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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts, and
interpretations emerge quite spontaneously, and these are then discussed, used,
discarded, or subsumed into the prevailing subject paradigm. Sometimes, these
innovative concepts coalesce into a new subdiscipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts,
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialized tutorial
workshop or as a course to undergraduate, graduate, or industrial engineers.
Advanced Textbooks in Control and Signal Processing is designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome
the opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies in the textbook series.

An aim of the Advanced Textbooks in Control and Signal Processing series is to
create a library that covers all the main subjects to be found in the control and signal
processing fields. It is a growing but select series of high-quality books that now
covers some fundamental topics and many more advanced topics in these areas.
We are therefore very fortunate to have this textbook from Eugene Lavretsky and
Kevin Wise on Robust and Adaptive Control with Aerospace Applications enter
the series. In many ways, this textbook is a departure for the series since it deals
with the fundamental topics of robust and adaptive control and has very strong
material from the aerospace applications field. Thus, it is possible to see clearly how
the stringent performance requirements of the applications motivate and are met
by the control theory developments. From the aerospace control applications, the
reader will appreciate the industrial context where aircraft operates across a wide
range of flight conditions, giving rise to many design points. The aerospace industry
solves this problem by using many strategically selected control design points
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and gain schedules the resulting controllers. Another part of the design context is
the need for control designs that are able to track a range of reference signals while
remaining robust to both parametric and nonparametric model uncertainties. These
issues are all considered in Part I of the text under the title of Robust Control.

One of the questions arising from the application of gain schedules is whether it
is possible to reduce the number of controllers being used and still meet the system
performance requirements. This is a serious practical question, and the authors find
a solution in the methods of model reference adaptive control (MRAC) that form
Part II of the textbook: Robust Adaptive Control. These chapters follow a sequence
of developments, each one dealing with some practical aspect of MRAC, and
illustrated by very appropriate case study examples. The techniques of Lyapunov
stability theory are important tools in these developments and the whole of Chap. 8 is
devoted to this topic. These tools are then used to provide a variety of performance
guarantees for the adaptive control algorithms. Beginning from state feedback
MRAUC, the chapter sequence moves on, adding integral control, followed by
inculcating robustness, and then improving the adaptation dynamics and
culminating in the use of output feedback, which is the contribution of the last
chapter (Chap. 14). All the chapters are supported by reference lists and sets of
exercises for the reader.

Since it is not often that the textbook series contains a volume from writers who
are based in industry, it is also fitting to say something about the authors in this
Foreword.

Dr. Eugene Lavretsky is a Boeing Senior Technical Fellow at Boeing Research
and Technology, Huntington Beach, California, USA. He has been responsible for
the flight control systems of several advanced aircraft and has published numerous
technical articles on control and aerospace topics. He is a senior member of the
IEEE and was a recipient of the AIAA Mechanics and Control of Flight Award
(2009), the IEEE Control System Magazine Outstanding Paper Award (2011), and
the AACC Control Engineering Practice Award (2012), for his work in the aero-
space field.

Dr. Kevin A. Wise is a Boeing Senior Technical Fellow at Boeing Phantom
Works, St. Louis, Missouri, USA. He has been responsible for a wide range of
aerospace developments including flight control systems, ejector seat systems, and
autonomy in unmanned aerial vehicles. Dr. Wise is a fellow of the IEEE and has
received both IFAC (2007) and AIAA (2004) awards for his work and publications.
Both authors have taught the material of this textbook in graduate-level courses at
US universities.

This new textbook is an excellent addition to the Advanced Textbooks in Control
and Signal Processing series.

Industrial Control Centre M.J. Grimble
Glasgow, Scotland, U.K. M.A. Johnson
May 2012
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Preface

After working in the aerospace industry for close to a quarter of a century, both of
us felt strongly about writing this book, with the main goal to share our lessons
learned and design insights into the development and analysis of robust and
adaptive control systems. Our focus is on the systems that are practical yet have a
formal basis for performing their design, analysis, and performance evaluations.
During our professional careers at the Boeing Company, we have had a multitude of
opportunities to design and flight test guidance, navigation, and control (GN&C)
algorithms for a variety of platforms, ranging from commercial aircraft to fully
autonomous experimental aerial vehicles. Over time and after numerous trade
studies, we have collected a number of GN&C methods that have performed well
on a variety of aircraft systems. So, we decided to write this book and share with the
reader our experiences and lessons learned in the design, analysis, and evaluation of
control technologies, with an emphasis on flight systems. The latter is not a
prerequisite for understanding the book material, as these methods and design
insights apply to all control systems. Aerospace applications and examples
presented in this book are rather a motivation to challenges in constructing reliable
and numerically efficient control algorithms.

Many parts of this book are based on undergraduate and graduate control courses
that we have taught over the years at the Washington University in Saint Louis, the
University of Missouri — Rolla, the Southern Illinois University in Edwardsville
MO, and at the California Institute of Technology (Caltech). As such, the book
material is quite suitable for senior undergraduate and graduate students, as well as
for practicing engineers and research scientists, who have had an exposure to basic
principles in controls and dynamics, such as an undergraduate level control course,
covering classical methods (root locus, Bode diagrams, and Nyquist plots).
In addition, we assume that the reader has a basic understanding of linear algebra,
ordinary differential equations, and is familiar with using state space methods for
analysis and numerical modeling of dynamical systems. These are the prerequisites.

Motivated and driven by aerospace applications, this book focuses on systems
whose dynamics are continuous. Extensions of these methodologies to discrete and

vii
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hybrid systems are possible and can be found elsewhere in the vast literature
devoted to control of dynamical systems.

Overall, this book is self-contained while covering theoretical development and
practical applications of formal methods in robust and optimal linear control, robust
stability analysis, Lyapunov stability theory, and model reference adaptive control
(MRAC). Throughout this book, we present detailed simulation examples and case
studies to illustrate key design steps and the benefits of applying robust and
adaptive control methodologies to transport aircraft and experimental aerial
platforms.

There are two major parts in this book. Part I presents robust control design and
analysis methods for linear time-invariant systems. Part II focuses on MRAC
methods for systems with nonlinear and uncertain dynamics.

Readers will benefit from the two-part distinct structure of this book. Such an
arrangement enables a seamless transition from the classical linear control concepts
to the state of the art in adaptive systems while illustrating each design with realistic
aerospace applications. Also, the two-part book organization allows us to present
self-contained material, covering linear and robust adaptive control techniques for
dynamical systems that operate in the presence of uncertainties. Toward that end,
we consistently give structured descriptions of both classical and advanced control
techniques, key design procedures and guidelines, worked examples, and Matlab
simulations. Each part ends with a set of educational and challenging exercises that
are directly related to the material presented. All these features constitute the book’s
educational value.

Part I begins with an introduction to challenges in control design, analysis, and
simulation of aerial vehicles. General aviation background and current trends that
lead to the need for more advanced control are discussed. Also presented is a brief
survey of control-theoretic methods for existing and future aerial vehicles. The
theoretical portion of Part I starts with the introduction of robust and optimal linear
control methods for linear systems. Command tracking using linear quadratic
regulators (LQR) with integral action is presented. This part also covers two output
feedback design methods, such as projective control and linear quadratic Gaussian
control with Loop Transfer Recovery (LQG/LTR). These algorithms are employed
to develop baseline control architectures for linear systems with known dynamics.

Part IT begins with self-contained material on the design and analysis of adaptive
state feedback controllers for linear and nonlinear uncertain dynamical systems in
continuous-time domain. An overview of Lyapunov stability theory is given,
followed by theoretical fundamentals for MRAC systems. Next, approximation
properties of artificial neural networks and their applications to the design of direct
adaptive systems are introduced, and several approximation-based MRAC methods
are discussed. The part proceeds with the development of state feedback adaptive
augmentation architectures for robust baseline linear controllers, followed by
extensions and modifications to achieve transient performance in adaptive systems,
as well as to accommodate output feedback constraints. In this part, we also present
adaptive augmentation design methods to combine robust baseline controllers with
adaptive feedback.
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Throughout this book, we discuss motivations to the design, analysis, and
implementation of robust and adaptive controllers, with the aim to addressing
realistic challenges that often arise in the flight control of aerial vehicles and
other systems.
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Robust Control



Chapter 1
Introduction

1.1 Why Robust and Adaptive Control?

Robust control can be thought of as an online policy capable of regulating systems
(plants) whose dynamics may contain bounded (in some sense) uncertainties. Such
an algorithm would often utilize feedback—feedforward state-output connections to
generate appropriate control inputs so that the plant output moves along the
prescribed “trajectories.” The main idea here is to design a control system that
would work satisfactory for a set of plants, whether linear or nonlinear, while
assuming the worst-case conditions on the “unknown unknowns” in the system
dynamics.

Discarding ad hoc designs, it would be safe to say that all formal and reliable
control methods are model based. We often start with a mathematical model that
resembles the process of interest in a selected domain of operation. The model may
or may not be accurate in capturing significant and other effects in the process
dynamics. In order to overcome potential modeling deficiencies, we seek a robust
solution, designed based on the model, yet capable of controlling the real process,
and not just the model. We would also want a controller whose performance
“gracefully degrades” in the presence of uncertainties. The graceful degradation
property is highly desirable, since it becomes the only assurance that the controller
would not abruptly break down, if and when the system encounters slightly
unprecedented events during its intended operation.

Embedding robustness properties into a control solution should be treated as one
of the main criteria in any design. For example, achieving closed-loop stability and
tracking performance, while providing adequate stability margins, are the main
goals, especially when dealing with linear system approximations of real processes.
In Part I, we will present various methods and techniques to achieve this goal.

Once a robust control solution is found, one may wonder if its robustness
properties and applicability domains can be further extended to cover a wider
class of uncertainties in the process dynamics. In Part II of this book, we will
attempt to address this problem using methods from adaptive systems. We shall

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 3
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_1,
© Springer-Verlag London 2013



4 1 Introduction

employ nonlinear design tools and show that indeed it is possible to construct
adaptive controllers that would cope with unbounded state-dependent nonlinear
uncertainties.

What is the difference between robust and adaptive controllers? A robust
controller is designed to operate under the worst-case condition assumption. Such
a controller may use excessive actions to regulate the process. In contrast, an
adaptive controller would try to perform an online estimation of the process
uncertainty and then produce a control input to anticipate, overcome, or minimize
the undesirable deviations from the prescribed closed-loop plant behavior. In
addition to their adaptive properties, these controllers can be constructed to
“learn” or equivalently to remember. Learning refers to remembering/recognizing
certain patterns and acting based on prior knowledge or “memory.” A tracking error
integrator in the feedback loop is a simple example of a learning controller. It
accumulates and integrates regulation errors based on previous and current data.
Adaptive controllers are nonlinear extensions of linear feedback integrators. In
other words, adaptive loops form their output by integrating nonlinear functions
of the system tracking errors.

We would like to emphasize that adaptive control is not the ultimate solution for
all problems. This concept represents merely another formal method to design
controllers for a wide class of process uncertainties and with performance
guarantees.

Our professional experience comes from the design of robust and adaptive flight
controllers for a variety of airborne platforms. Most of them are in operation today.
Over the years, we have found that it is not robust versus adaptive but rather a
combination of both controllers that works best, in the sense of maintaining closed-
loop stability, enforcing robustness to uncertainties, and delivering the desired
performance in the presence of unanticipated events. The (Robust + Adaptive)
architecture combination is our “secret” control design recipe that we would like
to share with the reader.

1.2 About This Book

The book is written to provide a self-contained introduction to linear robust control
methods, followed by an exploration of adaptive systems. Part I is solely devoted to
robust control methods for linear-time-invariant continuous systems. This part can
be taught in a semester-long course to students who have had a basic introduction to
control systems. Part II covers a series of topics in adaptive control in a progressive
complexity, starting with the detailed introduction to model reference adaptive
controllers for linear systems and ending with the adaptive output feedback control
methods for a class of nonlinear uncertain dynamics. The mathematical
prerequisites for this part consist of basic concepts in linear algebra and ordinary
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differential equations. Prior to adaptive control, we give an introduction and an
overview of the Lyapunov’s stability theory, which becomes the essential tool for
the development of all design and analysis methods in this part of the book. The
contents here can be covered within a semester. It is also possible to condense the
material for use in a 9- to 10-week graduate-level course.

The two parts of the book can be combined in a single course arrangement,
whereby selected linear control methods from Part I are taught, followed by a subset
of adaptive control techniques. For example, one may elect to start with linear
optimal control and then discuss methods to combine robust and adaptive
controllers into a single system capable of mitigating a wide range of uncertainties.

Finally, the book can serve as an ample reference for research scientists and
control practitioners, who are interested in the development and application of
robust linear and/or adaptive control methods to control a wide variety of systems.

1.3 Aircraft Flight Dynamics Equations of Motion

Inspired and motivated by aerospace applications, we would like to introduce the
reader to modeling aerial vehicles, such as aircraft. In our opinion, these models
give rise to many interesting and challenging control problems. Even if the reader is
not all too familiar with aerospace-related applications, we believe that the material
of this section would still be beneficial. It can serve as an example, revealing the
intricacies and complex nature of modeling to support control synthesis for realistic
systems and processes.

Toward that end, we begin with the rigid aircraft six-degrees-of-freedom
(6-DoF) equations of motion [1-3]. These dynamics can be obtained based on
Newton’s second law of motion, written in the aircraft-fixed body axes coordinate
system, as shown in Fig. 1.1.

The aircraft dynamics (treated as a rigid body) are comprised of three transla-
tional and three rotational degrees of freedom, resulting in the 6-DoF motion.

The translational motion is described by (1) the forward velocity u (positive
along the fuselage-body x-axis), (2) the lateral velocity v (positive along the right-
wing-body y-axis), and (3) the vertical velocity w (positive down and along the
body z-axis).

The three rotational degrees of freedom are represented by (1) the body roll rate
p (around the body x-axis), (2) the body pitch rate ¢ (around the body y-axis), and
(3) the body yaw rate r (around the body z-axis). Positive angular rates (p, ¢, r)
result in the counterclockwise rotations around their respective axis (x, y, z).

With the body axes coordinate frame fixed at the aircraft center of gravity (CG),
the 6-DoF aircraft equations of motion can be written as
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Vertical
stabilizer

Horizontal
Right aileron stabilizer

Left aileron

Body
Z—axis

Fig. 1.1 Definition of rigid aircraft configuration, controls, axes, and degrees of freedom

u p u F,
Translational DoF: m | v | = — q| x| v + | Fy
w 7 w F.
—sin 6
+m ||g]l | cosf singp
\g’-/ cosf cos¢
g
p p p L
Rotational DoF:J | ¢ | =— || g | xJ | ¢ + | M (L.1)
7 7 r N

where m is the aircraft mass,J € R**? is the vehicle inertia matrix, and (F, F, F.)
and (L, M, N) are the body (x, y, z) — components of the forces and moments (due
to aerodynamics and propulsion) acting on the aircraft. An expression with the
square brackets [a X b] represents the cross-product of two vectors @ and b. This
expression is also known as the vector product. This is a vector whose magnitude is
lla|l||b|| sin 6, where 0 is the angle between a and b (positive counterclockwise from
ato b). Its direction is perpendicular to the plane of @ and b and is given by the right-
hand rule.

In (1.1), g'is the gravity vector, and g = ||g]| denotes its magnitude. The gravity
vector is expressed in the aircraft-fixed body axes coordinates, in terms of the
vehicle bank angle ¢ (positive — aircraft right wing down), the pitch angle 0
(positive — aircraft nose up), and the true heading angle ¥ (positive — clockwise
rotation of the aircraft nose from the true north direction) (Fig. 1.2).

The three Euler angles (¢, 0, ) give inertial angular orientation of the aircraft,
if treated as a rigid body moving in the three-dimensional inertial space [1-3]. In
other words, these angles describe the instantaneous orientation of the aircraft
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Horizon

Front view

Top view
Fig. 1.2 Front, side, and top views of an aircraft in a bank, pitch, and yaw, respectively
body-fixed coordinate system with respect to the Earth-fixed (inertial) frame of

reference. The following kinematic relations describe dynamics of the Euler angles
versus the aircraft body angular rates (p, ¢, r):

@ 1 sing tanf cosp tanf p

01=1{0 cos —singp q (1.2)
7 sin S

¥ 0 & ol r

According to (1.1) and (1.2), the aircraft 6-DoF system state vector is

X= (l/l, vV, W, Py 4, Ty @, 07 lp)T

with n, = 9 states in the system dynamics.

Shown in Fig. 1.1, the aircraft primary control inputs consist of (1) the left and
right ailerons (Sefiairs Orignrair)» (2) the horizontal stabilizer d;, (3) the elevator J,,
(3) the vertical stabilizer §,, and (4) the rudder o,. Unless the aircraft is a glider, it
would have yet another primary control input — the thrust force d,;,, which is created
either by propellers or jet engines, mounted at specific locations on the vehicle
airframe.

The horizontal stabilizer is a slow-movable surface, whose main purpose is to
trim/equalize the aircraft longitudinal forces and moments while the elevator
controls the pitching motion of the aircraft. The vertical stabilizer is a fixed surface
designed to enforce lateral-directional stability, while the rudder controls the
aircraft yawing motion.

For a conventional aircraft, the differential aileron 6, = Jefrait — Orighrair is the
primary roll control device, the elevator ¢, is for pitch control, the rudder d, controls
the yaw motion, and the thrust force d,, provides airspeed control. Disregarding the
slow-moving horizontal stabilizer and the vertical rudder surfaces, the vector

lZ: (51‘/’17 5(17 6(") 5r)T
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Fig. 1.3 Aircraft aero
measurements: true airspeed,
angle of attack, and angle of
sideslip

with n, = 4 defines the aircraft primary control inputs for airspeed, roll, pitch, and
yaw, in that order. Through appropriate selection of individual controls, the aircraft
dynamics can be modified to fly and maneuver the aircraft.

The system output signals can be defined based on the availability of physical
measurement devices that are installed on the aircraft. For example, the body
angular rates (p, g, r) are measured by rate gyroscopes that are usually located
near the vehicle CG. Also, the same devices would be configured to provide the
three Euler angles (¢, 0, ). In addition, every aircraft is typically equipped with
at least three accelerometer devices that provide online measurements of longitudi-
nal, lateral, and vertical loads, denoted by (Ax7 Ay, Az). Each device measures an
acceleration component (in ft/s/s or g-s) at the point of installation and along its
corresponding axis

— FZ
mg mg' " mg

Furthermore, an aircraft measurement system would include three aero-data
measurements. They are (1) the true airspeed V', (2) the angle-of-attack (AOA) o,
and (3) the angle of sideslip (AOS) f5. Their formal definitions (disregarding
wind-gust components) and pictorial representations are given below (Fig. 1.3).

Vr = Vu? +v2+w? o=arctan (K), B = arcsin (VL)
u

T

Combining all these measurements gives the system output

}7: (Axa Ay7 Az, Vr, ﬁa % p,4q, T, ¢, 97 lp)

with n, = 12 components.
The aerodynamic forces are often resolved into two perpendicular components,
the lift and the drag, as shown in Fig. 1.4.
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Fig. 1.4 Aerodynamic lift
and drag forces

The aerodynamic lift force is perpendicular to the vehicle true airspeed vector Vr,
while the drag force resists the vehicle motion along the airspeed direction. Both
forces primarily depend on the angle-of-attack o, dynamical pressure Q = % p V2,
where p is the air density, altitude 4, as well as on the aircraft control settings. If we
now decompose the total forces into aerodynamic and propulsive components,

Fe=Xo+Xr, Fy=Y,+Yr, F.=Z,+Z (13)

then the aerodynamic forces (X,, Y,, Z,)can easily be written in terms of lift and
drag:

X, =L sino — D cos f§ cosa
Y,=D sinf
Z,=—Lcosa—D cosf sina (1.4)

It is not too difficult to rewrite the aircraft translational dynamics (1.1) in terms
of lift, drag, true airspeed, and angle of attack. The corresponding equations can be
found in any textbook on flight dynamics. We shall use these relations in deriving
simplified models for control.

In general, the aircraft equations of motion (1.1) represent a continuous
dynamical multi-input multi-output system in the form

)_é’:f(_’v IZ)
¥ = h(%, i) (1.5)

with the state ¥ € R°, with the control input i € R*, and with the output y € R'2,

Strictly speaking, another set of equations ought to be added to the aircraft
dynamics. These are the three relations that connect the aircraft body-fixed
velocities (i, v, w) with the northeast-altitude inertial velocities ()'(, Y, h) In
essence, the inertial velocities are computed by transforming the body-fixed veloc-
ity vector (u v w )T from the body-fixed into the Earth-fixed coordinates,
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X 1 0 0 cosf 0 —sinf cosy siny 0 u
y | =10 cosp sing 0 1 0 —siny cosy 0 v
—h 0 —sing cosyp sinf 0 cosf 0 0 1

and of course, the aircraft inertial positions (x, y, &) are derived as the integrals of
the corresponding velocities. The inertial speeds and positions are needed to design
guidance algorithms for steering the vehicle along the prescribed trajectories. Also,
these quantities become important during landing and takeoff phases of flight. The
three inertial velocities and positions can be added to the system output y. In that
case, the aircraft dynamics would become 12-dimensional, with the extended state
vector

X: M7V7W7p7q7r790707¢7x7y7h

X

and with the redefined 18-dimensional system output

Y': A)C?Ay?AZ? VT7 ﬁ? a7p7 q7 r? 807 07 l//7 x7)}7 h7 x’y7h

¥y

It turns out that an attempt to use the fully coupled aircraft 6-DoF model (1.1) for
control design would most likely result in an impractical control solution of
unnecessary complexity and with an undesirable high sensitivity due to model
parameters. This phenomenon immediately presents a modeling-for-control chal-
lenge: How detailed does a control-oriented model need to be so that the resulting
control solution is simple, robust, effective, and works per design specifications,
when applied to the real process or system? The answer to this question of course
depends on the application of interest. In the next section, we will construct
simplified flight dynamics models for control design purposes.

1.4 Simplified Flight Dynamics for Control Design

The aircraft 6-DoF motion (1.1) can be decomposed into a mean or a steady-state
around an operating point (trim) and perturbation dynamics around the trim
conditions. Such a decomposition allows one to reduce the overall nonlinear fully
coupled 6-DoF aircraft dynamics into a tractable form, suitable for control design
and analysis. The notion of “trimming an aircraft” refers to finding a balance, or
equilibrium, between aerodynamic, propulsive, and gravitational forces and
moments that are constantly acting on the vehicle. In flight, an aircraft is trimmed
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Fig. 1.5 Aircraft operational Altitude . o
flight envelope, as a function 4 Max altitude limit

of altitude and airspeed . .
<« Propulsion limit

4—Angle of attack limi
<4— Airspeed limit

Airspeed

by setting its primary controls to values that would result in the desired steady-state
flight conditions. The trim function would be performed by a pilot or by an
automatic flight control system.

In mathematical terms, we are looking for a system equilibrium pair ()'c'eq, ﬁgq) in
(1.5), such that the translational and angular accelerations are zeroed out,

P u Fy
Translational DoF: 0 = — q | x| v + | F | +mg
L\ 7 w F,
(P P L
Rotational DoF: 0= — || g | xJ | ¢ + | M (1.6)
L\ 7 r N

or, equivalently 0 = f (¥, ifeq). An aircraft would have many distinct equilibrium
throughout the vehicle flight operational envelope (Fig. 1.5).

These trim points would depend first hand on altitude and airspeed. Based on
available trim flight conditions, the main idea behind constructing control-oriented
models and then performing flight control design consists of several distinct steps.
These are the following:

. Cover the flight envelope with a dense set of trim points.

. Write simplified linear models around each of the trim point.

. Use these dynamics to design fixed-point flight controllers per point.

. Interpolate (i.e., gain schedule based on flight conditions) to combine linear
controllers.

RSO NS R

The result is a gain-scheduled flight control system that would be valid for the
entire operational envelope. In what follows, we will concentrate on Step 2 and
derive linear models (deviation dynamics from equilibrium) for a selected trim
point.

When a conventional aircraft is trimmed wings-level, at selected flight
conditions, the vehicle dynamics naturally decouples into longitudinal and
lateral-directional modes. We are going to derive each of these separately.
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1.4.1 Longitudinal Dynamics

The aircraft longitudinal dynamics describe changes in forward, vertical, and pitching
motion of the vehicle. These dynamics can be further decomposed into fast and slow
components or modes. The former is called the short period, and the latter is the
phugoid. Typically, there would be a timescale separation between the two modes.
The short period describes fast coupling between the aircraft angle of attack and the
pitch rate. On the other hand, the phugoid represents a much slower (when compared
to the short period) dynamical interchange between the vehicle altitude and the
airspeed or, equivalently, between the aircraft potential and kinetic energy levels.

The short-period and the phugoid modes can be revealed after the aircraft model
is linearized around a trim point (an equilibrium). For clarity of presentation, we
assume that the thrust line is aligned with the vehicle x-axis. Then, the aircraft
longitudinal equations of motion are

VT Xv Xy 0 —gcosy, VT X5, cosag X,

. vy Z, Z, gsiny, o Zs,
AR s A KR I O T R
q MVMot Mq 0 q Mﬁlh Méc 56

0 0 0 1 0 0 0 0

where V) is the trimmed airspeed and o is trimmed angle of attack, y, = 0y — o is
the trimmed flight path angle (see Fig. 1.6), and 0y is the trimmed pitch angle. The
model states (vr, o, ¢, 0) and the control inputs (Jy,, J.) are incremental due to
their trimmed values. Also, in (1.7), the matrix components represent constant (for
fixed flight conditions) stability and control derivatives of the aircraft forces and
moments, with respect to the longitudinal states and control inputs. When aircraft
specific values of these derivatives are substituted into the model (1.7), most often
the open-loop system eigenvalues will consist of a fast (short-period) and a slow
(phugoid) pairs of complex conjugate numbers. Such a modal decomposition
explains the timescale separation in the longitudinal dynamics of an aircraft, such
as (1.7).

The short-period mode is defined by the dynamics of « and ¢g. Extracting those
from the model (1.7), yields

3 Zy Zq Zs,
No(w W ) () (1.8)
q M, Mq q Méc

These dynamics describe aircraft motion on a short interval of time, due to
elevator input. Throughout the book, we shall utilize the short-period system quite
often in our exploration of robust and adaptive control design and analysis methods.

The aircraft phugoid motion can be derived by settingo. = ¢ = 0in (1.7), solving
for the corresponding “fast steady-state” values (o, ¢), and then substituting them
into the remaining dynamics of vy and 0.
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Fig. 1.6 Aircraft
longitudinal motion and
related angles Horizon

We leave the phugoid derivations to the reader and turn our attention back to the
short-period dynamics (1.8). Let us now introduce the flight path angle y. This is
the angle between the aircraft airspeed vector and the horizon. For small angles,
the following relationship connects the angle-of-attack o, the pitch angle 0, and
flight path angle 7,

a=0-—y (1.9)

and it is depicted in Fig. 1.6 below.
Multiplying both sides of (1.9) by true airspeed V1 gives the vertical speed in
inertial space:

h=Vry=Vr(0—a) (1.10)

For small angles and assuming that the true airspeed is constant, we can
differentiate (1.10) with respect to time, use o-dynamics from (1.8), and finally
compute (approximately) the vertical acceleration a. in body axes:

Azm—ﬁ:—V(é—d)=V(dc—q)=Zaoc+Z(;5€ (1.11)

In several of our upcoming design studies and examples, we shall treat this
signal as an output of the aircraft longitudinal dynamics (1.8):

A.=(Z, 0) (3) +250. (1.12)

Sometimes, we choose to utilize A, rather than o, as the preferred state
component. Differentiating (1.11) and solving for o in (1.12)

A, — 7595,
g =2 200 (1.13)
Z,

gives

. . 7 .
A_,:Zmdc—l—Z(;ég:V“ (Zyo+Z50.) +Zy,q+ Zs 6
U —————

a

Z, :
:7A2—|—Z“q—|—2553 (1.14)
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and then the pitch dynamics become

. A, —Zs5o
q:Maa+MqQ+Méép:Ma <~5e) +qu+M(3(Se
o
M M, Z,
:Z—aA:'i'Ml{q—’_ <M(3 - ; S) 56 (115)

Collecting (1.14) and (1.15), we can rewrite the short-period dynamics (1.8) in
terms of the new state components (A;, g):

: z
)= + . Zs | Oe + O, 1.16
(Q) <AZ%x Mq) q Mﬁ_MZxZ 0 ( )

We immediately note that presence of the control rate 56 in (1.16) will require the
addition of an actuator model. The latter can be modeled by a second-order ordinary
differential equation, with a specified natural frequency @ and a damping ratio ¢.
The model is driven by the elevator command 52’"‘1; its dynamics are

0 = —2¢ w0 + 0* (3 - 5,) (1.17)

Combining (1.16) with (1.17), we arrive at the following four-dimensional
system

A. 7 0 Zs A, 0
9| =% M, M;-"2 0 g’ O e sy
Je 0 o 0 1 De 0
de 0 0 - —2tw/ \% ©

that describes the short-period dynamics, driven by an elevator command through
actuation. Such a model is very helpful in flight control applications whereby angle-
of-attack measurements are not available (or deemed unreliable). The trade-off here
is that the model order has increased twice. In addition, the actuator position and the
rate may not be available as measurements.

1.4.2 Lateral-Directional Dynamics

We begin with the kinematics of the Euler roll equation from (1.2):

¢ =p+tan 0 (g sin ¢ +r cos p) (1.19)
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Let Oy denote the trimmed pitch angle. Then, linear approximation of (1.19)
around ¢, = py = ¢y = ro = 0 can be written as

p=p+r tan b (1.20)

Stability axis roll and yaw rates (pg, 1) are related to the body axis roll and yaw
rates (p, r) in the following way:

ps=pcoso+rsin o

Fg =1 COS 0. — p sin o (1.21)

Let ap denote the trimmed angle of attack (AOA). Then, a linear approximation
of (1.21) is of the form

Dg =P €Os oo + 1 sin o

Fs =11 COS 0 — p sin o (1.22)
Solving (1.22) for (p, r) yields

p =P, COS oy — I's sin o

r =rs Ccos 0y + p, sin o (1.23)
Substituting (1.23) into (1.20) results in

@ = p, €Os ay — s sin o + (5 €os o + p; sin o) tan Oy
= (cos op + sin o tan 6y) p, + (cos o tan By — sin op) ry (1.24)

As we have previously noted, the following relation exists between the flight
path angle, the pitch angle, and the angle of attack (at zero bank and sideslip
angles):

ooy = 90 — %0 (125)

Substituting (1.25) into (1.24) gives

@ = (cos o + sin o tan Op) p, + (cos ap tan Oy — sin o) ry

cos 79

sin 79
cos 0p s Oy

cos Y sin 7,
cos 0y ° " cos Oy °

(1.26)
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Assuming small angles, the angle of sideslip dynamics can be written as

g cos 6y

Ve ) p—rs (1.27)

.
ﬁ = 7 (Yﬁ ﬁ + Ypps + Yr I + Y(Sa,-, 5ail + Yé,.,(d 5”411) + (
0

where the right-hand side of the equation depends on the derivatives of the side-
force Y, computed with respect to the lateral-directional states (f8, p, rs, ¢) and
the control inputs (J,, Ora). Using (1.26) and (1.27), the aircraft lateral-dir-
ectional linearized dynamics are

. €08 Yy sin yy
" cos 6 Ps +cos 0o s
. gcos by Yy Y, Y, Ys,, Y5,
= — — — - 1 s _ Yail 5(1[ ru 5”,1
i % <P+Vﬁ+vps+ Vv "+V 1+V d
ps = Ly P+ Lyps+ Ly ry+ L, Oait + Lo, Orua
’;s = Nﬁ ﬁ + Npps + Nr rs + Néui, 5ail + Né,w (Srud (1 28)

We can easily rewrite (1.28) in matrix form:

. cosy, siny,
90 0 ﬁ ﬁ (p O 0
f Y, Y,
geosbo Yy Y, ¥, il Orud. S
S e R o I P R ol ol R IR
Dy 0 L/; Lp L, Ds Léaﬂ Lé,-“d 51‘ud
’.'_y 0 Nﬂ Np Nr Ts N(;a/'/ N(s/‘ml

When the airspeed is sufficiently high, the gravity term in (1.29) becomes
negligible: % ~ 0. In this case, the bank dynamics can be eliminated:

[} s Y, v _ B Your Yoy

i Vo Vo Vo Vo Vo Ouil
ps | =\Lp L, L Ps | | Lowy Lo ( 5:: ., ) (1.30)
Fs N B N 14 N, Ts N Sail N Srud

The resulting third-order lateral-directional linear model would be suitable for a
control design where the goal is to regulate the vehicle roll and yaw rates, as well as
the angle of sideslip.

1.4.3 Model Generalizations for Adaptive Control Design

The aircraft short-period dynamics (1.8), as well as the lateral-directional models
(1.29) and (1.30), represent linear-time-invariant controllable systems:

X=Ax+Bu (1.31)
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with the n-dimensional state x, the m-dimensional control u, the p-dimensional
output

y=Cx+Du (1.32)

and with the matrices (A, B, C, D) of the corresponding dimensions. In Part I, we
will discuss various methods to design robust linear controllers and to analyze their
performance.

Then, in Part II, we will focus our attention on adaptive control techniques, with
the goal of maintaining closed-loop stability and robustness in the presence of
unexpected events. Specifically, we shall insert uncertainties into (1.31) and (1.32)
and consider a class of dynamical systems in the form

X=Ax+BA (u+f(x) (1.33)

where the (m x m) matrix A models control actuation failures and the m-dimensional
vector function f(x) represents all other “unknown unknowns” in the system
dynamics. The uncertain model (1.33) is our attempt to embed an extra realism
into the “ideal” system (1.31). The uncertainties in (1.33) are called “matched,” in
the sense that they enter the system dynamics through control channels. So, as long
as A is invertible, the system controllability property is not affected. It so happens
that the matched uncertainty assumption implies existence of at least one control
solution, capable of steering the system state along the desired trajectories.

We shall also consider regulation problems with non-matched but bounded
uncertainties, such as time-dependent noise and environmental disturbances,
represented by an n-dimensional uniformly bounded piecewise continuous vector
function &(¢):

X=Ax+BAu+f(x))+&®) (1.34)

Again, we would like to point out that the assumed boundedness of £(¢) does not
destroy the system controllability. So, the unwanted effects caused by bounded
noise and disturbances can be mitigated through proper control synthesis. In Part II,
we will explore robust and adaptive methods to control uncertain systems, such as
(1.33) and (1.34).

Readers who are interested in adaptive control may find the matched uncertainty
assumption to be quite restrictive. Some may even argue that there are many
dynamical systems arising from realistic applications that do not satisfy the
matching conditions. Be as it may, in aerospace applications, matched uncertainties
are of primary concern, and that explains our interest in the control of uncertain
systems such as (1.34). Finally, we would like to note that most of the adaptive
control methods presented in this book can be extended to handle systems with non-
matched uncertain dynamics, but these extensions are outside of the book scope.
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1.5 Control-Oriented Models for Linear-Time-Invariant
Systems

In this section, we present state space linear-time-invariant plant and controller
models for control design and analysis that will be used in subsequent chapters.
Models for closed-loop simulation and frequency domain analysis at both the plant
input and plant output are also derived.

The plant model is

X=Ax+B,u
y=Cyx+Dpu (1.35)

where x € R™ is the state, u € R™ the control, and y € R™ the output. The real
matrices (A,,,B‘,77 C p,D,,) are of appropriate dimension and describe the dynamics of
the plant.

The controller model is

xc' = A(:-X(: + B(:ly + Bc'2r
u=Cex, + Dcly + Deor (136)

where x. € R™ is the controller state vector, u the control input from (1.35), y the
output from (1.35), and r € R™ represents the external, possibly time-varying,
command vector. The real matrices (A.,B,,B¢,,Cec,D.,,D.,) are of appropriate
dimension and describe the controller dynamics (1.36).

In order to cast a commonly used static proportional state feedback controller
such as

u=—Kx (1.37)

into the form of (1.36), we first choose C, =1, xn,, Dp = 0y, xn, in (1.35). This
gives y = x. Then, we define C. = —K in (1.36) and set the rest of the matrices in
that equation to zero.

Next, we will connect the generic controller (1.36) to the plant model (1.35) and
then derive state space models for the closed-loop system and the loop gain at the
plant input and output break points. When building these models, one should
simulate the closed-loop system to make sure the model is correctly connected
with the minus signs inserted where appropriate (to represent negative feedback).
After that, we would use the system loop gain models to compute the necessary
frequency responses. Note that both the plant and the controller may have
feedforward connections, with nonzero D matrices. The feedforward terms must
be properly handled when forming the closed-loop system dynamics.
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We will start with substituting the plant output equation into the control law:

u=Cex,+Day+Dear
u = Cexe + Doy (Cpx + Dyut) + Deor
(I =DaDy) u = Cexe + D Cpx + Dear
N——/
V4
U =2"(Coxe + DerCpx + Doar) (1.38)

We must assume that matrix Z in (1.38) is invertible. This makes the overall
problem formulation well-posed. Substituting (1.38) into the plant model (1.35)
yields

X = Apx + B,Z7' (Cexe + Doy Cpx + Dor)
X = (A, +B,Z 'DCp)x + B,Z7 ' Coxe + B,Z ' Dear (1.39)

We can also substitute the system output y into the controller:

fe = Acxe + Bet (Cpx + Dypu) + Beor
Xe = Ax. + By (Cpx + DPZ_I (chc + D(rlcpx + szr)) + Beor
e = (Ac +BaDpZ ™' Ce)xe + Ber (I + DpZ ™' Dot ) Cpx + (Bea + BetDpZ ™' Do) r

(1.40)
Let us define an augmented state vector in the form
r 77
Xy = [x xc] (1.41)
Then, the closed-loop system dynamics can be written as
1 [ A,+B,Z'D.Cp B,Z7'C, x
% | T |Ba(l +DyZ 'Da)Cp Ao+ BaDZ 'Co| | xe
A
B,Z7'D, )
+ [Bcz + BuD,Z "D 7 (1.42)

B
or equivalently

Xy = AuXe+ Buar (1.43)
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This is the closed-loop model. Its output can be easily defined as follows:

y=Cpx+Dyu
=Cpx+DpZ " (Coxe+D 1 Cpx+D o)

-1 -1 X -1
=[Cy+DyZ7'DuiC, Dz C] +[DpyZ ' Daa]r
Xe
-1 -1 X -1
[(I1+DyZ7'D.1)C, DZ7'C,] +[DyZ ' Do) r (1.44)
Xe ———
CL[ Dl’]
and so the closed-loop system output becomes
y=Cuxs+Dgr (1.45)

Equations (1.43) and (1.45) give the state space model (A, B, C., D) for the
closed-loop system.

The loop gain model at the plant input is formed to support frequency domain
analysis of the design at the plant input loop break point. In this model, we treat the
control input to the plant as the model input u;,. The control output from the
controller becomes the model output u,,. Also, we neglect the command vector r.
In this case, the plant and controller models are

X = Apx + By,
y= Cpx +Dpuin (1.46)

and

Xe = Acxe + Bery
Uy = CeXe + Dty (1.47)

We can connect these two systems with u;, as the input and u,,, as the output

jcc = Acxc + Bcl (Cpx + Dpuin) = Acxc + Bchpx + Bchp”in
Ugyt = Cexp + D (Cpx + Dpuin) + Dor = Cexe + D Cpx + D Dpuy,  (1.48)

and rewrite these relations in matrix form.

i A, 07[x B,

. = + Uin

Xe BaC, A.] [x. B.D,
—_— ———

Api B
X
Uour = [Dclcp C(r] + [Dchp] Uin (149)
N——— X N——

Cui Dy
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The system loop gain at the plant input is

Li(s) = Cri(sI — Ap;)'Bui + Dy (1.50)
and it is defined by the matrix quadruple (A.;, Br;, Cri, Dpr;).

Similarly, the loop gain model at the plant output is formed to support frequency
domain analysis of the design at the plant output loop break point. In this model, we
treat the plant output feeding the controller as the model input, y;,, the plant output
from the plant as the model output, y,,,, and neglect the command vector r. The

plant and controller models are

X=A,x+B,u
yout:Cpx+DpM (1.51)

and

xc = Acxc + Bc'lyin
u = Ccx. + D1y, (1.52)

Connecting these two systems with y;, as the input and y,,, as the output yields

X =Apx + By (Cexe + Deryiy) = Apx + B,Cexe + BpDeiyi,
Your = CpX +D[7(CCXC +D61yin) = CPX +DPCCX(‘ +DPD01yin

I
X o Ap BpC(; X + BpDcl )
w710, A ||x B, |7m (1.53)
~——_———— ———
ALo BLo
X
Yout = [CP DPC('] |:.X' :| + [DPD"'I] Yin
T C N——
Lo DLo

So, the loop gain at the plant output is defined by (Ar,,Bro, Cro, Dio):
Lo(s) = Cro(sT = Ar,)”'Bro + D (1.54)

The derived loop gains, (1.50) and (1.54), become essential tools to analyze
relative stability properties of closed-loop linear systems in frequency domain.

1.6 Norms of Vectors and Matrices in Euclidean Spaces

This chapter presents a brief overview of norms for vectors and matrices. We shall
use these concepts very often throughout the book.
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The n-dimensional Euclidean space R" is a collection of all n-dimensional
vectors x = (x; ... X, )T, whose components x; are real numbers, where the
upper-script “T” denotes the transposition operator, which turns a row vector into a
column vector and vice versa. If n = 1, we get the one-dimensional Euclidean space
of real numbers R = R'.

The set of all (n x m)-real matrices, with n rows and m columns, defines the
(n x m)-dimensional Euclidean space R"*™. Elements of a Euclidean space can be
added, subtracted, and multiplied by a scalar.

The inner product of two vectors x and y from R" equals the sum of products of

n
their corresponding components: x” y = > x;y;. The product of two matrices
i=1
A =R and B = R™? is the matrix C = R"*?, whose (i, j)™ element is the inner
product of the i™ row of A and /" column of B.
For a vector x € R", its length (or magnitude) is given by the norm ||x|| — a real-
valued function from R" to R, with the following properties:

1. For any x € R", ||x|| > 0.

2. ||x|| = 0 if and only if x is the zero vector in R".

3. For any two vectors x and y from R”, the triangular inequality holds ||x + y||
< Il + 11yl

4. For any real constant A € R and any vector x € R", ||Ax]| = |4] ||x]|.

In the forthcoming design and analysis of adaptive controllers, we will encounter
the class of vector p-norms:

1
n P
x|l = <Z lxil”> , 1<p<oo (1.55)
i=1

[T 1)

For notational sake, we would often drop the lower-script “p
Given a vector p-norm ||x||, the induced matrix norm

and write ||x||.

4] = sup 1A _ oy jax (1.56)
x;éO el T = i

clearly depends on the selected vector p-norm.
For a matrix A = [a,- j] € R™", the Frobenius norm is defined by

[Allp = 4/tr (AT A Z“u (1.57)

with tr() denoting the trace of a matrix, which is equal to the sum of the matrix
diagonal elements.
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The following statements are well-known [9] and are listed here without proof:

« For the vector 1-norm ||x||, = Z |x;|, the correspondlng induced matrlx norm is

Z aij|-

* For the vector 2-norm ||x||, = le- , the induced matrix norm is equal to the

| = max
1<j<

i=
maximum singular value of A, that is, ||A|, = omax(A).
« For the vector co-norm || x||, = max |x;|, the induced matrix norm is equal to the
Sisn

maximum absolute row sum, that is, ||A]|, = = max Z aij|.
i<n|iZ]

* The induced matrix norm satisfies [|A x[|, < [|A[|, ||| ,, and for any two compat-
ibly dimensioned matrices, A and B, one also has [|AB||, < [|A]|, ||B],.

e The Frobenius norm is not an induced norm of any vector norm, but it is
compatible with the 2-norm in the sense that ||A x|/, < ||A||g ||x|l,.

e For any two compatibly dimensioned matrices A and B, the Frobenius inner
product is defined as (A, B)p. = trace(A” B).

¢ According to the Schwartz inequality,

|trace (A" B)| = |(A, B)g| < ||Allr |Bll (1.58)
* For any two co-dimensional vectors a and b, the trace identity relation is

a"b=tr(ba") (1.59)

1.7 Summary

Robust and adaptive control of continuous dynamical systems is the focus of this
book. We have presented a concise self-contained introduction into the underlying
theory and methods while emphasizing how to design and analyze practical control
systems for multi-input multi-output systems with nonlinear and uncertain dynam-
ics. Our true inspiration comes from aerospace applications. During our profes-
sional careers, we have been fortunate to have had the opportunity to design control
systems for various types of aerial platforms, most of which were tested in flight and
others went into production. In this chapter, we have added examples of flight
dynamics models to later demonstrate a variety of robust and adaptive control
technologies. We hope that readers would find these dynamics interesting and
ever challenging.
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1.8 Exercises

Exercise 1.1. For the aircraft longitudinal dynamics (1.7), compute (analytically)
open-loop system eigenvalues and eigenvectors. Determine the short-period and the
phugoid modes of the system. Find sufficient conditions for a timescale separation
between the two longitudinal modes. Compute the short-period eigenvalues using
the open-loop approximation of the short-period dynamics (1.8). Compare the
original short-period modes versus their approximations.

Exercise 1.2. Consider the longitudinal dynamics

1% —0.038 18984 0 —32.174\ [V 10.1 0

s | | —0.001 —0.632 1 0 a| | 0 —0.0086 <5m>
g 0 —0.759-0.518 0 q 0.025 —0.011 Se
0 0 0 1 0 0 0 0

representative of a transport aircraft, trimmed at Vo = 250 ft/s, and flying at a low
altitude. In the model, all angles and angular rates are in radians, airspeed is in ft/s,
throttle is in 1bs, and elevator deflections are in radians. Compute open-loop system
eigenvalues. Extract the short-period dynamics. Compute and compare the
approximated short-period modes to the original ones. Also, compare the numerically
computed modes to the analytical predictions from Exercise 1.1. Simulate open-loop
system responses due to elevator and thrust step inputs. Identify (numerically)
a timescale separation between the short period and phugoid. Introduce vertical
acceleration A;, as defined in (1.12), and simulate its response due to a negative step
input in the elevator (trailing edge up). Observe the initial tendency of A,. When the
elevator is deflected trailing edge up to pitch the vehicle nose up, there is a small
instant decrease in the vertical acceleration. Then, A, starts to increase, resulting in the
aircraft pitch-up motion. This transient is caused by the elevator deflecting upward
and creating a small negative lift increment. As a result, the vertical acceleration
momentarily goes into the “wrong” direction before it reverses and builds up. These
dynamics can also be explained by the fact that there is a nonminimum phase zero
(with a positive real part) in the transfer function from J. to A,. It is important
to understand that all tail-driven aerial vehicles have similar characteristics. This
phenomenon becomes very important during control design.

Exercise 1.3. For the aircraft lateral-directional dynamics (1.29), compute (ana-
Iytically) the open-loop system eigenvalues and eigenvectors. Also, compute the
modal characteristics for the simplified dynamics (1.30). Compare the original data
versus their approximations.

Exercise 1.4. The lateral-directional dynamics of a passenger aircraft, in a cruise
configuration, are given below:
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& 0 0 1 0 0 0o 0

Bl 00487 —0.0829 0 -1 Bl | o oot <5)
p| | o —4546 —1.699 0.1717 || p 27.276 0.5758 | \ 6,
F 0  3.382 —0.0654 —0.0893/ \ r 03952 —1.362

where the roll and sideslip angles are in radians, the angular rates are in rad/s, and
the aileron and rudder deflections are in radians. Compute open-loop system
eigenvalues and compare the data to the analytical predictions from Exercise 1.3.
Simulate open-loop system response due to aileron and rudder step inputs. Observe
the roll rate response due to aileron and the coupling between the roll and yaw rates
(called the “Dutch roll” mode). These dynamics are fast when compared to the
much slower changes in the roll angle (called the “roll subsidence” mode). Similar
to short period, the roll rate and the Dutch roll modes are the main quantities for
stabilization and regulation. This task is often accomplished during the so-called
inner-loop control design phase, where the angular rates are stabilized via feedback
connections, driving the aileron and the rudder. For the inner-loop design, the bank
dynamics are ignored, and the three-dimensional lateral-directional model (1.30) is
utilized. Extract these dynamics from the model data and simulate responses of the
simplified model due to the same step inputs in aileron and rudder. Compare and
discuss simulation results.
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Chapter 2
Optimal Control and the Linear
Quadratic Regulator

2.1 Introduction

Control systems must provide stability and performance in the presence of model
uncertainty and neglected dynamics. This has proven to be a significant challenge,
and as our understanding of dynamics and control has improved, aerospace has
been able to develop new aircraft designs that are faster, have greater performance,
and perform robustly in very large flight envelopes. These advancements built upon
the foundation created by classical methods but were powered by computer-aided
design tools which greatly expanded the engineer’s ability to solve larger, more
complex problems using advanced techniques.

In general, designing flight control systems using conventional (classical) analytical
methods involves iterative single-loop design analyses that are costly in time and
manpower. These systems were often designed by discretizing the flight envelope at
specific points, designing the control system at these points, and guaranteeing robust-
ness to parameter variations by designing large single-loop stability margins and
evaluating the design through simulation. These methods worked well on aircraft
that were open-loop stable, but as new designs emerged that were open-loop unstable
in multiple axes, multi-input multi-output (MIMO) design methods were needed.

In the 1970s and 1980s, the question of robust stability and performance was
raised, and new control system design and analysis methods emerged, called modern
control. These advancements provided the theoretical mathematics required for
optimizing the controller design for MIMO systems, with evaluation of stability
and robustness to parameter uncertainties. Using methods for characterizing model
uncertainties, controller robustness properties were evaluated, and iterative design
tools emerged to achieve robust stability and performance. These modern methods
allowed the control system designer to understand and directly address stability and
robustness concerns for open-loop unstable MIMO systems. With computer-aided
design tools, engineers could readily pose and solve “optimal control” problems for
complex systems and implement the control across a large flight envelope using gain
scheduling.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 27
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_2,
© Springer-Verlag London 2013
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Optimal control problems arise in designing a control in order to minimize a
performance index. There are many classes of problems for nonlinear or linear
systems, dealing with time-variant or time-invariant dynamics, over a fixed time
interval or infinite time and with different types of performance indexes. Optimal
control problems are in general very difficult to solve, except for linear systems
with a quadratic performance index. These problems are well understood and
produce control laws that have very interesting properties, such as excellent gain
and phase margins.

One of the key challenges in using optimal control theory is transforming
frequency domain performance and stability requirements from classical control
into time domain requirements. A multivariable optimal controller design using a
quadratic performance index optimizes the design in the time domain. Satisfying
frequency domain requirements, such as bandwidth, noise sensitivity, etc., using the
optimization performance index, is a challenge. Similarly, quantifying the degree of
robustness required to overcome parameter uncertainties is not well-posed in the
problem setup.

The key to using optimal control theory is to develop a method to tune the design
parameters to achieve the desired performance and stability in the control system
(and robustness). This is the goal for this chapter and the next. This chapter
introduces optimal control theory, the linear quadratic regulator, and the all impor-
tant matrix Riccati equation. We will discuss in detail some of the excellent
properties that optimal controllers produce, which makes them a favorite in many
aerospace control problems. Chapter 3 takes the optimal control principles and the
regulator framework and extends them to command following design problems. It
is this command following challenge that is most common in aerospace flight
control systems.

2.2 Optimal Control and the Hamilton—Jacobi-Bellman
Equation

The derivation of the Hamilton—Jacobi—Bellman (HJB) partial differential equation
for optimal control problems will allow us to understand how optimal control
regulator problems are posed and how we can form an optimal control from a
performance index minimization problem. Optimal control problems are in general
very difficult to solve. There are many books available on the subject. Athans and
Falb [1], Kwakernaak and Sivan [2], and Anderson and Moore [3] are three excellent
textbooks that deal with necessary and sufficiency conditions, differentiability and
continuity assumptions, problem setup, derivations, and solutions for most optimal
control problems that can be solved analytically. We will begin by deriving the HIB
partial differential equation in a general setting and will then focus on linear systems
with quadratic performance indices. We shall only provide a generic framework for
derivation of optimal control policies. Readers interested in details are referred to
now-classical control textbooks, such as [1-3].


http://dx.doi.org/10.1007/978-1-4471-4396-3_3

2.2 Optimal Control and the Hamilton—Jacobi—Bellman Equation 29
2.2.1 The Hamilton-Jacobi-Bellman Equation

We begin by considering a dynamic nonlinear system in the form
x=f(xu,t), x(to) =xo (2.1)

where x € R" is the system state and u € R™ is the control input. The system starts
at time 7y, with the initial state xo. We suppose that f(x, u, t) is continuously
differentiable in all arguments. This assumption is sufficient for the initial value
problem (2.1) to have the unique solution on a finite time interval [4]. We also
assume that 7 is small enough to reside within the time interval, where the system
solutions are defined. We are interested in “optimally” controlling the system
dynamics, starting from x, and driving the system state to a designated location.
The notion of optimality is defined through the integral cost performance index

J= JL(x(r), u(t),7t)dr + S(x(T)) (2.2)

evaluated along the system trajectories x(¢) due to applied control input u(f). The
instant cost L(x, u, 7) and the terminal cost S(x(7T')) are defined as scalar nonnegative
functions of their arguments. Essentially, the cost J is our cumulative measure of
the overall efforts (controls) and the state-energy spent to steer the system from its
initial state x, to a neighborhood of the terminal manifold S(x(T)) = 0.

For example, if the system dynamics are scalar, then we can utilize quadratic
instant and terminal costs, L(x, u, ) = x*(t) + qu*(t) and S(x(T)) = wx*(T), with
positive weights (¢, w). In this case, L(x, u, T) can be thought of as the instant kinetic
energy of the system, while the terminal cost S(x(7)) measures how close we can
drive the system state to the origin in T seconds or less. So, by appropriately
choosing the weights (¢, w), we can emphasize the importance of minimizing the
kinetic energy spent, while regulating the system state to zero. Later on, we shall
address optimal control problems with quadratic cost.

Given the system dynamics (2.1), the control challenge of interest is to find an
optimal control policy u* to minimize the cost index J over the time interval [z, T].
When used in (2.1), the optimal control #* produces the optimal state trajectory x*
over [tg, T]. Clearly, the cost index J in (2.2) depends on the system initial state x(#),
the control policy u(e) = u(t)|, <,<7» and on the initial time ¢

J =J(x(10), u(e), 10) (2.3)

Let J* denote the optimal (minimum) cost, when using the optimal control
policy u*:
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fio.7]

J*(x0, t0) = JL(x*(‘c), u*(1),7)dt + S(x*(T)) = minJ (xo, u, to) (2.4)

We see that the optimal performance index J* is also a function of the control
uj, 1)> the initial state, and time:

J*(x0, %) = minJ (x(p), u(e), to) = min JL(x,u,r)dr + S(x(T)) (2.5)

Ulio1] lig.1)
fo

Suppose that we start the system at an arbitrary initial condition x and at time ¢.
Then, the optimal cost to go from x is

J*(x,1) = min JL(x, u,7)dt + S(x(T)) (2.6)

Urr)
t

We can break (2.6) into two integrals, from [¢,#] to [t;, T},

1 T
J*(x,t) = min JL(x, u,t)dt + JL(x, u,t)dt + S(x(T)) 2.7)

e,
t n

and then explicitly write the minimization operation over the two intervals:

4] T

J*(x,t) = min min JL()C7 u,t)dt + JL(X, u,7)dt + S(x(T)) (2.8)
“[/Jl] H[I[.T]
f

The main idea here is to divide the integral into time slices and then at each slice
choose the optimal control that minimizes the overall cost J. This argument leads
the Principle of Optimality developed by Richard Ernest Bellman in the late 1950s.
Here is the original formulation of the principle, as it appears in [5]:

Principle of Optimality. An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.

The Principle of Optimality tells us that the optimal cost to go from x at time ¢ to
a terminal state x(7) can be computed by minimizing the sum of (a) the cost to go
from x = x(7) to x; = x(¢;) and (b) the optimal cost from x; onward. So formally
speaking, we can move the min operation inside the brackets:
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4 T
J*(x, ) = min JL(x, u, t)dt + min JL(x, u,t)dt + S(x(T)) (2.9)

ey oy.1)
n

T (xy,t1)

Now, we can see that inside the brackets, the second integral is the optimal cost
to go from x; to x(7):

n

J*(x, ) = min JL(x, u,t)dt +J"(x1, 1) (2.10)

Uligy]

We define #; = t + At and substitute it into (2.10):

t+At
J*(x, ) = min J L(x,u,t)dt +J*(x(t + At), t + At) (2.11)

Ul r+A1)
t

Assuming that all functions are smooth, we can expand the right-hand side of
(2.11) in a Taylor series

T (x(2),1)

* T *
= min |L(x,u,t)At +J*(x,t) + (8] &, 0) Ax+MAt+ O(A#)
Ul r+Ad 6)( 8[ N——
HOT.

(2.12)

where O(A#?) denotes high-order terms (H.O.T.) in the Taylor expansion. Here, we
define

oJ* . .
a(x,[) — {g;l gT/} c RIn @.13)

as arow vector. We will denote the transpose as V,J*(x, f) a column vector. We can
cancel J* (x, f) on each side, since it does not depend onult, t + At], divide both sides
by At, and get

. oI (x,t) Ax  OJ*(x,1)
0= umﬁ] {L(x,u,r) + Ep Kt+ BT + O(Ar) (2.14)
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Letting At — 0 gives

_ W — min | L(x(t),u, 7(1)) + % (1) 2.15)
u ~~
fxu,t)

where the system state is defined by (2.1). We now introduce the Hamiltonian

H(x,V.J"(x,t),u,t) = L(x,u,7) + %f(x, ut). (2.16)
and rewrite (2.15) as
- w =minH (x, V,J"(x,1),u,t) (2.17)

Due to the assumed smoothness of all the functions, it follows that to minimize H
with respect to the control u#, we can compute the function gradient and then equate
it to zero:

VH,(x, V. J (x,8),u,t) =0 (2.18)

That is, every component of the gradient vector VH, must vanish at the point of
optimum. In addition, one needs to check if the derivative of the gradient (a matrix)
‘2;—;3 is positive semidefinite, which would indicate that the point of optimum is the
true minima of the Hamiltonian. This inequality is known as the Legendre—Clebsch
condition.

Formulation (2.18) allows the functional minimization problem, such as (2.4), to
be transformed into a function minimization, which can be solved using ordinary

calculus. Let

H* (x, V,J* (x,1),1) = min [H(x, VJ* (x, 1), u, 1)] (2.19)

If we can solve (2.18) for the optimal control # = u* and substitute it back into
(2.17), we get the HIB partial differential equation (PDE), whose solution is the
optimal cost J* (x(¢), ?):

3 oJ*(x, 1)
ot

=H*(x, V,J"(x,1), 1) (2.20)

We need a boundary condition for (2.20) to be well-posed. Setting #y = T in the
cost index (2.2) yields

T*(x(T), T) = S(x(T)) 2.21)
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Using Bellman’s Principle of Optimality, we have arrived at sufficient
conditions for optimal control solution to exist. The latter is defined by the HIB
equation (2.20) together with its boundary condition (2.21). The sufficiency of
(2.20), and (2.21) for control optimality means that if we can solve the former for
J*(x, ) and calculate u*(¢), then the latter constitutes the optimal control policy for
the system (2.1), with respect to the cost index (2.2).

In most optimal control problems, we would be interested in the calculation of
the optimal control policy u* rather than the optimal cost J*. Solving (2.20) is still
quite difficult, even for low-order problems, in that we still must solve a PDE for the
cost function J*(x, 7).

As derived, the optimal policy u*(f) represents an open-loop control strategy, in
the sense that u* is computed as a function of time ¢. For practical applications, we
would really want a feedback control policy, such as u* = u*(x), to enforce
robustness and reduce sensitivity of the solution to uncertainties that may exist in
the system dynamics. We will see that if the dynamics are linear and the perfor-
mance index penalty function L(x,u,1) is quadratic, then the problem is easily
solved, and the resulting optimal feedback control and the closed-loop system have
very useful properties, with formal assurances of stability, performance, and
robustness. In the forthcoming chapters, we shall derive and exploit these properties
in our use of optimal control to maximize performance and robustness, while
minimizing the control effort.

2.2.2 Summary

Dynamics (X =f(x,u) x(to) = xo

T
Performance index :J(x,u,t) = [L(x,u,t)dt + S(x(T))
t

Optimal Cost :J*(x,t) = min [J]
)
Hamiltonian s H(x,u,t) = L(x,u,t) + %]‘(X7 u)

Optimal control :VH,(x,u,t) = 0= m = H*(x,u",1)

A" (x,0) _ pyx -
HIB - Equation : { o = H"(x, V.J*(x,1),1)
J*(x(T),T) = S(x(T))

Example 2.1 In this example, we will set up (but not solve) the HIB equation.
Consider the system

Xl = X7
X‘z = — 2)(?1 — 3X2 +u (222)
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where x(0) = [1 2]", with the performance index

1
J:J(x‘l‘+u2)dr+x%(1)+x§(1) (2.23)
0

For this problem, L(x, u, ) = x} + u? and S(x(T)) = x3(1) +x3(1) = xT(1)x(1).
The Hamiltonian is

H(, V1) = L) + 5 ()
or . or
o, o
or oI
=+t + o, (x2) + o5 (—=2x1 —3x +u)  (2.24)

=x{+u’+

Now, we minimize the Hamiltonian by differentiating the right-hand side of
(2.24) with respect to the control and then equating the resulting derivative to zero.

Thus,
. OJ* .1 oJ*
(VH,, =0=2u"+ 8xz) = (u =3 8xz) (2.25)

Substituting the optimal solution back into (2.24), we get

1 /87\* oI o a1
H* T =x = -2 —3——x—= 22
()C, Vi 7t) i + 4 (8}52) + 8)61 2 8x2 A 3 8xz 2 2 (9)(2 ( 6)
The HIB equation is then
6]*
= H (5 VT (3,),1)
oI ar ar 1
— X — 2x1 —3x) — = 2.27
ol + (8)62) + 8)C1 2 8X2 < o 2 2) ( )

with the boundary condition J*(x, T) = x3(T) + x3(T).
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2.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is one of the most widely used control design
methods in aerospace. Trade studies have been performed comparing properties of
controllers (performance, robustness, control usage) in many different applications.
For example, we have found that flight control systems designed using the LQR
method have excellent performance, robustness, and minimize the control usage.
This method is easily extended (in the next chapter) to produce command tracking
controllers.
Consider the linear nonautonomous system

x=A(t)x+ B(Hu x(to) = xo XER™ ueRr™ (2.28)
with the quadratic performance index

T
J= J (x"Qx+ u"Ru)dr + x"(T) Qr x(T) (2.29)

fo

where the cost weight matrices (Q, R, Q) are symmetric positive semidefinite,
positive definite, and positive semidefinite, respectively:

0=0"20, R=R">0, 0,=0,720 (2.30)

The weights Q and R can be time varying if needed. To have a well-posed

problem, we would require the pair (A, B) to be controllable and the pair (A, Ql/ 2

to be observable. Weaker conditions, such as stabilizable (A, B) and detectable
(A, o'/ 2), are also acceptable. The need for controllability of the system dynamics

should be obvious. Clearly, the control cannot stabilize the system and perform as
desired if the dynamics are not controllable. Detectability of modes through the
performance index guarantees that the unstable modes are penalized, producing a
control that will minimize their contribution to the index. We will see that the
numerical choices of the matrices Q and R are very important in achieving perfor-
mance and robustness in the closed-loop system.

Following (2.16), the LQR Hamiltonian is

*

oJ
H = x"0x + u"Ru + 3

— (A()x + B()u) 2.31)

Taking the gradient of H with respect to u and equating it to zero produces

88—H = 2Ru+ BTV, J*(x,) =0 (2.32)
u



36 2 Optimal Control and the Linear Quadratic Regulator
where the optimal control is

u' = —IR7'B"V. J*(x,1) (2.33)

Substituting u* back into (2.20) yields the HIB equation

oJ*
ox

oJ*
1 —1pT *

L
o

oI
X Qx + ;{a—BR*IBTva* +
X

which, in this form, is still quite difficult to solve. Fortunately, one can show that the
optimal cost J* is a quadratic time-varying function of the system state [3,
Sect. 2.3]:

T =T (x(0), 1) = x(t)" P(1) () (2.35)
where P(t) = PT(#)>0. Substituting (2.35) into (2.34), we get

oJ* (x, t .

% =xTP(hx V' (x,1) = 2P(r)x (2.36)

Substituting (2.36) back into (2.34) and factoring out x on both sides, we get
X" [=P(t) = P(NA — ATP(1) = Q + P(NBR'B"P(1)| x=0 (2.37)

with the boundary condition P(T) = Q. Since this must be satisfied for any state x,
the following initial value problem must be true:

—P(t) =P()A + ATP(¢) + Q — P()BR"'B"P(r)
P(T) =0; (238)

The time-varying matrix ordinary differential equation in (2.38) is called the
Riccati equation. Substituting (2.36) into (2.33) yields the optimal control policy

u'(x, t) = —%R”BTw = —R'BTP(t)x = —K (1) x (2.39)
K()

in state feedback form. Note that in (2.38), the Riccati equation is integrated
backward in time. Then, the optimal control u*(x, ) with the feedback gains K(7)
are formed using (2.39). For real time operations, these gains must be stored in a
lookup table, and the feedback control law would be implemented by looking up the
gains in the table. This is gain scheduling.

Continuing on, we substitute the optimal control (2.39) into the system dynamics
(2.28) and obtain the closed-loop system:
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x=Altx+B{Hu  x(to) = xo
u(t) = —K(t)x
x = (A(t) — B()K(t))x (2.40)

2.3.1 Summary

2.4 Infinite-Time LQR Problem

In this section, we consider the quadratic performance index on an infinite time
interval:

o0
J= J (ox+u'Ru)dt  0=0Q">0, R=R">0 (2.41)
0
where the final time T = oo. The state dynamics for this problem are assumed to be
linear-time-invariant:

X =Ax+ Bu A, B — constant x€R™ ueR™ (2.42)

with (A, B) stabilizable and (A, Ql/ 2) detectable. It is possible to show that the
corresponding Riccati equation

—P(t) =P() A+ ATP() + Q — P(t)BR"'B"P(r) (2.43)
with the limiting boundary condition

lim P(T) = Oy xn, (2.44)
T—o0
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has the unique solution [3]. Moreover, in the limit as (f — —o0), this solution tends
to a constant symmetric positive definite matrix, which can be found by solving the
algebraic Riccati equation (ARE)

PA+A"P—PBR'B'TP+0=0 (2.45)
with the LQR-optimal control policy in feedback form

u=—R'B'"P x=—Kx (2.46)
K

where K € R™>™ is a constant matrix of the LQR-optimal feedback gains.

In industrial applications with nonlinear process control, the system models are
often linearized at the designated operating conditions. Then, LQR-based controllers
can be designed at each operating point. The resulting constant feedback gains K
would be stored in a table and recalled (looked up) in real time for implementation.
As we have already mentioned, this is the gain-scheduling control concept.

Substituting the optimal feedback control (2.46) into the open-loop dynamics
(2.42) gives the closed-loop system:

x=(A—BK)x=Aux (2.47)

The LQR formulation guarantees the closed-loop system (2.47), whose dynam-
ics are described by the constant matrix A, to be stable [3]. This means the
eigenvalues of A lie in the left half complex plane Re(4(Aq))<0. The system
state is regulated to zero, x — 0 as t — oo, which implies u — 0 as t — oc.

It is often desirable when simulating the dynamics to compute and examine the
peak values of the optimal control u and its rate . If we differentiate u, we get

n=—-Ki=-KA—-BK)x=—-KAqgx (2.48)
We can form a closed-loop simulation model, with outputs x, u, and #, as

X=Ax+Bu u=-—Kx
Xx=(A-BK) x=Aux

X 1
u —KAy

In real-life applications, and especially in flight control, it is critical to prevent
saturation of the control surface positions and rates. When this happens, nonlinear
effects begin to dominate the system response, stability is no longer guaranteed, and
the system could depart. We can see from (2.49) that large gains K may cause large
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control positions and rates. Thus, high gains are undesirable in most industrial
control applications. From (2.46), we see that K gets large as P gets large. From
(2.45), we see that it is the choice of the weights Q and R in the ARE that determines
how large the gains will be.

2.4.1 Summary

Example 2.2 In this example, we wish to solve for the optimal control and examine
the properties of the closed-loop system. Consider the following linear-time-invariant
model

. 0 1 0
X =Ax+ Bu A—[O _1] B—[l] (2.50)
with the performance index

10
J=[ (d+mP)dr Q= R=r (2.51)

0 0

0

The eigenvalues of the open-loop system are A =0 and 1= —1. In the

performance index, the state penalty matrix Q penalizes the first state of the system.
The control penalty r is left as a parameter so we can see how small and large values
of r change the closed-loop dynamics. It is always important to check if the design
problem is well-posed. Conditions on the plant and on the performance index for a
well-posed problem require to check if the unstable modes of the system are
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controllable and if the unstable modes are observable through the state pe{lalty
matrix. In other words, we need to verify if (A, B) is stabilizable and (A, Q2 is
detectable. First, we compute the controllability matrix:

P.=[B AB]=[? _11} i (2.52)
RK=

Since this matrix has full rank, the system is controllable. So any unstable modes
are controllable. Next, we can factor the state penalty matrix into square roots

N1 T 0][1 o 1o
Q:(QZ) sz[o 0”0 o}:{o 0] (2.53)

and then check the observability using the square root of Q:

(2.54)

(=N el
S = O O

RK=2

Since this matrix also has full rank, all modes of the system are observable
through the penalty matrix. Now, we can solve the ARE

PA+A"P—PBR'B'P+0 =0 (2.55)
for P, using A, B, Q,and R = r. Let P = {pl P2 ] . Then the ARE is
P2 D3
P p2||0 1 ] {O 0 ]{Pl Pz} [Pl Pz} {0}1
+ - -0 1
[Pz PJ {0 -1 I —=1]|p ps3 IZNZY IR ! ]
P D2 1 0]
X + =0 2.56
L’z Ps} {O 0 ( )

Since the Riccati matrix P must be real symmetric and positive definite, from
(2.56) we can derive three equations for py, p,, and p3. These are

2(p2 —p3) —p—_z =0 (2.57)

The first equation gives p, = 1/ (both positive and negative values of m must
be checked to see which is the solution). Using p, = /7, p and p; are
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p3—r<1/1+j;—1>

2
pi=Vry 1+

NG (2.58)

The constant state feedback gain matrix is

K:R‘IBTP:{\/%—. 1/IJF%—I} (2.59)

The closed-loop state dynamics are always stable with characteristic equations

¢d(s)=s2+s,/1+%+\/i; (2.60)

By varying the control penalty 7 in (2.60), we can compute a root locus (Fig 2.1)
to show how the numerical choice of R impacts the closed-loop system dynamics.

The root locus data in Fig. 2.1 are the result of changing the control penalty r
from 0.001 to 100. For large values of  (small gains), the closed-loop poles are near
the open-loop poles (r =100, K =[0.1 0.0954]), producing a slow system
response. For small values of r (large gains), the roots follow asymptotes into the
left half plane, and the response gets fast (- = 0.01, K = [31.6228 7.0153]). In
general, the values of the optimal feedback gains are proportional to the relative
magnitude of Q and R. For a fixed R, large values of Q heavily penalize the state
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(relative to the control), the resulting optimal feedback gains grow large, and the
closed-loop system response gets fast. On the other hand, small values of Q penalize
the control more than the state, resulting in smaller control efforts. This also keeps
the gains small, producing a slower response. O

2.5 Guaranteed Stability Margins for State Feedback LQR

The LQR solution has excellent stability robustness properties at the input to the
plant. This can be shown by examining the return difference matrix in the frequency
domain. Readers who are not familiar with frequency domain analysis of multi-
input multi-output linear-time-invariant systems should see Chap. 5 and then return
to this section.
Consider the following LTI system:
X=Ax+Bu x€R™ uecR™ (2.61)

along with the infinite-time LQR problem
o0
J = / (x"Qx + u’ Ru)dr (2.62)
0

with the weights O = 0" > 0andR = R">0. Suppose that (A, B) is stabilizable and
(A, Ql/z) is detectable. The ARE is

PA+A"P—PBR'BTP+0 =0 (2.63)
and the corresponding optimal state feedback control is given by
u=—R'BTPx = —Kx (2.64)
Substituting (2.64) into (2.61) yields the closed-loop system
X=(A—BK)x = Augx (2.65)
Of particular interest are frequency domain properties provided by the LQR state
feedback controller (2.64). First, we introduce the loop transfer function L(s), with

the loop break point at the plant input. For the state feedback system shown in
Fig 2.2, the loop gain is

L(s)=K(sI—A)"'B (2.66)
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Loop Break Point

Vou
O ﬂ (s — A7) =

]

Fig. 2.2 Block diagram of the state feedback architecture

We define the open-loop dynamics®(s) = (s/ — A) ™" and its transposed conjugate

®* = @' (—s). Using the ARE (2.63), we add and subtract (s P) from both sides and
rearrange the terms. We get

P(sl —A) + (—sI —A")P+ PBR™'B'P =Q (2.67)

insert ® = (s/ —A)~", left-multiply by B®*, where (o) denotes complex
conjugate transpose, right-multiply by ® B, and arrive at

B"P®B + B"®*PB + B"®*PBR'BTPOB = BT ®* QDB (2.68)

We then add R>0 from the performance index (2.62) to both sides and note that
K=R'B"P and L(s) = K(sl —A) 'B = KOB = R"'B"P®B. Substituting L(s)
into (2.68) gives

RR'B"P®B +B"®*PBR'R + B"®*PBR"' RR™'B"P®B +R
L(s) L' (~s) L' (~s) L(s)

= BT®*Q®B + R (2.69)

Simplifying (2.69), we obtain
R+ RL(s) + L"(—s)R + L"(—s)RL(s) = B"®*Q®B + R (2.70)
which can be further reduced to
(I+L(s))'R(I +L(s)) =R +B"®*Q®B (2.71)
where (I + L(s)) is the return difference matrix, computed at the system input break
point. The term BY ®*Q®B is a Hermitian positive semidefinite matrix. By removing
this term on the right side, we form the inequality

(I +L(s))*R(I +L(s)) >R (2.72)

If we assume an equal penalty on each control, that is, R = pl, p>0, then,
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Fig. 2.3 Frequency domain analysis of optimal state feedback loop transfer functions
(I+L(s)"(I+L(s)) >1 (2.73)

which tells us information about the magnitude of the return difference matrix. For
single input systems, where n, = 1, this is equivalent to the Nyquist locus not
entering a unit circle centered about (—1,;0). For multi-input system, where n,> 1,
this says that the minimum singular value of the return difference matrix (versus
frequency) always has a magnitude greater than one. These properties are shown in
Fig. 2.3.

This implies a minimum gain margin of [—6, +0c| dB and a phase margin of at
least 60°. This property is what makes the LQR so attractive in industrial
applications. Often, for open-loop unstable design problems, it is very difficult to
achieve the desired gain and phase margins. This property is guaranteed (under the
assumptions shown) for any choice of Q matrix. However, experience has shown
that large feedback gains seldom work in practice. Because of modeling errors,
unmodeled dynamics, noise, actuator rate saturation, and other disturbances, these
excellent margins are not always realized in the physical system. So, special care
must be taken to avoid large control gains (leading to a high bandwidth design) in
most physical systems, and especially in aerospace applications.

There are many practical “rules-of-thumb” for selecting the LQR weight matrices.
In the next chapter, a design method for tuning the LQR solution to achieve the desired
performance and robustness without large gains will be given. We will also discuss
how the eigenvalues of the closed-loop system evolve with the numerical choices
made for the penalty matrices.

2.6 LQR Design and Asymptotic Properties

The numerical values in the LQR penalty matrices Q and R determine the
eigenstructure of the closed-loop system (A — BK.)V = VA. This eigenstructure
specifies the system performance and robustness properties. It is very important to
properly choose the numerical values for elements in Q and R, and more impor-
tantly, it is quintessential to learn how to exploit these matrices to tune the control
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feedback gains and to achieve the desired performance and robustness in the
resulting closed-loop system.

In this section, we shall investigate how the eigenstructure evolves, as the
weighting matrices are varied numerically. Readers interested in detailed asymp-
totic analysis may find it in Kwakernaak and Sivan [1].

Consider the following LTI system:

X=Ax+Bu x€R™ ucR™ (2.74)

with the infinite-time quadratic cost index
J= / (+"Qx + u"Ru)dr (2.75)
0

whereQ = QT >0, R =R">0, (A, B) stabilizable, and (A, Ql/ 2) detectable. We
assume that there are no transmission zeros on the jo axis. Then, the ARE for this
optimal control problem is

PA+A"P —PBR'BTP+0 =0 (2.76)

Associated with this ARE is the 2n, x 2n, Hamiltonian matrix H given by

_pp-1pT
H= { _AQ BR ATB } 2.77)

which can be used to determine the solution to the ARE. The optimal state feedback
control is given by

u=—R"'B"Px=—Kx (2.78)
which when substituted into (2.74) yields the closed-loop system
X=(A—BK)x =Aux (2.79)
The n, eigenvalues of the closed-loop system 4(A,) are the stable eigenvalues of
the Hamiltonian matrix H. In fact, the Hamiltonian matrix H has 2n, eigenvalues of
which 7, have negative real parts (stable) and n, have positive real parts (unstable,
but stable backward in time). Let

b(s) = det[s] — A + BK] (2.80)

then,
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det[s/ — H] = d(s)pa(—s) (2.81)

The asymptotic properties we desire to explore are those associated with the
migration of these eigenvalues, as the numerical values in the LQR penalty matrices
Q and R are varied. We can examine these eigenvalues (roots of ¢, (s)) through
the polynomial formed by expanding the det[s/ — H]. We begin with some
elementary row and column operations on H. First, we multiply the first row of
Hby — Q(sl — A)H™! and add it to the second row. This yields

sl —A BR'BT
0 s+ AT

sl —A BR™'BT
=det T Aol ol
0 (s/+A")—Q(sI—A) BR'B

det[s] — H| :detl

] (2.82)

Then,

det[s] — H] = det[sl — A] det[(s] +AT) = Q(sl — A)*lBR*IBT}

= detfs! — A] det| s/ +A") {1 — (s1 + A") "

O(sT — A)*‘BR”BTH
— det[sl — A] det[s/ + AT] det |1 — (s/ + A7) "' Q(sl — A)'BR "B
(2.83)

We factor the Q and BR™'B” into products of two square roots: Q = 070, and
BR™'B" = R|RT. Next, using the identity det[l — AB] = det[l — BA], we get

det |1 — (s +AT) "' QT Q,(sT — A)'R\RT
B A

— det [1 —0,(sT — A)"'RR (st +AT)_lQﬂ

(2.84)

and so,

det[s] — H|

— det[s] — A]det[sT + A”] det |1 — Q,(sT — A)"'R, RT (s + A7) "' 0T
R e

H(s)
= P(s)(—1)"Pp(—s) det[l + H,(s)H] (—s)] (2.85)
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where ¢(s) = det[s] — A]. Thus,

Da(8)a(—s) = d(s)p(—s) det[I + H,(s)H] (—s)] (2.86)
Let
det[H,(s)] = % (2.87)

and consider the performance cost index
J= J (x"Qx + p*u"Ru)dr (2.88)
0

with a positive scalar weight p>0. We are interested in the behavior as p — 0and as
p — o0. The zeros of (2.86) are also the zeros of

d(s)p(—s) det[pl + H,(s)H,(—s)] (2.89)

As p — 0, some of the roots will go to infinity. Those that stay finite will
approach the transmission zeros of the transfer function matrix H,(s) and their
negative values. These finite zeros control the dynamic response of the optimal
regulator. As p — o0, the roots of ¢, (s) are the n, stable roots of ¢ (s)p(—s). That is,
if the roots of ¢(s) have positive real part, then the mirror image of them in ¢(—s)
will become the stable roots in ¢ (s).

We see that shaping the zeros of H(s) plays a crucial role in the design of the
optimal control. This is done through selection of the LQR penalty matrix weights
QO and R. Later in Chap. 3, we will use this fact to tune the design of optimal
controllers to achieve performance and robustness.

2.7 Conclusions

In this chapter, we briefly discussed optimal control theory and the linear quadratic
regulator. Many control systems today are designed using this method due to the
frequency domain guarantees and the ease of the design. In the next chapter, we
shall extend the regulator architecture to command tracking systems.
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2.8 Exercises

Exercise 2.1. Consider
X1 =x th=0 o 1
Xo=-2x1—3x+u T=1 X(O)_ |:2:|
T
J= / (x] + u?)dt + x{(T) + x5(T)
0

Set up (but not solve) the HIB equation with the corresponding boundary conditions.

Exercise 2.2. Given

X=—x+u
1
J= /x2+u dt +x*(1)
0

use the ARE to find the optimal feedback control u*(r) = —K x(¢). Draw the closed-
loop system block diagram.

Exercise 2.3. For

fCl =X2

Xp=x1+u
J= J (x% +u2)d‘c
0

find the LQR-optimal control policy # to minimize the cost J.

Exercise 2.4. Consider the longitudinal aircraft dynamics given in Chap. 1,
Exercise 1.2. This linear model represents the aircraft incremental dynamics,
with respect to a trim condition. Design an infinite-time LQR to regulate the
state vector to zero. Simulate the design with an initial state vector
x(0) =[10ft/s 0.1 rad 0.1 rad/s Orad].

Exercise 2.5. Consider a second-order system modeled by the input-output equa-
tion y = u. A feedback controller u = —k;y — ky is to be designed such that the
performance index
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J= (4y2 + u2)dr

o3

1s minimized.
1. Find k; and k,.

2. What are the closed-loop eigenvalues?

Exercise 2.6. Consider the linear system x = Ax + Bu with LQR performance
index

J= % J (quQx +p uTRu)d'c
0

where 0 = Q7 >0, R =R">0, and (A, Q% observable. Use the state feedback
control u = —Kx with K = R~'BTP, where’P is the ARE solution matrix. What
happens to the eigenvalues of the closed-loop system as

1.
qg—0

p—0

Exercise 2.7. Consider the following scalar linear quadratic command tracking
problem:

J = % / [(x — r)2 + pu’ |dt +%QT(X(T) - "(T>)2

with g;>0, p>0, T fixed, and a known reference (command) input 7(t).

1. What is the HIB equation for this problem? (Eliminate u#). Include boundary
conditions.
2. Find a solution for J* in the form

T (x,8) = IP(0)x* + g(t)x +w(r)

Find differential equations for P, g, and w, such that the HIB equation is satisfied.
Include boundary conditions. Derive but do not solve the related equations.
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Chapter 3
Command Tracking and the Robust
Servomechanism

3.1 Introduction

Most industrial control problems require the control system to accurately track
commands. This requirement distinguishes these problems from regulation in
which the state is driven to zero. From classical control theory, we know that in
order to track a constant command with zero error, we need to add integral error
control action into the controller. For single-input single-output (SISO) systems, the
loop transfer function L(s) can be written as

_ K(bos" 4+ by s+ 1)
~ sP(aps" + -+ a, s+ 1)

L(s) 3.1)

where the gain K and the polynomial coefficients a; and b; are real constants. The
type of the control system depends upon the order p of the pole of L(s) at s = 0. The
number of finite zeros, their location, or the location of the poles are not important
to specify the system type. The system type p, where p = 0, 1,2, - - - indicates how
many integrators are present in the control system. We know that in order to track a
constant command r(f) = constant, and to produce zero steady-state error, an
integrator is needed, p > 1, creating (at a minimum) a type 1 system. In order to
track a type 1 input, the control system will need two integrators, creating a type 2
system. Thus, to track commands accurately, the class of commanded signals must
be known, and the controller must be augmented with enough integrators to
produce zero steady-state errors.

When these integrators are added to the control system for command tracking,
they also provide disturbance rejection within the same class, that is, a type 1 control
system can track constant commands and reject constant disturbances. Similarly, a
type 2 system can track ramp inputs and reject ramp disturbances.

Basically, the augmentation of the system with these integrators for command
tracking requires embedding into the system a model of the class of signals that
the system will track. This is often referred to as the internal model principle [1].

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 51
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_3,
© Springer-Verlag London 2013
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For instance, when tracking a constant command and adding a single integrator, we
have embedded the command generation internal model 7/ = 0 into the system.

In the previous chapter, we have illustrated the use of linear quadratic optimal
control theory to design a controller and examined the excellent stability properties
provided by that method. The linear quadratic regulator (LQR) forces the system
state to go to zero, forming a type O control system. If one wants to track a constant
command using such an LQR controller, the system would have a steady-state
offset error to the command. We know from Eq. (3.1) that in order to track a
constant command with zero error, we need to add an integrator, creating a type
1 control system.

A natural extension of the LQR method presented in the previous chapter would
be to add an integral control action into the controller to produce zero steady errors,
while tracking constant commands. The number of integrators that would need to
be added depends upon the commanded signal (whether it is a constant, a ramp, or
other type of signal).

This chapter presents a systematic process for building an augmented state space
model called the servomechanism design model [2]. This state space description
embeds a model of the class of signals to be tracked, such that when optimal control
theory is applied, the state regulation provides accurate tracking of the selected
class of external commands. This system is then decomposed into two parts: a servo
tracking controller for command following and a state feedback component for
stabilization. In aerospace, this approach is often used to design flight control
systems for both manned and unmanned aerial vehicles. The resulting control
architecture provides accurate command tracking and a robust control system
design with predictable and robust performance. The meaning of controller robust-
ness was introduced in Chap. 2. It requires the minimum singular value of the return
difference matrix having magnitude greater than 1. This topic of robustness in the
frequency domain is covered in great detail later in Chap. 5.

3.2 The Servomechanism Design Model

Consider the following finite dimensional linear-time-invariant state space model:

X =Ax+Bu -+ Ew
y=Cx+Du (3.2)

with an unknown bounded disturbance w and with the signalsx € R™, u € R™, and
y € R™ representing the system state, control, and output, respectively. We assume
that the system is both controllable and observable. We would like a preselected
subset of the output vector y to track the command input vector r € R™, and we
assume that the dimension of r is less than or equal to the number of the system
outputs (i.e., n, > n,). It is also assumed that the p”’ order differential equation for
r(?) is given, with the following model:
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Table 3.1 Internal models for command generation

Command signal r(¢) Differential equation Model parameters
Constant :Z0 p=1a =0
F=
Ramp P 0 p=2a =a=0
=
Sinusoid
P= —w%r p=2,a,=0, azz—w(z)
() "N p-i)
¥ = Z aj r (3.3)
i=1
h

where the scalar coefficients a; are known and the superscript (i) denotes the '
derivative. Using the model in (3.3), examples for typical signals are shown in
Table 3.1.

