is critical to be able to determine the

bandwidth that is needed in the design to meet performance requirements and not to

drive the control actuation system too hard.

3.5 Exercises

Exercise 3.1. A linearized suspended ball model is described by

_x ¼ 0 1

1 0

� �
xþ 0

1

� �
u

(a) Use state feedback to stabilize the system producing closed-loop eigenvalues at

�1, �1/2.
(b) The ball position x1 can be measured using a photocell, but the velocity x2 is

more difficult to obtain. Suppose, therefore, that y ¼ x1. Design a full-order

observer having poles at �4 and �5 and use the observer feedback to produce

closed-loop eigenvalues at �1/2, �1, �4, �5.
(c) Repeat (b) using a first-order observer with pole at �6. Give a block diagram

showing the controller as a single transfer function.

(d) Repeat this same design problem using the robust servo approach, obtaining

integral control.
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Exercise 3.2. Consider the design of a longitudinal (pitch-plane) autopilot. Using

the robust servo formulation, design a pitch autopilot commanding a constant

angle-of-attack a. Use the following dynamic model as the nominal plant model:

_a
_q

� �
¼

Za
V 1

Ma 0

� �
a
q

� �
þ

Zd
V
Md

� �
de

and use data for Za
V ¼ �1:21; Zd

V ¼ �0:1987;Ma ¼ 44:2506; (Md ¼ �97:2313).
(a) Design the autopilot to track a constant angle-of-attack command. Use the LQR

approach outlined in Sect. 3.2.

(b) Design an autopilot to track a sinusoidal angle-of-attack command.

Exercise 3.3. Consider the longitudinal dynamics of a transport aircraft as given in

Chap. 1, Exercise 1.2. Design a robust servo LQR control to track a constant speed

command and a constant angle-of-attack command.

Exercise 3.4. Consider the lateral-directional dynamics of a transport aircraft as

given in Chap. 1, Exercise 1.4. Design a robust servo LQR control to track a

constant stability axis roll-rate ps command (see Eq. (1.22)). Assume a0 ¼ 6 deg .
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Chapter 4

State Feedback H1 Optimal Control

4.1 Introduction

Since control theory became an engineering discipline, mathematicians and

engineers have searched for control system design methods that would simulta-

neously satisfy stability, performance, and robustness requirements in a single

design step. In the 1980s, this problem was posed for multi-input multi-output

(MIMO) systems and the design method called H1 optimal control emerged. This

method allows the engineer to design, using state space models, a controller that

satisfies important frequency domain requirements, often referred to as loop shap-

ing. These requirements include shaping the sensitivity function S(s), complemen-

tary sensitivity T(s), the control activity U(s), the loop gain L(s), and its associated

crossover frequency oc (rad/s).

In flight control systems for manned and unmanned aircraft configurations,

robust performance and stability requirements necessitate the use of optimally

designed flight control systems to achieve stability, to command tracking perfor-

mance, to minimize control effort, and to be robust to inaccuracies in the model

description. Robust performance requirements are generally driven by high maneu-

ver rates needed for agile flight. Robust stability requirements are often related to

large flight envelopes and uncertainties in the plant dynamics created by uncertain

aerodynamics, actuation, and flexible body dynamics.

H1 optimal control allows the control system engineer to address these challenges

in the design of the flight control system. The topology of a general H1 controller

design problem is shown in Fig. 4.1. A state space model for the plant is

_x ¼Axþ Buþ Ew

z ¼Cxþ D1uþ D2w ð4:1Þ

where x 2 Rnx is the state, u 2 Rnu the control, w 2 Rnw the exogenous disturbance,

and z 2 Rnz a collection of variables to be regulated. The design goal is to minimize

the regulated variables z in response to the exogenous input w while providing

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_4,
# Springer-Verlag London 2013
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internal stability. This is equivalent to minimizing the infinity norm of the transfer

function matrix. If all the states are available for feedback, then the resulting H1
problem is referred to as a full information feedback problem. The solution results

in a feedback compensator whose feedback gains are calculated by solving a single

algebraic Riccati equation.

The state space solution of linear H1 optimal control problems can be found in

Doyle et al. [1]. This same problem of reducing the H1 norm of a closed-loop

system has been viewed as a two-person zero-sum differential game in Basar and

Bernhard [2], where the solution is related to certain algebraic Riccati equations.

This approach for nonlinear systems has been pursued in Basar and Bernhard [2]

and in Helton [3]. For nonlinear systems, the Riccati equation is replaced with

a particular Hamilton–Jacobi equation known as Isaacs equations ([4], p. 67,

Eq. (4.2.1)). This type of optimal control is referred to as nonlinear H1 and/or L2-

gain optimal control. A design example can be found in Wise and Sedwick [5].

We begin with a review of common norms for signal and systems, proceed to

show how to engineer both stability and performance specifications in the fre-

quency domain, and then demonstrate how to achieve loop shaping using

frequency-dependent weights. The loop shaping ideas presented here are very

similar to using lead-lag filters, low-pass filters, notch filters, etc., from classical

control theory. If the reader is not familiar with frequency domain analysis, then

Chap. 5 should be reviewed prior to working through this chapter. Once an

understanding of how the state space design model is engineered, the full informa-

tion state feedback controller is derived. A flight control design example using an

unmanned aircraft pitch autopilot is presented to show how to implement the

concepts of this chapter.
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4.2 Norms for Signals and Systems

In control system design, we are usually concerned with the “size” of certain signals

within the system. These signals may be commands, errors, states, outputs, or

internal variables within the dynamics. Consider piecewise continuous scalar

signals u(t) which map (�1, 1) to (�1, 1). Define the 1-norm, 2-norm, and

1-norm as

uk k1 ¼
ð1
�1

uðtÞj jdt

uk k2 ¼
ð1
�1

uðtÞj jdt
0
@

1
A

1
2

uk k1 ¼ sup
t

uðtÞj j (4.2)

Suppose u is a current through a 1-ohm resistor. Then, the power is equal to u2,
and the total energy is the integral of u2, which is the norm uk k22.

4.2.1 Power Signals

The average power of a signal is the average of its instantaneous power. The

average power of u is

lim
T!1

1

2T

ðT
�T

u2ðtÞdt (4.3)

If this limit exists, then the signal is called a power signal, and we denote the

limit as pow(u), given as

powðuÞ ¼ lim
T!1

1

2T

ðT
�T

u2ðtÞdt
0
@

1
A

1
2

(4.4)

The powðuÞ ¼ lim
T!1

1
2T

ÐT
�T

u2ðtÞdt
� �1

2

is not a norm. It does not satisfy the axiom

that uk k ¼ 0! uðtÞ ¼ 0 for all t 2 �1;1ð Þ . Nonzero signals can have zero

average power.
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Example 4.1 If uk k2<1, then powðuÞ ¼ 0. Consider uk k2<1, then

1

2T

ðT
�T

u2ðtÞdt � 1

2T
uk k22|fflfflfflffl{zfflfflfflffl}

!0 T!1

(4.5)

Since uk k22<1, taking the limit T !1 yields powðuÞ ¼ 0.

Example 4.2 If uk k1<1, then powðuÞ � uk k1. Using (4.5), we get

1

2T

ðT
�T

u2ðtÞdt � 1

2T

ðT
�T

uk k21dt ¼ uk k21
1

2T

ðT
�T

dt ¼ uk k21 (4.6)

4.2.2 Norms for Systems

Consider the norms for stable scalar transfer functions in which

1

2T

ðT
�T

u2ðtÞdt � 1

2T

ðT
�T

uk k21dt ¼ uk k21
1

2T

ðT
�T

dt ¼ uk k21

The convolution response of the system is

y ¼ G�u ! yðtÞ ¼
ð1
�1

g t� tð Þu tð Þdt (4.7)

Typical terms for the transfer function are:

• G stable ! that G is analytic in the closed RHP (Re s � 0).

• G proper! G joð Þ is finite (order of the denominator � order of numerator).

• G strictly proper! G j1ð Þ ¼ 0 (order of denominator > order of numerator).

• G j1ð Þ ¼ 0 biproper ! G and G�1 are both proper.

From Parseval’s theorem, for a stable G, we have

Gk k2 ¼
1

2p

ð1
�1

G joð Þj j2do
0
@

1
A

1
2

¼
ð1
�1

g2ðtÞdt
0
@

1
A

1
2

¼ gk k2 (4.8)
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For a stableG, Gk k2 is finite if and only ifG is strictly proper with no poles on the

jo axis. For a strictly proper G with no poles on the jo axis, the Gk k22 can be

expressed as

Gk k22¼
1

2p

ð1
�1

G joÞð j2do ¼ 1

2pj

ðj1
�j1

G �sð ÞGðsÞds ¼ 1

2pj

þ
G �sð ÞGðsÞds

�������
(4.9)

which can be evaluated using residues of the transfer function. Gk k1 is the peak of

the Bode plot ofG. Gk k1 is finite if and only if G is proper with no poles on jo axis.

Also, there is a sub-multiplicative property of the1-norm: GHk k1 � Gk k1 Hk k1,
which allows us to bound the combined system via norms on its elements. The

above norms for signals and systems allow us to form and understand the amplifi-

cation or attenuation in the responses of systems and signals of interest.

If we know how big the input signal u is, how big will the output y be?

The table below illustrates this norm relationship for a stable strictly proper G
(Table 4.1).

Example 4.3 The (1,1) table entry above is formed as follows:

yðtÞ ¼
ð1
�1

g t� tð Þu tð Þdt ¼
ð1
�1

g t� tð Þd tð Þdt ¼
ð1
�1

gðtÞdt ¼ gðtÞ

yk k2 ¼ Gk k2 ¼ gk k2 ð4:10Þ

Suppose u is not fixed as in the above table but can be any signal with 2-

norm � 1. The result is often called the system gain and is equal to Gk k1 . The

following table illustrates the response for finite 2-norm,1-norm, and pow signals

(Table 4.2):

Table 4.1 Output signal

norms for stable transfer

functions with specific input

signals

u(t) ¼ d(t) u(t) ¼ sin(ot)

yj jj j2 Gj jj j2 1

yj jj j1 Gj jj j1 GðjoÞj j

pow(y) 0 1ffiffi
2
p GðjoÞj j
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Example 4.4 The (1,1) table entry above is formed as follows. For uk k2 � 1, we

want yk k2:

yk k22¼
1

2p

ð1
�1

G joð Þj j2 u joð Þj j2do � Gk k21
1

2p

ð1
�1

u joð Þj j2do ¼ Gk k21 uk k22

(4.11)

4.2.3 Computing Norms for Systems

For single-input single-output linear-time-invariant systems

_x ¼Axþ bu

y ¼ cx ð4:12Þ

the transfer function is GðsÞ ¼ c sI � Að Þ�1b. If the system matrix A is stable, the

matrix exponential

eAt ¼ I þ tAþ t2

2!A
2 þ � � � (4.13)

converges uniformly in time. Let

P ¼
ð1
0

eAtbbTeA
Ttdt (4.14)

then

APþ PAT þ bbT ¼ 0 (4.15)

and the 2-norm of G is given by

Gk k2 ¼ cPcT
� �1=2

(4.16)

Table 4.2 Output signal

norms for stable transfer

functions with specific input

signals

uk k2 uk k1
pow(u)

yk k2 Gk k1 1 1

yk k1 Gk k2 Gk k1 1

pow(y) 0 � Gk k1 Gk k1
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Proof.
GðtÞ ¼ ceAtb

Gk k22¼
ð1
0

ceAtbbTeA
TtcTdt ¼ c

ð1
0

eAtbbTeA
TtdtcT ¼ cPcT ð4:17Þ

4.2.4 Well-Posedness and Stability

Consider the system interconnection shown in the block diagram of Fig. 4.2.

The loop equations for the system shown in Fig. 4.2 are

w ¼ u� Ky

d ¼ y� Gu
(4.18)

Arranging inputs and outputs into a vector yields

w
d

	 

¼ I �K
�G I

	 

u
y

	 

(4.19)

Solving for the outputs yields

u
y

	 

¼ I �K
�G I

	 
�1
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

H

w
d

	 

(4.20)

Suppose G and K are proper, and let H denote the closed-loop transfer function

matrix. In this case, the feedback system is well posed if and only if

det I � G 1ð ÞK 1ð Þð Þ 6¼ 0

The system is internally stable if and only if H is stable.

Proof.

det
I �K
�G I

	 

¼ det

I 0

�G I � GK

	 

det

I �K
0 I

	 

¼ det I � GK½ � (4.21)

+

+

w u
G

y
K

d+

+

Fig. 4.2 Block diagram of a

linear closed-loop system
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So, it is easy to see that the closed-loop transfer function H will be proper if and

only if det I � G 1ð ÞK 1ð Þð Þ 6¼ 0.

4.3 Stability and Performance Specifications in the Frequency

Domain

Classical control system design methods using transfer functions were focused

around achieving certain frequency response characteristics, viewed from either

Bode, Nyquist, or Nichols charts. For single-input single-output systems, these

classical methods easily incorporated command tracking performance, stability

margin, and plant roll-off design features that achieved the desired system response

characteristics. When control system design using state space methods was

introduced to address multi-input multi-output control design challenges, one of

the complaints raised about the design methods was the lack of focus, or attention,

toward achieving frequency domain properties. In this section, we will discuss how

to achieve frequency response design goals within a state space format. Readers not

familiar with frequency response analysis should review Chap. 5 before proceeding

into designing controllers using H1 optimal control.

Consider the control system shown in Fig. 4.3. For this system loop transfer

function, the loop gain at the plant inputLðsÞ ¼ KðsÞGðsÞ is a square matrix that has

dimension equal to the number of inputs for the system, with units equal to those

variables in the control vector u. Figure 4.4 illustrates frequency domain

requirements for L(s).
In order to track commands at low frequency, the loop gain must have sufficient

magnitude. In order to be robust to high-frequency noise and unmodeled high-

frequency dynamics, the loop gain must roll off and be sufficiently small. In the

frequency band between these conflicting requirements is where the loop gain

crosses 0 dB and defines the loop gain crossover frequency, oc. As illustrated in

the figure, the singular values of L(s) are siðLÞ, with sðLÞ and �sðLÞ denoting the

minimum and maximum, respectively. We refer to the frequency at which �sðLÞ
crosses 0 dB as the loop gain crossover frequency oc.

For SISO systems, L(s) is a scalar with singular value sðLÞ ¼ �sðLÞ ¼ Lj j. Large
gain at low frequencies would be obtained by using a large proportional gain and/or

integral control (type 1 control). Roll-off at high frequencies would be obtained by

using low-pass or elliptical filters, depending upon the amount of roll-off needed.

Stability margins would be computed from L(s) to indicate the robustness of the
design. For MIMO systems, singular value margins are computed from the sensi-

tivity S(s) and complementary sensitivity T(s).
Command tracking performance can also be viewed by examining the sensitivity

function S(s), given by

eðsÞ ¼ I þ LðsÞð Þ�1rðsÞ ¼ SðsÞrðsÞ (4.22)
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Figure 4.5 illustrates singular value frequency response requirements for the

sensitivity function S(s).
At low frequency, where L(s) needs to be large, S(s) needs to be small. At high

frequencies where L(s) needs to be small, S(s) is near unity. From Chap. 5, we know

that stability margins are determined from the near singularity of the return differ-

ence I þ L ¼ S�1
� �

as measured by its minimum of s I þ Lð Þ versus frequency,

which equates to the peak of the sensitivity, or Sk k1 . We know from the Bode

integral log theorem that as we push the sensitivity lower in magnitude to achieve

faster response, the peak pops creating a system that is more sensitive and less

stable.

The complementary sensitivity T(s) is defined as

+

-

r e yu
K (s) G (s)

Fig. 4.3 Feedback control system

(L)
(L)

(L)

0 dB

Need DC gain 
for command 
tracking

Roll off plant for robustness 
to noise, high frequency 
unmodeled dynamics

Loop gain crossover frequency

Loop Gain L=KG

Fig. 4.4 Singular value frequency response requirements for a loop transfer function

0 dB

Want errors small at low freq for 
command tracking + disturbance rejection

Stability
Roll off plant

Sensitivity

s  = (I + L)
_1

s

w

(S)

(  )S

Fig. 4.5 Singular value frequency response requirements for the sensitivity function
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yðsÞ ¼ I þ Lð Þ�1LrðsÞ ¼ TðsÞrðsÞ (4.23)

Figure 4.6 illustrates the complementary sensitivity function T(s) singular value
frequency response requirements.

This is also known as the closed-loop transfer function. At low frequencies

where the loop gain is large, T(s) is near unity. At high frequencies where the

loop gain must roll off to be robust to high-frequency noise and unmodeled

dynamics, T(s) is small. At the peak of T(s), Tk k1 , the closed-loop system has a

resonance in which frequencies at the peak are amplified by the system. If we were

to approximate the system with an equivalent second-order system, the peak

indicates low damping. This indicates that the dominant poles of the system are

close to the jo axis.

The control activity is amount of control used in responding to commands and

rejecting disturbances. In general, it is desirable to minimize control usage at all

frequencies, making sure that the actuators responding to the control signals are not

position or rate saturated. In the frequency domain, constant weight on penalizing

the control activity is usually used.

4.4 Loop Shaping Using Frequency-Dependent Weights

Figures 4.4, 4.5, and 4.6 show how to shape the loop gain, sensitivity, and

complementary sensitivity to achieve command tracking performance, robustness

to high-frequency noise, and unmodeled dynamics, as well as acceptable stability

margins. These concepts are central to designing H1 optimal controllers. The

design procedure minimizes the 1-norm of a system response matrix. This

response matrix contains a frequency-weighted sensitivity, complementary sensi-

tivity, and control activity. The procedure for building a state space design model is

straightforward.

Roll off plant for robustness to noise,
high freq unmodeled dynamics

(T )

T

0 dB

Peak Resonance
Complementary
Sensitivity

Roll off plant

(s) = (I +L)−1 L

s

w

Fig. 4.6 Singular value

frequency response

requirements for the

complementary sensitivity

function
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The weighting filters used to shape the loops in the H1 optimal control design

should be selected to be minimum order. Each state in the weighting filters adds a

state to the controller. In gain-scheduled flight control applications, high-order

controllers can introduce transients in the response as the scheduling variables

change. Thus, low-order controllers are typically desirable.

Consider the block diagram shown in Fig. 4.7 for the plant model in (4.1). The

scalar variable z1 is a weighted error variable to be regulated. The idea is to weight

the error response to a command, e ¼ Sr, with a weighting filter Ws that is the

inverse of the desired shape for S, so that when the WSSk k1 is minimized, it will

shape S. Figure 4.8 illustrates this design process.

The second regulated variable in Fig. 4.7 is z2 which is the weighted comple-

mentary sensitivity. Figure 4.9 illustrates the design process for shaping the com-

plementary sensitivity.

+

-

r e ycK (s) G (s)

SW

CW

TW

z1

z2

z3

u

Weighted
Sensitivity Weighted

Control Activity Weighted
Complementary

Sensitivity

Fig. 4.7 Block diagram showing weighted sensitivity, control activity, and complementary

sensitivity

0 dB

S

−1
WS WS 

0 dB
WSS
0 dBw ww

Fig. 4.8 Process for shaping the sensitivity function through a shaping filter

0 dB

T

_1WT
WT

0 dB

WTT
0 dBw w w

Fig. 4.9 Process for shaping the complementary sensitivity function through a shaping filter
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The third regulated variable in Fig. 4.7 is z3 which is a weighted control activity.
This variable is multiplied here by a constant to penalize control activity at all

frequencies. If it was needed to penalize some frequencies more than others, the

process for selecting the weighting filter would be similar to that shown in Figs. 4.8

and 4.9.

The numerical choice of weighting filters will change with each application.

Designing these filters is often difficult, with the degree of difficulty being compa-

rable to selecting lead-lag filters in classical control design for improving gain or

phase margins. Figure 4.10 illustrates a typical sensitivity frequency response with

low-frequency command tracking and stability margin requirements and a typical

first-order weighting filter for achieving the shape. The low-frequency behavior of

Ws demonstrates an integrator property with a slope of 20 dB per decade. The gain

K in Ws is chosen to produce a magnitude of Ws of �3 dB at the desired loop gain

crossover frequency oc. The zero in Ws is chosen at the desired oc. The �3 dB

magnitude will limit the peak of S Sk k1
� �

, thus producing adequate stability

margins. These design rules and model for Ws can be used to shape S and keep

the order of the weighting filter to a low number.

Figure 4.11 illustrates a typical complementary sensitivity frequency response

which constrains the peak (peak resonance) and adds roll-off for robustness to

uncertain and unmodeled high-frequency dynamics. The first-order weighting filter

Gain Margin

Typical 
Sensitivity

S ( jω)

S

S

0 dB

SW

0 dB

Integral Control Property for 
command tracking

WS (S) =

Tracking 
Performance

Fig. 4.10 First-order sensitivity weighting filter design

T ( jω )

Peak Resonance

Typical 
Complementary
Sensitivity

T

0 dB

T
W

0 dB

Integral Control Property for 
command tracking

1

WT (S) =

Robustness To High 
Frequency Uncertainties

Fig. 4.11 First-order complementary sensitivity weighting filter design
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used here is similar in shape to a lead-lag filter. The low-frequency behavior of WT

demonstrates a flat profile versus frequency which will constrain the peak reso-

nance. The zero in WT can be chosen smaller than the desired oc, with the gain K
chosen so that the WTj j is 0 dB at oc. Some iteration of this may be needed to

converge and obtain a desirable constraint for the peak resonance. The pole inWT is

chosen somewhat arbitrarily and should be chosen high enough in frequency to

provide the minimum attenuation needed in the high-frequency range. One should

not make it too high in frequency so as to keep the digital implementation (via a

computer) reasonable.

4.5 State Feedback H1 Optimal Control

In this section, the state feedback control law is synthesized using an algebraic

Riccati equation approach called g-iteration. Consider the following linear-

time-invariant model

_x ¼Axþ Buþ Ew

z ¼Cxþ D1uþ D2w ð4:24Þ

and cost function

J u;wð Þ ¼ 1

2

ðT
t0

zTz� g2wTw
� �

dt (4.25)

where g � 0 and with t0; x0 given and T, x(T) free. Our goal is to find the optimal

control (minimizing control) u* and maximizing disturbance w* such that

J u�;wð Þ � J u�;w�ð Þ � J u;w�ð Þ (4.26)

Examine the response z in (4.24) from the exogenous variable w

zk k2RMS� Tzwk k21 wk k2RMS (4.27)

where Tzw is the closed-loop transfer function model from w to z. Choose a positive
g such that g � Tzwk k1. Then, from (4.27),

zk kRMS � g2 wk kRMS � 0 (4.28)
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Using this g, substitute (4.24) into (4.25) to obtain

J u;wð Þ ¼ 1

2

ðT
t0

zTz� g2wTw
� �

dt

¼ 1

2

ðT
t0

Cxþ D1uþ D2w½ �T Cxþ D1uþ D2w½ � � g2wTw
� �

dt

¼ 1

2

ðT
t0

xTCTCxþ 2xT CTD1 CTD2


 � u

w

	 

þ

u

w

	 
T
DT

1D1 DT
1D2

DT
2D1 DT

2D2 � g2I

" #
u

w

	 

0
BBBB@

1
CCCCAdt (4.29)

Let

S ¼ CTD1 CTD2


 �
;R ¼ DT

1D1 DT
1D2

DT
2D1 DT

2D2 � g2I

	 

; ~u ¼ u

w

	 

(4.30)

Then, (4.29) becomes

J u;wð Þ ¼ 1

2

ðT
t0

xTCTCxþ 2xTS~uþ ~uTR~u
� �

dt (4.31)

which is an LQR problem that has cross terms between the state x and extended

control ~u. Next, rewrite the plant model in (4.24) using the extended control as

_x ¼ Axþ ~B~u (4.32)

where ~B ¼ B E½ �. We can write the Hamiltonian for this LQR problem as

H ¼ 1

2
xTCTCxþ 2xTS~uþ ~uTR~u
� �þ pT Axþ ~B~u

� �
(4.33)

The necessary condition for the optimal control ~u� is

rH~u ¼ 0 ¼ R~uþ STxþ ~B
T
~u (4.34)

Solving for the optimal ~u� gives

~u� ¼ �R�1 STxþ ~B
T
p

� �
(4.35)
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The differential equation for the costate is

_p ¼ �rHx ¼ �CTCx� ATp� S~u (4.36)

with p(T) ¼ 0. Substituting (4.35) into (4.32) and combining with (4.36), we can

write the Hamiltonian system as

_x
_p

	 

¼ A � ~BR�1 ~B

T

�CTCþ SR�1S �AT þ SR ~B
T

	 

x
p

	 

(4.37)

The next step is to manipulate this first-order differential equation to eliminate

the costate p and create a Riccati equation whose solution will give (4.35). The

solution to (4.37) is derived from the state-transition matrix. Assume the state-

transition matrix for (4.37) is

F T; tð Þ ¼ fxx T; tð Þ fxp T; tð Þ
fpx T; tð Þ fpp T; tð Þ

	 

(4.38)

Then, pðTÞ ¼ fpxxþ fppp. Solving for p yields

p ¼ f�1pp fpx|fflfflffl{zfflfflffl}
P

x ¼ Px (4.39)

Differentiating results in

_p ¼ _Pxþ P _x (4.40)

From (4.37), we have

_Pxþ P _x ¼ �CTCþ SR�1S
� �

xþ �AT þ SR ~B
T

� �
p (4.41)

Substituting for _x using (4.32) and replacing p using (4.39) and factoring out x on
the right yields the Riccati equation

� _P ¼ PAþ ATPþ CTC� P ~Bþ S

 �

R�1 ~B
T
Pþ ST

h i
(4.42)

whose solution P is used to form the state feedback control law as

~u ¼ �R�1 BTPþ ST
� �

x (4.43)
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For the infinite time problem, (4.42) becomes an algebraic Riccati equation

(ARE). The ARE is used in most applications. The following theorem summarizes

the assumptions needed for the problem to be well-posed.

Theorem 4.1 [1] Consider the linear-time-invariant system described in (4.24)
where x 2 Rnx , u 2 Rnu ; w 2 Rnw , and z 2 Rnz . Assume:

1. A;B;C;D1ð Þ has no zeros on the jo axis.
2. (A, B) stabilizable.
3. D1 is injective DT

1D1

� ��1
exists

� �
.

Then, the following statements are equivalent:

1. There exists a state feedback control ~u ¼ �K1x such that the closed-loop

system is internally stable and Tzwk k1< g.
2. DT

2D2 < g2I and there exists a P � 0 that solves the following ARE:

PAþATPþCTC� BTPþDT
1C

ETPþDT
2C

" #T
DT

1D1 DT
1D2

DT
2D1 DT

2D2�g2I

" #�1
BTPþDT

1C

ETPþDT
2C

" #
¼0

(4.44)

and the optimal control u is

u ¼ Inu 0½ �~u ¼ � Inu 0½ �R�1 BTPþ ST
� �

x ¼ �K1x (4.45)

4.6 Controller Design Using g-Iteration

In this section, we build a control design model that embeds the sensitivity,

complementary sensitivity, and control activity weighting filters from Sect. 4.3

into a state space model and then solves for the state feedback gain matrix (4.45)

using a method called g-iteration. The design model needs to be of the form of

(4.24). Define the regulated variables in vector z to comprise sensitivity, comple-

mentary sensitivity, and control activity variables.

=

z1

z2

z3

z

Sensitivity– to track commands. 

Complementary Sensitivity – to roll-off plant, limit bandwidth. 

Control Activity – minimize control usage. 

From Sect. 4.3, the weighting filterWs should be designed to be the inverse of the

desired loop shape for S(s), the weighting filter WT should be designed to be the

inverse of the desired loop shape for T(s), and the control activity penalty to

penalize control activity in the desired frequency range. To build the H1-controller
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state space design model, the plant and weighting filters all need to be represented

in a state space format. The plant dynamics are modeled as

_x ¼ Apxþ Bpu

y ¼ Cpxþ Dpu
(4.46)

where y is the variable to be commanded. The sensitivity weighting filter Ws is

modeled as

_xs ¼ ASxs þ BS y� rð Þ
z1 ¼ CSxs þ DS y� rð Þ (4.47)

where r is the command. The variable z1 is the weighted sensitivity. The comple-

mentary sensitivity weighting filter WT is modeled as

_xT ¼ ATxT þ BTy

z2 ¼ CTxT þ DTy
(4.48)

where the variable z2 is the weighted complementary sensitivity. The control

activity model must be selected in such a way to satisfy the requirement that D1

matrix from (4.24) is injective. How to select this variable is demonstrated in

Example 4.5.
The g-iteration algorithm used here is summarized in the following five steps:

Algorithm 4.1 H1 Control g-Iteration Method

1. Pick a starting g larger than what is anticipated as the optimal g. This will start
the binary search used to converge to the optimal value.

2. Form the LQR matrices using g from (4.31).
3. Solve the algebraic Riccati Eq. (4.44) for the matrix P.
4. Check that P> 0 and that Re l ACLð Þð Þ< 0. If these tests pass, reduce g, and go

back to step 2. If the test fail, increase g, and go back to step 2. A minimum step
size needs to be established and used to determine when g has converged to gmin.

5. Once the bisection search has converged to a gmin, form the feedback control
using (4.45).

When using the above process, care must be exercised as g approaches gmin. It is

typical that the Rmatrix in (4.44) becomes ill-conditioned as g approaches gmin. The

ARE solvers in most commercial tools are sensitive to this, and the resulting P > 0

matrix actually does not solve the ARE. This is easily tested by forming (4.44) and

computing the norm on the result. The result should be a zero matrix, with 2-norm

less than 10�5. We have found that once the algorithm has converged to gmin, it is

prudent to increase from the gmin value slightly to reduce the feedback gain

magnitudes and improve the accuracy of the solution to the ARE. We will demon-

strate this in the upcoming example.
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4.6.1 Summary

Example 4.5 H1 Flight Control Design Consider the design of the longitudinal

flight control system for the unmanned aircraft shown in Fig. 4.12.

The pitch-plane dynamics are given as

_a ¼ Za

V
aþ Zd

V
dþ q

_q ¼MaaþMddþMqq ð4:49Þ

It is desired to design an acceleration command r ¼ Azc flight control system. We

will assume that the command is constant, and we will design a H1 controller using

full state feedback. The feedback control law will consist of a constant gain matrix

Kc at a single flight condition and will assume gain scheduling will be used to

interpolate the gains between conditions (other design points). Normal acceleration

Az ft=s
2ð Þ is given by

Az ¼ �V _g ¼ Zaaþ Zdd (4.50)

Dynamics: _x ¼ Axþ Buþ Ew

z ¼ Cxþ D1uþ D2w

Performance index: J ¼ 1
2

ð1
0

xTCTCxþ 2xTS~uþ ~uTR~u
� �

dt

S ¼ CTD1 CTD2


 �
;R ¼ DT

1D1 DT
1D2

DT
2D1 DT

2D2 � g2I

" #
; ~u ¼ u

w

	 


Controller Design

1. Pick a starting g

2: Form LQR matrices

3. Solve

PAþ ATPþ CTC� BTPþ DT
1C

ETPþ DT
2C

" #T
DT

1D1 DT
1D2

DT
2D1 DT

2D2 � g2I

" #�1
BTPþ DT

1C

ETPþ DT
2C

" #
¼ 0

4. Check P> 0: Compute feedback gains: K1 ¼ Inu 0½ �R�1 BTPþ ST
� �

Check eigenvalues of closed loop system are stable: Re l A� BK1ð Þð Þ< 0

5: Decrease g until gmin
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We can introduce Az directly as a state variable by replacing the angle-of-attack

a state. Differentiate Eq. (4.50) to form the differential equation for _Az and then

substitute for _a from Eq. (4.49). This produces

_Az ¼ ZaAz þ VZaqþ VZd
_de

_q ¼ Ma

VZa
Az þMqqþ Md �MaZd

Za

� �
de ð4:51Þ

Next, introduce a second-order actuator model for the elevator. This is given as

€de ¼ �2zaoa
_de þ oa

2 dc � deð Þ (4.52)

where d is the angular position and dc command. Combining Eqs. (4.51) and (4.52)

forms our plant model written in state space form as

_Az

_q
_de
€de

2
664

3
775 ¼

Za VZa 0 VZd

Ma VZa= Mq Md � MaZd
Za

� �
0

0 0 0 1

0 0 �oa
2 �2zaoa

2
664

3
775

Az

q
de
_de

2
664

3
775

þ
0

0

0

oa
2

2
664

3
775dc (4.53)

Assume each of the state variables is available for feedback. Equation (4.53)

represents the aircraft’s dynamics for the plant model expressed in (4.46). This

model needs to be combined with the sensitivity weighting filter, complementary

sensitivity weighting filter, and the control activity penalty. To satisfy Theorem 4.1

requirements for D1 to be injective, the control activity is penalized by weighting

Body

Body

Body

CG 

VT

Fig. 4.12 Unmanned aircraft
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the variable €d in (4.53) as the control activity. This defines the third regulated

variable z3 expressed as

z3 ¼ WC
€de (4.54)

where €d is formed as

€de ¼ 0 0 0 1½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C€d

_x ¼ C€d Apxþ Bpu
� �

(4.55)

which gives z3 as

z3 ¼ WCC€d Apxþ Bpu
� �

(4.56)

To form the H1 controller design model, we combine the plant model (4.46)

with the sensitivity weighting filter (4.47) and complementary sensitivity weighting

filter (4.48) as

_x

_xS

_xT

2
64

3
75 ¼

Ap 0 0

�BSCp AS 0

BTCp 0 AT

2
64

3
75

x

xS

xT

2
64

3
75þ

Bp

�BSDp

BTDp

2
64

3
75dc þ

0

BS

0

2
64

3
75r

z1

z2

z3

2
64

3
75 ¼

�DSCp CS 0

DTCp 0 CT

WCCcAp 0 0

2
64

3
75

x

xS

xT

2
64

3
75þ

�DSDp

DTDp

WCCcBp

2
64

3
75dc þ

DS

0

0

2
64

3
75r ð4:57Þ

which is of the form of (4.24). For this flight condition, the plant model data is

Za ¼� 1:05273 1/sð Þ;
Zd ¼� 0:0343 1/sð Þ;
Ma ¼� 2:3294 1=s2

� �
;

Mq ¼� 1:03341 1=s2
� �

;

Md ¼� 1:1684 1=s2
� �

;

V ¼ 329:127 ft/sð Þ;
oa ¼ 2p�13: rad=sð Þ;
za ¼ 0:6; ð4:58Þ

The sensitivity and complementary weighting filter designs are created by first

defining (selecting) the desired loop gain crossover frequency oc. For this flight
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condition, we will setoc ¼ 2 Hzð Þ. The sensitivity weighting filter coefficients from
Fig. 4.10 are formed by choosing oc and the gain K. Ws from Fig. 4.10 is

WSðsÞ ¼ K tsþ 1ð Þ
s

(4.59)

The time constant is computed as

t ¼ 1

2poc

oc in Hzð Þ (4.60)

The gain K is chosen to be

K ¼ 0:5

t
(4.61)

The state space model for (4.59) is

AS;BS;CS;DSð Þ ¼ 0:; 1:; 6:2832; 0:5ð Þ (4.62)

The blue curve in Fig. 4.13 shows the frequency response for (4.59). The integral

action at low frequency will weight S(s) to provide the desired command tracking.

The complementary sensitivity weighting filter from Fig. 4.11 is

WTðsÞ ¼ K tNsþ 1ð Þ
tDsþ 1ð Þ (4.63)

where

tN ¼ 1

2poc

oc in Hzð Þ
tD ¼0:005ðsÞ
K ¼0:707 ð4:64Þ

The green curve in Fig. 4.13 shows the frequency response for (4.63).

The state space model for (4.63) is

AT ;BT ;CT ;DTð Þ ¼ �200:; 1:; � 2109:1; 11:252ð Þ (4.65)

This model was formed by using the tf2ss command in Matlab. The weight that

penalizes the control activity, Wc, from (4.56) is

WC ¼ 0:1 (4.66)
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This penalty is plotted in Fig. 4.13 as the red curve.

Now that the desired loop shapes have been engineered, the g-iteration process is
used to form the state feedback control. The binary search algorithm was started

with g_max ¼ 20 and g_min ¼ 1. The algorithm converged with the final g of

2.544781744 (it is important to include at least 9 decimal places so that results can

be reproduced by others). For this minimum g, the six feedback gains are

K1 ¼ �210764319:5 14676259029:5 � 3206078184:0 � 29261950:9½
�730137814:4 44949185:4�

which are too large to be considered for implementation. The Riccati matrix P
was substituted back into the ARE and the 2-norm of the sum computed. The

2-norm ¼ 301572105986.4265, which shows that the ill-conditioning has

destroyed the accuracy. By increasing g slightly to g ¼ 2.549781744, the solution

becomes accurate with 2-norm ¼ 1.8849 � 10�5 with the feedback gains:

K1 ¼ �0:92788164:7534 � 13:1623 � 0:11795 � 3:210460:151197½ � (4.68)

The H1 state feedback controller can be implemented in the following state

space format:

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r ð4:69Þ

10-1 100 101 102
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Fig. 4.13 Sensitivity, complementary sensitivity, and control activity weighting filter frequency

responses
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with

Ac Bc1 Bc2

Cc Dc1 Dc2

	 

¼

AS 0

0 AT

	 

BS

BT

	 

1 0 0 0½ � �BS

0

	 

�K1 5 : 6ð Þ½ � �K1 1 : 4ð Þ½ � 0½ �

2
64

3
75

¼
0 0

0 �200

	 

1 0 0 0

1 0 0 0

	 
 �1
0

	 

�3:2105 0:1512½ � �0:9279 64:7534 � 13:1623 � 0:1179½ � 0½ �

2
64

3
75ð4:70Þ

where xc ¼ xT xS½ �T , y ¼ Az q de _de

 �T

, r ¼ Azc, and u ¼ dc.
To evaluate the design, a step simulation of the closed-loop system was

performed. The states Az, q, de, and _de are plotted versus time in Fig. 4.14. The

controller is a second-order system (one state forWs and one state forWT). Note that

there is no overshoot to the unit command. Using this approach flight condition, the

response is quick without the use of large gains. This simulation can be compared

with the robust servomechanism design Example 3.5 from Chap. 3. We see that the

H1 control design as responses with a slight overshoot in the acceleration response

with an increase in the nonminimum phase undershoot at the initiation of the step

command.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (sec)

P
itc

h 
R

at
e 

(d
ps

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

Time (sec)

Time (sec)Time (sec)

A
z 

(f
ps

2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

2.5

3

E
le

vo
n 

(d
eg

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

-10

0

10

20

30

40

E
le

vo
n 

R
at

e(
dp

s)

Fig. 4.14 States of the system responding to a unit acceleration step command
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4.7 Conclusions

One of the most important developments in the 1980s was H1 optimal control and

the understanding it gave engineers in performing trades between time domain

requirements and frequency domain requirements. We presented the full informa-

tion state feedback H1 optimal control, but output feedback versions also exist. We

refer the student wishing to explore output feedback to see [2, 6].

4.8 Exercises

Exercise 4.1. Consider the design of a longitudinal (pitch-plane) autopilot. Using

H1 state feedback, design a pitch autopilot commanding angle-of-attack a. Use the
following dynamics model as the nominal plant model:

_a
_q

	 

¼

Za
V 1

Ma 0

	 

a
q

	 

þ

Zde
V

Mde

	 

de

and use data for Za
V ¼ �1:21; Zd

V ¼ �0:1987;Ma ¼ 44:2506;Md ¼ �97:2313. Add
second-order actuator dynamics for the elevator. Design the autopilot to track a

constant angle-of-attack command. Use the g-iteration approach outlined in Sect. 4.5.

Exercise 4.2. Consider the longitudinal dynamics of a transport aircraft as given

in Chap. 1, Exercise 1.2. Design a H1 state feedback controller to track a constant

speed command and a constant angle-of-attack command. Use the g-iteration
approach outlined in Sect. 4.5.

Exercise 4.3. Consider the lateral-directional dynamics of a transport aircraft as

given in Chap. 1, Exercise 1.4. Design a H1 state feedback controller to track a

constant stability axis roll rate ps command (see Eq. (1.22)) and regulate sideslip

angle b. Assume a0 ¼ 6 deg .
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Chapter 5

Frequency Domain Analysis

5.1 Introduction

Frequency domain analysis methods are among the most useful tools available for

the development of control systems. When designing a control system, it is very

important to understand the stability and robustness properties of the design. For

linear systems, these properties are best analyzed, displayed, and understood in the

frequency domain. For linear single-input single-output (SISO) systems, frequency

domain methods for analysis, as well as techniques for synthesis of a controller,

have been developed and used in industry since the 1950s. These analysis and

design methods are often referred to as classical methods and include techniques

like root locus, Bode, Nyquist, and Nichols charts. For multi-input multi-output

(MIMO) systems, the analysis methods used are typically extensions of the

methods used for SISO systems. In order to understand the methods for MIMO

analysis, one should have a good grasp of classical SISO frequency domain

methods.

Since the early 1980s, control system analysts have been focused upon deter-

mining the stability and robustness of MIMO feedback designs in the presence of

uncertainties. In particular, this focus has been upon frequency domain techniques

using methods which employ singular value frequency responses. These singular

value-based methods of analysis join, and in some cases replace, the classical Bode

and Nyquist techniques with multivariable generalizations and extend many

modeling uncertainty capabilities. They have become widespread in industry as

today’s systems require MIMO analysis. This chapter presents an overview of the

theory and methods available, connecting the classical and multivariable analysis

methods and tools, and highlights aerospace control applications and analyses in the

frequency domain.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_5,
# Springer-Verlag London 2013
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5.2 Transfer Functions and Transfer Function Matrices

Many of the frequency domain analysis models for MIMO systems are natural

extensions of transfer functions used to analyze SISO systems. However, unlike

these transfer functions, MIMO analysis models have different sizes depending

upon where the loop is broken for analysis. Consider the SISO system shown in the

block diagram of Fig. 5.1.

The loop gain for this system can be calculated by breaking the loop at the

control generation point (plant input) and injecting a signal ui. The returned signal is

uo ¼ �KðsÞGðsÞ|fflfflfflfflffl{zfflfflfflfflffl}
LðsÞ

ui (5.1)

in which L(s) is the loop gain transfer function. Differencing the injected signal ui
and the returned signal uo results in

ui � uo ¼ ui þ KðsÞGðsÞui ¼ 1þ KðsÞGðsÞð Þui
¼ 1þ LðsÞð Þui ð5:2Þ

which is the return difference for the loop. We will find later in this chapter that the

return difference matrix, I þ LðsÞ, plays a very important role in the development of

stability robustness analysis tests for MIMO systems. The error transfer function for

this system is

eðsÞ
rðsÞ ¼

1

1þ KðsÞGðsÞ ¼ SðsÞ (5.3)

where S(s) is the sensitivity function, which describes the error dynamics. Note that

the sensitivity is the inverse of the return difference. The closed-loop response to a

command input is

K(s) G(s)

Controller Plant

r e+

-

y

Injected
Signal

Returned
Signal

 Scalar Variables

K(s) G(s)
r e+

-

uo ui y

K(s),G(s)Transfer Functions

Fig. 5.1 Single-input single-output KG block diagram

98 5 Frequency Domain Analysis



yðsÞ
rðsÞ ¼

KðsÞGðsÞ
1þ KðsÞGðsÞ ¼ TðsÞ (5.4)

where T(s) is the closed-loop transfer function. The transfer function T(s) is also
called the complementary sensitivity, since S(s) and T(s) satisfy the identity

SðsÞ þ TðsÞ ¼ 1 (5.5)

Now, consider the multivariable equivalent of Fig. 5.1 as shown in Fig. 5.2. In

Fig. 5.2, the variables r; e; ui; uo; and y are vectors, with the controller K(s) a nu
�ny matrix and the plant G(s) a ny � nu matrix. The figure shows the loop broken at

the plant input. The loop gain L(s) is formed using the same procedure as in (5.1)

where LðsÞ ¼ KðsÞGðsÞ is a nu � nu matrix. Forming the return difference matrix

yields

ui � uo ¼ Inu þ KðsÞGðsÞð Þui ¼ Inu þ LðsÞð Þui (5.6)

where Inu þ LðsÞ is also a nu � nu matrix. If this same procedure for calculating the

loop gain is applied at the output of the plant, as shown in Fig. 5.2, the return

difference dynamics are

u0i � u0o ¼ Iny þ GðsÞKðsÞ� �
u0i (5.7)

which produces a loop gain and return difference matrix that are ny � ny in

dimension.

It is very important to learn that for MIMO systems, the loop gain is different at

the plant input and plant output loop break points, which is unlike SISO systems.

This dissimilarity is caused by the fact that matrices do not commute, but scalars do.

Table 5.1 summarizes the loop gain, return difference, sensitivity, and complemen-

tary sensitivity transfer functions and matrices for the SISO and MIMO systems

shown in Figs. 5.1 and 5.2.

Controller Plant

r e+

-

uo ui y

Injected
Signal

Returned
Signal

K(s) G(s)r e+

-

nu � ny ny � nu

K(s),G(s)Matrices

Vector Variables

Fig. 5.2 Multi-input multi-output KG block diagram

5.2 Transfer Functions and Transfer Function Matrices 99



Table 5.1 lists the various matrices used to analyze MIMO control systems. In

the remainder of this book, the subscript on the identity matrix indicating its

dimension will be dropped for notational convenience.

Example 5.1 Consider the linear-time-invariant (LTI) pitch-plane dynamics of an

unmanned aircraft shown in Fig. 5.3, controlled using a classical proportional-

plus-integral control architecture. The pitch-plane short-period dynamics are given

by (A, B, C, D) and can be written as

_a

_q

� �
¼

Za
V 1

Ma 0

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

A

a

q

� �
þ

Zd
V

Md

" #
|fflfflffl{zfflfflffl}

B

de

Az

q

� �
¼ Za 0

0 1

� �
|fflfflfflfflffl{zfflfflfflfflffl}

C

a

q

� �
þ Zd

0

� �
|fflffl{zfflffl}

D

de ð5:8Þ

These dynamics form a single-input multi-output system. The transfer function

matrix for the plant dynamics is

Table 5.1 Summary of transfer functions and transfer function matrices used in frequency

domain analysis

Function

SISO system

(Fig. 5.1)

MIMO system (Fig. 5.2)

at plant input

MIMO system (Fig. 5.2)

at plant output

Loop gain LðsÞ ¼ KðsÞGðsÞ
¼ GðsÞKðsÞ

L(s) ¼ K(s) G(s) L(s) ¼ G(s) K(s)

Return difference 1 þ L(s) Inu þ LðsÞ Iny þ LðsÞ

Sensitivity S(s) 1

1þ LðsÞ
Inu þ LðsÞð Þ�1 Iny þ LðsÞ� ��1

Complementary

sensitivity T(s)
LðsÞ

1þ LðsÞ
Inu þ LðsÞð Þ�1LðsÞ Iny þ LðsÞ� ��1

LðsÞ

+

-

Azc
q

KAz (s)
+

-
Kq (s)

q
(s)

Az (s)
q

Az

Inner Rate Loop

Outer Accel Loop

SIMO

δ
δ

Fig. 5.3 Pitch-plane dynamics and autopilot controller
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GðsÞ ¼ C sI � Að Þ�1Bþ D ¼
Az

de
q
de

" #
(5.9)

which is a 2 � 1 matrix. The autopilot (controller) for this plant contains propor-

tional-plus-integral control elements in the inner rate loop closure and outer accel-

eration loop closure, given by

KAz
ðsÞ ¼ KAz

sþ azð Þ
s

(5.10)

and

KqðsÞ ¼
Kq sþ aq
� �
s

(5.11)

with the controller transfer function matrix given by

KðsÞ ¼ KAz
ðsÞKqðsÞ KqðsÞ½ � (5.12)

which is a 2 � 1 matrix. A state-space model for this controller is

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r (5.13)

with matrices given as

Ac ¼
0 0

Kqaq 0

� �
; Bc1 ¼

�Kaaz 0

�KaKqaq �Kqaq

� �
; Bc2 ¼

Kaaz

KaKqaq

� �

Cc ¼ Kq 1½ �; Dc1 ¼ �KaKq �Kq½ �; Dc2 ¼ KaKq

� � ð5:14Þ

The loop gain at the input to the plant is

LðsÞ ¼ KðsÞGðsÞ ¼ KAz
ðsÞKqðsÞAz

de
þ KqðsÞ qde (5.15)

which is a scalar transfer function. To analyze stability for this system, any SISO

analysis technique can be applied. If we examine the loop gain at the plant output,

then
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LðsÞ ¼ GðsÞKðsÞ ¼
Az

de
KAz
ðsÞKqðsÞ Az

de
KqðsÞ

q

de
KAz
ðsÞKqðsÞ q

de
KqðsÞ

2
64

3
75 (5.16)

which is a 2� 2 matrix and is a singular matrix since it is the product of matrices

that are 2� 1ð Þ � 1� 2ð Þ in dimension. It is typical in most aerospace applications

that the plant and controller matrices are non-square. In this case, stability analysis

should be conducted at the loop break point of minimum dimension.

Figure 5.4 illustrates a LTI MIMO system with command rðtÞ 2 Rny, plant

disturbance wðtÞ 2 Rny, and measurement noise vðtÞ 2 Rny. The output response

from the system shown in Fig. 5.4 is

YðsÞ ¼ TðsÞRðsÞ þ SðsÞWðsÞ þ TðsÞVðsÞ (5.17)

This equation shows how the output response depends upon the sensitivity and

complementary sensitivity functions. At frequencies s ¼ jowhere commands are to

be followed, we want TðsÞ ! I , which shows that sensor noise is also passed

through the system into the output. It is not possible to reject sensor noise and track

commands at the same frequencies. At frequencies where plant disturbances are to

be rejected, we want SðsÞ ! 0.

The error response E(s) can be formed by writing the following loop equations:

u ¼ Ke

y ¼ GKeþ w

z ¼ GKeþ wþ v

e ¼ r þ z ¼ r þ GKeþ wþ v

EðsÞ ¼ SðsÞ RðsÞ þWðsÞ þ VðsÞð Þ ð5:18Þ

which shows that to make errors in tracking commands small, we want SðsÞ ! 0.

Equations (5.17) and (5.18) illustrate the control design dilemma faced by

engineers, that is, to make SðsÞ ! 0 at low frequencies for command tracking

K(s) G(s)

Controller Plant

r e+

-

+

+ v

+

+

w

z

u y

nu � ny ny � nu

K(s),G(s)Matrices

Vector Variables

Fig. 5.4 MIMO system with disturbance and measurement noise
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and disturbance rejection and TðsÞ ! 0 at high frequencies for sensor noise

rejection and robustness to high-frequency unmodeled dynamics. The dilemma is

that SðsÞ þ TðsÞ ¼ I at all frequencies, and as the sensitivity is made small, the

complementary sensitivity is made unity and vice versa.

5.3 Multivariable Stability Margins

Classical stability margin analyses use frequency response methods (Bode and

Nyquist) in determining the relative stability of SISO systems. These methods

manipulate the loop transfer function of the system to derive gain and phase

margins, typical measures of relative stability. In multivariable systems (MIMO

systems), the loop transfer function of the system is a complex-valued matrix,

making it more difficult to apply the same SISO methods to determine relative

stability. The question of stability is easily answered by examining the poles of the

closed-loop transfer function or the eigenvalues of the closed-loop matrix Acl. It is

the relative stability question, that is, the gain and phase margins for MIMO

systems that is difficult.

In SISO systems, the gain of the loop transfer function is determined by

computing the magnitude of the complex-valued transfer function versus fre-

quency. For MIMO systems, the notion of gain or magnitude for the loop transfer

function matrix becomes a question of determining the “magnitude” of a matrix

versus frequency. To accomplish this task, the singular values of the matrix can be

computed versus frequency and used as a measure of its magnitude.

In this section, we are concerned with deriving stability margins for multivari-

able systems. The robust stability analysis tests and stability margins formulas

developed here are derived from application of the multivariable Nyquist theorem.

These tests and formulas are natural extensions of the SISO tests reviewed in the

previous section.

5.3.1 Singular Values

The singular value decomposition of amatrixA 2 Cof dimension n� m is A ¼ USV�,
where * denotes complex conjugate transpose, and where S 2 Rn�m, U 2 Cn�n

and V 2 Cm�m are unitary matrices, whose columns denote left and right singular

vectors of the matrix A, respectively. (Note the similarity to an eigenvalue

decomposition of a matrix.) Assuming that the matrix is of rank k, the nonzero

portion of the singular value matrix is
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S ¼
S1 0

�
0
�

0
�

" #
; S1 ¼ diag s1 � � � sk½ � (5.19)

with the singular values ordered in size with s ¼ s1 , the largest, and s ¼ sk the

smallest. The use of singular values plays an important role in analyzing the near

singularity of matrices. If A is a square singular matrix, then s ¼ 0, and it is not

invertible.

The maximum and minimum singular values of the matrix A can be defined as

�sðAÞ ¼ max
x 6¼0

Axk k2
xk k2
¼ Ak k2 (5.20)

sðAÞ ¼ min
x 6¼0

Axk k2
xk k2

The maximum singular value of the matrix A (its 2-norm) represents how “big”

the matrix is or how large the “gain” of the matrix is. The minimum singular value

represents how nearly singular the matrix is. The condition number for a matrix,

kðAÞ, is the ratio of the maximum and minimum singular values, given by

kðAÞ ¼ �sðAÞ
sðAÞ (5.21)

and is used by numerical analyst to gain insight into how invertible a matrix is.

Associated with each singular value are singular vectors that describe the

“direction” of the singular value. Consider the matrix A 2 Cn�m with rank k ¼ min

n;mð Þ. The k nonzero singular values of A, denoted as siðAÞ, are the strictly positive
square roots of the k nonzero eigenvalues of A�A (or equivalently AA� ). This is
expressed as

siðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li A�Að Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li AA�ð Þ

p
> 0 (5.22)

Each singular value has an input and output direction which can be determined

by examining the singular vectors associated with the singular value decomposition

(SVD) of the matrix. The SVD of a complex matrix A 2 Cn�m is

A ¼ USV� (5.23)

where U is an n� n unitary matrix (i.e., U� ¼ U�1 ) consisting of orthonormal

column vectors ui
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U ¼ u1 � � � un½ � (5.24)

which are referred to as the left singular vectors of the matrix, V is an unitary matrix

consisting of orthonormal column vectors vi

V ¼ v1 � � � vm½ � (5.25)

which are referred to as the right singular vectors of the matrix, and S is a realn� m
matrix given by

S ¼

s1 0
�

s2
. .
.

0
�

sk

0
�

0
�

0
�

2
6666664

3
7777775

(5.26)

The si in (5.26) is the i-th singular value of the matrix A, with a corresponding

left singular vector ui (5.24) and right singular vector vi (5.25). It is easy to show

that

Avi ¼ siui
A�ui ¼ sivi ð5:27Þ

The above equations can also be written as

A�Avi ¼ s2i vi

AA�ui ¼ s2i ui ð5:28Þ

which shows that s2i is an eigenvalue of AA� or A�A and ui is an eigenvector of AA�

and vi is an eigenvector of A�A.
Consider a square matrix A 2 Cn�n having rank k. Using an SVD, the matrix A

can be represented using a dyadic expansion as

A ¼ s1u1v�1 þ s2u2v�2 þ � � � þ skukv�k ¼
Xk
i¼1

siuiv�i (5.29)

The SVD of a matrix describes the gain through the matrix, with the maximum

gain equal to the 2-norm of the matrix Ak k2 ¼ s1ðAÞ ¼ �sðAÞ� �
. In addition to the

gain, the SVD describes the direction associated with the gain. The dyadic expan-

sion in (5.29) indicates that the left and right singular vectors describe the direction

of the gain. The maximum gain through the matrix occurs with the input direction

from v1 and output direction u1.
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Figure 5.5 illustrates the input-to-output mapping for a general transfer func-

tion matrix G joð Þ 2 Cn�n . Here, the singular value expansion provides insight

into the relative gain between input-to-output channels for a transfer function

matrix.

5.3.2 Singular Value Properties

If the matrix A is invertible, that is, A�1 exists, then

�s A�1ð Þ ¼ 1

sðAÞ and s A�1
� � ¼ 1

�sðAÞ :

Ak k2 ¼ �sðAÞ

Ak k2F ¼
Xn
i¼1

s2i ðAÞ

where �k kF denotes the Frobenius norm. If the matrices U and V are unitary, then

si UAð Þ ¼ siðAÞ
si AVð Þ ¼ siðAÞ

which says that unitary matrices preserve the singular values and �k k2 of a matrix.

Input Output

V* UΣ

*v1

*v2

*vn

σ1 0

0 σn

u1    u2 

G( jω)

...

... ...

∼

∼
un

Fig. 5.5 Singular value decomposition of a transfer function matrix
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5.3.3 Multivariable Nyquist Theory

The multivariable Nyquist criterion gives a “yes or no” answer to the stability

question. Other methods such as computing the eigenvalues of the system Amatrix,

examining the poles of the closed-loop transfer function, or solving a Lyapunov

equation can also be used to answer the stability question. However, understanding

the multivariable Nyquist criterion leads to important understanding of robustness

analysis tests used to analyze model uncertainties. In addition, time delays, esT, are
easily incorporated into the analysis in order to analyze MIMO systems with time

delays.

The multivariable Nyquist criterion is derived from an application of the princi-

ple of the argument from complex variable theory.

Theorem 5.1.

Let G be a closed clockwise contour in the s-plane. Let f(s) be a complex-valued
function. Suppose that

1. f(s) is analytic on G
2. f(s) has Z zeros inside G
3. f(s) has P poles inside G.

Then, f(s) will encircle the origin, 0, Z � P times in a clockwise sense as s trans-
verses G. ■

Let N p; f ðsÞ;Gð Þ denote the number of encirclements of the point p made by the

function f(s) as s transverses the closed clockwise contour G. If G equals the

standard Nyquist D-contour (DR), encircling the right half plane, and f(s) is a

rational function in s, then N 0; f ðsÞ;DRð Þ ¼ Z � P.
If f(s) is factored where f ðsÞ ¼ f1ðsÞf2ðsÞ, then

N 0; f1ðsÞf2ðsÞ;DRð Þ ¼ N 0; f1ðsÞ;DRð Þ þ N 0; f2ðsÞ;DRð Þ
¼ Z1 � P1ð Þ þ Z2 � P2ð Þ ¼ Z � P ð5:30Þ

Consider the feedback system shown in Fig. 5.6. The state equations for this

system are

_x ¼ Axþ Bu

u ¼ �Kx

(sI − A)−1

−

x
B

K

uFig. 5.6 State feedback

block diagram
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The closed-loop system is

_x ¼ A� BKð Þx

Let L(s) denote the loop transfer function matrix for this system, written as

LðsÞ ¼ K sI � Að Þ�1B

The determinant of the return difference matrix, det I þ LðsÞ½ �, is equal to the

closed-loop characteristic polynomial divided by the open-loop characteristic poly-

nomial, that is,

det I þ LðsÞ½ � ¼ fclðsÞ
folðsÞ

This can be shown as

fclðsÞ ¼ det sI � Aþ BK½ �
¼ det sI � A½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

folðsÞ

det I þ sI � Að Þ�1BK
h i

ð5:31Þ

Now, using the identity

det In þ F|{z}
n�m

G|{z}
m�n

2
4

3
5 ¼ det Im þ G|{z}

m�n
F|{z}

n�m

2
4

3
5

Using this in (5.31) yields

fclðsÞ ¼ folðsÞ det I þ sI � Að Þ�1BK
h i

¼ folðsÞ det I þ K sI � Að Þ�1B|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
LðsÞ

2
64

3
75

¼ folðsÞ det I þ LðsÞ½ � ð5:32Þ

where folðsÞ is the open-loop system’s characteristic polynomial and fclðsÞ is the
closed-loop system’s characteristic polynomial. If fclðsÞ is stable (the closed-loop

system is stable), thenN 0;fclðsÞ;DRð Þ ¼ 0. From (5.32) stability offclðsÞ requires that

N 0;folðsÞ;DRð Þ þ N 0; det I þ LðsÞ½ �;DRð Þ ¼ 0 (5.33)

With this understanding, we can state the multivariable Nyquist theorem.
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Theorem 5.2 Multivariable Nyquist Theorem

The feedback control system shown in Fig. 5.6 will be closed-loop stable in the
sense that fclðsÞ has no closed right half plane zeros if and only if for all R
sufficiently large (radius of the D-contour)

N 0; det I þ LðsÞ½ �;DRð Þ ¼ �Pol (5.34)

or equivalently

N �1;�1þ det I þ LðsÞ½ �;DRð Þ ¼ �Pol

wherePol ¼ N 0;folðsÞ;DRð Þequals the number of open-loop right half plane poles.
■

The multivariable Nyquist theorem (MNT) states that closed-loop stability

requires the number of encirclements made by the determinant of the return

difference matrix locus to be equal to the number of unstable open-loop poles.

Encirclements can be counted relative to the origin (0, j0) or as in classical Nyquist

diagrams about (�1, j0).
Stability margins for multivariable systems can be derived using the MNT by

assuming that the controller K(s) stabilizes the nominal plant G(s) and that gain and
phase uncertainties are large enough to change the number of encirclements made

by the determinant of the return difference matrix locus. The assumption that the

nominal plant is stabilized by the controller tells us that the return difference matrix

encircles the origin Pol times in the proper sense. Gain and phase margins can be

computed by inserting a gain and phase variation keif in between the controller K(s)
and plant G(s) and solving for the gain k (withf ¼ 0) and phase y (with k ¼ 1) that

destabilizes the system. To proceed in a more general manner, we consider the

stability analysis model shown in Fig. 5.7 where the uncertainties in the system

(gain and phase uncertainties) are represented in a block matrix DðsÞ and the

Uncertainties

Dynamics

Δ(s)

M(s)

z

w

• M(s), D(s) Matrices
• Vector Variables

Fig. 5.7 DM analysis model
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nominal plant and controller are represented in a matrix MðsÞ . Techniques for

deriving this model will be presented in the next section.

The stability analysis question is “how large can the uncertainties DðsÞ become

before the system becomes unstable?” The loop transfer function matrix LðsÞ for this
system is LðsÞ ¼ DðsÞMðsÞ , with the return difference matrix given by I þ LðsÞ ¼
I � DðsÞMðsÞ. Using the MNT, for the system to become unstable, the uncertainties

DðsÞmust change the number of encirclements made by the det I þ LðsÞ½ � locus. Note
that the block diagram in Fig. 5.7 has no summing node with negative sign in most

block diagrams. Thus, the return difference matrix for this system is written I � DM.

As long as the return difference matrix I þ LðsÞ is nonsingular (for s ¼ jo along

the D-contour), the number of encirclements made by the det I þ LðsÞ½ � locus will not
change. This is best explained by examining the det I þ LðsÞ½ � locus as s transverses
the DR contour. Fundamental to this approach is the assumption that the nominal

closed-loop system is stable, that is, the control design stabilizes the open-loop

system.

Assuming that the nominal closed-loop system is stable, fclðsÞ is a stable

polynomial, and that it has no right half plane zeros. Let f ðsÞ ¼ det I þ LðsÞ½ �, and
represent f joð Þ with its magnitude and phase as

f joð Þ ¼ f joð Þj jejf oð Þ (5.35)

as s transverses the DR contour in the s-plane.
Consider the jo axis path A shown in Fig. 5.8, where 0 	 o 	 þ1. The section A

locus of f joð Þ is shown in Fig. 5.9a. At low frequencies, the magnitude of f joð Þ is
large due to the magnitude of L joð Þ. Aso!1, the loop transfer matrix L joð Þ ! 0,

resulting in the det I þ L joð Þ½ � ¼ 1 (1, j0). Along the infinite radius path B, s ¼ ejcR,
with R!1 and � p

2
	 c 	 p

2
. When R!1, L joð Þ ! 0. This results in

s-Plane

Real

Image

R

A B

C DR

Fig. 5.8 Nyquist DR contour
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encirclements of the point (1, j0). Section C will be the complex conjugate of the

section A path. Figure 5.9b shows the entire locus and the number of encirclementsN.
Figure 5.9b shows there are two clockwise encirclements of the origin.

The number of encirclements N of the det I þ LðsÞ½ � locus must be equal to the

number of open-loop unstable poles,Pol, if the closed-loop system is to be stable. If the

det I þ LðsÞ½ � were equal to zero then the number of encirclements would be indeter-

minate, or at least not equal toPol. This is shown in Fig. 5.10. In order for the number of

encirclements to change, the det I þ LðsÞ½ � must equal zero at some frequency.

s-Plane

Real

Image
N=2N=0

Fig. 5.10 Counting encirclements

s-Plane

Real

Image
N=0

Fig. 5.11 Counting encirclements

Real

Image

A

Real

Image

A

1.0

N=2

s-Plane
a b

s-Plane

Fig. 5.9 Nyquist examples
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IffolðsÞ is a stable polynomial, then Pol ¼ 0. An example det I þ LðsÞ½ � locus for
this condition is shown in Fig. 5.11. In order for stable system to be destabilized by

uncertainties D, the origin must be encircled.

5.3.4 Stability Margins for Multi-Input Multi-Output Systems

Uncertainty models used for stability analysis may be categorized as unstructured

or structured. If the system uncertainty is modeled as a full single-block matrix, the

uncertainty is unstructured. If the uncertainty is modeled as a block diagonal

matrix, the uncertainty is structured. Both unstructured and structured uncertainty

analysis procedures use singular value theory to measure the size of complex-

valued matrices.

The following robustness theorems which are used to derive stability margins for

multivariable systems are derived from an application of the multivariable Nyquist

theorem. Consider the state feedback control system shown in Fig. 5.6. The basic

problem is to determine the robustness of the design in the presence of

uncertainties. This design has the state-space realization using the triple (A, B, K)
with the loop transfer matrix (LTM) given by

LðsÞ ¼ K sI � Að Þ�1B (5.36)

We wish to determine to what extent gain and phase uncertainty within the LTM

can vary without compromising the stability of the closed-loop system. From the

previous section (Eq. (5.32)), we know that

det I þ LðsÞ½ � ¼ fclðsÞ
folðsÞ

(5.37)

where

folðsÞ ¼ det sI � A½ �: open-loop characteristic polynomial

fclðsÞ ¼ det sI � Aþ BK½ �: closed-loop characteristic polynomial

Using the multivariable Nyquist theorem, stability for this system can be stated

as follows:

The system of Fig. 5.6 will be closed-loop stable in the sense that fclðsÞ has no
closed right half plane zeros if and only if for all R sufficiently large

N 0; det I þ LðsÞ½ �;DRð Þ ¼ �Pol (5.38)

or equivalently

N �1;�1þ det I þ LðsÞ½ �;DRð Þ ¼ �Pol (5.39)
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whereDR is the standard Nyquist D-contour, which encloses allPol closed right half

plane zeros offolðsÞ:Note thatN b1; f ðsÞ;Dð Þ is indeterminate iff s0ð Þ ¼ b1 for some

s0 on the contour D.
The stability robustness of a multivariable system can be observed by the near

singularity of its return difference matrix, I þ LðsÞ, at some frequency s ¼ jo0. If

I þ LðsÞ is nearly singular, then a small change inLðsÞ could make I þ LðsÞ singular.
From a single-input single-output viewpoint this is the distance from the (�1, j0)
point in the complex plane made by the gain loci L joð Þ: If the gain loci then

encircles the (�1, j0), point instability results. The robustness theory discussed here
gives an analogous distance measure for multivariable systems.

Application of the multivariable Nyquist theorem above is of little applicability

as a robustness indicator because the det I þ LðsÞ½ � does not indicate the near

singularity of I þ LðsÞ. The multivariable Nyquist theorem only determines abso-

lute stability. To determine the degree of robustness for a multivariable system, we

determine how nearly singular the return difference matrix is by computing its

singular values versus frequency.

Examining the magnitude of the singular values of the return difference matrix

will indicate how close the matrix is to being singular. This measure of closeness to

singularity is used in forming a multivariable gain margin, similar to the classical

gain margin. However, as with many matrix norms, there is a restriction on the

applicability of the singular value analysis. This restriction states that the

compensated system described using the nominal LðsÞ is closed-loop stable.

Classical gain and phase margins are used to measure the robustness of SISO

systems to perturbations in the feedback loop. Singular values are used in measuring

the robustness of multivariable systems. Let L0ðsÞ denote the perturbed LTM, which

represents the actual system and differs from the nominal LTM LðsÞ because of

uncertainties in the open-loop plant model. Assume that L0ðsÞ has the state-space

realization A0;B0;K0ð Þ and open and closed-loop polynomials given by

f0olðsÞ ¼ det sI � A0½ � (5.40)

f0clðsÞ ¼ det sI � A0 þ B0K0½ �

respectively. Define ~L s; eð Þ as a matrix of rational transfer functions with real

coefficients which are continuous in e for all e such that 0 	 e 	 1 and for all s 2 DR,

which satisfies ~L s; 0ð Þ ¼ LðsÞ and ~L s; 1ð Þ ¼ L0ðsÞ: Using these definitions of the

perturbed model, we are ready to state the following fundamental robustness theorem.

Theorem 5.3

The polynomial f0clðsÞ has no zeros in the closed right half plane and the
perturbed feedback system is stable if the following hold:

1. (a) folðsÞ and f0olðsÞ have the same number of zeros in the closed right half
plane.

(b) fclðsÞ has no zeros in the closed right half plane.
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2. det I þ L s; eð Þ½ � ¼ 0 for all s; eð Þ in DR � 0; 1½ � and for all R sufficiently large. ■

This theorem states that the closed-loop perturbed system will be stable, if, by

continuously deforming the Nyquist loci for the nominal system into that of the

perturbed system I þ ~L s; eð Þ, that the number of encirclements of the critical point is

the same for L0ðsÞ and L(s), then no closed right half plane zeros were introduced

into f0clðsÞ, resulting in a stable closed-loop system.

This theorem is used to develop simple tests for different types of model error

characterizations. Just as there is no unique representation for dynamic systems,

there are many different forms for describing their modeling errors. The most

common model error characterizations are additive errors and multiplicative errors

(also described as relative or absolute errors). The classical gain and phase margins

are associated with multiplicative error models since these margins are multiplica-

tive in nature. (See Doyle [1], Table 1, for representative types of uncertainty

characterizations.)

Let DðsÞ denote the modeling error under consideration. The additive model

error is given by

DaðsÞ ¼ L0ðsÞ � LðsÞ (5.41)

and the multiplicative model error is given by

DmðsÞ ¼ L0ðsÞ � LðsÞ½ �L�1ðsÞ (5.42)

The perturbed LTM can be constructed using Eqs. (5.41) and (5.42). For the

additive error model, we have

~L s; eð Þ ¼ LðsÞ þ eDaðsÞ (5.43)

and for the multiplicative error model, we have

~L s; eð Þ ¼ I þ eDmðsÞ½ �LðsÞ (5.44)

Both Eqs. (5.41) and (5.42) imply the same ~L s; eð Þ using different model error

characterizations. In both Eqs. (5.41) and (5.42), ~L s; eð Þ is given by

~L s; eð Þ ¼ 1� eð ÞLðsÞ þ eL0ðsÞ (5.45)

showing that ~L s; eð Þ is continuous in e for e 2 0; 1½ � and for all s 2 DR.

We have now defined the true perturbed plant model in terms of its nominal

design model and the uncertainty matrix. The fundamental robustness theorem uses

the return difference matrix I þ ~L s; eð Þ to determine if the number of encirclements

of the critical point will change with the uncertainties. This happens when I þ ~L

s; eð Þ becomes singular, in which case the det I þ ~L s; eð Þ� � ¼ 0.
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Using the multiplicative error characterization, the return difference matrix is

I þ ~L s; eð Þ ¼ I þ LðsÞ þ eDmðsÞLðsÞ (5.46)

or

I þ ~L s; eð Þ ¼ Aþ B (5.47)

withA ¼ I þ LðsÞandB ¼ eDmðsÞLðsÞ:For the perturbed system to be unstable, viewed

through a change in the number of encirclements of the det I þ ~L s; eð Þ� �
; the matrix

Aþ Bmust be singular for some e 2 0; 1½ � and s 2 DR. We know that A ¼ I þ LðsÞ is
nonsingular (the return difference matrix of the nominal design) since the nominal

design is closed-loop stable. Thus, if the uncertainty is going to create instability, then

the matrix B ¼ eDmðsÞLðsÞ, when added to A, must make Aþ B singular.

5.3.5 A + B Argument

The minimum singular value sðAÞ measures the near singularity of the matrix A.
Assume that the matrix Aþ B is singular. If Aþ B is singular then Aþ B is rank

deficient. Since Aþ B is rank deficient, then there exists a vector x 6¼ 0 with unit

magnitude xk k2 ¼ 1
� �

such that Aþ Bð Þx ¼ 0 (xis in the null space of Aþ B). This
leads to Ax ¼ �Bxwith Axk k2 ¼ Bxk k2. Using the above singular value definitions
in (5.20) and xk k2 ¼ 1, we obtain the following inequality.

sðAÞ 	 Axk k2 ¼ Bxk k2 	 Bk k2 ¼ �sðBÞ (5.48)

If the matrix Aþ B is singular, then �sðAÞ 	 �sðBÞ. For Aþ B to be nonsingular,

sðAÞ>�sðBÞ. This is precisely how the stability robustness tests are derived.

Theorem 5.4 Stability Robustness Theorem: Additive Uncertainty Model

The polynomial f0clðsÞ has no closed right half plane zeros and the perturbed
feedback system is stable if the following hold:

1. fclðsÞ has no zeros in the closed right half plane.
2. s I þ LðsÞð Þ>�s DaðsÞð Þ8s 2 DR and for allRsufficiently large, withDaðsÞgiven by

(5.41).
■

Theorem 5.5 Stability Robustness Theorem: Multiplicative Uncertainty

Model

The polynomial f0clðsÞ has no zeros in the closed right half plane and the perturbed
feedback system is stable if the following hold:

1. fclðsÞ has no zeros in the closed right half plane.
2. s I þ L�1ðsÞð Þ>�s DmðsÞð Þ8s 2 DR and for allR sufficiently large, withDmðsÞgiven

by (5.42).
■
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The proof of this theorem uses the singularity ofAþ B argument. Stability of the

perturbed closed-loop system is guaranteed for a nonsingular I þ ~L s; eð Þ. Thus,

I þ ~L s; eð Þ ¼ LðsÞ I þ L�1ðsÞ þ eDmðsÞ
� �

(5.49)

Here, we assume thatL�1ðsÞexists. If I þ ~L s; eð Þ is to be singular, then the matrix

I þ L�1ðsÞ þ eDmðsÞ must be singular. Thus, to be nonsingular,

s I þ L�1ðsÞ� �
> �s eDmðsÞð Þ (5.50)

or

s I þ L�1ðsÞ� �
> ej j�s DmðsÞð Þ

s I þ L�1ðsÞ� �
> �s DmðsÞð Þ (5.51)

Depending upon the model error characterization, either additive or multiplica-

tive, the robustness test is different. Theorems 5.3 and 5.4 are sufficient tests for

stability. As long as the singular value frequency responses do not overlap, stability

is guaranteed.

Stability margins can be viewed as a multiplicative uncertainty, scaling the plant

with some gain and phase. Singular value gain margins can be derived using the

above theorems by assuming that the uncertainty matrix DmðsÞ models these gain

and phase uncertainties.

Consider the computation of a gain margin at the input to the plant. Place in each

input channel a scalar gain ei 2 R, with EðsÞ ¼ diag ei½ � 2 Rnu�nu modeling these

gains as a matrix. For the nominal condition with no uncertainty, ei ¼ 1, the system

is stable. Positive and negative gain margins would indicate how large and small,

respectively, the scalar gain ei needs to be to destabilize the system. Our analysis

problem will focus on independent uncertainties in each channel, with the gain

margin relating to the smallest gain uncertainty that can destabilize the system.

Figure 5.12 indicates how this gain uncertainty enters into the block diagram and

how it can be represented using DðsÞ.
Using the model indicated in Fig. 5.12,DðsÞ ¼ EðsÞ � I. For the nominal control

system, let

min
o

s I þ L�1ð Þ ¼ bs

From Theorem 5.5, stability is guaranteed if �s I þ L�1ðsÞð Þ>�s DðsÞð Þ. For DðsÞ ¼
EðsÞ � I, EðsÞ 2 Rnu�nu , the singular values of DðsÞ are

si DðsÞð Þ ¼ si EðsÞ � Ið Þ ¼ ei � 1j j
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If the largest ei � 1j j is smaller than bs, then for ei 2 R

1� bs 	 ei 	 1þ bs (5.52)

which guarantees a gain margin of 1� bs; 1þ bs½ � for the system. If we consider the

phase margin problem, ei ¼ exp jfi oð Þð Þ, fi oð Þ 2 R, EðsÞ ¼ diag exp jfi oð Þð Þ½ � 2
Cnu�nu , then

ei � 1j j ¼ ejfi oð Þ � 1


 

 	 bs

¼ cos fi oð Þð Þ � 1þ j sin fi oð Þð Þj j 	 bs

¼ cos2 fi oð Þð Þ � 2 cos fi oð Þð Þ þ 1þ sin2 fi oð Þð Þ� �1
2 	 bs

¼ 2 1� cos fi oð Þð Þð Þð Þ12 	 bs

¼ 4sin2
fi oð Þ
2

� �� �1
2

	 bs

which guarantees a phase margin of 
 2sin�1 bs
2
for the system.
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Controller Plant
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+
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Fig. 5.12 Control system under uncertainty
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5.3.6 Singular Value Stability Margins

1. Return Difference Matrix

Let min
o

s I þ Lð Þ ¼ as, then

GMIþL ¼ 1

1þ as
;

1

1� as

� �
; PMIþL ¼ 
2sin�1 as

2
(5.53)

2. Stability Robustness Matrix

Let min
o

s I þ L�1ð Þ ¼ bs, then

GMIþL�1 ¼ 1� bs; 1þ bs½ �; PMIþL�1 ¼ 
2sin�1
bs
2

(5.54)

GM ¼ GMIþL [ GMIþL�1 ; PM ¼ PMIþL [ PMIþL�1 (5.55)

Note that the best minimum singular value from the return difference matrix is

min
o

s I þ Lð Þ ¼ as ¼ 1 (at high frequencies L! 0). Substituting this into (5.53)

produces a gain margin interval of GMIþL ¼ 1
2
;þ1� �

: Converting to decibels

produces GMIþL ¼ �6;þ1½ � dB. Similarly, the best minimum singular value

from the stability robustness matrix is min
o

s I þ L�1ð Þ ¼ bs ¼ 1 (at low

frequencies L�1 ! 0). Substituting this into (5.54) produces a gain margin interval

of GMIþL�1 ¼ 0; 2½ �. Converting to decibels produces GMIþL�1 ¼ �1;þ6½ � dB.
Example 5.2 Gain and Phase Margins Using Singular Values Consider

the unmanned aircraft presented in Example 5.1 which is controlled using the

classical proportional-plus-integral control architecture shown in Fig. 5.3. Since

the pitch-plane dynamics has a single input, we can use this example to compute

both classical and singular value stability margins and relate them to each other.

This will provide insight into how the singular value margins can be interpreted.

We will use a high-speed open-loop unstable flight condition and will add a

second-order actuator model on the elevator. The dynamics are

_a ¼ Za
V
a þ Zd

V
de þ q

_q ¼ Maa þ Mdde
€de ¼ � 2zonde � o2

n de � dcð Þ ð5:56Þ

The actuator natural frequency ison ¼ 113 rad/s with a damping factor z ¼ 0:6.
The feedback variables from the inertial measurement unit are acceleration Azand

pitch rate q, where Az ¼ Zaaþ Zdd. The plant model is

_x ¼Apxþ Bpu

y ¼Cpxþ Dpu ð5:57Þ
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The numerical values for the matrices are

Ap Bp

Cp Dp

� �
¼

�1:3046 1:0 �0:21420 0

47:711 0 �104:83 0

0 0 0 1:0
0 0 �1:2769:0 �1:356

2
664

3
775

0

0

0

12769:0

2
664

3
775

�1156:9 0 �189:95 0

0 1:0 0 0

� �
0

0

" #

2
66666664

3
77777775
(5.58)

The controller model is

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r ð5:59Þ

with thematrices defined in (5.14). The gains areKa ¼ �0:0015,Kq ¼ �0:32; aq ¼ 2:0
and az ¼ 6:0. Substituting these values into (5.14) yields

Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼

0 0

�1:92 0

" #
0:0030 0

�0:0029 1:92

" #
�0:0030
0:0029

" #

�0:32 1:0½ � �0:0005 0:32½ � 0:00048½ �

2
64

3
75

(5.60)

Next, we will connect the controller to the plant model (see Eqs. (1.43) and

(1.45)) and will simulate the closed-loop system to verify the model is correctly

connected and then use the loop gain models (see Eqs. (1.49) and (1.53)) to

compute the necessary frequency responses. Figure 5.13 shows a step response of

the closed-loop system indicating the plant and controller are connected properly.

For this single-input single-output system, we will compute the Nyquist, Bode,

s I þ Lð Þ, and �s I þ L�1ð Þ at the plant input, and �sðSÞ and �sðTÞ at the plant output.
Figures 5.14, 5.15, 5.16, and 5.17 show the plant input frequency response curves

(Nyquist, Bode,s I þ Lð Þ, ands I þ L�1ð Þ). On the Nyquist plot in Fig. 5.14, we have
drawn a circle centered at �1; j0ð Þ that has radius equal to the minimum of s I þ Lð Þ
(from Fig. 5.16). The classical gain and phase margins from Fig. 5.14 are 8.8 dB

(2.7536) and 50�. These are also easily extracted from the Bode plot in Fig. 5.15.