The polynomial formed by the Laplace transformation of (3.3) is

P
a(s) =" + Z a;is"", (3.4)
i=1

and it gives a known class of inputs without the knowledge of their magnitudes. Our
control goal is to track this command with zero steady-state error. For disturbance
inputs, we assume the same model as 7(¢):

P o
W= Ya G (3.5)
=1
where wy = w(0) is unknown.
Let us define the tracking error signal as

e=y,—r 3.6)
where y, € R" is the subset of the output y to be controlled and e € R™. The error
signal is defined here as e = y, — r so that we can apply negative feedback of the

errors and their derivatives in forming the feedback control. We will also arrange
the output vector so that the first n, variables in y definey_. Thus,

T
y="[ ] @.7)
where y,. are output variables that are not controlled. The model for y, € R is

Y. =Ccx+D.u (3.8)
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This is the regulated system output. Tracking in y, is the same as regulation
in e; therefore, the objective is to make the error approach zeroe — 0(y, — r), as
t — 00, in the presence of unmeasurable disturbance w, in a robust manner with
respect to the plant description. Taking (3.6) and differentiating p times, the
resulting differential equation for the error may be written as

P . P _I. P »
A PR R Y (@—Za,-“’r >> (3.9)
i—1 i—1 i=1
From (3.3), the bracketed term in the right side of (3.9) will be zero. Using (3.8),

we have

v e v, (3.10)

Substituting this into (3.9) yields

p . p >
(2)—Zai(pe ) —C. (;)_Zai (px) 4D,
i=1 i=1

P —i
%?—Za,» " )] 3.11)
i=1

This system represents a set of coupled ordinary differential equations. Let & and
1 be defined as

P —i
&= (5,() — Za,- (px ) (3.12)
i=1
P = D)
p=1u-Y a (3.13)
i=1
The error equation is
? = D)
e =Y aie =Ci&+Dep (3.14)
i=1

Differentiating (3.12), we get

. p i
E= N6 Y (3.15)
i=1
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Using (3.2) for x results in

) P y P » P ;
E=A l(fc)—Za,»(px) (Z)—Zai (pu) (fv)—Za,- (pw)l (3.16)
=1 =1 =1

14 u =0

+ B +E

where (3.5) shows the last term to be zero. We can rewrite (3.16) as
E=AE+Bu (3.17)

which is the original system model minus the disturbances.
The servomechanism design model is formed by creating a new state space
model, containing the error dynamics and the system model from (3.17). The new

. . -1 .
state vector is z, and its components are the errorse, - -+, e , with the vector £. The
error is a linear combination of ¢ and u from (3.14). Augmenting z with these
derivatives and ¢ defines z to be

z=| (3.18)

This new state vector z has dimension (n, + p X n,). Differentiating (3.18) yields
the servomechanism design model:

:=Az+Bpu (3.19)
where A and B are given by
0 1 0 0 0 0
0 0 1 0 0 0
A= K B= (3.20)
0 0 0 I 0
apl a,_I -+ a)d all C. D,
0 il e .0 A B

The robust servomechanism LQR solution is obtained by applying linear
quadratic regulator theory to (3.19). By regulating z, we regulate to zero both e,
its (p — 1) derivatives, and £. In steady state, this allows the state vector x to be
nonzero, in which case, C.x + D.u = r. This control formulation adds the desired
integral control action acting on the command error.
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3.2.1 Controllability of the Servomechanism Design Model

If we apply the Hautus controllability tests to the servomechanism design model in
(3.19), for the system to be controllable, we must have

rank [s/ — A|B] = n,+n, x p (3.21)

where s evaluates at each of the eigenvalues of A. This matrix has ny + n, X prows
that must all be independent to have full rank. To derive this requirement, simply
use elementary row and column operations to transform [s] — A|§] into the
following:

sl -1 0 0 0
0 sl —I 0 0
[si—A B]=1]0 0 sI —-I 0 0
00 0 % —c D
0 0 0 0 sI—-A B
a(s) =s" — zp:a,s”*" (3.22)

i=1

Clearly, the firstn, X (p — 1) rows are independent. From the last row, [s/ — A|B]
must be full rank which says that the original system model must be controllable.
Considering the last two rows, if s = s; such that a(s;) = 0 (a zero of a(s)), then we
must have

—C. Dc|| _
rankHsiI_A BH—nx—i—n,. (3.23)

For this to occur, the multivariable zeros or transmission zeros of the original
system must not equal any zeros of a(s) and n, > n,. To summarize are the
following:

1. The original system (A, B) must be controllable.

2. The number of controls must be greater than the number of signals to track,
n, > n,.

3. The original system (A, B, C., D) must not have any transmission zeros common
with the polynomial a(s).

For control design, we can often relax the controllability requirement to that of
stabilizability. For stabilizability, the original system (A, B) must be stabilizable,
and conditions (2) and (3) above must also be satisfied.
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Example 3.1 Constant Command Tracking Consider a constant command r.
According to (3.4), this gives 7 =0 (p = 1), with @; = 0. The command error is
e =y, — r. The servomechanism design model using (3.19) is given by

u
_ [0 C] - [D.
A= [ },B: { } (3.24)

Example 3.2 Sinusoidal Command Tracking Consider a sinusoidal command r(¢) =
sin(wt). This gives i = —w’r, (p = 2), with a;= 0, a= — w3, (see Eq. (3.4)). The
command error is e = y, — r. The state space system using (3.19) is given by

e

P

2

:=Az+Buz = [ },f—)’é—wzx,,u—ﬁ—w u,

0 1 0 0
A=|—-w* 0 C.|,B=|D. (3.25)
0 0 A B

Example 3.3 Constant Command Tracking in a Scalar System Knowledge from
classical control tells us that a type 1 controller is needed to track a constant
command. Using a scalar system, this example will build a state space model and
illustrate how to design an integral control for tracking constant commands.
Consider the following scalar system:

X=—2x+u+w
y=x (3.26)

where x is the state, u is the control, and w is a nonmeasurable constant disturbance.
Hence, A = [-2], B =[1], E = [1], C = [1], and D = [0]. The goal is for the
output y (same as the state x) to track a constant command r, with zero steady-state
error. The constant command is modeled using (3.3) as
F=0,p=1,a,=0 (3.27)
The robust servo design model is

:=Az+Bu (3.28)

with
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Integral Error
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Embeds Internal
Model

State Feedback
Stability

Fig. 3.1 Example 3.3 block diagram of the control and system dynamics

- 0 C 0 1 = D 0
SRR EA T R
in which we see that (A,E) form a controllable pair. The feedback control law is
1 = —Kz. Itis desired that the closed-loop dynamics have a characteristic polynomial

of ¢y(s) = (s+2)*+4=s>+4s+8 (pole placement problem). The feedback
control is

p=-1K K] m (3.30)

The closed-loop system is z = (A — BK)z with characteristic polynomial
¢ (s)= det[s] — A + BK]. Substitute for (A, B) keeping the gains as parameters,
expand the determinant, and equate to the desired closed-loop characteristic
polynomial

det[s] —A+BK| =5+ (2+Ky)s + K; =" +4s + 8 (3.31)

Equating coefficients of s yields two equations in the two unknown gains that
can be solved for the gains [K; K,|=[8 2]. The control u = [y and is

"= —Kszt:— 8 2]{“‘”]

X

=-38 Je dt — 2x + constant of integration (3.32)

In the implementation, the constant of integration is ignored. Figure 3.1
illustrates the system, (controller, plant, and disturbance).

3.3 The Robust Servomechanism LQR

In Chap. 2, it was shown that the state feedback infinite-time linear quadratic
regulator has excellent stability and robustness properties. In this section, this
approach is applied to the servomechanism design model from the previous section


http://dx.doi.org/10.1007/978-1-4471-4396-3_2
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to form the robust servomechanism LQR (RSLQR). The RSLQR gain matrix K,
that is produced from the solution of the algebraic Riccati equation forms the state
feedback control given as

u=—-K.z (3.33)
which, when integrated p times, is implemented using integral control for command

tracking and state feedback for stabilization.
The RSLQR design problem uses the servomechanism design model written as

:=Az+ Bu (3.34)
where z and u are defined in (3.18) and (3.13), respectively. LQR control theory is
applied to (3.34), using the performance index (PI),

J= J (z"0z + u'Ru)dr (3.35)
0

where Q = Q7 > 0,R = R">0, (A,é) is stabilizable, and ( A, Q% is detectable. For
the infinite-time problem, the optimal steady-state control law for p using state
feedback is formed by solving the algebraic Riccati equation (ARE) using Q and R
from (3.35), given as

PA+A"P —PBRT'B'TP+0 =0 (3.36)

The resulting steady-state n, X (n, 4+ n,)-dimensional feedback controller gain
matrix is

K. =R 'B'P (3.37)

with the state feedback control given as 4 = —K,z. The gain matrix K is partitioned
in the same manner as the vector z in (3.18), written as

Ke=[K, Kpoi - Ki K] (3.38)

Substituting the definition of z into (3.33) yields

i=1 i=1

P i
Y-S 1 (3.39)
i=1

Integrating (3.39) p-times gives the control solution u for the original system
model in (3.2) as
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Fig. 3.2 Robust servomechanism block diagram

P —i —i p—i
u=-—-Kux—+ E s (a,- <(pu )—I—Kx (px )) —K; (le )> (3.40)
i=1

Figure 3.2 is a block diagram illustrating the system of (3.2) (represented as G)
connected to the robust servomechanism state feedback control law.

The state feedback term (—K.x) enforces closed-loop stability of the plant. The
p integrators and their gains provide integral error control, and the coefficients a;
embed the internal model of the signal being tracked. So, the closed-loop system is

= (A—BK.)z+Fr (3.41)

where F =[—I,.n Onxn | . The RSLQR closed-loop design using state
feedback is guaranteed to be globally exponentially stable, and it will force the
system-regulated output track the command signal r(¢), with zero steady-state error.

In Chap. 1, we introduced plant (1.35) and controller (1.36) state space models.
These models were then coupled to form a closed-loop simulation model and loop
gain frequency domain analysis models. We want to implement the RSLQR control
from (3.40) using the controller given by

Xe = Acxe + By +Beor
u=Cex.+ D(rly +Deor (342>

The control in (3.40) is a state feedback control (y = x). Substituting into (3.42),
we have

xc - A(‘x(' + B('lx + BL'ZV
U= Coxp + Derx + Door (3.43)


http://dx.doi.org/10.1007/978-1-4471-4396-3_1
http://dx.doi.org/10.1007/978-1-4471-4396-3_1
http://dx.doi.org/10.1007/978-1-4471-4396-3_1
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with
A. Ba Ba
Cc Dcl Dc2
I 0 Ly, - 0 0 0 7]
: . 0 : :
= 0 0o --- I, 0 0
a,,]n,_ — DcKp e e all,,,_ - DCKl Cc - D(‘Kx _In,
I [-Kp -+ —K» —Ki] [—K,] [0]

(3.44)

Example 3.4 The Robust Servo Controller for Example 3.3 In Example 3.3, the
control u was given as

u= —8Jedl—2x (3.45)

The state space model for the controller using (3.44) is

Ac Ba Bo| _[10] [ [-1]
{C(- D, Dcz] - [[_8] [_2] [O] (3.46)

In industrial applications, the commanded signal r(¢) is often assumed to be a
constant. For example, in flight control, such a command could represent the stick
force coming from a pilot or the guidance command coming from the outer-loop
steering algorithms. Even though these command signals are not actually constant,
designing and implementing a type 1 control system has proven very effective in
most applications, and the RSLQR will provide zero steady-state error command
tracking.

To achieve good transient response characteristics, tuning of the LQR PI matrices
0 and R is required. Understanding how these matrices affect the control gains and
how the control gains influence the closed-loop system response is key to achieving a
good design.

It is important in the design of a realistic control system to be mindful of the
“size” of the feedback gains in K.. In aerospace applications, gains that are too
large amplify sensor noise, drive the actuators with high rates, and cause issues
and challenges with flexible body dynamics, called structural mode interaction.
The feedback gains K, depend upon the numerical values in Q and R. As ||Q||,
becomes large, the gains get large; as ||R||, is made small, the gains get large; thus,

1Kl ~ 121/ [1R]],-
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3.3.1 Summary
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Fig. 3.3 Unmanned aircraft

The following example will illustrate how to choose parameters within Q and how
to select a design that performs well, has a reasonable bandwidth, and does not
result in high actuator rates. The processes for selecting the LQR penalty weights
form LQR design charts that show important time domain and frequency domain
metrics plotted versus loop gain crossover frequency. Viewing this information,
while using the design charts, allows the control system engineer to select the
desired bandwidth of the design and to perform the necessary trade studies required
to meet the desired closed-loop system performance design goals. This process also
prevents large feedback gains from being selected, which can introduce challenges
later in the simulation and analysis of the control system.

Example 3.5 LOR Q-Matrix Parameter Selection Using Design Charts Consider
the pitch-plane dynamics of an unmanned aircraft (Fig. 3.3), given as
. Zy Zs
= — —0
o % o+ % +q

q=M,u+ Msé + Myq (3.47)

It is desired to design an acceleration command r = A, flight control system. We
will assume that the command is constant and will design an RSLQR controller
with integral control. We will design a constant gain matrix K. for a single flight
condition and will assume gain scheduling will be used to interpolate the gains
between conditions (other design points). Normal acceleration A, (ft/s®) is given by

A, =-Vy=VZ,a+VZsd (3.48)
We can introduce A; directly as a state variable by replacing the angle-of-attack o

state. Differentiate (3.48) to form the differential equation for A, and then substitute
for & from (3.47). This produces

A. =Z,A. +VZ,q + VZsd,

. M, M, Z;
i=y7 A+ My + (Ma - 3>5e (3.49)
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Next, introduce a second-order actuator model for the elevator. This is given as
00 = —2L,040, + 04 (5 — ) (3.50)

Combining (3.49) and (3.50) forms the plant model written in matrix form as

Az Z, Vz, 0 VZs A, 0
Q| _ | Mvze M, (My=22) o al, |0,
Oe 0 0 0 1 Se 0
de 0 0 —w,? ¢, ] L0 w,*
(3.51)

Since r = constant, 7 = 0, and p = 1, then we need to add an integrator to form
our type 1 controller. The state vector (Eq. 3.18) for the robust servomechanism
design model is

z=[e ] (3.52)

with the design model z = Az 4+ By given as

6 0 1 0 0 0 ¢ 0

A. o zZ, Vz, 0 VZs A 0

il=10 M,/VZ, M, (M(sfM“Z”) 0 g |+] 0 [0

Oe 0 0 0 0 1 e 0

Je 0 0 0 —w? 2L wq ] | 9 o
(3.53)

wherez=[¢ A. ¢ b 0. ]T € R>. At a flight condition of Mach 0.3, 5,000 ft
altitude, and a trim angle-of-attack a of 5 degrees, the plant model data (stability
and control derivatives) are

Z, = — 1.05273(1/s)
Zs = —0.0343(1/s)
M, = —2.3294(1/s%)
M, =—1.03341(1/s%)
M;s =—1.1684(1/s%)
V = 329.127(ft/s)
®, =27 * 13.(rad/s)
(=06 (3.54)
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Substituting the data into (3.53) yields

0 1 0 0 0 0
0 —1.053 —-346.5 0 —11.29 0
A= |0 0007 —1.033 —1.093 0 B= 0 (3.55)
0 0 0 0 1 0
0 0 0 —6672. —98.02 6672.

If we check the controllability of the pair (A,B), we find the system to be
controllable.

The objective in the design of the gain matrix is to track the acceleration
command with zero error without using large gains. The design begins by equating
R =1 and selecting a Q matrix that penalizes the error state e in (3.53). Thus, the
performance index in (3.35) is

J= J (ZTQZ +,u2)dr (3.56)
0

We start by inserting the parameter ¢;; in the (1,1) element

qu ¢
0 0 q
1oz =2:" 0 A |, (3.57)
0 0 Je
0|0

Y

and set the other matrix elements to zero. This will penalize the error in tracking the
command. Substituting (3.57) into (3.56) gives the performance index as

J= J (g% + p?)dr (3.58)
0

If we check the observability of the pair (A,Q%), we find the system to be
observable through this choice of Q.

The LQR design charts are formed by sweeping ¢, values from small to large,
solving for the feedback gains for each value of g, and examining the closed-loop
system properties. The computation steps are the following:

1. Set the value of ¢;; in Q from (3.57).

2. Solve the ARE in (3.36) for P.

3. Compute the feedback gain matrix K, in (3.37).
4. Form the closed-loop system in (3.41).
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Fig. 3.4 RSLQR short-period dynamics root locus. Actuator poles at —49.0 +65.3; not shown

5. Simulate the closed-loop system to a step command and extract time domain
performance metrics. These are rise time, settling time, percent command
overshoot, percent command undershoot, max control, and control rate.

6. Evaluate the loop transfer function at the plant input and extract frequency
domain metrics. These are loop gain crossover frequency, minimum singular
values of / + Land/ + L' (L at the plant input) versus frequency, and S|, and
|T||,, for the commanded variable (S and T are formed using L at the plant
output).

7. Loop back to step 1 and increase ¢q; until the numerical range is complete.

For this command tracking system, it is desired to track the acceleration command
with zero error, and minimize the rise time and settling time, all in response to the
command, without driving the control surface actuators with large gains. Large gains
will cause large actuator deflections and rates, which are not desirable. This creates a
trade study, in which the bandwidth must be limited in order not to exceed actuator
limitations. Also, large gains amplify sensor noise, reduce stability margins, and
make the system sensitive to unmodeled high-frequency dynamics (like flexible body
modes).

For this flight condition, the range of the LQR penalty ¢, is selected to be

a1 = [ 1072, 100'5] , using 100 design points. For a linear system, the response

will depend upon the location of the closed-loop poles in the s-plane. Looping
through the above calculations, the eigenvalues of the closed-loop system matrix

(A — BK, C) are plotted to form a root locus. The data are shown in Fig. 3.4.
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Also plotted are the open-loop poles (diamonds), the commanded variable A, /J,
and the system transfer function zeros, which include a nonminimum phase zero
(right half plane (RHP) zero). The open-loop dynamics are stable at this flight
condition, with the poles located in the left half plane (LHP). The two finite zeros
of the acceleration transfer function are —6.73 and 5.69. As discussed in Chap. 2
on asymptotic properties of regulators and the root square locus, Fig. 3.4 shows
the RHP zero at 5.69 mirrored into the LHP. Two of the closed-loop poles, one from
the integrator and the other from the short period, are approaching this region on the
negative real axis. The remaining short-period pole moves out to infinity along the
negative real axis. The control actuator poles, not shown in the figure, move toward
infinity along asymptotes at 45 degrees.

The time domain performance metrics of interest here are 63% rise time, 95%
settling time, percent overshoot, percent undershoot (because the system is
nonminimum phase), max actuator deflection, and max actuator rate in response to
a constant step command. The frequency domain performance metrics are loop gain
crossover frequency . in Hz, the minimum of the minimum singular value of the
return difference dynamics, denoted-o(f + L), and the minimum of the minimum
singular value of the stability robustness matrix / + L™, denoted ¢ (/ + L™"). The
metric g(/ + L) = 1/||S|| and ¢(I + L") = 1/||T||, (see Chap. 5, Sect. 5.2 for
definitions). These metrics, plotted versus w,, are used to determine how the
increasing bandwidth of the system affects the system characteristics, indicating a
desired value for ¢;.

As with most control system design procedures, there is not a single answer to
determining a set of gains that are acceptable. It is for the designer to make a
reasonable selection. Once a suitable design is chosen, the associated gain matrix K.
is then stored in a table to create a gain-scheduled control for real-time implemen-
tation. Figure 3.5 shows the rise time and settling time plotted against loop gain
crossover frequency ..

As o, increases, the system responds more quickly to the step command. As
seen from the figure, there is a diminishing return in terms of speed of response as
the bandwidth increases. This is also evident from the root locus in Fig. 3.4. As the
dominant poles approach the zero locations at —6.73 and —5.69, the change in
the pole location diminishes with the increasing gains. The poles headed toward
infinity along the asymptotes continue to move, but their contribution to the
response (e“ ) dies quickly as the eigenvalues get large and negative. This indicates
that large gains are not needed to make the system respond quickly.

Figure 3.6 shows the percent overshoot, percent undershoot, max elevon (tail
actuated control surface) deflection per g commanded, and max elevon rate per g
commanded versus the loop gain crossover frequency ..

At lower values of w, the response slightly overshoots the command, causing an
overshoot. Command overshoot in flight control systems needs to be minimized in
order to maintain limits and placards on the aircraft. As the integrator gain increases
(as ¢ increases), above 2.1 Hz o, the response has no command overshoot. This
metric by itself indicates a desire for larger gains. The percent undershoot,


http://dx.doi.org/10.1007/978-1-4471-4396-3_2
http://dx.doi.org/10.1007/978-1-4471-4396-3_5
http://dx.doi.org/10.1007/978-1-4471-4396-3_5
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Fig. 3.5 Rise time (blue) and settling time (red) versus loop gain crossover frequency

characteristic of nonminimum phase responses, continues to increase with increasing
.. This response characteristic is undesirable and also needs to be minimized.
Unfortunately, it increases with increasing w.. This metric indicates a desire for
lower gains. Both the max deflection and max rate increase with increasing .. It is
critical in flight control systems not to have excessive deflections and rates in response
to changes in the command. Electric actuators typically used in unmanned aircraft
systems draw current proportional to the peak rate (at these normal operating
conditions). High rates then cause significant power draw. Also, if the surface
becomes rate saturated, this nonlinear effect can significantly degrade stability. As
shown in the figure, the deflection and rate increase almost exponentially with
increasing .. These metrics also indicate a need for lower gains. As seen in this
figure, some of the metrics tend toward increasing the gains, and some tend toward
decreasing the gains.

Figure 3.7 shows two frequency response metrics: the minimum of the minimum
singular value of the return difference dynamics ¢(/ 4+ L) and the minimum of the
minimum singular value of the stability robustness matrix ¢ (I +L™").

As is characteristic of LQR state feedback designs (discussed in Chap. 2), the ~¢
(I + L)is equal to unity for all ¢, design values. This metric is not particularly useful
for developing state feedback designs but is critical when output feedback is used.
The o(I + L"), which is the inverse of the infinity norm of the complementary
sensitivity function, is a measure of the damping in the dominant poles of the closed-
loop system. We would like to maximize ¢(/ 4+ L™"). The figure shows that this
metric tends to favor larger gains.


http://dx.doi.org/10.1007/978-1-4471-4396-3_2
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Fig. 3.6 Percent overshoot, undershoot, and max elevon deflection and rate versus loop gain
crossover frequency .

In balancing the positive and negative trends indicated by these metrics, a design
condition g,; = 0.2448 was selected. This is the value of g;; where the percent
overshoot first approaches zero. For this design condition, the states A, ¢, d., and J,
are plotted versus time in Fig. 3.8.

Note that there is no overshoot to the unit command. For this approach flight
condition, the response is quick, without the use of large gains.

The gain matrixK is

K. =[0.4948 0.1790 — 14.0605 2.2089 0.0018] (3.59)
The controller implementing this design is

xc = Acxc + Bcly + BcZV
u=Cexc+ Dy + Der (3.60)

where y = [AZ q Oe 56]T, r= A, and
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Fig. 3.8 States of the system responding to a unit acceleration step command
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A. Bq Bao] [0] (1 00 0] [—1]
C. Dq Dol| ~ |[-0.4948] [—0.179 14.0605 —2.2089 —0.0018] [0]

(3.61)

3.4 Conclusions

Depending upon the signal to be tracked, a certain number of integrators are needed
to provide zero steady-state tracking error. In this chapter, we discussed how to
formulate this problem within a state space framework and how to use optimal
control to design the command tracking control system. In Chap. 2, we discussed
the excellent frequency domain properties of LQR controllers. For our robust
servomechanism controllers, we have these same excellent properties.

One of the key takeaways from the chapter should be the development of design
charts for selecting numerical weights in optimal control problems. It is very easy to
use too large of numerical weightings in the LQR performance index, and these
large weights would lead to high gains. It is critical to be able to determine the
bandwidth that is needed in the design to meet performance requirements and not to
drive the control actuation system too hard.

3.5 Exercises

Exercise 3.1. A linearized suspended ball model is described by
. 0 1 0
[0 o[

(a) Use state feedback to stabilize the system producing closed-loop eigenvalues at
-1, —1/2.

(b) The ball position x; can be measured using a photocell, but the velocity x; is
more difficult to obtain. Suppose, therefore, that y = x;. Design a full-order
observer having poles at —4 and —5 and use the observer feedback to produce
closed-loop eigenvalues at —1/2, —1, —4, —5.

(c) Repeat (b) using a first-order observer with pole at —6. Give a block diagram
showing the controller as a single transfer function.

(d) Repeat this same design problem using the robust servo approach, obtaining
integral control.
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Exercise 3.2. Consider the design of a longitudinal (pitch-plane) autopilot. Using
the robust servo formulation, design a pitch autopilot commanding a constant
angle-of-attack o. Use the following dynamic model as the nominal plant model:

)=l ol [6]+ L)

and use data for £ = —1.21; £ = —0.1987; M, = 44.2506; (M = —97.2313).

(a) Design the autopilot to track a constant angle-of-attack command. Use the LQR
approach outlined in Sect. 3.2.
(b) Design an autopilot to track a sinusoidal angle-of-attack command.

Exercise 3.3. Consider the longitudinal dynamics of a transport aircraft as given in
Chap. 1, Exercise 1.2. Design a robust servo LQR control to track a constant speed
command and a constant angle-of-attack command.

Exercise 3.4. Consider the lateral-directional dynamics of a transport aircraft as
given in Chap. 1, Exercise 1.4. Design a robust servo LQR control to track a
constant stability axis roll-rate p, command (see Eq. (1.22)). Assume oy = 6deg.
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Chapter 4
State Feedback H,, Optimal Control

4.1 Introduction

Since control theory became an engineering discipline, mathematicians and
engineers have searched for control system design methods that would simulta-
neously satisfy stability, performance, and robustness requirements in a single
design step. In the 1980s, this problem was posed for multi-input multi-output
(MIMO) systems and the design method called H,, optimal control emerged. This
method allows the engineer to design, using state space models, a controller that
satisfies important frequency domain requirements, often referred to as loop shap-
ing. These requirements include shaping the sensitivity function S(s), complemen-
tary sensitivity 7(s), the control activity U(s), the loop gain L(s), and its associated
crossover frequency w, (rad/s).

In flight control systems for manned and unmanned aircraft configurations,
robust performance and stability requirements necessitate the use of optimally
designed flight control systems to achieve stability, to command tracking perfor-
mance, to minimize control effort, and to be robust to inaccuracies in the model
description. Robust performance requirements are generally driven by high maneu-
ver rates needed for agile flight. Robust stability requirements are often related to
large flight envelopes and uncertainties in the plant dynamics created by uncertain
aerodynamics, actuation, and flexible body dynamics.

H,, optimal control allows the control system engineer to address these challenges
in the design of the flight control system. The topology of a general H,, controller
design problem is shown in Fig. 4.1. A state space model for the plant is

X =Ax+ Bu+Ew
z=Cx+Diu+ Dyw (4.1)

where x € R™ is the state, u € R"™ the control, w € R™ the exogenous disturbance,
and z € R™ a collection of variables to be regulated. The design goal is to minimize
the regulated variables z in response to the exogenous input w while providing

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 73
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Fig. 4.1 H_, optimal control
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internal stability. This is equivalent to minimizing the infinity norm of the transfer
function matrix. If all the states are available for feedback, then the resulting H,
problem is referred to as a full information feedback problem. The solution results
in a feedback compensator whose feedback gains are calculated by solving a single
algebraic Riccati equation.

The state space solution of linear H,, optimal control problems can be found in
Doyle et al. [1]. This same problem of reducing the H,, norm of a closed-loop
system has been viewed as a two-person zero-sum differential game in Basar and
Bernhard [2], where the solution is related to certain algebraic Riccati equations.
This approach for nonlinear systems has been pursued in Basar and Bernhard [2]
and in Helton [3]. For nonlinear systems, the Riccati equation is replaced with
a particular Hamilton—Jacobi equation known as Isaacs equations ([4], p. 67,
Eq. (4.2.1)). This type of optimal control is referred to as nonlinear H., and/or £,-
gain optimal control. A design example can be found in Wise and Sedwick [5].

We begin with a review of common norms for signal and systems, proceed to
show how to engineer both stability and performance specifications in the fre-
quency domain, and then demonstrate how to achieve loop shaping using
frequency-dependent weights. The loop shaping ideas presented here are very
similar to using lead-lag filters, low-pass filters, notch filters, etc., from classical
control theory. If the reader is not familiar with frequency domain analysis, then
Chap. 5 should be reviewed prior to working through this chapter. Once an
understanding of how the state space design model is engineered, the full informa-
tion state feedback controller is derived. A flight control design example using an
unmanned aircraft pitch autopilot is presented to show how to implement the
concepts of this chapter.
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4.2 Norms for Signals and Systems

In control system design, we are usually concerned with the *“size” of certain signals
within the system. These signals may be commands, errors, states, outputs, or
internal variables within the dynamics. Consider piecewise continuous scalar
signals u(¢) which map (—oo, c0) to (—o0, 00). Define the 1-norm, 2-norm, and
oo-norm as

ful = | lutolas
= %
lull, = j (o)t
. = sup ()| 42)

Suppose u is a current through a 1-ohm resistor. Then, the power is equal to 1,
and the total energy is the integral of u, which is the norm ||u]|?.

4.2.1 Power Signals

The average power of a signal is the average of its instantaneous power. The
average power of u is

u*(1)dt (4.3)

If this limit exists, then the signal is called a power signal, and we denote the
limit as pow(u), given as

T 2
1
pow(u) = Tlgrolo 2T J u?(t)dt 4.4)
-7

T 2
The pow(u) = (Tlirrgc % JT u?(t)dt | isnot anorm. It does not satisfy the axiom
that |Ju|| =0 — u(t) =0 for all ¢ € (—oo,00). Nonzero signals can have zero

average power.
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Example 4.1 If ||u||,<oo, then pow(u) = 0. Consider ||u||,<oo, then

T

1, 1o

— Hndr < — 4.5

o | de< i @5
-T v

—0 T—oo

Since ||u||3< oo, taking the limit T — oo yields pow(u) = 0.
Example 4.2 1f |Ju|| ., <oo, then pow(u) < |Ju|| . . Using (4.5), we get
T T T
o | <o [ luar = g [ =l o
-7 T T

4.2.2 Norms for Systems

Consider the norms for stable scalar transfer functions in which

1

T T T

1 2 2 |1 2

or | w0 < o | Tl =l | e =
-T -T -T

The convolution response of the system is
y=Gu — y@) = J g(t—tu(r)dr 4.7)
—00

Typical terms for the transfer function are:

e G stable — that G is analytic in the closed RHP (Re s > 0).

» G proper — G(jo) is finite (order of the denominator > order of numerator).
G strictly proper — G(joo) = 0 (order of denominator > order of numerator).
+ G(joo) = 0 biproper — G and G~ are both proper.

From Parseval’s theorem, for a stable G, we have

2 S 2

100
6= (55 [ 16Uertan) = | e0a) =gl @s)

—00 —00
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Table 4.1 Output signal u(t) = o(t) u(t) = sin(wr)
norms for stable transfer
functions with specific input [yl Gl o0
signals
[yl 6]l |G (jeo)]
pow(y) 0 LG ()|

For a stable G, || G||, is finite if and only if G is strictly proper with no poles on the
Jw axis. For a strictly proper G with no poles on the jo axis, the ||GH§ can be
expressed as

00 Jjoo
1 . 1 1
613 = o J G(jo) P = - J G(=5)G(s)ds = 5 $G(=s)G(s)ds
—00 —joo

(4.9)

which can be evaluated using residues of the transfer function. ||G|| ., is the peak of
the Bode plot of G. || G|| , is finite if and only if G is proper with no poles on jw axis.
Also, there is a sub-multiplicative property of the co-norm: |GH|| , < ||G||.o[|H]|
which allows us to bound the combined system via norms on its elements. The
above norms for signals and systems allow us to form and understand the amplifi-
cation or attenuation in the responses of systems and signals of interest.

If we know how big the input signal u is, how big will the output y be?
The table below illustrates this norm relationship for a stable strictly proper G
(Table 4.1).

Example 4.3 The (1,1) table entry above is formed as follows:

90 = [ ste—ou@dr = [ glr- o= | g0z = g0
¥l =G, = lell, (4.10)

Suppose u is not fixed as in the above table but can be any signal with 2-
norm < 1. The result is often called the system gain and is equal to ||G||,. The
following table illustrates the response for finite 2-norm, co-norm, and pow signals
(Table 4.2):
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Table 4.2 Output signal

[[ull, llell oo
norms for stable transfer pow(u)
functions with specific input
Signals HYHZ HGHx S o
1]l oo IGll IGll, 00
pow(y) 0 < Gl Gl

Example 4.4 The (1,1) table entry above is formed as follows. For [ju|, < 1, we
want [|y][,:

U T oo 2 U e
IylB= 5 | 1660 Ptio)Pdo < 61 | lutio)Pdo = |61 ul?

4.11)
4.2.3 Computing Norms for Systems
For single-input single-output linear-time-invariant systems
X =Ax+ bu
y=cx (4.12)

the transfer function is G(s) = c(s/ — A) 'b. If the system matrix A is stable, the
matrix exponential

eAt:1+tA+§!A2+"' (413)

converges uniformly in time. Let
o0
P= J AbbT e dr (4.14)
0

then
AP + PAT +bbT =0 (4.15)

and the 2-norm of G is given by

1/2
1G]l = (cPc")" (4.16)
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Fig. 4.2 Block diagram of a w o+ u
linear closed-loop system " G
+i
+
K 2l
+
Proof.
(1) =ce'b
IG5 = J ce'bbTeN Tdr = ¢ J bb eV "dec” = cPcT (4.17)
0 0
4.2.4 Well-Posedness and Stability
Consider the system interconnection shown in the block diagram of Fig. 4.2.
The loop equations for the system shown in Fig. 4.2 are
w=u—-K
Y (4.18)
d=y—Gu

Arranging inputs and outputs into a vector yields

i =1 7L a

Solving for the outputs yields

-1
BT e
———

Suppose G and K are proper, and let H denote the closed-loop transfer function
matrix. In this case, the feedback system is well posed if and only if

det(I — G(00)K(20)) £ 0

The system is internally stable if and only if H is stable.
Proof.

—-K I 0 I —-K
det[_G / ]—det{_G I—GK] det{o ! ]—det[I—GK] 4.21)
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So, it is easy to see that the closed-loop transfer function H will be proper if and
only if det(/ — G(oc0)K(00)) # 0.

4.3 Stability and Performance Specifications in the Frequency
Domain

Classical control system design methods using transfer functions were focused
around achieving certain frequency response characteristics, viewed from either
Bode, Nyquist, or Nichols charts. For single-input single-output systems, these
classical methods easily incorporated command tracking performance, stability
margin, and plant roll-off design features that achieved the desired system response
characteristics. When control system design using state space methods was
introduced to address multi-input multi-output control design challenges, one of
the complaints raised about the design methods was the lack of focus, or attention,
toward achieving frequency domain properties. In this section, we will discuss how
to achieve frequency response design goals within a state space format. Readers not
familiar with frequency response analysis should review Chap. 5 before proceeding
into designing controllers using H., optimal control.

Consider the control system shown in Fig. 4.3. For this system loop transfer
function, the loop gain at the plant input L(s) = K(s)G(s) is a square matrix that has
dimension equal to the number of inputs for the system, with units equal to those
variables in the control vector u. Figure 4.4 illustrates frequency domain
requirements for L(s).

In order to track commands at low frequency, the loop gain must have sufficient
magnitude. In order to be robust to high-frequency noise and unmodeled high-
frequency dynamics, the loop gain must roll off and be sufficiently small. In the
frequency band between these conflicting requirements is where the loop gain
crosses 0 dB and defines the loop gain crossover frequency, w,. As illustrated in
the figure, the singular values of L(s) are ¢;(L), with ¢(L) and (L) denoting the
minimum and maximum, respectively. We refer to the frequency at which (L)
crosses 0 dB as the loop gain crossover frequency ..

For SISO systems, L(s) is a scalar with singular value ¢(L) = (L) = |L|. Large
gain at low frequencies would be obtained by using a large proportional gain and/or
integral control (type 1 control). Roll-off at high frequencies would be obtained by
using low-pass or elliptical filters, depending upon the amount of roll-off needed.

Stability margins would be computed from L(s) to indicate the robustness of the
design. For MIMO systems, singular value margins are computed from the sensi-
tivity S(s) and complementary sensitivity 7(s).

Command tracking performance can also be viewed by examining the sensitivity
function S(s), given by

e(s) = (I+L(s))""r(s) = S(s)r(s) (4.22)
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Fig. 4.5 Singular value frequency response requirements for the sensitivity function

Figure 4.5 illustrates singular value frequency response requirements for the
sensitivity function S(s).

At low frequency, where L(s) needs to be large, S(s) needs to be small. At high
frequencies where L(s) needs to be small, S(s) is near unity. From Chap. 5, we know
that stability margins are determined from the near singularity of the return differ-
ence (I+L=3S") as measured by its minimum of g(/ + L) versus frequency,
which equates to the peak of the sensitivity, or [|S||.,. We know from the Bode
integral log theorem that as we push the sensitivity lower in magnitude to achieve
faster response, the peak pops creating a system that is more sensitive and less
stable.

The complementary sensitivity 7(s) is defined as
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Fig. 4.6 Singular value Complementary

frequency response Sensitivity Peak Resonance
requirements for the o (T

complementary sensitivity A Roll off plant
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7
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Roll off plant for robustness to noise,
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y(s) = (I + L) "Lr(s) = T(s)r(s) (4.23)

Figure 4.6 illustrates the complementary sensitivity function 7(s) singular value
frequency response requirements.

This is also known as the closed-loop transfer function. At low frequencies
where the loop gain is large, 7(s) is near unity. At high frequencies where the
loop gain must roll off to be robust to high-frequency noise and unmodeled
dynamics, T(s) is small. At the peak of T(s), ||T||.,, the closed-loop system has a
resonance in which frequencies at the peak are amplified by the system. If we were
to approximate the system with an equivalent second-order system, the peak
indicates low damping. This indicates that the dominant poles of the system are
close to the jw axis.

The control activity is amount of control used in responding to commands and
rejecting disturbances. In general, it is desirable to minimize control usage at all
frequencies, making sure that the actuators responding to the control signals are not
position or rate saturated. In the frequency domain, constant weight on penalizing
the control activity is usually used.

4.4 Loop Shaping Using Frequency-Dependent Weights

Figures 4.4, 4.5, and 4.6 show how to shape the loop gain, sensitivity, and
complementary sensitivity to achieve command tracking performance, robustness
to high-frequency noise, and unmodeled dynamics, as well as acceptable stability
margins. These concepts are central to designing H,, optimal controllers. The
design procedure minimizes the oo-norm of a system response matrix. This
response matrix contains a frequency-weighted sensitivity, complementary sensi-
tivity, and control activity. The procedure for building a state space design model is
straightforward.
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Fig. 4.9 Process for shaping the complementary sensitivity function through a shaping filter

The weighting filters used to shape the loops in the H., optimal control design
should be selected to be minimum order. Each state in the weighting filters adds a
state to the controller. In gain-scheduled flight control applications, high-order
controllers can introduce transients in the response as the scheduling variables
change. Thus, low-order controllers are typically desirable.

Consider the block diagram shown in Fig. 4.7 for the plant model in (4.1). The
scalar variable z; is a weighted error variable to be regulated. The idea is to weight
the error response to a command, e = Sr, with a weighting filter W, that is the
inverse of the desired shape for S, so that when the ||WS||,, is minimized, it will
shape S. Figure 4.8 illustrates this design process.

The second regulated variable in Fig. 4.7 is z, which is the weighted comple-
mentary sensitivity. Figure 4.9 illustrates the design process for shaping the com-
plementary sensitivity.
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The third regulated variable in Fig. 4.7 is z3 which is a weighted control activity.
This variable is multiplied here by a constant to penalize control activity at all
frequencies. If it was needed to penalize some frequencies more than others, the
process for selecting the weighting filter would be similar to that shown in Figs. 4.8
and 4.9.

The numerical choice of weighting filters will change with each application.
Designing these filters is often difficult, with the degree of difficulty being compa-
rable to selecting lead-lag filters in classical control design for improving gain or
phase margins. Figure 4.10 illustrates a typical sensitivity frequency response with
low-frequency command tracking and stability margin requirements and a typical
first-order weighting filter for achieving the shape. The low-frequency behavior of
W demonstrates an integrator property with a slope of 20 dB per decade. The gain
K in W is chosen to produce a magnitude of W of —3 dB at the desired loop gain
crossover frequency .. The zero in W is chosen at the desired w.. The —3 dB
magnitude will limit the peak of S (||S||,). thus producing adequate stability
margins. These design rules and model for W can be used to shape S and keep
the order of the weighting filter to a low number.

Figure 4.11 illustrates a typical complementary sensitivity frequency response
which constrains the peak (peak resonance) and adds roll-off for robustness to
uncertain and unmodeled high-frequency dynamics. The first-order weighting filter
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used here is similar in shape to a lead-lag filter. The low-frequency behavior of W
demonstrates a flat profile versus frequency which will constrain the peak reso-
nance. The zero in Wy can be chosen smaller than the desired w,, with the gain K
chosen so that the |Wr| is 0 dB at w.. Some iteration of this may be needed to
converge and obtain a desirable constraint for the peak resonance. The pole in Wy is
chosen somewhat arbitrarily and should be chosen high enough in frequency to
provide the minimum attenuation needed in the high-frequency range. One should
not make it too high in frequency so as to keep the digital implementation (via a
computer) reasonable.

4.5 State Feedback H,, Optimal Control

In this section, the state feedback control law is synthesized using an algebraic
Riccati equation approach called y-iteration. Consider the following linear-
time-invariant model

X =Ax+ Bu+ Ew
z=Cx+Du+ Dw (4.24)

and cost function
| T
J(u,w) = 5 J (Z"z = y*w'w)dr (4.25)
o

where y > 0 and with £y, xy given and T, x(T) free. Our goal is to find the optimal
control (minimizing control) #* and maximizing disturbance w* such that
J(W,w) <Jw,w') < J(u,w") (4.26)

Examine the response z in (4.24) from the exogenous variable w

2 2
TZW”oo”WHRMS 4.27)

2
HZ”RMSS |

where T,,, is the closed-loop transfer function model from w to z. Choose a positive
y such that y > ||T,,|| ... Then, from (4.27),

2l rass — V2HW||RMS <0 (4.28)
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Using this 7y, substitute (4.24) into (4.25) to obtain

T
1
Jzzfywwdr

1
=3 J ([Cx +Diu+ Dzw]T[Cx +Dyu + Daw] — VZWTW)dT
fo

J+

r [ X'C"Cx+ 2" [CTD, CTDZ][

S <

1
== d 4.29
2J MT p'D, DD, {u} f (429)
“\ lw] |DID, DIDy -y ||w
Let
S=[c'p, CTpy],R=|PiPr DiDx | | (4.30)
! 2b DID, DID, 1| w :
Then, (4.29) becomes
| T
Jw,w) =3 J (x"CTCx + 2x"Sii + " Rit)dx (4.31)

fo

which is an LQR problem that has cross terms between the state x and extended
control . Next, rewrite the plant model in (4.24) using the extended control as

% = Ax + Bii (4.32)
where B = [B E]. We can write the Hamiltonian for this LQR problem as
H =2 ("CTCx + 24" Sii + i Ri) + p” (Ax + Bil (4.33)
The necessary condition for the optimal control &* is
VH; =0=Ri+STx+B i (4.34)
Solving for the optimal #* gives

i = —R (sTx + éTp) (4.35)
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The differential equation for the costate is
p=—-VH,=—-C'Cx—A"p — Si (4.36)

with p(T) = 0. Substituting (4.35) into (4.32) and combining with (4.36), we can
write the Hamiltonian system as

X A —BR'B" ][x
‘| = ~ 437
[p] [—CTC+SR1S _AT +SRBT] M (4.37)

The next step is to manipulate this first-order differential equation to eliminate
the costate p and create a Riccati equation whose solution will give (4.35). The
solution to (4.37) is derived from the state-transition matrix. Assume the state-
transition matrix for (4.37) is

¢XX(T’ t) (b.l’ (T7 t)
L= (1,0) ¢(T.0) (4-38)

Then, p(T) = ¢, x + ¢,,p. Solving for p yields

P = px =Px (4.39)
N——
P
Differentiating results in
p =Px+Px (4.40)
From (4.37), we have
Px+ Pi= (—C"C + SR™'S)x + (—AT + SRET) p (441)

Substituting for x using (4.32) and replacing p using (4.39) and factoring out x on
the right yields the Riccati equation

—P=PA+ATP+CTC— [P+ SR [B'P+ 5] (4.42)
whose solution P is used to form the state feedback control law as

i=—-R"(B"P+S")x (4.43)
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For the infinite time problem, (4.42) becomes an algebraic Riccati equation
(ARE). The ARE is used in most applications. The following theorem summarizes
the assumptions needed for the problem to be well-posed.

Theorem 4.1 [1] Consider the linear-time-invariant system described in (4.24)
where x € R™, u € R"™, w € R™, and z € R™. Assume:

1. (A,B,C,Dy) has no zeros on the jo axis.
2. (A, B) stabilizable. |
3. D; is injective ((DlTDl)_ exists).

Then, the following statements are equivalent:

1. There exists a state feedback control # = —K.,x such that the closed-loop
system is internally stable and |7, .. < 7.
2. DID, < 721 and there exists a P > 0 that solves the following ARE:

T -1

B'P+D'C| |D'D, D'D B'P+D'C
PA+ATP+CTC— |, 9 e N B
E'P+DIC| |DYD, DID,—y*1| |ETP+DIC
(4.44)
and the optimal control u is
u=/[I, Oli=—[I, OR'(B'P+S")x=—-Kyx (4.45)

4.6 Controller Design Using y-Iteration

In this section, we build a control design model that embeds the sensitivity,
complementary sensitivity, and control activity weighting filters from Sect. 4.3
into a state space model and then solves for the state feedback gain matrix (4.45)
using a method called y-iteration. The design model needs to be of the form of
(4.24). Define the regulated variables in vector z to comprise sensitivity, comple-
mentary sensitivity, and control activity variables.

|

From Sect. 4.3, the weighting filter W, should be designed to be the inverse of the
desired loop shape for S(s), the weighting filter W should be designed to be the
inverse of the desired loop shape for T(s), and the control activity penalty to
penalize control activity in the desired frequency range. To build the H,.-controller

— Sensitivity— to track commands.

IS IS S |
©

} «—— Complementary Sensitivity — to roll-off plant, limit bandwidth.

= «— Control Activity — minimize control usage.



4.6 Controller Design Using y-Iteration 89

state space design model, the plant and weighting filters all need to be represented
in a state space format. The plant dynamics are modeled as

X=A,x+B,u
e (4.46)
y=Cyx+Dyu
where y is the variable to be commanded. The sensitivity weighting filter Wy is
modeled as

Xy = Agxy + Bg(y — r

! s s(y—r) (4.47)
21 = Csxs + Ds(y — 1)

where r is the command. The variable z; is the weighted sensitivity. The comple-

mentary sensitivity weighting filter Wy is modeled as

xr = Arxr + Bry (4.48)
Zy = (& X1 + DTy
where the variable z, is the weighted complementary sensitivity. The control
activity model must be selected in such a way to satisfy the requirement that D,
matrix from (4.24) is injective. How to select this variable is demonstrated in
Example 4.5.
The y-iteration algorithm used here is summarized in the following five steps:

Algorithm 4.1 H_, Control y-Iteration Method

1. Pick a starting y larger than what is anticipated as the optimal . This will start
the binary search used to converge to the optimal value.

2. Form the LOR matrices using y from (4.31).

. Solve the algebraic Riccati Eq. (4.44) for the matrix P.

4. Check that P> 0 and that Re(2(AcL)) <O0. If these tests pass, reduce y, and go
back to step 2. If the test fail, increase 7y, and go back to step 2. A minimum step
size needs to be established and used to determine when )y has converged to V.

5. Once the bisection search has converged to a V,,,, form the feedback control
using (4.45).

W

When using the above process, care must be exercised as y approaches . It is
typical that the R matrix in (4.44) becomes ill-conditioned as y approaches y,i,. The
ARE solvers in most commercial tools are sensitive to this, and the resulting P > 0
matrix actually does not solve the ARE. This is easily tested by forming (4.44) and
computing the norm on the result. The result should be a zero matrix, with 2-norm
less than 10>, We have found that once the algorithm has converged to Yy, it is
prudent to increase from the 7., value slightly to reduce the feedback gain
magnitudes and improve the accuracy of the solution to the ARE. We will demon-
strate this in the upcoming example.
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4.6.1 Summary

Example 4.5 H., Flight Control Design Consider the design of the longitudinal
flight control system for the unmanned aircraft shown in Fig. 4.12.
The pitch-plane dynamics are given as

. Za Z(S
=2u+225
o Voc—i—v +4q
G =M,0+Mso+Myq (4.49)

It is desired to design an acceleration command r = A, flight control system. We
will assume that the command is constant, and we will design a H., controller using
full state feedback. The feedback control law will consist of a constant gain matrix
K. at a single flight condition and will assume gain scheduling will be used to
interpolate the gains between conditions (other design points). Normal acceleration
A.(ft/s*) is given by

A, =-Vy=Z,0+Zs0 (4.50)
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Fig. 4.12 Unmanned aircraft
We can introduce A, directly as a state variable by replacing the angle-of-attack

o state. Differentiate Eq. (4.50) to form the differential equation for A, and then
substitute for & from Eq. (4.49). This produces

A: =Z,A. +VZ,q + VZ5de

. M M,Zs
q:VZ“ A_,+qu+(M5— Z“ *’)56 (4.51)

Next, introduce a second-order actuator model for the elevator. This is given as

Oe = —2La0a0¢ + ,2(3¢ — Oc) (4.52)

where 0 is the angular position and 6, command. Combining Egs. (4.51) and (4.52)
forms our plant model written in state space form as

A. Z, VZ, 0 VZs A,
Q| _ | Mvze M, (Ms-2E) 0 q
Je 0 0 0 1 de
Je 0 0 —wg? —28,wq] L%
0
w1 9 s, (4.53)
0
a)az

Assume each of the state variables is available for feedback. Equation (4.53)
represents the aircraft’s dynamics for the plant model expressed in (4.46). This
model needs to be combined with the sensitivity weighting filter, complementary
sensitivity weighting filter, and the control activity penalty. To satisfy Theorem 4.1
requirements for D, to be injective, the control activity is penalized by weighting
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the variable & in (4.53) as the control activity. This defines the third regulated
variable z3 expressed as

23 = Wed, (4.54)
where 0 is formed as
oe=1[0 0 0 1]i=Cs(Apx+Byu) (4.55)
Cs
which gives z3 as
23 = WcCi(Apx + Byu) (4.56)

To form the H,, controller design model, we combine the plant model (4.46)
with the sensitivity weighting filter (4.47) and complementary sensitivity weighting
filter (4.48) as

i A, 0 07[x B, 0
i | =|-BsC, As O ||xs|+ |—BsD, |6+ |Bs|r

ir| | BiC, 0 Ar]|xr BiD, 0

2] [-DsC, Cs 077« —DsD, Ds

n|=| DiC, 0 Cr||xs|+| DD, |6+ |0 |r (457
] [WeCA, 0 0| |xr WcCeB, 0

which is of the form of (4.24). For this flight condition, the plant model data is

Z, = — 1.05273(1/s);
Zs = — 0.0343(1/s);
—2.3294(1/s%);
M, = —1.03341(1/s%);
—1.1684(1/s%);
V =329.127(ft/s);
W, =21"13.(rad/s);
{, =0.6; (4.58)

s
Il

S
Il

The sensitivity and complementary weighting filter designs are created by first
defining (selecting) the desired loop gain crossover frequency .. For this flight
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condition, we will set w. = 2(Hz). The sensitivity weighting filter coefficients from
Fig. 4.10 are formed by choosing o, and the gain K. W from Fig. 4.10 is

K 1
Ws(s) = @ (4.59)
The time constant is computed as
1 .
T= o (w in Hz) (4.60)
The gain K is chosen to be
K= 0-5 (4.61)
T
The state space model for (4.59) is
(As,Bs,Cs,Ds) = (0., 1.,6.2832,0.5) (4.62)

The blue curve in Fig. 4.13 shows the frequency response for (4.59). The integral
action at low frequency will weight S(s) to provide the desired command tracking.
The complementary sensitivity weighting filter from Fig. 4.11 is

K(tys+1)
W S) =— 4.63
r(s) (tps+ 1) (4.63)
where
= e (we in Hz)
1p =0.005(s)
K =0.707 (4.64)
The green curve in Fig. 4.13 shows the frequency response for (4.63).
The state space model for (4.63) is
(Ar,Br,Cr,Dr) = (=200.,1., — 2109.1,11.252) (4.65)

This model was formed by using the #f2ss command in Matlab. The weight that
penalizes the control activity, W, from (4.56) is

We=0.1 (4.66)
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Bode Diagram
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= 2.549781744, the solution

= 1.8849 x 1077 with the feedback gains:

Frequency (rad/sec)
which shows that the ill-conditioning has

Acxe +Bery + Beor
u= CC-XC + D(:ly + D02r

—730137814.4 44949185 .4]
norm

Ko = [-210764319.5 14676259029.5 — 3206078184.0 — 29261950.9
Ko, = [-0.92788164.7534 — 13.1623 — 0.11795 — 3.210460.151197] (4.68)

The H,, state feedback controller can be implemented in the following state

Now that the desired loop shapes have been engineered, the y-iteration process is
space format:

used to form the state feedback control. The binary search algorithm was started
with y_max = 20 and y_min = 1. The algorithm converged with the final y of
2.544781744 (it is important to include at least 9 decimal places so that results can

be reproduced by others). For this minimum 7y, the six feedback gains are

Fig. 4.13 Sensitivity, complementary sensitivity, and control activity weighting filter frequency
This penalty is plotted in Fig. 4.13 as the red curve.

responses
which are too large to be considered for implementation. The Riccati matrix P

was substituted back into the ARE and the 2-norm of the sum computed. The

destroyed the accuracy. By increasing y slightly to y

2-norm = 301572105986.4265,
becomes accurate with 2-
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Fig. 4.14 States of the system responding to a unit acceleration step command

with

0wl oo oo o [V

Cc Dei Do [—K (5 : 6)] [~Koo(1:4)] 0] ]

= B —;)oo] [i 8 g g] [_01] (4.70)

[~3.21050.1512] [—0.9279 64.7534 —13.1623 —0.1179]  [0]

|:Ac Bcl Bc2:|_

where x. = [xr xS]T, y= [Az q b ('SF]T, r=A,,and u = ..

To evaluate the design, a step simulation of the closed-loop system was
performed. The states A,, ¢, J,, and J, are plotted versus time in Fig. 4.14. The
controller is a second-order system (one state for W and one state for Wy). Note that
there is no overshoot to the unit command. Using this approach flight condition, the
response is quick without the use of large gains. This simulation can be compared
with the robust servomechanism design Example 3.5 from Chap. 3. We see that the
Hoo control design as responses with a slight overshoot in the acceleration response
with an increase in the nonminimum phase undershoot at the initiation of the step
command.
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4.7 Conclusions

One of the most important developments in the 1980s was H,, optimal control and
the understanding it gave engineers in performing trades between time domain
requirements and frequency domain requirements. We presented the full informa-
tion state feedback H,, optimal control, but output feedback versions also exist. We
refer the student wishing to explore output feedback to see [2, 6].

4.8 Exercises

Exercise 4.1.  Consider the design of a longitudinal (pitch-plane) autopilot. Using
H,, state feedback, design a pitch autopilot commanding angle-of-attack o. Use the
following dynamics model as the nominal plant model:

3=l ollal [ ]

and use data for £ = —1.21; £ = —0.1987; M, = 44.2506; M; = —97.2313. Add

second-order actuator dynamics for the elevator. Design the autopilot to track a
constant angle-of-attack command. Use the y-iteration approach outlined in Sect. 4.5.

Exercise 4.2.  Consider the longitudinal dynamics of a transport aircraft as given
in Chap. 1, Exercise 1.2. Design a H., state feedback controller to track a constant
speed command and a constant angle-of-attack command. Use the y-iteration
approach outlined in Sect. 4.5.

Exercise 4.3.  Consider the lateral-directional dynamics of a transport aircraft as
given in Chap. 1, Exercise 1.4. Design a H, state feedback controller to track a
constant stability axis roll rate p, command (see Eq. (1.22)) and regulate sideslip
angle f. Assume oy = 6deg.
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Chapter 5
Frequency Domain Analysis

5.1 Introduction

Frequency domain analysis methods are among the most useful tools available for
the development of control systems. When designing a control system, it is very
important to understand the stability and robustness properties of the design. For
linear systems, these properties are best analyzed, displayed, and understood in the
frequency domain. For linear single-input single-output (SISO) systems, frequency
domain methods for analysis, as well as techniques for synthesis of a controller,
have been developed and used in industry since the 1950s. These analysis and
design methods are often referred to as classical methods and include techniques
like root locus, Bode, Nyquist, and Nichols charts. For multi-input multi-output
(MIMO) systems, the analysis methods used are typically extensions of the
methods used for SISO systems. In order to understand the methods for MIMO
analysis, one should have a good grasp of classical SISO frequency domain
methods.

Since the early 1980s, control system analysts have been focused upon deter-
mining the stability and robustness of MIMO feedback designs in the presence of
uncertainties. In particular, this focus has been upon frequency domain techniques
using methods which employ singular value frequency responses. These singular
value-based methods of analysis join, and in some cases replace, the classical Bode
and Nyquist techniques with multivariable generalizations and extend many
modeling uncertainty capabilities. They have become widespread in industry as
today’s systems require MIMO analysis. This chapter presents an overview of the
theory and methods available, connecting the classical and multivariable analysis
methods and tools, and highlights aerospace control applications and analyses in the
frequency domain.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 97
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_5,
© Springer-Verlag London 2013
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Returned Injected
Signal Signal
ro+ e u, u; y
K(s) G(s) >
T Controller Plant

+ Scalar Variables

* K(s),G(s)Transfer Functions

Fig. 5.1 Single-input single-output KG block diagram

5.2 Transfer Functions and Transfer Function Matrices

Many of the frequency domain analysis models for MIMO systems are natural
extensions of transfer functions used to analyze SISO systems. However, unlike
these transfer functions, MIMO analysis models have different sizes depending
upon where the loop is broken for analysis. Consider the SISO system shown in the
block diagram of Fig. 5.1.

The loop gain for this system can be calculated by breaking the loop at the
control generation point (plant input) and injecting a signal u;. The returned signal is

u, = —K(s)G(s) u; (5.1)
L(s)

in which L(s) is the loop gain transfer function. Differencing the injected signal u;
and the returned signal u, results in

ui —u, = u; + K(s)G(s)u; = (1 + K(s)G(s))u;
(1+ L(s))u; (5.2)

which is the return difference for the loop. We will find later in this chapter that the
return difference matrix,I + L(s), plays a very important role in the development of
stability robustness analysis tests for MIMO systems. The error transfer function for
this system is

w1
r(s)  14+K(s)G(s) S(s) (5-3)

where S(s) is the sensitivity function, which describes the error dynamics. Note that
the sensitivity is the inverse of the return difference. The closed-loop response to a
command input is
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Returned Injected

Signal Signal
ro+ e K(s) Ho i G(s) U .
n, Xn, n, X n, v
T Controller Plant
+ Vector Variables
+ K(s),G(s)Matrices
Fig. 5.2 Multi-input multi-output KG block diagram
s K(s)G(s

r(s)  1+K(s)G(s)

where T(s) is the closed-loop transfer function. The transfer function 7(s) is also
called the complementary sensitivity, since S(s) and T(s) satisfy the identity

S(s) +T(s) = 1 (5.5)

Now, consider the multivariable equivalent of Fig. 5.1 as shown in Fig. 5.2. In
Fig. 5.2, the variables r,e,u;,u,, and y are vectors, with the controller K(s) a n,
x ny matrix and the plant G(s) an, x n, matrix. The figure shows the loop broken at
the plant input. The loop gain L(s) is formed using the same procedure as in (5.1)
where L(s) = K(s)G(s) is a n, x n, matrix. Forming the return difference matrix
yields

u; —up, = (I, + K(8)G(s))u; = (I, + L(s))u; (5.6)

where I,, + L(s) is also a n, x n, matrix. If this same procedure for calculating the
loop gain is applied at the output of the plant, as shown in Fig. 5.2, the return
difference dynamics are

u, — uly = (I, + G(s)K(s))u; (5.7)

which produces a loop gain and return difference matrix that are n, X n, in
dimension.

It is very important to learn that for MIMO systems, the loop gain is different at
the plant input and plant output loop break points, which is unlike SISO systems.
This dissimilarity is caused by the fact that matrices do not commute, but scalars do.
Table 5.1 summarizes the loop gain, return difference, sensitivity, and complemen-
tary sensitivity transfer functions and matrices for the SISO and MIMO systems
shown in Figs. 5.1 and 5.2.
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Table 5.1 Summary of transfer functions and transfer function matrices used in frequency
domain analysis

SISO system MIMO system (Fig. 5.2) MIMO system (Fig. 5.2)
Function (Fig. 5.1) at plant input at plant output
Loop gain L(s) = K(s)G(s) L(s) = K(s) G(s) L(s) = G(s) K(s)

= G(5)K(s)

Return difference 1 + L(s) I, +L(s) I, +L(s)
Sensitivity S(s) 1 (I, +L(s))™" (L, + L(s))_l

1+L(s)
Complementary L(s) (I, + L(s))"'L(s) (I, + L(s))flL(s)

sensitivity T(s) 1+ L(s)

" 8 a [ 4 A,

— O ki (9 —(O—| K, () — ai(s) Té(s) 2

I SIMO
Inner Rate Loop

Outer Accel Loop

Fig. 5.3 Pitch-plane dynamics and autopilot controller

Table 5.1 lists the various matrices used to analyze MIMO control systems. In
the remainder of this book, the subscript on the identity matrix indicating its
dimension will be dropped for notational convenience.

Example 5.1 Consider the linear-time-invariant (LTI) pitch-plane dynamics of an
unmanned aircraft shown in Fig. 5.3, controlled using a classical proportional-
plus-integral control architecture. The pitch-plane short-period dynamics are given
by (A, B, C, D) and can be written as

(-8 )

—
A, (Z, O Zs
[q] “lo 1} B]JFLOJ@ (5.8)
¢ D

These dynamics form a single-input multi-output system. The transfer function
matrix for the plant dynamics is
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G(s)=C(sI—A)'B+D =

A
de
) ] (5.9)

3e
which is a 2 x 1 matrix. The autopilot (controller) for this plant contains propor-
tional-plus-integral control elements in the inner rate loop closure and outer accel-
eration loop closure, given by

Ky (s) = Xal5 + @) (ss+ a:) (5.10)
and
K,(s) _Kyls+aq) (5.11)

N

with the controller transfer function matrix given by
K(s) = [Ka.(5)Kq(s)  Ky(s)] (5.12)
which is a 2 x 1 matrix. A state-space model for this controller is

X(- = Acx(: + B(:ly + Bc2r
u=Ccxc+ Doy + Depr (5.13)

with matrices given as

0 0 —Kad; 0 Kaaz
A(‘ = 5 B, = 5 B, =
Ksa, O —K.Ksa, —Kya, K.Kqa,
Cc=[K, 1];Dq =[-KK; —Kg]; Der = [K.K,] (5.14)

The loop gain at the input to the plant is

L(s) = K(s)G(s) = K, (S)Kq(s);i: K, () 5% (5.15)

which is a scalar transfer function. To analyze stability for this system, any SISO
analysis technique can be applied. If we examine the loop gain at the plant output,
then
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w
+
TN ks LY G(s) +/1\ Y

n, X n, ny X n,

z Controller Plant +v

- Vector Variables
-K(s),G(s)Matrices

Fig. 5.4 MIMO system with disturbance and measurement noise

A;

SKLOK() FE)
L(s) = G(s)K(s) = J

5, R
q
5_€KA: (S)Kq(s) 5_61(4(5)

(5.16)

which is a 2 x 2 matrix and is a singular matrix since it is the product of matrices
that are (2 x 1) x (1 x 2) in dimension. It is typical in most aerospace applications
that the plant and controller matrices are non-square. In this case, stability analysis
should be conducted at the loop break point of minimum dimension.

Figure 5.4 illustrates a LTI MIMO system with command r(¢) € R™, plant
disturbance w(¢) € R™, and measurement noise v(¢) € R™. The output response
from the system shown in Fig. 5.4 is

Y(s) =T(s)R(s) + S(s)W(s) + T(s)V(s) (5.17)

This equation shows how the output response depends upon the sensitivity and
complementary sensitivity functions. At frequencies s = jw where commands are to
be followed, we want T(s) — I, which shows that sensor noise is also passed
through the system into the output. It is not possible to reject sensor noise and track
commands at the same frequencies. At frequencies where plant disturbances are to
be rejected, we want S(s) — 0.

The error response E(s) can be formed by writing the following loop equations:

u=Ke
y=GKe+w
z=GKe+w+v
e=r+z=r+GKe+w+v
E(s) =S(s)(R(s) + W(s) +V(s)) (5.18)

which shows that to make errors in tracking commands small, we want S(s) — 0.
Equations (5.17) and (5.18) illustrate the control design dilemma faced by
engineers, that is, to make S(s) — O at low frequencies for command tracking
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and disturbance rejection and T(s) — 0 at high frequencies for sensor noise
rejection and robustness to high-frequency unmodeled dynamics. The dilemma is
that S(s) + T(s) =1 at all frequencies, and as the sensitivity is made small, the
complementary sensitivity is made unity and vice versa.

5.3 Multivariable Stability Margins

Classical stability margin analyses use frequency response methods (Bode and
Nyquist) in determining the relative stability of SISO systems. These methods
manipulate the loop transfer function of the system to derive gain and phase
margins, typical measures of relative stability. In multivariable systems (MIMO
systems), the loop transfer function of the system is a complex-valued matrix,
making it more difficult to apply the same SISO methods to determine relative
stability. The question of stability is easily answered by examining the poles of the
closed-loop transfer function or the eigenvalues of the closed-loop matrix Ay. It is
the relative stability question, that is, the gain and phase margins for MIMO
systems that is difficult.

In SISO systems, the gain of the loop transfer function is determined by
computing the magnitude of the complex-valued transfer function versus fre-
quency. For MIMO systems, the notion of gain or magnitude for the loop transfer
function matrix becomes a question of determining the “magnitude” of a matrix
versus frequency. To accomplish this task, the singular values of the matrix can be
computed versus frequency and used as a measure of its magnitude.

In this section, we are concerned with deriving stability margins for multivari-
able systems. The robust stability analysis tests and stability margins formulas
developed here are derived from application of the multivariable Nyquist theorem.
These tests and formulas are natural extensions of the SISO tests reviewed in the
previous section.

5.3.1 Singular Values

The singular value decomposition of a matrixA € C of dimension n x mis A = UZV*,
where * denotes complex conjugate transpose, and where X € R U € C"*"
and V € C"™" are unitary matrices, whose columns denote left and right singular
vectors of the matrix A, respectively. (Note the similarity to an eigenvalue
decomposition of a matrix.) Assuming that the matrix is of rank k, the nonzero
portion of the singular value matrix is
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2, 0
Y= o ol X, =diagloy -+ o] (5.19)

~

with the singular values ordered in size with ¢ = g, the largest, and ¢ = o the
smallest. The use of singular values plays an important role in analyzing the near
singularity of matrices. If A is a square singular matrix, then ¢ = 0, and it is not
invertible.

The maximum and minimum singular values of the matrix A can be defined as

_ [Ax],
o(A) = = A 5.20
( ) 40 ||XH2 || ||2 ( )
d(A) = min lAx],
N 0[]l

The maximum singular value of the matrix A (its 2-norm) represents how “big”
the matrix is or how large the “gain” of the matrix is. The minimum singular value
represents how nearly singular the matrix is. The condition number for a matrix,
k(A), is the ratio of the maximum and minimum singular values, given by

K(A) = =~ (5.21)

and is used by numerical analyst to gain insight into how invertible a matrix is.

Associated with each singular value are singular vectors that describe the
“direction” of the singular value. Consider the matrix A € C"*” with rank £ = min
(n, m). The k nonzero singular values of A, denoted as g;(A), are the strictly positive
square roots of the k nonzero eigenvalues of A*A (or equivalently AA*). This is
expressed as

ai(A) = \/Ai(A*A) = \/2i(AA*) >0 (5.22)

Each singular value has an input and output direction which can be determined

by examining the singular vectors associated with the singular value decomposition
(SVD) of the matrix. The SVD of a complex matrix A € C"*" is

A=UZV" (5.23)

where U is an n x n unitary matrix (i.e., U* = U~") consisting of orthonormal
column vectors u;
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U=[u - u] (5.24)

which are referred to as the left singular vectors of the matrix, V is an unitary matrix
consisting of orthonormal column vectors v;

V=1[vi - vu] (5.25)

which are referred to as the right singular vectors of the matrix, and X isarealn x m
matrix given by

gl

[ =]

g2

&=

(5.26)
0 0

The ¢, in (5.26) is the i-th singular value of the matrix A, with a corresponding
left singular vector u; (5.24) and right singular vector v; (5.25). It is easy to show
that

AV,‘ = O;U;
A*u,‘ = 0;V; (527)

The above equations can also be written as

A*AVI‘ = O'~2V,‘

1
2
AA™u; = oiu; (5.28)
which shows that 67 is an eigenvalue of AA* or A*A and u; is an eigenvector of AA*
and v; is an eigenvector of A*A.
Consider a square matrix A € C"*" having rank k. Using an SVD, the matrix A
can be represented using a dyadic expansion as

k
A = o1 vy + o2V + - -+ oy = E oiu;v; (5.29)
=1

The SVD of a matrix describes the gain through the matrix, with the maximum
gain equal to the 2-norm of the matrix (||A]|, = o1(A) = &(A)). In addition to the
gain, the SVD describes the direction associated with the gain. The dyadic expan-
sion in (5.29) indicates that the left and right singular vectors describe the direction
of the gain. The maximum gain through the matrix occurs with the input direction
from v, and output direction u;.
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Fig. 5.5 Singular value decomposition of a transfer function matrix
Figure 5.5 illustrates the input-to-output mapping for a general transfer func-
tion matrix G(jw) € C"". Here, the singular value expansion provides insight

into the relative gain between input-to-output channels for a transfer function
matrix.

5.3.2 Singular Value Properties

If the matrix A is invertible, that is, A~! exists, then

which says that unitary matrices preserve the singular values and ||e||, of a matrix.
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Fig. 5.6 State feedback u X
block diagram ‘ E (s — A)~!

5.3.3 Multivariable Nyquist Theory

The multivariable Nyquist criterion gives a “yes or no” answer to the stability
question. Other methods such as computing the eigenvalues of the system A matrix,
examining the poles of the closed-loop transfer function, or solving a Lyapunov
equation can also be used to answer the stability question. However, understanding
the multivariable Nyquist criterion leads to important understanding of robustness
analysis tests used to analyze model uncertainties. In addition, time delays, ¢'7, are
easily incorporated into the analysis in order to analyze MIMO systems with time
delays.

The multivariable Nyquist criterion is derived from an application of the princi-
ple of the argument from complex variable theory.

Theorem 5.1.
Let I be a closed clockwise contour in the s-plane. Let f(s) be a complex-valued
function. Suppose that

1. f(s) is analytic on I’
2. f(s) has Z zeros inside I’
3. f(s) has P poles inside I'.

Then, f(s) will encircle the origin, 0, Z — P times in a clockwise sense as s trans-
verses I'. [ ]
Let N(p,f(s),T’) denote the number of encirclements of the point p made by the
function f{(s) as s transverses the closed clockwise contour I'. If T" equals the
standard Nyquist D-contour (Dg), encircling the right half plane, and f(s) is a
rational function in s, then N(0,f(s),Dg) = Z — P.
If f(s) is factored where f(s) = fi(s)f2(s), then

N(0,fi(s)f2(s), Dr) = N(0,fi(s),Dr) + N(0,£2(s), Dr)
=(Z=P\)+(Zy—Py)=Z—-P (5.30)

Consider the feedback system shown in Fig. 5.6. The state equations for this
system are

X =Ax+ Bu

u=—Kx
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The closed-loop system is
x=(A—-BK)x
Let L(s) denote the loop transfer function matrix for this system, written as
L(s)=K(sI—A)"'B

The determinant of the return difference matrix, det[/ + L(s)], is equal to the

closed-loop characteristic polynomial divided by the open-loop characteristic poly-
nomial, that is,

det[l + L(s)] = Pui(s)

d)ol(s)
This can be shown as
¢,(s) =det[s] — A + BK]
— det[sl — A] det[1+ (slfA)*lBK] (5.31)
—_——

Go(s)

Now, using the identity

det|l,+ F G | =det|l,+ G _F
~— "~ —~ "~

nxm mxn mxn nxm

Using this in (5.31) yields
Durls) = uls) det[1 + (51 = 4)'BK]

= ¢(s)det |1 +K(sl —A)"'B
————
L(s)

= ¢, (s) det[l + L(s)] (5.32)
where ¢,,(s) is the open-loop system’s characteristic polynomial and ¢,(s) is the
closed-loop system’s characteristic polynomial. If ¢ (s) is stable (the closed-loop
system is stable), thenN (0, ¢, (s), Dg) = 0. From (5.32) stability of ¢, (s) requires that

N(0, ¢,,(s),Dg) + N(0,det[l + L(s)],Dg) =0 (5.33)

With this understanding, we can state the multivariable Nyquist theorem.
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Fig. 5.7 AM analysis model

Theorem 5.2 Multivariable Nyquist Theorem

The feedback control system shown in Fig. 5.6 will be closed-loop stable in the
sense that ¢ (s) has no closed right half plane zeros if and only if for all R
sufficiently large (radius of the D-contour)

N(0,det[l + L(s)],Dr) = —Pu (5.34)
or equivalently
N(—1,—1+det[l 4+ L(s)],Dg) = =Py

where P,y = N(0, ¢,(s), Dr) equals the number of open-loop right half plane poles.
|

The multivariable Nyquist theorem (MNT) states that closed-loop stability
requires the number of encirclements made by the determinant of the return
difference matrix locus to be equal to the number of unstable open-loop poles.
Encirclements can be counted relative to the origin (0, jO) or as in classical Nyquist
diagrams about (—1, jO).

Stability margins for multivariable systems can be derived using the MNT by
assuming that the controller K(s) stabilizes the nominal plant G(s) and that gain and
phase uncertainties are large enough to change the number of encirclements made
by the determinant of the return difference matrix locus. The assumption that the
nominal plant is stabilized by the controller tells us that the return difference matrix
encircles the origin P,; times in the proper sense. Gain and phase margins can be
computed by inserting a gain and phase variation ke’® in between the controller K(s)
and plant G(s) and solving for the gain k (with ¢ = 0) and phase 0 (with k = 1) that
destabilizes the system. To proceed in a more general manner, we consider the
stability analysis model shown in Fig. 5.7 where the uncertainties in the system
(gain and phase uncertainties) are represented in a block matrix A(s) and the
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Fig. 5.8 Nyquist Dg contour Image

s-Plane

Real

nominal plant and controller are represented in a matrix M(s). Techniques for
deriving this model will be presented in the next section.

The stability analysis question is “how large can the uncertainties A(s) become
before the system becomes unstable?”” The loop transfer function matrix L(s) for this
system is L(s) = A(s)M(s), with the return difference matrix given by I + L(s) =
I — A(s)M(s). Using the MNT, for the system to become unstable, the uncertainties
A(s) must change the number of encirclements made by the det[/ + L(s)] locus. Note
that the block diagram in Fig. 5.7 has no summing node with negative sign in most
block diagrams. Thus, the return difference matrix for this system is written / — AM.

As long as the return difference matrix / + L(s) is nonsingular (for s = jw along
the D-contour), the number of encirclements made by the det[l + L(s)] locus will not
change. This is best explained by examining the det[/ 4+ L(s)] locus as s transverses
the Dp contour. Fundamental to this approach is the assumption that the nominal
closed-loop system is stable, that is, the control design stabilizes the open-loop
system.

Assuming that the nominal closed-loop system is stable, ¢ (s) is a stable
polynomial, and that it has no right half plane zeros. Let f(s) = det[l 4+ L(s)], and
represent f (jw) with its magnitude and phase as

fjw) = If (joo)|e/*) (5.35)

as s transverses the Dg contour in the s-plane.

Consider the jow axis path A shown in Fig. 5.8, where 0 < w < +4-00. The section A
locus of f(jw) is shown in Fig. 5.9a. At low frequencies, the magnitude of f(jw) is
large due to the magnitude of L(jw). As @ — oo, the loop transfer matrix L(jw) — 0,
resulting in the det[l + L(jw)] = 1 (1,,0). Along the infinite radius path B, s = ¢¥R,
with R — oo and —% <y <%. When R — oo, L(jw)— 0. This results in
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Fig. 5.10 Counting encirclements
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Fig. 5.11 Counting encirclements

encirclements of the point (1, jO). Section C will be the complex conjugate of the
section A path. Figure 5.9b shows the entire locus and the number of encirclements V.
Figure 5.9b shows there are two clockwise encirclements of the origin.

The number of encirclements N of the det[/ + L(s)] locus must be equal to the
number of open-loop unstable poles, P, if the closed-loop system is to be stable. If the
det[l + L(s)] were equal to zero then the number of encirclements would be indeter-
minate, or at least not equal to P,,;. This is shown in Fig. 5.10. In order for the number of
encirclements to change, the det[/ 4+ L(s)] must equal zero at some frequency.
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If ¢, (s) is a stable polynomial, then P,; = 0. An example det[l 4 L(s)] locus for
this condition is shown in Fig. 5.11. In order for stable system to be destabilized by
uncertainties A, the origin must be encircled.

5.3.4 Stability Margins for Multi-Input Multi-Output Systems

Uncertainty models used for stability analysis may be categorized as unstructured
or structured. If the system uncertainty is modeled as a full single-block matrix, the
uncertainty is unstructured. If the uncertainty is modeled as a block diagonal
matrix, the uncertainty is structured. Both unstructured and structured uncertainty
analysis procedures use singular value theory to measure the size of complex-
valued matrices.

The following robustness theorems which are used to derive stability margins for
multivariable systems are derived from an application of the multivariable Nyquist
theorem. Consider the state feedback control system shown in Fig. 5.6. The basic
problem is to determine the robustness of the design in the presence of
uncertainties. This design has the state-space realization using the triple (A, B, K)
with the loop transfer matrix (LTM) given by

L(s)=K(sI—A)"'B (5.36)
We wish to determine to what extent gain and phase uncertainty within the LTM

can vary without compromising the stability of the closed-loop system. From the
previous section (Eq. (5.32)), we know that

det[l + L(s)] = (5.37)

where
¢,(s) = det[s] — A]: open-loop characteristic polynomial

¢.,(s) = det[s] — A + BK]: closed-loop characteristic polynomial

Using the multivariable Nyquist theorem, stability for this system can be stated
as follows:

The system of Fig. 5.6 will be closed-loop stable in the sense that ¢ ,(s) has no
closed right half plane zeros if and only if for all R sufficiently large

N(0,det[I + L(s)],Dr) = —Py (5.38)
or equivalently

N(—1,—1 + det[l + L(s)],Dg) = —Py (5.39)
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where Dy, is the standard Nyquist D-contour, which encloses all P, closed right half
plane zeros of ¢, (s). Note that N (by, f(s), D) is indeterminate if ¢(sg) = b, for some
So on the contour D.

The stability robustness of a multivariable system can be observed by the near
singularity of its return difference matrix, I + L(s), at some frequency s = jwy. If
I + L(s)is nearly singular, then a small change in L(s) could make I + L(s) singular.
From a single-input single-output viewpoint this is the distance from the (—1, jO)
point in the complex plane made by the gain loci L(jw) If the gain loci then
encircles the (—1, jO), point instability results. The robustness theory discussed here
gives an analogous distance measure for multivariable systems.

Application of the multivariable Nyquist theorem above is of little applicability
as a robustness indicator because the det[l/ + L(s)] does not indicate the near
singularity of I + L(s). The multivariable Nyquist theorem only determines abso-
lute stability. To determine the degree of robustness for a multivariable system, we
determine how nearly singular the return difference matrix is by computing its
singular values versus frequency.

Examining the magnitude of the singular values of the return difference matrix
will indicate how close the matrix is to being singular. This measure of closeness to
singularity is used in forming a multivariable gain margin, similar to the classical
gain margin. However, as with many matrix norms, there is a restriction on the
applicability of the singular value analysis. This restriction states that the
compensated system described using the nominal L(s) is closed-loop stable.

Classical gain and phase margins are used to measure the robustness of SISO
systems to perturbations in the feedback loop. Singular values are used in measuring
the robustness of multivariable systems. Let L' (s) denote the perturbed LTM, which
represents the actual system and differs from the nominal LTM L(s) because of
uncertainties in the open-loop plant model. Assume that L'(s) has the state-space
realization (A’, B', K’) and open and closed-loop polynomials given by

¢’ (s) = det[s] — A (5.40)

ol
¢.,(s) = det[sl — A" + B'K']

respectively. Define L(s,¢) as a matrix of rational transfer functions with real
coefficients which are continuous in ¢ for all ¢ such that 0 < ¢ < 1 and for all s € D,
which satisfies L(s,0) = L(s) and L(s,1) = L'(s). Using these definitions of the
perturbed model, we are ready to state the following fundamental robustness theorem.

Theorem 5.3
The polynomial qS:,,(s) has no zeros in the closed right half plane and the
perturbed feedback system is stable if the following hold:

1. (a) ¢,(s) and §.,(s) have the same number of zeros in the closed right half
plane.
(b) ¢,,(s) has no zeros in the closed right half plane.
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2. det[l + L(s,&)] = 0 for all (s,&) in Dg x [0, 1] and for all R sufficiently large. ®

This theorem states that the closed-loop perturbed system will be stable, if, by
continuously deforming the Nyquist loci for the nominal system into that of the
perturbed system / + L(s, £), that the number of encirclements of the critical point is
the same for L'(s) and L(s), then no closed right half plane zeros were introduced
into ¢/, (s), resulting in a stable closed-loop system.

This theorem is used to develop simple tests for different types of model error
characterizations. Just as there is no unique representation for dynamic systems,
there are many different forms for describing their modeling errors. The most
common model error characterizations are additive errors and multiplicative errors
(also described as relative or absolute errors). The classical gain and phase margins
are associated with multiplicative error models since these margins are multiplica-
tive in nature. (See Doyle [1], Table 1, for representative types of uncertainty
characterizations.)

Let A(s) denote the modeling error under consideration. The additive model
error is given by

Au(s) =L'(s) — L(s) (5.41)
and the multiplicative model error is given by
An(s) = [L'(s) = L(s)IL™'(s) (5.42)

The perturbed LTM can be constructed using Eqgs. (5.41) and (5.42). For the
additive error model, we have

L(s,e) = L(s) + eAu(s) (5.43)

and for the multiplicative error model, we have

L(s,e) = [I + eAn(s)]L(s) (5.44)

Both Egs. (5.41) and (5.42) imply the same L~(~s, ¢) using different model error
characterizations. In both Eqs. (5.41) and (5.42), L(s, ¢) is given by

L(s,e) = (1 —&)L(s) + &L/ (s) (5.45)

showing that L(s, £) is continuous in ¢ for & € [0, 1] and for all s € Dx.

We have now defined the true perturbed plant model in terms of its nominal
design model and the uncertainty matrix. The fundamental robustness theorem uses
the return difference matrix / + L(s, £) to determine if the number of encirclements
of the critical point will change with the uncertainties. This happens when I + L

(s, ) becomes singular, in which case the det[l + L(s,¢)] = 0.
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Using the multiplicative error characterization, the return difference matrix is
I+ L(s,e) = I + L(s) + eAn(s)L(s) (5.46)

or

[+ L(s,e)=A+B (5.47)

withA = I 4+ L(s)andB = ¢A,,(s)L(s).For the perturbed system to be unstable, viewed
through a change in the number of encirclements of the det [1 + L(s, b)] , the matrix
A + B must be singular for some ¢ € [0, 1] and s € Dg. We know that A = I + L(s) is
nonsingular (the return difference matrix of the nominal design) since the nominal
design is closed-loop stable. Thus, if the uncertainty is going to create instability, then
the matrix B = ¢A,,(s)L(s), when added to A, must make A + B singular.

53.5 A + B Argument

The minimum singular value g(A) measures the near singularity of the matrix A.
Assume that the matrix A + B is singular. If A + B is singular then A 4 B is rank
deficient. Since A + B is rank deficient, then there exists a vector x % 0 with unit
magnitude (||x||, = 1) such that (A + B)x = 0 (xis in the null space of A + B). This
leads to Ax = —Bx with ||Ax||, = ||Bx||,- Using the above singular value definitions
in (5.20) and ||x||, = 1, we obtain the following inequality.

a(A) < [|Axll, = [|Bx]l, < [|B]l, = a(B) (5.48)

If the matrix A + B is singular, then G(A) < (B). For A + B to be nonsingular,
a(A)>a(B). This is precisely how the stability robustness tests are derived.

Theorem 5.4 Stability Robustness Theorem: Additive Uncertainty Model
The polynomial (;Sgl(s) has no closed right half plane zeros and the perturbed
feedback system is stable if the following hold:

1. ¢.(s) has no zeros in the closed right half plane.
2. a(I + L(5))>6(Au(s))Vs € Drand for all R sufficiently large, with A,(s) given by
(541).
|

Theorem 5.5 Stability Robustness Theorem: Multiplicative Uncertainty
Model

The polynomial §.,(s) has no zeros in the closed right half plane and the perturbed
feedback system is stable if the following hold:

1. ¢(s) has no zeros in the closed right half plane.
2. o(I +L71(s))>6(An(s))Vs € Dgand for all R sufficiently large, with A, (s) given
by (5.42).
|
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The proof of this theorem uses the singularity of A + B argument. Stability of the
perturbed closed-loop system is guaranteed for a nonsingular I + L(s, ). Thus,

I+L(s,e) =L(s)(I + L' (s) + eAn(s)) (5.49)

Here, we assume that L' (s) exists. If 7 4+ L(s, ) is to be singular, then the matrix
I + L7 '(s) + &A,,(s) must be singular. Thus, to be nonsingular,

a(I+L7"(s)) >6(eAn(s)) (5.50)
a(I+L7'(s)) > |¢|a(An(s))
g(I+L_l(s)) >a(An(s)) (5.51)

Depending upon the model error characterization, either additive or multiplica-
tive, the robustness test is different. Theorems 5.3 and 5.4 are sufficient tests for
stability. As long as the singular value frequency responses do not overlap, stability
is guaranteed.

Stability margins can be viewed as a multiplicative uncertainty, scaling the plant
with some gain and phase. Singular value gain margins can be derived using the
above theorems by assuming that the uncertainty matrix A,,(s) models these gain
and phase uncertainties.

Consider the computation of a gain margin at the input to the plant. Place in each
input channel a scalar gain ¢; € R, with E(s) = diag[e;] € R™*™ modeling these
gains as a matrix. For the nominal condition with no uncertainty, ¢; = 1, the system
is stable. Positive and negative gain margins would indicate how large and small,
respectively, the scalar gain ¢; needs to be to destabilize the system. Our analysis
problem will focus on independent uncertainties in each channel, with the gain
margin relating to the smallest gain uncertainty that can destabilize the system.
Figure 5.12 indicates how this gain uncertainty enters into the block diagram and
how it can be represented using A(s).

Using the model indicated in Fig. 5.12, A(s) = E(s) — I. For the nominal control
system, let

min  g(I+L7") =g,

From Theorem 5.5, stability is guaranteed if (I + L' (s))>&(A(s)). For A(s) =
E(s) — 1, E(s) € R™*", the singular values of A(s) are

ai(A(s)) = a;(E(s) =) = |&; — 1]
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Fig. 5.12 Control system under uncertainty
If the largest |¢; — 1| is smaller than f, then for ¢; € R

1- B, <e<1+p, (5.52)

which guarantees a gain margin of [1 — 3, 1 + f5,;] for the system. If we consider the
phase margin problem, ¢ = exp(j¢;(®)), ¢;(w) € R, E(s) = diaglexp(j¢;(w))] €

C™>Mthen
le; — 1] = [ — 1] < B,
= [cos(@y(®)) — 1 +jsin(¢;(@))] < B,
= (cos*(¢(®)) — 2cos(y(@)) + 1 +sin’(¢;(w)))* < B,
= (2(1 — cos(¢;()! < B,

()

which guarantees a phase margin of + 2sin! % for the system.
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5.3.6 Singular Value Stability Margins

1. Return Difference Matrix
Let mui}n a(l +L) =g, then

1 1 o
GM; ;= |——,——|; PM; = +2sin"' = 5.53
I+L [1 Yo 1= %], I+L sin > ( )
2. Stability Robustness Matrix
Let rrgn al+L7") = B, then
GM; - =[1 =B, 1+ B,]; PMy o = i2sin_l% (5.54)
GM = GM; ;L UGM; 1, PM = PM;y; UPM, (5.55)

Note that the best minimum singular value from the return difference matrix is
min (I +L) = g, = 1 (at high frequencies L — 0). Substituting this into (5.53)
produces a gain margin interval of GM; ; = [%,—l—oo]. Converting to decibels
produces GM; ; = [-6,+00] dB. Similarly, the best minimum singular value
from the stability robustness matrix is min aI+L7") =p =1 (at low
frequencies L~! — 0). Substituting this into (5.54) produces a gain margin interval
of GM;, ;-1 = [0, 2]. Converting to decibels produces GM; ;-1 = [—o0, +6] dB.

Example 5.2 Gain and Phase Margins Using Singular Values Consider
the unmanned aircraft presented in Example 5.1 which is controlled using the
classical proportional-plus-integral control architecture shown in Fig. 5.3. Since
the pitch-plane dynamics has a single input, we can use this example to compute
both classical and singular value stability margins and relate them to each other.
This will provide insight into how the singular value margins can be interpreted.

We will use a high-speed open-loop unstable flight condition and will add a
second-order actuator model on the elevator. The dynamics are

o Za Z?i

o= v o+ v 0 + ¢

q=M,n + Msé,

53 - - 2Cwnée - wﬁ(és - 5() (556)

The actuator natural frequency is @, = 113 rad/s with a damping factor { = 0.6.
The feedback variables from the inertial measurement unit are acceleration A,and
pitch rate g, where A, = Z,a + Zs6. The plant model is

X =A,x+B,u
y=Cpx+Dyu (5.57)
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The numerical values for the matrices are
—1.3046 1.0 —-0.21420 0 0 1
47.711 0 —104.83 0 0
A B 0 0 0 1.0 0
p Pl _
[C D ] = 0 0 —12769.0 —1.356 12769.0
p P
—11569 0 —189.95 O 0
0 1.0 0 0 0
(5.58)
The controller model is
Xe = Acxe + By +Beor
u= Cc-xc + D(rly + Dc2r (559>
with the matrices defined in (5.14). The gains areK, = —0.0015,K, = —0.32, a4, = 2.0
and a, = 6.0. Substituting these values into (5.14) yields
0 0] [ 0.0030 0 ] [—0.0030]
A(. Bcl BcZ
= -192 0 —0.0029 1.92 0.0029
|:Cc Dcl Dc2:|
[-0.32 1.0] [-—0.0005 0.32] [0.00048]
(5.60)

Next, we will connect the controller to the plant model (see Egs. (1.43) and
(1.45)) and will simulate the closed-loop system to verify the model is correctly
connected and then use the loop gain models (see Egs. (1.49) and (1.53)) to
compute the necessary frequency responses. Figure 5.13 shows a step response of
the closed-loop system indicating the plant and controller are connected properly.

For this single-input single-output system, we will compute the Nyquist, Bode,
a(I + L), and ~o(I + L") at the plant input, and 5(S) and (T at the plant output.
Figures 5.14, 5.15, 5.16, and 5.17 show the plant input frequency response curves
(Nyquist, Bode,g(I + L), and (I + L~')). On the Nyquist plot in Fig. 5.14, we have
drawn a circle centered at (—1, j0) that has radius equal to the minimum of g(/ + L)
(from Fig. 5.16). The classical gain and phase margins from Fig. 5.14 are 8.8 dB
(2.7536) and 50°. These are also easily extracted from the Bode plot in Fig. 5.15.
From Figs. 5.16 and 5.17, we have

%, =ming(l + L) = 0.5676; B, =ming(l + L") = 0.7305 (5.61)

These minimums versus frequency are substituted into the singular value gain

and phase margins:
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http://dx.doi.org/10.1007/978-1-4471-4396-3_1
http://dx.doi.org/10.1007/978-1-4471-4396-3_1
http://dx.doi.org/10.1007/978-1-4471-4396-3_1
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Fig. 5.13 Acceleration step response for Example 5.2
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Fig. 5.14 Nyquist plot at the plant input loop break point
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Fig. 5.16 o(I + L) versus frequency at the plant input loop break point

_ 1 | _ . 10
GM[+L = [T% s 1_—%:| ; PMI+L = 42sin B (562)

GMpizt = [1 = B, 1+ B,); PMpyr = £2sin”! % (5.63)
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Fig. 5.17 o(I + L") versus frequency at the plant input loop break point
Substituting yields
GM,., = [0.6379 2.3127] B .
—[-39 7.28]dB’ PM;, = £32.97 (5.64)
GM; 1 = [0.4324 1.5676] PM,,; 1 = +42.84° (5.65)

=[-7.28 3.90] dB’

The singular value stability margins from (5.55) as computed from the singular
values of / + L and I + L™" are

GM = [-7.28 7.28]dB; PM = +42.84° (5.66)

Note that the classical margins from Figs. 5.14 and 5.15 are larger. The singular
value stability margins are always more conservative than the single-loop classical
margins.

Figures 5.18 and 5.19 show the sensitivity S and complementary sensitivity T
output frequency response curves formed at the output loop break point. The
sensitivity is the inverse of the return difference at the plant output. The infinity
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Fig. 5.20 Nyquist plots for the acceleration and pitch rate loops at the plant output

norm ||S||, is equivalent to the minimum of g(I + L,) (they are inversely related).
From Fig. 5.18, ||S||, = 1.0257 or 0.225 dB. This is a very small peak indicating
good margins at the plant output. Figure 5.19 shows the complementary sensitivity
|T| which is the acceleration closed-loop transfer function. The ||T|| . = 1.0734
(0.6152 dB) is a measure of the peak resonance in the acceleration loop. This is a
small value also indicating good margins in this loop. If either ||S|| or || T||,, were
large, this would indicate a problem in the design. In some multivariable systems,
the margins at the plant input will be adequate, but at the plant output they are low.
It is always prudent to check margins at all loop break points to make sure no
sensitivity problems exist. Figure 5.20 shows Nyquist plots computed at the plant
output for the acceleration and pitch rate feedback loops. Both plots show excellent
stability margins. This directly relates to the excellent values of ||S||  and ||T||, in
Figs. 5.18 and 5.19.

Figure 5.21 shows the frequency response of the controller 6(K). This figure
indicates the amplification, or attenuation, of sensor noise through the controller.
Although not directly related to stability margins, this frequency response should
e examined to make sure the bandwidth of the controller is not too high and that
high-frequency noise is not adversely amplified. The shape of the frequency
response clearly shows the proportional-plus-integral control action that the con-
troller is providing.

If noise amplification was a problem in the system, additional filtering using
low-pass filters would be needed to clean up the feedback signals. These additional
filters can be problematic as the phase lag causes issues with systems with low
stability margins. Each integrator adds 90° of additional phase lag and can make the
stabilization of unstable systems very difficult.

In the next section, we will explore the use of the structured singular value (SSV)
1 in computing the robustness of control systems. The SSV is a very powerful
analysis tool used to evaluate the stability robustness of systems to a variety of
uncertainties.
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5.4 Control System Robustness Analysis

Control system sensitivity to uncertainties in dynamics has been a major focus for
many years. In the past, the most widely used measure of stability robustness has
been single-loop gain and phase margins derived from classical frequency response
calculations. These methods and their singular value counterparts were discussed in
the previous section.

Gain and phase margins provide significant insight into the robustness
characteristics of the system. It has been proven many times in real-world
applications that systems that have poor stability margins do not perform as desired.
Requirements are typically levied onto the control design to provide 6-dB gain
margin and at least 45° phase margin. Whether these margins be classical or
singular value based, having adequate gain and phase margins, is an important
aspect of control system design.

In the 1980s, significant research was performed on analyzing the robustness of
control systems to neglected and mismodeled dynamics and real-parameter
uncertainties. Analysis methods were developed to further analyze linear models
to gain more insight into the controller’s sensitivity to unmodeled dynamics, gain
and phase uncertainties at different loop break points, and the sensitivity to para-
meter variations in the model. These methods all try to determine bounds on how
large the uncertainties can be before the system would go unstable.

Many methods exist for solving the problem, all having differing amounts of
conservatism in computing the robustness bounds. This conservatism exists due to
the model of the uncertainties and how the uncertainties enter into the problem
structure. Polynomial methods, singular value-based methods, and other frequency
domain techniques were developed.
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Table 5.2 Comparison of robustness analysis methods analyzing sensitivity to real-parameter
variations

Robustness theory Perturbation (%)
Small gain theorem 13.8

SSV u 49.0

Stability hypersphere Xp = 0 0.1

Stability hypersphere p = Ao+b 20.3

Stability hypersphere (Lyapunov unscaled) 0.007

Stability hypersphere (Lyapunov scaled) 0.02
Kharitonov’s theorem 153
DeGaston—Safonov real margin 60.44

Monte Carlo eigen analysis 60-61

Table 5.2 illustrates several methods applied to a pitch autopilot analysis prob-
lem [2], investigating how much uncertainty can be tolerated in the aerodynamic
parameters before the system goes unstable. The results in [2] use the same system
model presented in Example 5.2. In this problem, each of the aerodynamic stability
derivatives (Z,/V,Zs/V,M,, M;) was allowed to vary simultaneously using

(%(1 iél),%(l +62), My (1 = 8), M1 i(54)> (5.67)

It was desired to compute the smallest variation in these parameters that would
cause the system to be unstable.

Table 5.2 shows various algorithms and modeling techniques applied to this
analysis problem. The exact answer is 60.44 %. This answer was varied by a Monte
Carlo analysis as well as inserting the predicted uncertainties back into the system
model to show that the closed-loop system had jo poles. As shown in the figure,
some of the methods were found to be quite conservative. The small gain theorem,
the structured singular value (SSV), and the DeGaston—Safanov [3] real stability
margin all produced reasonable results when applied to this aerospace problem and
will be further discussed in this section.

5.4.1 Analysis Models for Uncertain Systems

Multivariable stability margins, also called singular value stability margins, are a
natural extension of classical gain and phase margins. Consider the SISO system
shown in Fig. 5.22. Gain and phase margins for this system are computed by
inserting a gain and phase variation k;e’® in between the controller K (s) and plant
G(s) and solving for the gain k; (with ¢, = 0) and phase ¢, (with k; = 1) that
destabilizes the system. The multivariable extension of this concept will use the AM
analysis model created from the system matrices, as shown in Fig. 5.7.
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Gain and phase uncertainty

ro+
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Fig. 5.22 System with plant input gain and phase uncertainty

Stability analysis models for multivariable systems can be formed to analyze
gain and phase uncertainties, neglected and/or mismodeled dynamics, real-
parameter uncertainties, and combinations thereof using methods identical to
forming models for single-input single-output systems. These models can be easily
formed using block diagram algebra, signal flow graph methods, or algebraic
manipulation of loop equations. The resulting models will have a “structure”
associated with them depending upon the specific problem, and the analysis will
depend upon the structure. Within these models, the uncertainties in the system are
usually isolated from the system models of the dynamics.

Figure 5.7 illustrated a general control system analysis model in which the matrix
A(s) models uncertainties and M (s) is a transfer function matrix modeling the dynamics
between the output from the uncertainties to its input. We will use this AM representa-
tion of the dynamics for many of our stability analysis problems. The matrix A(s) will
model gain and phase uncertainties in the system, that is, neglected and/or mismodeled
dynamics, real-parameter uncertainties, or any combinations thereof. The matrix M(s)
will model the dynamics in the system that are assumed to be known.

For a control system under no uncertainty, the controller stabilizes the plant and
the return difference matrix in nonsingular at all frequencies. Stability of the
nominal system implies

det[l + L(s)] # 0Vs € Dg. (5.68)
Using the AM analysis model shown in Fig. 5.7, (5.68) is equivalent to
det[l — AM(s)] # 0Vs € Dpg. (5.69)

Under no uncertainty, A = 0, clearly the system is stable. The analysis question
is to determine how large can A be, while the system remains stable.

Example 5.3 Consider the AM analysis model shown in Fig. 5.7 and a stability
analysis problem for a system as depicted in Fig. 5.23. The control system block
diagram in Fig. 5.23 shows uncertainties A; at the input to the plant and
uncertainties A, at the output of the plant. The uncertainties A; and A, can be
constructed to model any type of uncertainty, depending upon the analysis question
at hand. A; could model actuator uncertainties, unmodeled dynamics, time delays,
or any plant input uncertainty, while A, could model sensor uncertainties,
unmodeled dynamics, time delays, or any plant output uncertainty. Block diagram
algebra is used to transform the system shown in Fig. 5.23 into the AM analysis
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Fig. 5.23 Control system with simultaneous uncertainty at input and output

model. The matrix A(s) will be a block diagonal matrix, with each matrix or scalar
uncertainty in the system located on the diagonal of A(s). The matrix M(s) is a block
matrix where the ij-th block is the transfer function matrix between from the output
of the j-th uncertainty A;(s) to the input of the i-th uncertainty A;(s).

Consider the loop equations from Fig. 5.23 written as

Z1 = K(S)(Zz =+ W2)
Zy) = G(S)(Zl + Wl)

Substituting the z, expression into the z; equation and manipulating yields

K(s)(G(s)(z1 +w1) +w2)
K(s)G(s)(z1 +w1) + K(s)w2
(I — K(5)G(s )) K(s)G(s)wi +K( w2
= (I = K(5)G(s)) ' K(s)G(s)w1 + (I — K(5)G(s)) 'K (s)w>

Substituting the z; expression into the z; equation and manipulating yields

G(s)(K(s)(z2 + w2) + w1)
G(s)K(s)(z2 +w2) + G(s)w1
(I = G(s)K(s )) G(s)K(s)w2 + G( i
= (I = G(s)K(s)) "' G(s)w1 + (I = G(s)K(5)) ' G(s)K (s)w:

Combining these two expressions and writing in matrix form yields

B Rt e

M(s)

(5.70)
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The loop equations for the uncertainties modeled in the system can be written as

m] - [Aol AOJ [ij (571)
———
A(s)

From this example, we see that the A matrix in (5.71) is block diagonal and has
structure.

5.4.1.1 Real-Parameter Uncertainties

The above example essentially uses block diagram algebra to form the analysis model
isolating the uncertainties from the nominal closed-loop system. When considering
uncertainties in the real parameters contained in the state-space matrix A, working
through the algebra can be tedious and error prone. This problem is easily solved for
system linear in the uncertain parameters using a method [4, 5] that factors out the
uncertain parameters in the closed-loop matrix A¢j, and decomposes the matrices using
a singular value decomposition to form the B and C matrices for the model M (s). The n
uncertain parameters in Ay are modeled as

pi =pi(1£6;) (5.72)

where p; is the uncertain parameter with p; its nominal value and ¢, the uncertainty.
The closed-loop system is written isolating the uncertainties as follows:

Au = Ao + Z E;6; (5.73)

=1

where Ag is the nominal closed-loop matrix and the matrices E; factor out the
uncertainties. The matrices E; are the structural definitions for each of the parameter
perturbations ¢;, with the rank of the matrix used to describe the parameter
uncertainty. Using this model, decompose each n X n matrix E; using a singular
value decomposition. This gives

E, = USV* (5.74)

The matrix X will have k nonzero singular values, where & is equal to the rank of
the matrix, with the remaining n — k singular values equal to zero. Discard the zero
singular values, and make X a k x k diagonal matrix containing only the nonzero
singular values. We can write (5.74) with this new X as

El‘ = ﬁiO(,' (575)



130 5 Frequency Domain Analysis

where ; = UZ'/? and o; = X'/?V*. The matrices f3; and o; in (5.75) depend only on
the magnitude of the i-th nominal parameter. By using the decomposition described
in (5.75) , we can replace E;; in (5.73) with f3,0,;0;. By using this modeling approach,
we can separate out the parameter variations, J;, form A = diag[J;] and create the
nominally stable M(s) = Cp(sI — Ay)~'By. The state-space triple (Ay, By, Cir)
for M(s) is formed as follows.

Consider rank 1 perturbations only. f8; is n x 1 and o; is 1 x n. Then, (5.73) is

Aa =Ag+ > Bid; (5.76)
i=1
with — 1<d;< 1. Write the closed-loop system as
i=Awx+ Y B (5.77)
i=1

where the u; are input variables. Let the output y for this system be defined as

n {xl
y=> ox=|1|x (5.78)
i=1

On
Then, u; = 0,y; and we can close the loop with
u = 5,‘)71' = 5,‘0(,‘)( (579)

Substituting (5.79) into (5.77) yields
X =Aox+ Z pidioix
i=1

= <Ao + Z [3,-5;0(,-))( = Aux (5.80)
i=1

which is the closed-loop system model. We can write a state-space triple
(Apr, By, Ciy) for this system as

o
AM:AOaBM:[ﬁIﬁn]ch: (581)
On

This triple describes theMmatrix in the AM analysis model (Fig. 5.8).
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Example 5.4 Consider the longitudinal dynamics from Example 5.2. An angle-of-
attack controller is designed, and we desire to form an analysis model to analyze the
uncertain aerodynamic parameters using the above method. The « control law is
designed using the robust servomechanism approach from Chap. 3. This analysis
will determine how sensitive the LQR control law is to knowing the aerodynamic
stability derivatives used in the design model. The longitudinal dynamics with
second-order actuator model are

. Zoc Z(S

o = VO( + V&e =+ q

q = M,o + Méée
0 = —2Lpd, — (S, — b.) (5.82)

The robust servomechanism model z = Az 4+ By from Chap. 3 is

010 O 0 0 1.0 0 0 0
} 0 ZV 1 % 0 0 —1.3046 1.0 —0.21420 O
A=|0 M, 0 M; 0 =0 47711 0 —104.83 0 (5.83)
000 O 1 0 0 0 0 1.0
0 0 0 -2 —2{,m, 0 0 0 —4624.0 -81.6
0 0
0 0
B=10]= 0 (5.84)
0 0
»? 4624.0
The LQR penalty matrices used to design the controller are
0 =diag[464.16 0 0 0 O];R=1 (5.85)
with the resulting state feedback gain matrix given as
K. =[-21.544 —3.8421 —0.29392 0.32045 0.0021463] (5.86)
The nominal closed-loop system matrix is
0 ) 0 ZO 0
0 V“ 1 7( 0
A = 0 M, 0 M; 0 ; (5.87)
0 0 0 0 1
—wlky -0l —0iks —02(1+ 0Zks) =200, — w2ks


http://dx.doi.org/10.1007/978-1-4471-4396-3_3
http://dx.doi.org/10.1007/978-1-4471-4396-3_3
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Consider real-parameter uncertainties in the four aerodynamic coefficients
(Z,/V,Z5/V,My,Ms) in (5.87). The parameter uncertainty model is p; = p;(1 & 9;).
Using the closed-loop system uncertainty model from (5.73), we factor out each J; and
form the matrices E;:

0 0 0 0 0 000 0 O
Z, Zs

0 000 ooovao

Et=lo 0 0 0 o[;E2=|0 0 0 0 0;
0 0 000 000 0 O
L0 0 0 0 0 000 0 O
0 0 0 0 0 000 0 O
0 0 000 000 0 O

E3s=|0 M, 0 0 O|;Es=1[0 0 0 Ms 0];: (5.88)
0 0 00 0 000 0 O
0 0 0 0 0 000 0 O

The singular value decomposition for E; is used to form the first column in By,
and first row in C),. Substituting the numerical values into (5.88), we have

0 0 000
0 —1.3046 0 0 0
E/=|0 0 000
0 0 000
0 0 000
o S
1 1.1422
UV =[0[[1.3046][0 —1 0 0 0]= 0[[0 —1.1422 0 0 0]
0 0 el
_0_ L O_
| —

(5.89)

Using this same approach for each E;, the columns and rows of the matrices By,
and Cy are populated. The state-space triple (Ay, By, Cyr) is then
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0 1.0 0 0
0  —13046 1.0 —02142
Au=1] 0 47711 0 —10483 0 (5.90)
0 0 0 0 1.0
275100.  49059. 3753. —16861. —163.
r0 0 0 0
11422 04628 0 0
Bu=| 0 0  —69073 102389 |; Cu
0 0 0 0
0 0 0 0
[0 —1.1422 0 0 0
0 0 0 —04628 0
1o -6.9073 0 0 0
0 0 0 -102389 0

Now, using the parameter uncertainty models presented in this section, we will
investigate analysis methods to determine the robust stability.

5.4.2 Singular Value Robustness Tests

A very quick and useful analysis method for analyzing stability robustness is to
apply the small gain theorem. This method is accurate when the uncertainty
modeling matrix A(s) is a full complex-valued matrix. That is, when the matrix
has no structure and is complex. When the matrix has structure, as in (5.71), the
small gain theorem can be quite conservative. The more the structure deviates from
a full complex-valued matrix, the more conservative is the result.

The structured singular value (SSV), denoted as p, was developed to reduce the
conservatism of evaluating stability robustness for problems like those in (5.71) that
have structure. By structuring the uncertainty model into a block diagonal matrix
form, and applying the SSV u-test, a less conservative estimate of stability
robustness is obtained.

Stability under the presence of uncertainty, assuming the nominal system is
stable, requires the return difference matrix to become singular under the uncer-
tainty. The stability test is described in (5.69). The following singular value
robustness tests are designed to examine the return difference matrix and determine
when it becomes singular.
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5.4.2.1 The Small Gain Theorem

Consider the stability robustness analysis problem for the AM analysis model shown
in Fig. 5.7. The return difference matrix for this system is / +L =1 — AM. The
analysis problem is to determine the “size” of the matrix A(s) such that the system
transitions from stable to unstable. This says that the return difference matrix
transitions from nonsingular to singular under the uncertainty.

The matrix A(s) can be a block diagonal (BD) matrix, with each matrix entry
A;(s)on the diagonal corresponding to a matrix of perturbations occurring in the
system. The matrix M(s) is the transfer function between the output of
the perturbation to its input. It depends upon the controller K(s), the plant model
G(s), and the structure of the perturbations. Matrix M (s) is a block matrix where the
ij-th block M ;(s) is the negative of the transfer function from the output of A;(s) to
the input of A;(s).

We can intuitively define the bound on the norm of A(s) by using the A + B
argument of the preceding section. If det[/ — AM(s)] = 0, then from the A + B
argument, we know that

o[l] > 5[AM] (5.91)

Using 6[AM]<a[A]G[M] and the fact that ~g[/] = 1, we obtain the bound on the
uncertainty as

&[A] < 1/6[M] (5.92)

which is referred to as the small gain theorem. The small gain theorem (SGT) is a
sufficient test for stability. If it is violated, the system may still be stable. The
conservatism is introduced in the step where G[AM] is bounded above by a[A]a[M].
This step loses all structural information inherent in the matrices. It models a worst
case scenario in which A(s) is a full complex-valued matrix.

5.4.2.2 The Structured Singular Value u

The structured singular value (SSV) p analysis was developed by Doyle [6] to
reduce the conservatism of evaluating stability robustness using unstructured sin-
gular value computations like the small gain theorem. Consider the control system
with input and output uncertainties as shown in Fig. 5.23. Stability for the perturbed
system is guaranteed only when the return difference dynamics remains
nonsingular, that is,
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det[I — K(I — M) G(I — Ay)] #0Y Ay, Ay, and s € Dg (5.93)
which is equivalent to
det[l — AM] # OVA = diag[A, A;], and s € Dg (5.94)
The definition of the SSV u is

|
pua(M) = ¢ min{a(A) : A € A, det[l — AM] =0}. M € C"™" (5.95)
0, if no A € Amakes I — AM singular

The computation of the SSV uin (5.95) utilizes the structure for A(s) to develop a
less conservative answer to the bound on the destabilizing uncertainty.

Consider the simplest structure for the uncertainty A that is a diagonal matrix
whose diagonal is a complex scalar, that is,

A={sl,:5€C} (5.96)

Substitute this A model into (5.94). Assuming the uncertainty destabilizes the
system, the return difference matrix is singular and can be written as

(I — AM)w = (I — SI,M)w = 6 <%1 - M>w =0 (5.97)

for arbitrary vector w. This simplest structure defines an eigenproblem, with the
SSV u from (5.95) given as

1A (M) = p(M). (5.98)
where p(M) is the maximum spectral radius of the matrix M. When the uncertainty
is a full complex matrix, as shown in the previous section, the small gain theorem
produces an accurate bound on the uncertainty, with the SSV u given as

fa(M) = (M) (5.99)

So, for problems of arbitrary structure, that is, for a block diagonal A, the SSV u
will be bounded above and below by

pM) < pp(M) < G(M) (5.100)

Commercial software is available for computing the SSV u in Matlab®. This
software bounds the SSV u through optimization given by
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max Jmax (OM)| < < igf&(DMD’I ) (5.101)

In analysis problems where real uncertainties are analyzed, or problems where
real and complex (dynamic) uncertainties are analyzed together, there can exist a
spread between the bounds in (5.101). This introduces some conservatism in
bounding the uncertainty in some problems. A method discussed in the next section
exactly computes the bound on A when A contains only real parameters.

Example 5.5 The SSV u is a very powerful analysis tool used by researchers,
scientists, and engineers. In this example, we will demonstrate its use as an analysis
tool to understand the robustness of a MIMO flight control system, in which
uncertainty is modeled at the plant input and output. When tools like the small
gain theorem are used to predict the robustness to uncertainty, conservative robust-
ness bounds are produced. By using the SSV u, more accurate predictions of robust
stability can be obtained.

Consider the following lateral-directional flight control system. It is desired to
track a stability axis roll-rate command py. while keeping sideslip angle 5 small. In
this example, we will compare two controllers and their associated robustness
properties.

The state-space model x = Ax + Bu for the lateral-directional dynamics is

1 [ s @[] [¥a %l
pl=1Lg O 0 pl|+|Ls, Ls {511] (5.102)
F Ng O 0 r Ns, Ns, "

where s(o) = sin(a); ¢(at) = cos(a); the statex = [ p r]” contains the sideslip
angle, roll rate, and yaw rate; and the controlu = [0, 0, ]T contains the aileron and
rudder commands. The system and control distribution matrices are

—0.0251 0.10453 —0.99452 0.1228  —0.27630
A= 57470 0 0 ;B=|—=53.610 33.25 (5.103)
16.2 0 0 195.5 —529.40

We will use the robust servomechanism infinite-time LQR control from Chap. 3
to design the controllers. The first controller uses a single integrator to track
stability axis roll-rate commands. The LQR design model is

. [0 C. 0
Z_[O A}Z—F[B}u (5.104)


http://dx.doi.org/10.1007/978-1-4471-4396-3_3
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where z=[[e, B p r]T and C. = [0 c(x) s(x) 0]. The LQR penalty
matrices are

1.7 0 0 O
0 10 0 O 1 0
= R = 1
=109 0 o o {o 1] (5.105)
0 0 00

where the (1,1) element of Q penalizes the error in tracking the stability axis roll-
rate command and the (2,2) element of O penalizes the sideslip angle. Solving the
algebraic Riccati equation the resulting state feedback gain matrix is

—0.7852 —-2.0536 —0.0797 0.0458
K. = (5.1006)
1.0409  3.8238  0.1280 —0.1020

The closed-loop system matrix, Ay = A — BK,., is

0 0 0.99452  0.10453

0.38402 1.2836 0.14698 —1.0283
Ay = (5.107)
—76.704 337.46 —8.5278 5.8489

704.55 24420 83.351 —62.971

with eigenvalues 4;, = —12.1814 £ 22.1215j A3 4 = —22.9261 + 11.8584,. Figure
5.24 shows a step response commanding a stability axis roll rate p; = pcos(a) + r
sin(a), and the response of the sideslip f3, roll rate p, and yaw rate r. Figure 5.25 shows
the frequency response analysis at the plant input where 5(L),a (I + L), anda(I + L")
are plotted versus frequency and the loop gain crossover frequency o, and singular
value stability margins are computed. As discussed earlier in Chap. 2, the LQR state
feedback design has excellent stability margins at the plant input. The dip in
a(I + L") has aminimum value or ming(/ + L") = 0.5815. A typical requirement
is to keep this minimum above 0.5.

We desire to investigate this control system robustness to simultaneous
uncertainties at the plant input and plant output and demonstrate how the structure
of the uncertainties impacts the analysis. We will use the AM analysis model for the
block diagram shown in Fig. 5.23. The plant model is

X=Ax+Byu
y=Cyx+Dyu (5.108)


http://dx.doi.org/10.1007/978-1-4471-4396-3_2
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Fig. 5.24 Example 5.5 stability axis roll-rate step response time histories

where
| —0.0251 0.10453 —0.99452 0.1228 —0.27630 | T
574.70 0 0 —53.610 33.25
[Ap Bp} 16.2 0 0 195.5 —529.40
Cp Dp| 1 00
p P 0 0
010
0 0
L 0 0 1 |
(5.109)

The RSLQR controller is modeled as

)'Cc - Ac-x(: + Bcly + Bc2r
u=Cexe +D~y+ Der (5.110)
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Fig. 5.25 Example 5.5 plant input frequency response analysis and stability margins

where

A B B [0] [0 0.9945 0.1045] [—1]
{CC Dﬂ sz] = 0.7852 2.0536  0.0797 —0.0458 0
¢ Hel He2 —1.0409 —3.8238 —0.1280 0.1020 0

(5.111)

It is important when forming analysis models to check them for correctness. The
plant (5.108) and controller (5.110) are connected to form a state-space model of M
using the linear fractional transformation (/ff) command in Matlab®. The closed-
loop system has n, = 4 states. The eigenvalues of the system are then compared to
the eigenvalues of (5.107). This is a partial demonstration that the system is
connected properly. Frequency domain models can also be checked (at the input
and output) by evaluating the controller K and plant G at a given frequency and
forming M as in (5.70). This matrix can be compared to the state-space model
frequency response created using the (/ff) command.

To begin the analysis, we will examine this MIMO control system robustness to
plant input uncertainties A ;. The M matrix at this loop break point has dimensions2 x 2.
We will compute the SSVu along with the small gain theorem (SGT) bound versus
frequency. Figure 5.26 shows the SSVu results for A; a full matrix and A, = diag
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Fig. 5.26 Example 5.5 SSV yu and small gain theorem bounds at the plant input
[0, 02]and the SGT bound 1/6(M). We do not see any difference at the plant input

from the SSVu and SGT bounds, and by restricting the uncertainty to be diagonal,
further insight into this can be gained by examining the M matrix elements.

o4 O
Oa [Mn M12:| (5.112)
Or [Ma1 Mp ‘

Figure 5.27 shows the magnitude of the elements of M(jw). We see that the
matrix is dominated by the (2,2) element. This implies that the directional f
dynamics (versus the roll dynamics) driven by the rudder is establishing the
bound. We see from Fig. 5.26 that by diagonalizing A| = diag[é; J,] does not
alter the bound.

Next is the analysis at the plant output using just A,. The M matrix at this loop
break point has dimensions 3 x 3. Figure 5.28 shows the SSV results for A; a full
matrix and Ay = diag[d; 02 03] and the SGT bound 1/G(M). Here, we see a
much reduced bound as compared to the plant input loop break point. At the input,
min(1/u) = 0.5815 and was the same for both A; a full matrix and A; = diag
[01 02]. Here, min(1/u) = 0.01389 for A; a full matrix and min(1/u) = 0.18855
when Ay = diag[d; 0, 03]. Restricting the A, matrix to be diagonal has a large
impact. We would expect that the off-diagonal elements of M(jw) are influencing
the bound. Figure 5.29 shows the magnitude of the elements of M(jw) for the
diagonal element and off-diagonal elements and confirms this result. The M matrix
at the plant output is
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Fig. 5.27 Example 5.5 magnitudes of M(jw) frequency response for plant input uncertainty
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Fig. 5.28 Example 5.5 SSV yu and small gain theorem bounds at the plant input
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Fig. 5.29 Example 5.5 magnitudes of M(jw) frequency response for plant output uncertainty

B p r
B M Myn M
p | My My My (5.113)

r Mz Mz Ms

We see from Fig. 5.29 that the 2,1 and 3,1 elements of M (jw) are dominating the
matrix. This also implies sensitivity in the directional § dynamics.

The last analysis is the combined plant input and plant output case, as shown in
Fig. 5.23. The M matrix has dimensions 5 x 5. Figure 5.30 shows the SSVu results
for A a full matrix, a block diagonal matrix A = diag[A; A, ], a diagonal matrix
A = diag[d; --- 5], and the SGT bound 1/5(M). The curves for the SSV u
analysis of A, a full matrix and the SGT bound are identical. Introducing structure in
A only slightly improves the bound. To better understand this, we examine the
frequency response M (jw). Figure 5.31 shows the magnitude of the elements of M
(jo) for the diagonal elements and off-diagonal elements. We see that the dominant
entry in M(jow) is the (3,3) entry. This corresponds to the directional § dynamics,
which are open-loop unstable. The rudder J,-to-f off-axis elements are the next
largest elements. It is the rudder J, that primarily stabilizes the directional axis. This
large (3,3) entry in M(jw) is dominating the stability analysis and is why the block
diagonal and diagonal A matrices did not produce larger bounds. This examination
of M(jw) confirms the robustness analysis indicating that this open-loop unstable
vehicle is sensitive to uncertainties in the directional axis dynamics. Uncertainties
in the air data system used to produce the feedback signal f§ should be examined in
detail and in simulation.
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Fig. 5.30 Example 5.5 SSV p and small gain theorem bounds for combined plant input and output
uncertainties
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Fig. 5.31 Example 5.5 magnitudes of M(jw) frequency response for combined plant input and
output uncertainties

5.4.3 Real Stability Margin

An important question in the design of a control system is one that asks how well
one must know the parameters in the model of the dynamics? This question arises
due to the fact that the coefficients in the differential equations are seldom known
exactly. A large gain margin gives some comfort that the system is robust, but it
does not accurately predict the sensitivity of the controller to knowing the
parameters.
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The SSV p discussed in the previous section is a method for measuring
the sensitivity of the system to uncertainties. An additional measure called the
real multiloop stability margin, or real margin, as defined by DeGaston and
Safonov in [3], is a scalar quantity also interpreted as a gain margin. Its calculation
gives a nonconservative measure of control system stability robustness to real-
parameter variations modeled in the system dynamics.

In classical control system analyses, root locus plots can be used to graphically
analyze a system’s sensitivity to real-parameter variations. For a single parameter,
this is a very easy and useful analysis to perform. In Kuo [7], the root locus
approach is extended for multiple parameters. This approach has not been widely
used due to its complexity and difficult graphical interpretation.

Consider a control system whose plant dynamics have uncertain dynamics.
These uncertainties can arise from uncertain real-parameter variations, neglected/
mismodeled dynamics, or combinations of both. In this section, we will focus on
real-parameter uncertainty. To analyze the control system, we will transform the
model into the AM analysis model in Fig. 5.7. The real-parameter uncertainties in
the system are isolated and placed into a diagonal matrix A. The transfer matrix M
describes nominal system characteristics that are stabilized by the controller. We
assume that the system has adequate stability margins. Thus, for A =0 (no
uncertainty), the system is stable, and the performance meets requirements.

Consider n uncertain real parameters represented by é; € D; C R where D; is the
domain of the i-th parameter. Let

A = diag[d;,- -, d,] (5.114)
and define the parameter space D as
D =Dy XDy x---xD,. (5.115)

This parameter space describes the uncertain real parameter modeled in Fig. 5.7.

Using the multivariable Nyquist theorem in Sect. 5.2, the stability of the system
described by Fig. 5.7 is implied by det[/ — AM] # 0. The analysis problem is to find
the largest parameter space D such that the system remains stable. This can be
interpreted as finding the smallest uncertainty A that destabilizes the system.
Consider the scalar stability margin k,, defined as

kn = min{k € [0, c0)| det[l — kAM] = 0} (5.116)

If
(1/kp)o; € D; Vi (5.117)
then AM remains stable for A C D. This defines k,, as a multiloop stability margin.

A numerical algorithm for computing k,, converges by iterating lower and upper
bounds on k,,, which are determined when either the convex hulls or interior points,
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respectively, of certain image sets first intercept the origin. This development is
made possible by the use of a mapping theorem taken from Zadeh and Desoer [8].
The multiloop stability margin is computed by finding the smallest k£ for which there
exists A = diag[d;, . ..,0,] € D such that det[l — kAM] = 0.

The approach is as follows: Fix k. Map all the parameter space D into the
complex plane with det[/ — kAM]. If this region so mapped does not include the
origin, then kis a lower bound on the stability margin k,,. Increment k positively until
the origin is just included in the map. This would yield k&, exactly. However,
computing the true image of D under the mapping det[I — kDM] is computationally
prohibitive. To circumvent this problem, the convex hull of the image of D is used.

In general, the parameter space D will be an n-dimensional polytope having 2"
vertices. By scaling the parameter uncertainties and incorporating the scaling into
M, a hypercube describing the parameter space may be used rather than a polytope.
Define V; as a vertex of the hypercube D, where i =1,...,2" The vertex V;
represents a corner of the hypercube. Let

V={Vi,Va,...,Vu}m=2" (5.118)

denote the set of all hypercube vertices V C D. For example, consider three
uncertain parameters. There are then 2° = 8 vertices in the hypercube. They are

11 1]
IS R
-1 1
-1 —1
v=|_, | (5.119)
-1 1 -1
-1 -1 1
-1 -1 —1]

Let Ay, be a matrix of parameter uncertainties made up of the vertex points v;; as j
is varied from 1 to n. This is described as

AV; :diag[viJ,j:I,...,n] (5120)
From (5.119), Ay, = diag[l 1 —1]. Define

[ z€Clz=det]l — kAMVS; € D;,
det[l — kDM] _{ i=1,....n with kM fixed [ 12D
This set is a set of points that represents the entire hypercube solid being mapped
into the complex plane through the determinant function. It describes the entire image
of D (the image of the parameter uncertainties) in the Nyquist plane. Next, define

det[] — kVM| = {y; € Cly; = det[l — kAyM],i =1,...,n} (5.122)
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Fig. 5.32 Mapping the uncertain parameter space into the Nyquist plane

Equation (5.122) describes the set of points mapped into the complex plane
made by the hypercube vertices. Let F; = det[l — kAy,M] be the mapping of the i-th
vertex. F; is a single point in the set det[/ — kVM]. With these definitions, we are
now ready to state the following theorem.

Theorem 5.5[3]. Letk,M,D,det[l — kDM), and det[l — kVM| be defined as above.
Fix k. Then,

det[l — kDM] C co{det[l — kVM]} (5.123)

|

This theorem states that the true image of the hypercube is contained in the
convex hull created from the vertices. By mapping the 2" vertices of D into the
Nyquist plane and then constructing a convex hull about the 2" points, a polygon is
created that encompasses the det[/ — kDM|. Figure 5.32 illustrates this for a 3D
hypercube.

The hypercube in Fig. 5.32 is the yellow box with the 2° = 8 vertices arbitrarily
labeled. Thus, A C D = Dy x Dy x D3 with D; = [J;,., J;.,. |- The parameters 0;,,

and 9; _describe the lower and upper bounds of the parameter ¢;. By scaling these
uncertainties and incorporating the scaling into M, we can model each parameter J;
with limits of +1.

Figure 5.32 shows the mapping of this parameter-space hypercube into the
complex plane using the determinant mapping function. The blue shaded region
depicts the true image of the cube solid mapped into the Nyquist plane. If the origin
was contained in the shaded region, then the system would be unstable. Since the
origin is not in the shaded region, the gain margin & used in det[/ — kDM] is smaller
than the true stability margin and should be increased in magnitude until the origin
is included.

Imin 7
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The value of & such that the origin is just included in the shaded region is the
exact stability margin k,, we seek to compute. In Fig. 5.32, the vertex points V; are
mapped into the F; points. The convex hull containing the image of the hypercube is
denoted as co{det[/ — kVM]} and is shown as a heavy red border around the det
[l — kDM] image. We see from the figure that if co{det[l — kVM]} were used to
determine k, conservatism would be present since the co{det[/ — kVM|} contains
more points than the true image of det[/ — kDM]. This fact is used to define a lower
bound on k,,, resulting in the following lemma.

Corollary 5.1. Let M,D, and det[l — kDM| be defined as given in Theorem 5.5.
Then, for k>k,

det[l — koDM] C det[l — kDM] (5.124)
co{det[l — keDM]} C co{det[l — kDM]} (5.125)
|

This corollary states that the image of the hypercube solid under the determinant mapping
function, for kg, is a subset of the image mapped using a larger k. Thus, the convex hull
containing det[I — koDM)] is contained in the convex hull co{det[/ — kDM]}.

5.4.3.1 Lower Bound on the Stability Margin k,,

Application of Corollary 5.1 allows us to expand the co{det[/ — kDM|} until the
origin is enclosed. We show this graphically in Fig. 5.33. The solid lines represent
co{det[l — k;VM]} fork, k,, and k3. As shown in the figure, for all k<k3, the origin
is not enclosed by co{det[l — kVM]}. Thus, k3<k,, is a lower bound for the stability
margin k,. If k increases without co{det[/ — kVM]} intercepting the origin, then
ky, = oo.

5.4.3.2 Upper Bound on the Stability Margin k,,

To compute the upper bound on k,,, the path between the vertices whose line
segment intercepts the origin must be examined more closely. Define the following
critical vertices:

Critical vertices: F; = det[l — kAy,M], F; = det[l — kAy,M], i # j, and B € [0,1]
such that (1 — p)F; + pF; = 0.

Isolated critical vertex (ICV): F; is isolated if F; # Fj, i # j.

Coincident critical vertex (CCV): F; is coincident if F; = F, i #].

Critical vertices are defined as the two vertices whose line segment intercepts the
origin. This is shown in Fig. 5.33 as the convex hull line segment Fs3 — Fg3. These
critical vertices are isolated if F; # F;. They are coincident if F; = F;. Let m(i, ) be
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Fig. 5.33 Expanding the convex hulls until the origin is intercepted

equal to the number of differing coordinates of the two vertices V; and V; that are
mapped by det[/ — kAy,M] to F; and F;. In Fig. 5.33, the critical vertices are F's3 and
Fe3. The m(i, j) is the minimum number of edges on the hypercube D from vertex V;
to V;. In Fig. 5.33, m(i,j) = 1 examine the cube in Fig. 5.32 to see that vertex Vs
connects directly to V. The following corollary will aid in the calculation of the
upper bound on k,,.

Corollary 5.2. Any path along a single coordinate in D is mapped by det[I — kDM]
to a straight line in the complex plane.
|
For fixed M, the det[l — kAM] for A = diag[d;,...,0,] € D is a polynomial in
the variables J; and is affine with respect to each of the J;. This is true only for a
diagonal A and is obtained by definition of the determinant. This affine relationship
proves this lemma.

5.4.3.3 Comment

Corollary 5.2 guarantees that any point on the face of the hypercube D mapped into
the Nyquist plane will be contained in the convex hull formed by the mapped
vertices. This is true only for real parameters. If the parameters under variation were
complex, any path along a single coordinate would trace an arc in the Nyquist
plane. Thus, points contained on the face of a complex-parameter hypercube
mapped into the Nyquist plane need not be contained in the convex hull formed
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by the hypercube vertices. This fact precludes the use of this parameter-space
method in analyzing complex-parameter variations.

Define a vertex path as any path between critical vertices F; and F;, consisting of
m(i, ]) straight-line segments, defined by det[/ — kA,M] as x progresses from V; to V;
along the edges of the hypercube D. The first such vertex path to touch the origin
defines a point in det[/ — kDM], and the associated & is an upper bound on the
stability margin k,,. The vertex path will determine the region in the parameter space
that causes instability.

5.4.3.4 Convergence to k,,

The actual stability margin is computed by an iterative algorithm. It begins by
examining the vertex paths between critical vertices (ICVs or CCVs) that intercept
the origin. This defines the edges of the hypercube closest to the origin. The domain
D is then split along this vertex path, creating sub-domains. Convex hulls around
smaller and smaller sub-domains are computed. As the sub-domains become small,
the union of all of the convex hulls for all of the sub-domains gets close to the actual
image of the domain D. The accuracy in the computation of k,, is then dependent on
how small the sub-domains are made. The following three lemmas are used to prove
the convergence theorem that computes the exact multiloop real stability margin.

Lemma 5.1. On a hypercube of dimension n with two vertices that differ by m
coordinates, there are m! paths between these two vertices along the edges of the
hypercube. Each path between these two vertices will have m + 1 vertices along the
path (including the original vertices).

|

Lemma 5.2. Let k,M,D,det[] — kDM],and det[l — kVM] be defined as previously
given. Let F; and F; be isolated critical vertices withm(i, j)>2 and F denote the first
vertex along a vertex path emerging from F;. Define a point along the line segment
between F; and Fy as F., exclusive of the end points, that is, F, = (1 — B)F; +
Fi, B € (0,1). Let V, be the associated point on the hypercube edge defined between
Vi and V. Cut the domain D at V, orthogonally to this edge to create two sub-
domains D and D,, where V; € D and V; € D,. Then neither co{det[] — kD\M|}
nor co{det[l — kD,M|} includes the origin.

|

Lemma 5.3. Let k,M,D,det[l — kDM], and det[l — kVM| be defined as previ-
ously given. Then, there is at least one Ay, associated with the stability margin ky,
that assumes an extremal value.
|
Lemma 5.1 is used to determine the number of vertex paths between critical
vertices. These vertex paths define the coordinate direction in which the parameter-
space domain D is split into sub-domains.
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Lemma 5.2 is the heart of the convergence theorem used to obtain k,,. It is
employed when m(i,j)>2. The utility of this lemma is best explained by an
example. In Fig. 5.32, let vertex images F; and F¢ be isolated critical vertices,
with k; determined such that co{det[/ — k,VM]} intercepts the origin. For this case,
m(i,j) = m(1,6) = 2. The convex hull enclosing the det[/ — kDM| image has a
larger area than the true image of the hypercube solid (shaded area). The area
contained in co{det[/ — k;,VM]} that is not contained in det[/ — kDM] makes k; a
conservative estimate, that is, k;<k,,. Lemma 5.4 says that if we split the parameter
space into two sub-domains along one of the two vertex paths (V; — V, — Vi) or
(V1 — Vs — Vi) and compute convex hulls about each of the images of the two sub-
domains, then the origin will not be contained in either convex hull. This guarantees
that we can converge to the true stability margin k,, by splitting the parameter space
into sub-domains. As the sub-domains become smaller, we approach the true image
of det[l — kDM].

Lemma 5.3 states that k<k,, will not destabilize the system. Geometrically, this
places the Ay, on the boundary of D and guarantees a unique stability margin &,,. By
using these Lemmas 5.1, 5.2, and 5.3, the convergence theorem [3] follows.

Theorem 5.6. Let k,M,D,det]l — kDM, and det[l — kVM)] be defined as previ-
ously given, then an iterative algorithm can be constructed that converges to ky,. If
ki is finite, then this procedure identifies the parameters 0; € D at which k,, is
determined. There are three steps involved in determining k,:

1. Determine the lower bound on k.
2. Determine the upper bound on k.
3. Iterate lower and upper bounds and converge on k.
|

The actual procedure involved in each step is very problem dependent. As may
be expected, there are several special cases concerning the critical vertices that vary
the algorithm. For example, let co{det[/ — kVM]} intercept the origin between two
critical vertices F; and F;, one or both of which are coincident. For this case,
different logic is required when splitting the domain into sub-domains. DeGaston
and Safonov [3] present an excellent exposition of these special cases. They are
briefly summarized here.

Special Case 1 The co{det[/ — kVM]} intercepts the origin at a single isolated
critical vertex (ICV) F; = det[l — k;Ay,M]. Then m(i,j) = 0, k; = k, = ky, and the
algorithm stops. The parameters that cause instability are at the vertex V.

Special Case 2 The co{det[l — kVM]} intercepts the origin between two ICVs F;
and F; where m(i,j) = 1. Both points F; and F; are contained in the mapped
hypercube image det[l — kDM]. With Corollary 5.2, the line segment connecting
these two vertices is also contained in the mapped hypercube image det[l — kDM].
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Thus, k; = k,, = k,,, and the algorithm stops. The A along this edge of the hypercube
that is destabilizing is given by

Ap = diag[(1 — B)V; + BV}
where
B € (0, 1) such that det[/ — kAgM] =0 (5.126)

If either of the above special cases is true, the application of step 1 determines .
Only if m(i,j) > 2 does the algorithm progress further.

Consider ICVs F;and F; withm(i, j) > 2. The upper bound on k,, is determined by
examining the m(i,j)! vertex paths between F; and F;. The upper bound k, is
determined by the largest k along one of the m(i,)! vertex paths that intercepts the
origin. If £ is increased and the origin is not intercepted, then k, = co. Once the
lower and upper bounds k; and &, have been determined, Lemmas 5.1, 5.2, and 5.3
are used to converge to k,.

Special Case 3 The co{det[l — kVM]} intercepts the origin between two critical
vertices F; and F; in which one or both are coincident.

Special Case 3a Consider the problem where F; and F; both intercept the origin,
that is, det[l — k;Ay,M| = det [I — k;AV/.M] = 0. Then, k; = k,,, and the stability
margin is defined at multiple values of Ay,.

Special Case 3b There are several coincident vertices located at F'; and several at F
in which m, is defined as follows:

me =min{m(i,j)} = 1;i = {a,b,...}j={s,¢t,...} (5.127)

Pick ani € {a,b,...}andj = {s,¢,...}. Thus,m(i,j) = 1andk,, is determined as
in special case 2.

Special Case 3¢ This is the same condition as in special case 3b, except thatm, > 2.
For this case, domain splitting is used to divide the domain into sub-domains. This is
repeated along each of the vertex paths to each coincident critical vertex.

Let the set {z} contain z coincident critical vertices at F, and the set {y} contain y
critical vertices at Fy. Take the first two elements of the set {z}, say, a,b. Then
m(a,b) > 1, since botha, b are vertices of the hypercube. Split the domain along the
edge between these two vertices with an orthogonal cut. This creates two sub-
domains D andD,, each containing one of the critical vertices a and b. Continue this
process z — 2 times, creating z sub-domains, each having an isolated critical vertex
at F.. Repeat this same process for the critical vertices in {y}. This creates zy sub-
domains, each having two critical vertices. Apply the procedures of the preceding
special cases to each of these sub-domains.
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Fig. 5.34 Flow chart for )
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5.4.3.5 Computing the Real Margin

Figure 5.34 outlines the calculation of the real margin k,,. The algorithm uses the
convex hull-based lower bound from Theorem 5.6. The AM analysis model is
created as defined in Sect. 5.3.1 following the example given in Example 5.4. The
state-space model for M is

oy
Ay =Ai;Bu=1[B - BliCu=|": (5.128)
ail
and the uncertainty matrix A is
A = diag[d; -+ I, (5.129)

A vector of frequencies is selected spanning the range in which the real margin is
to be computed. As shown in Fig. 5.34, the matrix M is then evaluated at a given
frequency, M(jw) = Cp(sI — Ay) 'By, and the vertices of the hypercube are
mapped into the Nyquist plane defined in V. Each vertex V; (2" of them) maps to
apoint F;. A convex hull is then formed using the points F;, and a zero-exclusion test
is made to see if the origin is contained on the convex hull. If not, the value of & is
increased, and the mapping/convex hull/zero-exclusion procedure is repeated. We
know that for k = 0, the det[l — kDM] = 1.0. As k is increased, the algorithm stops
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when either the origin is on the convex hull or some upper limit is reached. This
procedure is applied to each frequency in the vector w, and then a plot of k versus
frequency is made. The robustness bound is the minimum k versus frequency. The
following example demonstrates this analysis.

Example 5.6 Autopilot Sensitivity to Real-Parameter Variations

Consider the longitudinal dynamics from Example 5.2 with the angle-of-attack
controller from Example 5.4. The AM analysis model for this problem was formed
in Example 5.4. This analysis will determine how sensitive the LQR control law is
to accurate values for the aerodynamic stability derivatives used in the design
model. We showed in Chap. 2 that LQR control laws have infinite margin at the
plant input loop break point. This example will show that these control laws are
sensitive to the accuracy of the model parameters.

The state-space triple for M from Example 5.4 is

0 1.0 0 0 0
0 —-1.3046 1.0 —0.2142 0

Ay = 0 47.711 0 —104.83 0 (5.130)
0 0 0 0 1.0

275100. 49059. 3753. —16861. —163.

0 0 0 0
11422 04628 0 0
Bu=| 0 0  —6.9073 10.2389 |;Cy

0 0 0 0

L0 0 0 0
[0 —1.1422 0 0 0
o 0 0 -04628 0
— |0 —69073 0 0 0
0 0 0 102389 0

where the uncertain aerodynamic stability derivatives (Z,/V,Zs/V,M,,Ms) are in
bold. The uncertainty matrix Athat models the real-parameter uncertainties is a4 x 4
diagonal matrix that models the parameter variations using (5.72). For n = 4, there
are 2* = 16 hypercube vertices, modeled as in (5.119).

Figure 5.35 shows a frequency sweep (w = logspace(—2,3,100)) where the
minimum k was determined at each frequency by the co{det[/ — k<VM]} intersecting
the origin of the Nyquist plane. Also included in the plot is the bound computed
using the small gain theorem. The minimum k versus frequency is k, = 0.53831,
and it occurs at a frequency of w = 8.7976 rad/s. The small gain theorem bound is
min(l/a(M)) = 0.27167.

To determine if the bound k,,, = 0.53831 is conservative or exact, we must examine
the convex hull and the vertices used in forming the convex hull. Figure 5.36 is a plot
of the 16 hypercube vertices at w = 8.7976 rad/s and k = 0.53831. The convex hull
vertices and uncertainty matrices Ay, are
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Fig. 5.35 Frequency sweep of the real margin and small gain uncertainty bounds

Fi3 = 1.5867 — 0.0718i; Ay, = diag[—1 —1 1 1]

Fis = 1.8186 — 0.0700i AVH =diag[-1 —1 -1 1]

F7 = 2.0505 — 0.0314i =diag[] —1 —1 1]

F3 = 2.0752 — 0.0060i v, =diag[l 1 —1 1] 5130
Fy4 = 0.3260 + 0.0787i =diag[] 1 —1 -I]

Fy = 0.1062 + 0.0759i =diag[l 1 1 —I]

Fg = 0.0694 + 0.0515i =diag[l] —1 1 -I]

F14 = —0.0000 — 0.0000i AVM =diag|—1 —1 1 -I]

We see from Figs. 5.36 and (5.131) that Ay,, intercepts the origin. To show that
the closed-loop system is destabilized using A = 0.53831Ay,,, we insert these
uncertainties into the system matrix and compute the eigenvalues of A.;. Doing so
yields the following eigenvalues:

—76.0970 + 96.3341;
A(Ag) = | 0.0001 + 8.7976; (5.132)
—11.4150

which shows two roots just on the jo axis.

This analysis shows that this design can tolerate a 53.8 % variation in the
aerodynamic stability derivatives. We see that this “robust stability margin” is
much less than the plant input margins guaranteed by using LQR controllers (at
the plant input). It is well known that classical gain and phase margins, including
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Fig. 5.36 Convex hull for the real margin bound

the vector margin, do not necessarily mean the system is robust to real-parameter
uncertainties. This state feedback design has a scalar loop gain at the plant input
described by L(s) = K (sI — A)B. In transfer function form,

(5) = 24+ 678 £ 04)(5i +75£51)) _ 274(5i +75£5.1))
T S5+ 7.6)(s— 63)(s; + 67.8 £90.4)  s(s +7.6)(s — 6.3)

(5.133)

Note that the open-loop system is unstable (#,>0) and the actuator poles are
exactly cancelled in L(s) (at the plant input only). The gain margin at the plant input
is [—11,+00] dB and the phase margin +60°. Next, consider a scalar real uncer-
tainty J¢ at the plant input and compute a root locus, that is, zeros of s(s + 7.6)
(s — 6.3) + 0x27.4(s; + 7.5 £ 5.1j) . This is plotted in Fig. 5.37 and shows the
system is stable for all gain values dx>0.28. This is achieved because of the zero
dynamics that exist at this loop break point.

When we analyze the system under real-parameter uncertainty, the robustness
bounds are determined by the zero dynamics that exist in the M(s) matrix. This is
the fundamental challenge in robust control. How do we design a controller that
provides “robust” zero dynamics at multiple loop break points simultaneously? We
can see this challenge by repeating this root locus analysis for the uncertain
parameters. Consider varying just the M stability derivative. The state-space triple
for M(s) is
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Fig. 5.37 Root locus of LQR L(s) at plant input
0 1.0 0 0 0
0 —1.3046 1.0 —-0.2142 0
Ay=10 47.711 0 —104.83 0 (5.134)
0 0 0 0 1.0

275100. 49059.  3753. —16861. —163.

0
0

By = [102389|:Cy=[0 0 0 —10.2389 0]
0
0

The transfer function for this system is

—393449.(s; + 7.2 £ 4.7))

M(s) = 5.135
) = 7143 1 72 103) (5 1 67.8 £ 90.4)) (5.135)

A root locus is shown in Fig. 5.38. The roots cross the jo axis with a gain of
om, = 0.68. We see this is larger than the real margin bound k,,, = 0.53831 from the
example because only a single parameter is being varied.
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Fig. 5.38 Root locus for M(s) varying only M

The key point to be understood from this example is that for linear systems, the
zero dynamics at each loop break point influences the resulting stability robustness.
The control architecture as well as the magnitude of the gains in the design
influence and change these zero dynamics. Thus, as the bandwidth of the control
design changes, so does the sensitivity to accurate knowledge of the model
parameters.

This fact has led us to combine robust control with adaptive control to improve
the system’s sensitivity to uncertainties and nonlinearities. The first half of this
book is focused on optimal and robust control and how to design the best linear
robust controller possible. “Best” in terms of meeting command tracking
requirements and being robust to high-frequency unmodeled dynamics and sensor
noise. These methods form the baseline control that is then augmented with an
adaptive increment to further address uncertainties and nonlinearities that the
robust control. The second half of the book covers the adaptive control linear and
nonlinear systems. Together we have found these methods solve some of the most
challenging problems in aerospace control.

5.5 Conclusions

This chapter presented the theory and practice of using frequency domain methods
to analyze robust stability. The ability to design controllers and analyze the stability
of multivariable systems has been an enabling technology for the aerospace
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industry. Prior to the development of this theory in 1980s, flight vehicles were
predominantly designed to be stable. The advent of modern control theory, in which
the methods in this chapter belong, enables control engineers to basically control
any shape of aircraft.

Virtually all of the design methods used today for control system design are
model dependent. The accuracy in which we know these models varies, and to
measure the data accurately can significantly increase costs. Analyzing the control
systems robustness to uncertainties gives the engineer very powerful tools to
determine what data is needed to be known accurately and what data is not. Overall
this reduces costs, but more importantly increases the quality of the design, making
it perform better and be safer.

5.6 Exercises

Exercise 5.1. Consider the following block diagram

u Z]
L Kl 1, >
u H(S) Z
—>| K2 2, 2
where
% —278
| s s(s+6)(s+30)
His) =1 0.0s —206
s s(s+6)(s+30)

and K; = 5 and K, = —10.

(a) Apply the multivariable Nyquist theorem from Sect. 5.3.3 to this system,
examining the return difference matrix 7+ KH, where K = diag[K; K],
and determine stability. Create the multivariable Nyquist plot. This is a plot of
the det[/ + KH], and indicate the number of encirclements.

(b) Plot the singular values of the return difference matrix and stability robustness
matrix versus frequency. Compute the singular value gain and phase margins
for this system. This is a plot of g[I + L] and ~a[l + L™!] versus frequency. Plot
these using a log scale for frequency and magnitude in dB.

Exercise 5.2. Consider the block diagrams shown below. Each block in the
diagrams is a scalar.
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(a) Derive a state-space model (Ay, By, Cyy) for M(s) = Cyy(sI — Ay) ™' By shown
in (ii), modeling the system shown in (i)

(b) For A = 0, what is the range of gain K that provides closed-loop stability?

(c) ForK = 1, sketch the small gain theorem applied to the system in (ii) using your
model derived in part (a). This should be a magnitude versus frequency plot.

(d) What does the sketch in (c) indicate for the system’s robustness to uncertainties
that are constant, that is, A = constant?

Exercise 5.3. Consider the longitudinal airframe dynamics and classical control
system described in Example 5.1. The model data is for (5.14) and (5.8)

K, = —0.0015 V = 886.78 fps
K, = —0.32 Z,JV = —1.3046
a, =20 ZsV —0.2142
a, = 6.0 M, = 47.7109

Ms = —104.8346

(a) Form a closed-loop state-space model and simulate an acceleration step
response to show the system is stable and correct.

(b) Form the loop transfer function matrix at the plant input. Compute stability
margins.

(c) The actuator dynamics were neglected during the controller design. Derive a
multiplicative error model for the neglected actuator dynamics, assuming that
the actuator dynamics are modeled using the following transfer function:

@ =1

. Ts+1

(e) Form a AM robustness analysis model for analyzing these neglected actuator
dynamics.

(f) Determine the largest actuator time constant 7 that results in a stable closed-loop
system using the small gain theorem as the robustness test.

Exercise 5.4. Consider the longitudinal dynamics X = A,x + B,u, x = [« q]"

with
—1.2100 1.0|| —0.1987
(4, By]= H44.2506 0 } {—97.2313”'

s
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Build a robust servomechanism model from Chap. 3:

- [o 1 0] 5 JoO
=l e 1a)

and close the loop using a state feedback control lawu = —K,z,z = [ Jex « q} T,
with gains

K.=[-2.1598 —1.3301 —0.1700]

Analyze the stability of this system. Plot a Nyquist plot, Bode plot, g[I + L], and
all + L] versus frequency and compute singular value stability margins.

Exercise 5.5. Using the classical longitudinal control system from problem 5.2,
analyze the closed-loop system’s robustness to uncertainties in the aerodynamic
parameters. Create the AM robustness analysis model using (5.81) as in Example 5.4,
considering the uncertainties

(B 2aa.miza.mi )

Compute the structured singular value (SSV) bound analyzing the sensitivity to
these real-parameter uncertainties.
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Chapter 6
Output Feedback Control

6.1 Output Feedback Using Projective Controls

Projective control is an output feedback design method used to obtain a partial
eigenstructure of a state feedback controller (u = —K,x,x € R™ u € R™) using
static and/or dynamic output feedback. The design retains the dominant perfor-
mance and robustness properties of the state feedback design. For static output
feedback (u =—-K,y,y € R”>‘), ny, eigenvalues and associated eigenvectors of a state
feedback design can be retained. For dynamic output feedback, a low-order com-
pensator can be built that can retain additional eigenvalues and associated
eigenvectors from the state feedback eigenstructure. The order of the compensator
can be increased until the entire state feedback eigenstructure is obtained.

Linear quadratic regulator (LQR) designs generally give good performance
characteristics and stability margins, with the availability of the states required
for implementation. In many practical designs, not all the states are available for
feedback. For these problems, dynamic compensators (observers, Kalman filters,
state predictors) are required for implementation.

There have been numerous studies on constructing dynamic regulators. General
procedures in the time domain are based upon observer theory and pole placement. An
observer is a dynamic system whose output variables are the estimates of the states of
another system. Pole placement is used to make the observer dynamics faster than the
dynamics being estimated. Typically, using these theories does not provide the
designer with a low-order dynamic compensator which yields satisfactory results.

An alternative approach is to use projective controls [1-3]. The projective
control methodology combines optimal control (state feedback design) with
eigenstructure assignment. The uniqueness of this method is that the designer has
the option of choosing the order of the dynamic compensator (with some
restrictions), rather than having a full-order compensator. The design goal using
projective controls is to retain the dominant dynamics as if the states were available
for feedback.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 161
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_6,
© Springer-Verlag London 2013
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In this section, the projective controls method is used to design a bank-to-turn
flight control for an unmanned aircraft implemented using static output feedback
and, as required, a low-order dynamic compensator. The section presents the basic
features of a design procedure using projective controls.

Projective control is a method of retaining the most dominant eigenstructure of a
full state feedback design using only output feedback, where the optimal state
feedback regulator serves as the reference solution (desired eigenstructure). Static
projective controls are output feedback controls that retain an invariant subspace of
the reference dynamics in the resulting closed-loop system.

Consider the problem of designing output feedback regulators for a linear-time-
invariant system described by

X =Ax -+ Bu

b Cx 6.1)

with C=[1, 0] , x€R™ ueR™, andy€R", and the triple (A,B,C)
controllable and observable. Let the resulting LQR state feedback control be
characterized by

u=—R'BTPx=—Kux (6.2)

where the positive definite matrix P satisfies
ATP+PA—PBR'B'P+0=0 (6.3)
where Q > 0,R >0, and the pair (A, Q%> observable. Suppose using the state
feedback control law, (6.2), the above system yields satisfactory closed-loop

reference dynamics, described by

%= (A—BK,)x=Fx (6.4)
F

If there are n, outputs available for feedback as described in (6.1) using the
control law

u=—K,y (6.5)

Then, n, eigenvalues (A,,y) and their associated eigenvectors (X,,y) of the state
feedback design can be retained using the static output feedback gains given by

K, = KX, (CX,,) ™! (6.6)
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where the eigenvectors X, and eigenvalues A, satisfy the eigen equation for the
state feedback system as

FX,, = Xo A, (6.7)

Using the output feedback control law from (6.5), the closed-loop system is

%= (A—BK,C)x=Aux (6.8)
A
cl

with eigenstructure

AaXn, = (A — BK,C)X,,
= (4-BKX, (cX,,) 'C)X,,
= (A = BK,)X,,
= Xy, An,

(6.9)

which captures the n, eigenvalues (An},) and their associated eigenvectors (X,,y) of
the state feedback design. The remaining (n, — n,) eigenvalues in (6.8) may not
result in closed-loop stability or satisfactory performance. In this case, additional
eigenstructure from A, can be retained using dynamic compensation.

Consider the closed-loop system given by (6.4). Introduce partitions in the

matrices A and F as follows:

A Ap Fii Fp
A= F = 6.10
|:A2] Azz} [le Fzz} (6.10)

whereA; and F; € R™*™. Denote X and A as the eigenvector matrix and spectrum of
F (FX = XA), respectively, from (6.4). From this eigenstructure, select the desired
dominant dynamics by selecting and placing their eigenvalues in A, (n,-eigenvalues)
and associated eigenvectors in X, (FX,,_v = X,,),Any ) The eigenstructure of the closed-
loop output feedback system, using (6.5), has a spectrum

A(Aa) = Ay, UA(A))
where the residual dynamics satisfy
A, =VAY (6.11)
withV € C("=)*m and ¥ € (") satisfying the conditions CY = 0, VX, = 0,

and VY = 1. If the static feedback projective control, (6.5), does not produce an
acceptable result, a p-th order dynamic observer of the form
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u = —NdZ — Kdy ’

can be used to extend the eigenstructure. Introduce an extended system by combining
the observer (6.12) with the reference dynamics (6.10) described by

H; D, 0
Xe=Fex;; Fo= 10 Fy Fp (6.13)
0 Fu Fn

Using the observer states as additional outputs for feedback, an (ny + p) -
dimensional invariant subspace can be retained. Denote (X s Ap) as the additional
p-dimensional invariant subspace from the reference dynamics. The eigenstructure
from the extended system can be decomposed as

H, D, 0 w, Wn),. w, Wny A
0 Fu Fp Xpl Xm-l = Xpl X”)’l |: 017 A :| (6.14)
0 Fy Funl|l|X, X, Xy, X,

where W, and W, depend upon the observer matrices H; and D,;. Define the
following matrices:

No = Xu, X;);
By = X,, — NoX,, (6.15)
A, =Ap — NoAp,

The dynamic compensator matrices (H,, D4, Ny, K;) can all be parameterized by
a free gain matrix Py. Select Py to stabilize the residual dynamics, given by

Ao = A, 4+ BoPoAr (6.16)

which is an output feedback stabilization problem. The dynamic compensator gain
matrices are then given by

Hy = A, + Po(A1» — BiK,,)By

D, = Pyo(A1; — BiK,, + (A12 — B1K,,)No) — HaPg
Ny = K.,Bo

K; =K, +K,,(No — BoPy)

(6.17)

where
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Fig. 6.1 Unmanned aircraft

Example 6.1 Static Output Feedback Design Using Projective Control. This
example applies projective control theory to an air vehicle flight control design
problem. The state feedback design (reference eigenstructure) to be retained with
the projective control is the Robust Servo Linear Quadratic Regulator (RSLQR)
design from Example 3.4 from Chap. 3. There are three basic steps to applying the
projective control approach.

Step 1: Design the reference eigenstructure (using a state feedback approach).

Step 2: Design a static projective controller using output feedback. Evaluate the
adequacy of the design. If not adequate, proceed to step 3.

Step 3: Design a low-order dynamic compensator recovering more of the entire
eigenstructure of the state feedback design, iterate by adding to the eigenstructure,
as required.

Step 3 is necessary only if the compensator designed in step 2 is not satisfactory.
Time domain and frequency domain analyses are performed after each design step.

Consider the design of the longitudinal flight control system for an unmanned
aircraft as shown in Fig 6.1. The pitch plane dynamics are given as

. Za Zé
=Z2a+220
o VOH_V +q

G = Mo+ M3 + Myq

(6.18)

It is desired to design an acceleration command r = A, flight control system. We
will assume that the command is constant and will design an RSLQR controller
with integral control. We will design a constant gain matrix K, for a single flight
condition and will assume gain scheduling will be used to interpolate the gains
between conditions (other design points). Normal acceleration A, (ft/s?) is given by

A, =-Vy=2Z,0+2Zs56 (6.19)

We can introduce A, directly as a state variable by replacing the angle-of-attack

o state. Differentiate (6.19) to form the differential equation for A. and then
substitute for ¢ from (6.18). This produces
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. Z, .
A= VxAz + Zatq + Zéée

(6.20)
. M M,Z
q:Z—1A2+qu+(M5— Za 6>5e

o o

Next, introduce a second-order actuator model for the elevator. This is given as
0 = —2040ad¢ 4+ 02 (dc — 8.) 6.21)

Combining (6.20) and (6.21) forms the plant model written in matrix form as

A; ZfV 2 0 Zs TA 0
R I i
o | ’ + S (622
9 0 0 0 1 de 02 e )
O 0 0 —w? 2t L6 o,

Sincer = constant,7 = 0,p = 1, and we need to add one integrator to form a type-
1 controller. The state vector ( 3.17) for the robust servomechanism design model is

z=[e ] (6.23)

with the design model z = Az + B:u given as

é 0 1 0 0 0 e 0
AZ 0 Za/v Z, 0 Zs AZ 0
q ] =10 Moc/Zoc M, (M(S _sz_fo) 0 q + 0 5(;
e 0o 0 0 0 1 de 0
Oc 0 0 0 —0? —2C,wq ] L0 w4*
(6.24)

At a flight condition of Mach 0.3, 5,000 ft altitude, and a trim angle-of-attack «
of 5 °, the plant model is

0 1 0 0 0 0
0 —1.053 —3465 0 -11.29 0

A=10 0007 -1.033 -1.093 0 |B=]| 0 (6.25)
0 0 0 0 1 0
0 0 0 —6672. —98.02 6672.

The objective in the design of the gain matrix is to track the acceleration
command with zero error without using large gains. The design begins by setting
R =1 and selecting a O matrix that penalizes the error state e in (6.24). Thus, the
performance index in the equation is
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J = J (ZTQZ + uZ)dr (6.26)
0

We start by inserting the parameter ¢;; in the (1,1) element,

q11 e
0 0 A,
21Qz =2 0 ql, (6.27)
0 0 Je
0|0

Y

and setting the other matrix elements to zero. This will penalize the error in tracking
the command. Substituting (6.27) into (6.26) gives the performance index as

J= J (que* + p?)dr (6.28)
0

LQR design charts were used in Chap. 3 to select the LQR penalty parameters in
(6.28). We will use the same numerical value in this example to design the state
feedback control and then will compare the projective control to the state feedback
design.

Step 1: Design reference eigenstructure
From Chap. 3, ¢;; = 0.2448. This produces the state feedback gain matrix

K, =1[0.49482 0.17904 —14.061 2.2089 1.8036 x 1073 ] (6.29)

For this design, the states A,, ¢, ., and Se are plotted versus time in Fig. 6.2. Note
that there is no overshoot to the unit command. For this approach flight condition,
the response is quick without the use of large gains. It is desired to keep this same
behavior, to the degree possible, in the output feedback projective control design.

Step 2: Design a static projective controller

For the static projective control output feedback design, the [ e, A., and g states are
the desired feedbacks. The integral error state is part of the controller, so it is
available. The acceleration and rate feedbacks come directly from the inertial
measurement unit and are available. The actuator states in the model would require
additional sensors within the actuator and are assumed not to be available for
feedback. In the static projective controller design, these states will be projected
out. The closed-loop matrix F = (A — BK,) from (6.4) is


http://dx.doi.org/10.1007/978-1-4471-4396-3_3
http://dx.doi.org/10.1007/978-1-4471-4396-3_3

168

Az (fps2)
© o o o
N A~ OO 0O =

o

© 9
IS

_._._.
- M > o

Elevon (deg)
o O O O
oM O ™

Pitch Rate (dps)

o
o

40.

60.
Time

8 1 1.21

(sec)

4161,

— |

//

N_V

Elevon Rate(dps)

0 02040608 1 12141618 2

Time (sec)

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35

-0.4

-10

6  Output Feedback Control

T ey

0 02040608 1 1.

Time (sec)

61.

25

20

15
10

5

0

]

|
\
1%

-5

0 02040608 1 12141618 2

Time (sec)

Fig. 6.2 States of the system responding to a unit acceleration step command

with ei

A = diag| —4.2466,

The

2i = {—4.2466,—4.9722 + 4.3962;,}

0

0

F= 0
0
-330
genstructure

2.2295e—001

—9.4676e—001
—1.6075e—002
—5.3104e—002

2.2551e—001

dominant

1 0
—1.053 —346.5
0.007  —1.033

0 0
1.3 —1194.5 93810.

[—1.0379e—001 —9.1764e—002;
9.1946e—001

—1.4240e—003 —1.0897e—002/

—4.3324e—002 —3.3555e—002j

| 3.6293e—001 —2.3622—-002j |

[ 4.8477e—004 —1.6181e—003; ]
8.2144e—002 +1.1097e—001;
5.1005e—005 —1.6701e—004;

—7.2600e—003 —9.7008¢—003;

—4.9722 £ 4.3962j,

| 9.9035¢—001

eigenvalues  (short

0 0

0 —11.29
—1.093 0

0 1
—21409. —-110.05

—48.973 £ 65.438/]

9.1946e—001

—1.4240e—003 +1.0897e—002/

—4.3324e—002 +3.3555e—002/
3.6293e—001 +2.3622e—002; |
4.8477e—004 +1.6181e—003; ]
8.2144e—002 —1.1097e—001;
5.1005e—005 +1.6701e—004;/

—7.2600e—003 +9.7008e—003;
9.9035¢—001

[—1.0379e—001 +9.1764e—002; ] ]

period  plus

integrator)
and are associated with the first three

(6.30)

6.31)

(6.32)

are
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eigenvectors in (6.32). These are the dynamics that are to be retained in the static
output feedback design. From (6.6), the output matrix is

1 00 0O
C=|01 0 0 O (6.33)
0 01 0O
and the eigenvectors are
2.2295¢—001 ] [ —1.0379e—001 —9.1764e—002; ]
—9.4676e—001 9.1946e—001
X, = —1.6075¢—002 | | —1.4240e—003 —1.0897e—002j
—5.3104e—002 | | —4.3324e—002 —3.3555e—002;
2.2551e—001 | 3.6293e—001 —2.3622¢—002; | 634)
[ —1.0379e—001 —9.1764e—002; ] | ’
9.1946e—001
x | —1.4240e—003 +1.0897e—002j
—4.3324e—-002 +3.3555e—-002;j
3.6293e—001 +2.3622e—002; | |
The static output feedback gain matrix is computed as
K, = KX, (CX,,) " 635)

=[0.13327 0.050120 —4.2100]

Figure 6.3 shows a block diagram of the output feedback control. The closed-
loop system using the static output feedback is A,; = A — BK,C. The eigenstructure
for this system is

A = diag[ —4.2466, —4.9722 4+ 4.3962;,

—36.175 — 49.738 ] (6.36)

2.2295¢ — 001 | [ —1.0379¢ — 001 — 9.1764e — 002/ | [ —1.0379¢ — 001 + 9.1764e — 002/ | T
—9.4676e — 001 9.1946e — 001 9.1946e — 001
— 1.6075e — 002 | | —1.4240e — 003 — 1.0897e — 002/ | | —1.4240e — 003 + 1.0897e — 002/
—5.3104e — 002 | | —4.3324e — 002 — 3.3555¢ — 002j | | —4.3324e — 002 + 3.3555¢ — 002/
2.2551e — 001 3.6293e — 001 — 2.3622¢ — 002j 3.6293e — 001 + 2.3622e — 002/
x= 4.4768e — 003 — 8.2386e — 003
—2.2266e — 001 2.9803e — 001
4.7032e — 004 — 8.7700e — 004
1.9597e — 002 —2.6376e — 002
—9.7469¢ — 001 9.5416e — 001

(637

)
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Fig. 6.3 Static output Aze +
feedback acceleration s —
command control

Note that the eigenvalues A; = diag[ —4.2466, —4.9722 +4.3962j] and their
associated eigenvectors from the state feedback design are retained in the closed-
loop output feedback design system. The remaining two eigenvalues which forms
the residual dynamics are A; = diag[ —36.175, —49.738].

The static output feedback controller shown in Fig. 6.3 implementing the
RSLQR design can be implemented in the following state space format:

xc = AC.X(- + Bcly + Bc2r

(6.38)
u=Cex.+ D1y + Deor
with
|:Ac' B.1 Bea :| _ |: [0] [1 O] [_1] :|
Cc Dcl DcZ [*Ky(l)] [7Ky(2 : 3)] [0] (639)

_{ [0] [1 0] [—1]}
© [[-0.13327]  [—0.050120 4.21] [0]

where x, = [e,y = [A: q]T, r=A,,and u = §,.

For this static output feedback design method to be effective, care must be taken
to keep the bandwidth reasonable and not destabilize the residual dynamics. As the
bandwidth of the state feedback design is increased to have the system respond
faster (an increase in the loop gain crossover frequency, Fig. 3.5), the larger gains
destabilizes the residual dynamics. The next step in the design process is to compare
this design with the state feedback design to determine changes in performance and
stability robustness, if any, and to determine if they are acceptable. Figure 6.4
compares the state feedback and output feedback time histories. The static projec-
tive control response slightly lags the state feedback design and is acceptable from a
time domain perspective. By capturing the dominant eigenvalues of the state
feedback design in the output feedback design, the time response is very close.
Next is to compare the design in the frequency domain. Figure 6.5 shows plots of
the magnitude and phase of L, the magnitude of I + L, and the magnitude of / + L™,
with the loop gain formed at the actuator command input. We see from the plots of
I+ L and I + L' that the output feedback design has a decrease in the stability
robustness. This is also seen in the Nyquist plot, Figure 6.6, which shows the gain
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Fig. 6.4 Comparison of state feedback and output feedback time histories

margin and phase margin of the design. The output feedback design has a gain
margin of 3.82 dB and phase margin of 28.3°. This would be unacceptable for flight,
so the design would need to be improved by either (1) decreasing the bandwidth
until acceptable stability margins were obtained or (2) designing a low-order
dynamic compensator to recover the performance and margins of the state feedback
design. We will select the second option and proceed to design a low-order dynamic
compensator.

Step 3: Design a low-order dynamic compensator

For this example, a second-order compensator will retain the entire state feedback
eigenstructure. To begin the design, we need to partition the matrices A and F as in
(6.10) and the eigenvectors as in (6.14).

0 1 0 0 0
A =10 —1.053 -3465| Ap= 0 —11.29
0 0.007 —-1.033 —1.093 0 (6.40)

[0 0] 0 1
A 27 6672, —98.02
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0 1 0 0 0
Fiy=10 —1.053 -3465| Fpp = 0 —11.29
0 0.007 —-1.033 —1.093 0 (6.41)

0 0 0 0 1
Fy = Fy =
—3301.3 —1194.5 93810. —21409. —110.05

[ —1.0379e—001 —9.1764e—002i  —1.0379e—001 +9.1764e—002i 2.2295¢—001
X, 9.1946e—001 9.1946e—001 —9.4676e—001 }
| —1.4240e—003 —1.0897e—002i  —1.4240e—003 +1.0897e—002i  —1.6075e—002
v [ —4.3324e—002 —3.3555e—002i  —4.3324e—002 +3.3555¢—002i —5.3104e—002]
" 3.6293e—001 —2.3622e—002i 3.6293e—001 +2.3622e—002i 2.2551e—001
[4.8477e—004 —1.6181e—003
X,, = | 8.2144e—002 1.1097e001:|
| 5.1005¢—005 —1.6701e—004

—7.2600e—003 —9.7008¢—003
X, — [ ] (6.42)
9.9035¢e—001 O

The compensator design (6.12) requires selecting a gain matrix P such that
the residual dynamics A, in (6.16) are stable. The matrices needed to form A, are Ny
and By.

No = Xu, X,
B —1.6565¢—001 —5.8888¢—002 4.4744e+000 (6.43)
n 2.4157e+000 6.3925¢—001 —1.8175¢e + 001

Bo = Xp, — NoX,
— 2.5706e — 003 — 2.6871e — 003 (6.44)
9.3759¢ — 001 — 7.0061e — 002]

A, = Ap — NoArp,
|: 4.8883¢ + 000 3.3521e — 001 (6.45)
—6.6917¢ + 003 —9.0801e + 001

Using the dynamic compensator in (6.12) with matrices defined in (6.17), the
compensator is designed by choosing the free parameter matrix P, such that the
residual dynamics in (6.16) are stable. For this example (6.46),

Are = Ar + BOP()AIZ
4.8883e + 000 3.3521e — 001
—6.6917 + 003 —9.0801e + 001

0 0 (6.46)

]PO 0 —11.29

—1.093 0

—2.5706e — 003 —2.6871e — 003
9.3759¢ — 001  —7.0061e — 002
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Fig. 6.7 Low-order dynamic
projective controller block
diagram

2nd0Order Compensator

— -1
N, I-H)" p,+

/ K;— Ky

Add Compensator On Each Feedback

By multiplying out the matrices in (6.47), one can determine which elements of
Py need to be chosen. This matrix is designed using a tuning process in which the
elements are increased in magnitude until a suitable design is obtained (trial and
error). After some tuning, the following matrix was obtained:

02 500
Fo= {o 2 —2000000] 647

The zero elements in the first column were found not to matter. They were made
zero to reduce the control usage. Substituting this Py into (6.47) yields

4 {—5.8364e+002 4.5392¢ — 001 ]; A(A) = [-1320 5620

—2.1488e + 004 —1.1039¢ + 002
(6.48)

Figure 6.7 illustrates a block diagram for the controller. Substituting P, into
(6.17) yields

[—7.15466—}—001 6.5552e + 001 }

47 | Z6.4828¢ + 002  —6.3452¢ + 002
B [1.4503e £002 —4.0079% +001  1.3077¢ + 007
471 Z3.6250e + 004 —1.1663¢ + 004 —1.2604e + 008 (6.49)

Ny =[-3.9870e — 003 —6.0617¢ — 003 |;
K;=1[1.3327¢ — 001 7.0218¢ — 002 —1.2185e + 003]

The dynamic output feedback controller shown in Fig. 6.7 capturing the
eigenstructure of the RSLQR design can be implemented in the following state
space format:
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Fig. 6.8 Frequency response comparison between the state feedback, static, and dynamic output
feedback projective controllers

).C(; =Acx. + Bcly + Beor

(6.50)
u= chc +Dcly + Dzrzr

With

0 0 Ce -1
= Dd(l,l)) Hd Dd(l7223) 0
C(‘ Dz‘l Dc2
[=Ka(1) —Na] [-Ka(2:3)]  [0]
0 0 0 1 0 -1
—145.03 —71.546  65.552 —40.079 1.3077e + 007 0
—3625.0 —648.28 —634.52 —1.1663e + 004 —1.2604e + 008 0
[—0.13327 0.0039870 0.0060617 ] [—0.070218 1218.5] [0]

where x, = Ue Xe2 X3 ]T, y=[A; q]T, r=A,,and u = J,.