From Figs. 5.16 and 5.17, we have

as ¼ min s I þ Lð Þ ¼ 0:5676; bs ¼ min s I þ L�1ð Þ ¼ 0:7305 (5.61)

These minimums versus frequency are substituted into the singular value gain

and phase margins:
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Fig. 5.13 Acceleration step response for Example 5.2
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GMIþL ¼ 1

1þ as
;

1

1� as

� �
; PMIþL ¼ 
2sin�1 as

2
(5.62)

GMIþL�1 ¼ 1� bs; 1þ bs½ �; PMIþL�1 ¼ 
2sin�1
bs
2

(5.63)
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Substituting yields

GMIþL ¼ 0:6379 2:3127½ �
¼ �3:9 7:28½ � dB ; PMIþL ¼ 
32:97� (5.64)

GMIþL�1 ¼ 0:4324 1:5676½ �
¼ �7:28 3:90½ � dB ; PMIþL�1 ¼ 
42:84� (5.65)

The singular value stability margins from (5.55) as computed from the singular

values of I þ L and I þ L�1 are

GM = �7:28 7:28½ �dB; PM = 
42:84� (5.66)

Note that the classical margins from Figs. 5.14 and 5.15 are larger. The singular

value stability margins are always more conservative than the single-loop classical

margins.

Figures 5.18 and 5.19 show the sensitivity S and complementary sensitivity T
output frequency response curves formed at the output loop break point. The

sensitivity is the inverse of the return difference at the plant output. The infinity
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norm Sk k1 is equivalent to the minimum of s I þ Loð Þ (they are inversely related).

From Fig. 5.18, Sk k1 ¼ 1:0257 or 0.225 dB. This is a very small peak indicating

good margins at the plant output. Figure 5.19 shows the complementary sensitivity

Tj j which is the acceleration closed-loop transfer function. The Tk k1 ¼ 1:0734
(0.6152 dB) is a measure of the peak resonance in the acceleration loop. This is a

small value also indicating good margins in this loop. If either Sk k1 or Tk k1 were

large, this would indicate a problem in the design. In some multivariable systems,

the margins at the plant input will be adequate, but at the plant output they are low.

It is always prudent to check margins at all loop break points to make sure no

sensitivity problems exist. Figure 5.20 shows Nyquist plots computed at the plant

output for the acceleration and pitch rate feedback loops. Both plots show excellent

stability margins. This directly relates to the excellent values of Sk k1 and Tk k1 in

Figs. 5.18 and 5.19.

Figure 5.21 shows the frequency response of the controller �sðKÞ . This figure
indicates the amplification, or attenuation, of sensor noise through the controller.

Although not directly related to stability margins, this frequency response should

e examined to make sure the bandwidth of the controller is not too high and that

high-frequency noise is not adversely amplified. The shape of the frequency

response clearly shows the proportional-plus-integral control action that the con-

troller is providing.

If noise amplification was a problem in the system, additional filtering using

low-pass filters would be needed to clean up the feedback signals. These additional

filters can be problematic as the phase lag causes issues with systems with low

stability margins. Each integrator adds 90� of additional phase lag and can make the

stabilization of unstable systems very difficult.

In the next section, we will explore the use of the structured singular value (SSV)

m in computing the robustness of control systems. The SSV is a very powerful

analysis tool used to evaluate the stability robustness of systems to a variety of

uncertainties.
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5.4 Control System Robustness Analysis

Control system sensitivity to uncertainties in dynamics has been a major focus for

many years. In the past, the most widely used measure of stability robustness has

been single-loop gain and phase margins derived from classical frequency response

calculations. These methods and their singular value counterparts were discussed in

the previous section.

Gain and phase margins provide significant insight into the robustness

characteristics of the system. It has been proven many times in real-world

applications that systems that have poor stability margins do not perform as desired.

Requirements are typically levied onto the control design to provide 6-dB gain

margin and at least 45� phase margin. Whether these margins be classical or

singular value based, having adequate gain and phase margins, is an important

aspect of control system design.

In the 1980s, significant research was performed on analyzing the robustness of

control systems to neglected and mismodeled dynamics and real-parameter

uncertainties. Analysis methods were developed to further analyze linear models

to gain more insight into the controller’s sensitivity to unmodeled dynamics, gain

and phase uncertainties at different loop break points, and the sensitivity to para-

meter variations in the model. These methods all try to determine bounds on how

large the uncertainties can be before the system would go unstable.

Many methods exist for solving the problem, all having differing amounts of

conservatism in computing the robustness bounds. This conservatism exists due to

the model of the uncertainties and how the uncertainties enter into the problem

structure. Polynomial methods, singular value-based methods, and other frequency

domain techniques were developed.
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Table 5.2 illustrates several methods applied to a pitch autopilot analysis prob-

lem [2], investigating how much uncertainty can be tolerated in the aerodynamic

parameters before the system goes unstable. The results in [2] use the same system

model presented in Example 5.2. In this problem, each of the aerodynamic stability

derivatives Za=V; Zd=V;Ma;Mdð Þ was allowed to vary simultaneously using

Za
V

1
 d1ð Þ; Zd
V

1
 d2ð Þ;Ma 1
 d3ð Þ;Md 1
 d4ð Þ
� �

(5.67)

It was desired to compute the smallest variation in these parameters that would

cause the system to be unstable.

Table 5.2 shows various algorithms and modeling techniques applied to this

analysis problem. The exact answer is 60.44 %. This answer was varied by a Monte

Carlo analysis as well as inserting the predicted uncertainties back into the system

model to show that the closed-loop system had jo poles. As shown in the figure,

some of the methods were found to be quite conservative. The small gain theorem,

the structured singular value (SSV), and the DeGaston–Safanov [3] real stability

margin all produced reasonable results when applied to this aerospace problem and

will be further discussed in this section.

5.4.1 Analysis Models for Uncertain Systems

Multivariable stability margins, also called singular value stability margins, are a

natural extension of classical gain and phase margins. Consider the SISO system

shown in Fig. 5.22. Gain and phase margins for this system are computed by

inserting a gain and phase variation kie
ifi in between the controller KðsÞ and plant

GðsÞ and solving for the gain ki (with fi ¼ 0) and phase fi (with ki ¼ 1) that

destabilizes the system. The multivariable extension of this concept will use theDM
analysis model created from the system matrices, as shown in Fig. 5.7.

Table 5.2 Comparison of robustness analysis methods analyzing sensitivity to real-parameter

variations

Robustness theory Perturbation (%)

Small gain theorem 13.8

SSV m 49.0

Stability hypersphere Xp ¼ d 0.1

Stability hypersphere p ¼ Aaþb 20.3

Stability hypersphere (Lyapunov unscaled) 0.007

Stability hypersphere (Lyapunov scaled) 0.02

Kharitonov’s theorem 15.3

DeGaston–Safonov real margin 60.44

Monte Carlo eigen analysis 60–61
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Stability analysis models for multivariable systems can be formed to analyze

gain and phase uncertainties, neglected and/or mismodeled dynamics, real-

parameter uncertainties, and combinations thereof using methods identical to

forming models for single-input single-output systems. These models can be easily

formed using block diagram algebra, signal flow graph methods, or algebraic

manipulation of loop equations. The resulting models will have a “structure”

associated with them depending upon the specific problem, and the analysis will

depend upon the structure. Within these models, the uncertainties in the system are

usually isolated from the system models of the dynamics.

Figure 5.7 illustrated a general control system analysis model in which the matrix

DðsÞmodels uncertainties andMðsÞ is a transfer functionmatrix modeling the dynamics

between the output from the uncertainties to its input. We will use thisDM representa-

tion of the dynamics for many of our stability analysis problems. The matrix DðsÞ will
model gain and phase uncertainties in the system, that is, neglected and/or mismodeled

dynamics, real-parameter uncertainties, or any combinations thereof. The matrixMðsÞ
will model the dynamics in the system that are assumed to be known.

For a control system under no uncertainty, the controller stabilizes the plant and

the return difference matrix in nonsingular at all frequencies. Stability of the

nominal system implies

det I þ LðsÞ½ � 6¼ 0 8s 2 DR: (5.68)

Using the DM analysis model shown in Fig. 5.7, (5.68) is equivalent to

det I � DMðsÞ½ � 6¼ 0 8s 2 DR: (5.69)

Under no uncertainty, D ¼ 0, clearly the system is stable. The analysis question

is to determine how large can D be, while the system remains stable.

Example 5.3 Consider the DM analysis model shown in Fig. 5.7 and a stability

analysis problem for a system as depicted in Fig. 5.23. The control system block

diagram in Fig. 5.23 shows uncertainties D1 at the input to the plant and

uncertainties D2 at the output of the plant. The uncertainties D1 and D2 can be

constructed to model any type of uncertainty, depending upon the analysis question

at hand. D1 could model actuator uncertainties, unmodeled dynamics, time delays,

or any plant input uncertainty, while D2 could model sensor uncertainties,

unmodeled dynamics, time delays, or any plant output uncertainty. Block diagram

algebra is used to transform the system shown in Fig. 5.23 into the DM analysis

+

-

r y
K(s) G(s)kie 

jfi

Gain and phase uncertainty

Fig. 5.22 System with plant input gain and phase uncertainty
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model. The matrix DðsÞ will be a block diagonal matrix, with each matrix or scalar

uncertainty in the system located on the diagonal ofDðsÞ. The matrixMðsÞ is a block
matrix where the ij-th block is the transfer function matrix between from the output

of the j-th uncertainty DjðsÞ to the input of the i-th uncertainty DiðsÞ.
Consider the loop equations from Fig. 5.23 written as

z1 ¼ KðsÞ z2 þ w2ð Þ
z2 ¼ GðsÞ z1 þ w1ð Þ

Substituting the z2 expression into the z1 equation and manipulating yields

z1 ¼ KðsÞ GðsÞ z1 þ w1ð Þ þ w2ð Þ
z1 ¼ KðsÞGðsÞ z1 þ w1ð Þ þ KðsÞw2

I � KðsÞGðsÞð Þz1 ¼ KðsÞGðsÞw1 þ KðsÞw2

z1 ¼ I � KðsÞGðsÞð Þ�1KðsÞGðsÞw1 þ I � KðsÞGðsÞð Þ�1KðsÞw2

Substituting the z1 expression into the z2 equation and manipulating yields

z2 ¼ GðsÞ KðsÞ z2 þ w2ð Þ þ w1ð Þ
z2 ¼ GðsÞKðsÞ z2 þ w2ð Þ þ GðsÞw1

I � GðsÞKðsÞð Þz2 ¼ GðsÞKðsÞw2 þ GðsÞw1

z2 ¼ I � GðsÞKðsÞð Þ�1GðsÞw1 þ I � GðsÞKðsÞð Þ�1GðsÞKðsÞw2

Combining these two expressions and writing in matrix form yields

z1
z2

� �
¼ I � KðsÞGðsÞð Þ�1KðsÞGðsÞ I � KðsÞGðsÞð Þ�1KðsÞ

I � GðsÞKðsÞð Þ�1GðsÞ I � GðsÞKðsÞð Þ�1GðsÞKðsÞ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MðsÞ

w1

w2

� �

(5.70)
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Vector Variables

Fig. 5.23 Control system with simultaneous uncertainty at input and output
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The loop equations for the uncertainties modeled in the system can be written as

w1

w2

� �
¼ D1 0

0 D2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

DðsÞ

z1
z2

� �
(5.71)

From this example, we see that the D matrix in (5.71) is block diagonal and has

structure.

5.4.1.1 Real-Parameter Uncertainties

The above example essentially uses block diagram algebra to form the analysis model

isolating the uncertainties from the nominal closed-loop system. When considering

uncertainties in the real parameters contained in the state-space matrix A, working
through the algebra can be tedious and error prone. This problem is easily solved for

system linear in the uncertain parameters using a method [4, 5] that factors out the

uncertain parameters in the closed-loopmatrixAcl, and decomposes thematrices using

a singular value decomposition to form theB andCmatrices for the modelMðsÞ. Then
uncertain parameters in Acl are modeled as

pi ¼ �pi 1
 dið Þ (5.72)

where pi is the uncertain parameter with �pi its nominal value and di the uncertainty.
The closed-loop system is written isolating the uncertainties as follows:

Acl ¼ A0 þ
Xn
i¼1

Eidi (5.73)

where A0 is the nominal closed-loop matrix and the matrices Ei factor out the

uncertainties. The matricesEi are the structural definitions for each of the parameter

perturbations di , with the rank of the matrix used to describe the parameter

uncertainty. Using this model, decompose each n� n matrix Ei using a singular

value decomposition. This gives

Ei ¼ USV� (5.74)

The matrix Swill have k nonzero singular values, where k is equal to the rank of
the matrix, with the remaining n� k singular values equal to zero. Discard the zero
singular values, and make S a k � k diagonal matrix containing only the nonzero

singular values. We can write (5.74) with this new S as

Ei ¼ biai (5.75)
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where bi ¼ US1=2 and ai ¼ S1=2V�. The matrices bi and ai in (5.75) depend only on
the magnitude of the i-th nominal parameter. By using the decomposition described

in (5.75) , we can replaceEidi in (5.73) withbiaidi. By using this modeling approach,

we can separate out the parameter variations, di, form D ¼ diag di½ � and create the

nominally stable MðsÞ ¼ CM sI � AMð Þ�1BM . The state-space triple AM;BM;CMð Þ
for M(s) is formed as follows.

Consider rank 1 perturbations only. bi is n� 1 and ai is 1� n. Then, (5.73) is

Acl ¼ A0 þ
Xn
i¼1

biaidi (5.76)

with � 1<di<1. Write the closed-loop system as

_x ¼ A0xþ
Xn
i¼1

biui (5.77)

where the ui are input variables. Let the output y for this system be defined as

y ¼
Xn
i¼1

aix ¼
a1
..
.

an

2
64

3
75x (5.78)

Then, ui ¼ diyi and we can close the loop with

ui ¼ diyi ¼ diaix (5.79)

Substituting (5.79) into (5.77) yields

_x ¼ A0xþ
Xn
i¼1

bidiaix

¼ A0 þ
Xn
i¼1

bidiai

 !
x ¼ Aclx ð5:80Þ

which is the closed-loop system model. We can write a state-space triple

AM;BM;CMð Þ for this system as

AM ¼ A0;BM ¼ b1 � � � bn½ �;CM ¼
a1
..
.

an

2
64

3
75 (5.81)

This triple describes theMmatrix in the DM analysis model (Fig. 5.8).
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Example 5.4 Consider the longitudinal dynamics from Example 5.2. An angle-of-

attack controller is designed, and we desire to form an analysis model to analyze the

uncertain aerodynamic parameters using the above method. The a control law is

designed using the robust servomechanism approach from Chap. 3. This analysis

will determine how sensitive the LQR control law is to knowing the aerodynamic

stability derivatives used in the design model. The longitudinal dynamics with

second-order actuator model are

_a ¼ Za
V
aþ Zd

V
de þ q

_q ¼ MaaþMdde
€de ¼ �2zonde � o2

n de � dcð Þ ð5:82Þ

The robust servomechanism model _z ¼ ~Azþ ~Bm from Chap. 3 is

~A¼

0 1 0 0 0

0 Za
V 1 Zd

V 0

0 Ma 0 Md 0

0 0 0 0 1

0 0 0 �o2
a �2zaoa

2
66664

3
77775¼

0 1:0 0 0 0

0 �1:3046 1:0 �0:21420 0

0 47:711 0 �104:83 0

0 0 0 0 1:0
0 0 0 �4624:0 �81:6

2
66664

3
77775 (5.83)

~B ¼

0

0

0

0

o2
n

2
6666664

3
7777775
¼

0

0

0

0

4624:0

2
6666664

3
7777775

(5.84)

The LQR penalty matrices used to design the controller are

Q ¼ diag 464:16 0 0 0 0½ �;R ¼ 1 (5.85)

with the resulting state feedback gain matrix given as

Kc ¼ �21:544 �3:8421 �0:29392 0:32045 0:0021463½ � (5.86)

The nominal closed-loop system matrix is

A0 ¼

0 1 0 0 0

0
Za
V

1
Zd
V

0

0 Ma 0 Md 0

0 0 0 0 1

�o2
ak1 �o2

ak2 �o2
ak3 �o2

a 1þ o2
ak4

� � �2zaoa � o2
ak5

2
666664

3
777775; (5.87)
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Consider real-parameter uncertainties in the four aerodynamic coefficients

Za=V; Zd=V;Ma;Mdð Þ in (5.87). The parameter uncertainty model is pi ¼ �pi 1
 dið Þ.
Using the closed-loop system uncertainty model from (5.73), we factor out each di and
form the matrices Ei:

E1 ¼

0 0 0 0 0

0
Za
V

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
;E2 ¼

0 0 0 0 0

0 0 0
Zd
V

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
;

E3 ¼

0 0 0 0 0

0 0 0 0 0

0 Ma 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
;E4 ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 Md 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
; ð5:88Þ

The singular value decomposition for E1 is used to form the first column in BM

and first row in CM. Substituting the numerical values into (5.88), we have

E1 ¼

0 0 0 0 0

0 �1:3046 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

¼USV ¼

0

1

0

0

0

2
666666664

3
777777775

1:3046½ � 0 �1 0 0 0½ � ¼

0

1:1422

0

0

0

2
666666664

3
777777775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
b1

0 �1:1422 0 0 0½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a1

(5.89)

Using this same approach for each Ei, the columns and rows of the matrices BM

and CM are populated. The state-space triple AM;BM;CMð Þ is then
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AM ¼

0 1:0 0 0 0

0 �1:3046 1:0 �0:2142 0

0 47:711 0 �104:83 0

0 0 0 0 1:0

275100: 49059: 3753: �16861: �163:

2
6666664

3
7777775

(5.90)

BM ¼

0 0 0 0

1:1422 0:4628 0 0

0 0 �6:9073 10:2389

0 0 0 0

0 0 0 0

2
6666664

3
7777775
; CM

¼

0 �1:1422 0 0 0

0 0 0 �0:4628 0

0 �6:9073 0 0 0

0 0 0 �10:2389 0

2
666664

3
777775

Now, using the parameter uncertainty models presented in this section, we will

investigate analysis methods to determine the robust stability.

5.4.2 Singular Value Robustness Tests

A very quick and useful analysis method for analyzing stability robustness is to

apply the small gain theorem. This method is accurate when the uncertainty

modeling matrix DðsÞ is a full complex-valued matrix. That is, when the matrix

has no structure and is complex. When the matrix has structure, as in (5.71), the

small gain theorem can be quite conservative. The more the structure deviates from

a full complex-valued matrix, the more conservative is the result.

The structured singular value (SSV), denoted as m, was developed to reduce the

conservatism of evaluating stability robustness for problems like those in (5.71) that

have structure. By structuring the uncertainty model into a block diagonal matrix

form, and applying the SSV m -test, a less conservative estimate of stability

robustness is obtained.

Stability under the presence of uncertainty, assuming the nominal system is

stable, requires the return difference matrix to become singular under the uncer-

tainty. The stability test is described in (5.69). The following singular value

robustness tests are designed to examine the return difference matrix and determine

when it becomes singular.
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5.4.2.1 The Small Gain Theorem

Consider the stability robustness analysis problem for theDM analysis model shown

in Fig. 5.7. The return difference matrix for this system is I þ L ¼ I � DM . The

analysis problem is to determine the “size” of the matrix DðsÞ such that the system

transitions from stable to unstable. This says that the return difference matrix

transitions from nonsingular to singular under the uncertainty.

The matrix DðsÞ can be a block diagonal (BD) matrix, with each matrix entry

DiðsÞon the diagonal corresponding to a matrix of perturbations occurring in the

system. The matrix MðsÞ is the transfer function between the output of

the perturbation to its input. It depends upon the controller KðsÞ, the plant model

GðsÞ, and the structure of the perturbations. MatrixMðsÞ is a block matrix where the

ij-th blockMi;jðsÞ is the negative of the transfer function from the output of DiðsÞ to
the input of DjðsÞ.

We can intuitively define the bound on the norm of DðsÞ by using the Aþ B
argument of the preceding section. If det I � DMðsÞ½ � ¼ 0, then from the Aþ B
argument, we know that

s I½ � > �s DM½ � (5.91)

Using �s DM½ �<�s D½ ��s M½ � and the fact that �s I½ � ¼ 1, we obtain the bound on the

uncertainty as

�s D½ � < 1=�s M½ � (5.92)

which is referred to as the small gain theorem. The small gain theorem (SGT) is a

sufficient test for stability. If it is violated, the system may still be stable. The

conservatism is introduced in the step where �s DM½ � is bounded above by �s D½ ��s M½ �.
This step loses all structural information inherent in the matrices. It models a worst

case scenario in which DðsÞ is a full complex-valued matrix.

5.4.2.2 The Structured Singular Value m

The structured singular value (SSV) m analysis was developed by Doyle [6] to

reduce the conservatism of evaluating stability robustness using unstructured sin-

gular value computations like the small gain theorem. Consider the control system

with input and output uncertainties as shown in Fig. 5.23. Stability for the perturbed

system is guaranteed only when the return difference dynamics remains

nonsingular, that is,
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det I � K I � D2ð ÞG I � D1ð Þ½ � 6¼ 0 8 D1;D2; and s 2 DR (5.93)

which is equivalent to

det I � DM½ � 6¼ 0 8D ¼ diag D1;D2½ �; and s 2 DR (5.94)

The definition of the SSV m is

mDðMÞ ¼
1

min �s Dð Þ : D 2 D; det I � DM½ � ¼ 0f g:
0; if no D 2 Dmakes I � DM singular

8<
: M 2 Cn�n (5.95)

The computation of the SSVm in (5.95) utilizes the structure forDðsÞ to develop a
less conservative answer to the bound on the destabilizing uncertainty.

Consider the simplest structure for the uncertainty D that is a diagonal matrix

whose diagonal is a complex scalar, that is,

D ¼ dIn : d 2 Cf g (5.96)

Substitute this D model into (5.94). Assuming the uncertainty destabilizes the

system, the return difference matrix is singular and can be written as

I � DMð Þw ¼ I � dInMð Þw ¼ d
1

d
I �M

� �
w ¼ 0 (5.97)

for arbitrary vector w. This simplest structure defines an eigenproblem, with the

SSV m from (5.95) given as

mDðMÞ ¼ �rðMÞ: (5.98)

where �rðMÞ is the maximum spectral radius of the matrixM. When the uncertainty

is a full complex matrix, as shown in the previous section, the small gain theorem

produces an accurate bound on the uncertainty, with the SSV m given as

mDðMÞ ¼ �sðMÞ (5.99)

So, for problems of arbitrary structure, that is, for a block diagonal D, the SSV m
will be bounded above and below by

�rðMÞ 	 mDðMÞ 	 �sðMÞ (5.100)

Commercial software is available for computing the SSV m in Matlab®. This

software bounds the SSV m through optimization given by
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max
Q

lmax QMð Þj j < m < inf
D

�s DMD�1
� �

(5.101)

In analysis problems where real uncertainties are analyzed, or problems where

real and complex (dynamic) uncertainties are analyzed together, there can exist a

spread between the bounds in (5.101). This introduces some conservatism in

bounding the uncertainty in some problems. A method discussed in the next section

exactly computes the bound on D when D contains only real parameters.

Example 5.5 The SSV m is a very powerful analysis tool used by researchers,

scientists, and engineers. In this example, we will demonstrate its use as an analysis

tool to understand the robustness of a MIMO flight control system, in which

uncertainty is modeled at the plant input and output. When tools like the small

gain theorem are used to predict the robustness to uncertainty, conservative robust-

ness bounds are produced. By using the SSV m, more accurate predictions of robust

stability can be obtained.

Consider the following lateral-directional flight control system. It is desired to

track a stability axis roll-rate command psc while keeping sideslip angle b small. In

this example, we will compare two controllers and their associated robustness

properties.

The state-space model _x ¼ Axþ Bu for the lateral-directional dynamics is

_b
_p
_r

2
4
3
5 ¼ Yb s að Þ �c að Þ

Lb 0 0

Nb 0 0

2
4

3
5 b

p
r

2
4
3
5þ Yda Ydr

Lda Ldr
Nda Ndr

2
4

3
5 da

dr

� �
(5.102)

where s að Þ ¼ sin að Þ; c að Þ ¼ cos að Þ; the state x ¼ b p r½ �T contains the sideslip
angle, roll rate, and yaw rate; and the controlu ¼ da dr½ �T contains the aileron and
rudder commands. The system and control distribution matrices are

A ¼
�0:0251 0:10453 �0:99452
574:70 0 0

16:2 0 0

2
64

3
75;B ¼

0:1228 �0:27630
�53:610 33:25

195:5 �529:40

2
64

3
75 (5.103)

We will use the robust servomechanism infinite-time LQR control from Chap. 3

to design the controllers. The first controller uses a single integrator to track

stability axis roll-rate commands. The LQR design model is

_z ¼ 0 Cc

0 A

� �
zþ 0

B

� �
u (5.104)
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where z ¼ Ð
eps b p r

� �T
and Cc ¼ 0 c að Þ s að Þ 0½ � . The LQR penalty

matrices are

Q ¼
1:7 0 0 0

0 1:0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775;R ¼ 1 0

0 1

� �
(5.105)

where the (1,1) element of Q penalizes the error in tracking the stability axis roll-

rate command and the (2,2) element of Q penalizes the sideslip angle. Solving the

algebraic Riccati equation the resulting state feedback gain matrix is

Kc ¼
�0:7852 �2:0536 �0:0797 0:0458

1:0409 3:8238 0:1280 �0:1020

� �
(5.106)

The closed-loop system matrix, Acl ¼ ~A� ~BKc, is

Acl ¼

0 0 0:99452 0:10453

0:38402 1:2836 0:14698 �1:0283
�76:704 337:46 �8:5278 5:8489

704:55 2442:0 83:351 �62:971

2
66664

3
77775 (5.107)

with eigenvalues l1;2 ¼ �12:1814
 22:1215j l3;4 ¼ �22:9261
 11:8584j: Figure
5.24 shows a step response commanding a stability axis roll rate ps ¼ p cos að Þ þ r
sin að Þ, and the response of the sideslipb, roll ratep, and yaw rate r. Figure 5.25 shows
the frequency response analysis at the plant inputwhere�sðLÞ,s I þ Lð Þ, ands I þ L�1ð Þ
are plotted versus frequency and the loop gain crossover frequency oc and singular

value stability margins are computed. As discussed earlier in Chap. 2, the LQR state

feedback design has excellent stability margins at the plant input. The dip in

s I þ L�1ð Þhas a minimum value or min s I þ L�1ð Þ ¼ 0:5815. A typical requirement

is to keep this minimum above 0.5.

We desire to investigate this control system robustness to simultaneous

uncertainties at the plant input and plant output and demonstrate how the structure

of the uncertainties impacts the analysis. We will use theDM analysis model for the

block diagram shown in Fig. 5.23. The plant model is

_x ¼ Apxþ Bpu

y ¼ Cpxþ Dpu (5.108)
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where

Ap Bp

Cp Dp

� �
¼

�0:0251 0:10453 �0:99452
574:70 0 0

16:2 0 0

2
64

3
75

0:1228 �0:27630
�53:610 33:25

195:5 �529:40

2
64

3
75

1 0 0

0 1 0

0 0 1

2
64

3
75 0 0

0 0

� �

2
666666664

3
777777775

(5.109)

The RSLQR controller is modeled as

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r ð5:110Þ
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Fig. 5.24 Example 5.5 stability axis roll-rate step response time histories
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where

Ac Bc1 Bc2

Cc Dc1 Dc2

� �
¼

0½ � 0 0:9945 0:1045½ � �1½ �
0:7852
�1:0409
� �

2:0536 0:0797 �0:0458
�3:8238 �0:1280 0:1020

� �
0

0

� �2
4

3
5

(5.111)

It is important when forming analysis models to check them for correctness. The

plant (5.108) and controller (5.110) are connected to form a state-space model ofM
using the linear fractional transformation (lft) command in Matlab®. The closed-

loop system has nx ¼ 4 states. The eigenvalues of the system are then compared to

the eigenvalues of (5.107). This is a partial demonstration that the system is

connected properly. Frequency domain models can also be checked (at the input

and output) by evaluating the controller K and plant G at a given frequency and

forming M as in (5.70). This matrix can be compared to the state-space model

frequency response created using the (lft) command.

To begin the analysis, we will examine this MIMO control system robustness to

plant input uncertaintiesD1. TheMmatrix at this loop break point has dimensions2� 2.

We will compute the SSVm along with the small gain theorem (SGT) bound versus

frequency. Figure 5.26 shows the SSVm results for D1 a full matrix and D1 ¼ diag

• wc= [68.469 rad/s  10.8972 Hz]
• sigma_min(I+L) = 1
• sigma_min(I+inv(L)) = 0.5815
• RDM_GM = [-6.0206, 177.8926]dB
• SRM_GM = [-7.5661, 3.9814]dB
• RDM_PM = 60
• SRM_PM = 33.8059
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Fig. 5.25 Example 5.5 plant input frequency response analysis and stability margins
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d1 d2½ � and the SGT bound 1=�sðMÞ. We do not see any difference at the plant input

from the SSVm and SGT bounds, and by restricting the uncertainty to be diagonal,

further insight into this can be gained by examining the M matrix elements.

da dr
da
dr

M11 M12

M21 M22

� �
(5.112)

Figure 5.27 shows the magnitude of the elements of M joð Þ . We see that the

matrix is dominated by the (2,2) element. This implies that the directional b
dynamics (versus the roll dynamics) driven by the rudder is establishing the

bound. We see from Fig. 5.26 that by diagonalizing D1 ¼ diag d1 d2½ � does not
alter the bound.

Next is the analysis at the plant output using just D2. The M matrix at this loop

break point has dimensions 3� 3. Figure 5.28 shows the SSVm results for D2 a full

matrix and D2 ¼ diag d1 d2 d3½ � and the SGT bound 1=�sðMÞ: Here, we see a

much reduced bound as compared to the plant input loop break point. At the input,

min 1=mð Þ ¼ 0:5815 and was the same for both D1 a full matrix and D1 ¼ diag

d1 d2½ �. Here, min 1=mð Þ ¼ 0:01389 forD2 a full matrix and min 1=mð Þ ¼ 0:18855
when D2 ¼ diag d1 d2 d3½ �. Restricting the D2 matrix to be diagonal has a large

impact. We would expect that the off-diagonal elements of M joð Þ are influencing
the bound. Figure 5.29 shows the magnitude of the elements of M joð Þ for the

diagonal element and off-diagonal elements and confirms this result. TheM matrix

at the plant output is
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Fig. 5.26 Example 5.5 SSV m and small gain theorem bounds at the plant input
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Fig. 5.27 Example 5.5 magnitudes of M joð Þ frequency response for plant input uncertainty
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Fig. 5.28 Example 5.5 SSV m and small gain theorem bounds at the plant input
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b p r

b

p

r

M11 M12 M13

M21 M22 M23

M31 M32 M33

2
64

3
75 (5.113)

We see from Fig. 5.29 that the 2,1 and 3,1 elements ofM joð Þ are dominating the

matrix. This also implies sensitivity in the directional b dynamics.

The last analysis is the combined plant input and plant output case, as shown in

Fig. 5.23. TheM matrix has dimensions 5� 5. Figure 5.30 shows the SSVm results

for D a full matrix, a block diagonal matrix D ¼ diag D1 D2½ �, a diagonal matrix

D ¼ diag d1 � � � d5½ � , and the SGT bound 1=�sðMÞ . The curves for the SSVm
analysis ofD2 a full matrix and the SGT bound are identical. Introducing structure in

D only slightly improves the bound. To better understand this, we examine the

frequency response M joð Þ. Figure 5.31 shows the magnitude of the elements of M
joð Þ for the diagonal elements and off-diagonal elements. We see that the dominant

entry in M joð Þ is the (3,3) entry. This corresponds to the directional b dynamics,

which are open-loop unstable. The rudder dr -to-b off-axis elements are the next

largest elements. It is the rudderdr that primarily stabilizes the directional axis. This

large (3,3) entry inM joð Þ is dominating the stability analysis and is why the block

diagonal and diagonal Dmatrices did not produce larger bounds. This examination

of M joð Þ confirms the robustness analysis indicating that this open-loop unstable

vehicle is sensitive to uncertainties in the directional axis dynamics. Uncertainties

in the air data system used to produce the feedback signal b should be examined in

detail and in simulation.
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5.4.3 Real Stability Margin

An important question in the design of a control system is one that asks how well

one must know the parameters in the model of the dynamics? This question arises

due to the fact that the coefficients in the differential equations are seldom known

exactly. A large gain margin gives some comfort that the system is robust, but it

does not accurately predict the sensitivity of the controller to knowing the

parameters.
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The SSV m discussed in the previous section is a method for measuring

the sensitivity of the system to uncertainties. An additional measure called the

real multiloop stability margin, or real margin, as defined by DeGaston and

Safonov in [3], is a scalar quantity also interpreted as a gain margin. Its calculation

gives a nonconservative measure of control system stability robustness to real-

parameter variations modeled in the system dynamics.

In classical control system analyses, root locus plots can be used to graphically

analyze a system’s sensitivity to real-parameter variations. For a single parameter,

this is a very easy and useful analysis to perform. In Kuo [7], the root locus

approach is extended for multiple parameters. This approach has not been widely

used due to its complexity and difficult graphical interpretation.

Consider a control system whose plant dynamics have uncertain dynamics.

These uncertainties can arise from uncertain real-parameter variations, neglected/

mismodeled dynamics, or combinations of both. In this section, we will focus on

real-parameter uncertainty. To analyze the control system, we will transform the

model into the DM analysis model in Fig. 5.7. The real-parameter uncertainties in

the system are isolated and placed into a diagonal matrix D. The transfer matrix M
describes nominal system characteristics that are stabilized by the controller. We

assume that the system has adequate stability margins. Thus, for D ¼ 0 (no

uncertainty), the system is stable, and the performance meets requirements.

Consider n uncertain real parameters represented by di 2 Di � RwhereDi is the

domain of the i-th parameter. Let

D ¼ diag d1; � � � ; dn½ � (5.114)

and define the parameter space D as

D ¼ D1 � D2 � � � � � Dn: (5.115)

This parameter space describes the uncertain real parameter modeled in Fig. 5.7.

Using the multivariable Nyquist theorem in Sect. 5.2, the stability of the system

described by Fig. 5.7 is implied by det I � DM½ � 6¼ 0. The analysis problem is to find

the largest parameter space D such that the system remains stable. This can be

interpreted as finding the smallest uncertainty D that destabilizes the system.

Consider the scalar stability margin km defined as

km ¼ min k 2 0;1½ Þj det I � kDM½ � ¼ 0f g (5.116)

If

1 km=ð Þdi 2 Di 8i (5.117)

then DM remains stable for D � D. This defines km as a multiloop stability margin.

A numerical algorithm for computing km converges by iterating lower and upper

bounds on km, which are determined when either the convex hulls or interior points,
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respectively, of certain image sets first intercept the origin. This development is

made possible by the use of a mapping theorem taken from Zadeh and Desoer [8].

The multiloop stability margin is computed by finding the smallest k for which there
exists D ¼ diag d1; . . . ; dn½ � 2 D such that det I � kDM½ � ¼ 0.

The approach is as follows: Fix k . Map all the parameter space D into the

complex plane with det I � kDM½ �. If this region so mapped does not include the

origin, thenk is a lower bound on the stability marginkm. Incrementk positively until
the origin is just included in the map. This would yield km exactly. However,

computing the true image ofD under the mapping det I � kDM½ � is computationally

prohibitive. To circumvent this problem, the convex hull of the image ofD is used.

In general, the parameter space D will be an n-dimensional polytope having 2n

vertices. By scaling the parameter uncertainties and incorporating the scaling into

M, a hypercube describing the parameter space may be used rather than a polytope.

Define Vi as a vertex of the hypercube D , where i ¼ 1; . . . ; 2n .The vertex Vi

represents a corner of the hypercube. Let

V ¼ V1;V2; . . . ;Vmf g;m ¼ 2n (5.118)

denote the set of all hypercube vertices V 
 D . For example, consider three

uncertain parameters. There are then 23 ¼ 8 vertices in the hypercube. They are

V ¼

1 1 1

1 1 �1
1 �1 1

1 �1 �1
�1 1 1

�1 1 �1
�1 �1 1

�1 �1 �1

2
66666666664

3
77777777775

(5.119)

Let DVi
be a matrix of parameter uncertainties made up of the vertex points vi;j as j

is varied from 1 to n. This is described as

DVi
¼ diag vi;j; j ¼ 1; . . . ; n

� �
(5.120)

From (5.119), DV2
¼ diag 1 1 �1½ �. Define

det I � kDM½ � ¼ z 2 Cjz ¼ det I � kDM½ �8di 2 Di;
i ¼ 1; . . . ; n; with k;M fixed


 �
(5.121)

This set is a set of points that represents the entire hypercube solid being mapped

into the complex plane through the determinant function. It describes the entire image

of D (the image of the parameter uncertainties) in the Nyquist plane. Next, define

det I � kVM½ � ¼ yi 2 Cjyi ¼ det I � kDVi
M½ �; i ¼ 1; . . . ; nf g (5.122)

5.4 Control System Robustness Analysis 145



Equation (5.122) describes the set of points mapped into the complex plane

made by the hypercube vertices. LetFi ¼ det I � kDVi
M½ � be the mapping of the i-th

vertex. Fi is a single point in the set det I � kVM½ �. With these definitions, we are

now ready to state the following theorem.

Theorem 5.5 [3]. Let k;M;D; det I � kDM½ �; and det I � kVM½ �be defined as above.
Fix k. Then,

det I � kDM½ � 
 co det I � kVM½ �f g (5.123)

■
This theorem states that the true image of the hypercube is contained in the

convex hull created from the vertices. By mapping the 2n vertices of D into the

Nyquist plane and then constructing a convex hull about the 2n points, a polygon is

created that encompasses the det I � kDM½ �. Figure 5.32 illustrates this for a 3D

hypercube.

The hypercube in Fig. 5.32 is the yellow box with the 23 ¼ 8 vertices arbitrarily

labeled. Thus, D 
 D ¼ D1 � D2 � D3 with Di ¼ dimin
; dimax

½ �. The parameters dimin

and dimax
describe the lower and upper bounds of the parameter di. By scaling these

uncertainties and incorporating the scaling intoM, we can model each parameter di
with limits of 
1.

Figure 5.32 shows the mapping of this parameter-space hypercube into the

complex plane using the determinant mapping function. The blue shaded region

depicts the true image of the cube solid mapped into the Nyquist plane. If the origin

was contained in the shaded region, then the system would be unstable. Since the

origin is not in the shaded region, the gain margin k used in det I � kDM½ � is smaller

than the true stability margin and should be increased in magnitude until the origin

is included.
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The value of k such that the origin is just included in the shaded region is the

exact stability margin km we seek to compute. In Fig. 5.32, the vertex points Vi are

mapped into theFi points. The convex hull containing the image of the hypercube is

denoted as co det I � kVM½ �f g and is shown as a heavy red border around the det

I � kDM½ � image. We see from the figure that if co det I � kVM½ �f g were used to

determine k, conservatism would be present since the co det I � kVM½ �f g contains
more points than the true image of det I � kDM½ �. This fact is used to define a lower
bound on km, resulting in the following lemma.

Corollary 5.1. Let M;D, and det I � kDM½ � be defined as given in Theorem 5.5.
Then, for k>k0,

det I � k0DM½ � 
 det I � kDM½ � (5.124)

co det I � k0DM½ �f g 
 co det I � kDM½ �f g (5.125)

■
Thiscorollary states that the imageof thehypercubesolidunder thedeterminantmapping

function, for k0 , is a subset of the image mapped using a larger k. Thus, the convex hull
containing det I � k0DM½ � is contained in the convex hull co det I � kDM½ �f g.

5.4.3.1 Lower Bound on the Stability Margin km

Application of Corollary 5.1 allows us to expand the co det I � kDM½ �f g until the

origin is enclosed. We show this graphically in Fig. 5.33. The solid lines represent

co det I � kiVM½ �f g for k1; k2; and k3. As shown in the figure, for all k<k3, the origin
is not enclosed by co det I � kVM½ �f g. Thus, k3<km is a lower bound for the stability

margin km . If k increases without co det I � kVM½ �f g intercepting the origin, then

km ¼ 1.

5.4.3.2 Upper Bound on the Stability Margin km

To compute the upper bound on km; the path between the vertices whose line

segment intercepts the origin must be examined more closely. Define the following

critical vertices:

Critical vertices: Fi ¼ det I � kDVi
M½ � , Fj ¼ det I � kDVj

M
� �

; i 6¼ j, and b 2 0; 1½ �
such that 1� bð ÞFi þ bFj ¼ 0.

Isolated critical vertex (ICV): Fi is isolated if Fi 6¼ Fj, i 6¼ j.
Coincident critical vertex (CCV): Fi is coincident if Fi ¼ Fj, i 6¼ j.

Critical vertices are defined as the two vertices whose line segment intercepts the

origin. This is shown in Fig. 5.33 as the convex hull line segment F53 � F63. These

critical vertices are isolated if Fi 6¼ Fj. They are coincident if Fi ¼ Fj. Letm i; jð Þ be
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equal to the number of differing coordinates of the two vertices Vi and Vj that are

mapped by det I � kDVi
M½ � toFi and Fj. In Fig. 5.33, the critical vertices are F53 and

F63. Them i; jð Þ is the minimum number of edges on the hypercubeD from vertexVi

to Vj. In Fig. 5.33, m i; jð Þ ¼ 1 examine the cube in Fig. 5.32 to see that vertex V5

connects directly to V6. The following corollary will aid in the calculation of the

upper bound on km.

Corollary 5.2. Any path along a single coordinate inD is mapped by det I � kDM½ �
to a straight line in the complex plane.

■
For fixed M, the det I � kDM½ � for D ¼ diag d1; . . . ; dn½ � 2 D is a polynomial in

the variables di and is affine with respect to each of the di . This is true only for a

diagonalD and is obtained by definition of the determinant. This affine relationship

proves this lemma.

5.4.3.3 Comment

Corollary 5.2 guarantees that any point on the face of the hypercubeDmapped into

the Nyquist plane will be contained in the convex hull formed by the mapped

vertices. This is true only for real parameters. If the parameters under variation were

complex, any path along a single coordinate would trace an arc in the Nyquist

plane. Thus, points contained on the face of a complex-parameter hypercube

mapped into the Nyquist plane need not be contained in the convex hull formed
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by the hypercube vertices. This fact precludes the use of this parameter-space

method in analyzing complex-parameter variations.

Define a vertex path as any path between critical vertices Fi and Fj, consisting of

m i; jð Þ straight-line segments, defined by det I � kDxM½ � as x progresses fromVi toVj

along the edges of the hypercube D. The first such vertex path to touch the origin

defines a point in det I � kDM½ � , and the associated k is an upper bound on the

stability marginkm. The vertex path will determine the region in the parameter space

that causes instability.

5.4.3.4 Convergence to km

The actual stability margin is computed by an iterative algorithm. It begins by

examining the vertex paths between critical vertices (ICVs or CCVs) that intercept

the origin. This defines the edges of the hypercube closest to the origin. The domain

D is then split along this vertex path, creating sub-domains. Convex hulls around

smaller and smaller sub-domains are computed. As the sub-domains become small,

the union of all of the convex hulls for all of the sub-domains gets close to the actual

image of the domainD. The accuracy in the computation of km is then dependent on

how small the sub-domains are made. The following three lemmas are used to prove

the convergence theorem that computes the exact multiloop real stability margin.

Lemma 5.1. On a hypercube of dimension n with two vertices that differ by m
coordinates, there are m! paths between these two vertices along the edges of the
hypercube. Each path between these two vertices will havemþ 1 vertices along the
path (including the original vertices).

■

Lemma 5.2. Let k;M;D; det I � kDM½ �; and det I � kVM½ � be defined as previously
given. Let Fi andFj be isolated critical vertices withm i; jð Þ>2andFk denote the first
vertex along a vertex path emerging from Fi. Define a point along the line segment
between Fi and Fk as Fx, exclusive of the end points, that is, Fx ¼ 1� bð ÞFi þ b
Fk; b 2 0; 1ð Þ. Let Vx be the associated point on the hypercube edge defined between
Vi and Vk . Cut the domain D at Vx orthogonally to this edge to create two sub-
domains D1 and D2, where Vi 2 D1 and Vj 2 D2. Then neither co det I � kD1M½ �f g
nor co det I � kD2M½ �f g includes the origin.

■

Lemma 5.3. Let k;M;D; det I � kDM½ �; and det I � kVM½ � be defined as previ-
ously given. Then, there is at least one DVi

associated with the stability margin km
that assumes an extremal value.

■
Lemma 5.1 is used to determine the number of vertex paths between critical

vertices. These vertex paths define the coordinate direction in which the parameter-

space domain D is split into sub-domains.
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Lemma 5.2 is the heart of the convergence theorem used to obtain km . It is
employed when m i; jð Þ>2 . The utility of this lemma is best explained by an

example. In Fig. 5.32, let vertex images F1 and F6 be isolated critical vertices,

with kl determined such that co det I � klVM½ �f g intercepts the origin. For this case,
m i; jð Þ ¼ m 1; 6ð Þ ¼ 2. The convex hull enclosing the det I � kDM½ � image has a

larger area than the true image of the hypercube solid (shaded area). The area

contained in co det I � klVM½ �f g that is not contained in det I � kDM½ � makes kl a
conservative estimate, that is, kl<km. Lemma 5.4 says that if we split the parameter

space into two sub-domains along one of the two vertex paths V1 � V2 � V6ð Þ or
V1 � V5 � V6ð Þ and compute convex hulls about each of the images of the two sub-

domains, then the origin will not be contained in either convex hull. This guarantees

that we can converge to the true stability margin km by splitting the parameter space

into sub-domains. As the sub-domains become smaller, we approach the true image

of det I � kDM½ �.
Lemma 5.3 states that k<km will not destabilize the system. Geometrically, this

places theDVi
on the boundary ofD and guarantees a unique stability margin km. By

using these Lemmas 5.1, 5.2, and 5.3, the convergence theorem [3] follows.

Theorem 5.6. Let k;M;D; det I � kDM½ �; and det I � kVM½ � be defined as previ-
ously given; then an iterative algorithm can be constructed that converges to km. If
km is finite, then this procedure identifies the parameters di 2 D at which km is
determined. There are three steps involved in determining km:

1. Determine the lower bound on km.
2. Determine the upper bound on km.
3. Iterate lower and upper bounds and converge on km.

■
The actual procedure involved in each step is very problem dependent. As may

be expected, there are several special cases concerning the critical vertices that vary

the algorithm. For example, let co det I � kVM½ �f g intercept the origin between two

critical vertices Fi and Fj , one or both of which are coincident. For this case,

different logic is required when splitting the domain into sub-domains. DeGaston

and Safonov [3] present an excellent exposition of these special cases. They are

briefly summarized here.

Special Case 1 The co det I � kVM½ �f g intercepts the origin at a single isolated

critical vertex (ICV) Fi ¼ det I � klDVi
M½ �. Then m i; jð Þ ¼ 0, kl ¼ ku ¼ km, and the

algorithm stops. The parameters that cause instability are at the vertex Vi.

Special Case 2 The co det I � kVM½ �f g intercepts the origin between two ICVs Fi

and Fj where m i; jð Þ ¼ 1 . Both points Fi and Fj are contained in the mapped

hypercube image det I � kDM½ �. With Corollary 5.2, the line segment connecting

these two vertices is also contained in the mapped hypercube image det I � kDM½ �.
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Thus, kl ¼ ku ¼ km, and the algorithm stops. TheD along this edge of the hypercube

that is destabilizing is given by

Db ¼ diag 1� bð ÞVi þ bVj

� �
where

b 2 0; 1ð Þ such that det I � kDbM
� � ¼ 0 (5.126)

If either of the above special cases is true, the application of step 1 determines km.
Only if m i; jð Þ � 2 does the algorithm progress further.

Consider ICVsFi andFjwithm i; jð Þ � 2. The upper bound onkm is determined by

examining the m i; jð Þ! vertex paths between Fi and Fj . The upper bound ku is

determined by the largest k along one of the m i; jð Þ! vertex paths that intercepts the

origin. If k is increased and the origin is not intercepted, then ku ¼ 1. Once the

lower and upper bounds kl and ku have been determined, Lemmas 5.1, 5.2, and 5.3

are used to converge to km.

Special Case 3 The co det I � kVM½ �f g intercepts the origin between two critical

vertices Fi and Fj in which one or both are coincident.

Special Case 3a Consider the problem where Fi and Fj both intercept the origin,

that is, det I � klDVi
M½ � ¼ det I � klDVj

M
� � ¼ 0. Then, kl ¼ km , and the stability

margin is defined at multiple values of DVi
.

Special Case 3b There are several coincident vertices located atFi and several atFj

in which mc is defined as follows:

mc ¼ min m i; jð Þf g ¼ 1; i ¼ a; b; . . .f g j ¼ s; t; . . .f g (5.127)

Pick an i 2 a; b; . . .f g and j ¼ s; t; . . .f g. Thus,m i; jð Þ ¼ 1 and km is determined as

in special case 2.

Special Case 3c This is the same condition as in special case 3b, except thatmc � 2.

For this case, domain splitting is used to divide the domain into sub-domains. This is

repeated along each of the vertex paths to each coincident critical vertex.

Let the set zf g contain z coincident critical vertices atFz and the set yf g contain y
critical vertices at Fy . Take the first two elements of the set zf g, say, a; b. Then
m a; bð Þ � 1, since botha; b are vertices of the hypercube. Split the domain along the

edge between these two vertices with an orthogonal cut. This creates two sub-

domainsD1 andD2, each containing one of the critical vertices a and b. Continue this
process z� 2 times, creating z sub-domains, each having an isolated critical vertex

at Fz. Repeat this same process for the critical vertices in yf g. This creates zy sub-
domains, each having two critical vertices. Apply the procedures of the preceding

special cases to each of these sub-domains.
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5.4.3.5 Computing the Real Margin

Figure 5.34 outlines the calculation of the real margin km. The algorithm uses the

convex hull-based lower bound from Theorem 5.6. The DM analysis model is

created as defined in Sect. 5.3.1 following the example given in Example 5.4. The

state-space model for M is

AM ¼ A0;BM ¼ b1 � � � bn½ �;CM ¼
a1
..
.

an

2
64

3
75 (5.128)

and the uncertainty matrix D is

D ¼ diag d1 � � � dn½ � (5.129)

A vector of frequencies is selected spanning the range in which the real margin is

to be computed. As shown in Fig. 5.34, the matrix M is then evaluated at a given

frequency, M joð Þ ¼ CM sI � AMð Þ�1BM; and the vertices of the hypercube are

mapped into the Nyquist plane defined in V. Each vertex Vi (2
n of them) maps to

a pointFi. A convex hull is then formed using the pointsFi, and a zero-exclusion test

is made to see if the origin is contained on the convex hull. If not, the value of k is
increased, and the mapping/convex hull/zero-exclusion procedure is repeated. We

know that for k ¼ 0, the det I � kDM½ � ¼ 1:0. As k is increased, the algorithm stops
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when either the origin is on the convex hull or some upper limit is reached. This

procedure is applied to each frequency in the vector o, and then a plot of k versus
frequency is made. The robustness bound is the minimum k versus frequency. The
following example demonstrates this analysis.

Example 5.6 Autopilot Sensitivity to Real-Parameter Variations
Consider the longitudinal dynamics from Example 5.2 with the angle-of-attack

controller from Example 5.4. The DM analysis model for this problem was formed

in Example 5.4. This analysis will determine how sensitive the LQR control law is

to accurate values for the aerodynamic stability derivatives used in the design

model. We showed in Chap. 2 that LQR control laws have infinite margin at the

plant input loop break point. This example will show that these control laws are

sensitive to the accuracy of the model parameters.

The state-space triple for M from Example 5.4 is

AM ¼

0 1:0 0 0 0

0 �1:3046 1:0 �0:2142 0

0 47:711 0 �104:83 0

0 0 0 0 1:0
275100: 49059: 3753: �16861: �163:

2
66664

3
77775 (5.130)

BM ¼

0 0 0 0

1:1422 0:4628 0 0

0 0 �6:9073 10:2389
0 0 0 0

0 0 0 0

2
66664

3
77775;CM

¼
0 �1:1422 0 0 0

0 0 0 �0:4628 0

0 �6:9073 0 0 0

0 0 0 �10:2389 0

2
664

3
775

where the uncertain aerodynamic stability derivatives Za=V;Zd=V;Ma;Mdð Þ are in
bold. The uncertaintymatrixD that models the real-parameter uncertainties is a4� 4

diagonal matrix that models the parameter variations using (5.72). For n ¼ 4, there

are 24 ¼ 16 hypercube vertices, modeled as in (5.119).

Figure 5.35 shows a frequency sweep (o ¼ logspace �2; 3; 100ð Þ ) where the

minimum kwas determined at each frequency by the co det I � kVM½ �f g intersecting
the origin of the Nyquist plane. Also included in the plot is the bound computed

using the small gain theorem. The minimum k versus frequency is km ¼ 0:53831,
and it occurs at a frequency of o ¼ 8:7976 rad/s. The small gain theorem bound is

min 1=�sðMÞð Þ ¼ 0:27167.
To determine if the boundkm ¼ 0:53831 is conservative or exact, wemust examine

the convex hull and the vertices used in forming the convex hull. Figure 5.36 is a plot

of the 16 hypercube vertices at o ¼ 8:7976 rad/s and k ¼ 0:53831. The convex hull
vertices and uncertainty matrices DVi

are
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F13 ¼ 1:5867� 0.0718i; DV13
¼ diag �1 �1 1 1½ �

F15 ¼ 1:8186� 0.0700i DV15
¼ diag �1 �1 �1 1½ �

F7 ¼ 2:0505� 0.0314i DV7
¼ diag 1 �1 �1 1½ �

F3 ¼ 2:0752� 0.0060i DV3
¼ diag 1 1 �1 1½ �

F4 ¼ 0:3260þ 0.0787i DV4
¼ diag 1 1 �1 �1½ �

F2 ¼ 0:1062þ 0.0759i DV2
¼ diag 1 1 1 �1½ �

F6 ¼ 0:0694þ 0.0515i DV6
¼ diag 1 �1 1 �1½ �

F14 ¼ �0:0000� 0.0000i DV14
¼ diag �1 �1 1 �1½ �

(5.131)

We see from Figs. 5.36 and (5.131) that DV14
intercepts the origin. To show that

the closed-loop system is destabilized using D ¼ 0:53831DV14
; we insert these

uncertainties into the system matrix and compute the eigenvalues of Acl. Doing so

yields the following eigenvalues:

l Aclð Þ ¼
� 76:0970
 96:3341j
0:0001
 8:7976j
� 11:4150

2
4

3
5 (5.132)

which shows two roots just on the jo axis.

This analysis shows that this design can tolerate a 53.8 % variation in the

aerodynamic stability derivatives. We see that this “robust stability margin” is

much less than the plant input margins guaranteed by using LQR controllers (at

the plant input). It is well known that classical gain and phase margins, including

10-2 10-1 100 101 102 103
10-1

100

101

102

103
Real Margin

Frequency (rad/s)

km

min(1/s (M )) = 0.27167
km = 0.53831

Fig. 5.35 Frequency sweep of the real margin and small gain uncertainty bounds
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the vector margin, do not necessarily mean the system is robust to real-parameter

uncertainties. This state feedback design has a scalar loop gain at the plant input

described by LðsÞ ¼ Kc sI � ~A
� �

~B. In transfer function form,

LðsÞ ¼ 27:4 si þ 67:8
 90:4jð Þ si þ 7:5
 5:1jð Þ
s sþ 7:6ð Þ s� 6:3ð Þ si þ 67:8
 90:4jð Þ ¼

27:4 si þ 7:5
 5:1jð Þ
s sþ 7:6ð Þ s� 6:3ð Þ (5.133)

Note that the open-loop system is unstable (Ma>0) and the actuator poles are

exactly cancelled inLðsÞ (at the plant input only). The gain margin at the plant input

is [�11,þ1] dB and the phase margin 
60�. Next, consider a scalar real uncer-

tainty dK at the plant input and compute a root locus, that is, zeros of s sþ 7:6ð Þ
s� 6:3ð Þ þ dK27:4 si þ 7:5
 5:1jð Þ . This is plotted in Fig. 5.37 and shows the

system is stable for all gain values dK>0:28. This is achieved because of the zero

dynamics that exist at this loop break point.

When we analyze the system under real-parameter uncertainty, the robustness

bounds are determined by the zero dynamics that exist in the MðsÞ matrix. This is

the fundamental challenge in robust control. How do we design a controller that

provides “robust” zero dynamics at multiple loop break points simultaneously? We

can see this challenge by repeating this root locus analysis for the uncertain

parameters. Consider varying just theMd stability derivative. The state-space triple

for MðsÞ is
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Fig. 5.36 Convex hull for the real margin bound
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AM ¼

0 1:0 0 0 0

0 �1:3046 1:0 �0:2142 0

0 47:711 0 �104:83 0

0 0 0 0 1:0
275100: 49059: 3753: �16861: �163:

2
66664

3
77775 (5.134)

BM ¼

0

0

10:2389

0

0

2
6666664

3
7777775
;CM ¼ 0 0 0 �10:2389 0½ �

The transfer function for this system is

MðsÞ ¼ �393449: si þ 7:2
 4:7jð Þ
sþ 14:3ð Þ si þ 7:2
 10:3jð Þ si þ 67:8
 90:4jð Þ (5.135)

A root locus is shown in Fig. 5.38. The roots cross the jo axis with a gain of

dMd ¼ 0:68. We see this is larger than the real margin bound km ¼ 0:53831 from the

example because only a single parameter is being varied.
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Fig. 5.37 Root locus of LQR L(s) at plant input
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The key point to be understood from this example is that for linear systems, the

zero dynamics at each loop break point influences the resulting stability robustness.

The control architecture as well as the magnitude of the gains in the design

influence and change these zero dynamics. Thus, as the bandwidth of the control

design changes, so does the sensitivity to accurate knowledge of the model

parameters.

This fact has led us to combine robust control with adaptive control to improve

the system’s sensitivity to uncertainties and nonlinearities. The first half of this

book is focused on optimal and robust control and how to design the best linear

robust controller possible. “Best” in terms of meeting command tracking

requirements and being robust to high-frequency unmodeled dynamics and sensor

noise. These methods form the baseline control that is then augmented with an

adaptive increment to further address uncertainties and nonlinearities that the

robust control. The second half of the book covers the adaptive control linear and

nonlinear systems. Together we have found these methods solve some of the most

challenging problems in aerospace control.

5.5 Conclusions

This chapter presented the theory and practice of using frequency domain methods

to analyze robust stability. The ability to design controllers and analyze the stability

of multivariable systems has been an enabling technology for the aerospace

-10 -8 -6 -4 -2 0 2 4 6 8 10
-20

-15

-10

-5

0

5

10

15

20

System: S1
Gain: 0.679
Pole: 0.0161 + 8.1i
Damping: -0.00198
Overshoot (%): 101
Frequency (rad/sec): 8.1

Pole-Zero Map

Real

Im
ag

in
ar

y

Fig. 5.38 Root locus for M(s) varying only Md
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industry. Prior to the development of this theory in 1980s, flight vehicles were

predominantly designed to be stable. The advent of modern control theory, in which

the methods in this chapter belong, enables control engineers to basically control

any shape of aircraft.

Virtually all of the design methods used today for control system design are

model dependent. The accuracy in which we know these models varies, and to

measure the data accurately can significantly increase costs. Analyzing the control

systems robustness to uncertainties gives the engineer very powerful tools to

determine what data is needed to be known accurately and what data is not. Overall

this reduces costs, but more importantly increases the quality of the design, making

it perform better and be safer.

5.6 Exercises

Exercise 5.1. Consider the following block diagram

H(s)
K2

K1

z1

z2

u1

u2

where

HðsÞ ¼
3

s

�278
s sþ 6ð Þ sþ 30ð Þ

0:05

s

�206
s sþ 6ð Þ sþ 30ð Þ

2
664

3
775

and K1 ¼ 5 and K2 ¼ �10.
(a) Apply the multivariable Nyquist theorem from Sect. 5.3.3 to this system,

examining the return difference matrix I þ KH, where K ¼ diag K1 K2½ � ,
and determine stability. Create the multivariable Nyquist plot. This is a plot of

the det I þ KH½ �, and indicate the number of encirclements.

(b) Plot the singular values of the return difference matrix and stability robustness

matrix versus frequency. Compute the singular value gain and phase margins

for this system. This is a plot of s I þ L½ � and �s I þ L�1½ � versus frequency. Plot
these using a log scale for frequency and magnitude in dB.

Exercise 5.2. Consider the block diagrams shown below. Each block in the

diagrams is a scalar.
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+

-

x
K

+

+
s−1

wz

r

M
wz

i) ii)Δ

Δ

(a) Derive a state-space model AM;BM;CMð Þ forMðsÞ ¼ CM sI � AMð Þ�1BM shown

in (ii), modeling the system shown in (i)

(b) For D ¼ 0, what is the range of gain K that provides closed-loop stability?

(c) ForK ¼ 1, sketch the small gain theorem applied to the system in (ii) using your

model derived in part (a). This should be a magnitude versus frequency plot.

(d) What does the sketch in (c) indicate for the system’s robustness to uncertainties

that are constant, that is, D ¼ constant?

Exercise 5.3. Consider the longitudinal airframe dynamics and classical control

system described in Example 5.1. The model data is for (5.14) and (5.8)

Ka ¼ �0.0015 V ¼ 886.78 fps

Kq ¼ �0.32 Za/V ¼ �1.3046
az ¼ 2.0 Zd/V �0.2142
aq ¼ 6.0 Ma ¼ 47.7109

Md ¼ �104.8346

(a) Form a closed-loop state-space model and simulate an acceleration step

response to show the system is stable and correct.

(b) Form the loop transfer function matrix at the plant input. Compute stability

margins.

(c) The actuator dynamics were neglected during the controller design. Derive a

multiplicative error model for the neglected actuator dynamics, assuming that

the actuator dynamics are modeled using the following transfer function:

(d)
d
dc
¼ 1

tsþ 1
(e) Form a DM robustness analysis model for analyzing these neglected actuator

dynamics.

(f) Determine the largest actuator time constant t that results in a stable closed-loop
system using the small gain theorem as the robustness test.

Exercise 5.4. Consider the longitudinal dynamics _x ¼ Apxþ Bpu , x ¼ a q½ �T ,
with

Ap Bp½ � ¼ �1:2100 1:0
44:2506 0

� � �0:1987
�97:2313
� �� �

:
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Build a robust servomechanism model from Chap. 3:

~A ¼ 0 1 0

0 Ap

� �
; ~B ¼ 0

Bp

� �

and close the loop using a state feedback control lawu ¼ �Kcz, z ¼
Ð
ea a q

� �T
,

with gains

Kc ¼ �2:1598 �1:3301 �0:1700½ �

Analyze the stability of this system. Plot a Nyquist plot, Bode plot, s I þ L½ �, and
s I þ L�1½ � versus frequency and compute singular value stability margins.

Exercise 5.5. Using the classical longitudinal control system from problem 5.2,

analyze the closed-loop system’s robustness to uncertainties in the aerodynamic

parameters. Create theDM robustness analysis model using (5.81) as in Example 5.4,

considering the uncertainties

Za
V

1
 d1ð Þ; Zd
V

1
 d2ð Þ;Ma 1
 d3ð Þ;Md 1
 d4ð Þ
� �

Compute the structured singular value (SSV) bound analyzing the sensitivity to

these real-parameter uncertainties.
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Chapter 6

Output Feedback Control

6.1 Output Feedback Using Projective Controls

Projective control is an output feedback design method used to obtain a partial

eigenstructure of a state feedback controller u ¼ �Kxx; x 2 Rnx ; u 2 Rnuð Þ using
static and/or dynamic output feedback. The design retains the dominant perfor-

mance and robustness properties of the state feedback design. For static output

feedback u ¼ �Kyy; y 2 Rny
� �

,ny eigenvalues and associated eigenvectors of a state
feedback design can be retained. For dynamic output feedback, a low-order com-

pensator can be built that can retain additional eigenvalues and associated

eigenvectors from the state feedback eigenstructure. The order of the compensator

can be increased until the entire state feedback eigenstructure is obtained.

Linear quadratic regulator (LQR) designs generally give good performance

characteristics and stability margins, with the availability of the states required

for implementation. In many practical designs, not all the states are available for

feedback. For these problems, dynamic compensators (observers, Kalman filters,

state predictors) are required for implementation.

There have been numerous studies on constructing dynamic regulators. General

procedures in the time domain are based upon observer theory and pole placement. An

observer is a dynamic system whose output variables are the estimates of the states of

another system. Pole placement is used to make the observer dynamics faster than the

dynamics being estimated. Typically, using these theories does not provide the

designer with a low-order dynamic compensator which yields satisfactory results.

An alternative approach is to use projective controls [1–3]. The projective

control methodology combines optimal control (state feedback design) with

eigenstructure assignment. The uniqueness of this method is that the designer has

the option of choosing the order of the dynamic compensator (with some

restrictions), rather than having a full-order compensator. The design goal using

projective controls is to retain the dominant dynamics as if the states were available

for feedback.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_6,
# Springer-Verlag London 2013
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In this section, the projective controls method is used to design a bank-to-turn

flight control for an unmanned aircraft implemented using static output feedback

and, as required, a low-order dynamic compensator. The section presents the basic

features of a design procedure using projective controls.

Projective control is a method of retaining the most dominant eigenstructure of a

full state feedback design using only output feedback, where the optimal state

feedback regulator serves as the reference solution (desired eigenstructure). Static

projective controls are output feedback controls that retain an invariant subspace of

the reference dynamics in the resulting closed-loop system.

Consider the problem of designing output feedback regulators for a linear-time-

invariant system described by

_x ¼ Axþ Bu

y ¼ Cx
(6.1)

with C ¼ 1ny 0
� �

, x 2 Rnx ; u 2 Rnu ; and y 2 Rny , and the triple A;B;Cð Þ
controllable and observable. Let the resulting LQR state feedback control be

characterized by

u ¼ �R�1BTPx ¼ �Kxx (6.2)

where the positive definite matrix P satisfies

ATPþ PA� PBR�1BTPþ Q ¼ 0 (6.3)

where Q � 0;R> 0; and the pair A;Q
1
2

� �
observable. Suppose using the state

feedback control law, (6.2), the above system yields satisfactory closed-loop

reference dynamics, described by

_x ¼ A� BKxð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
F

x ¼ Fx (6.4)

If there are ny outputs available for feedback as described in (6.1) using the

control law

u ¼ �Kyy (6.5)

Then, ny eigenvalues Lny

� �
and their associated eigenvectors Xny

� �
of the state

feedback design can be retained using the static output feedback gains given by

Ky ¼ KxXny CXny

� ��1
(6.6)
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where the eigenvectors Xny and eigenvalues Lny satisfy the eigen equation for the

state feedback system as

FXny ¼ XnyLny (6.7)

Using the output feedback control law from (6.5), the closed-loop system is

_x ¼ A� BKyC
� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Acl

x ¼ Aclx (6.8)

with eigenstructure

AclXny ¼ A� BKyC
� �

Xny

¼ A� BKxXny CXny

� ��1
C

� �
Xny

¼ A� BKxð ÞXny

¼ XnyLny

(6.9)

which captures the ny eigenvalues Lny

� �
and their associated eigenvectors Xny

� �
of

the state feedback design. The remaining nx � ny
� �

eigenvalues in (6.8) may not

result in closed-loop stability or satisfactory performance. In this case, additional

eigenstructure from Acl can be retained using dynamic compensation.

Consider the closed-loop system given by (6.4). Introduce partitions in the

matrices A and F as follows:

A ¼ A11 A12

A21 A22

	 

;F ¼ F11 F12

F21 F22

	 

(6.10)

whereA11 and F11 2 Rny�ny. DenoteX andLas the eigenvectormatrix and spectrumof

F FX ¼ XLð Þ, respectively, from (6.4). From this eigenstructure, select the desired

dominant dynamics by selecting and placing their eigenvalues inLny (ny-eigenvalues)
and associated eigenvectors inXny FXny ¼ XnyLny

� �
. The eigenstructure of the closed-

loop output feedback system, using (6.5), has a spectrum

L Aclð Þ ¼ Lny [ L Arð Þ

where the residual dynamics satisfy

Ar ¼ VAY (6.11)

withV 2 C nx�nyð Þ�nx andY 2 Cnx� nx�nyð Þ satisfying the conditionsCY ¼ 0,VXny ¼ 0,

and VY ¼ I . If the static feedback projective control, (6.5), does not produce an

acceptable result, a p-th order dynamic observer of the form
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_z ¼ Hdzþ Ddy

u ¼ �Ndz� Kdy
(6.12)

can be used to extend the eigenstructure. Introduce an extended system by combining

the observer (6.12) with the reference dynamics (6.10) described by

_xe ¼ Fexe; Fe ¼
Hd Dd 0

0 F11 F12

0 F21 F22

2
4

3
5 (6.13)

Using the observer states as additional outputs for feedback, an ny þ p
� �

-

dimensional invariant subspace can be retained. Denote Xp;Lp

� �
as the additional

p-dimensional invariant subspace from the reference dynamics. The eigenstructure

from the extended system can be decomposed as

Hd Dd 0

0 F11 F12

0 F21 F22

2
4

3
5 Wp Wny

Xp1 Xny1

Xp2 Xny2

2
4

3
5 ¼ Wp Wny

Xp1 Xny1

Xp2 Xny2

2
4

3
5 Lp 0

0 Lny

	 

(6.14)

whereWp and Wny depend upon the observer matrices Hd and Dd . Define the

following matrices:

N0 ¼ Xny1 X�1ny2

B0 ¼ Xp2 � N0Xp1

Ar ¼ A22 � N0A12

(6.15)

The dynamic compensator matrices Hd;Dd;Nd;Kdð Þ can all be parameterized by

a free gain matrix P0. Select P0 to stabilize the residual dynamics, given by

Are ¼ Ar þ B0P0A12 (6.16)

which is an output feedback stabilization problem. The dynamic compensator gain

matrices are then given by

Hd ¼ Lp þ P0 A12 � B1Kx2ð ÞB0

Dd ¼ P0 A11 � B1Kx1 þ A12 � B1Kx2ð ÞN0ð Þ � HdP0

Nd ¼ Kx2B0

Kd ¼ Kx1 þ Kx2 N0 � B0P0ð Þ

(6.17)

where

Kx ¼ Kx1 Kx2½ �;B ¼ B1

B2
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Example 6.1 Static Output Feedback Design Using Projective Control. This

example applies projective control theory to an air vehicle flight control design

problem. The state feedback design (reference eigenstructure) to be retained with

the projective control is the Robust Servo Linear Quadratic Regulator (RSLQR)

design from Example 3.4 from Chap. 3. There are three basic steps to applying the

projective control approach.

Step 1: Design the reference eigenstructure (using a state feedback approach).

Step 2: Design a static projective controller using output feedback. Evaluate the

adequacy of the design. If not adequate, proceed to step 3.

Step 3: Design a low-order dynamic compensator recovering more of the entire

eigenstructure of the state feedback design, iterate by adding to the eigenstructure,

as required.

Step 3 is necessary only if the compensator designed in step 2 is not satisfactory.

Time domain and frequency domain analyses are performed after each design step.

Consider the design of the longitudinal flight control system for an unmanned

aircraft as shown in Fig 6.1. The pitch plane dynamics are given as

_a ¼ Za
V
aþ Zd

V
dþ q

_q ¼ MaaþMddþMqq
(6.18)

It is desired to design an acceleration command r ¼ Azc flight control system. We

will assume that the command is constant and will design an RSLQR controller

with integral control. We will design a constant gain matrix Kc for a single flight

condition and will assume gain scheduling will be used to interpolate the gains

between conditions (other design points). Normal acceleration Az ft=s
2ð Þ is given by

Az ¼ �V _g ¼ Zaaþ Zdd (6.19)

We can introduceAz directly as a state variable by replacing the angle-of-attack

a state. Differentiate (6.19) to form the differential equation for _Az and then

substitute for _a from (6.18). This produces

Body

Body

Body

CG 

VT

b

a

Fig. 6.1 Unmanned aircraft
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_Az ¼ Za
V
Az þ Zaqþ Zd _de

_q ¼ Ma

Za
Az þMqqþ Md �MaZd

Za

� �
de

(6.20)

Next, introduce a second-order actuator model for the elevator. This is given as

€de ¼ �2zaoa
_de þ oa

2 dc � deð Þ (6.21)

Combining (6.20) and (6.21) forms the plant model written in matrix form as

_Az

_q
_de
€de

2
664

3
775 ¼

Za V= Za 0 Zd

Ma Za= Mq Md � MaZd
Za

� �
0

0 0 0 1

0 0 �oa
2 �2zaoa

2
664

3
775

Az

q
de
_de

2
664

3
775þ

0

0

0

oa
2

2
664

3
775dc (6.22)

Since r ¼ constant, _r ¼ 0,p ¼ 1, and we need to add one integrator to form a type-

1 controller. The state vector ( 3.17) for the robust servomechanism design model is

z ¼ e _xT
� �T

(6.23)

with the design model _z ¼ ~Azþ ~Bm given as

_e
€Az

€q
€de
€d_e

� ¼

0 1 0 0 0

0 Za V= Za 0 Zd

0 Ma Za= Mq Md � MaZd
Za

� �
0

0 0 0 0 1

0 0 0 �oa
2 �2zaoa

2
66664

3
77775

e
_Az

_q
_de
€de

2
66664

3
77775þ

0

0

0

0

oa
2

2
66664

3
77775 _dc

2
66664

(6.24)

At a flight condition of Mach 0.3, 5,000 ft altitude, and a trim angle-of-attack a
of 5 �, the plant model is

~A ¼

0 1 0 0 0

0 �1:053 �346:5 0 �11:29
0 0:007 �1:033 �1:093 0

0 0 0 0 1

0 0 0 �6672: �98:02

2
66664

3
77775 ~B ¼

0

0

0

0

6672:

2
66664

3
77775 (6.25)

The objective in the design of the gain matrix is to track the acceleration

command with zero error without using large gains. The design begins by setting

R ¼ 1 and selecting a Q matrix that penalizes the error state e in (6.24). Thus, the

performance index in the equation is
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J ¼
ð1
0

zTQzþ m2
� �

dt (6.26)

We start by inserting the parameter q11 in the (1,1) element,

zTQz ¼ zT

q11
0 �0

0

�0 0

0

2
66664

3
77775

e
_Az

_q
_de
€de

2
66664

3
77775; (6.27)

and setting the other matrix elements to zero. This will penalize the error in tracking

the command. Substituting (6.27) into (6.26) gives the performance index as

J ¼
ð1
0

q11e
2 þ m2

� �
dt (6.28)

LQR design charts were used in Chap. 3 to select the LQR penalty parameters in

(6.28). We will use the same numerical value in this example to design the state

feedback control and then will compare the projective control to the state feedback

design.

Step 1: Design reference eigenstructure

From Chap. 3, q11 ¼ 0:2448. This produces the state feedback gain matrix

Kx ¼ 0:49482 0:17904 �14:061 2:2089 1:8036� 10�3
� �

(6.29)

For this design, the statesAz, q, de, and _de are plotted versus time in Fig. 6.2. Note

that there is no overshoot to the unit command. For this approach flight condition,

the response is quick without the use of large gains. It is desired to keep this same

behavior, to the degree possible, in the output feedback projective control design.

Step 2: Design a static projective controller

For the static projective control output feedback design, the
Ð
e, Az, and q states are

the desired feedbacks. The integral error state is part of the controller, so it is

available. The acceleration and rate feedbacks come directly from the inertial

measurement unit and are available. The actuator states in the model would require

additional sensors within the actuator and are assumed not to be available for

feedback. In the static projective controller design, these states will be projected

out. The closed-loop matrix F ¼ ~A� ~BKx

� �
from (6.4) is
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F ¼

0 1 0 0 0

0 �1:053 �346:5 0 �11:29
0 0:007 �1:033 �1:093 0

0 0 0 0 1

�3301:3 �1194:5 93810: �21409: �110:05

2
66664

3
77775 (6.30)

with eigenstructure

L ¼ diag �4:2466; �4:9722� 4:3962j; �48:973� 65:438j½ � (6.31)

X ¼

2:2295e�001
�9.4676e�001
�1:6075e�002
�5:3104e�002
2:2551e�001

2
666666664

3
777777775

�1:0379e�001 �9:1764e�002j
9:1946e�001
�1:4240e�003 �1:0897e�002j
�4:3324e�002 �3:3555e�002j
3:6293e�001 �2:3622�002j

2
666666664

3
777777775

�1:0379e�001 þ9:1764e�002j
9:1946e�001
�1:4240e�003 þ1:0897e�002j
�4:3324e�002 þ3:3555e�002j
3:6293e�001 þ2:3622e�002j

2
666666664

3
777777775

4.8477e�004 �1.6181e�003j
8.2144e�002 þ1.1097e�001j
5.1005e�005 �1.6701e�004j
�7.2600e�003 �9.7008e�003j
9.9035e�001

2
666666664

3
777777775

4.8477e�004 þ1.6181e�003j
8.2144e�002 �1.1097e�001j
5.1005e�005 þ1.6701e�004j
�7.2600e�003 þ9.7008e�003j
9.9035e�001

2
666666664

3
777777775

2
666666666666666666666664

3
777777777777777777777775

ð6:32Þ

The dominant eigenvalues (short period plus integrator) are

li ¼ �4:2466;�4:9722� 4:3962j;f g and are associated with the first three
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Fig. 6.2 States of the system responding to a unit acceleration step command
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eigenvectors in (6.32). These are the dynamics that are to be retained in the static

output feedback design. From (6.6), the output matrix is

C ¼
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
4

3
5 (6.33)

and the eigenvectors are

Xn ¼

2.2295e�001
�9.4676e�001
�1.6075e�002
�5.3104e�002
2.2551e�001

2
6666664

3
7777775

�1.0379e�001 �9.1764e�002j
9.1946e�001
�1.4240e�003 �1.0897e�002j
�4.3324e�002 �3.3555e�002j
3.6293e�001 �2.3622e�002j

2
6666664

3
7777775

2
6666664

�

�1.0379e�001 �9.1764e�002j
9.1946e�001
�1.4240e�003 þ1.0897e�002j
�4.3324e�002 þ3.3555e�002j
3.6293e�001 þ2.3622e�002j

2
6666664

3
7777775

3
7777775

(6.34)

The static output feedback gain matrix is computed as

Ky ¼ KxXny CXny

� ��1
¼ 0:13327 0:050120 �4:2100½ � (6.35)

Figure 6.3 shows a block diagram of the output feedback control. The closed-

loop system using the static output feedback isAcl ¼ A� BKyC. The eigenstructure
for this system is

L ¼ diag �4:2466; �4:9722� 4:3962j; �36:175� 49:738½ � (6.36)

X ¼

2.2295e� 001

� 9.4676e� 001

� 1.6075e� 002

� 5.3104e� 002

2.2551e� 001

2
66666666664

3
77777777775

�1.0379e� 001� 9.1764e� 002j

9.1946e� 001

�1.4240e� 003� 1.0897e� 002j

�4.3324e� 002� 3.3555e� 002j

3.6293e� 001� 2.3622e� 002j

2
66666666664

3
77777777775

�1.0379e� 001þ 9.1764e� 002j

9.1946e � 001

�1.4240e� 003þ 1.0897e� 002j

�4.3324e� 002þ 3.3555e� 002j

3.6293e� 001þ 2.3622e� 002j

2
66666666664

3
77777777775

4.4768e � 003

� 2.2266e � 001

4.7032e � 004

1.9597e � 002

� 9.7469e � 001

2
66666666664

3
77777777775

� 8.2386e� 003

2.9803e� 001

� 8.7700e� 004

� 2.6376e� 002

9.5416e� 001

2
66666666664

3
77777777775

2
6666666666666666666666666664

3
7777777777777777777777777775

ð6:37Þ
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Note that the eigenvalues Li ¼ diag �4:2466; �4:9722� 4:3962j½ � and their

associated eigenvectors from the state feedback design are retained in the closed-

loop output feedback design system. The remaining two eigenvalues which forms

the residual dynamics are Li ¼ diag �36:175; �49:738½ �.
The static output feedback controller shown in Fig. 6.3 implementing the

RSLQR design can be implemented in the following state space format:

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r
(6.38)

with

Ac Bc1 Bc2

Cc Dc1 Dc2

	 

¼ 0½ � 1 0½ � �1½ �

�Kyð1Þ
� � �Ky 2 : 3ð Þ� �

0½ �
	 


¼ 0½ � 1 0½ � �1½ �
�0:13327½ � �0:050120 4:21½ � 0½ �

	 
 (6.39)

where xc ¼
Ð
e, y ¼ Az q½ �T , r ¼ Azc, and u ¼ dc.

For this static output feedback design method to be effective, care must be taken

to keep the bandwidth reasonable and not destabilize the residual dynamics. As the

bandwidth of the state feedback design is increased to have the system respond

faster (an increase in the loop gain crossover frequency, Fig. 3.5), the larger gains

destabilizes the residual dynamics. The next step in the design process is to compare

this design with the state feedback design to determine changes in performance and

stability robustness, if any, and to determine if they are acceptable. Figure 6.4

compares the state feedback and output feedback time histories. The static projec-

tive control response slightly lags the state feedback design and is acceptable from a

time domain perspective. By capturing the dominant eigenvalues of the state

feedback design in the output feedback design, the time response is very close.