A step-input simulation of the closed-loop system using the dynamic controller
shows results that equal the state feedback design. Figure 6.8 compares the designs
in the frequency domain showing plots of the magnitude and phase of L, the
magnitude of I + L, and the magnitude of / + L~', with the loop gain formed at
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the actuator command input. Figure 6.9 shows the Nyquist plot (L is a scalar), which
shows the gain margin and phase margin of the design. The second-order compen-
sator does an excellent job of recovering the state feedback design eigenstructure
and properties using a low-order compensator with output feedback.

6.2 Linear Quadratic Gaussian with Loop Transfer Recovery

In Chaps. 2 and 3, optimal control was applied to the servomechanism problem to
design a state feedback controller for command tracking. When only the output is
available for feedback, a full-order observer can be designed to estimate the state.
For LTI systems with Gaussian models for disturbances and measurement noise,
the Kalman filter is the optimal state estimator. When optimal control (LQR) is
combined with optimal state estimation (Kalman filter), the control design is called
the linear quadratic Gaussian (LQG) problem.

The Kalman filter algorithm is an excellent state estimator. It is widely used in
estimation problems, such as GPS navigation, where accurate state estimates are
desired. However, when used to estimate the state in output feedback control design
problems, the optimal state estimator (optimal in the sense of minimizing the error
covariance) may not exhibit the best overall control properties. It is well known that
the LQG controller captures the excellent time domain characteristics of the state
feedback design, but the Kalman filter degrades the frequency domain properties
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(stability margins) of the design. A tuning process called Loop Transfer Recovery
(LTR) asymptotically recovers the state feedback frequency domain properties.

There are several methods available for applying LTR to the LQG problem
(called LQG/LTR). Virtually all these methods introduce tuning mechanisms for
recovering the frequency domain properties at the expense of using high gains
somewhere in the control loop. Care must be taken to limit the gains and a thorough
analysis performed to make sure the system is implementable.

When using LQG/LTR, the Kalman filter is no longer thought of as an optimal
state estimator, but a dynamic compensator/observer tuned for performance and
robustness. The fact that Riccati equations are used in the control and filter design
makes the LQG/LTR method attractive and provides the mechanism for proving
properties of the system analytically. In this section, we will use a popular tuning
mechanism attributed to Doyle and Stein [4] and Doyle and Athans [5] and will
demonstrate its use in a command tracking flight control example. We will consider
the infinite-time design problem which uses steady-state gain matrices for the LQR
and the Kalman filter.

Consider the following linear-time-invariant Gaussian design model:

XxX=Ax+Bu+w

y=Cx+v (6.52)

where w and v are zero mean, white, uncorrelated Gaussian random processes with
covariances given by

E{w(Ow" (1)} = 0od(t — 1)

6.53
E{v(tV' (1)} = Rod(r — 1) 07

The state estimate, &, is formed using the following Kalman filter state estimator:

X =A% + Bu + K (y — 3)
Ky = P;C"Ry! (6.54)
0 =AP; + P;A" + Qo — PsC"Ry'CP;

where y is the estimate of the output, Py = E{xx"} is the steady-state error
covariance, which results from solving the algebraic filter Riccati equation (covari-
ance equation), and Qg and Ry are the process and measurement noise covariances
from (6.54), respectively. The optimal control is formed using the LQR state
feedback control gain matrix K, and the estimated state feedback X, given as

u=—K.x (6.55)

Figure 6.10 combines the LQR controller (Chap. 3) with the Kalman filter state
estimator (6.55) into a block diagram. This is the LQG control architecture.
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Fig. 6.10 Robust servo LQG
using integral control-
estimated state feedback

The frequency domain properties of the LQG system do not equal that of the
LQR system primarily due to the observer dynamics introduced by the Kalman
filter state estimator. For the state feedback controlled system, the LQR loop
transfer function matrix (LTFM) at the plant input is

Ligr(s) = K.(sI —A)™'B (6.56)
For the output feedback controlled system, the LQG LTFM at the plant input is
Ligc(s) = K (sl — A+ BK. + K;C) 'K C(sT - A)'B (6.57)

Clearly, the dynamics introduced by the dynamic compensator alters the fre-
quency domain characteristics for the LQG system.

For this control architecture, there are two approaches for applying LTR to the
LQG control problem. One modifies the Kalman filter (state observer) to recover
the state feedback loop properties, and the other modifies the LQR controller. Here,
we will present the method of modifying the Kalman filter. This approach is taken
from Doyle and Stein [4]. The tuning procedure consists of designing Kalman
filters with the plant process disturbance covariance matrix Oy parameterized with a
scalarp as

Or =00+ %BBT (6.58)

where Q) is the nominal plant process disturbance covariance from (6.54), B is the
control input distribution matrix, and pis the LTR filter compensation parameter.
This parameter is adjusted to recover the LQR frequency domain characteristics
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over the frequency range of interest. The modified matrix Qr is used to compute the
steady-state covariance Py and filter gain matrix K to be used in the LQG controller.

Considering the loop broken at the plant input, LTR modifies K to create a system
that has stability properties that asymptotically approach those of the LQR. The
method uses a trial and error procedure in which the filter design is parameterized by
a scalar p > 0 such that when p — 0 we have L oc — Ligr asymptotically but not
necessarily uniformly. It is evident that the location of the Kalman filter eigenvalues,
(6.58), alters the closed-loop frequency characteristics of the system.

The LQG/LTR approach requires that the controlled system (plant) be minimum
phase (i.e., no RHP transmission zeros). The minimum phase requirement occurs
because the LTR procedure asymptotically inverts the plant dynamics of the
Kalman filter and substitutes the linear regulator dynamics. If there was an RHP
transmission zero, an RHP pole would be created, causing an unstable system. The
procedure may still be applied to nonminimum phase systems, but care must be
taken to prevent instability in the LQG compensator. This limits the amount of
recovery.

The LQG/LTR loop transfer function matrix at the plant input, L;pc, will
asymptotically recover the LQR frequency domain characteristics as p — 0. This
can be shown as follows. As p — 0, the process covariance O in (6.59) becomes
largely dominated by the second term /%BBT. As these elements of Oy get large, the
covariance matrix Py has elements that get large, resulting in the Kalman gain
matrix Ky getting large with the following result:

~ 1=

Liga(s) = Ko(sI — A + BK, + K—;C) 'K C(s] — A)

. (6.59)
Ligg(s) = K.(s —A)" B

It is this process that inverts the plant (within the Kalman filter) resulting in
recovering the LQR Lyqr. It is important to note that as p — 0, &(P) — oo and
o (Pf) — 0, creating a singular covariance matrix. In the next section, we will
present the LTR method of Lavretsky [6] which prevents this condition from
occurring during the recovery process.

The LQG controller transfer function matrix that relates the measurement y to the
control u is

u=—K.(sI — A+ BK.+KC) Kpy (6.60)

Substituting for the measurement y = Cx 4+ v and letting p — 0 as in (6.60)
yields

u=—K.(sl — A+ BK, +K:C)"'K¢(Cx + v)
= —K.(s| —A+BK, +K'C) 'K;Cx — K.(s — A + BK,. + K;C)'Kyv
= —Kox — K.(sI — A+ BK, + K.F) " 'K;v
(6.61)
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in which the first term is inverted and canceled (K;C) ' K;C = Itesulting in — K,x.
However, the second term is not exactly canceled; (KfC)fle # 1, and the sensor
noise v can be amplified. This feature limits the amount of recovery possible. In the
use of this design method for making the LQG system robust, the sensor noise
amplification in (6.62) must be examined.

The LQG/LTR controller design, examining the loop properties at the plant
input, may be realized through the following synthesis technique:
Step 1: LQR controller design: K,
Follow the robust servomechanism design approach outlined in Chap. 3. Design
LQR weighting matrices Q and R such that the resulting LTFM Liqr(s) = K,
(s] — 4)711§ meets performance and stability robustness requirements and exhibits
the desired bandwidth. The frequency domain properties of the LQG system will
not exceed those of the LQR system.
Step 2: Kalman filter design: Ky Design the Kalman filter state estimator using
(6.55), with (6.59) defining the plant disturbance covariance. The LTR filter
recovery parameter p is used to recover the LQR frequency domain characteristics
over the frequency range of interest. Examine plant input and output frequency
domain criteria and the sensor noise amplification in (6.62) and limit the LTR
recovery so that the sensor noise is not amplified.

6.2.1 Summary

Dynamics: X = Ax + Bu +w x(t0) = xo
y=Cx+v
E{x}
E{ww"} = 0¢d(1); E{w"} = R¢d(1)

Robust Servomechanism LQR:
Command r
Controlled output (to follow r) : y. = Ccx

o (I .
e=y.—riz=le x| ,u=1

Dynamics: £ = Az + By A [ch]g m
namics: = = , —
y Z=azT ol 0 A B

Performance index: J = (ZTQZ i ,uTR,u) dt

o——.9

(A,E) Stabilizable, (A,Q%) Detectable,

Algebraic Riccati Equation: PA + AP + 0 — PBR'B'P


http://dx.doi.org/10.1007/978-1-4471-4396-3_3
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Optimal Control: u = —R™'B"Px = —K,z

.
X
Kalman Filter State Estimator: X = A% + Bu + K¢ (Ymeas — ¥)
1 ~~r
Qf = QO S ;BB
APy + PrAT + O — P{CTR; ' CPy = 0
Ky = P;C'Ry!

Example 6.2 LOG/LTR Design. This example applies LQG/LTR control theory to
an air vehicle flight control design problem. The LQG/LTR design method
combines an LQR state feedback control implemented using estimated states and
a Kalman filter state estimator. The state feedback design is the Robust Servo
Linear Quadratic Regulator (RSLQR) design from Example 3.4 in Chap. 3 and
will be reused as the state feedback control. This is also the same design used in the
previous example on projective control theory.
The RSLQR design model (6.24) is

- [0 C.]x 0
A = B =
10 A B
[0 1 0 0 0 0
0 —1.053 —-346.5 0 —11.29 0 (6.62)
A= |0 0007 —1.033 —1.093 0 B= 0
0 0 0 0 1 0
10 0 0 —6672. —98.02 6672.
Using the same RSLQR design, the state feedback gain matrix is
K.=1[0.49482 0.17904 —14.061 2.2089 1.8036e — 003 ] (6.63)
The control law is implemented using
u=—KJ[[(A, -r) ] (6.64)

where the first gain in K. multiplies the integral error, and the remaining gains
multiply estimates of A, ¢, J,, and de, respectively.

The measurements provided by an inertial measurement unit, A, and g,,, are
available for feedback. To design the Kalman filter state estimator, we need models
of the process and measurement noise covariance matrices from (6.54). At this
flight condition, the process noise modeled in the state equations is


http://dx.doi.org/10.1007/978-1-4471-4396-3_3
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Fig. 6.11 State feedback and measured acceleration and pitch rate time histories

1.94 x 10~ 0 0 0 (fps)? /s
00 — 0 2.5% 1077 0 0 (rps)* /s
0= 0 0 1.0x 1078 0 (rad)” /s
0 0 0 1.0 x 1076 | | (1ps)?/s

(6.65)

The numerical values in Qg are often adjusted in the design process to tune the
Kalman filter. For a typical inertial measurement unit, the measurement noise in
A, and g, are modeled as

_[6.25x 1072 0 (fps)*
Ro = 0 1.0 x 10—6} [(rps)2 (6.66)

Figure 6.11 shows A, and ¢ simulation time histories of the state feedback
controlled system without process and measurement noise, along with simulation
time histories of the measured values that contain process and measurement noise.
The Kalman filter state estimator is

X =A%+ Bu+Ky(y — §) (6.67)
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where u is formed using (6.65) and was implemented using steady-state matrices
obtained from the filter covariance equation

0=AP; + P;A" + Qo — P;C"Ry'CP;
Kr = PfCTR(fl

[ 2.0442¢ — 003 —6.0760c — 006  2.4929¢ — 010  —5.6592¢ — 008
—6.0760 — 006  7.8188¢ — 008 —1.2264c — 012  1.3375¢ — 010
Pr=1 24920 —010 —12264e—012 12523 —010 —5.0000¢ — 009
| —5.6592¢ —008  1.3375¢ —010 —5.0000c — 009  3.4544e — 007
[ 3.2707 —002  —6.0760¢ + 000
—9.7217¢ — 005 7.8188¢ — 002
Ky = (6.68)
3.9887¢ — 009  —1.2264e — 006
| —9.0547¢ — 007  1.3375¢ — 004

The controller implementing the robust servomechanism integral control with the
Kalman filter state estimator can be implemented in the following state space format:

Xe = Acxe + Bay + Beor

(6.69)
u= Cc-x(: + Dcly + Dc2r
with
c c C _
|:Cc D. D, ] = -B,K.(1) A, —-B,K.—K;C, Ky 0451
[—K.] [0 0] [0]
(6.70)
where
r 0 0 0 0 0
0 —1.0854 —340.41 0 —11.289
[m ] B 0 6.8202¢ — 003  —1.1116e -+ 000 —1.0925 0
Cc.] 0 —3.9887¢ — 009  1.2264e — 006 0 1.0
| —3301.0 —1194.4 9.3804¢ + 004  —2.1408¢ + 004 —1.1005¢ + 002
L [—0.49477-0.17903 14.060 —2.2087—0.0018035]
[ 1.0000e + 000 0 -1
3.2707e + 000  —6.0760e + 000 0
[Bcl Ba] | | -9.7217e — 005 7.8188e — 002 0
Da Dol 3.9887¢ — 009  —1.2264¢ — 006 0
| —9.0547e — 007  1.3375e — 004
L [0 0] [0]
(6.71)

. - 27 T
andxc.:[J"e A q o, 56} ,vy=1[A. q].,r=A,, andu=>9,.
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Fig. 6.12 State estimates using the nominal Kalman Filter process noise Qy

Figure 6.12 shows state estimates using the estimator with the nominal process
noise matrix Qp (LQG design). The Kalman filter does an excellent job estimating
the states from the noisy measurements. However, the full-order observer (Kalman
filter) has degraded the excellent frequency domain properties of the LQR state
feedback design. To recover the frequency domain properties (at the plant input),
Loop Transfer Recovery (LTR) is used. The LTR procedure consists of designing
Kalman filters with the plant process covariance matrix Oy parameterized with a
scalar p as

O =00+ %BBT (6.72)

where Qg is the nominal covariance, B is the control input distribution matrix, and p
is the LTR filter compensation parameter. This parameter is adjusted,p — 0, to
recover the LQR frequency domain characteristics over the frequency range of
interest. The modified matrix Qf is used to compute the steady-state covariance
matrices Py and filter gain matrices K; to be used in the LQG controller. In this
example, values of p were chosen to be
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p=[cc 10° 10* 10° 10%] (6.73)

The following controller combines the robust servo controller and Kalman filter
estimator

i Lo praseniy
] [-BKc(1:nm) A, —KiCp—ByKe(n,+1:n)] | &

A M e [ M (6.74)
Kf Zmeas 0 U .

Xe
‘e _KL|: ¢ :|
x

Note that (6.75) is valid for plant models with no D matrix, that is, D, = 0. The
first state x| is the robust servo integrator, the vector X is the estimated state, Zyeqs
contains the acceleration and pitch rate measurements, and r is the acceleration
command. Writing the controller in a generic form, we have

Xe = Acxe + B¢ Zmeas + Be, 1

(6.75)
u= ch(' + Dclzmeas +D5‘2r
For the LQG design (p = o0)
[ 0 0 0 0 0
0 —1.0854¢ + 000 —3.4041e + 002 0 —1.1289%¢ + 001
A. = 0 6.8202¢ — 003 —1.1116e + 000 —1.0925¢ + 000 0
0 —3.9887¢ — 009  1.2264¢ — 006 0 1.0
| —3.3010e + 003 —1.1944e +003  9.3804e + 004  —2.1408e + 004 —1.1005¢ + 002
1.0 0 -1
3.2707¢ — 002  —6.0760e + 000 0
B, = | —9.7217¢e — 005 7.8188e — 002 |:B., = 0
3.9887¢ — 009 —1.2264e — 006 0
| —9.0547e — 007  1.3375¢ — 004 0

D, =[0 0); D, =[0]
(6.76)

Note that in the above controller, the robust servo error, e =y. —r = A,
—A.,..» 1s formed using the measured acceleration. This error is formed from the top
row inB., and B.,. An alternate controller would be to use the estimate of A, from the
Kalman filter, e = AZ —A This would change the control architecture
significantly.

Zemd *
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Fig. 6.13 Nyquist plot Nyquist
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Next, we will analyze the LQG/LTR design in the frequency domain and
determine the desired amount of LTR to be applied at this flight condition.
Figure 6.13 shows a Nyquist plot of the LQR, LQG, and LQG/LTR designs using
values of p from (6.74). The red circle is a unit circle centered at (—1,j0) for
reference. The LQR locus (blue) demonstrates infinite gain margin (at the plant
input) and excellent phase margin. The LQG design (blue) shows the decrease in
gain margin and phase margin from inserting the Kalman filter state estimator
into the controller. The locus for the LTR designs show initially, p = 10°, that
the margins are worse than those of the LQG. As the LTR parameter is reduced
further, the margins improve and approach those of the LQR design. This
demonstrates that the LTR recovery process is not uniform in its recovery.
Figures 6.14 and 6.15 show the analysis results examining the return difference
dynamics I + L and stability robustness matrix / + L~! at the plant input, respec-
tively. Both figures show the recovery of the LQR characteristics at the plant input.

To further examine the effects of LTR, we will examine the sensitivity and
complementary sensitivity at the plant output and the noise transmission through
the controller. The sensitivity and complementary sensitivity are given by

(6.77)

The noise transmission through the controller, # = GnoiseV, 1S given by

(Groise) = & (Cc(sl —A) "B, + Dcl) (6.78)
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Fig. 6.14 Return difference dynamics |/ + L| at the plant input for LQR and LQG/LTR designs
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Fig. 6.15 Stability robustness |I +L7! | at the plant input for LQR and LQG/LTR designs

Figures 6.16, 6.17, and 6.18 show the analysis results at the plant output. The
LTR process only guarantees recovery of the LQR properties at the plant input. The
sensitivity function in Fig. 6.16 shows undesirable peaking in S(s) as the recovery is
made. From this figure, the value of p would need to be limited to 10°. The
complementary sensitivity function in Fig. 6.17 shows undesirable peaking in 7'(s)
as the recovery is made. This peak is similar to a peak resonance in under-damped
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Fig. 6.16 Sensitivity |S| at the plant output for LQR and LQG/LTR designs
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Fig. 6.17 Complementary sensitivity |T| at the plant output for LQR and LQG/LTR designs

second-order systems. Even though the stability margins at the plant input
are getting better with LTR, the margins at the plant output are getting worse.
Figure 6.17 also shows the value of p would need to be limited to 10° to keep the
peak small. Finally, Fig. 6.18 shows the noise transmission through the controller.
We see that as p — 0, the noise amplification increases. This would be quite
undesirable. This figure indicates that the value of p would need to be limited to
10* or larger.
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Fig. 6.18 Noise transmission
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To finalize a choice of p, the decision should be made on maximizing (I + L)
and -¢(I + L") at the plant input, minimizing 5(S) and 5 (T') at the plant output, and
preventing noise amplification over a frequency range of interest. The following
table summarizes these peak values:

Design
LQR
LQR

p =10
p=10*
p = 10°
p = 10%

ol +L)

1.0000
0.5506
0.5233
0.5853
0.7920
0.9160

c(I+L71)

0.7963
0.9808
0.7136
0.6567
0.7301
0.7715

a(s)

1.4936
1.0791
1.0923
1.0599
1.4581
2.9361

a(T)

1.0480
1.0000
1.0000
1.0000
1.0000
2.1570

From the -¢(I + L)values, we need p<10* to meet plant input stability margin
requirements. We would like ~o(/ +L™!) to be as large as possible, which is also
satisfied by p<10*. We would like 5(S) to be minimized, which points to p = 10* as the
desired recovery level. If p = 10°, the peak in&(S) would be too large. Thus, p = 10*is
selected as the design. For comparison, the following table lists the Kalman filter gains:

Kalman filter gains

LQG

LQG/LTR p = 10*

3.2707e—002 —6.0760e + 000
—9.7217e—005 7.8188e—002
3.9887e—009 —1.2264e—006
—9.0547e—007 1.3375e—004

6.9018e + 000 1.7004e + 002
2.7206e—003 9.6745¢ + 000
—5.5183e—001 —5.1037e + 001
—2.8572e + 000 3.0166e + 003
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It is evident that this method increases the gains to large values. Further analysis
would be needed to determine if gains of this magnitude could actually be used in a
real flight control system.

6.3 Loop Transfer Recovery Using the Lavretsky Method

In the previous section, we combined the optimal control (LQR) with the optimal
state estimator (Kalman filter) to form the LQG controller. An LTR tuning process
was then used to recover the LQR frequency domain properties in the LQG
controlled system by inverting the filter dynamics. In this section, we shall explore
an alternate method of LTR, referred to as the LTR method of Lavretsky (LTRLM) [7].
This method is also used later in this book to shape the transient dynamics in model
reference adaptive control problems. Detailed derivations of the method and its
related equations can be found in Chaps. 13 and 14. In this section, we are going to
simply outline the key features of LTRLM and then demonstrate the method and its
efficacy through a design example.

Achieving best possible performance and stability robustness properties for a
process or a system via control design is the overall goal for the control system
engineer to attain. Among linear-time-invariant systems, there is a special class of
dynamics, called positive real (PR) and strictly positive real (SPR) [3, 4]. These
systems have very interesting properties that enable robust output feedback control
design. We present PR and SPR definitions as they are stated in [4].

Definition 6.1. A (p x p) proper rational transfer function matrix G(s) of the
complex variable s = ¢ + jow is called positive real if:

1. Poles of all elements of G(s) are in the left half complex plane.
2. For all real o for which j® is not a pole of any element of G(s), the matrix
G(jw) + G'(—j w) is positive semidefinite.
3. Any pure imaginary pole jw of any element of G(s) is a simple pole, and the
residue matrix linzu (s — jw)G(s) is positive semidefinite Hermitian.
5=

Definition 6.2. The transfer function G(s) is called strictly positive real if G(s — &)
is positive real, for some ¢ > 0.

For scalar systems (p = 1), PR and SPR dynamics have their Nyquist frequency
response locus located entirely in the right half complex plane. This condition for
G(s) can be satisfied only if the system’s relative degree is zero or one. Thus,
encirclements of (—1, jO) cannot occur. In other words, such a system will remain
stable under a large set of uncertainties, which is a highly desirable property for
any system to possess.


http://dx.doi.org/10.1007/978-1-4471-4396-3_13
http://dx.doi.org/10.1007/978-1-4471-4396-3_14
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The relationship between PR, SPR transfer functions, and Lyapunov stability
theory of the corresponding dynamical system has led to the development of several
stability criteria for feedback systems with LTI and nonlinear components. These
criteria include Popov’s criterion and its variations [8]. The link between PR, SPR
transfer function matrices and the existence of a Lyapunov function for studying
stability can be established by the following two lemmas [4]:

Lemma 6.1 Positive Real Lemma. Let G(s) = CT(sI —A) 'B+D be a (p x p)
transfer function matrix, where (A, B) is controllable and (A, C) is observable.
Then, G(s) is positive real if and only if there exist matrices P = P >0, L, and W
such that

PA+ATP=—-ITL
PB=Cr—L"w (6.79)
wWIw =D+ DT

Lemma 6.2 Kalman-Yakubovich-Popov (KYP) Lemma [4]. Let,

G(s)=CT(sI—A)'B+D

be a (p X p) transfer function matrix, where (A, B) is controllable and (A, C) is
observable. Then, G(s) is strictly positive real if and only if there exist matrices
P =P">0,L, W, and a positive constant ¢ such that

PA+A'™P=—-L"L—¢P
PB=Cl—-L"w (6.80)
W'w =D+ D"

Clearly, if D is the zero matrix, then the SPR conditions (6.81) reduce to

PA+ATP=—LTL—¢P

6.81
PB=C" (©81
and in this case, setting ¢ = 0, gives the PR conditions in the form
PA+A"P=-L"L
(6.82)

PB=C"
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The first relation in (6.83) is the algebraic Lyapunov equation, andV (x) = xT P x
is the Lyapunov function [4]. The second relation in (6.83) enables output feedback
control design, whereby the system output’y = C x can be fed back into the input to
control the system, while preserving closed-loop stability. Also, note that the
matrices B and C define the transmission zeros of the system transfer function
matrix G(s) = C(sI — A) ™"

We are going to modify the LOG/LTR design such that, for a class of restricted
systems, the PR property is obtained asymptotically, P, B, — CT, with the positive
tuning parameterv — 0. In addition, we shall ensure that P, remains symmetric and
strictly positive definite, uniformly in v. These are the distinguishing features of
LTRIM design. Similar to the previous section, in this design, the Kalman filter is
no longer treated as a filter. It will continue to estimate the system state and serve as
a dynamic compensator, tuned to improve the frequency domain properties of the
system. The Gaussian covariance matrices for w and v are altered significantly to
improve the controller robustness and to limit sensor noise amplification. So, these
matrices no longer “model” the stochastic processes of the system.

We formulate the LTRLM design approach using the linear-time-invariant
Gaussian design model,

X=Ax+Bu+w

y=Cx+v (6.83)

where w and v are zero mean, white, uncorrelated Gaussian random processes with
covariances given by

E{W([)WT(‘C)} Qod(t — 1)

(6.84)
E{v(t)V" (1)} = Rod(t — 1)
The state estimate X is formed as before, using the state estimator,
X = A% + B + Ki (Ymeas — ) (6.85)

and the control input is calculated using the LOR state feedback gain matrix K.,
with the estimated state feedback x.

u=—K=x (6.86)

In LTRLM, we parameterize the process and measurement noise covariance
matrices using a positive scalar v,
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v+1)\ - = v
Q\,:Q0+< . )BBT, RV:V+1RO (6.87)

where B is a matrix formed by adding “fictitious” columns to B, to make B =
[B X] have its column rank equal to the row rank of C, such that CB becomes
invertible and the corresponding extended system C (sl —A)flg is minimum
phase, that is, all its transmission zeros are located in the left half complex plane.
This is the “squaring-up” step of the method. Substituting the weights from (6.88)
into the filter Riccati equation, we get

1 1 - -
P, AT AP, — (1 +;> P,C"R;'CP, + Qo+ (1 +;>BBT =0 (6.88)

or, equivalently

_ ]
P,AT+AP,—P,C"R;' CP, +Qy+BB" +

[BBT—P,C" Ry'CP,] =0
(6.89)

The gains in (6.86) are computed as

K; =P,C"R,™! (6.90)

Now as v — 0, one can show that the filter covariance matrix P, asymptotically
approaches a constant symmetric positive definite matrix Py, that is,

Py =lim P, = lim Pl =P{>0 (6.91)
v— v—

This behavior is in contrast to the previous section, whereas the LTR parameter
o — 0, 6'(Pf) — 00, g(Pf) — 0, and the Pgmatrix became singular.

The important properties of Py in (6.92) are listed below without proof
(see Chap. 13, Theorem 13.1 for formal derivations):

e Py is the unique symmetric strictly positive definite solution of the following
algebraic Lyapunov equation

Po(A—C'Ry' CP) +(A=C'R;'CP)Py+ Q0 =0  (6.92)


http://dx.doi.org/10.1007/978-1-4471-4396-3_13
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o There exists a unitary matrix W € R™" such that

PoCT =B W'R} (6.93)

e The unitary matrix W in (6.94) can be chosen as

w=uv) (6.94)

where U and V are two unitary matrices defined by the singular value
decomposition,

BICTR =USV (6.95)

and X represents the diagonal matrix of the corresponding singular values.

For minimum phase systems, the SPR property is implied by (6.94). What the
LTRLM design is trying to do is to shape the transmission zeros of the state
estimator, such that the original system with the extended input becomes SPR
asymptotically, as v — 0. To do this, we “square-up the system” by adding extra
columns to B (to form B) and then apply the LTR tuning process, whereby we
decrease the tuning parameter v in (6.88), until the system becomes almost SPR.

It was discussed earlier in Chap. 2 that in the LQR design problem, with the
penalty matrix Q factored as Q = Q%Q%, the poles of the closed-loop system,
A(A — BK_), would approach the transmission zeros defined by Q2 (sl —A) 'B
asymptotically as the gains grew large. If no finite transmission zeros existed,
the roots would form a Butterworth pattern (or combinations of Butterworth
patterns) in the left half complex plane. Thus, by the proper selection of Q, the
designer places these zeros to achieve the desired response of the system. So,
the selection of the LQR penalty matrix is a key tuning mechanism in the LQR
controller design.

This same basic idea is in work under LTRLM. For the state estimator (aka
Kalman filter), the process covariance O is the equivalent to the LQR penalty
matrix. Factoring the process covariance Qy as Qy = L'L, the eigenvalues of the
Kalman filter, 2(A — K;C), will approach the finite transmission zeros defined by
C(sl — A)_IL. Thus, the selection of the process covariance O is an ideal tuning
mechanism in the design of the LTRLM controller. Placing the zeros of the
system in a desirable location is the key to achieving a robust design. This is
achieved through the modified process covariance and measurement noise
matrices in (6.88).
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6.3.1 Summary

Dynamics: X = Ax + Bu +w x(to) = xo
y=Cx+v

E{x} =x,E{w} =0,E{v} =0, cov(x) =P,

E{ww"} = Qd(1); E{w"} = Rod(r)

Robust Servomechanism LQR:

Command r = constant.
Controlled output (to follow r) : y. = C.x
u

o=
AN

(ZTQZ + ,uTR,u)dr

e=y.—r;z=[e X

Dynamics: 7 = Az +Bu A

Performance index: J =

(S -

(A,E) Stabilizable, (A,Q%> Detectable
Algebraic Riccati Equation: PA + A’P + Q — PBR™'B'P
Optimal Control: u = —R™'B"Px = —K,z

o fo--a[ ]

Kalman Filter State Estimator: ¥ = A% + Bu + K¢ (Ymeas — ¥)
Square of the system: C [B E] has full rank

N -
Qv=Qo+<v+ )BBK R, =—— Ry
v v+ 1
1 1N - -
PVAT+APV—<1+—>PVCTR51CPV+QO+(1+—)BBT:0
v v

Ky =P,C"R,”!

The LTRLM controller design, examining the loop properties at the plant input,
may be realized through the following synthesis technique:
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Step 1: LQR controller design: K,
Follow the robust servomechanism design approach outlined in Chap. 3. Design
LQR weighting matrices Q and R, such that the resulting loop gain Ligr(s) = K,

(sl — A) ~'B meets performance and stability robustness requirements and exhibits
the desired bandwidth.

Step 2: State estimator/Kalman filter design: K;

Select columns X to make B = [B X | have column rank equal to the row rank of
C and to make the extended system minimum phase. Design the Kalman filter/state
estimator using (6.89), with (6.88) defining the plant process and measurement
noise covariance matrices. The LTR parameter v is used to recover the LQR
frequency domain characteristics over the frequency range of interest. Ad hoc
adjustment of the sensor noise covariance magnitude may be needed to scale the
Kalman gains to prevent large gains from occurring. Examine plant input and
output frequency domain criteria and the sensor noise amplification in and limit
the LTR recovery so that the sensor noise is not amplified.

Example 6.3 LTRLM Design for Pitch Dynamics of an Aircraft. The flight control
design example we have been using to demonstrate the various output feedback
control design methods does not satisfy the requirements for using LTRLM. This
method requires adding extra control columns X to B so that C[B X | is invertible,
and the corresponding extended dynamics are minimum phase. We begin by
approximating the aircraft model with minimum phase dynamics. This step is not
required since we could have accomplished it through the squaring-up procedure.
However, we have found that starting with minimum phase dynamics simplifies the
overall design process. For the aircraft pitch dynamics, we can do this easily by
neglecting the tail vertical force Zs which is small in most applications. Normally,
the acceleration transfer function has an RHP zero. When we zero Z;, this transfer
function no longer has any finite zeros.

To satisfy the requirement for C[B X | be invertible will require us to alter the
design problem by removing the actuator model. This reduces the number of states,
creating a second-order design model. In this example, we will compare the design
using LTRLM with the LQG procedure, as well as with the conventional LQG/LTR
method of the previous section.

Toward that end, we consider aircraft longitudinal dynamics in the form

. ch Z(i
0=—a+—0+

yrryord (6.96)
q = M,o+ Msd +qu

where angle-of-attack o and pitch rate ¢ are the states, and the elevator position ¢
represents the system control input. The measured outputs consist of the vertical
acceleration A, and the pitch rate g.
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Al |Z, O« Zs
=16 G5 697
We will neglect the tail vertical force (Zs = 0) and form the minimum phase
plant model (A,,,B,,,C,,,Dp) as

~1.0527 1 0

A, B,] | -23294 —1.0334 —1.1684

[C,, DJ T | -34648 0 0 (698)
0 1 0

First, we perform the LQR state feedback design. To track an acceleration
command, the RSLQR state feedback design model (6.24) is

10 (1,91~ [0
Qi (1, )}B _ [ }

0 Ap Bﬁ

[0 —34648 0 0 (6.99)
A=1]0 —-1.0527 1 B= 0

0 —23204 —1.0334 —1.1684

Using the weight matrices Q = diag[0.2448 0 0] and R = 1, the LQR state
feedback gain matrix is

K. =1031623 -33.261 —6.7127] (6.100)
The above control law is implemented as
u=—KJ[[(A,-r) o q] (6.101)

To analyze and compare our controllers, we will implement each one in our
standard controller model:

Xe =Acxe + Bcly + Bor

(6.102)
u = CCXC + Dcly + DCZV
Using the gains from (6.101), the state feedback controller is
X =[0lx.+1[1 Oly+ [-1]r
O+ (1 Oly+[-1] 6109

u = [—0.31623]x. + [33.261 6.7127 ]y + [0]r
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To form the closed-loop system, the above controller is connected to the plant
model.

Next is the LQG design. The nominal process and measurement noise covari-
ance matrices are

o[ wiallit] v
and
Ry — [6.25 x 1072 _6} {(fps)z} (6.105)
1.0 x 10 (rps)
The Kalman filter state estimator is
X =A%+ Bu+ K¢ (y — 9) (6.106)

where u is formed using (6.102) and was implemented using steady-state matrices
obtained from the filter covariance equation

0=AP; +P;A" + 0, — P;C"R,”'CP;

6.107
Ky = PC'R,”! @10

The steady-state covariance and Kalman filter gains design (using Q¢ and Ry are

3.8344e — 007 4.8957¢ — 005
[ —0.053132  0.38344
71200021257 48.957

[9.58436 — 006 3.8344e — 007}
=

(6.108)

To analyze this observer-based design (Kalman filter), we will implement the
controller in our standard model (6.103). For the LQG controller, the RSLQR
control law is given by

u=-K Je —K.x
(6.109)

e=y.—r=A—-A4.,,

where X is the estimated state, and the RSLQR gain matrix is partitioned as K, =
[K1 K,]. To form the estimated state, we need to substitute the control (6.110) into
the state estimator (6.107). Doing so gives
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X =A%+ Byu+ K (y —5)

fc:Ap)?—i—Bp(—KlJe—Kx)%) +Kf(y— (cpx+Dp(—K1Je—Kxx>>>

x = (Ay — (B, = KtDy)K: — K;Cy) 3 = (B, — KyD, ) K Je + Ky
Ay A

(6.110)

The LQG controller states are x, = [ [ e )E]T. The controller state space model
using (6.110) and (6.111) is

e S e e

6.111)
u=—[K K] [Ie] + [0]ymeas + [O]7

where A;; and Aj; are defined as in (6.111). Substituting the gains into (6.112), we
have

0 0 0 ] [ 1 0 -1
e
H: 0 —19.462 0.61656 [j+ —0.053132 0.38344 | ypeas+ | 0|7
X
0.36948 —41.928 —57.833 | x —0.0021257 48.957 0

X

e
u=[—0.3162333.2616.7127]|"" | +[00]ymeas +[0]

(6.112)

Next is the LQG/LTR design. This method (from the previous section) adds a
term to the process noise covariance matrix as

1
O =00+ ;B,)B,f 6.113)

We varied the LTR parameter p and selected a value of p = 25. This produces

0.000196 0

Or = 0 0.057106 (6.114)

which results in
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p, _ [9-5933¢ — 006 8.3416e 007
77183416 — 007 0.00023793
(6.115)
(. _ [ 0053183 083416
77 20.0046243  237.93

Note the magnitude increase in the gain Kr(2,2).

The last controller in this example uses the LTRLM. The first step in the design
process is to design the LQR control law. We will use the RSLQR controller from
(6.102). The second step is to select columns X to make B = [B, X ] have column
rank equal to the row rank of C,. To complete this design, we must look at the
numbers within these matrices:

[-34648 0], [ 0 . _ by
o[ o= Sl ] oo

:Fo add a second column in B, we see that any values are possible, except by = 0.
If by, = 0, then

0 0

I
B= [1.1684 522] (6.117)

which is rank 1. To evaluate the effect of this selection, we will examine two
designs, described

. 0o 1 - 0 ol
B = [—1.1684 0} and B, = [—1.1684 10.} (6.118)

To improve the numerical scaling between Qr and Ry we will scale R, by 250.
The process noise and measurement covariance matrices are given by

1\ - _
0, = 0o+ (%) BB, R, — HLI 250 6.119)

For v = 2.5 and using B = By, we have

1 0 14002 0
114 -
{o 1.3652} [ 0 1.9137}

0.0625 0 11.161 0
0 le — 006 0 0.00017857

_ {0.000196 0 ]

0 0.0025
(6.120)

R, = (0.71429)(250) {
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Solving for the steady-state covariance and gain matrix from (6.108) yields

» 0.011312 —3.5561e — 005
77| ~3.5561e — 005 0.018303
(6.121)
~0.35116 —0.19914
K =
0.001104  102.5

The controller is formed by substituting the gains Ky into (6.112) and results in

0 0 0 | 1 0 -1
e
H 0  —19.48 0.16584 {f]+ —0.053183 0.83416 | ypoas +| O |7
X
0.36948 —42.794 —246.8 | = —0.0043243 237.93 0
fe
u=[—0.3162333.2616.7127]|"_ | +[0 0] ymeas+[0]F (6.122)
X

For v = 2.5 and using B = B,, we obtain

~10.000196 0 } 14{O.O] 1 }_{0.014196 1.4 }
11

0 00025 110137 14 14191
00625 0 161 0
R, = (0.71429)(250){ ] _ [ }
0 le—006 0 0.00017857
(6.123)

Solving for the steady-state covariance and gain matrices from (6.108) yields

0.00017018  0.0017429
F= {0.0017429 0.15898 }
~0.0052832  9.7605
1= { ~0.054109 890.31}

(6.124)

The controller is formed by substituting the gains Ky into (6.112) and results in

0 0 0 1 0 -1

e
H_ 0 —122.72 1.191 {ff’]ju —0.35116 —0.19914 | yyeus+ | O |7
1036948 —40.809 —11137) " | 0.001104 1025 0

Je
u=[—0.3162333.261 6.7127] | * | +[0 0ypmeas + [0
3

(6.125)
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Fig. 6.19 Step response for the LQR, LQG, LQG/LTR, and LQG/LTRLM controller designs
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Fig. 6.20 Nyquist plot for the LQR, LQG, LQG/LTR, and LTRLM controllers

By varying the columns in B, we get significantly different controllers. The
second choice has a larger Q,, which results in larger gains. We can expect that
these gains will recover the LQR properties better than the designs with smaller
gains.

Figure 6.19 shows a step response for the closed-loop system using all five
controllers (LQR, LQG, LQG/LTR, and the two LTRLM controllers). The plot
shows that the time domain simulation results are identical for all the designs.
Figures 6.20, 6.21, 6.22, 6.23, and 6.24 show the frequency domain analysis of
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Fig. 6.21 Bode plots for the LQR, LQG, LQG/LTR, and LTRLM controllers
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Fig. 6.22 |[ +L| and |] + L‘1| at the plant input for the LQR, LQG, LQG/LTR, and LTRLM
controllers
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Fig. 6.23 |S| and |T| at the acceleration output for the LQR, LQG, LQG/LTR, and LTRLM
controllers
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Noise-to-Control Transfer Function Matrix
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Fig. 6.24 Noise transmission through the controller for the LQR, LQG, LQG/LTR, and LTRLM
controllers

these controllers. Figure 6.20 shows the Nyquist plot. We see that the LQR design
(black line) does not enter the red unit circle centered at (—1, jO). The LQG design
(also black line) is the locus to the left which has the degraded gain margin and
phase margins properties. Note that the LQG design here is not as bad as in
the previous section due to the actuator being neglected within this model. The
LQG/LTR design with LTR parameter p = 25 is the red curve. The two designs
using the LTRLM approach (blue and green curves) bracket the LQG/LTR locus.
The LTRLM method with B = B, (green curve) has the most recovery (closest to
the LQR black curve).

We see from the figures that the LQG/LTR and LTRLM methods can all be
tuned to recover the LQR properties. These methods all recover the properties by
increasing the Kalman filter gains. Care must be taken to prevent the gains from
getting too large. The LTRLM method can achieve the recovery with smaller
overall gains as compared to the conventional LQG/LTR method. The LQG/LTR
method adds B,,B;to Qo, while the LTRLM method adds B B”. For this example,
these are

r [0 0 15 [o01 1
B”BP_[O 13652 B8 = 1 10137 (6.126)

The additional parameters offer an improvement by distributing the recovery
into additional loops within the architecture.
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6.4 Conclusions

In this chapter, we presented static output feedback and dynamic projective control
and two LQG/LTR design methods. These design methods in no way capture all the
available output feedback methods available to the engineer. We selected these
methods because they have proven to be good design methods, and more impor-
tantly for the student, they demonstrate the insight needed to develop control
system in practice.

The static projective control method has been found to be very effective at
designing output feedback controllers. In flight control applications using gain
scheduling, these controllers are low order, making them easy to implement.

LQG/LTR controllers require a dynamic observer for implementation. In flight
control applications where gain scheduling is relied upon to compensate for a large
flight envelope, these observers can introduce small transients as the observer
parameters vary. The engineer must simulate and evaluate if these transients are
acceptable.

The exercises that follow for this chapter take a longitudinal flight control
problem and assign each design method. Any plant dynamics could be used for
these exercises. The key is to learn how to design and compare designs so that both
time domain performance and frequency domain robustness requirements are met.

6.5 Exercises

Exercise 6.1. Consider the unstable longitTudinal dynamics model, as defined in
Example 6.1, where x = [oc q d. 56] . The matrices for the control design
model x = Apx + B,u are

—1.3046e 1.0 -0.2.1420 0 0

47.711 0 —104.83 0 0

(4, Byl = 0 0 0 1.0 0
0 0 —12769. —135.6| | 12769

(a) Design a robust servomechanism LQR state feedback control to track a constant
oacommand using the method of Chap. 3. Simulate the state feedback design to
show the command tracking.

(b) It is desired not to feedback the elevator state and rate signals to improve
reliability. Use the static projective control method of Sect. 6.1 to project out
the actuator dynamics, keeping the dominant eigenstructure for command
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tracking. Simulate the static projective control design to show the command
tracking and compare with (a).

(c) Compute the eigenstructure for (a) and (b) to show that the dominant
eigenvalues are retained. Analyze this design in the frequency domain. Com-
pute Nyquist, Bode, ~¢[I + L], “[I + L™'] frequency responses for a) and b) at
the plant input. Compute [S] and &[T frequency responses for a) and b) at the
plant output for the « loop. Compute the loop gain crossover frequency and
singular value stability margins for the design.

Exercise 6.2. Consider the unstable longitudinal dynamics from Exercise 6.1. The
output signals available from the inertial measurement unit are y = [A, ¢ ]T. The
matrices for the output model y = Cp,x + D,u are

~11569 0 —189.95 0]|0
LS DP]:H 0 L0 0 OHOH

(a) Design a robust servomechanism LQR state feedback control to track a constant
acommand using the method of Chap. 3. (Same controller from Exercise 6.1).
Design a full state Kalman filter observer to estimate the states for feedback
using the method outlined in Sect. 6.2. Use the following plant process and
measurement noise covariance matrices for the Kalman filter design:

1.0x 1078 0 0 0 (rad)*/s
00 — 0 2.5 %1077 0 0 (rps)* /s
0 0 0 1.0 x 1078 0 (rad)’ /s
0 0 0 1.0 x 1076 | | (rps)*/s
~[6.25%x1072 0 (fps)*
Ro = 0 1.0 x 106} {(rps)z (6127

List all matrices used in the design.

(b) Simulate the LQG design and compare it to the state feedback design.

(c) Analyze this LQG design in the frequency domain. Compute Nyquist, Bode,
o[l + L], o[l + L™"] frequency responses for the LQG and state feedback at the
plant input. Compute 6[S] and &[T| frequency responses for (a) and (b) at the
plant output for the o loop. Compute the loop gain crossover frequency and
singular value stability margins for both designs. Determine the impact of using
the Kalman filter estimator on the stability robustness of the system.

(d) Use the LTR method of Sect. 6.2 (6.59) to recover the frequency domain
properties of the state feedback design in the LQG design. Evaluate the design
in the frequency domain as in (c). Compute the maximum singular value of the
noise-to-control transfer function matrix frequency response to examine the
noise amplification in the resulting LQG/LTR design.
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Exercise 6.3. Consider the unstable longitudinal dynamics in Example 6.3 and
Exercise 6.1. The output signals available from the inertial measurement unit are

y=[A. ¢]". The matrices for the output model y = Cpx + D,u are

c Dp]=H_1156'9 0 0 0] ]

0 1.0 0 O
(a) Design a robust servomechanism LQR state feedback control to track a constant
ocommand using the method of Chap. 3. Design a full state Kalman filter
observer to estimate the states for feedback using the method outlined in
Sect. 6.3. Use the following plant process and measurement noise covariance
matrices for the Kalman filter design:

0
0

Note that the lift term due to the elevator has been zeroed.

1.0x 1078 0 0 0 (rad)*/s
00 = 0 2.5 %1077 0 0 (rps)?/s
0 0 0 1.0 x 1078 0 (rad)?/s
0 0 0 1.0 x 107 | | (rps)?/s
_[6.25x 1072 0 (fps)®
Ro = 0 1.0 x 10—6} [(rps)z (6.125)

List all matrices used in the design.

(b) Simulate the LQG design and compare it to the state feedback design.

(c) Analyze this LQG design in the frequency domain. Compute Nyquist, Bode,
0|l + L],~a[I + L] frequency responses for the LQG and state feedback at the
plant input. Compute [S] and &[T] frequency responses for (a) and (b) at the
plant output for the « loop. Compute the loop gain crossover frequency and
singular value stability margins for both designs. Determine the impact of using
the Kalman filter estimator on the stability robustness of the system.

(d) Use the Loop Transfer Recovery method of Lavretsky, Sect. 6.2 (6.88), to
recover the frequency domain properties of the state feedback design in the
LQG design. Evaluate the design in the frequency domain as in (c). Compute
the maximum singular value of the noise-to-control transfer function matrix
frequency response to examine the noise amplification in the resulting LQG/
LTR design.
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Part I1
Robust Adaptive Control



Chapter 7
Direct Model Reference Adaptive Control:
Motivation and Introduction

7.1 Model Reference Control: Motivational Example

In the design of flight control systemes, it is essential to provide closed-loop stability,
adequate command tracking performance, as well as robustness to model uncertainties,
control failures, and environmental disturbances. In the previous chapters, we
considered optimal linear quadratic regulator (LQR) control design techniques
that were suitable for flight control of aerial systems. These design methods relied
on the inherent robustness properties of LQR optimal controllers. It was shown that
with a proper selection of the LQR design tuning parameters (Q and R matrices),
one could achieve 6 dB gain margin, and at least 60° phase margin, at the system
control input break points.

It is also possible to show that LQR optimal controllers can tolerate time-state-
dependent nonlinear uncertainties that might be present in the system control
channels. These uncertainties are called “matched” since they appear only where
control inputs exist in the system dynamics. The matching conditions imply that if
the system uncertainties were known, a controller would have the ability to cancel
them out.

In the presence of matched uncertainties, a deterioration of the system baseline
closed-loop performance is inevitable. This is to be expected since the LQR
controllers are designed to be robust to the entire class of matched uncertainties.
However, they are not tuned to handle any specific uncertainty from this class. In
other words, these LQR controllers may become overly conservative.

We pose the question: “Can we restore a given baseline closed-loop performance
of the system, while operating under matched uncertainties?”” The answer is “yes.”
This is the area where adaptive controllers are highly effective.

Throughout the chapters of Part II, we shall utilize the concept of a reference
model for specifying the desired closed-loop tracking performance. Fixed-gain
controllers, as well as adaptive systems, can be constructed using the reference
model-based design concept. We shall begin our discussions with a motivational
example.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 211
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_7,
© Springer-Verlag London 2013
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Fig. 7.1 Lift forces arising p>0
from positive differential

aileron deflection cause
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counterclockwise (positive

roll rate)
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Example 7.1 Fixed-Gain Model Reference Control of Aircraft Roll Dynamics. The
roll dynamics of a conventional aircraft are controlled using differential motion of
ailerons and spoilers. Ailerons are movable surfaces that are mounted outboards on
the trailing edge of the wing, where they are placed symmetrically on each side of
the wing, with respect to the aircraft centerline (Fig 7.1).

Deflected differentially (e.g., downward on one side and upward on the other),
ailerons have the ability to increase the lift force on the downward deflected portion
of the wing and to decrease it on the other side. The two distinct lift forces will
create a rolling moment around the aircraft velocity vector placed at the aircraft
center of gravity. While ailerons can move up and down, spoilers can only be
deflected upward above the trailing edge of the wing to reduce the lift force and thus
to aid ailerons in providing roll control. As a result, the aircraft rotates around its
velocity vector. In this case, the aircraft roll dynamics can be approximated by a
scalar (first-order) ordinary differential equation (ODE) in the form

p=Lyp+Ls, 0, (7.1)

where p is the aircraft roll rate in stability axes (radians/s), d, is the total differential
aileron-spoiler deflection (radians), L, is the roll damping derivative, and Ls, is the
dimensional rolling moment derivative with respect to differential aileron-spoiler
deflection, (the aileron-to-roll control effectiveness). For a conventional open-loop-
stable aircraft, the roll damping derivative L, is negative, unless portions of the wing
are stalled, in which case the roll damping may become positive. Positive differen-
tial aileron-spoiler deflection is defined to produce positive rolling moment, and as
such, the aileron-to-roll control effectiveness L;, typically has positive values.

Strictly speaking, the roll dynamics approximation above is valid only for
sufficiently small values of p and J,. In addition, it is assumed that the aircraft
yawing motion is suppressed by the rudder — a vertical tail mounted surface.
Readers who might be unfamiliar with the flight mechanics nomenclature may
consider (7.1) as a scalar ODE x = ax + b u, with two constant parameters a = L,
b = Ls,, whose state and control input are x = p and u = J,, respectively.
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The control task of interest is to force the aircraft to roll like the reference model,

pref = dyef Pref + brgfp(‘md (72)

with the prescribed values of a,.; < 0 (the desired inverse time constant) and b,,r >0
(the desired DC gain). The reference model (7.2) is driven by the commanded roll
rate p.,q and it calculates the reference roll rate p,.r. In essence, the reference model
(7.2) imbeds and defines the desired closed-loop command tracking performance.
The control task amounts to finding J, that would force the aircraft roll rate p track
any bounded, possibly time-varying, reference command p,.s. This is the model
reference control design task. Sometimes, it is also referred to as the model
following control. Using this concept allows the designer to create controllers
whose main task is to asymptotically match a given reference model behavior.
Let us now explore details of the model reference control design.

Comparing the roll dynamics (7.1) to that of the reference model (7.2), it is easy
to see that a control solution can be formulated in the feedback-feedforward form

Aref — Lp bref
0= |——+ - 7.3
(“ )+ (72) po a3)

where k, = ( ) is the roll rate feedback gain, and k,,, = (';f ) is the com-
mand feedforward gain. In fact, substituting the controller (7.3) into the roll
dynamics (7.1), gives the desired closed-loop system dynamics.

Aref L

p = dref P + brefpcmd (7.4)

In order to formally assess if (7.4) indeed converges to (7.2), we first define the
roll rate tracking error,

€ =D — Dref (7.5)

and then compute the tracking error dynamics by differentiating e with respect to
time, while substituting (7.4) and (7.2).

ée= p - pref = Qref (P - pref) = dyef € (7.6)

Since by definition a,,; < 0 (e.g., the reference model is exponentially stable),
the error dynamics (7.6) are globally exponentially stable. Therefore, given any
initial values p(0) and p,.r(0), the tracking error e(r) will converge to the origin
exponentially fast,

e(r) = exp(a 1) €(0) (7.7)
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Fig. 7.2 Block diagram of the closed-loop roll dynamics with fixed-gain model reference
controller obtained in Example 7.1
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starting at any initial tracking error value ¢(0) = p(0) — py.r(0). So, the aircraft roll
rate p(f) will track the reference roll rate p,.¢(7), with the exponentially fast decaying
tracking error e(t),

p(t) = Pref (1) + exp(arer t) (P(0) — prer(0)) (7.8)

and this closed-loop tracking performance is valid for any constant or bounded
time-varying command p.ug = Pema(t). The command tracking problem is solved.
The corresponding closed-loop system block diagram with the fixed-gain model
reference controller (7.3) is shown in Fig. 7.2.

The model reference controller (7.3) is by no means unique in solving the
command tracking problem of interest. Other solutions can be found. For example,
any controller in the form

Sa = kp P + kpyy Pema — ke (P = Prer) (7.9)

solves the same tracking problem, where k, > 0 represents the error feedback gain.

However, does the error feedback in (7.9) give any advantage over the original
controller (7.3)? In order to answer that question, let us calculate the error dynamics
obtained using the modified controller (7.9).

é= (aref — ke) e (7.10)
Consequently,

p(l‘) = pref(t) + exp((aref - ke) t) (p(O) - pref(o)) (71 1)

By definition, the error dynamics (7.10) define the transients that are incurred by
the system while tracking a given reference command p, (7). It is now evident that
choosing k, > 0 sufficiently large will allow the designer to obtain any desired (fast)
transient dynamics. This constitutes the primary advantage of using an error
feedback gain in the fixed-gain model reference controller (7.9). Figure 7.3 shows
the resulting closed-loop system diagram.
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Fig. 7.3 Closed-loop system block diagram with fixed-gain model reference controller and error
feedback obtained in Example 7.1

Of course, practical limitations, as well as stability robustness considerations,
will place upper and lower limits on the selection of the controller gains. Eventu-
ally, these restrictions will dictate the trade-off between achievable transients in the
closed-loop system and adequate stability robustness margins. |

7.2 Introduction to Direct Model Reference Adaptive Control

In the roll control example above, we have assumed that the system dynamics (7.1)
(defined by the aircraft aerodynamics) were completely known. Then, we utilized
the roll damping L, and the aileron control effectiveness L;, to design the two fixed-
gain model reference controllers, (7.3) and (7.9).

In reality, aerodynamic parameters are rarely known exactly. This type of
uncertainty is called parametric. If the true parameters are substantially different
from their assumed constant values, controllers such as (7.9) can lead to instabilities
in the system. Even when the system remains stable in the presence of parametric
uncertainties, its closed-loop tracking performance may deteriorate to a point of
becoming unacceptable.

Robustness considerations may not always solve the parameter sensitivity prob-
lem. Often, robust controllers will have a conservatism built into their design, and
as such, they may not be able to provide adequate tracking performance, when
operating under specific parametric uncertainties. This leads to the idea of adding a
gain adaptation mechanism and arriving at model reference adaptive controllers.

Example 7.2 Model Reference Adaptive Control of Aircraft Roll Dynamics Suppose
that the two aerodynamic parameters, L, and Ls,, in the roll dynamics (7.1) are
constant but otherwise completely unknown, with the exception that we do know
the sign of the aileron control effectiveness Ls, (it is positive for a conventional
aircraft). The control task remains the same as in Example 7.1 — we need to find J,
such that p tracks p,.r, which in turn is driven by a bounded possibly time-varying
command p4.
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The main control challenge here is to achieve the desired closed-loop tracking
performance, specified by the reference model (7.2) while operating in the presence
of constant parametric uncertainties L, and Ls, .

In the forthcoming chapters, we will exploit Lyapunov-based methods that allow
us to design adaptive controllers with formal guarantees of closed-loop stability,
boundedness, and tracking performance. In the meantime, we shall outline main
ideas in the design of adaptive systems.

If we knew the roll dynamics model parameters, then a feedback-feedforward
controller in the form similar to (7.3)

Sa = kpP + kp,y Pema (7.12)

would have solved the tracking problem. Since the system parameters are unknown,
the ideal controller gains, k, and k,, ., cannot be computed directly as in Example 7.1.
Instead, we consider an adaptive controller in the form

Sa = kpp + kp,py Pema (7.13)

where (kA,,, lgpm, ,) represent the estimated feedback and feedforward gains, in that
order. Substituting (7.13) into (7.1) gives the closed-loop system.

p = (Ly+Ls, k) p + (Ls, kpopy) Pema (7.14)

Using parameterization (7.3), the reference model dynamics (7.2) can be equiv-
alently written in terms of the ideal unknown gains as

pref = (Lp + Léa kp) Pref + (L(S,, kmmd) Pemd (7.15)
~———— \_?,.__/
Are ref

We now define the gain estimation errors,

Ak, =k, — k,, Ak, =k

Demd kpvmd

(7.16)

and rewrite the closed-loop system (7.14) in the following form:

[5 = (Lp + Lé(, kp) p+ (Lél, kpund) Pema + Lél, (Akpp + Akp(-md pcmd) (717)
~———— ——

Aref brer
Subtracting (7.15) from (7.17) gives the tracking error dynamics.

é = apyr e+ Ls, (Akyp + Ak, Poma) (7.18)



7.2 Introduction to Direct Model Reference Adaptive Control 217

There are three error signals in the error dynamics (7.18): (1) the roll rate
tracking error e, (2) the feedback gain estimation error Ak, and (3) the feedforward
gain estimation error Ak, ,. We are going to devise adaptive laws for changing the
gains (kAp, lgpcm d), such that all these three errors tend to zero, globally and
asymptotically.

In order to do that, we first define a scalar function V, representative of the total
“kinetic energy” of all the errors in the system.

a |L5 2
( Ak Akpmd) = 3 + E Akp + — > Akp,md (7.19)

Vp( ‘md

The “energy” function represents a weighted sum of squares of all the errors in
the system. This is the so-called Lyapunov function candidate, and the positive
constant scalar weights (yl,, ypl,md) will eventually become the rates of adaptation.
We can easily evaluate the time derivative of V.

Akk

Pemd “Pemd

Ve, Ak, Akpm,)—ee+|L/ Ak, +|

P P( md

(7.20)

This is the system “power.” Substituting (7.18) into (7.20) yields the time
derivative of V, along the trajectories of the error dynamics (7.18) but without
explicit knowledge of these trajectories.

Ve, Aky, Aky,,) = dy €

k

Pemd

|Ls, |

= Ak,

DPemd
P Pemad

+eLs, (Akyp + Akp,,, Poma) + (7.21)

Rearranging terms, we further get

( Ak, Ak,,md) = Qyof e

k
+ Ak, |Ls,| <Sgn(Léu)P e+ 7”
P

k
> + Akp“”’d |L(Sa| (Sgn(Lb )pcmde + p‘"'d>

Pemd

(7.22)

We want the energy function V to dissipate in time. It is then sufficient to require
that its derivative V (the system power) be nonpositive, when evaluated along the
system trajectories. The nonpositivity of V can be easily achieved if we select the
following adaptive laws:

ky = —y,p e sgn(Ls,)

Kpena = "V popa Pemd € sgn(Ls,) (7.23)
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or, equivalently,

k, =—y,p e

Kpeps = = Vppg Pema € (7.24)
thus making the second and the third terms in (7.22) disappear. Then,
Ve, Aky, Aky,,) = arre* <0 (7.25)

and consequently, the system kinetic energy V is a nonincreasing function of time.
This fact immediately implies that all the signals in the error dynamics (7.18), such
as (e, Ak,, Ak, ), are bounded functions of time. Furthermore, since the ideal
gains (kp, kp.., 4) are constant, the adaptive gains (lgp, lgp d) are also bounded.

The stable (by design) reference model (7.2), when driven by a bounded
command p.,q, gives a bounded output p,.s. Also, e was proven to be bounded.
Then, the roll rate p is bounded. Consequently, the control input d, in (7.13) and the
roll acceleration p in the system dynamics (7.1) are bounded. Furthermore, since p,..s
is bounded, then ¢ is bounded, and so

Ve, Aky, Aky,,) =2ayseé (7.26)

is a uniformly bounded function of time. The latter implies that V is a uniformly
continuous function of time.

By definition (7.19), V > 0 and because of (7.25), V is a nonincreasing function
of time. Therefore, V tends to a limit as t — oo, where the function limiting value
may not necessarily be zero.

We have shown that( < tliglo V(e(r), Aky(t), Akp,,(t)) <ooandV are uniformly

continuous. According to Barbalat’s lemma (see Chap. 8), these two facts imply that
the system power V in (7.25) asymptotically tends to zero, which in turn means

lim e(r) = 0 (7.27)

1—00

Thus, the adaptive controller (7.13), along with the adaptive laws (7.24), forces
p track its reference signal p,, asymptotically and for any initial conditions
(globally). At the same time, all signals in the corresponding closed-loop system
remain uniformly bounded. These arguments prove closed-loop stability and
tracking performance of the closed-loop system with the adaptive controller. The
corresponding block diagram is shown in Fig. 7.4.

As seen from the figure, the closed-loop system is comprised of the original roll
dynamics (7.1) operating under the adaptive controller (7.13), with the reference
model dynamics (7.2), and using the adaptive laws (7.24). Here, the external input
is the roll rate command p .
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Fig. 7.4 Model reference adaptive controller obtained in Example 7.2
p= (LP +Ls, kp) p+Ls, kp[»md Pemd
pref = Qyef Dref + bref Pemd

kp = —VpP (p _pref)

Kpens = —Vpug Pemd (P — Pref) (7.28)

Equivalently, this system can be written in terms of the tracking and parameter
estimation errors.

¢ = (ares + L, Aky) € + Ls, (Aky prer + Ak, Pema)

d
9 (8ky) = 3y (e + i) €

d
E (Akcmd) = " Vpema Pcmd € (7.29)

If instead of command tracking, the state regulation is of interest, then p,.r
= Ppema = 0, and so /E,, = kp,,, = 0. In this case, the closed-loop systems (7.28)

and (7.29) simplify to the following time-invariant second-order inherently nonlin-
ear dynamics,

emd

p= (Lp +Ls, ]gp)p

ky = =y, p (7.30)
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These relations reveal the essential mechanism of adaptive control. The time-
varying adaptive feedback gain IE,,(I) will monotonically decrease its value until
(Lp +Ls, Igp) becomes negative, and as a result, the roll rate p(¢) will asymptotically
converge to zero. In (7.30), the constant y, > 0 defines the rate of adaptation in the
sense that large values of 7, will force the adaptive gain k,(f) to decrease faster.

In summary, using energy-based arguments, we have shown that the adaptive
controller (7.12) and (7.24) provides the desired model reference-based closed-loop
tracking performance for the system (7.1) while operating in the presence of the
parametric uncertainties (Lp7 L(su). O

7.3 Direct Model Reference Adaptive Control of Scalar
Linear Systems with Parametric Uncertainties

Let us now generalize and summarize the results obtained in Example 7.2 while
restating them for a generic class of scalar linear-time-invariant uncertain systems
in the form

X=ax+bu (7.31)

where x € R is the systems state, u € R is the control input, and (@, b) represent the
parametric uncertainties, (constant and unknown), with the known sgnb.
First, we choose the desired reference model,

-).Cref = Ayef Xref + bref r (7.32)

with a,,; <0. This model is driven by any bounded, possibly time-varying,
reference command r. The model parameters (a,ﬁef, b,?f) must be chosen such that
Xrer tracks r, with the designer specified criteria. For example, one might set b,.r
= —arf in order to enforce the unity DC gain from r to x,.. Also, the value of |aref|
can be chosen such that the desired inverse time constant of the reference model is
achieved.

Second, we define the model reference adaptive controller as a linear combina-
tion of feedback and feedforward terms,

u= lgxx + lg,. r (7.33)

where (kAX, Ig,) are the two adaptive gains, whose adaptive law dynamics are
constructed similar to (7.24).

lgx =—yp.x (x — xwf) sgn(b)
ke =—y.r (x = Xrer) sgn(b) (7.34)
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In (7.34), positive scalars (y,, y,) are called the rates of adaptation. The larger
their values, the faster the system will adapt to the parametric uncertainties.

This particular controller is called “direct” to indicate that the controller gains
are adapted in (7.34) directly in order to enforce the desired closed-loop tracking
performance. Alternatively, indirect adaptive controllers can be designed to esti-
mate the unknown plant parameters (@, b) online and then use their estimated values
to calculate controller gains.

Finally, using energy-based arguments, we can formally prove that the adaptive
controller (7.33) and (7.34) provides the desired closed-loop tracking performance,
in the sense that the system state x globally asymptotically tracks the state x,.s of the
reference model (7.32) while keeping all signals in the corresponding closed-loop
dynamics uniformly bounded in time.

A few immediate remarks are in order:

e The direct model reference adaptive controller (7.33) and (7.34) operates using
only available (online measured) signals in the system. The latter consists of:
(a) the system state x, (b) the state of the reference model x,, (c) the tracking
EITOT € = X — X.¢r, and (d) the sign of the control effectiveness sgnb.

» All signals in the closed-loop system remain uniformly bounded in time.

* The system state x tracks the state of the reference model x,.s globally and
asymptotically. However, a characterization of the system transient dynamics in
model reference adaptive control remains an open problem.

» The adaptive parameters (lgx7 lg,.) are not guaranteed to converge to their true
unknown values (k,, k) nor are they assured to converge to constant values in
any way. All that is known is that these parameters remain uniformly bounded in
time. Sufficient conditions for parameter convergence are known as persistency
of excitation [1, 2]. It turns out that for a first-order linear system such as (7.1),
persistent excitation is guaranteed if the commanded signal r(f) contains at least
one sinusoidal component. In this case, the two adaptive gains (IEX, 13,.) will
converge to their true constant unknown values, exponentially fast.

7.4 Historical Roots and Foundations of Model Reference
Adaptive Control

The adaptive control development was largely motivated in the early 1950s by the
design of autopilots for aircraft that operated in a wide flight envelope, with a large
range of speeds and altitudes. Different flight conditions caused the aircraft dynam-
ics to change significantly. This phenomenon called for flight controllers that could
accommodate drastic changes in the aircraft aerodynamic and propulsive forces and
moments. Adaptive control was proposed as one of the design approaches to
solving the flight control problem.

The concept of a model-reference adaptive system (MRAS) was originally
proposed in 1958 by Whitaker et al. at MIT [3, 4]. The main idea behind this
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concept was to specify the desired command-to-output performance of a servo-
tracking system using a differential or a difference equation (the reference model)
that would define the ideal response of the system due to external commands. This
control concept was later called “explicit model following,” and the corresponding
architecture became known as the model reference adaptive control (MRAC).

Shortly after its introduction, the first proof of MRAC closed-loop stability using
Lyapunov theory was given in 1965 by Butchart and Shackcloth, at the IFAC
Symposium on Adaptive Control [5], and in 1966 by Parks [6].

In the following years, adaptive control theory for a broad class of multi-input
multi-output uncertain dynamical systems was extensively developed and well
documented in several now-classical textbooks [1, 2, 7, 8].

7.5 Exercises

Exercise 7.1. Consider the aircraft roll dynamics from Example 7.1. Given the roll
damping L, = —0.8 (sfl) and the aileron effectiveness Ls, = 1.6 (sfl), design a
fixed-gain model reference controller in the form of (7.3) to recover the reference
model dynamics (7.2), with a,. = —2, b,;s = 2. Also, design a fixed-gain controller
with error feedback in the form of (7.9). Choose several bounded time-varying roll
rate commands. Simulate the closed-loop system response, with each of the two
controllers active (one at a time). Compare the two controllers and comment on the
achieved closed-loop system stability, robustness, tracking, and transient
properties.

Exercise 7.2. Derive relations (7.28), (7.29), and (7.30).

Exercise 7.3. Assume that the constant roll dynamics data (L, Ls, ) from Example
7.1 are unknown and that only the sign of L;, is known to be positive. Using the
same reference model parameters, design an adaptive roll rate tracking controller in
the form of (7.13), (7.14), (7.15), (7.16), (7.17), (7.18), (7.19), (7.20), (7.21), (7.22),
and (7.23). Choose various roll rate commands and simulate the resultant closed-
loop system performance. Compare fixed-gain versus adaptive controller
performances and comment on your results.

Exercise 7.4. Consider a scalar dynamical system described by the first-order
differential equation

x=ax+bu, x(0)=xp

where a = 2 and b = 3 represent unknown constant parameters. It is assumed that
sgnb = 1 is known. The goal is to design a controller such that the system state
tracks the state of the reference model,
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g = 1) = Xrey

where r = r(f) is the commanded reference input (a bounded signal). Assuming that
the system dynamics are known, design a fixed-gain command tracking controller.
Then, design a direct model reference adaptive controller. Simulate the closed-loop
system dynamics for both controllers, starting from different initial conditions and
using three different reference commands: (a) a step-input, (b) a series of steps, and
(c) a sum of sinusoids. Tune your adaptive design (i.e., select rates of adaptation).
Compare tracking performance of the two closed-loop systems and their
corresponding control signals. Comment on your results.
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Chapter 8
Lyapunov Stability of Motion

8.1 Dynamical Systems

A dynamical system may be thought of as a collection of finite or infinite number of
interconnected and time-dependent components. The system evolution is driven by an
environment where the system operates. When subjected to an external time-
dependent input u(¢), the system generates an output y(¢), which in turn may explicitly
depend on the system internal properties, defined by the system states x(#). The states
describe the system inner-component connections, their dynamical response due to
environmental stimulus, and their contributions to the system response.

In what follows, we consider a special class of dynamical systems that can be
modeled by a finite number of coupled scalar ordinary differential equations in the
form

i =f(t, x, u) 8.1)

In (8.1),¢ € R denotes time and f: R X R" x R™ — R"is a vector function. We
call (8.1) the system dynamics, refer to x € R” as the system state at time ¢, and
define u € R™ as the control input (an externally supplied signal). The number of the
state components 7 is called the order of the system.

A solution x(¢) of (8.1) (if one exists) corresponds to a curve in the system state
space R", as t varies from an initial time f; to infinity. This curve is often referred to
as the system state trajectory. Later in this chapter, we will formulate sufficient
conditions guaranteeing existence and uniqueness of solutions for dynamical
systems such as (8.1), starting from a given set of initial conditions x(¢y) = xo.

In addition to the system dynamics (8.1), a set of algebraic equations may also be
given,

y = h(t, x, u) (8.2)

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 225
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_8,
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u—p f(t,x,u) — h (t,xu) —» Y
A

Fig. 8.1 State-space model block diagram

where 7 : R X R" X R" — RP and y € RP. This is the system output. Together,
Egs. (8.1) and (8.2) form the system state space model, whose block diagram is
shown in Fig 8.1.

A special case of (8.1), and (8.2) is the linear-in-control system,

X :f(la )C) +g(t7 x)u
y=nh(t, x)+d(t x)u (8.3)

where the functions g and d are of matching dimensions.
. i T . . . .
Lettingx = (x; X ... X,),aparticular class of nonlinear continuous-time
dynamics is given by the systems in Brunovsky canonical form

5(1 = X2
sz = X3

y = h(x) (8.4)

X=A{t)x+B(t)u
y=C(t)x+D(t)u (8.5)

Finally, the class of linear time-invariant (LTI) systems is written in the familiar
form

x=Ax+Bu
y=Cx+Du (8.6)

whose dynamic properties can be completely characterized by the matrix quadruple

(A, B, C, D).
If the model (8.1) does not contain the control input signal u,

i =f(t, x) 8.7)
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then the resulting dynamics are called “unforced.” If in addition, the function f does
not depend explicitly on ¢, that is if

i =f() (8.8)

then the system unforced dynamics are called autonomous or time invariant.
Systems that explicitly depend on time are nonautonomous (i.e., time variant).

8.2 Existence and Uniqueness of Solutions

Suppose that we initialize the state of the system (8.7),
X(l‘o) =Xp € R" (8.9)

at a time instant ¢y > 0. Together, (8.7), (8.8), and (8.9) define the Cauchy problem,
or equivalently, the initial value problem (IVP), whose solutions may or may not
exist. Moreover, when a solution does exist, it may or may not be unique.

Besides theoretical demands, the question of existence and uniqueness become
quite important for practitioners in simulation, dynamics, and control. For example,
if the system (8.7) is constructed to emulate a real process that starts from an initial
condition xj, we need to know if and when the system unique solution would exist.
Otherwise, the resulting simulation data may lead us to erroneous conclusions about
the underlying process dynamics and control.

Contrary to LTI systems (8.6), existence and uniqueness of solutions for nonlinear
equations (8.7) are not always guaranteed. In order to motivate our discussion, we
consider several examples.

Example 8.1 The scalar nonlinear dynamics
X = —sgnx

has the discontinuous (at the origin) right-half side, which is defined by the sign
function

I, x>0
sgnx=¢ 0, x=0
-1, x<0

The system phase portrait is easy to draw and is given in Fig. 8.2.

These data indicate that the system trajectories asymptotically approach either
1 or —1, depending on whether the initial conditions are negative or positive,
respectively. The rate of change of the “kinetic energy” for this system is
nonpositive:
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Fig. 8.3 System trajectories in Example 8.1

x2
% (%) = x()£(r) = —x(r) sgnx(t) = —|x(1)| <0

Therefore, the kinetic energy must dissipate, and so it seems that the system
trajectories should asymptotically approach the origin, where sgn0 =0 by the
definition. To further investigate the system behavior, we can integrate the system
dynamics on the interval from ¢ to t:

x(¢) = xp — (¢t — to) sgnx(z)

Even though this equation is implicit in x, we can easily sketch its solutions
versus time (Fig. 8.3).

First, we note that every solution arrives at zero in finite time Ty = #y + |xo|, and
it remains zero for all future times. Second, for every solution with xo > O there is
the solution that starts at (—xp), and it meets the former solution at the same exact
time Ty. Third, the system trajectories are not continuously differentiable at 7. In
fact, for all + > T and as the system trajectory evolves along the #-axis, the system
solutions will “jitter.” This interesting phenomenon is solely caused by the discon-
tinuity of the system dynamics at the origin. |

Example 8.2 Let k> 0 be a real number and consider the IVP:

x:xk’ x(t0)2x0
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Using separation of variables, we can write the solution of this system,
R =7 (L= k) (2 1)

and make several observations:

e For 0 <k <2, the system does not have solutions that start at xo < 0.

» Suppose k=2, xo=1, and # = 0. Then, x(¢) = ﬁ This solution grows
unbounded “blows up” in finite time 7 = 1, and it is not defined for r > T.

e Fork = % and xo = o = 0, the IVP has not one but two solutions: x(#) = 2’—; and

x(t) = 0. LetT > Odenote a constant. As it turns out, this IVP has infinitely many

solutions: O

All of the above examples imply that both existence and uniqueness of IVP
solutions for the dynamical system (8.7) depend on certain properties of the vector
function f(z, x).

We begin with a theorem that states sufficient conditions for the IVP problem to
admit a solution which may not necessarily be unique [1].

Theorem 8.1. Peano [ff(t, x): R x R" — R" is continuous in a closed region,
B={(t,x):|t—t| <T, |lx—x] <r} CRxR" (8.10)

where T, r are some strictly positive constants, and ||-|| is the Euclidean vector norm
(see (8.12)), then there exists ty<t, < T such that the IVP (8.7), (8.8), and (8.9) has
at least one continuously differentiable solution x(t) on the interval [ty, T). [ |

The assumed continuity of f(z, x) in its arguments ensures that there is at least one
solution of the IVP. Note however that this theorem does not guarantee the unique-
ness of the solution. The key constraint that yields uniqueness is the so-called
Lipschitz condition, whereby f(z, x) satisfies the inequality

1£(t, %) =f (&, )l < Llx =yl (8.11)

for all (¢, x) and (¢, y) in some neighborhood of (7, xo), with a finite constant L > 0.
In (8.11) and everywhere else throughout the book, |x|| denotes the Euclidean
vector norm of x € R":

1
n P
= | (Gr) e
- i=1

max [u| , p=oo

(8.12)
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Lipschitz-based sufficient conditions for the unique existence of IVP solutions
are stated below and without proof [2].

Theorem 8.2. Local Existence and Uniqueness Ler f(t, x): R X R" — R" be
piece-wise continuous in t and satisfy the Lipschitz condition (8.11):

Vx,yeB={xeR"|x—xo| <r}, Vt € [n, t1] (8.13)

Then, there exists some 0 > 0 such that the IVP for the state equation x = f(t, x)
with x(ty) = xo has a unique solution over |ty, ty + 9. [ |

Notice that the Lipschitz condition (8.11) is assumed to be valid locally in a
neighborhood of (7, xo) from a compact (closed and bounded) set B, as it is defined
in (8.13).

We can try to extend the interval of existence and uniqueness over a given time
interval [to, to + J] by taking 7o £ o + & as the new initial time and xo £ x(#, + J) as
the new initial state. If the conditions of the theorem are satisfied at (¢y + 0, x(z + 9))
, then there exists 0,>0 such that the IVP has a unique solution over
[fo + 0, to + 0 + 0,] that passes through the point (fp + J, x(¢p + J)). We can now
piece together the two solutions to establish the existence of a unique solution over the
larger interval [fg, fo + 0 + ;). This idea can be repeated to keep extending the IVP
solution, arriving at the maximal IVP solution, which is defined on the maximal
interval[ty, fo + Omax], With finite or infinite dpax. It is interesting to note that if o,y
is finite, then the respective maximal solution tends to infinity [3], as the following
example demonstrates.

Example 8.3 The unique solution of the scalar IVP,
i=1+x% x(0)=0

is x(r) =tans. Its maximal interval of existence is finite with Jpax =7,
and, predictably, lin}x(t) — o00; that is, this solution becomes unbounded in
finite time. i |

In process modeling applications, we are primarily interested in constructing
IVP-s whose solutions are unique and exist for all # > fy. The global uniqueness and
existence requirements would ensure at least soundness of our models but not
necessarily their validity. The latter would have to be verified by correlating
model data with the application process under consideration.

The next theorem states that if the system dynamics function f satisfies global
Lipschitz conditions, then the corresponding IVP has a unique solution over
arbitrarily large time interval [2].

Theorem 8.3. Global Existence and Uniqueness. Suppose that a vector function
f(t, x):R x R" — R" is piece-wise continuous in t and globally Lipschitz in x,

||f(t7 X) 7.f(t7 y)” S L ||X 7_)’”7 vx7 y € Rna Vie [t07 ll] (814)
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with a finite constant L>0. Then, the IVP (8.7), (8.8), and (8.9) has a unique
solution over [ty, t|], where the final time t\ may be arbitrarily large. [ |

We immediately note that the above stated global Lipschitz condition (8.14) is
sufficient but not necessary as the next example shows.

Example 8.4 The system dynamics function in the scalar IVP
¥=—x, x(0)=xg

is not globally Lipschitz, yet the system has the unique solution

X)) = ——20
V2x5t+1
which is defined for any initial condition x( globally and for all time ¢ > 0. O

The next theorem is of particular interest to us. It presents sufficient conditions
for extending IVP solutions indefinitely. Its detailed proof can be found in [2].

Theorem 8.4. Global Existence and Uniqueness on Unbounded Time Interval
Letf(t, x): R x R" — R" be piece-wise continuous in t, locally Lipschitz in x for all
t > 0and allxin a domainD C R". LetW C D be a compact subset of D,xo € W, and
suppose it is known that every solution of the IVP (8.7), (8.8), and (8.9) lies entirely
in W. Then, there is a unique solution that is defined for all t > t,. [ |

In the forthcoming chapters, we will use Lyapunov’s methods to check if system
trajectories evolve inside a compact set. We will be able to do that without solving the
system differential equation. Lyapunov’s analysis methods generalize and extend the
notion of energy, from mechanical systems to generic dynamics. For adaptive
systems, we will show that suitable energy functions can be formed as sum of squares
of the system state components. Then, we would compute the system power — the
time derivative of the energy function, evaluated along the system trajectories. We
will argue that if the system power is nonpositive, that is if the system energy
dissipates, then every trajectory is bounded and exists globally for all time.

For now, let us illustrate the energy-based analysis using the dynamics from
Example 8.4. Toward that end, we shall utilize the system “kinetic” energy,

2
% <%> :xfc:x(ff) :fx4§0

Since the power function is nonpositive, then the energy must decrease and
consequently, the system state must be bounded for all time. Therefore and according
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.

Fig. 8.4 Phase portrait of the system from Example 8.5

to Theorem 8.4, the system dynamics must have a unique solution starting from any
initial condition at #yp = 0 and extending indefinitely, for all ¢ > 0.

Energy-based methods and Theorem 8.4 become extremely useful especially
when the system dynamics cannot be integrated to obtain its IVP solutions explicitly.

Example 8.5 Consider the autonomous scalar dynamics x = f(x), whose phase
portrait is shown in Fig. 8.4.

We assume thatf(0) = f(a) = f(b) = 0,f(x)>0for all x<0, and that the function
is locally Lipschitz in x. Other than that, the function shape and its values are
assumed to be completely unknown, and as such, these dynamics cannot be
analytically integrated to compute the system solutions in their explicit form.

We now pose several questions and give their answers to demonstrate that
explicit knowledge of IVP solutions is not required at all in order to assess if the
system unique solutions exist. In addition, we will also assess their interval of
existence.

Question: Will the IVP with a nonzero initial condition x(0) # 0 have a unique
solution?

Answer: Since f is locally Lipschitz, then existence and uniqueness of the IVP
solutions directly follows from Theorem 8.2.

Question: Is this solution defined for all time?

Answer: Anchored in Theorem 8.4, we can either employ energy-based arguments
to show that all trajectories are bounded, or we can simply examine the system phase
portrait shown in Fig. 8.4. Analyzing the latter, it becomes clear that starting from any
nonzero initial condition, all trajectories of this system will enter the interval [0, b]in
finite time. Therefore, all these solutions are bounded, and because of Theorem 8.4,
the IVP unique solutions are defined globally, for all # > 0. |

We have surveyed and discussed several well-known theorems concerning
existence and uniqueness of IVP solutions for nonautonomous continuous
dynamical systems. Basically, existence of IVP solutions is provided if the system
dynamics are continuous in its arguments. However, in order to guarantee unique-
ness, we have called on the Lipschitz assumption (local or global). As it turns out,
the Lipschitz condition, even when local, is quite restrictive since the set of all
Lipschitz-continuous functions represents a very small (called “meager”) subset of
all continuous functions. Such an observation might lead to a conjecture that only a
very small set of IVP-s have unique solutions. Fortunately, this conjecture is
incorrect. In 1932, the Polish mathematician Witold Orlicz proved that the set of
all functions for which IVP-s have unique solutions is very large (a complement of a
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meager set). Orlicz’ theorem states that “almost all” differential equations with
continuous right-hand sides have unique solutions. On the other hand, the set of
IVP-s, for which we can formally characterize uniqueness of their solutions, is
“almost nothing.” This compelling argument suggests that there are very many
classes of non-Lipschitz IVP-s with unique solutions that are yet to be discovered.
Further details on the subject and the proof of Orlicz’ theorem can be found in
[3, Appendix A].

8.3 System Equilibrium

One of the central concepts in control and system theory is the concept of an
equilibrium point. We will focus our discussions on nonautonomous unforced
dynamical systems:

X =f(t x) (8.15)

with the vector function f : [0, c0) X D — R" which is piece-wise continuous in #
and locally Lipschitz in x and with a domain D C R" that contains the origin x = 0.

Definition 8.1. The origin in R" is an equilibrium point for the unforced nonau-
tonomous system (8.15) at ty = 0 if

f(£,0)=0, Vi>0 (8.16)
It is not difficult to show that there is no loss of generality in using the origin and
the zero initial time in the definition above. In fact, suppose we define a nonzero
vector x* € R” to be an equilibrium point of (8.15) at a nonzero initial time ¢ = f#y:
flt, x)=0, Vt>1
We can redefine time T = ¢ — f, introduce the new state
z(7) = x(t + to) — x*

and arrive at the transformed system dynamics

dz(t)] dx(t+ 1)

T = =, 2(0) +x7) =g, ()

with g(0, 0) = f (o, x*) = 0. Thus, we have shifted the equilibrium point to the
origin and the initial time to zero.

This idea can be further generalized. Suppose that we are given a trajectory x*(r)
of (8.15) that starts at r = #;:
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X(t) =f(t x(1), t>t
We can again redefine time 7 = ¢ — fy, introduce the new state
z2(t) = x(t 4+ to) — X" (T + o)

and rewrite the system dynamics

dz(r)| _dx(t+1t) dx*(t+1o)

dt | dt dt
=f(r +to, 2(v) +x(t + 10)) — f(t + 10, 2(1) + X" (r + 1)) = |g(z, 2(1))

with g(0, 0) = 0. Consequently, analyzing the redefined dynamics around the
origin, as an equilibrium point, while starting at #y = 0, allows to determine the
original system behavior around the original nonzero equilibrium x*. This modifi-
cation also allows us to assess the system relative dynamics with respect to any
time-dependent trajectory x*(¢), starting at an arbitrary initial time instant 7,>0.

A dynamical system can have multiple equilibrium points. Some of these
equilibrium points might be isolated from each other, while others might form a
continuum of equilibrium points. In either case, it is worth noting that whenever the
system starts at an equilibrium point, it will remain there for all future times. The
converse is also true and can be formally proven.

Example 8.6 The LTI system x = A x has an isolated equilibrium point at x = 0 if
and only if det A # 0 (A has no zero eigenvalues). Otherwise, the system has a
continuum of equilibrium points. These are the only possible equilibrium patterns
that a linear time-invariant system may have. |

Example 8.7 A nonlinear system can have multiple isolated equilibrium points.
Consider the Bernoulli equation x =x(x— 1). It has two isolated equilibrium
points, x* = 0 and x* = 1. The system phase portrait is shown in Fig. 8.5.
Clearly, all trajectories that start in the open interval (—oo, 1) will converge to
the origin, while all other trajectories will diverge to + oo. This phenomenon is
typical for nonlinear dynamics, where, depending on the initial conditions, the
system exhibits completely different behaviors. It is also clear that the system
equilibrium at the origin is asymptotically stable (formal definition will be given
later) in the sense that all trajectories that start in the open interval (—oo, 1)
will converge back to the origin without leaving the interval. The other equilibrium
x* = 11is unstable, meaning that there are trajectories that start arbitrarily close to 1,
yet they move away from this equilibrium point. O
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Fig. 8.5 Phase portrait of a Bernoulli equation from Example 8.7

8.4 Lyapunov Stability Definitions

The concept of Lyapunov stability is one of the most prominent and fundamental in
dynamics and control. It is primarily concerned with analyzing behavior of system
trajectories near equilibrium but without explicit computation of those solutions.

Theoretical foundations of what is known today as the Lyapunov stability theory
are due to the Russian mathematician Alexander Mikhailovich Lyapunov
(1857-1918). In 1892 at the University of Moscow, Lyapunov presented and
subsequently defended his doctoral thesis “on the general problem of the stability
of motion,” where he had introduced basic definitions and fundamental theorems
for studying the stability of solutions for a broad class of differential equations.

In 1908, Lyapunov’s work was translated into French, reprinted by Princeton
University Press in 1947, and gained wide acceptance in the West in the 1960s.
Today, Lyapunov stability theory represents an indispensible tool that enables
engineers and scientists analyze nonlinear systems and design controllers with
stable and predictable performance.

System stability can be interpreted as a continuity of the system trajectories, with
respect to initial conditions, over infinite time interval. The keywords here are “over
infinite time interval.” They highlight the difference between the notions of the
stability and continuity on initial conditions. It is well-known that solutions of
Lipschitz-continuous differential equations continuously depend on the system
initial conditions [1-3]. However, the notion of stability requires that this continuity
property holds infinitely in time.

Let x(#; xo) denote a solution of (8.15) with the initial condition x(fo) = xo.
Suppose that this solution is unique and exists on a finite, possibly open-ended
interval [ty, T). The continuity property of x(#; xo) due to changes in xy can be
described as follows: Given any positive constant &>0, there must exist a
sufficiently small positive constant ¢ >0, such that for all perturbed initial
conditions xo + Axg with |Axg| < J, the corresponding perturbed solution x x
(t; xo + Axg) deviates from the original by no more than ¢, that is,
lx(2; xo0 + Axo) — x(#; x0)|| < ¢, for all o < t<T. Figure 8.6 illustrates the conti-
nuity property for a scalar system.
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Fig. 8.6 Continuity of system solutions with respect to initial conditions

On the finite interval [f, T), the perturbed trajectory x(#; xo + Axp) will evolve
within the (2 ¢)-strip relative to the original unperturbed solution x(#; xp), as long as
the perturbed initial condition (xo + Axp)is located within the (2 J)-strip of xo.

In practice, we are often interested in analyzing system solutions that are defined
on an infinite interval [fy, oo). Will in this case the perturbed solution stay close to
the original or will it deviate from the latter? A simple example demonstrates that
both cases can occur.

Example 8.8 Starting at o = 0 and from the initial condition xo = -, the linear

time-invariant system

1
a

X=ax—1
has the steady-state solutionx(l; é) = % If the initial condition is perturbed by Axy,
then the corresponding solution is

1 1
x(l; —+ Ax0> = Axpe’' +~
a a

1 1
x<t; —+Ax0) —x([; —>‘ = |Axp | < g as
a a

long as |Axo| < 0 =&, and this relation is valid for all 7 > 0. So, for any initial
condition from the (2¢)-strip, the corresponding perturbed solution will remain
within the same strip, which is centered around the steady-state solution x(¢) = %
Note that in addition, the perturbed trajectory asymptotically approaches the original
steady-state solution, as time tends to infinity. However, if @ > 0, then no matter how
small Axy is the perturbed trajectory will become arbitrarily large in time, and as a
result, it will deviate from the steady-state solution. O

A solution of (8.15) with the continuity property defined on an infinite interval is
called stable. Otherwise, it is unstable.

Clearly, if a<0, then for any >0,

Definition 8.2. Stability of Equilibrium in the Sense of Lyapunov The equilib-
rium point x* = 0 of the nonautonomous unforced dynamics (8.15) is stable if for
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Fig. 8.7 Geometric interpretation of Lyapunov stability for two-dimensional dynamics

any £>0 and ty > 0 there exists (e, to)>0 such that for all initial conditions
[lx(t0)||<d and for all t>ty >0, the corresponding system trajectories are
bounded, as in ||x(t)||<e. The equilibrium is uniformly stable if it is stable and 0
does not depend on ty. Finally, the equilibrium is unstable if it is not stable.

Using logical symbols such as A “and,” V “for any,” 3 “there exists,” and =
“implies,” we can formally define the meanings of stable, uniformly stable,
and unstable equilibriums (note that the equilibrium under consideration is the
origin in R"):

Ve>0 Vip>0 36(e, 10)>0Vr > 1o ||lx(t0)[[<d(e, to) = [[x(t)]|<¢]
[Uniformly Stable]

Ve>0 Vip>0 35(e)>0 Vi > 1y [[lx(to)[[<d(e) = [|lx(r)[|<é]

Je>0 F1o>0 V60 3T > 1o |[|x(10)]| <6 A [|x(T)[|>¢] (8.17)

For two-dimensional dynamics, Lyapunov stability of the origin admits a simple
geometrical interpretation (Fig. 8.7).

The origin is stable if given a sphere with a radius ¢, one can find a smaller sphere
whose radius is 0 < &, such that all trajectories that start in the smaller sphere will
continue to evolve within the larger sphere, for all # > ¢y. The origin is uniformly
stable if 0 is independent of #. Finally, the origin is unstable if there exists an e-sphere
and an initial time ¢y, such that no matter how close to the origin a trajectory starts, it
will exit this sphere at some finite time 7.

Such a geometrical explanation of Lyapunov stability can be easily extended to
n-dimensional dynamics (8.15) (Fig. 8.8).
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Fig. 8.8 Geometric interpretation of Lyapunov stability in n-dimensional state space

In essence, Lyapunov stability of the origin means that given an outer-sphere
B, = {x € R" : ||x|| < ¢} in the system state space R", one can find an inner-sphere
Bs = {x € R" : ||x|| <} C B, such that any trajectory that starts in the inner-
sphere Bs will evolve inside the outer-sphere B,, for all future times.

A unique feature of nonlinear dynamical systems is their ability to display a
completely different behavior in various domains. For example, systems that are
stable in a neighborhood of the origin may become unstable, or go to a different
equilibrium, if their initial conditions are chosen outside of this neighborhood. For
these reasons, we need to be able to clearly distinguish between local and global
stability.

The local feature of Lyapunov stability definitions (8.17) is understood in the
sense that for a given outer-sphere B,, one must find a set of initial conditions
(an inner-sphere Bjs) such that the resulting trajectories stay within the outer-sphere
B.. It is easy to see that if the origin is stable, then for an outer-sphere B,, of a bigger
radius ¢, >¢, the same inner-sphere Bs can be used to show stability of the system
equilibrium. Suppose that the radius of the inner-sphere can be increased indefi-
nitely, as the radius of the outer-sphere increases. In other words, let us suppose that
o(g, ty) — 00o,ase — oo. This would indicate that the set of initial conditions, which
lead to stable trajectories, is getting bigger. Eventually, one can declare that starting
anywhere in R", a trajectory will not deviate too far from where it began and as a
result, the stability property becomes global.

Definition 8.3. Global Stability The origin is globally stable if it is stable and
lim d(e, fy) = oco.
£—00

Dependence of the system trajectories on a selected initial time 7, is yet another
unique feature of nonautonomous systems. This is in contrast to autonomous
dynamics £ = f(x), whose solutions depend only on the difference (t — #). For
nonautonomous systems, stability of an equilibrium will in general be dependent on
the selected initial time #y. That is why we had to introduce the notion of uniform
stability. Also, in the definition (8.17), we emphasized that there would exist
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equilibriums whose stability may or may not depend on the system initial
conditions near the equilibrium. We had to also characterize the notion of instability
which was merely a logic negation of the stability concept. The next example
illustrates differences between the notions of stability and uniform stability.

Example 8.9 Stable but Not Uniformly Stable Equilibrium Consider the linear
time-dependent dynamics

X() =21¢(3 sin(r) — 1) x()
with the initial condition x(#). The system solution is

(1) = x(to) exp er(?, sin(7) — 1)dr

= x(ty) exp(6 sint— 61 cost — > — 6 sintg + 61t costy + 1;)
The obvious inequality

6 sint— 67 cost— £ <6+ (r— 1) <625
1
=z

implies

x(2)] < |x(to)] exp(6.25 — 6 sintg + 61ty costy + 15) = |x(to)| c(to)
c(to)

Clearly, the origin is the system equilibrium. Is it stable? Since

be(0)] < [x(t0)] ¢(t0)
it is evident that given any positive ¢, we can select 5 (e, #y) = ﬁ and immediately
verify that for all |x(#)|<d, the relation

x(1)] < Jx(to)| elto) < 7) clto) = ¢
c(to

takes place for all # > #,. According to (8.17), we have proved stability of the origin.
Is this equilibrium uniformly (in ¢#) stable? In order to answer that question, we
need to study sensitivity of the system solutions due to changes in #;. Toward that
end, let 7o = 2 k m, where k is a fixed positive integer. We can examine x(¢) at t =
+n = (2k+ 1) @ and get

x((2k+1)7) =x(2kn) exp((4k+1) (6 — ) )
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or, equivalently,

x((2k+1)m)
—_— = 4k+1)(6— >1, Vk>1
B = Pk D (6= m)m) >
So, the sequence x(2 k ) tends to infinity, as k = 1, 2, ..., co. In other words,
there is an unboundedly increasing sequence of initial time instants 7y(k) = 2k 7
which leads to an unboundedly increasing sequence of the initial values for the
system solutions x(7o(k)) = x(2 k m) 0 Therefore, given any £>0, there is no

0(&) independent of ¢ that would satisfy the uniform stability definition in (8.17).0

As shown in Example 8.9, in addition to being stable, perturbed trajectories may
asymptotically converge back to the equilibrium. This observation naturally leads
to the definitions of (a) asymptotic stability, (b) uniform asymptotic stability, and
(c) global uniform asymptotic stability.

Definition 8.4. Asymptotic Stability The equilibrium point x* =0 of (8.15) is
asymptotically stable if it is stable and there exists a positive constant ¢ = ¢(ty) such
that x(t) — 0 as t — oo, for all ||x(tp)|| < c.

Definition 8.5. Uniform Asymptotic Stability The equilibrium point x* =0 of
(8.15) is uniformly asymptotically stable if it is uniformly stable and there exists
a positive constant ¢, independent of ty, such that x(t) — 0 as t — oo, for all
lx(20)|| < ¢, uniformly in ty, where the limit uniformity is understood in the
following sense:

Je V>0 3T(n) Vi 2 10+ T(n) VIlx@)| < ¢ = [x(A)] <7

Definition 8.6. Global Uniform Asymptotic Stability The origin is globally
uniformly asymptotically stable if it is uniformly asymptotically stable and SILI?O o(e)
= 00.

Achieving uniform asymptotic stability is a highly desirable property in any
control design since asymptotically stable systems are able to maintain their closed-
loop performance in the presence of perturbations and disturbances. We shall see
that, in general, adaptive controllers achieve uniform stability and force the system
tracking errors to converge to zero, asymptotically in time. This key property is
lesser than uniform asymptotic stability, but it is greater than uniform stability; that
is, in addition to being uniformly stable, certain signals (such as tracking errors) in
the closed-loop system asymptotically tend to zero, while others are kept uniformly
stable and bounded.

8.5 Lyapunov Stability Theorems

In his seminal work on stability of motion, A.M. Lyapunov introduced two theorems,
known as Lyapunov’s indirect (first) and direct (second) methods, for assessing
stability of nominal solutions that arise in dynamical systems, which are governed
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by a finite number of coupled ordinary differential equations. Lyapunov’s methods
provide verifiable sufficient conditions for stability of a nominal trajectory. Moreover,
neither method requires an explicit knowledge of the system solutions.

Lyapunov’s indirect method allows one to draw conclusions about the stability
of an equilibrium point (the origin) for a nonlinear autonomous n-dimensional
system x = f(x). The method is based on the linearization of the system dynamics
around an equilibrium. In order for the original nonlinear system to be locally stable
in the sense of Lyapunov, it is sufficient to show that the system Jacobian matrix
A= ()5—(“) has all its eigenvalues {4;},_; ,

x=0
plane: Re 1;<0, Vi =1, 2, ..., n. If Re 4;>0 for at least one eigenvalue of A, then
the origin is unstable. If A has eigenvalues on the j w-axis, then the indirect method
of Lyapunov does not apply. Further details, including formal proofs, can be found
in [1-3]. From the control design point of view, the indirect method of Lyapunov
provides the much needed theoretical foundation for application of linearization-
based controllers in nonlinear systems.

Our main interest will be focused on Lyapunov’s direct method. Specifically, we
will discuss the method formulation and its applications to analyzing uniform
stability of nonautonomous systems (8.15). We begin with the definitions of
positive and negative-definite (semidefinite) functions. Subsequently, we will
utilize these functions to constructively determine stability of an equilibrium point.

, in the complex open left-half

Definition 8.7. Positive-Definite and Semidefinite Functions A scalar function
V(x) : R" = R of a vector argument x € R" is called locally positive definite
(semidefinite) if V(0) =0, and there exists a constant r>0 such that V(x) >0
(V(x) > 0), for all nonzero x € R" from the r-neighborhood of the origin B, =
{x € R" : ||x|| < r}. The function is said to be globally positive definite if B, = R".

Definition 8.8. Negative-Definite and Semidefinite Functions A scalar function
of V(x) : R" — R of a vector argument x € R" is called locally (globally) negative
definite (semidefinite) if the function (—V (x)) is locally (globally) positive definite
(semidefinite).

Example 8.10 Sign-Definite and Semidefinite Functions Consider a scalar function
of a scalar argument: V(x) = x? (9 —x?). A graphical sketch of this function is
shown in Fig. 8.9.

It is easy to see that this function is locally positive definite on the open interval
(=3, 3), and it becomes positive semidefinite on the closed interval [—3, 3]. On
the other hand, the function V(x) = x? is globally positive definite. Furthermore, if
P € R™" is a symmetric positive-definite (semidefinite) matrix, then the function
V(x) = xT Px is globally positive definite (semidefinite), while W(x) = —x! Px
represents a globally negative-definite (semidefinite) function. O

Next, we introduce the concept of the time derivative of a scalar function along
the trajectories of a differential equation. Suppose that we are given a scalar
continuously differentiable function V(x), whose vector argument x(f) € R"
represents a time-varying trajectory of the nonautonomous system (8.15). We can
compute the time derivative of V(x(#)) along the system solution x(¢):
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Fig. 8.9 Locally positive-definite function from Example 8.10

V)= Z aVf(t, x) =[ WV £, %) (8.18)

where VV(x) = (g—fl, R g—x‘/) is the row vector gradient of V(x) with
respect to x. We immediately note that the time derivative of V(x) along the
trajectories of (8.15) depends not only on the function V(x) but also on the system
dynamics under consideration. Changing the latter while keeping the same V will in
general yield a different V(x). We are now fully equipped to formulate the direct
(second) method of Lyapunov.

Theorem 8.5. Lyapunov’s Direct Method for Assessing Uniform Stability of
Nonautonomous Systems Letr x* =0 € R" be an equilibrium point for the
nonautonomous dynamics (8.15), whose initial conditions are drawn from a domain
D C R", with x* € D and ty = 0. Suppose that on the domain D there exists a
continuously differentiable locally positive-definite function V(x) : D — R, whose
time derivative along the system trajectories is locally negative semidefinite:

V(x) = VV(x) f(t, x) <0 (8.19)

for all t >0 and for all x € D. Then, the system equilibrium x* =0 is locally
uniformly stable in the sense of Lyapunov. If in (8.19) V(x) < Ofor all nonzero x and
for all t > O(the time derivative along the system trajectories is locally negative
definite), then the origin is locally uniformly asymptotically stable. [ |

We shall immediately note that Lyapunov’s direct method presents sufficient
conditions for appraising uniform stability (formal proof can be found in [2, Th. 4.8,
pp- 151-153]). These sufficient conditions are expressed in terms of a locally
positive-definite function V(x), which is often called a Lyapunov function candi-
date. If in addition, the strict inequality (8.19) holds, then V(x) becomes what is
commonly referred to as a Lyapunov function. In terms of these concepts, Theorem
8.5 states that the origin is a uniformly stable if given the system dynamics,
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Fig. 8.10 Geometrical interpretation of Lyapunov’s direct method

a Lyapunov function can be found. Conversely, if a Lyapunov function candidate
does not satisfy the sufficient for stability requirement (8.19), no definite
conclusions can be drawn and the search for a suitable Lyapunov function must
continue.

Let us briefly discuss a geometric interpretation of Lyapunov’s direct method.
Choosing a sufficiently small positive constant ¢, we can ensure that the level set
V.={x€D:V(x) =c} of the Lyapunov function V(x) resides inside D (see
Fig. 8.10).

Then, it is possible to show that the interior set Q. = {x € D : V(x)}, whose
boundary is V,, is closed and bounded (i.e., compact). For any x € V,, the gradient
row vector VV(x) points perpendicular to the tangent hyperplane that touches
the level set at x. Also, the inequality (8.19) implies that at any given time ¢ and for
any x € V., the angle between the gradient vector VV(x) and the system dynamics
f(t, x) is no less than % . Therefore, the system trajectory will not leave Q..
Moreover, since V(x(¢)) is nonincreasing, then x(#) will remain in this set for all
future times. If in addition it is assumed that V(x)<0, then the system trajectories,
starting anywhere in D, will evolve by entering a sequence of diminishing level sets
(Vg D+ DV Do) with (¢>¢;> -+ >¢ > - +), and as a result, these solutions
will asymptotically approach the origin.

The Lyapunov function V(x)can now be viewed as an “energy-like” function for
testing stability of a system. If the values of V do not increase along the system
trajectories, then the origin is uniformly stable. If V strictly decreases, then in
addition to being stable, the system trajectories will approach the origin
asymptotically.

Example 8.11 Consider the scalar system

x=f(t, x)

where f(¢, x) is locally Lipschitz on an open interval (—a, a), f(¢, 0) = 0, and
xf(t, x)<0 for all # > 0 and all nonzero x € (—a, a); that is, the graph of f(¢, x) is
located in the second and the fourth quadrants, uniformly in ¢ and for all x from
(—a, a). The system dynamics are shown in Fig. 8.11.
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X =f(tx)

Fig. 8.11 System dynamics from Example 8.11

It is clear, that starting anywhere within the open interval (—a, a), the system
solutions will asymptotically converge to the origin. Let us now use Lyapunov’s
direct method to show that the origin is uniformly asymptotically stable. Toward that
end, we consider a quadratic Lyapunov function candidate in the form V(x) = x2.
Its time derivative along the system trajectories is strictly negative for all nonzero
x € (—a, a):

V(x) =2xx=2xf(t, x) <0

Consequently, V(x) is a Lyapunov function, and, according to Theorem 8.5, the
origin is locally uniformly asymptotically stable. Of course, we already knew the
answer since the system dynamics were scalar and the phase plane analysis method
was readily applicable.

Suppose that the same system is n-dimensional and assume that the vector field
f(t, x) satisfies xT f (¢, x)<0, uniformly in ¢ and for all x from a domain D C R". We
can use a quadratic Lyapunov function in the form V/(x) = x”x, show that its time
derivative along the system trajectories is negative,

V(x) =2x"x=2xTf(t, x) <0

and, thus, prove the uniform asymptotic stability property of the origin. Note that, in
this case, the phase plane analysis does not apply. O

Lyapunov functions are by no means unique. Recalling the scalar dynamics in
Example 8.11, let us assume that the system is autonomous. We can prove asymptotic
stability using the same Lyapunov function as before. In order to show that it is not
unique, let us consider the following Lyapunov function candidate:

Since xf(x)<0 for all nonzero x, V(x) is positive definite and V(0) = 0. Therefore,
it represents a Lyapunov function candidate. The function time derivative along the
system trajectories is negative:
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for all nonzero x € (—a, a). Consequently, the origin is uniformly asymptotically
stable. |

The uniform asymptotic stability property calls for a subset of D. Starting there,
the system solutions will converge to the origin. This subset is called the region of
attraction. We shall study the case when the system domain and the region of
attraction both equal R". This will lead to the concept of global uniform asymptotic
stability.

Definition 8.9. If the region of attraction of a uniformly asymptotically stable
equilibrium is R", then the equilibrium is said to be globally uniformly asymptoti-
cally stable.

The next definition leads to a verifiable condition for a Lyapunov function to
yield global uniform stability properties.

Definition 8.10. A Lyapunov function candidate V(x): R" — R defined such that
lim V(x) = oo is called radially unbounded.

[l —o0
Let V. ={x€R":V(x)=c} denote a level set of a radially unbounded
Lyapunov function candidate V(x):R" — R, and let Q. = {x € R" : V(x) < ¢}
be the union of the interior set of V. and V. itself. Consider a converging sequence
lim x,, = a, with all x,, from Q.. Then, the limit point @ must also be in Q.. In fact,

n—oo

since V(x) is continuous on R" and V(x,,) < cforalln =1, 2, ..., we getc > nlgg@
V(x,) = V(a), and consequently a € Q.. We have proved that every converging
sequence in . has its limit point in the same set. Hence, Q. is a closed set.
Moreover, we can prove that Q. is bounded. This fact can be shown by contradic-
tion. Suppose that €. is unbounded. Then, there must exist a sequence of points
{xn} € Q,, whose limit is infinity. Since V (x) is continuous and radially unbounded,
then ¢ > lim V(x,) = oo, which is an obvious contradiction to the argument.

n—0o0

Therefore, Q. is a bounded set. Since it is also closed and belongs to R", Q. is
compact.

The next theorem states that if a radially unbounded Lyapunov function can be
found, then the local uniform (asymptotic) stability properties from Theorem 8.5
become global. When applied to autonomous systems, this result is also known as
Barbashin—Krasovskii—LaSalle theorem [1, 2].

Theorem 8.6. Letx = Qbe an equilibrium point for (8.15). LetV(x) : R" — Rbe a
radially unbounded Lyapunov function of the system. Then, the system equilibrium
is globally uniformly asymptotically stable. [ |

Simple examples of radially unbounded Lyapunov function candidates include
quadratic functions of the form V(x) =x” Px, where P € R™" is a symmetric
positive-definite matrix.

Example 8.12 The rotational motion of a rigid aircraft in three-dimensional space
is governed by the following system of ordinary differential equations:
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Jo=—-oxJol+M

where w = (p ¢ r )" is the body angular velocity vector, with the roll (p),
the pitch (g), and the yaw (r) velocity components, J € R**? is the aircraft inertia
matrix:

JH 0 _J\z
J=1 0 J, o0
_‘]XZ 0 J"Z

with positive components (]“, Jyy, Jzz, sz) ,and M € R’ is the vector of
aerodynamic/propulsive moments, computed with respect to the vehicle center of

gravity. We assume that
detd = Jyy (Joudo: — J2,)>0

and also suppose that the moment vector M represents the system control input. The
control task is to select M such that the aircraft rotational dynamics become globally
uniformly asymptotically stable. We begin by considering a quadratic Lyapunov
function candidate in the form

Viw)=o'Jo

This is indeed a Lyapunov function candidate since V(0) = 0 andJ is symmetric
and positive definite. We proceed to compute the time derivative of V(w) along the
trajectories of the aircraft rotational dynamics:

Viw)=20"Td=20" ([0 xJo]|+ M) =20"M

According to Theorem 8.5, we need V(a))<0. This can be easily achieved if we
select the control input as a weighted negative feedback on w,

M=—-Pw

with a symmetric positive-definite matrix of weights P € R**3. Then, for any
nonzero angular velocity € R?,

V(o) = -20"Po<0

and so, the origin is uniformly asymptotically stable. Moreover, since V(w) is
radially unbounded, the achieved closed-loop uniform asymptotic stability property
is global. This example illustrates both the practicality and the effectiveness of
Lyapunov’s direct method. Not only we were able to assert the desired stability
property but we did so by using the “inverse” Lyapunov design arguments; that is,
we chose our control input to enforce the sufficient conditions of Theorem 8.5. O
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Example 8.13 For the linear time-invariant (LTI) n-dimensional dynamics,
X=Ax

with a Hurwitz (stable) matrix A € R™", consider a quadratic Lyapunov function
candidate V(x) = x” P x, where P € R™" is a symmetric positive-definite matrix.
Let QO € R™*" be another symmetric positive-definite matrix. The time derivative of
V(x) along the system solutions is

V() =x"Pi+i Px=x(PA+A"P)x

If we can make this derivative negative for all nonzero x € R”, then we would
prove global uniform asymptotic stability of the origin. In order to do that, we
define P to be the solution of the so-called Lyapunov algebraic equation:

PA+ATP=—-0

It turns out that given any symmetric positive definite Q, the Lyapunov algebraic
equation has the unique symmetric positive-definite solution P = PT > 0if and only
if A is Hurwitz [3]. Then,

V(x)=—x"Qx<0

for all nonzero x € R", which immediately proves global uniform asymptotic
stability of the origin.

Evidently, since the system is linear and time invariant, we could have proven
asymptotic stability by simply noting that A is Hurwitz. Nevertheless, the
Lyapunov’ arguments allow us to establish an important link between the stability
of LTI systems and the Lyapunov’s direct method. This link is given by the
Lyapunov algebraic equation, and the latter will become the key design component
for adaptive controllers. |

8.6 Uniform Ultimate Boundedness

The concepts of stability in the sense of Lyapunov are formulated with respect to an
equilibrium or a nominal trajectory. Often, systems are designed to operate in the
presence of disturbances and other uncertainties. As a result, the “ideal” definition
of an equilibrium may not apply. Consider the nonautonomous system

x=f( x)+&E@1), x(t) =x0 (8.20)
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subject to a bounded disturbance £(f) € R", with ||£(7)|| < &max. Suppose that
f [0, 00) x D — R" is piece-wise continuous in ¢, locally Lipschitz in x on
[0, 00) x D, and D C R" is a domain that contains the origin x =0. Also,
suppose thatf (¢, 0) =0, V¢ > 0.Itis easy to see that no matter how small the
disturbance bound &, is, the origin is no longer an equilibrium point of the
system. Nevertheless, we can still use Lyapunov’ direct method to study
the system behavior outside of the sphere B = {x € R" : ||x|| < {nax}s as if
the origin is the system equilibrium. The main idea is to find a Lyapunov-like
function V(x) for all xoutside of a bigger sphere B, D B¢, _and then show that in
finite time 7 the system trajectories enter B, and remain there for all # > T. This
thought will eventually lead us to the concept of uniform ultimate boundedness
(UUB).

Example 8.13 Consider the scalar nonautonomous dynamics
x=—x+E&@1), x(to) =x0>Enax >0

where £(f) is a time-varying unknown bounded by ¢, disturbance. Clearly, the
system has no equilibrium points. The system solutions can easily be found:

t
x(f) = e 171 xo + Je‘“‘w &(r)dr

fo

We can also compute an upper bound,
|'x(t)| S ei(ritn) |‘x0| + (1 - ei(fi,ﬂ)) émax S 67(1710) |‘x0| Jr imax

and show that for any initial condition x( and any given r >0, there must exist a
finite time 0 < T'(xg, ) <00, such that [x(¢)| < &y + 1, forallz > o + T(xo, r). In
fact, if |xo| < r, then |x(7)] < e =) p & <14 Enaxe and so T(xg, r) = 0. If,
on the other hand, |xo|>r, then it is sufficient to choose T(xg, 1) = ln@. This
simple argument shows that the system trajectories enter a neighborhood of the
origin B, = {x € R : |x| < r} in finite time T'(xo, r) and continue to evolve within
the neighborhood afterward.

Alternatively, we can also exploit Lyapunov’s direct method to show uniform
ultimate boundedness of the system solutions. Let us utilize V(x) = x?, which in this
case is not a Lyapunov function candidate since the origin is not an equilibrium of
the system. Nevertheless, we proceed to calculate the function time derivative along
the system trajectories:

V(x) =2xx=2x(—x+&(t)) = =222 +2x&(r)
S —2X2 + 2imax |.X| = _2 ‘X| (|)C| - émax)
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Given any positive constant ¢ > 0, it is evident that
V(x) <0, VI[x]| > &y +¢

Let r = &ax + & Then, the time derivative of V is negative outside of the closed
interval B, = [—r, r]. Next, we are going to show that all solutions that start outside of
B, will reenter the interval within a finite time and will remain there forward in time.
SinceVis negative for all |x| > r, then the solutions starting inside B, will remain there.
Hence, these trajectories are uniformly bounded in time, that is, |x(¢)| < r, V¢t > 1.
Starting from any |xo|>r, V is strictly negative in the annulus set {r> < V(x) < x3},
which implies that in this set V(x(¢)) will continue to decrease monotonically until the
solutionenters B, = {|x| < r} = {V(x) < r?},at some finite time T (xo, r). From that
time on, the solution will evolve within B, since V’ is strictly negative on its boundary
V(x) = r2. So again, we conclude that the system solutions are UUB with the ultimate
bound |x(7)] < r. Similar to proving stability, the main advantage of applying
Lyapunov’s direct method to establish UUB of trajectories is the fact that the method
does not require the knowledge of an explicit form of the system solutions. |

We now give a formal definition of the UUB concept as it is stated in [2].

Definition 8.11. The solutions of (8.20) are uniformly ultimately bounded with
ultimate bound b if there exist positive constants b and c, independent of ty > 0, and
for every a € (0, c), there is T =T(a, b), independent of ty, such that

x(t)| Sa= x| <b, Viza+T 8.21)

These solutions are said to be globally uniformly ultimately bounded if (8.21) holds
for arbitrarily large a.

Graphical interpretation of the UUB concept is shown in Fig. 8.12.

In the definition above, the term “uniform” indicates that the bound b does not
depend on #y. The term “ultimate” means that boundedness holds after the lapse of a
finite time 7. The constant ¢ defines a neighborhood of the origin, independent of 7,
such that all trajectories starting in the neighborhood will remain bounded in time.
If ¢ can be chosen arbitrarily large, then the local UUB property becomes global.

The notion of UUB can be considered as a “milder” form of stability in the sense
of Lyapunov (SISL). A brief comparison between the SISL and the UUB concepts
is given below:

e SISL is defined with respect to an equilibrium, while UUB is not.

» Asymptotic SISL is a strong property that is very difficult to achieve in practical
dynamical systems.

e SISL requires the ability to keep the state arbitrarily close to the system
equilibrium by starting sufficiently close to it. This is still too strong a require-
ment for practical systems operating in the presence of uncertainties and
unknown disturbances.

* A boundbin the UUB concept cannot be made arbitrarily small by starting closer
to the system equilibrium (if it has one) or to the origin.



250 8 Lyapunov Stability of Motion

Fig. 8.12 Graphical interpretation of the UUB concept for nonautonomous dynamics

Next, we present a Lyapunov-based analysis of UUB properties. Suppose that
for a given continuously differentiable positive-definite function V(x), we can
choose two finite positive constants 0<e<c<oo , such that the sets
Q, ={V(x) <e} and Q. = {V(x) < ¢} are closed and bounded (i.e., compact).
This would be true if, for example, V(x) = x’ Px and P is a symmetric positive-
definite matrix. Consider the annulus set in R”,

A={xeR":e<V(x)<c}=Q,—Q,

and presume that the time derivative of V(x(r)) along the trajectories of the
nonautonomous dynamical system (8.20) is strictly negative definite inside A:

V(x()<0, VYxeA, Vt>t1

Then, a trajectory that starts in the annulus would have to move in a direction
where V(x(f)) is decreasing. Since the annulus boundary consists of the function
level sets, the trajectory would be trapped between the two sets and it would have to
move toward the origin. Thus, inside the annulus, the system solution behaves as if
the origin is a uniformly asymptotically stable equilibrium, which it is not.

Starting from an initial condition xo = x(fy) at a time instant f#y > 0, the
corresponding system trajectory x(f) will evolve such that the function V(x(¢))
decreases until the trajectory enters (in finite time T) the set Q,, where it will remain
afterward.

This argument proves the UUB property of the system solutions, with the
ultimate bound b = max ||x|| = max ||lx]|, achieved on the boundary 0Q, of the

set Q.. The three sets A, Q., Q. and the UUB bound b are shown in Fig. 8.13. O
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Fig. 8.13 Compact sets in the UUB analysis

Example 8.14 LetD denote a domain inR", where the system dynamics are defined as
x=Ax+Be(t, x), x(th) =xo (8.22)

with the state x € R”, a Hurwitz matrix A € R™*", a constant matrix B € R"*", and

with a bounded function &(¢, x): R X R" — R™, ||e(¢, x)|| < &max, Which is assumed

to hold for all # > #5 and x € D. Let us choose Q = Q7 >0 and consider a quadratic
positive-definite function in the form

V(x) =x"Px (8.23)

where P = P! >0 is the unique positive-definite symmetric solution of the
algebraic Lyapunov equation

PA+ATP=—-0 (8.24)

Such a solution exists for any symmetric positive definite Q since A is Hurwitz.
Due to the latter, it is intuitively clear that the trajectories of (8.22) are UUB. Let us
formally prove it.

The time derivative of V along the system trajectories satisfies the following
relation for all (1 > 1y, x € D),

V(x) = —xT Qx+2x" PBe(t,x) < —||x]| (Amin(Q) [|X]| = 2 max (P) || B|| max) (8.25)
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where Amin(Q), Amax(P) are the minimum gmd the maximum eigenvalues of Q and P,
respectively. From (8.25), it follows that V(x)<0 for all x that are located outside of
the compact set,

;Lmax (P)
imin (Q)

B, = {x eD:|lx| <2 1B emax = r} (8.26)

where we have assumed a sufficiently small &, > Ofor the inclusionB,, C Dto hold.
We can define the maximal level set of V(x) in D:

Quax = max {xeD:V(x)=c}={x€D:V(x) = cma} (8.27)

If the domain D is bounded, then ¢, > Ois finite. This follows from the fact that
V(x) is a continuous quadratic function of xand as such, its maximum on a bounded
domain exists and is finite. On the other hand, if D is unbounded, then c¢,x = 0,
and consequently, Q..x is unbounded as well. Either way, existence of this set is
guaranteed.

Let us also define the minimal level set of V(x) that contains B,:

Quin = min {x € B: V(x) = ¢} = {x € 9B,: V(x) = Cmin} (8.28)

where OB, denotes the boundary set of B,.. Existence of Q,;, is guaranteed since B,
is compact and V(x) is a continuous function with its minimum value achieved on
the set boundary.

According to (8.25), V(x)<O0 for all x from the annulus

A={x€R": cmin < V(x) < Crax } (8.29)

Figure 8.14 shows inclusion of the level sets.

Consequently, any trajectory that starts in A will have to enter the interior set of
Q.in in finite time 7, and it will remain there for all¢ > fy + T. This proves the UUB
property of the system trajectories.

Next, we are going to estimate the corresponding ultimate bound b. In order to
do this, we introduce the smallest sphere that contains (Q;, (see Fig. 8.15):

Bg = min {x € Quy : [|x[| < ¢} (8.30)
Since for all x € R",
Jmin(P) [|x]1* < &7 Px < max (P) |1x]|* (8.31)
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7 (x)<0

Fig. 8.14 Level sets from Example 8.14

Fig. 8.15 Level sets and spheres from Example 8.14
then for all x € B,,
V(x) < Jmnax (P) 1
and, so
Qnin = {x € 0B,:V(x) = dmax(P) 1 = cmin}
For all x € Q;,, we have
Jmin(P) || x||* < xT Px = Jnax (P) 12

and therefore,

253

(8.32)

(8.33)

(8.34)

(8.35)
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Table 8.1 UUB related assumptions and conclusions for the system from Example 8.14

Plant dynamics Xx=Ax+Be(t,x), x(to) =x0

Lyapunov equation ~ PA+ATP = —Q

Lyapunov-like V(x)=x"TPx
function
Assumptions A is Hurwitz
le(t, x)|| < émn, VXEDC R”{x €D ||x| <2 2= | gmax} cD
UUB

fomax (P Jomax (P
O] < 28] o 228 o v 7

In other words, the radius of the smallest sphere By that surrounds Q,;;, is
1 X P
R=r [om) (P) (8.36)

Clearly, R > r as it is shown in Fig. 8.15. Finally, substituting the definition of »
from (8.26) into (8.36), we get the ultimate bound for the system trajectories:

)Lmax (P) )vmax (P)
7 (8.37)

b =R = 2||B|| &max
H || min(Q) min(P)

Table 8.1 presents all of the key assumptions and relations that were utilized to
establish the UUB result.

In summary, we have established the UUB property of the system (8.22). Our
analysis was based on Lyapunov’s direct method. Specifically, we have shown that
all trajectories that start in Q,,,x will enter the interior of €, in finite time and will
evolve inside of this set afterward, with the ultimate bound (8.37). O

8.7 Barbalat’s Lemma

We now turn our attention to n-dimensional nonautonomous systems of the form

x :f(ta X)a X(IO) = X0, f(ta O) =0 (3.38)
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with the vector fieldf : R x D — R" defined on a domain D C R". In order to ensure
existence and uniqueness of the system solutions, we assume that f(z, x) is piece-
wise continuous in ¢ and locally Lipschitz-continuous in x, uniformly in ¢.

Suppose that we have a Lyapunov function candidate V(x) : D — R, whose time
derivative along the trajectories of (8.38) satisfies

V(x) = VV(x)f(t, x) < -W(x) <0 (8.39)

for all x € D, where W(x) : D — R s a continuous positive semidefinite function on
D . Then, according to Lyapunov’s direct method, the origin is stable but not
necessarily asymptotically stable, since W (x) is not strictly positive definite. Let

E={xeD:W(x) =0} (8.40)

be a set of points in D where W is zero. Outside of E, V(x) <0. So, one may
conjecture that the system trajectories that start outside of £ will have to approach E,
as time tends to infinity. This property (if it holds) would be equivalent to the
LaSalle’s invariance theorem [1-3], which is valid for autonomous systems only.
Moreover, if our conjecture holds and if £ = {0}, then the origin would become
asymptotically stable. Before we go any further, let us consider an example.

Example 8.15 1In adaptive control, we will often encounter nonautonomous
systems, such as

é=—e+(0-0.) o(r)
0= —ep(t)

where 0, is a constant and ¢(¢) is a bounded function of time . This system has

multiple equilibrium points of the form (0, 0*)T. As it turns out later on, this

particular system represents closed-loop tracking error dynamics of an adaptive

controller for a first-order plant. We would like to prove that the error tends to zero,
e(t) — 0, while the parameter 0(¢) remains uniformly bounded in time. Consider a
—00

radially unbounded quadratic Lyapunov function candidate in the form
Vie,0) = +(0—10.,)
and compute its time derivative along the system trajectories:

Vie,0)=2eé+2(0—0,)0
=2e(—e+(0-0.)p(1) +2(0—0.) (—ep(t)) = 2> <0

So V(x(r)) is decreasing, as a function of time, and therefore, both e(¢) and 6(¢)
are uniformly bounded. Note that V will continue to decrease until e # 0. Since V' is



256 8 Lyapunov Stability of Motion

lower-bounded and decreasing, it must tend to a limit, which may not necessarily
be zero. If we can prove that in addition to the function having a limit its
derivative tends to zero, we could argue that since the derivative is proportional
to €2, then e tends to zero as well. The property that relates functions with a limit and
their derivatives is given by Barbalat’s lemma. Essentially, the lemma states that if
a time-dependent function tends to a limit and if its time derivative is uniformly
continuous, then the derivative tends to zero. We shall formulate Barbalat’s lemma
and then return to complete the example. O
We begin with the definition of uniform continuity for a scalar function.

Definition 8.12. Uniform Continuity A function f(t): R — R is said to be
uniformly continuous if

Vex>0 30=0(e)>0 Vin—t|<o=|f()—f(t)|<e

Note that #; and t, play a symmetric role in the definition above. The uniform
continuity concept should be compared to the definition of continuity at a point ¢,
where 0 = d(¢, t) becomes 7-dependent.

It is not difficult to show that for a scalar continuously differentiable function to
become uniformly continuous, it is sufficient to verify that the function derivative is
bounded (Exercise 8.9). This fact becomes important during stability proofs for
adaptive controllers.

We now state Barbalat’s lemma, whose formal proof can be found in [2].

Lemma 8.1. (Barbalat) Let f : R — R be a uniformly continuous function on
t

[0, o0).Suppose that tlim [ £ () dr exists and is finite. Then, tlim f)=0. [ |

It is interesting to note that Barbalat’s lemma is in some ways analogous to the

o0
well-known fact for converging infinite series Y a;, where lim a; = 0 represents
. . . k:.l kﬂoc
a necessary condition for the series to have a finite value.

For continuously differentiable functions, Barbalat’s lemma can be restated as
follows.

Lemma 8.2. Letf : R — R be continuously differentiable on [0, .oo), and suppose
that tlim f(t) exists and is finite. If the function derivative f(t) is uniformly
—00 .
continuous on [0, oo), then lim f(t) = 0. ]
An immediate and a verytfa??ictical corollary of Barbalat’s lemma can now be
stated.

Corollary 8.1. If a scalar function f : R — R is twice continuously differentiable
on [0, oo) and has a finite limit, lim f(¢)<oo, and the function second derivative is
bounded, then ,li“oéf(’) =0. % ]

In general, the fact that derivative of a function tends to zero does not imply that the
function itself has a limit. Also, the converse is not true. In fact, as the following
examples show, there are no generic relations between functions and their derivatives.
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Example 8.16 As t — oo, f(t) = sin(In ¢) does not have a limit, yet its derivative

fr) = w tends to zero. On the other hand, f(f) = e~ sin(e?") does tend to zero
as t — oo. However, its derivative f(f) = —e 'sin(e?') + ¢’ cos(e?!) tends to

infinity. |

Example 8.15 (continued) Previously, we have shown that the time derivative of
the Lyapunov function candidate V(e, ) = ¢2 + (0 — 60,)> along the system
trajectories was negative semidefinite: V(e, ) = —2¢? < 0. The second time
derivative of V is V(e, 0) = —4eé = —4e(—e+ (0—0,)p(f)). Since (7)
is bounded by hypothesis, and e(f)and 6(f) were shown to be bounded, it is clear
that V(x(¢)) is uniformly bounded. Hence, V (x(¢)) is uniformly continuous. Also, it
was shown that V(x(¢)), as a function of time, tends to a limit. Then, by Barbalat’s
lemma, V(x(r)) — 0, which in turn indicates that e(r) tends to zero, as t — co. O

We now return to completion of stability analysis for the system (8.38), where
we have assumed that a Lyapunov function was found to satisfy the inequality in
(8.39). We proceed with Lyapunov-based arguments. Since V (x(¢)) is bounded from
below and V(x()) < 0, then the function has a limit, as# — oo, and the system state
x is uniformly bounded. Next, we show that V(x(¢)) is uniformly continuous. We
cannot differentiate an inequality such as (8.39). Instead, we integrate it from fy to #:

V(x(0) = V(x(o)) < — jw<x<r>> dr<0 (8.41)

to
Rearranging terms gives

jw<x<r>> dr < V(x(to)) — V(x(0)) < V(alto))<oo (8.42)

o
and, consequently,

t

lim JW(x('c)) dr<oo (8.43)

—00
fo

Since x(¢) is uniformly bounded and f (¢, x(¢)) is Lipschitz-continuous uniformly
inx, thenx(#)is uniformly continuous in#. Moreover, in view of the fact that W (x(7)) is
continuous in x, W(x(#)) becomes uniformly continuous in #. This property, coupled
with (8.43), allows for direct application of Barbalat’s lemma, which in this case
states that tlirglc W (x(¢)) = 0. In other words, the system trajectories asymptotically
approach the set E defined in (8.40), uniformly in time. We have just proved a special
case of LaSalle-Yoshizawa theorem [1], with a Lyapunov function that did not
explicitly depend on time.
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Theorem 8.7. LaSalle-Yoshizawa Starting anywhere in a domain D , all
trajectories of the nonautonomous dynamics (8.38), with a Lyapunov function
satisfying (8.39), uniformly asymptotically approach the set E from (8.40). [ ]

Example 8.17 In adaptive control design, we will encounter n-dimensional nonau-
tonomous systems in the form

T
é=Ae+b(K—K)d()
AK

K= —y®(t) e’ Pb

where e € R" is the system tracking error, K € RV is the adaptive n-dimensional
vector of gains, 7 is a constant positive adaptation rate, K € R" is a constant vector
of ideal (unknown) gains, A € R"*" is Hurwitz, b € R" is a constant vector chosen
such that the pair (A, b) is controllable, and ®(z) € RY is the so-called regressor
vector, which is assumed to be uniformly bounded. Finally, P € R"*" is the unique
symmetric positive-definite solution of the algebraic Lyapunov equation

PA+ATP=-0Q

with a symmetric positive-definite matrix Q.

These dynamics can be viewed as a generalization of the scalar system that was
presented and analyzed in Example 8.15. Our immediate goal is to prove uniform
boundedness of all signals and global uniform stability of the origin. Let us consider
a quadratic radially unbounded Lyapunov function candidate in the form

V(e, AK) = e Pe + AK" AK
and compute its time derivative along the system trajectories:
V(e,AK)=¢é"Pe+e'Pé+2AK'K =

— (Ae+bAK™®) Pe+e"P(Ae+bAKT ) —2AKT O(e, r(1)) " Pb

=—¢ Qe<0
According to Lyapunov’s direct method, this inequality implies global uniform
stability of the origin, as well as uniform boundedness of e(t) and AK(¢). Then,

because of the system dynamics, é(¢) is also uniformly bounded, and so the second
time derivative of the Lyapunov function

Vie, AK) = —2¢" Q¢
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is uniformly bounded. Therefore, V (e(r), AK (1)) is uniformly continuous inz. At the
same time, since V(e(z), AK(t)) > 0 and V(e(t), AK(t)) < 0, then the Lyapunov
function itself tends to a limit. Lastly, applying Barbalat’s lemma (in the form of
Corollary 8.1) gives

lim [e”(t) Pe(r)] = lim [V(e(t), AK(1))] =0

1—00 1—00

and, consequently lim |le(z)|| = O; that is, the system tracking error globally
[—00

uniformly and asymptotically tends to the origin, while the rest of the signals
remain uniformly bounded. In the forthcoming chapters, this key property will
enable us to design stable robust adaptive controllers with predictable closed-loop
performance. |

8.8 Summary and Historical Remarks

Theoretical foundations of stability theory for a general class of nonlinear differential
equations were developed and published by Alexander Mikhailovich Lyapunov in his
doctoral thesis on “the general problem of the stability of motion”, which he defended
at the University of Moscow in 1892. Lyapunov’s stability, along with its extensions
due to LaSalle, Yoshizawa, Barbashin, and Krasovskii, provided the necessary
framework for the development of adaptive control. For dynamical systems without
equilibrium, the notion of uniform ultimate boundedness was introduced and
analyzed using Lyapunov’s second method.

We would like to emphasize yet again that Barbalat’s lemma constitutes the corner
stone of proving stability for adaptive systems. This lemma allows to assert asymp-
totic stability of the system tracking error based on two facts: (a) The error is square
integrable and (b) the error time derivative is uniformly bounded. Both statements
come from application of Lyapunov’s second method to examine stability of the
system error dynamics. Barbalat’s lemma has been independently derived by many
authors, but the original work was attributed to Barbalat by V.M. Popov in his book
“Hyperstability of Control Systems,” published by Springer-Verlag in 1973.

8.9 Exercises

Exercise 8.1. Starting at different initial conditions, simulate the system dynamics
in Example 8.1. Comment on the system behavior near and at the origin.

Exercise 8.2. Derive the system solution in Example 8.1 and prove the stated three
properties.
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Exercise 8.3. Derive the system solution in Example 8.4 and draw the system
phase portrait. Given an initial condition, find a local Lipschitz constant. Prove that
the system dynamics is not globally Lipschitz.

Exercise 8.4. Prove that trajectories of any scalar autonomous ODE (assuming
that they exist) are monotonic functions of time.

Exercise 8.5. Prove the statement from Example 8.6.

Exercise 8.6. For a scalar nonautonomous differential equation in the formx = —a(t) x,
define sufficient conditions on a(t), so that the equilibrium of the scalar dynamics is (a)
stable, (b) asymptotically stable, and (c) uniformly asymptotically stable.

Exercise 8.7. Consider the system
X=Xy, o= —g(x) (x +x2)

where g is locally Lipschitz and g(y) > 1 for all y € R. Verify that
Vix) = Jyg(y) dy +x1 30 + x5
0

is globally positive definite and radially unbounded. Use V(x) to show that the
system equilibrium point x, = 0 is globally asymptotically stable.

Exercise 8.8. There are theoretical extensions that deal with existence and unique-
ness of IVP-s whose system dynamics are discontinuous in x. Show that the IVP

X1 =x , x(0) = xo
Xy = —xp —sgn (x1 + x2)

does not satisfy the sufficient conditions for existence and uniqueness of its
solution. Nevertheless, a solution does exist. Simulate the system starting from
different initial conditions. Construct phase portrait of the system and argue that
(a) the manifold c(x) = x; + x, = 0 is the system global attractor, (b) all system
trajectories reach this manifold in finite time, and (c) the solution “slides” down the
manifold toward the origin.

Exercise 8.9. Prove that a scalar continuously differentiable function is uniformly
continuous if the function derivative is bounded. Using this fact, prove Corollary
8.1.

Exercise 8.10. Consider the n-dimensional LTI controllable system

¥=Ax+b(u—Kx)
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with a Hurwitz matrix A. Suppose that K, € R"*! is constant and unknown. Let
r(¢) € R denote a bounded external command for the system output y = Cx to
follow. The system control input u is chosen as

u=K{t)x+K,r(t)

where K, = —CA~'b is the command feedforward gain, and K(r) is the time-
variant state feedback gain, whose dynamics are given by the adaptive laws,

K= —yxelPb

with a positive scalar y and using the unique positive-definite solution P € R"*"of
the Lyapunov algebraic equation PA + AT P = —Q, where Q € R™" is symmetric
and positive definite. Let

).Cr()f = Ax,.ef +br

define the desired dynamics. The system tracking error is e = x — x,,r. Write down
the tracking error dynamics. Formulate the total closed-loop dynamics by combining
the tracking error dynamics with the adaptive laws. Prove that for any bounded
command r, any constant positive adaptation rate y, and any symmetric positive-
definite matrix Q, the tracking errore() tends to zero globally and asymptotically; that
is, the system state x tracks the desired state x,.¢,with diminishing errors. Argue that in
this case, the system output y = C x tracks the command r(¢) with bounded errors and
in the presence of any constant uncertain vector parameter K, (hint: Use the stability
arguments from Example 8.17).

Exercise 8.11. Using the system and control equations from Example 8.10, choose
n = 2, select your own data, and simulate the corresponding closed-loop system
dynamics. Verify the theoretical predictions of stability and tracking while driving
the desired dynamics with various external bounded commands. Demonstrate (via
simulation tests) the closed-loop system tracking performance in the presence of a
constant uncertain parameter K. Discuss your results.
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Chapter 9
State Feedback Direct Model Reference
Adaptive Control

9.1 Introduction

For over 50 years, adaptive systems have decisively remained in the mainstream of
controls and dynamics research. As a result, adaptive control has grown to become
a well-formed scientific discipline. One of the reasons for the continuing popularity
and rapid growth of adaptive control is its clearly defined goal — to enable control of
dynamical systems that operate in the presence of unknown parameters.

Adaptive control research was initiated in the early 1950s. At that time, the
interest in adaptive systems was primarily driven by the design of autopilots for
high-performance aircraft. This was no surprise since newly designed aerial
platforms required control solutions that would provide stable and predictable flight
operations throughout the aircraft’s vast envelope, ranging from subsonic to super-
sonic and even to hypersonic regions.

The last decade has witnessed the development of a coherent theory for adaptive
control, which has led to many practical applications in the areas such as aerospace,
robotics, chemical processes, ship steering, bioengineering, and many others.

A few historical remarks are in order. The original concept of a model reference
adaptive system was proposed by Whitaker et al. in [1, 2]. The main idea behind this
concept was to specify the desired command-to-output performance of a servo-
tracking system that would eventually define the ideal response of the system output
due to external commands. This control concept was later called the “explicit
model following,” and the corresponding architecture became known as the model
reference adaptive control, or in short MRAC. Soon after its introduction, the first
proof of MRAC closed-loop stability using Lyapunov theory was given in 1965 by
Butchart and Shackcloth [3] and also in 1966 by Parks [4]. In the years that followed,
adaptive control theory for a broad class of dynamical uncertain systems was
developed and well documented in several now-classical textbooks [5—8].

A generic block diagram of a system (plant) operating under MRAC controller
is shown in Fig. 9.1.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 263
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_9,
© Springer-Verlag London 2013
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Fig. 9.1 An MRAC closed-loop block diagram
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In essence, a MRAC system consists of a controller whose parameters (gains)
are updated online using an adaptive law. The latter operates on the system output
and on an external command (a.k.a. the reference input). The command also drives
the reference model that specifies the desired trajectories for the system to follow.
The difference between the reference model output and the system output
constitutes the tracking error, which subsequently is sent to the adaptive law for
online parameter adjustments. Finally, the controller computes its commands based
on the reference input, the system output, and the online adjusted parameters from
the adaptive law. Per design, the adaptive controller forces the system output to
follow the desired external commands while operating in the presence of the plant
uncertainties. For itself, the controller main objective is to maintain consistent
performance of the closed-loop system in the presence of uncertainties and
unknown variations in plant parameters.

When the true plant parameters are unknown, one might attempt to estimate
control gains online using available measurements. This approach is referred to as
the “direct.” Alternatively, the gains can be approximated online by solving system
design equations that relate the plant uncertainties to the known signals in the
system. This is called the “indirect” method. MRAC systems can be designed using
either direct or indirect approaches. There are also design methods available that
merge the two, leading to combined (direct 4 indirect) MRAC architectures.

In this chapter, our focus will be on the design, analysis, and evaluation of direct
MRAC systems for continuous plants with uncertain dynamics and full state
measurements.

9.2 Command Tracking

We shall consider command tracking algorithms for continuous dynamic plants

'X.: :f(t) x7 u’ ®) é)
y="h(t, x, u, O, &) 9.1
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with vector-parametric constant uncertainties ® and with bounded environmental
disturbances &(¢). In (9.1), x € R" denotes the system state, u € R™ is the control
input, and y € R™ is the regulated output. It is assumed that the entire system state
vector x is available for control synthesis. In other words, the system state can be
measured online.

The problem of tracking a command involves the design of the system control
input u so that the regulated output y() tracks a given bounded reference signal
r(f) € R™, in the presence of the system uncertainties ® and environmental
disturbances £(¢). Specifically, we are looking for a control input that would force
the output tracking error

ey(t) = y(t) = r(2) (9.2)

to become sufficiently small, as ¢ — oco. Moreover, it is required that during
tracking, all the signals in the corresponding closed-loop system remain uniformly
bounded in time.

If ey(1) e 0, then we assert that asymptotic output tracking has been achieved.
In general, asymptotic tracking may not be feasible, and in that case, our goal would
be to achieve uniform ultimate boundedness of the tracking error

Hey(t)H <e Vi>T (9.3)

where ¢ > 0 is the desired tracking tolerance, T is a finite time instant, and ||e||
denotes a vector norm. A brief review of vector norms was given in Chap. 1.

9.3 Direct MRAC Design for Scalar Systems

We begin with a scalar plant whose dynamics are of the form
Xx=ax+bu+f(x) (9.4)

where x is the system state and u is the control input, while a and b represent
unknown constant parameters. We assume that the sign of b is known, which is
equivalent to saying that the system is controllable. The system dynamics depend
on the unknown function f(x) defined as a linear combination of N known basis
functions ;(x) with N unknown constants 6;

N
f@) = 0ip,(x) = 0" d(x) 9.5)

i=1
where ®(x) = (@;(x) ... ¢;(x))" €RY denotes the known regressor vector,

whose components ;(x) are assumed to be Lipschitz-continuous in x. So, the scalar
model we consider here is


http://dx.doi.org/10.1007/978-1-4471-4396-3_1
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¥=ax+b(u+0"0x)) (9.6)

A stable reference model is given. Its dynamics are described by a first-order
differential equation in the form

S = g 3+ by (1) ©.7)

where a,,,<0 and b, are the desired constants and r(t) is the reference input
command. The reference model parameters must be chosen to represent the
desired response due to bounded commands. For example, the designer may select
bres = —ay so that the DC gain of the reference dynamics becomes unity, and then
select a,o¢ such that the reference system time constant is as small as desired.

The control objective of interest is to asymptotically track the state x,,; of the
reference model (9.7), which can be driven by any bounded command (7). In
other words, we need to design a control law u(¢), such that the state tracking error
e(t) = x(t) — x,¢¢(¢) globally uniformly asymptotically tends to zero, as t — oo,
while all signals in the corresponding closed-loop system remain uniformly
ultimately bounded in time.

The required command tracking task must be accomplished in the presence of
(N + 2) unknown constant parameters {a, b, 0y, ... , Oy}.

First, we define the “ideal” control solution, as if the unknown parameters were
known. The ideal control is composed using the (feedback + feedforward)
architecture

Uideal = ky X + k7 — 07 D(x) 9.8)

where k, and k, represent the ideal feedback and feedforward gains, respectively.
Substituting (9.8) into (9.6) gives the system closed-loop dynamics:

i=(a+bk)x+bk r(f) (9.9)

Comparing (9.9) with the desired reference model dynamics (9.7), it follows that
the ideal gains k, and &, must satisfy the following two algebraic equations:

a+bk,=ae bk =by (9.10)
These relations are called the matching conditions. It is clear that for scalar
plants, the unknown ideal gains, k, and %, in (9.10) always exist. As we shall see

later, this will not be the case for multidimensional dynamics.
Based on (9.8), we propose a tracking control solution in the form

U= kex + ke r — 07 d(x) (9.11)



9.3 Direct MRAC Design for Scalar Systems 267

where the fqedback gain ki\., the feedforward gain IE,., and the estimated vector of
parameters 0 will be determined to achieve global uniform asymptotic tracking of
the reference model trajectories. Toward that end, we substitute (9.11) into the
system dynamics (9.6)

. . . T
i=(a+bk)x+b (krr— (0-0) q>(x)> 9.12)
and rewrite the latter using the matching conditions (9.10)

~ ~ ~ T
$ =t bk r b (k= k) x4 b (b~ k) r—b(e—e) D(x) (9.13)

bn Ak, Ak, A
where
Aky =k — ke, Akp =k —ky, AO=0—0 (9.14)

denote parameter estimation errors. Then, the closed-loop dynamics of the system
tracking error signal

e(t) = x(t) — xper (1) (9.15)
can be obtained by subtracting (9.7) from (9.13):
é(t) = arp € + b (Akyx + Ak, 7 — A" D(x)) (9.16)

We are going to choose adaptive gains kAX, 15,4, 0) to enforce global uniform
asymptotic stability of the origin. This will be accomplished through the inverse
Lyapunov design approach, where we would choose a Lyapunov function candidate
and then select adaptive laws such that the function time derivative becomes
nonpositive, when evaluated along the trajectories of the error dynamics (9.16).
As a result, the tracking error would asymptotically converge to the origin, and so
the system state would asymptotically track the state of the reference model.

Let us consider a quadratic Lyapunov function candidate in the form

Ve, Aky, Ak, AO) =&+ |b| (v, AKZ + 9, A2+ AO" T AG)  (9.17)
where scalars y, > 0, 7, > 0, and a constant symmetric positive-definite matrix

Iy € RNV are the rates of adaptation. Taking the time derivative of V, along the
trajectories of (9.16), gives
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Ve, Ak, Ak, A0) =2e¢+2p] (37 Akcky + 71 Ak + AOT T ! é)
=2e¢(arse + b (Akyx + Ak, r — A" D(x)))
20| (7! Akk, + ;! A &+ 407 T510)
=2a, ¢ + 2|b|(Ak, (xesen(b) +7;" k))
+21b|(Ak (resen(b) +7;" k))
+2 [b] A0(~®(x) e sen(b) + T 0) 9.18)

In order to enforce closed-loop stability, it is sufficient to choose adaptive laws
such that V(e, Ak,, Ak,, AB) < 0. Indeed, if we select

>e

= —7,xesgn(b)

5.

—7, resgn(b)
Iy @(x) esgn(b) (9.19)

0

then the time derivative of V, computed along the trajectories of (9.16), becomes
negative semidefinite

Ve, Aky, Ak,, AO) =2a,y e(r)* <0 (9.20)
~—

<0

which immediately implies that the signals (e, Ak,, Ak,, Af) are uniformly
bounded in time. The latter, coupled with the fact that (x.f, ) are bounded and 0
is a constant vector, means that the system state x and the estimated vector of
parameters 0 are uniformly bounded. Moreover, since the components ¢;(x) of the
regressor vector ®@(x) are Lipschitz-continuous functions of x, which was proven to
be bounded, then the regressor components themselves are uniformly bounded.
Hence, the control signal « in (9.11) is uniformly bounded as well. Consequently,
both x and x,e¢ are uniformly bounded.
Differentiating (9.20) results in

Ve, Aky, Aky, AO) =4da,e(t)é(r) 9.21)
Therefore, V is bounded, and consequently, V is a uniformly continuous function of

time. Since V is lower bounded and V is negative semidefinite, then V, as a function of
time, must have a finite limit. We can now use Barbalat’s lemma to arrive at

lim V(£) =0 (9.22)

—00
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Table 9.1 Direct MRAC design summary for a scalar plant

Open-loop plant t=ax+b(u+ HT(D(X))
Reference model Xref = Qref Xref + bref 7
Tracking error € =X — Xpef

Control input u=kex+kr—0" o)

Direct MRAC laws

o

.= —p.xesen(b)

o

= —y,resgn(b)
0 = Ty ®(x) e sgn(b)

and because of (9.20), we conclude that the tracking error e(r) tends to zero
asymptotically, as t — oo.

Since the Lyapunov function (9.17) is radially unbounded and it does not depend
explicitly on time, the attained asymptotic stability property is global and uniform,
that is, the closed-loop tracking error dynamics are globally uniformly asymptoti-
cally stable. The command tracking problem is solved. We now recap our formally
proven results in the Theorem 9.1.

Theorem 9.1. For the uncertain scalar dynamical system (9.6), with the controller
(9.11), and the adaptive laws (9.19), the system state x(t) asymptotically tracks the state
Xret (2) Of the reference model (9.7), driven by any bounded command r(t), while all the
signals in the closed-loop system remain uniformly bounded. Moreover, the closed-
loop tracking error dynamics (9.16) are globally uniformly asymptotically stable. W

MRAC design equations for a scalar plant are summarized in the Table 9.1.

It is necessary to make a remark about dynamic behavior of the estimated
parameters 0. The fact that the system tracking error e asymptotically tends to
zero does not automatically imply that 0 converges to its ideal unknown parameter
vector . What is certain is that the estimated parameters will remain uniformly
bounded during tracking. Nevertheless, there are cases when parameter conver-
gence will take place alongside the desired tracking. A sufficient condition for
parameter convergence is given by the persistency of excitation (PE) [7-8], which
imposes certain restrictions on the commanded signal r(f). We shall define and
discuss PE conditions at a later time.

As in any other control design method, MRAC has its own “tuning knobs.” They
are the rates of adaptations, represented by two positive constants (7., 7,) and a
symmetric positive-definite matrix I'g. As seen from (9.19), the larger the rates, the
faster the adaptive laws will evolve. One may conjecture that large rates would
result in better and faster closed-loop tracking performance. This is partially true.
Indeed, large rates of adaptation will yield fast tracking. However, this will also
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lead to undesirable oscillations during transient times, when the system regulated
output is trying to get closer to its command. The trade-off between fast tracking
and smooth transients presents a design challenge.

Example 9.1 Helicopter Pitch Dynamics and Control During Hover Unlike a
fixed-wing airplane, angular motion control of a helicopter is achieved by tilting
its main rotor and as a result altering the direction of the rotor thrust vector. This
action induces a change in angular moments acting on the vehicle and results in
pitch, roll, and yaw angular motion.

In hover, the helicopter pitch dynamics depend primarily on the vehicle pitch
rate ¢ and on the applied (by a pilot or an automatic system) longitudinal control
input &, which is equivalent in its effect (also induces a pitching motion) to an
elevator for a fixed-wing vehicle. Assuming constant thrust, while neglecting small
forward and vertical speed components, pitch dynamics of a helicopter during
hover can be approximated by the following scalar differential equation:

G=M;q+M;(0+f(q))

where M, represents the vehicle pitch damping and Mj is the elevator effectiveness.
The system also depends on the unknown function f(g), which models inherent
uncertainties in the helicopter dynamics, both linear and nonlinear.

For simulation purposes, we assume model parameters (unknown constants)
that are representative of a hovering transport helicopter: M, = —0.61 (rad/s) and
Ms = —6.65 (rad/s?). We also define

360
0 N———
®(q)

where 0 = —0.01 is unknown and ®(g) is the known regressor, and arrive at the
helicopter dynamics:

Gg=-061q—6.65 (5 —0.01 tanh (? q>>

Clearly, the origin of the open-loop (6 = 0) pitch dynamics becomes locally
unstable, as shown in Fig. 9.2.

Such a system would certainly require active control for stabilization and
command tracking.

Our particular selection of the system parameters in this example is purely
academic. It merely supports the main objective here — to design an MRAC system
and to show its efficacy in coping with linear and nonlinear uncertainties of various
forms and shapes. Toward that end, we use MRAC design equations from Table 9.1
and construct the following adaptive pitch controller:
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Fig. 9.2 Helicopter open-loop pitch dynamics from Example 9.1

0= kq q + IEQrmd qemd — éT (D(CI)

with the adaptive laws

ky = 749 (4 = Grer)

kflmd = Vgema demd (q - Qref)
0 = _FH (D(Q) (q - qref)

where ¢, is the desired pitch rate signal generated by the reference model

q'ref =4 <Q(:md — dref )

driven by any bounded time-varying pitch rate command gemg = gema(t). Here, we
have selected a,.f = —b,r = —4.

After several design iterations, we have chosen the rates of adaptation to be
Vg = Vgua = 0000, T'g = 8. Figure 9.3 shows the closed-loop system response
(pitch rate, deg/s) and the required control effort (elevator deflection, deg) for
tracking a series of step-input commands of different magnitudes.

During this event, the adaptive parameters (solid green, Fig. 9.4) remain
bounded and approach their true unknown values (dashed blue, Fig. 9.4).

The observed parameter convergence is not guaranteed to always take place. For
example, suppose that the same system is required to track a sinusoidal command
(Fig. 9.5).

In this case, the adaptive parameters do not converge to their ideal values
(Fig. 9.6). However, they do remain uniformly bounded, as expected.



272 9 State Feedback Direct Model Reference Adaptive Control

5 I
—— Command
—.—. Reference
o m [ \ —— System
o
2, Wi
£ bt & g
)
-5
0 5 10 15 20 25 30 35
3
2
o 1 A A \
EN I o S -
%“_1 W v f ¥
o
2
-3
0 5 10 15 20 25 30 35

Time, Sec
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Fig. 9.4 Adaptive parameters from Example 9.1 converge to their ideal values

It is also interesting to compare the adaptive elevator input (Fig. 9.3) against the
ideal signal generated by the fixed-gain controller:

1

5ideal = E ((aref - Mq) q -+ bref qcmd) _f(q)
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Fig. 9.6 Adaptive parameters during sinusoidal command tracking from Example 9.1

Fig. 9.7 shows the comparison data.

In spite of clearly visible similarities, the two control signals also exhibit subtle
differences. Even after the transients have subsided, the MRAC signal has a
tendency to oscillate (Fig. 9.8), while the fixed-gain controller does not.

Summarizing our discussions, we end this example with an observation that in
the two simulation scenarios considered, the pitch rate MRAC system was able to
provide adequate closed-loop command tracking performance while operating in
the presence of linear and nonlinear uncertainties.

O
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Fig. 9.8 MRAC signal oscillations in Example 9.1

9.4 Dynamic Inversion MRAC Design for Scalar Systems

Dynamic inversion (DI) control for systems with known dynamics represents
a well-known method [9]. In this section, we will demonstrate the design of a
DI-based MRAC system for the scalar uncertain dynamical system

Xx=ax+bu+0"d(x) (9.23)
N
)
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with two unknown constants (a, b) and with an unknown function f (x) in the form of
(9.5). Again we assume that the constant vector of ideal parameters 6 is not known,
while the regressor components ¢, (x) represent a known set of Lipschitz-continuous
basis functions. We also assume thatsgnb is known and that the system is controllable,
thatis, |b| > bumin>0, where by, represents a known lower bound of |b|.

The reference model dynamics are given by (9.7), and the design task remains
the same — find a control input u to force the system state x asymptotically track the
state of the reference model, which is in turn driven by any bounded time-varying
command 7.

This particular control problem was addressed and solved in the previous
section, where we derived a direct MRAC system. Here, we shall present an
alternative solution and then compare the two approaches.

We begin by rewriting the system dynamics

X=ax+bu+f(x)—(a—a)x— (b—b) u— (f(x) - f(x)) (9.24)
N — N—_—— —— —/
Aa Ab Af(x)

where a, b are the estimated values and
A~ N ~ A~
@)= 0ip,(x) = 0" (x) (9.25)
i=1

is the function approximator. All these quantities will be constructed during the
design process. Also, in (9.24), Aa, Ab, and Af (x) represent the parameter and the
function approximation errors, respectively. Using (9.25) gives the function
approximation error:

M@ =f0) =F) =Y (= 0) w0 = AT o) (9:26)

|

Following the DI method, let us consider a controller in the form:

1 R )
u= i ((a,.ef — a) XA+ by — HT (I)(x)> (9.27)

Substituting (9.27) into the second term of (9.24) yields
X = lpf X+ byop 7 — Aax — Abu — AO" ®(x) (9.28)

With the tracking error signal e defined in (9.15), we can now compute the
system tracking error dynamics. Subtracting (9.7) from (9.28) gives
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é=ayre—Aax — Abu— A" ®(x) (9.29)
Consider the following Lyapunov function candidate:
Ve, Aa, Ab, AO) = e* + 7, Ad® + 7,  AP* + A0"T;' A0 (9.30)

wherey, > 0,7, > 0,Ty = l"g > (0 are the adaptation rates. The time derivative of
V, evaluated along the trajectories of the error dynamics (9.29), can be computed as

V(e, Aa, Ab, AO) =2¢é + 2(y;‘ Aaa + ;! Abb + AOT r,! é)
=2e(are — Aax — Abu — A" O(x))
+2(7;" Aad+ ;" Abb + AT T;10)
=2 o €% + Aa(yglé —xe) + Ab (y;ll; — ue)

+AOT (r;l 0 — D) e) 9.31)
Based on (9.31) and in order to make 1% < 0, the adaptive laws are chosen as

a=ry,xe, l;:y,,ue, é:l"gd)(x)e (9.32)
Then,
V(e, Aa, Ab, AO) =2a,,;¢* <0 (9.33)

and consequently, the four signals (e, Aa, Ab, A0) are uniformly bounded. Since
r(t) is bounded and arer < 0, then Xy is also uniformly bounded and because of that
the system state x as well as the three estimated signals |( 4, l;, 0) are uniformly
bounded.

In order to claim uniform boundedness of u from (9.27), we need to protect the
controller from “blowing up” due to the division by b. In other words, we need
to modify the adaptive laws (9.32) and enforce boundedness of the estimated
parameter b.

Let us consider the following modification of the second equation in the adaptive
laws (9.32):

[') _ { ypue, if |Z5|> bmin V [l; = bminsgnb A (ue) sgnb> O} (9.34)

0, if 5] = bmin A (ue) sgnb <0

The main motive here is to stop adaptation of bif the parameter reaches its lower
absolute limit value b,,;,, with a nonzero time derivative b. In this case, we would
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prevent the estimated parameter b from crossing the known lower absolute value
bound by;,.

Let us argue that the modification (9.34) does indeed prevent b from crossing its
allowable bound and at the same time, it preserves closed-loop system stability.

Suppose that sgnb > 0. Then, according to (9.34), it is easy to see that starting
with any initial condition 5(O)> bmin » the estimated parameter will satisfy the
desired lower bound relation l;(t) > bmin , for all future times. In addition, we
must verify that the proposed modification (9.34) does not adversely affect
closed-loop stability of the tracking error dynamics (9.29). In particular, we need
to ensure that the inequality (9.33) remains in effect. For this to be true, it is
sufficient to show that

Ab <y,;‘ bh— ue) <0 (9.35)

Let us argue that with the adaptive law modification (9.34), the above relation
does indeed hold.

When b > Dmin, the adaptlve law (9.34) is the same as the corresponding law in
(9.32) and, therefore, V < 2a,gfe < 0. Suppose that there exists 0 < T<oo
such that b( ) = bmin. Since b > by, then Ab(T) = ( )—b =bmin—b<0.If

u(T) e(T) > 0, then V = 2a,.s > < 0, while b(T) = y, ue > 0 implying that b(r)
increases locally forz > T. On other hand, if u(T) e(T) < 0, then accordmg to (9.34),

att:T:Ab(y;IIS—ue> =— Ab ue < 0,and so again, V<2a,efe < 0. This
50 <0

proves the desired properties of (9.34) forsgn b > 0. Forsgn b < 0, formal arguments
are similar, and therefore, they will be left as an exercise for the reader.

The adaptive law modification (9.34) enforces the nonpositive sign of V, and as
such, it contributes to achieving closed-loop system stability. The parameter adapta-
tion dynamics in (9.34) represent a special case of the Projection Operator [6], whose
continuous version will be introduced in Chap. 11.

With the proposed adjustment (9.34), the DI-based adaptive laws (9.32) become

a=vy,xe
~ ) ypue, if ]l;|>bmin vV [l; = bin sgnb A (ue) sgn b>0]
b= { 0, if ’15| = bmin N (ue) sgnb <0 (©.36)

0=Tyd(x)e

Next, we are going to formally prove that the DI-based adaptive controller
in (9.27) provides global uniform asymptotic tracking of the reference model
state. Since V < 0, then (e, Aa, Ab, A0) are uniformly bounded. The latter implies
that (x a, b 9> are also uniformly bounded. Due to (9.34), b > by and
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Table 9.2 DI-based MRAC design summary

Open-loop plant i=ax+bu+0"0x)
Reference model Xref = Qref Xref + by 7
Tracking error e =X — Xpef
. 1 .
Control input - : ( (arey — @) X+ by 7 — o (x))
DI-based Gd=7y,x
MRAC laws ]; _ ) mue, if |l€|> Bumin V [l; = bmin sgnb A (ue) sgnb> O}
if ‘b‘ = bmin A (1 e) sgnb< 0
0=

consequently, u is uniformly bounded, and so is x. Since r is bounded, then X, is
bounded, and consequently, ¢é is bounded as well. Because of (9.34)

V(e, Aa, Ab, AO) < —2a,s|e* <0 (9.37)
for all # > 0. Since V is positive definite and its derivative is semi-negative definite,

then V converges to a limit, as a function of time. Integrating both sides of (9.37)
yields

t

V() = V(0) < =2 |ay| J€2<‘E) dt <0 (9.38)
0

or, equivalently:
[ 1
Jez(f)d‘z: <5 o] (V(0) = V(£))<oo (9.39)
Aref
0

Let W(t J"e ) dt. From (9.39), it follows that W(¢) tends to a finite limit, as

t — oo. At the Same time, its time derivative is W (z) = €>(¢), and so its second time
derivative is bounded: W (z) = 2eé(f)<oo. Then, W(t ) is uniformly continuous.
Finally, we can apply Barbalat’s lemma to conclude that lim W(t) =0, which
immediately implies lim e*(f) = 0. The tracking problefﬁ s solved, and the
DI-based MRAC desigffiosO summarized in Table 9.2.

Let us now illustrate the DI-based MRAC procedure by redesigning the pitch
controller using the helicopter pitch dynamics data from Example 9.1.
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Example 9.2 DI-Based MRAC Design for Helicopter Pitch Dynamics For the
helicopter pitch dynamics (see Example 9.1)

. 360
G=—061q—6653+ 0.09665 tanh (T q)

the DI-based MRAC system is constructed using the design equations from
Table 9.2. The resulting adaptive pitch controller

. AT
o= ; ((d/‘ef - a) q + bref qemd — 0 (D(q))

with the reference model parameters are = —b,,s = —4, and with the adaptive laws

a=7%.9 q qr ef

yh q %ef if [;< - bmin \ [6 = _bmin A (5 (q - QI'ef))<0}

if b= —byin A (5 (q — q,.gf))> 0

0 =Ty (D(Q) (q q:"c{f)
were given the task to track the same exact step-input commands from Example 9.1.
We assumed | M| > byin = 1 to be the known lower bound and selected h(0) = —4
to represent the initial value for the estimated elevator effectiveness. With the
adaptation rates y, = 7, = I'y = 200, the closed-loop system pitch rate response
and the corresponding elevator input are shown in Fig. 9.9.

Similar to Fig. 9.3, these simulation data also show adequate command tracking
performance and achievable control input (elevator) values. Comparison of the
DI-based MRAC signal with the ideal fixed-gain controller (Fig. 9.10) reveals
transient oscillations in the MRAC signal.

Moreover, it is interesting to note that the estimated parameters are nowhere near
their ideal unknown values (Fig. 9.11).

For example, the estimated pitch damping a = Mq remains predominantly near
zero, while its true value @ = M, is negative and much larger than this estimate.
Nevertheless, as predicted by the design, all of the estimated parameters stay
uniformly bounded in time, while the system state tracks the state of the desired
reference model. O

After reviewing the two simulation examples presented in this section, the reader
should be able to appreciate inherent nonlinear features of MRAC systems. Even
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Fig. 9.10 DI-based MRAC and ideal fixed-gain controller from Example 9.2

for scalar dynamics, these controllers may yield transient oscillations and adaptive
gain values that do not resemble the true unknowns in the system dynamics.
However, these “undesirable” features are not in conflict with the formally derived
MRAC design. Achieving smooth transients or having adaptive parameters
converge to their ideal values was not formulated as the design goals. Only
asymptotic command tracking was of interest and that goal was fully achieved
despite the system uncertainties.
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Fig. 9.11 Estimated parameters in Example 9.2

9.5 MRAC Design for Multi-Input Multi-Output Systems

In this section, we will extend applicability of the MRAC design from scalar
dynamics to multi-input multi-output (MIMO) nonlinear systems in the form

X=Ax+BAu+f(x) (9.40)

where x € R" is the system state, u € R™ is the control input, and B € R"*™ is the
known control matrix, while A € R"*"and A € R™*™ are unknown constant matrices.
In addition, it is assumed that A is diagonal, its elements /; are strictly positive, and the
pair (A, BA) is controllable. The uncertainty in A is introduced to model control
failures or modeling errors, in the sense that there may exist uncertain control gains or
the designer may have incorrectly estimated the system control effectiveness.

In (9.40), the unknown possibly nonlinear vector-function f(x): R" — R™
represents the system matched uncertainty. It is assumed that each individual compo-
nent f;(x) of f (x)can be written as a linear combination of N known locally Lipschitz-
continuous basis functions ;(x), with unknown constant coefficients. So, we write

f(x) = O d(x) (9.41)

where ® € R¥*™ is a constant matrix of the unknown coefficients and ®(x) =

(o (x) ... @y(x)" €RN is the known regressor vector.

We are interested in the design of a MIMO state feedback adaptive control
law such that the system state x globally uniformly asymptotically tracks the state
Xref € R" of the reference model
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Xref = Aref Xref + Breg 1(1) 9-42)

where A, € R"™" is Hurwitz, B,y € R™", and r(t) € R™ is the external bounded
command vector.

We also require that during tracking, all signals in the closed-loop system remain
uniformly bounded. Thus, given any bounded command r(¢), the control input u
needs to be chosen such that the state tracking error

e(t) = x(t) — Xpef (1) (9.43)
globally uniformly asymptotically tends to zero, that is,

lim [|x(r) — xrer (1)]| = 0 (9.44)

1—00

If matrices A and A were known, one could have calculated and applied the ideal
fixed-gain control law

u=K'x+K'r—0"oy) (9.45)
and obtain the closed-loop system:
¥=(A+BAK])x+BAKr (9.46)

Comparing (9.46) with the desired reference dynamics (9.42), it follows that for
existence of a controller in the form of (9.45), the ideal unknown control gains, K,
and K, must satisfy the matching conditions

A+BAK! = A,y
BAK] = B,(9.47)

Assuming that these matching conditions hold, it is easy to see that using (9.45)
yields the closed-loop system which is exactly the same as the reference model.
Consequently, for any bounded reference input signal r(7), the fixed-gain controller
(9.45) provides global uniform asymptotic tracking performance.

Let us at once note that given (A, B, A, Ay, B,.ef), there is no guarantee that
the ideal gains K, K, exist such that the matching conditions (9.47) are satisfied. In
other words, the control law (9.45) may not be able to meet the design objective.
However often in practice, the structure of A is known, and the reference model
matrices Aef, Brerare chosen so that the system (9.47) has at least one ideal solution
pair (K, K,).

Assuming that K, K, in (9.47) do exist, we consider the following control law:

u=K'x+K'r— 0" d(x) (9.48)
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where K, € R, K, € R™™, © € RV*" are the estimates of the ideal unknown
matrices K, K., ®, respectively. These estimated parameters will be generated
online through the inverse Lyapunov analysis. Substituting (9.48) into (9.40), the
closed-loop system dynamics can be written as

= (A+BAK")x+BA (KT r— (@ ~ @))ch(x)) (9.49)

Subtracting (9.42) from (9.49), we compute the closed-loop dynamics of the
n-dimensional tracking error vector e(r) = x(f) — X, (1):

é=(A+BAK")x+BA (KT r—(6- @)T (I)(x)> — Avef Xoof — Brg 7 (9.50)

With the matching conditions (9.47) in place, we further get
é=(Args +BA (Ky — K,) X — Ayey Xy
. . T
+BA (K ~K)r—BA(6-0) o)

=Arge+BA [(K k) x4 (R —K) - (@ - ®)TCD(X)] (9.51)

Let AK, =K, — K,, AK, =K, —K,,and A® = © — ® represent the parameter
estimation errors. In terms of the latter, the tracking error dynamics become

é=Are+BA[AKT x + AK r — A®" O(x)] (9.52)
We introduce rates of adaptation: I', = F§> 0, I, = FrT> 0, T'g= F(Ta > 0.
Going back to analyzing stability of the tracking error dynamics (9.52), let us

consider a globally radially unbounded quadratic Lyapunov function candidate in
the form

V(e, AK,, AK,, A®)
=e'Pe+tr ([AKI TV AK, + AK] T, ' AK, + A®' T'g' AB] A)  (9.53)

where P = PT> 0 satisfies the algebraic Lyapunov equation
PAns+ Al P=—0 (9.54)

for some Q = QT >0. Then, the time derivative of V, evaluated along the
trajectories of (9.52), can be calculated:
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V=élPe+elPé+2u([AKIT K +AKTT, 'K, + 407 T5' 6] A)

:(Arefe+BA (AKZX—FAK],T}’ — A@T(D(x)))TPe
+e"P(Aere+BA (AK! x+ AK] r — AG)TCD(x)))

+2u([AKT T K+ AKT T 'K, + AOT TG O] A)

=e" (At P+ PArr)e+2e¢'PBA (AK x+ AK! r — A" O(x))

+ 2tr< [AK{ 'K, + AKTTUK, + A®T Tg! @] A)

Using (9.54) further yields

V=—c" Qe+ [2PBEAAKT x+2u(AKIT, 'K A) |
+ [2e"PBAAKT 20 (AKT T, 'K A

+ [_2 'PBAAO" O(x) + ZU(A@T re'e Aﬂ

Via the vector trace identity (defined in Chap. 1),

e'PBAAK"x =tr| AK" x ¢'PBA

al b b al

e'PBAAK"r =tr| AK'r ¢'PBA
S —— —_——

al b b al

¢'PBA AO" ®(x) =tr[ AOT ®(x) ¢'PBA
— —— —_——— ——

T T

a b b a

Substituting (9.57) into (9.56) results in

V== e+ 2u(AK] [I7'K, +xe PB| A)

(9.55)

(9.56)

(9.57)

+2u(AKT [Tk, +rePB| A) +2u(A07 gl © — 0(x) ' PB| A)

(9.58)
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If the adaptive laws are selected as

K,=-T.xe'PB
[A'(,. =-T,r(t)e'PB
O = I'o d(x)¢'PB (9.59)

then the time derivative of V in (9.58) becomes globally negative semidefinite:
V==e"0e<0 (9.60)

Therefore, the closed-loop error dynamics are uniformly stable. So, the tracking
error e(t) and the parameter estimation errors AK,(f), AK,(f), and A®O(z) are
uniformly bounded and so are the parameter estimates K.(7), K, (¢), and ©(r). Since
r(t) is bounded and A, is Hurwitz, then x.e¢(¢) and X..¢(¢) are bounded. Hence, the
system state x(7) is uniformly bounded, and the control input u(¢) in (9.48) is
bounded as well. The latter implies that x(¢) is bounded, and thus, é(¢) is bounded.
Furthermore, the second time derivative of V(¢)

V=-=2eQé (9.61)

is bounded, and so V/(¢) is uniformly continuous. Since in addition, V (¢) is lower
bounded and V(¢) < 0, then using Barbalat’s lemma gives lim V(r) = 0. We have
t—00

formally proven that the state tracking error e(#) tends to the origin globally,
uniformly, and asymptotically: lim ||x(t) —x,.ef(t)H = 0. The MIMO command
—00

tracking problem for the system dynamics (9.40) is solved. We now formulate
our obtained results as a theorem.

Theorem 9.2. Given MIMO dynamics (9.40) with a control uncertainty A and a

matched unknown function f (x) from (9.41), the MRAC system (9.48), (9.49), (9.50),

(9.51),(9.52),(9.53),(9.54), (9.55), (9.56), (9.57), (9.58), and (9.59) enforces global

uniform asymptotic tracking performance of the reference model dynamics (9.42),

driven by any bounded time-varying command r(t). Moreover, all signals in the

corresponding closed-loop system remain uniformly bounded in time. [ |
Table 9.3 summarizes the MIMO MRAC design equations.

Example 9.3 MRAC Control of Delta Wing Dynamics at High Angle of Attack A
sketch of an aircraft equipped with a delta wing is shown in Fig. 9.12.