Next is to compare the design in the frequency domain. Figure 6.5 shows plots of

the magnitude and phase ofL, the magnitude of I þ L, and the magnitude of I þ L�1,
with the loop gain formed at the actuator command input. We see from the plots of

I þ L and I þ L�1 that the output feedback design has a decrease in the stability

robustness. This is also seen in the Nyquist plot, Figure 6.6, which shows the gain

+

-

Azc

Az

q

de

s−1

Ky

Fig. 6.3 Static output

feedback acceleration

command control
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margin and phase margin of the design. The output feedback design has a gain

margin of 3.82 dB and phase margin of 28.3�. This would be unacceptable for flight,
so the design would need to be improved by either (1) decreasing the bandwidth

until acceptable stability margins were obtained or (2) designing a low-order

dynamic compensator to recover the performance and margins of the state feedback

design. We will select the second option and proceed to design a low-order dynamic

compensator.

Step 3: Design a low-order dynamic compensator

For this example, a second-order compensator will retain the entire state feedback

eigenstructure. To begin the design, we need to partition the matrices A and F as in

(6.10) and the eigenvectors as in (6.14).

A11 ¼
0 1 0

0 �1:053 �346:5
0 0:007 �1:033

2
64

3
75 A12 ¼

0 0

0 �11:29
�1:093 0

2
64

3
75

A21 ¼
0 0 0

0 0 0

	 

A22 ¼

0 1

�6672: �98:02

	 
 (6.40)
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F11 ¼
0 1 0

0 �1:053 �346:5
0 0:007 �1:033

2
64

3
75 F12 ¼

0 0

0 �11:29
�1:093 0

2
64

3
75

F21 ¼
0 0 0

�3301:3 �1194:5 93810:

	 

F22 ¼

0 1

�21409: �110:05

	 
 (6.41)

Xny1 ¼
�1.0379e�001 �9.1764e�002i
9.1946e�001
�1.4240e�003 �1.0897e�002i

�1.0379e�001 þ9.1764e�002i
9.1946e�001
�1.4240e�003 þ1.0897e�002i

2.2295e�001
�9.4676e�001
�1.6075e�002

2
64

3
75

Xny2 ¼
�4.3324e�002 �3.3555e�002i
3.6293e�001 �2.3622e�002i

�4.3324e�002 þ3.3555e�002i
3.6293e�001 þ2.3622e�002i

�5.3104e�002
2.2551e�001

	 


Xp1 ¼
4.8477e�004 �1.6181e�003
8.2144e�002 1.1097e�001
5.1005e�005 �1.6701e�004

2
64

3
75

Xp2 ¼
�7.2600e�003 �9.7008e�003
9.9035e�001 0

	 

ð6:42Þ

The compensator design (6.12) requires selecting a gain matrix P0 such that

the residual dynamicsAr in (6.16) are stable. The matrices needed to form Ar areN0

and B0.

N0 ¼ Xny1X
�1
ny2

¼ �1.6565e�001 �5.8888e�002 4.4744eþ000
2.4157eþ000 6.3925e�001 �1.8175eþ 001

	 

(6.43)

B0 ¼ Xp2 � N0Xp1

¼
� 2.5706e� 003� 2.6871e� 003

9.3759e� 001� 7.0061e� 002�

"
(6.44)

Ar ¼ A22 � N0A12

¼ 4:8883eþ 000 3:3521e� 001

�6:6917eþ 003 �9:0801eþ 001

	 

(6.45)

Using the dynamic compensator in (6.12) with matrices defined in (6.17), the

compensator is designed by choosing the free parameter matrix P0 such that the

residual dynamics in (6.16) are stable. For this example (6.46),

Are ¼ Ar þ B0P0A12

¼ 4:8883eþ 000 3:3521e� 001

�6:6917þ 003 �9:0801eþ 001

	 


þ �2:5706e� 003 �2:6871e� 003

9:3759e� 001 �7:0061e� 002

	 

P0

0 0

0 �11:29
�1:093 0

2
64

3
75

(6.46)
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By multiplying out the matrices in (6.47), one can determine which elements of

P0 need to be chosen. This matrix is designed using a tuning process in which the

elements are increased in magnitude until a suitable design is obtained (trial and

error). After some tuning, the following matrix was obtained:

P0 ¼ 0 2 �500
0 2 �2000000

	 

(6.47)

The zero elements in the first column were found not to matter. They were made

zero to reduce the control usage. Substituting this P0 into (6.47) yields

Are ¼ �5:8364eþ 002 4:5392e� 001

�2:1488eþ 004 �1:1039eþ 002

	 

; li Areð Þ ¼ �132:0 �562:0½ �

(6.48)

Figure 6.7 illustrates a block diagram for the controller. Substituting P0 into

(6.17) yields

Hd ¼
�7:1546eþ 001 6:5552eþ 001

�6:4828eþ 002 �6:3452eþ 002

	 

;

Dd ¼
�1:4503eþ 002 �4:0079eþ 001 1:3077eþ 007

�3:6250eþ 004 �1:1663eþ 004 �1:2604eþ 008

	 


Nd ¼ �3:9870e� 003 �6:0617e� 003½ �;
Kd ¼ 1:3327e� 001 7:0218e� 002 �1:2185e + 003½ �

(6.49)

The dynamic output feedback controller shown in Fig. 6.7 capturing the

eigenstructure of the RSLQR design can be implemented in the following state

space format:

-

Azc+

Az

q

1e

s−1

Kx1

Nd Dd +

Kd − Kx1

de2

ded +

+

Add Compensator On Each Feedback

(sI − H )−1

2ndOrder Compensator

Fig. 6.7 Low-order dynamic

projective controller block

diagram
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_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r
(6.50)

With

Ac Bc1 Bc2

Cc Dc1 Dc2

	 

¼

0 0

Dd :; 1Þð Þ Hd

	 

Cc

Ddð:; 2 : 3Þ

	 
 �1
0

	 

�Kdð1Þ �Nd½ � �Kd 2 : 3ð Þ½ � 0½ �

2
64

3
75

¼

0 0 0

�145:03 �71:546 65:552

�3625:0 �648:28 �634:52

2
64

3
75

1 0

�40:079 1.3077eþ 007

�1.1663eþ 004 �1.2604eþ 008

2
64

3
75

�1
0

0

2
64

3
75

�0:13327 0:0039870 0:0060617½ � �0:070218 1218:5½ � 0½ �

2
6664

3
7775

ð6:51Þ
where xc ¼

Ð
e xc2 xc3

� �T
, y ¼ Az q½ �T , r ¼ Azc, and u ¼ dc.

A step-input simulation of the closed-loop system using the dynamic controller

shows results that equal the state feedback design. Figure 6.8 compares the designs

in the frequency domain showing plots of the magnitude and phase of L , the
magnitude of I þ L, and the magnitude of I þ L�1 , with the loop gain formed at
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the actuator command input. Figure 6.9 shows the Nyquist plot (L is a scalar), which
shows the gain margin and phase margin of the design. The second-order compen-

sator does an excellent job of recovering the state feedback design eigenstructure

and properties using a low-order compensator with output feedback.

6.2 Linear Quadratic Gaussian with Loop Transfer Recovery

In Chaps. 2 and 3, optimal control was applied to the servomechanism problem to

design a state feedback controller for command tracking. When only the output is

available for feedback, a full-order observer can be designed to estimate the state.

For LTI systems with Gaussian models for disturbances and measurement noise,

the Kalman filter is the optimal state estimator. When optimal control (LQR) is

combined with optimal state estimation (Kalman filter), the control design is called

the linear quadratic Gaussian (LQG) problem.

The Kalman filter algorithm is an excellent state estimator. It is widely used in

estimation problems, such as GPS navigation, where accurate state estimates are

desired. However, when used to estimate the state in output feedback control design

problems, the optimal state estimator (optimal in the sense of minimizing the error

covariance) may not exhibit the best overall control properties. It is well known that

the LQG controller captures the excellent time domain characteristics of the state

feedback design, but the Kalman filter degrades the frequency domain properties
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(stability margins) of the design. A tuning process called Loop Transfer Recovery

(LTR) asymptotically recovers the state feedback frequency domain properties.

There are several methods available for applying LTR to the LQG problem

(called LQG/LTR). Virtually all these methods introduce tuning mechanisms for

recovering the frequency domain properties at the expense of using high gains

somewhere in the control loop. Care must be taken to limit the gains and a thorough

analysis performed to make sure the system is implementable.

When using LQG/LTR, the Kalman filter is no longer thought of as an optimal

state estimator, but a dynamic compensator/observer tuned for performance and

robustness. The fact that Riccati equations are used in the control and filter design

makes the LQG/LTR method attractive and provides the mechanism for proving

properties of the system analytically. In this section, we will use a popular tuning

mechanism attributed to Doyle and Stein [4] and Doyle and Athans [5] and will

demonstrate its use in a command tracking flight control example. We will consider

the infinite-time design problem which uses steady-state gain matrices for the LQR

and the Kalman filter.

Consider the following linear-time-invariant Gaussian design model:

_x ¼ Axþ Buþ w

y ¼ Cxþ v
(6.52)

where w and v are zero mean, white, uncorrelated Gaussian random processes with

covariances given by

E wðtÞwT tð Þ
 � ¼ Q0d t� tð Þ
E vðtÞvT tð Þ
 � ¼ R0d t� tð Þ (6.53)

The state estimate, x̂, is formed using the following Kalman filter state estimator:

_̂x ¼ Ax̂þ Buþ Kf y� ŷð Þ
Kf ¼ PfC

TR0
�1

0 ¼ APf þ PfA
T þ Q0 � PfC

TR0
�1CPf

(6.54)

where ŷ is the estimate of the output, Pf ¼ E xxTf g is the steady-state error

covariance, which results from solving the algebraic filter Riccati equation (covari-

ance equation), and Q0 and R0 are the process and measurement noise covariances

from (6.54), respectively. The optimal control is formed using the LQR state

feedback control gain matrix Kc and the estimated state feedback x̂, given as

u ¼ �Kcx̂ (6.55)

Figure 6.10 combines the LQR controller (Chap. 3) with the Kalman filter state

estimator (6.55) into a block diagram. This is the LQG control architecture.
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The frequency domain properties of the LQG system do not equal that of the

LQR system primarily due to the observer dynamics introduced by the Kalman

filter state estimator. For the state feedback controlled system, the LQR loop

transfer function matrix (LTFM) at the plant input is

LLQRðsÞ ¼ Kc sI � Að Þ�1B (6.56)

For the output feedback controlled system, the LQG LTFM at the plant input is

LLQGðsÞ ¼ Kc sI � Aþ BKc þ KfC
� ��1

KfC sI � Að Þ�1B (6.57)

Clearly, the dynamics introduced by the dynamic compensator alters the fre-

quency domain characteristics for the LQG system.

For this control architecture, there are two approaches for applying LTR to the

LQG control problem. One modifies the Kalman filter (state observer) to recover

the state feedback loop properties, and the other modifies the LQR controller. Here,

we will present the method of modifying the Kalman filter. This approach is taken

from Doyle and Stein [4]. The tuning procedure consists of designing Kalman

filters with the plant process disturbance covariance matrixQf parameterized with a

scalarr as

Qf ¼ Q0 þ 1

r
BBT (6.58)

where Q0 is the nominal plant process disturbance covariance from (6.54), B is the

control input distribution matrix, and ris the LTR filter compensation parameter.

This parameter is adjusted to recover the LQR frequency domain characteristics

.

.

Fig. 6.10 Robust servo LQG

using integral control-

estimated state feedback
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over the frequency range of interest. The modified matrixQf is used to compute the

steady-state covariancePf and filter gain matrixKf to be used in the LQG controller.

Considering the loop broken at the plant input, LTRmodifiesKf to create a system

that has stability properties that asymptotically approach those of the LQR. The

method uses a trial and error procedure in which the filter design is parameterized by

a scalar r> 0 such that when r! 0 we have LLQG ! LLQR asymptotically but not

necessarily uniformly. It is evident that the location of the Kalman filter eigenvalues,

(6.58), alters the closed-loop frequency characteristics of the system.

The LQG/LTR approach requires that the controlled system (plant) be minimum

phase (i.e., no RHP transmission zeros). The minimum phase requirement occurs

because the LTR procedure asymptotically inverts the plant dynamics of the

Kalman filter and substitutes the linear regulator dynamics. If there was an RHP

transmission zero, an RHP pole would be created, causing an unstable system. The

procedure may still be applied to nonminimum phase systems, but care must be

taken to prevent instability in the LQG compensator. This limits the amount of

recovery.

The LQG/LTR loop transfer function matrix at the plant input, LLQG , will

asymptotically recover the LQR frequency domain characteristics as r! 0. This

can be shown as follows. As r! 0, the process covariance Qf in (6.59) becomes

largely dominated by the second term 1
rBB

T. As these elements ofQf get large, the

covariance matrix Pf has elements that get large, resulting in the Kalman gain

matrix Kf getting large with the following result:

LLQGðsÞ ¼ KcðsI � ~Aþ ~BKc þ K�!f CÞ�1K �f CðsI � ~AÞ�1 ~B
LLQGðsÞ 	 KcðsI � ~AÞ�1 ~B

(6.59)

It is this process that inverts the plant (within the Kalman filter) resulting in

recovering the LQR LLQR. It is important to note that as r! 0; �s Pf

� �!1 and
�s Pf

� �! 0, creating a singular covariance matrix. In the next section, we will

present the LTR method of Lavretsky [6] which prevents this condition from

occurring during the recovery process.

The LQG controller transfer function matrix that relates the measurement y to the
control u is

u ¼ �Kc sI � ~Aþ ~BKc þ KfC
� ��1

Kf y (6.60)

Substituting for the measurement y ¼ Cxþ v and letting r! 0 as in (6.60)

yields

u ¼ �KcðsI � ~Aþ ~BKc þ KfCÞ�1Kf ðCxþ vÞ
¼ �KcðsI � ~Aþ ~BKc þ KfCÞ�1KfCx� KcðsI � ~Aþ ~BKc þ KfCÞ�1Kf v

¼ �Kcx� KcðsI � ~Aþ ~BKc þ KcFÞ�1Kf v

(6.61)
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in which the first term is inverted and canceled KfC
� ��1

KfC ¼ I resulting in � Kcx.
However, the second term is not exactly canceled; KfC

� ��1
Kf 6¼ I, and the sensor

noise v can be amplified. This feature limits the amount of recovery possible. In the

use of this design method for making the LQG system robust, the sensor noise

amplification in (6.62) must be examined.

The LQG/LTR controller design, examining the loop properties at the plant

input, may be realized through the following synthesis technique:

Step 1: LQR controller design: Kc

Follow the robust servomechanism design approach outlined in Chap. 3. Design

LQR weighting matrices Q and R such that the resulting LTFM LLQRðsÞ ¼ Kc

sI � ~A
� ��1 ~Bmeets performance and stability robustness requirements and exhibits

the desired bandwidth. The frequency domain properties of the LQG system will

not exceed those of the LQR system.

Step 2: Kalman filter design: Kf Design the Kalman filter state estimator using

(6.55), with (6.59) defining the plant disturbance covariance. The LTR filter

recovery parameter r is used to recover the LQR frequency domain characteristics

over the frequency range of interest. Examine plant input and output frequency

domain criteria and the sensor noise amplification in (6.62) and limit the LTR

recovery so that the sensor noise is not amplified.

6.2.1 Summary

Dynamics: _x ¼ Axþ Buþ w x t0ð Þ ¼ x0

y ¼ Cxþ v

E xf g
E wwT

 � ¼ Q0d tð Þ; E vvT


 � ¼ R0d tð Þ

Robust Servomechanism LQR:

Command r

Controlled output (to follow rÞ : yc ¼ Ccx

e ¼ yc � r; z ¼ e _x½ �T ; m ¼ _u

Dynamics: _z ¼ ~Azþ ~Bm ~A ¼ 0 Cc

0 A

	 

; ~B ¼ 0

B

	 


Performance index: J ¼
ð1
0

zTQzþ mTRm
� �

dt

~A; ~B
� �

Stabilizable, ~A;Q
1
2

� �
Detectable,

Algebraic Riccati Equation: P ~Aþ ~A
T
Pþ Q� P ~BR�1 ~B

T
P
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Optimal Control: m ¼ �R�1BTPx ¼ �Kcz

u ¼
ð
m ¼ �Kc

Ð
e

x̂

	 


Kalman Filter State Estimator: _̂x ¼ Ax̂þ Buþ Kf ymeas � ŷð Þ
Qf ¼ Q0 þ 1

r
~B ~B

T

APf þ PfA
T þ Qf � PfC

TR�10 CPf ¼ 0

Kf ¼ PfC
TR�10

Example 6.2 LQG/LTR Design. This example applies LQG/LTR control theory to

an air vehicle flight control design problem. The LQG/LTR design method

combines an LQR state feedback control implemented using estimated states and

a Kalman filter state estimator. The state feedback design is the Robust Servo

Linear Quadratic Regulator (RSLQR) design from Example 3.4 in Chap. 3 and

will be reused as the state feedback control. This is also the same design used in the

previous example on projective control theory.

The RSLQR design model (6.24) is

~A ¼ 0 Cc

0 A

	 

~B ¼ 0

B

	 


~A ¼

0 1 0 0 0

0 �1:053 �346:5 0 �11:29
0 0:007 �1:033 �1:093 0

0 0 0 0 1

0 0 0 �6672: �98:02

2
6666664

3
7777775
~B ¼

0

0

0

0

6672:

2
6666664

3
7777775

(6.62)

Using the same RSLQR design, the state feedback gain matrix is

Kc ¼ 0:49482 0:17904 �14:061 2:2089 1.8036e� 003½ � (6.63)

The control law is implemented using

u ¼ �Kc

Ð
Azm � rð Þ x̂

� �T
(6.64)

where the first gain in Kc multiplies the integral error, and the remaining gains

multiply estimates of Az, q, de, and _de, respectively.
The measurements provided by an inertial measurement unit, Azm and qm , are

available for feedback. To design the Kalman filter state estimator, we need models

of the process and measurement noise covariance matrices from (6.54). At this

flight condition, the process noise modeled in the state equations is
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Q0 ¼
1:94� 10�4 0 0 0

0 2:5� 10�7 0 0

0 0 1:0� 10�8 0

0 0 0 1:0� 10�6

2
664

3
775

fpsð Þ2=s
rpsð Þ2=s
radð Þ2=s
rpsð Þ2=s

2
664

3
775
(6.65)

The numerical values in Q0 are often adjusted in the design process to tune the

Kalman filter. For a typical inertial measurement unit, the measurement noise in

Azm and qm are modeled as

R0 ¼ 6:25� 10�2 0

0 1:0� 10�6

	 

fpsð Þ2
rpsð Þ2

	 

(6.66)

Figure 6.11 shows Az and q simulation time histories of the state feedback

controlled system without process and measurement noise, along with simulation

time histories of the measured values that contain process and measurement noise.

The Kalman filter state estimator is

_̂x ¼ Ax̂þ Buþ Kf y� ŷð Þ (6.67)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
cc

el
 (

ft/
se

c*
*2

)
State Feedback simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (sec)

P
itc

h 
R

at
e 

(d
ps

)

State Feedback simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

-0.5

0

0.5

1

1.5

2

Time (sec)

M
ea

su
re

d 
A

cc
el

 (
ft/

se
c*

*2
)

Stochastic Simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

M
ea

su
re

d 
P

itc
h 

R
at

e 
(d

ps
)

Stochastic Simulation

Fig. 6.11 State feedback and measured acceleration and pitch rate time histories
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where u is formed using (6.65) and was implemented using steady-state matrices

obtained from the filter covariance equation

0 ¼ APf þ PfA
T þ Q0 � PfC

TR0
�1CPf

Kf ¼ PfC
TR0

�1

Pf ¼

2:0442e� 003 �6:0760e� 006 2:4929e� 010 �5:6592e� 008

�6:0760� 006 7:8188e� 008 �1:2264e� 012 1:3375e� 010

2:4929e� 010 �1:2264e� 012 1:2523e� 010 �5:0000e� 009

�5:6592e� 008 1:3375e� 010 �5:0000e� 009 3:4544e� 007

2
6664

3
7775

Kf ¼

3:2707� 002 �6:0760eþ 000

�9:7217e� 005 7:8188e� 002

3:9887e� 009 �1:2264e� 006

�9:0547e� 007 1:3375e� 004

2
6664

3
7775 ð6:68Þ

The controller implementing the robust servomechanism integral control with the

Kalman filter state estimator can be implemented in the following state space format:

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r
(6.69)

with

Ac Bc1 Bc2

Cc Dc1 Dc2

	 

¼

0 01�4
�BpKcð1Þ Ap � BpKc � KfCp

	 

Cc

Kf

	 
 �1
04�1

	 

�Kc½ � 0 0½ � 0½ �

2
4

3
5

(6.70)

where

Ac

Cc

	 

¼

0 0 0 0 0

0 �1:0854 �340:41 0 �11:289
0 6:8202e� 003 �1:1116eþ 000 �1:0925 0

0 �3:9887e� 009 1:2264e � 006 0 1:0

�3301:0 �1194:4 9:3804e þ 004 �2:1408e þ 004 �1:1005eþ 002

2
6666664

3
7777775

�0:49477�0:17903 14:060 �2:2087�0:0018035½ �

2
666666664

3
777777775

Bc1 Bc2

Dc1 Dc2

	 

¼

1:0000eþ 000 0

3:2707eþ 000 �6:0760e þ 000

�9:7217e� 005 7:8188e� 002

3:9887e� 009 �1:2264e� 006

�9:0547e� 007 1:3375e� 004

2
6666664

3
7777775

�1
0

0

0

0

2
666666664

3
777777775

0 0½ � 0½ �

2
66666666664

3
77777777775

ð6:71Þ

and xc ¼ Ð
e Âz q

_ d
_

e
_d
_

e

h iT
, y ¼ Az q½ �T , r ¼ Azc, and u ¼ dc.
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Figure 6.12 shows state estimates using the estimator with the nominal process

noise matrix Q0 (LQG design). The Kalman filter does an excellent job estimating

the states from the noisy measurements. However, the full-order observer (Kalman

filter) has degraded the excellent frequency domain properties of the LQR state

feedback design. To recover the frequency domain properties (at the plant input),

Loop Transfer Recovery (LTR) is used. The LTR procedure consists of designing

Kalman filters with the plant process covariance matrix Qf parameterized with a

scalar r as

Qf ¼ Q0 þ 1

r
BBT (6.72)

whereQ0 is the nominal covariance,B is the control input distribution matrix, and r
is the LTR filter compensation parameter. This parameter is adjusted,r! 0, to

recover the LQR frequency domain characteristics over the frequency range of

interest. The modified matrix Qf is used to compute the steady-state covariance

matrices Pf and filter gain matrices Kf to be used in the LQG controller. In this

example, values of r were chosen to be
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Fig. 6.12 State estimates using the nominal Kalman Filter process noise Q0
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r ¼ 1 105 104 103 102
� �

(6.73)

The following controller combines the robust servo controller and Kalman filter

estimator

_x1

_̂x

	 

¼ 0 0

�BpKc 1 : nrð Þ Ap � KfCp � BpKcðnr þ 1 : nxÞ
	 


x1

x̂

	 


þ 1 0

Kf

	 

zmeas þ

�1
0

	 

r

u ¼ �Kc

xc

x̂

	 

(6.74)

Note that (6.75) is valid for plant models with no D matrix, that is, Dp ¼ 0. The

first state x1 is the robust servo integrator, the vector x̂ is the estimated state, zmeas

contains the acceleration and pitch rate measurements, and r is the acceleration

command. Writing the controller in a generic form, we have

_xc ¼ Acxc þ Bc1zmeas þ Bc2r

u ¼ Ccxc þ Dc1zmeas þ Dc2r
(6.75)

For the LQG design r ¼ 1ð Þ

Ac ¼

0 0 0 0 0

0 �1:0854eþ 000 �3:4041eþ 002 0 �1:1289eþ 001

0 6:8202e� 003 �1:1116eþ 000 �1:0925eþ 000 0

0 �3:9887e� 009 1:2264e� 006 0 1:0

�3:3010eþ 003 �1:1944eþ 003 9:3804e + 004 �2:1408eþ 004 �1:1005eþ 002

2
6666664

3
7777775

Bc1 ¼

1:0 0

3:2707e� 002 �6:0760eþ 000

�9:7217e� 005 7:8188e� 002

3:9887e� 009 �1:2264e� 006

�9:0547e� 007 1:3375e� 004

2
6666664

3
7777775
;Bc2 ¼

� 1

0

0

0

0

2
666666664

3
777777775

Dc1 ¼ 0 0½ �; Dc2 ¼ 0½ �
ð6:76Þ

Note that in the above controller, the robust servo error, e ¼ yc � r ¼ Azmeas

�Azcmd
, is formed using the measured acceleration. This error is formed from the top

row inBc1 andBc2. An alternate controller would be to use the estimate ofAz from the

Kalman filter, e ¼ Âz � Azcmd
: This would change the control architecture

significantly.
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Next, we will analyze the LQG/LTR design in the frequency domain and

determine the desired amount of LTR to be applied at this flight condition.

Figure 6.13 shows a Nyquist plot of the LQR, LQG, and LQG/LTR designs using

values of r from (6.74). The red circle is a unit circle centered at (�1,j0) for

reference. The LQR locus (blue) demonstrates infinite gain margin (at the plant

input) and excellent phase margin. The LQG design (blue) shows the decrease in

gain margin and phase margin from inserting the Kalman filter state estimator

into the controller. The locus for the LTR designs show initially, r ¼ 105 , that

the margins are worse than those of the LQG. As the LTR parameter is reduced

further, the margins improve and approach those of the LQR design. This

demonstrates that the LTR recovery process is not uniform in its recovery.

Figures 6.14 and 6.15 show the analysis results examining the return difference

dynamics I þ L and stability robustness matrix I þ L�1 at the plant input, respec-

tively. Both figures show the recovery of the LQR characteristics at the plant input.

To further examine the effects of LTR, we will examine the sensitivity and

complementary sensitivity at the plant output and the noise transmission through

the controller. The sensitivity and complementary sensitivity are given by

e ¼ SðsÞr
y ¼ TðsÞr (6.77)

The noise transmission through the controller, u ¼ GNoisev, is given by

�s GNoiseð Þ ¼ �s Cc sI � Acð Þ�1Bc1 þ Dc1

� �
(6.78)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Re(L)

Im
(L

)

Nyquist

LQR

LQG

ρ = 105

ρ= 104

ρ= 103

ρ = 102
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Figures 6.16, 6.17, and 6.18 show the analysis results at the plant output. The

LTR process only guarantees recovery of the LQR properties at the plant input. The

sensitivity function in Fig. 6.16 shows undesirable peaking in SðsÞ as the recovery is
made. From this figure, the value of r would need to be limited to 103. The

complementary sensitivity function in Fig. 6.17 shows undesirable peaking in TðsÞ
as the recovery is made. This peak is similar to a peak resonance in under-damped
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second-order systems. Even though the stability margins at the plant input

are getting better with LTR, the margins at the plant output are getting worse.

Figure 6.17 also shows the value of r would need to be limited to 103 to keep the

peak small. Finally, Fig. 6.18 shows the noise transmission through the controller.

We see that as r! 0 , the noise amplification increases. This would be quite

undesirable. This figure indicates that the value of r would need to be limited to

104 or larger.
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To finalize a choice of r, the decision should be made on maximizing �s I þ Lð Þ
and �s I þ L�1ð Þ at the plant input, minimizing �sðSÞ and �sðTÞ at the plant output, and
preventing noise amplification over a frequency range of interest. The following

table summarizes these peak values:

Design �sðI þ LÞ �sðI þ L�1Þ �sðSÞ �sðTÞ

LQR 1.0000 0.7963 1.4936 1.0480

LQR 0.5506 0.9808 1.0791 1.0000

r ¼ 105 0.5233 0.7136 1.0923 1.0000

r ¼ 104 0.5853 0.6567 1.0599 1.0000

r ¼ 103 0.7920 0.7301 1.4581 1.0000

r ¼ 102 0.9160 0.7715 2.9361 2.1570

From the �s I þ Lð Þvalues, we need rb104 to meet plant input stability margin

requirements. We would like �s I þ L�1ð Þ to be as large as possible, which is also

satisfied byrb104.Wewould like�sðSÞ to be minimized, which points tor ¼ 104 as the

desired recovery level. Ifr ¼ 103, the peak in�sðSÞwould be too large. Thus,r ¼ 104 is

selected as the design. For comparison, the following table lists the Kalman filter gains:

Kalman filter gains

LQG LQG/LTR r ¼ 104

3.2707e�002 �6.0760e þ 000 6.9018e þ 000 1.7004e þ 002

�9.7217e�005 7.8188e�002 2.7206e�003 9.6745e þ 000

3.9887e�009 �1.2264e�006 �5.5183e�001 �5.1037e þ 001

�9.0547e�007 1.3375e�004 �2.8572e þ 000 3.0166e þ 003
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It is evident that this method increases the gains to large values. Further analysis

would be needed to determine if gains of this magnitude could actually be used in a

real flight control system.

6.3 Loop Transfer Recovery Using the Lavretsky Method

In the previous section, we combined the optimal control (LQR) with the optimal

state estimator (Kalman filter) to form the LQG controller. An LTR tuning process

was then used to recover the LQR frequency domain properties in the LQG

controlled system by inverting the filter dynamics. In this section, we shall explore

an alternate method of LTR, referred to as the LTRmethod of Lavretsky (LTRLM) [7].

This method is also used later in this book to shape the transient dynamics in model

reference adaptive control problems. Detailed derivations of the method and its

related equations can be found in Chaps. 13 and 14. In this section, we are going to

simply outline the key features of LTRLM and then demonstrate the method and its

efficacy through a design example.

Achieving best possible performance and stability robustness properties for a

process or a system via control design is the overall goal for the control system

engineer to attain. Among linear-time-invariant systems, there is a special class of

dynamics, called positive real (PR) and strictly positive real (SPR) [3, 4]. These

systems have very interesting properties that enable robust output feedback control

design. We present PR and SPR definitions as they are stated in [4].

Definition 6.1. A p� pð Þ proper rational transfer function matrix GðsÞ of the
complex variable s ¼ sþ jo is called positive real if:

1. Poles of all elements of GðsÞ are in the left half complex plane.
2. For all real o for which jo is not a pole of any element of GðsÞ, the matrix

G joð Þ þ GT �joð Þ is positive semidefinite.
3. Any pure imaginary pole jo of any element of GðsÞ is a simple pole, and the

residue matrix lim
s!jo

s� joð ÞGðsÞ is positive semidefinite Hermitian.
Definition 6.2. The transfer function GðsÞ is called strictly positive real if G s� eð Þ
is positive real, for some e> 0.

For scalar systems p ¼ 1ð Þ, PR and SPR dynamics have their Nyquist frequency
response locus located entirely in the right half complex plane. This condition for
GðsÞ can be satisfied only if the system’s relative degree is zero or one. Thus,
encirclements of (�1, j0) cannot occur. In other words, such a system will remain
stable under a large set of uncertainties, which is a highly desirable property for
any system to possess.
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The relationship between PR, SPR transfer functions, and Lyapunov stability

theory of the corresponding dynamical system has led to the development of several

stability criteria for feedback systems with LTI and nonlinear components. These

criteria include Popov’s criterion and its variations [8]. The link between PR, SPR

transfer function matrices and the existence of a Lyapunov function for studying

stability can be established by the following two lemmas [4]:

Lemma 6.1 Positive Real Lemma. Let GðsÞ ¼ CT sI � Að Þ�1Bþ D be a p� pð Þ
transfer function matrix, where A; Bð Þ is controllable and A; Cð Þ is observable.
Then, GðsÞ is positive real if and only if there exist matrices P ¼ PT > 0, L, and W
such that

PAþ ATP ¼ �LT L
PB ¼ CT � LT W

WT W ¼ Dþ DT

(6.79)

Lemma 6.2 Kalman–Yakubovich–Popov (KYP) Lemma [4]. Let,

GðsÞ ¼ CT sI � Að Þ�1Bþ D

be a p� pð Þ transfer function matrix, where A; Bð Þ is controllable and A; Cð Þ is
observable. Then, GðsÞ is strictly positive real if and only if there exist matrices

P ¼ PT > 0, L, W, and a positive constant e such that

PAþ ATP ¼ �LT L� eP

PB ¼ CT � LT W

WT W ¼ Dþ DT

(6.80)

Clearly, if D is the zero matrix, then the SPR conditions (6.81) reduce to

PAþ ATP ¼ �LT L� eP

PB ¼ CT
(6.81)

and in this case, setting e ¼ 0, gives the PR conditions in the form

PAþ ATP ¼ �LT L
PB ¼ CT

(6.82)

6.3 Loop Transfer Recovery Using the Lavretsky Method 191



The first relation in (6.83) is the algebraic Lyapunov equation, andVðxÞ ¼ xT P x
is the Lyapunov function [4]. The second relation in (6.83) enables output feedback
control design, whereby the system output y ¼ C x can be fed back into the input to
control the system, while preserving closed-loop stability. Also, note that the
matrices B and C define the transmission zeros of the system transfer function
matrix GðsÞ ¼ C sI � Að Þ�1B.

We are going to modify the LQG/LTR design such that, for a class of restricted
systems, the PR property is obtained asymptotically, Pv Bv ! CT, with the positive
tuning parameter n! 0. In addition, we shall ensure thatPv remains symmetric and
strictly positive definite, uniformly in v. These are the distinguishing features of
LTRLM design. Similar to the previous section, in this design, the Kalman filter is
no longer treated as a filter. It will continue to estimate the system state and serve as
a dynamic compensator, tuned to improve the frequency domain properties of the
system. The Gaussian covariance matrices for w and v are altered significantly to
improve the controller robustness and to limit sensor noise amplification. So, these
matrices no longer “model” the stochastic processes of the system.

We formulate the LTRLM design approach using the linear-time-invariant
Gaussian design model,

_x ¼ Axþ Buþ w

y ¼ Cxþ v
(6.83)

where w and v are zero mean, white, uncorrelated Gaussian random processes with
covariances given by

E wðtÞwT tð Þ
 � ¼ Q0d t� tð Þ
E vðtÞvT tð Þ
 � ¼ R0d t� tð Þ (6.84)

The state estimate x̂ is formed as before, using the state estimator,

_̂x ¼ Ax̂þ Buþ Kf ymeas � ŷð Þ (6.85)

and the control input is calculated using the LQR state feedback gain matrix Kc,
with the estimated state feedback x̂.

u ¼ �Kcx̂ (6.86)

In LTRLM, we parameterize the process and measurement noise covariance
matrices using a positive scalar n,
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Qv ¼ Q0 þ vþ 1

v

� �
�B �BT ; Rv ¼ v

vþ 1
R0 (6.87)

where �B is a matrix formed by adding “fictitious” columns to B, to make �B ¼
B X½ � have its column rank equal to the row rank of C, such that C �B becomes
invertible and the corresponding extended system C s I � Að Þ�1 �B is minimum
phase, that is, all its transmission zeros are located in the left half complex plane.
This is the “squaring-up” step of the method. Substituting the weights from (6.88)
into the filter Riccati equation, we get

Pv A
T þ APv � 1þ 1

v

� �
Pv C

T R�10 CPv þ Q0 þ 1þ 1

v

� �
�B �BT ¼ 0 (6.88)

or, equivalently

Pv A
T þ APv � Pv C

T R�10 CPv þ Q0 þ �B �BT þ 1

v
�B �BT � Pv C

T R�10 CPv

� � ¼ 0

(6.89)

The gains in (6.86) are computed as

Kf ¼ PnC
TRn

�1 (6.90)

Now as n! 0, one can show that the filter covariance matrix Pv asymptotically
approaches a constant symmetric positive definite matrix P0, that is,

P0 ¼ lim
v!0

Pv ¼ lim
v!0

PT
v ¼ PT

0 > 0 (6.91)

This behavior is in contrast to the previous section, whereas the LTR parameter

r! 0; �s Pf

� �!1, �s Pf

� �! 0, and the Pfmatrix became singular.

The important properties of P0 in (6.92) are listed below without proof
(see Chap. 13, Theorem 13.1 for formal derivations):

• P0 is the unique symmetric strictly positive definite solution of the following
algebraic Lyapunov equation

P0 A� CT R�10 CP1

� �T þ A� CT R�10 CP1

� �
P0 þ Q0 ¼ 0 (6.92)
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• There exists a unitary matrix W 2 Rm�m such that

P0 C
T ¼ �B WTR

1
2

0 (6.93)

• The unitary matrix W in (6.94) can be chosen as

W ¼ UVð ÞT (6.94)

where U and V are two unitary matrices defined by the singular value
decomposition,

�BT CT R
�1

2

0 ¼ USV (6.95)

and S represents the diagonal matrix of the corresponding singular values.

For minimum phase systems, the SPR property is implied by (6.94). What the

LTRLM design is trying to do is to shape the transmission zeros of the state

estimator, such that the original system with the extended input becomes SPR

asymptotically, as v! 0. To do this, we “square-up the system” by adding extra

columns to B (to form �B) and then apply the LTR tuning process, whereby we

decrease the tuning parameter v in (6.88), until the system becomes almost SPR.

It was discussed earlier in Chap. 2 that in the LQR design problem, with the

penalty matrix Q factored as Q ¼ Q
T
2Q

1
2 , the poles of the closed-loop system,

l A� BKcð Þ, would approach the transmission zeros defined by Q
1
2 sI � Að Þ�1B

asymptotically as the gains grew large. If no finite transmission zeros existed,

the roots would form a Butterworth pattern (or combinations of Butterworth

patterns) in the left half complex plane. Thus, by the proper selection of Q, the
designer places these zeros to achieve the desired response of the system. So,

the selection of the LQR penalty matrix is a key tuning mechanism in the LQR

controller design.

This same basic idea is in work under LTRLM. For the state estimator (aka

Kalman filter), the process covariance Qf is the equivalent to the LQR penalty

matrix. Factoring the process covariance Qf as Qf ¼ LTL, the eigenvalues of the

Kalman filter, l A� KfC
� �

, will approach the finite transmission zeros defined by

C sI � Að Þ�1L. Thus, the selection of the process covariance Qf is an ideal tuning

mechanism in the design of the LTRLM controller. Placing the zeros of the

system in a desirable location is the key to achieving a robust design. This is

achieved through the modified process covariance and measurement noise

matrices in (6.88).

194 6 Output Feedback Control

http://dx.doi.org/10.1007/978-1-4471-4396-3_2


6.3.1 Summary

Dynamics: _x ¼ Axþ Buþ w x t0ð Þ ¼ x0

y ¼ Cxþ v

E xf g ¼ x̂;E wf g ¼ 0;E vf g ¼ 0; covðxÞ ¼ Pv

E wwT

 � ¼ Q0d tð Þ; E vvT


 � ¼ R0d tð Þ

Robust Servomechanism LQR:

Command r ¼ constant:

Controlled output (to follow rÞ : yc ¼ Ccx

e ¼ yc � r; z ¼ e _x½ �T ; m ¼ _u

Dynamics: _z ¼ ~Azþ ~Bm ~A ¼ 0 Cc

0 A

	 

; ~B ¼ 0

B

	 


Performance index: J ¼
ð1
0

zTQzþ mTRm
� �

dt

~A; ~B
� �

Stabilizable, ~A;Q
1
2

� �
Detectable

Algebraic Riccati Equation: P ~Aþ ~ATPþ Q� P ~BR�1 ~BTP

Optimal Control: m ¼ �R�1BTPx ¼ �Kcz

u ¼
ð
m ¼ �Kc

Ð
e

x̂

	 


Kalman Filter State Estimator: _̂x ¼ Ax̂þ Buþ Kf ymeas � ŷð Þ
Square of the system: C B �B

� �
has full rank

Qv ¼ Q0 þ vþ 1

v

� �
�B �BT ; Rv ¼ v

vþ 1
R0

Pv A
T þ APv � 1þ 1

v

� �
Pv C

T R�10 CPv þ Q0 þ 1þ 1

v

� �
�B �B

T ¼ 0

Kf ¼ PnC
TRn

�1

The LTRLM controller design, examining the loop properties at the plant input,

may be realized through the following synthesis technique:
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Step 1: LQR controller design: Kc

Follow the robust servomechanism design approach outlined in Chap. 3. Design

LQR weighting matrices Q and R, such that the resulting loop gain LLQRðsÞ ¼ Kc

sI � ~A
� ��1 ~Bmeets performance and stability robustness requirements and exhibits

the desired bandwidth.

Step 2: State estimator/Kalman filter design: Kf

Select columnsX to make �B ¼ B X½ �have column rank equal to the row rank of

C and to make the extended system minimum phase. Design the Kalman filter/state

estimator using (6.89), with (6.88) defining the plant process and measurement

noise covariance matrices. The LTR parameter n is used to recover the LQR

frequency domain characteristics over the frequency range of interest. Ad hoc

adjustment of the sensor noise covariance magnitude may be needed to scale the

Kalman gains to prevent large gains from occurring. Examine plant input and

output frequency domain criteria and the sensor noise amplification in and limit

the LTR recovery so that the sensor noise is not amplified.

Example 6.3 LTRLM Design for Pitch Dynamics of an Aircraft. The flight control

design example we have been using to demonstrate the various output feedback

control design methods does not satisfy the requirements for using LTRLM. This

method requires adding extra control columns X to B so that C B X½ � is invertible,
and the corresponding extended dynamics are minimum phase. We begin by

approximating the aircraft model with minimum phase dynamics. This step is not

required since we could have accomplished it through the squaring-up procedure.

However, we have found that starting with minimum phase dynamics simplifies the

overall design process. For the aircraft pitch dynamics, we can do this easily by

neglecting the tail vertical force Zd which is small in most applications. Normally,

the acceleration transfer function has an RHP zero. When we zero Zd, this transfer
function no longer has any finite zeros.

To satisfy the requirement for C B X½ � be invertible will require us to alter the

design problem by removing the actuator model. This reduces the number of states,

creating a second-order design model. In this example, we will compare the design

using LTRLM with the LQG procedure, as well as with the conventional LQG/LTR

method of the previous section.

Toward that end, we consider aircraft longitudinal dynamics in the form

_a ¼ Za
V
aþ Zd

V
dþ q

_q ¼ MaaþMddþMqq
(6.96)

where angle-of-attack a and pitch rate q are the states, and the elevator position d
represents the system control input. The measured outputs consist of the vertical

acceleration Az and the pitch rate q.
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Az

q

	 

¼ Za 0

0 1

	 

a
q

	 

þ Zd

0

	 

d (6.97)

We will neglect the tail vertical force Zd ¼ 0ð Þ and form the minimum phase

plant model Ap;Bp;Cp;Dp

� �
as

Ap Bp

Cp Dp

	 

¼
�1:0527 1 0

�2:3294 �1:0334 �1:1684
�346:48 0 0

0 1 0

2
664

3
775: (6.98)

First, we perform the LQR state feedback design. To track an acceleration

command, the RSLQR state feedback design model (6.24) is

~A ¼ 0 Cp 1; :ð Þ
0 Ap

	 

~B ¼ 0

Bp

	 


~A ¼
0 �346:48 0

0 �1:0527 1

0 �2:3294 �1:0334

2
64

3
75 ~B ¼

0

0

�1:1684

2
664

3
775

(6.99)

Using the weight matrices Q ¼ diag 0:2448 0 0½ � and R ¼ 1, the LQR state

feedback gain matrix is

Kc ¼ 0:31623 �33:261 �6:7127½ � (6.100)

The above control law is implemented as

u ¼ �Kc

Ð
Azm � rð Þ a q

� �T
(6.101)

To analyze and compare our controllers, we will implement each one in our

standard controller model:

_xc ¼ Acxc þ Bc1yþ Bc2r

u ¼ Ccxc þ Dc1yþ Dc2r
(6.102)

Using the gains from (6.101), the state feedback controller is

_xc ¼ 0½ �xc þ 1 0½ �yþ �1½ �r
u ¼ �0:31623½ �xc þ 33:261 6:7127½ �yþ 0½ �r (6.103)
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To form the closed-loop system, the above controller is connected to the plant

model.

Next is the LQG design. The nominal process and measurement noise covari-

ance matrices are

Q0 ¼ 0:000196 0

0 0:0025

	 

ðrad)2=s
ðrps)2=s

	 

(6.104)

and

R0 ¼ 6:25� 10�2

1:0� 10�6

	 

fpsð Þ2
rpsð Þ2

	 

(6.105)

The Kalman filter state estimator is

_̂x ¼ Ax̂þ Buþ Kf y� ŷð Þ (6.106)

where u is formed using (6.102) and was implemented using steady-state matrices

obtained from the filter covariance equation

0 ¼ APf þ PfA
T þ Qn � PfC

TRn
�1CPf

Kf ¼ PfC
TRn

�1 (6.107)

The steady-state covariance and Kalman filter gains design (usingQ0 andR0) are

Pf ¼
9:5843e� 006 3:8344e� 007

3:8344e� 007 4:8957e� 005

	 


Kf ¼
�0:053132 0:38344

�0:0021257 48:957

	 
 (6.108)

To analyze this observer-based design (Kalman filter), we will implement the

controller in our standard model (6.103). For the LQG controller, the RSLQR

control law is given by

u ¼ �K1

ð
e� Kxx̂

e ¼ yc � r ¼ Az � Azcmd

(6.109)

where x̂ is the estimated state, and the RSLQR gain matrix is partitioned as Kc ¼
K1 Kx½ �. To form the estimated state, we need to substitute the control (6.110) into

the state estimator (6.107). Doing so gives
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_̂x ¼ Apx̂þ Bpuþ Kf y� ŷð Þ

_̂x ¼ Apx̂þ Bp �K1

ð
e� Kxx̂

� �
þ Kf y� Cpx̂þ Dp �K1

ð
e� Kxx̂

� �� �� �

_̂x ¼ Ap � Bp � KfDp

� �
Kx � KfCp

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A22

x̂� Bp � KfDp

� �
K1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A21

ð
eþ Kf y

(6.110)

The LQG controller states are xc ¼
Ð
e x̂

� �T
. The controller state space model

using (6.110) and (6.111) is

e

_̂x

	 

¼ 0 0

A21 A22

	 
 Ð
e

x̂

	 

þ 1 0

Kf

	 

ymeas þ

�1
0

	 

r

u ¼ � K1 Kx½ �
Ð
e

x̂

	 

þ 0½ �ymeas þ 0½ �r

(6.111)

where A21 and A22 are defined as in (6.111). Substituting the gains into (6.112), we

have

e

_̂x

	 

¼

0 0 0

0 �19:462 0:61656

0:36948�41:928�57:833

2
64

3
75

Ð
e

x̂

	 

þ

1 0

�0:053132 0:38344

�0:0021257 48:957

2
64

3
75ymeasþ

�1
0

0

2
664

3
775r

u¼ �0:31623 33:261 6:7127½ �
Ð
e

x̂

	 

þ 00½ �ymeasþ 0½ �r

(6.112)

Next is the LQG/LTR design. This method (from the previous section) adds a

term to the process noise covariance matrix as

Qf ¼ Q0 þ 1

r
BpB

T
p (6.113)

We varied the LTR parameter r and selected a value of r ¼ 25. This produces

Qf ¼ 0:000196 0

0 0:057106

	 

(6.114)

which results in
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Pf ¼
9:5933e� 006 8:3416e� 007

8:3416e� 007 0:00023793

	 


Kf ¼
�0:053183 0:83416

�0:0046243 237:93

	 
 (6.115)

Note the magnitude increase in the gain Kf 2; 2ð Þ.
The last controller in this example uses the LTRLM. The first step in the design

process is to design the LQR control law. We will use the RSLQR controller from

(6.102). The second step is to select columns X to make �B ¼ Bp X½ � have column

rank equal to the row rank of Cp . To complete this design, we must look at the

numbers within these matrices:

Cp ¼ �346:48 0

0 1

	 

Bp ¼ 0

�1:1684
	 


�B ¼ Bp

�b21
�b22

	 

(6.116)

To add a second column in �B, we see that any values are possible, except �b21 ¼ 0:
If �b21 ¼ 0, then

�B ¼ 0 0

�1:1684 �b22

	 
0
(6.117)

which is rank 1. To evaluate the effect of this selection, we will examine two

designs, described

�B1 ¼ 0 1

�1:1684 0

	 

and �B2 ¼ 0 0:1

�1:1684 10:

	 

(6.118)

To improve the numerical scaling between Qf and Rf we will scale R0 by 250.

The process noise and measurement covariance matrices are given by

Qv ¼ Q0 þ vþ 1

v

� �
�B �BT ; Rv ¼ v

vþ 1
250 (6.119)

For n ¼ 2:5 and using �B ¼ �B1, we have

Qv ¼
0:000196 0

0 0:0025

	 

þ 1:4

1 0

0 1:3652

	 

¼ 1:4002 0

0 1:9137

	 


Rv ¼ 0:71429ð Þ 250ð Þ 0:0625 0

0 1e� 006

	 

¼ 11:161 0

0 0:00017857

	 
 (6.120)
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Solving for the steady-state covariance and gain matrix from (6.108) yields

Pf ¼
0:011312 �3:5561e� 005

�3:5561e� 005 0:018303

	 


Kf ¼
�0:35116 �0:19914
0:001104 102:5

	 
 (6.121)

The controller is formed by substituting the gains Kf into (6.112) and results in

e

_̂x

	 

¼

0 0 0

0 �19:48 0:16584

0:36948�42:794 �246:8

2
64

3
75

Ð
e

x̂

	 

þ

1 0

�0:053183 0:83416

�0:0043243 237:93

2
64

3
75ymeas þ

�1
0

0

2
664

3
775r

u¼ �0:31623 33:261 6:7127½ �
Ð
e

x̂

	 

þ 0 0½ �ymeasþ 0½ �r ð6:122Þ

For n ¼ 2:5 and using �B ¼ �B2, we obtain

Qv ¼
0:000196 0

0 0:0025

	 

þ 1:4

0:01 1

1 101:37

	 

¼ 0:014196 1:4

1:4 141:91

	 


Rv ¼ 0:71429ð Þ 250ð Þ 0:0625 0

0 1e� 006

	 

¼ 11:161 0

0 0:00017857

	 

(6.123)

Solving for the steady-state covariance and gain matrices from (6.108) yields

Pf ¼
0:00017018 0:0017429

0:0017429 0:15898

	 


Kf ¼
�0:0052832 9:7605

�0:054109 890:31

	 
 (6.124)

The controller is formed by substituting the gains Kf into (6.112) and results in

e

_̂x

	 

¼

0 0 0

0 �122:72 1:1991

0:36948�40:809�111:37

2
64

3
75

R
e

x̂

	 

þ

1 0

�0:35116�0:19914
0:001104 102:5

2
64

3
75ymeasþ

�1
0

0

2
664

3
775r

u¼ �0:31623 33:261 6:7127½ �
Ð
e

x̂

	 

þ 0 0½ �ymeasþ 0½ �r

(6.125)
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By varying the columns in �B , we get significantly different controllers. The

second choice has a larger Qn , which results in larger gains. We can expect that

these gains will recover the LQR properties better than the designs with smaller

gains.

Figure 6.19 shows a step response for the closed-loop system using all five

controllers (LQR, LQG, LQG/LTR, and the two LTRLM controllers). The plot

shows that the time domain simulation results are identical for all the designs.

Figures 6.20, 6.21, 6.22, 6.23, and 6.24 show the frequency domain analysis of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
z 

(f
t/s

ec
**

2)

Fig. 6.19 Step response for the LQR, LQG, LQG/LTR, and LQG/LTRLM controller designs
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controllers
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controllers
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these controllers. Figure 6.20 shows the Nyquist plot. We see that the LQR design

(black line) does not enter the red unit circle centered at (�1, j0). The LQG design

(also black line) is the locus to the left which has the degraded gain margin and

phase margins properties. Note that the LQG design here is not as bad as in

the previous section due to the actuator being neglected within this model. The

LQG/LTR design with LTR parameter r ¼ 25 is the red curve. The two designs

using the LTRLM approach (blue and green curves) bracket the LQG/LTR locus.

The LTRLM method with �B ¼ �B2 (green curve) has the most recovery (closest to

the LQR black curve).

We see from the figures that the LQG/LTR and LTRLM methods can all be

tuned to recover the LQR properties. These methods all recover the properties by

increasing the Kalman filter gains. Care must be taken to prevent the gains from

getting too large. The LTRLM method can achieve the recovery with smaller

overall gains as compared to the conventional LQG/LTR method. The LQG/LTR

method adds BpB
T
p to Q0, while the LTRLM method adds �B �BT . For this example,

these are

BpB
T
p ¼

0 0

0 1:3652

	 

; �B �BT ¼ 0:01 1

1 101:37

	 

(6.126)

The additional parameters offer an improvement by distributing the recovery

into additional loops within the architecture.
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6.4 Conclusions

In this chapter, we presented static output feedback and dynamic projective control

and two LQG/LTR design methods. These design methods in no way capture all the

available output feedback methods available to the engineer. We selected these

methods because they have proven to be good design methods, and more impor-

tantly for the student, they demonstrate the insight needed to develop control

system in practice.

The static projective control method has been found to be very effective at

designing output feedback controllers. In flight control applications using gain

scheduling, these controllers are low order, making them easy to implement.

LQG/LTR controllers require a dynamic observer for implementation. In flight

control applications where gain scheduling is relied upon to compensate for a large

flight envelope, these observers can introduce small transients as the observer

parameters vary. The engineer must simulate and evaluate if these transients are

acceptable.

The exercises that follow for this chapter take a longitudinal flight control

problem and assign each design method. Any plant dynamics could be used for

these exercises. The key is to learn how to design and compare designs so that both

time domain performance and frequency domain robustness requirements are met.

6.5 Exercises

Exercise 6.1. Consider the unstable longitudinal dynamics model, as defined in

Example 6.1, where x ¼ a q de _de
� �T

. The matrices for the control design

model _x ¼ Apxþ Bpu are

Ap Bp½ � ¼
�1:3046e 1:0 �0:2:1420 0

47:711 0 �104:83 0

0 0 0 1:0
0 0 �12769: �135:6

2
664

3
775

0

0

0

12769

2
664

3
775

2
664

3
775

(a) Design a robust servomechanism LQR state feedback control to track a constant

acommand using the method of Chap. 3. Simulate the state feedback design to

show the command tracking.

(b) It is desired not to feedback the elevator state and rate signals to improve

reliability. Use the static projective control method of Sect. 6.1 to project out

the actuator dynamics, keeping the dominant eigenstructure for command
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tracking. Simulate the static projective control design to show the command

tracking and compare with (a).

(c) Compute the eigenstructure for (a) and (b) to show that the dominant

eigenvalues are retained. Analyze this design in the frequency domain. Com-

pute Nyquist, Bode, �s I þ L½ �, �s I þ L�1½ � frequency responses for a) and b) at

the plant input. Compute �s S½ � and �s T½ � frequency responses for a) and b) at the

plant output for the a loop. Compute the loop gain crossover frequency and

singular value stability margins for the design.

Exercise 6.2. Consider the unstable longitudinal dynamics from Exercise 6.1. The

output signals available from the inertial measurement unit are y ¼ Az q½ �T . The
matrices for the output model y ¼ Cpxþ Dpu are

Cp Dp½ � ¼ �1156:9 0 �189:95 0

0 1:0 0 0

	 

0

0

" #" #

(a) Design a robust servomechanism LQR state feedback control to track a constant

acommand using the method of Chap. 3. (Same controller from Exercise 6.1).

Design a full state Kalman filter observer to estimate the states for feedback

using the method outlined in Sect. 6.2. Use the following plant process and

measurement noise covariance matrices for the Kalman filter design:

Q0 ¼
1:0� 10�8 0 0 0

0 2:5� 10�7 0 0

0 0 1:0� 10�8 0

0 0 0 1:0� 10�6

2
664

3
775
ðrad)2=s
ðrps)2=s
ðrad)2=s
ðrps)2=s

2
664

3
775

R0 ¼ 6:25� 10�2 0

0 1:0� 10�6

	 

fpsð Þ2
rpsð Þ2

	 

(6.127)

List all matrices used in the design.

(b) Simulate the LQG design and compare it to the state feedback design.

(c) Analyze this LQG design in the frequency domain. Compute Nyquist, Bode,

�s I þ L½ �, �s I þ L�1½ � frequency responses for the LQG and state feedback at the

plant input. Compute �s S½ � and �s T½ � frequency responses for (a) and (b) at the

plant output for the a loop. Compute the loop gain crossover frequency and

singular value stability margins for both designs. Determine the impact of using

the Kalman filter estimator on the stability robustness of the system.

(d) Use the LTR method of Sect. 6.2 (6.59) to recover the frequency domain

properties of the state feedback design in the LQG design. Evaluate the design

in the frequency domain as in (c). Compute the maximum singular value of the

noise-to-control transfer function matrix frequency response to examine the

noise amplification in the resulting LQG/LTR design.
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Exercise 6.3. Consider the unstable longitudinal dynamics in Example 6.3 and

Exercise 6.1. The output signals available from the inertial measurement unit are

y ¼ Az q½ �T . The matrices for the output model y ¼ Cpxþ Dpu are

Cp Dp½ � ¼ �1156:9 0 0 0

0 1:0 0 0

	 

0

0

" #" #

Note that the lift term due to the elevator has been zeroed.

(a) Design a robust servomechanism LQR state feedback control to track a constant

a command using the method of Chap. 3. Design a full state Kalman filter

observer to estimate the states for feedback using the method outlined in

Sect. 6.3. Use the following plant process and measurement noise covariance

matrices for the Kalman filter design:

Q0 ¼
1:0� 10�8 0 0 0

0 2:5� 10�7 0 0

0 0 1:0� 10�8 0

0 0 0 1:0� 10�6

2
664

3
775
ðradÞ2=s
ðrpsÞ2=s
ðradÞ2=s
ðrpsÞ2=s

2
664

3
775

R0 ¼ 6:25� 10�2 0

0 1:0� 10�6

	 

fpsð Þ2
rpsð Þ2

	 

(6.128)

List all matrices used in the design.

(b) Simulate the LQG design and compare it to the state feedback design.

(c) Analyze this LQG design in the frequency domain. Compute Nyquist, Bode,
�s I þ L½ �, �s I þ L�1½ � frequency responses for the LQG and state feedback at the

plant input. Compute �s S½ � and �s T½ � frequency responses for (a) and (b) at the

plant output for the a loop. Compute the loop gain crossover frequency and

singular value stability margins for both designs. Determine the impact of using

the Kalman filter estimator on the stability robustness of the system.

(d) Use the Loop Transfer Recovery method of Lavretsky, Sect. 6.2 (6.88), to

recover the frequency domain properties of the state feedback design in the

LQG design. Evaluate the design in the frequency domain as in (c). Compute

the maximum singular value of the noise-to-control transfer function matrix

frequency response to examine the noise amplification in the resulting LQG/

LTR design.
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Part II

Robust Adaptive Control



Chapter 7

Direct Model Reference Adaptive Control:

Motivation and Introduction

7.1 Model Reference Control: Motivational Example

In the design of flight control systems, it is essential to provide closed-loop stability,

adequate command tracking performance, as well as robustness to model uncertainties,

control failures, and environmental disturbances. In the previous chapters, we

considered optimal linear quadratic regulator (LQR) control design techniques

that were suitable for flight control of aerial systems. These design methods relied

on the inherent robustness properties of LQR optimal controllers. It was shown that

with a proper selection of the LQR design tuning parameters (Q and R matrices),

one could achieve 6 dB gain margin, and at least 60� phase margin, at the system

control input break points.

It is also possible to show that LQR optimal controllers can tolerate time-state-

dependent nonlinear uncertainties that might be present in the system control

channels. These uncertainties are called “matched” since they appear only where

control inputs exist in the system dynamics. The matching conditions imply that if

the system uncertainties were known, a controller would have the ability to cancel

them out.

In the presence of matched uncertainties, a deterioration of the system baseline

closed-loop performance is inevitable. This is to be expected since the LQR

controllers are designed to be robust to the entire class of matched uncertainties.

However, they are not tuned to handle any specific uncertainty from this class. In

other words, these LQR controllers may become overly conservative.

We pose the question: “Can we restore a given baseline closed-loop performance

of the system, while operating under matched uncertainties?” The answer is “yes.”

This is the area where adaptive controllers are highly effective.

Throughout the chapters of Part II, we shall utilize the concept of a reference

model for specifying the desired closed-loop tracking performance. Fixed-gain

controllers, as well as adaptive systems, can be constructed using the reference

model-based design concept. We shall begin our discussions with a motivational

example.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_7,
# Springer-Verlag London 2013
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Example 7.1 Fixed-Gain Model Reference Control of Aircraft Roll Dynamics. The

roll dynamics of a conventional aircraft are controlled using differential motion of

ailerons and spoilers. Ailerons are movable surfaces that are mounted outboards on

the trailing edge of the wing, where they are placed symmetrically on each side of

the wing, with respect to the aircraft centerline (Fig 7.1).

Deflected differentially (e.g., downward on one side and upward on the other),

ailerons have the ability to increase the lift force on the downward deflected portion

of the wing and to decrease it on the other side. The two distinct lift forces will

create a rolling moment around the aircraft velocity vector placed at the aircraft

center of gravity. While ailerons can move up and down, spoilers can only be

deflected upward above the trailing edge of the wing to reduce the lift force and thus

to aid ailerons in providing roll control. As a result, the aircraft rotates around its

velocity vector. In this case, the aircraft roll dynamics can be approximated by a

scalar (first-order) ordinary differential equation (ODE) in the form

_p ¼ Lp pþ Lda da (7.1)

where p is the aircraft roll rate in stability axes (radians/s), da is the total differential
aileron-spoiler deflection (radians), Lp is the roll damping derivative, and Lda is the
dimensional rolling moment derivative with respect to differential aileron-spoiler

deflection, (the aileron-to-roll control effectiveness). For a conventional open-loop-

stable aircraft, the roll damping derivativeLp is negative, unless portions of the wing
are stalled, in which case the roll damping may become positive. Positive differen-

tial aileron-spoiler deflection is defined to produce positive rolling moment, and as

such, the aileron-to-roll control effectiveness Lda typically has positive values.

Strictly speaking, the roll dynamics approximation above is valid only for

sufficiently small values of p and da . In addition, it is assumed that the aircraft

yawing motion is suppressed by the rudder – a vertical tail mounted surface.

Readers who might be unfamiliar with the flight mechanics nomenclature may

consider (7.1) as a scalar ODE _x ¼ a xþ b u, with two constant parameters a ¼ Lp,
b ¼ Lda , whose state and control input are x ¼ p and u ¼ da, respectively.

Upward deflected
aileron decreases lift 

Downward deflected 
aileron increases lift 

+
−

p > 0Fig. 7.1 Lift forces arising

from positive differential

aileron deflection cause

aircraft to roll

counterclockwise (positive

roll rate)
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The control task of interest is to force the aircraft to roll like the reference model,

_pref ¼ aref pref þ bref pcmd (7.2)

with the prescribed values ofaref < 0 (the desired inverse time constant) andbref > 0

(the desired DC gain). The reference model (7.2) is driven by the commanded roll

rate pcmd and it calculates the reference roll rate pref . In essence, the reference model

(7.2) imbeds and defines the desired closed-loop command tracking performance.

The control task amounts to finding da that would force the aircraft roll rate p track
any bounded, possibly time-varying, reference command pref . This is the model

reference control design task. Sometimes, it is also referred to as the model

following control. Using this concept allows the designer to create controllers

whose main task is to asymptotically match a given reference model behavior.

Let us now explore details of the model reference control design.

Comparing the roll dynamics (7.1) to that of the reference model (7.2), it is easy

to see that a control solution can be formulated in the feedback-feedforward form

da ¼ aref � Lp
Lda

� �
pþ bref

Lda

� �
pcmd (7.3)

where kp ¼ aref�Lp
Lda

� �
is the roll rate feedback gain, and kpcmd ¼ bref

Lda

� �
is the com-

mand feedforward gain. In fact, substituting the controller (7.3) into the roll

dynamics (7.1), gives the desired closed-loop system dynamics.

_p ¼ aref pþ bref pcmd (7.4)

In order to formally assess if (7.4) indeed converges to (7.2), we first define the

roll rate tracking error,

e ¼ p� pref (7.5)

and then compute the tracking error dynamics by differentiating e with respect to

time, while substituting (7.4) and (7.2).

_e ¼ _p� _pref ¼ aref p� pref
� � ¼ aref e (7.6)

Since by definition aref < 0 (e.g., the reference model is exponentially stable),

the error dynamics (7.6) are globally exponentially stable. Therefore, given any

initial values pð0Þ and pref ð0Þ, the tracking error eðtÞ will converge to the origin

exponentially fast,

eðtÞ ¼ exp aref t
� �

eð0Þ (7.7)
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starting at any initial tracking error value eð0Þ ¼ pð0Þ � pref ð0Þ. So, the aircraft roll
ratepðtÞwill track the reference roll ratepref ðtÞ, with the exponentially fast decaying
tracking error eðtÞ,

pðtÞ ¼ pref ðtÞ þ exp aref t
� �

pð0Þ � pref ð0Þ
� �

(7.8)

and this closed-loop tracking performance is valid for any constant or bounded

time-varying command pcmd ¼ pcmdðtÞ. The command tracking problem is solved.

The corresponding closed-loop system block diagram with the fixed-gain model

reference controller (7.3) is shown in Fig. 7.2.

The model reference controller (7.3) is by no means unique in solving the

command tracking problem of interest. Other solutions can be found. For example,

any controller in the form

da ¼ kp pþ kpcmd pcmd � ke p� pref
� �

(7.9)

solves the same tracking problem, where ke � 0 represents the error feedback gain.

However, does the error feedback in (7.9) give any advantage over the original

controller (7.3)? In order to answer that question, let us calculate the error dynamics

obtained using the modified controller (7.9).

_e ¼ aref � ke
� �

e (7.10)

Consequently,

pðtÞ ¼ pref ðtÞ þ exp aref � ke
� �

t
� �

pð0Þ � pref ð0Þ
� �

(7.11)

By definition, the error dynamics (7.10) define the transients that are incurred by

the system while tracking a given reference command pref ðtÞ. It is now evident that

choosing ke > 0 sufficiently large will allow the designer to obtain any desired (fast)

transient dynamics. This constitutes the primary advantage of using an error

feedback gain in the fixed-gain model reference controller (7.9). Figure 7.3 shows

the resulting closed-loop system diagram.

Reference Model

p

pref

kpcmd

pk

pcmd

da Roll Dynamics

+

+

Fig. 7.2 Block diagram of the closed-loop roll dynamics with fixed-gain model reference

controller obtained in Example 7.1
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Of course, practical limitations, as well as stability robustness considerations,

will place upper and lower limits on the selection of the controller gains. Eventu-

ally, these restrictions will dictate the trade-off between achievable transients in the

closed-loop system and adequate stability robustness margins. □

7.2 Introduction to Direct Model Reference Adaptive Control

In the roll control example above, we have assumed that the system dynamics (7.1)

(defined by the aircraft aerodynamics) were completely known. Then, we utilized

the roll dampingLp and the aileron control effectiveness Lda to design the two fixed-
gain model reference controllers, (7.3) and (7.9).

In reality, aerodynamic parameters are rarely known exactly. This type of

uncertainty is called parametric. If the true parameters are substantially different

from their assumed constant values, controllers such as (7.9) can lead to instabilities

in the system. Even when the system remains stable in the presence of parametric

uncertainties, its closed-loop tracking performance may deteriorate to a point of

becoming unacceptable.

Robustness considerations may not always solve the parameter sensitivity prob-

lem. Often, robust controllers will have a conservatism built into their design, and

as such, they may not be able to provide adequate tracking performance, when

operating under specific parametric uncertainties. This leads to the idea of adding a

gain adaptation mechanism and arriving at model reference adaptive controllers.

Example 7.2 Model Reference Adaptive Control of Aircraft Roll Dynamics Suppose
that the two aerodynamic parameters, Lp and Lda , in the roll dynamics (7.1) are

constant but otherwise completely unknown, with the exception that we do know

the sign of the aileron control effectiveness Lda (it is positive for a conventional

aircraft). The control task remains the same as in Example 7.1 – we need to find da
such that p tracks pref , which in turn is driven by a bounded possibly time-varying

command pcmd .

Reference Model

p

e

pref

kpcmd

pcmd

kp

ke

da Roll Dynamics

+
−−

++

Fig. 7.3 Closed-loop system block diagram with fixed-gain model reference controller and error

feedback obtained in Example 7.1
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The main control challenge here is to achieve the desired closed-loop tracking

performance, specified by the reference model (7.2) while operating in the presence

of constant parametric uncertainties Lp and Lda .
In the forthcoming chapters, we will exploit Lyapunov-based methods that allow

us to design adaptive controllers with formal guarantees of closed-loop stability,

boundedness, and tracking performance. In the meantime, we shall outline main

ideas in the design of adaptive systems.

If we knew the roll dynamics model parameters, then a feedback-feedforward

controller in the form similar to (7.3)

da ¼ kp pþ kpcmd pcmd (7.12)

would have solved the tracking problem. Since the system parameters are unknown,

the ideal controller gains,kp andkpcmd, cannot be computed directly as in Example 7.1.

Instead, we consider an adaptive controller in the form

da ¼ k̂p pþ k̂pcmd pcmd (7.13)

where k̂p; k̂pcmd
� �

represent the estimated feedback and feedforward gains, in that

order. Substituting (7.13) into (7.1) gives the closed-loop system.

_p ¼ Lp þ Lda k̂p
� �

pþ Lda k̂pcmd
� �

pcmd (7.14)

Using parameterization (7.3), the reference model dynamics (7.2) can be equiv-

alently written in terms of the ideal unknown gains as

_pref ¼ Lp þ Lda kp
� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

aref

pref þ Lda kpcmd
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bref

pcmd (7.15)

We now define the gain estimation errors,

Dkp ¼ k̂p � kp; Dkpcmd ¼ k̂pcmd � kpcmd (7.16)

and rewrite the closed-loop system (7.14) in the following form:

_p ¼ Lp þ Lda kp
� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

aref

pþ Lda kpcmd
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bref

pcmd þ Lda Dkp pþ Dkpcmd pcmd
� �

(7.17)

Subtracting (7.15) from (7.17) gives the tracking error dynamics.

_e ¼ aref eþ Lda Dkp pþ Dkpcmd pcmd
� �

(7.18)
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There are three error signals in the error dynamics (7.18): (1) the roll rate

tracking error e, (2) the feedback gain estimation errorDkp, and (3) the feedforward
gain estimation error Dkpcmd . We are going to devise adaptive laws for changing the

gains k̂p; k̂pcmd

� �
; such that all these three errors tend to zero, globally and

asymptotically.

In order to do that, we first define a scalar function V, representative of the total
“kinetic energy” of all the errors in the system.

V e; Dkp; Dkpcmd
� � ¼ e2

2
þ Ldaj j

2 gp
Dk2p þ

Ldaj j
2 gpcmd

Dk2pcmd (7.19)

The “energy” function represents a weighted sum of squares of all the errors in

the system. This is the so-called Lyapunov function candidate, and the positive

constant scalar weights gp; gpcmd
� �

will eventually become the rates of adaptation.

We can easily evaluate the time derivative of V.

_V e; Dkp; Dkpcmd
� � ¼ e _eþ Ldaj j

gp
Dkp

_̂
kp þ Ldaj j

gpcmd
Dkpcmd

_̂
kpcmd (7.20)

This is the system “power.” Substituting (7.18) into (7.20) yields the time

derivative of V , along the trajectories of the error dynamics (7.18) but without

explicit knowledge of these trajectories.

_V e; Dkp; Dkpcmd
� � ¼ aref e

2

þ e Lda Dkp pþ Dkpcmd pcmd
� �þ Ldaj j

gp
Dkp

_̂
kp þ Ldaj j

gpcmd
Dkpcmd

_̂
kpcmd (7.21)

Rearranging terms, we further get

_V e; Dkp; Dkpcmd
� � ¼ aref e

2

þ Dkp Ldaj j sgn Ldað Þ p eþ
_̂
kp
gp

 !
þ Dkpcmd Ldaj j sgn Ldað Þ pcmd eþ

_̂
kpcmd
gpcmd

 !

(7.22)

We want the energy functionV to dissipate in time. It is then sufficient to require

that its derivative _V (the system power) be nonpositive, when evaluated along the

system trajectories. The nonpositivity of _V can be easily achieved if we select the

following adaptive laws:

_̂
kp ¼ �gp p e sgn Ldað Þ
_̂
kpcmd ¼ �gpcmd pcmd e sgn Ldað Þ (7.23)
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or, equivalently,

_̂
kp ¼ �gp p e

_̂
kpcmd ¼ �gpcmd pcmd e (7.24)

thus making the second and the third terms in (7.22) disappear. Then,

_V e; Dkp; Dkpcmd
� � ¼ aref e

2 � 0 (7.25)

and consequently, the system kinetic energy V is a nonincreasing function of time.

This fact immediately implies that all the signals in the error dynamics (7.18), such

as e; Dkp; Dkpcmd
� �

, are bounded functions of time. Furthermore, since the ideal

gains kp; kpcmd
� �

are constant, the adaptive gains k̂p; k̂pcmd
� �

are also bounded.

The stable (by design) reference model (7.2), when driven by a bounded

command pcmd , gives a bounded output pref . Also, e was proven to be bounded.

Then, the roll rate p is bounded. Consequently, the control input da in (7.13) and the
roll acceleration _p in the system dynamics (7.1) are bounded. Furthermore, since _pref
is bounded, then _e is bounded, and so

€V e; Dkp; Dkpcmd
� � ¼ 2 aref e _e (7.26)

is a uniformly bounded function of time. The latter implies that _V is a uniformly

continuous function of time.

By definition (7.19), V � 0 and because of (7.25), V is a nonincreasing function

of time. Therefore, V tends to a limit as t!1, where the function limiting value

may not necessarily be zero.

We have shown that0 � lim
t!1V eðtÞ; DkpðtÞ; DkpcmdðtÞ

� �
<1and _V are uniformly

continuous. According to Barbalat’s lemma (see Chap. 8), these two facts imply that

the system power _V in (7.25) asymptotically tends to zero, which in turn means

lim
t!1 eðtÞ ¼ 0 (7.27)

Thus, the adaptive controller (7.13), along with the adaptive laws (7.24), forces

p track its reference signal pref asymptotically and for any initial conditions

(globally). At the same time, all signals in the corresponding closed-loop system

remain uniformly bounded. These arguments prove closed-loop stability and

tracking performance of the closed-loop system with the adaptive controller. The

corresponding block diagram is shown in Fig. 7.4.

As seen from the figure, the closed-loop system is comprised of the original roll

dynamics (7.1) operating under the adaptive controller (7.13), with the reference

model dynamics (7.2), and using the adaptive laws (7.24). Here, the external input

is the roll rate command pcmd .
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_p ¼ Lp þ Lda k̂p
� �

pþ Lda k̂pcmd pcmd

_pref ¼ aref pref þ bref pcmd

_̂
kp ¼ �gp p p� pref

� �
_̂
kpcmd ¼ �gpcmd pcmd p� pref

� �
(7.28)

Equivalently, this system can be written in terms of the tracking and parameter

estimation errors.

_e ¼ aref þ Lda Dkp
� �

eþ Lda Dkp pref þ Dkpcmd pcmd
� �

d

dt
Dkp
� � ¼ �gp eþ pref

� �
e

d

dt
Dkcmdð Þ ¼ �gpcmd pcmd e (7.29)

If instead of command tracking, the state regulation is of interest, then pref
¼ pcmd ¼ 0, and so k̂pcmd ¼ kpcmd ¼ 0. In this case, the closed-loop systems (7.28)

and (7.29) simplify to the following time-invariant second-order inherently nonlin-

ear dynamics,

_p ¼ Lp þ Lda k̂p
� �

p

_̂
kp ¼ �gp p2 (7.30)

Reference Model

p

−gpcmd

pk

pcmd

da

e

kpcmd1
s

1
s

pref

+−

++

�

�

�

�−gpRoll Dynamics

Fig. 7.4 Model reference adaptive controller obtained in Example 7.2
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These relations reveal the essential mechanism of adaptive control. The time-

varying adaptive feedback gain k̂pðtÞwill monotonically decrease its value until

Lp þ Lda k̂p
� �

becomes negative, and as a result, the roll ratepðtÞwill asymptotically

converge to zero. In (7.30), the constant gp > 0 defines the rate of adaptation in the

sense that large values of gp will force the adaptive gain k̂pðtÞ to decrease faster.

In summary, using energy-based arguments, we have shown that the adaptive

controller (7.12) and (7.24) provides the desired model reference-based closed-loop

tracking performance for the system (7.1) while operating in the presence of the

parametric uncertainties Lp; Lda
� �

. □

7.3 Direct Model Reference Adaptive Control of Scalar

Linear Systems with Parametric Uncertainties

Let us now generalize and summarize the results obtained in Example 7.2 while

restating them for a generic class of scalar linear-time-invariant uncertain systems

in the form

_x ¼ a xþ b u (7.31)

where x 2 R is the systems state, u 2 R is the control input, and a; bð Þ represent the
parametric uncertainties, (constant and unknown), with the known sgnb.

First, we choose the desired reference model,

_xref ¼ aref xref þ bref r (7.32)

with aref < 0 . This model is driven by any bounded, possibly time-varying,

reference command r. The model parameters aref ; bref
� �

must be chosen such that

xref tracks r , with the designer specified criteria. For example, one might set bref
¼ �aref in order to enforce the unity DC gain from r to xref . Also, the value of aref

		 		
can be chosen such that the desired inverse time constant of the reference model is

achieved.

Second, we define the model reference adaptive controller as a linear combina-

tion of feedback and feedforward terms,

u ¼ k̂x xþ k̂r r (7.33)

where k̂x; k̂r
� �

are the two adaptive gains, whose adaptive law dynamics are

constructed similar to (7.24).

_̂
kx ¼ �gx x x� xref

� �
sgnðbÞ

_̂
kr ¼ �gr r x� xref

� �
sgnðbÞ (7.34)
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In (7.34), positive scalars gx; grð Þ are called the rates of adaptation. The larger

their values, the faster the system will adapt to the parametric uncertainties.

This particular controller is called “direct” to indicate that the controller gains

are adapted in (7.34) directly in order to enforce the desired closed-loop tracking

performance. Alternatively, indirect adaptive controllers can be designed to esti-

mate the unknown plant parameters a; bð Þonline and then use their estimated values

to calculate controller gains.

Finally, using energy-based arguments, we can formally prove that the adaptive

controller (7.33) and (7.34) provides the desired closed-loop tracking performance,

in the sense that the system state x globally asymptotically tracks the state xref of the
reference model (7.32) while keeping all signals in the corresponding closed-loop

dynamics uniformly bounded in time.

A few immediate remarks are in order:

• The direct model reference adaptive controller (7.33) and (7.34) operates using

only available (online measured) signals in the system. The latter consists of:

(a) the system state x, (b) the state of the reference model xref , (c) the tracking
error e ¼ x� xref , and (d) the sign of the control effectiveness sgnb.

• All signals in the closed-loop system remain uniformly bounded in time.

• The system state x tracks the state of the reference model xref ; globally and

asymptotically. However, a characterization of the system transient dynamics in

model reference adaptive control remains an open problem.

• The adaptive parameters k̂x; k̂r
� �

are not guaranteed to converge to their true

unknown values kx; krð Þ nor are they assured to converge to constant values in

any way. All that is known is that these parameters remain uniformly bounded in

time. Sufficient conditions for parameter convergence are known as persistency

of excitation [1, 2]. It turns out that for a first-order linear system such as (7.1),

persistent excitation is guaranteed if the commanded signal rðtÞ contains at least
one sinusoidal component. In this case, the two adaptive gains k̂x; k̂r

� �
will

converge to their true constant unknown values, exponentially fast.

7.4 Historical Roots and Foundations of Model Reference

Adaptive Control

The adaptive control development was largely motivated in the early 1950s by the

design of autopilots for aircraft that operated in a wide flight envelope, with a large

range of speeds and altitudes. Different flight conditions caused the aircraft dynam-

ics to change significantly. This phenomenon called for flight controllers that could

accommodate drastic changes in the aircraft aerodynamic and propulsive forces and

moments. Adaptive control was proposed as one of the design approaches to

solving the flight control problem.

The concept of a model-reference adaptive system (MRAS) was originally

proposed in 1958 by Whitaker et al. at MIT [3, 4]. The main idea behind this
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concept was to specify the desired command-to-output performance of a servo-

tracking system using a differential or a difference equation (the reference model)

that would define the ideal response of the system due to external commands. This

control concept was later called “explicit model following,” and the corresponding

architecture became known as the model reference adaptive control (MRAC).

Shortly after its introduction, the first proof of MRAC closed-loop stability using

Lyapunov theory was given in 1965 by Butchart and Shackcloth, at the IFAC

Symposium on Adaptive Control [5], and in 1966 by Parks [6].

In the following years, adaptive control theory for a broad class of multi-input

multi-output uncertain dynamical systems was extensively developed and well

documented in several now-classical textbooks [1, 2, 7, 8].

7.5 Exercises

Exercise 7.1. Consider the aircraft roll dynamics from Example 7.1. Given the roll

damping Lp ¼ �0:8 (s�1) and the aileron effectiveness Lda ¼ 1:6 (s�1), design a

fixed-gain model reference controller in the form of (7.3) to recover the reference

model dynamics (7.2), with aref ¼ �2, bref ¼ 2. Also, design a fixed-gain controller

with error feedback in the form of (7.9). Choose several bounded time-varying roll

rate commands. Simulate the closed-loop system response, with each of the two

controllers active (one at a time). Compare the two controllers and comment on the

achieved closed-loop system stability, robustness, tracking, and transient

properties.

Exercise 7.2. Derive relations (7.28), (7.29), and (7.30).

Exercise 7.3. Assume that the constant roll dynamics data Lp; Lda
� �

from Example

7.1 are unknown and that only the sign of Lda is known to be positive. Using the

same reference model parameters, design an adaptive roll rate tracking controller in

the form of (7.13), (7.14), (7.15), (7.16), (7.17), (7.18), (7.19), (7.20), (7.21), (7.22),

and (7.23). Choose various roll rate commands and simulate the resultant closed-

loop system performance. Compare fixed-gain versus adaptive controller

performances and comment on your results.

Exercise 7.4. Consider a scalar dynamical system described by the first-order

differential equation

_x ¼ a xþ b u; xð0Þ ¼ x0

where a ¼ 2 and b ¼ 3 represent unknown constant parameters. It is assumed that

sgnb ¼ 1 is known. The goal is to design a controller such that the system state

tracks the state of the reference model,

222 7 Direct Model Reference Adaptive Control: Motivation and Introduction



_xref ¼ rðtÞ � xref

where r ¼ rðtÞ is the commanded reference input (a bounded signal). Assuming that

the system dynamics are known, design a fixed-gain command tracking controller.

Then, design a direct model reference adaptive controller. Simulate the closed-loop

system dynamics for both controllers, starting from different initial conditions and

using three different reference commands: (a) a step-input, (b) a series of steps, and

(c) a sum of sinusoids. Tune your adaptive design (i.e., select rates of adaptation).

Compare tracking performance of the two closed-loop systems and their

corresponding control signals. Comment on your results.
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Chapter 8

Lyapunov Stability of Motion

8.1 Dynamical Systems

A dynamical system may be thought of as a collection of finite or infinite number of

interconnected and time-dependent components. The system evolution is driven by an

environment where the system operates. When subjected to an external time-

dependent inputuðtÞ, the system generates an output yðtÞ, which in turn may explicitly

depend on the system internal properties, defined by the system states xðtÞ. The states
describe the system inner-component connections, their dynamical response due to

environmental stimulus, and their contributions to the system response.

In what follows, we consider a special class of dynamical systems that can be

modeled by a finite number of coupled scalar ordinary differential equations in the

form

_x ¼ f t; x; uð Þ (8.1)

In (8.1), t 2 Rþ denotes time and f : R� Rn � Rm ! Rn is a vector function. We

call (8.1) the system dynamics, refer to x 2 Rn as the system state at time t, and
defineu 2 Rm as the control input (an externally supplied signal). The number of the

state components n is called the order of the system.

A solution xðtÞ of (8.1) (if one exists) corresponds to a curve in the system state

space Rn, as t varies from an initial time t0 to infinity. This curve is often referred to

as the system state trajectory. Later in this chapter, we will formulate sufficient

conditions guaranteeing existence and uniqueness of solutions for dynamical

systems such as (8.1), starting from a given set of initial conditions x t0ð Þ ¼ x0.
In addition to the system dynamics (8.1), a set of algebraic equations may also be

given,

y ¼ h t; x; uð Þ (8.2)

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_8,
# Springer-Verlag London 2013
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where h : R� Rn � Rm ! Rp and y 2 Rp . This is the system output. Together,

Eqs. (8.1) and (8.2) form the system state space model, whose block diagram is

shown in Fig 8.1.

A special case of (8.1), and (8.2) is the linear-in-control system,

_x ¼ f t; xð Þ þ g t; xð Þ u
y ¼ h t; xð Þ þ d t; xð Þ u (8.3)

where the functions g and d are of matching dimensions.

Letting x ¼ x1 x2 . . . xnð ÞT, a particular class of nonlinear continuous-time

dynamics is given by the systems in Brunovsky canonical form

_x1 ¼ x2

_x2 ¼ x3

. . . . . . . . .

_xn ¼ f ðxÞ þ gðxÞ u
y ¼ hðxÞ (8.4)

For linear time-variant (LTV) systems, the state space model (8.1), and (8.2) is

_x ¼ AðtÞ xþ BðtÞ u
y ¼ CðtÞ xþ DðtÞ u (8.5)

Finally, the class of linear time-invariant (LTI) systems is written in the familiar

form

_x ¼ A xþ B u

y ¼ C xþ Du (8.6)

whose dynamic properties can be completely characterized by the matrix quadruple

A; B; C; Dð Þ.
If the model (8.1) does not contain the control input signal u,

_x ¼ f t; xð Þ (8.7)

f (t,x,u) h (t,x,u)
x xu

1

s
y

.

Fig. 8.1 State-space model block diagram
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then the resulting dynamics are called “unforced.” If in addition, the function f does
not depend explicitly on t, that is if

_x ¼ f ðxÞ (8.8)

then the system unforced dynamics are called autonomous or time invariant.

Systems that explicitly depend on time are nonautonomous (i.e., time variant).

8.2 Existence and Uniqueness of Solutions

Suppose that we initialize the state of the system (8.7),

x t0ð Þ ¼ x0 2 Rn (8.9)

at a time instant t0 � 0. Together, (8.7), (8.8), and (8.9) define the Cauchy problem,

or equivalently, the initial value problem (IVP), whose solutions may or may not

exist. Moreover, when a solution does exist, it may or may not be unique.

Besides theoretical demands, the question of existence and uniqueness become

quite important for practitioners in simulation, dynamics, and control. For example,

if the system (8.7) is constructed to emulate a real process that starts from an initial

condition x0, we need to know if and when the system unique solution would exist.

Otherwise, the resulting simulation data may lead us to erroneous conclusions about

the underlying process dynamics and control.

Contrary to LTI systems (8.6), existence and uniqueness of solutions for nonlinear

equations (8.7) are not always guaranteed. In order to motivate our discussion, we

consider several examples.

Example 8.1 The scalar nonlinear dynamics

_x ¼ �sgn x

has the discontinuous (at the origin) right-half side, which is defined by the sign

function

sgn x ¼
1; x> 0

0; x ¼ 0

�1; x< 0

8<
:

The system phase portrait is easy to draw and is given in Fig. 8.2.

These data indicate that the system trajectories asymptotically approach either

1 or �1, depending on whether the initial conditions are negative or positive,

respectively. The rate of change of the “kinetic energy” for this system is

nonpositive:
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d

dt

x2ðtÞ
2

� �
¼ xðtÞ _xðtÞ ¼ �xðtÞ sgn xðtÞ ¼ � xðtÞj j � 0

Therefore, the kinetic energy must dissipate, and so it seems that the system

trajectories should asymptotically approach the origin, where sgn 0 ¼ 0 by the

definition. To further investigate the system behavior, we can integrate the system

dynamics on the interval from t0 to t:

xðtÞ ¼ x0 � t� t0ð Þ sgn xðtÞ

Even though this equation is implicit in x , we can easily sketch its solutions

versus time (Fig. 8.3).

First, we note that every solution arrives at zero in finite time T0 ¼ t0 þ x0j j, and
it remains zero for all future times. Second, for every solution with x0 > 0 there is

the solution that starts at �x0ð Þ, and it meets the former solution at the same exact

time T0. Third, the system trajectories are not continuously differentiable at T0. In
fact, for all t � T0 and as the system trajectory evolves along the t-axis, the system
solutions will “jitter.” This interesting phenomenon is solely caused by the discon-

tinuity of the system dynamics at the origin. □

Example 8.2 Let k> 0 be a real number and consider the IVP:

_x ¼ xk; x t0ð Þ ¼ x0

x

x
0

1

−1

Fig. 8.2 Phase portrait of the system dynamics in Example 8.1

t
0

x
x0 > 0

x0 < 0

T0

t0

x(t)

Fig. 8.3 System trajectories in Example 8.1
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Using separation of variables, we can write the solution of this system,

x1�kðtÞ ¼ x1�k0 þ 1� kð Þ t� t0ð Þ

and make several observations:

• For 0< k< 2, the system does not have solutions that start at x0 < 0.

• Suppose k ¼ 2 , x0 ¼ 1 , and t0 ¼ 0 . Then, xðtÞ ¼ 1
1�t . This solution grows

unbounded “blows up” in finite time T ¼ 1, and it is not defined for t � T.
• For k ¼ 2

3
and x0 ¼ t0 ¼ 0, the IVP has not one but two solutions: xðtÞ ¼ t3

27
and

xðtÞ � 0. LetT> 0denote a constant. As it turns out, this IVP has infinitely many

solutions: □

xðtÞ ¼
0 ; 0 � t � T
1

27
t� Tð Þ3 ; t>T :

(

All of the above examples imply that both existence and uniqueness of IVP

solutions for the dynamical system (8.7) depend on certain properties of the vector

function f t; xð Þ.
We begin with a theorem that states sufficient conditions for the IVP problem to

admit a solution which may not necessarily be unique [1].

Theorem 8.1. Peano If f t; xð Þ: R� Rn ! Rn is continuous in a closed region,

B ¼ t; xð Þ: t� t0j j � T; x� x0k k � rf g � R� Rn (8.10)

where T, r are some strictly positive constants, and �k k is the Euclidean vector norm
(see (8.12)), then there exists t0<t1 � T such that the IVP (8.7), (8.8), and (8.9) has
at least one continuously differentiable solution xðtÞ on the interval t0; T½ 	. ■

The assumed continuity of f t; xð Þ in its arguments ensures that there is at least one

solution of the IVP. Note however that this theorem does not guarantee the unique-

ness of the solution. The key constraint that yields uniqueness is the so-called

Lipschitz condition, whereby f t; xð Þ satisfies the inequality

f t; xð Þ � f t; yð Þk k � L x� yk k (8.11)

for all t; xð Þ and t; yð Þ in some neighborhood of t0; x0ð Þ, with a finite constant L> 0.

In (8.11) and everywhere else throughout the book, xk k denotes the Euclidean

vector norm of x 2 Rn:

xk k ¼
Pn
i¼1

xij jp
� �1

p

; 1 � p<1
max
1�i�n

xij j ; p ¼ 1 :

8><
>: (8.12)
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Lipschitz-based sufficient conditions for the unique existence of IVP solutions

are stated below and without proof [2].

Theorem 8.2. Local Existence and Uniqueness Let f t; xð Þ: R� Rn ! Rn be
piece-wise continuous in t and satisfy the Lipschitz condition (8.11):

8 x; y 2 B ¼ x 2 Rn: x� x0k k � rf g; 8 t 2 t0; t1½ 	 (8.13)

Then, there exists some d> 0 such that the IVP for the state equation _x ¼ f t; xð Þ
with x t0ð Þ ¼ x0 has a unique solution over t0; t0 þ d½ 	. ■

Notice that the Lipschitz condition (8.11) is assumed to be valid locally in a

neighborhood of t0; x0ð Þ from a compact (closed and bounded) set B, as it is defined
in (8.13).

We can try to extend the interval of existence and uniqueness over a given time

interval t0; t0 þ d½ 	 by taking t0 � t0 þ d as the new initial time and x0 � x t0 þ dð Þ as
the new initial state. If the conditions of the theorem are satisfied at t0 þ d; x t0 þ dð Þð Þ
, then there exists d2>0 such that the IVP has a unique solution over

t0 þ d; t0 þ dþ d2½ 	 that passes through the point t0 þ d; x t0 þ dð Þð Þ. We can now

piece together the two solutions to establish the existence of a unique solution over the

larger interval t0; t0 þ dþ d2½ 	. This idea can be repeated to keep extending the IVP

solution, arriving at the maximal IVP solution, which is defined on the maximal

interval t0; t0 þ dmax½ 	, with finite or infinite dmax. It is interesting to note that if dmax

is finite, then the respective maximal solution tends to infinity [3], as the following

example demonstrates.

Example 8.3 The unique solution of the scalar IVP,

_x ¼ 1þ x2; xð0Þ ¼ 0

is xðtÞ ¼ tan t . Its maximal interval of existence is finite with dmax ¼ p
2
,

and, predictably, lim
t!p

2

xðtÞ ! 1; that is, this solution becomes unbounded in

finite time. □
In process modeling applications, we are primarily interested in constructing

IVP-s whose solutions are unique and exist for all t � t0. The global uniqueness and
existence requirements would ensure at least soundness of our models but not

necessarily their validity. The latter would have to be verified by correlating

model data with the application process under consideration.

The next theorem states that if the system dynamics function f satisfies global

Lipschitz conditions, then the corresponding IVP has a unique solution over

arbitrarily large time interval [2].

Theorem 8.3. Global Existence and Uniqueness. Suppose that a vector function
f t; xð Þ:R� Rn ! Rn is piece-wise continuous in t and globally Lipschitz in x,

f t; xð Þ � f t; yð Þk k � L x� yk k; 8 x; y 2 Rn; 8 t 2 t0; t1½ 	 (8.14)
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with a finite constant L> 0 . Then, the IVP (8.7), (8.8), and (8.9) has a unique
solution over t0; t1½ 	, where the final time t1 may be arbitrarily large. ■

We immediately note that the above stated global Lipschitz condition (8.14) is

sufficient but not necessary as the next example shows.

Example 8.4 The system dynamics function in the scalar IVP

_x ¼ �x3; xð0Þ ¼ x0

is not globally Lipschitz, yet the system has the unique solution

xðtÞ ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 x20 tþ 1

p
which is defined for any initial condition x0 globally and for all time t � 0. □

The next theorem is of particular interest to us. It presents sufficient conditions

for extending IVP solutions indefinitely. Its detailed proof can be found in [2].

Theorem 8.4. Global Existence and Uniqueness on Unbounded Time Interval

Let f t; xð Þ: R� Rn ! Rn be piece-wise continuous in t, locally Lipschitz in x for all
t � 0and all x in a domainD 
 Rn. LetW 
 Dbe a compact subset ofD,x0 2 W, and
suppose it is known that every solution of the IVP (8.7), (8.8), and (8.9) lies entirely
in W. Then, there is a unique solution that is defined for all t � t0. ■

In the forthcoming chapters, we will use Lyapunov’s methods to check if system

trajectories evolve inside a compact set.We will be able to do that without solving the

system differential equation. Lyapunov’s analysis methods generalize and extend the

notion of energy, from mechanical systems to generic dynamics. For adaptive

systems, we will show that suitable energy functions can be formed as sum of squares

of the system state components. Then, we would compute the system power – the

time derivative of the energy function, evaluated along the system trajectories. We

will argue that if the system power is nonpositive, that is if the system energy

dissipates, then every trajectory is bounded and exists globally for all time.

For now, let us illustrate the energy-based analysis using the dynamics from

Example 8.4. Toward that end, we shall utilize the system “kinetic” energy,

VðxÞ ¼ x2

2

and compute its time derivative along the system dynamics (the system power):

d

dt

x2

2

� �
¼ x _x ¼ x �x3� � ¼ �x4 � 0

Since the power function is nonpositive, then the energy must decrease and

consequently, the system state must be bounded for all time. Therefore and according
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to Theorem 8.4, the system dynamics must have a unique solution starting from any

initial condition at t0 ¼ 0 and extending indefinitely, for all t � 0.

Energy-based methods and Theorem 8.4 become extremely useful especially

when the system dynamics cannot be integrated to obtain its IVP solutions explicitly.

Example 8.5 Consider the autonomous scalar dynamics _x ¼ f ðxÞ , whose phase

portrait is shown in Fig. 8.4.

We assume that f ð0Þ ¼ f ðaÞ ¼ f ðbÞ ¼ 0, f ðxÞ>0 for allx<0, and that the function

is locally Lipschitz in x . Other than that, the function shape and its values are

assumed to be completely unknown, and as such, these dynamics cannot be

analytically integrated to compute the system solutions in their explicit form.

We now pose several questions and give their answers to demonstrate that

explicit knowledge of IVP solutions is not required at all in order to assess if the

system unique solutions exist. In addition, we will also assess their interval of

existence.

Question: Will the IVP with a nonzero initial condition xð0Þ 6¼ 0 have a unique

solution?

Answer: Since f is locally Lipschitz, then existence and uniqueness of the IVP

solutions directly follows from Theorem 8.2.

Question: Is this solution defined for all time?

Answer: Anchored in Theorem 8.4, we can either employ energy-based arguments

to show that all trajectories are bounded, or we can simply examine the system phase

portrait shown in Fig. 8.4. Analyzing the latter, it becomes clear that starting from any

nonzero initial condition, all trajectories of this system will enter the interval 0; b½ 	 in
finite time. Therefore, all these solutions are bounded, and because of Theorem 8.4,

the IVP unique solutions are defined globally, for all t � 0. □
We have surveyed and discussed several well-known theorems concerning

existence and uniqueness of IVP solutions for nonautonomous continuous

dynamical systems. Basically, existence of IVP solutions is provided if the system

dynamics are continuous in its arguments. However, in order to guarantee unique-

ness, we have called on the Lipschitz assumption (local or global). As it turns out,

the Lipschitz condition, even when local, is quite restrictive since the set of all

Lipschitz-continuous functions represents a very small (called “meager”) subset of

all continuous functions. Such an observation might lead to a conjecture that only a

very small set of IVP-s have unique solutions. Fortunately, this conjecture is

incorrect. In 1932, the Polish mathematician Witold Orlicz proved that the set of

all functions for which IVP-s have unique solutions is very large (a complement of a

x

x
0 a b

Fig. 8.4 Phase portrait of the system from Example 8.5
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meager set). Orlicz’ theorem states that “almost all” differential equations with

continuous right-hand sides have unique solutions. On the other hand, the set of

IVP-s, for which we can formally characterize uniqueness of their solutions, is

“almost nothing.” This compelling argument suggests that there are very many

classes of non-Lipschitz IVP-s with unique solutions that are yet to be discovered.

Further details on the subject and the proof of Orlicz’ theorem can be found in

[3, Appendix A].

8.3 System Equilibrium

One of the central concepts in control and system theory is the concept of an

equilibrium point. We will focus our discussions on nonautonomous unforced

dynamical systems:

_x ¼ f t; xð Þ (8.15)

with the vector function f : 0; 1½ Þ � D! Rn which is piece-wise continuous in t
and locally Lipschitz in x and with a domain D 
 Rn that contains the origin x ¼ 0.

Definition 8.1. The origin in Rn is an equilibrium point for the unforced nonau-
tonomous system (8.15) at t0 ¼ 0 if

f t; 0ð Þ ¼ 0; 8t � 0 (8.16)

It is not difficult to show that there is no loss of generality in using the origin and

the zero initial time in the definition above. In fact, suppose we define a nonzero

vector x� 2 Rn to be an equilibrium point of (8.15) at a nonzero initial time t ¼ t0:

f t; x�ð Þ ¼ 0; 8t � t0

We can redefine time t ¼ t� t0, introduce the new state

z tð Þ ¼ x tþ t0ð Þ � x�

and arrive at the transformed system dynamics

d z tð Þ
d t

¼ d x tþ t0ð Þ
d t

¼ f tþ t0; z tð Þ þ x�ð Þ ¼ g t; z tð Þð Þ

with g 0; 0ð Þ ¼ f t0; x
�ð Þ ¼ 0. Thus, we have shifted the equilibrium point to the

origin and the initial time to zero.

This idea can be further generalized. Suppose that we are given a trajectory x�ðtÞ
of (8.15) that starts at t ¼ t0:
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_x�ðtÞ ¼ f t; x�ðtÞð Þ; t � t0

We can again redefine time t ¼ t� t0, introduce the new state

z tð Þ ¼ x tþ t0ð Þ � x� tþ t0ð Þ

and rewrite the system dynamics

d z tð Þ
d t

¼ d x tþ t0ð Þ
d t

� d x� tþ t0ð Þ
d t

¼ f tþ t0; z tð Þ þ x tþ t0ð Þð Þ � f tþ t0; z tð Þ þ x� tþ t0ð Þð Þ ¼ g t; z tð Þð Þ

with g 0; 0ð Þ ¼ 0 . Consequently, analyzing the redefined dynamics around the

origin, as an equilibrium point, while starting at t0 ¼ 0, allows to determine the

original system behavior around the original nonzero equilibrium x�. This modifi-

cation also allows us to assess the system relative dynamics with respect to any

time-dependent trajectory x�ðtÞ, starting at an arbitrary initial time instant t0r0.
A dynamical system can have multiple equilibrium points. Some of these

equilibrium points might be isolated from each other, while others might form a

continuum of equilibrium points. In either case, it is worth noting that whenever the

system starts at an equilibrium point, it will remain there for all future times. The

converse is also true and can be formally proven.

Example 8.6 The LTI system _x ¼ A x has an isolated equilibrium point at x ¼ 0 if

and only if det A 6¼ 0 (A has no zero eigenvalues). Otherwise, the system has a

continuum of equilibrium points. These are the only possible equilibrium patterns

that a linear time-invariant system may have. □

Example 8.7 A nonlinear system can have multiple isolated equilibrium points.

Consider the Bernoulli equation _x ¼ x x� 1ð Þ: It has two isolated equilibrium

points, x� ¼ 0 and x� ¼ 1. The system phase portrait is shown in Fig. 8.5.

Clearly, all trajectories that start in the open interval �1; 1ð Þ will converge to
the origin, while all other trajectories will diverge to þ1. This phenomenon is

typical for nonlinear dynamics, where, depending on the initial conditions, the

system exhibits completely different behaviors. It is also clear that the system

equilibrium at the origin is asymptotically stable (formal definition will be given

later) in the sense that all trajectories that start in the open interval �1; 1ð Þ
will converge back to the origin without leaving the interval. The other equilibrium

x� ¼ 1 is unstable, meaning that there are trajectories that start arbitrarily close to 1,

yet they move away from this equilibrium point. □
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8.4 Lyapunov Stability Definitions

The concept of Lyapunov stability is one of the most prominent and fundamental in

dynamics and control. It is primarily concerned with analyzing behavior of system

trajectories near equilibrium but without explicit computation of those solutions.

Theoretical foundations of what is known today as the Lyapunov stability theory

are due to the Russian mathematician Alexander Mikhailovich Lyapunov

(1857–1918). In 1892 at the University of Moscow, Lyapunov presented and

subsequently defended his doctoral thesis “on the general problem of the stability

of motion,” where he had introduced basic definitions and fundamental theorems

for studying the stability of solutions for a broad class of differential equations.

In 1908, Lyapunov’s work was translated into French, reprinted by Princeton

University Press in 1947, and gained wide acceptance in the West in the 1960s.

Today, Lyapunov stability theory represents an indispensible tool that enables

engineers and scientists analyze nonlinear systems and design controllers with

stable and predictable performance.

System stability can be interpreted as a continuity of the system trajectories, with

respect to initial conditions, over infinite time interval. The keywords here are “over

infinite time interval.” They highlight the difference between the notions of the

stability and continuity on initial conditions. It is well-known that solutions of

Lipschitz-continuous differential equations continuously depend on the system

initial conditions [1–3]. However, the notion of stability requires that this continuity

property holds infinitely in time.

Let x t; x0ð Þ denote a solution of (8.15) with the initial condition x t0ð Þ ¼ x0 .
Suppose that this solution is unique and exists on a finite, possibly open-ended

interval t0; T½ Þ. The continuity property of x t; x0ð Þ due to changes in x0 can be

described as follows: Given any positive constant e> 0 , there must exist a

sufficiently small positive constant d> 0 , such that for all perturbed initial

conditions x0 þ Dx0 with Dx0j j � d , the corresponding perturbed solution x�
t; x0 þ Dx0ð Þ deviates from the original by no more than e , that is,

x t; x0 þ Dx0ð Þ � x t; x0ð Þk k � e, for all t0 � t<T . Figure 8.6 illustrates the conti-

nuity property for a scalar system.

x

x
0 1

.

Fig. 8.5 Phase portrait of a Bernoulli equation from Example 8.7
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On the finite interval t0; T½ Þ, the perturbed trajectory x t; x0 þ Dx0ð Þ will evolve
within the 2 eð Þ-strip relative to the original unperturbed solution x t; x0ð Þ, as long as
the perturbed initial condition x0 þ Dx0ð Þis located within the 2 dð Þ-strip of x0.

In practice, we are often interested in analyzing system solutions that are defined

on an infinite interval t0; 1½ Þ. Will in this case the perturbed solution stay close to

the original or will it deviate from the latter? A simple example demonstrates that

both cases can occur.

Example 8.8 Starting at t0 ¼ 0 and from the initial condition x0 ¼ 1
a , the linear

time-invariant system

_x ¼ a x� 1

has the steady-state solution x t; 1
a

� � ¼ 1
a . If the initial condition is perturbed byDx0,

then the corresponding solution is

x t;
1

a
þ Dx0

� �
¼ Dx0 ea t þ 1

a

Clearly, ifa<0, then for any e>0, x t;
1

a
þ Dx0

� �
� x t;

1

a

� �����
���� ¼ Dx0 ea tj j � e, as

long as Dx0j j � d ¼ e , and this relation is valid for all t � 0. So, for any initial

condition from the 2 eð Þ -strip, the corresponding perturbed solution will remain

within the same strip, which is centered around the steady-state solution xðtÞ ¼ 1
a .

Note that in addition, the perturbed trajectory asymptotically approaches the original

steady-state solution, as time tends to infinity. However, if a> 0, then no matter how

small Dx0 is the perturbed trajectory will become arbitrarily large in time, and as a

result, it will deviate from the steady-state solution. □
A solution of (8.15) with the continuity property defined on an infinite interval is

called stable. Otherwise, it is unstable.

Definition 8.2. Stability of Equilibrium in the Sense of Lyapunov The equilib-
rium point x� ¼ 0 of the nonautonomous unforced dynamics (8.15) is stable if for

t0 T

2e

t

x

0

x (t, x0)
x (t, x0 + Δx0)

x0

x0 + Δx0

Fig. 8.6 Continuity of system solutions with respect to initial conditions
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any e>0 and t0 � 0 there exists d e; t0ð Þ>0 such that for all initial conditions
x t0ð Þk k<d and for all t � t0 � 0 , the corresponding system trajectories are

bounded, as in xðtÞk k<e. The equilibrium is uniformly stable if it is stable and d
does not depend on t0. Finally, the equilibrium is unstable if it is not stable.

Using logical symbols such as ^ “and,” 8 “for any,” 9 “there exists,” and )
“implies,” we can formally define the meanings of stable, uniformly stable,

and unstable equilibriums (note that the equilibrium under consideration is the

origin in Rn):

Stable

8e>0 8t0>0 9d e; t0ð Þ>0 8t � t0 x t0ð Þk k<d e; t0ð Þ ) xðtÞk k<e

Uniformly Stable

8e>0 8t0>0 9d eð Þ>0 8t � t0 x t0ð Þk k<d eð Þ ) xðtÞk k<e

Unstable

9e>0 9t0>0 8d>0 9T � t0 x t0ð Þk k<d ^ xðTÞk k>e (8.17)

For two-dimensional dynamics, Lyapunov stability of the origin admits a simple

geometrical interpretation (Fig. 8.7).

The origin is stable if given a sphere with a radius e, one can find a smaller sphere

whose radius is d � e, such that all trajectories that start in the smaller sphere will

continue to evolve within the larger sphere, for all t � t0 . The origin is uniformly

stable ifd is independent of t0. Finally, the origin is unstable if there exists an e-sphere
and an initial time t0, such that no matter how close to the origin a trajectory starts, it

will exit this sphere at some finite time T.
Such a geometrical explanation of Lyapunov stability can be easily extended to

n-dimensional dynamics (8.15) (Fig. 8.8).

x1

2x

0

x (t0)

x(t)δ (e,t0)

e

Fig. 8.7 Geometric interpretation of Lyapunov stability for two-dimensional dynamics
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In essence, Lyapunov stability of the origin means that given an outer-sphere

Be ¼ x 2 Rn : xk k � ef g in the system state space Rn, one can find an inner-sphere

Bd ¼ x 2 Rn : xk k � df g 
 Be , such that any trajectory that starts in the inner-

sphere Bd will evolve inside the outer-sphere Be, for all future times.

A unique feature of nonlinear dynamical systems is their ability to display a

completely different behavior in various domains. For example, systems that are

stable in a neighborhood of the origin may become unstable, or go to a different

equilibrium, if their initial conditions are chosen outside of this neighborhood. For

these reasons, we need to be able to clearly distinguish between local and global

stability.

The local feature of Lyapunov stability definitions (8.17) is understood in the

sense that for a given outer-sphere Be , one must find a set of initial conditions

(an inner-sphere Bd) such that the resulting trajectories stay within the outer-sphere

Be. It is easy to see that if the origin is stable, then for an outer-sphere Be1 of a bigger

radius e1>e, the same inner-sphere Bd can be used to show stability of the system

equilibrium. Suppose that the radius of the inner-sphere can be increased indefi-

nitely, as the radius of the outer-sphere increases. In other words, let us suppose that

d e; t0ð Þ ! 1, ase!1. This would indicate that the set of initial conditions, which

lead to stable trajectories, is getting bigger. Eventually, one can declare that starting

anywhere in Rn , a trajectory will not deviate too far from where it began and as a

result, the stability property becomes global.

Definition 8.3. Global Stability The origin is globally stable if it is stable and
lim
e!1 d e; t0ð Þ ¼ 1.

Dependence of the system trajectories on a selected initial time t0 is yet another
unique feature of nonautonomous systems. This is in contrast to autonomous

dynamics _x ¼ f ðxÞ , whose solutions depend only on the difference t� t0ð Þ . For
nonautonomous systems, stability of an equilibrium will in general be dependent on

the selected initial time t0. That is why we had to introduce the notion of uniform

stability. Also, in the definition (8.17), we emphasized that there would exist

Be
0

x(t0)

x(t)

Bd

Fig. 8.8 Geometric interpretation of Lyapunov stability in n-dimensional state space
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equilibriums whose stability may or may not depend on the system initial

conditions near the equilibrium. We had to also characterize the notion of instability

which was merely a logic negation of the stability concept. The next example

illustrates differences between the notions of stability and uniform stability.

Example 8.9 Stable but Not Uniformly Stable Equilibrium Consider the linear

time-dependent dynamics

_xðtÞ ¼ 2 t 3 sinðtÞ � 1ð Þ xðtÞ

with the initial condition x t0ð Þ. The system solution is

xðtÞ ¼ x t0ð Þ exp

ðt
t0

2 t 3 sin tð Þ � 1ð Þ dt
2
4

3
5

¼ x t0ð Þ exp 6 sin t� 6 t cos t� t2 � 6 sin t0 þ 6 t0 cos t0 þ t20
� �

The obvious inequality

6 sin t� 6 t cos t� t2 � 6þ t� t2
� �
|fflfflfflffl{zfflfflfflffl}
�1

4

� 6:25

implies

xðtÞj j � x t0ð Þj j exp 6:25� 6 sin t0 þ 6 t0 cos t0 þ t20
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c t0ð Þ

¼ x t0ð Þj j c t0ð Þ

Clearly, the origin is the system equilibrium. Is it stable? Since

xðtÞj j � x t0ð Þj j c t0ð Þ

it is evident that given any positive e, we can select d e; t0ð Þ ¼ e
c t0ð Þ and immediately

verify that for all x t0ð Þj j<d, the relation

xðtÞj j � x t0ð Þj j c t0ð Þ � e
c t0ð Þ c t0ð Þ ¼ e

takes place for all t � t0. According to (8.17), we have proved stability of the origin.
Is this equilibrium uniformly (in t0) stable? In order to answer that question, we

need to study sensitivity of the system solutions due to changes in t0. Toward that

end, let t0 ¼ 2 k p, where k is a fixed positive integer. We can examine xðtÞ at t ¼ t0
þp ¼ 2k þ 1ð Þ p and get

x 2k þ 1ð Þ pð Þ ¼ x 2 k pð Þ exp 4 k þ 1ð Þ 6� pð Þ pð Þ
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or, equivalently,

x 2k þ 1ð Þ pð Þ
x 2 k pð Þ ¼ exp 4 k þ 1ð Þ 6� pð Þ pð Þ>1; 8k � 1

So, the sequence x 2 k pð Þ tends to infinity, as k ¼ 1; 2; . . . ; 1. In other words,

there is an unboundedly increasing sequence of initial time instants t0ðkÞ ¼ 2 k p
which leads to an unboundedly increasing sequence of the initial values for the

system solutions x t0ðkÞð Þ ¼ x 2 k pð Þ !
k!1
1. Therefore, given any e>0, there is no

d eð Þ independent of t0 that would satisfy the uniform stability definition in (8.17).□
As shown in Example 8.9, in addition to being stable, perturbed trajectories may

asymptotically converge back to the equilibrium. This observation naturally leads

to the definitions of (a) asymptotic stability, (b) uniform asymptotic stability, and

(c) global uniform asymptotic stability.

Definition 8.4. Asymptotic Stability The equilibrium point x� ¼ 0 of (8.15) is
asymptotically stable if it is stable and there exists a positive constant c ¼ c t0ð Þ such
that xðtÞ ! 0 as t!1, for all x t0ð Þk k � c.

Definition 8.5. Uniform Asymptotic Stability The equilibrium point x� ¼ 0 of
(8.15) is uniformly asymptotically stable if it is uniformly stable and there exists
a positive constant c, independent of t0 , such that xðtÞ ! 0 as t!1 , for all
x t0ð Þk k � c , uniformly in t0 , where the limit uniformity is understood in the

following sense:

9c 8�> 0 9T �ð Þ 8t � t0 þ T �ð Þ 8 xðtÞk k � c ) xðtÞk k � �

Definition 8.6. Global Uniform Asymptotic Stability The origin is globally
uniformly asymptotically stable if it is uniformly asymptotically stable and lim

e!1 d eð Þ
¼ 1.

Achieving uniform asymptotic stability is a highly desirable property in any

control design since asymptotically stable systems are able to maintain their closed-

loop performance in the presence of perturbations and disturbances. We shall see

that, in general, adaptive controllers achieve uniform stability and force the system

tracking errors to converge to zero, asymptotically in time. This key property is

lesser than uniform asymptotic stability, but it is greater than uniform stability; that

is, in addition to being uniformly stable, certain signals (such as tracking errors) in

the closed-loop system asymptotically tend to zero, while others are kept uniformly

stable and bounded.

8.5 Lyapunov Stability Theorems

In his seminal work on stability of motion, A.M. Lyapunov introduced two theorems,

known as Lyapunov’s indirect (first) and direct (second) methods, for assessing

stability of nominal solutions that arise in dynamical systems, which are governed
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by a finite number of coupled ordinary differential equations. Lyapunov’s methods

provide verifiable sufficient conditions for stability of a nominal trajectory. Moreover,

neither method requires an explicit knowledge of the system solutions.

Lyapunov’s indirect method allows one to draw conclusions about the stability

of an equilibrium point (the origin) for a nonlinear autonomous n-dimensional

system _x ¼ f ðxÞ. The method is based on the linearization of the system dynamics

around an equilibrium. In order for the original nonlinear system to be locally stable

in the sense of Lyapunov, it is sufficient to show that the system Jacobian matrix

A ¼ @ f ðxÞ
@ x

���
x¼0

has all its eigenvalues lif gi¼1; 2; ...; n in the complex open left-half

plane: Re li<0; 8i ¼ 1; 2; . . . ; n. If Re li>0 for at least one eigenvalue of A, then
the origin is unstable. If A has eigenvalues on the jo-axis, then the indirect method

of Lyapunov does not apply. Further details, including formal proofs, can be found

in [1–3]. From the control design point of view, the indirect method of Lyapunov

provides the much needed theoretical foundation for application of linearization-

based controllers in nonlinear systems.

Our main interest will be focused on Lyapunov’s direct method. Specifically, we

will discuss the method formulation and its applications to analyzing uniform

stability of nonautonomous systems (8.15). We begin with the definitions of

positive and negative-definite (semidefinite) functions. Subsequently, we will

utilize these functions to constructively determine stability of an equilibrium point.

Definition 8.7. Positive-Definite and Semidefinite Functions A scalar function
VðxÞ : Rn ! R of a vector argument x 2 Rn is called locally positive definite
(semidefinite) if Vð0Þ ¼ 0 , and there exists a constant r>0 such that VðxÞ> 0

VðxÞ � 0ð Þ , for all nonzero x 2 Rn from the r -neighborhood of the origin Br ¼
x 2 Rn : xk k � rf g. The function is said to be globally positive definite if Br ¼ Rn.

Definition 8.8. Negative-Definite and Semidefinite Functions A scalar function
of VðxÞ : Rn ! R of a vector argument x 2 Rn is called locally (globally) negative
definite (semidefinite) if the function �VðxÞð Þ is locally (globally) positive definite
(semidefinite).

Example 8.10 Sign-Definite and Semidefinite Functions Consider a scalar function
of a scalar argument: VðxÞ ¼ x2 9� x2ð Þ . A graphical sketch of this function is

shown in Fig. 8.9.

It is easy to see that this function is locally positive definite on the open interval

�3; 3ð Þ, and it becomes positive semidefinite on the closed interval �3; 3½ 	. On
the other hand, the function VðxÞ ¼ x2 is globally positive definite. Furthermore, if

P 2 Rn�n is a symmetric positive-definite (semidefinite) matrix, then the function

VðxÞ ¼ xT P x is globally positive definite (semidefinite), while WðxÞ ¼ �xT P x
represents a globally negative-definite (semidefinite) function. □

Next, we introduce the concept of the time derivative of a scalar function along

the trajectories of a differential equation. Suppose that we are given a scalar

continuously differentiable function VðxÞ , whose vector argument xðtÞ 2 Rn

represents a time-varying trajectory of the nonautonomous system (8.15). We can

compute the time derivative of V xðtÞð Þ along the system solution xðtÞ:
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_VðxÞ ¼
Xn
i¼1

@ V

@ xi
_xi ¼

Xn
i¼1

@ V

@ xi
fi t; xð Þ ¼ rVðxÞ f t; xð Þ (8.18)

where rVðxÞ ¼ @ V
@ x1

; @ V
@ x2

; . . . ; @ V
@ xn

	 

is the row vector gradient of VðxÞ with

respect to x . We immediately note that the time derivative of VðxÞ along the

trajectories of (8.15) depends not only on the function VðxÞ but also on the system

dynamics under consideration. Changing the latter while keeping the sameVwill in

general yield a different _VðxÞ. We are now fully equipped to formulate the direct

(second) method of Lyapunov.

Theorem 8.5. Lyapunov’s Direct Method for Assessing Uniform Stability of

Nonautonomous Systems Let x� ¼ 0 2 Rn be an equilibrium point for the
nonautonomous dynamics (8.15), whose initial conditions are drawn from a domain
D 
 Rn , with x� 2 D and t0 ¼ 0 . Suppose that on the domain D there exists a
continuously differentiable locally positive-definite function VðxÞ : D! R, whose
time derivative along the system trajectories is locally negative semidefinite:

_VðxÞ ¼ rVðxÞ f t; xð Þ � 0 (8.19)

for all t � 0 and for all x 2 D. Then, the system equilibrium x� ¼ 0 is locally
uniformly stable in the sense of Lyapunov. If in (8.19) _VðxÞ< 0 for all nonzero x and
for all t � 0(the time derivative along the system trajectories is locally negative
definite), then the origin is locally uniformly asymptotically stable. ■

We shall immediately note that Lyapunov’s direct method presents sufficient

conditions for appraising uniform stability (formal proof can be found in [2, Th. 4.8,

pp. 151–153]). These sufficient conditions are expressed in terms of a locally

positive-definite function VðxÞ, which is often called a Lyapunov function candi-

date. If in addition, the strict inequality (8.19) holds, then VðxÞ becomes what is

commonly referred to as a Lyapunov function. In terms of these concepts, Theorem

8.5 states that the origin is a uniformly stable if given the system dynamics,
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Fig. 8.9 Locally positive-definite function from Example 8.10
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a Lyapunov function can be found. Conversely, if a Lyapunov function candidate

does not satisfy the sufficient for stability requirement (8.19), no definite

conclusions can be drawn and the search for a suitable Lyapunov function must

continue.

Let us briefly discuss a geometric interpretation of Lyapunov’s direct method.

Choosing a sufficiently small positive constant c, we can ensure that the level set

Vc ¼ x 2 D : VðxÞ ¼ cf g of the Lyapunov function VðxÞ resides inside D (see

Fig. 8.10).

Then, it is possible to show that the interior set Oc ¼ x 2 D : VðxÞf g , whose
boundary is Vc, is closed and bounded (i.e., compact). For any x 2 Vc, the gradient

row vector rVðxÞ points perpendicular to the tangent hyperplane that touches

the level set at x. Also, the inequality (8.19) implies that at any given time t and for

any x 2 Vc, the angle between the gradient vector rVðxÞ and the system dynamics

f t; xð Þ is no less than p
2
. Therefore, the system trajectory will not leave Oc .

Moreover, since V xðtÞð Þ is nonincreasing, then xðtÞ will remain in this set for all

future times. If in addition it is assumed that _VðxÞ<0, then the system trajectories,

starting anywhere inD, will evolve by entering a sequence of diminishing level sets

Vc1 � � � � � Vck � � � �ð Þ with c>c1> � � �>ck> � � �ð Þ, and as a result, these solutions

will asymptotically approach the origin.

The Lyapunov functionVðxÞcan now be viewed as an “energy-like” function for

testing stability of a system. If the values of V do not increase along the system

trajectories, then the origin is uniformly stable. If V strictly decreases, then in

addition to being stable, the system trajectories will approach the origin

asymptotically.

Example 8.11 Consider the scalar system

_x ¼ f t; xð Þ

where f t; xð Þ is locally Lipschitz on an open interval �a; að Þ, f t; 0ð Þ ¼ 0, and

x f t; xð Þ<0 for all t � 0 and all nonzero x 2 �a; að Þ; that is, the graph of f t; xð Þ is
located in the second and the fourth quadrants, uniformly in t and for all x from

�a; að Þ. The system dynamics are shown in Fig. 8.11.

V (x)

0

x (t)

D

f (t,x)

Vc

Ωc

Δ

Fig. 8.10 Geometrical interpretation of Lyapunov’s direct method
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It is clear, that starting anywhere within the open interval �a; að Þ , the system

solutions will asymptotically converge to the origin. Let us now use Lyapunov’s

direct method to show that the origin is uniformly asymptotically stable. Toward that

end, we consider a quadratic Lyapunov function candidate in the form VðxÞ ¼ x2 .
Its time derivative along the system trajectories is strictly negative for all nonzero

x 2 �a; að Þ:

_VðxÞ ¼ 2 x _x ¼ 2 x f t; xð Þ< 0

Consequently, VðxÞ is a Lyapunov function, and, according to Theorem 8.5, the

origin is locally uniformly asymptotically stable. Of course, we already knew the

answer since the system dynamics were scalar and the phase plane analysis method

was readily applicable.

Suppose that the same system is n-dimensional and assume that the vector field

f t; xð Þ satisfies xT f t; xð Þ<0, uniformly in t and for all x from a domainD 
 Rn. We

can use a quadratic Lyapunov function in the form VðxÞ ¼ xTx, show that its time

derivative along the system trajectories is negative,

_VðxÞ ¼ 2 xT _x ¼ 2 xT f t; xð Þ< 0

and, thus, prove the uniform asymptotic stability property of the origin. Note that, in

this case, the phase plane analysis does not apply. □
Lyapunov functions are by no means unique. Recalling the scalar dynamics in

Example 8.11, let us assume that the system is autonomous. We can prove asymptotic

stability using the same Lyapunov function as before. In order to show that it is not

unique, let us consider the following Lyapunov function candidate:

VðxÞ ¼ �
ðx
0

f ðyÞ dy

Since x f ðxÞ<0 for all nonzero x,VðxÞ is positive definite andVð0Þ ¼ 0. Therefore,

it represents a Lyapunov function candidate. The function time derivative along the

system trajectories is negative:

a x
0− a

x = f (t, x).

Fig. 8.11 System dynamics from Example 8.11
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_VðxÞ ¼ �f ðxÞ _x ¼ �f 2ðxÞ< 0

for all nonzero x 2 �a; að Þ. Consequently, the origin is uniformly asymptotically

stable. □
The uniform asymptotic stability property calls for a subset of D. Starting there,

the system solutions will converge to the origin. This subset is called the region of

attraction. We shall study the case when the system domain and the region of

attraction both equal Rn. This will lead to the concept of global uniform asymptotic

stability.

Definition 8.9. If the region of attraction of a uniformly asymptotically stable
equilibrium is Rn, then the equilibrium is said to be globally uniformly asymptoti-
cally stable.

The next definition leads to a verifiable condition for a Lyapunov function to

yield global uniform stability properties.

Definition 8.10. A Lyapunov function candidate VðxÞ: Rn ! R defined such that
lim
xk k!1

VðxÞ ¼ 1 is called radially unbounded.

Let Vc ¼ x 2 Rn : VðxÞ ¼ cf g denote a level set of a radially unbounded

Lyapunov function candidate VðxÞ : Rn ! R , and let Oc ¼ x 2 Rn : VðxÞ � cf g
be the union of the interior set of Vc and Vc itself. Consider a converging sequence

lim
n!1 xn ¼ a, with all xn from Oc. Then, the limit point amust also be in Oc. In fact,

since VðxÞ is continuous on Rn and V xnð Þ � c for all n ¼ 1; 2; . . . , we get c � lim
n!1

V xnð Þ ¼ VðaÞ, and consequently a 2 Oc . We have proved that every converging

sequence in Oc has its limit point in the same set. Hence, Oc is a closed set.

Moreover, we can prove that Oc is bounded. This fact can be shown by contradic-

tion. Suppose that Oc is unbounded. Then, there must exist a sequence of points

xnf g 2 Oc, whose limit is infinity. SinceVðxÞ is continuous and radially unbounded,
then c � lim

n!1V xnð Þ ¼ 1 , which is an obvious contradiction to the argument.

Therefore, Oc is a bounded set. Since it is also closed and belongs to Rn , Oc is

compact.

The next theorem states that if a radially unbounded Lyapunov function can be

found, then the local uniform (asymptotic) stability properties from Theorem 8.5

become global. When applied to autonomous systems, this result is also known as

Barbashin–Krasovskii–LaSalle theorem [1, 2].

Theorem 8.6. Let x ¼ 0be an equilibrium point for (8.15). LetVðxÞ : Rn ! Rbe a
radially unbounded Lyapunov function of the system. Then, the system equilibrium
is globally uniformly asymptotically stable. ■

Simple examples of radially unbounded Lyapunov function candidates include

quadratic functions of the form VðxÞ ¼ xT P x , where P 2 Rn�n is a symmetric

positive-definite matrix.

Example 8.12 The rotational motion of a rigid aircraft in three-dimensional space

is governed by the following system of ordinary differential equations:
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J _o ¼ � o� Jo½ 	 þM

where o ¼ p q rð ÞT is the body angular velocity vector, with the roll ðpÞ ,
the pitch ðqÞ, and the yaw ðrÞ velocity components, J 2 R3�3 is the aircraft inertia
matrix:

J ¼
Jx x 0 �Jx z
0 Jy y 0

�Jx z 0 Jz z

0
@

1
A

with positive components Jx x; Jy y; Jz z; Jx z
� �

, and M 2 R3 is the vector of

aerodynamic/propulsive moments, computed with respect to the vehicle center of

gravity. We assume that

det J ¼ Jy y Jx x Jz z � J2x z
� �

>0

and also suppose that the moment vectorM represents the system control input. The

control task is to selectM such that the aircraft rotational dynamics become globally

uniformly asymptotically stable. We begin by considering a quadratic Lyapunov

function candidate in the form

V oð Þ ¼ oT Jo

This is indeed a Lyapunov function candidate sinceVð0Þ ¼ 0 and J is symmetric

and positive definite. We proceed to compute the time derivative of V oð Þ along the
trajectories of the aircraft rotational dynamics:

_V oð Þ ¼ 2oT J _o ¼ 2oT � o� Jo½ 	 þMð Þ ¼ 2oT M

According to Theorem 8.5, we need _V oð Þ<0. This can be easily achieved if we

select the control input as a weighted negative feedback on o,

M ¼ �Po

with a symmetric positive-definite matrix of weights P 2 R3�3 . Then, for any

nonzero angular velocity o 2 R3,

_V oð Þ ¼ �2oT Po< 0

and so, the origin is uniformly asymptotically stable. Moreover, since V oð Þ is

radially unbounded, the achieved closed-loop uniform asymptotic stability property

is global. This example illustrates both the practicality and the effectiveness of

Lyapunov’s direct method. Not only we were able to assert the desired stability

property but we did so by using the “inverse” Lyapunov design arguments; that is,

we chose our control input to enforce the sufficient conditions of Theorem 8.5. □
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Example 8.13 For the linear time-invariant (LTI) n-dimensional dynamics,

_x ¼ A x

with a Hurwitz (stable) matrix A 2 Rn�n , consider a quadratic Lyapunov function

candidate VðxÞ ¼ xT P x, where P 2 Rn�n is a symmetric positive-definite matrix.

LetQ 2 Rn�n be another symmetric positive-definite matrix. The time derivative of

VðxÞ along the system solutions is

_VðxÞ ¼ xT P _xþ _xT P x ¼ x PAþ AT P
� �

x

If we can make this derivative negative for all nonzero x 2 Rn , then we would

prove global uniform asymptotic stability of the origin. In order to do that, we

define P to be the solution of the so-called Lyapunov algebraic equation:

PAþ AT P ¼ �Q

It turns out that given any symmetric positive definiteQ, the Lyapunov algebraic
equation has the unique symmetric positive-definite solutionP ¼ PT > 0 if and only

if A is Hurwitz [3]. Then,

_VðxÞ ¼ �xT Q x< 0

for all nonzero x 2 Rn , which immediately proves global uniform asymptotic

stability of the origin.

Evidently, since the system is linear and time invariant, we could have proven

asymptotic stability by simply noting that A is Hurwitz. Nevertheless, the

Lyapunov’ arguments allow us to establish an important link between the stability

of LTI systems and the Lyapunov’s direct method. This link is given by the

Lyapunov algebraic equation, and the latter will become the key design component

for adaptive controllers. □

8.6 Uniform Ultimate Boundedness

The concepts of stability in the sense of Lyapunov are formulated with respect to an

equilibrium or a nominal trajectory. Often, systems are designed to operate in the

presence of disturbances and other uncertainties. As a result, the “ideal” definition

of an equilibrium may not apply. Consider the nonautonomous system

_x ¼ f t; xð Þ þ xðtÞ; x t0ð Þ ¼ x0 (8.20)
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subject to a bounded disturbance xðtÞ 2 Rn , with xðtÞk k � xmax . Suppose that

f : 0; 1½ Þ � D! Rn is piece-wise continuous in t, locally Lipschitz in x on

0; 1½ Þ � D , and D 
 Rn is a domain that contains the origin x ¼ 0 . Also,

suppose that f t; 0ð Þ ¼ 0; 8 t � 0. It is easy to see that no matter how small the

disturbance bound xmax is, the origin is no longer an equilibrium point of the

system. Nevertheless, we can still use Lyapunov’ direct method to study

the system behavior outside of the sphere Bxmax
¼ x 2 Rn : xk k � xmaxf g, as if

the origin is the system equilibrium. The main idea is to find a Lyapunov-like

functionVðxÞ for all xoutside of a bigger sphereBr � Bxmax
and then show that in

finite time T the system trajectories enter Br and remain there for all t � T. This
thought will eventually lead us to the concept of uniform ultimate boundedness

(UUB).

Example 8.13 Consider the scalar nonautonomous dynamics

_x ¼ �xþ xðtÞ; x t0ð Þ ¼ x0 > xmax > 0

where xðtÞ is a time-varying unknown bounded by xmax disturbance. Clearly, the

system has no equilibrium points. The system solutions can easily be found:

xðtÞ ¼ e� t�t0ð Þ x0 þ
ðt
t0

e� t�tð Þ x tð Þ dt

We can also compute an upper bound,

xðtÞj j � e� t�t0ð Þ x0j j þ 1� e� t�t0ð Þ
	 


xmax � e� t�t0ð Þ x0j j þ xmax

and show that for any initial condition x0 and any given r> 0, there must exist a

finite time 0 � T x0; rð Þ<1, such that xðtÞj j � xmax þ r, for all t � t0 þ T x0; rð Þ. In
fact, if x0j j � r, then xðtÞj j � e� t�t0ð Þ r þ xmax � r þ xmax, and so T x0; rð Þ ¼ 0. If,

on the other hand, x0j j>r , then it is sufficient to choose T x0; rð Þ ¼ ln
x0j j
r . This

simple argument shows that the system trajectories enter a neighborhood of the

origin Br ¼ x 2 R : xj j � rf g in finite time T x0; rð Þ and continue to evolve within

the neighborhood afterward.

Alternatively, we can also exploit Lyapunov’s direct method to show uniform

ultimate boundedness of the system solutions. Let us utilizeVðxÞ ¼ x2, which in this
case is not a Lyapunov function candidate since the origin is not an equilibrium of

the system. Nevertheless, we proceed to calculate the function time derivative along

the system trajectories:

_VðxÞ ¼ 2 x _x ¼ 2 x �xþ xðtÞð Þ ¼ �2 x2 þ 2 x xðtÞ
� �2 x2 þ 2 xmax xj j ¼ �2 xj j xj j � xmaxð Þ
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Given any positive constant e> 0, it is evident that

_VðxÞ< 0; 8 xj j � xmax þ e

Let r ¼ xmax þ e. Then, the time derivative of V is negative outside of the closed

intervalBr ¼ �r; r½ 	. Next, we are going to show that all solutions that start outside of

Br will reenter the interval within a finite time and will remain there forward in time.

Since _V is negative for all xj j � r, then the solutions starting insideBrwill remain there.

Hence, these trajectories are uniformly bounded in time, that is, xðtÞj j � r , 8t � t0 .
Starting from any x0j j>r, _V is strictly negative in the annulus set r2 � VðxÞ � x20

� �
,

which implies that in this setV xðtÞð Þwill continue to decrease monotonically until the

solution entersBr ¼ xj j � rf g ¼ VðxÞ � r2
� �

, at somefinite timeT x0; rð Þ. From that

time on, the solution will evolve within Br since _V is strictly negative on its boundary

VðxÞ ¼ r2. So again, we conclude that the system solutions are UUBwith the ultimate

bound xðtÞj j � r . Similar to proving stability, the main advantage of applying

Lyapunov’s direct method to establish UUB of trajectories is the fact that the method

does not require the knowledge of an explicit form of the system solutions. □
We now give a formal definition of the UUB concept as it is stated in [2].

Definition 8.11. The solutions of (8.20) are uniformly ultimately bounded with
ultimate bound b if there exist positive constants b and c, independent of t0 � 0, and
for every a 2 0; cð Þ, there is T ¼ T a; bð Þ, independent of t0, such that

x t0ð Þk k � a) xðtÞk k � b; 8 t � t0 þ T (8.21)

These solutions are said to be globally uniformly ultimately bounded if (8.21) holds
for arbitrarily large a.

Graphical interpretation of the UUB concept is shown in Fig. 8.12.

In the definition above, the term “uniform” indicates that the bound b does not

depend on t0. The term “ultimate” means that boundedness holds after the lapse of a

finite time T. The constant c defines a neighborhood of the origin, independent of t0,
such that all trajectories starting in the neighborhood will remain bounded in time.

If c can be chosen arbitrarily large, then the local UUB property becomes global.

The notion of UUB can be considered as a “milder” form of stability in the sense

of Lyapunov (SISL). A brief comparison between the SISL and the UUB concepts

is given below:

• SISL is defined with respect to an equilibrium, while UUB is not.

• Asymptotic SISL is a strong property that is very difficult to achieve in practical

dynamical systems.

• SISL requires the ability to keep the state arbitrarily close to the system

equilibrium by starting sufficiently close to it. This is still too strong a require-

ment for practical systems operating in the presence of uncertainties and

unknown disturbances.

• A boundb in the UUB concept cannot be made arbitrarily small by starting closer

to the system equilibrium (if it has one) or to the origin.
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Next, we present a Lyapunov-based analysis of UUB properties. Suppose that

for a given continuously differentiable positive-definite function VðxÞ , we can

choose two finite positive constants 0< e< c<1 , such that the sets

Oe ¼ VðxÞ � ef g and Oc ¼ VðxÞ � cf g are closed and bounded (i.e., compact).

This would be true if, for example, VðxÞ ¼ xT P x and P is a symmetric positive-

definite matrix. Consider the annulus set in Rn,

L ¼ x 2 Rn : e � VðxÞ � cf g ¼ Oc � Oe

and presume that the time derivative of V xðtÞð Þ along the trajectories of the

nonautonomous dynamical system (8.20) is strictly negative definite inside L:

_V xðtÞð Þ<0; 8 x 2 L; 8 t � t0

Then, a trajectory that starts in the annulus would have to move in a direction

where V xðtÞð Þ is decreasing. Since the annulus boundary consists of the function

level sets, the trajectory would be trapped between the two sets and it would have to

move toward the origin. Thus, inside the annulus, the system solution behaves as if

the origin is a uniformly asymptotically stable equilibrium, which it is not.

Starting from an initial condition x0 ¼ x t0ð Þ at a time instant t0 � 0 , the

corresponding system trajectory xðtÞ will evolve such that the function V xðtÞð Þ
decreases until the trajectory enters (in finite time T) the setOe, where it will remain

afterward.

This argument proves the UUB property of the system solutions, with the

ultimate bound b ¼ max
x2Oe

xk k ¼ max
x2@Oe

xk k , achieved on the boundary @Oe of the

set Oe. The three sets L, Oc, Oe and the UUB bound b are shown in Fig. 8.13. □

t0

b

a

0x

to + T (a, b)
t

x

-a

x(t)

-b

Fig. 8.12 Graphical interpretation of the UUB concept for nonautonomous dynamics
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Example 8.14 LetDdenote a domain inRn, where the system dynamics are defined as

_x ¼ A xþ B e t; xð Þ; x t0ð Þ ¼ x0 (8.22)

with the state x 2 Rn, a Hurwitz matrix A 2 Rn�n, a constant matrix B 2 Rn�m, and
with a bounded function e t; xð Þ: R� Rn ! Rm, e t; xð Þk k � emax, which is assumed

to hold for all t � t0 and x 2 D. Let us choose Q ¼ QT>0 and consider a quadratic

positive-definite function in the form

VðxÞ ¼ xT P x (8.23)

where P ¼ PT > 0 is the unique positive-definite symmetric solution of the

algebraic Lyapunov equation

PAþ AT P ¼ �Q (8.24)

Such a solution exists for any symmetric positive definite Q since A is Hurwitz.

Due to the latter, it is intuitively clear that the trajectories of (8.22) are UUB. Let us

formally prove it.

The time derivative of V along the system trajectories satisfies the following

relation for all t � t0; x 2 Dð Þ,

_VðxÞ¼�xT Qxþ2xT PBe t; xð Þ�� xk k lminðQÞ xk k�2lmaxðPÞ Bk kemaxð Þ (8.25)

0

∂Ωe

x(t)

0x x(t0 +T )
b x =b

Ωe

Ωc Λ

Fig. 8.13 Compact sets in the UUB analysis
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wherelminðQÞ; lmaxðPÞare the minimum and the maximum eigenvalues ofQandP,
respectively. From (8.25), it follows that _VðxÞ<0 for all x that are located outside of
the compact set,

Br ¼ x 2 D : xk k � 2
lmaxðPÞ
lminðQÞ Bk k emax ¼ r


 �
(8.26)

where we have assumed a sufficiently smallemax > 0for the inclusionBr 
 D to hold.

We can define the maximal level set of VðxÞ in D:

Omax ¼ max
c

x 2 D: VðxÞ ¼ cf g ¼ x 2 D : VðxÞ ¼ cmaxf g (8.27)

If the domainD is bounded, then cmax > 0 is finite. This follows from the fact that

VðxÞ is a continuous quadratic function of xand as such, its maximum on a bounded

domain exists and is finite. On the other hand, if D is unbounded, then cmax ¼ 1,

and consequently, Omax is unbounded as well. Either way, existence of this set is

guaranteed.

Let us also define the minimal level set of VðxÞ that contains Br:

Omin ¼ min
c

x 2 Br: VðxÞ ¼ cf g ¼ x 2 @Br: VðxÞ ¼ cminf g (8.28)

where @Br denotes the boundary set of Br. Existence of Omin is guaranteed since Br

is compact and VðxÞ is a continuous function with its minimum value achieved on

the set boundary.

According to (8.25), _VðxÞ<0 for all x from the annulus

L ¼ x 2 Rn : cmin � VðxÞ � cmaxf g (8.29)

Figure 8.14 shows inclusion of the level sets.

Consequently, any trajectory that starts in L will have to enter the interior set of

Omin in finite timeT, and it will remain there for all t � t0 þ T. This proves the UUB
property of the system trajectories.

Next, we are going to estimate the corresponding ultimate bound b. In order to

do this, we introduce the smallest sphere that contains Omin (see Fig. 8.15):

BR ¼ min
c

x 2 Omin : xk k � cf g (8.30)

Since for all x 2 Rn,

lminðPÞ xk k2 � xT P x|fflffl{zfflffl}
VðxÞ

� lmaxðPÞ xk k2 (8.31)
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then for all x 2 Br,

VðxÞ � lmaxðPÞ r2 (8.32)

and, so

Omin ¼ x 2 @Br:VðxÞ ¼ lmaxðPÞ r2 ¼ cmin

� �
(8.33)

For all x 2 Omin, we have

lminðPÞ xk k2 � xT P x ¼ lmaxðPÞ r2 (8.34)

and therefore,

xk k2 � lmaxðPÞ
lminðPÞ r

2 ¼ R2 (8.35)

0Ωmin

D
Ωmax

Br

V

r

V (x)<0

Fig. 8.14 Level sets from Example 8.14

0Ωmin

D

Ωmax

rB

r

V(x)< 0

R

BR

V

Fig. 8.15 Level sets and spheres from Example 8.14
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In other words, the radius of the smallest sphere BR that surrounds Omin is

R ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
(8.36)

Clearly, R> r as it is shown in Fig. 8.15. Finally, substituting the definition of r
from (8.26) into (8.36), we get the ultimate bound for the system trajectories:

b ¼ R ¼ 2 Bk k emax

lmaxðPÞ
lminðQÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

s
(8.37)

Table 8.1 presents all of the key assumptions and relations that were utilized to

establish the UUB result.

In summary, we have established the UUB property of the system (8.22). Our

analysis was based on Lyapunov’s direct method. Specifically, we have shown that

all trajectories that start inOmax will enter the interior ofOmin in finite time and will

evolve inside of this set afterward, with the ultimate bound (8.37). □

8.7 Barbalat’s Lemma

We now turn our attention to n-dimensional nonautonomous systems of the form

_x ¼ f t; xð Þ; x t0ð Þ ¼ x0; f t; 0ð Þ ¼ 0 (8.38)

Table 8.1 UUB related assumptions and conclusions for the system from Example 8.14

Plant dynamics _x ¼ A xþ B e t; xð Þ; x t0ð Þ ¼ x0

Lyapunov equation PAþ AT P ¼ �Q

Lyapunov-like

function
VðxÞ ¼ xT P x

Assumptions A is Hurwitz

e t; xð Þk k � emax; 8x 2 D 
 Rn x 2 D : xk k � 2
lmaxðPÞ
lminðQÞ Bk k emax

n o

 D

UUB xðtÞk k � 2 Bk k emax
lmaxðPÞ
lminðQÞ

ffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ
lminðPÞ

q
; 8t � t0 þ T
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with the vector field f : R� D! Rn defined on a domainD 
 Rn. In order to ensure

existence and uniqueness of the system solutions, we assume that f t; xð Þ is piece-
wise continuous in t and locally Lipschitz-continuous in x, uniformly in t.

Suppose that we have a Lyapunov function candidateVðxÞ : D! R, whose time

derivative along the trajectories of (8.38) satisfies

_VðxÞ ¼ rVðxÞ f t; xð Þ � �WðxÞ � 0 (8.39)

for all x 2 D, whereWðxÞ : D! R is a continuous positive semidefinite function on

D . Then, according to Lyapunov’s direct method, the origin is stable but not

necessarily asymptotically stable, since WðxÞ is not strictly positive definite. Let

E ¼ x 2 D : WðxÞ ¼ 0f g (8.40)

be a set of points in D where W is zero. Outside of E , _VðxÞ< 0. So, one may

conjecture that the system trajectories that start outside ofEwill have to approachE,
as time tends to infinity. This property (if it holds) would be equivalent to the

LaSalle’s invariance theorem [1–3], which is valid for autonomous systems only.

Moreover, if our conjecture holds and if E ¼ 0f g, then the origin would become

asymptotically stable. Before we go any further, let us consider an example.

Example 8.15 In adaptive control, we will often encounter nonautonomous

systems, such as

_e ¼ �eþ y� y�ð Þ ’ðtÞ
_y ¼ �e’ðtÞ

where y� is a constant and ’ðtÞ is a bounded function of time t. This system has

multiple equilibrium points of the form 0; y�ð ÞT . As it turns out later on, this

particular system represents closed-loop tracking error dynamics of an adaptive

controller for a first-order plant. We would like to prove that the error tends to zero,

eðtÞ !
t!1 0, while the parameter yðtÞ remains uniformly bounded in time. Consider a

radially unbounded quadratic Lyapunov function candidate in the form

V e; yð Þ ¼ e2 þ y� y�ð Þ2

and compute its time derivative along the system trajectories:

_V e; yð Þ ¼ 2 e _eþ 2 y� y�ð Þ _y
¼ 2 e �eþ y� y�ð Þ’ðtÞð Þ þ 2 y� y�ð Þ �e’ðtÞð Þ ¼ �2 e2 � 0

So V xðtÞð Þ is decreasing, as a function of time, and therefore, both eðtÞ and yðtÞ
are uniformly bounded. Note that V will continue to decrease until e 6¼ 0. Since V is
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lower-bounded and decreasing, it must tend to a limit, which may not necessarily

be zero. If we can prove that in addition to the function having a limit its

derivative tends to zero, we could argue that since the derivative is proportional

to e2, then e tends to zero as well. The property that relates functions with a limit and

their derivatives is given by Barbalat’s lemma. Essentially, the lemma states that if

a time-dependent function tends to a limit and if its time derivative is uniformly

continuous, then the derivative tends to zero. We shall formulate Barbalat’s lemma

and then return to complete the example. □
We begin with the definition of uniform continuity for a scalar function.

Definition 8.12. Uniform Continuity A function f ðtÞ : R! R is said to be
uniformly continuous if

8 e>0 9 d ¼ d eð Þ>0 8 t2 � t1j j � d) f t2ð Þ � f t1ð Þj j � e

Note that t1 and t2 play a symmetric role in the definition above. The uniform

continuity concept should be compared to the definition of continuity at a point t,
where d ¼ d e; tð Þ becomes t-dependent.

It is not difficult to show that for a scalar continuously differentiable function to

become uniformly continuous, it is sufficient to verify that the function derivative is

bounded (Exercise 8.9). This fact becomes important during stability proofs for

adaptive controllers.

We now state Barbalat’s lemma, whose formal proof can be found in [2].

Lemma 8.1. (Barbalat) Let f : R! R be a uniformly continuous function on

0; 1½ Þ.Suppose that lim
t!1

Rt
0

f tð Þ dt exists and is finite. Then, lim
t!1 f ðtÞ ¼ 0. ■

It is interesting to note that Barbalat’s lemma is in some ways analogous to the

well-known fact for converging infinite series
P1
k¼1

ak, where lim
k!1

ak ¼ 0 represents

a necessary condition for the series to have a finite value.

For continuously differentiable functions, Barbalat’s lemma can be restated as

follows.

Lemma 8.2. Let f : R! R be continuously differentiable on 0; 1½ Þ, and suppose
that lim

t!1 f ðtÞ exists and is finite. If the function derivative _f ðtÞ is uniformly

continuous on 0; 1½ Þ, then lim
t!1

_f ðtÞ ¼ 0. ■
An immediate and a very practical corollary of Barbalat’s lemma can now be

stated.

Corollary 8.1. If a scalar function f : R! R is twice continuously differentiable
on 0; 1½ Þ and has a finite limit, lim

t!1 f ðtÞ<1, and the function second derivative is
bounded, then lim

t!1
_f ðtÞ ¼ 0. ■

In general, the fact that derivative of a function tends to zero does not imply that the

function itself has a limit. Also, the converse is not true. In fact, as the following

examples show, there are no generic relations between functions and their derivatives.
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Example 8.16 As t!1, f ðtÞ ¼ sin ln tð Þ does not have a limit, yet its derivative

_f ðtÞ ¼ cos ln tð Þ
t tends to zero. On the other hand, f ðtÞ ¼ e�t sin e2 tð Þ does tend to zero

as t!1 . However, its derivative _f ðtÞ ¼ �e�t sin e2 tð Þ þ et cos e2 tð Þ tends to

infinity. □

Example 8.15 (continued) Previously, we have shown that the time derivative of

the Lyapunov function candidate V e; yð Þ ¼ e2 þ y� y�ð Þ2 along the system

trajectories was negative semidefinite: _V e; yð Þ ¼ �2 e2 � 0 . The second time

derivative of V is €V e; yð Þ ¼ �4 e _e ¼ �4 e �eþ y� y�ð Þ’ðtÞð Þ . Since ’ðtÞ
is bounded by hypothesis, and eðtÞand yðtÞ were shown to be bounded, it is clear

that €V xðtÞð Þ is uniformly bounded. Hence, _V xðtÞð Þ is uniformly continuous. Also, it

was shown that V xðtÞð Þ, as a function of time, tends to a limit. Then, by Barbalat’s

lemma, _V xðtÞð Þ !
t!1 0, which in turn indicates that eðtÞ tends to zero, as t!1. □

We now return to completion of stability analysis for the system (8.38), where

we have assumed that a Lyapunov function was found to satisfy the inequality in

(8.39). We proceed with Lyapunov-based arguments. SinceV xðtÞð Þ is bounded from
below and _V xðtÞð Þ � 0, then the function has a limit, as t!1, and the system state

x is uniformly bounded. Next, we show that _V xðtÞð Þ is uniformly continuous. We

cannot differentiate an inequality such as (8.39). Instead, we integrate it from t0 to t:

V xðtÞð Þ � V x t0ð Þð Þ � �
ðt
t0

W x tð Þð Þ dt � 0 (8.41)

Rearranging terms gives

ðt
t0

W x tð Þð Þ dt � V x t0ð Þð Þ � V xðtÞð Þ � V x t0ð Þð Þ<1 (8.42)

and, consequently,

lim
t!1

ðt
t0

W x tð Þð Þ dt<1 (8.43)

Since xðtÞ is uniformly bounded and f t; xðtÞð Þ is Lipschitz-continuous uniformly

inx, thenxðtÞ is uniformly continuous in t. Moreover, in view of the fact thatW xðtÞð Þ is
continuous in x,W xðtÞð Þ becomes uniformly continuous in t. This property, coupled
with (8.43), allows for direct application of Barbalat’s lemma, which in this case

states that lim
t!1W xðtÞð Þ ¼ 0. In other words, the system trajectories asymptotically

approach the setEdefined in (8.40), uniformly in time.We have just proved a special

case of LaSalle–Yoshizawa theorem [1], with a Lyapunov function that did not

explicitly depend on time.
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Theorem 8.7. LaSalle–Yoshizawa Starting anywhere in a domain D , all
trajectories of the nonautonomous dynamics (8.38), with a Lyapunov function
satisfying (8.39), uniformly asymptotically approach the set E from (8.40). ■

Example 8.17 In adaptive control design, we will encounter n-dimensional nonau-

tonomous systems in the form

_e ¼ A eþ b K̂ � K
� �
|fflfflfflfflffl{zfflfflfflfflffl}

T

DK

FðtÞ

_̂
K ¼ �gFðtÞ eTP b

where e 2 Rn is the system tracking error, K̂ 2 RN is the adaptive n-dimensional

vector of gains, g is a constant positive adaptation rate, K 2 RN is a constant vector

of ideal (unknown) gains, A 2 Rn�n is Hurwitz, b 2 Rn is a constant vector chosen

such that the pair A; bð Þ is controllable, and FðtÞ 2 RN is the so-called regressor

vector, which is assumed to be uniformly bounded. Finally, P 2 Rn�n is the unique
symmetric positive-definite solution of the algebraic Lyapunov equation

PAþ AT P ¼ �Q

with a symmetric positive-definite matrix Q.
These dynamics can be viewed as a generalization of the scalar system that was

presented and analyzed in Example 8.15. Our immediate goal is to prove uniform

boundedness of all signals and global uniform stability of the origin. Let us consider

a quadratic radially unbounded Lyapunov function candidate in the form

V e; DKð Þ ¼ eT P eþ DKT DK

and compute its time derivative along the system trajectories:

_V e; DKð Þ ¼ _eT Peþ eT P _eþ 2DKT _̂K ¼
¼ Aeþ bDKT F
� �T

Peþ eT P Aeþ bDKT F
� �� 2DKT F e; rðtÞð ÞeTPb

¼�eT Qe� 0

According to Lyapunov’s direct method, this inequality implies global uniform

stability of the origin, as well as uniform boundedness of eðtÞ and DKðtÞ. Then,
because of the system dynamics, _eðtÞ is also uniformly bounded, and so the second

time derivative of the Lyapunov function

€V e; DKð Þ ¼ �2 eT Q _e
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is uniformly bounded. Therefore, _V eðtÞ; DKðtÞð Þ is uniformly continuous in t. At the
same time, since V eðtÞ; DKðtÞð Þ � 0 and _V eðtÞ; DKðtÞð Þ � 0, then the Lyapunov

function itself tends to a limit. Lastly, applying Barbalat’s lemma (in the form of

Corollary 8.1) gives

lim
t!1 eTðtÞP eðtÞ� � ¼ lim

t!1
_V eðtÞ; DKðtÞð Þ� � ¼ 0

and, consequently lim
t!1 eðtÞk k ¼ 0; that is, the system tracking error globally

uniformly and asymptotically tends to the origin, while the rest of the signals

remain uniformly bounded. In the forthcoming chapters, this key property will

enable us to design stable robust adaptive controllers with predictable closed-loop

performance. □

8.8 Summary and Historical Remarks

Theoretical foundations of stability theory for a general class of nonlinear differential

equations were developed and published by Alexander Mikhailovich Lyapunov in his

doctoral thesis on “the general problem of the stability of motion”, which he defended

at the University of Moscow in 1892. Lyapunov’s stability, along with its extensions

due to LaSalle, Yoshizawa, Barbashin, and Krasovskii, provided the necessary

framework for the development of adaptive control. For dynamical systems without

equilibrium, the notion of uniform ultimate boundedness was introduced and

analyzed using Lyapunov’s second method.

Wewould like to emphasize yet again that Barbalat’s lemma constitutes the corner

stone of proving stability for adaptive systems. This lemma allows to assert asymp-

totic stability of the system tracking error based on two facts: (a) The error is square

integrable and (b) the error time derivative is uniformly bounded. Both statements

come from application of Lyapunov’s second method to examine stability of the

system error dynamics. Barbalat’s lemma has been independently derived by many

authors, but the original work was attributed to Barbalat by V.M. Popov in his book

“Hyperstability of Control Systems,” published by Springer-Verlag in 1973.

8.9 Exercises

Exercise 8.1. Starting at different initial conditions, simulate the system dynamics

in Example 8.1. Comment on the system behavior near and at the origin.

Exercise 8.2. Derive the system solution in Example 8.1 and prove the stated three

properties.
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Exercise 8.3. Derive the system solution in Example 8.4 and draw the system

phase portrait. Given an initial condition, find a local Lipschitz constant. Prove that

the system dynamics is not globally Lipschitz.

Exercise 8.4. Prove that trajectories of any scalar autonomous ODE (assuming

that they exist) are monotonic functions of time.

Exercise 8.5. Prove the statement from Example 8.6.

Exercise 8.6. For a scalar nonautonomous differential equation in the form _x ¼ �aðtÞ x,
define sufficient conditions on aðtÞ, so that the equilibrium of the scalar dynamics is (a)

stable, (b) asymptotically stable, and (c) uniformly asymptotically stable.

Exercise 8.7. Consider the system

_x1 ¼ x2; _x2 ¼ �g x1ð Þ x1 þ x2ð Þ

where g is locally Lipschitz and gðyÞ � 1 for all y 2 R. Verify that

VðxÞ ¼
ðx1
0

y gðyÞ dyþ x1 x2 þ x22

is globally positive definite and radially unbounded. Use VðxÞ to show that the

system equilibrium point x� ¼ 0 is globally asymptotically stable.

Exercise 8.8. There are theoretical extensions that deal with existence and unique-

ness of IVP-s whose system dynamics are discontinuous in x. Show that the IVP

_x1 ¼ x2 ; xð0Þ ¼ x0
_x2 ¼ �x2 � sgn x1 þ x2ð Þ




does not satisfy the sufficient conditions for existence and uniqueness of its

solution. Nevertheless, a solution does exist. Simulate the system starting from

different initial conditions. Construct phase portrait of the system and argue that

(a) the manifold cðxÞ ¼ x1 þ x2 ¼ 0 is the system global attractor, (b) all system

trajectories reach this manifold in finite time, and (c) the solution “slides” down the

manifold toward the origin.

Exercise 8.9. Prove that a scalar continuously differentiable function is uniformly

continuous if the function derivative is bounded. Using this fact, prove Corollary

8.1.

Exercise 8.10. Consider the n-dimensional LTI controllable system

_x ¼ A xþ b u� KT
x x

� �
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with a Hurwitz matrix A. Suppose that Kx 2 Rn�1 is constant and unknown. Let

rðtÞ 2 R denote a bounded external command for the system output y ¼ Cx to

follow. The system control input u is chosen as

u ¼ K̂ðtÞ xþ Kr rðtÞ

where Kr ¼ �CA�1 b is the command feedforward gain, and K̂ðtÞ is the time-

variant state feedback gain, whose dynamics are given by the adaptive laws,

_̂K ¼ �g x eTP b

with a positive scalar g and using the unique positive-definite solution P 2 Rn�nof
the Lyapunov algebraic equation PAþ AT P ¼ �Q, where Q 2 Rn�n is symmetric

and positive definite. Let

_xref ¼ A xref þ b r

define the desired dynamics. The system tracking error is e ¼ x� xref . Write down

the tracking error dynamics. Formulate the total closed-loop dynamics by combining

the tracking error dynamics with the adaptive laws. Prove that for any bounded

command r , any constant positive adaptation rate g , and any symmetric positive-

definite matrixQ, the tracking erroreðtÞ tends to zero globally and asymptotically; that

is, the system state x tracks the desired state xref ,with diminishing errors. Argue that in

this case, the system output y ¼ Cx tracks the command rðtÞwith bounded errors and
in the presence of any constant uncertain vector parameter Kx (hint: Use the stability

arguments from Example 8.17).

Exercise 8.11. Using the system and control equations from Example 8.10, choose

n ¼ 2, select your own data, and simulate the corresponding closed-loop system

dynamics. Verify the theoretical predictions of stability and tracking while driving

the desired dynamics with various external bounded commands. Demonstrate (via

simulation tests) the closed-loop system tracking performance in the presence of a

constant uncertain parameter Kx. Discuss your results.
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Chapter 9

State Feedback Direct Model Reference

Adaptive Control

9.1 Introduction

For over 50 years, adaptive systems have decisively remained in the mainstream of

controls and dynamics research. As a result, adaptive control has grown to become

a well-formed scientific discipline. One of the reasons for the continuing popularity

and rapid growth of adaptive control is its clearly defined goal – to enable control of

dynamical systems that operate in the presence of unknown parameters.

Adaptive control research was initiated in the early 1950s. At that time, the

interest in adaptive systems was primarily driven by the design of autopilots for

high-performance aircraft. This was no surprise since newly designed aerial

platforms required control solutions that would provide stable and predictable flight

operations throughout the aircraft’s vast envelope, ranging from subsonic to super-

sonic and even to hypersonic regions.

The last decade has witnessed the development of a coherent theory for adaptive

control, which has led to many practical applications in the areas such as aerospace,

robotics, chemical processes, ship steering, bioengineering, and many others.

A few historical remarks are in order. The original concept of a model reference

adaptive system was proposed byWhitaker et al. in [1, 2]. The main idea behind this

concept was to specify the desired command-to-output performance of a servo-

tracking system that would eventually define the ideal response of the system output

due to external commands. This control concept was later called the “explicit

model following,” and the corresponding architecture became known as the model

reference adaptive control, or in short MRAC. Soon after its introduction, the first

proof of MRAC closed-loop stability using Lyapunov theory was given in 1965 by

Butchart and Shackcloth [3] and also in 1966 by Parks [4]. In the years that followed,

adaptive control theory for a broad class of dynamical uncertain systems was

developed and well documented in several now-classical textbooks [5–8].

A generic block diagram of a system (plant) operating under MRAC controller

is shown in Fig. 9.1.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_9,
# Springer-Verlag London 2013
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In essence, a MRAC system consists of a controller whose parameters (gains)

are updated online using an adaptive law. The latter operates on the system output

and on an external command (a.k.a. the reference input). The command also drives

the reference model that specifies the desired trajectories for the system to follow.

The difference between the reference model output and the system output

constitutes the tracking error, which subsequently is sent to the adaptive law for

online parameter adjustments. Finally, the controller computes its commands based

on the reference input, the system output, and the online adjusted parameters from

the adaptive law. Per design, the adaptive controller forces the system output to

follow the desired external commands while operating in the presence of the plant

uncertainties. For itself, the controller main objective is to maintain consistent

performance of the closed-loop system in the presence of uncertainties and

unknown variations in plant parameters.

When the true plant parameters are unknown, one might attempt to estimate

control gains online using available measurements. This approach is referred to as

the “direct.” Alternatively, the gains can be approximated online by solving system

design equations that relate the plant uncertainties to the known signals in the

system. This is called the “indirect” method. MRAC systems can be designed using

either direct or indirect approaches. There are also design methods available that

merge the two, leading to combined (direct þ indirect) MRAC architectures.

In this chapter, our focus will be on the design, analysis, and evaluation of direct

MRAC systems for continuous plants with uncertain dynamics and full state

measurements.