The wing sweeps sharply back from the fuselage with the angle between the
wing leading edge often as high as 80° and the angle between the fuselage and the
trailing edge of the wing at around 90°. Delta wings are known to be unstable,
especially at high angle of attack (the angle between the aircraft velocity vector and
the fuselage centerline). Yet their primary advantage is aerodynamic efficiency in
high-speed flight [10].
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Table 9.3 MIMO MRAC design equations

Open-loop plant ¥=Ax+BA (u+0"d(x))
Reference model Xrof = Avef Xref + Brof 1

Model matching conditions A+BA KZ =A, BA KI,T = By
Tracking error e =X— Xy

Control input u=Kl'x+K'r— 0" d(x)
Algebraic Lyapunov equation PAy+ A,Tef P=-0

MIMO MRAC laws .
K,=-T.x¢'PB

. =—T.r(t)e'PB

=o.

0= To®(x)e'PB

A delta wing aircraft flying at high angle of attack is open-loop unstable in roll.
This instability is called the “wing rock phenomenon.” It is induced by unsteady
aerodynamic effects acting on the delta wing asymmetrically. As a result, the
aircraft undergoes an unstable rocking motion that needs to be actively controlled.

In this example, we consider a delta wing aircraft whose roll dynamics can be
regulated by ailerons — the movable surfaces that are located symmetrically on the
outboard portions of the aircraft left and right wing segments. Moving the left aileron
down (positive deflection) and the right one up (negative deflection) induces the
right-wing-down rolling motion (positive roll rate) of the aircraft. The difference
between the left and right aileron positions is called the “differential aileron.” This is
the primary control input signal for regulating the aircraft roll dynamics.

We shall make use of a generic delta wing rock dynamic model in the form

p=p
p=010+0:p+ (03]0] + 04| pl)p + 05 > + 06 5,

where ¢ is the aircraft roll angle (rad), p is the roll rate (rad/s), and J, is the
differential aileron (control input, rad). The unknown constant parameters are

0, = —0.018, 6, =0.015, 60;=—0.062, 04=0.009, 6s=0.021,
06 = 0.75

Rewriting the model in the form of (9.40) gives
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right aileron —» ?
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Fig. 9.12 Delta wing aircraft
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¥ A x B f(x)=0" d(x)

where the uncertain state-dependent function f(x) is represented by a constant
unknown parameter vector ® and the known regressor vector ®(x):

1
f)=5-(0s 05 05) (elp_Iplp_¢*)"
N B(x)

= —0.0827 || p 4+ 0.012 |p| p + 0.028 ©°

The system control effectiveness A = 6 is assumed to be constant and unknown.
Also unknown are the second row coefficients (01, 0,) in A, as well as the state-
dependent function f(x).

The reference roll dynamics are defined by the second-order transfer function

(pref _ (1)%

Oema 2+ 2Ew, 5+ 02

which represents the desired command-to-response roll angle behavior (using the
Laplace transform). Here, ¢, is the reference roll angle, ¢,  is the commanded
roll angle, and (w,, &) are the desired natural frequency and the damping ratio,
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Fig. 9.13 Open-loop limit cycle for delta wing roll dynamics in Example 9.3

respectively. Let prer = ¢, denote the reference roll rate. In state space form, the
reference roll dynamics can be easily written as

{pref _ 0 1 Pref 0

s - ’ + cm
( Pres ) ( -} —2¢w, Pref w? u
N—— N—— N—— .

r

Xref Arer Xref Byer

Clearly, the matching conditions (9.47) hold. In fact, from

0, 0, 1) 00 T\ —a? —2¢a,
0 0
0 K" =
<1> o (wz)

it follows that the ideal unknown feedback and feedforward gains are

KT:—i(w2+01 250),,4—02) KT:w—g
X 06 n ’ T 06

In this example, we have selected w, = 1, rad/sand ¢ = 0.7. So, the ideal gains
are K, = (—1.3093 —1.8867)" and K, = 1.3333.

One can verify that the open-loop system, with d, = 0, has an unstable equilibrium
at the origin and a limit cycle near ¢ = 35°. The limit cycle attracts all open-loop
system trajectories that start on the inside of its boundary, and it repels all the
trajectories with the initial conditions on the outside (see Fig. 9.13).

We use the design equations from Table 9.3 to construct an MRAC system. The
design “tuning knobs” consist of symmetric positive-definite matrices Q, I'y, I, and
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Fig. 9.14 Closed-loop system tracking performance in Example 9.3
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Fig. 9.15 Tracking error and differential aileron in Example 9.3

parameters K., K,, and ®, respectively. After several iterations, we have selected

the following data:

I'p, with the last three quantities representing adaptation rates for the adaptive
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Figure 9.14 shows the system closed-loop response in tracking a series of step-
input commands, with the initial bank angle set to 10°.

The system tracking error quickly dissipates (Fig. 9.15), while the required
control input (differential aileron position) stays within achievable and reasonable
limits.

It is interesting to observe (see Fig. 9.16) that in this case, the estimated feedback
and feedforward gains (I%X, I€,) converge to their true unknown values.

However, the estimated parameters (93, (94, 95) that correspond to the nonlinear

regressor components have dissimilar tendencies: The first two are quite different
from their ideal counterparts, while the third one does converge to its ideal value
(Fig. 9.17).

Once again, we would like to remark that in general, parameter convergence is
not guaranteed by an MRAC controller (see Theorem 9.2). Only uniform bounded-
ness of all signals in the closed-loop system is certain. In order to emphasize this
point, we encourage the reader to rerun this exact design but with a different bank
angle command profile. For example, choosing ¢_,,;, = 0.1745 sin ¢ will result in all
adaptive parameters being very different from their ideal values, yet the closed-loop
system tracking performance will remain acceptable. O
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Fig. 9.17 Estimated parameters for nonlinear regressor components in Example 9.3

9.6 Summary

Adaptive control was initiated, inspired, and originally motivated by aerospace
applications in the 1950s. The interest in the design of adaptive self-tuning controllers
for practical systems that operate in uncertain environment has never diminished.
The last decade has witnessed many successful demonstrations of adaptive control
technology in aerospace, robotics, auto industry, and bioengineering.

Adaptive controllers have one common goal — to enable a dynamical system to
track external commands while operating in realistic and often uncertain environ-
ment. In this chapter, we have shown how to achieve this goal for a specific class of
multi-input multi-output dynamical systems with matched uncertainties. We have
also demonstrated efficacy of adaptive control through simulation examples such as
(a) helicopter pitch dynamics in hover and (b) wing rock dynamics of a delta wing
at high angle of attack. All simulation data confirmed our theoretical predictions for
MRAC in achieving desired tracking performance and keeping all signals in the
corresponding closed-loop system uniformly bounded in time.

9.7 Exercises

Exercise 9.1. Prove that if some of the diagonal elements /; of the unknown
diagonal matrix A in the system dynamics (9.40) are negative and the signs of all
of them are known, then the adaptive laws
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I%X =-T,xe'PB sgn A
IA.(,. =T, r(t)e'PBsgnA

Fo ®(x)e'PBsgnA (9.62)

solve the MIMO tracking problem, where sgn A = diag [sgn 4y, ..., sgnl,].

Exercise 9.2. Implement and simulate the system from Example 9.1. Test the
MRAC controller (redesign, if needed) in the presence of various uncertainties
and external commands of your choice. Comment on the system tracking perfor-
mance. Discuss adaptive parameter dynamics and convergence of the estimated
parameters to their true values.

Exercise 9.3. Repeat all tasks from Exercise 9.2 for the DI-based MRAC system in
Example 9.2. Compare closed-loop performance of the two controllers, including
their respective control efforts.

Exercise 9.4. Repeat all tasks from Exercise 9.2 for the MRAC controller and the
system in Example 9.3. Find external commands that would cause the adaptive
parameters to (a) converge to their true values, (b) converge to some constant
values, and (c) not have limits. Is there a benefit for the adaptive parameters to
converge to their true values? For all these cases, compare and discuss the system
tracking performance.
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Chapter 10
Model Reference Adaptive Control with Integral
Feedback Connections

10.1 Introduction

We begin by considering a class of MIMO uncertain systems in the form

£()
—
X =Apx, + By A [ u+ O O(x,) (10.1)

where x, € R™ is the system state vector, u € R™ is the control input,
f(x,) =0T ®(x,) €R" (10.2)

is the linear-in-parameter state-dependent matched uncertainty, @ € RV*™ is the
matrix of unknown constant parameters, and (I)(x,,) € RN is the known N-dimen-
sional regressor vector, whose components are locally Lipschitz-continuous
functions of x,. Also, in (10.1), B, € R™™ is constant and known, A, € R™" is
constant and unknown, and A € R™*™ is a constant diagonal unknown matrix with
positive diagonal elements. We assume that the pair (A,,, (B,, A)) is controllable.

The control goal of interest is bounded command tracking, that is, we need to
design u such that the system regulated output

y=Cpx, €R" (10.3)

tracks any bounded possibly time-varying command y.4(f) € R”, with bounded
errors and in the presence of the system uncertainties {A,,, A, @d}, where the
system output matrix C,, is known and constant.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 293
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_10,
© Springer-Verlag London 2013
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Let

ey(t) = y(t) - ycmd(t) (104)

denote the system output tracking error. Augmenting (10.1) with the integrated
output tracking error,

t

ey(t) = Jey(r)dr & (eyl = %) (10.5)

0

yields the extended open-loop dynamics

¥ =Ax+BA(u+f(x))) + Bref Yoma (10.6)

T ) : .
where x = (ef, x;) € R" is the extended system state vector, whose dimension

isn=n,+ m. The extended open-loop system matrices are

0 C 0 —1I
A — mxXm p B — mxm Bre — mxm 10.7
(on,,xm Ap>’ ( B, ) s (0> (10.7)

and

y=(0pxm Cp)x=Cx (10.8)
N—————’

C

represents the extended system controlled output. We will require preservation of
controllability for the extended pair of matrices (A, (BA)) in (10.7). It is not
difficult to show that the extended pair is controllable if and only if the original pair
(Ap, (B,A)) is controllable and det(é’; (1)9,: X[r\n) # 0.

To summarize, we are interested in the state feedback output regulation problem
for a generic class of MIMO uncertain dynamical systems in the form

$=Ax+BA (u+0"®(x,)) + Bref Yoa(t)
y=Cx (10.9)

with known constant matrices A € R"", B € R"", B,y € R, and C € R™"; an
unknown constant diagonal positive-definite matrix A € R™*™; and an unknown
matrix of constant parameters ® € RV,

The control goal is to force the system regulated output y(¢) € R™*! to track any
bounded time-varying reference signal y,,,;(f) € R™*!, with bounded errors and in
the presence of constant parametric uncertainties (A, A, ®). We shall also require
that the rest of the signals in the corresponding closed-loop system remain
uniformly bounded in time.
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10.2 Control Design

We commence with the assumption about the existence of an adaptive solution to
the MIMO command tracking problem of interest.

Assumption 10.1 Model Matching Conditions. Given a reference Hurwitz matrix
A and an unknown positive-definite diagonal constant matrix A, there exists a
constant (possibly unknown) gain matrix K, € R"*", such that

Af =A+BAK! (10.10)

Using (10.10), we can rewrite the open-loop extended system dynamics (10.9) in
the form

X=Agx+BA(u—K x+0O"®(x,)) + B Yoa (10.11)
and then choose
u=K'x— 0" 0(x,) (10.12)

where K, () € R and O(t) € RV*™ are adaptive gains whose dynamics will be
defined later. Substituting (10.12) into (10.11) yields

i=Agx+BA| (K, —K) x— (@ - @) ' ®(x,) | + Bref Yema
— ——
AK, A®
=Appx+BA (AKIx — AO" ®(x,)) + Bref Yoma (10.13)

Based on (10.13), we consider the following reference model:
Xref = A/'ef Xref + Bref Yemdr  Yref = eref (10.14)
It is easy to verify that the transfer function G, (s) from y,,,  to ¥,

g = [C (sluew = Arg) ™ Bug | Yona (10.15)

Gre(5)

has the unity DC gain, where s is the Laplace variable. This feature formally
prescribes the desired output regulation behavior for constant external commands.
We define the state tracking error

e =X — Xpef (10.16)
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and then subtract (10.14) from (10.13) to obtain the tracking error dynamics:
é=Arpe + BA(AK x — AO" O (x,)) (10.17)
We now proceed with the Lyapunov-based approach, eventually leading to the
design of stable adaptive laws and a verifiable closed-loop system tracking perfor-
mance. Toward that end, let us consider a radially unbounded Lyapunov function

candidate

V(e, AK,, A®) = eTP,.efe
+ trace (AKT T, AK A) + trace (A®" T'g' AG@ A) (10.18)

where I', = I >0 and I'g = I'y, > 0 are rates of adaptation and P,,; = Pfef >0is
the unique symmetric positive-definite solution of the algebraic Lyapunov equation

PAos + Al P = —Q (10.19)
with some Q = QT > 0. The time derivative of V, along the trajectories of (10.17), is
Vie, AK,, A®) = —eTQe+2e" PBA (AKT x — A@T(D(xp))
+ 2trace (AKT T 1K, A) + 2 trace (A0 Tg' OA) (10.20)
Applying the vector trace identity (valid for any two co-dimensional vectors a and b),
a’ b = trace(ba") (10.21)
results in
V(e, AK,, A®) = —el Qe+ 2trace (AKXT {F;lléx + xeTPB} A)
+2tace (807 {T'g'© — (x,) ' PB} A) (10.22)
If adaptive laws are selected in the form
Iéx =-T,xe' PB
O =Ted PB (10.23)
then
Ve, AK,, A®) = —el Qe <0 (10.24)

which, in turn, proves uniform ultimate boundedness of (e, AK,, A®).



10.2  Control Design 297

Let L, and L, define the set of all square integrable and bounded functions in a
Euclidean space of interest, respectively.

Relation (10.24) implies that the tracking error signal is square integrable: e € Lj.
Since y.,q € Loo, then X, € Ly, and consequently x € L. Since the ideal
(unknown) parameters (K, ©) are constant and their estimation errors (AK,, A®)

are bounded, then the corresponding estimated values are bounded as well, that is,
(KX, @) € L.

Since all components of the regressor vector (D(xp) are locally Lipschitz-
continuous functions of x, € L., then the regressor components are also bounded.
Hence,u € L, andx € L. Thus, é € L, which implies that Ve L. Therefore, 1%
is a uniformly continuous function of time.

Since V is lower bounded, 1% <0, and Vis uniformly continuous, then V tends to
a limit, while its derivative V tends to zero (Barbalat’s lemma). Consequently, the
tracking error, e, tends to zero asymptotically, as ¢ — co. Moreover, since the
Lyapunov function (10.18) is radially unbounded, then the asymptotic convergence
is global, that is, the closed-loop tracking error dynamics are globally asymptoti-
cally stable.

We have shown that the system state x globally asymptotically tracks the state
X of the reference model, and therefore, the system output y = Cx globally
asymptotically tracks the reference model outputy,,, = C xr. At the same time, the
reference model dynamics are chosen such that y,,. tracks an external bounded
command y,,,, (), with bounded errors. Therefore, y must also track y,,, with
bounded errors. The MIMO command tracking problem is solved.

The equation summary is given in Table 10.1, and the end result is stated in
Theorem 10.1.

Theorem 10.1. Consider the uncertain system dynamics in (10.9), operating under
the MRAC controller (10.12), with the adaptive laws (10.23). Suppose that the
matching condition (10.10) holds. Let the reference model (10.14) be driven by a
bounded external command Yy, (t). Then, for any symmetric positive-definite
matrices (Fx, le, Q,.Ef), all signals in the closed-loop system

¥=Ax+BA (K{x ~ 0" 0(x,) + 0" cD(xp)) + Brof Yoma(t)
):Cref = Aref Xref + Bref ycmd(t)

K, =—- xx(xfxref)TPB
0= I'e (I)(x,,) (x —x,.ff)TPB

(10.25)

are uniformly ultimately bounded in time, where P represents the unique symmetric
positive-definite solution of the algebraic Lyapunov equation (10.19). Moreover, the
tracking error signal e = X — X, 1s uniformly ultimately bounded, square integrable,
and tends to the origin globally and asymptotically, that is, Ilgrolo lle()]] = 0. [ ]

In order to illustrate both usefulness and practicality of MRAC systems with
integral feedback, we shall consider an example.
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Table 10.1 Design summary for MRAC with integral action

Open-loop plant Xy =A,x, +B, A (u + 07 q)(xp))
y=0Cpx,
Integrated output tracking error and extended state by =Y~ Yemar x= (€} A )T
cmd y 14
Open-loop extended plant F=Ax+BA (u+ o’ Q(xp)) + Bref Yoma
y=Cx
Reference model Xrep = Aret Xref + Bref Yomar  Yrep = CXrer
Tracking error e =X — Xpef
Control input w=Klx— o o(x,)
Algebraic Lyapunov equation PA,s +A,TefP =-0
MRAC laws Ié,\- — —FxxeT PB

0= Te (D(x,,) e'PB

Example 10.1 Aircraft Short-Period Dynamics and Control Longitudinal motion
of a conventional aircraft is controlled by engine throttles and elevators (movable
trailing edge tail surfaces, J,). While throttles are the primary inputs for regulating
airspeed, deflecting elevators up or down will change the aircraft pitch rate ¢ = 6
and, as a consequence, its orientation with respect to the horizon (the pitch angle, 6).
At the same time, elevator movements will also affect the aircraft angle of attack «
(the angle between the velocity vector and the fuselage longitudinal axis x).
Figure 10.1 shows an aircraft sketch, with all the relevant degrees of freedom.

Coupled relations between o and ¢, driven by the elevator deflection ., constitute
the aircraft short-period dynamics. Assuming fixed throttle setting and constant
airspeed, the aircraft short-period dynamics can be approximated by a second-order
differential equation in the form

=V 4 v Al o 10.26
<Q> (Ma M, ) <Q>+<Ma e H 1) (1020
N ———— N N u

Xp Ap Xp B,

where « (rad) is the aircraft angle of attack, ¢ (rad/s) is the pitch rate, V (ft/s) is the
true airspeed (assumed constant), J, (rad) is the elevator deflection (the control
input), and (Z,, Z,, Zs, My, M,, Mj) are the aircraft stability derivatives [1, 2].
In (10.26), A > Orepresents a loss-of-control effectiveness, and f (x,,) is the matched
uncertainty in the system dynamics.
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Fig. 10.1 Aircraft short-period motion in Example 10.1

We make use of generic transport aircraft (DC-8) cruise data from [1, p.712] to
populate the short-period model

4 (08060 1.0 5 _ (004
=\ —9.1486 —459 ) "=\ —459

and define the aircraft angle of attack o to be the system regulated output:

The open-loop system has its eigenvalues in the left half plane. So, the short-
period dynamics are open-loop stable (w, = 3.58 rad/s, { = 0.753).

This model is augmented with the integrated output (angle of attack) tracking
error. The extended open-loop matrices are

0o 1 0 0 -1
A=[0 —08060 1 |, B=[-004]), By=| 0|, c=(0 1 0)
0 —9.1486 —4.59 —4.59 0

Assuming that these linear data are known, our next step is to construct a suitable
reference model. We can use a linear control design technique to accomplish this
task. Such an approach would allow us to automatically satisfy the required
matching conditions (10.10) and at the same time to construct a reference model
with the desired transient characteristics. We choose the linear quadratic regulator
(LQR) method [3] as our baseline control design tool. Since the open-loop dynam-
ics are already stable and sufficiently fast, we pick LQR weight matrices

—_

0 0 0
QLQR == 0 0 0 B RLQR == 1
0 0 O
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Fig. 10.2 Closed-loop baseline (no uncertainties) tracking performance in Example 10.1

and arrive at the desired reference model, which represents the baseline closed-loop
short-period dynamics

0 1 0
Ag =A+B(3.1623 1.1016 0.2152) = —0.1328 —0.8522  0.9910
—14.5149 —-14.2048 —5.5779

T
7KLQR

achieved via the LQR control feedback:
Uror = _KZQRX

The reference model natural frequency and damping are quite close to those of
the open-loop (a)n Lor = 3.57 rad/s, {;or = 0.734). The integrator pole represents
the closed-loop system dominant eigenvalue. The pole is placed at . = —1.1873 to
enable adequate tracking performance with a reasonable control (elevator deflec-
tion) effort (see Fig. 10.2).

In this case, the reference and the actual system responses coincide with each
other. This is to be expected since the system is simulated without uncertainties.

Next, we introduce linear state-dependent uncertainties into the system
dynamics

f(xp) :f(aa Q) = kaa+qu

and choose A =05, k,=15M,, and k; =0.5M,. Our particular selection
corresponds to simultaneous changes in (a) the control effectiveness Ms, (b) the
static stability M, , and (c) the pitch damping M, . These uncertainties are
intentionally chosen to destabilize the LQR closed-loop short-period open-loop
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dynamics. In fact, with these uncertainties, the perturbed open-loop dynamics
become

XxX=Ax+BA (u—|—k“ot —|—qu) =Arx+BA (u+A71KZQRx+kaoc+qu)
and so, the ideal unknown controller gains are
T
Ky ideal = — (A“ Klpe+ (0 kK, )) — (63246 159261 2.7254)"
In other words, if we knew the uncertainties, then the linear feedback
Uideal = KZideal'x

would have enforced the desired reference dynamics.

The next step is to design a MRAC system in order to recover the desired closed-
loop performance, without any information about the parametric uncertainties.
Since f (x,,) is linear in x), only the adaptive gains K, are required. Here, the design

“tuning knobs” consist of two symmetric positive definite (3 x 3) —matrices Q and
I',. After several iterations, we have selected

100 O 0 2000 O 0
0= 0 100 0 |, I.,= 0 2000 O
0 0 100 0 0 200

Our iterative design focus was on reducing unwanted transient oscillations,
while providing adequate command tracking performance. Utilizing MRAC design
equations from Table 10.1 and with the uncertainties turned on, the corresponding
simulated closed-loop system tracking performance data are shown below
(Fig. 10.3).

Clearly, the MRAC design is able to recover the baseline closed-loop dynamics.
However, the control effort is significantly larger than before, and the uncertainties
are the driving factor. Dynamics of the corresponding adaptive gains are shown in
Fig. 10.4.

The three gains approach their ideal values. This is a “bonus,” since parameter
convergence is not guaranteed by the MRAC design.

In order to demonstrate good tracking without parameter convergence, we select
Yema = sin(0.1¢) and simulate the closed-loop system without any other changes.
As expected, the output tracking performance remains of good quality (Fig. 10.5).

On the other hand, the adaptive gains are different from the ideal values K jjeq
that are defined by the corresponding matching conditions (Fig. 10.6).
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Fig. 10.3 Closed-loop performance recovery under MRAC system in Example 10.1
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Fig. 10.4 Evolution of adaptive gains in Example 10.1

Parameter convergence in adaptive control depends on the persistency of exci-
tation (PE) conditions [4, 5]. Basically, the external command needs to “persistently
excite” the closed-loop system dynamics. For linear dynamical systems with linear-
in-parameter uncertainties (such as those considered in this example), the PE
conditions are satisfied if the system external command is chosen as a sum of
sinusoids with different frequencies. Then, a single frequency would give exponen-
tial convergence of two adaptive gains to their corresponding unknown constant
ideal values. For nonlinear systems, this rule no longer holds and the generic PE
conditions are hard to verify numerically. O
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Fig. 10.5 Output tracking of a sinusoidal command in Example 10.1
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Fig. 10.6 Evolution of adaptive gains during tracking of a sinusoid in Example 10.1

10.3 MRAC Augmentation of an Optimal Baseline Controller

The adaptive design developed in the previous section can be modified to augment a
baseline linear controller with the (Proportional + Integral) (PI) feedback architec-
ture. The rational for using an augmentation approach (as oppose to all adaptive)
stems from the fact that in most realistic applications, a system may already have a
baseline controller, which often is designed to contain proportional as well as integral
feedback connections. Such a baseline controller would have been intended to
operate under nominal conditions (no uncertainties), where it would asymptotically



304 10 Model Reference Adaptive Control with Integral Feedback Connections

reject constant unknown disturbances and track constant commands with zero errors.
If adding uncertainties destroys the expected baseline closed-loop performance, then
one might attempt to recover the desired performance by augmenting the baseline
controller with an adaptive element.

We consider the same class of n-dimensional MIMO nonlinear systems with
m controls (as defined in (10.1)), whose plant dynamics are linearly parameterized,
the uncertainties satisfy matching conditions, and the system state is measurable
(i.e., available online for control synthesis). The system dynamics are

% =Apx, + By A (u+f(x,)) (10.27)

where n, and m are the dimensions of the system state x, and of the control u,
respectively. Also, we assume that A, € R"*" and B, € R"*" are known, while
A € R™is an unknown diagonal matrix with strictly positive diagonal elements .
The pair (AP7 (Bp A)) is presumed controllable, and the constant uncertainty A is
introduced to model possible imperfections in the system control channels.

The unknown nonlinear function f (xp) : R — R™ represents the system
matched uncertainty. It is assumed that this function can be written as a linear
combination of N known basis functions, with unknown constant coefficients:

f(x,) =0"d(x,) (10.28)

In (10.28), ® € RN*™ is the unknown constant matrix of ideal parameters, and
(I)(xp) € R" represents the known locally Lipschitz-continuous regressor vector.
Thus, we consider a generic class of MIMO systems in the form

Xy =Apx, + B, A (u+ 0" D(x,)) (10.29)
with the regulated output
y=Cpx, +Dp A (u+ 0" ®(x,)) (10.30)
where C, € R™*" and D, € R"*™ are known and constant.
Let y,,,4(f) € R™ denote a bounded command for the system output y € R” to
follow. This task is to be accomplished using the system control input u# € R™, in

the form of a full state feedback.
We define the output tracking error

ey(1) = ¥(1) = Yema 1) (10.31)
its integral e,

éy[ =€ =Y Yemd (1032)
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and formulate the extended open-loop dynamics

éyl _ 0m><m Cp eyl Dp _[m><m
(x,,) _<0,Wm a ) o) s A(utf (%)) + O ) Yemd (10.33)
—— ——— " = N——
X A X B By
or, equivalently,

F=Ax+BA(u+0"®(x,)) + Bref Yoma (10.34)

In terms of (10.34), the system regulated output y in (10.30) can be written as

y=(0Cp) (eﬂ> + D, Au+O"®(x,))u=Cx+DA(u+O"®(x,))u (10.35)
~— \ Ap ~—
c = D

X

The control problem of interest is bounded tracking in the presence of the system
constant parametric uncertainties A and ®. Specifically, we need to design the
control input u, so that the system regulated output y tracks any bounded time-
varying commandy,,,,, with bounded tracking errors, while the rest of the signals in
the corresponding closed-loop dynamics remain bounded.

We begin with the design of a baseline linear controller. Setting A = I,
® = Oyxpy in (10.34), results in the linear baseline open-loop dynamics:

X=Ax+Bu-+ B Yona
y=Cx+Du (10.36)

Assuming constant command Yy,,,,;, we can use the linear quadratic regulator
(LQR) method, with Proportional + Integral (PI) feedback connections, to design
the baseline LQ optimal control law, in the form of an LQR PI servomechanism.
This design is outlined below.

We first calculate the optimal stabilizing controller for

z=Az+Bv (10.37)
where
zx(e?’>, V=i (10.38)
.Xp

and the control input v is designed to minimize the linear quadratic cost index

(ZTQ z+ VR v) dt (10.39)

=~

<

~—

Il
ocw— 9
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with the appropriately selected symmetric positive-definite matrices Q and R. It is
well-known that the corresponding optimal LQR solution is given in feedback form

V:L.t:—R_lBTPZ:—(K[ KP>(?[> (1040)

P
KT

In (10.40), P is the unique symmetric positive-definite solution of the algebraic
Riccati equation

ATP+PA+Q—-PBR 'B'P=0 (10.41)

which is solved using an appropriately chosen Q = Q7 > 0. Integrating (10.40)
yields the baseline LQR PI controller

Vema =)
S

up = —K'x = —K; ey — Kpx =K —Kpx, (10.42)

where the optimal gain matrix
K'=(K; Kp) (10.43)

is partitioned into the integral gain K; and the proportional gain Kp. The
corresponding baseline LQR PI control block diagram is shown in Fig. 10.7.

In the presence of the system uncertainties A and ®, the baseline tracking
performance will often deteriorate. In order to restore the expected baseline behav-
ior, we augment the baseline system with an adaptive element. This process consists
of (a) the reference model definition, (b) the tracking dynamics formulation, and (c)
the design of adaptive laws.

First, we define the reference model to represent the baseline closed-loop system
dynamics, which are obtained by substituting the baseline controller (10.42) into
the linear system (10.36). The resulting reference model dynamics become

xref = Aref Xref + B/‘ef Yemds  Vref = Cref Xref (10.44)
where
A =A—BK!, C,s=C—DK' (10.45)
and A, is Hurwitz by design.

Then, we synthesize the total control input as the sum of the baseline LQR PI
component (10.42) and its adaptive augmentation u,y (to be constructed):
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Fig. 10.7 Baseline servomechanism LQR PI control block diagram

u=—K"'xVtgq = tp + taq (10.46)
N——

Upl

Substituting (10.46) into the original system dynamics (10.34) gives
Ky

——
X = A,.gfx + BA Ugd + (Imxm - A_l) Up] + @T (D(xp) + B"efycmd

@T (Tﬂ(u;,/,x,,)
3= Cropx+ DA (e + 0" Dy, 3,) ) (10.47)
Or, equivalently,

&= A x +BA (ttaq + 0" ®(upr, %)) + Bref Yoma
Y= Crep X+ DA (g + O" ®(up, x,)) (10.48)

with the redefined regressor vector
D (up, ) = (uf, " (x,))" (10.49)
and with the extended matrix of unknown/ideal parameters:
0= (kT o) (10.50)

The adaptive component u,, is chosen to dominate the system matched uncer-
tainty ©" @ (up, x,)

tag = —O" B(uy, x,) (1051)

where © € RUN)*m is the matrix of adaptive parameters. Substituting (10.51) into
(10.48) results in
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N N\NT _
i=Agx—BA (@ - @) ® + Byef Vo

W
AO
y=Crx—DAAO" @ (10.52)
where
AO=0-6 (10.53)

is the matrix of parameter estimation errors. We now introduce the state tracking
error

€ =X — Xpef (10.54)

and calculate the tracking error dynamics by subtracting the reference system
dynamics (10.44) from the extended open-loop system dynamics (10.52):

é=Ae—BAANO'D (10.55)
In order to design MRAC laws and at the same time enforce closed-loop stability

of the error dynamics, we consider a radially unbounded quadratic Lyapunov
function candidate such as

V(e, A®) = e’ P,y e + trace (A@T ;' A® A) (10.56)

where elements of I'g = l"g > O represent rates of adaptation and P,,; = P,Tgf >01is
the unique symmetric positive-definite solution of the algebraic Lyapunov equation

A,TefPref + PrefAref = _Q]'gf (10.57)

with some appropriately chosen matrix Q,,; = QZ;f- > 0. Time-differentiating V,
along the trajectories of (10.55), gives

V(e,A®)=—¢"Q,,,e—2¢" P,y BAA®" ®+2trace <A®TF®1 (f)A) (10.58)
Applying the vector trace identity

a'b=trace(ba") (10.59)

further yields
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V(e, A®) = —¢' Q,,r e + 2trace (A(:)T {r®1 O-—d P,ffB} A) (10.60)
If adaptive laws are selected in the form

© = T ®(up, ) € Proy B, (10.61)
then
Ve, A®) =—¢"Q,,,e<0 (10.62)

which immediately proves uniform ultimate boundedness of (e, A®).

Moreover, it follows from (10.62) that the tracking error signal is square
integrable, e € L,. Since y,,; € L, then X, € L, and consequently, x € Ly
and (ubh x,,) € L. Since the ideal (unknown) matrix of parameters ® is constant
and the estimation errors A® are bounded, then their estimated values are bounded
as well, that is, ® € L. Since components of the regressor vector ®(uy, x,) are
locally Lipschitz continuous, and (uhl, x,,) € L, then the regressor components are
bounded. Hence, u € L, and X € L. Thus, é € L, which implies that V € L.
Therefore, V is a uniformly continuous function of time. Since V is lower bounded,
1% <0, and Vis uniformly continuous, then V tends to a limit, while its derivative
V tends to zero (see Barbalat’s lemma, Chap. 8). Consequently, the tracking error
e tends to zero asymptotically, as t — oo.

Moreover, since the Lyapunov function (10.56) is radially unbounded, then the
asymptotic convergence is global, that is, the closed-loop tracking error dynamics
(10.55) are globally asymptotically stable.

Using the error dynamics (10.55), it is easy to check that é € L. Then, é(z) is
uniformly continuous. Since in addition () tends to zero, then using Barbalat’s

lemma, we conclude that ,ILTO |lé(z)|| = 0. Consequently,
lim |AG" (1) ®(up (1), x(1))|| =0 (10.63)
and
y=Cx—DA (A" ®) — Cror x = Cref Xoef = Y, (10.64)
i

We have proven that for any bounded command y,,,;, the closed-loop system
output from (10.52) globally asymptotically tracks the reference model output from
(10.44), as t — co. At the same time, the reference model dynamics (10.44) are
chosen such that y,, tracks any external bounded command y,.,,(#), with bounded
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errors. Therefore, y must also track y,,,; with bounded errors. The MIMO command
tracking problem is solved.

The adaptive laws (10.61) can be written in terms of the system original
parameters. Partition

o Fu Onxm
Ty = ( O T ) (10.65)

where (I',, T'g) denote rates of adaptation for uncertainties that correspond to x and
®(x,). Using (10.49), (10.50), and (10.65), the adaptive laws (10.61) become

[eu = Fu Up| eT P"‘ffB

©=To®(x,) e PyB (10.66)

Also, the (LQR PI Baseline + Adaptive) total control input (10.46) is

U= iy + g = + [~RT uy — O7 D (x,)] (10.67)

up=Baseline

uqsq=Adaptive Augmentation

or, equivalently,
u= (Imxm — Ii{)uhl — @T(I)(x,,) = —(Imxm — Igg)fo — (:)T(I)(XI,)

u

= (Lym — KT) <K1 w —Kp x,,) — 0" d(x,) (10.68)

Table 10.2 summarizes the developed adaptive augmentation procedure of a
LQR PI baseline controller.

By design, this controller does not have a feedforward component. Also, note
that in the adaptive laws (10.66), the parameter initial values are arbitrary, and as
such, they can be set to zero. The following flight control design example illustrates
the developed methodology.

Example 10.2 Adaptive Augmentation Design for DC-8 Short-Period Dynamics In
Example 10.1, we designed a baseline optimal (LQR PI) controller for regulating
short-period dynamics of the DC-8 transport aircraft. Our reference model was
selected to represent the closed-loop system that was achieved under the baseline
controller. Matched uncertainties were introduced to destabilize the baseline sys-
tem. After that, we constructed an MRAC controller to recover the desired refer-
ence closed-loop performance, with the uncertainties turned on.

We now take a different approach. Instead of using an all-adaptive control
solution, we demonstrate how to achieve the same closed-loop performance recov-
ery by utilizing an adaptive augmentation design from Table 10.2. Such an
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Table 10.2 MRAC augmentation of a LQR PI baseline system

Open-loop plant S =Apxy + By A (u+ e'o O(x,))
y=GCox, + D, A ( +0'o D(x,))
Integrated output tracking error and extended state by =Y = Yomar X = ( )
Open-loop extended plant ¥=Ax+BA (u+ ®T O (x, )) + Brof Yoma
y—Cx+DA(u+®T ( ))
Reference model Xref = Aref Xref + Bref Yema
Yref = Cref Xref
Tracking error € =X — Xpef
Riccati equation for LQR PI controller ATP+PA—PBR'B"P+0Q=0
Baseline control input uy = —R"'PBx
Lyapunov equation for adaptive laws PrefArer + A,TefP, of = —Oher
Total control input u= (Inx — K! ™ uy — e’ O (x,)
MRAC laws Iéu =T, uye me B

(:) =Te CD(xp) e’ P,y B

Table 10.3 Adaptive augmentation parameters for DC-8 short-period dynamics in Example 10.2

Q matrix for adaptive laws Q,,s = diag(100, 100, 100)
Rates of adaptation I'y,=Te =800
Regressor vector D(x,) = (a2 ¢q)"

approach would allow us to retain the baseline controller, instead of performing a
complete redesign of the system.

After a few design iterations, we have selected appropriate values for adaptive
tuning “knobs” (Table 10.3).

Using the design equations form Table 10.2, the system closed-loop dynamics
are simulated with the uncertainties from Example 10.1. Figure 10.8 shows the
results.

In comparison to the all-adaptive solution (see Fig. 10.3), the adaptive augmen-
tation design also yields adequate tracking performance and a similar to the
previous case control activity. There are also three adaptive gains, whose dynamics
along with their corresponding ideal (unknown) values are shown below (Fig. 10.9).

Notwithstanding parameter convergence, the adaptive gains are well-behaved
and remain bounded throughout the maneuver, as predicted by the theory. O

Let us now elaborate on the usefulness of an augmentation-based control design
approach. In control engineering applications, a control designer is often faced with
a preexisting controller, which constitutes and provides the baseline (i.e., expected)
closed-loop tracking performance. Because of that, the control task at hand is to
enhance the baseline system performance instead of replacing it with yet another
system. Our adaptive augmentation procedure aims exactly at solving this particu-
lar task. Using control-theoretic arguments, we have developed a (Baseline +
Adaptive) control system, capable of restoring the desired tracking characteristics
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Fig. 10.8 Tracking performance and control effort in Example 10.2

2
— ideal
0 A\ T i ey !: ;stimatedl—
1
0 20 40 60 80 100 120 140

u

g

<
T

=
1~7

Theta 4
&

20 40 60 80 100 120 140

Theta ,
&

0 20 40 60 80 100 120 140
Time, sec

Fig. 10.9 Adaptive gains in Example 10.2

when matched uncertainties are prevalent in the system dynamics. Without the
uncertainties, the system resorts to the baseline controller, while its adaptive
component becomes inactive.

The overall (Baseline + Adaptive) control block diagram is shown in
Fig. 10.10.

The red-dotted line in the figure denotes the adaptive nature of the gains K, and
O, whose dynamics are driven by the tracking error e = x — x,,r, and according to
the adaptive laws (10.66), where x is the state of the extended system (10.33). Per
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Fig. 10.10 Block diagram: adaptive augmentation of a baseline PI controller

design, the (Baseline + Adaptive) controller will force the system output y asymp-
totically track the reference model output y,,;, in spite of the matched uncertainties
f (xp) =7 (I)(xp) and the unknown control gain A.

We have constructed the reference model to represent the desired closed-loop
system operating under the baseline PI controller:

Uy = _KP-Xp _ KI (y _:cmd)

If there are no uncertainties and if the adaptive gains are initialized at zero, the
tracking error will vanish asymptotically. Consequently, the adaptive gains will be
constant and small. Then, the adaptive component

Ugd = —[&Z Up — (:)T (D(xp)

will become small as well, and as a result, the system will operate mostly under the
baseline controller.

In the presence of uncertainties, the adaptive component becomes active, and it
will provide an incremental signal (augmentation) to the baseline PI controller. In
other words, anytime when the tracking error is sufficiently large, the total control
signal is

U = Up + Uaq

which represents the (Baseline + Adaptive) architecture shown in Fig. 10.10.

It is interesting to note that if the system uncertainties fade away after being
active, the adaptive gains will “freeze” and their values will remain constant until
the tracking error becomes nonzero again. However, the adaptive component will
not be necessarily zero. In fact, the adaptive signal u,; becomes representative of a
nonlinear controller with fixed gains, and as such, it will continue to add nonzero
values to the baseline controller uy,.
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10.4 Summary

We have demonstrated how to embed fixed gain linear integral controllers into
MRAC design. This leads to adaptive systems with integral action and provides a
capability of tracking time-varying bounded commands without feedforward
connections. We have also illustrated the design steps and its associated benefits
using short-period dynamics of a generic transport aircraft.

In essence, we have offered a design procedure to combine a baseline linear
(Proportional + Integral) controller with an MRAC system. The specific MRAC
augmentation method discussed in this chapter allows a designer to merge a linear
baseline system with an adaptive controller yet without “canceling” the former.
Such an architecture is relevant in industrial applications where stability, perfor-
mance, and robustness of preexisting baseline controllers can be enhanced through
direct adaptation. This would result in the preservation and a recovery of the system
baseline closed-loop performance, while operating in the presence of significant
uncertainties that may exist in the process dynamics.

10.5 Exercises

Exercise 10.1. Verify that the transfer function G, (s) = C (s Lisn — A,Aef)_l Byt
in (10.15) and (10.44) have the unity DC gain, that is, G, (0) = fCA’lBrff =

ref
IIﬂ Xm+
Exercise 10.2. Table 10.2 presents an adaptive augmentation design. Show that an
alternative way to construct an adaptive augmentation of a baseline linear controller
up = —K; fx is to start with the adaptive controller (10.12), and then, initialize the
adaptive gain K, from (10.23) such that kx(O) =K,.

Exercise 10.3. Prove (10.63).

Exercise 10.4. For the delta wing dynamics from Example 9.3, assume that A and
B matrices are known. The system uncertainties are represented by A andf(x). The
system regulated output is the bank angle ¢. Design a baseline LQR PI controller
up;, and then, augment it with an MRAC signal u,4, via equations from Table 10.2.
Use Table 10.1 to design a pure adaptive controller, and initialize its adaptive
state gains at their corresponding baseline (LQR PI) values. Simulate both
controllers. Compare and discuss their tracking performance and the associated
control efforts.
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Chapter 11
Robust Adaptive Control

11.1 MRAC Design in the Presence of Bounded Disturbances

Our starting point is the MIMO dynamical system
X =Anpx+BA (u+ O  Ox)) + Bref Yoy + E(1) (11.1)
whose regulated output is
y=Crfx (11.2)

The system is operating in the presence of a uniformly bounded time-dependent
disturbance &(r) € R",

1E@)]] < Emax (11.3)

with its known and constant upper bound &, > 0. The system matched uncertainties
are represented by a diagonal positive-definite matrix A € R™™ and a constant
matrix ® € RV*™. We assume that the constant matrices (A,Pf, B, By, C,.Ef) are
known, the pair (A,.gf, B A) is controllable, and A, is Hurwitz.

The control objective is to design a state feedback MRAC system to enable
bounded tracking of the reference model dynamics

xref = Ar()f Xref + Bref Yemd
Yreg = Cref Xre (11.4)

with the output y,,.. The reference model is driven by a bounded time-dependent
command Y., € R", and the control goal consists of finding a state feedback
controller u to force the system outputy track a commandy,,,;, in the presence of the
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system parametric uncertainties and while keeping the rest of the signals uniformly
bounded in time.
Based on (11.1), we choose the control input to be

u=-0 o) (11.5)

where ® € RV is the matrix of adaptive parameters to be determined at a later
time. Substituting (11.5) into (11.1) gives

X = Apr X — BAAOT ®(x) + Bof Yopa + E(2) (11.6)

where

A®=0-0 (1L.7)
is the matrix of the parameter estimation errors. Let
€ =X— Xpef (11.8)

be the state tracking error. Subtracting the reference model dynamics (11.4) from
that of the system (11.1) yields the tracking error dynamics:

é=Anre—BAAOT D(x) + (1) (11.9)

A radially unbounded quadratic Lyapunov function candidate is selected in the
familiar form

V(e, A®) =e" Pe+trace(A®" T'y' A® A) (11.10)

where I'g = I'f) > 0 denotes constant rates of adaptation and P = P” > 0 is the
unique symmetric positive-definite solution of the algebraic Lyapunov equation

PArs +AlyP = -0 (11.11)
with Q = Q7 > 0. Time-differentiating V, along the trajectories of (11.9), gives

Vie, A®) = —¢" Qe
—2¢T PBAAGT O(x) +2¢7 PE(r) + 2trace (AOT Tg! (5)/\) (11.12)

Applying the vector trace identity

a'b= trace(baT) (11.13)



11.2  MRAC Design Modifications for Robustness 319

further yields
V(e, A®)=—e¢’ Qe+ 2trace (A@T{Fg)‘ (i)—cDeTPB}A) 12TPE() (11.14)
Suppose that we use the same adaptive laws as in the previous sections, that is,
O =T d(x) ' PB (11.15)
Then,
Vie,A®)=—e" Qe+2e" PE(1) < —min(Q) |le]|* +2]le]| Amax (P) Emax ~ (11.16)

and, consequently, V < 0 outside of the set

lmax P .
Eo— {(e, A®):  [le] <2 imm((Q; g eo} (11.17)

According to [1, Theorem 4.18, p. 172], trajectories e(¢) of the error dynamics
(11.9) enter a compact set (Qy D Ep) C R"in finite time and will remain there for all
future times. However, g is not compact in the (e, A®)space. In fact, Qq is
unbounded since the parameter estimation errors A® are not restricted at all.
Therefore, inside €, V can become positive, and, as a consequence, the parameter
errors A® can grow unbounded, even though the tracking error norm remains finite
at all times. This phenomenon is known as the “parameter drift.” It is caused by the
disturbance term &(¢). This argument shows that the MRAC laws (11.15) are not
robust to bounded disturbances, no matter how small the latter are.

11.2 MRAC Design Modifications for Robustness

In this section, we introduce three design modifications to enforce robustness of
MRAC laws in the presence of unmatched disturbances, such as bounded process
noise. These modifications are (1) the dead zone, (2) the e-modification, and (3) the
o-modification.

11.2.1 The Dead-Zone Modification

In order to enforce robustness, we consider adaptive laws with the dead-zone
modification:

@:

H {F@(D(x) e"PB, if |le| > e
0N><m> if ||€|| S €0

(11.18)
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Proposed by B.B. Peterson and K.S Narendra in [2], the dead-zone modification
stops the adaptation process when the norm of the tracking error becomes smaller
than the prescribed value ey. This assures uniform ultimate boundedness (UUB) of
A® (in addition to UUB of ¢). We are going to formally prove this claim.

Suppose that ||e]| > e, then the adaptive law is defined by (11.15), and it results
in the upper bound (11.16). Consequently, e(#) enters Qg in finite time 7 and will
reside within the set for all 7 > T'. From that time forward, the adaptive parameter
dynamics are frozen, that is, @ (¢ + T) = Oyx,,. This proves UUB of the error
dynamics (11.9), and it also proves boundedness (but not necessarily UUB) of the
adaptive parameter estimation errors, ||A®(7)||<oco, uniformly in time. Joman (P)

The tracking error bound eq in (11.17) depends on the eigenvalue ratio }méx )

It is not too difficult to show (see [3], pp. 92-93) that the minimum of this ratio is
achieved for Q =1I,4, . Thus, the computable tracking error upper bound is
proportional to 2 Amax(P) max, Where P = PT >0 is the unique solution of the
Lyapunov equation P A, s + ArTef P = —1,.,. However, even when the disturbance
vanishes, with the dead-zone modification being active, asymptotic stability of the
tracking error cannot be recovered.

The dead-zone modification is not Lipschitz, and as such, it may cause chattering
(high-frequency oscillations) and other undesirable effects, especially when the
tracking error is at or near the dead-zone boundary. A smooth version of the dead-
zone modification was introduced by Slotine and Coetsee in [4]. Motivated by this
idea, we choose a constant 0 < 6 < 1 and consider a Lipschitz-continuous modula-
tion function in the form

, —5
w(llell) :max(o, mm(l, |(|613H—75;:(?)) (11.19)

A sketch of this function is shown in Fig. 11.1.
Adaptive laws with the continuous dead-zone modification are defined as

O = To®(x) ul|le|)) ¢ PB (11.20)

With these laws of adaptation, one can use Lyapunov-based arguments to prove
bounded tracking and UUB of all signals [2].

Example 11.1 MRAC with the Dead-Zone Modification for Aircraft Roll Dynamics
We shall illustrate an MRAC design with the dead-zone modification using the
aircraft roll dynamics (a scalar system from Example 10.1)

p= Lpp +L5a 0a + é(t)

subjected to a bounded environmental disturbance £(r), which in this case may
represent the rotational component of a gust. Also, in the model, p is the aircraft roll
rate (rad/s), d, is the differential aileron deflection (rad), L, is the aerodynamic roll
damping (s, and L;, is the aileron effectiveness (s™H.
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Fig. 11.1 The dead-zone
modulation function (||e||)

» =
>

>e]
0 deg e

For a midsize airplane cruising at high altitude, typical values of the aerodynamic
parameters are L, = —0.8, Ls, = 1.6. These are the two constant unknowns in the
system. The goal is to design an MRAC state feedback—feedforward controller
with the dead-zone modification and to enable bounded tracking of the reference
model

pref = A"é’f pref + Bré’f Pemad

which is subsequently driven by a bounded roll rate command p,,,;(?).
The roll dynamics can be easily rewritten in the form of (11.1):

. L, — A, By
p :Ar(’fp =+ B , Lﬁg 5“ ,+ <pwa> p— L]ff Dema +B"€’fpcmd + é(t)

L A>o u -

cy P, Pema)

1 .
where @ = I (L, — Aer — Byer ) is the vector of unknown constant parameters

(o

and ® = (p  p,.q) is the known regressor vector, which depends on the system
state p and the external command p,,,,;. This model differs from (11.1) where the
regressor is a state-dependent function. Even so, it is not difficult to repeat
Lyapunov-based stability arguments and show that the same adaptive laws
(11.18) apply, with the state- and command-dependent regressor vector ® = @
(.Xf, ycmd)'

Therefore, according to (11.5) and (11.18), the MRAC roll rate tracking control-
ler computes differential aileron deflections in the form

0 = — pP — kpm:d Pema

where @T = (lgp kp.,.. ) are the adaptive gains, whose dynamics are specified by

the adaptive laws shown below, with the discontinuous dead-zone modification:
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Fig. 11.2 Step-input roll rate tracking without the dead-zone modification in Example 11.1

/.g = “/,,p (p _pref)a lf ‘p —Pref’ > ()
p 0, if |p —p],ef| < ep
Pemd 0, if |p —pmf| < ep

For simulation, we have selected the following parameters:
A/‘ef = _Brzf = -2, Yo = Vooa — 100

The rotational gust component £(z) was modeled as a random process noise,
uniformly distributed on the interval & [—10 10].

For a step-input roll rate command of 10°/s and without the dead-zone modifi-
cation, that is, setting ey = 0, the system closed-loop tracking performance and the
MRAC control effort (the aileron deflection) are adequate (Fig. 11.2).

As expected, the norm of the system tracking error is not zero and it is primarily
driven by the process noise &(¢). However, the adaptive parameters exhibit the
undesirable drift phenomenon (Fig. 11.3).

Rerunning the same case but with the dead-zone tolerance ey = 0.0524, we
maintain good tracking performance (Fig. 11.4).

At the same time, the dead-zone modification prevents the adaptive parameters
from drifting (Fig. 11.5).

As seen from Fig. 11.5, the adaptive parameters tend to their ideal unknown
values. This can be attributed to an apparent level of persistency of excitation in the
system dynamics, which is induced by the process noise. O
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Fig. 11.3 Parameter drift without the dead-zone modification in Example 11.1
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Fig. 11.4 Step-input roll rate tracking with the dead-zone modification in Example 11.1

11.2.2 The o-Modification

Earlier, we have assumed prior knowledge of an upper bound &, for the system
disturbance &(¢r) . The o -modification scheme, developed by Ioannou and
Kokotovic [5, 8], does not require any prior information on the system distur-
bance upper bounds. The adaptive law with the o-modification is
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Fig. 11.5 Adaptive parameters with the dead-zone modification in Example 11.1
0=To ((I)(x) eTPB—o@) (11.21)

where ¢ is a strictly positive constant. In essence, this modification adds damping to
the ideal adaptive law (11.15).

In order to prove UUB of all signals, we again consider the Lyapunov function
candidate (11.10) and compute its time derivative along the trajectories of the
tracking error dynamics (11.9):

V(e, A®) = —eTQe+2trace(A®T {Fél @ — CDeTPB}A> +2e" PE(r)

= —¢"Qe—20trace| A®T O A| +2e"PE®W)

0+AO
=—¢" Qe —20trace(A®" A®OA) — 2o trace (A" O A) +2¢" PE(1)
(11.22)
By definition,
N m
trace(A®" A@ A) = > " AOF Ai; > || AO|[} Amin (11.23)
=1 j=1

where |A@®|;= E E A®2 is the Frobenius norm of A® and Ay, is the minimum
i=1j=1
diagonal element of A. Moreover, using the Schwarz inequality gives
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irace (A® © A)| < [[AOT ©||, [All; < [|A® O] A, (11.24)
Substituting (11.23) and (11.24) into (11.22) results in

V(e, A®) < —/min(Q) He”z + 2 [ e]| Zmax (P) Emax
20 |AOI Ama + 26 AO], O] Al (11.25)

Using 2ab < a® + b? for any a and b, we write
V(e, A®) < —/umin(Q) |le]|* +2le]| max (P) Emax
~20/[A® 1} Anin+0 (|AO]F + O} ) Al
= —Jumin(Q) llel* + 2 le|| Zmax (P) Emax — 7 | AO|7 (2 Ammin + || Al ) + || O[5 | All

(11.26)
Hence, V(e, A®)<O0 if

2 ;Lmax(P) émax) 0||®||127||A||F

ell” —2|le — - >0 (11.27)
el = 21 (P50 ookt
_— —-—
cy e
or, equivalently, when
IOz 1Al

1A@ |} > = = e,

(2 Amin + 1Al ) (11.28)

imax(P) Emax _

In other words, V<0 outside of the compact (closed and bounded) set Q C
(R" x RN*™) defined below:

Q@ ={(e, 40): [lell <1+ T T ea| Alllell < 2c1] A 14N < 5] |
= {(e, 20) : (el <2c1] A [I180]} < 3] }

= {(e, AO) : [||e|| <2 m} A

I®]17 [|Allr
(2 Amin + ”AHF)
(11.29)

1A®|; <

This argument immediately proves UUB of all signals in the closed-loop
dynamics. In particular, (11.29) proves UUB tracking of the external command
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Fig. 11.6 Step-input roll rate tracking with the g-modification in Example 11.2

Yema(t) by the system output y(¢). Note that in this case, command tracking is
achieved in the presence of parametric uncertainties (A, ®) and nonparametric
bounded time-varying disturbances &(r). Next, we illustrate the o-modification
features and benefits for the scalar roll dynamics from Example 11.1.

Example 11.2 MRAC with the a-Modification for Aircraft Roll Dynamics
Continuing with the roll dynamics model from Example 11.1, we utilize (11.21)
and write the adaptive laws with the o-modification:

]gp :Vp (p (pipref) 70-]%7)

kpcm[, = Vpomd (p cmd (p = Pref ) -0 lgl’und)

We then select ¢ = 0.1 and simulate the same roll rate step-input response as in
Example 11.1 but with the ¢ -modification turned on. This design also gives
adequate roll rate command tracking performance (Fig. 11.6).

The data are comparable to the simulation results achieved using the dead-zone
modification in Example 11.1 (see Fig. 11.4). In addition, the corresponding
adaptive gains are bounded (Fig. 11.7), and potential drift-due-to-noise tendencies
are completely prevented.

We make a note that in this case, the adaptive gains are oscillatory which may
not be desirable. The oscillations are driven by the process noise, and the data
reveal noise sensitivity of the adaptive law dynamics. O
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Fig. 11.7 Adaptive gains with the g-modification in Example 11.2

11.3 The e-Modification

There are performance-related drawbacks to applying the o-modification. When the
tracking error becomes small, the adaptive law dynamics (11.21) can be approxi-
mately written as O~ —Te cO. Hence, for small tracking errors, the adaptive
parameters have a tendency to return to the origin, that is, they “unlearn” the gain
values that caused the tracking error to become small in the first place. Furthermore,
even if the disturbance £(¢) is removed from the system dynamics (11.1), and if the
reference command y,,,, is persistently exciting [6], the parameter errors A®(f) do
not converge to the origin.

In order to overcome these undesirable effects, Narendra and Annaswamy
introduced the e-modification [6]. Originally called the e; -modification, the
method’s main idea is to replace the constant damping gain ¢ in (11.21) with a
term proportional to a linear combination of the system tracking errors, such as
|le” P B||. The rational for using an error-dependent damping is that it tends to 0, as
the regulated output error diminishes. The adaptive laws with e-modification are

© =To (0(x) ' PB 0| PB©) (11.30)

As seen from (11.30), the e-modification adds a tracking error-dependent
damping o ||e” P B|| to the adaptive dynamics.

Using these laws, one can compute the time derivative of the Lyapunov function
candidate (11.10), along the trajectories of the tracking error dynamics (11.9), and
then repeat similar derivations that lead to (11.26). The only difference here is
that instead of a constant parameter ¢, we have an error-dependent damping term



328 11 Robust Adaptive Control
[9)

3 15 :
> 10 LT EY ST L U YU, WY ST TLONTT VPR L VICIUTIL. FINRPUETE PISPWLITIS TSNP UL LA LI
8 \J‘ [ASATH AN iad R it A P O A b | AR O ML i [ LA AR A AP L ryww Hidi

-~ 5 —— Command [T
% 0 —— Reference |
= 5 —-—- Actual

o 0 20 40 60 80 100 120 140 160 180 200

15

o
3 1o+ L ] N EL JE El +4

§ S M WW‘ Hu“ u UHW v : : | W ‘W “U' Huh u WL“W" H
Q 0 mr LH H v H 1 1
T 5 | | | i i

0 20 40 60 80 100 120 140 160 180 200

S 041

5]
2005 I i
5 -

© 0! H\..“Ln.m\.}. || th..\ Al 1“ I Ih A”U]: ..Mull]m.xlt.‘. )

0 20 40 60 80 100 120 140 160 180 200
Time, sec

Fig. 11.8 Step-input roll rate tracking with the e-modification in Example 11.3

ol|le" PB||. So, ¢, in (11.27) is no longer constant, but it remains nonnegative.
This fact allows to arrive at the same compact set as in (11.29), outside of which
V(e, A®)<0. Once again, we can claim UUB of all trajectories. This completes the
stability analysis for the e-modification with a guaranteed UUB-type output tracking
performance.

Example 11.3 MRAC with the e-Modification for Aircraft Roll Dynamics

We now apply the e-modification design to the roll dynamics that was introduced
in Example 11.1 and subsequently reused in Example 11.2. According to (11.30),
the adaptive laws with the e-modification are

]gp = Vp (P (p _prqf) —0 }p _pref| Igl’)

Kpos = oy Pema (P = Preg) = @ 1P = Preg| K,)

So now, the damping term o | p — p,.ef| depends on the tracking errore = p — p,.,
and it will diminish if e becomes small.

Fig. 11.8 shows the system closed-loop tracking performance, with e-modifica-
tion gain o = 1.

Once again, we obtained adequate step-input command tracking in the presence
of noise. The results are comparable to those shown in Figs. 11.4 and 11.6. The
corresponding adaptive parameters are shown below (Fig. 11.9).

It is interesting to note that in this simulation scenario, the e-modification kept
the adaptive parameters uniformly bounded, and in addition, it also forced them to
approach their ideal values. However, such a tendency would not be possible
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Fig. 11.9 Adaptive parameters with the e-modification in Example 11.3

without persistency of excitation induced by the process noise into the system
dynamics. |

It is easy to see that for large tracking errors, the dead zone, the g-modification,
and the e-modification slow down (i.e., dampen) the adaptation. Often, such an
effect is considered detrimental since it may contradict the control goal of reducing
the tracking error as fast as possible.

11.4 The Projection Operator

In this section, we shall introduce a Lipschitz-continuous version of the Projection
Operator [7, 8]. This concept is essential for enabling the adaptive laws (11.15) to
achieve robustness with respect to parametric and nonparametric uncertainties that
might exist in the system dynamics. We show that the Projection Operator tolerates
fast adaptation, enforces uniform boundedness of the adaptive parameters, and
maintains closed-loop stability of the corresponding error dynamics and of the
original system. The selected version of the Projection Operator can be thought
of as a direct extension of a projection-like modification that was originally
proposed by Kreisselmeier and Narendra in [9].

To reiterate, our overall design goal is to continuously modify adaptive laws
(11.15) in order to maintain negative semi-definiteness of the Lyapunov function
time derivative in (11.14)
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Fig. 11.10 Graph of a Afx)+A-D)fB)

convex function

T
xIO ‘ :0)/
f
z=2Ax +(1-2) y
trace(A@T {r(:)lé)—@eTPB}A) <0 (11.31)

and, at the same time, to keep the adaptive parameters ®(¢) uniformly bounded in
time. These two design objectives will be achieved through the introduction of the
Projection Operator into the adaptive law dynamics.

We begin with basic definitions of convex sets and functions. These concepts
will facilitate proper introduction of the Projection Operator.

Definition 11.1. A subset Q C R" is convex if
Vx,y€QCR) =[x+ (1-A)y=2z€Q], Y0<1<1 (11.32)
Relation (11.32) states that if two points belong to a convex subset (), then all the

points on the connecting line also belong to Q.

Definition 11.2. A functionf : R" — R is convex on R" if
FOx+ (1 =Dy <Af(x)+(1=A)f(y), Y0<A<1, Vx,yeR" (11.33)

Inequality (11.33) is illustrated in Fig. 11.10. It shows that the graph of a convex
function must be located below the straight line, which connects the two
corresponding function values.

Lemma 11.1. Let f(x) : R" — R be convex. Then, for any constant 6 > 0, the
subset Qs = {0 € R" |[f(0) < 0} is convex. [ |

Proof of Lemma 11.1. Let0,, 0, € Q5. Then, f(0;) < dand f(0,) < J. Sincef(x)
is convex, then for any 0 < 4 < 1,

Flao+ (=200, | <if0)+(1=2)f0,) <26+ —-2)5=3
—_— —— ——

0 <é <o

Therefore, f(0) < 6 and, consequently, 0 € Qs which completes the proof. B
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Fig. 11.11 Gradient vector on the boundary of a convex set

Lemma 11.2. Let f(x) : R" — R be a differentiable convex function. Choose a
constant 0 > 0 and consider the subset

Qs ={0€R"|f(0) <o} CR"
Let 0" € Q; and assume that f(0*)<0, that is, 0" is an interior point (i.e., not on

the boundary) of Qs. Also, let 0 € Qs and assume thatf(0) = 0, that is, 0 lays on the
boundary of Qs. Then, the following inequality holds

(0" —0)"VF(0) <0 (11.34)

T
where Vf(0) = <8f(0) . of(0) > € R" is the gradient vector of f evaluated
at 6. 00, 00 =

Relation (11.34) is illustrated in Fig. 11.11. It shows that the gradient vector of a
function, evaluated at the boundary of a convex level set generated by this function,
always points away from the set.

Proof of Lemma 11.2. Since f(x) is convex, then
FOO"+ (1 =2)0) < 2Af(07) + (1 = 2) f(0)
Or, equivalently,
FO+2(0"—0)) <f(0) + A(f(07) = £(0))

Consequently, for any nonzero 0 < 4 < 1,
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FO+4(07 =) ~1(0) _
- <

07 —f(6) <5-5=0
—_— <~

<0 J

Taking the limit as 4 — 0 yields relation (11.34) and completes the proof. H
Suppose that a parameter vector 0 belongs to a convex set Q:

Qo ={0 €R"|f(0) <0} (11.35)
Let us introduce another convex set:
Q ={0eRrR"|f(0) <1} (11.36)

Then, it becomes obvious that Qy C Q;.
We may now define the continuous Projection Operator

Proj (0, y) )
_ y—%wyf(e), if [£(0) > 0 Ay VF(0) > 0] (11.37)
y , if not

where I € R™" is any constant symmetric positive-definite matrix and ||Vf ||%:
(Vf )T I" Vf is the weighed Euclidean squared norm of V.

Let us graphically illustrate the Projection Operator in (11.37). To simplify the
discussion, we set I" to be the identity matrix. As seen from the definition (11.37),
Proj (0, y) does not alter the vector y if 0 belongs to the convex set Q from (11.35).
In the annulus set {0 < f(0) < 1}, the Projection Operator subtracts a vector normal
to the boundary {f(6) = A} from y. As a result, we get a smooth transformation
from the original vector field y for 4 = 0 to the tangent to the boundary vector for
/A = 1. The Projection Operator concept is shown in Fig. 11.12.

For an arbitrary positive-definite symmetric matrix I', a similar sketch can
be drawn.

Next, we derive an important convex property of the Projection Operator.

Lemma 11.3. For any symmetric positive-definite matrix I' € R"*",

(0 —0°)" (" Proj (0, T'y) —y) <0 (11.38)

Proof of Lemma 11.3. Using (11.34) and (11.37) gives

(60— 0*)T(F’1 Proj (0, T'y) —y)

>0

/_’T,_/%
- 7%[(Vfﬂlw}?,if[f>0/\yTFVf>0] <0

if not

)

(11.39)
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{0:7(6) <0} (6:1(6)=0}

Q0 ={0:/(0)=1}

Fig. 11.12 The Projection Operator

and the proof is complete. Ll
We now state and prove yet another result of conceptual importance to the
forthcoming development of adaptive controllers.

Lemma 11.4. Let f(0) be a convex continuously differentiable map from R" to R.
Using (11.37), consider the n-dimensional dynamics

0 = Proj (0, y) (11.40)

where 0 € R" is the system state and 'y € R" is a time-varying piecewise continuous
vector. Then, starting from any initial condition 0(0) = 0y within the set

Q) = {0 € R"|f(0) < 0} (11.41)
the system trajectory 0(t) will remain in the set
Q ={0eR"|f(0)< 1} (11.42)

forallt > 0. ]

Proof of Lemma 11.4. Existence and uniqueness of the system (11.40) solutions are
provided by the fact that the Projection Operator is locally Lipchitz in 6, while the
system external input y(¢) is piecewise continuous in time.

To prove the lemma, we need to show that the following relation holds
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[£(00) < 0] = [f(6() <1], V>0 (11.43)

00€Qp 0(1)e,

Toward that end, we evaluate the time derivative of f(6(z)) along the trajectories
of the system dynamics (11.40). Based on the definition (11.37), we obtain

£(0) = (Vf(0))" Proj (0, y)
_{< V() y ( —£(0)), i [f(0)>0Ay VF(0)>0] (1144)
(VF(0)"y if not
Consequently,
£(0) >0, if [0<f(0)<1Ay VF(0)>0]
f0)=0, if [f(0)=1Ay" VF(0)>0]
f(0) <0, if [£(0) <0vy VF(0) <0 (11.45)

The first and the second relations in (11.45) imply that if £(6(0)) > 0, then
F(0(r)) monotonically increases in time for all 7 > 0, but it will never exceed 1.
Also, the third condition in (11.45) states that if f(0(0)) <0, then f(0(¢)) is
monotonically decreasing for all # > 0. Therefore, irrespective of initial values
(as long as they are negative), f(0(¢)) < 1 for all # > 0, which completes the proof
of the lemma. ]

The next example shows how to use the Projection Operator to construct
actuator models with position and rate constraints.

Example 11.4 Actuator Dynamics with Position and Rate Constraints In control
engineering applications, one often needs to account for mechanical, hydraulic, or
electrical control actuation devices. Their dynamics are frequently modeled by a
scalar system

TU= Upppg — U

where u,,q is the actuator-commanded position, u is the actuator-achieved position,
and 7 is the actuator time constant. Since these devices have inherent position limits,
the latter must be introduced into the model and analyzed appropriately.

In this example, we shall demonstrate how to create a dynamical model of an
actuator with position constraints |u| < umax. Let ¢ be a constant such thate € (0, 1).
We introduce

Umax

Umax =



11.4  The Projection Operator 335

and then embed the actuator constraints into the Projection Operator definition
(11.37), by selecting a convex function in the form

f(u) — w — I’_{rznax — (1 + ‘O) u’ — uﬁmx
& u%’lax € urznax

In this case, the two convex sets from (11.35) and (11.36) become

Qo:{ueR:f(u)go}:{ueR: M|S\/u%}

O ={uekR: flu)<1}={ueR: |ul <umax}

Using (11.37), we can now define the following projection-based first-order
actuator model with position constraints:

I:t — Proj (u7 w)
[ () (£ @), () > 0 A (tema — ) > 0]
- (Llcn1f;7u)’ if not

According to Theorem 11.1, starting anywhere within the “conservative” posi-

tion limits (j: e ), the actuator-achieved position u(z) will never exceed the

VvV1+e

original limits (£ umyx ), even if it is commanded to do so. In other words, there is no
need to limit the commanded position. No matter what the actuator command is, the
achieved position will remain within the prespecified limits.

One can make further modifications to the derived actuator model and enforce
rate limit constraints (4 iy ), in addition to position limits. For example, the
following model

.. 1 . Uemd — U
U = lmax sat( . Proj (u, L))
Umax T

uses the saturation function y = sat(x) = max(—1, min(x, 1)), along with the
Projection Operator. It is easy to see that these two modifications will keep both
the actuator position and its rate contained within their desired limits.

Frequently in practice, actuator requirements are specified in terms of their
natural frequencies and damping ratios. This leads to consideration of a second-
order actuator model in the form

i+2¢wi+ 0 u= 0% tion
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where (w, ¢) denote the actuator natural frequency and its damping ratio, corre-
spondingly. Rewriting the model in state space gives

l/.tl o 0 1 up + 0 u
)\ —w? —2¢fw Uy w? ) Temd
——’ —_—— N —

X A X B

where u; = u is the actuator-achieved position and u, = # is the respective rate.
In order to impose position and rate constraints = (U, Umax ), We shall again
use the Projection Operator (11.37) and modify the actuator dynamics as follows:

X = Proj(x, Ax+ Buema)

For this model, a convex function f(x) = f(u, i), which defines the Projection
Operator domain, can be selected as

u? W
(1 +8) (u2—+u2—> —1
N\ max max
f(uv u) - e

This leads to the following two convex sets:

0 = (. ) < 0} = {lu <= il < e

Ql = {f(u7 u) < 1} = {|Ll| < Umax /\ |I/l| < umax}

From Lemma 11.4, we can assert that starting with any initial conditions from
Qy, which satisfy the actuator position and rate bounds, the actuator model will
produce trajectories evolving within the prescribed bounds in Q;. |

In the next section, we shall employ the Projection Operator (11.37) to construct
provably stable adaptive laws in the form

. vf (V) .
0 = Proj(6, Ty) =T{ "~ 7972 Dyf, it [f > 0Ny TVF>0] 41 46

y , if not

where 6 denotes the estimated parameter vector, whose dynamics are driven by the
time-varying external vector y = y(7).

Based on (11.46), we can introduce a matrix version of the Projection Operator,
when both Y and ® are matrices of the same dimensions:

—

Y=(5 ... Ww)erR™, ©=(4, ... Oy)erR™" (11.47)
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In this case, the Projection Operator is defined column-wise:
Proj (©, T'Y) = (Proj (51, F)Tl) ... Proj (é,v, ryN) ) (11.48)
We can also generalize the convex inequality (11.38):

(40" (T Proj (6, TY) -¥)) :}Zr_nl: (6- @)jT (1 "Proj (6,TY,) -¥;) <0

<0

(11.49)

In addition, one can show that for all matrices ©(0), whose columns belong to
the set Qq from (11.41), the corresponding trajectory ®(¢) of the matrix differential
equation

© = Proj (@, T'Y) (11.50)

will have its columns evolving within the set Q; from (11.42), for all r > 0. This
statement directly follows from Lemma 11.4.

11.5 Projection-Based MRAC Design

In Sect. 11.1, we have designed robust MRAC systems for MIMO dynamics (11.1),
with matched parametric uncertainties and a bounded process noise. These designs
were carried out to force time derivatives of the selected Lyapunov function
(11.10), computed along the trajectories of the error dynamics (11.9), to become
negative semidefinite outside of a compact set. For example, in (11.14), we had

V(e, A®) = —eTQe+2trace(A®T{r(:)l o —(DeTPB}A> 120 PE(N, (11.51)

and the design task was to choose © such that the trace term in (11.51) became
nonpositive, while the adaptive parameters @(z) remained uniformly bounded
functions of time.

In what follows, we shall investigate how to force the trace term to be semi-
negative via the matrix version of the Projection Operator (11.50), with its convex
property (11.49), while enforcing uniform boundedness of the corresponding
solutions O (). Since
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tr| A®T F(j)l @ —®'PB| A
~—~— ~— ——
(@,@)T Proj (©, ToY) Y
m ~ T ~
=Y (6-0) (re'Proj (0, To¥;) ~¥;) 4 <0 (11.52)
=1 - ey
<0 -

then we can define the following projection-based adaptive law
) :Proj(@, F@(DeTPB> (11.53)

to guarantee uniform boundedness of the adaptive gains column-wise (Lemma
11.4). Essentially, the Projection Operator ensures that the columns (:)j of the
adaptive time-dependent parameter matrix @(t) do not exceed their prespecified
bounds @;“ax. At the same time and because of (11.52), it is easy to see that the
operator contributes to the negative semi-definiteness of the Lyapunov function
(11.51). Indeed,

Vie, A®) < —e" Qe +2¢" PE(1) < —imin(Q) llel® + 2 [el] Zmax (P) Emax

= _lmin(Q) ||€H (|e|| -2 %)

(11.54)

and, consequently, V(e, A®) < 0 outside of the compact set

Q= {(e7 A®) € R" x RV™™ . |le|| <2 jmax((gg Enax N |AB|| < A@max}
” (11.55)
where
ABpax =2 (O™ ... OF™) =20 (11.56)

Omax

and @™ is the maximum allowable bound for the j* column ©;(r). This formal
argument proves the UUB property of all signals in the corresponding closed-loop
system. In particular, we have proven that the system regulated output y(z) can
track any external bounded command y,,,,(#) with bounded errors.

Next, we show how to construct the convex vector function f = (f; ... f,,)"

and the related m-convex sets {le} . These are the sets that define the
j=1,..,m
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Projection Operator domains for each column of adaptive parameters C:)j(t). Both
the function and the convex set deﬁmtlons will be constructed based on the desired

column-wise upper bounds ﬂ H <O
For the j”column ® of the adaptlve parameter matrix @ € RV*” we introduce
the projection tolerance s > 0 and choose a convex function in the form

(1+4) H(:)-"Hz - (QJmaX)Z (11.57)

&P (G);“‘”‘)Z

The idea here is very similar to the one in Example 11.4. The two convex sets are
defined foreachj =1, ..., m

1 :f(é)j) =

0)={6,cr": (6) <0} =3 6,er " ||of <
Q= {&;er™: f(6)) <1} ={6;erV": H@,Hg@;ﬂa*} (11.58)

The gradient of the j”* convex function (11.57) can be easily computed as

’2] :23(]@1%/@) ©; (11.59)

Vf;= (1;8_,@)2 V{ OF
£ (o)

Via (11.53), the adaptive law for @j becomes

‘ (@ PB); - ||f}|
- oy

it [f> 08 @ PB) Ty VY, < 0]
(®e" PB);, if not

Ty (©e' PB) f;
(11.60)

By construction, the adaptation process in (1 1.69) ensures uniform boundedness
of the adaptive time-dependent parameter matrix ©(¢) forward in time, that is,

((i)j(O)H<ﬂ :{ éj(t)ng;“a*, Vi >0, 1gjgm}

(1+4°)

(11.61)
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Table 11.1 MRAC design with robustness modifications

Open-loop plant X=Arg x+BA (u+ 0" D(x)) + Bros Yo + (1)
y=Cryx

Reference model Xref = Aref Xref + Bref Yemar  Yref = Cref Xref

State tracking error e =X — X

Lyapunov equation P Ay +A£,/-P =-0

Total control input U= _@T @(x)

MRAC with dead zone 6= Lo ®(x) u(le]) ¢ PB

MRAC with ¢-mod 6= To <(D(x) TPB—0o @)

MRAC with e-mod 6= To <CI)(x) T PB— |’ PB| @)

MRAC with Projection Operator 6= Proj <(;)7 Te®el P B>

Consequently, the adaptive parameter errors A®(¢) and the state tracking error
e(t) enter a compact set that contains the set Q from (11.55) in finite time. The
MIMO-bounded command tracking problem is solved.

Table 11.1 gives a summary of the four robustness modifications that were
introduced in this chapter.

Table 11.2 presents an overview of the continuous Projection Operator, which
acts on a pair of n-dimensional vectors 0 and y.

The next example illustrates key design points in application of the projection-
based MRAC to lateral-directional dynamics of an aircraft.

Example 11.5 Aircraft Lateral-Directional Dynamics and Control

Lateral-directional motion of a conventional aircraft is controlled by vertical tail
panels (rudders) and wing-mounted surfaces (ailerons). Figure 11.13 shows a
sketch.

The rudder (6,) is the primary control device for turning the aircraft, thus
regulating the vehicle yaw rate r and the sideslip angle f. Moving ailerons
differentially (i.e., left aileron trailing edge down and right aileron trailing edge
up, d,) will force the aircraft to roll (right wing down), changing (increasing) its roll
rate p, and thus the bank angle (¢, with some induced coupling into the yaw and
sideslip dynamics.

For small angles, the aircraft lateral-directional dynamics can be approximated
by a linear time-invariant system in the form
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Table 11.2 The Projection Operator design summary

Max parameter bounds o) < 6™

Convex function 3 (142)]|0]]* — (6m)?
f( > - S(Qmax)Z

Two convex sets

= (0: 70 <0y ={o: o) <=}

Q ={0: fO)<1}={0: [0] <6™}

Projection Operator L vf (vHT f
. vy
Proj (0, y) = if [f > 0A (7 Vf) > 0]
y, if not
Convex inequality for proof of stability = 0" (r*l Proj (0, T'y) —y) <0,

voO* EQO, 0e€Q, yER"

Uniform boundedness of parameters 0= Proj(0, Ty)
[0(0) € Q] = [0(r) € Qy, Vi >0]

Left aileron —»
Top view

5 \’/T

Rudder

Right aileron —

Rudder —»

Right aileron
y

z
z

Fig. 11.13 Top and front views of a conventional aircraft in Example 11.5
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Table 11.3 Nominal open-loop vehicle eigenvalues in Example 11.5

Eigenvalue Damping Frequency (rad/s)
—0.0464 £ 1.88; 0.0247 1.88
0.00135 -1 0.00135
—1.78 1 1.78
: 0 0 1 0 0 0
(g 8 Yﬁ Yp Y, 1 (g Y(S,, Ya‘,. 5
—_— —— — ~, —— — a
=1V Vv Vv Vv tl v Vv ( S )
l? 0 Ly L, Y, p Ls, Ls, r
\r,_/ 0 Ny N, ; \’/_, Ns, N, u
p A T By

P

where g = 32.1741s the acceleration due to gravity (ft/s%), V is the trimmed airspeed
(positive constant, ft/s), and the system matrices (Ap, Bp) are comprised of the
vehicle aerodynamic stability and control derivatives.

For a small passenger aircraft in a cruise configuration, typical values of these
parameters are [11, p. 357]

0 0 1 0 0 0
A — 0.0487 —0.0829 0 —1 B _ 0 0.0116
P 0 —4.546 —1.699 0.1717 | 77 | 27.276 0.5758

0 3382 —0.0654 —0.0893 0.3952 —1.362

where the units for all angles and angular rates are expressed in rad and rad/s,
respectively. Also, negligible coefficients in the f;-dynamics are zeroed out.

A typical (for lateral-directional dynamics) regulated output would consist of the
vehicle bank and sideslip angles

(¢ (1000
y(ﬂ)(o 1 oo)""

while the available control inputs are represented by the differential aileron and the
rudder deflections, both expressed in radians:

u= (38, &)

The control task is to design u to enable independent and simultaneous tracking
of bounded time-varying bank and sideslip commands that are stored in the vector
T
Yemd = (spcmd chd) .
The nominal open-loop vehicle dynamics are unstable with the corresponding
eigenvalues shown below (Table 11.3).
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Table 11.4 Nominal closed-loop vehicle eigenvalues in Example 11.5

Eigenvalue Damping Frequency (rad/s)
—1.34+£1.29j 0.72 1.86
—125+£1.17§ 0.73 1.71
—1.33 1 1.33
—8.84 1 8.84

In order to stabilize these dynamics and regulate the selected two outputs, we are
going to design a baseline LQR tracking controller with Proportional + Integral
(PI) action. Toward that end, we augment the system with two integrated tracking
errors and obtain the baseline/nominal extended open-loop system

6.991 ol

. 0242 Cp ¢ 0242 O L) Pemd

6 _ e + + cm

./“ <04><2 A[, & Bp 5r 04><2 chd

Xp N — Xp —_— L e« )
Rf_/ A B u B Yemd

y= (000 C)x=(p B)
C

where
éi,&’] =¥ = Pemd> e[fl = ﬁ - /))cmd

are the dynamics of the two integrated tracking error signals. After several design
iterations, we have selected diagonal LQR weights:

Q=diag(1 10 0 0 01 5), R=1Iyn

The first two diagonal elements of QO give adequate natural frequencies, while the
last two yield desired damping ratios in both regulated output channels (Table 11.4).
The resulting baseline LQR PI state feedback solution is

" (0.9987 0.1627 0.9184 0.0896 0.3529 0.0166>
bl = —

x=—K px
—0.0514 3.1581 0.0755 2.2907 0.0487 —2.7885 <L

K,\TLQR
and the closed-loop simulation results are shown in Fig. 11.14, where we have
tested the baseline LQR PI controller performance in tracking a series of step-input
bank and sideslip commands, simultaneously.
There are three signals per plot that are shown in the figure above: (1) the
command response, (2) the reference response, and (3) the actual system response.
As in all our previous examples, the reference data represent the closed-loop
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Fig. 11.14 Command tracking with baseline LQR PI Controller in Example 11.5
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Fig. 11.15 Baseline aileron and rudder deflections in Example 11.5

vehicle behavior under the baseline LQR PI controller. Since there are no
uncertainties in the baseline system dynamics, the reference and the actual
responses are identical. The required aileron and rudder deflections (Fig. 11.15)
are well behaved and definitely reside within realistic actuation limits.
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Next, we introduce matched linear-in-parameter uncertainties into the system
X=Ax+BA (u +e’ CI)(xI,)) + Bref Yema

embed the baseline LQR PI solution u; = —KILQRx, and arrive at the extended
open-loop dynamics:

= (A BKXLQR) x+BA (u+A LQRer@ (I)(x,,)) + Brof Yema

—_—
Apef

Let u,, denote an adaptive control augmentation signal. With the total control
input

U = Up + Uaq

the extended open-loop system becomes

X =Arf X+ BA | ttaa + (A_l - IZXZ)K,:LQRX +0' (I)(xp) + Bref Yema

O O(x)

= A,Agfx +BA (uad + (:)T <i)(x)> + B,Tf Yemd

which is in the same exact form as in Table 11.2.
For simulation studies, we have selected the following uncertainty-related
parameters:

A=05hy, @)= p r)

C[4A,(2,2) 24,(2,3) 24,(2,4)\"
(4Ap(2 1) 24,(3,3) 2Ap(374)>

With 50% control effectiveness reduction in aileron and rudder, these
parameters emulate 200% change in the aircraft sideslip coefficients and 100%
change in the vehicle roll and yaw stability derivatives. The perturbed system is
open-loop unstable. Its command tracking responses under the baseline LQR PI
controller become highly oscillatory and thus inadequate. The data are shown
below (Fig. 11.16).

Although the baseline controller was able to stabilize the perturbed dynamics,
the tracking performance is clearly unacceptable. Also, the corresponding aileron
and rudder deflections exhibit the unwanted oscillations (Fig. 11.17).



346 11 Robust Adaptive Control

4
3 —— Command
o=
2 ”| i - —— Reference
g [ iy I;" b P ,-'\| N o Lo Actu?l
3 x 1\;.., A 1'\‘ N o ! ':‘ 2 Ik :“ "\f‘! AN A A A ! n,\ 2 A
- AT 7 TS RYERH W T AT ESAS
< A = l\."" :M o g VR _‘V HEVIRS Aj I\\,‘. Af Y
& v '-l' M '\' 1 (i " ‘-"' o
-2 ,’ e
-3 L
-4
0 20 40 60 80 100 120 140
1
[ Al
Al
2 0.5 A 3“-‘!' ','f'. T RN
L [ 1 1% - 2 A .
5 0 FES ‘v".,i\ ~ i \; l‘\.’. |‘, ll i \ \!“! L i a
o] - ) SNAY i WA ) WAV
s \"!\"/ i,\:\,l Y A ‘,l"!.", iy ‘-i"\_., ,-'“‘-" YA
D.05 : b3k
\rlt?
1 i
0 20 40 60 80 100 120 140
Time, sec

Fig. 11.16 Closed-loop response with uncertainties and LQR PI controller in Example 11.5
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Fig. 11.17 LQR PI control inputs with uncertainties turned on in Example 11.5

In order to mitigate the system uncertainties, we add an adaptive augmentation
component in the form
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Fig. 11.18 Closed-loop tracking with (LQR PI 4 Adaptive) controller in Example 11.5

with the estimated parameters @(¢) evolving according to the projection-based
adaptive laws as shown in Table 11.2. The reference model is chosen to represent
the closed-loop nominal system under the LQR PI controller and without
uncertainties. The Q matrix in the Lyapunov algebraic equation is

QO =diag(0 0 0 0 10 800)
and the rates of adaptation are
I'e = diag(100 100 600 600 600 600)

With the uncertainties turned on, the (LQR PI + Adaptive) controller recovers
the desired closed-loop tracking performance (Fig. 11.18).

The required control effort is reasonable and well within the actuator capabilities
of a generic aircraft such as the one considered (Fig. 11.19).

The magnitudes of the estimated parameters are shown in Fig. 11.20.

In this simulation, maximum allowable bounds for the adaptive parameters were
set to 10, but the adaptive parameters never reached their bounds. So, it would be
interesting to simulate a case when these bounds are reduced below their maximum
achieved values. We set the aileron-related max bound to 0.5 and the rudder-related
bound to 5. With the same uncertainties activated, Fig. 11.21 shows “graceful
degradation” of the system closed-loop tracking performance.

Per design, the adaptive parameters evolve within the smaller projection bounds
(Fig. 11.22), and because of that the system performance degraded slightly.
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Fig. 11.19 (LQR PI + Adaptive) aileron and rudder deflections in Example 11.5
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Fig. 11.20 Adaptive parameter dynamics in Example 11.5

However, the aileron and the rudder control activity (Fig. 11.23) remained very
similar to the previous simulation case, where we had large projection bounds and
thus attained a slightly better performance.

The main purpose of this simulation test is to verify that the Projection Operator
has been implemented and functioned correctly. Additionally, we want to expose an
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Fig. 11.21 Performance degradation with small projection limits in Example 11.5
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Fig. 11.22 Adaptive parameters with small projection bounds in Example 11.5

iterative nature of a control design process, such as MRAC. Based on theoretical
predictions, the control designer is always expected to perform a trade-off study to
find the best set of tuning parameters for the selected method, while performing an
assessment of simulation trials versus theoretical predictions. O
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Fig. 11.23 Aileron and rudder deflections with small projection bounds in Example 11.5

11.6 Summary and Discussions

In conclusion, we would like to offer our opinion on the choice of robustness
modifications in MRAC systems. These recommendations are not “theoretical”
by any means. They are merely based on the authors’ extensive experience during
the design of MRAC systems for a multitude of aerospace applications.