9.2 Command Tracking

We shall consider command tracking algorithms for continuous dynamic plants

_x ¼ f t; x; u; Y; xð Þ
y ¼ h t; x; u; Y; xð Þ (9.1)

PlantController 

Adaptive Law

Reference ModelExternal
Command

Output

Fig. 9.1 An MRAC closed-loop block diagram
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with vector-parametric constant uncertainties Y and with bounded environmental

disturbances xðtÞ. In (9.1), x 2 Rn denotes the system state, u 2 Rm is the control

input, and y 2 Rm is the regulated output. It is assumed that the entire system state

vector x is available for control synthesis. In other words, the system state can be

measured online.

The problem of tracking a command involves the design of the system control

input u so that the regulated output yðtÞ tracks a given bounded reference signal

rðtÞ 2 Rm; in the presence of the system uncertainties Y and environmental

disturbances xðtÞ. Specifically, we are looking for a control input that would force

the output tracking error

eyðtÞ ¼ yðtÞ � rðtÞ (9.2)

to become sufficiently small, as t!1:Moreover, it is required that during

tracking, all the signals in the corresponding closed-loop system remain uniformly

bounded in time.

If eyðtÞ !
t!1 0, then we assert that asymptotic output tracking has been achieved.

In general, asymptotic tracking may not be feasible, and in that case, our goal would

be to achieve uniform ultimate boundedness of the tracking error

eyðtÞ
�� �� � e; 8 t � T (9.3)

where e > 0 is the desired tracking tolerance, T is a finite time instant, and �k k
denotes a vector norm. A brief review of vector norms was given in Chap. 1.

9.3 Direct MRAC Design for Scalar Systems

We begin with a scalar plant whose dynamics are of the form

_x ¼ a xþ b uþ f ðxÞð Þ (9.4)

where x is the system state and u is the control input, while a and b represent

unknown constant parameters. We assume that the sign of b is known, which is

equivalent to saying that the system is controllable. The system dynamics depend

on the unknown function f ðxÞ defined as a linear combination of N known basis

functions ’iðxÞ with N unknown constants yi

f ðxÞ ¼
XN
i¼1

yi ’iðxÞ ¼ yT FðxÞ (9.5)

where FðxÞ ¼ ’iðxÞ . . . ’iðxÞð ÞT 2 RN denotes the known regressor vector,

whose components’iðxÞ are assumed to be Lipschitz-continuous in x. So, the scalar
model we consider here is

9.3 Direct MRAC Design for Scalar Systems 265

http://dx.doi.org/10.1007/978-1-4471-4396-3_1


_x ¼ a xþ b uþ yTFðxÞ� �
(9.6)

A stable reference model is given. Its dynamics are described by a first-order

differential equation in the form

_xref ¼ aref xref þ bref rðtÞ (9.7)

where aref<0 and bref are the desired constants and rðtÞ is the reference input

command. The reference model parameters must be chosen to represent the

desired response due to bounded commands. For example, the designer may select

bref ¼ �aref so that the DC gain of the reference dynamics becomes unity, and then

select aref such that the reference system time constant is as small as desired.

The control objective of interest is to asymptotically track the state xref of the
reference model (9.7), which can be driven by any bounded command rðtÞ . In
other words, we need to design a control law uðtÞ, such that the state tracking error

eðtÞ ¼ xðtÞ � xref ðtÞ globally uniformly asymptotically tends to zero, as t!1 ,

while all signals in the corresponding closed-loop system remain uniformly

ultimately bounded in time.

The required command tracking task must be accomplished in the presence of

N þ 2ð Þ unknown constant parameters a; b; y1; . . . ; yNf g.
First, we define the “ideal” control solution, as if the unknown parameters were

known. The ideal control is composed using the (feedback þ feedforward)

architecture

uideal ¼ kx xþ kr r � yT FðxÞ (9.8)

where kx and kr represent the ideal feedback and feedforward gains, respectively.

Substituting (9.8) into (9.6) gives the system closed-loop dynamics:

_x ¼ aþ b kxð Þ xþ b kr rðtÞ (9.9)

Comparing (9.9) with the desired reference model dynamics (9.7), it follows that

the ideal gains kx and kr must satisfy the following two algebraic equations:

aþ b kx ¼ aref b kr ¼ bref (9.10)

These relations are called the matching conditions. It is clear that for scalar

plants, the unknown ideal gains, kx and kr , in (9.10) always exist. As we shall see

later, this will not be the case for multidimensional dynamics.

Based on (9.8), we propose a tracking control solution in the form

u ¼ k̂x xþ k̂r r � ŷT FðxÞ (9.11)
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where the feedback gain k̂x , the feedforward gain k̂r , and the estimated vector of

parameters ŷ will be determined to achieve global uniform asymptotic tracking of

the reference model trajectories. Toward that end, we substitute (9.11) into the

system dynamics (9.6)

_x ¼ aþ b k̂x
� �

xþ b k̂r r � ŷ� y
� �T

FðxÞ
� �

(9.12)

and rewrite the latter using the matching conditions (9.10)

_x ¼ aref xþ b kr|{z}
bm

r þ b k̂x � kx
� �
|fflfflfflfflffl{zfflfflfflfflffl}

Dkx

xþ b k̂r � kr
� �
|fflfflfflfflffl{zfflfflfflfflffl}

Dkr

r � b ŷ� y
� �
|fflfflfflffl{zfflfflfflffl}

Dy

T
FðxÞ (9.13)

where

Dkx ¼ k̂x � kx; Dkr ¼ k̂r � kr; Dy ¼ ŷ� y (9.14)

denote parameter estimation errors. Then, the closed-loop dynamics of the system

tracking error signal

eðtÞ ¼ xðtÞ � xref ðtÞ (9.15)

can be obtained by subtracting (9.7) from (9.13):

_eðtÞ ¼ aref eþ b Dkx xþ Dkr r � DyT FðxÞ� �
(9.16)

We are going to choose adaptive gains k̂x; k̂r; ŷ
� �

to enforce global uniform

asymptotic stability of the origin. This will be accomplished through the inverse

Lyapunov design approach, where we would choose a Lyapunov function candidate

and then select adaptive laws such that the function time derivative becomes

nonpositive, when evaluated along the trajectories of the error dynamics (9.16).

As a result, the tracking error would asymptotically converge to the origin, and so

the system state would asymptotically track the state of the reference model.

Let us consider a quadratic Lyapunov function candidate in the form

V e; Dkx; Dkr; Dyð Þ ¼ e2 þ bj j g�1x Dk2x þ g�1r Dk2r þ DyT G�1y Dy
� �

(9.17)

where scalars gx > 0, gr > 0, and a constant symmetric positive-definite matrix

Gy 2 RN�N are the rates of adaptation. Taking the time derivative of V , along the

trajectories of (9.16), gives
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_V e; Dkx; Dkr; Dyð Þ ¼ 2 e _eþ 2 bj j g�1x Dkx
_̂
kx þ g�1r Dkr

_̂
kr þ DyT G�1y

_̂y
� �

¼ 2 e aref eþ b Dkx xþ Dkr r � DyT FðxÞ� �� �
þ 2 bj j g�1x Dkx

_̂
kx þ g�1r Dkr

_̂
kr þ DyT G�1y

_̂y
� �

¼ 2 aref e
2 þ 2 bj j Dkx x e sgnðbÞ þ g�1x

_̂
kx

� �� �
þ 2 bj j Dkr r e sgnðbÞ þ g�1r

_̂
kr

� �� �
þ 2 bj jDyT �FðxÞ e sgnðbÞ þ G�1y

_̂y
� �

(9.18)

In order to enforce closed-loop stability, it is sufficient to choose adaptive laws

such that _V e; Dkx; Dkr; Dyð Þ � 0. Indeed, if we select

_̂
kx ¼ �gx x e sgnðbÞ
_̂
kr ¼ �gr r e sgnðbÞ
_̂y ¼ Gy FðxÞ e sgnðbÞ ð9:19Þ

then the time derivative of V , computed along the trajectories of (9.16), becomes

negative semidefinite

_V e; Dkx; Dkr; Dyð Þ ¼ 2 aref|{z}
<0

eðtÞ2 � 0 (9.20)

which immediately implies that the signals e; Dkx; Dkr; Dyð Þ are uniformly

bounded in time. The latter, coupled with the fact that xref ; rð Þ are bounded and y
is a constant vector, means that the system state x and the estimated vector of

parameters ŷ are uniformly bounded. Moreover, since the components ’iðxÞ of the
regressor vector FðxÞ are Lipschitz-continuous functions of x, which was proven to

be bounded, then the regressor components themselves are uniformly bounded.

Hence, the control signal u in (9.11) is uniformly bounded as well. Consequently,

both _x and _xref are uniformly bounded.

Differentiating (9.20) results in

€V e; Dkx; Dkr; Dyð Þ ¼ 4 aref eðtÞ _eðtÞ (9.21)

Therefore, €V is bounded, and consequently, _V is a uniformly continuous function of

time. SinceV is lower bounded and _V is negative semidefinite, thenV, as a function of
time, must have a finite limit. We can now use Barbalat’s lemma to arrive at

lim
t!1

_VðtÞ ¼ 0 (9.22)
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and because of (9.20), we conclude that the tracking error eðtÞ tends to zero

asymptotically, as t!1.

Since the Lyapunov function (9.17) is radially unbounded and it does not depend

explicitly on time, the attained asymptotic stability property is global and uniform,

that is, the closed-loop tracking error dynamics are globally uniformly asymptoti-

cally stable. The command tracking problem is solved. We now recap our formally

proven results in the Theorem 9.1.

Theorem 9.1. For the uncertain scalar dynamical system (9.6), with the controller
(9.11), and the adaptive laws (9.19), the system statexðtÞasymptotically tracks the state
xrefðtÞ of the reference model (9.7), driven by any bounded command rðtÞ, while all the
signals in the closed-loop system remain uniformly bounded. Moreover, the closed-
loop tracking error dynamics (9.16) are globally uniformly asymptotically stable. ■

MRAC design equations for a scalar plant are summarized in the Table 9.1.

It is necessary to make a remark about dynamic behavior of the estimated

parameters ŷ . The fact that the system tracking error e asymptotically tends to

zero does not automatically imply that ŷ converges to its ideal unknown parameter

vector y. What is certain is that the estimated parameters will remain uniformly

bounded during tracking. Nevertheless, there are cases when parameter conver-

gence will take place alongside the desired tracking. A sufficient condition for

parameter convergence is given by the persistency of excitation (PE) [7–8], which

imposes certain restrictions on the commanded signal rðtÞ . We shall define and

discuss PE conditions at a later time.

As in any other control design method, MRAC has its own “tuning knobs.” They

are the rates of adaptations, represented by two positive constants gx; grð Þ and a

symmetric positive-definite matrix Gy. As seen from (9.19), the larger the rates, the

faster the adaptive laws will evolve. One may conjecture that large rates would

result in better and faster closed-loop tracking performance. This is partially true.

Indeed, large rates of adaptation will yield fast tracking. However, this will also

Table 9.1 Direct MRAC design summary for a scalar plant

Open-loop plant _x ¼ a xþ b uþ yTFðxÞ� �
Reference model _xref ¼ aref xref þ bref r

Tracking error e ¼ x� xref

Control input u ¼ k̂x xþ k̂r r � ŷT FðxÞ

Direct MRAC laws
_̂
kx ¼ �gx x e sgnðbÞ
_̂
kr ¼ �gr r e sgnðbÞ
_̂y ¼ Gy FðxÞ e sgnðbÞ
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lead to undesirable oscillations during transient times, when the system regulated

output is trying to get closer to its command. The trade-off between fast tracking

and smooth transients presents a design challenge.

Example 9.1 Helicopter Pitch Dynamics and Control During Hover Unlike a

fixed-wing airplane, angular motion control of a helicopter is achieved by tilting

its main rotor and as a result altering the direction of the rotor thrust vector. This

action induces a change in angular moments acting on the vehicle and results in

pitch, roll, and yaw angular motion.

In hover, the helicopter pitch dynamics depend primarily on the vehicle pitch

rate q and on the applied (by a pilot or an automatic system) longitudinal control

input d , which is equivalent in its effect (also induces a pitching motion) to an

elevator for a fixed-wing vehicle. Assuming constant thrust, while neglecting small

forward and vertical speed components, pitch dynamics of a helicopter during

hover can be approximated by the following scalar differential equation:

_q ¼ Mq qþMd dþ f ðqÞð Þ

whereMq represents the vehicle pitch damping andMd is the elevator effectiveness.

The system also depends on the unknown function f ðqÞ , which models inherent

uncertainties in the helicopter dynamics, both linear and nonlinear.

For simulation purposes, we assume model parameters (unknown constants)

that are representative of a hovering transport helicopter: Mq ¼ �0:61 (rad/s) and

Md ¼ �6:65 (rad/s2). We also define

f ðqÞ ¼ �0:01|fflffl{zfflffl}
y

tanh
360

p
q

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FðqÞ

¼ y FðqÞ

where y ¼ �0:01 is unknown and FðqÞ is the known regressor, and arrive at the

helicopter dynamics:

_q ¼ �0:61 q� 6:65 d� 0:01 tanh
360

p
q

� �� �

Clearly, the origin of the open-loop d ¼ 0ð Þ pitch dynamics becomes locally

unstable, as shown in Fig. 9.2.

Such a system would certainly require active control for stabilization and

command tracking.

Our particular selection of the system parameters in this example is purely

academic. It merely supports the main objective here – to design an MRAC system

and to show its efficacy in coping with linear and nonlinear uncertainties of various

forms and shapes. Toward that end, we use MRAC design equations from Table 9.1

and construct the following adaptive pitch controller:
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d ¼ k̂q qþ k̂qcmd qcmd � ŷT FðqÞ

with the adaptive laws

_̂
kq ¼ gq q q� qref

� �
_̂
kqcmd ¼ gqcmd qcmd q� qref

� �
_̂y ¼ �Gy FðqÞ q� qref

� �
where qref is the desired pitch rate signal generated by the reference model

_qref ¼ 4 qcmd � qref
� �

driven by any bounded time-varying pitch rate command qcmd ¼ qcmdðtÞ. Here, we
have selected aref ¼ �bref ¼ �4.

After several design iterations, we have chosen the rates of adaptation to be

gq ¼ gqcmd ¼ 6000; Gy ¼ 8 . Figure 9.3 shows the closed-loop system response

(pitch rate, deg/s) and the required control effort (elevator deflection, deg) for

tracking a series of step-input commands of different magnitudes.

During this event, the adaptive parameters (solid green, Fig. 9.4) remain

bounded and approach their true unknown values (dashed blue, Fig. 9.4).

The observed parameter convergence is not guaranteed to always take place. For

example, suppose that the same system is required to track a sinusoidal command

(Fig. 9.5).

In this case, the adaptive parameters do not converge to their ideal values

(Fig. 9.6). However, they do remain uniformly bounded, as expected.
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Fig. 9.2 Helicopter open-loop pitch dynamics from Example 9.1
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It is also interesting to compare the adaptive elevator input (Fig. 9.3) against the

ideal signal generated by the fixed-gain controller:

dideal ¼ 1

Md
aref �Mq

� �
qþ bref qcmd

� �� f ðqÞ
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Fig. 9.4 Adaptive parameters from Example 9.1 converge to their ideal values
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Fig. 9.7 shows the comparison data.

In spite of clearly visible similarities, the two control signals also exhibit subtle

differences. Even after the transients have subsided, the MRAC signal has a

tendency to oscillate (Fig. 9.8), while the fixed-gain controller does not.

Summarizing our discussions, we end this example with an observation that in

the two simulation scenarios considered, the pitch rate MRAC system was able to

provide adequate closed-loop command tracking performance while operating in

the presence of linear and nonlinear uncertainties. □

0 5 10 15 20 25 30 35
-3
-2
-1
0
1
2
3

q,
 d

eg
/s

ec

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5

de
le

, 
de

g

Time, sec

Command
Reference
System

Fig. 9.5 Sinusoidal command tracking from Example 9.1

0 5 10 15 20 25 30 35
-0.2

0
0.2
0.4
0.6

k q

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

k q
cm

d

0 5 10 15 20 25 30 35
-15
-10
-5
0
5

th
et

a

Time, sec

x 10-3

Ideal
Adaptive

Ideal
Adaptive

Fig. 9.6 Adaptive parameters during sinusoidal command tracking from Example 9.1

9.3 Direct MRAC Design for Scalar Systems 273



9.4 Dynamic Inversion MRAC Design for Scalar Systems

Dynamic inversion (DI) control for systems with known dynamics represents

a well-known method [9]. In this section, we will demonstrate the design of a

DI-based MRAC system for the scalar uncertain dynamical system

_x ¼ a xþ b uþ yTFðxÞ|fflfflffl{zfflfflffl}
f ðxÞ

(9.23)
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Fig. 9.7 Adaptive and ideal fixed-gain controllers from Example 9.1
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with two unknown constants a; bð Þ and with an unknown function f ðxÞ in the form of

(9.5). Again we assume that the constant vector of ideal parameters y is not known,

while the regressor components ’iðxÞ represent a known set of Lipschitz-continuous
basis functions.We also assume that sgnb is known and that the system is controllable,

that is, bj j � bmin>0, where bmin represents a known lower bound of bj j.
The reference model dynamics are given by (9.7), and the design task remains

the same – find a control input u to force the system state x asymptotically track the

state of the reference model, which is in turn driven by any bounded time-varying

command r.
This particular control problem was addressed and solved in the previous

section, where we derived a direct MRAC system. Here, we shall present an

alternative solution and then compare the two approaches.

We begin by rewriting the system dynamics

_x ¼ â xþ b̂ uþ f̂ ðxÞ � â� að Þ|fflfflffl{zfflfflffl}
Da

x� b̂� b
� �
|fflfflfflffl{zfflfflfflffl}

Db

u� f̂ ðxÞ � f ðxÞ� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Df ðxÞ

(9.24)

where â, b̂ are the estimated values and

f̂ ðxÞ ¼
XN
i¼1

ŷi ’iðxÞ ¼ ŷT FðxÞ (9.25)

is the function approximator. All these quantities will be constructed during the

design process. Also, in (9.24), Da, Db, and Df ðxÞ represent the parameter and the

function approximation errors, respectively. Using (9.25) gives the function

approximation error:

Df̂ ðxÞ ¼ f̂ ðxÞ � f ðxÞ ¼
XN
i¼1

ŷi � yi
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Dyi

’iðxÞ ¼ DyT FðxÞ (9.26)

Following the DI method, let us consider a controller in the form:

u ¼ 1

b̂
aref � â
� �

xþ bref r � ŷ
T
FðxÞ

� �
(9.27)

Substituting (9.27) into the second term of (9.24) yields

_x ¼ aref xþ bref r � Da x� Db u� DyT FðxÞ (9.28)

With the tracking error signal e defined in (9.15), we can now compute the

system tracking error dynamics. Subtracting (9.7) from (9.28) gives
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_e ¼ aref e� Da x� Db u� DyT FðxÞ (9.29)

Consider the following Lyapunov function candidate:

V e; Da; Db; Dyð Þ ¼ e2 þ g�1a Da2 þ g�1b Db2 þ DyT G�1y Dy (9.30)

where ga > 0, gb > 0,Gy ¼ GT
y > 0 are the adaptation rates. The time derivative of

V, evaluated along the trajectories of the error dynamics (9.29), can be computed as

_V e; Da; Db; Dyð Þ ¼2 e _eþ 2 g�1a Da _̂aþ g�1b Db _̂
bþ DyT G�1y

_̂y
� �

¼2 e aref e� Da x� Db u� DyT FðxÞ� �
þ 2 g�1a Da _̂aþ g�1b Db _̂

bþ DyT G�1y
_̂y

� �
¼2 aref e2 þ Da g�1a

_̂a� x e
� �þ Db g�1b

_̂
b� u e

� �
þ DyT G�1y

_̂y� FðxÞ e
� �

(9.31)

Based on (9.31) and in order to make _V � 0, the adaptive laws are chosen as

_̂a ¼ ga x e;
_̂
b ¼ gb u e;

_̂y ¼ Gy FðxÞ e (9.32)

Then,

_V e; Da; Db; Dyð Þ ¼ 2 aref e
2 � 0 (9.33)

and consequently, the four signals e; Da; Db; Dyð Þ are uniformly bounded. Since

rðtÞ is bounded and aref < 0, then xref is also uniformly bounded and because of that

the system state x as well as the three estimated signals â; b̂; ŷ
� �

are uniformly

bounded.

In order to claim uniform boundedness of u from (9.27), we need to protect the

controller from “blowing up” due to the division by b̂. In other words, we need

to modify the adaptive laws (9.32) and enforce boundedness of the estimated

parameter b̂.
Let us consider the following modification of the second equation in the adaptive

laws (9.32):

_̂
b ¼ gb u e; if b̂



 

> bmin _ b̂ ¼ bminsgn b ^ u eð Þ sgn b> 0
� �

0; if b̂


 

 ¼ bmin ^ u eð Þ sgn b<0 :

(
(9.34)

The main motive here is to stop adaptation of b̂ if the parameter reaches its lower

absolute limit value bmin, with a nonzero time derivative
_̂
b. In this case, we would
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prevent the estimated parameter b̂ from crossing the known lower absolute value

bound bmin.

Let us argue that the modification (9.34) does indeed prevent b̂ from crossing its

allowable bound and at the same time, it preserves closed-loop system stability.

Suppose that sgnb> 0. Then, according to (9.34), it is easy to see that starting

with any initial condition b̂ð0Þ> bmin , the estimated parameter will satisfy the

desired lower bound relation b̂ðtÞ � bmin , for all future times. In addition, we

must verify that the proposed modification (9.34) does not adversely affect

closed-loop stability of the tracking error dynamics (9.29). In particular, we need

to ensure that the inequality (9.33) remains in effect. For this to be true, it is

sufficient to show that

Db g�1b
_̂
b� u e

� �
� 0 (9.35)

Let us argue that with the adaptive law modification (9.34), the above relation

does indeed hold.

When b̂> bmin, the adaptive law (9.34) is the same as the corresponding law in

(9.32) and, therefore, _V � 2 aref e
2 � 0 . Suppose that there exists 0 � T<1

such that b̂ðTÞ ¼ bmin. Since b � bmin, then DbðTÞ ¼ b̂ðTÞ � b ¼ bmin � b � 0. If

uðTÞ eðTÞ � 0, then _V ¼ 2 aref e
2 � 0, while

_̂
bðTÞ ¼ gb u e � 0 implying that b̂ðtÞ

increases locally for t � T. On other hand, ifuðTÞ eðTÞ< 0, then according to (9.34),

at t ¼ T:Db g�1b
_̂
b� u e

� �
¼ � Db|{z}

�0
u e|{z}
�0
� 0, and so again, _V � 2 aref e

2 � 0. This

proves the desired properties of (9.34) for sgn b> 0. For sgn b< 0, formal arguments

are similar, and therefore, they will be left as an exercise for the reader.

The adaptive law modification (9.34) enforces the nonpositive sign of _V , and as

such, it contributes to achieving closed-loop system stability. The parameter adapta-

tion dynamics in (9.34) represent a special case of the Projection Operator [6], whose

continuous version will be introduced in Chap. 11.

With the proposed adjustment (9.34), the DI-based adaptive laws (9.32) become

_̂a ¼ ga x e

_̂
b ¼ gb u e; if b̂



 

>bmin _ b̂ ¼ bmin sgn b ^ u eð Þ sgn b>0
� �

0; if b̂


 

 ¼ bmin ^ u eð Þ sgn b< 0

(
_̂y ¼ Gy FðxÞ e

(9.36)

Next, we are going to formally prove that the DI-based adaptive controller

in (9.27) provides global uniform asymptotic tracking of the reference model

state. Since _V � 0, then e; Da; Db; Dyð Þ are uniformly bounded. The latter implies

that x; â; b̂; ŷ
� �

are also uniformly bounded. Due to (9.34), b̂ � b0 and
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consequently, u is uniformly bounded, and so is _x. Since r is bounded, then _xref is
bounded, and consequently, _e is bounded as well. Because of (9.34)

_V e; Da; Db; Dyð Þ � �2 aref


 

 e2 � 0 (9.37)

for all t � 0. Since V is positive definite and its derivative is semi-negative definite,

then V converges to a limit, as a function of time. Integrating both sides of (9.37)

yields

VðtÞ � Vð0Þ � �2 aref


 

 ðt

0

e2 tð Þ dt � 0 (9.38)

or, equivalently:

ðt
0

e2 tð Þ dt � 1

2 aref


 

 Vð0Þ � VðtÞð Þ<1 (9.39)

LetWðtÞ ¼ Ðt
0

e2 tð Þ dt. From (9.39), it follows thatWðtÞ tends to a finite limit, as

t!1. At the same time, its time derivative is _WðtÞ ¼ e2ðtÞ, and so its second time

derivative is bounded: €WðtÞ ¼ 2 e _eðtÞ<1 . Then, _WðtÞ is uniformly continuous.

Finally, we can apply Barbalat’s lemma to conclude that lim
t!1

_WðtÞ ¼ 0, which

immediately implies lim
t!1 e2ðtÞ ¼ 0: The tracking problem is solved, and the

DI-based MRAC design is summarized in Table 9.2.

Let us now illustrate the DI-based MRAC procedure by redesigning the pitch

controller using the helicopter pitch dynamics data from Example 9.1.

Table 9.2 DI-based MRAC design summary

Open-loop plant _x ¼ a xþ b uþ yTFðxÞ

Reference model _xref ¼ aref xref þ bref r

Tracking error e ¼ x� xref

Control input
u ¼ 1

b̂
aref � â
� �

xþ bref r � ŷ
T
FðxÞ

� �

DI-based _̂a ¼ ga x e

_̂
b ¼ gb u e; if b̂



 

> bmin _ b̂ ¼ bmin sgn b ^ u eð Þ sgn b> 0
� �

0; if b̂


 

 ¼ bmin ^ u eð Þ sgn b< 0

(
_̂y ¼ Gy FðxÞ e

MRAC laws
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Example 9.2 DI-Based MRAC Design for Helicopter Pitch Dynamics For the

helicopter pitch dynamics (see Example 9.1)

_q ¼ �0:61 q� 6:65 dþ 0:0665|fflfflffl{zfflfflffl}
y

tanh
360

p
q

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FðqÞ

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðqÞ

the DI-based MRAC system is constructed using the design equations from

Table 9.2. The resulting adaptive pitch controller

d ¼ 1

b̂
aref � â
� �

qþ bref qcmd � ŷ
T
FðqÞ

� �

with the reference model parameters aref ¼ �bref ¼ �4, and with the adaptive laws

_̂a ¼ ga q q� qref
� �

_̂
b ¼ gb d q� qref

� �
; if b̂<� bmin _ b̂ ¼ �bmin ^ d q� qref

� �� �
<0

� �
0; if b̂ ¼ �bmin ^ d q� qref

� �� �
> 0

(

_̂y ¼ Gy FðqÞ q� qref
� �

were given the task to track the same exact step-input commands from Example 9.1.

We assumed Mdj j � bmin ¼ 1 to be the known lower bound and selected b̂ð0Þ ¼ �4
to represent the initial value for the estimated elevator effectiveness. With the

adaptation rates ga ¼ gb ¼ Gy ¼ 200, the closed-loop system pitch rate response

and the corresponding elevator input are shown in Fig. 9.9.

Similar to Fig. 9.3, these simulation data also show adequate command tracking

performance and achievable control input (elevator) values. Comparison of the

DI-based MRAC signal with the ideal fixed-gain controller (Fig. 9.10) reveals

transient oscillations in the MRAC signal.

Moreover, it is interesting to note that the estimated parameters are nowhere near

their ideal unknown values (Fig. 9.11).

For example, the estimated pitch damping â ¼ M̂q remains predominantly near

zero, while its true value a ¼ Mq is negative and much larger than this estimate.

Nevertheless, as predicted by the design, all of the estimated parameters stay

uniformly bounded in time, while the system state tracks the state of the desired

reference model. □
After reviewing the two simulation examples presented in this section, the reader

should be able to appreciate inherent nonlinear features of MRAC systems. Even
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for scalar dynamics, these controllers may yield transient oscillations and adaptive

gain values that do not resemble the true unknowns in the system dynamics.

However, these “undesirable” features are not in conflict with the formally derived

MRAC design. Achieving smooth transients or having adaptive parameters

converge to their ideal values was not formulated as the design goals. Only

asymptotic command tracking was of interest and that goal was fully achieved

despite the system uncertainties.
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Fig. 9.9 Closed-loop tracking performance in Example 9.2
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Fig. 9.10 DI-based MRAC and ideal fixed-gain controller from Example 9.2
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9.5 MRAC Design for Multi-Input Multi-Output Systems

In this section, we will extend applicability of the MRAC design from scalar

dynamics to multi-input multi-output (MIMO) nonlinear systems in the form

_x ¼ A xþ BL uþ f ðxÞð Þ (9.40)

where x 2 Rn is the system state, u 2 Rm is the control input, and B 2 Rn�m is the

known control matrix, whileA 2 Rn�n andL 2 Rm�m are unknown constant matrices.

In addition, it is assumed thatL is diagonal, its elementsli are strictly positive, and the
pair A; BLð Þ is controllable. The uncertainty in L is introduced to model control

failures or modeling errors, in the sense that there may exist uncertain control gains or

the designer may have incorrectly estimated the system control effectiveness.

In (9.40), the unknown possibly nonlinear vector-function f ðxÞ : Rn ! Rm

represents the system matched uncertainty. It is assumed that each individual compo-

nent fiðxÞ of f ðxÞcan be written as a linear combination ofN known locally Lipschitz-

continuous basis functions ’iðxÞ, with unknown constant coefficients. So, we write

f ðxÞ ¼ YT FðxÞ (9.41)

where Y 2 RN�m is a constant matrix of the unknown coefficients and FðxÞ ¼
’1ðxÞ . . . ’NðxÞð ÞT 2 RN is the known regressor vector.

We are interested in the design of a MIMO state feedback adaptive control

law such that the system state x globally uniformly asymptotically tracks the state

xref 2 Rn of the reference model
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Fig. 9.11 Estimated parameters in Example 9.2
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_xref ¼ Aref xref þ Bref rðtÞ (9.42)

where Aref 2 Rn�n is Hurwitz, Bref 2 Rn�m, and rðtÞ 2 Rm is the external bounded

command vector.

We also require that during tracking, all signals in the closed-loop system remain

uniformly bounded. Thus, given any bounded command rðtÞ, the control input u
needs to be chosen such that the state tracking error

eðtÞ ¼ xðtÞ � xref ðtÞ (9.43)

globally uniformly asymptotically tends to zero, that is,

lim
t!1 xðtÞ � xref ðtÞ

�� �� ¼ 0 (9.44)

If matrices A and L were known, one could have calculated and applied the ideal

fixed-gain control law

u ¼ KT
x xþ KT

r r �YT FðxÞ (9.45)

and obtain the closed-loop system:

_x ¼ Aþ BLKT
x

� �
xþ BLKT

r r (9.46)

Comparing (9.46) with the desired reference dynamics (9.42), it follows that for

existence of a controller in the form of (9.45), the ideal unknown control gains, Kx

and Kr, must satisfy the matching conditions

Aþ BLKT
x ¼ Aref

BLKT
r ¼ Bref ð9:47Þ

Assuming that these matching conditions hold, it is easy to see that using (9.45)

yields the closed-loop system which is exactly the same as the reference model.

Consequently, for any bounded reference input signal rðtÞ, the fixed-gain controller
(9.45) provides global uniform asymptotic tracking performance.

Let us at once note that given A; B; L; Aref ; Bref

� �
, there is no guarantee that

the ideal gainsKx; Kr exist such that the matching conditions (9.47) are satisfied. In

other words, the control law (9.45) may not be able to meet the design objective.

However often in practice, the structure of A is known, and the reference model

matricesAref ; Bref are chosen so that the system (9.47) has at least one ideal solution

pair Kx; Krð Þ.
Assuming that Kx; Kr in (9.47) do exist, we consider the following control law:

u ¼ K̂T
x xþ K̂T

r r � ŶT FðxÞ (9.48)
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where K̂x 2 Rn�m; K̂r 2 Rm�m; Ŷ 2 RN�n are the estimates of the ideal unknown

matrices Kx; Kr; Y , respectively. These estimated parameters will be generated

online through the inverse Lyapunov analysis. Substituting (9.48) into (9.40), the

closed-loop system dynamics can be written as

_x ¼ Aþ BL K̂T
x

� �
xþ BL K̂T

r r � Ŷ�Y
� �T

FðxÞ
� �

(9.49)

Subtracting (9.42) from (9.49), we compute the closed-loop dynamics of the

n-dimensional tracking error vector eðtÞ ¼ xðtÞ � xref ðtÞ:

_e ¼ Aþ BL K̂T
x

� �
xþ BL K̂T

r r � Ŷ�Y
� �T

FðxÞ
� �

� Aref xref � Bref r (9.50)

With the matching conditions (9.47) in place, we further get

_e ¼ Aref þ BL K̂x � Kx

� �� �
x� Aref xref

þ BL K̂r � Kr

� �
r � BL Ŷ�Y

� �T
FðxÞ

¼Aref eþ BL K̂x � Kx

� �T
xþ K̂r � Kr

� �T
r � Ŷ�Y

� �T
FðxÞ


 �
ð9:51Þ

Let DKx ¼ K̂x � Kx, DKr ¼ K̂r � Kr, and DY ¼ Ŷ�Y represent the parameter

estimation errors. In terms of the latter, the tracking error dynamics become

_e ¼ Aref eþ BL DKT
x xþ DKT

r r � DYT FðxÞ� �
(9.52)

We introduce rates of adaptation: Gx ¼ GT
x> 0; Gr ¼ GT

r> 0; GY ¼ GT
Y > 0.

Going back to analyzing stability of the tracking error dynamics (9.52), let us

consider a globally radially unbounded quadratic Lyapunov function candidate in

the form

V e; DKx; DKr; DYð Þ
¼ eTP eþ tr DKT

x G
�1
x DKx þ DKT

r G
�1
r DKr þ DYT G�1Y DY

� �
L

� � ð9:53Þ

where P ¼ PT> 0 satisfies the algebraic Lyapunov equation

PAref þ AT
ref P ¼ �Q (9.54)

for some Q ¼ QT > 0 . Then, the time derivative of V , evaluated along the

trajectories of (9.52), can be calculated:
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_V ¼ _eTPeþ eTP _eþ 2 tr DKT
x G
�1
x

_̂KxþDKT
r G
�1
r

_̂Kr þDYT G�1Y
_̂Y

h i
L

� �
¼ Aref eþBL DKT

x xþDKT
r r�DYTFðxÞ� �� �T

Pe

þ eTP Aref eþBL DKT
x xþDKT

r r�DYTFðxÞ� �� �
þ 2 tr DKT

x G
�1
x

_̂KxþDKT
r G
�1
r

_̂Kr þDYT G�1Y
_̂Y

h i
L

� �
¼eT Aref PþPArefð Þeþ 2eTPBL DKT

x xþDKT
r r�DYTFðxÞ� �

þ 2 tr DKT
x G
�1
x

_̂KxþDKT
r G
�1
r

_̂Kr þDYT G�1Y
_̂Y

h i
L

� �
(9.55)

Using (9.54) further yields

_V ¼ �eT Q eþ 2 eTPBLDKT
x xþ 2 tr DKT

x G
�1
x

_̂Kx L
� �h i

þ 2 eTPBLDKT
r r þ 2 tr DKT

r G
�1
r

_̂Kr L
� �h i

þ �2 eTP BLDYT FðxÞ þ 2 tr DYT G�1Y
_̂YL

� �h i
(9.56)

Via the vector trace identity (defined in Chap. 1),

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

DKT
x x|fflffl{zfflffl}
b

¼ tr DKT
x x|fflffl{zfflffl}
b

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

0
B@

1
CA

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

DKT
r r|fflffl{zfflffl}
b

¼ tr DKT
r r|fflffl{zfflffl}
b

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

0
B@

1
CA

eTPBL|fflfflfflffl{zfflfflfflffl}
aT

DYT FðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b

¼ tr DYT FðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

0
@

1
A (9.57)

Substituting (9.57) into (9.56) results in

_V ¼� eT Q eþ 2 tr DKT
x G�1x

_̂Kx þ x eTP B
h i

L
� �

þ 2 tr DKT
r G�1r

_̂Kr þ r eTPB
h i

L
� �

þ 2 tr DYT G�1Y
_̂Y� FðxÞ eTPB

h i
L

� �
(9.58)
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If the adaptive laws are selected as

_̂Kx ¼ �Gx x e
TPB

_̂Kr ¼ �Gr rðtÞ eTP B

_̂Y ¼ GY FðxÞ eTP B (9.59)

then the time derivative of V in (9.58) becomes globally negative semidefinite:

_V ¼ �eT Q e � 0 (9.60)

Therefore, the closed-loop error dynamics are uniformly stable. So, the tracking

error eðtÞ and the parameter estimation errors DKxðtÞ , DKrðtÞ , and DYðtÞ are

uniformly bounded and so are the parameter estimates K̂xðtÞ, K̂rðtÞ, and ŶðtÞ. Since
rðtÞ is bounded and Aref is Hurwitz, then xrefðtÞ and _xrefðtÞ are bounded. Hence, the
system state xðtÞ is uniformly bounded, and the control input uðtÞ in (9.48) is

bounded as well. The latter implies that _xðtÞ is bounded, and thus, _eðtÞ is bounded.
Furthermore, the second time derivative of VðtÞ

€V ¼ �2 eT Q _e (9.61)

is bounded, and so _VðtÞ is uniformly continuous. Since in addition, VðtÞ is lower
bounded and _VðtÞ � 0, then using Barbalat’s lemma gives lim

t!1
_VðtÞ ¼ 0. We have

formally proven that the state tracking error eðtÞ tends to the origin globally,

uniformly, and asymptotically: lim
t!1 xðtÞ � xref ðtÞ

�� �� ¼ 0. The MIMO command

tracking problem for the system dynamics (9.40) is solved. We now formulate

our obtained results as a theorem.

Theorem 9.2. Given MIMO dynamics (9.40) with a control uncertainty L and a
matched unknown function f ðxÞ from (9.41), the MRAC system (9.48), (9.49), (9.50),
(9.51), (9.52), (9.53), (9.54), (9.55), (9.56), (9.57), (9.58), and (9.59) enforces global
uniform asymptotic tracking performance of the reference model dynamics (9.42),
driven by any bounded time-varying command rðtÞ . Moreover, all signals in the
corresponding closed-loop system remain uniformly bounded in time. ■

Table 9.3 summarizes the MIMO MRAC design equations.

Example 9.3 MRAC Control of Delta Wing Dynamics at High Angle of Attack A

sketch of an aircraft equipped with a delta wing is shown in Fig. 9.12.

The wing sweeps sharply back from the fuselage with the angle between the

wing leading edge often as high as 80� and the angle between the fuselage and the

trailing edge of the wing at around 90�. Delta wings are known to be unstable,

especially at high angle of attack (the angle between the aircraft velocity vector and

the fuselage centerline). Yet their primary advantage is aerodynamic efficiency in

high-speed flight [10].
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A delta wing aircraft flying at high angle of attack is open-loop unstable in roll.

This instability is called the “wing rock phenomenon.” It is induced by unsteady

aerodynamic effects acting on the delta wing asymmetrically. As a result, the

aircraft undergoes an unstable rocking motion that needs to be actively controlled.

In this example, we consider a delta wing aircraft whose roll dynamics can be

regulated by ailerons – the movable surfaces that are located symmetrically on the

outboard portions of the aircraft left and right wing segments. Moving the left aileron

down (positive deflection) and the right one up (negative deflection) induces the

right-wing-down rolling motion (positive roll rate) of the aircraft. The difference

between the left and right aileron positions is called the “differential aileron.” This is

the primary control input signal for regulating the aircraft roll dynamics.

We shall make use of a generic delta wing rock dynamic model in the form

_’ ¼ p

_p ¼ y1 ’þ y2 pþ y3 ’j j þ y4 pj jð Þpþ y5 ’3 þ y6 da

where ’ is the aircraft roll angle (rad), p is the roll rate (rad/s), and da is the

differential aileron (control input, rad). The unknown constant parameters are

y1 ¼ �0:018; y2 ¼ 0:015; y3 ¼ �0:062; y4 ¼ 0:009; y5 ¼ 0:021;
y6 ¼ 0:75

Rewriting the model in the form of (9.40) gives

Table 9.3 MIMO MRAC design equations

Open-loop plant _x ¼ A xþ BL uþYTFðxÞ� �
Reference model _xref ¼ Aref xref þ Bref r

Model matching conditions Aþ BLKT
x ¼ Aref ; BLKT

r ¼ Bref

Tracking error e ¼ x� xref

Control input u ¼ K̂T
x xþ K̂T

r r � ŶT FðxÞ

Algebraic Lyapunov equation PAref þ AT
ref P ¼ �Q

MIMO MRAC laws
_̂Kx ¼ �Gx x e

TPB

_̂Kr ¼ �Gr rðtÞ eTPB

_̂Y ¼ GY FðxÞ eTPB
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_’
_p

� �
|fflffl{zfflffl}

_x

¼ 0 1

y1 y2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A

’
p

� �
|fflffl{zfflffl}

x

þ 0

1

� �
|fflffl{zfflffl}

B

y6|{z}
L

da|{z}
u

þ 1

y6
y3 ’j j þ y4 pj jð Þpþ y5’3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f ðxÞ¼YT FðxÞ

0
BBB@

1
CCCA

where the uncertain state-dependent function f ðxÞ is represented by a constant

unknown parameter vector Y and the known regressor vector FðxÞ:

f ðxÞ ¼ 1

y6
y3 y4 y5ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

YT

’j j p pj j p ’3
� �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FðxÞ

¼ �0:0827 ’j j pþ 0:012 pj j pþ 0:028’3

The system control effectivenessL ¼ y6 is assumed to be constant and unknown.

Also unknown are the second row coefficients y1; y2ð Þ in A, as well as the state-

dependent function f ðxÞ.
The reference roll dynamics are defined by the second-order transfer function

’ref

’cmd

¼ o2
n

s2 þ 2 xon sþ o2
n

which represents the desired command-to-response roll angle behavior (using the

Laplace transform). Here, ’ref is the reference roll angle, ’cmd is the commanded

roll angle, and on; xð Þ are the desired natural frequency and the damping ratio,

left aileron

right aileron

engine

fuselage

delta wing

Fig. 9.12 Delta wing aircraft
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respectively. Let pref ¼ _’ref denote the reference roll rate. In state space form, the

reference roll dynamics can be easily written as

_’ref

_pref

� �
|fflfflfflffl{zfflfflfflffl}

_xref

¼ 0 1

�o2
n �2 xon

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aref

’ref

pref

� �
|fflfflfflffl{zfflfflfflffl}

xref

þ 0

o2
n

� �
|fflfflffl{zfflfflffl}

Bref

’cmd|ffl{zffl}
r

Clearly, the matching conditions (9.47) hold. In fact, from

0 1

y1 y2

� �
þ 0

1

� �
y6 KT

x ¼
0 1

�o2
n �2 xon

� �
0

1

� �
y6 KT

r ¼
0

o2
n

� �

it follows that the ideal unknown feedback and feedforward gains are

KT
x ¼ �

1

y6
o2

n þ y1 2 xon þ y2
� �

; KT
r ¼

o2
n

y6

In this example, we have selectedon ¼ 1; rad s= and x ¼ 0:7. So, the ideal gains
are Kx ¼ �1:3093 �1:8867ð ÞT and Kr ¼ 1:3333.

One can verify that the open-loop system, withda ¼ 0, has an unstable equilibrium

at the origin and a limit cycle near ’ ¼ 35� . The limit cycle attracts all open-loop

system trajectories that start on the inside of its boundary, and it repels all the

trajectories with the initial conditions on the outside (see Fig. 9.13).

We use the design equations from Table 9.3 to construct an MRAC system. The

design “tuning knobs” consist of symmetric positive-definite matrices Q, Gx, Gr, and
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Fig. 9.13 Open-loop limit cycle for delta wing roll dynamics in Example 9.3
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Gy , with the last three quantities representing adaptation rates for the adaptive

parameters K̂x , K̂r , and Ŷ, respectively. After several iterations, we have selected

the following data:
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Fig. 9.14 Closed-loop system tracking performance in Example 9.3
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Fig. 9.15 Tracking error and differential aileron in Example 9.3
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Q¼ 1 0

0 10

� �
; Gx ¼

100 0

0 100

� �
; Gr ¼ 100; Gy ¼

100 0 0

0 100 0

0 0 100

0
B@

1
CA

Figure 9.14 shows the system closed-loop response in tracking a series of step-

input commands, with the initial bank angle set to 10�.
The system tracking error quickly dissipates (Fig. 9.15), while the required

control input (differential aileron position) stays within achievable and reasonable

limits.

It is interesting to observe (see Fig. 9.16) that in this case, the estimated feedback

and feedforward gains K̂x; K̂r

� �
converge to their true unknown values.

However, the estimated parameters ŷ3; ŷ4; ŷ5
� �

that correspond to the nonlinear

regressor components have dissimilar tendencies: The first two are quite different
from their ideal counterparts, while the third one does converge to its ideal value
(Fig. 9.17).

Once again, we would like to remark that in general, parameter convergence is

not guaranteed by an MRAC controller (see Theorem 9.2). Only uniform bounded-

ness of all signals in the closed-loop system is certain. In order to emphasize this

point, we encourage the reader to rerun this exact design but with a different bank

angle command profile. For example, choosing’cmd ¼ 0:1745 sin twill result in all
adaptive parameters being very different from their ideal values, yet the closed-loop

system tracking performance will remain acceptable. □
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Fig. 9.16 Estimated feedback and feedforward gains in Example 9.3

290 9 State Feedback Direct Model Reference Adaptive Control



9.6 Summary

Adaptive control was initiated, inspired, and originally motivated by aerospace

applications in the 1950s. The interest in the design of adaptive self-tuning controllers

for practical systems that operate in uncertain environment has never diminished.

The last decade has witnessed many successful demonstrations of adaptive control

technology in aerospace, robotics, auto industry, and bioengineering.

Adaptive controllers have one common goal – to enable a dynamical system to

track external commands while operating in realistic and often uncertain environ-

ment. In this chapter, we have shown how to achieve this goal for a specific class of

multi-input multi-output dynamical systems with matched uncertainties. We have

also demonstrated efficacy of adaptive control through simulation examples such as

(a) helicopter pitch dynamics in hover and (b) wing rock dynamics of a delta wing

at high angle of attack. All simulation data confirmed our theoretical predictions for

MRAC in achieving desired tracking performance and keeping all signals in the

corresponding closed-loop system uniformly bounded in time.

9.7 Exercises

Exercise 9.1. Prove that if some of the diagonal elements li of the unknown

diagonal matrix L in the system dynamics (9.40) are negative and the signs of all

of them are known, then the adaptive laws
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Fig. 9.17 Estimated parameters for nonlinear regressor components in Example 9.3
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_̂Kx ¼ �Gx x e
TPB sgnL

_̂Kr ¼ �Gr rðtÞ eTPB sgnL
_̂Y ¼ GY FðxÞ eTPB sgnL (9.62)

solve the MIMO tracking problem, where sgnL ¼ diag sgn l1; . . . ; sgn lm½ �.
Exercise 9.2. Implement and simulate the system from Example 9.1. Test the

MRAC controller (redesign, if needed) in the presence of various uncertainties

and external commands of your choice. Comment on the system tracking perfor-

mance. Discuss adaptive parameter dynamics and convergence of the estimated

parameters to their true values.

Exercise 9.3. Repeat all tasks from Exercise 9.2 for the DI-based MRAC system in

Example 9.2. Compare closed-loop performance of the two controllers, including

their respective control efforts.

Exercise 9.4. Repeat all tasks from Exercise 9.2 for the MRAC controller and the

system in Example 9.3. Find external commands that would cause the adaptive

parameters to (a) converge to their true values, (b) converge to some constant

values, and (c) not have limits. Is there a benefit for the adaptive parameters to

converge to their true values? For all these cases, compare and discuss the system

tracking performance.
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Chapter 10

Model Reference Adaptive Control with Integral

Feedback Connections

10.1 Introduction

We begin by considering a class of MIMO uncertain systems in the form

_xp ¼ Ap xp þ Bp L uþYT F xp
� �zfflfflfflfflfflffl}|fflfflfflfflfflffl{f xpð Þ0

BB@
1
CCA (10.1)

where xp 2 Rnp is the system state vector, u 2 Rm is the control input,

f xp
� � ¼ YT F xp

� � 2 Rm (10.2)

is the linear-in-parameter state-dependent matched uncertainty, Y 2 RN�m is the

matrix of unknown constant parameters, and F xp
� � 2 RN is the known N-dimen-

sional regressor vector, whose components are locally Lipschitz-continuous

functions of xp . Also, in (10.1), Bp 2 Rn�m is constant and known, Ap 2 Rn�n is

constant and unknown, and L 2 Rm�m is a constant diagonal unknown matrix with

positive diagonal elements. We assume that the pair Ap; Bp L
� �� �

is controllable.

The control goal of interest is bounded command tracking, that is, we need to

design u such that the system regulated output

y ¼ Cp xp 2 Rm (10.3)

tracks any bounded possibly time-varying command ycmdðtÞ 2 Rm , with bounded

errors and in the presence of the system uncertainties Ap; L; Yd

� �
, where the

system output matrix Cp is known and constant.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_10,
# Springer-Verlag London 2013
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Let

eyðtÞ ¼ yðtÞ � ycmdðtÞ (10.4)

denote the system output tracking error. Augmenting (10.1) with the integrated

output tracking error,

eyIðtÞ ¼
ðt
0

ey tð Þdt
0
@

1
A, eyI ¼ ey

s

� �
(10.5)

yields the extended open-loop dynamics

_x ¼ A xþ BL uþ f xp
� �� �þ Bref ycmd (10.6)

where x ¼ eTyI xTp
� �T 2 Rn is the extended system state vector, whose dimension

is n ¼ np þ m. The extended open-loop system matrices are

A ¼ 0m�m Cp

0np�m Ap

	 

; B ¼ 0m�m

Bp

	 

; Bref ¼ �Im�m

0np�m

	 

(10.7)

and

y ¼ 0m�m Cpð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
C

x ¼ Cx (10.8)

represents the extended system controlled output. We will require preservation of

controllability for the extended pair of matrices A; BLð Þð Þ in (10.7). It is not

difficult to show that the extended pair is controllable if and only if the original pair

Ap; Bp L
� �� �

is controllable and det
Ap Bp L
Cp 0m�m

	 

6¼ 0.

To summarize, we are interested in the state feedback output regulation problem

for a generic class of MIMO uncertain dynamical systems in the form

_x ¼ A xþ BL uþYT F xp
� �� �þ Bref ycmdðtÞ

y ¼ C x (10.9)

with known constant matrices A 2 Rn�n, B 2 Rn�m, Bref 2 Rn�m, and C 2 Rm�n; an
unknown constant diagonal positive-definite matrix L 2 Rm�m ; and an unknown

matrix of constant parameters Y 2 RN�m.
The control goal is to force the system regulated output yðtÞ 2 Rm�1 to track any

bounded time-varying reference signal ycmdðtÞ 2 Rm�1, with bounded errors and in

the presence of constant parametric uncertainties A; L; Yð Þ. We shall also require

that the rest of the signals in the corresponding closed-loop system remain

uniformly bounded in time.
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10.2 Control Design

We commence with the assumption about the existence of an adaptive solution to

the MIMO command tracking problem of interest.

Assumption 10.1 Model Matching Conditions. Given a reference Hurwitz matrix

Aref and an unknown positive-definite diagonal constant matrix L, there exists a

constant (possibly unknown) gain matrix Kx 2 Rn�m, such that

Aref ¼ Aþ BLKT
x (10.10)

Using (10.10), we can rewrite the open-loop extended system dynamics (10.9) in

the form

_x ¼ Aref xþ BL u� KT
x xþYT F xp

� �� �þ Bc ycmd (10.11)

and then choose

u ¼ K̂T
x x� ŶT F xp

� �
(10.12)

where K̂xðtÞ 2 Rn�m and ŶðtÞ 2 RN�m are adaptive gains whose dynamics will be

defined later. Substituting (10.12) into (10.11) yields

_x ¼ Aref xþ BL K̂x � Kx

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DKx

T
x� Ŷ�Y

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DY

T
F xp
� �

0
BB@

1
CCAþ Bref ycmd

¼ Aref xþ BL DKT
x x� DYT F xp

� �� �þ Bref ycmd (10.13)

Based on (10.13), we consider the following reference model:

_xref ¼ Aref xref þ Bref ycmd; yref ¼ C xref (10.14)

It is easy to verify that the transfer function Gref ðsÞ from ycmd to yref

yref ¼ C s In�n � Aref

� ��1
Bref

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gref ðsÞ

ycmd (10.15)

has the unity DC gain, where s is the Laplace variable. This feature formally

prescribes the desired output regulation behavior for constant external commands.

We define the state tracking error

e ¼ x� xref (10.16)
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and then subtract (10.14) from (10.13) to obtain the tracking error dynamics:

_e ¼ Aref eþ BL DKT
x x� DYT F xp

� �� �
(10.17)

We now proceed with the Lyapunov-based approach, eventually leading to the

design of stable adaptive laws and a verifiable closed-loop system tracking perfor-

mance. Toward that end, let us consider a radially unbounded Lyapunov function

candidate

V e; DKx; DYð Þ ¼ eT Pref e

þ trace DKT
x G
�1
x DKx L

� �þ trace DYT G�1Y DYL
� �

(10.18)

where Gx ¼ GT
x > 0 and GY ¼ GT

Y > 0 are rates of adaptation and Pref ¼ PT
ref > 0 is

the unique symmetric positive-definite solution of the algebraic Lyapunov equation

PAref þ AT
ref P ¼ �Q (10.19)

with someQ ¼ QT > 0. The time derivative ofV, along the trajectories of (10.17), is

_V e; DKx; DYð Þ ¼ �eT Q eþ 2 eT PBL DKT
x x� DYT F xp

� �� �
þ 2 trace DKT

x G
�1
x

_̂Kx L
� �

þ 2 trace DYT G�1Y
_̂YL

� �
(10.20)

Applying the vector trace identity (valid for any two co-dimensional vectorsa and b),

aT b ¼ trace b aT
� �

(10.21)

results in

_V e; DKx; DYð Þ ¼ �eT Q eþ 2 trace DKT
x G�1x

_̂Kx þ x eT PB
n o

L
� �

þ 2 trace DYT G�1Y
_̂Y� F xp

� �
eT PB

n o
L

� �
(10.22)

If adaptive laws are selected in the form

_̂Kx ¼ �Gx x e
T P B

_̂Y ¼ GY F eT P B ð10:23Þ

then

_V e; DKx; DYð Þ ¼ �eT Q e � 0 (10.24)

which, in turn, proves uniform ultimate boundedness of e; DKx; DYð Þ.
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Let L2 and L1 define the set of all square integrable and bounded functions in a

Euclidean space of interest, respectively.

Relation (10.24) implies that the tracking error signal is square integrable:e 2 L2.
Since ycmd 2 L1; then xref 2 L1; and consequently x 2 L1: Since the ideal

(unknown) parameters Kx; Yð Þ are constant and their estimation errors DKx; DYð Þ
are bounded, then the corresponding estimated values are bounded as well, that is,

K̂x; Ŷ
� �

2 L1.

Since all components of the regressor vector F xp
� �

are locally Lipschitz-

continuous functions of xp 2 L1, then the regressor components are also bounded.

Hence, u 2 L1 and _x 2 L1. Thus, _e 2 L1, which implies that €V 2 L1. Therefore, _V
is a uniformly continuous function of time.

SinceV is lower bounded, _V � 0, and _V is uniformly continuous, thenV tends to

a limit, while its derivative _V tends to zero (Barbalat’s lemma). Consequently, the

tracking error, e , tends to zero asymptotically, as t!1 . Moreover, since the

Lyapunov function (10.18) is radially unbounded, then the asymptotic convergence

is global, that is, the closed-loop tracking error dynamics are globally asymptoti-

cally stable.

We have shown that the system state x globally asymptotically tracks the state

xref of the reference model, and therefore, the system output y ¼ C x globally

asymptotically tracks the reference model output yref ¼ Cxref . At the same time, the

reference model dynamics are chosen such that yref tracks an external bounded

command ycmdðtÞ , with bounded errors. Therefore, y must also track ycmd with

bounded errors. The MIMO command tracking problem is solved.

The equation summary is given in Table 10.1, and the end result is stated in

Theorem 10.1.

Theorem 10.1. Consider the uncertain system dynamics in (10.9), operating under
the MRAC controller (10.12), with the adaptive laws (10.23). Suppose that the
matching condition (10.10) holds. Let the reference model (10.14) be driven by a
bounded external command ycmdðtÞ . Then, for any symmetric positive-definite
matrices Gx; GY; Qref

� �
, all signals in the closed-loop system

_x ¼ A xþ BL K̂T
x x� ŶT F xp

� �þYT F xp
� �� �

þ Bref ycmdðtÞ
_xref ¼ Aref xref þ Bref ycmdðtÞ
_̂Kx ¼ �Gx x x� xref

� �T
P B

_̂Y ¼ GY F xp
� �

x� xref
� �T

P B

8>>>><
>>>>:

(10.25)

are uniformly ultimately bounded in time, where P represents the unique symmetric
positive-definite solution of the algebraic Lyapunov equation (10.19). Moreover, the
tracking error signal e ¼ x� xref is uniformly ultimately bounded, square integrable,
and tends to the origin globally and asymptotically, that is, lim

t!1 eðtÞk k ¼ 0. ■

In order to illustrate both usefulness and practicality of MRAC systems with

integral feedback, we shall consider an example.
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Example 10.1 Aircraft Short-Period Dynamics and Control Longitudinal motion

of a conventional aircraft is controlled by engine throttles and elevators (movable

trailing edge tail surfaces, de). While throttles are the primary inputs for regulating

airspeed, deflecting elevators up or down will change the aircraft pitch rate q ¼ _y
and, as a consequence, its orientation with respect to the horizon (the pitch angle,y).
At the same time, elevator movements will also affect the aircraft angle of attack a
(the angle between the velocity vector and the fuselage longitudinal axis x ).
Figure 10.1 shows an aircraft sketch, with all the relevant degrees of freedom.

Coupled relations betweena andq, driven by the elevator deflectionde, constitute
the aircraft short-period dynamics. Assuming fixed throttle setting and constant

airspeed, the aircraft short-period dynamics can be approximated by a second-order

differential equation in the form

_a
_q

	 

|fflffl{zfflffl}

_xp

¼
Za
V 1þ Zq

V
Ma Mq

	 

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Ap

a
q

	 

|fflffl{zfflffl}

xp

þ
Zd
V
Md

	 

|fflfflfflffl{zfflfflfflffl}

Bp

L de|{z}
u

þ f xp
� �0

@
1
A (10.26)

where a (rad) is the aircraft angle of attack, q (rad/s) is the pitch rate, V (ft/s) is the

true airspeed (assumed constant), de (rad) is the elevator deflection (the control

input), and Za; Zq; Zd; Ma; Mq; Md
� �

are the aircraft stability derivatives [1, 2].

In (10.26),L> 0 represents a loss-of-control effectiveness, and f xp
� �

is the matched

uncertainty in the system dynamics.

Table 10.1 Design summary for MRAC with integral action

Open-loop plant _xp ¼ Ap xp þ Bp L uþYT F xp
� �� �

y ¼ Cp xp
Integrated output tracking error and extended state _eI y ¼ y� ycmd; x ¼ eTyI xTp

� �T
Open-loop extended plant _x ¼ A xþ BL uþYT F xp

� �� �þ Bref ycmd

y ¼ Cx

Reference model _xref ¼ Aref xref þ Bref ycmd ; yref ¼ C xref

Tracking error e ¼ x� xref
Control input u ¼ K̂T

x x� Ŷ
T
F xp
� �

Algebraic Lyapunov equation PAref þ AT
ref P ¼ �Q

MRAC laws _̂Kx ¼ �Gx x e
T P B

_̂Y ¼ GY F xp
� �

eT PB
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We make use of generic transport aircraft (DC-8) cruise data from [1, p.712] to

populate the short-period model

Ap ¼ �0:8060 1:0
�9:1486 �4:59

	 

; Bp ¼ �0:04

�4:59
	 


and define the aircraft angle of attack a to be the system regulated output:

y ¼ 1 0ð Þ|fflfflfflffl{zfflfflfflffl}
Cp

xp ¼ a

The open-loop system has its eigenvalues in the left half plane. So, the short-

period dynamics are open-loop stable on ¼ 3:58 rad s= ; z ¼ 0:753ð Þ.
This model is augmented with the integrated output (angle of attack) tracking

error. The extended open-loop matrices are

A¼
0 1 0

0 �0:8060 1

0 �9:1486 �4:59

0
@

1
A; B¼

0

�0:04
�4:59

0
@

1
A; Bref ¼

�1
0

0

0
@

1
A; C¼ 0 1 0ð Þ

Assuming that these linear data are known, our next step is to construct a suitable

reference model. We can use a linear control design technique to accomplish this

task. Such an approach would allow us to automatically satisfy the required

matching conditions (10.10) and at the same time to construct a reference model

with the desired transient characteristics. We choose the linear quadratic regulator

(LQR) method [3] as our baseline control design tool. Since the open-loop dynam-

ics are already stable and sufficiently fast, we pick LQR weight matrices

QLQR ¼
10 0 0

0 0 0

0 0 0

0
@

1
A; RLQR ¼ 1

Elevators

Horizon

x

V

de

a
q

Fig. 10.1 Aircraft short-period motion in Example 10.1
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and arrive at the desired reference model, which represents the baseline closed-loop

short-period dynamics

Aref ¼ Aþ B 3:1623 1:1016 0:2152ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�KT

LQR

¼
0 1 0

�0:1328 �0:8522 0:9910
�14:5149 �14:2048 �5:5779

0
@

1
A

achieved via the LQR control feedback:

uLQR ¼ �KT
LQR x

The reference model natural frequency and damping are quite close to those of

the open-loop on LQR ¼ 3:57 rad s= ; zLQR ¼ 0:734
� �

. The integrator pole represents

the closed-loop system dominant eigenvalue. The pole is placed at l¼ �1:1873 to
enable adequate tracking performance with a reasonable control (elevator deflec-

tion) effort (see Fig. 10.2).

In this case, the reference and the actual system responses coincide with each

other. This is to be expected since the system is simulated without uncertainties.

Next, we introduce linear state-dependent uncertainties into the system

dynamics

f xp
� � ¼ f a; qð Þ ¼ ka aþ kq q

and choose L ¼ 0:5 , ka ¼ 1:5Ma , and kq ¼ 0:5Mq . Our particular selection

corresponds to simultaneous changes in (a) the control effectiveness Md , (b) the

static stability Ma , and (c) the pitch damping Mq . These uncertainties are

intentionally chosen to destabilize the LQR closed-loop short-period open-loop
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Fig. 10.2 Closed-loop baseline (no uncertainties) tracking performance in Example 10.1
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dynamics. In fact, with these uncertainties, the perturbed open-loop dynamics

become

_x ¼ A xþ BL uþ ka aþ kq q
� � ¼ Aref xþ BL uþ L�1 KT

LQR xþ ka aþ kq q
� �

and so, the ideal unknown controller gains are

Kx ideal ¼ � L�1 KT
LQR þ 0 ka kqð Þ

� �T
¼ 6:3246 15:9261 2:7254ð ÞT

In other words, if we knew the uncertainties, then the linear feedback

uideal ¼ KT
x ideal x

would have enforced the desired reference dynamics.

The next step is to design a MRAC system in order to recover the desired closed-

loop performance, without any information about the parametric uncertainties.

Since f xp
� �

is linear in xp, only the adaptive gains K̂x are required. Here, the design

“tuning knobs” consist of two symmetric positive definite (3 � 3) – matricesQ and

Gx. After several iterations, we have selected

Q ¼
100 0 0

0 100 0

0 0 100

0
@

1
A; Gx ¼

2000 0 0

0 2000 0

0 0 200

0
@

1
A

Our iterative design focus was on reducing unwanted transient oscillations,

while providing adequate command tracking performance. Utilizing MRAC design

equations from Table 10.1 and with the uncertainties turned on, the corresponding

simulated closed-loop system tracking performance data are shown below

(Fig. 10.3).

Clearly, the MRAC design is able to recover the baseline closed-loop dynamics.

However, the control effort is significantly larger than before, and the uncertainties

are the driving factor. Dynamics of the corresponding adaptive gains are shown in

Fig. 10.4.

The three gains approach their ideal values. This is a “bonus,” since parameter

convergence is not guaranteed by the MRAC design.

In order to demonstrate good tracking without parameter convergence, we select

ycmd ¼ sin 0:1 tð Þ and simulate the closed-loop system without any other changes.

As expected, the output tracking performance remains of good quality (Fig. 10.5).

On the other hand, the adaptive gains are different from the ideal values Kx ideal

that are defined by the corresponding matching conditions (Fig. 10.6).
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Parameter convergence in adaptive control depends on the persistency of exci-

tation (PE) conditions [4, 5]. Basically, the external command needs to “persistently

excite” the closed-loop system dynamics. For linear dynamical systems with linear-

in-parameter uncertainties (such as those considered in this example), the PE

conditions are satisfied if the system external command is chosen as a sum of

sinusoids with different frequencies. Then, a single frequency would give exponen-

tial convergence of two adaptive gains to their corresponding unknown constant

ideal values. For nonlinear systems, this rule no longer holds and the generic PE

conditions are hard to verify numerically. □
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Fig. 10.4 Evolution of adaptive gains in Example 10.1
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10.3 MRAC Augmentation of an Optimal Baseline Controller

The adaptive design developed in the previous section can be modified to augment a

baseline linear controller with the (Proportional + Integral) (PI) feedback architec-

ture. The rational for using an augmentation approach (as oppose to all adaptive)

stems from the fact that in most realistic applications, a system may already have a

baseline controller, which often is designed to contain proportional as well as integral

feedback connections. Such a baseline controller would have been intended to

operate under nominal conditions (no uncertainties), where it would asymptotically
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Fig. 10.5 Output tracking of a sinusoidal command in Example 10.1
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Fig. 10.6 Evolution of adaptive gains during tracking of a sinusoid in Example 10.1
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reject constant unknown disturbances and track constant commands with zero errors.

If adding uncertainties destroys the expected baseline closed-loop performance, then

one might attempt to recover the desired performance by augmenting the baseline

controller with an adaptive element.

We consider the same class of n-dimensional MIMO nonlinear systems with

m controls (as defined in (10.1)), whose plant dynamics are linearly parameterized,

the uncertainties satisfy matching conditions, and the system state is measurable

(i.e., available online for control synthesis). The system dynamics are

_xp ¼ Ap xp þ Bp L uþ f xp
� �� �

(10.27)

where np and m are the dimensions of the system state xp and of the control u ,
respectively. Also, we assume that Ap 2 Rnp�np and Bp 2 Rn�m are known, while

L 2 Rm�m is an unknown diagonal matrix with strictly positive diagonal elementsli.
The pair Ap; Bp L

� �� �
is presumed controllable, and the constant uncertainty L is

introduced to model possible imperfections in the system control channels.

The unknown nonlinear function f xp
� �

: Rnp ! Rm represents the system

matched uncertainty. It is assumed that this function can be written as a linear

combination of N known basis functions, with unknown constant coefficients:

f xp
� � ¼ YT F xp

� �
(10.28)

In (10.28), Y 2 RN�m is the unknown constant matrix of ideal parameters, and

F xp
� � 2 RN represents the known locally Lipschitz-continuous regressor vector.

Thus, we consider a generic class of MIMO systems in the form

_xp ¼ Ap xp þ Bp L uþYT F xp
� �� �

(10.29)

with the regulated output

y ¼ Cp xp þ Dp L uþYT F xp
� �� �

(10.30)

where Cp 2 Rm�np and Dp 2 Rm�m are known and constant.

Let ycmdðtÞ 2 Rm denote a bounded command for the system output y 2 Rm to

follow. This task is to be accomplished using the system control input u 2 Rm, in

the form of a full state feedback.

We define the output tracking error

eyðtÞ ¼ yðtÞ � ycmdðtÞ (10.31)

its integral ey I

_ey I ¼ ey ¼ y� ycmd (10.32)
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and formulate the extended open-loop dynamics

_eyI
_xp

	 

|fflfflffl{zfflfflffl}

_x

¼ 0m�m Cp

0np�m Ap

	 

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

eyI
xp

	 

|fflfflffl{zfflfflffl}

x

þ Dp

Bp

	 

|fflfflffl{zfflfflffl}

B

L uþ f xp
� �� �þ �Im�m

0np�m

	 

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Bref

ycmd (10.33)

or, equivalently,

_x ¼ A xþ BL uþYT F xp
� �� �þ Bref ycmd (10.34)

In terms of (10.34), the system regulated output y in (10.30) can be written as

y¼ 0 Cpð Þ|fflfflffl{zfflfflffl}
C

eyI
xp

	 

|fflfflffl{zfflfflffl}

x

þ Dp|{z}
D

L uþYTF xp
� �� �

u¼CxþDL uþYTF xp
� �� �

u (10.35)

The control problem of interest is bounded tracking in the presence of the system

constant parametric uncertainties L and Y . Specifically, we need to design the

control input u , so that the system regulated output y tracks any bounded time-

varying command ycmd, with bounded tracking errors, while the rest of the signals in
the corresponding closed-loop dynamics remain bounded.

We begin with the design of a baseline linear controller. Setting L ¼ Im�m ,
Y¼ 0N�m in (10.34), results in the linear baseline open-loop dynamics:

_x ¼ A xþ B uþ Bref ycmd

y ¼ C xþ Du ð10:36Þ

Assuming constant command ycmd , we can use the linear quadratic regulator

(LQR) method, with Proportional þ Integral (PI) feedback connections, to design

the baseline LQ optimal control law, in the form of an LQR PI servomechanism.

This design is outlined below.

We first calculate the optimal stabilizing controller for

_z ¼ A zþ B v (10.37)

where

z ¼ _x ¼ _ey I
_xp

	 

; v ¼ _u (10.38)

and the control input v is designed to minimize the linear quadratic cost index

JðvÞ ¼
ð1
0

zTQ zþ vTR v
� �

dt (10.39)
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with the appropriately selected symmetric positive-definite matrices Q and R. It is
well-known that the corresponding optimal LQR solution is given in feedback form

v ¼ _u ¼ �R�1 BT P|fflfflfflfflffl{zfflfflfflfflffl}
KT
x

z ¼ � KI KPð Þ _ey I
_xp

	 

(10.40)

In (10.40), P is the unique symmetric positive-definite solution of the algebraic

Riccati equation

AT Pþ PAþ Q� PBR�1 BT P ¼ 0 (10.41)

which is solved using an appropriately chosen Q ¼ QT � 0. Integrating (10.40)

yields the baseline LQR PI controller

ubl ¼ �KT
x x ¼ �KI ey I � KP x ¼ KI

ycmd � yð Þ
s

� KP xp (10.42)

where the optimal gain matrix

KT
x ¼ KI KPð Þ (10.43)

is partitioned into the integral gain KI and the proportional gain KP . The

corresponding baseline LQR PI control block diagram is shown in Fig. 10.7.

In the presence of the system uncertainties L and Y , the baseline tracking

performance will often deteriorate. In order to restore the expected baseline behav-

ior, we augment the baseline system with an adaptive element. This process consists

of (a) the reference model definition, (b) the tracking dynamics formulation, and (c)

the design of adaptive laws.

First, we define the reference model to represent the baseline closed-loop system

dynamics, which are obtained by substituting the baseline controller (10.42) into

the linear system (10.36). The resulting reference model dynamics become

_xref ¼ Aref xref þ Bref ycmd; yref ¼ Cref xref (10.44)

where

Aref ¼ A� BKT
x ; Cref ¼ C� DKT

x (10.45)

and Aref is Hurwitz by design.

Then, we synthesize the total control input as the sum of the baseline LQR PI

component (10.42) and its adaptive augmentation uad (to be constructed):
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u ¼ �KT
x x|fflffl{zfflffl}

ubl

þuad ¼ ubl þ uad (10.46)

Substituting (10.46) into the original system dynamics (10.34) gives

_x ¼ Aref xþ BL uad þ Im�m � L�1
� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{KT

u

ubl þYT F xp
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Y
T �F ubl; xpð Þ

0
BB@

1
CCAþ Bref ycmd

y ¼ Cref xþ DL uad þ �Y
T �F ubl; xp

� �� �
(10.47)

Or, equivalently,

_x ¼ Aref xþ BL uad þ �YT �F ubl; xp
� �� �þ Bref ycmd

y ¼ Cref xþ DL uad þ �YT �F ubl; xp
� �� �

(10.48)

with the redefined regressor vector

�F ubl; xp
� � ¼ uTbl FT xp

� �� �T
(10.49)

and with the extended matrix of unknown/ideal parameters:

�Y ¼ KT
u YT

� �T
(10.50)

The adaptive component uad is chosen to dominate the system matched uncer-

tainty �YT �F ubl; xp
� �

uad ¼ � �̂YT �F ubl; xp
� �

(10.51)

where �̂Y 2 R nþNð Þ�m is the matrix of adaptive parameters. Substituting (10.51) into

(10.48) results in

Plant

Kp

Cp ycmdy xpuKI

s

Dp

+
−

+
−

Fig. 10.7 Baseline servomechanism LQR PI control block diagram
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_x ¼ Aref x� BL �̂Y� �Y
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

D �Y

T
�Fþ Bref ycmd

y ¼ Cref x� DLD �YT �F (10.52)

where

D �Y ¼ �̂Y� �Y (10.53)

is the matrix of parameter estimation errors. We now introduce the state tracking

error

e ¼ x� xref (10.54)

and calculate the tracking error dynamics by subtracting the reference system

dynamics (10.44) from the extended open-loop system dynamics (10.52):

_e ¼ Aref e� BLD �YT �F (10.55)

In order to design MRAC laws and at the same time enforce closed-loop stability

of the error dynamics, we consider a radially unbounded quadratic Lyapunov

function candidate such as

V e; D �Y
� � ¼ eT Pref eþ trace D �Y

T
G�1�Y D �YL

� �
(10.56)

where elements ofG �Y ¼ GT
�Y > 0 represent rates of adaptation and Pref ¼ PT

ref > 0 is

the unique symmetric positive-definite solution of the algebraic Lyapunov equation

AT
ref Pref þ Pref Aref ¼ �Qref (10.57)

with some appropriately chosen matrix Qref ¼ QT
ref > 0: Time-differentiating V,

along the trajectories of (10.55), gives

_V e; D �Y
� �¼�eTQref e�2eTPref BLD �YT �Fþ2trace D �YTG�1�Y

_̂�YL
	 


(10.58)

Applying the vector trace identity

aT b ¼ trace b aT
� �

(10.59)

further yields
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_V e; D �Y
� � ¼ �eT Qref eþ 2 trace D �YT G�1�Y

_̂�Y� �F eT Pref B

� �
L

	 

(10.60)

If adaptive laws are selected in the form

_̂�Y ¼ G �Y
�F ubl; xp
� �

eT Pref B; (10.61)

then

_V e; D �Y
� � ¼ �eT Qref e � 0 (10.62)

which immediately proves uniform ultimate boundedness of e; D �Y
� �

.

Moreover, it follows from (10.62) that the tracking error signal is square

integrable, e 2 L2 . Since ycmd 2 L1 , then xref 2 L1 , and consequently, x 2 L1
and ubl; xp

� � 2 L1. Since the ideal (unknown) matrix of parameters �Y is constant

and the estimation errors D �Y are bounded, then their estimated values are bounded

as well, that is, �̂Y 2 L1. Since components of the regressor vector �F ubl; xp
� �

are

locally Lipschitz continuous, and ubl; xp
� � 2 L1, then the regressor components are

bounded. Hence, u 2 L1 and _x 2 L1. Thus, _e 2 L1, which implies that €V 2 L1.
Therefore, _V is a uniformly continuous function of time. Since V is lower bounded,
_V � 0, and _V is uniformly continuous, then V tends to a limit, while its derivative
_V tends to zero (see Barbalat’s lemma, Chap. 8). Consequently, the tracking error

e tends to zero asymptotically, as t!1.

Moreover, since the Lyapunov function (10.56) is radially unbounded, then the

asymptotic convergence is global, that is, the closed-loop tracking error dynamics

(10.55) are globally asymptotically stable.

Using the error dynamics (10.55), it is easy to check that €e 2 L1. Then, _eðtÞ is
uniformly continuous. Since in addition eðtÞ tends to zero, then using Barbalat’s

lemma, we conclude that lim
t!1

_eðtÞk k ¼ 0. Consequently,

lim
t!1 D �YTðtÞ �F ublðtÞ; xðtÞð Þ

 

 ¼ 0 (10.63)

and

y ¼ Cx� DL D �YT �F
� �
|fflfflfflfflffl{zfflfflfflfflffl}
!0

! Cref x! Cref xref ¼ yref (10.64)

We have proven that for any bounded command ycmd , the closed-loop system

output from (10.52) globally asymptotically tracks the reference model output from

(10.44), as t!1. At the same time, the reference model dynamics (10.44) are

chosen such that yref tracks any external bounded command ycmdðtÞ, with bounded
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errors. Therefore, ymust also track ycmd with bounded errors. The MIMO command

tracking problem is solved.

The adaptive laws (10.61) can be written in terms of the system original

parameters. Partition

G �Y ¼ Gu 0n�m
0N�m GY

	 

(10.65)

where Gu; GYð Þ denote rates of adaptation for uncertainties that correspond to x and
F xp
� �

. Using (10.49), (10.50), and (10.65), the adaptive laws (10.61) become

_̂Ku ¼ Gu ubl e
T Pref B

_̂Y ¼ GY F xp
� �

eT Pref B (10.66)

Also, the (LQR PI Baseline þ Adaptive) total control input (10.46) is

u ¼ ubl þ uad ¼ �KT
x x

ubl¼Baseline
þ �K̂T

u ubl � ŶT F xp
� �h i

uad¼Adaptive Augmentation

(10.67)

or, equivalently,

u ¼ Im�m � K̂T
u

� �
ubl � ŶT F xp

� � ¼ � Im�m � K̂T
u

� �
KT
x x� ŶT F xp

� �
¼ Im�m � K̂T

u

� �
KI

ycmd � yð Þ
s

� KP xp

	 

� ŶT F xp

� �
(10.68)

Table 10.2 summarizes the developed adaptive augmentation procedure of a

LQR PI baseline controller.

By design, this controller does not have a feedforward component. Also, note

that in the adaptive laws (10.66), the parameter initial values are arbitrary, and as

such, they can be set to zero. The following flight control design example illustrates

the developed methodology.

Example 10.2 Adaptive Augmentation Design for DC-8 Short-Period Dynamics In

Example 10.1, we designed a baseline optimal (LQR PI) controller for regulating

short-period dynamics of the DC-8 transport aircraft. Our reference model was

selected to represent the closed-loop system that was achieved under the baseline

controller. Matched uncertainties were introduced to destabilize the baseline sys-

tem. After that, we constructed an MRAC controller to recover the desired refer-

ence closed-loop performance, with the uncertainties turned on.

We now take a different approach. Instead of using an all-adaptive control

solution, we demonstrate how to achieve the same closed-loop performance recov-

ery by utilizing an adaptive augmentation design from Table 10.2. Such an
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approach would allow us to retain the baseline controller, instead of performing a

complete redesign of the system.

After a few design iterations, we have selected appropriate values for adaptive

tuning “knobs” (Table 10.3).

Using the design equations form Table 10.2, the system closed-loop dynamics

are simulated with the uncertainties from Example 10.1. Figure 10.8 shows the

results.

In comparison to the all-adaptive solution (see Fig. 10.3), the adaptive augmen-

tation design also yields adequate tracking performance and a similar to the

previous case control activity. There are also three adaptive gains, whose dynamics

along with their corresponding ideal (unknown) values are shown below (Fig. 10.9).

Notwithstanding parameter convergence, the adaptive gains are well-behaved

and remain bounded throughout the maneuver, as predicted by the theory. □
Let us now elaborate on the usefulness of an augmentation-based control design

approach. In control engineering applications, a control designer is often faced with

a preexisting controller, which constitutes and provides the baseline (i.e., expected)

closed-loop tracking performance. Because of that, the control task at hand is to

enhance the baseline system performance instead of replacing it with yet another

system. Our adaptive augmentation procedure aims exactly at solving this particu-

lar task. Using control-theoretic arguments, we have developed a (Baseline þ
Adaptive) control system, capable of restoring the desired tracking characteristics

Table 10.2 MRAC augmentation of a LQR PI baseline system

Open-loop plant _xp ¼ Ap xp þ Bp L uþYT F xp
� �� �

y ¼ Cp xp þ Dp L uþYT F xp
� �� �

Integrated output tracking error and extended state _eI y ¼ y� ycmd; x ¼ eTyI xTp
� �T

Open-loop extended plant _x ¼ A xþ BL uþYT F xp
� �� �þ Bref ycmd

y ¼ Cxþ DL uþYT F xp
� �� �

Reference model _xref ¼ Aref xref þ Bref ycmd

yref ¼ Cref xref

Tracking error e ¼ x� xref
Riccati equation for LQR PI controller AT Pþ PA� PBR�1 BT Pþ Q ¼ 0

Baseline control input ubl ¼ �R�1 PB x

Lyapunov equation for adaptive laws Pref Aref þ AT
ref Pref ¼ �Qref

Total control input u ¼ Im� � K̂T
u

� �
ubl � ŶT F xp

� �
MRAC laws _̂Ku ¼ Gu ubl e

T Pref B

_̂Y ¼ GY F xp
� �

eT Pref B

Table 10.3 Adaptive augmentation parameters for DC-8 short-period dynamics in Example 10.2

Q matrix for adaptive laws Qref ¼ diag 100; 100; 100ð Þ
Rates of adaptation Gu ¼ GY ¼ 800

Regressor vector F xp
� � ¼ a qð ÞT
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when matched uncertainties are prevalent in the system dynamics. Without the

uncertainties, the system resorts to the baseline controller, while its adaptive

component becomes inactive.

The overall (Baseline þ Adaptive) control block diagram is shown in

Fig. 10.10.

The red-dotted line in the figure denotes the adaptive nature of the gains K̂u and

Ŷ, whose dynamics are driven by the tracking error e ¼ x� xref , and according to

the adaptive laws (10.66), where x is the state of the extended system (10.33). Per
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Fig. 10.9 Adaptive gains in Example 10.2
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Fig. 10.8 Tracking performance and control effort in Example 10.2
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design, the (Baseline þ Adaptive) controller will force the system output y asymp-

totically track the reference model output yref , in spite of the matched uncertainties

f xp
� � ¼ YT F xp

� �
and the unknown control gain L.

We have constructed the reference model to represent the desired closed-loop

system operating under the baseline PI controller:

ubl ¼ �KP xp � KI
y� ycmd

s

� �

If there are no uncertainties and if the adaptive gains are initialized at zero, the

tracking error will vanish asymptotically. Consequently, the adaptive gains will be

constant and small. Then, the adaptive component

uad ¼ �K̂T
u ubl � ŶT F xp

� �
will become small as well, and as a result, the system will operate mostly under the

baseline controller.

In the presence of uncertainties, the adaptive component becomes active, and it

will provide an incremental signal (augmentation) to the baseline PI controller. In

other words, anytime when the tracking error is sufficiently large, the total control

signal is

u ¼ ubl þ uad

which represents the (Baseline þ Adaptive) architecture shown in Fig. 10.10.

It is interesting to note that if the system uncertainties fade away after being

active, the adaptive gains will “freeze” and their values will remain constant until

the tracking error becomes nonzero again. However, the adaptive component will

not be necessarily zero. In fact, the adaptive signal uad becomes representative of a

nonlinear controller with fixed gains, and as such, it will continue to add nonzero

values to the baseline controller ubl.

cmdy yPlant
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Fig. 10.10 Block diagram: adaptive augmentation of a baseline PI controller
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10.4 Summary

We have demonstrated how to embed fixed gain linear integral controllers into

MRAC design. This leads to adaptive systems with integral action and provides a

capability of tracking time-varying bounded commands without feedforward

connections. We have also illustrated the design steps and its associated benefits

using short-period dynamics of a generic transport aircraft.

In essence, we have offered a design procedure to combine a baseline linear

(Proportional þ Integral) controller with an MRAC system. The specific MRAC

augmentation method discussed in this chapter allows a designer to merge a linear

baseline system with an adaptive controller yet without “canceling” the former.

Such an architecture is relevant in industrial applications where stability, perfor-

mance, and robustness of preexisting baseline controllers can be enhanced through

direct adaptation. This would result in the preservation and a recovery of the system

baseline closed-loop performance, while operating in the presence of significant

uncertainties that may exist in the process dynamics.

10.5 Exercises

Exercise 10.1. Verify that the transfer function Gref ðsÞ ¼ C s In�n � Aref

� ��1
Bref

in (10.15) and (10.44) have the unity DC gain, that is, Gref ð0Þ ¼ �CA�1ref Bref ¼
Im�m.

Exercise 10.2. Table 10.2 presents an adaptive augmentation design. Show that an

alternative way to construct an adaptive augmentation of a baseline linear controller

ubl ¼ �KT
x x is to start with the adaptive controller (10.12), and then, initialize the

adaptive gain K̂x from (10.23) such that K̂xð0Þ ¼ Kx.

Exercise 10.3. Prove (10.63).

Exercise 10.4. For the delta wing dynamics from Example 9.3, assume that A and

Bmatrices are known. The system uncertainties are represented byL and f ðxÞ. The
system regulated output is the bank angle ’. Design a baseline LQR PI controller

ubl, and then, augment it with an MRAC signal uad, via equations from Table 10.2.

Use Table 10.1 to design a pure adaptive controller, and initialize its adaptive

state gains at their corresponding baseline (LQR PI) values. Simulate both

controllers. Compare and discuss their tracking performance and the associated

control efforts.
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Chapter 11

Robust Adaptive Control

11.1 MRAC Design in the Presence of Bounded Disturbances

Our starting point is the MIMO dynamical system

_x ¼ Aref xþ BL uþYT FðxÞ� �þ Bref ycmd þ xðtÞ (11.1)

whose regulated output is

y ¼ Cref x (11.2)

The system is operating in the presence of a uniformly bounded time-dependent

disturbance xðtÞ 2 Rn,

xðtÞk k � xmax (11.3)

with its known and constant upper boundxmax � 0. The systemmatched uncertainties

are represented by a diagonal positive-definite matrix L 2 Rm�m and a constant

matrix Y 2 RN�m . We assume that the constant matrices Aref ; B; Bref ; Cref

� �
are

known, the pair Aref ; BL
� �

is controllable, and Aref is Hurwitz.

The control objective is to design a state feedback MRAC system to enable

bounded tracking of the reference model dynamics

_xref ¼ Aref xref þ Bref ycmd

yref ¼ Cref xref (11.4)

with the output yref . The reference model is driven by a bounded time-dependent

command ycmd 2 Rm , and the control goal consists of finding a state feedback

controller u to force the system output y track a command ycmd, in the presence of the

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_11,
# Springer-Verlag London 2013
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system parametric uncertainties and while keeping the rest of the signals uniformly

bounded in time.

Based on (11.1), we choose the control input to be

u ¼ �ŶT
FðxÞ (11.5)

where Ŷ 2 RN�m is the matrix of adaptive parameters to be determined at a later

time. Substituting (11.5) into (11.1) gives

_x ¼ Aref x� BLDYT FðxÞ þ Bref ycmd þ xðtÞ (11.6)

where

DY ¼ Ŷ�Y (11.7)

is the matrix of the parameter estimation errors. Let

e ¼ x� xref (11.8)

be the state tracking error. Subtracting the reference model dynamics (11.4) from

that of the system (11.1) yields the tracking error dynamics:

_e ¼ Aref e� BLDYT FðxÞ þ xðtÞ (11.9)

A radially unbounded quadratic Lyapunov function candidate is selected in the

familiar form

V e; DYð Þ ¼ eT P eþ trace DYT G�1Y DYL
� �

(11.10)

where GY ¼ GT
Y > 0 denotes constant rates of adaptation and P ¼ PT > 0 is the

unique symmetric positive-definite solution of the algebraic Lyapunov equation

PAref þ AT
ref P ¼ �Q (11.11)

with Q ¼ QT > 0. Time-differentiating V, along the trajectories of (11.9), gives

_V e; DYð Þ ¼ �eT Q e

� 2 eT P BLDYT FðxÞ þ 2 eT P xðtÞ þ 2 trace DYT G�1Y
_̂YL

� �
(11.12)

Applying the vector trace identity

aT b ¼ trace b aT
� �

(11.13)
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further yields

_V e;DYð Þ¼�eTQeþ2trace DYT G�1Y
_̂Y�FeTPB

n o
L

� �
þ2eTPxðtÞ (11.14)

Suppose that we use the same adaptive laws as in the previous sections, that is,

_̂Y ¼ GY FðxÞ eT P B (11.15)

Then,

_V e; DYð Þ¼�eTQeþ2eTPxðtÞ��lminðQÞ ek k2þ2 ek klmaxðPÞxmax (11.16)

and, consequently, _V < 0 outside of the set

E0 ¼ e; DYð Þ : ek k � 2
lmaxðPÞ
lminðQÞ xmax ¼ e0

� �
(11.17)

According to [1, Theorem 4.18, p. 172], trajectories eðtÞ of the error dynamics

(11.9) enter a compact set O0 � E0ð Þ � Rn in finite time and will remain there for all

future times. However, O0 is not compact in the e; DYð Þspace. In fact, O0 is

unbounded since the parameter estimation errors DY are not restricted at all.

Therefore, inside O0, _V can become positive, and, as a consequence, the parameter

errors DY can grow unbounded, even though the tracking error norm remains finite

at all times. This phenomenon is known as the “parameter drift.” It is caused by the

disturbance term xðtÞ. This argument shows that the MRAC laws (11.15) are not

robust to bounded disturbances, no matter how small the latter are.

11.2 MRAC Design Modifications for Robustness

In this section, we introduce three design modifications to enforce robustness of

MRAC laws in the presence of unmatched disturbances, such as bounded process

noise. These modifications are (1) the dead zone, (2) the e-modification, and (3) the

s-modification.

11.2.1 The Dead-Zone Modification

In order to enforce robustness, we consider adaptive laws with the dead-zone

modification:

_̂Y ¼ GY FðxÞ eT P B; if ek k > e0
0N�m; if ek k � e0

�
(11.18)
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Proposed by B.B. Peterson and K.S Narendra in [2], the dead-zone modification

stops the adaptation process when the norm of the tracking error becomes smaller

than the prescribed value e0. This assures uniform ultimate boundedness (UUB) of

DY (in addition to UUB of e). We are going to formally prove this claim.

Suppose that ek k > e0, then the adaptive law is defined by (11.15), and it results

in the upper bound (11.16). Consequently, eðtÞ enters O0 in finite time T and will

reside within the set for all t � T. From that time forward, the adaptive parameter

dynamics are frozen, that is,
_̂Y tþ Tð Þ ¼ 0N�m . This proves UUB of the error

dynamics (11.9), and it also proves boundedness (but not necessarily UUB) of the

adaptive parameter estimation errors, DYðtÞk k<1, uniformly in time.

The tracking error bound e0 in (11.17) depends on the eigenvalue ratio
lmaxðPÞ
lminðQÞ .

It is not too difficult to show (see [3], pp. 92–93) that the minimum of this ratio is

achieved for Q ¼ In�n . Thus, the computable tracking error upper bound is

proportional to 2 lmaxðPÞ xmax , where P ¼ PT > 0 is the unique solution of the

Lyapunov equation PAref þ AT
ref P ¼ �In�n. However, even when the disturbance

vanishes, with the dead-zone modification being active, asymptotic stability of the

tracking error cannot be recovered.

The dead-zone modification is not Lipschitz, and as such, it may cause chattering

(high-frequency oscillations) and other undesirable effects, especially when the

tracking error is at or near the dead-zone boundary. A smooth version of the dead-

zone modification was introduced by Slotine and Coetsee in [4]. Motivated by this

idea, we choose a constant 0 < d < 1 and consider a Lipschitz-continuous modula-

tion function in the form

m ek kð Þ ¼ max 0; min 1;
ek k � d e0
1� dð Þ e0

� 	� 	
(11.19)

A sketch of this function is shown in Fig. 11.1.

Adaptive laws with the continuous dead-zone modification are defined as

_̂Y ¼ GY FðxÞ m ek kð Þ eT P B (11.20)

With these laws of adaptation, one can use Lyapunov-based arguments to prove

bounded tracking and UUB of all signals [2].

Example 11.1 MRAC with the Dead-Zone Modification for Aircraft Roll Dynamics
We shall illustrate an MRAC design with the dead-zone modification using the

aircraft roll dynamics (a scalar system from Example 10.1)

_p ¼ Lp pþ Lda da þ xðtÞ

subjected to a bounded environmental disturbance xðtÞ , which in this case may

represent the rotational component of a gust. Also, in the model, p is the aircraft roll
rate (rad/s), da is the differential aileron deflection (rad), Lp is the aerodynamic roll

damping (s�1), and Lda is the aileron effectiveness (s�1).
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For a midsize airplane cruising at high altitude, typical values of the aerodynamic

parameters are Lp ¼ �0:8; Lda ¼ 1:6. These are the two constant unknowns in the

system. The goal is to design an MRAC state feedback–feedforward controller

with the dead-zone modification and to enable bounded tracking of the reference

model

_pref ¼ Aref pref þ Bref pcmd

which is subsequently driven by a bounded roll rate command pcmdðtÞ.
The roll dynamics can be easily rewritten in the form of (11.1):

_p ¼ Aref pþ B|{z}
1

Lda|{z}
L > 0

da|{z}
u

þ Lp � Aref

Lda

� 	
p� Bref

Lda
pcmd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

YT F p; pcmdð Þ

0
BBBB@

1
CCCCAþ Bref pcmd þ xðtÞ

where YT ¼ 1

Lda
Lp � Aref � Brefð Þ is the vector of unknown constant parameters

and FT ¼ p pcmdð Þ is the known regressor vector, which depends on the system

state p and the external command pcmd . This model differs from (11.1) where the

regressor is a state-dependent function. Even so, it is not difficult to repeat

Lyapunov-based stability arguments and show that the same adaptive laws

(11.18) apply, with the state- and command-dependent regressor vector F ¼ F
x; ycmdð Þ.
Therefore, according to (11.5) and (11.18), the MRAC roll rate tracking control-

ler computes differential aileron deflections in the form

da ¼ �k̂p p� k̂pcmd pcmd

where Ŷ
T ¼ k̂p k̂pcmd

� �
are the adaptive gains, whose dynamics are specified by

the adaptive laws shown below, with the discontinuous dead-zone modification:

1

0 de0 e0

e

em ( )Fig. 11.1 The dead-zone

modulation function

11.2 MRAC Design Modifications for Robustness 321



_̂
kp ¼

gp p p� pref
� �

; if p� pref
�� �� > e0

0; if p� pref
�� �� � e0

(

_̂
kpcmd ¼

gpcmd pcmd p� pref
� �

; if p� pref
�� �� > e0

0; if p� pref
�� �� � e0

�

For simulation, we have selected the following parameters:

Aref ¼ �Bref ¼ �2; gp ¼ gpcmd ¼ 100

The rotational gust component xðtÞ was modeled as a random process noise,

uniformly distributed on the interval
p
180

�10 10½ �.
For a step-input roll rate command of 10	/s and without the dead-zone modifi-

cation, that is, setting e0 ¼ 0, the system closed-loop tracking performance and the

MRAC control effort (the aileron deflection) are adequate (Fig. 11.2).

As expected, the norm of the system tracking error is not zero and it is primarily

driven by the process noise xðtÞ . However, the adaptive parameters exhibit the

undesirable drift phenomenon (Fig. 11.3).

Rerunning the same case but with the dead-zone tolerance e0 ¼ 0:0524 , we
maintain good tracking performance (Fig. 11.4).

At the same time, the dead-zone modification prevents the adaptive parameters

from drifting (Fig. 11.5).

As seen from Fig. 11.5, the adaptive parameters tend to their ideal unknown

values. This can be attributed to an apparent level of persistency of excitation in the

system dynamics, which is induced by the process noise. □
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Fig. 11.2 Step-input roll rate tracking without the dead-zone modification in Example 11.1
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11.2.2 The s-Modification

Earlier, we have assumed prior knowledge of an upper bound xmax for the system

disturbance xðtÞ . The s -modification scheme, developed by Ioannou and

Kokotovic [5, 8], does not require any prior information on the system distur-

bance upper bounds. The adaptive law with the s-modification is
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Fig. 11.3 Parameter drift without the dead-zone modification in Example 11.1
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Fig. 11.4 Step-input roll rate tracking with the dead-zone modification in Example 11.1
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_̂Y ¼ GY FðxÞ eT PB� s Ŷ
� �

(11.21)

where s is a strictly positive constant. In essence, this modification adds damping to

the ideal adaptive law (11.15).

In order to prove UUB of all signals, we again consider the Lyapunov function

candidate (11.10) and compute its time derivative along the trajectories of the

tracking error dynamics (11.9):

_V e; DYð Þ ¼ �eT Q eþ 2 trace DYT G�1Y
_̂Y� F eT P B

n o
L

� �
þ 2 eT P xðtÞ

¼ �eT Q e� 2 s trace DYT Ŷ|{z}
YþDY

L

0
@

1
Aþ 2 eT P xðtÞ

¼ �eT Q e� 2 s trace DYT DYL
� �� 2 s trace DYT YL

� �þ 2 eT P xðtÞ
(11.22)

By definition,

trace DYT DYL
� � ¼XN

i¼1

Xm
j¼1

DY2
i j Li i � DYk k2F Lmin (11.23)

where DYk k2F¼
Pn
i¼1

Pm
j¼1

DY2
i j is the Frobenius norm of DY andLmin is the minimum

diagonal element of L. Moreover, using the Schwarz inequality gives
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Fig. 11.5 Adaptive parameters with the dead-zone modification in Example 11.1
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trace DYT YL
� ��� �� � DYT Y

�� ��
F

Lk kF � DYk kF Yk kF Lk kF (11.24)

Substituting (11.23) and (11.24) into (11.22) results in

_V e; DYð Þ � �lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax

� 2 s DYk k2F Lmin þ 2 s DYk kF Yk kF Lk kF (11.25)

Using 2 a b � a2 þ b2 for any a and b, we write

_V e; DYð Þ��lminðQÞ ek k2þ2 ek klmaxðPÞxmax

�2s DYk k2FLminþs DYk k2Fþ Yk k2F
� �

Lk kF
¼�lminðQÞ ek k2þ2 ek klmaxðPÞxmax�s DYk k2F 2Lminþ Lk kF

� �þs Yk k2F Lk kF
(11.26)

Hence, _V e; DYð Þ<0 if

ek k2 � 2 ek k lmaxðPÞ xmax

lminðQÞ
� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

c1

� s Yk k2F Lk kF
lminðQÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

c2

> 0 (11.27)

or, equivalently, when

DYk k2F >
Yk k2F Lk kF

2Lmin þ Lk kF
� � ¼ c3

ek k>2
lmaxðPÞ xmax

lminðQÞ
� 	

¼ 2 c1:

8>>><
>>>:

(11.28)

In other words, _V<0 outside of the compact (closed and bounded) set O �
Rn � RN�m� �

defined below:

O ¼ e; DYð Þ : ek k � c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c2

ph i
^ ek k < 2 c1½ � ^ DYk k2F� c3

h in o
¼ e; DYð Þ : ek k < 2 c1½ � ^ DYk k2F� c3

h in o
¼ e; DYð Þ : ek k < 2

lmaxðPÞ xmax

lminðQÞ
� �

^ DYk k2F�
Yk k2F Lk kF

2Lmin þ Lk kF
� �

" #( )

(11.29)

This argument immediately proves UUB of all signals in the closed-loop

dynamics. In particular, (11.29) proves UUB tracking of the external command
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ycmdðtÞ by the system output yðtÞ . Note that in this case, command tracking is

achieved in the presence of parametric uncertainties L; Yð Þ and nonparametric

bounded time-varying disturbances xðtÞ . Next, we illustrate the s -modification

features and benefits for the scalar roll dynamics from Example 11.1.

Example 11.2 MRAC with the s-Modification for Aircraft Roll Dynamics
Continuing with the roll dynamics model from Example 11.1, we utilize (11.21)

and write the adaptive laws with the s-modification:

_̂
kp ¼ gp p p� pref

� �� s k̂p
� �

_̂
kpcmd ¼ gpcmd pcmd p� pref

� �� s k̂pcmd
� �

We then select s ¼ 0:1 and simulate the same roll rate step-input response as in

Example 11.1 but with the s -modification turned on. This design also gives

adequate roll rate command tracking performance (Fig. 11.6).

The data are comparable to the simulation results achieved using the dead-zone

modification in Example 11.1 (see Fig. 11.4). In addition, the corresponding

adaptive gains are bounded (Fig. 11.7), and potential drift-due-to-noise tendencies

are completely prevented.

We make a note that in this case, the adaptive gains are oscillatory which may

not be desirable. The oscillations are driven by the process noise, and the data

reveal noise sensitivity of the adaptive law dynamics. □
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Fig. 11.6 Step-input roll rate tracking with the s-modification in Example 11.2
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11.3 The e-Modification

There are performance-related drawbacks to applying the s-modification. When the

tracking error becomes small, the adaptive law dynamics (11.21) can be approxi-

mately written as
_̂Y 
 �GY s Ŷ. Hence, for small tracking errors, the adaptive

parameters have a tendency to return to the origin, that is, they “unlearn” the gain

values that caused the tracking error to become small in the first place. Furthermore,

even if the disturbance xðtÞ is removed from the system dynamics (11.1), and if the

reference command ycmd is persistently exciting [6], the parameter errors DYðtÞ do
not converge to the origin.

In order to overcome these undesirable effects, Narendra and Annaswamy

introduced the e-modification [6]. Originally called the e1 -modification, the

method’s main idea is to replace the constant damping gain s in (11.21) with a

term proportional to a linear combination of the system tracking errors, such as

eT P Bk k. The rational for using an error-dependent damping is that it tends to 0, as

the regulated output error diminishes. The adaptive laws with e-modification are

_̂Y ¼ GY FðxÞ eT P B� s eT PB
�� �� Ŷ� �

(11.30)

As seen from (11.30), the e-modification adds a tracking error-dependent

damping s eT P Bk k to the adaptive dynamics.

Using these laws, one can compute the time derivative of the Lyapunov function

candidate (11.10), along the trajectories of the tracking error dynamics (11.9), and

then repeat similar derivations that lead to (11.26). The only difference here is

that instead of a constant parameter s, we have an error-dependent damping term
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Fig. 11.7 Adaptive gains with the s-modification in Example 11.2
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s eT PBk k . So, c2 in (11.27) is no longer constant, but it remains nonnegative.

This fact allows to arrive at the same compact set as in (11.29), outside of which
_V e; DYð Þ<0. Once again, we can claim UUB of all trajectories. This completes the

stability analysis for thee-modification with a guaranteed UUB-type output tracking

performance.

Example 11.3 MRAC with the e-Modification for Aircraft Roll Dynamics
We now apply the e-modification design to the roll dynamics that was introduced

in Example 11.1 and subsequently reused in Example 11.2. According to (11.30),

the adaptive laws with the e-modification are

_̂
kp ¼ gp p p� pref

� �� s p� pref
�� �� k̂p� �

_̂
kpcmd ¼ gpcmd pcmd p� pref

� �� s p� pref
�� �� k̂pcmd� �

So now, the damping terms p� pref
�� ��depends on the tracking error e ¼ p� pref ,

and it will diminish if e becomes small.

Fig. 11.8 shows the system closed-loop tracking performance, with e-modifica-

tion gain s ¼ 1.

Once again, we obtained adequate step-input command tracking in the presence

of noise. The results are comparable to those shown in Figs. 11.4 and 11.6. The

corresponding adaptive parameters are shown below (Fig. 11.9).

It is interesting to note that in this simulation scenario, the e-modification kept

the adaptive parameters uniformly bounded, and in addition, it also forced them to

approach their ideal values. However, such a tendency would not be possible
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Fig. 11.8 Step-input roll rate tracking with the e-modification in Example 11.3
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without persistency of excitation induced by the process noise into the system

dynamics. □
It is easy to see that for large tracking errors, the dead zone, the s-modification,

and the e-modification slow down (i.e., dampen) the adaptation. Often, such an

effect is considered detrimental since it may contradict the control goal of reducing

the tracking error as fast as possible.

11.4 The Projection Operator

In this section, we shall introduce a Lipschitz-continuous version of the Projection

Operator [7, 8]. This concept is essential for enabling the adaptive laws (11.15) to

achieve robustness with respect to parametric and nonparametric uncertainties that

might exist in the system dynamics. We show that the Projection Operator tolerates

fast adaptation, enforces uniform boundedness of the adaptive parameters, and

maintains closed-loop stability of the corresponding error dynamics and of the

original system. The selected version of the Projection Operator can be thought

of as a direct extension of a projection-like modification that was originally

proposed by Kreisselmeier and Narendra in [9].

To reiterate, our overall design goal is to continuously modify adaptive laws

(11.15) in order to maintain negative semi-definiteness of the Lyapunov function

time derivative in (11.14)
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Fig. 11.9 Adaptive parameters with the e-modification in Example 11.3
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trace DYT G�1Y
_̂Y� F eT P B

n o
L

� �
� 0 (11.31)

and, at the same time, to keep the adaptive parameters ŶðtÞ uniformly bounded in

time. These two design objectives will be achieved through the introduction of the

Projection Operator into the adaptive law dynamics.

We begin with basic definitions of convex sets and functions. These concepts

will facilitate proper introduction of the Projection Operator.

Definition 11.1. A subset O � Rn is convex if

8x; y 2 O � Rn½ � ) l xþ 1� lð Þ y ¼ z 2 O½ �; 80 � l � 1 (11.32)

Relation (11.32) states that if two points belong to a convex subset O, then all the
points on the connecting line also belong to O.

Definition 11.2. A function f : Rn ! R is convex on Rn if

f l xþ 1� lð Þ yð Þ � l f ðxÞ þ 1� lð Þ f ðyÞ; 80 � l � 1; 8x; y 2 Rn (11.33)

Inequality (11.33) is illustrated in Fig. 11.10. It shows that the graph of a convex

function must be located below the straight line, which connects the two

corresponding function values.

Lemma 11.1. Let f ðxÞ : Rn ! R be convex. Then, for any constant d > 0 , the
subset Od ¼ y 2 Rn f yð Þ � djf g is convex. ■

Proof of Lemma 11.1. Let y1; y2 2 Od. Then, f y1ð Þ � d and f y2ð Þ � d. Since f ðxÞ
is convex, then for any 0 � l � 1,

f l y1 þ 1� lð Þ y2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
y

0
@

1
A � l f y1ð Þ|ffl{zffl}

�d

þ 1� lð Þ f y2ð Þ|ffl{zffl}
�d

� l dþ 1� lð Þ d ¼ d

Therefore, f yð Þ � d and, consequently, y 2 Od which completes the proof. ■

x y

f (x)
f (y)

f (z)

l f (x) + (1−l) f (y)

 z = l x + (1−l)  y

Fig. 11.10 Graph of a

convex function
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Lemma 11.2. Let f ðxÞ : Rn ! R be a differentiable convex function. Choose a
constant d > 0 and consider the subset

Od ¼ y 2 Rn f yð Þ � djf g � Rn

Let y� 2 Od and assume that f y�ð Þ<d, that is, y� is an interior point (i.e., not on
the boundary) of Od. Also, let y 2 Od and assume that f yð Þ ¼ d, that is, y lays on the
boundary of Od. Then, the following inequality holds

y� � yð ÞTrf yð Þ � 0 (11.34)

whererf yð Þ ¼ @f yð Þ
@y1

. . .
@f yð Þ
@yn

� 	T

2 Rn is the gradient vector of f evaluated
at y. ▪

Relation (11.34) is illustrated in Fig. 11.11. It shows that the gradient vector of a

function, evaluated at the boundary of a convex level set generated by this function,

always points away from the set.

Proof of Lemma 11.2. Since f ðxÞ is convex, then

f l y� þ 1� lð Þ yð Þ � l f y�ð Þ þ 1� lð Þ f yð Þ

Or, equivalently,

f yþ l y� � yð Þð Þ � f yð Þ þ l f y�ð Þ � f yð Þð Þ

Consequently, for any nonzero 0 < l � 1,

f (q)

Ωδ = {q : f (q) = δ}

q*

q

Δ

Fig. 11.11 Gradient vector on the boundary of a convex set
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f yþ l y� � yð Þð Þ � f yð Þ
l

� f y�ð Þ|ffl{zffl}
<d

� f yð Þ|{z}
d

< d� d ¼ 0

Taking the limit as l! 0 yields relation (11.34) and completes the proof. ■
Suppose that a parameter vector y belongs to a convex set O0:

O0 ¼ y 2 Rn f yð Þ � 0jf g (11.35)

Let us introduce another convex set:

O1 ¼ y 2 Rn f yð Þ � 1jf g (11.36)

Then, it becomes obvious that O0 � O1.

We may now define the continuous Projection Operator

Proj y; yð Þ
¼ y� Grf yð Þ rf yð Þð ÞT

rf yð Þk k2G
y f yð Þ; if f yð Þ > 0 ^ yT rf yð Þ > 0½ �

y ; if not

(
(11.37)

where G 2 Rn�n is any constant symmetric positive-definite matrix and rfk k2G¼
rfð ÞT Grf is the weighed Euclidean squared norm of rf .
Let us graphically illustrate the Projection Operator in (11.37). To simplify the

discussion, we set G to be the identity matrix. As seen from the definition (11.37),

Proj y; yð Þ does not alter the vector y if y belongs to the convex setO0 from (11.35).

In the annulus set 0 � f yð Þ � 1f g, the Projection Operator subtracts a vector normal

to the boundary f yð Þ ¼ lf g from y. As a result, we get a smooth transformation

from the original vector field y for l ¼ 0 to the tangent to the boundary vector for

l ¼ 1. The Projection Operator concept is shown in Fig. 11.12.

For an arbitrary positive-definite symmetric matrix G, a similar sketch can

be drawn.

Next, we derive an important convex property of the Projection Operator.

Lemma 11.3. For any symmetric positive-definite matrix G 2 Rn�n,

y� y�ð ÞT G�1 Proj y; G yð Þ � y
� � � 0 (11.38)

Proof of Lemma 11.3. Using (11.34) and (11.37) gives

y� y�ð ÞT G�1 Proj y; G yð Þ � y
� �

¼ � y� y�ð ÞTrf
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{>0

rfk k2G
rfð ÞT G y

h izfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{>0

f
z}|{>0

; if f > 0 ^ yT G rf > 0½ �
0 ; if not

8><
>:

9>=
>; < 0

(11.39)
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and the proof is complete. ▪
We now state and prove yet another result of conceptual importance to the

forthcoming development of adaptive controllers.

Lemma 11.4. Let f yð Þ be a convex continuously differentiable map from Rn to R.
Using (11.37), consider the n-dimensional dynamics

_y ¼ Proj y; yð Þ (11.40)

where y 2 Rn is the system state and y 2 Rn is a time-varying piecewise continuous
vector. Then, starting from any initial condition yð0Þ ¼ y0 within the set

O0 ¼ y 2 Rn f yð Þ � 0jf g (11.41)

the system trajectory yðtÞ will remain in the set

O1 ¼ y 2 Rn f yð Þ � 1jf g (11.42)

for all t � 0. ▪

Proof of Lemma 11.4. Existence and uniqueness of the system (11.40) solutions are

provided by the fact that the Projection Operator is locally Lipchitz in y, while the
system external input yðtÞ is piecewise continuous in time.

To prove the lemma, we need to show that the following relation holds

∇f (q )

y

Proj (q , y)

Ω0 = {q : f (q) = 0} {q : f (q) ≤ 0}

Ω1 = {q : f (q) = 1}

q

q∗

Fig. 11.12 The Projection Operator
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f y0ð Þ � 0½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
y02O0

) f yðtÞð Þ � 1½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
yðtÞ2O1

; 8t � 0 (11.43)

Toward that end, we evaluate the time derivative of f yðtÞð Þ along the trajectories
of the system dynamics (11.40). Based on the definition (11.37), we obtain

_f yð Þ ¼ rf yð Þð ÞT Proj y; yð Þ
¼ rf yð Þð ÞT y 1� f yð Þð Þ; if f yð Þ > 0 ^ yT rf yð Þ > 0½ �

rf yð Þð ÞT y; if not

�
(11.44)

Consequently,

_f yð Þ > 0; if 0 < f yð Þ < 1 ^ yT rf yð Þ > 0
� �

_f yð Þ ¼ 0; if f yð Þ ¼ 1 ^ yT rf yð Þ > 0
� �

_f yð Þ � 0; if f yð Þ � 0 _ yT rf yð Þ � 0
� � ð11:45Þ

The first and the second relations in (11.45) imply that if f yð0Þð Þ > 0, then

f yðtÞð Þ monotonically increases in time for all t � 0, but it will never exceed 1.

Also, the third condition in (11.45) states that if f yð0Þð Þ � 0, then f yðtÞð Þ is

monotonically decreasing for all t � 0. Therefore, irrespective of initial values

(as long as they are negative), f yðtÞð Þ � 1 for all t � 0, which completes the proof

of the lemma. ▪
The next example shows how to use the Projection Operator to construct

actuator models with position and rate constraints.

Example 11.4 Actuator Dynamics with Position and Rate Constraints In control

engineering applications, one often needs to account for mechanical, hydraulic, or

electrical control actuation devices. Their dynamics are frequently modeled by a

scalar system

t _u ¼ ucmd � u

where ucmd is the actuator-commanded position, u is the actuator-achieved position,
and t is the actuator time constant. Since these devices have inherent position limits,

the latter must be introduced into the model and analyzed appropriately.

In this example, we shall demonstrate how to create a dynamical model of an

actuator with position constraints uj j � umax. Let ebe a constant such that e 2 0; 1ð Þ.
We introduce

�umax ¼ umaxffiffiffiffiffiffiffiffiffiffiffi
1þ e
p
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and then embed the actuator constraints into the Projection Operator definition

(11.37), by selecting a convex function in the form

f ðuÞ ¼ u2 � �u2max

e �u2max

¼ 1þ eð Þ u2 � u2max

e u2max

In this case, the two convex sets from (11.35) and (11.36) become

O0 ¼ u 2 R : f ðuÞ � 0f g ¼ u 2 R : uj j � umaxffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

� �
O1 ¼ u 2 R : f ðuÞ � 1f g ¼ u 2 R : uj j � umaxf g

Using (11.37), we can now define the following projection-based first-order

actuator model with position constraints:

_u ¼ Proj u;
ucmd � u

t

� �

¼
ucmd�u

t

� �
1� f ðuÞð Þ; if f ðuÞ > 0 ^ ucmd � uð Þ u > 0½ �

ucmd�u
t

� �
; if not

(

According to Theorem 11.1, starting anywhere within the “conservative” posi-

tion limits 
 umaxffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

� 	
, the actuator-achieved position uðtÞ will never exceed the

original limits 
 umaxð Þ, even if it is commanded to do so. In other words, there is no

need to limit the commanded position. No matter what the actuator command is, the

achieved position will remain within the prespecified limits.

One can make further modifications to the derived actuator model and enforce

rate limit constraints 
 _umaxð Þ, in addition to position limits. For example, the

following model

_u ¼ _umax sat
1

_umax

Proj u;
ucmd � u

t

� �� 	

uses the saturation function y ¼ satðxÞ ¼ max �1; min x; 1ð Þð Þ, along with the

Projection Operator. It is easy to see that these two modifications will keep both

the actuator position and its rate contained within their desired limits.

Frequently in practice, actuator requirements are specified in terms of their

natural frequencies and damping ratios. This leads to consideration of a second-

order actuator model in the form

€uþ 2 xo _uþ o2 u ¼ o2 ucmd
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where o; xð Þ denote the actuator natural frequency and its damping ratio, corre-

spondingly. Rewriting the model in state space gives

_u1
_u2

� 	
|fflfflffl{zfflfflffl}

_x

¼ 0 1

�o2 �2 xo
� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

u1
u2

� 	
|fflfflffl{zfflfflffl}

x

þ 0

o2

� 	
|fflfflffl{zfflfflffl}

B

ucmd

where u1 ¼ u is the actuator-achieved position and u2 ¼ _u is the respective rate.

In order to impose position and rate constraints 
 umax; _umaxð Þ, we shall again
use the Projection Operator (11.37) and modify the actuator dynamics as follows:

_x ¼ Proj x; A xþ B ucmdð Þ

For this model, a convex function f ðxÞ ¼ f u; _uð Þ, which defines the Projection

Operator domain, can be selected as

f u; _uð Þ ¼
1þ eð Þ u2

u2max

þ _u2

_u2max

� 	
� 1

e

This leads to the following two convex sets:

O0 ¼ f u; _uð Þ � 0f g ¼ uj j � umaxffiffiffiffiffiffiffiffiffiffiffi
1þ e
p ^ _uj j � _umaxffiffiffiffiffiffiffiffiffiffiffi

1þ e
p

� �
O1 ¼ f u; _uð Þ � 1f g ¼ uj j � umax ^ _uj j � _umaxf g

From Lemma 11.4, we can assert that starting with any initial conditions from

O0 , which satisfy the actuator position and rate bounds, the actuator model will

produce trajectories evolving within the prescribed bounds in O1. □
In the next section, we shall employ the Projection Operator (11.37) to construct

provably stable adaptive laws in the form

_y ¼ Proj y; G yð Þ ¼ G y�rf rfð ÞT
rfk k2G

G y f ; if f > 0 ^ yT Grf > 0
� �

y ; if not

8<
: (11.46)

where y denotes the estimated parameter vector, whose dynamics are driven by the

time-varying external vector y ¼ yðtÞ.
Based on (11.46), we can introduce a matrix version of the Projection Operator,

when both Y and Y are matrices of the same dimensions:

Y ¼ ~y1 . . . ~yNð Þ 2 Rn�N; Y ¼ ~y1 . . . ~yN
� � 2 Rn�N (11.47)
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In this case, the Projection Operator is defined column-wise:

Proj Y; G Yð Þ ¼ Proj ~y1; G~y1

� �
. . . Proj ~yN; G~yN

� �� �
(11.48)

We can also generalize the convex inequality (11.38):

tr DYT G�1Proj Ŷ; GY
� �

�Y
� �� �

¼
Xm
j¼1

Ŷ�Y
� �T

j
G�1Proj Ŷ; GYj

� �
�Yj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

�0

(11.49)

In addition, one can show that for all matrices Yð0Þ, whose columns belong to

the setO0 from (11.41), the corresponding trajectory ŶðtÞ of the matrix differential

equation

_Y ¼ Proj Y; G Yð Þ (11.50)

will have its columns evolving within the set O1 from (11.42), for all t � 0. This

statement directly follows from Lemma 11.4.

11.5 Projection-Based MRAC Design

In Sect. 11.1, we have designed robust MRAC systems for MIMO dynamics (11.1),

with matched parametric uncertainties and a bounded process noise. These designs

were carried out to force time derivatives of the selected Lyapunov function

(11.10), computed along the trajectories of the error dynamics (11.9), to become

negative semidefinite outside of a compact set. For example, in (11.14), we had

_V e; DYð Þ¼�eT Qeþ2trace DYT G�1Y
_̂Y�FeT PB

n o
L

� �
þ2eT PxðtÞ; (11.51)

and the design task was to choose
_̂Y such that the trace term in (11.51) became

nonpositive, while the adaptive parameters ŶðtÞ remained uniformly bounded

functions of time.

In what follows, we shall investigate how to force the trace term to be semi-

negative via the matrix version of the Projection Operator (11.50), with its convex

property (11.49), while enforcing uniform boundedness of the corresponding

solutions ŶðtÞ. Since
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tr DYT|ffl{zffl}
Ŷ�Yð ÞT

G�1Y
_̂Y|{z}

Proj Ŷ; GYYð Þ
�F eT PB|fflfflfflffl{zfflfflfflffl}

Y

2
64

3
75L

0
BB@

1
CCA

¼
Xm
j¼1

Ŷ�Y
� �T

j
G�1Y Proj Ŷ; GY Yj

� �
� Yj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

lj|{z}
�0

� 0 (11.52)

then we can define the following projection-based adaptive law

_̂Y ¼ Proj Ŷ; GY F eT P B
� �

(11.53)

to guarantee uniform boundedness of the adaptive gains column-wise (Lemma

11.4). Essentially, the Projection Operator ensures that the columns Ŷj of the

adaptive time-dependent parameter matrix ŶðtÞ do not exceed their prespecified

bounds Ymax
j . At the same time and because of (11.52), it is easy to see that the

operator contributes to the negative semi-definiteness of the Lyapunov function

(11.51). Indeed,

_V e; DYð Þ � �eT Q eþ 2 eT P xðtÞ � �lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax

¼ �lminðQÞ ek k ek k � 2
lmaxðPÞ xmax

lminðQÞ
� 	

(11.54)

and, consequently, _V e; DYð Þ < 0 outside of the compact set

O ¼ e; DYð Þ 2 Rn � RN�m : ek k � 2
lmaxðPÞ
lminðQÞ xmax ^ DYk kF � DYmax

� �
(11.55)

where

DYmax ¼ 2 Ymax
1 . . . Ymax

mð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ymax

¼ 2Ymax (11.56)

and Ymax
j is the maximum allowable bound for the jth column ŶjðtÞ. This formal

argument proves the UUB property of all signals in the corresponding closed-loop

system. In particular, we have proven that the system regulated output yðtÞ can
track any external bounded command ycmdðtÞ with bounded errors.

Next, we show how to construct the convex vector function f ¼ f 1 . . . f mð ÞT
and the related m-convex sets Oj

d

n o
j¼1; ...;m

. These are the sets that define the
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Projection Operator domains for each column of adaptive parameters ŶjðtÞ. Both
the function and the convex set definitions will be constructed based on the desired

column-wise upper bounds ŶjðtÞ
��� ��� � Ymax

j .

For the jthcolumn Ŷj of the adaptive parameter matrix Ŷ 2 RN�m, we introduce
the projection tolerance eYj > 0 and choose a convex function in the form

f j ¼ f Ŷj

� �
¼

1þ eYj
� �

Ŷj

��� ���2 � Ymax
j

� �2
eYj Ymax

j

� �2 (11.57)

The idea here is very similar to the one in Example 11.4. The two convex sets are

defined for each j ¼ 1; . . . ; m:

Oj
0¼ Ŷj 2RN�1 : f Ŷj

� �
� 0

n o
¼ Ŷj 2RN�1 : Ŷj

��� ���� Ymax
jffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eYj
q

8><
>:

9>=
>;

Oj
1¼ Ŷj 2RN�1 : f Ŷj

� �
� 1

n o
¼ Ŷj 2RN�1 : Ŷj

��� ����Ymax
j

n o
(11.58)

The gradient of the jth convex function (11.57) can be easily computed as

rf j ¼
1þ eYj
� �
eYj Ymax

j

� �2 r Ŷj

��� ���2� �
¼

2 1þ eYj
� �
eYj Ymax

j

Ŷj (11.59)

Via (11.53), the adaptive law for Ŷj becomes

_̂Yj ¼ GY

F eT PBð Þj �
rf jrf Tj
rfk k2GY

Gy F eT PB
� �

j
f j

; if f j > 0 ^ F eT P Bð ÞTj Gyrf j < 0
h i

F eT PBð Þj; if not

8>>>><
>>>>:

(11.60)

By construction, the adaptation process in (11.60) ensures uniform boundedness

of the adaptive time-dependent parameter matrix ŶðtÞ forward in time, that is,

Ŷjð0Þ
��� ���� Ymax

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eYj
� �r

8>><
>>:

9>>=
>>;) ŶjðtÞ

��� ����Ymax
j ; 8t� 0; 1� j� m

n o

(11.61)
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Consequently, the adaptive parameter errors DYðtÞ and the state tracking error

eðtÞ enter a compact set that contains the set O from (11.55) in finite time. The

MIMO-bounded command tracking problem is solved.

Table 11.1 gives a summary of the four robustness modifications that were

introduced in this chapter.

Table 11.2 presents an overview of the continuous Projection Operator, which

acts on a pair of n-dimensional vectors y and y.
The next example illustrates key design points in application of the projection-

based MRAC to lateral-directional dynamics of an aircraft.

Example 11.5 Aircraft Lateral-Directional Dynamics and Control
Lateral-directional motion of a conventional aircraft is controlled by vertical tail

panels (rudders) and wing-mounted surfaces (ailerons). Figure 11.13 shows a

sketch.

The rudder drð Þ is the primary control device for turning the aircraft, thus

regulating the vehicle yaw rate r and the sideslip angle b . Moving ailerons

differentially (i.e., left aileron trailing edge down and right aileron trailing edge

up, da) will force the aircraft to roll (right wing down), changing (increasing) its roll
rate p, and thus the bank angle ’, with some induced coupling into the yaw and

sideslip dynamics.

For small angles, the aircraft lateral-directional dynamics can be approximated

by a linear time-invariant system in the form

Table 11.1 MRAC design with robustness modifications

Open-loop plant _x ¼ Aref xþ BL uþYT FðxÞ� �þ Bref ycmd þ xðtÞ
y ¼ Cref x

Reference model _xref ¼ Aref xref þ Bref ycmd; yref ¼ Cref xref

State tracking error e ¼ x� xref

Lyapunov equation PAref þ AT
ref P ¼ �Q

Total control input u ¼ �ŶT
FðxÞ

MRAC with dead zone _̂Y ¼ GY FðxÞ m ek kð Þ eT PB

MRAC with s-mod _̂Y ¼ GY FðxÞ eT PB� s Ŷ
� �

MRAC with e-mod _̂Y ¼ GY FðxÞ eT PB� s eT PBk k Ŷ
� �

MRAC with Projection Operator _̂Y ¼ Proj Ŷ; GY F eT PB
� �
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Fig. 11.13 Top and front views of a conventional aircraft in Example 11.5

Table 11.2 The Projection Operator design summary

Max parameter bounds yk k � ymax

Convex function
f ŷ
� �
¼ 1þ eð Þ yk k2 � ymaxð Þ2

e ymaxð Þ2

Two convex sets
O0 ¼ y : f yð Þ � 0f g ¼ y : yk k � ymaxffiffiffiffiffiffiffiffiffiffiffi

1þ e
p

� �
O1 ¼ y : f yð Þ � 1f g ¼ y : yk k � ymaxf g

Projection Operator

Proj y; yð Þ ¼
y� Grf rfð ÞT

rfð ÞTGrf y f ;

if f > 0 ^ yT rfð Þ > 0½ �
y; if not

8>>>><
>>>>:

Convex inequality for proof of stability y� y�ð ÞT G�1 Proj y; G yð Þ � y
� � � 0;

8y� 2 O0; y 2 O1; y 2 Rn

Uniform boundedness of parameters _y ¼ Proj y; G yð Þ
yð0Þ 2 O0½ � ) yðtÞ 2 O1; 8t � 0½ �
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_’
_b
_p
_r

0
BB@

1
CCA

|fflfflffl{zfflfflffl}
_xp

¼

0 0 1 0
g

V

Yb

V

Yp

V

Yr

V
� 1

0 Lb Lp Yr

0 Nb Np Nr

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ap

’
b
p
r

0
BB@

1
CCA

|fflfflffl{zfflfflffl}
xp

þ

0 0
Yda

V

Ydr

V
Lda Ldr
Nda Ndr

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Bp

da
dr

� 	
|fflfflffl{zfflfflffl}

u

whereg ¼ 32:174 is the acceleration due to gravity (ft/s2),V is the trimmed airspeed

(positive constant, ft/s), and the system matrices Ap; Bp

� �
are comprised of the

vehicle aerodynamic stability and control derivatives.

For a small passenger aircraft in a cruise configuration, typical values of these

parameters are [11, p. 357]

Ap ¼
0 0 1 0

0:0487 �0:0829 0 �1
0 �4:546 �1:699 0:1717
0 3:382 �0:0654 �0:0893

0
BB@

1
CCA; Bp ¼

0 0

0 0:0116
27:276 0:5758
0:3952 �1:362

0
BB@

1
CCA

where the units for all angles and angular rates are expressed in rad and rad/s,

respectively. Also, negligible coefficients in the b-dynamics are zeroed out.

A typical (for lateral-directional dynamics) regulated output would consist of the

vehicle bank and sideslip angles

y ¼ ’
b

� 	
¼ 1 0 0 0

0 1 0 0

� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Cp

xp

while the available control inputs are represented by the differential aileron and the

rudder deflections, both expressed in radians:

u ¼ da drð ÞT

The control task is to design u to enable independent and simultaneous tracking

of bounded time-varying bank and sideslip commands that are stored in the vector

ycmd ¼ ’cmd bcmdð ÞT .
The nominal open-loop vehicle dynamics are unstable with the corresponding

eigenvalues shown below (Table 11.3).

Table 11.3 Nominal open-loop vehicle eigenvalues in Example 11.5

Eigenvalue Damping Frequency (rad/s)

� 0:0464
 1:88 j 0.0247 1.88

0.00135 �1 0.00135

�1.78 1 1.78
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In order to stabilize these dynamics and regulate the selected two outputs, we are

going to design a baseline LQR tracking controller with Proportional þ Integral

(PI) action. Toward that end, we augment the system with two integrated tracking

errors and obtain the baseline/nominal extended open-loop system

_e’ I

_eb I
_xp

0
@

1
A

|fflfflfflffl{zfflfflfflffl}
_x

¼ 02�2 Cp

04�2 Ap

� 	
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

A

e’ I

eb I
xp

0
@

1
A

|fflfflfflffl{zfflfflfflffl}
x

þ 02�2
Bp

� 	
|fflfflfflfflffl{zfflfflfflfflffl}

B

da
dr

� 	
|fflfflffl{zfflfflffl}

u

þ �I2�2
04�2

� 	
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

B

’cmd

bcmd

� 	
|fflfflfflfflffl{zfflfflfflfflffl}

ycmd

y ¼ 02�2 Cpð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
C

x ¼ ’ bð ÞT

where

_e’ I ¼ ’� ’cmd; _eb I ¼ b� bcmd

are the dynamics of the two integrated tracking error signals. After several design

iterations, we have selected diagonal LQR weights:

Q ¼ diag 1 10 0 0 0:1 5ð Þ; R ¼ I2�2

The first two diagonal elements of Q give adequate natural frequencies, while the

last two yield desired damping ratios in both regulated output channels (Table 11.4).

The resulting baseline LQR PI state feedback solution is

ubl ¼� 0:9987 0:1627 0:9184 0:0896 0:3529 �0:0166
�0:0514 3:1581 0:0755 2:2907 0:0487 �2:7885

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KT
xLQR

x¼�KT
xLQR x

and the closed-loop simulation results are shown in Fig. 11.14, where we have

tested the baseline LQR PI controller performance in tracking a series of step-input

bank and sideslip commands, simultaneously.

There are three signals per plot that are shown in the figure above: (1) the

command response, (2) the reference response, and (3) the actual system response.

As in all our previous examples, the reference data represent the closed-loop

Table 11.4 Nominal closed-loop vehicle eigenvalues in Example 11.5

Eigenvalue Damping Frequency (rad/s)

� 1:34
 1:29 j 0.72 1.86

� 1:25
 1:17 j 0.73 1.71

�1.33 1 1.33

�8.84 1 8.84
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vehicle behavior under the baseline LQR PI controller. Since there are no

uncertainties in the baseline system dynamics, the reference and the actual

responses are identical. The required aileron and rudder deflections (Fig. 11.15)

are well behaved and definitely reside within realistic actuation limits.
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Fig. 11.15 Baseline aileron and rudder deflections in Example 11.5
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Fig. 11.14 Command tracking with baseline LQR PI Controller in Example 11.5
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Next, we introduce matched linear-in-parameter uncertainties into the system

_x ¼ A xþ BL uþYT F xp
� �� �þ Bref ycmd

embed the baseline LQR PI solution ubl ¼ �KT
xLQR x , and arrive at the extended

open-loop dynamics:

_x ¼ A� BKT
xLQR

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Aref

xþ BL uþ L�1KT
xLQR xþYT F xp

� �� �
þ Bref ycmd

Let uad denote an adaptive control augmentation signal. With the total control

input

u ¼ ubl þ uad

the extended open-loop system becomes

_x ¼ Aref xþ BL uad þ L�1 � I2�2
� �

KT
xLQR xþYT F xp

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Y
T �FðxÞ

0
BB@

1
CCAþ Bref ycmd

¼ Aref xþ BL uad þ �Y
T �FðxÞ

� �
þ Bref ycmd

which is in the same exact form as in Table 11.2.

For simulation studies, we have selected the following uncertainty-related

parameters:

L ¼ 0:5 I2�2; F xp
� � ¼ b p rð ÞT

Y ¼ 4Ap 2; 2ð Þ 2Ap 2; 3ð Þ 2Ap 2; 4ð Þ
4Ap 2; 1ð Þ 2Ap 3; 3ð Þ 2Ap 3; 4ð Þ

� 	T

With 50% control effectiveness reduction in aileron and rudder, these

parameters emulate 200% change in the aircraft sideslip coefficients and 100%

change in the vehicle roll and yaw stability derivatives. The perturbed system is

open-loop unstable. Its command tracking responses under the baseline LQR PI

controller become highly oscillatory and thus inadequate. The data are shown

below (Fig. 11.16).

Although the baseline controller was able to stabilize the perturbed dynamics,

the tracking performance is clearly unacceptable. Also, the corresponding aileron

and rudder deflections exhibit the unwanted oscillations (Fig. 11.17).
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In order to mitigate the system uncertainties, we add an adaptive augmentation

component in the form

uad ¼ � �̂Y
T
�FðxÞ
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Fig. 11.17 LQR PI control inputs with uncertainties turned on in Example 11.5
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Fig. 11.16 Closed-loop response with uncertainties and LQR PI controller in Example 11.5
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with the estimated parameters �̂YðtÞ evolving according to the projection-based

adaptive laws as shown in Table 11.2. The reference model is chosen to represent

the closed-loop nominal system under the LQR PI controller and without

uncertainties. The Q matrix in the Lyapunov algebraic equation is

Q ¼ diag 0 0 0 0 10 800ð Þ

and the rates of adaptation are

GY ¼ diag 100 100 600 600 600 600ð Þ

With the uncertainties turned on, the (LQR PI + Adaptive) controller recovers

the desired closed-loop tracking performance (Fig. 11.18).

The required control effort is reasonable and well within the actuator capabilities

of a generic aircraft such as the one considered (Fig. 11.19).

The magnitudes of the estimated parameters are shown in Fig. 11.20.

In this simulation, maximum allowable bounds for the adaptive parameters were

set to 10, but the adaptive parameters never reached their bounds. So, it would be

interesting to simulate a case when these bounds are reduced below their maximum

achieved values. We set the aileron-related max bound to 0.5 and the rudder-related

bound to 5. With the same uncertainties activated, Fig. 11.21 shows “graceful

degradation” of the system closed-loop tracking performance.

Per design, the adaptive parameters evolve within the smaller projection bounds

(Fig. 11.22), and because of that the system performance degraded slightly.
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Fig. 11.18 Closed-loop tracking with (LQR PI þ Adaptive) controller in Example 11.5
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However, the aileron and the rudder control activity (Fig. 11.23) remained very

similar to the previous simulation case, where we had large projection bounds and

thus attained a slightly better performance.

The main purpose of this simulation test is to verify that the Projection Operator

has been implemented and functioned correctly. Additionally, we want to expose an
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Fig. 11.20 Adaptive parameter dynamics in Example 11.5
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Fig. 11.19 (LQR PI þ Adaptive) aileron and rudder deflections in Example 11.5
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iterative nature of a control design process, such as MRAC. Based on theoretical

predictions, the control designer is always expected to perform a trade-off study to

find the best set of tuning parameters for the selected method, while performing an

assessment of simulation trials versus theoretical predictions. □
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Fig. 11.22 Adaptive parameters with small projection bounds in Example 11.5
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Fig. 11.21 Performance degradation with small projection limits in Example 11.5
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11.6 Summary and Discussions

In conclusion, we would like to offer our opinion on the choice of robustness

modifications in MRAC systems. These recommendations are not “theoretical”

by any means. They are merely based on the authors’ extensive experience during

the design of MRAC systems for a multitude of aerospace applications.

In our view, any adaptive system must have the dead-zone modification (11.18)

or its continuous version (11.19). The latter is the preferred choice since it avoids

potential discontinuities in feedback connections. The “must-have” dead-zone

modification will prevent adaptive parameters from drifting away.

As seen from (11.15), the adaptive law dynamics without robustness modifications

are defined by integrating a nonlinear function, represented by the regressor vector

FðxÞ, multiplied by a linear combination of the state tracking errors eT P Bð Þ. This
product is further multiplied by a constant matrixGY (the integral gain), and finally, it

is integrated to yield the adaptive parameters ŶðtÞ (see Fig. 11.24).
As seen from the block diagram of Fig. 11.24, there is a chain of nonlinear

integrators in a feedback loop, whose output constitutes the adaptive parameters. In

all practical applications, feedback integrators must be “managed” in the sense that

their output signals (i.e., the adaptive parameters) need to be constrained. This

prevents integrators against “winding up” due to nonlinear saturation functions in

the control channels, where the system achievable control limits are defined and

enforced. Control techniques that prevent the integrator windup problems are called

the “anti-windup” methods, and the Projection Operator is one of them. This is why

we highly recommend using projection-based adaptive laws.
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Fig. 11.23 Aileron and rudder deflections with small projection bounds in Example 11.5
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In summary, our suggested MRAC architecture consists of the smoothed dead-

zone modification coupled with the Projection Operator

_̂Y ¼ Proj Ŷ; GY Fm ek kð Þ eT PB
� �

(11.62)

wherem ek kð Þ is the Lipchitz-continuous modulation function from (11.19). Essentially,

the dead-zone modification protects the adaptive parameters from drifting due to noise,

while the Projection Operator bounds the overall adaptive process, and at the same

time, it prevents MRAC integrators against the undesirable windup phenomenon.

11.7 Exercises

Exercise 11.1. Prove that the Projection Operator (11.37) is locally Lipschitz.

Exercise 11.2. Simulate the two actuator models from Example 11.4. Select

commands to violate position and rate constraints. Compare and discuss your

results.

Exercise 11.3. ([10]). Consider a convex hypercube in Rn,

O ¼ y 2 Rn : ymin
i � yi � ymax

i

� �
i¼1; 2; ...; n

n o

where ymin
i ; ymax

i

� �
represent the minimum and maximum bounds for the ith

component of the n-dimensional parameter vector y. Choose a sufficiently small

positive constant d, and define another hypercube

Od ¼ y 2 Rn : ymin
i þ d � yi � ymax

i � d
� �

i¼1; 2; ...; n
n o

such that Od � O.

Reference Model

System

cmdy refx

x

e

PB

1
s

u Φ(x)

Fig. 11.24 Adaptive system viewed as a nonlinear integral feedback controller
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For two n-dimensional vectors y; yð Þ , a rectangular version of the Projection

Operator is defined component-wise as

Proji y; yð Þ ¼

ymax
i � yi

d

� 	
yi; yi > ymax

i � d
� � ^ yi > 0ð Þ� �

yi � ymin
i

d

� 	
yi; yi < ymin

i þ d
� � ^ yi < 0ð Þ� �

yi; otherwise

8>>>>>><
>>>>>>:

Suppose that y� 2 Od is a constant vector. Prove that for any y 2 O and for any

y 2 Rn, the following inequality takes place:

y� y�ð ÞT Proj y; yð Þ � yð Þ � 0

Let G be a positive-definite diagonal matrix. For the system dynamics (11.1),

using the above inequality and adaptive laws (11.53) with the rectangular version of

the Projection Operator, carry out stability proofs starting from (11.51), arriving at a

UUB-type argument about the closed-loop system tracking performance.

Exercise 11.4. A second-order actuator model (transfer function) is given in the

form

d ¼ o2
n

s2 þ 2 xon sþ o2
n

� 	
dcmd

where d; dcmdð Þ are the actual and commanded actuator positions (rad), while

x; onð Þ are the actuator model damping ratio and its natural frequency, respec-

tively. Assume x ¼ 0:7 and on ¼ 1. Simulate the system response to a sinusoidal

command. Introduce actuator position and rate limits. Use Projection Operator

(11.37) to create an actuator model with position and rate constrains. Create another

model using the rectangular version of the Projection Operator from Exercise 11.3.

Select actuator commands to violate the actuator position constraints. Simulate both

models and compare their performance.

Exercise 11.5. Implement the aircraft lateral-directional data from Example 11.5.

Design an (LQR PI þ Adaptive) controller using (11.62). Repeat simulation tests

from Example 11.5. Compare and discuss your results.
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Chapter 12

Approximation-Based Adaptive Control

12.1 Motivation

A typical control design starts with modeling, which is basically a procedure of

constructing a mathematical description (such as a set of ordinary differential

equations) for the physical system to be controlled. This selected model needs to

reflect main features of the physical process. Accurate models are not always better.

They may require unnecessarily complex control design and demand excessive

computations. From a control point of view, the key in modeling is to capture the

essential effects in the system dynamics within an operating range of interest. In

addition, a good model should also provide some characterization of the system

uncertainties – the so-called unknown unknowns in the physical process. Such a

characterization can later be used to perform robust and/or adaptive design or to run

Monte Carlo-based analysis, eventually leading to quantification and assessment of

the closed-loop system stability, performance, and robustness.

In essence, model uncertainties symbolize the differences between the model

and the real physical process. Uncertainties in the system-specific parameters are

called “parametric,” while all other uncertainties are “nonparametric.”

Example 12.1 Point-Mass Dynamics with Parametric Uncertainties For the model

of a controlled mass m €x ¼ u, the uncertainty in m is parametric, while the neglected

motor dynamics,measurement noise, and sensor dynamics represent the nonparametric

uncertainties. □

Example 12.2 Scalar Dynamics with Nonparametric Uncertainties Consider a

scalar model with uncertain dynamics, such as _x ¼ f ðxÞ þ uþ xðtÞ, where x is the
system state, u is the control input, xðtÞ is the process noise, and the function f(x) is
unknown. Suppose that

f ðxÞ ¼
XN
i¼1

yi ’iðxÞ þ eðxÞ ¼ yT FðxÞ|fflfflfflffl{zfflfflfflffl}
Parametric

þ eðxÞ|{z}
Nonparametric

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_12,
# Springer-Verlag London 2013
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In other words, we assume that the unknown function f(x) can be approximated

by a finite linear combination of known basis functions’iðxÞ and unknown constant
parameters yi . In this case, the state-dependent function approximation error eðxÞ
and the process noise xðtÞ represent the nonparametric uncertainties, while the

unknown constant parameters y constitute the parametric uncertainty in the system

dynamics. In order to characterize the latter, one needs to be able to find a good set

of basis functions FðxÞ, such that the approximation error eðxÞ becomes small on a

compact (closed and bounded) set. Polynomials, Fourier series expansions, splines,

and artificial feedforward neural networks can be used to represent and approximate

functions on compact sets. □
In Sect. 12.4, we will design MRAC systems that can cope with both parametric

and nonparametric uncertainties. In order to justify our design approach, we begin

with a concise background material and an overview of important facts related to

function approximation using artificial NNs to represent large classes of functions

on given compact sets and within prespecified approximation tolerances.

12.2 Basic Definitions

An artificial feedforward NN is a multi-input multi-output static map composed of

many interconnected nonlinear processing elements (neurons) operating in parallel.

Figures 12.1 and 12.2 show sketches of two feedforward NNs.

An artificial feedforward NN consists of basic units called the “neurons” and

their connections. A block diagram of a single artificial neuron is shown in

Fig. 12.3.

Neurons, the basic processing elements of NNs, have two main components:

(a) a weighted summer and (b) a nonlinear activation function. The activation

functions of interest to us are the radial basis functions (RBFs) and the ridge

functions, also called the “sigmoids.”

Definition 12.1. Radial Basis Functions (RBFs) An RBF is a Gaussian in the form

’ x; xcð Þ ¼ e� x�xcð ÞT W x�xcð Þ ¼ e� x�xck k2W (12.1)

In (12.1), x 2 Rn is the input, xc 2 Rn is the center, andW ¼ WT > 0 is a positive-
definite symmetric matrix of weights. Most often, we will write ’ x; xið Þ ¼ ’iðxÞ to
abbreviate and to denote an RBF which is centered at the ith center xi.

Other definitions of RBFs are available in the literature [1, 2]. A generic RBF

can be defined as ’ ¼ ’ x� xck kW
� �

, where xk kW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xT W x
p

denotes the

weighted Euclidean norm of a vector x. In addition, it is required that ’ðxÞ be
integrable on Rn and

R
Rn

’ðxÞ dx 6¼ 0. This activation function depends only on the

weighted distance r ¼ x� xck kW between its current input x and the center xc.
The Gaussian RBF in (12.1) is an example of this type of activation function.
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Others include (a) multiquadrics, ’ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2ð Þp

; c > 0 , and (b) inverse

multiquadrics, ’ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
r2þc2ð Þ

p ; c > 0.

Definition 12.2. Ridge Functions A ridge function or a sigmoid is a nonlinear
scalar map s : R! R of the form

s ¼ s wT xþ b
� �

(12.2)
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Σ

Fig. 12.3 Artificial neuron block diagram
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Fig. 12.1 Feedforward neural network with 2 hidden layers and 6 neurons
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Fig. 12.2 Feedforward neural network with 1 hidden layer and 5 neurons

12.2 Basic Definitions 357



where w 2 Rn denotes the vector of weights, b is a scalar threshold, and s �ð Þ is a
scalar nonlinear function (not necessarily continuous) on R, with the following
property:

lim
v!�1

sðvÞ<1 (12.3)

The two most common examples of a ridge function are (a) the logistic sigmoid,

sðvÞ ¼ 1
1þe�v , and (b) the hyperbolic tangent, sðsÞ ¼ 1�e�v

1þe�v .
A feedforward NN with N neurons in its hidden layer is shown in Fig. 12.4.

Formally speaking, a feedforward NN is a map from Rn to Rm, that is,

y ¼ NNðxÞ : Rn ! Rm (12.4)

Definition 12.3. Sigmoidal Feedforward NNs A sigmoidal feedforward NN with
N neurons is a map from Rn to Rm in the form

NNðxÞ ¼ WT~s VTxþ y
� �þ b (12.5)

where W 2 RN�m is the matrix of the outer-layer weights;

~sðxÞ ¼ s VT
1 xþ y1

� �
. . . s VT

N xþ yN
� �� �T 2 RN

is the vector of N sigmoids; V 2 Rn�N is the matrix of the inner-layer synaptic
weights, with its ith column denoted by Vi 2 Rn; y 2 RN is the vector of thresholds;
and b 2 Rm denotes the NN bias vector.

x
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y

1

1

1

2

Threshold

Output Bias

Hidden Layer of N neurons

Input Output

Fig. 12.4 Single-hidden-layer feedforward NN with N neurons
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Definition 12.4. Feedforward RBF NNs A feedforward RBF NN is a map from
Rn to Rm in the form

NNðxÞ ¼ yT
’ x�C1k kW1

� �
..
.

’ x�CNk kWN

� �
0
BBB@

1
CCCAþ b¼ yT b

� �
|fflfflfflffl{zfflfflfflffl}

YT

’1ðxÞ
..
.

’NðxÞ
1

0
BBB@

1
CCCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
FðxÞ

¼YT FðxÞ (12.6)

where Y ¼ yT b
� �T 2 R Nþ1ð Þ�m is the vector of weights, Ci 2 Rn is the center of

the ith receptive field, Wi ¼ WT
i > 0 is the norm weighting matrix, b 2 Rm is the NN

bias, andFðxÞ ¼ ’1ðxÞ . . . ’NðxÞ 1ð ÞT 2 RNþ1 is the regressor vector, whose

components are the basis (activation) functions ’iðxÞ ¼ ’ x� Cik kWi

� �
and the

unit function.
Often in practical applications, the symmetric positive-definite matrix W in

(12.6) is chosen to be diagonal and in the form

Wi ¼ 1

2 s2i
; i ¼ 1; . . . ; Nð Þ

where si represents the width of the ith Gaussian function. In this case,

’iðxÞ ¼ e
� x�Cik k2

2 s2
i

becomes the ithcomponent of the regressor vectorFðxÞ in (12.6). Also, components

of the regressor can be constructed using the Gaussian,

’iðxÞ ¼ e
� N

d2max

� �
x�Cik k2

whose standard deviation (width) s is fixed according to the spread of the centersCi,

N is the number of centers, and dmax is the maximum distance between the

chosen centers. Here, the standard deviation s of all the isotropic Gaussian RBF

components is fixed at

s ¼ dmaxffiffiffiffiffiffiffi
2N
p

This formula ensures that the individual RBFs are not too peaked or too flat.

Both of these two extreme conditions should be avoided.

12.2 Basic Definitions 359



12.3 Approximation Properties of Feedforward

Neural Networks

Feedforward NNs have been shown to be capable of approximating generic classes

of functions on compact sets and to within any prespecified tolerance. This property

of feedforward NNs is often referred to as the universal approximation, while the

NNs themselves are often called the universal approximators. Related theorems are

stated below without proofs.

Theorem 12.1. Micchelli’s Theorem [3] Let ’ ¼ ’ðrÞ be the Gaussian, the
multiquadrics, or the inverse multiquadrics function. Let xif gNi¼1 be a set of distinct
points in Rn. Then, the N � Nð Þ interpolation matrix F, whose i; jð Þth element is

’i j ¼ ’ xi � xj
�� ��� �

, is nonsingular. ▪
There is a large class of RBFs that is covered byMicchelli’s theorem. In fact, this

theorem provides a theoretical basis for RBF-based function approximation and

regression techniques. Specifically, using an RBF ’ ¼ ’ðrÞ and a finite set of

N points xif gNi¼1 in Rn , the above theorem assures that it is always possible to

approximate functions f ðxÞ on a grid of points, using a linear combination of RBFs

in the form f̂ ðxÞ ¼PN
i

yi ’ x� xið Þ, such that f xið Þ ¼ f̂ xið Þ for all xif gNi¼1.

Theorem 12.2. Universal Approximation Theorem for Sigmoidal NNs [4] Any
continuous function f ðxÞ : Rn ! R can be uniformly approximated by a single-
hidden-layer NN,

8e> 0; 9N; W; b; V; y; 8x2 X� Rn : WT~s VTxþ y
� �þ b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NNðxÞ

�f ðxÞ

�������
�������
1

� e (12.7)

with a bounded monotone-increasing continuous activation vector function �s �ð Þ on
a compact domain X � Rn. ▪

The universal approximation theorem extends to the class ofL1 functions defined
on compact sets. In that case, it is assumed that the selected activation function is

a bounded measurable sigmoid, and the approximation is understood in terms of the

L1 functional norm.

Theorem 12.3. Rates of Approximation Theorem for Sigmoidal NNs [5]

Consider a class of functions f ðxÞ on Rn for which there is a Fourier representation
of the form

f ðxÞ ¼
ð
Rn

eio x ~f oð Þ do
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for some complex-valued function ~f oð Þ for which o ~f oð Þ is integrable and define

Cf ¼
ð
Rn

ok k ~f oð Þ�� �� do <1

Then, for every function f ðxÞ with Cf finite and every N � 1 , there exists
a sigmoidal NN of the form (12.5), such that

f ðxÞ � NNðxÞk k2L2¼
ð
xk k�r

f ðxÞ � NNðxÞð Þ2 dx � 2 r Cf

� �2
N

▪
Functions withCf finite are continuously differentiable onR

d. Moreover, the NN

approximation error is measured by the L2-norm on the ball of radius r.

Theorem 12.4. Universal Approximation Theorem for RBF NNs [6] Let
’ðxÞ : Rn ! R be an integrable bounded continuous function, and assume that

ð
Rn

’ðxÞ dx 6¼ 0

Then, for any continuous function f(x) and any e > 0, there is an RBF NN with N
neurons, a set of centers Cif gNi¼1, and a common width s > 0,

f̂ ðxÞ ¼
XN
i¼1

yi ’
x� Ci

s

	 

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

’iðxÞ

¼ YT FðxÞ

such that

f ðxÞ � NNðxÞk k2L2¼
ð

xk k � r

f ðxÞ � NNðxÞð Þ2 dx � e ¼ O N�
1
n

� �

▪
In conclusion, we present a comparison of key features and properties possessed

by the sigmoidal NNs and by the RBF NNs:

• Both RBF and sigmoidal NNs are universal approximators.

• An RBF NN depends on the Euclidean distances between the input vector x and
the centers Ci. On the other hand, a sigmoidal NN depends on the sum of the inner

product of the input vector x with its synaptic weight vectors Vi and a bias y.

• Sigmoidal NNs provideO N�
1
2

� �
rate of approximation which does not explicitly

depend on the dimension of x. The rate of approximation for the RBF NNs is of
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orderO N�
1
2 n

� �
, and consequently, it decreases exponentially as the dimension of

the input vector x increases. This phenomenon is called the “curse of dimension-

ality” (due to R. E. Bellman).

• An RBF has a local support, while a sigmoid does not. The local support implies

learning and adaptation ability of RBF NNs. Sigmoidal NNs adapt but do not learn.

With the specific reference to artificial NNs in control, it is their ability to

represent inherently nonlinear mappings and hence to model nonlinear dynamical

systems, which is the feature to be most readily exploited in the synthesis of nonlinear

controllers. This is the topic that we shall begin to address in the next section.

12.4 Adaptive Control with State Limiting Constraints

We are interested in the design of adaptive command tracking controllers for affine-

in-control multi-input multi-output (MIMO) dynamical systems in the form

_x ¼ A xþ BL uþ f ðxÞð Þ þ xðtÞ (12.8)

where x 2 Rn is the system state vector, u 2 Rm is the control input, B 2 Rn�m is a

known constant matrix, A 2 Rn�n and L 2 Rm�m (a diagonal matrix with positive

elements) are unknown constant matrices, f ðxÞ : Rn ! Rm is a state-dependent

(possibly nonlinear) uncertainty, and xðtÞ 2 Rn is a bounded time-varying unknown

disturbance, whose upper bound

xðtÞk k � xmax (12.9)

is known.

In the previous chapters, we have developed model reference adaptive control

(MRAC) command tracking design methods, assuming that the matched nonlinear

uncertainty admits an exact parameterization in the form f ðxÞ ¼ YT FðxÞ , with
constant unknown coefficients Y 2 RN�m and with a preselected known locally

Lipschitz-continuous regressor vector FðxÞ 2 RN .

In this section, we shall extend our design to nonlinear-in-parameter functions.

Our main assumption here is that these uncertainties can be parameterized (i.e.,

approximated on a bounded closed set within a small tolerance) using artificial

NNs, whose fixed basis functions are known (such as sigmoids with fixed inner-

layer weights and thresholds or Gaussians with fixed centers).

In particular, using the universal approximation properties of artificial NNs, we

shall assume that the unknown mapping f ðxÞ : Rn ! Rm can be approximated/

represented on a known compact set X � Rn by an NN with N fixed neurons ’iðxÞ
and using unknown ideal constant connection weights that are stored in a matrix

Y 2 RN�m:

f ðxÞ ¼ YT FðxÞ þ eðxÞ (12.10)
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Without a loss of generality, we define the approximation set

X ¼ XR ¼ x 2 Rn : xk k � Rf g (12.11)

to represent a sphere of a finite and known radius R. We shall also assume that

inside the sphere, the ideal (unknown to the designer) approximation can be

achieved within a known approximation tolerance e0 > 0:

eðxÞk k � e0; 8 x 2 XR (12.12)

Outside of XR, we postulate that the approximation error can be upper-bounded

(norm-wise) by a known possibly unbounded positive scalar function emaxðxÞ:

eðxÞk k � emaxðxÞ; 8 x =2 XR (12.13)

The control objective is to design a state feedback MRAC system, which

guarantees boundedness of all signals in the corresponding closed-loop dynamics;

while forcing the system state xðtÞ 2 Rn, follow the state xref ðtÞ 2 Rn of the desired

exponentially stable reference model

_xref ¼ Aref xref þ Bref rðtÞ (12.14)

driven by a known bounded time-varying reference command signal rðtÞ 2 Rm,

rðtÞk k � rmax; 8 t � 0 (12.15)

whose maximum bound rmax is known.

We are going to construct an adaptive command tracking controller, capable of

operating in the presence of the system structured and unstructured uncertainties,

where the latter are represented by (a) the state-dependent function approximation

error eðxÞ 2 Rm in (12.12) and (b) the bounded disturbance xðtÞ 2 Rn in (12.9).

Let us immediately note that while the disturbance term xðtÞ is uniformly

bounded, the approximation error eðxÞ becomes bounded only if the system state

x(t) is located inside the sphere XR. So, in addition to command tracking, we need a

state limiter logic that would keep the system state within the approximation set XR,

or it would bring it back to XR, if the state happens to be outside of the approxima-

tion set. This observation suggests a control law in the form

u ¼ K̂T
x x� Ŷ

T
FðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ux

þ 1� mðxÞð Þ K̂T
r r|{z}
ur

þmðxÞ usl

¼ ux þ 1� mðxÞð Þ ur þ mðxÞ usl ð12:16Þ
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where

ux ¼ K̂T
x x� Ŷ T FðxÞ|fflfflfflfflffl{zfflfflfflfflffl}

f̂

(12.17)

is the adaptive stabilizing term with adaptive gains K̂x 2 Rn�m and Ŷ 2 RN�m,

ur ¼ K̂T
r r (12.18)

is the adaptive command tracking component with an adaptive feedforward com-

mand gain K̂r 2 Rm�m,mðxÞ is the state modulation function, andusl is the state limiter.

This controller will be designed to operate as follows. The adaptive stabilizing

term ux will provide closed-loop stability for all x 2 XR . At the same time, the

adaptive command tracking component ur will force the system to follow

commanded trajectories of the desired reference model. If the system state x(t) starts
outside of XR or if the system disturbance xðtÞ pushes it outside of the approximation

set, then command tracking will subside and the state limiter uslwill be responsible to
bring x back into XR (in finite time), where command tracking would resume.

These two modes of operation, tracking and state limiting, are governed by the

state limiter modulation function mðxÞ , which essentially “gain-schedules” the

controller (12.16) to smoothly transition between the adaptive tracking and

the state limiting tasks.

We define the state limiter function as

mðxÞ ¼ max 0; min 1;
xk k � dR
1� dð ÞR

	 
	 

(12.19)

where 0 < d < 1 is a constant. A sketch of this function is shown in Fig. 12.5.

By definition,

mðxÞ ¼ 0; x 2 XdR

1; x =2 XR:

(
(12.20)

0 R
x

1

m (x)

d

Fig. 12.5 State modulation function
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and the positive constant d defines the width of an annulus inside XR where

0 � mðxÞ � 1. According to (12.16), (12.19), and (12.20), the state limiter will

turn the adaptive tracking on for all x 2 XdR, or it will turn the state limiter on

for x =2 XR. In the annulus set dR � xk k � R, both tasks are active, with one of

them fading out and the other fading in, linearly in xk k.
Our choice of the modulation function in (12.19) is by no means unique. Other

definitions can easily be constructed to accomplish the gain-scheduling feature of

the adaptive controller (12.16).

In order for such a control solution to exist, the model matching conditions must

hold:

Aþ BLKT
x ¼ Aref

BLKT
r ¼ Bref ð12:21Þ

where Kx; Kr denote the ideal unknown constant feedback and feedforward gain

matrices, respectively. Only existence of the ideal gains is assumed, whereas their

knowledge will not be required to perform the design.

In (12.17), f̂ ðxÞ ¼ Ŷ
T
FðxÞ is the function approximator. It is easy to see that the

related function approximation error,

Df ðxÞ ¼ f̂ ðxÞ � f ðxÞ (12.22)

depends linearly on the parameter estimation error DY ¼ Ŷ�Y:

Df ðxÞ ¼ Ŷ�Y
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DY

T
FðxÞ � eðxÞ ¼ DYT FðxÞ � eðxÞ (12.23)

Using the model matching conditions (12.21), the open-loop system dynamics

(12.8) can be written as

_x ¼ Aref xþ Bref r þ BL u� KT
x x� KT

r r þ f ðxÞ� �þ xðtÞ (12.24)

Substituting (12.16) into (12.24) yields

_x¼ Aref xþBref rþBL uxþ 1� mð Þur þ musl�KT
x x�KT

r rþ f
� �þ x

¼ Aref xþBref r

þBL ux�KT
x xþ f þ 1� mð Þ ur �KT

r r
� �þ m usl�KT

r r
� �� �þ x (12.25)
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With (12.17) and (12.18), we get

_x ¼ Aref xþ Bref r þ x

þ BL K̂x � Kx

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DKx

T
x� Ŷ�Y

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DY

T
Fþ eþ 1� mð Þ K̂r � Kr

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DKr

T
r

0
BB@

1
CCA

þ BLm usl � KT
r r

� � ð12:26Þ

or, equivalently,

_x ¼ Aref xþ Bref r þ x

þ BL DKT
x x� DYT Fþ eþ 1� mð ÞDKT

r r þ m usl � KT
r r

� �� � ð12:27Þ

where

DKx ¼ K̂x � Kx; DKr ¼ K̂r � Kr; DY ¼ Ŷ�Y (12.28)

are the parameter estimation errors. Let

e ¼ x� xref (12.29)

denote the state tracking error. Subtracting (12.14) from (12.27) gives the state

tracking error dynamics:

_e ¼ Aref eþ x

þ BL DKT
x x� DYT Fþ eþ 1� mð ÞDKT

r r þ m usl � KT
r r

� �� �
(12.30)

We introduce matrixP 2 Rn�n to represent the unique positive-definite symmetric

solution of the algebraic Lyapunov equation,

PAref þ AT
ref P ¼ �Q; Q ¼ QT>0 (12.31)

and consider a quadratic radially unbounded Lyapunov function candidate in the

form

V e; DKx; DKr; DYð Þ ¼ eTP e

þ tr DKT
x G
�1
x DKx þ DKT

r G
�1
r DKr þ DYT G�1Y DY

� �
L

� �
(12.32)
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where Gx ¼ GT
x > 0; Gr ¼ GT

r > 0; GY ¼ GT
Y > 0 are the rates of adaptation.