In our view, any adaptive system must have the dead-zone modification (11.18)
or its continuous version (11.19). The latter is the preferred choice since it avoids
potential discontinuities in feedback connections. The “must-have” dead-zone
modification will prevent adaptive parameters from drifting away.

As seen from (11.15), the adaptive law dynamics without robustness modifications
are defined by integrating a nonlinear function, represented by the regressor vector
®(x), multiplied by a linear combination of the state tracking errors (¢! P B). This
product is further multiplied by a constant matrix ['g (the integral gain), and finally, it
is integrated to yield the adaptive parameters @(t) (see Fig. 11.24).

As seen from the block diagram of Fig. 11.24, there is a chain of nonlinear
integrators in a feedback loop, whose output constitutes the adaptive parameters. In
all practical applications, feedback integrators must be “managed” in the sense that
their output signals (i.e., the adaptive parameters) need to be constrained. This
prevents integrators against “winding up” due to nonlinear saturation functions in
the control channels, where the system achievable control limits are defined and
enforced. Control techniques that prevent the integrator windup problems are called
the “anti-windup” methods, and the Projection Operator is one of them. This is why
we highly recommend using projection-based adaptive laws.
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Fig. 11.24 Adaptive system viewed as a nonlinear integral feedback controller

In summary, our suggested MRAC architecture consists of the smoothed dead-
zone modification coupled with the Projection Operator

é:Proj(é, F®(D,u(||e\|)eTPB> (11.62)

where u(]|e||) is the Lipchitz-continuous modulation function from (11.19). Essentially,
the dead-zone modification protects the adaptive parameters from drifting due to noise,
while the Projection Operator bounds the overall adaptive process, and at the same
time, it prevents MRAC integrators against the undesirable windup phenomenon.

11.7 Exercises

Exercise 11.1. Prove that the Projection Operator (11.37) is locally Lipschitz.

Exercise 11.2. Simulate the two actuator models from Example 11.4. Select
commands to violate position and rate constraints. Compare and discuss your
results.

Exercise 11.3. ([10]). Consider a convex hypercube in R”,

Q= {9 ER": (9?““ <0; < 9?3)(),-:1,2,4...11}

where (0", 0") represent the minimum and maximum bounds for the "

component of the n-dimensional parameter vector 6. Choose a sufficiently small
positive constant 9, and define another hypercube

Qs = {0 ER": (Qj'mn +06<6; <0 - 5)1‘:172,...,;1}

such that Q5 C Q.
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For two n-dimensional vectors (0, y), a rectangular version of the Projection
Operator is defined component-wise as

0" — Hi max
(T) Yoo [(0i > 0" = 8) A (3> 0)]

Proj; (0, y) = (%) yi,  [(0: < O™ 4+ 6) A (y; < 0)]
y;, otherwise

Suppose that 0* € Qs is a constant vector. Prove that for any 0 € Q and for any
y € R", the following inequality takes place:

(0 —0)" (Proj (0, y) —y) <0

Let I" be a positive-definite diagonal matrix. For the system dynamics (11.1),
using the above inequality and adaptive laws (11.53) with the rectangular version of
the Projection Operator, carry out stability proofs starting from (11.51), arriving at a
UUB-type argument about the closed-loop system tracking performance.

Exercise 11.4. A second-order actuator model (transfer function) is given in the
form

w2
= 8 Oema
2 +28wys + w2

where (0, O.mq) are the actual and commanded actuator positions (rad), while
(¢, w,) are the actuator model damping ratio and its natural frequency, respec-
tively. Assume & = 0.7 and w, = 1. Simulate the system response to a sinusoidal
command. Introduce actuator position and rate limits. Use Projection Operator
(11.37) to create an actuator model with position and rate constrains. Create another
model using the rectangular version of the Projection Operator from Exercise 11.3.
Select actuator commands to violate the actuator position constraints. Simulate both
models and compare their performance.

Exercise 11.5. Implement the aircraft lateral-directional data from Example 11.5.
Design an (LQR PI + Adaptive) controller using (11.62). Repeat simulation tests
from Example 11.5. Compare and discuss your results.
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Chapter 12
Approximation-Based Adaptive Control

12.1 Motivation

A typical control design starts with modeling, which is basically a procedure of
constructing a mathematical description (such as a set of ordinary differential
equations) for the physical system to be controlled. This selected model needs to
reflect main features of the physical process. Accurate models are not always better.
They may require unnecessarily complex control design and demand excessive
computations. From a control point of view, the key in modeling is to capture the
essential effects in the system dynamics within an operating range of interest. In
addition, a good model should also provide some characterization of the system
uncertainties — the so-called unknown unknowns in the physical process. Such a
characterization can later be used to perform robust and/or adaptive design or to run
Monte Carlo-based analysis, eventually leading to quantification and assessment of
the closed-loop system stability, performance, and robustness.

In essence, model uncertainties symbolize the differences between the model
and the real physical process. Uncertainties in the system-specific parameters are
called “parametric,” while all other uncertainties are “nonparametric.”

Example 12.1 Point-Mass Dynamics with Parametric Uncertainties For the model
of a controlled mass m X = u, the uncertainty in m is parametric, while the neglected
motor dynamics, measurement noise, and sensor dynamics represent the nonparametric
uncertainties. O

Example 12.2 Scalar Dynamics with Nonparametric Uncertainties Consider a
scalar model with uncertain dynamics, such as X = f(x) + u + &(¢), where x is the
system state, u is the control input, £(¢) is the process noise, and the function f{x) is
unknown. Suppose that

N
f(x) =;0,- pilx) o) =0 o)+ o)

Parametric ~ Nonparametric

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 355
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_12,
© Springer-Verlag London 2013
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In other words, we assume that the unknown function f(x) can be approximated
by a finite linear combination of known basis functions g;(x) and unknown constant
parameters 0;. In this case, the state-dependent function approximation error &(x)
and the process noise &(f) represent the nonparametric uncertainties, while the
unknown constant parameters 6 constitute the parametric uncertainty in the system
dynamics. In order to characterize the latter, one needs to be able to find a good set
of basis functions ®(x), such that the approximation error ¢(x) becomes small on a
compact (closed and bounded) set. Polynomials, Fourier series expansions, splines,
and artificial feedforward neural networks can be used to represent and approximate
functions on compact sets. O

In Sect. 12.4, we will design MRAC systems that can cope with both parametric
and nonparametric uncertainties. In order to justify our design approach, we begin
with a concise background material and an overview of important facts related to
function approximation using artificial NN to represent large classes of functions
on given compact sets and within prespecified approximation tolerances.

12.2 Basic Definitions

An artificial feedforward NN is a multi-input multi-output static map composed of
many interconnected nonlinear processing elements (neurons) operating in parallel.
Figures 12.1 and 12.2 show sketches of two feedforward NNs.

An artificial feedforward NN consists of basic units called the “neurons” and
their connections. A block diagram of a single artificial neuron is shown in
Fig. 12.3.

Neurons, the basic processing elements of NNs, have two main components:
(a) a weighted summer and (b) a nonlinear activation function. The activation
functions of interest to us are the radial basis functions (RBFs) and the ridge
functions, also called the “sigmoids.”

Definition 12.1. Radial Basis Functions (RBFs) An RBF is a Gaussian in the form
o(x, x.) = o ()T W) _ o l=aeliy (12.1)

In(12.1),x € R"is the input,x.. € R" is the center,andW = W' > 0is a positive-
definite symmetric matrix of weights. Most often, we will write o(x, x;) = @,(x) to
abbreviate and to denote an RBF which is centered at the i center x;.

Other definitions of RBFs are available in the literature [1, 2]. A generic RBF
can be defined as ¢ = ¢([x — x[ly) , where |lx|;, = V" Wx denotes the
weighted Euclidean norm of a vector x. In addition, it is required that (x) be

integrable on R” and [ ¢(x) dx # 0. This activation function depends only on the
o

weighted distance r = ||x — x.||;, between its current input x and the center x..

The Gaussian RBF in (12.1) is an example of this type of activation function.
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Network Input‘ Network Output

T

Input Node

\>)
9 Output

First Hidden Layer Second Hidden Layer

Fig. 12.1 Feedforward neural network with 2 hidden layers and 6 neurons

Fig. 12.2 Feedforward neural network with 1 hidden layer and 5 neurons

—o-(F)-

Fig. 12.3 Artificial neuron block diagram

Others include (a) multiquadrics, ¢(r) = 1/(r> +¢?), ¢ >0, and (b) inverse
. . _ 1 .

multiquadrics, ¢(r) = Wk ¢ >0.

Definition 12.2. Ridge Functions A ridge function or a sigmoid is a nonlinear

scalar map ¢ : R — R of the form

o=0c(Ww x+0b) (12.2)
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Hidden Layer of N neurons

Threshold

Output Bias

Fig. 12.4 Single-hidden-layer feedforward NN with N neurons

where w € R" denotes the vector of weights, b is a scalar threshold, and o(e) is a
scalar nonlinear function (not necessarily continuous) on R, with the following

property:

lim o(v)<oo (12.3)

v—+oo

The two most common examples of a ridge function are (a) the logistic sigmoid,
o(v) = #, and (b) the hyperbolic tangent, ¢(s) = i;fi
A feedforward NN with N neurons in its hidden layer is shown in Fig. 12.4.

Formally speaking, a feedforward NN is a map from R" to R", that is,

y=NN(x):R" — R" (12.4)

Definition 12.3. Sigmoidal Feedforward NNs A sigmoidal feedforward NN with
N neurons is a map from R" to R™ in the form

NN(x) = W' 3(VTx +0) + b (12.5)
where W € RN*™ s the matrix of the outer-layer weights;

dx)=(c(VIx+06,) ... o(Vix+0y) )T € R

is the vector of N sigmoids; V € RN is the matrix of the inner-layer synaptic
weights, with its i column denoted byV,€R"; 0 € RY is the vector of thresholds;

and b € R™ denotes the NN bias vector.
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Definition 12.4. Feedforward RBF NNs A feedforward RBF NN is a map from
R" to R™ in the form

e (lx=Cilly,) 2100
NN(x) = 0" : +b=(6" »b) © | =0Tok) (12.6)
' —— | en()
e (Ix=Cxllw, ) o\
D(x)

where ® = (QT b )T € RN+ s the vector of weights, C; € R" is the center of
the i receptive field, W; = WT > 0 is the norm weighting matrix, b € R™ is the NN
bias,and ®(x) = (¢, (x) ... @y) 1)" € RN*'is the regressor vector, whose
components are the basis (activation) functions ¢;(x) = 90(||x - Ci”W,) and the
unit function.

Often in practical applications, the symmetric positive-definite matrix W in
(12.6) is chosen to be diagonal and in the form

where ¢; represents the width of the i Gaussian function. In this case,

202
pilx) =e
becomes the i”’component of the regressor vector ®(x) in (12.6). Also, components
of the regressor can be constructed using the Gaussian,

N ~ 2
=\ =— ) Ik=Gill
901. (_x) = e (‘%mx)
whose standard deviation (width) ¢ is fixed according to the spread of the centers C;,
N is the number of centers, and dn. 1s the maximum distance between the
chosen centers. Here, the standard deviation ¢ of all the isotropic Gaussian RBF
components is fixed at

dmax

V2N

This formula ensures that the individual RBFs are not too peaked or too flat.
Both of these two extreme conditions should be avoided.
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12.3 Approximation Properties of Feedforward
Neural Networks

Feedforward NNs have been shown to be capable of approximating generic classes
of functions on compact sets and to within any prespecified tolerance. This property
of feedforward NN is often referred to as the universal approximation, while the
NNs themselves are often called the universal approximators. Related theorems are
stated below without proofs.

Theorem 12.1. Micchelli’s Theorem [3] Let ¢ = ¢(r) be the Gaussian, the
multiquadrics, or the inverse multiquadrics function. Let {xi}ﬁvzl be a set of distinct
points in R". Then, the (N x N) interpolation matrix ®, whose (i, j)™ element is

i = <p(||x,- — xj| ) is nonsingular. u

There is a large class of RBFs that is covered by Micchelli’s theorem. In fact, this
theorem provides a theoretical basis for RBF-based function approximation and
regression techniques. Specifically, using an RBF ¢ = ¢(r) and a finite set of
N points {x,-}i-\]:1 in R", the above theorem assures that it is always possible to

approximate functions f(x) on a grid of points, using a linear combination of RBFs
N N A

in the form f(x) = 3 0; p(x — x;), such that £(x;) = f(x;) for all {x;}\_,.

Theorem 12.2. Universal Approximation Theorem for Sigmoidal NNs [4] Any

continuous function f(x):R" — R can be uniformly approximated by a single-
hidden-layer NN,

Ve>0,3N, W, b, V,0,VxeXCR": |[WG(VIx+0)+b—f(x)| <& (12.7)

NN(x)

(o @]

with a bounded monotone-increasing continuous activation vector function (e) on
a compact domain X C R". u

The universal approximation theorem extends to the class of L; functions defined
on compact sets. In that case, it is assumed that the selected activation function is
a bounded measurable sigmoid, and the approximation is understood in terms of the
L, functional norm.

Theorem 12.3. Rates of Approximation Theorem for Sigmoidal NNs [5]
Consider a class of functions f (x) on R" for which there is a Fourier representation
of the form

70) = [ e fiw)do
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for some complex-valued function f(a)) for which a)f(w) is integrable and define

& = [ ol 7@ do < o
J

Then, for every function f(x) with Cs finite and every N > 1, there exists
a sigmoidal NN of the form (12.5), such that

(2rCf)2

176 = WNEIE= | (70— M) ax < 20

[lll<r

Functions with Cy finite are continuously differentiable on R4, Moreover, the NN
approximation error is measured by the L,-norm on the ball of radius r.

Theorem 12.4. Universal Approximation Theorem for RBF NNs [6] Let
©(x) : R" — R be an integrable bounded continuous function, and assume that

[ otaxzo

Then, for any continuous function f(x) and any ¢ > 0, there is an RBF NN with N
neurons, a set of centers {Ci}ivzl, and a common width ¢ > 0,

[

o N~y (X C _ar ;
f(x)—;aso( JRCEE

such that

176) = M@= | (F) WV dx <5 = O(W )

llxll < r

In conclusion, we present a comparison of key features and properties possessed
by the sigmoidal NNs and by the RBF NNis:

* Both RBF and sigmoidal NNs are universal approximators.

* An RBF NN depends on the Euclidean distances between the input vector x and
the centers C;. On the other hand, a sigmoidal NN depends on the sum of the inner
product of the input vector x with its synaptic weight vectors V; and a bias 0.

» Sigmoidal NNs provide O (N %2 rate of approximation which does not explicitly
depend on the dimension of x. The rate of approximation for the RBF NN is of
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order O (N _ﬁ), and consequently, it decreases exponentially as the dimension of
the input vector x increases. This phenomenon is called the “curse of dimension-
ality” (due to R. E. Bellman).

* An RBF has a local support, while a sigmoid does not. The local support implies
learning and adaptation ability of RBF NNs. Sigmoidal NNs adapt but do not learn.

With the specific reference to artificial NNs in control, it is their ability to
represent inherently nonlinear mappings and hence to model nonlinear dynamical
systems, which is the feature to be most readily exploited in the synthesis of nonlinear
controllers. This is the topic that we shall begin to address in the next section.

12.4 Adaptive Control with State Limiting Constraints

We are interested in the design of adaptive command tracking controllers for affine-
in-control multi-input multi-output (MIMO) dynamical systems in the form

X=Ax+BAu+f(x))+&®) (12.8)

where x € R” is the system state vector, u € R™ is the control input, B € R is a
known constant matrix, A € R"*" and A € R™*" (a diagonal matrix with positive
elements) are unknown constant matrices, f(x) : R" — R™ is a state-dependent
(possibly nonlinear) uncertainty, and £(¢) € R" is a bounded time-varying unknown
disturbance, whose upper bound

1€ < Emax (12.9)

is known.

In the previous chapters, we have developed model reference adaptive control
(MRAC) command tracking design methods, assuming that the matched nonlinear
uncertainty admits an exact parameterization in the form f(x) = @' ®(x), with
constant unknown coefficients ® € RV*™ and with a preselected known locally
Lipschitz-continuous regressor vector ®(x) € RV.

In this section, we shall extend our design to nonlinear-in-parameter functions.
Our main assumption here is that these uncertainties can be parameterized (i.e.,
approximated on a bounded closed set within a small tolerance) using artificial
NNs, whose fixed basis functions are known (such as sigmoids with fixed inner-
layer weights and thresholds or Gaussians with fixed centers).

In particular, using the universal approximation properties of artificial NNs, we
shall assume that the unknown mapping f(x) : R" — R™ can be approximated/
represented on a known compact set X C R" by an NN with N fixed neurons ¢;(x)
and using unknown ideal constant connection weights that are stored in a matrix
® ¢ RV

flx) = O" d(x) + &(x) (12.10)
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Without a loss of generality, we define the approximation set
X=Xg={xeR": |x]| <R} (12.11)

to represent a sphere of a finite and known radius R. We shall also assume that
inside the sphere, the ideal (unknown to the designer) approximation can be
achieved within a known approximation tolerance ¢y > 0:

e@)]| < e, YxeXg (12.12)

Outside of Xg, we postulate that the approximation error can be upper-bounded
(norm-wise) by a known possibly unbounded positive scalar function &max (x):

||8(X)|| < gmax(x)a Vx ¢ Xr (12.13)

The control objective is to design a state feedback MRAC system, which
guarantees boundedness of all signals in the corresponding closed-loop dynamics;
while forcing the system state x(¢) € R", follow the state x,.¢(¢) € R" of the desired
exponentially stable reference model

Xref = Aref Xref + Brep (1) (12.14)
driven by a known bounded time-varying reference command signal (¢) € R",
Ir()] < rmax, V>0 (12.15)

whose maximum bound 7,y is known.

We are going to construct an adaptive command tracking controller, capable of
operating in the presence of the system structured and unstructured uncertainties,
where the latter are represented by (a) the state-dependent function approximation
error ¢(x) € R in (12.12) and (b) the bounded disturbance £(¢) € R" in (12.9).

Let us immediately note that while the disturbance term &(7) is uniformly
bounded, the approximation error ¢(x) becomes bounded only if the system state
x(?) is located inside the sphere X. So, in addition to command tracking, we need a
state limiter logic that would keep the system state within the approximation set X,
or it would bring it back to Xk, if the state happens to be outside of the approxima-
tion set. This observation suggests a control law in the form

u=K"'x— o' D(x) +(1 — pu(x)) KT r 4-u(x) ug
e ~~

Uy U

=ty + (1 — p(x)) ur + pu(x) ug (12.16)
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u(x)
|
:
]
s ]
Fig. 12.5 State modulation function
where
_pT 5T
Uy =K, x— 0" d(x) (12.17)
Y
7

is the adaptive stabilizing term with adaptive gains K, € R"*" and O € RV,

u, =K'r (12.18)
is the adaptive command tracking component with an adaptive feedforward com-
mand gain[%, € R™ u(x)is the state modulation function, and u is the state limiter.

This controller will be designed to operate as follows. The adaptive stabilizing
term u, will provide closed-loop stability for all x € Xp. At the same time, the
adaptive command tracking component u, will force the system to follow
commanded trajectories of the desired reference model. If the system state x(¢) starts
outside of Xy, or if the system disturbance &(¢) pushes it outside of the approximation
set, then command tracking will subside and the state limiter u#y will be responsible to
bring x back into Xy (in finite time), where command tracking would resume.

These two modes of operation, tracking and state limiting, are governed by the
state limiter modulation function wu(x), which essentially “gain-schedules” the
controller (12.16) to smoothly transition between the adaptive tracking and
the state limiting tasks.

We define the state limiter function as

1(x) =maX<0, min<1, |(|)16H——5fl]:>> (12.19)

where 0 < § < 1 is a constant. A sketch of this function is shown in Fig. 12.5.
By definition,

plx) = (12.20)

0, xe&Xsr
1, X¢XR.
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and the positive constant ¢ defines the width of an annulus inside Xz where
0 < u(x) < 1. According to (12.16), (12.19), and (12.20), the state limiter will
turn the adaptive tracking on for all x € Xsg, or it will turn the state limiter on
for x ¢ Xg. In the annulus set 0 R < ||x|] <R, both tasks are active, with one of
them fading out and the other fading in, linearly in ||x||.

Our choice of the modulation function in (12.19) is by no means unique. Other
definitions can easily be constructed to accomplish the gain-scheduling feature of
the adaptive controller (12.16).

In order for such a control solution to exist, the model matching conditions must
hold:

A+BAK! = Ay
BAK" =B, (12.21)
where K, K, denote the ideal unknown constant feedback and feedforward gain
matrices, respectively. Only existence of the ideal gains is assumed, whereas their
knowledge will not be required to perform the design.

In(12.17), f(x) = 6 ®(x) is the function approximator. It is easy to see that the
related function approximation error,

Af(x) = f(x) = f(x) (12.22)
depends linearly on the parameter estimation error A®@ = 0-0:
. T
Af(x) = (@ - @) D(x) — &(x) = AOT D(x) — &(x) (12.23)
——
A®

Using the model matching conditions (12.21), the open-loop system dynamics
(12.8) can be written as

X=Afx+Brpr+BA(u—K x— K r+£(x))+ (1) (12.24)
Substituting (12.16) into (12.24) yields

X=A;Xx+Byr+BA (ux—i— (1 —w)u, + pug —KXTx—KrTr—&—f) + ¢
:A,~€fX+B,~gfr
+BA (ux— K x+f+ (1 —p) (w,— K r) +p(ug — KL r)) + ¢ (12.25)
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With (12.17) and (12.18), we get

X = A,.efx + Bref r+ f

FBA| (K—K) v~ (0-0) @tet(1-p) (K —K)'r
—— ~— Z SN——
AK, A AK,
+BAu(ug —K''r) (12.26)

or, equivalently,

X = Arefx +Bref r+ é
+BA(AK{x—A®" ® + e+ (1 — p) AK] r+ p(ug — K[ r))  (12.27)

where
AK,=K.—K,, AK,=K,—K,, A®O=0-0 (12.28)
are the parameter estimation errors. Let
€ =X — Xpef (12.29)

denote the state tracking error. Subtracting (12.14) from (12.27) gives the state
tracking error dynamics:

é :Arefe +§
+BA(AK x —A®T ® + e+ (1 — ) AKT r+ pu (ug — KI' 7)) (12.30)

We introduce matrix P € R"*" to represent the unique positive-definite symmetric
solution of the algebraic Lyapunov equation,

PArs+AlyP=-0, 0=0">0 (12.31)

and consider a quadratic radially unbounded Lyapunov function candidate in the
form
V(e, AK,, AK,, A®) = e'Pe
+tr ([AKI T, AK, + AK] T, ' AK, + A®" T'y' A®] A)
(12.32)
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where 'y, = l“f >0, I,= F,T >0, Te= F(Ta > 0 are the rates of adaptation.
The time derivative of V, along the trajectories of the error dynamics (12.30), is

given by

V=i"PetePé+2u([AKTT K, +AKI T 'K, + 407 T 6] A)

=—e'Q e+2ePE
+2e'PBA (AKXTx— AOT® 44 (1 — ) AK  r + (ug —Kl,Tr))
+2u([AKT T1K, + AKI 'K, + 407 T 0] A) (12.33)

Regrouping terms further yields
V=—elQe+2e'PE+2e"PBA (,u (usl —KrTr) +.9)
+2[e"PBAAKT x4 r(AKTT 'K A
+2[(1= e PBAAK r 4+ 1r(AKT T 'K, A )|

+2[-e'PEAAOT ® +21(AOT T 0 A)] (12.34)

Via the vector trace identity a’b = tr(ba’), which is valid for any two column
vectors a and b, we obtain

e’PBAAK " x =tr| AKTx 'PBA
S —— —_—

al b b al

e'PBAAK"r =tr| AK'r ¢'PBA
N—— N——

7 N~ N~ 7
a b b a
e’PBA AO" d(x) =tr | AOT ® ('PBA (12.35)
H;—/ , H};—/H;—/
a b a

Substituting (12.35) into (12.34) results in
V=—elQe+2e'PE+2e'PBA (,u (uxl —K,,Tr) + a)
+ 2tr(AKZ [l";lléx +xeTPB} A)
+ 2tr(AKZ {l"r_llé,. +(1—p) reTPB} A)

+2u(a0" [rg! o oPB| A) (12.36)
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In order to keep the adaptive gains K,, K., © uniformly bounded, we shall
employ projection-based adaptive laws (Sects. 11.3, and 11.4) in the form

K, = Proj(K,, ~T xe'PB)
[ér = Proj(K,,—(1 — p)T,re"PB)
O = Proj (@, To <1>eTPB) (12.37)

where Proj(®, Y) is the Projection Operator, which maps two (n X N) matrices,
Q=1[6, ... Oy]eR™ and Y=[5 ... yy]€R™ into a (nxN)
matrix, denoted by Proj(Q, Y). The operator is defined column-wise,

Proj (Q, Y) = (Proj (él, yj) ... Proj (éN, yN)) (12.38)
and its column vector components are

Proj (E)'j, yj.) y —%f/ﬁ if {fj>0/\ (y]T ij) >0] (12.39)

y if not

where f (0,) :R" — R is a convex function that defines the desired parameter
domain. Given 0;"**, the maximum allowable magnitude of the column vector 0;
and a small constant & > 0, the convex function is

2
L+ g) ||0)]* — (om
I Ui )

f( i) = 3 (0}“‘”‘)2

With the adaptive laws (12.37) and because of the previously established convex
properties of the Projection Operator, one can show that the derivative of the
Lyapunov function (12.36) satisfies the following inequality:

V<—e'Qe+2ePE+2e"PBA (u(uy — K/ 1) +e) (12.41)

In order to eventually prove stability and bounded command tracking, we need
to analyze if V can be made nonpositive outside of a compact set. Toward that end,
let us suppose that x ¢ Xg. Then, u(x) = 1 and (12.41) becomes

V< —eTQe—i-ZeTPf—f—ZeTPBA(uS;—K,Tr+s)
< — Janin(Q) le]* + 2 |le]| 2max (P) Emax + 2" PBA (ug — K r+¢)  (12.42)
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In order to make the right-hand side of (12.42) nonpositive, we choose the state
limiting control uy in the form

ug = —ky (x) sgn(B" Pe) (12.43)

where kg (x) > 0 represents the state limiter gain, and the sign function is under-
stood component-wise. Then,

e"PBAug=> (e'PB), Jiug;=—ka(x) > _|e"PB| % (12.44)
i=1

i=1

and with (12.43) inserted into (12.42), we get

Vg_imin( )” ||2+2|| ||}maX( )émax
T T T ..
—2kg(x Z|e PB| Ji+e"PBA (K] r+¢)
i=1

= —/min(Q) ||e|| +2 ||e|| Amax (P) Emax

—2 i|eTPB|iii (katx) = sgn((e"PB),) (KT r—2))  (12.45)

If we now choose the state limiter gain to be large enough,
ky; (X) = K max "max + €max (x) (12.46)

where K, max > ||K;|| and rpax = max |l7(#)]], then
>

V < —~Zuin(Q) llell” +2 llel] Zumax (P) Em

;Lmax P
— ~ imn(@) ] (el =2 7200 ) <0 (12.47)
outside of the compact set:
/lmax(P)
= " < ax = .
Ey {e ER": |le|| <2 7oin(0) & max eo} (12.48)

Therefore, e(f) enters a larger compact set Ey O Eg, in finite time T [7-9].
Moreover, for all + > T, there must exist a positive constant ¢y, such that

2o 2 [le(D)ll = [|x(2) = xrr () || = (@)1 = [|xrer (1) (12.49)
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Hence,

(@) < @0 + [Prrer (1) ]| < €0 + Xrer max (12.50)
where the upper bound Xt max can be explicitly computed based on 7, and the
properties of the reference model (12.14). So, if we choose the approximation set Xz
to be large enough,

R > ¢y + Xref max (12.51)

then forall t > T,
[x(0)]| <R (12.52)
that is, the system state x(¢) enters Xy in finite time 7" and remains there afterward.
Inside the set Xg, the state modulation function is zero, and the approximation

error ¢(x) becomes small. Hence, the Lyapunov function time derivative from
(12.41) can be upper-bounded as

1% < —eTQe—&—ZeTPé +2¢'PBAe
< — Zmin(Q) ||€||2 + 2 |le]| Zmax(P) (&max + [|B|| Amax €0)

= o) el (lell =2 50 (e + 1B i) (125

Consequently, V < 0 outside of the compact set:

;Lmax (P )
jvmin (Q)

E = {e ER": | <2 (Eax + I1B]| Amax £0) = el} (12.54)

Hence, e(¢) enters a compact set E; D E, in finite time T; [7-9], where it will
remain afterward. Similarly to (12.49) and (12.50), we get an upper bound

”x([)H <e +xr¢{f max (1255)

for some positive constante; > €. In order to ensure that x(¢) remains inside Xg, it is
sufficient to strengthen the inequality (12.51) and assume

R > el +xref max (1256)

As we have already mentioned, the adaptive parameters will remain uniformly
ultimately bounded (UUB). This property is due to the convexity of the Projection
Operator (Sect. 11.3, Lemmas 11.3, 11.4). Consequently, all trajectories of the
closed-loop system (12.8), (12.16), and (12.37) are UUB. Moreover, the tracking
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Table 12.1 Projection-based MRAC design with state limiter constraints

Open-loop plant x=Ax+BAu+f(x))+ &)
Reference model Xref = Aref Xrep + Brep (1)

State tracking error e =X— Xpef

Lyapunov equation for adaptive laws PA+ A,Tef P=-0

Total control input u=u+ (1 — pux))u + pu(x) ug
State modulation function (x) = max ( 0. min (17 |(|)1cH7—5;3 ﬁ))
Adaptive stabilizing term 0, = [gz X— (;)T D(x)

Adaptive tracking term u = K7y

State limiter ug = —ky(x) sgn(BT Pe)

State limiter gain ks1(x) = K; max F'max + €max (X)
MRAC laws with Projection Operator Iﬁ =Proj ([C»7 ~I'yxe'PB)

i%r :Proj(ler7 (u(x) = 1) T, r "PB)

© =Proj (é, o c1>eTPB>

EITOT e = X — X,¢ enters a neighborhood of the origin, in finite time. The radius of
this neighborhood (i.e., the tracking error ultimate bound) is determined by the
minimum level set of the Lyapunov function V, which contains the set

E={ccR": | <e&}
{K e R | (Ky),

<{k e R || (&) || < (RP™), 1< <m)

x{(:DERNX’":

outside of which V < 0.

This argument completes the design and analysis of the MRAC controller with
state limiting constraints for MIMO dynamics with both structured and unstruc-
tured uncertainties. We summarize the derived design equations in Table 12.1.
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Fig. 12.6 Aircraft on final approach to landing

Next, as an illustrative example, we are going to design an adaptive automatic
landing system for a generic medium-size transport aircraft.

Example 12.3 Automatic Landing System for a Medium-Size Transport
Aircraft Modern transport aircraft are equipped with automatic landing systems
whose sole purpose is to fly the vehicle along the desired trajectory, all the way until
a predetermined touchdown point on a runway (Fig. 12.6).

On final approach to a landing, an aircraft would extend its wing leading edges
(slats), move wing trailing edges (flaps) down, and deploy its landing gear. As a
result, the vehicle aerodynamic drag increases, and the airspeed decreases. With the
flaps and slats extended, the aircraft wing would be optimized (per design) to
produce a sufficient lift force and to enable a low-speed landing, with a gentle
touchdown at the designated runway touchdown point.

For clarity, we assume that the runway is parallel to the horizon and that the
aircraft undergoes vertical and longitudinal motion only, that is, the vehicle can
change its vertical and forward velocity components and it can also pitch up or
down. In this case, the vehicle primary control inputs are engine thrust (J,,, %) and
elevators (collectively movable tail surfaces, J., deg). The regulated outputs are
represented by the true airspeed V (ft/s) and altitude above the runway (/, ft). From
Fig. 12.6, it is not difficult to see that the aircraft angle of attack « (rad), the pitch
angle (0, deg), and the flight path angle y (rad) satisfy the following equality:

a=0—y
Another important relation exists between the vehicle rate of climb h (ft/s), the

runway velocity d, the airspeed V, and the flight path angle y. From Fig. 12.6 (for a
small flight path angle), we get

h=Vsiny~Vy
szcosy%V
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The desired trajectory for the aircraft to follow consists of two segments:
(a) straight line approach and (b) flare. Typical approach angles range between
negative 2 and 3 degrees of y, with the desired airspeed of 140-160 knots.

During the approach phase, the aircraft is commanded to fly a constant airspeed
and a constant flight path angle. On the other hand, the main purpose of the flare is to
slowdown the aircraft rate of descent (called the “sink rate”) and to make a smooth
transition from the selected approach glide slope (i.e., the flight path angle y) to a
shallow angle, at an altitude of approximately 50-65 f. above the runway.

A moderate flare can be described by a linear first-order differential equation
such as

. 1
h = T h,  h(tp) = hy

where (tﬂ, hﬂ) are the flare initiation time and altitude, respectively. Also, 7, is a
positive time constant. The flare initiation altitude 4z and the time constant 7, can be
chosen such that the vehicle would make a smooth transition from approach to flare
and it would touch down within a predetermined distance along the runway. Let us
formally define these two requirements.

A smooth transition from the approach phase (Vimg = Vo,  Vema = Yo) to flare
implies that at # = #5, the following relation must take place:

: 1
h(tn) = V7 (tn) = Vona Vema = = =
n

In addition, we impose a restriction on the runway distance traveled in 415
seconds from the start of the flare maneuver,

t//+4 k73
V(t)dt=d
i

where d is the desired distance to touchdown (see Fig. 12.2). Assuming constant
airspeed throughout the entire maneuver, V() & V4 gives

tﬂ+4rh
V([) dt =~V adt,=d

i

Then, the flare time constant is

Ty =
4 V(:md
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and the flare initiation altitude can be computed as

d
hﬂ = —Th VCW!d Yemd = — Z Yemd

For simulation purposes, we consider a generic midsize transport aircraft flying
wings-level at an altitude of 4y = 300 ft above ground, with its landing gear down
and with flaps/slats extended. The vehicle true airspeed is Vo = 250 ft/s. The
corresponding longitudinal linear (nominal) dynamics are of the form

1% —0.038 18.984 0 —32.174 0 1%
& —0.001 —0.632 1 0 0 o
qil= 0 —0.759 —0.518 0 0 q
0 0 0 1 0 0 0
h 0 —250 0 250 0 h

10.1 0

0  —0.0086 5

+ 10025 —o0o011 ( ;) &
0 0 :
0 0 !
B

We wish to emphasize that our model represents a generic midsize aircraft and
that the linear data are selected for the purposes of design, analysis, and simulation
[11, p. 300].

As the aircraft approaches the runway, it will experience a significant increase in
its aerodynamic lift force and the pitching moment. This phenomenon is called the
“ground effect.” Flying in close proximity to the ground drastically changes the
airflow beneath and past the airplane. As a result, the ground effect tends to make
the vehicle float along the runway.

In order to properly account for the ground effect, we need to modify the aircraft
linear dynamics. The vehicle aerodynamic forces and moments depend on the relative
motion of the aircraft with respect to the atmosphere. In our example, dynamics of
these forces and moments are defined by the first three equations. The ground effect
induces a change in the vertical (updraft) linear displacement of the air mass, and so,
the aircraft aerodynamic forces and moments depend on the difference o — o, (/)
between the aircraft angle of attack o and the angle of attack induced by the vertical
updraft o, (h), which in turn represents a uniformly bounded function of the ground
proximity (i.e., altitude) 4. So, the ground effect phenomenon can be embedded into
the linear model as follows:
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1% —0.038 18.984 0 32,174 0 1%
& —0.001 —0.632 1 0 0 o
qgl= 0 —0.759 —0.518 0 0 q
0 0 0 1 0 0 0
h 0 —250 0 250 0 h
S~—— N——
X A X
10.1 0 —18.984
0  —0.0086 0.632
+ | 0025 —0011 ( ”1> +| 0759 | op(h)
0 0 - 0
0 0 ! 0
————
B B

or, equivalently,
X=Ax+Bu+Bga,(h)

where we have added an extra term B, o,(/), with a constant vector B,, whose first
three components are equal to the opposite of the corresponding values in the
second column of A. This modification reflects our observation that the first three
equations in the aircraft dynamics depend on the relative (with respect to the air
mass) angle of attack o — a, ().

It is not difficult to see that B, can be reconstructed as a linear combination of

the columns in B:
—1.8796
5 (—73.2718) =B

———
0.@’

In other words, the ground effect represents a matched uncertainty, and the
resulting model takes the form of (12.8):

X=Ax+B (u+0,0,h))

Let us make a quick remark about the ground effect matching condition: It is not
a requirement for our design. Since o, (%) is a uniformly bounded function of 4, it
can be treated similar to the bounded disturbance &(¢) in (12.8), as long as we can
ensure that / is bounded. So, the ground effect unmatched effects on the aircraft
dynamics can also be mitigated (see Exercise 12.3).

Continuing on, we define the system-regulated output to consist of the aircraft
true airspeed and altitude (same as the aircraft height above the runway):
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_(VY_(r 0000\ _ .
Y=\n)= Voo o0 o0 1)*"

C

Accurate aerodynamic data that describe the ground effect are often not available
or highly uncertain, yet their undesirable influences on the aircraft landing perfor-
mance must be taken into account. In order to mitigate these uncertainties, we shall
design a (robust + adaptive) automatic landing flight controller, with predictable
and quantifiable landing performance characteristics. Specifically, we are going to
design a robust adaptive controller to simultaneously track commanded airspeed
Vema and commanded altitude 4.,,,;. These two external commands are grouped into
the external vector signal:

r= (chd Nema )T

Our selection of these two specific commands will enable automatic steering of
the aircraft along a given flight path, all the way to a designated touchdown point on
the runway. So, our main control goal is to design u to force y to follow the external
vector signal r in the presence of unknown ground effects.

Beginning with the design of a baseline controller for automatic landing, we use
the aircraft model without the ground effect uncertainty and employ the familiar
LQR method. The baseline control input is

upy =K' x +K'r

where K, € R°*? and K, € R**? are the baseline feedback and feedforward gain
matrices, respectively. These gains can be calculated as follows. We choose

Qi =diag(.02 0 0 0 1), Ry =diag(20 20)

to compute K, using the LQR method,

Kl =—

X

0.1173 —89.1740 42.8761 140.0007 0.2340
0.0186 —40.6065 4.3798 58.6016 0.2127

from the reference (nominal closed-loop) matrix,
Auy = A+BK!

and then, determine K, such that the closed-loop baseline system DC gain, from the
commanded input r to the regulated output y, is the (2 x 2) identity matrix:

-1
DC Gain = —CA, } BK] :IZXZ} = {K,.T = —(CA;}B) }
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Table 12.2 Reference model eigenvalues in Example 12.3

Eigenvalue Damping, n/d Frequency, rad/s
—0.647 £ 1.03 j 0.531 1.22
—0.529 £ 0.158 0.958 0.552
—1.39 1.0 1.39
This gives

K'=

r

—0.7753 0.8531
0.2340 0.2127

and the reference model dynamics, as in (12.14),

Xref = (A + BKxT) Xref + (B KrT) r
———— ——

Aref Bre

whose eigenvalues are shown in Table 12.2.

We now turn our attention to the definition of the desired altitude profile. Given
the approach airspeed Vy = 250 (ft/s) and the target glide slope 7, = —2.5 (deg),
we set the runway distance at d = 3,000 (ft), compute the corresponding flare time
constant,

d

=30
4V, (5)

Ty =
and define the flare initiation altitude:
d
hg = ~2 Yo = 32.7249 (ft)

Then, we compute the commanded altitude trajectory, starting from the initial
altitude iy = 300 (ft) and continuing all the way down to the runway touchdown point:

hy, f0<r<1
homa(£) = 4 ho+Voyo (6= 1), if hewa>hp, 1> 1

_L(—1—
e T i g < gy £ 1

The resulting altitude command profile is shown in Fig. 12.7.

Note that during the first 1 s of flight, we set the altitude command constant. This
will enable a smooth initiation of the landing sequence.

With the baseline controller turned on and without the ground effect, the
baseline closed-loop system tracking performance is satisfactory (see Fig. 12.8).
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Fig. 12.7 Approach, flare, and landing altitude profile in Example 12.3
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Fig. 12.8 Baseline closed-loop system performance (no ground effect) in Example 12.3

Required for the baseline landing maneuver, the elevator and thrust values are
very benign (Fig. 12.9).

For pure academic purposes, we shall use the following equation to emulate the
ground effect:

og(h) = —0.0698 (1 — tanh(0.1 (h — 60)))

The ground effect equation is plotted in Fig. 12.10.
As seen from the plot, the ground effect contributes to as much as 8 degree of
angle of attack change (negative), as the aircraft approaches the runway.
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Fig. 12.10 Incremental angle of attack data due to ground effect in Example 12.3

Turning the ground effect on, while using only the baseline controller, results in
a significant degradation of the aircraft landing performance (Fig. 12.11).

The simulation data show that while operating under the baseline controller only
and in the presence of the ground effect, the vehicle floats along the runway, while
its airspeed increases and deviates from its commanded value.

The corresponding elevator and thrust control inputs remain within reasonable
limits (Fig. 12.12).

So, the baseline system attempts to counteract the unknown ground effect by
reducing thrust to keep the speed down and by moving the elevator trailing edge up
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Fig. 12.11 Baseline closed-loop performance during landing with ground effect in Example 12.3
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Fig. 12.12 Elevator and thrust data during baseline landing with ground effect in Example 12.3

to stabilize the aircraft pitching motion. Nevertheless, the baseline controller fails in
the sense that overall, the vehicle landing performance is clearly unacceptable.

Next, we design an adaptive augmentation to help the baseline system cope with
the ground effect-induced unknown effects. First, we choose the regressor vector
with five altitude-dependent RBFs and with a single constant bias:

O = (O1(h) Dy(h) D3(h) Da(h) @s(h) 1)"
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Fig. 12.13 RBEF selection for adaptive control design in Example 12.3

The selected RBFs are uniformly distributed on the altitude interval [—20, 60],
with 20-ft separation from each other. All five RBFs have the same input scaling:

W

O;(h) = exp(—0.0056 (h — h,-)z), i=1,...

When plotted versus altitude, these functions give a homogeneous coverage of
the altitude range, where the ground effect is prevalent (Fig. 12.13).

Using the selected regressor vector @, it is possible to closely approximate the
ground effect-induced angle of attack function o, (%) on the interval of interest
(see Exercise 12.3).

To design an adaptive augmentation, we choose

Q=diag(l 0 1 0 0)
to solve the algebraic Lyapunov Eq. (12.31) for P, select rates of adaptation,
Ii=T,=0, Te=201/xs
and form the adaptive laws per Table 12.1.
After several design trials, we have decided to set the modulation function z(x)
to zero, since its contribution to improving landing performance is negligible

(in this case).
Total control is defined as an adaptive augmentation of the baseline LQR system,

U = Up + Uagq
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Fig. 12.14 (Baseline + Adaptive) closed-loop performance with ground effect in Example 12.3

where

~ T

Ugqa = -0 (D(h)

represents the adaptive component. This is a slight deviation from the design
equations in Table 12.1, where we have an adaptive controller without a baseline
system (see Exercise 12.2).

With the (baseline + adaptive) controller turned on and in the presence of the
unknown ground effect, the system closed-loop performance is well recovered to
that of the desired baseline (Fig. 12.14).

In fact, the data are almost indistinguishable from the baseline tracking
(Fig. 12.8). However, once the aircraft descents below 60 ft, where the ground
effect is active, the required control inputs (Fig. 12.15) differ from the baseline data
(Fig. 12.9).

Yet, all controls remain smooth and reside within practical limits. In addition,
the adaptive augmentation provides a sufficiently close estimate of the ground
effect. This “bonus” outcome can be attributed to the fact that the ground effect
persistently excites the vehicle dynamics, and as a result, the adaptive parameters
converge to their constant unknown values (see Exercise 12.3). O

In conclusion, we note that the adaptive feedback/feedforward design method
from Table 12.1 can be modified to incorporate a robust baseline controller with
proportional and integral feedback (see Exercise 12.4). This would eliminate
feedforward connections, which in its own right may become a desirable feature
or even a requirement in some applications.
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Fig. 12.15 Total control during landing with ground effect in Example 12.3
12.5 Summary

We have developed an adaptive design method to control MIMO dynamics in the
presence of unstructured uncertainties, such as nonlinear state-dependent functions
and bounded time-varying process noise. The resulting MRAC system represents
an extension of the previously derived adaptive controllers for linear-in-parameter
matched uncertainties.

Our current adaptive design includes a state limiter and a state modulation
function. The state limiting logic was originally proposed in [10]. The state limiter
keeps the system trajectories within predefined boundaries that define an operational
envelope for the system. This is the set where we can represent the state-dependent
uncertainties by linear-in-parameter RBF NNs. The state limiter is also capable of
bringing the system state back into the operational envelope in finite time.

The state limiting mode is turned on or off by the state modulation function,
which in turn provides a gain-scheduling feature between the command tracking
and the state limiting modes of operation. In other words, the state limiter can
seamlessly fade in and/or out the command tracking or the state limiting tasks,
depending if the system state is located inside or outside of the operational
envelope, respectively.

We have also presented a concise overview of function approximation properties
using artificial NNs. This material justifies our model formulation and control
design approaches for representation and attenuation of the system nonlinear-in-
parameter uncertainties.



384 12 Approximation-Based Adaptive Control

In summary, we have employed Lyapunov-based arguments and artificial NNs
to attain UUB tracking performance for MIMO dynamics with both structured and
unstructured uncertainties.

12.6 Exercises

Exercise 12.1. Select a scalar non-monotonic function. Use an off-line regression
to approximate the selected function with sigmoidal and RBF neural networks.
Increase the number of neurons and record the corresponding function errors. Plot
the following data: (a) the function and the approximating NN and (b) the function
approximation error versus the number of neurons. Repeat these tasks for a function
of two independent variables. Comment on your results.

Exercise 12.2. Modify design equations in Table 12.1 to justify an adaptive
augmentation-based design. Prove closed-loop system stability, show boundedness
of all signals, and quantify tracking performance.

Exercise 12.3. Repeat the control design and all simulation steps from Example
12.3. Using the selected regressor @, perform off-line approximation of the ground
effect-induced angle of attack function o, (/). Compute the corresponding online
approximation of the same function. Compare and discuss the off-line versus online
approximation data. Modify the aircraft open-loop matrix A such that the ground
effect matrix B, is no longer matched. Introduce a control uncertainty A # I, and
add a uniformly bounded process noise £(¢). Redesign the controller (if needed) and
rerun all simulation tests. Discuss robustness properties of the controller with
respect to the unmatched ground effect uncertainties and the process noise.

Exercise 12.4. Similar to (12.37), derive an adaptive augmentation of a baseline
proportional integral (PI) controller, (baseline PI + adaptive), with a state limiter
modification similar to (12.16), for the extended open-loop system dynamics,

X=Ax+BA (u+[(xp)) + Bref Yoma + £(1)

with m inputs u, m regulated outputs y = Cx, m commands Yy, € R", and
n uniformly bounded noise components &(f) € R", where (A, B) is a controllable
pair of unknown matrices, A € R™ is an unknown positive-definite diagonal matrix,
and f (xp) denotes an unstructured matched state-dependent uncertainty. It is
assumed that the first m components of the state vector x represent the integrated
output tracking error, whose dynamics are é,; =y — y.,.4-

Exercise 12.5. Using the design equations from Exercise 12.4 and the aircraft data
from Example 12.3, design and simulate a (baseline PI + adaptive) automatic landing
system. Are there any advantages in using a PI baseline controller versus a feedback/
feedforward system from Example 12.3? Compare and discuss your results.



References 385

References

—

11.

. Scarselli, F., Tsoi, C.: Universal approximation using feedforward neural networks: a survey of

some existing methods, and some new results. Neural Netw. 11(1), 15-37 (1998)

. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems —

a survey. Automatica 28(6), 1083—-1112 (1992)

. Micchelli, C.: Interpolation of scattered data: distance matrices and conditionally positive

definite functions. Constr. Approx. 2, 11-12 (1986)

. Cybenko, G.: Approximation by superposition of a sigmoidal function. Math. Control Signals

Syst. 2, 303-314 (1983)

. Barron, A.: Universal approximation bounds for superposition of a sigmoidal function. IEEE

Trans. Info. Theory 3, 930-945 (1993)

. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neu-

ral Comput. 3(2), 246257 (1991)

. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Control. Dover, New York (2005)
. Ioannou, P., Fidan, P.: Adaptive Control Tutorial. Advances in Design and control. SIAM,

Philadelphia (2006)

. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (1996). 07458
. Sanner, M.R., Slotine, J.-J.E.: Gaussian networks for direct adaptive control. IEEE Trans.

Neural Netw. 3(6), 837-863 (1992)
Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley, New York (1992)



Chapter 13
Adaptive Control with Improved
Transient Dynamics

13.1 Motivation

Let us return to the original concept of the model reference adaptive control
(MRAC), as it was first proposed in 1958 by Whitaker et al., at MIT [1]. The
main idea was to specify the desired command-to-output performance of a servo-
tracking system using a reference model that would define the ideal response of the
system due to external commands. A generic block diagram of the MRAC system is
shown in Fig. 13.1.

As seen from the diagram, the controller parameter adjustments (the adaptive
law) are made based on the tracking error (the difference between the system actual
response and its target specified by the reference model output), an output feedback
from the process, and the external command.

Example 13.1 For clarity and to motivate further discussions, let us consider
MRAC design equations for a scalar system shown below:

Process X=ax+bu
Ref. Model t Xpef = Qrof Xref + Drof 1
Controller cu=kex+kr (13.1)

Adaptive Law : { /i" = =X (¥ = Xrep)

kr = =71 (X = Xpep).

where @ and b are unknown constant parameters in the process dynamics with the
known sgn b > 0. The control input « is selected such that the system state x follows
the reference model state x,.s, driven by any bounded external command r = (7).
Also in (13.1), the reference model data a,,s <O and b, are chosen to yield the
desired speed of response and a DC gain (unity in most applications) from the
reference model output y,,; = X, to the system-regulated output y = x.

In this case, closed-loop system stability and global asymptotic tracking are
achieved via a specific choice of the adaptive law in (13.1), with the adaptive gains

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 387
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_13,
© Springer-Verlag London 2013
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External Reference Ref. Model _ ~  System

Command Model Output = Y 4 Response
v
Adaptive |
Law
A\ 4
t
Controller Command Process Rz; ;:; o

Fig. 13.1 MRAC block diagram

(ng, lg,.), whose dynamics is influenced by two positive constant rates of adaptation
(74, 7-)- As seen from (13.1), the state tracking error

€ =X — Xpef (13.2)

drives the adaptive laws. Existence of a servo-control solution for this particular
scalar dynamics is provided by the matching conditions,

Qe = a+ bk,
b/'ef =bk, (133)

where k, and k, denote the ideal unknown constant parameters (gains of the ideal
controller). For scalar dynamics, such as the process in (13.1), it is clear that the
matching relations (13.3) always have a solution.

Let

Aky = ky — ke,  Aky = ky — Ky (13.4)

represent the parameter estimation errors. Substituting the matching conditions
(13.3) into (13.1), one can derive the tracking error dynamics,

é=apye+b(Akyx+ Ak, r) (13.5)

which indeed define transients in the corresponding closed-loop system.

We emphasize that both the tracking error dynamics and the transient dynamics
are indistinguishable. In other words, if and when e becomes small, the system
output tracks the reference model with diminishing errors. On the other hand, the
transient dynamics define what happens between the start of a maneuver and the
time when the error gets small. We shall address this question in this chapter.
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Returning to (13.5), we can employ Lyapunov arguments to prove global
asymptotic stability of the tracking error dynamics. In fact, using a radially
unbounded quadratic Lyapunov function candidate in the form

—

Vx Tr

A AK?
+ N

V(e, Ak, Ak,) =e*+b (13.6)

it is not difficult to show that with the adaptive law (13.1), the time derivative of V,
evaluated along the trajectories of the error dynamics (13.5), becomes nonpositive.
This argument constitutes the inverse Lyapunov-based design. It provides (a) the
adaptive law and (b) the required proof of closed-loop global asymptotic stability.
As a result, we can formally show that for any initial condition, any bounded time-
varying external command, and any positive rates of adaptation, the tracking error
dynamics (13.5) are globally asymptotically stable,

lim |e(?)| = Ilirglo lx(t) = xep (1) = 0 (13.7)

—00

and all signals in the corresponding closed-loop dynamics remain uniformly
bounded, forward in time.

We immediately note that this adaptive controller solves the servo-tracking prob-
lem asymptotically in time, as t — oo, while it provides no uniformly guaranteed
bounds on how large the transients might become prior to acquiring the command.

In the previous chapters, we have shown that in order to yield fast tracking and
thus shorten transient times, one needs to increase the rates of adaptation (y,, 7,).
However, experience shows that if these rates grow large, then unwanted transient
oscillations will start to occur during the initial few seconds (the transient time) of
operation. The balance between achieving fast tracking and avoiding undesired
transients constitutes the MRAC design trade-off phenomenon. In essence, the rates
of adaptation must be chosen large enough but not too large.

What also complicates the MRAC design tuning process is the direct dependence
of the transient dynamics (13.5) on (a) the external command and (b) the initial
conditions for the system and the adaptive controller. These parameters may too lead
to undesirable transients.

Let us take a step back and look again at the error dynamics (13.5). We know that
the time-varying signal

o) = b (Aku(1) x(1) + Ak (1) (1)) (13.8)

is uniformly bounded and that the tracking error e(#) globally asymptotically tends
to zero, as shown in (13.7). Still, the time constant of the transient dynamics (13.5)
L is exactly the same as the one for the reference model in (13.1).

ref
Even though having the same time constant in both systems is theoretically
correct, any control practitioner would want to have the transient dynamics (13.5)

Te =
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evolve faster than the desired reference model. In other words, we want the
transients to die out quickly, relative to the dynamics of the reference model
trajectories. This design requirement is identical to the one that takes place during
the construction of asymptotic state observers, originally developed by Luenberger
in his Ph.D. thesis at the Stanford University (1963) and later published in [2]. Per
Luenberger, the reference model in (13.1) represents an open-loop observer. So,
just like in the closed-loop observer dynamics, we can add an error feedback term to
the reference model and arrive at the observer-like reference model,

xref = Qyref Xref + bref r+ ke (X - xref) (139)

Error Feedback Term

where k, >0 is the reference model feedback gain. The newly introduced error
feedback term in (13.9) is equivalent to the output innovation feedback in a state
observer. It is easy to see that in this case, the corresponding error dynamics become
faster than the open-loop reference model from (13.1):

¢ = (ar — ke) e + b (Akox + Ak, 1) (13.10)

Once again, Lyapunov-based arguments can be easily repeated to prove (a) global
asymptotic stability of the modified error dynamics (13.9) and (b) uniform bounded-
ness of all signals in the related closed-loop system. For those readers who are familiar
with the MRAC stability proof concept, we briefly note that using the same Lyapunov
function candidate (13.6), one needs to compute its time derivative along the
trajectories of (13.10), substitute the adaptive law from (13.1), and then show that
the resulting time derivative is globally nonpositive. This will prove uniform bound-
edness of the tracking error e and of the parameter estimation errors (13.4). Further-
more, since in the observer-like reference model (13.9),a,,s < 0and the error feedback
term are bounded, then the model state x,¢ is bounded as well. The rest of the proof
follows standard (in MRAC) stability arguments, finally arriving at (13.7).

Revised block diagram with the observer-like reference model (13.9) is shown in
Fig. 13.2.

Before proceeding any further, we would like to briefly present and discuss
simulation comparison data for the observer-like reference model modification,
while using the scalar process dynamics from (13.1) and the simulation parameters
as indicated below:

Process Xx=x+3u
Ref. Model $Xper = — 10X, + 107 + &, (x — x,ff)
Controller cu=lex+ker (13.11)

Adaptive Law Ii‘ =—10x (x - xref)
kr =—10r (x — xref).




13.1 Motivation 391

External + Reference Ref. Model - System
Command Model Output - T 4 Response
+
k"l‘
+ A 4
Adaptive b
Law
. Control
ontrol .| System
Controller Command Process Response

Fig. 13.2 MRAC block diagram with observer-like reference model in Example 13.1
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Fig. 13.3 MRAC transient dynamics due to step-input command in Example 13.1

In order to assess transient improvements, we perform three distinct simulation
scenarios, where the error feedback gain %, is set to O (standard MRAC case),
10, and 80. Figure 13.3 shows step-input response data for the three cases.

The original MRAC transient dynamics are quite oscillatory. As the reference
model feedback gain k, is increased, the transient dynamics become faster and the
unwanted oscillations subside. Figure 13.4 presents simulation data comparison
between the first and the third cases. Both the system state x and the control input u
are shown. These responses were computed for a series of commanded step inputs
of increased magnitude.

As seen from the simulation data, the use of the observer-like reference model
(13.9) gives a predictable, scalable, and non-oscillatory (in transient) tracking
performance (data shown in green).

Now, we shall pose the following question: Can the simulated transient
improvements of the observer-like reference model be formally explained? We
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Fig. 13.4 MRAC tracking performance due to a sequence of step inputs in Example 13.1

claim that as the reference model error feedback gain %, is increased, the system
transient dynamics become less oscillatory.

In order to gain further insights into the transient behavior, we choose ko >0,
a small positive parameter ¢, and redefine the reference model feedback gain:

ke =— (13.12)
This allows to rewrite the modified error dynamics (13.10) in the form

cé = (ca —ko)e+e [b(Akex + Ak, 1) (13.13)
—

()

Since all signals in the corresponding closed-loop system are uniformly
bounded, it is not difficult to find sufficient conditions so that there exists a strictly
positive finite constant 0 < ¢, < 00, such that for any ¢ > 0, the upper bound
|o(t)] < ©max holds uniformly in time and e. Furthermore, starting from an initial
condition e(0) = ey, the solution of (13.13) can be written explicitly:

e(t) = e(”"‘fff%))'e(O) + Je(“"’ff%) =9 o(1) dr (13.14)
0
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We can compute an upper bound for this signal:

le(r)] < et e +E (13.15)
0

This relation is valid for any fixed ¢ > 0 uniformly in time. So, the system state

x(t) converges within (i Wg;)“ 8) of the reference model state x..s(f) exponentially

fast and at the rate which is no slower than e % . This term gives an upper bound
quantification for the decay rate of the MRAC transient dynamics, due to initial
conditions mismatch, x(0) # x.¢(0). Otherwise, the system transients would remain

within ¢-dependent bounds (:t%“ 8). Consequently, we can reduce the system

transients by decreasing ¢, which according to (13.12) corresponds to increasing the
reference model feedback gain k.. Being able to influence and shape the MRAC
transient dynamics constitutes the essential benefit of the Luenberger-like reference
model modification (13.9), (13.10), (13.11), and (13.12).

Let us give an alternative explanation for the noted transient improvements in
scalar MRAC systems with observer-based reference models. The transient dynamics
(13.13) can be analyzed using the singular perturbation methods [3]. Setting ¢ = 0,
gives the so-called “slow” component

e=0 (13.16)
or, equivalently,
X = Xyof (13.17)

Asymptotic stability of the slow component has already been established during
Lyapunov-based proofs. Therefore, as t — oo,

X = X + s r +0(1) (13.18)

where the Small o-symbol o(1) denotes a function of time that asymptotically tends
zero as t — 0o. According to (13.18), the system state x asymptotically tracks the
state of the observer-like reference model x,., with the latter asymptotically
approaching the state of the original reference model from (13.1). We compute
the “fast” dynamics by “stretching” time,

T=- (13.19)

rewrite (13.13) in the “fast” t time scale, set ¢ = 0, and arrive at the exponentially
stable fast dynamics:

de(t)
dt

= —koe(7) (13.20)
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It follows from (13.20) that during a finite transient time interval, the error
dynamics (13.20) behave like a first-order exponentially stable system. This obser-
vation confirms our claim that for a sufficiently small ¢, that is, for a large enough
gain k., the resulting transient dynamics become smooth and approach the response
of the scalar system (13.20), where k, defines inverse time constant of the transient
system. This result can be formally summarized as follows: For a sufficiently small
¢ > 0, the state of the original system in (13.1) permits the following asymptotic
expansion

x(1) = Zigg (1) + C o™ 4 0(1) (13.21)
or, equivalently,
x(t) = X (1) + Ce ! +0(1) (13.22)

where C > 0 is a constant independent of k.. The second term in (13.22) defines the
transient (i.e., “fast”) dynamics due to initial conditions. Consequently, with a large
enough feedback gain k., MRAC transient dynamics can be quantified and forced to
decay as fast as needed. We should immediately point out that since k, is inversely
proportional to ¢, then the obvious “trade-off” in the modified design would be to
avoid high gain effects in the reference model.

In the sections that follow, we will further exploit methods to analyze and
enforce desired transient dynamics in adaptive control systems. But first, we present
an overview of the mathematical preliminaries related to asymptotic expansions
and their analysis. After that, we will generalize the observer-like reference model
idea to a class of multi-input—-multi-output (MIMO) dynamical systems with
matched linear-in-parameter uncertainties. We shall conclude this chapter with
practical observations and a summary of the derived results.

13.2 Asymptotic Orders and Singular Perturbations

Let R" represent the Euclidean n-dimensional space, R" be the set of all positive real
numbers, and let R”*” denote the space of all n-by-m matrices, with integers n and
m. For any x € R", we write ||x|| for a Euclidean vector norm of x and || A|| to be the
corresponding induced matrix norm for A € R"™™.

We shall use the Bachmann—Landau asymptotic order notation, denoted by the
“Big O” and the “Small 0” symbols [4, 5]. Given any two parameter-dependent
functions (maps) f(x; ¢) and g(x; ¢), from a domain X C R” to another domain Y
C R™, with a scalar parameter ¢ € E C R from an interval E, we say that

fx; &) =0(g(x; ¢)) (13.23)
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if for each x € X, there exists a positive scalar k(x) such that
If (x; &)l < k(x)[|g(x; )] (13.24)

for all ¢ € E. Choose ¢y € E and suppose that the two limits

lim [|f (x; e)[| = [If (x; €o)l

E—&

. (13.25)
lim [|g(x; &)l = llg(x; o)l
exist. We write
flx; &) =0(g(x; €), ase— g (13.26)

if for each x € X, there exists a positive scalar k(x) and a neighborhood/interval N
(x, &9) of ¢ =&y, such that (13.24) holds for all ¢ € N(x, &). Without a loss of
generality, we assume that gy = 0. In this case, the asymptotic order relation (13.26)
defines the convergence rate of ||f(x; ¢)|| to ||f(x; 0)]|, as € — 0, while holding x
fixed. Specifically, for every fixed x € X, ||f(x; ¢&)|| converges to its limit ||f(x; 0)]|
no slower than ||g(x; ¢)|| converges to ||g(x; 0)||, as ¢ — 0. This convergence may
hold uniformly in X, yet it could completely fail outside of X. The statement (13.23)
is said to be uniformly valid in X if k(x) is a finite constant independent of x. In
addition, if the set N(x, ¢9) = N(go) is independent of x, then (13.26) is said to be
uniformly valid in x. The relations (13.23) and (13.26) define the Big O symbol.

The Small o-symbol is defined as follows. For a given domain X C R", the
statement

f(x; e) =o(g(x; ¢)), ase—0 (13.27)

means that for each x € X and any given J > 0, there exists an ¢ interval N(x, 6) =
{e6: 0<e < g(x, 0)} such that

I (x; e)ll < llglxs &)l (13.28)

foralle € N(x, J). We say that (13.27) is uniformly valid in X ife; (x, 0) = &;(d)is
independent of x. Often, the notation f < g is used to indicate (13.27).

The O and o symbols can be easily extended to parameter-dependent matrices
A(x; €) € R using vector-induced matrix norms. For example, given a matrix
A.(x) = A(x; €) € R™", the matrix asymptotic expansion

A, (x) = Ag(x) + A1 (x) e+ O(e%), ase—0 (13.29)
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means that for every x from a domain X C R”,
lim [|A,(x) — Ag(x) — Ai(x) &]| = lim ||O(&*)|| = 0 (13.30)
e—0 e—0

and the convergence rate in (13.30) is no slower than & for every fixed x. We
immediately note that there is a difference between the asymptotic expansion
(13.29) and, for example, the Taylor series expansion of the state-parameter-
dependent matrix A,(x). In fact, the Taylor series expansion may not even exist
since differentiability of A,(x), with respect to ¢, is not assumed.

In our forthcoming derivations, we will encounter singular perturbation models
[3-5]. These are dynamical systems with a small positive scale factor ¢ on some of
the system state derivatives. For example, the transient dynamics (13.13) represent
a singular perturbation model.

Generalizing (13.13), we get a singular perturbation model in the form

ez2= (Ao +0(e) z+¢ef(z, t, ¢) (13.31)
A

where z € R” is the system state, ¢ > 0 is a constant parameter, Ay € R™" is
Hurwitz, and

A; = (Ao + O(e)) € R"™" (13.32)

is Hurwitz, uniformly in &. We also suppose thatf(z, ¢, ¢) : R" X R" Xx Rt — R"isa
uniformly bounded function of its arguments,

[z, 1,6) =0(1) (13.33)
or, equivalently,
If (z, 2, )]l < fimax <00 (13.34)

uniformly in (z, ¢, ¢), where f;,.x is a constant finite upper bound of the norm of f.
In addition, we assume that f(z, ¢, €) is Lipschitz continuous in z and piecewise
continuous in (¢, &). It is not difficult to show that all of the above-stated
assumptions assure existence and uniqueness of the system solutions, starting at
any set of initial conditions zy = z(0).

It is possible to show that for a sufficiently small ¢, all trajectories of (13.31)
converge to an O(g) neighborhood of the origin, exponentially fast. This fact is
stated next.

Theorem 13.1. Consider the singularly perturbed n-dimensional dynamics (13.31),

2= (Ao +0(e) z+¢ef(z, t, ¢)
—_———

An",
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where ¢ > 0is a constant,Ay € R"*"is a constant Hurwitz matrix, and A, € R""is a
Hurwitz (uniformly in €) matrix. Suppose thatf (z, t, ¢) € R" is a uniformly bounded
vector function, Lipschitz continuous in z, and piecewise continuous in t and €.
Then, there exists a strictly positive constant y > 0, independent of €, such that the
asymptotic relation,

() =0(e7t) +0(), (2 —0) (13.35)

holds for all t > 0. If in addition to being uniformly bounded, the functionf(z, t, &)
asymptotically decays to zero in time (uniformly in z), then

2(t) = o(eﬂ’%) +0()o(1), (¢—0) (13.36)

for all t > 0, where o(1) — 0 is an asymptotically decaying time function. ]
—00

Proof of Theorem 13.1 Since A, is Hurwitz uniformly in ¢ and

A L= (A +0(e) L= 4y §+0(1) (13.37)

™ |~
™ |~

then following the proof arguments from [3, Lemma 9.9, pp. 369-371], we can
claim existence of two strictly positive constants, k and y, such that for a sufficiently
small ¢ > 0, the induced 2-norm of the exponential matrix et satisfies

A,

| = ||e O < ke 7E (13.38)

le
where (k, ) > 0 are independent of €. This fact merely states that the 2-norm of a

parameter-dependent Hurwitz matrix exponentially decays to zero, if the parameter
is selected small enough. In terms of the asymptotic order notation, (13.38) implies

o

[ERESRE

- - o(e*”f ) (e — 0) (13.39)
for all ¢+ > 0.

Because of its specific form, the singular perturbation dynamics (13.31) can be
analyzed directly by explicitly writing the system solution:

t

(=1

z(f) = iz + JeA*‘Tf(z(r), 17, &) dt (13.40)
0
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With the help of (13.39), we can easily derive an upper bound for the norm of the
system solution (13.40):

t

fs
Joll - | % e < el 2+ (22 o 1340

0

12(2)

I < flert

Thus, we have proven the asymptotics (13.35),
z@:OGﬂg+O@,(w4®

for the system solutions (13.40), evolving on an infinite time interval.

In the context of singular perturbations, this relation implies that for a sufficiently
small fixed & > 0, all solutions of (13.31) converge to an ¢ neighborhood of the origin
exponentially fast at the rate of no slower than e 7%, The first term in (13.35) describes
the “fast” (transient) dynamics of the system solutions, as they approach an ¢
neighborhood of the origin. Also in this case, ! can be interpreted as the “stretched”
time, which allows us to look at the system transients through a “magnifying time
glass,” so to speak.

Suppose that for a constant ¢ >0,

flz,t,e)=0(1) — 0 (13.42)

1—00

uniformly in z. Repeating the previous arguments that have led us to (13.35), one
can derive (13.36) (see Exercise 13.2),

zmzo@1)+m)(x (6 — 0)

for all # > 0. So in this case, the system trajectories converge to a neighborhood of the
origin exponentially fast, and after that, the solutions continue to asymptotically
converge to the origin but at perhaps a much slower rate. The theorem proof is
complete. O

Observe that setting ¢ = 0 reduces the differential Eq. (13.31) to an algebraic
relation z = 0. This is the singularity phenomenon, whereby the origin becomes the
“slow” manifold of the system. Overall, we have decomposed the system trajectories
into “fast” and “slow” components, with the former describing the rate of convergence
to the latter.

Let us mention that the asymptotic behavior (13.35) could have also been
derived using the singular perturbation methods [3-5] for trajectory analysis of
ordinary differential equations, such as the one in (13.31). We have decided to
perform a direct analysis of the system trajectories (instead of using the singular
perturbation techniques), only because for the system at hand, we could explicitly
write solutions and estimate their norm upper bounds.
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Later on in this chapter, we are going to utilize the two asymptotic relations
(13.35) and (13.36) to aid in the design of adaptive output feedback controllers.

13.3 Asymptotic Properties of the Algebraic Riccati Equation

In our forthcoming design and analysis of MRAC transient dynamics, we will
encounter parameter-dependent n-dimensional algebraic Riccati equations (ARE)
in the form

P,A+A"P, —P,BR;'B"P, +0,=0 (13.43)
where v > 0 is a constant parameter (A, B) and (A, C) are controllable and

observable pairs of matrices, with A € R"™*", B € R, C € R™", and m < n.
The ARE weight matrices are defined as

+1
0, =00+ (V . > c'c, R = (Vi 1) Ro (13.44)

where Qp € R"*" and Ry € R™™ are both symmetric and strictly positive definite.
This formulation appears in [6].

The well-known fact from optimal control of linear systems (with quadratic cost
index) states that for any v > 0, the ARE (13.43) has the unique symmetric positive-
definite solution P, > 0. This ARE arises in the optimal linear quadratic regulator
(LQR) control problems for linear time-invariant dynamics,

X=Ax+Bu, y=Cx (13.45)

with a quadratic minimization criterion in the form

o0 o0 1
Jy = J (xT O,x+u'R, u) dt = J <xT <Qo +—CT C) x+p,u’ Ry M) dt
0 0 Py
T 1
= J (xTQox+—yTy +p,u' Ry M) dt
J Py
(13.46)
where
p, = — (13.47)

v+ 1
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is a positive constant.

Let us remark that the main difference of (13.46), from a typical cost function
considered in classical textbooks on optimal control, is the presence of the second
term, which is inversely proportional to p,. This expression “punishes” the system
output, as the system input is allowed to become large with p, getting small.
Substituting (13.44) into (13.43) gives

1 1
P,A+ATP, — <1 + ) P,BR;"B"P, + Qo+ (1 +> CTC=0 (13.48)
v v
or, equivalently,
1
P,A+A"P,—P,BRy'B"P,+Qy+C"C+-[C"C—P,BR;'B"P,] =0 (13.49)
A%

We are interested in analyzing asymptotic properties of the ARE solution P,, as
v — 0. Hence, let us consider the following asymptotic expansion:

P,=Py+P v+ O(vz)7 as v—0 (13.50)

Similar to (13.29) and (13.30), the Big O symbol O(v?) in (13.50) denotes a
v-dependent (n x n) matrix, whose induced norm tends to zero no slower than V2, as
v — 0, that is,

lim ||P, — Py — Py v|| = lim [|O(v)[| = 0 (13.51)

For matrices satisfying (13.50), we can also write

Py =1imP,

v—0

which means lil’I(l) ||Py — Po|| = 0, that is, limits of parameter-dependent matrices
y—

are understood in terms of their induced norms. Before proceeding any further, we
need to introduce a square root of a matrix according to [7, p. 245].

Definition 13.1. An (n x n) matrix S = P: = /P is called a square root of a
symmetric positive-definite (n x n) matrix P, if P = ST S.

It is not so difficult to see that matrix square roots are by no means unique.
However, we can define the unique square root by taking S to be symmetric.

Let us now state and prove several interesting asymptotic properties of a
parameter-dependent ARE in the form of (13.49).

Theorem 13.2. Consider the ARE (13.43) with any two controllable and observ-
able matrix pairs, (A, B) and (A, C), and with the two symmetric positive-definite
matrices Q, and R, from (13.44). LetA € R"*",B € R™*",C € R"*",Q, € R"™", and
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R, € R™" wheren, p, and m are integers. Then, the ARE has the unique symmetric
positive-definite solution P,

Moreover, if p=m , det(CB)#0 , and the transfer function
G(s) = C(slhyn —A)"' B is minimum-phase, then the ARE solution P, can be
represented by the asymptotic expansion (13.50), while the following statements
hold true:

1. Py and P; are symmetric.
2. Py is the unique symmetric strictly positive-definite solution of the following
algebraic Lyapunov equation:

Po(A—BRy'B"P\)+(A—BR;'B"P\) Py+Qy=0 (13.52)

3. There exists a unitary matrix W € R™™ such that
PoB=C"W'\/Ry (13.53)

4. The unitary matrix W in (13.53) can be chosen as
W= (UvV) (13.54)

where U and V are two unitary matrices, defined by the singular value
decomposition,

CBR,' =UAV (13.55)

and A represents the diagonal matrix of the corresponding singular values.
5. P, is invertible for any v > 0 and for any unit vector x € R",

lim x” Py x > Jmin(Po) >0 (13.56)

y—

where Amin(Po) denotes the minimum eigenvalue of P.
6. The following asymptotic relation holds

P,B=C"W'\/Ry+0O(v), asv—0 (13.57)

Before proving the theorem, an immediate remark is in order. Relations (13.52)
and (13.53) imply that the transfer function

Go(s) =BT Py (shyxn —A+B Ry BT P) "' B

— VRoWC (slixy —A+BR;'B"P\)"'B
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becomes strictly positive real (SPR) [3] via feedback u = —R; ! BT P, x, when the
latter is applied to the linear dynamics (13.45). At the same time, the asymptotic
expansions (13.50) and (13.57) mean that the transfer function,

Gy(s) =B"P, (slycu —A+BR;'B"P,)'B (13.58)

which is SPR by the design, approaches the transfer function,

Gy(s) = V/RoW C (slxn —A+BR;'B Py) "' B (13.59)
that is,
G,(s) =Gy(s) +O(v), asv—0 (13.60)

uniformly in s.

Proof of Theorem 13.2. Existence and uniqueness of P, is the well-known fact.
We proceed by showing that matrices Py and P; in (13.50) are symmetric. Using
(13.50) gives
Py = lim P, = m%P{ =P} (13.61)
Consequently,
P :liml(P fP):liml(PTfPT):PT (13.62)
! v—0 vV v 0 v—=0 vV v 0 ! '
Next, we substitute (13.50) into (13.49):

\% [(P() +Pv —|—O(v2))A +AT (P() +Pv —|—O(v2))]
—v[(Po+Piv+0O(?)BRy'B" (Po+ P v+0(?)) +Q+C"C]
+CTC— (Py+Pv+O(?))BRy' BT (Py+Piv+0(?)) =0

(13.63)

Collecting the zero-order terms in v gives
C"C—PyBR,'B"Py=0 (13.64)
The matrix solution (Pg B) of (13.64) may be expressed as in (13.53), whose

validity can be verified by its direct substitution into (13.64).
Collecting the first-order terms in v from (13.63) gives
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Po (A—BR;'B"P\)+(A—BR;'B"P,) Py—PeBR; B  Po+ (Qo+C"C) =0
—_———— ————

A 0
(13.65)

or, equivalently,
PoA+ATPy —PyBR,'B"Py+0 =0 (13.66)

Since a feedback connection, such as u = —R;' B” P x, does not change the
controllability of (A, B), then (A B) is also controllable Moreover, since Q QT
0, then the ARE (13.66) has the unique symmetric positive-definite solution Py = P]
> 0. Finally, using (13.64) in (13.65) gives (13.52) and thus proves the second claim of
the theorem.

Choosing the unitary matrix W as in (13.54), while using (13.55), results in

B'PyB = B" C"W'\/Ry = /Ry (RB" C") W' \/Rg
= VR\VIAU"U V/Ry=+/Ro (VI AV)/Ry>0 (13.67)

Dnxm

Note that this particular choice of W supports the established positive-
definiteness property of P.
Let us select a unit vector x € R". Then,

lim APx = lim x'Po +O(W)] x = x"Pox > Jmin(Po) >0 (13.68)

We know that the ARE solution P, is invertible for any fixed v > 0. Also, from
(13.68), it follows that for a sufficiently small v > 0, the eigenvalues of P, are
bounded away from zero. Therefore, P, is invertible globally and for any v > 0.
Finally, we note that (13.57) is a direct consequence of (13.50) and (13.53). The
proof of the theorem is complete. |

Let us now make the following substitutions into the ARE (13.43):

A=A B:=(C" (13.69)
The resulting equation becomes
P,AT + AP, —P,C"R'CP,+0,=0 (13.70)

where according to (13.44),
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1
0, = Qo+ (vt >BBT, RV:V_T_lRO (13.71)

The reader may have noticed that such an ARE arises in the design of Kalman
filters and Luenberger observers. Substituting (13.71) into (13.70) gives

1 1
P AT + AP, — (1 + —) P,CTR,' CP, +Qp+ (1 + —) BBT =0 (13.72)
v v
or, equivalently,

1
P, A" +AP,—P,C" R,'CP, + Qo +BB" +

. [BB" —P,CT" R;'CP,] =0

(13.73)

For the parameter-dependent ARE in (13.73), all statements from the Theorem
13.2 can be easily reformulated. These claims are summarized (without proofs)
below.

Corollary 13.1. Suppose that all assumptions from Theorem 13.2 hold. Then, the
unique positive-definite solution P, of the ARE (13.70), with the weight matrices Q,
and R, from (13.71), can be represented by the asymptotic expansion (13.50).
Moreover, the following statements hold:

1. Py and P; are symmetric.
2. Py is the unique symmetric strictly positive-definite solution of the following
algebraic Lyapunov equation:

Po(A—CTR;' CP) + (A= C"R;' CP))Py+Qy =0 (13.74)

3. There exists a unitary matrix W € R™™ such that
Py CT =B WT'\/R, (13.75)

4. The unitary matrix W in (13.53) can be chosen as
w=(Uv) (13.76)

where U and V are two unitary matrices, defined by the singular value
decomposition,

BT CTR, =UAV (13.77)
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and A represents the diagonal matrix of the corresponding singular values.
5. P, is invertible for any v > 0, and

lirI(l)xTva > Jmin(Po) >0 (13.78)

where Jmin(Po) denotes the minimum eigenvalue of P,.
6. The following asymptotic relation holds:

P,CT =B W"\/Ry+0O(v), as v—0 (13.79)

Soon in this chapter, we shall use the above statements in our design of MRAC
controllers with smooth transient dynamics, but at this moment, let us make the
following remark: Since P, is invertible for any v > 0, one can define the matrix
inverse,

P,=pP! (13.80)
and analyze its property using an asymptotic expansion in the form
P,=Py+0(v), asv—0 (13.81)
Substituting (13.81) into P, P, = Lyxn gives
Lixu = Py Py = (Po +0(v)) (Po +O(v)) = PPy + O(v), as v—0 (13.82)

Consequently,
Lixn = 113(1)15‘, P, =Py P (13.83)
and therefore,
{[Po=P;'] = [P =P;' +0(v)]}, asv—0 (13.84)

Using (13.84) and (13.79), yields

" =P, (BW'V/Ry +0(v)) = P.B W' \/Ro+ (P +O(v) O()
= P,B W'\/Ro+O(v) (13.85)

and as a result, we obtain the asymptotic relation,

P,B=CTR;*W +0(v) (13.86)
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which we shall employ in the design of adaptive output feedback controllers in
Chap. 14. This concludes our asymptotic analysis of parameter-dependent ARE
solutions.

13.4 System Dynamics and Control Problem Formulation

We are going to design an MRAC controller, with an observer-like reference
dynamics, for a class of nonlinear MIMO uncertain dynamical systems in the form

d (Xﬂ)

é On C e 0m><m

( ;V’): e ( y’>+< )A U+ O @4(x,)
Xp Onpx,,, A, Xp B,

N—_—— e N —

X A x B
*Imxm
+ 0 Yemd Y = (Omxm Cp) X (13.87)
nyxm ———
By

The dynamics (13.87) incorporate an n,-dimensional open-loop system with
m control inputs # and m regulated outputs y. This is the original plant, whose state is
X, € R™.The plant is augmented by the m-dimensional integrated output tracking error
dynamics, é,; = Cp X, — Yemd, Where C, € R™*™ is a known constant matrix. The
order of the complete system (13.87) is n = n, + m. In addition, x € R" is the system
state vector, u € R™ is the control input,y € R” is the regulated output, y;mg € R” is the
commanded signal for y to follow, d(x,,) = ®5 (OF (x,,) € R™ is a nonlinear state-
dependent matched parametric uncertainty, ®; € R¥*™ is the matrix of unknown
constant “true” parameters, and @, (xp) € R is the known N-dimensional regressor
vector, whose components are locally Lipschitz continuous in x, that is, there exists a
finite positive known constant 0 < Lg, < 0o, such that for any (x;, x;) € R from a
bounded neighborhood of the origin, the following inequality holds:

|DPa(x1) — Da(x2)|| < Lo, |21 — x2]| (13.88)

Also in (13.87), A € R™", B € R"", B,y € R™", and C € R"™" are constant
known matrices, while A € R™™ is a constant diagonal unknown matrix with
strictly positive diagonal elements.

Our choice of the process dynamics (13.87) is largely motivated by aerospace
applications, where x,, models six degrees of freedom of an airborne platform and d
(x,) represents uncertainties in the vehicle aerodynamic moments. By definition,
the moment uncertainties appear together with the system control inputs, thus
enforcing the matching conditions needed to justify mere existence of a control
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solution. Moreover, control actuator uncertainties, control effectiveness reduction,
and other control failures are modeled by an unknown constant matrix A. Finally,
inclusion of the integrated output tracking error é,; = C), X, — ycmd into the open-
loop system leads to the extended system formulation (13.87). This inclusion is
optional, yet it allows the designer to explicitly account for baseline controllers with
integral feedback, and it also allows to avoid feedforward terms in a control
solution. Other dynamics, such as structural notch filters, sensors, and actuators,
can also be added in the formulation of the extended open-loop system.

In order to control a dynamical system such as (13.87), we need the nominal
system (no uncertainties) to be controllable.

Assumption 13.1 The nominal system matrix pair (A,,, Bp) is controllable.
It is well known that controllability of (A4,, B),), coupled with the rank condition,

rank(A” OB” ) =n,+m=n (13.89)
P pxm

ensures controllability of the extended pair (A, B).
Disregarding the system uncertainties, we form the ideal reference model
dynamics,

Xref ideal — Aref Xref ideal + Bref Yemd (1390)
where
Ay =A—B (R;_,} BT P,.ef) (13.91)
————
K[Z,_

is Hurwitz, K, is the baseline linear quadratic regulator (LQR) feedback gain, P,
is the unique symmetric positive-definite solution of the ARE,

Prog A+ AT Prog — Prog BR,f BT Prop + Qrep = 0 (13.92)

and (Q,Aqf7 R,.qf) are some appropriately chosen symmetric positive-definite matrices.
Using the LQR design is not a requirement here. This is simply our preferred way to
formulate ideal reference models and embed basic performance specifications into the
system. Due to the inclusion of the integrated tracking error in (13.87), the DC gain of
the reference model (13.90) is unity. Consequently, if A = I,x,, andd(x) = 0,1, then
the LQR linear state feedback control u;, = —K,Z],x enforces global exponential
stability of the ideal reference model (13.90) and makes the regulated output y(t) track
any bounded command y.,,(¢#) with bounded errors. Note that for a step-input
command, the LQR controller provides global exponential tracking with zero
steady-state errors. Also, it is easy to see that such a choice of the reference model
enforces the model matching conditions stated below.



408 13 Adaptive Control with Improved Transient Dynamics

Assumption 13.2 Model Matching Conditions. Given a Hurwitz matrix A and an
unknown constant positive-definite diagonal matrix A, there exists a constant
possibly unknown gain matrix K, such that

A =A—BAK! (13.93)

We shall note that existence of K is guaranteed for any controllable pair (A, B)
and any nonsingular matrix A. In particular, relations (13.91) and (13.93) imply

K, =Kj A" (13.94)

Using (13.93), we rewrite the system dynamics (13.87) in the form

f=Agx+BA|u+ [KIx+0)Di(x,)] | +Bref Yoma (13.95)

< 01 (a,0))

ol

@(x)
and get
X=Awx+BA (u+ O ®(x)) + Bre Yoma (13.96)

The control goal of interest is bounded tracking of y.nq in the presence of the
system parametric uncertainties {A, ®}. Specifically, we need to find a control
input u such that the regulated output y = Cx € R tracks any bounded time-
varying command y.,4(f) € R™ with bounded errors, while the rest of the signals in
the corresponding closed-loop system remain bounded. In addition, we shall require
smooth and quantifiable transient characteristics in the closed-loop dynamics.

13.5 Observer-Like Model Reference Adaptive Control

Similar to (13.9) and for the system dynamics (13.96), we consider a Luenberger-
like reference model in the form

Xref = Avef Xrep + |Ly (X - xrqf) FBref Yema (13.97)

Error Feedback Term
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where x,.s € R" is the reference model state and L, € R"*" is the error feedback
gain, parameterized by a positive scalar v > 0 (to be defined).
The system control input u is selected as

u=—0" dx) (13.98)

Substituting (13.98) into the system dynamics (13.96) gives

T
= Ay x = BA(© = ©) O(x) + Bros Yom (13.99)

———
A®

where A® € RV*™ denotes the matrix of parameter estimation errors.