The time derivative of V, along the trajectories of the error dynamics (12.30), is

given by

_V ¼ _eTP eþ eTP _eþ 2 tr DKT
x G
�1
x

_̂Kx þ DKT
r G
�1
r

_̂Kr þ DYT G�1Y
_̂Y

h i
L

� �
¼� eT Qref eþ 2 eTP x

þ 2 eTPBL DKT
x x� DYT Fþ eþ 1� mð ÞDKT

r r þ m usl � KT
r r

� �� �
þ 2 tr DKT

x G
�1
x

_̂Kx þ DKT
r G
�1
r

_̂Kr þ DYT G�1Y
_̂Y

h i
L

� �
ð12:33Þ

Regrouping terms further yields

_V ¼�eT Q eþ 2 eTP xþ 2 eTP BL m usl � KT
r r

� �þ e
� �

þ 2 eTPBLDKT
x xþ tr DKT

x G
�1
x

_̂Kx L
� �h i

þ 2 1� mð Þ eTPBLDKT
r r þ tr DKT

r G
�1
r

_̂Kr L
� �h i

þ 2 �eTP BLDYT Fþ 2 tr DYT G�1Y
_̂YL

� �h i
ð12:34Þ

Via the vector trace identity aTb ¼ tr b aTð Þ, which is valid for any two column

vectors a and b, we obtain

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

DKT
x x|fflffl{zfflffl}
b

¼ tr DKT
x x|fflffl{zfflffl}
b

eTPBL|fflfflfflffl{zfflfflfflffl}
aT

0
B@

1
CA

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

DKT
r r|fflffl{zfflffl}
b

¼ tr DKT
r r|fflffl{zfflffl}
b

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

0
B@

1
CA

eTPBL|fflfflfflffl{zfflfflfflffl}
aT

DYT FðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b

¼ tr DYT F|fflfflffl{zfflfflffl}
b

eTP BL|fflfflfflffl{zfflfflfflffl}
aT

0
@

1
A ð12:35Þ

Substituting (12.35) into (12.34) results in

_V ¼�eT Q eþ 2 eTP xþ 2 eTP BL m usl � KT
r r

� �þ e
� �

þ 2 tr DKT
x G�1x

_̂Kx þ x eTPB
h i

L
� �

þ 2 tr DKT
r G�1r

_̂Kr þ 1� mð Þ r eTP B
h i

L
� �

þ 2 tr DYT G�1Y
_̂Y� F eTPB

h i
L

� �
ð12:36Þ
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In order to keep the adaptive gains K̂x; K̂r; Ŷ uniformly bounded, we shall

employ projection-based adaptive laws (Sects. 11.3, and 11.4) in the form

_̂Kx ¼ Proj K̂x;�Gx x e
TPB

� �
_̂Kr ¼ Proj K̂r;� 1� mð ÞGr r e

TP B
� �

_̂Y ¼ Proj Ŷ; GY F eTPB
� �

ð12:37Þ

where Proj Y; Yð Þ is the Projection Operator, which maps two n� Nð Þ matrices,

O ¼ ~y1 . . . ~yN
� � 2 Rn�N and Y ¼ ~y1 . . . ~yN½ 	 2 Rn�N , into a n� Nð Þ

matrix, denoted by Proj O; Yð Þ. The operator is defined column-wise,

Proj O; Yð Þ ¼ Proj ~y1; ~y1
� �

. . . Proj ~yN; ~yN
� �� �

(12.38)

and its column vector components are

Proj ~yj; ~yj
� �

¼ y� Grf j rf jð ÞT
rf jð ÞTGrf j ~yj f j; if f j>0 ^ ~yTj rf j

� �
>0

h i
y if not

8<
: (12.39)

where f ~yj
� �

: Rn ! R is a convex function that defines the desired parameter

domain. Given ymax
j , the maximum allowable magnitude of the column vector ~yj

and a small constant ej > 0, the convex function is

f yj
� � ¼ 1þ ej

� �
yj

�� ��2 � ymax
j

� �2

ej ymax
j

� �2
(12.40)

With the adaptive laws (12.37) and because of the previously established convex

properties of the Projection Operator, one can show that the derivative of the

Lyapunov function (12.36) satisfies the following inequality:

_V � �eT Q eþ 2 eTP xþ 2 eTPBL m usl � KT
r r

� �þ e
� �

(12.41)

In order to eventually prove stability and bounded command tracking, we need

to analyze if _V can be made nonpositive outside of a compact set. Toward that end,

let us suppose that x =2 XR. Then, mðxÞ ¼ 1 and (12.41) becomes

_V �� eT Q eþ 2 eTP xþ 2 eTP BL usl � KT
r r þ e

� �
�� lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax þ 2 eTP BL usl � KT

r r þ e
� � ð12:42Þ
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In order to make the right-hand side of (12.42) nonpositive, we choose the state

limiting control usl in the form

usl ¼ �ksl ðxÞ sgn BT P e
� �

(12.43)

where kslðxÞ > 0 represents the state limiter gain, and the sign function is under-

stood component-wise. Then,

eTPBL usl ¼
Xm
i¼1

eTPB
� �

i
li usl i ¼ �kslðxÞ

Xm
i¼1

eTPB


 



i
li (12.44)

and with (12.43) inserted into (12.42), we get

_V � �lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax

�2 kslðxÞ
Xm
i¼1

eTP B


 



i
li þ eTPBL �KT

r r þ e
� �

¼ �lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax

�2
Xm
i¼1

eTPB


 



i
li kslðxÞ � sgn eTP B

� �
i

� �
KT
r r � e

� �� �
ð12:45Þ

If we now choose the state limiter gain to be large enough,

kslðxÞ ¼ Kr max rmax þ emaxðxÞ (12.46)

where Kr max � Krk k and rmax ¼ max
t � 0

rðtÞk k, then

_V ��lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax

¼�lminðQÞ ek k ek k �2 lmaxðPÞ
lminðQÞ xmax

	 

<0 ð12:47Þ

outside of the compact set:

E0 ¼ e 2 Rn : ek k � 2
lmaxðPÞ
lminðQÞ xmax ¼ e0

� �
(12.48)

Therefore, eðtÞ enters a larger compact set ~E0 
 E0 , in finite time T [7–9].

Moreover, for all t � T, there must exist a positive constant �e0, such that

�e0 � eðtÞk k ¼ xðtÞ � xref ðtÞ
�� �� � xðtÞk k � xref ðtÞ

�� �� (12.49)
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Hence,

xðtÞk k � �e0 þ xref ðtÞ
�� �� � �e0 þ xref max (12.50)

where the upper bound xref max can be explicitly computed based on rmax and the

properties of the reference model (12.14). So, if we choose the approximation set XR

to be large enough,

R > �e0 þ xref max (12.51)

then for all t � T,

xðtÞk k � R (12.52)

that is, the system state x(t) enters XR in finite time T and remains there afterward.

Inside the set XR, the state modulation function is zero, and the approximation

error eðxÞ becomes small. Hence, the Lyapunov function time derivative from

(12.41) can be upper-bounded as

_V ��eT Q eþ 2 eTP xþ 2 eTPBL e

�� lminðQÞ ek k2 þ 2 ek k lmaxðPÞ xmax þ Bk kLmax e0ð Þ

¼ �lminðQÞ ek k ek k � 2
lmaxðPÞ
lminðQÞ xmax þ Bk kLmax e0ð Þ

	 

ð12:53Þ

Consequently, _V < 0 outside of the compact set:

E1 ¼ e 2 Rn : ek k � 2
lmaxðPÞ
lminðQÞ xmax þ Bk kLmax e0ð Þ ¼ e1

� �
(12.54)

Hence, eðtÞ enters a compact set ~E1 
 E1 in finite time T1 [7–9], where it will

remain afterward. Similarly to (12.49) and (12.50), we get an upper bound

xðtÞk k � �e1 þ xref max (12.55)

for some positive constant �e1 � �e0. In order to ensure that xðtÞ remains insideXR, it is

sufficient to strengthen the inequality (12.51) and assume

R > �e1 þ xref max (12.56)

As we have already mentioned, the adaptive parameters will remain uniformly

ultimately bounded (UUB). This property is due to the convexity of the Projection

Operator (Sect. 11.3, Lemmas 11.3, 11.4). Consequently, all trajectories of the

closed-loop system (12.8), (12.16), and (12.37) are UUB. Moreover, the tracking
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error e ¼ x� xref enters a neighborhood of the origin, in finite time. The radius of

this neighborhood (i.e., the tracking error ultimate bound) is determined by the

minimum level set of the Lyapunov function V, which contains the set

E ¼ e 2 Rn : ek k � �e1f g
� K̂x 2 Rn�m : K̂x

� �
j

��� ��� � K̂max
x

� �
j
; 1 � j � m

n o
� K̂r 2 Rm�m : K̂m

� �
j

��� ��� � K̂max
r

� �
j
; 1 � j � m

n o
� Ŷ 2 RN�m : ŷ

� �
j

����
���� � ŷ

max
� �

j
; 1 � j � m

� �
ð12:57Þ

outside of which _V � 0.

This argument completes the design and analysis of the MRAC controller with

state limiting constraints for MIMO dynamics with both structured and unstruc-

tured uncertainties. We summarize the derived design equations in Table 12.1.

Table 12.1 Projection-based MRAC design with state limiter constraints

Open-loop plant _x ¼ A xþ BL uþ f ðxÞð Þ þ xðtÞ

Reference model _xref ¼ Aref xref þ Bref rðtÞ

State tracking error e ¼ x� xref

Lyapunov equation for adaptive laws PAref þ AT
ref P ¼ �Q

Total control input u ¼ ux þ 1� mðxÞð Þ ur þ mðxÞ usl

State modulation function
mðxÞ ¼ max 0; min 1;

xk k � dR
1� dð ÞR

	 
	 


Adaptive stabilizing term ux ¼ K̂T
x x� Ŷ

T
FðxÞ

Adaptive tracking term ur ¼ K̂T
r r

State limiter usl ¼ �kslðxÞ sgn BT P e
� �

State limiter gain ks lðxÞ ¼ Kr max rmax þ emaxðxÞ

MRAC laws with Projection Operator
_̂Kx ¼Proj K̂x;�Gx x e

TP B
� �

_̂Kr ¼Proj K̂r ; mðxÞ � 1ð Þ Gr r e
TP B

� �
_̂Y ¼Proj Ŷ; GY F eTPB

� �
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Next, as an illustrative example, we are going to design an adaptive automatic

landing system for a generic medium-size transport aircraft.

Example 12.3 Automatic Landing System for a Medium-Size Transport
Aircraft Modern transport aircraft are equipped with automatic landing systems

whose sole purpose is to fly the vehicle along the desired trajectory, all the way until

a predetermined touchdown point on a runway (Fig. 12.6).

On final approach to a landing, an aircraft would extend its wing leading edges

(slats), move wing trailing edges (flaps) down, and deploy its landing gear. As a

result, the vehicle aerodynamic drag increases, and the airspeed decreases. With the

flaps and slats extended, the aircraft wing would be optimized (per design) to

produce a sufficient lift force and to enable a low-speed landing, with a gentle

touchdown at the designated runway touchdown point.

For clarity, we assume that the runway is parallel to the horizon and that the

aircraft undergoes vertical and longitudinal motion only, that is, the vehicle can

change its vertical and forward velocity components and it can also pitch up or

down. In this case, the vehicle primary control inputs are engine thrust (dth, %) and

elevators (collectively movable tail surfaces, de , deg). The regulated outputs are

represented by the true airspeed V (ft/s) and altitude above the runway (h, ft). From
Fig. 12.6, it is not difficult to see that the aircraft angle of attack a (rad), the pitch

angle (y, deg), and the flight path angle g (rad) satisfy the following equality:

a ¼ y� g

Another important relation exists between the vehicle rate of climb _h (ft/s), the

runway velocity _d, the airspeed V, and the flight path angle g. From Fig. 12.6 (for a

small flight path angle), we get

_h ¼ V sin g � V g
_d ¼ V cos g � V

Altitude

V

Approach path

Horizon

Runway

h

d

Angle of attack

Pitch angle

flh

Flight path angle

Flare initiation altitude

Flare path

Distance to touchdown

Touchdown

q
a

g

Fig. 12.6 Aircraft on final approach to landing
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The desired trajectory for the aircraft to follow consists of two segments:

(a) straight line approach and (b) flare. Typical approach angles range between

negative 2 and 3 degrees of g, with the desired airspeed of 140–160 knots.

During the approach phase, the aircraft is commanded to fly a constant airspeed

and a constant flight path angle. On the other hand, the main purpose of the flare is to

slowdown the aircraft rate of descent (called the “sink rate”) and to make a smooth

transition from the selected approach glide slope (i.e., the flight path angle g) to a

shallow angle, at an altitude of approximately 50–65 f. above the runway.

A moderate flare can be described by a linear first-order differential equation

such as

_h ¼ � 1

th
h; h tfl

� � ¼ hfl

where tfl; hfl
� �

are the flare initiation time and altitude, respectively. Also, th is a
positive time constant. The flare initiation altitude hfl and the time constant th can be
chosen such that the vehicle would make a smooth transition from approach to flare

and it would touch down within a predetermined distance along the runway. Let us

formally define these two requirements.

A smooth transition from the approach phase (Vcmd ¼ V0; gcmd ¼ g0) to flare

implies that at t ¼ tfl, the following relation must take place:

_h tfl
� � ¼ Vg tfl

� � � Vcmd gcmd ¼ �
1

th
hfl

In addition, we impose a restriction on the runway distance traveled in 4 tfl
seconds from the start of the flare maneuver,

ðtflþ4 th

tfl

VðtÞ dt ¼ d

where d is the desired distance to touchdown (see Fig. 12.2). Assuming constant

airspeed throughout the entire maneuver, VðtÞ � Vcmd gives

ðtflþ4 th

tfl

VðtÞ dt � Vcmd 4 th ¼ d

Then, the flare time constant is

th ¼ d

4Vcmd
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and the flare initiation altitude can be computed as

hfl ¼ �th Vcmd gcmd ¼ �
d

4
gcmd

For simulation purposes, we consider a generic midsize transport aircraft flying

wings-level at an altitude of h0 ¼ 300 ft above ground, with its landing gear down

and with flaps/slats extended. The vehicle true airspeed is V0 ¼ 250 ft/s. The

corresponding longitudinal linear (nominal) dynamics are of the form

_V

_a

_q
_y
_h

0
BBBBBB@

1
CCCCCCA

|fflfflffl{zfflfflffl}
_x

¼

�0:038 18:984 0 �32:174 0

�0:001 �0:632 1 0 0

0 �0:759 �0:518 0 0

0 0 1 0 0

0 �250 0 250 0

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

V

a

q

y

h

0
BBBBBB@

1
CCCCCCA

|fflfflffl{zfflfflffl}
x

þ

10:1 0

0 �0:0086
0:025 �0:011
0 0

0 0

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

dth
de

	 

|fflfflffl{zfflfflffl}

u

, _x ¼ A xþ B u

We wish to emphasize that our model represents a generic midsize aircraft and

that the linear data are selected for the purposes of design, analysis, and simulation

[11, p. 300].

As the aircraft approaches the runway, it will experience a significant increase in

its aerodynamic lift force and the pitching moment. This phenomenon is called the

“ground effect.” Flying in close proximity to the ground drastically changes the

airflow beneath and past the airplane. As a result, the ground effect tends to make

the vehicle float along the runway.

In order to properly account for the ground effect, we need to modify the aircraft

linear dynamics. The vehicle aerodynamic forces andmoments depend on the relative

motion of the aircraft with respect to the atmosphere. In our example, dynamics of

these forces and moments are defined by the first three equations. The ground effect

induces a change in the vertical (updraft) linear displacement of the air mass, and so,

the aircraft aerodynamic forces and moments depend on the difference a� agðhÞ
between the aircraft angle of attack a and the angle of attack induced by the vertical

updraft agðhÞ, which in turn represents a uniformly bounded function of the ground

proximity (i.e., altitude) h. So, the ground effect phenomenon can be embedded into

the linear model as follows:
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_V

_a

_q
_y
_h

0
BBBBBB@

1
CCCCCCA

|fflfflffl{zfflfflffl}
_x

¼

�0:038 18:984 0 �32:174 0

�0:001 �0:632 1 0 0

0 �0:759 �0:518 0 0

0 0 1 0 0

0 �250 0 250 0

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

V

a

q

y

h

0
BBBBBB@

1
CCCCCCA

|fflfflffl{zfflfflffl}
x

þ

10:1 0

0 �0:0086
0:025 �0:011
0 0

0 0

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

dth
de

	 

|fflfflffl{zfflfflffl}

u

þ

�18:984
0:632

0:759

0

0

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Bg

agðhÞ

or, equivalently,

_x ¼ A xþ B uþ Bg agðhÞ

where we have added an extra term Bg agðhÞ, with a constant vector Bg, whose first

three components are equal to the opposite of the corresponding values in the

second column of A. This modification reflects our observation that the first three

equations in the aircraft dynamics depend on the relative (with respect to the air

mass) angle of attack a� agðhÞ.
It is not difficult to see that Bg can be reconstructed as a linear combination of

the columns in B:

B
�1:8796
�73:2718

	 

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

yg

¼ Bg

In other words, the ground effect represents a matched uncertainty, and the

resulting model takes the form of (12.8):

_x ¼ A xþ B uþ yg agðhÞ
� �

Let us make a quick remark about the ground effect matching condition: It is not

a requirement for our design. Since agðhÞ is a uniformly bounded function of h, it
can be treated similar to the bounded disturbance xðtÞ in (12.8), as long as we can

ensure that h is bounded. So, the ground effect unmatched effects on the aircraft

dynamics can also be mitigated (see Exercise 12.3).

Continuing on, we define the system-regulated output to consist of the aircraft

true airspeed and altitude (same as the aircraft height above the runway):
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y ¼ V
h

	 

¼ 1 0 0 0 0

0 0 0 0 1

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

x ¼ Cx

Accurate aerodynamic data that describe the ground effect are often not available

or highly uncertain, yet their undesirable influences on the aircraft landing perfor-

mance must be taken into account. In order to mitigate these uncertainties, we shall

design a (robust + adaptive) automatic landing flight controller, with predictable

and quantifiable landing performance characteristics. Specifically, we are going to

design a robust adaptive controller to simultaneously track commanded airspeed

Vcmd and commanded altitude hcmd. These two external commands are grouped into

the external vector signal:

r ¼ Vcmd hcmdð ÞT

Our selection of these two specific commands will enable automatic steering of

the aircraft along a given flight path, all the way to a designated touchdown point on

the runway. So, our main control goal is to design u to force y to follow the external

vector signal r in the presence of unknown ground effects.

Beginning with the design of a baseline controller for automatic landing, we use

the aircraft model without the ground effect uncertainty and employ the familiar

LQR method. The baseline control input is

ubl ¼ KT
x xþ KT

r r

where Kx 2 R5�2 and Kr 2 R2�2 are the baseline feedback and feedforward gain

matrices, respectively. These gains can be calculated as follows. We choose

Qlqr ¼ diag :02 0 0 0 1ð Þ; Rlqr ¼ diag 20 20ð Þ

to compute Kx using the LQR method,

KT
x ¼ �

0:1173 �89:1740 42:8761 140:0007 0:2340
0:0186 �40:6065 4:3798 58:6016 0:2127

	 


from the reference (nominal closed-loop) matrix,

Aref ¼ Aþ BKT
x

and then, determineKr such that the closed-loop baseline system DC gain, from the

commanded input r to the regulated output y, is the (2 � 2) identity matrix:

DCGain ¼ �CA�1ref B KT
r ¼ I2�2

h i
) KT

r ¼ � CA�1ref B
� ��1� �
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This gives

KT
r ¼

�0:7753 0:8531
0:2340 0:2127

	 


and the reference model dynamics, as in (12.14),

_xref ¼ Aþ BKT
x

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Aref

xref þ BKT
r

� �
|fflfflffl{zfflfflffl}

Bref

r

whose eigenvalues are shown in Table 12.2.

We now turn our attention to the definition of the desired altitude profile. Given

the approach airspeed V0 ¼ 250 (ft/s) and the target glide slope g0 ¼ �2:5 (deg),

we set the runway distance at d ¼ 3; 000 (ft), compute the corresponding flare time

constant,

th ¼ d

4V0

¼ 3:0 sð Þ

and define the flare initiation altitude:

hfl ¼ � d

4
g0 ¼ 32:7249 ftð Þ

Then, we compute the commanded altitude trajectory, starting from the initial

altitude h0 ¼ 300 (ft) and continuing all the way down to the runway touchdown point:

hcmdðtÞ ¼
h0; if 0 � t � 1

h0 þ V0 g0 t� 1ð Þ; if hcmd>hfl; t > 1

e
� 1

tfl
t�1�tflð Þ

hfl; if hcmd � hfl; t > 1

8>><
>>:

The resulting altitude command profile is shown in Fig. 12.7.

Note that during the first 1 s of flight, we set the altitude command constant. This

will enable a smooth initiation of the landing sequence.

With the baseline controller turned on and without the ground effect, the

baseline closed-loop system tracking performance is satisfactory (see Fig. 12.8).

Table 12.2 Reference model eigenvalues in Example 12.3

Eigenvalue Damping, n/d Frequency, rad/s

�0.647 � 1.03 j 0.531 1.22

�0.529 � 0.158 j 0.958 0.552

�1.39 1.0 1.39
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Required for the baseline landing maneuver, the elevator and thrust values are

very benign (Fig. 12.9).

For pure academic purposes, we shall use the following equation to emulate the

ground effect:

agðhÞ ¼ �0:0698 1� tanh 0:1 h� 60ð Þð Þð Þ

The ground effect equation is plotted in Fig. 12.10.

As seen from the plot, the ground effect contributes to as much as 8 degree of

angle of attack change (negative), as the aircraft approaches the runway.
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Fig. 12.8 Baseline closed-loop system performance (no ground effect) in Example 12.3
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Turning the ground effect on, while using only the baseline controller, results in

a significant degradation of the aircraft landing performance (Fig. 12.11).

The simulation data show that while operating under the baseline controller only

and in the presence of the ground effect, the vehicle floats along the runway, while

its airspeed increases and deviates from its commanded value.

The corresponding elevator and thrust control inputs remain within reasonable

limits (Fig. 12.12).

So, the baseline system attempts to counteract the unknown ground effect by

reducing thrust to keep the speed down and by moving the elevator trailing edge up
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Fig. 12.9 Elevator and thrust data during baseline landing (no ground effect) in Example 12.3
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Fig. 12.10 Incremental angle of attack data due to ground effect in Example 12.3
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to stabilize the aircraft pitching motion. Nevertheless, the baseline controller fails in

the sense that overall, the vehicle landing performance is clearly unacceptable.

Next, we design an adaptive augmentation to help the baseline system cope with

the ground effect-induced unknown effects. First, we choose the regressor vector

with five altitude-dependent RBFs and with a single constant bias:

F ¼ F1ðhÞ F2ðhÞ F3ðhÞ F4ðhÞ F5ðhÞ 1ð ÞT
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Fig. 12.11 Baseline closed-loop performance during landing with ground effect in Example 12.3
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Fig. 12.12 Elevator and thrust data during baseline landing with ground effect in Example 12.3

380 12 Approximation-Based Adaptive Control



The selected RBFs are uniformly distributed on the altitude interval �20; 60½ 	,
with 20-ft separation from each other. All five RBFs have the same input scaling:

FiðhÞ ¼ exp �0:0056 h� hið Þ2
� �

; i ¼ 1 ; . . . ; 5

When plotted versus altitude, these functions give a homogeneous coverage of

the altitude range, where the ground effect is prevalent (Fig. 12.13).

Using the selected regressor vector F, it is possible to closely approximate the

ground effect-induced angle of attack function agðhÞ on the interval of interest

(see Exercise 12.3).

To design an adaptive augmentation, we choose

Q ¼ diag 1 0 1 0 0ð Þ

to solve the algebraic Lyapunov Eq. (12.31) for P, select rates of adaptation,

Gx ¼ Gr ¼ 0; GY ¼ 20 I6�6

and form the adaptive laws per Table 12.1.

After several design trials, we have decided to set the modulation function mðxÞ
to zero, since its contribution to improving landing performance is negligible

(in this case).

Total control is defined as an adaptive augmentation of the baseline LQR system,

u ¼ ubl þ uad
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Fig. 12.13 RBF selection for adaptive control design in Example 12.3
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where

uad ¼ �ŶT
FðhÞ

represents the adaptive component. This is a slight deviation from the design

equations in Table 12.1, where we have an adaptive controller without a baseline

system (see Exercise 12.2).

With the (baseline + adaptive) controller turned on and in the presence of the

unknown ground effect, the system closed-loop performance is well recovered to

that of the desired baseline (Fig. 12.14).

In fact, the data are almost indistinguishable from the baseline tracking

(Fig. 12.8). However, once the aircraft descents below 60 ft, where the ground

effect is active, the required control inputs (Fig. 12.15) differ from the baseline data

(Fig. 12.9).

Yet, all controls remain smooth and reside within practical limits. In addition,

the adaptive augmentation provides a sufficiently close estimate of the ground

effect. This “bonus” outcome can be attributed to the fact that the ground effect

persistently excites the vehicle dynamics, and as a result, the adaptive parameters

converge to their constant unknown values (see Exercise 12.3). □
In conclusion, we note that the adaptive feedback/feedforward design method

from Table 12.1 can be modified to incorporate a robust baseline controller with

proportional and integral feedback (see Exercise 12.4). This would eliminate

feedforward connections, which in its own right may become a desirable feature

or even a requirement in some applications.
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Fig. 12.14 (Baseline + Adaptive) closed-loop performance with ground effect in Example 12.3
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12.5 Summary

We have developed an adaptive design method to control MIMO dynamics in the

presence of unstructured uncertainties, such as nonlinear state-dependent functions

and bounded time-varying process noise. The resulting MRAC system represents

an extension of the previously derived adaptive controllers for linear-in-parameter

matched uncertainties.

Our current adaptive design includes a state limiter and a state modulation

function. The state limiting logic was originally proposed in [10]. The state limiter

keeps the system trajectories within predefined boundaries that define an operational

envelope for the system. This is the set where we can represent the state-dependent

uncertainties by linear-in-parameter RBF NNs. The state limiter is also capable of

bringing the system state back into the operational envelope in finite time.

The state limiting mode is turned on or off by the state modulation function,

which in turn provides a gain-scheduling feature between the command tracking

and the state limiting modes of operation. In other words, the state limiter can

seamlessly fade in and/or out the command tracking or the state limiting tasks,

depending if the system state is located inside or outside of the operational

envelope, respectively.

We have also presented a concise overview of function approximation properties

using artificial NNs. This material justifies our model formulation and control

design approaches for representation and attenuation of the system nonlinear-in-

parameter uncertainties.
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Fig. 12.15 Total control during landing with ground effect in Example 12.3
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In summary, we have employed Lyapunov-based arguments and artificial NNs

to attain UUB tracking performance for MIMO dynamics with both structured and

unstructured uncertainties.

12.6 Exercises

Exercise 12.1. Select a scalar non-monotonic function. Use an off-line regression

to approximate the selected function with sigmoidal and RBF neural networks.

Increase the number of neurons and record the corresponding function errors. Plot

the following data: (a) the function and the approximating NN and (b) the function

approximation error versus the number of neurons. Repeat these tasks for a function

of two independent variables. Comment on your results.

Exercise 12.2. Modify design equations in Table 12.1 to justify an adaptive

augmentation-based design. Prove closed-loop system stability, show boundedness

of all signals, and quantify tracking performance.

Exercise 12.3. Repeat the control design and all simulation steps from Example

12.3. Using the selected regressor F, perform off-line approximation of the ground

effect-induced angle of attack function agðhÞ. Compute the corresponding online

approximation of the same function. Compare and discuss the off-line versus online

approximation data. Modify the aircraft open-loop matrix A such that the ground

effect matrixBg is no longer matched. Introduce a control uncertaintyL 6¼ Im�m and
add a uniformly bounded process noise xðtÞ. Redesign the controller (if needed) and
rerun all simulation tests. Discuss robustness properties of the controller with

respect to the unmatched ground effect uncertainties and the process noise.

Exercise 12.4. Similar to (12.37), derive an adaptive augmentation of a baseline

proportional integral (PI) controller, (baseline PI + adaptive), with a state limiter

modification similar to (12.16), for the extended open-loop system dynamics,

_x ¼ A xþ BL uþ f xp
� �� �þ Bref ycmd þ xðtÞ

with m inputs u, m regulated outputs y ¼ C x , m commands ycmd 2 Rm , and

n uniformly bounded noise components xðtÞ 2 Rn , where (A, B) is a controllable

pair of unknown matrices,L 2 Rm is an unknown positive-definite diagonal matrix,

and f xp
� �

denotes an unstructured matched state-dependent uncertainty. It is

assumed that the first m components of the state vector x represent the integrated

output tracking error, whose dynamics are _ey I ¼ y� ycmd.

Exercise 12.5. Using the design equations from Exercise 12.4 and the aircraft data

from Example 12.3, design and simulate a (baseline PI + adaptive) automatic landing

system. Are there any advantages in using a PI baseline controller versus a feedback/

feedforward system from Example 12.3? Compare and discuss your results.
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Chapter 13

Adaptive Control with Improved

Transient Dynamics

13.1 Motivation

Let us return to the original concept of the model reference adaptive control

(MRAC), as it was first proposed in 1958 by Whitaker et al., at MIT [1]. The

main idea was to specify the desired command-to-output performance of a servo-

tracking system using a reference model that would define the ideal response of the

system due to external commands. A generic block diagram of the MRAC system is

shown in Fig. 13.1.

As seen from the diagram, the controller parameter adjustments (the adaptive

law) are made based on the tracking error (the difference between the system actual

response and its target specified by the reference model output), an output feedback

from the process, and the external command.

Example 13.1 For clarity and to motivate further discussions, let us consider

MRAC design equations for a scalar system shown below:

Process : _x ¼ a xþ b u
Ref. Model : _xref ¼ aref xref þ bref r

Controller : u ¼ k̂x xþ k̂r r

Adaptive Law :
_̂
kx ¼ �gx x x� xref

� �
_̂
kr ¼ �gr r x� xref

� �
:

( (13.1)

where a and b are unknown constant parameters in the process dynamics with the

known sgn b> 0. The control input u is selected such that the system state x follows
the reference model state xref, driven by any bounded external command r ¼ r(t).
Also in (13.1), the reference model data aref < 0 and bref are chosen to yield the

desired speed of response and a DC gain (unity in most applications) from the

reference model output yref ¼ xref to the system-regulated output y ¼ x.
In this case, closed-loop system stability and global asymptotic tracking are

achieved via a specific choice of the adaptive law in (13.1), with the adaptive gains

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_13,
# Springer-Verlag London 2013
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k̂x; k̂r
� �

, whose dynamics is influenced by two positive constant rates of adaptation

gx; grð Þ. As seen from (13.1), the state tracking error

e ¼ x� xref (13.2)

drives the adaptive laws. Existence of a servo-control solution for this particular

scalar dynamics is provided by the matching conditions,

aref ¼ aþ b kx

bref ¼ b kr ð13:3Þ

where kx and kr denote the ideal unknown constant parameters (gains of the ideal

controller). For scalar dynamics, such as the process in (13.1), it is clear that the

matching relations (13.3) always have a solution.

Let

Dkx ¼ k̂x � kx; Dkr ¼ k̂r � kr (13.4)

represent the parameter estimation errors. Substituting the matching conditions

(13.3) into (13.1), one can derive the tracking error dynamics,

_e ¼ aref eþ b Dkx xþ Dkr rð Þ (13.5)

which indeed define transients in the corresponding closed-loop system.

We emphasize that both the tracking error dynamics and the transient dynamics

are indistinguishable. In other words, if and when e becomes small, the system

output tracks the reference model with diminishing errors. On the other hand, the

transient dynamics define what happens between the start of a maneuver and the

time when the error gets small. We shall address this question in this chapter.

Process
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Command

System 
Response

Control
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Output
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Fig. 13.1 MRAC block diagram
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Returning to (13.5), we can employ Lyapunov arguments to prove global

asymptotic stability of the tracking error dynamics. In fact, using a radially

unbounded quadratic Lyapunov function candidate in the form

V e; Dkx; Dkrð Þ ¼ e2 þ b

"
Dk2x
gx
þ Dk2r

gr

#
(13.6)

it is not difficult to show that with the adaptive law (13.1), the time derivative of V,
evaluated along the trajectories of the error dynamics (13.5), becomes nonpositive.

This argument constitutes the inverse Lyapunov-based design. It provides (a) the

adaptive law and (b) the required proof of closed-loop global asymptotic stability.

As a result, we can formally show that for any initial condition, any bounded time-

varying external command, and any positive rates of adaptation, the tracking error

dynamics (13.5) are globally asymptotically stable,

lim
t!1 eðtÞj j ¼ lim

t!1 xðtÞ � xref ðtÞ
�� �� ¼ 0 (13.7)

and all signals in the corresponding closed-loop dynamics remain uniformly

bounded, forward in time.

We immediately note that this adaptive controller solves the servo-tracking prob-

lem asymptotically in time, as t ! 1, while it provides no uniformly guaranteed

bounds on how large the transients might become prior to acquiring the command.

In the previous chapters, we have shown that in order to yield fast tracking and

thus shorten transient times, one needs to increase the rates of adaptation gx; grð Þ.
However, experience shows that if these rates grow large, then unwanted transient

oscillations will start to occur during the initial few seconds (the transient time) of

operation. The balance between achieving fast tracking and avoiding undesired

transients constitutes the MRAC design trade-off phenomenon. In essence, the rates

of adaptation must be chosen large enough but not too large.

What also complicates the MRAC design tuning process is the direct dependence

of the transient dynamics (13.5) on (a) the external command and (b) the initial

conditions for the system and the adaptive controller. These parameters may too lead

to undesirable transients.

Let us take a step back and look again at the error dynamics (13.5). We know that

the time-varying signal

’ðtÞ ¼ b DkxðtÞ xðtÞ þ DkrðtÞ rðtÞð Þ (13.8)

is uniformly bounded and that the tracking error e(t) globally asymptotically tends

to zero, as shown in (13.7). Still, the time constant of the transient dynamics (13.5)

te ¼ 1

arefj j is exactly the same as the one for the reference model in (13.1).

Even though having the same time constant in both systems is theoretically

correct, any control practitioner would want to have the transient dynamics (13.5)
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evolve faster than the desired reference model. In other words, we want the

transients to die out quickly, relative to the dynamics of the reference model

trajectories. This design requirement is identical to the one that takes place during

the construction of asymptotic state observers, originally developed by Luenberger

in his Ph.D. thesis at the Stanford University (1963) and later published in [2]. Per

Luenberger, the reference model in (13.1) represents an open-loop observer. So,

just like in the closed-loop observer dynamics, we can add an error feedback term to

the reference model and arrive at the observer-like reference model,

_xref ¼ aref xref þ bref r þ ke x� xrefð Þ
Error Feedback Term

(13.9)

where ke > 0 is the reference model feedback gain. The newly introduced error

feedback term in (13.9) is equivalent to the output innovation feedback in a state

observer. It is easy to see that in this case, the corresponding error dynamics become

faster than the open-loop reference model from (13.1):

_e ¼ aref � ke
� �

eþ b Dkx xþ Dkr rð Þ (13.10)

Once again, Lyapunov-based arguments can be easily repeated to prove (a) global

asymptotic stability of the modified error dynamics (13.9) and (b) uniform bounded-

ness of all signals in the related closed-loop system. For those readers who are familiar

with theMRAC stability proof concept, we briefly note that using the same Lyapunov

function candidate (13.6), one needs to compute its time derivative along the

trajectories of (13.10), substitute the adaptive law from (13.1), and then show that

the resulting time derivative is globally nonpositive. This will prove uniform bound-

edness of the tracking error e and of the parameter estimation errors (13.4). Further-

more, since in the observer-like referencemodel (13.9),aref < 0and the error feedback

term are bounded, then the model state xref is bounded as well. The rest of the proof

follows standard (in MRAC) stability arguments, finally arriving at (13.7).

Revised block diagram with the observer-like reference model (13.9) is shown in

Fig. 13.2.

Before proceeding any further, we would like to briefly present and discuss

simulation comparison data for the observer-like reference model modification,

while using the scalar process dynamics from (13.1) and the simulation parameters

as indicated below:

Process : _x ¼ xþ 3 u
Ref. Model : _xref ¼ �10 xref þ 10 r þ ke x� xref

� �
Controller : u ¼ k̂x xþ k̂r r

Adaptive Law :
_̂
kx ¼ �10 x x� xref

� �
_̂
kr ¼ �10 r x� xref

� �
:

( (13.11)
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In order to assess transient improvements, we perform three distinct simulation

scenarios, where the error feedback gain ke is set to 0 (standard MRAC case),

10, and 80. Figure 13.3 shows step-input response data for the three cases.

The original MRAC transient dynamics are quite oscillatory. As the reference

model feedback gain ke is increased, the transient dynamics become faster and the

unwanted oscillations subside. Figure 13.4 presents simulation data comparison

between the first and the third cases. Both the system state x and the control input u
are shown. These responses were computed for a series of commanded step inputs

of increased magnitude.

As seen from the simulation data, the use of the observer-like reference model

(13.9) gives a predictable, scalable, and non-oscillatory (in transient) tracking

performance (data shown in green).

Now, we shall pose the following question: Can the simulated transient

improvements of the observer-like reference model be formally explained? We
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Fig. 13.2 MRAC block diagram with observer-like reference model in Example 13.1
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Fig. 13.3 MRAC transient dynamics due to step-input command in Example 13.1
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claim that as the reference model error feedback gain ke is increased, the system

transient dynamics become less oscillatory.

In order to gain further insights into the transient behavior, we choose k0 > 0,

a small positive parameter e, and redefine the reference model feedback gain:

ke ¼ k0
e

(13.12)

This allows to rewrite the modified error dynamics (13.10) in the form

e _e ¼ e aref � k0
� �

eþ e b Dkx xþ Dkr rð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
’ðtÞ

(13.13)

Since all signals in the corresponding closed-loop system are uniformly

bounded, it is not difficult to find sufficient conditions so that there exists a strictly

positive finite constant 0<’max <1, such that for any e > 0, the upper bound

’ðtÞj j � ’max holds uniformly in time and e. Furthermore, starting from an initial

condition eð0Þ ¼ e0, the solution of (13.13) can be written explicitly:

eðtÞ ¼ e aref�k0
eð Þ t eð0Þ þ

ðt
0

e aref�k0
eð Þ t�tð Þ ’ tð Þ dt (13.14)
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Fig. 13.4 MRAC tracking performance due to a sequence of step inputs in Example 13.1
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We can compute an upper bound for this signal:

eðtÞj j � e�k0
t
e e0j j þ ’max

k0
e (13.15)

This relation is valid for any fixed e > 0 uniformly in time. So, the system state

x(t) converges within � ’max

k0
e

� �
of the reference model state xref ðtÞ exponentially

fast and at the rate which is no slower than e�k0
t
e . This term gives an upper bound

quantification for the decay rate of the MRAC transient dynamics, due to initial

conditions mismatch, xð0Þ 6¼ xrefð0Þ. Otherwise, the system transients would remain

within e-dependent bounds � ’max

k0
e

� �
. Consequently, we can reduce the system

transients by decreasing e, which according to (13.12) corresponds to increasing the
reference model feedback gain ke. Being able to influence and shape the MRAC

transient dynamics constitutes the essential benefit of the Luenberger-like reference

model modification (13.9), (13.10), (13.11), and (13.12).

Let us give an alternative explanation for the noted transient improvements in

scalar MRAC systems with observer-based reference models. The transient dynamics

(13.13) can be analyzed using the singular perturbation methods [3]. Setting e ¼ 0,

gives the so-called “slow” component

e ¼ 0 (13.16)

or, equivalently,

x ¼ xref (13.17)

Asymptotic stability of the slow component has already been established during

Lyapunov-based proofs. Therefore, as t!1,

_x ¼ aref xþ bref r þ oð1Þ (13.18)

where the Small o-symbol o(1) denotes a function of time that asymptotically tends

zero as t!1. According to (13.18), the system state x asymptotically tracks the

state of the observer-like reference model xref, with the latter asymptotically

approaching the state of the original reference model from (13.1). We compute

the “fast” dynamics by “stretching” time,

t ¼ t

e
(13.19)

rewrite (13.13) in the “fast” t time scale, set e ¼ 0, and arrive at the exponentially

stable fast dynamics:

d e tð Þ
d t

¼ �k0 e tð Þ (13.20)
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It follows from (13.20) that during a finite transient time interval, the error

dynamics (13.20) behave like a first-order exponentially stable system. This obser-

vation confirms our claim that for a sufficiently small e, that is, for a large enough
gain ke, the resulting transient dynamics become smooth and approach the response

of the scalar system (13.20), where k0 defines inverse time constant of the transient

system. This result can be formally summarized as follows: For a sufficiently small

e > 0, the state of the original system in (13.1) permits the following asymptotic

expansion

xðtÞ ¼ xref ðtÞ þ Ce�
k0
e t þ oð1Þ (13.21)

or, equivalently,

xðtÞ ¼ xref ðtÞ þ C e�ke t þ oð1Þ (13.22)

where C > 0 is a constant independent of ke. The second term in (13.22) defines the

transient (i.e., “fast”) dynamics due to initial conditions. Consequently, with a large

enough feedback gain ke, MRAC transient dynamics can be quantified and forced to

decay as fast as needed. We should immediately point out that since ke is inversely
proportional to e, then the obvious “trade-off” in the modified design would be to

avoid high gain effects in the reference model.

In the sections that follow, we will further exploit methods to analyze and

enforce desired transient dynamics in adaptive control systems. But first, we present

an overview of the mathematical preliminaries related to asymptotic expansions

and their analysis. After that, we will generalize the observer-like reference model

idea to a class of multi-input–multi-output (MIMO) dynamical systems with

matched linear-in-parameter uncertainties. We shall conclude this chapter with

practical observations and a summary of the derived results.

13.2 Asymptotic Orders and Singular Perturbations

Let Rn represent the Euclidean n-dimensional space, R+ be the set of all positive real

numbers, and let Rn�m denote the space of all n-by-m matrices, with integers n and

m. For any x 2 Rn, we write xk k for a Euclidean vector norm of x and Ak k to be the
corresponding induced matrix norm for A 2 Rn�m.

We shall use the Bachmann–Landau asymptotic order notation, denoted by the

“Big O” and the “Small o” symbols [4, 5]. Given any two parameter-dependent

functions (maps) f(x; e) and g(x; e), from a domain X � Rn to another domain Y
� Rm, with a scalar parameter e 2 E � R from an interval E, we say that

f x; eð Þ ¼ O g x; eð Þð Þ (13.23)
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if for each x 2 X, there exists a positive scalar k(x) such that

f x; eð Þk k � kðxÞ g x; eð Þk k (13.24)

for all e 2 E. Choose e0 2 E and suppose that the two limits

lim
e!e0

f x; eð Þk k ¼ f x; e0ð Þk k
lim
e!e0

g x; eð Þk k ¼ g x; e0ð Þk k (13.25)

exist. We write

f x; eð Þ ¼ O g x; eð Þð Þ; as e! e0 (13.26)

if for each x 2 X, there exists a positive scalar k(x) and a neighborhood/interval N
x; e0ð Þ of e ¼ e0 , such that (13.24) holds for all e 2 N x; e0ð Þ . Without a loss of

generality, we assume that e0 ¼ 0. In this case, the asymptotic order relation (13.26)

defines the convergence rate of f x; eð Þk k to f x; 0ð Þk k, as e! 0, while holding x
fixed. Specifically, for every fixed x 2 X, f x; eð Þk k converges to its limit f x; 0ð Þk k
no slower than g x; eð Þk k converges to g x; 0ð Þk k, as e! 0. This convergence may

hold uniformly in X, yet it could completely fail outside of X. The statement (13.23)

is said to be uniformly valid in X if k(x) is a finite constant independent of x. In
addition, if the set N x; e0ð Þ ¼ N e0ð Þ is independent of x, then (13.26) is said to be

uniformly valid in x. The relations (13.23) and (13.26) define the Big O symbol.

The Small o-symbol is defined as follows. For a given domain X � Rn , the

statement

f x; eð Þ ¼ o g x; eð Þð Þ; as e! 0 (13.27)

means that for each x 2 X and any given d> 0, there exists an e interval N x; dð Þ ¼
e : 0< e � e1 x; dð Þf g such that

f x; eð Þk k � d g x; eð Þk k (13.28)

for all e 2 N x; dð Þ. We say that (13.27) is uniformly valid in X if e1 x; dð Þ ¼ e1 dð Þ is
independent of x. Often, the notation f � g is used to indicate (13.27).

The O and o symbols can be easily extended to parameter-dependent matrices

A x; eð Þ 2 Rn�n using vector-induced matrix norms. For example, given a matrix

AeðxÞ ¼ A x; eð Þ 2 Rn�n, the matrix asymptotic expansion

AeðxÞ ¼ A0ðxÞ þ A1ðxÞ eþ O e2
� �

; as e! 0 (13.29)
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means that for every x from a domain X � Rn,

lim
e!0

AeðxÞ � A0ðxÞ � A1ðxÞ ek k ¼ lim
e!0

O e2
� ��� �� ¼ 0 (13.30)

and the convergence rate in (13.30) is no slower than e2 for every fixed x. We

immediately note that there is a difference between the asymptotic expansion

(13.29) and, for example, the Taylor series expansion of the state-parameter-

dependent matrix AeðxÞ . In fact, the Taylor series expansion may not even exist

since differentiability of AeðxÞ, with respect to e, is not assumed.

In our forthcoming derivations, we will encounter singular perturbation models

[3–5]. These are dynamical systems with a small positive scale factor e on some of

the system state derivatives. For example, the transient dynamics (13.13) represent

a singular perturbation model.

Generalizing (13.13), we get a singular perturbation model in the form

e _z ¼ A0 þ O eð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ae

zþ e f z; t; eð Þ (13.31)

where z 2 Rn is the system state, e > 0 is a constant parameter, A0 2 Rn�n is

Hurwitz, and

Ae ¼ A0 þ O eð Þð Þ 2 Rn�n (13.32)

is Hurwitz, uniformly in e. We also suppose that f z; t; eð Þ : Rn � Rþ � Rþ ! Rn is a

uniformly bounded function of its arguments,

f z; t; eð Þ ¼ Oð1Þ (13.33)

or, equivalently,

f z; t; eð Þk k � fmax<1 (13.34)

uniformly in z; t; eð Þ, where fmax is a constant finite upper bound of the norm of f.
In addition, we assume that f z; t; eð Þ is Lipschitz continuous in z and piecewise

continuous in (t, e). It is not difficult to show that all of the above-stated

assumptions assure existence and uniqueness of the system solutions, starting at

any set of initial conditions z0 ¼ zð0Þ.
It is possible to show that for a sufficiently small e, all trajectories of (13.31)

converge to an O(e) neighborhood of the origin, exponentially fast. This fact is

stated next.

Theorem 13.1. Consider the singularly perturbed n-dimensional dynamics (13.31),

e _z ¼ A0 þ O eð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ae

zþ e f z; t; eð Þ
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where e> 0 is a constant,A0 2 Rn�n is a constant Hurwitz matrix, andAe 2 Rn�n is a
Hurwitz (uniformly in e) matrix. Suppose that f z; t; eð Þ 2 Rn is a uniformly bounded
vector function, Lipschitz continuous in z, and piecewise continuous in t and e.
Then, there exists a strictly positive constant g> 0, independent of e, such that the
asymptotic relation,

zðtÞ ¼ O e�g
t
e

� �
þ O eð Þ; e! 0ð Þ (13.35)

holds for all t 	 0. If in addition to being uniformly bounded, the function f z; t; eð Þ
asymptotically decays to zero in time (uniformly in z), then

zðtÞ ¼ O e�g
t
e

� �
þ O eð Þ oð1Þ; e! 0ð Þ (13.36)

for all t 	 0, where oð1Þ !
t!1 0 is an asymptotically decaying time function. ■

Proof of Theorem 13.1 Since Ae is Hurwitz uniformly in e and

Ae
t

e
¼ A0 þ O eð Þð Þ t

e
¼ A0

t

e
þ Oð1Þ (13.37)

then following the proof arguments from [3, Lemma 9.9, pp. 369–371], we can

claim existence of two strictly positive constants, k and g, such that for a sufficiently
small e> 0, the induced 2-norm of the exponential matrix eAe

t
e satisfies

eAe
t
e

�� �� ¼ e A0þO eð Þð Þ te
�� �� � k e�g

t
e (13.38)

where k; gð Þ> 0 are independent of e. This fact merely states that the 2-norm of a

parameter-dependent Hurwitz matrix exponentially decays to zero, if the parameter

is selected small enough. In terms of the asymptotic order notation, (13.38) implies

eAe
t
e

�� �� ¼ e A0þO eð Þð Þ te
�� �� ¼ O e�g

t
e

� �
; e! 0ð Þ (13.39)

for all t 	 0.

Because of its specific form, the singular perturbation dynamics (13.31) can be

analyzed directly by explicitly writing the system solution:

zðtÞ ¼ eAe
t
e z0 þ

ðt
0

eAe
t�tð Þ
e f z tð Þ; t; eð Þ dt (13.40)
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With the help of (13.39), we can easily derive an upper bound for the norm of the

system solution (13.40):

zðtÞk k � eAe
t
e

�� �� z0k k þ fmax

ðt
0

eAe
t�tð Þ
e

��� ��� dt � k z0k k e�g t
e þ k fmax

g

	 

e (13.41)

Thus, we have proven the asymptotics (13.35),

zðtÞ ¼ O e�g
t
e

� �
þ O eð Þ; e! 0ð Þ

for the system solutions (13.40), evolving on an infinite time interval.

In the context of singular perturbations, this relation implies that for a sufficiently

small fixed e> 0, all solutions of (13.31) converge to an e neighborhood of the origin
exponentially fast at the rate of no slower thane�g

t
e. The first term in (13.35) describes

the “fast” (transient) dynamics of the system solutions, as they approach an e
neighborhood of the origin. Also in this case, t

e can be interpreted as the “stretched”

time, which allows us to look at the system transients through a “magnifying time

glass,” so to speak.

Suppose that for a constant e> 0,

f z; t; eð Þ ¼ oð1Þ !
t!1 0 (13.42)

uniformly in z. Repeating the previous arguments that have led us to (13.35), one

can derive (13.36) (see Exercise 13.2),

zðtÞ ¼ O e�g
t
e

� �
þ O eð Þ oð1Þ; e! 0ð Þ

for all t 	 0. So in this case, the system trajectories converge to a neighborhood of the

origin exponentially fast, and after that, the solutions continue to asymptotically

converge to the origin but at perhaps a much slower rate. The theorem proof is

complete. □
Observe that setting e ¼ 0 reduces the differential Eq. (13.31) to an algebraic

relation z ¼ 0. This is the singularity phenomenon, whereby the origin becomes the

“slow” manifold of the system. Overall, we have decomposed the system trajectories

into “fast” and “slow” components, with the former describing the rate of convergence

to the latter.

Let us mention that the asymptotic behavior (13.35) could have also been

derived using the singular perturbation methods [3–5] for trajectory analysis of

ordinary differential equations, such as the one in (13.31). We have decided to

perform a direct analysis of the system trajectories (instead of using the singular

perturbation techniques), only because for the system at hand, we could explicitly

write solutions and estimate their norm upper bounds.
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Later on in this chapter, we are going to utilize the two asymptotic relations

(13.35) and (13.36) to aid in the design of adaptive output feedback controllers.

13.3 Asymptotic Properties of the Algebraic Riccati Equation

In our forthcoming design and analysis of MRAC transient dynamics, we will

encounter parameter-dependent n-dimensional algebraic Riccati equations (ARE)

in the form

Pv Aþ AT Pv � Pv B R�1v BT Pv þ Qv ¼ 0 (13.43)

where v > 0 is a constant parameter (A, B) and (A, C) are controllable and

observable pairs of matrices, with A 2 Rn�n , B 2 Rn�m , C 2 Rm�n , and m � n .
The ARE weight matrices are defined as

Qv ¼ Q0 þ vþ 1

v

	 

CT C; Rv ¼ v

vþ 1

	 

R0 (13.44)

where Q0 2 Rn�n and R0 2 Rm�m are both symmetric and strictly positive definite.

This formulation appears in [6].

The well-known fact from optimal control of linear systems (with quadratic cost

index) states that for any v> 0, the ARE (13.43) has the unique symmetric positive-

definite solution Pv > 0. This ARE arises in the optimal linear quadratic regulator

(LQR) control problems for linear time-invariant dynamics,

_x ¼ A xþ B u; y ¼ Cx (13.45)

with a quadratic minimization criterion in the form

Jv ¼
ð1
0

xT Qv xþ uT Rv u
� �

dt ¼
ð1
0

xT Q0 þ 1

rv
CT C

	 

xþ rv u

T R0 u

	 

dt

¼
ð1
0

xT Q0 xþ 1

rv
yT yþ rv u

T R0 u

	 

dt

(13.46)

where

rv ¼
v

vþ 1
(13.47)
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is a positive constant.

Let us remark that the main difference of (13.46), from a typical cost function

considered in classical textbooks on optimal control, is the presence of the second

term, which is inversely proportional to rv. This expression “punishes” the system

output, as the system input is allowed to become large with rv getting small.

Substituting (13.44) into (13.43) gives

Pv Aþ AT Pv � 1þ 1

v

	 

Pv B R�10 BT Pv þ Q0 þ 1þ 1

v

	 

CT C ¼ 0 (13.48)

or, equivalently,

PvAþAT Pv�PvBR�10 BTPvþQ0þCTCþ1

v
CTC�PvBR�10 BT Pv

� �¼0 (13.49)

We are interested in analyzing asymptotic properties of the ARE solution Pv, as

v! 0. Hence, let us consider the following asymptotic expansion:

Pv ¼ P0 þ P1 vþ O v2
� �

; as v! 0 (13.50)

Similar to (13.29) and (13.30), the Big O symbol O v2ð Þ in (13.50) denotes a

v-dependent n� nð Þmatrix, whose induced norm tends to zero no slower than v2, as
v! 0, that is,

lim
v!0

Pv � P0 � P1 vk k ¼ lim
v!0

O v2
� ��� �� ¼ 0 (13.51)

For matrices satisfying (13.50), we can also write

P0 ¼ lim
v!0

Pv

which means lim
v!0

Pv � P0k k ¼ 0, that is, limits of parameter-dependent matrices

are understood in terms of their induced norms. Before proceeding any further, we

need to introduce a square root of a matrix according to [7, p. 245].

Definition 13.1. An n� nð Þ matrix S ¼ P
1
2 ¼ ffiffiffi

P
p

is called a square root of a
symmetric positive-definite n� nð Þ matrix P, if P ¼ ST S.

It is not so difficult to see that matrix square roots are by no means unique.

However, we can define the unique square root by taking S to be symmetric.

Let us now state and prove several interesting asymptotic properties of a

parameter-dependent ARE in the form of (13.49).

Theorem 13.2. Consider the ARE (13.43) with any two controllable and observ-
able matrix pairs, (A, B) and (A, C), and with the two symmetric positive-definite
matrices Qv and Rv from (13.44). Let A 2 Rn�n, B 2 Rm�n, C 2 Rp�n, Qv 2 Rn�n, and
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Rv 2 Rm�m, where n, p, andm are integers. Then, the ARE has the unique symmetric
positive-definite solution Pv.

Moreover, if p ¼ m , det CBð Þ 6¼ 0 , and the transfer function

GðsÞ ¼ C s In�n � Að Þ�1 B is minimum-phase, then the ARE solution Pv can be
represented by the asymptotic expansion (13.50), while the following statements
hold true:

1. P0 and P1 are symmetric.
2. P0 is the unique symmetric strictly positive-definite solution of the following

algebraic Lyapunov equation:

P0 A� B R�10 BT P1

� �þ A� B R�10 BT P1

� �T
P0 þ Q0 ¼ 0 (13.52)

3. There exists a unitary matrix W 2 Rm�m such that

P0 B ¼ CT WT
ffiffiffiffiffi
R0

p
(13.53)

4. The unitary matrix W in (13.53) can be chosen as

W ¼ UVð ÞT (13.54)

where U and V are two unitary matrices, defined by the singular value
decomposition,

CBR
�1

2

0 ¼ ULV (13.55)

and L represents the diagonal matrix of the corresponding singular values.
5. Pv is invertible for any v 	 0 and for any unit vector x 2 Rn,

lim
v!0

xTPv x 	 lmin P0ð Þ> 0 (13.56)

where lmin P0ð Þ denotes the minimum eigenvalue of P0.
6. The following asymptotic relation holds

Pv B ¼ CT WT
ffiffiffiffiffi
R0

p
þ OðvÞ; as v! 0 (13.57)

Before proving the theorem, an immediate remark is in order. Relations (13.52)

and (13.53) imply that the transfer function

G0ðsÞ ¼ BT P0 s In�n � Aþ B R�10 BT P1

� ��1
B

¼
ffiffiffiffiffi
R0

p
WC s In�n � Aþ B R�10 BT P1

� ��1
B
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becomes strictly positive real (SPR) [3] via feedback u ¼ �R�10 BT P1 x, when the

latter is applied to the linear dynamics (13.45). At the same time, the asymptotic

expansions (13.50) and (13.57) mean that the transfer function,

GvðsÞ ¼ BT Pv s In�n � Aþ B R�10 BT Pv

� ��1
B (13.58)

which is SPR by the design, approaches the transfer function,

GyðsÞ ¼
ffiffiffiffiffi
R0

p
WC s In�n � Aþ B R�10 BT P0

� ��1
B (13.59)

that is,

GvðsÞ ¼ GyðsÞ þ OðvÞ; as v! 0 (13.60)

uniformly in s.

Proof of Theorem 13.2. Existence and uniqueness of Pv is the well-known fact.

We proceed by showing that matrices P0 and P1 in (13.50) are symmetric. Using

(13.50) gives

P0 ¼ lim
v!0

Pv ¼ lim
v!0

PT
v ¼ PT

0 (13.61)

Consequently,

P1 ¼ lim
v!0

1

v
Pv � P0ð Þ ¼ lim

v!0

1

v
PT
v � PT

0

� � ¼ PT
1 (13.62)

Next, we substitute (13.50) into (13.49):

v P0 þ P1 vþ O v2
� �� �

Aþ AT P0 þ P1 vþ O v2
� �� �� �

� v P0 þ P1 vþ O v2
� �� �

B R�10 BT P0 þ P1 vþ O v2
� �� �þ Q0 þ CT C

� �
þ CT C� P0 þ P1 vþ O v2

� �� �
B R�10 BT P0 þ P1 vþ O v2

� �� � ¼ 0

(13.63)

Collecting the zero-order terms in v gives

CT C� P0 B R�10 BT P0 ¼ 0 (13.64)

The matrix solution (P0 B) of (13.64) may be expressed as in (13.53), whose

validity can be verified by its direct substitution into (13.64).

Collecting the first-order terms in v from (13.63) gives
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P0 A�B R�10 BT P1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~A

þ A�B R�10 BT P1

� �T
P0�P0B R�10 BT P0þ Q0þCT C

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

~Q

¼ 0

(13.65)

or, equivalently,

P0
~Aþ ~AT P0 � P0 B R�10 BT P0 þ ~Q ¼ 0 (13.66)

Since a feedback connection, such as u ¼ �R�10 BT P1 x , does not change the

controllability of (A, B), then ~A; B
� �

is also controllable. Moreover, since ~Q ¼ ~QT >

0, then the ARE (13.66) has the unique symmetric positive-definite solution P0 ¼ PT
0

> 0. Finally, using (13.64) in (13.65) gives (13.52) and thus proves the second claim of

the theorem.

Choosing the unitary matrix W as in (13.54), while using (13.55), results in

BTP0 B ¼ BT CT WT
ffiffiffiffiffi
R0

p
¼

ffiffiffiffiffi
R0

p
R�

1
2 BT CT

� �
WT

ffiffiffiffiffi
R0

p
¼

ffiffiffiffiffi
R0

p
VT L UT U|ffl{zffl}

Im�m

V
ffiffiffiffiffi
R0

p
¼

ffiffiffiffiffi
R0

p
VT L V
� � ffiffiffiffiffi

R0

p
> 0 ð13:67Þ

Note that this particular choice of W supports the established positive-

definiteness property of P0.

Let us select a unit vector x 2 Rn. Then,

lim
v!0

xTPv x ¼ lim
v!0

xT P0 þ OðvÞ½ � x ¼ xTP0 x 	 lmin P0ð Þ> 0 (13.68)

We know that the ARE solution Pv is invertible for any fixed v> 0. Also, from

(13.68), it follows that for a sufficiently small v 	 0, the eigenvalues of Pv are

bounded away from zero. Therefore, Pv is invertible globally and for any v 	 0.

Finally, we note that (13.57) is a direct consequence of (13.50) and (13.53). The

proof of the theorem is complete. □
Let us now make the following substitutions into the ARE (13.43):

A :¼ AT ; B :¼ CT (13.69)

The resulting equation becomes

Pv A
T þ APv � Pv C

T R�1v C Pv þ Qv ¼ 0 (13.70)

where according to (13.44),
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Qv ¼ Q0 þ vþ 1

v

	 

BBT ; Rv ¼ v

vþ 1
R0 (13.71)

The reader may have noticed that such an ARE arises in the design of Kalman

filters and Luenberger observers. Substituting (13.71) into (13.70) gives

Pv A
T þ APv � 1þ 1

v

	 

Pv C

T R�10 CPv þ Q0 þ 1þ 1

v

	 

BBT ¼ 0 (13.72)

or, equivalently,

Pv A
T þ APv � Pv C

T R�10 CPv þ Q0 þ BBT þ 1

v
BBT � Pv C

T R�10 CPv

� � ¼ 0

(13.73)

For the parameter-dependent ARE in (13.73), all statements from the Theorem

13.2 can be easily reformulated. These claims are summarized (without proofs)

below.

Corollary 13.1. Suppose that all assumptions from Theorem 13.2 hold. Then, the
unique positive-definite solution Pv of the ARE (13.70), with the weight matrices Qv

and Rv from (13.71), can be represented by the asymptotic expansion (13.50).
Moreover, the following statements hold:

1. P0 and P1 are symmetric.
2. P0 is the unique symmetric strictly positive-definite solution of the following

algebraic Lyapunov equation:

P0 A� CT R�10 CP1

� �T þ A� CT R�10 CP1

� �
P0 þ Q0 ¼ 0 (13.74)

3. There exists a unitary matrix W 2 Rm�m such that

P0 C
T ¼ B WT

ffiffiffiffiffi
R0

p
(13.75)

4. The unitary matrix W in (13.53) can be chosen as

W ¼ UVð ÞT (13.76)

where U and V are two unitary matrices, defined by the singular value
decomposition,

BT CT R
�1

2

0 ¼ ULV (13.77)
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and L represents the diagonal matrix of the corresponding singular values.
5. Pv is invertible for any v 	 0, and

lim
v!0

xTPv x 	 lmin P0ð Þ> 0 (13.78)

where lmin P0ð Þ denotes the minimum eigenvalue of P0.
6. The following asymptotic relation holds:

Pv C
T ¼ B WT

ffiffiffiffiffi
R0

p
þ OðvÞ; as v! 0 (13.79)

Soon in this chapter, we shall use the above statements in our design of MRAC

controllers with smooth transient dynamics, but at this moment, let us make the

following remark: Since Pv is invertible for any v 	 0, one can define the matrix

inverse,

~Pv ¼ P�1v (13.80)

and analyze its property using an asymptotic expansion in the form

~Pv ¼ ~P0 þ OðvÞ; as v! 0 (13.81)

Substituting (13.81) into ~Pv Pv ¼ In�n gives

In�n ¼ ~Pv Pv ¼ ~P0 þ OðvÞ� �
P0 þ OðvÞð Þ ¼ ~P0 P0 þ OðvÞ; as v! 0 (13.82)

Consequently,

In�n ¼ lim
v!0

~Pv Pv ¼ ~P0 P0 (13.83)

and therefore,

~P0 ¼ P�10

� �) P�1v ¼ P�10 þ OðvÞ� �� �
; as v! 0 (13.84)

Using (13.84) and (13.79), yields

CT ¼ ~Pv B WT
ffiffiffiffiffi
R0

p
þ OðvÞ

� �
¼ ~Pv B WT

ffiffiffiffiffi
R0

p
þ P�10 þ OðvÞ� �

OðvÞ
¼ ~Pv B WT

ffiffiffiffiffi
R0

p
þ OðvÞ ð13:85Þ

and as a result, we obtain the asymptotic relation,

~Pv B ¼ CT R
�1

2

0 W þ OðvÞ (13.86)
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which we shall employ in the design of adaptive output feedback controllers in

Chap. 14. This concludes our asymptotic analysis of parameter-dependent ARE

solutions.

13.4 System Dynamics and Control Problem Formulation

We are going to design an MRAC controller, with an observer-like reference

dynamics, for a class of nonlinear MIMO uncertain dynamical systems in the form

_ey I

_xp

	 

|fflfflffl{zfflfflffl}

_x

¼ 0m�m Cp

0np�m Ap

 !
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

ey I

xp

	 

|fflfflffl{zfflfflffl}

x

þ 0m�m
Bp

	 

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

B

L uþYT
d Fd xp

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{d xpð Þ0
BB@

1
CCA

þ �Im�m
0np�m

	 

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Bref

ycmd y ¼ 0m�m Cpð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
C

x (13.87)

The dynamics (13.87) incorporate an np-dimensional open-loop system with

m control inputs u and m regulated outputs y. This is the original plant, whose state is
xp 2 Rnp. The plant is augmented by them-dimensional integrated output tracking error

dynamics, _ey I ¼ Cp xp � ycmd , where Cp 2 Rm�np is a known constant matrix. The

order of the complete system (13.87) is n ¼ np þ m. In addition, x 2 Rn is the system

state vector,u 2 Rm is the control input,y 2 Rp is the regulated output,ycmd 2 Rm is the

commanded signal for y to follow, d xp
� � ¼ YT

d Fd xp
� � 2 Rm is a nonlinear state-

dependent matched parametric uncertainty, Yd 2 RN�m is the matrix of unknown

constant “true” parameters, and Fd xp
� � 2 RN is the known N-dimensional regressor

vector, whose components are locally Lipschitz continuous in x, that is, there exists a
finite positive known constant 0< LFd

<1, such that for any x1; x2ð Þ 2 Rnp from a

bounded neighborhood of the origin, the following inequality holds:

Fd x1ð Þ � Fd x2ð Þk k � LFd
x1 � x2k k (13.88)

Also in (13.87), A 2 Rn�n , B 2 Rn�m , Bref 2 Rn�m , and C 2 Rm�n are constant

known matrices, while L 2 Rm�m is a constant diagonal unknown matrix with

strictly positive diagonal elements.

Our choice of the process dynamics (13.87) is largely motivated by aerospace

applications, where xp models six degrees of freedom of an airborne platform and d
(xp) represents uncertainties in the vehicle aerodynamic moments. By definition,

the moment uncertainties appear together with the system control inputs, thus

enforcing the matching conditions needed to justify mere existence of a control

406 13 Adaptive Control with Improved Transient Dynamics

http://dx.doi.org/10.1007/978-1-4471-4396-3_14


solution. Moreover, control actuator uncertainties, control effectiveness reduction,

and other control failures are modeled by an unknown constant matrix L. Finally,
inclusion of the integrated output tracking error _ey I ¼ Cp xp � ycmd into the open-

loop system leads to the extended system formulation (13.87). This inclusion is

optional, yet it allows the designer to explicitly account for baseline controllers with

integral feedback, and it also allows to avoid feedforward terms in a control

solution. Other dynamics, such as structural notch filters, sensors, and actuators,

can also be added in the formulation of the extended open-loop system.

In order to control a dynamical system such as (13.87), we need the nominal

system (no uncertainties) to be controllable.

Assumption 13.1 The nominal system matrix pair Ap; Bp

� �
is controllable.

It is well known that controllability of Ap; Bp

� �
, coupled with the rank condition,

rank
Ap Bp

Cp 0p�m

	 

¼ np þ m ¼ n (13.89)

ensures controllability of the extended pair (A, B).

Disregarding the system uncertainties, we form the ideal reference model

dynamics,

_xref ideal ¼ Aref xref ideal þ Bref ycmd (13.90)

where

Aref ¼ A� B R�1ref B
T Pref

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

KT
lqr

(13.91)

is Hurwitz, Klqr is the baseline linear quadratic regulator (LQR) feedback gain, Pref

is the unique symmetric positive-definite solution of the ARE,

Pref Aþ AT Pref � Pref B R�1ref B
T Pref þ Qref ¼ 0 (13.92)

and Qref ;Rref

� �
are some appropriately chosen symmetric positive-definite matrices.

Using the LQR design is not a requirement here. This is simply our preferred way to

formulate ideal reference models and embed basic performance specifications into the

system. Due to the inclusion of the integrated tracking error in (13.87), the DC gain of

the referencemodel (13.90) is unity. Consequently, ifL ¼ Im�m anddðxÞ ¼ 0m�1, then
the LQR linear state feedback control ulqr ¼ �KT

lqr x enforces global exponential

stability of the ideal reference model (13.90) andmakes the regulated output y(t) track

any bounded command ycmdðtÞ with bounded errors. Note that for a step-input

command, the LQR controller provides global exponential tracking with zero

steady-state errors. Also, it is easy to see that such a choice of the reference model

enforces the model matching conditions stated below.
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Assumption 13.2 Model Matching Conditions. Given a Hurwitz matrixAref and an

unknown constant positive-definite diagonal matrix L , there exists a constant

possibly unknown gain matrix Kx such that

Aref ¼ A� BLKT
x (13.93)

We shall note that existence of Kx is guaranteed for any controllable pair (A, B)
and any nonsingular matrix L. In particular, relations (13.91) and (13.93) imply

Kx ¼ Klqr L
�1 (13.94)

Using (13.93), we rewrite the system dynamics (13.87) in the form

_x ¼ Aref xþ BL uþ KT
x xþYT

d Fd xp
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KT
x YT

d

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

YT

x
Fd xp
� �	 


|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
FðxÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
þ Bref ycmd (13.95)

and get

_x ¼ Aref xþ BL uþYT FðxÞ� �þ Bref ycmd (13.96)

The control goal of interest is bounded tracking of ycmd in the presence of the

system parametric uncertainties L; Yf g . Specifically, we need to find a control

input u such that the regulated output y ¼ Cx 2 Rm tracks any bounded time-

varying command ycmdðtÞ 2 Rm with bounded errors, while the rest of the signals in

the corresponding closed-loop system remain bounded. In addition, we shall require

smooth and quantifiable transient characteristics in the closed-loop dynamics.

13.5 Observer-Like Model Reference Adaptive Control

Similar to (13.9) and for the system dynamics (13.96), we consider a Luenberger-

like reference model in the form

_xref ¼ Aref xref þ Lv x� xref
� �

Error Feedback Term

þBref ycmd (13.97)
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where xref 2 Rn is the reference model state and Lv 2 Rn�n is the error feedback

gain, parameterized by a positive scalar v> 0 (to be defined).

The system control input u is selected as

u ¼ �ŶT FðxÞ (13.98)

Substituting (13.98) into the system dynamics (13.96) gives

_x ¼ Aref x� BL Ŷ�Y
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

T

DY

FðxÞ þ Bref ycmd (13.99)

where DY 2 RN�m denotes the matrix of parameter estimation errors.

In what follows, we are going to select Lv; Ŷ
� �

such that the system state x
globally asymptotically tracks xref – the state of the observer-like reference

model (13.97) – and so y !
t!1 yref . Also, we will show that xref tracks xref ideal ,

which in turn implies that yref !
t!1 yref ideal. Furthermore, since the output of the ideal

reference model (13.90) follows its command,yref ideal ! ycmd, with bounded errors,
and y !

t!1 yref !
t!1 yref ideal , then the system-regulated output y will also track ycmd

with bounded errors. This argument constitutes our design strategy.

We begin by choosing adaptive laws for Ŷ, so that x globally asymptotically

tracks xref , in the presence of the system uncertainties. Let

e ¼ x� xref (13.100)

denote the state tracking error. Subtracting (13.97) from (13.99) gives the system

transient dynamics:

_e ¼ Aref � Lv
� �

e� BL DYT FðxÞ (13.101)

We choose the error feedback gain Lv as

Lv ¼ Pv R
�1
v (13.102)

where Pv ¼ PT
v > 0 is the unique solution of the following ARE:

Pv A
T
ref þ Aref Pv � Pv R

�1
v Pv þ Qv ¼ 0 (13.103)

with the ARE weight matrices Qv; Rvð Þselected as

Qv ¼ Q0 þ vþ 1

v

	 

In�n; Rv ¼ v

vþ 1
In�n (13.104)
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using a constant parameter v> 0. This constant will eventually become our design

“tuning knob”: Small values of v will yield better MRAC transients. However, the

corresponding feedback gain Lv will increase at the rate of
1

v
. In fact, we will show

that as v tends to zero, the error feedback gain tends to infinity,

Lv ¼ 1þ 1

v

	 

Pv ¼ O

1

v

	 

(13.105)

while the solution Pv of the ARE (13.103) tends to a constant positive-definite

symmetric matrix P0. It is easy to verify that the ARE (13.103) possesses the unique

symmetric positive-definite solution Pv. Furthermore, because of (13.103), the

observer closed-loop matrix,

Av ¼ Aref � Lv ¼ Aref � Pv R
�1
v ¼ Aref � Pv 1þ 1

v

	 

(13.106)

satisfies

Pv Aref � Pv R
�1
v|fflfflffl{zfflfflffl}

Lv

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

Av

þ Aref � Pv R
�1
v|fflfflffl{zfflfflffl}

Lv

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Av

Pv þ Pv R
�1
v Pv þ Qv ¼ 0 (13.107)

or, equivalently,

Pv A
T
v þ Av Pv ¼ �Pv R

�1
v Pv � Qv < 0 (13.108)

and therefore, Av is Hurwitz for any v > 0.

Since Pv is the unique symmetric positive-definite solution of the ARE (13.103),

then the matrix inverse ~Pv ¼ P�1v exists for any v 	 0, and the following relation holds:

AT
v
~Pv þ ~Pv Av ¼ �R�1v � ~Pv Qv

~Pv < 0 (13.109)

The design task is to choose adaptive laws for Ŷ so that the tracking error

e globally asymptotically tends to the origin. We consider the following Lyapunov

function candidate:

V e; DYð Þ ¼ eT ~Pv eþ trace LDYT G�1Y DY
� �

(13.110)

where GY ¼ GT
Y > 0 is the adaptation rate. The time derivative of V, along the

trajectories of the error dynamics (13.101), can be computed as
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_V e;DYð Þ¼ eT ~Pv _eþ _eT ~Pv _eþ2trace LDYTG�1Y
_̂Y

� �
¼eT ~Pv Ave�BLDYTFðxÞ� �þ Ave�BLDYTFðxÞ� �T ~Pv _eþ2trace LDYTG�1Y

_̂Y
� �

¼eT ~PvAvþAT
v
~Pv

� �
e�2eT ~PvBLDYTFðxÞþ2trace LDYTG�1Y

_̂Y
� �

(13.111)

Because of (13.108) and using the properties of the matrix trace operator, we get

_V e; DYð Þ ¼ �eT R�1v þ ~Pv Qv
~Pv

� �
e

þ 2 trace LDYT G�1Y
_̂Y� FðxÞ eT ~Pv B

� �� �
(13.112)

If the adaptive laws are chosen as

_̂Y ¼ GYFðxÞ eT ~Pv B (13.113)

then

_V e; DYð Þ ¼ �eT R�1v þ ~Pv Qv
~Pv

� �
e � 0 (13.114)

and hence, V e; DYð Þ is the Lyapunov function for the error dynamics (13.101). For

this reason, the tracking error signal e, as well as the parameter error matrix DY, is

uniformly bounded in time, that is, e; DYð Þ 2 L1. Since Aref in (13.97) is Hurwitz

by design and e; ycmdð Þ 2 L1 , then xref ; _xref
� � 2 L1 , and consequently x 2 L1 .

Since the unknown parameters Y are constant and DY 2 L1 , then Ŷ 2 L1 . We

assumed that the regressor vectorF xp
� �

is Lipschitz-continuous, and we have shown

that x; Ŷ
� �

2 L1. Therefore, from the definition (13.98), it follows thatu 2 L1 and

consequently _x 2 L1. Also, since _xref 2 L1, then _e 2 L1. Using (13.114) yields

€V e; DYð Þ ¼ �2 eT R�1v þ ~Pv Qv
~Pv

� �
_e 2 L1 (13.115)

The function V from (13.110) is lower bounded and has a nonincreasing time

derivative as in (13.114). Thus, V tends to a limit, as t!1 . Also, the function

second time derivative is uniformly bounded. Therefore, _V is a uniformly continuous

function of time. Using Barbalat’s lemma, we immediately conclude that _V tends to

zero, as t!1. Due to (13.114), we finally arrive at

lim
t!1 eðtÞk k ¼ 0 (13.116)

which proves global asymptotic stability of the tracking error, attained by the

adaptive controller (13.98), the adaptive laws (13.113), and the observer-like

reference model (13.97).In order to show that xref asymptotically tracks xref ideal ,
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it is sufficient to subtract (13.90) from (13.97) and write the dynamics of the

reference model error eref ¼ xref � xref ideal:

_eref ¼ Aref eref þ Lv eðtÞ|{z}
oð1Þ

(13.117)

Then (see Exercise 13.2),

eref ðtÞ ¼ exp Aref t
� �

eref ð0Þ þ
ðt
0

exp Aref t� tð Þ� �
Lv e tð Þ|{z}

oð1Þ

dt ¼ oð1Þ !
t!1 0

(13.118)

We have proven that x !
t!1 xref !

t!1 xref ideal, and so

y ¼ C xð Þ !
t!1 yref ¼ C xref

� � !
t!1 yref ideal ¼ C xref ideal

� �! ycmdðtÞ (13.119)

In other words, the system-regulated output y asymptotically tracks its ideal

reference command yref ideal , and y also tracks its original command ycmd with

bounded errors.

13.6 Transient Dynamics Analysis

Let us now analyze the transient dynamics (13.101). To do that, we shall employ the

results from Theorem 13.1 and singular perturbation techniques from Sects. 13.1

and 13.2.

Substituting (13.102) into (13.101), the transient error dynamics can be written as

_e ¼ Aref � Pv R
�1
v

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Hurwitz Matrix

e� BLDYðtÞT F xðtÞð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
’ðtÞ¼Uniformly Bounded Function of Time

(13.120)

Using (13.104) gives

_e ¼ Aref � 1þ 1

v

	 

Pv

	 

e� ’ðtÞ (13.121)

In Sect. 13.3, we have shown that the asymptotic relation

Pv ¼ P0 þ OðvÞ; as v! 0 (13.122)
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holds with a constant positive-definite symmetric matrix P0. Then,

_e ¼ Aref � 1þ 1

v

	 

P0 þ OðvÞð Þ

	 

e� ’ðtÞ (13.123)

or, equivalently,

v _e ¼ v Aref � vþ 1ð Þ P0 þ OðvÞð Þ� �
e� v’ðtÞ (13.124)

We can rewrite (13.124) as

v _e ¼ v Aref � vþ 1ð Þ P0 þ OðvÞð Þ� �
e� v’ðtÞ

¼ �P0 þ v Aref � v P0 þ OðvÞð Þ � OðvÞ� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðvÞ

0
B@

1
CA eþ v’ðtÞ

¼ �P0 þ OðvÞð Þ eþ v’ðtÞ ð13:125Þ

and then compare it to (13.31). Then, according to Theorem 13.1, the trajectories of

(13.123) satisfy the following asymptotics,

eðtÞ ¼ O e�g
t
v

� �
þ OðvÞ; v! 0ð Þ (13.126)

uniformly in time, with a positive constant g, and for all sufficiently small v> 0. So,

the transient dynamics exponentially decays to a neighborhood of the origin at the

decay rate no slower than O e�g
t
v

� �
. Moreover, the “diameter” of the convergence

set can be made smaller by choosing sufficiently small v. This argument formally

proves our claim about the transient dynamics improvement in MIMO MRAC

systems with observer-like reference models.

Similar to the arguments from Sect. 13.2, we can offer an alternative way to

analyze the transient dynamics in (13.124). This is a singularly perturbed system,

and its dynamics are in the form of (13.31), where v (instead of e) is the small

parameter. So, in order to understand the intricacies of the system behavior, we can

employ the singular perturbation arguments yet again. Setting v ¼ 0 gives

the isolated root e ¼ 0 for the corresponding reduced system, which describes

asymptotic behavior as t!1 , that is for a sufficiently small v> 0 , the error

trajectories converge to a small neighborhood of the manifold e 
 0 and will evolve

near this manifold thereafter.

In order to quantify and characterize the transient dynamics, we need to form the

boundary-layer system. These dynamics are formed by “stretching” the time,

t ¼ t

v
(13.127)
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rewriting (13.124) in the “fast” timescale t, and then setting v ¼ 0. The resulting

boundary-layer dynamics

d e

d t
¼ �P0 e (13.128)

are globally exponentially stable, since P0 is symmetric and positive definite.

According to Theorem 13.2, we claim that for a sufficiently small v> 0, the singular

perturbation system (13.124) has a unique solution e t; vð Þ, defined on 0; 1½ Þ, and
the asymptotic relation

e t; vð Þ ¼ �e
t

v

� �
þ OðvÞ (13.129)

holds uniformly on 0; 1½ Þ, where �e t
v

� �
is the solution of the boundary-layer system

(13.128). Since

�e
t

v

� �
¼ exp �P0 tð Þð Þ �e 0Þð (13.130)

then substituting (13.130) into (13.129) results in

e t; vð Þ ¼ exp �P0

t

v

� �� �
x 0ð Þ � xref 0ð Þ� �þ OðvÞ (13.131)

This asymptotic relation is conservative. In fact, we have proven that the

tracking error e t; vð Þ asymptotically converges to the origin, starting from any

initial condition. Consequently (see Exercise 13.3),

’ðtÞ ¼ BL DYðtÞT F xðtÞð Þ
h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

oð1Þ

¼ oð1Þ; t!1ð Þ (13.132)

and so, we can rewrite (13.131) as

x t; vð Þ ¼ exp �P0

t

v

� �� �
x 0ð Þ � xref 0ð Þ� �

Transient Dynamics

þ xref ðtÞ þ OðvÞ oð1Þ
Global Asymptotic Stability

(13.133)

where o(1) is a function of time, defined such that lim
t!1 oð1Þ ¼ 0, while O(v) is a

function of v only, and it decays to zero no slower than v.
Let us emphasize again that the asymptotic expansion (13.133) quantifies the

transient dynamics due to the adaptive controller (13.98) and (13.113). Indeed, for a

sufficiently small v>0, the transients in the error dynamics are described by the linear

time-invariant globally exponentially stable system (13.128), whose solution is given

by (13.130) and (13.133). The second term in (13.133) defines asymptotic behavior of
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the tracking error, as t!1 . This fact constitutes the main benefit of the error

feedback term in the observer-like reference model (13.97). Essentially, using a

sufficiently small parameter v> 0 ensures quantifiable transient characteristics of

the corresponding closed-loop tracking performance, and these transients are given

by the first term in (13.133). A summary of the design is given in Table 13.1.

The system dynamics (13.87) and the corresponding control problem formulations

can be modified to include nonparametric uncertainties, such as matched uncertainty

approximation errors and bounded possibly non-matched process noise. In that case,

one can use known robustification techniques (i.e., e modification, s modification,

and Projection Operator) to prove bounded tracking performance and then establish

similar to (13.131) transient characteristics.

Finally, we would like to note that the state feedback MRAC design developed

in this chapter, with an observer-like reference model, can be extended to adaptive

output feedback controllers [6]. This topic will be addressed in the next chapter.

13.7 Summary

This section was devoted to the development and analysis of an observer-like

modification to the reference dynamics formulation, within the MRAC state feed-

back framework. We draw a parallel between the derived modification and the

theory of Luenberger observers. This modification allowed us to quantify and

influence transient dynamics in adaptive control. Overall, the derived design

represents a numerically efficient technique of reducing unwanted transient

oscillations in state feedback/feedforward MRAC systems.

Table 13.1 Observer-like MRAC design summary

Open-loop plant _x ¼ Aref xþ BL uþYT FðxÞ� �þ Bref ycmd

Observer-like reference model _xref ¼ Aref xref þ Lv x� xref
� �þ Bref ycmd

State tracking error e ¼ x� xref

Riccati equation for adaptive laws Pv A
T
ref þ Aref Pv � Pv R

�1
v Pv þ Qv ¼ 0

ARE weight matrices Qv ¼ Q0 þ vþ1
v

� �
In�n; Rv ¼ v

vþ1 In�n

Observer gain Lv ¼ Pv R
�1
v

Total control input u ¼ �ŶT FðxÞ

MRAC laws _̂Y ¼ GYFðxÞ eT P�1v B
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13.8 Exercises

Exercise 13.1. Show that if the external command r(t) in (13.1) is continuously

differentiable, and its rate _rðtÞ is uniformly bounded in time, then the signal ’ðtÞ in
(13.8) asymptotically tends to zero, as t!1 . (Hint: Differentiate the error

dynamics (13.5) and show that €eðtÞ is uniformly bounded. Then, use Barbalat’s

lemma to establish asymptotic convergence of _eðtÞ to zero).

Exercise 13.2. Prove (13.36). (Hint: Show that if (13.42) holds true, then zðtÞk k in
(13.40) asymptotically in time tends to zero. Use [3, Lemma 9.6, p. 355] to aid in

the proof).

Exercise 13.3. Show that for the extended dynamics (13.87), driven by the MRAC

controller (13.98), the smoothness requirement on the command ycmd can be

removed, yet the signal ’ðtÞ in (13.132) will tend to zero asymptotically in time.

This formally proves validity of using oð1Þ in the asymptotic relation (13.133).

Exercise 13.4. Consider the aircraft dynamics and the MRAC design from Exam-

ple 13.2. For the same system, design and simulate an MRAC controller with an

observer-like dynamics. Compare and discuss the two designs.
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Chapter 14

Robust and Adaptive Control with Output

Feedback

14.1 Introduction

The design of output feedback tracking controllers for nonlinear uncertain multi-

input multi-output (MIMO) systems represents a challenging problem. In aerospace

applications, such a challenge frequently arises in control of aerial vehicles whose

dynamics contain flexible modes which cannot be ignored. Dynamics of these aerial

vehicles exhibit almost no frequency separation between the vehicle primary and its

flexible modes. The main challenge here arises when the flexible modes have low

damping ratios and as such must be actively controlled or stabilized. In realistic

applications, “flexible” vehicle state components are not available online, as the

system measurements. In other words, not all of the system degrees-of-freedom are

measured. In order to control such a system, one needs to construct a static or a

dynamic output feedback. What complicates this situation is the fact that more often

than not, flexible mode dynamics contain parametric uncertainties. For example,

natural frequencies and damping ratios of these modes may not be known exactly,

and they may depend on slowly varying parameters, such as the vehicle airspeed

and gross weight. Also, uncertain aerodynamics and structurally inherent

nonlinearities may influence the interconnections between the vehicle flexible and

its primary modes.

In most practical applications, the number of measured output signals in these

systems would exceed the number of control inputs. In order to yield desired

input–output signal characteristics, the output measurements are often defined by a

set of user-selected sensors that are placed at the desired locations on the vehicle [1].

At the same time, the system-regulated outputs are often determined based on a

desired mission for the system to perform, and as such, their selection is often

restricted and dictated by the system requirements. Thus, we have two sets of outputs

in the system – the selectable set of measurements (sensors) and the prescribed

regulated signals (mission requirements). Comprehensive surveys of input–output

selection techniques can be found in [1, 2]. This brief discussion gives a motivation to

the specific problem formulation that will be formally given in Sect. 14.4.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_14,
# Springer-Verlag London 2013
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An original framework for the design of adaptive output controllers was given in

[3]. Many theoretical advancements were made since. Three notable contributions

include (a) adaptive backstepping [4], (b) adaptive control with high gain observers

[5–7], and (c) multiple model adaptive control [8]. Other ideas were also exploited,

such as using time-delayed values to approximate system dynamics [9].

A command tracking controller for a dynamical system with uncertainties must

be capable of (a) achieving desired tracking performance, (b) enforcing robust-

ness, and (c) mitigating uncertainties. Finding such a control solution can be

facilitated if one leverages known and well-established methods for MIMO linear-

time-invariant (LTI) systems, with completely known dynamics. Indeed, for LTI

dynamics with partial state measurements, there exist several formal (i.e., theo-

retically justified) design methods to construct output feedback controllers, both

static and dynamic. Among those, the linear quadratic Gaussian synthesis with

Loop Transfer Recovery (LQG/LTR) design, first given by Doyle and Stein in

[10], represents one of the most frequently used methodologies for robust output

feedback control design. The popularity of this technique is primarily based on its

guaranteed properties, such as closed-loop stability and robustness to parametric

uncertainties.

It would be safe to say that the development of the LQG/LTR design methodol-

ogy was influenced by the seminal work of Kwakernaak and Sivan [11, 12], where

the authors investigated “. . . the maximal achievable accuracy of linear optimal

regulators,” [11]. This asymptotic property of the LQR solutions allowed Doyle and

Stein to develop their LQG/LTR technique [10], with subsequent extensions and

interpretations reported elsewhere in the literature [13, 14]. In contrast to [11],

where achieving zero cost was the goal, the LQG/LTR method aims at recovering

the loop shapes of optimal full-state regulators. The state feedback loop recovery is

achieved via specific choices of free design parameters, such as the process and

measurement noise intensity matrices. Basically, these two matrices become the

“tuning knobs” of the LQG/LTR design process.

Continuing this line of thoughts, we shall revisit and refine the results from [15],

where a constructive design is proposed for composing adaptive output feedback

controllers that are applicable to a generic class of uncertain MIMO systems. We

shall also add a simulation case study to demonstrate key features and benefits of

our methodology. Specifically, we will show that using a Luenberger-based state

observer for a “squared-up” system [16] enables the design of a direct adaptive

model reference output feedback controller for MIMO systems with matched

uncertainties while regulating output signals whose dynamics may have high

relative degree and are not necessarily minimum-phase.

This chapter material is organized as follows. In Sect. 14.2, we shall present

mathematical preliminaries, including basic definitions and notations from singular

perturbations. Section 14.3 defines MIMO systems of interest and the associated

tracking control problem formulation. Our main result (Theorem 14.1) is given in

Sect. 14.4, followed by a flight control case study in Sect. 14.5.
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14.2 Mathematical Preliminaries

We write Rn to represent the Euclidean n-dimensional space and Rn�m to denote the

space of all n-by-m matrices, where n and m are integers. For any x 2 Rn , xk k
denotes the Euclidean vector norm of x, and for any A 2 Rn�m , Ak k is the

corresponding induced matrix norm. Also, C� symbolizes the open left half of

the complex plane (excluding the jo – axis).

We will need basic definitions of asymptotic orders and relations from Chap. 13,

Sect. 13.2. Recall that given a matrix AeðxÞ ¼ A x; eð Þ 2 Rn�n , the asymptotic

equation

AeðxÞ ¼ A0ðxÞ þ A1ðxÞ eþ O e2
� �

; as e! 0 (14.1)

means that for every x from a domain X � Rn,

lim
e!0

AeðxÞ � A0ðxÞ � A1ðxÞ ek k ¼ lim
e!0

O e2
� ��� �� ¼ 0 (14.2)

and the convergence rate in (14.2) is no slower than e2, for every fixed x. The “Big
O” symbol in (14.1) and (14.2) comes from the Bachmann–Landau asymptotic

order notations [17, 18].

Let Q0 2 Rn�n and R0 2 Rm�m be symmetric and positive definite. For two

controllable and observable pairs of matrices, (A, B) and (A, C), where A 2 Rn�n ,
B 2 Rn�m , C 2 Rm�n , and m � n , we choose a constant v> 0 and define two

symmetric positive definite weight matrices:

Qv ¼ Q0 þ
vþ 1

v

� �
BBT ; Rv ¼ v

vþ 1
R0 (14.3)

Then, one can show that for any v> 0, the algebraic Riccati equation (ARE)

Pv A
T þ APv � Pv C

T R�1v C Pv þ Qv ¼ 0 (14.4)

has the unique symmetric positive definite solution Pv > 0 [10, 11].

We are interested in the asymptotic behavior of Pv , as the positive constant

parameter v tends to zero. In Chap. 13 (Corollary 13.1), we stated and proved

several interesting asymptotic properties of the ARE solution Pv, using an asymp-

totic expansion in the form

Pv ¼ P0 þ P1 vþ O v2
� �

(14.5)

for v! 0. In fact, we have shown that under the following three conditions:
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• The number of outputs and inputs in the system are the same: p ¼ m.
• The system relative degree is one: det CBð Þ 6¼ 0.

• The transfer function GðsÞ ¼ C s In�n � Að Þ�1 B is minimum-phase.

the ARE solution Pv and its inverse P�1v exist, and both matrices are symmetric

strictly positive definite, uniformly in v � 0. We have also shown that the asymp-

totic relation

P�1v B ¼ CT R
�1

2

0 W þ OðvÞ (14.6)

takes place as v! 0, where W ¼ UVð ÞT ; the two unitary matrices U and V are

defined by the singular value decomposition BT CT R
�1

2

0 ¼ USV , and S is the

diagonal matrix of the corresponding singular values.

We shall use (14.6) to aid in the design of adaptive model reference output

feedback controllers. In order to do that, we need to discuss a generic class of

systems whose input–output dynamics are not square, that is, the number of the

system inputs may or may not be the same as the number of its outputs. For these

systems, the asymptotics (14.6) cannot be achieved. First, we are going to modify

the system input–output dynamics to make it square.

Practical methods to “square-up” MIMO systems can be found in [16]. The

squaring-up is accomplished by adding pseudo (i.e., fictitious) inputs or outputs.

This procedure allows to enforce the three key assumptions that are listed below

(14.5). Eventually, it leads to the desired asymptotic relation (14.6).

We shall deal with systems that have more outputs than inputs. This is a

reasonable assumption since outputs represent sensors and their number and

locations can be chosen by the system designer [1, 2]. The squaring-up problem

for a non-square linear MIMO system, with m inputs and m< pð Þ outputs,

m� Inputs

+

p� Outputs)
A B
C D

� �
2 R nþpð Þ� nþmð Þ

can be stated as follows [16]: “Given the state matrix A 2 Rn�n , the input matrix

B 2 Rn�m , and the output matrices C 2 Rp�n , D 2 Rp�m , with n>m; p>mð Þ ,
determine pseudo-input matrices B2 2 Rn� p�mð Þ and D2 2 Rp� p�mð Þ , such that the

resulting square system with p inputs and p outputs,

p� Inputs

+

p� Outputs)
A B;B2ð Þ
C D;D2ð Þ

� �
2 R nþpð Þ� nþpð Þ

has its transmission zeros in the open left half complex plane, C�.”
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In [16], several constructive algorithms for solving the squaring-up problem are

given. Systems that we shall encounter in this chapter will have no feedforward

connections, that is, D ¼ 0p�m. In this case, the squaring-up problem is reduced to

finding a pseudo-input matrix B2 2 Rn� p�mð Þ, such that the square system

p� Inputs

+

p� Outputs)
A B;B2ð Þ
C 0p�p

� �
2 R nþpð Þ� nþpð Þ

has its transmission zeros in C
�.

Let us mention that squaring-up problems have multiple solutions. Reference

[16] gives two sufficient conditions for a solution to exist. They are:

1. A; Bð Þ to be controllable.

2. rank CBð Þ ¼ m:

Observe that when a squaring-up solution is found, the resulting system transfer

function becomes minimum phase and has its relative degree equal to one.

In what follows, we shall exploit the squaring-up technique to enforce the

asymptotic relation (14.6), which subsequently will allow us to design adaptive

output feedback controllers with quantifiable performance and stability guarantees.

14.3 System Dynamics and Control Problem Formulation

We consider a class of nonlinear MIMO uncertain dynamical systems in the form

_x ¼A xþ BL uþYT FðxÞ� �þ Bref zcmd

y ¼C x; z ¼ Cz x ð14:7Þ

where A 2 Rn�n, ðB;Bref Þ 2 Rn�m, C 2 Rp�n, and Cz 2 Rm�n are known matrices,

(A, B) is controllable, and (A, C) is observable. The system state is x 2 Rn, and the

control input is u 2 Rm . The system measurements are grouped into y 2 Rp , the

regulated output is z 2 Rm, and zcmd 2 Rm denotes an external bounded time-varying

command for the regulated output z to follow. The system uncertainties are

represented by a constant unknown non-singular diagonal matrix L 2 Rm�m , a
constant unknown matrixY 2 RN�m, and a known regressor vectorFðxÞ 2 RN. It is

assumed that the regressor is globally Lipschitz-continuous in x. The Lipschitz

assumption implies that there exists a finite positive known constant 0< LF <1,

such that

F x1ð Þ � F x2ð Þk k � LF x1 � x2k k (14.8)
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for any x1; x2 2 Rn. This assumption assures global existence and uniqueness of

the system trajectories [5]. Also, we suppose that the number of the system output

measurements p is greater than the number of the control inputs m, with rank

CBð Þ ¼ m.
The control goal of interest is to design u, based on the measurements y, such that

z tracks zcmd with bounded errors while operating in the presence of uncertain

parameters L; Yð Þ.
Let us remind the reader that throughout this book, we have already considered

systems of the form (14.7), on many occasions. For example, for a MIMO system

with np states, one can add commands zcmd into the problem formulation by

augmenting the system with the integrated tracking error _eI ¼ z� zcmd . In this

case, Bref ¼ �Im�m 0np�m
� �T

. Other formulations are possible, whereby filtered

versions of the tracking error or of the system output can also be incorporated into

the system dynamics.

Our control design approach will be reference-model-based, and as such, the first

step here is to construct a desired reference model with target dynamics. Toward

that end, we can employ the LQR method and compute an optimal state feedback

gain matrix KLQR 2 Rn�m such that

Aref ¼ A� BKT
LQR (14.9)

is Hurwitz and has the desired modal characteristics, leading to the exponentially

stable reference model

_xref ¼ Aref xref þ Bref zcmd; zref ¼ Cz xref (14.10)

whose output zref adequately tracks its command zcmd , with bounded errors. Other

methods to construct desired reference models can also be employed here.

Let ubl denote a baseline controller and let uad be an adaptive augmentation (an

incremental control signal). We define the total control as a sum

u ¼ ubl þ uad (14.11)

and then rewrite the system dynamics (14.7):

_x ¼ A xþ Bubl þ BL uad þYT FðxÞ þ Im�m � L�1
� �

ubl
� �þ Bref zcmd (14.12)

Expressing the system matched uncertainty as

YT FðxÞ þ Im�m � L�1
� �

ubl ¼ YT Im�m � L�1
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�YT

FðxÞ
ubl

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�F x; ublð Þ

¼ �Y
T �F x; ublð Þ (14.13)
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gives

_x ¼ A xþ Bubl þ BL uad þ �Y
T �F x; ublð Þ

� 	
þ Bref zcmd (14.14)

where �Y and �F x; ublð Þ are the extended parameter and regressor vectors,

respectively.

The system (14.14) represents the open-loop dynamics that we shall exploit. Our

overall strategy is to find u, in the form of (14.11), to force the system state x track
the state of the reference model xref , with bounded errors. As a result, the system-

regulated output z will track the external command zref , and consequently, z will
also track zcmd, which constitutes our main control goal.

From (14.8) and (14.13), it follows that the extended regressor vector �F x; ublð Þ
satisfies the Lipschitz condition

�F x1; ublð Þ � �F x2; ublð Þ�� �� ¼ F x1ð Þ � F x2ð Þk k � LF x1 � x2k k (14.15)

with the same Lipschitz constant LF, as in (14.8).

Before proceeding further, let us discuss and motivate our specific selection of

the original system definition (14.7) and its equivalent form (14.14). First, we note

that these dynamics are as generic as the ones from the now-classical model

reference adaptive control (MRAC) problem formulation [3, 19, 20]. The only

difference here is that we have embedded the matching conditions assumption into

the problem formulation.

Our selection of the control uncertainties in the form of BL comes predomi-

nantly from aerospace applications, where control directions are usually known but

their magnitudes are not. We have decided to introduce linear-in-parameters

uncertainties only for the sake of presentation clarity. It is possible to redefine the

system dynamics to include matched nonparametric uncertainties and to also add

non-matched uncertainties, such as bounded process noise. We have dealt with

similar constructs in the previous chapters and offered several modifications to

account for these classes of systems.

Let us make another remark on the generality of the problem formulation. The

selected system emulates flight dynamics of aerial platforms. In fact, our choice

of the system dynamics is directly influenced and driven by standard (in aero-

space) flight dynamics formulations for control design. Furthermore, the control

design methodology developed in this chapter can be extended to systems with

nonlinear dependence on uncertain parameters and to systems with time-varying

uncertainties, as long as there is a known rate upper bound. In addition, process

noise can be added to the system dynamics. All these modifications would reduce

our method applicability from being global to that of a semi-global nature.

Moreover, the command feedforward term Bref zcmd in (14.7) allows to encom-

pass a specific class of dynamical systems, where integrated tracking errors or their

filtered versions need to be inserted and accounted for during control design. Again,

this is an option, not a requirement. One final comment: Our control solution will be
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given in the form of an adaptive output feedback. Such a solution is not unique.

Alternatively, robust controllers can also be developed to solve the posed tracking

problem. The reader is encouraged to design a robust controller and then compare

its performance with that of an adaptive system, whereby both controllers shall be

constructed to perform the same tracking task.

We now summarize all of the assumptions for our method to be valid and then

comment on their imposed restrictions.

Assumption 14.1.

• A; Bð Þ is controllable and rankB ¼ m ðB has full column rank).

• A; Cð Þ is observable and rankC ¼ p ðC has full row rank).

• The number of measured outputs is greater than the number of control inputs

p>mð Þ and rank CBð Þ ¼ m (same as the number of control inputs).

The first two assumptions are standard in dynamics and control [21]. The third

assumption is very common for most practical systems in aerospace, automotive,

and other industries, where the outputs (sensors) and the inputs (actuators) are

defined by the vehicle designer and are placed at specific locations on the vehicle, in

order to achieve desired input–output characteristics [1, 2]. We note that the

assumed full rank condition does not constitute a restriction on the system-

regulated output z ¼ Cz x . These limitations are placed on the system measured

output signals that are selected by system architects to produce a controllable and

observable vehicle configuration. On the other hand, the system-regulated output is

not often selectable, and its dynamics are allowed to be nonminimum-phase or have

a high relative degree.

Under the above three assumptions, constructive numerical methods have been

developed in [16] that solve the “squaring-up” problem of finding a constant matrix

B2 2 Rn� p�mð Þ, such that det C �Bð Þ 6¼ 0 with �B ¼ B B2ð Þ and the transfer function
C s In�n � Að Þ�1 �B becomes minimum-phase (i.e., transmission zeros are located in

C
�). The added pseudo-control columns B2 are in the sense “fictitious,” meaning

that they do not represent physical inputs in the system. We have already discussed

the squaring-up problem in Sect. 14.2. □
In the next section, we are going to employ the squaring-up paradigm to aid in

the design of an output feedback adaptive controller.

14.4 Adaptive Output Feedback Design and Analysis

Based on the system dynamics (14.14), we introduce a Luenberger-like state

observer in the form:

_̂x ¼A x̂þ Bubl þ B L̂ uad þ �̂Y
T
�F x̂; ublð Þ

� �
þ Lv y� ŷð Þ þ Bref zcmd

ŷ ¼C x̂ ð14:16Þ
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where x̂ 2 Rn , ŷ 2 Rm , and Lv 2 Rn�m are the observer state, the predicted output

signal, and the output prediction error feedback gain, respectively. Also, in (14.16),

L̂ 2 Rm�m; �̂Y 2 R Nþmð Þ�m
� 	

represent the estimated parameters. The observer will

be designed to estimate the system state x(t), with bounded errors.

We select the baseline linear controller

ubl ¼ �KT
lqr x̂ (14.17)

and choose an adaptive augmentation in the form

uad ¼ � �̂Y
T
�F x̂; ublð Þ (14.18)

with the intent to cancel/dominate estimation errors due to matched uncertainties in

the observer dynamics (14.16). Substituting (14.18) into (14.16) gives the open-

loop observer:

_̂x ¼A x̂þ B ubl þ Lv y� ŷð Þ þ Bref zcmd

ŷ ¼C x̂ ð14:19Þ

With (14.9) and (14.17), we obtain the observer closed-loop linear time-varying

dynamics:

_̂x ¼Aref x̂þ Lv y� ŷð Þ þ Bref zcmd

ŷ ¼C x̂ ð14:20Þ

It is evident that both the open-loop (14.19) and the closed-loop (14.20)

observers do not explicitly depend on L̂. Hence, the only parameter to be estimated

is �̂Y , which appears in the control input formulation (14.18). However, by the

definition (14.13), the ideal unknown matrix �Y contains Im�m � L�1
� �

. So, any

estimate of �Ywill certainly contain an estimate ofL�1. Hence, we would indirectly
estimate L, after all.

Substituting (14.18) into the system (14.14) yields

_x ¼ A xþ Bubl � BL �̂Y
T
�F x̂; ublð Þ � �Y

T �F x; ublð Þ
� �

þ Bref zcmd (14.21)

Our task is to select Lv; �̂Y
� 	

, such that the state x̂ of the observer (14.19) tracks
the state x of the system (14.21), with bounded errors. Also, we will show that x̂
tracks the state xref of the reference model (14.10) with bounded errors. Then, we

will be able to prove that x tracks xref and z tracks zcmd, with bounded errors. This is
our design strategy.
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We begin by choosing adaptive laws for �̂Y so that x̂ tracks x, with bounded errors
and in the presence of the system uncertainties. Let

ex ¼ x̂� x (14.22)

denote the state observation error. Note that ex is not available, as the system

measurement. However, the output observation error

ey ¼ ŷ� y ¼ C x̂� xð Þ ¼ C ex (14.23)

represents the known (i.e., measured online) quantity. Subtracting (14.21) from

(14.19) gives the observer error dynamics:

_ex ¼ A� Lv Cð Þ ex þ BL �̂Y
T
�F x̂; ublð Þ � �Y

T �F x; ublð Þ
� �

(14.24)

We shall choose the observer gain matrixLv to represent the steady-state Kalman

filter gain

Lv ¼ Pv C
T R�1v (14.25)

where Pv ¼ PT
v > 0 is the unique solution of the ARE

Pv Aþ � In�nð ÞT þ Aþ � In�nð ÞPv � Pv C
T R�1v C Pv þ Qv ¼ 0 (14.26)

�> 0 is a positive constant (defines a prescribed degree of stability), the weight

matrices Qv; Rvð Þ are

Qv ¼ Q0 þ
vþ 1

v

� �
�B �B

T
; Rv ¼ v

vþ 1
R0 (14.27)

with a symmetric positive semidefinite Q0 2 Rn�n , a symmetric positive definite

R0 2 Rp�p, and with

�B ¼ B B2ð Þ (14.28)

where B2 2 Rn� p�mð Þ is a constant matrix, selected such that the following two

relations take place:

det C �Bð Þ 6¼ 0; zeros C s In�n � Að Þ�1 �B
h i

2 C
� (14.29)
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As we have previously mentioned, calculation of B2 to satisfy (14.29) can be

achieved by solving the squaring-up problem [16] for the original triplet A; B; Cð Þ,
where due to Assumption 14.1, the output matrix C has more rows than the number

of columns in B.
It is easy to verify that the ARE (14.26) possesses the unique symmetric positive

definite solution Pv , for any positive �. Furthermore, because of (14.26), the

observer matrix

Av ¼ A� Lv C ¼ A� Pv C
T R�1v C (14.30)

satisfies

Pv A� Pv C
T R�1v|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Lv

C

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Av

T

þ A� Pv C
T R�1v|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Lv

C

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Av

Pv

þ Pv C
T R�1v C Pv þ Qv þ 2 � Pv ¼ 0

(14.31)

or, equivalently,

Pv A
T
v þ Av Pv ¼ �Pv C

T R�1v C Pv � Qv � 2 � Pv < 0 (14.32)

and therefore, Av is Hurwitz for any v> 0.

Based on the material from Sect. 14.2, one can show that the matrix inverse
~Pv ¼ P�1v exists for any v � 0, and the asymptotic relation

~Pv
�B ¼ CT R

�1
2

0 W þ OðvÞ (14.33)

holds uniformly for any v> 0. In (14.33),

W ¼ UVð ÞT (14.34)

the two unitary matrices, U and V, are defined by the singular value decomposition

�B
T
CT R

�1
2

0 ¼ USV (14.35)

and S is the diagonal matrix of the corresponding singular values.

We have assumed that the number of the system outputs exceeds the number of

inputs, that is, p>m. Let S ¼ Im�m 0 p�mð Þ�m
� �

. Then, from (14.33), we get

~Pv B ¼ CT R
�1

2

0 W ST þ OðvÞ (14.36)
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In addition, the following relation holds:

AT
v
~Pv þ ~Pv Av ¼ �CT R�1v C� ~Pv Qv

~Pv � 2 � ~Pv < 0 (14.37)

Together, (14.36) and (14.37) imply that the transfer function

BT ~Pv s In�n � Avð Þ�1 B
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GvðsÞ

!
v!0

SW R
�1

2

0 C s In�n � Avð Þ�1 B
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G0ðsÞ

(14.38)

becomes strictly positive real (SPR) [3, 5, 19, 20], asymptotically as v! 0.

Let us make an interesting remark regarding (14.38): The squaring-up approach,

coupled with the ARE asymptotic properties, gives a unitary matrix W 2 Rm�m in

(14.34), such that the dynamics, from the system original input u to a linear

combination of the original outputs, become “almost” SPR, for a sufficiently

small v. So in essence, we have developed a constructive procedure to shape the

transmission zeros of the exponentially stable transfer function GvðsÞ and make

them approach C
� asymptotically, as v! 0.

Next, we define the matrix of parameter estimation errors:

D �Y ¼ �̂Y� �Y (14.39)

Adding and subtracting �̂Y
T
�F x̂; ublð Þ, the observer error dynamics (14.24) can be

written as

_ex ¼ Av ex þ BL D �Y
T �F x̂; ublð Þ þ �Y

T �F x̂; ublð Þ � �F x; ublð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g x̂; x; ublð Þ

2
64

3
75 (14.40)

or, equivalently,

_ex ¼ Av ex þ BL D �Y
T �F x̂; ublð Þ þ g x̂; x; ublð Þ

h i
(14.41)

Based on (14.15), it is straightforward to compute an upper bound

g x̂; x; ublð Þk k ¼ �Y
T �F x̂; ublð Þ � �F x; ublð Þð Þ

��� ��� � �Ymax LF
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

kg

exk k ¼ kg exk k

(14.42)

where kg > 0 represents a known computable constant and �Ymax is the known upper

bound for �Y.
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The design task now is to choose adaptive laws for �̂Y so that the observer error ex
becomes small, in finite time. The main challenge here is to construct adaptive laws

based on the system output information. Hence, we consider the following

Lyapunov function candidate:

V ex; D �Y
� � ¼ eTx

~Pv ex þ trace LD �Y
T
G�1Y D �Y

� 	
(14.43)

where GY ¼ GT
Y > 0 is the adaptation rate. Using (14.37), the time derivative of

V e; D �Y
� �

, along the trajectories of (14.41), can be evaluated:

_V ex; D �Y
� � ¼ �eTx CT R�1v Cþ ~Pv Qv

~Pv þ 2 � ~Pv

� �
ex

þ 2 eTx
~Pv BL D �Y

T �F x̂; ublð Þ þ g x̂; x; ublð Þ
� 	

þ 2 trace LD �Y
T
G�1Y

_̂�Y
� �

(14.44)

With the weight matrices from (14.27), we get

_V ex; D �Y
� � ¼ � 1þ 1

v

� �
eTy R

�1
0 ey � eTx

~Pv Q0
~Pv ex

� 1þ 1

v

� �
BT ~Pv ex
�� ��2 � 2 � eTx

~Pv ex þ 2 eTx
~Pv BL g

þ2 eTx ~Pv BLD �Y
T �F x̂; ublð Þ þ 2 trace LD �Y

T
G�1Y

_̂�Y
� �

(14.45)

Substituting (14.36) into the sixth term and merging it with the seventh results in

_V ex; D �Y
� � ¼ � 1þ 1

v

� �
eTy R

�1
0 ey � eTx

~Pv Q0
~Pv ex

� 1þ 1

v

� �
BT ~Pv ex
�� ��2 � 2 � eTx

~Pv ex þ 2 eTx
~Pv BL g

þ 2 trace LD �Y
T

G�1Y
_̂�Yþ �F x̂; ublð Þ eTx C

T
� �
|fflfflfflffl{zfflfflfflffl}

eTy

R
�1

2

0 W ST

8>><
>>:

9>>=
>>;

0
BB@

1
CCA

þ 2 eTx OðvÞL D �Y
T �F x̂; ublð Þ þ g

� 	
(14.46)
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Adaptive law dynamics with the Projection Operator modification [22]

_̂�Y ¼ Proj �̂Y;�G �Y
�F x̂; ublð Þ eTy R�

1
2

0 W ST
� 	

(14.47)

can be chosen such that the estimated parameters remain uniformly bounded, �̂Y
ðtÞ 2 O �Y ¼ �Y : �Y

�� �� � �Ymax


 �
, for all t � 0 . Then, (14.46) can be upper-

bounded as

_V ex; D �Y
� � � �2 � lmin

~Pv

� �
exk k2 � lmin Q0ð Þ l2min

~Pv

� �
exk k2

� 1þ 1

v

� �
lmin R�10

� �
ey
�� ��2 � 1þ 1

v

� �
BT ~Pv ex
�� ��2

þ 2Lmax kg BT ~Pv ex
�� �� exk k

þ 2 v exk k kLmax D �Ymax
�F x̂; ublð Þ�� ��þ kg exk k

� �
(14.48)

where k> 0 is a constant, 0< Lk k � Lmax, and0 � D �YðtÞ�� �� � D �Ymax, with a finite

constant D �Ymax � 2 �Ymax.

Next, we define w ¼ BT ~Pv ex
�� �� and rewrite (14.48):

_V ex; D �Y
� � � � 2 � þ lmin Q0ð Þ lmin

~Pv

� �� �
lmin

~Pv

� �
exk k2

� 1þ 1

v

� �
lmin R�10

� �
ey
�� ��2 � 1þ 1

v

� �
w2 þ 2Lmax kgw exk k

þ 2 v exk k kLmax D �Ymax
�F x̂; ublð Þ�� ��þ kg exk k

� �
(14.49)

Since lmin
~Pv

� � � lmin
~P0

� �
> 0, we get

_V ex; D �Y
� � � � 2 � þ lmin Q0ð Þ lmin

~P0

� �� �
lmin

~P0

� �
exk k2

� 1þ 1

v

� �
lmin R�10

� �
ey
�� ��2 � 1þ 1

v

� �
w2 þ 2Lmax kgw exk k

þ 2 v exk k kLmax D �Ymax
�F x̂; ublð Þ�� ��þ kg exk k

� �
(14.50)

An upper bound for the norm of the extended regressor vector can be computed.

Since Aref is Hurwitz in (14.20), then for any norm-bounded zcmd, there must exist

constants d1 and d2 (both may depend on the norm upper bound of zcmd), such that

x̂k k � d1 þ d2 exk k. Consequently, it is not difficult to show that

�F x̂; ublð Þ�� �� � b1 þ b2 exk k (14.51)
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for some positive constants b1 and b2. In this case,

_V ex; D �Y
� � � � 1þ 1

v

� �
lmin R�10

� �
ey
�� ��2

� 2 � þ lmin Q0ð Þ lmin
~P0

� �� �
lmin

~P0

� �� 2 v kLmax D �Ymax b2 þ kg
� �� 


exk k2

� 1þ 1

v

� �
w2 þ 2Lmax kgw exk k þ 2 vLmax kD �Ymax b1 exk k

(14.52)

Let us introduce the following notation:

c1 ¼lmin Q0ð Þ l2min
~P0

� �� 2 v kLmax DYmax b2 þ kg
� �

; c2 ¼ Lmax kg

c3 ¼1þ 1

v
; c4 ¼ vLmax kDYmax b1 ð14:53Þ

and rewrite (14.52) as

_V ex; D �Y
� � � �c3 lmin R�10

� �
ey
�� ��2 � 2 � exk k2

� c1 exk k2 � 2 c2 exk kwþ c3 w
2 � 2 c4 exk k

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

’ exk k;wð Þ

¼ �c3 lmin R�10

� �
ey
�� ��2 � 2 � exk k2 � ’ exk k; wð Þ (14.54)

One can show constructively the existence of a sufficiently small v0 > 0 such that

for all 0< v � v0 the function ’ exk k; wð Þ in (14.54) has the unique nonpositive

global minimum:

’minðvÞ ¼ min
z¼ exk k w
� �T ’ zð Þ ¼ O v2

� � � 0 (14.55)

Before proceeding further, let us prove this fact.

Lemma 14.1. There exists v0 > 0, such that for all 0< v � v0 , the function ’ in
(14.54) has the unique nonpositive global minimum:

’minðvÞ ¼
0 ; b1 ¼ 0

min

z¼
exk k
w

� � ’ zð Þ ¼ O v2
� �

< 0; b1 > 0:

8>><
>>: (14.56)
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Proof of Lemma 14.1. The function

’ exk k; wð Þ ¼ c1 exk k2 � 2 c2 exk kwþ c3 w
2 � 2 c4 exk k (14.57)

in (14.54) can be written in matrix form

’ exk k;wð Þ ¼ exk k wð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
zT

c1 �c2
�c2 c3

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

C

exk k
w

� �
|fflfflfflfflffl{zfflfflfflfflffl}

z

�2 exk k wð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
zT

c4

0

� �
|fflfflffl{zfflfflffl}

b

¼ zT C z� 2 zT b ð14:58Þ

From (14.58), it follows that ’ exk k; wð Þ has the unique global minimum if and

only if the matrix

C ¼ c1 �c2
�c2 c3

� �
(14.59)

is strictly positive definite, which in turn is equivalent to

c1 > 0 ; detC ¼ c1 c3 � c22 > 0 (14.60)

The first inequality in (14.60) can be enforced if v is a sufficiently small positive

constant. Specifically, it suffices to choose 0< v< v1, where

v1 ¼
lmin Q0ð Þ l2min

~P0

� �
2 kLmax D �Ymax kF C2 þ kg

� � (14.61)

The second relation in (14.60) can be written as

detC ¼ c1 c3 � c22

¼ 1þ 1

v

� �
lmin Q0ð Þ l2min

~P0

� �� 2 v kLmax DYmax kF C2 þ kg
� �� 


� L2
max k

2
g ¼ O

1

v

� �
ð14:62Þ

Observe that lim
v!0

detC½ � ¼ þ1. So, for a sufficiently small positive 0< v< v2,
detC> 0. Finally, choosing v0 ¼ min v1; v2ð Þ enforces both inequalities in (14.60)

and as a result guarantees uniqueness of the global nonpositive minimum for the

function ’ zð Þ.
The location of the function minimum x0 and the minimum value itself ’min

¼ ’ z0ð Þ can be easily computed by differentiating’ zð Þwith respect to x, setting the
gradient vector to 0, solving for x0, and then substituting the latter into (14.58):
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r’ zð Þ ¼ 2C z� 2 b ¼ 0½ � ) z0 ¼ C�1 b
� 


) ’min ¼ ’ z0ð Þ ¼ � bT C�1 b
� �

< 0
� 
 ð14:63Þ

This proves (14.55). Furthermore, because of (14.58) and (14.63), we get

z0 ¼
exk k0
w0

� �
¼ C�1 b ¼ 1

det C

c3 c2

c2 c1

� �
c4

0

� �
¼ c4

c1 c3 � c22

c3

c2

� �

’min ¼ �bT C�1 b ¼ � c4 0ð Þ 1

det C

c3 c2

c2 c1

� �
c4

0

� �
¼ � c3 c

2
4

c1 c3 � c22

(14.64)

Due to (14.53), it easy to see that as v! 0,

’minðvÞj j ¼ c3 c
2
4

c1 c3 � c22
¼ OðvÞ

O 1
v

� � ¼ O v2
� � !

v!0
0 (14.65)

So, if b1 ¼ 0, then c4 ¼ 0, and consequently, ’minðvÞj j ¼ 0. The proof of the

lemma is complete. □
We can now return to the design of an output feedback adaptive control law.

Continuing from (14.54) gives

_V ex; D �Y
� � � � 1þ 1

v

� �
lmin R�10

� �
ey
�� ��2 � 2 � exk k2 þ ’minðvÞj j (14.66)

According to (14.55), ’minðvÞj j ¼ O v2ð Þ !
v!0

0 , and therefore, _V ex; D �Y
� �

< 0

outside of the compact set

Oex ¼ ex : exk k2 � ’minðvÞj j
2 �

¼ r2v; � ¼ O
v2

�

� �� �
(14.67)

At the same time, the adaptive laws (14.47) ensure uniform boundedness of the

estimated parameters �̂Y and of the corresponding estimation errors D �Y . Conse-

quently, _V ex; D �Y
� �

is negative outside of the compact setO ¼ Oex � O �Y. This fact

proves UUB of the observer error dynamics (14.41) [5]. Additionally, (14.67)

implies that for a constant positive �, the radius rv; � of Oex decreases, as v! 0.

In other words, for any given constant �, the UUB tracking property “tends to”

global asymptotic tracking, at the rate of O(v).
Let us now define the observer tracking error

e ¼ x̂� xref (14.68)

subtract (14.10) from (14.20), and compute the observer tracking error dynamics:

_e ¼ Aref e� Lv ey (14.69)
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Because of (14.5), (14.25), (14.27), and (14.67),

_e ¼ Aref eþ 1þ 1

v

� �
P0 þ OðvÞð ÞO vffiffiffi

�
p
� �

¼ Aref eþ O
vffiffiffi
�
p
� �

þ O
1ffiffiffi
�
p
� �

(14.70)

and so, the observer tacking error e(t) is uniformly bounded. Moreover,

x� xref
�� �� ¼ x� x̂þ x̂� xref

�� �� � x� x̂k k|fflfflfflffl{zfflfflfflffl}
exk k

þ x̂� xref
�� ��|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ek k

¼ O
vffiffiffi
�
p
� �

þ O
1ffiffiffi
�
p
� �

ð14:71Þ

Consequently, as t!1, the state tracking error either asymptotically converges

to the origin, or it tends (in the UUB sense) to a compact neighborhood of the origin,

with the neighborhood radius that can be made small by choosing a small v and a

large �.
We have shown that the system state x(t) tracks the state of the reference model

xref ðtÞ with bounded errors. Therefore, the system-regulated output will zðtÞ ¼ Cz

xðtÞ track the reference model regulated output zref ðtÞ ¼ Cz xref ðtÞ. At the same time,

zref ðtÞ tracks its commanded value zcmdðtÞ . Then, z(t) must track zcmdðtÞ . This
argument completes the design and stability analysis of the adaptive output tracking

controller. We now summarize our formally derived results as Theorem 14.1.

Theorem 14.1. Consider the MIMO system dynamics (14.7). Suppose Assumption
14.1 holds. Consider the state observer (14.19), whose feedback gain matrix Lv
satisfies (14.25) and (14.26), with positive constants v; �ð Þ , symmetric positive
definite matrices Qv; Rvð Þ from (14.27) with �B ¼ B B2ð Þ, and with a constant
matrix B2 2 Rn� p�mð Þ chosen such that det C �Bð Þ 6¼ 0 and C s In�n � Að Þ�1 �B is
minimum-phase. Then, there exists a sufficiently small positive parameter v, such
that the (baseline + adaptive) dynamic output feedback controllers (14.11),
(14.17), and (14.18), with the projection-based adaptive laws (14.47), enforce
UUB of the closed-loop system trajectories. Moreover, the system-regulated output
z tracks any bounded time-varying command zcmd with bounded errors, while all
other signals in the closed-loop system remain bounded. At the same time, x̂
recovers the system state x, which in turn tracks the state xref of the reference
model (14.10), with estimation and tracking errors entering in finite time a neigh-

borhood of the origin, whose radius is of order O vffiffi
�
p
� 	

þ O 1ffiffi
�
p
� 	

. ■

A design synopsis, encapsulating the system dynamics and control equations, is

given in Table 14.1.
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14.5 Adaptive Flight Control of a Flexible Transport Aircraft

In this study, we shall design robust and adaptive output feedback controllers for

longitudinal dynamics of a large transport aircraft with flexible structure. The

aircraft data (wings-level cruise configuration) are taken from [23], where all linear

displacements, velocities, and accelerations are given in meters (m), m/s, and m/s2,

while all angles and angular rates are in radians (rad) and rad/s, respectively.

The vehicle model (plant) includes a short-period mode and four structural

bending modes. Each mode is described by a complex-conjugate pair of

eigenvalues. The system state xp 2 R10�1 consists of the vehicle angle of attack a,
pitch rate q, and four structural mode positions xið Þi¼1; ...; 4 and their rates �ið Þi¼1; ...; 4:

Table 14.1 Adaptive output feedback control design summary

Open-loop plant _x ¼ A xþ BL uþYT FðxÞ� �þ Bref zcmd

Measured and regulated

outputs

y ¼ C x; z ¼ Cz x

State observer _̂x ¼ Aref x̂þ Lv y� ŷð Þ þ Bref zcmd; ŷ ¼ C x̂

Observer gain Lv ¼ Pv C
T R�1v

Squared-up B-matrix �B ¼ B B2ð Þ ) det C �Bð Þ 6¼ 0 zeros C s In�n � Að Þ�1 �B
h i

2 C
�

n

ARE weights Qv ¼ Q0 þ vþ1
v

� �
�B �B

T
; Rv ¼ v

vþ1 R0

Algebraic Riccati equation Pv Aþ � In�nð ÞT þ Aþ � In�nð ÞPv � Pv C
TR�1v C Pv þ Qv ¼ 0

Output tracking error ey ¼ ŷ� y

Baseline control ubl ¼ �KT
LQR x̂

Extended regressor �F x; ublð Þ ¼ FTðxÞ uTbl
� �T

Output selection matrix for

adaptive laws
S ¼ Im�m 0 p�mð Þ�m

� �
Singular value decomposition BT CT R

�1
2

0 ¼ USV

Unitary matrix W ¼ UVð ÞT

Projection-based MRAC laws _̂�Y ¼ Proj �̂Y;�G �Y
�F x̂; ublð Þ eTy R�

1
2

0 W ST
� 	

Adaptive increment
uad ¼ � �̂Y

T
�F x̂; ublð Þ

Total control input u ¼ ubl þ uad
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xp ¼ a q z1 �1 z2 �2 z3 �3 z4 �4ð ÞT

There are two horizontal control surfaces available: (1) the elevator deð Þ, (an aft-
mounted tail surface) and (2) the canard dcð Þ (a forward-mounted surface). The

aircraft dynamics also depend on the vertical gust velocity vector wg 2 R3�1. The
gust enters the plant at three different locations, along the vehicle center line. So,

the aircraft longitudinal dynamics

_xp ¼ Ap xp þ Bp dþ Bg wg

are driven by the two-dimensional control input d ¼ de dcð ÞT and by the three-

dimensional gust input wg .We have modified the original data to make the open-

loop system unstable in pitch. This necessitates a control action to restore and

maintain basic stability of the vehicle. The open-loop plant matrices are

Ap ¼

�1:60 1 �1:1811 �0:1181 0 0 0 0 0 0

6:57 �2:446 �1:8130 1:1805 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

�7:196 �0:445 �56:82 �5:53 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

�1:349 0:2466 0 0 �231:52 �1:712 0 0 0 0

0 0 0 0 0 0 0 1 0 0

�2:093 0:242 0 0 0 0 �408:86 �2:679 �10:71 �0:518
0 0 0 0 0 0 0 0 0 1

0:3073 0:05588 0 0 0 0 �1:24 �0:176 �390:1 �0:474

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Bp ¼
�0:070 3:726 0 0:572 0 �0:465 0 �0:582 0 �0:112
�0:006 �0:28 0 0:019 0 �0:054 0 �0:0532 0 0:035

� �T

Bg ¼
0:0042 0:06 0 0:0105 0 0:0065 0 �0:0045 0 �0:0021
0:0037 �0:0417 0 0:0393 0 0:0039 0 0:0101 0 �0:0009
0:0012 �0:056 0 �0:0086 0 0:0059 0 0:0064 0 0:0012

0
B@

1
CA

T

The system output measurements include the pitch rate q and vertical

accelerations az ið Þi¼1; 2; 3 from three distinct nodes on the vehicle centerline. The

pitch rate is measured near the vehicle center of gravity (cg). The first vertical

acceleration is taken near the tip of the aircraft nose, the second is near cg, and the

third acceleration measurement comes from an aft cg location. These are the same

three locations where the vertical gust wg enters the system dynamics. So, the

system measured output vector is

yp ¼ Cp xp þ Dp u

with

yp ¼ q az 1 az 2 az 3ð ÞT
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and the output matrices shown below:

Cp ¼

0 1 0 0 0 0 0 0 0 0

�32:65 �28:04 49:93 2:37 �1405:41 �10:39 �1707:61 �13:09 �4472:18 �7:53
�11:69 �35:68 65:02 6:27 117:33 0:87 895:25 5:94 191:7 1:34

3:68 �38:04 153:63 17:68 �739:42 �5:47 �821:74 �5:66 672:66 �1:83

0
BBB@

1
CCCA

Dp ¼
0 �1:02 0 �1:2
0 �12:55 �1:23 3:69

� �T

The system-regulated output is the vehicle pitch rate, q, shown below:

z ¼ 0 1 0 0 0 0 0 0 0 0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cp reg

xp ¼ Cp reg xp ¼ q

In order to regulate z, we shall blend the two control surfaces, the elevator de and
the canard dc, and create a single longitudinal virtual control input:

u ¼ 0:5 de � dcð Þ

Such a control mixing is standard in aerospace systems. It is called “control

allocation.” In order to incorporate u into the system dynamics, we introduce the

control allocation matrix G ¼ 0:5 �0:5ð ÞT and arrive at the plant dynamics

_xp ¼ Ap xp þ Bp G
� �

uþ Bg wg

with the virtual control input u and with its corresponding B-matrix:

Bp G
� � ¼ �0:032 2:003 0 0:2765 0 �0:2055 0 �0:2644 0 �0:0385ð ÞT

Our first step is to create the desired reference model dynamics, and our tool of

choice is the LQG/LTR method. In particular, we shall design a baseline output

feedback controller u ¼ ublð Þ, such that q adequately tracks its commanded value

qcmd ¼ zcmdð Þ, while operating only on the system output measurements. In order to

do that, we augment the linear plant dynamics with the integrated pitch tracking

error

_eq I ¼ q� qcmd

and arrive at the extended open-loop system

_eq I
_xp

� �
|fflfflffl{zfflfflffl}

_x

¼ 0 Cpreg

0 Ap

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

eq I
xp

� �
|fflfflffl{zfflfflffl}

x

þ 0

Bp G

� �
|fflfflfflfflffl{zfflfflfflfflffl}

B

uþ �1
0

� �
|fflfflfflffl{zfflfflfflffl}

Bcmd

zcmd þ 0

Bg

� �
|fflfflffl{zfflfflffl}

�Bg

wg
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with the output measurements

eq I
yp

� �
¼ y ¼ 1 01�10

04�1 Cp

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

C

eq I
xp

� �
|fflfflffl{zfflfflffl}

x

þ 0

Dp G

� �
|fflfflfflfflffl{zfflfflfflfflffl}

D

u ¼ C xþ Du

that include the integrated pitch rate tracking error and the original system outputs.

Adding the integrated output error will allow us to design a control input without

command feedforward connections. In the context of the extended system, the

regulated output can be expressed as

z ¼ 0 0 1 0 0 0 0 0 0 0 0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cz

x ¼ Cz x

We now proceed to the design of an LQR (proportional + integral) (PI) state

feedback controller. After several design iterations, we have selected the LQR

weights as

Qlqr ¼ diag 2 0 0 0 0:0001 0 0:0001 0 0:0001 0 0:0001ð Þ; Rlqr ¼ 1

Next, we choose the prescribed degree of stability � ¼ 0:2, solve the ARE

Plqr Aþ 0:2 I11�11ð Þ þ Aþ 0:2 I11�11ð ÞTPlqr � Plqr B R�1lqr B
T Plqr þ Qlqr ¼ 0

for Plqr, compute the LQR state feedback gains

Klqr ¼ R�1lqr B
T Plqr

and arrive at the closed-loop poles of

Aref ¼ A� BKlqr

with real parts no greater than�0.2 (we are using the LQR design modification with

a prescribed degree of stability).

The next step is the design of a state observer. Note that the extended open-loop

plant has one input u and five outputs y. According to our design methodology, we

need to square-up the system dynamics, that is to say, we need to add four pseudo-

inputs by building a matrix B2 2 R11�4 to enforce the square-up conditions:

�B ¼ B B2ð Þ )
det C �Bð Þ 6¼ 0

zeros C s In�n � Að Þ�1 �B
h i

2 C
�

8<
:
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We could use the method from [16], or we can select B2 directly to enforce the

first square-up condition and then check if the second one holds true. Let us explore

the direct approach. Since we need det C �Bð Þ 6¼ 0, it seems reasonable to select

B2 ¼ Bcmd
CT
3

C3k k
CT
4

C4k k
CT
5

C5k k

� 	

form the matrix

�B ¼ B Bcmd
CT
3

C3k k
CT
4

C4k k
CT
5

C5k k

� 	
¼ B B2ð Þ

and verify that the new system

5� Inputs

+

5� Outputs )
A �B

C 0p�p

 !
2 R16�16

with four fictitious pseudo-control columns in B2 satisfies the two square-up

conditions: (1) The system is minimum-phase, and (2) the relative degree is one.

With the selected matrix �B, we choose the observer weights similar to (14.3),

Q ¼ Q0 þ
vþ 1

v

� �
�B �B

T
; R ¼ v

vþ 1
R0

with

Q0 ¼ I11�11; R0 ¼ 106 I6�6; v ¼ 0:1

solve the ARE

Pv A
T þ APv � Pv C

T R�1v CPv þ Q ¼ 0

for Pv , compute the steady-state Kalman filter gain Lv ¼ R�1v C Pv , and write the

state observer dynamics

_̂x ¼A x̂þ B ubl þ Bcmd zcmd þ Lv y� ŷð Þ
ŷ ¼C x̂þ Dubl

with the baseline control input

ubl ¼ �KT
lqr x̂
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while utilizing the LQR-optimal feedback gains Klqr on the observer states x̂.
Let us comment on the choice of �Band on our selection of the tuning parameter v.

As we have previously discussed, �B turns the original system with one input and five

outputs into a 5� 5ð Þminimum-phase system. This is the squaring-up procedure for

the observer design, where we have added four fictitious inputs into the second

through the fifth columns of �B, respectively. The squaring-up modification allows us

to recover the LQR state feedback margins and, at the same time, enforce the

needed (for adaptive laws) asymptotics (14.6). The latter is achieved by setting the

tuning knob v to be sufficiently small. However, if v becomes too small, then

the observer gains may grow large, which is undesirable since the system noise

sensitivity may increase. This is the trade-off in our design: We must find v small

enough but not too small. Also, note that our selection of �B; vð Þ is by no means

unique, yet it presents a straightforward way to recover optimal LQR state feedback

margins (at the system input), with the assigned crossover frequencies, obtain

reasonably small observer gains, and enforce the asymptotic relation (14.6).

With the selected pair �B; vð Þ , we recover the gain and phase margins of the

optimal LQR state feedback controller (Fig. 14.1).

The extended system gain and phase margins at the virtual input (including the

observer dynamics) are very close to those of the LQR state feedback controller.

We get a negative gain margin of �10.6 db at 0.542 rad/s, an infinite positive gain

margin, and a phase margin of 53 deg, at 2.45 rad/s. These values are quite

reasonable for the selected transport aircraft configuration.
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Fig. 14.1 LQR and LQG loop gain margins at virtual control input in Example 14.1
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Note that that the loop gain of the LQG controller rolls off faster than the loop

gain of the LQR state feedback system. So, the dynamic LQG solution is less

sensitive to modeling uncertainties, and it has better disturbance rejection

properties than the LQR state feedback. Of course, the faster roll-off at high

frequencies in the LQG design is attributed to adding the dynamic state observer.

With the baseline LQG controller in the loop, the closed-loop system becomes

_x ¼ A x� BKT
lqr x̂þ Bcmd zcmd þ �Bg wg

_̂x ¼ A� BKT
lqr

� 	
x̂þ Bcmd zcmd þ Lv y� ŷð Þ

y ¼ C� DKT
lqr

� 	
x; ŷ ¼ C� DKT

lqr

� 	
x̂; z ¼ Cz x

;

and the resulting closed-loop eigenvalues are placed well within practical bounds

that would be representative of a large transport aircraft in a cruise configuration.

Without uncertainties, the closed-loop system tracking performance is satisfac-

tory. Representative data are shown in Fig. 14.2.

The baseline LQG controller forces the regulated output (pitch rate) z ¼ q to

track its commanded values, and the required control effort lies well within the

bandwidth of a typical aircraft actuation system.

We have also tested the LQG baseline system closed-loop tracking using various

command shapes. All the results have shown adequate performance. For all these

reasons, the closed-loop baseline system becomes our reference model for adaptive
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Fig. 14.2 Baseline LQG system tracking (without uncertainties) in Example 14.1
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control to achieve and maintain if and when uncertainties are present in the system

dynamics. Specifically, we define the reference model matrices

Aref ¼A� BKT
lqr; Bref ¼ Bcmd

Cref ¼C� DKT
lqr; Dref ¼ 05�1

and write the reference model dynamics in the form of (14.10):

_xref ¼ Aref xref þ Bref zcmd; zref ¼ Cz xref

These are the desired dynamics. In other words, this is exactly how we want our

system to respond to external commands. Note that the LQG state observer remains

the same, as in (14.20):

_̂x ¼ Aref x̂þ Lv y� ŷð Þ þ Bref zcmd

Before proceeding further, a remark is in order. As derived, our adaptive MRAC

design is applicable to systems whose measured and regulated output have no direct

feedforward control connections, that is, our method is applicable to systems with the

zero D matrix in both the measurements and the regulated outputs. It is possible to

broaden our design methodology to cover systems with feedforward control

connections in their outputs. Derivations of such a method are similar to what we

have presented in this chapter, and because of their similarity, we choose to omit

formal proofs.

Let us now test the baseline system performance in the presence of uncertainties.

So, we reduce the baseline controller gains by 75 %, setL ¼ 0:5, and also introduce
a matched nonparametric alpha-dependent uncertainty in the form of a Gaussian (an

RBF), centered at ac ¼ 2 deg, with the RBF sigma-width set to 0.011636, and with

the function peak magnitude of �0.25.
With these uncertainties active and operating under the baseline controller only,

the system tracking performance degrades significantly (Fig. 14.3).

It is evident from the test data shown in Fig. 14.3 that the baseline controller is

unable to adequately track the reference pitch rate command signal.

In order to recover the desired baseline closed-loop performance, we shall add an

adaptive output feedback uad , as shown in Table 14.1. We select adaptation rate

matrix G �Y to be diagonal. Then, the adaptive laws can be written as

_̂Y ¼ Proj Ŷ;�GY F x̂ð Þ eTy R
�1

2

0 W ST
� 	

_̂Ku ¼ Proj K̂u;�Gu ubl e
T
y R
�1

2

0 W ST
� 	

where GY; K̂u

� �
are the rates of adaptation for the original adaptive parameters Ŷ

and for the baseline control component ubl , respectively. Also, in this case, the

adaptive augmentation component is
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uad ¼ �ŶT
F x̂ð Þ � K̂u �Klqr x̂

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ubl

It is interesting to note that according to (14.13), the adaptive gain K̂u serves as

an estimate of the constant parametric uncertainty Im�m � L�1
� �

. Therefore, an

estimate L̂ of the system control effectiveness L can be reconstructed as

L̂ ¼ Im�m � K̂u

� ��1
For the design study, we useGu ¼ 100and selectGY to be diagonal, with all of its

diagonal elements also set to 3,000. We define an a-dependent RBF regressor

vector on the grid of breakpoints �10; 10½ � p
180

, in two degree increments from

each other. The RBF sigma widths are set to 2
3

2 p
180

� �
. This value allows to position

individual RBF-s such that any two consecutive functions overlap in the middle.

With the (baseline + adaptive) controller operating in the presence of the

reduced control effectiveness, the scaled-down baseline control gains, and the

a– dependent uncertainty, the closed-loop system performance is recovered rather

well, using reasonable control deflections and rates (Fig. 14.4).
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Fig. 14.3 Baseline controller tracking with uncertainties in Example 14.1
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It turns out that the selected uncertainties persistently excite the system dynam-

ics, and the adaptive system is able to approximate the unknown a-dependent RBF
function, (Fig. 14.5).
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Evolutions of L̂ðtÞ ¼ 1� K̂uðtÞ
� ��1

and ŶðtÞ
��� ��� are shown in Fig. 14.6.

The simulation test data indicate that system improvements mostly come

through Ŷ adaptation, with small changes to K̂u.

In order to add realism into simulation testing, we employ the gust model from

[23]. The model is driven by a random noise, and it generates three separate gust

profiles wg i

� �
i¼1; 2; 3, according to the block diagram shown below (Fig. 14.7).

The intent of the model is to emulate time delays in gust propagation along the

length of the aircraft.

For simulation testing, we select normally distributed zero-mean noise with

standard deviation set to one and generate three light vertical gust profiles (Fig. 14.8).

Then, we evaluate closed-loop (baseline + adaptive) system tracking and gust

rejection performance, in the presence of uncertainties (Fig. 14.9).
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Clearly, the system is able to attenuate gust effects and to maintain its command

tracking abilities in the presence of both gust and aerodynamic uncertainties.

We have also tested the exact same controller (without further retuning) in the

presence of medium-to-high gust, nonlinear-in-parameter uncertainties, actuator

dynamics, and with various pitch rate commands. All of the simulation trials have

resulted in excellent and resilient to uncertainties closed-loop tracking perfor-

mance. It is interesting to note that the collected simulation data indicate that the

adaptive system requires about the same level of control effort as the baseline

controller, yet the adaptive controller is able to cope quickly and efficiently with a

variety of “unknown unknowns” in the system dynamics. □

14.6 Conclusions

In this chapter, we have presented an adaptive output feedback augmentation design

for MIMO dynamical systems with matched uncertainties and with the number of

output measurements exceeding the number of control inputs. The system-

regulated output dynamics are allowed to be nonminimum phase and/or have a

high relative degree. We have also developed a detailed design case study related to

flight control of a large-size transport aircraft, with prominent structural dynamics,

aerodynamic uncertainties, and environmental disturbances.

It is worthwhile to reflect back on the design procedure and summarize the

quintessence of our method. After all proofs, derivations, and formal statements, it

all comes down to the design of a baseline LQG/LTR dynamic output feedback

controller, for the original system and without uncertainties. This linear system,

with the baseline controller in the loop, defines the reference model. The key step to

the design of an adaptive augmentation is the introduction of a small positive

constant (the so-called tuning knob) into the observer ARE, followed by exploita-

tion of the ARE asymptotic properties with respect to the tuning knob. It turns out

that for a sufficiently small constant, one can create a linear combination of the

system outputs, use it in an adaptive law, and then augment the baseline controller

with an adaptive output feedback in such a way that all matched uncertainties in the

system dynamics are mitigated. We have also noted that the derived design can be

easily extended to a class of nonparametric and non-matched uncertainties, includ-

ing bounded process noise.

In summary, our (baseline + adaptive) output feedback design consists of the

following three main steps:

1. Using the system without uncertainties, square-up its input–output dynamics.

2. Select a sufficiently small tuning knob, design an LQG/LTR output feedback

controller, and construct a linear combination of the system outputs for adaptive

laws.

3. Compute an adaptive output feedback augmentation and add it to the baseline

LQG/LTR controller.
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What is interesting here is the fact that the design of a robust LQG/LTR

controller paves the way to the design of a robust adaptive output feedback.

Together, the two controllers provide seamless mitigation of a large class of

uncertainties in the system dynamics while relying only on the system output

measurements. So in a way, we have built an “output feedback bridge” between

robust and adaptive control methodologies.

14.7 Exercises

Exercise 14.1. Suppose that all states are accessible, that is, let y ¼ x. Write down

the adaptive output feedback laws and compare them to a state feedback MRAC.

Comment on the similarity of the derived solution with the observer-like adaptive

output feedback design that was presented in this Section.

Exercise 14.2. Derive an adaptive output feedback solution, similar to the one from

Sect. 14.3, but without a baseline linear controller.

Exercise 14.3. Consider the system dynamics (14.7), with the linear regressor

vector FðxÞ ¼ KT
F x and with an unknown constant matrix KF 2 Rn�m . Suppose

that Bref ¼ 0n�m . Using the techniques from Sect. 14.3 and relying only on the

system output measurements y, derive an adaptive controller to force the system-

regulated output z track bounded commands.

Exercise 14.4. With the aircraft data from Sect. 14.5, perform a trade study in

selecting appropriate values for the tuning knob v. Show numerically that as v gets

smaller, the asymptotic relation (14.6) takes place. Plot P�1v B� CT R
�1

2

0 W
��� ��� versus

v. Also, show that for small values of v, the observer gains get large, eventually

leading to high gain effects. Explain this phenomenon. Compute and plot (vs. v) the
associated crossover frequencies and MIMO gain/phase margins at the output

breakpoint of the nominal system. Comment on your results.

Exercise 14.5. For the aircraft data from Sect. 14.5, select your own �B; vð Þ ,
redesign the controller, rerun simulation tests, and compare your data with the

original results. Test and comment on the system tracking and gust rejection

performance. Select a matched nonparametric uncertainty and, without retuning

the controller, rerun simulation tests with increasing gust magnitudes. Comment on

your results.

Exercise 14.6. Using the aircraft data from Sect. 14.5, replace the system-regulated

output q with a. Design a (baseline + adaptive) output feedback controller to track

bounded angle of attack commands acmd . Simulate the closed-loop system using

various uncertainties (parametric and nonparametric), as well as the gust model

from Example 14.1.
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28) Page 192

to: Change (6.83) to (6.82). The text on this page should not be italic.
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29) Page 193, change

to: (6.88) to (6.87), (6.86) to (6.85), (6.92) to (6.91). This page should not be italic.
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30) Page 194, change

to: (6.94) to (6.93), (6.94) to (6.93), (6.88) to (6.87), (6.88) to (6.87). The text in the

box should not be italic.
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31) Page 196, change

to: ), (6.89) to (6.88), (6.88) to (6.87).

32) Page 197, change

to: (6.101) to (6.100)
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33) Page 198, change

to: (6.102) to (6.101), (6.103) to (6.102), (6.110) to (6.109), (6.107) to (6.106)

34) Page 199, change
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to: (6.110) to (6.109), (6.111) to (6.110), (6.111) to (6.110), (6.112) to (6.111)

35) Page 200, change

to: (6.102) to (6.101),

36) Page 201, change

to: (6.108) to (6.107)

37) Page 201, change

to: (6.112) to (6.111)
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38) Page 201, change

to: (6.108) to (6.107), (6.112) to (6.111)

39) Page 205, change

to: remove the “e”

40) Page 206, change

to

σ
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41) Page 206 change

to: (6.59) to (6.58)

42) Page 207

to

σ, (6.88) to (6.87)
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ERRATA LIST

Robust and Adaptive Control with Aerospace Applications –

1st Edition, Springer, 2013

Eugene Lavretsky

Revised on 27 Jul 2013

Part II

Chapter 7

1. Page 222: Exercise 7.3: Change “(7.13), (7.14), (7.15), (7.16), (7.17), (7.18),

(7.19), (7.20), (7.21), (7.22), and (7.23).” to “(7.13) through (7.23).”

2. Page 239: Example 8.9: Change 6 sin t� 6 t cos t� t2 	 6þ t� t2
	 

|fflfflfflffl{zfflfflfflffl}
	1

4

	 6:25 to

6 sin t� 6 t cos t� t2 	 6þ 6 t� t2
	 

|fflfflfflfflffl{zfflfflfflfflffl}

	9

	 15

3. Page 239: Example 8.9: Change

x tð Þj j 	 x t0ð Þj j exp 6:25� 6 sin t0 þ 6 t0 cos t0 þ t20
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c t0ð Þ

¼ x t0ð Þj jc t0ð Þ to

x tð Þj j 	 x t0ð Þj j exp 15� 6 sin t0 þ 6 t0 cos t0 þ t20
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c t0ð Þ

¼ x t0ð Þj jc t0ð Þ

Chapter 8

1. Page 261: Example 8.10: Change _xref ¼ Axref þ br to _xref ¼ Axref þ bKr r
2. Page 258: Change sentence

“regressor vector”, which is assumed to be uniformly bounded.

to

”regressor vector”, which is assumed to be uniformly bounded and Lipschitz-

continuous in t.



3. Page 258: ChangeV e;ΔKð Þ ¼ eT P eþ ΔKTΔK toV e;ΔKð Þ¼eTPeþ1
γΔK

TΔK:
4. Page 258: Change the next equation for _Ve;ΔK ¼ ::: to

_V e;ΔKð Þ ¼ _eT P eþ eT P _eþ 2
1

γ
ΔKT _̂K ¼ A eþ bΔKTΦ

	 
T
P eþ eTP A eþ bΔKTΦ

	 
� 2ΔKTΦeT P b ¼ �eTQ e 	 0

5. Page 261: Change equation _xref ¼ Axref þ b r to _xref ¼ Axref þ bKrr:

Chapter 9

1. Page 282: Eq. (9.47): Right-justify the equation number (i.e., move it to the

right).

Chapter 10

1. Page 311: Table 2.10: Change the third equation from the bottom to:

u ¼ Im�m � K̂T
u

	 

ubl � Θ̂

T
Φ xp
	 


:

This equation in the current book version has an incomplete sub-index in I.
2. Page 314: Exercise 10.1: In the problem statement, replace “have” with “has”.

3. Page 314: Exercise 10.2: Add the minus sign to the last equation in the problem

statement: K̂x 0ð Þ ¼ �Kx:
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Chapter 11

1. Page 325: Replace text and equations starting from Eq. 11.26 through Eq. 11.29

with:
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2. Page 327: Change section number from “11.3” to subsection # “11.2.3”

3. Page 328: Replace the first sentence and the second sentences with the sentence

shown below in yellow:

4. Page 329: Change Eq. (11.59) to:

rfj ¼
ð1þ εΘj Þ
εΘj ðΘmax

j Þ2
r jj bΘj ^jj2
h i

¼ 2ð1þ εΘj Þ
εΘj ðΘmax

j Þ2
bΘj:

Chapter 12

1. Page 364: Replace δ with δ R in Fig 12.5, as shown below:
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2. Page 372: Change “Example 12.3” to “Example 12.1”

3. Page 373: In the sentence “In addition, we impose a restriction on the runway

distance …” : Change τfl to 4τh.
4. Page 374: Change the second equation as shown below (change B(2,2) to

0.00044):

_V
_α
_q
_θ
_h

0
BBBB@

1
CCCCA

|fflfflffl{zfflfflffl}
_x

¼

�0:038 18:984 0 �32:174 0

�0:001 �0:632 1 0 0

0 �0:759 �0:518 0 0

0 0 1 0 0

0 �250 0 250 0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

V
α
q
θ
h

0
BBBB@

1
CCCCA

|fflfflffl{zfflfflffl}
x

þ

10:1 0

0 0:00044
0:025 �0:011
0 0

0 0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

δth
δe

� �
|fflfflffl{zfflfflffl}

u

, _x ¼ Axþ Bu

5. Page 375: Change equation at the top of the page as shown below (change B(2,2)

to 0.00044):

_V
_α
_q
_θ
_h

0
BBBB@

1
CCCCA

|fflfflffl{zfflfflffl}
_x

¼

�0:038 18:984 0 �32:174 0

�0:001 �0:632 1 0 0

0 �0:759 �0:518 0 0

0 0 1 0 0

0 �250 0 250 0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

V
α
q
θ
h

0
BBBB@

1
CCCCA

|fflfflffl{zfflfflffl}
x

þ

10:1 0

0 0:00044
0:025 �0:011
0 0

0 0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

δth
δe

� �
|fflfflffl{zfflfflffl}

u

þ

�18:984
0:632
0:759
0

0

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Bg

αg hð Þ

6. Page 376: Change 4th from the bottom equation as shown below:

Qlqr ¼ diag 0:2 0 0 0 1ð Þ, Rlqr ¼ diag 10 10ð Þ
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Chapter 13

1. Page 406: Insert space between “ycmd” and “y” in Eq. 13.87. There are two

equations there, not one, as shown below.

2. Page 409: Move superscript “T” in Eq. 13.99 to the right and outside of

parenthesis, as in:

3. Page 416: Exercise 13.4: Change “Example 13.3” to “Example 10.2”.

Chapter 14

1. Page 429: Eq. 14.46: Change to:

_V ex,ΔΘ
	 
 ¼ � 1þ 1

v

0
@

1
AeTy R

�1
0 ey � eTx

ePvQ0
ePv ex

� 1þ 1

v

0
@

1
A BTePv ex

�� ��2 � 2ηeTx ePv ex þ 2eTx
ePv BΛg

þ2 trace ΛΔΘ T Γ�1Θ
_̂
Θ þΦ x̂ , ublð Þ eTx C

T
	 

|fflfflfflffl{zfflfflfflffl}

e T
y

R

� 1
2

0 WST

8>><
>>:

9>>=
>>;

0
BB@

1
CCA

þ2eTx O vð ÞΛΔΘ TΦ x̂ , ublð Þ
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2. Page 430: Eq. 14.48: Change to:

_V ex,ΔΘ
	 
 	 �2ηλmin

ePv

� �
exk k2 � λmin Q0ð Þλ2min

ePv

� �
exk k2

� 1þ 1

v

0
@

1
Aλmin R�10

	 

ey

�� ��2 � 1þ 1

v

0
@

1
A BTePv ex

�� ��2 þ 2Λmax kg BTePv ex
�� �� exk k

þ2v exk kkΛmaxΔΘ max Φ x̂ , ublð Þ�� ��

3. Page 430: Eq. 14.49: Change to:

_V ex,ΔΘ
	 
 	 � 2ηþ λmin Q0ð Þλmin

ePv

� �� �
λmin

ePv

� �
exk k2

� 1þ 1

v

0
@

1
Aλmin R�10

	 

ey

�� ��2 � 1þ 1

v

0
@

1
A w2 þ 2Λmax kgw exk k

þ2v exk kkΛmaxΔΘ max Φ x̂ , ublð Þ�� ��

4. Page 430: Eq. 14.50: Change to:

_V ex,ΔΘ
	 
 	 � 2ηþ λmin Q0ð Þλmin

eP0

� �� �
λmin

eP0

� �
exk k2

� 1þ 1

v

0
@

1
Aλmin R�10

	 

ey

�� ��2 � 1þ 1

v

0
@

1
A w2 þ 2Λmax kgw exk k

þ2v exk kkΛmaxΔΘ max Φ x̂ , ublð Þ�� ��

5. Page 431: Eq. 14.52: Change to:

_V ex,ΔΘ
	 
 	 � 1þ 1

v

0
@

1
Aλmin R�10

	 

ey

�� ��2
� 2ηþ λmin Q0ð Þλmin

eP0

� �� �
λmin

eP0

� �
� 2vkΛmaxΔΘ max b2

h i
exk k2

� 1þ 1

v

0
@

1
A w2 þ 2Λmax kgw exk k þ 2vΛmax kΔΘ max b1 exk k
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6. Page 431: Eq. 14.53: Change to:

c1 ¼ λmin Q0ð Þλ2min
eP0

� �
� 2vkΛmaxΔΘmax b2, c2 ¼ Λmax kg

c3 ¼ 1þ 1

v
, c4 ¼ vΛmax kΔΘmax b1

7. Page 431: Eq. 14.54: Change to:

_V ex,ΔΘ
	 
 	 �c3 λmin R�10

	 

ey

�� ��2 � 2ηλ2min
eP0

� �
exk k2

� c1 exk k2 � 2c2 exk kwþ c3w
2 � 2c4 exk k

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

φ exk k;wð Þ

¼ �c3 λmin R�10

	 

ey

�� ��2 � 2ηλ2min
eP0

� �
exk k2 � φ exk k;wð Þ

8. Page 432: Eq. 14.61: Change to:

v1 ¼
λmin Q0ð Þλ2min

eP0

� �
2kΛmaxΔΘ max b2

9. Page 432: Eq. 14.62: Change to:

detC ¼ c1 c3 � c22

¼ 1þ 1

v

0
@

1
A λmin Q0ð Þλ2min

eP0

� �
� 2vkΛmaxΔΘmax b2

h i
� Λ2

max k
2
g ¼ O

1

v

0
@

1
A

10. Page 433: Eq. 14.66: Change to:

_V ex,ΔΘ
	 
 	 � 1þ 1

v

� �
λmin R�10

	 

ey

�� ��2 � 2ηλ2min
eP0

� �
exk k2 þ φmin vð Þj j
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11. Page 433: Eq. 14.67: Change to:

Ωex ¼ ex : exk k2 	 φmin vð Þj j
2ηλ2min

eP0

� � ¼ r2v,η ¼ O
v2

η

� �8<
:

9=
;

12. Page 435: Table 14.1: Change 11th and 12th equations in the table as shown

below:

Back cover

Second paragraph: Change “The text is a three-part treatment” to “The text is a

two-part treatment”."Errata List",6,1
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Index

A

Actuator model

first-order, 335

second-order, 64, 335

Adaptive control models, 17

Aircraft dynamics

altitude rate, 11, 12

altitude, 11

angle of attack (AOA), 8

angle of sideslip (AOS), 8

angle-of-attack, 12

body axis rates, 5

body axis velocities, 9

drag, 9

equations of motion, 5

Euler angles, 7

lateral-directional, 14–16

lift, 9

longitudinal, 12–14

output vector, 10

short-period, 12

sideslip, 16

stability axis rates, 15

state vector, 10

trim, 10

vertical acceleration, 13

Algebraic Riccati equation

asymptotic properties of, 399–406

derivation of, 38

Approximation-based adaptive control,

355–384

Artificial neural network

approximation properties of, 360

definition, 356

Asymptotic orders, 394–399

B

Barbalat’s lemma, 254–259

C

Closed-loop

characteristic polynomial,

108, 112

linear model, 18

transfer function, 99

Command tracking, 264–265

Complementary sensitivity,

82, 99

D

Dyadic expansion, 105

Dynamic Inversion MRAC for scalar

dynamics, 274–281

F

Frequency domain analysis, 97–160

Frobenius norm, 22

Function

convex, 330

negative-definite, 241

positive-definite, 241

RBF, 356

sigmoid, 356, 357

uniformly-continuous, 256

G

Gain margin, 118

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks

in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3,
# Springer-Verlag London 2013
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H

Hamiltonian matrix, 45

H-inf optimal control

design model for, 73, 84

gamma-iteration design, 88–89

Hamiltonian for, 86

Hamiltonian matrix for, 87

performance index for, 90

regulated variables in, 83, 88

Riccati equation, 87

Hypercube, 145

I

Input loop gain linear model, 20

Integral control, 51

Internal model principle, 51

K

Kalman–Yakubovich–Popov lemma,

191–194

L

LaSalle–Yoshizawa theorem, 258–259

Linear plant model, 18

Linear controller model, 18

Linear Quadratic Gaussian

design models for, 176

Doyle and Stein loop transfer recovery,

178

Kalman filter for, 177, 182

Lavretsky loop transfer recovery, 190–194

Linear Quadratic Regulator, 35–37

Lipschitz condition, 229, 230, 231, 232, 421

Loop gain transfer function, 98–100

Loop shaping

block diagram of, 83

weighting filters for, 83

LQG. See Linear Quadratic Gaussian
LQR. See Linear Quadratic Regulator
Lyapunov algebraic equation, 247

Lyapunov function

definition, 242

geometric interpretation, 243

radially unbounded, 245

Lyapunov stability

asymptotic, 240

definitions, 235–240, 242

geometric interpretation, 243

global, 238

historical roots of, 259

local, 238

of motion, 225–261

theorems, 240–241

uniform, 240

Lyapunov’s direct method, 241

M

Matching conditions, 282, 295

Matrix norm, 22

Matrix square root, 400

Micchelli’s theorem, 360

Model reference adaptive control, 215–220

augmentation of an optimal baseline

controller, 303–313

direct, 215–220

historical roots of, 221–222

MIMO systems, 281, 286

observer-like, 408–412, 415

output feedback, 418, 423, 434

parameter convergence in, 221, 269, 271,

290, 301, 302, 311

scalar linear systems, 220–221, 265, 270

state-feedback, 263–292

with improved transient dynamics,

387–394, 407–412, 413, 415

with integral feedback, 293–313

with state-limiting constraints, 362–364,

370, 371

Model reference control, 211–215

MRAC design examples

helicopter pitch dynamics, 270–274

delta wing dynamics at high angle of attack,

285–291

aircraft short-period dynamics, 298–303

DC-8 short-period dynamics, 310–313

dead-zone mod for aircraft roll dynamics,

320–323

sigma mod for aircraft roll dynamics,

326–327

e-mod mod for aircraft roll dynamics,

328–329

aircraft lateral-directional dynamics,

340–350

automatic landing system for transport

aircraft, 372–383

control of a flexible transport aircraft,

435–447

MRAC. See Model reference adaptive control
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N

Norms, 22

Nyquist

D-contour, 107

multivariable criterion, 107

encirclements, 111

O

Open-loop characteristic polynomial, 108, 112

Optimal control

Hamilton–Jacobi–Bellman equation,

29–33

performance index, 29

optimal control policy, 29

principle of optimality, 30

Hamiltonian, 32

boundary conditions for, 32

linear quadratic regulator, 35–37

quadratic performance index, 35

LQR Hamiltonian, 35

Riccati equation, 36

infinite-time LQR problem, 37–39

infinite-time performance index, 37

algebraic Riccati equation, 38

conditions on plant and performance index

to solve, 39

root locus, 41

guaranteed margins for, 42–44

state feedback control law, 42

loop transfer function, 42

return difference matrix, 42, 43

eigenstructure of closed-loop, 44, 45

Hamiltonian matrix, 45

Ordinary differential equations

existence and uniqueness of solutions, 227,

230–231

energy-based analysis, 231

initial value problem, 36, 227

equilibrium of, 233

Orlicz’s theorem, 232, 233

Output loop gain linear model, 21

P

Peano’s theorem, 229–230

Persistency of excitation, 269, 302, 322, 329

PE conditions. See Persistency of excitation

Phase margin, 118–125

Positive real

lemma, 191

transfer function, 190–191

Power signals, 75–76

Projective control

design example, 165–176

dynamic output feedback, 164

eigenstructure of, 163

static output feedback, 162

Proportional plus integral control, 100–103

R

Real stability margin, 143–146, 149

Return difference dynamics, 98, 108

Ridge function. See Sigmoid

Robust MRAC design

dead-zone mod, 319–323

e-mod, 327–328

projection operator, 329–330, 336, 337,

340, 352, 368

sigma-mod, 323–326

S

Sensitivity, 80, 98

Servomechanism design model, 52–58

control law for, 60

controllability of, 56

loop gain crossover frequency, 67

LQR performance index, 59, 65

LQR (See Linear Quadratic Regulator)
overshoot, 67

rise time (63%), 67

settling time (95%), 67

singular stability margins, 67

tracking constant commands, 57

undershoot, 67

Singular

matrices, 115

perturbations, 394–396

Singular value

decomposition, 104

maximum (2-norm), 104

minimum, 104

robustness tests, 133–136

stability margins, 118–125

Small gain theorem, 134

Squaring-up

method, 420

plant, 193

Stability analysis model, 109, 127

Stability margins, 103–125

State feedback control law, 18

Strictly positive real, 190

Structured singular value, 133

System type, 51
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T

Transfer function

matrix, 98–103, 112

scalar, 101

U

Uncertainty

additive, 114

dynamic models of, 125

multiplicative, 114

real parameter, 126, 129–133, 144

Uniform ultimate boundedness

comparison with Lyapunov stability, 249

concept, 247

definition, 249

Lyapunov-based analysis of, 250

V

Vector norms

1-norm, 23, 75

2-norm, 23, 75

inf-norm, 23, 75

p-norm, 22
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