In what follows, we are going to select (L,, ®) such that the system state x
globally asymptotically tracks x,s — the state of the observer-like reference
model (13.97) — and so yH—;C Yref - Also, we will show that x,.r tracks X,ef idgear

which in turn implies thaty,.r — Yref idear- Furthermore, since the output of the ideal
—00

reference model (13.90) follows its command, y,cf ideas — Yema> With bounded errors,
and y — Yrf — Yref ideal» then the system-regulated output y will also track ypq
1—00 —00

with bounded errors. This argument constitutes our design strategy.
We begin by choosing adaptive laws for ®, so that x globally asymptotically
tracks X, in the presence of the system uncertainties. Let

€ =X — Xpef (13.100)

denote the state tracking error. Subtracting (13.97) from (13.99) gives the system
transient dynamics:

é= (A —L,)e — BA A®" ®(x) (13.101)
We choose the error feedback gain L, as
L, =P,R;! (13.102)
where P, = PT > 0 is the unique solution of the following ARE:

PyAly+ A Py —P,R'P,+0, =0 (13.103)

with the ARE weight matrices (Q,, R,)selected as

v+1 v
0, =0+ ( " ) Lixn, R, = H—llnxn (13.104)
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using a constant parameter v > 0. This constant will eventually become our design
“tuning knob”’: Small values of v will yield better MRAC transients. However, the

1
corresponding feedback gain L, will increase at the rate of —. In fact, we will show
\

that as v tends to zero, the error feedback gain tends to infinity,

L, = (1 +1)Pv = O<1) (13.105)
v v

while the solution P, of the ARE (13.103) tends to a constant positive-definite
symmetric matrix Py. It is easy to verify that the ARE (13.103) possesses the unique
symmetric positive-definite solution P,. Furthermore, because of (13.103), the
observer closed-loop matrix,

1
Ay =A —L,=Ay —P, R, = A,y — P, (1 + —> (13.106)
v

satisfies

~

P, | Ay —P.R)' |+ Ay —P.R' | P.+P,R'P,+0,=0 (13.107)
SN—— SN——

L, L,

A, Ay
or, equivalently,
P, AT +A P, =-P,R,;'P,—0,<0 (13.108)

and therefore, A, is Hurwitz for any v > 0.
Since P, is the unique symmetric positive-definite solution of the ARE (13.103),
then the matrix inverse P, = P ! exists for any v > 0, and the following relation holds:

ATP, +P,A,=-R'—P,0,P,<0 (13.109)

V

The design task is to choose adaptive laws for O so that the tracking error
e globally asymptotically tends to the origin. We consider the following Lyapunov
function candidate:

V(e, A®) =" P, e+ trace(AA®' T' AO) (13.110)

where I'g = F(Ta >0 is the adaptation rate. The time derivative of V, along the
trajectories of the error dynamics (13.101), can be computed as
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V(e,A®) = el P,é+é P,é + 2trace (AA@TF;; é)

=e'P,(Aye—BAA® ®(x))+ (A,e fBAA(DT(I)(x))Tf’Vé + 2trace (AA@TF(T)I ®)

=" (P,A,+ATP,)e—2¢" P,BAA®" ®(x) + 2trace (AA@TF(?)' (:))
(13.111)

Because of (13.108) and using the properties of the matrix trace operator, we get

V(e, A®) = —¢" (R,' +P,0,P,) e

+ 2 trace (A AOT (rg)‘ O — d(x) e’ 15‘,3)) (13.112)

If the adaptive laws are chosen as

O =Te®(x)e' P,B (13.113)
then
Vie, A®) = —¢" (R, +P,0,P,)e <0 (13.114)

and hence, V(e, A®) is the Lyapunov function for the error dynamics (13.101). For
this reason, the tracking error signal e, as well as the parameter error matrix A®, is
uniformly bounded in time, that is, (¢, A®) € L. Since A, in (13.97) is Hurwitz
by design and (e, yema) € Lo, then (x,Tf, )'c,.ef) € L, and consequently x € L.
Since the unknown parameters ® are constant and A® € L, then ©® € L,,. We
assumed that the regressor vector ® (xp) is Lipschitz-continuous, and we have shown
that ( x, ® ) € L. Therefore, from the definition (13.98), it follows thatu € L., and
consequently X € Ly,. Also, since X, € L, then é € Ly,. Using (13.114) yields

Vie, A®) = —2¢" (R, +P,Q,P,)é € Ly (13.115)

The function V from (13.110) is lower bounded and has a nonincreasing time
derivative as in (13.114). Thus, V tends to a limit, as t — oco. Also, the function
second time derivative is uniformly bounded. Therefore, V is a uniformly continuous
function of time. Using Barbalat’s lemma, we immediately conclude that V tends to
zero, as t — oo. Due to (13.114), we finally arrive at

lim [le(7)|| = 0 (13.116)

1—00

which proves global asymptotic stability of the tracking error, attained by the
adaptive controller (13.98), the adaptive laws (13.113), and the observer-like
reference model (13.97).In order to show that x,,; asymptotically tracks Xt ideal,
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it is sufficient to subtract (13.90) from (13.97) and write the dynamics of the
reference model 1101 €,0f = Xyof — Xyef ideal:

bref = Aves eyep + Ly (1) (13.117)
o(1)

Then (see Exercise 13.2),
t
eref (1) = exp(Arer 1) eyer (0) + Jexp (Ares (1= 1)) Ly e(t) dt=0(1) — 0
—~~ =00
0 o(1)
(13.118)

We have proven that X — X, — Xyef ideal, and SO
—00 1—00
(y = CX) tjoo (yref = er[)f) t:o)o (yrefideal = er'qfideal) - yc'md(t) (131 19)

In other words, the system-regulated output y asymptotically tracks its ideal
reference command Y.f igeqr» and y also tracks its original command y.,q with
bounded errors.

13.6 Transient Dynamics Analysis

Let us now analyze the transient dynamics (13.101). To do that, we shall employ the
results from Theorem 13.1 and singular perturbation techniques from Sects. 13.1
and 13.2.

Substituting (13.102) into (13.101), the transient error dynamics can be written as

¢ = (A —PyR;') € — BAAO) d(x(1)) (13.120)
—_—
Hurwitz Matrix o(t)=Uniformly Bounded Function of Time

Using (13.104) gives

6= (A,e,- - (1 —i—%)Pv) e — (1) (13.121)

In Sect. 13.3, we have shown that the asymptotic relation

P,=Py+0(v), asv—0 (13.122)
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holds with a constant positive-definite symmetric matrix P,. Then,

é= (Aref - (1 + 1) (Po + O(v))) e — (1) (13.123)
or, equivalently,
ve= (VA — (v+1)(Po+0O(v))) e — ve(t) (13.124)
We can rewrite (13.124) as
vée= (VA — (v+1)(Po+0(v))) e —ve(r)
= | —Po+ (VAry —v(Po+0(v)) —O(v)) | e+ve(r)

o(®v)
(=Po+O(v)) e +v (1) (13.125)

and then compare it to (13.31). Then, according to Theorem 13.1, the trajectories of
(13.123) satisfy the following asymptotics,

e(r) = o(e-v%) +OW), (v—0) (13.126)

uniformly in time, with a positive constant y, and for all sufficiently small v > 0. So,
the transient dynamics exponentially decays to a neighborhood of the origin at the

decay rate no slower than O (e*"'ﬁ). Moreover, the “diameter” of the convergence

set can be made smaller by choosing sufficiently small v. This argument formally
proves our claim about the transient dynamics improvement in MIMO MRAC
systems with observer-like reference models.

Similar to the arguments from Sect. 13.2, we can offer an alternative way to
analyze the transient dynamics in (13.124). This is a singularly perturbed system,
and its dynamics are in the form of (13.31), where v (instead of ¢) is the small
parameter. So, in order to understand the intricacies of the system behavior, we can
employ the singular perturbation arguments yet again. Setting v =0 gives
the isolated root e = 0 for the corresponding reduced system, which describes
asymptotic behavior as ¢ — oo, that is for a sufficiently small v >0, the error
trajectories converge to a small neighborhood of the manifold e = 0 and will evolve
near this manifold thereafter.

In order to quantify and characterize the transient dynamics, we need to form the
boundary-layer system. These dynamics are formed by “stretching” the time,

T=- (13.127)
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rewriting (13.124) in the “fast” timescale 7, and then setting v = 0. The resulting
boundary-layer dynamics

d
€ _ _pye (13.128)
drz

are globally exponentially stable, since P, is symmetric and positive definite.
According to Theorem 13.2, we claim that for a sufficiently small v > 0, the singular
perturbation system (13.124) has a unique solution e(¢, v), defined on [0, o), and
the asymptotic relation

et, v) = é(%) +O() (13.129)

holds uniformly on [0, oo), where & ({) is the solution of the boundary-layer system
(13.128). Since

é(é) — exp(—Py (1)) &(0) (13.130)

then substituting (13.130) into (13.129) results in

e(r, v) = exp(fPo (é)) (¥(0) — x4 (0)) + O(v) (13.131)

This asymptotic relation is conservative. In fact, we have proven that the
tracking error e(z, v) asymptotically converges to the origin, starting from any
initial condition. Consequently (see Exercise 13.3),

o(t) =BA [A@(r)%(x(t))] —o(1), (t— o) (13.132)
o(l)

and so, we can rewrite (13.131) as

x(t,v) = eXP(—Po (é)) (x(0) — xer (0))|+[xer (1) + O(v) o(1)]  (13.133)

Global Asymptotic Stability

Transient Dynamics

where o(1) is a function of time, defined such that lim o(1) = 0, while O(v) is a
function of v only, and it decays to zero no slower than v.

Let us emphasize again that the asymptotic expansion (13.133) quantifies the
transient dynamics due to the adaptive controller (13.98) and (13.113). Indeed, for a
sufficiently small v>0, the transients in the error dynamics are described by the linear
time-invariant globally exponentially stable system (13.128), whose solution is given
by (13.130) and (13.133). The second term in (13.133) defines asymptotic behavior of
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Table 13.1 Observer-like MRAC design summary

Open-loop plant X=Ax+BA (u + 0T (D(x)) + Bref Yema
Observer-like reference model Jref = Aref Xref + Ly (X = Xref ) + Bref Yema
State tracking error € =X — Xpof

Riccati equation for adaptive laws PyAL, + At Py — PyRIP, 4+ 0, =0
ARE weight matrices Oy =00+ () Luxn, Ry = 25 L
Observer gain L, =P,R;!

Total control input u=—-0" o)

MRAC laws 5

O =Te®(x)e"P;'B

the tracking error, as ¢t — oco. This fact constitutes the main benefit of the error
feedback term in the observer-like reference model (13.97). Essentially, using a
sufficiently small parameter v >0 ensures quantifiable transient characteristics of
the corresponding closed-loop tracking performance, and these transients are given
by the first term in (13.133). A summary of the design is given in Table 13.1.

The system dynamics (13.87) and the corresponding control problem formulations
can be modified to include nonparametric uncertainties, such as matched uncertainty
approximation errors and bounded possibly non-matched process noise. In that case,
one can use known robustification techniques (i.e., ¢ modification, ¢ modification,
and Projection Operator) to prove bounded tracking performance and then establish
similar to (13.131) transient characteristics.

Finally, we would like to note that the state feedback MRAC design developed
in this chapter, with an observer-like reference model, can be extended to adaptive
output feedback controllers [6]. This topic will be addressed in the next chapter.

13.7 Summary

This section was devoted to the development and analysis of an observer-like
modification to the reference dynamics formulation, within the MRAC state feed-
back framework. We draw a parallel between the derived modification and the
theory of Luenberger observers. This modification allowed us to quantify and
influence transient dynamics in adaptive control. Overall, the derived design
represents a numerically efficient technique of reducing unwanted transient
oscillations in state feedback/feedforward MRAC systems.
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13.8 Exercises

Exercise 13.1. Show that if the external command r(¢) in (13.1) is continuously
differentiable, and its rate 7(¢) is uniformly bounded in time, then the signal (¢) in
(13.8) asymptotically tends to zero, as ¢ — oo. (Hint: Differentiate the error
dynamics (13.5) and show that ¢(¢) is uniformly bounded. Then, use Barbalat’s
lemma to establish asymptotic convergence of é() to zero).

Exercise 13.2. Prove (13.36). (Hint: Show that if (13.42) holds true, then ||z(¢)|| in
(13.40) asymptotically in time tends to zero. Use [3, Lemma 9.6, p. 355] to aid in
the proof).

Exercise 13.3. Show that for the extended dynamics (13.87), driven by the MRAC
controller (13.98), the smoothness requirement on the command y.,; can be
removed, yet the signal o(7) in (13.132) will tend to zero asymptotically in time.
This formally proves validity of using o(1) in the asymptotic relation (13.133).

Exercise 13.4. Consider the aircraft dynamics and the MRAC design from Exam-
ple 13.2. For the same system, design and simulate an MRAC controller with an
observer-like dynamics. Compare and discuss the two designs.
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Chapter 14
Robust and Adaptive Control with Output
Feedback

14.1 Introduction

The design of output feedback tracking controllers for nonlinear uncertain multi-
input multi-output (MIMO) systems represents a challenging problem. In aerospace
applications, such a challenge frequently arises in control of aerial vehicles whose
dynamics contain flexible modes which cannot be ignored. Dynamics of these aerial
vehicles exhibit almost no frequency separation between the vehicle primary and its
flexible modes. The main challenge here arises when the flexible modes have low
damping ratios and as such must be actively controlled or stabilized. In realistic
applications, “flexible” vehicle state components are not available online, as the
system measurements. In other words, not all of the system degrees-of-freedom are
measured. In order to control such a system, one needs to construct a static or a
dynamic output feedback. What complicates this situation is the fact that more often
than not, flexible mode dynamics contain parametric uncertainties. For example,
natural frequencies and damping ratios of these modes may not be known exactly,
and they may depend on slowly varying parameters, such as the vehicle airspeed
and gross weight. Also, uncertain aerodynamics and structurally inherent
nonlinearities may influence the interconnections between the vehicle flexible and
its primary modes.

In most practical applications, the number of measured output signals in these
systems would exceed the number of control inputs. In order to yield desired
input—output signal characteristics, the output measurements are often defined by a
set of user-selected sensors that are placed at the desired locations on the vehicle [1].
At the same time, the system-regulated outputs are often determined based on a
desired mission for the system to perform, and as such, their selection is often
restricted and dictated by the system requirements. Thus, we have two sets of outputs
in the system — the selectable set of measurements (sensors) and the prescribed
regulated signals (mission requirements). Comprehensive surveys of input—output
selection techniques can be found in [1, 2]. This brief discussion gives a motivation to
the specific problem formulation that will be formally given in Sect. 14.4.

E. Lavretsky and K.A. Wise, Robust and Adaptive Control, Advanced Textbooks 417
in Control and Signal Processing, DOI 10.1007/978-1-4471-4396-3_14,
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An original framework for the design of adaptive output controllers was given in
[3]. Many theoretical advancements were made since. Three notable contributions
include (a) adaptive backstepping [4], (b) adaptive control with high gain observers
[5-7], and (c) multiple model adaptive control [8]. Other ideas were also exploited,
such as using time-delayed values to approximate system dynamics [9].

A command tracking controller for a dynamical system with uncertainties must
be capable of (a) achieving desired tracking performance, (b) enforcing robust-
ness, and (c) mitigating uncertainties. Finding such a control solution can be
facilitated if one leverages known and well-established methods for MIMO linear-
time-invariant (LTI) systems, with completely known dynamics. Indeed, for LTI
dynamics with partial state measurements, there exist several formal (i.e., theo-
retically justified) design methods to construct output feedback controllers, both
static and dynamic. Among those, the linear quadratic Gaussian synthesis with
Loop Transfer Recovery (LQG/LTR) design, first given by Doyle and Stein in
[10], represents one of the most frequently used methodologies for robust output
feedback control design. The popularity of this technique is primarily based on its
guaranteed properties, such as closed-loop stability and robustness to parametric
uncertainties.

It would be safe to say that the development of the LQG/LTR design methodol-
ogy was influenced by the seminal work of Kwakernaak and Sivan [11, 12], where
the authors investigated ... the maximal achievable accuracy of linear optimal
regulators,” [11]. This asymptotic property of the LQR solutions allowed Doyle and
Stein to develop their LQG/LTR technique [10], with subsequent extensions and
interpretations reported elsewhere in the literature [13, 14]. In contrast to [11],
where achieving zero cost was the goal, the LQG/LTR method aims at recovering
the loop shapes of optimal full-state regulators. The state feedback loop recovery is
achieved via specific choices of free design parameters, such as the process and
measurement noise intensity matrices. Basically, these two matrices become the
“tuning knobs” of the LQG/LTR design process.

Continuing this line of thoughts, we shall revisit and refine the results from [15],
where a constructive design is proposed for composing adaptive output feedback
controllers that are applicable to a generic class of uncertain MIMO systems. We
shall also add a simulation case study to demonstrate key features and benefits of
our methodology. Specifically, we will show that using a Luenberger-based state
observer for a “squared-up” system [16] enables the design of a direct adaptive
model reference output feedback controller for MIMO systems with matched
uncertainties while regulating output signals whose dynamics may have high
relative degree and are not necessarily minimum-phase.

This chapter material is organized as follows. In Sect. 14.2, we shall present
mathematical preliminaries, including basic definitions and notations from singular
perturbations. Section 14.3 defines MIMO systems of interest and the associated
tracking control problem formulation. Our main result (Theorem 14.1) is given in
Sect. 14.4, followed by a flight control case study in Sect. 14.5.
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14.2 Mathematical Preliminaries

We write R” to represent the Euclidean n-dimensional space and R"*™ to denote the
space of all n-by-m matrices, where n and m are integers. For any x € R", ||x||
denotes the Euclidean vector norm of x, and for any A € R™™, ||A| is the
corresponding induced matrix norm. Also, C~ symbolizes the open left half of
the complex plane (excluding the j w — axis).

We will need basic definitions of asymptotic orders and relations from Chap. 13,
Sect. 13.2. Recall that given a matrix A,(x) = A(x; ¢) € R™", the asymptotic
equation

A, (x) =Ag(x) + A1 (x) e+ O(e?), ase—0 (14.1)
means that for every x from a domain X C R”",

lim [|A;(x) = Ao(x) — A1 (x) ¢ = lim [[O(*) | = 0 (142)

and the convergence rate in (14.2) is no slower than &2, for every fixed x. The “Big
O” symbol in (14.1) and (14.2) comes from the Bachmann—Landau asymptotic
order notations [17, 18].

Let Q, € R™" and Ry € R"™ be symmetric and positive definite. For two
controllable and observable pairs of matrices, (A, B) and (A, C), where A € R"™",
B e R CecR™", and m < n, we choose a constant v >0 and define two
symmetric positive definite weight matrices:

v+ 1 v
QV:QO-Q-( . )BBT, RV:erlRO (14.3)

Then, one can show that for any v > 0, the algebraic Riccati equation (ARE)
P, AT +AP,—P,C"R;'CP,+0Q,=0 (14.4)
has the unique symmetric positive definite solution P, >0 [10, 11].
We are interested in the asymptotic behavior of P,, as the positive constant
parameter v tends to zero. In Chap. 13 (Corollary 13.1), we stated and proved

several interesting asymptotic properties of the ARE solution P,, using an asymp-
totic expansion in the form

P,=Py+Pv+0() (14.5)

for v — 0. In fact, we have shown that under the following three conditions:
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* The number of outputs and inputs in the system are the same: p = m.
» The system relative degree is one: det(C B) # 0.
« The transfer function G(s) = C (sI,x, —A) "' B is minimum-phase.

the ARE solution P, and its inverse P I exist, and both matrices are symmetric
strictly positive definite, uniformly in v > 0. We have also shown that the asymp-
totic relation

PUB =CTR,*W +O(v) (14.6)

takes place as v — 0, where W = (U V)T; the two unitgry matrices U and V are
defined by the singular value decomposition B! CT R,’=UZXZV, and X is the
diagonal matrix of the corresponding singular values.

We shall use (14.6) to aid in the design of adaptive model reference output
feedback controllers. In order to do that, we need to discuss a generic class of
systems whose input—output dynamics are not square, that is, the number of the
system inputs may or may not be the same as the number of its outputs. For these
systems, the asymptotics (14.6) cannot be achieved. First, we are going to modify
the system input—output dynamics to make it square.

Practical methods to “square-up” MIMO systems can be found in [16]. The
squaring-up is accomplished by adding pseudo (i.e., fictitious) inputs or outputs.
This procedure allows to enforce the three key assumptions that are listed below
(14.5). Eventually, it leads to the desired asymptotic relation (14.6).

We shall deal with systems that have more outputs than inputs. This is a
reasonable assumption since outputs represent sensors and their number and
locations can be chosen by the system designer [1, 2]. The squaring-up problem
for a non-square linear MIMO system, with m inputs and (m < p) outputs,

m — Inputs
U
<A B> c R(n+p)><(n+m)
p —Outputs ==\ C D
can be stated as follows [16]: “Given the state matrix A € R"*", the input matrix
B € R™™, and the output matrices C € R, D € R"™ | with (n>m, p>m),

determine pseudo-input matrices B, € R™P=m) and D, € RP*(P=™) quch that the
resulting square system with p inputs and p outputs,

p — Inputs
4
A (Bv BZ)

c R(Hp)x (n+p)
p —Outputs =\ C (D, D,)

has its transmission zeros in the open left half complex plane, C™.”
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In [16], several constructive algorithms for solving the squaring-up problem are
given. Systems that we shall encounter in this chapter will have no feedforward
connections, that is, D = 0,,,. In this case, the squaring-up problem is reduced to
finding a pseudo-input matrix B, € R~ such that the square system

p — Inputs
4

A <B>B2) c R(n+p)x(n+p)
p —Outputs = \ C 0y,

has its transmission zeros in C™.
Let us mention that squaring-up problems have multiple solutions. Reference
[16] gives two sufficient conditions for a solution to exist. They are:

1. (A, B) to be controllable.
2. rank(CB) = m.

Observe that when a squaring-up solution is found, the resulting system transfer
function becomes minimum phase and has its relative degree equal to one.

In what follows, we shall exploit the squaring-up technique to enforce the
asymptotic relation (14.6), which subsequently will allow us to design adaptive
output feedback controllers with quantifiable performance and stability guarantees.

14.3 System Dynamics and Control Problem Formulation

We consider a class of nonlinear MIMO uncertain dynamical systems in the form

X=Ax+BA (I/l + @T (I)(X)) + Br(»f Zemd
y=Cx, z=0C.x (14.7)

where A € R™", (B,B) € R, C € RP*", and C. € R™" are known matrices,
(A, B) is controllable, and (A, C) is observable. The system state is x € R”, and the
control input is u € R™. The system measurements are grouped into y € R”, the
regulated output isz € R, and z.,,; € R™ denotes an external bounded time-varying
command for the regulated output z to follow. The system uncertainties are
represented by a constant unknown non-singular diagonal matrix A € R™", a
constant unknown matrix ® € RV*™, and a known regressor vector ®(x) € RV. It is
assumed that the regressor is globally Lipschitz-continuous in x. The Lipschitz
assumption implies that there exists a finite positive known constant 0 < Lg < 00,
such that

[@(x1) = (x| < Lo [1 —xa (14.8)
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for any x;, x, € R". This assumption assures global existence and uniqueness of
the system trajectories [5]. Also, we suppose that the number of the system output
measurements p is greater than the number of the control inputs m, with rank
(CB) =m.

The control goal of interest is to design u, based on the measurements y, such that
z tracks z.,q; with bounded errors while operating in the presence of uncertain
parameters (A, ©).

Let us remind the reader that throughout this book, we have already considered
systems of the form (14.7), on many occasions. For example, for a MIMO system
with n, states, one can add commands z., into the problem formulation by
augmenting the system with the integrated tracking error é; =z — z.yy. In this
case, By = (—Ime O,W,,, )T. Other formulations are possible, whereby filtered
versions of the tracking error or of the system output can also be incorporated into
the system dynamics.

Our control design approach will be reference-model-based, and as such, the first
step here is to construct a desired reference model with target dynamics. Toward
that end, we can employ the LQR method and compute an optimal state feedback
gain matrix Kzpp € R™" such that

A =A—BK] (14.9)

is Hurwitz and has the desired modal characteristics, leading to the exponentially
stable reference model

xref = Aref Xref + Bref Zemdy  Zref = Cz Xref (1410)

whose output z,,; adequately tracks its command z.,,4, with bounded errors. Other
methods to construct desired reference models can also be employed here.

Let up; denote a baseline controller and let u,; be an adaptive augmentation (an
incremental control signal). We define the total control as a sum

U= Up] + Ugq (14.11)
and then rewrite the system dynamics (14.7):
X =Ax+Bup +BA (ttzg + O  OX) + (Lysim — A7) tpg) + Brof Zoma  (14.12)

Expressing the system matched uncertainty as

®T (D(x) + (1m><m a Ail) Upl = <®T Lonsem — A_l ) <(I:/l(b)j)>
o’ S
D(x, upy)

= 0" d(x, uy) (14.13)
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gives

. ~T =

xX=Ax+Bu, +BA (uad + O (D()C, uhl)) + Bref Zemd (14.14)

where © and ®(x, uy) are the extended parameter and regressor vectors,
respectively.

The system (14.14) represents the open-loop dynamics that we shall exploit. Our
overall strategy is to find u, in the form of (14.11), to force the system state x track
the state of the reference model x,.¢, with bounded errors. As a result, the system-
regulated output z will track the external command z,.s, and consequently, z will
also track z.,,4, which constitutes our main control goal.

From (14.8) and (14.13), it follows that the extended regressor vector (i)(x, Up)
satisfies the Lipschitz condition

H(i)(xl, u;,;) — (i)(XZ, ubl)“ = ||(D(X1) — (D(Xz)H S Lq; ||X1 —XZH (1415)

with the same Lipschitz constant Lg, as in (14.8).

Before proceeding further, let us discuss and motivate our specific selection of
the original system definition (14.7) and its equivalent form (14.14). First, we note
that these dynamics are as generic as the ones from the now-classical model
reference adaptive control (MRAC) problem formulation [3, 19, 20]. The only
difference here is that we have embedded the matching conditions assumption into
the problem formulation.

Our selection of the control uncertainties in the form of B A comes predomi-
nantly from aerospace applications, where control directions are usually known but
their magnitudes are not. We have decided to introduce linear-in-parameters
uncertainties only for the sake of presentation clarity. It is possible to redefine the
system dynamics to include matched nonparametric uncertainties and to also add
non-matched uncertainties, such as bounded process noise. We have dealt with
similar constructs in the previous chapters and offered several modifications to
account for these classes of systems.

Let us make another remark on the generality of the problem formulation. The
selected system emulates flight dynamics of aerial platforms. In fact, our choice
of the system dynamics is directly influenced and driven by standard (in aero-
space) flight dynamics formulations for control design. Furthermore, the control
design methodology developed in this chapter can be extended to systems with
nonlinear dependence on uncertain parameters and to systems with time-varying
uncertainties, as long as there is a known rate upper bound. In addition, process
noise can be added to the system dynamics. All these modifications would reduce
our method applicability from being global to that of a semi-global nature.

Moreover, the command feedforward term B, z¢q in (14.7) allows to encom-
pass a specific class of dynamical systems, where integrated tracking errors or their
filtered versions need to be inserted and accounted for during control design. Again,
this is an option, not a requirement. One final comment: Our control solution will be
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given in the form of an adaptive output feedback. Such a solution is not unique.
Alternatively, robust controllers can also be developed to solve the posed tracking
problem. The reader is encouraged to design a robust controller and then compare
its performance with that of an adaptive system, whereby both controllers shall be
constructed to perform the same tracking task.

We now summarize all of the assumptions for our method to be valid and then
comment on their imposed restrictions.

Assumption 14.1.

* (A, B) is controllable and rank B = m (B has full column rank).

* (A, C) is observable and rank C = p (C has full row rank).

¢ The number of measured outputs is greater than the number of control inputs
(p >m) and rank (C B) = m (same as the number of control inputs).

The first two assumptions are standard in dynamics and control [21]. The third
assumption is very common for most practical systems in aerospace, automotive,
and other industries, where the outputs (sensors) and the inputs (actuators) are
defined by the vehicle designer and are placed at specific locations on the vehicle, in
order to achieve desired input—output characteristics [1, 2]. We note that the
assumed full rank condition does not constitute a restriction on the system-
regulated output z = C.x. These limitations are placed on the system measured
output signals that are selected by system architects to produce a controllable and
observable vehicle configuration. On the other hand, the system-regulated output is
not often selectable, and its dynamics are allowed to be nonminimum-phase or have
a high relative degree.

Under the above three assumptions, constructive numerical methods have been
developed in [16] that solve the “squaring-up” problem of finding a constant matrix
B, € ™~ such that det(CB) # OwithB = (B B, ) and the transfer function
C (s@ysn — A)_1 B becomes minimum-phase (i.e., transmission zeros are located in
C7). The added pseudo-control columns B, are in the sense “fictitious,” meaning
that they do not represent physical inputs in the system. We have already discussed
the squaring-up problem in Sect. 14.2. O

In the next section, we are going to employ the squaring-up paradigm to aid in
the design of an output feedback adaptive controller.

14.4 Adaptive Output Feedback Design and Analysis

Based on the system dynamics (14.14), we introduce a Luenberger-like state
observer in the form:

. N T _
X=AX+Buy+BA (uad +0 O, ub1)> +L,(y =)+ Bref zema

(14.16)

=

y=C
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where £ € R", § € R", and L, € R"™™ are the observer state, the predicted output
signal, and the output prediction error feedback gain, respectively. Also, in (14.16),

(A € R ) e RW +’”)X'”) represent the estimated parameters. The observer will

be designed to estimate the system state x(¢), with bounded errors.
We select the baseline linear controller

up = —Kj, (14.17)
and choose an adaptive augmentation in the form
2T _
Ugd = -0 (D()Z, uh,) (1418)

with the intent to cancel/dominate estimation errors due to matched uncertainties in
the observer dynamics (14.16). Substituting (14.18) into (14.16) gives the open-
loop observer:

=
|

AX + B Up + Lv (y — ﬁ) + B/'ef Zemd

C (14.19)

\<)
I
N

With (14.9) and (14.17), we obtain the observer closed-loop linear time-varying
dynamics:

A,
c

k)’
I

X+L, (y - )A’) + Bref Zemd

><>'Q\;5

(14.20)

.\<>
|

It is evident that both the open-loop (14.19) and the closed-loop (14.20)
observers do not explicitly depend on A. Hence, the only parameter to be estimated
is ®, which appears in the control input formulation (14.18). However, by the
definition (14.13), the ideal unknown matrix ® contains (I,x» — A™"'). So, any
estimate of ® will certainly contain an estimate of A~'. Hence, we would indirectly
estimate A, after all.

Substituting (14.18) into the system (14.14) yields

~T _ —
X=Ax+Buy —BA (@ (D()?, Mbl) — @Td)(x, u;,,)) + Bief Zema (14.21)

Our task is to select (L,, ® ), such that the state & of the observer (14.19) tracks
the state x of the system (14.21), with bounded errors. Also, we will show that %
tracks the state x,.; of the reference model (14.10) with bounded errors. Then, we
will be able to prove that x tracks x,.; and z tracks z.,,4, with bounded errors. This is
our design strategy.
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We begin by choosing adaptive laws for © so that & tracks x, with bounded errors
and in the presence of the system uncertainties. Let

e =f—x (14.22)

denote the state observation error. Note that e, is not available, as the system
measurement. However, the output observation error

ey, =y—y=C(x—x)=Ce (14.23)

represents the known (i.e., measured online) quantity. Subtracting (14.21) from
(14.19) gives the observer error dynamics:

~T _ _
ée=(A—L,C)ex+BA (@ (%, uy) — O D(x, u,,,)> (14.24)

We shall choose the observer gain matrix L, to represent the steady-state Kalman
filter gain

L,=P,C"R;! (14.25)
where P, = PT > 0 is the unique solution of the ARE

Po(A+0Lyn) + (A+0Lyn) Py —P,CT RTICP,+0,=0 (14.26)

1n>0 is a positive constant (defines a prescribed degree of stability), the weight
matrices (Q,, R,) are

1\ -
Q1,=Q0+<Vv )BBT, RV:HV_IRO (14.27)

with a symmetric positive semidefinite Q, € R"*", a symmetric positive definite
Ry € RP*P, and with

B=(B B) (14.28)

where B, € R"™(P=m) i a constant matrix, selected such that the following two
relations take place:

det(CB) #0, zeros|C (sl —A) 'B| € C~ (14.29)
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As we have previously mentioned, calculation of B, to satisfy (14.29) can be
achieved by solving the squaring-up problem [16] for the original triplet (A, B, C),
where due to Assumption 14.1, the output matrix C has more rows than the number
of columns in B.

It is easy to verify that the ARE (14.26) possesses the unique symmetric positive
definite solution P, , for any positive 7. Furthermore, because of (14.26), the
observer matrix

A, =A-L,C=A-P,C"R;'C (14.30)

satisfies
T

P,|A-P,C'R,'C| +|A-P.C"R'C| P,
0 0 (14.31)
A, A,
+P,C"R'CP,+0Q,+27nP, =0

or, equivalently,
P,AT +A,P,=-P,C"R;'CP,—Q,—21P,<0 (14.32)
and therefore, A, is Hurwitz for any v > 0.

Based on the material from Sect. 14.2, one can show that the matrix inverse
P, = P! exists for any v > 0, and the asymptotic relation

P,B=CTR*W +0(v) (14.33)

holds uniformly for any v > 0. In (14.33),
w=uv)' (14.34)
the two unitary matrices, U and V, are defined by the singular value decomposition
B CTRy=USV (14.35)

and X is the diagonal matrix of the corresponding singular values.
We have assumed that the number of the system outputs exceeds the number of
inputs, that is, p >m. Let § = (Imxm O(],_,,,)X,,, ) Then, from (14.33), we get

B,B=CTRy*WS +0(v) (14.36)
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In addition, the following relation holds:
ATP, +P,A,=-C"R'C—P,Q,P,—27P, <0 (14.37)

Together, (14.36) and (14.37) imply that the transfer function

[BTF’V (slnx,fAv)*‘B} - {SWRS%C(SI,,X”fA\,)’IB (14.38)

v—0

Gu(s) Go(s)

becomes strictly positive real (SPR) [3, 5, 19, 20], asymptotically as v — 0.

Let us make an interesting remark regarding (14.38): The squaring-up approach,
coupled with the ARE asymptotic properties, gives a unitary matrix W € R™*" in
(14.34), such that the dynamics, from the system original input u to a linear
combination of the original outputs, become “almost” SPR, for a sufficiently
small v. So in essence, we have developed a constructive procedure to shape the
transmission zeros of the exponentially stable transfer function G, (s) and make
them approach C~ asymptotically, as v — 0.

Next, we define the matrix of parameter estimation errors:

AO=0-6 (14.39)

~T _
Adding and subtracting ® (X, uy), the observer error dynamics (14.24) can be
written as

é,=A, e, +BA A@T <T>()2, ub;) =+ (:)T ((T)()E, M},]) — (T)(x, Mhl)) (14.40)

g(&,x, upr)

or, equivalently,
6. = Aye.+BA [A@)T O(E, up) + (%, x, u,,,)} (14.41)

Based on (14.15), it is straightforward to compute an upper bound

g, % w)ll = || @ (@, ua) — Dx, wn))|| < (Oas L) llexll =k e
k
(14.42)

where k, > O represents a known computable constant and O pnax is the known upper
bound for ©.
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The design task now is to choose adaptive laws for O so that the observer error e,
becomes small, in finite time. The main challenge here is to construct adaptive laws
based on the system output information. Hence, we consider the following
Lyapunov function candidate:

V(e,, A®) = e’ P, e, + trace (A AG' TG A@) (14.43)

where I'g = 1“7@; >0 is the adaptation rate. Using (14.37), the time derivative of
V(e7 A(:)), along the trajectories of (14.41), can be evaluated:

V(er, A®) = —! (C"R;'C+P,Q,P,+20P,) e
+2 ef P,BA (A@T O(%, up) + g(&, x, ubl))

+ 2 trace (A A" Ty @) (14.44)
With the weight matrices from (14.27), we get
. _ 1 . .
V(er, A®) = — (1 - v) e Ry ey — el P, Q) P, e,
1 . . .
- (1 + _> BBy e.|” —2nel Pre, +2¢/ P,BAg
N :

+2¢" P,BAA®" ®(%, uy) + 2trace <A A®' Ty ®> (14.45)
Substituting (14.36) into the sixth term and merging it with the seventh results in

; = 1 . -
V(ex’ A®) = _<1 +;> e;'R(;l ¢y — eZ(-Pv Qo Pyex

- (142) 187l - 20el Pre 42l B

+2urace | AAG { Tg' O + D&, uy) (ef C7) Ry WS
N—_——

T
(’y

+2¢70() A (86" D%, uy) +¢)
(14.46)
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Adaptive law dynamics with the Projection Operator modification [22]
= Proj (é, T (%, uy) eyT.RO_%WST> (14.47)
can be chosen such that the estimated parameters remain uniformly bounded, é

() €Qg={0O: H@H < Opax }, for all > 0. Then, (14.46) can be upper-
bounded as

V(ex, A(:)) < _anmin(ﬁv) ||‘~’X||2 - imin(QO) ;”xznin(lsv) |ex||2

1 ) -1 2 . l Tp 2
(140 @ e = (142) 1Bl
+ 2 Amax kg|[BTPy €| |le. ||

+2v [lex]| & Amax (A®max ||P(E, upr) || + kg [lex]])

where k > Ois a constant,0 < [|A[| < Apay, and0 < HA@(I) H <A@y, with a finite
constant A@ax < 2 Opax. )
Next, we define w = ||B” P, e,|| and rewrite (14.48):

V(€X7 Aé) S *(2774’ /lmin(QO) ﬂvmin(ﬁv)) ;Lmin(ﬁv) Hex||2
= (14 3) 5 e = (1 3) 7 2 A ke
+2v||ex|| k Amax (A®max || P, upr) || + kg [lex]]) (14.49)

Since Amin (};‘,) > Amin (ﬁo) >0, we get

V(exa A(:)) < _(27]+ imin(Qo) Amin (PO)) j~min<};0) ||ex||2

1\ | _ 2 1
= (15) & el = (147) o+ 2 Ak e
+ 2V [|ex|| k Amax (A®max || P(E, ) || + kg [lex]]) (14.50)
An upper bound for the norm of the extended regressor vector can be computed.
Since A, is Hurwitz in (14.20), then for any norm-bounded z,,4, there must exist

constants d; and d, (both may depend on the norm upper bound of z.,;), such that
I < di + da ||ex||- Consequently, it is not difficult to show that

H@()Z, Mhl)H < b1+ by |le]] (14.51)
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for some positive constants b, and b,. In this case,
. —_ l 71 2
Ve 40) < (14+1) fuia (R5") o]

- [(277 + imin(QO) imin (ﬁO)) }vmin (PO) - 2VkAmax (Aémax b2 + kg):l Hex”z

1 _
— (1 —&—;) W2+ 2 Amax kowllex]| + 2V Amax k AOmax b1 ||e|

(14.52)
Let us introduce the following notation:
C1 :)»min (QO) )‘ilin (PO) - 2'Vk/‘\max (AG)max b2 + kg)a C = Amax kg
1
c3 =1 —|—;, 4 =V Amax kK AOpax by (1453)
and rewrite (14.52) as

: = _ 2

V(ew A®) < —cs fmin(Ry") [ley |2 = 21 e

= Je1 llexll* = 22 lexdlw+ e3w? =2 e ]

@(llexll,w)
. 2
= —c3 2min(Ry") [les|” = 20 llexl® = el w) (14.54)

One can show constructively the existence of a sufficiently small vy > O such that
for all 0 <v < vq the function ¢(|le,||, w) in (14.54) has the unique nonpositive
global minimum:

Cain(V) = min () =0() <0 (14.55)
=(llesdl w)
Before proceeding further, let us prove this fact.

Lemma 14.1. There exists vo >0, such that for all 0 <v < vy, the function ¢ in
(14.54) has the unique nonpositive global minimum:

0 ;=0
min () =0(v*) <0, b;>0. (14.56)

Prin(1) = (1)
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Proof of Lemma 14.1. The function

o(llex]], w) = ¢ ||ex||2 — 20y |lex||w+ c3w? —2¢q |le]| (14.57)
in (14.54) can be written in matrix form

ledon = (led_wy () (140) 2 ey ()

o —_—————— —— o ——
c ¢ b
='cr-20» (14.58)

From (14.58), it follows that ¢(||e,||, w) has the unique global minimum if and
only if the matrix

C= ( “ _02> (14.59)

—C) C3
is strictly positive definite, which in turn is equivalent to
c1>0, detC=cic3—c3>0 (14.60)

The first inequality in (14.60) can be enforced if v is a sufficiently small positive
constant. Specifically, it suffices to choose 0 < v < v}, where

Jmin(Q0) A (P
Tk A ((AQG())?H: /:;(CZ)JF k) (14.61)
The second relation in (14.60) can be written as
detC =cjc3 — 5
_ ( I+ %) Uimin (@) 2240 (Po) — 2k Ay (A® s ko Ca + k)]
— Ay k=0 (1) (14.62)

Observe that lim [det C] = +o0. So, for a sufficiently small positive 0 < v < vy,
detC > 0. Finalli}?ghoosing vo = min(vy, v;) enforces both inequalities in (14.60)
and as a result guarantees uniqueness of the global nonpositive minimum for the
function ().

The location of the function minimum &, and the minimum value itself ¢,
= (o) can be easily computed by differentiating ({) with respect to &, setting the
gradient vector to 0, solving for &, and then substituting the latter into (14.58):
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V() =2C{—2b=0]= [{,=C"b]
= [Pmin = ¢(o) = — (" C'b) < 0] (14.63)

This proves (14.55). Furthermore, because of (14.58) and (14.63), we get

||€x||o> - 1 (C3 02) (C4> ¢4 (Cs)
S ( Wo detC \cn ¢ 0 c1c3 —C% C

| 5 (14.64)
_ c3 Cy C3C,
:—bTC lb:_ . 0) —— =__ "4
Pmin (64 )detC <C2 C1> <0) CIC3—C%
Due to (14.53), it easy to see that as v — 0,
2
3¢y O(v) 2
) = = =0 0 14.65
|<)Omm (V)‘ c1e3 — C% O(%) (V )‘:)0 ( )

So, if b; =0, then ¢4 = 0, and consequently, |@,;,(v)| = 0. The proof of the
lemma is complete. O

We can now return to the design of an output feedback adaptive control law.
Continuing from (14.54) gives

. _ 1
V(er, AB) < — (1 +;> Jain (R3") [|es]|* = 27 lleall” + [@min ()| (14.66)

According to (14.55), |@min(v)] = O(v?) — 0, and therefore, V(e,, A®) <0
outside of the compact set V0

. 2
Qé’\ = {ex : HeXHZ < |SOmm(V)| = rtz’ n = O(V_>} (14.67)
2n ' n

At the same time, the adaptive laws (14.47) ensure uniform boundedness of the
estimated parameters ® and of the corresponding estimation errors A®. Conse-
quently, V(e,, A®) is negative outside of the compact set Q = Q, x Qg. This fact
proves UUB of the observer error dynamics (14.41) [5]. Additionally, (14.67)
implies that for a constant positive 7, the radius r, , of €, decreases, as v — 0.
In other words, for any given constant 7, the UUB tracking property “tends to”
global asymptotic tracking, at the rate of O(v).

Let us now define the observer tracking error

e =X — Xpf (14.68)
subtract (14.10) from (14.20), and compute the observer tracking error dynamics:

é=Anse—Lye, (14.69)
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Because of (14.5), (14.25), (14.27), and (14.67),

¢=Anet <1 +1) (Po + O(v)) o<\;ﬁ>

v 1
—Age+0(-2)+0o(— 14.70
/¢ <\/ﬁ> (ﬁz) (1470

and so, the observer tacking error e(f) is uniformly bounded. Moreover,

el = e =4~ < =51+ = 5
——

e el
:o(ﬁ) +o(¢iﬁ> (14.71)

Consequently, ast — o0, the state tracking error either asymptotically converges
to the origin, or it tends (in the UUB sense) to a compact neighborhood of the origin,
with the neighborhood radius that can be made small by choosing a small v and a
large 7.

We have shown that the system state x(#) tracks the state of the reference model
Xref (f) with bounded errors. Therefore, the system-regulated output will z(f) = C.
x(r) track the reference model regulated output z,.¢ () = C. X,¢r(¢). At the same time,
Zref (f) tracks its commanded value z,q(f). Then, z(f) must track z,,(t). This
argument completes the design and stability analysis of the adaptive output tracking
controller. We now summarize our formally derived results as Theorem 14.1.

Theorem 14.1. Consider the MIMO system dynamics (14.7). Suppose Assumption
14.1 holds. Consider the state observer (14.19), whose feedback gain matrix L,
satisfies (14.25) and (14.26), with positive constants (v, 7)), symmetric positive
definite matrices (Q,, R,) from (14.27) with B= (B B,), and with a constant
matrix By € R™W=" chosen such that det(CB) # 0 and C(sly, —A) "' B is
minimum-phase. Then, there exists a sufficiently small positive parameter v, such
that the (baseline + adaptive) dynamic output feedback controllers (14.11),
(14.17), and (14.18), with the projection-based adaptive laws (14.47), enforce
UUB of the closed-loop system trajectories. Moreover, the system-regulated output
z tracks any bounded time-varying command z.,q with bounded errors, while all
other signals in the closed-loop system remain bounded. At the same time, X
recovers the system state X, which in turn tracks the state X., of the reference
model (14.10), with estimation and tracking errors entering in finite time a neigh-

borhood of the origin, whose radius is of order O(\/ﬁ> + O(ﬁ) ]

A design synopsis, encapsulating the system dynamics and control equations, is
given in Table 14.1.
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Table 14.1 Adaptive output feedback control design summary

Open-loop plant ¥ =Ax+BA (u+ 0" ®x)) + Bres Zoma
Measured and regulated y=Cx, z=0C.x
outputs
State observer = Arf 4Ly (y =) + Bref Zemay $=C%
Observer gain L,=P,CT R, 1
Squared-up B-matrix B=(B B))= {det(cé) £ 0 26108 |C (sLn — A) " B| € C~
ARE weights 0, =0+ (3 BB", R, = =5 Ro

Algebraic Riccati equation P, (A+ 7]1nxn)T 4+ (A +nlyxn) Py — P, CTR‘T'CPV +0,=0

Output tracking error ey=y—y
Baseline control Up = — LTQR 3
Extended regressor D(x, up) = ((DT ) ”ZI)T

Output selection matrix for S = (I,,,X,,, O(p—m)xm )
adaptive laws

Singular value decomposition p7 -7 R*% —UzV
0l =
Unitary matrix W= (U V)T

Projection-based MRAC laws 0 - Proj ( (f), T ®(, uy) e}T, R(;% W ST)

Adaptive increment aTl

Ugd = —@ (I)()?7 M;,[)

Total control input U = Up + Ugq

14.5 Adaptive Flight Control of a Flexible Transport Aircraft

In this study, we shall design robust and adaptive output feedback controllers for
longitudinal dynamics of a large transport aircraft with flexible structure. The
aircraft data (wings-level cruise configuration) are taken from [23], where all linear
displacements, velocities, and accelerations are given in meters (m), m/s, and m/s%,
while all angles and angular rates are in radians (rad) and rad/s, respectively.

The vehicle model (plant) includes a short-period mode and four structural
bending modes. Each mode is described by a complex-conjugate pair of
eigenvalues. The system state x, € R'"*! consists of the vehicle angle of attack o,
pitch rate g, and four structural mode positions (¢;),_, 4 and their rates (77;),_; _ 4



436 14 Robust and Adaptive Control with Output Feedback

p=( g &G m &G m G m G 774)T

There are two horizontal control surfaces available: (1) the elevator (J, ), (an aft-
mounted tail surface) and (2) the canard (J.) (a forward-mounted surface). The
aircraft dynamics also depend on the vertical gust velocity vector w, € R**!. The
gust enters the plant at three different locations, along the vehicle center line. So,
the aircraft longitudinal dynamics

Xp =Apxp +Bpd+ Byw,

are driven by the two-dimensional control input 6 = (J, O )T and by the three-
dimensional gust input w,.We have modified the original data to make the open-
loop system unstable in pitch. This necessitates a control action to restore and
maintain basic stability of the vehicle. The open-loop plant matrices are

—1.60 1 —1.1811 —0.1181 0 0 0 0 0 0
6.57 —2.446 —1.8130 1.1805 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
—7.196 —0.445 —56.82  —553 0 0 0 0 0 0
A 0 0 0 0 0 1 0 0 0 0
r —1.349  0.2466 0 0 -231.52 —1.712 0 0 0 0
0 0 0 0 0 0 0 1 0 0
—2.093 0.242 0 0 0 0 —408.86 —-2.679 —10.71 -0.518
0 0 0 0 0 0 0 0 0 1
0.3073  0.05588 0 0 0 0 —-124 -0.176 —-390.1 —-0.474

s 7(70.070 3726 0 0572 0 —0.465 0 —0.582 0 70.112)"'

77\ -0.006 —028 0 0019 0 —0.054 0 —0.0532 0 0.035
0.0042 006 0 0.0105 0 00065 0 —0.0045 0 —0.0021

B, =| 0.0037 —0.0417 0 0.0393 0 0.0039 0 0.0101 0 —0.0009
0.0012 —0.056 0 —0.0086 0 0.0059 0 0.0064 0 0.0012

T

The system output measurements include the pitch rate ¢ and vertical
accelerations (a:;);,_, , ; from three distinct nodes on the vehicle centerline. The
pitch rate is measured near the vehicle center of gravity (cg). The first vertical
acceleration is taken near the tip of the aircraft nose, the second is near cg, and the
third acceleration measurement comes from an aft cg location. These are the same
three locations where the vertical gust w, enters the system dynamics. So, the
system measured output vector is

Y =Cpxp+Dpu

with
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and the output matrices shown below:

0 1 0 0 0 0 0 0 0 0
| -3265 —28.04 4993 237 -—140541 —1039 —1707.61 —13.09 —4472.18 -7.53
Pl —11.69 —35.68 65.02 627  117.33 0.87 895.25 5.94 191.7 1.34

3.68 —38.04 153.63 17.68 —739.42 547 —821.74 —5.66 672.66  —1.83

b0 oz 0 12yt
"7\0 —1255 -123 3.69

The system-regulated output is the vehicle pitch rate, g, shown below:

z=(0 1 0 0 0 0 0 0 0 0)x,=Cprxp=gq

Cp reg

In order to regulate z, we shall blend the two control surfaces, the elevator ¢, and
the canard 0., and create a single longitudinal virtual control input:

u=0.5(,—9.)
Such a control mixing is standard in aerospace systems. It is called “control

allocation.” In order to incorporate u into the system dynamics, we introduce the
control allocation matrix G = (0.5 —0.5 )T and arrive at the plant dynamics

&y = Apxp + (Bp G) 1+ By w,
with the virtual control input u and with its corresponding B-matrix:
(B,, G) =(-0.032 2003 0 0.2765 0 —0.2055 0 -0.2644 0 —0.0385 )T
Our first step is to create the desired reference model dynamics, and our tool of
choice is the LQG/LTR method. In particular, we shall design a baseline output
feedback controller u(= uy,), such that ¢ adequately tracks its commanded value
qemd(= Zema ), while operating only on the system output measurements. In order to

do that, we augment the linear plant dynamics with the integrated pitch tracking
error

éql =49 —Y9emd
and arrive at the extended open-loop system

éq[ _ 0 Cpreg €ql 0 —1 0
(xl’ ) B <O AI’ Xp * BPG “r 0 Foma Bg W
N — e e N e N — N~

X A x B Bema B,
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with the output measurements

eq1 I Oixio eqi 0
=y= + u=Cx+Du
(y,,) g (04“ Cp ) <XP> (D,,G
—_——— e N
C x D
that include the integrated pitch rate tracking error and the original system outputs.
Adding the integrated output error will allow us to design a control input without

command feedforward connections. In the context of the extended system, the
regulated output can be expressed as

z=(0 01 0 0 00O O O 0)x=C.x
C:

We now proceed to the design of an LQR (proportional + integral) (PI) state
feedback controller. After several design iterations, we have selected the LQR
weights as

Qr =diag(2 0 0 0 0.0001 0 0.0001 0 0.0001 0 0.0001), Ry =1

Next, we choose the prescribed degree of stability n = 0.2, solve the ARE

Pigr (A+0211111) + (A +0-2111><11)TP1qr — Py B R;,,{BTqur + 01 =0

for Pj,-, compute the LQR state feedback gains
Kigr = Ry, B' Py
and arrive at the closed-loop poles of
Arf =A —BKyy

with real parts no greater than —0.2 (we are using the LQR design modification with
a prescribed degree of stability).

The next step is the design of a state observer. Note that the extended open-loop
plant has one input u and five outputs y. According to our design methodology, we
need to square-up the system dynamics, that is to say, we need to add four pseudo-
inputs by building a matrix B, € R''** to enforce the square-up conditions:

det(CB) #0
Zeros [C (sLpsen — A)71 B} e C

B=(B By)=
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We could use the method from [16], or we can select B, directly to enforce the
first square-up condition and then check if the second one holds true. Let us explore
the direct approach. Since we need det(C B) # 0, it seems reasonable to select

cT cr cr
B — ) 3 4 5
2= (Bed 17 T Tool

form the matrix

— <o c_g):
B (B B 1oy 1oy o) = (B B2)

and verify that the new system

5 — Inputs
4

A B c R16x16
5 = Outputs = \ C 0y,

with four fictitious pseudo-control columns in B, satisfies the two square-up
conditions: (1) The system is minimum-phase, and (2) the relative degree is one.
With the selected matrix B, we choose the observer weights similar to (14.3),

QQ0+<$>BBT, R—

V
v+ 1

Ro

with

Qo =lix11, Ro=10°I5, v=0.1
solve the ARE

P,A"+AP,—P,C"R,;'CP,+Q0=0

for P,, compute the steady-state Kalman filter gain L, = R L CP,, and write the
state observer dynamics

).2 =Ax +BM},1 +chd Zemd +Lv (y _5))
yA :Cﬁ—l—Dub[

with the baseline control input

T »
Up = —Klq,,x
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Bode Diagram

Gm =-10.6 dB (at 0.542 rad/sec) , Pm =53 deg (at 2.45 rad/sec)
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Fig. 14.1 LQR and LQG loop gain margins at virtual control input in Example 14.1

while utilizing the LQR-optimal feedback gains Ky, on the observer states .

Let us comment on the choice of B and on our selection of the tuning parameter v.
As we have previously discussed, B turns the original system with one input and five
outputs into a (5 X 5) minimum-phase system. This is the squaring-up procedure for
the observer design, where we have added four fictitious inputs into the second
through the fifth columns of B, respectively. The squaring-up modification allows us
to recover the LQR state feedback margins and, at the same time, enforce the
needed (for adaptive laws) asymptotics (14.6). The latter is achieved by setting the
tuning knob v to be sufficiently small. However, if v becomes too small, then
the observer gains may grow large, which is undesirable since the system noise
sensitivity may increase. This is the trade-off in our design: We must find v small
enough but not too small. Also, note that our selection of (B, v) is by no means
unique, yet it presents a straightforward way to recover optimal LQR state feedback
margins (at the system input), with the assigned crossover frequencies, obtain
reasonably small observer gains, and enforce the asymptotic relation (14.6).

With the selected pair (B, v), we recover the gain and phase margins of the
optimal LQR state feedback controller (Fig. 14.1).

The extended system gain and phase margins at the virtual input (including the
observer dynamics) are very close to those of the LQR state feedback controller.
We get a negative gain margin of —10.6 db at 0.542 rad/s, an infinite positive gain
margin, and a phase margin of 53 deg, at 2.45 rad/s. These values are quite
reasonable for the selected transport aircraft configuration.
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Fig. 14.2 Baseline LQG system tracking (without uncertainties) in Example 14.1

Note that that the loop gain of the LQG controller rolls off faster than the loop
gain of the LQR state feedback system. So, the dynamic LQG solution is less
sensitive to modeling uncertainties, and it has better disturbance rejection
properties than the LQR state feedback. Of course, the faster roll-off at high
frequencies in the LQG design is attributed to adding the dynamic state observer.

With the baseline LQG controller in the loop, the closed-loop system becomes

)'(:Ax—BKIZI,)z"Fchchmd+ngg
_).A(:(A—BKII;I’,))/C\‘FchdZCmd+L¥'(y_yA) )

y=(c-pkl,)x, 5=(c-DK)% z=Cux
and the resulting closed-loop eigenvalues are placed well within practical bounds
that would be representative of a large transport aircraft in a cruise configuration.

Without uncertainties, the closed-loop system tracking performance is satisfac-
tory. Representative data are shown in Fig. 14.2.

The baseline LQG controller forces the regulated output (pitch rate) z = ¢ to
track its commanded values, and the required control effort lies well within the
bandwidth of a typical aircraft actuation system.

We have also tested the LQG baseline system closed-loop tracking using various
command shapes. All the results have shown adequate performance. For all these
reasons, the closed-loop baseline system becomes our reference model for adaptive
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control to achieve and maintain if and when uncertainties are present in the system
dynamics. Specifically, we define the reference model matrices

Aref —A - BK], Brff = Bema

Igr>
Cref =C —DK| ., Dy = Osx

lgr>
and write the reference model dynamics in the form of (14.10):
xref = Ar'cff Xref +B ref Zemds — Zref — Cz Xref

These are the desired dynamics. In other words, this is exactly how we want our
system to respond to external commands. Note that the LQG state observer remains
the same, as in (14.20):

).2 = Aref-)2 + L\, (y - )3) + Bl‘ef Zemd

Before proceeding further, a remark is in order. As derived, our adaptive MRAC
design is applicable to systems whose measured and regulated output have no direct
feedforward control connections, that is, our method is applicable to systems with the
zero D matrix in both the measurements and the regulated outputs. It is possible to
broaden our design methodology to cover systems with feedforward control
connections in their outputs. Derivations of such a method are similar to what we
have presented in this chapter, and because of their similarity, we choose to omit
formal proofs.

Let us now test the baseline system performance in the presence of uncertainties.
So, we reduce the baseline controller gains by 75 %, set A = 0.5, and also introduce
a matched nonparametric alpha-dependent uncertainty in the form of a Gaussian (an
RBF), centered at o, = 2 deg, with the RBF sigma-width set to 0.011636, and with
the function peak magnitude of —0.25.

With these uncertainties active and operating under the baseline controller only,
the system tracking performance degrades significantly (Fig. 14.3).

It is evident from the test data shown in Fig. 14.3 that the baseline controller is
unable to adequately track the reference pitch rate command signal.

In order to recover the desired baseline closed-loop performance, we shall add an
adaptive output feedback u,,, as shown in Table 14.1. We select adaptation rate
matrix I'g to be diagonal. Then, the adaptive laws can be written as

O = Proj (@, ~To ®(%) ¢/ Ry* WST)
I%u = PI‘Oj (13,,, —Fu Up| 65 R(;% W ST)
where (F o, K u) are the rates of adaptation for the original adaptive parameters e}

and for the baseline control component u;;, respectively. Also, in this case, the
adaptive augmentation component is
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Fig. 14.3 Baseline controller tracking with uncertainties in Example 14.1
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It is interesting to note that according to (14.13), the adaptive gain K,, serves as
an estimaAte of the constant parametric uncertainty (Imx,,, — A_l). Therefore, an
estimate A of the system control effectiveness A can be reconstructed as

/A\ (Imxm _ku)_l

For the design study, we use I',, = 100 and select I'g to be diagonal, with all of its
diagonal elements also set to 3,000. We define an «-dependent RBF regressor
vector on the grid of breakpoints [~10, 10] %5, in two degree increments from

each other. The RBF sigma widths are set to (% %) This value allows to position

individual RBF-s such that any two consecutive functions overlap in the middle.

With the (baseline + adaptive) controller operating in the presence of the
reduced control effectiveness, the scaled-down baseline control gains, and the
o— dependent uncertainty, the closed-loop system performance is recovered rather
well, using reasonable control deflections and rates (Fig. 14.4).
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It turns out that the selected uncertainties persistently excite the system dynam-
ics, and the adaptive system is able to approximate the unknown o-dependent RBF
function, (Fig. 14.5).
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Evolutions of A(r) = (1- Ifu(t))_1 and ||@(7)|| are shown in Fig. 14.6.

The simulation test data indicate that system improvements mostly come
through 0} adaptation, with small changes to K..

In order to add realism into simulation testing, we employ the gust model from
[23]. The model is driven by a random noise, and it generates three separate gust
profiles (wg i)i:l. , 3> according to the block diagram shown below (Fig. 14.7).

The intent of the model is to emulate time delays in gust propagation along the
length of the aircraft.

For simulation testing, we select normally distributed zero-mean noise with
standard deviation set to one and generate three light vertical gust profiles (Fig. 14.8).

Then, we evaluate closed-loop (baseline + adaptive) system tracking and gust
rejection performance, in the presence of uncertainties (Fig. 14.9).
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Clearly, the system is able to attenuate gust effects and to maintain its command
tracking abilities in the presence of both gust and aerodynamic uncertainties.

We have also tested the exact same controller (without further retuning) in the
presence of medium-to-high gust, nonlinear-in-parameter uncertainties, actuator
dynamics, and with various pitch rate commands. All of the simulation trials have
resulted in excellent and resilient to uncertainties closed-loop tracking perfor-
mance. It is interesting to note that the collected simulation data indicate that the
adaptive system requires about the same level of control effort as the baseline
controller, yet the adaptive controller is able to cope quickly and efficiently with a
variety of “unknown unknowns” in the system dynamics. O

14.6 Conclusions

In this chapter, we have presented an adaptive output feedback augmentation design
for MIMO dynamical systems with matched uncertainties and with the number of
output measurements exceeding the number of control inputs. The system-
regulated output dynamics are allowed to be nonminimum phase and/or have a
high relative degree. We have also developed a detailed design case study related to
flight control of a large-size transport aircraft, with prominent structural dynamics,
aerodynamic uncertainties, and environmental disturbances.

It is worthwhile to reflect back on the design procedure and summarize the
quintessence of our method. After all proofs, derivations, and formal statements, it
all comes down to the design of a baseline LQG/LTR dynamic output feedback
controller, for the original system and without uncertainties. This linear system,
with the baseline controller in the loop, defines the reference model. The key step to
the design of an adaptive augmentation is the introduction of a small positive
constant (the so-called tuning knob) into the observer ARE, followed by exploita-
tion of the ARE asymptotic properties with respect to the tuning knob. It turns out
that for a sufficiently small constant, one can create a linear combination of the
system outputs, use it in an adaptive law, and then augment the baseline controller
with an adaptive output feedback in such a way that all matched uncertainties in the
system dynamics are mitigated. We have also noted that the derived design can be
easily extended to a class of nonparametric and non-matched uncertainties, includ-
ing bounded process noise.

In summary, our (baseline + adaptive) output feedback design consists of the
following three main steps:

1. Using the system without uncertainties, square-up its input—output dynamics.

2. Select a sufficiently small tuning knob, design an LQG/LTR output feedback
controller, and construct a linear combination of the system outputs for adaptive
laws.

3. Compute an adaptive output feedback augmentation and add it to the baseline
LQG/LTR controller.
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What is interesting here is the fact that the design of a robust LQG/LTR
controller paves the way to the design of a robust adaptive output feedback.
Together, the two controllers provide seamless mitigation of a large class of
uncertainties in the system dynamics while relying only on the system output
measurements. So in a way, we have built an “output feedback bridge” between
robust and adaptive control methodologies.

14.7 Exercises

Exercise 14.1. Suppose that all states are accessible, that is, let y = x. Write down
the adaptive output feedback laws and compare them to a state feedback MRAC.
Comment on the similarity of the derived solution with the observer-like adaptive
output feedback design that was presented in this Section.

Exercise 14.2. Derive an adaptive output feedback solution, similar to the one from
Sect. 14.3, but without a baseline linear controller.

Exercise 14.3. Consider the system dynamics (14.7), with the linear regressor
vector ®(x) = KL x and with an unknown constant matrix K¢ € R"*". Suppose
that B, = 0, . Using the techniques from Sect. 14.3 and relying only on the
system output measurements y, derive an adaptive controller to force the system-
regulated output z track bounded commands.

Exercise 14.4. With the aircraft data from Sect. 14.5, perform a trade study in
selecting appropriate values for the tuning knob v. Show numerically that as v gets

1
smaller, the asymptotic relation (14.6) takes place. Plot HP; 'Bp—cT Ry’ WH Versus

v. Also, show that for small values of v, the observer gains get large, eventually
leading to high gain effects. Explain this phenomenon. Compute and plot (vs. v) the
associated crossover frequencies and MIMO gain/phase margins at the output
breakpoint of the nominal system. Comment on your results.

Exercise 14.5. For the aircraft data from Sect. 14.5, select your own (E, V),
redesign the controller, rerun simulation tests, and compare your data with the
original results. Test and comment on the system tracking and gust rejection
performance. Select a matched nonparametric uncertainty and, without retuning
the controller, rerun simulation tests with increasing gust magnitudes. Comment on
your results.

Exercise 14.6. Using the aircraft data from Sect. 14.5, replace the system-regulated
output ¢ with a. Design a (baseline + adaptive) output feedback controller to track
bounded angle of attack commands o,,,;. Simulate the closed-loop system using
various uncertainties (parametric and nonparametric), as well as the gust model
from Example 14.1.
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535 A+ B Argument

The minimum singular value g(A) measures the near singularity of the matrix A.
Assume that the matrix A + B is singular. If A 4+ B is singular then A 4 B is rank
deficient. Since A + B is rank deficient, then therg exists a vector x # 0 with unit
magnitude (||x||, = 1) such that (A + B)x = 0 (xis in the null space of A + B). This
leads to Ax = —Bx with ||Ax||, = ||Bx||,. Using thi¢ above singular value definitions
in (5.20) and ||x||, = 1, we obtain the following inequality.
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Figure 5.21 shows the frequency response of the controller (K). This figure

indicates the amplification, or attenuation, of sensor noise through the controller.

.. Although not directly related to stability margins, this frequency response should

-'. e exammed to make sure the bandwidth of the controller is not too high and that

'hlgh frequency noise is not adversely amplified. The shape of the frequency

response clearly shows the proportional-plus-integral control action that the con-
troller is providing.

to

should be examined
11) Page 127, change

For a control system under po, uncertamty, the controller stabilizes the plant and
the return difference matrl-‘x in nomsmgular at all frequencies. Stability of the
nominal system implies """’

det[l + L(s)] # OVs € Dg. (5.68)

to
is
12) Page 130, change
to

add space in front and after M, and change 5.8 to 5.7
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13) Page 133, change

T 0 0 0 0
11422 04628 0 o | ...
Bu=1| 0 0 —6.9073 10.2389 [ Cy
0 0 0 0 | ’
L o 0 0 0
[0 —1.1422 0 0 0
0 0 0 —04628 0
10 —6.9073 0 0 0
0 0 0 —10.2389 0
to
r0 0 0 0
11422 04628 0 0
Bu=1| 0 0  —6.9073 10.2389
0 0 0 0
L0 0 0 0
[0 —1.1422 0 0 0
e, |0 0 0 -0468 0
0 —6.9073 0 0 0
0 0 0 —10.2389 0
14) Page 136, change
—0.0251  0.10453 —0.99452 0.1228  —0.27630
A= | 574.70 0 0 ‘B=|-53.610 3325 | (0.)
16.2 0 0 1955  —529.40
to
—0.0251 0.10453 —0.99452 0.1228 —0.2763
A= | 5747 0 0 :B=|1955 —529.4 (0.2)

16.2 0 0 —53.61 33.25
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15) Page 138, change

r[—0.0251 0.10453 —0.994527 [ 0.1228 —0.276307 7
574.70 0 0 ~53.610  33.25
[Ap B,,}_ 16.2 0 0 1955  —529.40
C, D,| 1 0 0
0 0
010
0 0
L 0 0 1 ]
(5.109)
to
—0.0251 0.10453 — 0.99452 0.1228 — 0.27630
574.70 0 0 -53.610  33.25
A, B,] 16.2 0 0 195.5 —529.40
C, D,|~ 1 00 0 0
010 0 0
0 0 1 0 0

16) Page 158, change

the det[/ + KH], and indicate the number of encirclements.

(b) Plot the singular values of the return difference matrix and stability robustness
matrix versus frequency. Compute the singplar-value gain and phase margins
for this system. This is a plot of g[I + L] and o[l + L::’ !l versus frequency. Plot
these using a log scale for frequency and niagnitud¢ in dB.

Exercise 5.2. Consider the block diagrams shown below. Each block in the
diagrams is a scalar.

to

1Q
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Chapter 6

1) Page 164, change

______________
-
.

Lo

-
LI

wn2”

By .:"X;);"_.NOXM (6.15)

A, =Ap — NoApp

to

2) Page 166, change

G0 10
ALv |0 Z)VooZ,
Qr] 10 M,/zZ, M,
O 0 0 0
o6 1 L0 0 0

No = X, X, |
0 0 e
0 Zs A.
(Ms—%2) 0 q|+
0 1 Je
—02 =2, Lo

to: make bracket same size as other brackets.

3) Page 169, change

2.2295¢—001 |

......... —9.4676e—001
C X, = |1 —1.6075¢—002
"""" | | =5.3104e—002

2.2551e—001

to

9.1946e—001
—1.4240e—003 —1.0897e—002;j
—4.3324e—-002 —3.3555e—-002;j
3.6293e—001 —2.3622e—002)

9.1946e—001
—1.4240e—-003 +1.0897e—002j
—4.3324e—002 +3.3555e—002;j
3.6293e—001 +2.3622e—002j

—1.0379e—001 —9.1764e—002; |

[ —1.0379¢—001 —9.1764¢—002; ] |

Errata List

(6.34)
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2.2295¢ — 001 ] [ —1.0379e — 001 — 9.1764e — 002; ]
—9.4676e — 001 9.1946e — 001
X, = —1.6075e — 002 | | —1.4240e — 003 — 1.0897e — 002
—5.3104e — 002 | | —4.3324e — 002 — 3.3555¢ — 002
2.2551e — 001 | 3.6293e — 001 — 2.3622¢ — 002 |

[ —1.0379¢ — 001 +9.1764e — 002 ] |
9.1946e — 001

x | —1.4240e — 003 + 1.0897e — 002

—4.3324e — 002 + 3.3555e — 002j

3.6293e — 001 + 2.3622¢ — 002

4) Page 173, change

The compensator- des.lgn (6.12) requires selecting a gain matrix Pg-sueh, that
the residual dynamlcsA in (‘6 16) are stable. The matrices needed to formA are-No
and By. e aae® et

to

5) Page 173, change

""""

Ny = XX1 j
B [.':1"656563 001 —5.8888e—002 4.4744e+000 } (6.43)
| 2.4157e+000 6.3925¢—001 —1.8175¢ + 001

to

No = X,,.X,,!

-1 6565¢ — 001 — 5.8888¢ — 002 4.4744e + 000
~ | 2.4157e 4000 6.3925¢ — 001 — 1.8175¢ 4 001

6) Page 173, change

Using the dynamic compensator in (6.12) with matrices defined in (6.17), the
compensator is designed by choosing the free parameter mratrix Py such that the
residual dynamics in (6.16) are stable. For this exampl'p (6.46), l

‘e
-------

to

delete (6.46)
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7) Page 173, change

Aye = A, + BoPoAr2
4 8883e <k QOO 3.3521e — 001
—6.6917 + 003 T -9.0801e + 001

............... 0 0 (6.46)
—2.5706e — 003 —2.6871e — 003
Py 0 —11.29
9.3759¢ — 001  —7.0061e — 002
—1.093 0

to

—6.6917¢ 4 003

8) Page 174, change

........

By multiplying out the matrices in 6.47), one can determine which elements of
Py need to be chosen. This matrix is demgn‘ed using a tuning process in which the
elements are increased in magnitude until a suitable design is obtained (trial and
error). After some tuning, the following matrix was obtained:

0 2 —500

Po=10 2 —2000000

(6.47)

The zero elements in the first column were found not formatter. They were made

4
--------

to

(6.46)
8) Page 177, change

covariance, which results from solving the algebraic filter Riccati equation (covari-
ance ﬁquatren) and Qp and Ry are the process and measurement noise covariances
fronﬁ (6.54), respectlvely The optimal control is formed using the LQR state
feedback-eeritrol gain matrix K. and the estimated state feedback X, given as

u=—K.x (6.55)

to

(6.53)
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9) Page 177, change
u=—K.x (6.55)

Flgure 6.10 cqmbmes the LQR controller (Chap. 3) with the Kalman filter state
estlmatot (6 55) mm a block diagram. This is the LQG control architecture.

-------

to

(6.54)

10) Page 178, change

Or =Qo+ %BBT (6.58)

-
e "

where Qy is the nominal plant process disturbance covariance frorn (6 54) B is the
control input distribution matrix, and pis the LTR filter compensatldn parameter.
This parameter is adjusted to recover the LQR frequency domain characteristics

to

(6.53)
11) Page 179, change

Considering the loop broken at the plant input, LTR modifies K; to create a system
that has stability properties that asymptotically approach those of the LQR. The
method uses a trial and error procedure in which the filter design is parameterized by
a scalar p > 0 such that when p — 0 we have Ligc — Ligr asymptotically but not

 Jieeessarily uniformly. It is evident that the location of the Kalman filter eigenvalues,
1 (6.58), alfers the closed-loop frequency characteristics of the system.
**=~The TQG/LTR approach requires that the controlled system (plant) be minimum
phase (i.e., no RHP transmission zeros). The minimum phase requirement occurs

to

6.57)
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12) Page 179, change

The LQG/LTR loop transfer function matrix at the plant input, L;pg, will
asymptotically recover the LQR frequency domain characterlstlcs as"pr=> 0. This
can be shown as follows. As p — 0, the process covariance Oy 11:1 (6.59) beeomes
largely dominated by the second term IBBT As these elements of Qf get-kirge, the
covariance matrix P; has elements that get large, resulting in the Kalman gain
matrix K; getting large with the following result:

to

(6.58)

13) Page 179, change

u=—K.(sI — A+ BK. +K,C) 'Ky (6.60)

Substituting for the measurement y = Cx + v and letting p — 0 as 1f1 (6 60)
yields e

to
(6.59)

14) Page 179, change

aols) = Kelof = A R+ K—C) Koy Cll =ATIE (o
Lioo(s) ~ Ko(sT — A) 8 :

to

Lioc(s) = K.(sI — A +BK. +K;C)'K;C(sI — A)"'B
Ligc(s) =~ K.(sT —A)"'B
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15) Page 179, change

It is this process that inverts the plant (within the Kalman filter) resulting in
_recovering the LQR Ly gr. It is important to note that as p — 0, &(P;) — oo and
. o (P,:-) — 0, creating a singular covariance matrix. In the next section, we will

~'151‘és'e'nt the LTR method of Lavretsky [6] which prevents this condition from
occurring during the recovery process.

to

o(Pr) =0

16) Page 179, change

u=—K.(sI — A+ BK, +K;C)"'K¢(Cx +v)

.....
" "

- .*
............

.....

(6.61)

to

~ ~ —1
u=—K.(s1 = A +BK +KC) K(Cx+v)
~ ~ —1 ~ ~ —1
- K, (sl —A+BK, + Kfc) K/Cx — K, (sI —A+BK.+ Kfc) Kpv

~ ~ —1
~—Kx—K, (s] —A+BK, + Kfc) Kpv
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17) Page 180, change

in which the first term is inverted and canceled (K;C ) KfC = [resulting in — K x.
However, the second term is not exactly canceled; (KfC ) Kf = I, and the sensor
noise v can be amplified. This feature limits the amount of recovery possible. In the
use of this demgu, method for making the LQG system robust, the sensor noise
amplification in’(6.62) must be examined.

The LQG/LTR. controller design, examining the loop properties at the plant
input, may be realized through the following synthesis technique:
Step 1: LQR controller design: K,
Follow the robust servomechanism design approach outlined in Chap. 3. Design
LQR weighting matrices QO and R such that the resulting LTFM L gr(s) = K,

(sl — A~) ~'B meets performance and stability robustness requirements and exhibits
the desired bandwidth. The frequency domain properties of the LQG system will
not exceed those of the LQR system.

Step 2 Kalman- filfer design: K; Design the Kalman filter state estimator using
5, (6.55), Wlth (6.59) deﬁmng the plant disturbance covariance. The LTR filter
fecovbry parémeter 0 is used to recover the LQR frequency domain characteristics
over the frequency range of interest. Examine plant 1nput and output frequency
domain criteria and the sensor noise amplification 11:1 (6.62) and limit the LTR
recovery so that the sensor noise is not amplified.

------

to

(6.62) change to (6.51)
(6.55) change to (6.54)
(6.59) change to (6.58)
(6.62) change to (6.61)

18) Page 180, change the following text:

in which the first term is inverted and canceled (KfC ) KfC = [resulting in — K,x.
However, the second term is not exactly canceled; (K;C)~ Kf # I, and the sensor
noise v can be amplified. This feature limits the amount of recovery possible. In the
use of this design method for making the LQG system robust, the sensor noise
amplification in (6.62) must be examined.

to

in which the first term approximately equals the state feedback control law, but the
second term amplifies the sensor noise. This feature limits the amount of recovery
possible. In the use of this design method for making the LQG system robust, the
sensor noise amplification in (6.62) must be examined.
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19) Page 181, change

where the first gain in K. multiplies the integral error, and the remaining gains
multiply estimates of A;, ¢, J., and J,, respectively.
The measurements provided by an inertial measurement unit, A, and g,,, are

“m
.-

available for feedback. To design the Kalman filter state estimator, wenieed-models

to

(6.53)
20) Page 183, change

6.2 Linear Quadratic Gaussian with Loop Transfer Recovery

obtained from the filter covartarice equation

to

(6.64)

21) Page 183, change

Kr = PC"Ry™!
[ 2.0442e~.003 —6.0760e — 006 2.4929¢ — 010  —5.6592e — 008

b _ —6.6760 — 00:6 7.8188¢ — 008 —1.2264e — 012 1.3375¢ — 010
P70 2492062010 —1.2264e — 012 1.2523e — 010 —5.0000e — 009

| —5.65926.008 1.3375¢— 010 —5.0000c — 009 3.4544e — 007
[ 3.3707 — 002 —6.0760¢ + 000

-

—9.7217&"=7005  7.8188¢ — 002
Ky = (6.68)
3.9887¢ — 009  —1.2264¢ — 006

| —9.0547e — 007  1.3375e — 004

The controller implementing the robust servomechanism integral control with the

to: need to add the “e” e-006, e-002 to these two numbers
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22) Page 185, change

Note that (6 75) 1 1,s valid for plant models with no D matrix, that is, D, = 0. The
first state x; is"the” robust servo integrator, the vector X is the estimated state, Zyeas
contains the acceleration and pitch rate measurements, and r is the acceleration
command. Writing the controller in a generic form, we have

to

(6.74)

23) Page 185, change

0 0 0 0 0
0 —1.0854e + 000 —3.4041e + 002 0 —1.1289€ + 001
A= 0 6.8202¢ — 003 —1.1116e +000 —1.0925¢ + 000 0
0 —3.9887e — 009  1.2264e — 006 0 1.0
| —3.3010¢ + 003 —1.1944e +003  9.3804e + 004  —2.1408¢ 4+ 004 —1.1005¢ + 002
[ 1.0 0 -1
3.2707¢ — 002 —6.0760e + 000 0
B, = | —9.7217¢ — 005  7.8188¢ — 002 |:B., = 0
3.9887¢ — 009  —1.2264e — 006 0
| —9.0547¢ — 007  1.3375¢ — 004 0
=[0 0]; D, =|[0]
(6.76)
to
A(? _
c.| ™
0 0 0 0 0
0 —1.0854¢+000  3.4041e+002 0 —1.1289e 4001
0 6.8202e—003 —1.1116e+000 —1.0925¢+000 0
0 —3.9887¢—009 1.2264e—006 0 1.0

—3.3010e+003 —1.1944e+003 9.3804e+004 —2.1408¢+004 —1.1005¢+002
[-4.9477e—001 —1.7903¢—001 1.4060e+001 —2.2087¢+000 —1.8035¢—003]

1.0 0 ~1
3.2707¢—002  —6.0760e-+000

B, B.,] ||-9.7217e—005 7.8188¢—002

[Dv, ch T || 3.9887e—009  —1.2264e—006

~9.0547e—007  1.3375¢—004
[0 0] [

S o o o o
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24) Page 186, change

Next, we will analyze the LQG/LTR design in the frequency domain and
determine the desired amount of LTR to be applied at this flight condition.
Figure 6.13 shows.a'N‘yquist plot of the LQR LQG and LQG/LTR designs using

.....

to

6.73)

25) Page 189

PR
o* LS

and, 0(1 + 1) at the plant input, minimizing 5(S) and 5(T') at the plant output and
preveh‘tmg n01se amplification over a frequency range of interest. The following
table summarizes these peak values:

Design o(l+L) oI +L71 a(S) a(T)

LQR 1.0000 0.7963 1.4936 1.0480
LQR 0.5506 0.9808 1.0791 1.0000
p=10° 0.5233 0.7136 1.0923 1.0000
p = 10* 0.5853 0.6567 1.0599 1.0000
p=10° 0.7920 0.7301 1.4581 1.0000
p = 102 0.9160 0.7715 2.9361 2.1570

PR
o* te,

From the “a(l —|—‘.L) values, we. need p< 10* to meet plant input stability margin
requuements We Wwould l]{(e “a(l +- L") to be as large as possible, which is also
satisfied by p<10*. We would 'ltkcf)'(S to be minimized, which points to p = 10* as the
desired recovery level. If p = 107, the peak in & (S) would be too large. Thus, p = 10*is
selected as the design. For comparison, the following table lists the Kalman filter gains:

to

S|
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26) Page 190, change

Definition 6.2. The transfer function G(s) is called strictly positive real if G(s — &)
dspgsitive real, [0r.some 20 o o o e e ——————————
: For scalar systems (p = 1), PR and SPR dynamics have their Nyquist frequency
1 response locus located entirely in the right half complex plane. This condition for
: G(s) can be satisfied only if the system’s relative degree is zero or one. Thus,
1 encirclements of (—1, jO) cannot occur. In other words, such a system will remain
: stable under a large set of uncertainties, which is a highly desirable property for
1
k

any system to possess.

e e e Em e e e e e e e e

to: This text should not be italic

27) Page 191, change

e T e
1 » o

1 Clearly, if D is the zero matrix, then the SPR conditions (6.81) ré‘duce to

e
PA+A"P=—-L"L—¢P
PB=C"

1
1
1

(6.81)

L e L L L L L L L L L L
PA+A"P=-L"L
PB=C"

1
and in this case, setting ¢ = 0, gives the PR conditions in the form :

(6.82)

to: (6.80), and the text in the boxes should not be italic.
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28) Page 192

192 6 Output Feedback Control

The first relation iy (6.83) is the algebraic Lyapunov-eqnation, andV (x) = xT Px
is the Lyapunov functl’o'n '[4‘]‘.7"he second relation in,(6.83) engbles output feedback
control design, whereby the system outputy = C x chh'be'fe'a" back into the input to
control the system, while preserving closed-loop stability. Also, note that the
matrices B and C define the transmission zeros of the system transfer function
matrix G(s) = C(sI —A)"'B.

We are going to modify the LOG/LTR design such that, for a class of restricted
systems, the PR property is obtained asymptotically, P, B, — CT, with the positive
tuning parameterv — 0. In addition, we shall ensure that P, remains symmetric and
strictly positive definite, uniformly in v. These are the distinguishing features of
LTRLM design. Similar to the previous section, in this design, the Kalman filter is
no longer treated as a filter. It will continue to estimate the system state and serve as
a dynamic compensator, tuned to improve the frequency domain properties of the
system. The Gaussian covariance matrices for w and v are altered significantly to
improve the controller robustness and to limit sensor noise amplification. So, these
matrices no longer “model” the stochastic processes of the system.

We formulate the LTRLM design approach using the linear-time-invariant
Gaussian design model,

X=Ax+Bu+w

y= Cxtv (6.83)

where w and v are zero mean, white, uncorrelated Gaussian random processes with
covariances given by

E{w(O)w" (1)} = Qod(t — 1)

(6.84)
E{v(t)"(t)} = Rod(t — 1)
The state estimate X is formed as before, using the state estimator,
X = A% + B+ Kr (Ymeas — 5) (6.85)

and the control input is calculated using the LOR state feedback gain matrix K.,
with the estimated state feedback X.

u=—Kx (6.86)

In LTRLM, we parameterize the process and measurement noise covariance
matrices using a positive scalar v,

E27

: Change (6.83) to (6.82). The text on this page should not be italic.
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29) Page 193, change

6.3 Loop Transfer Recovery Using the Lavretsky Method 193

where B is a matrix formed by adding “fictitious” columns to B, to make B =
[B X] have its column rank equal to the row rank of C, such that CB becomes
invertible and the corresponding extended system C (sl fA)_IB is minimum
phase, that is, all its transmission zeros are located in the left half complex plane.. 1

This is the “squaring-up” step of the method. Substituting the weightsfrolﬁ (6.88) ':
into the filter Riccati equation, we get Trenaaaet !

v

1 1 - -
P,AT+AP, — (1+;) P,CT Ry'CP,+ Qo+ (1+ )BBT:o (6.88)

or, equivalently

|
P,AT +AP,—P,C" Ry'CP, +Qy+BB" +

v

[BBT—P,C"R;'CP,] =0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

! RS e

: The gains if (6.86) are computed as
. . .

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1

------

Ky =P,C'R,”! (6.90)

Now as v — 0, one can show that the filter covariance matrix P, asymptotically
approaches a constant symmetric positive definite matrix Py, that is,

Py =lim P, = lim Pl =Pl>0 (6.91)

This behavior is in contrast to the previous section, whereas the LTR parameter
p— 0, 6(Pf) — 00, g(Pf) — 0, and the.Pemmatiix became singular.

The important properties of Py in, (6.92) are listed below without proof
(see Chap. 13, Theorem 13.1 forformal’.dért'v&'t‘ions):

o Py is the unique symmetric strictly positive definite solution of the following
algebraic Lyapunov equation

Po(A—CTR;' CP)) + (A=C"R;'CP)Po+0Qy=0  (6.92)

to: (6.88) to (6.87), (6.86) to (6.85), (6.92) to (6.91). This page should not be italic.
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30) Page 194, change

194 6 Output Feedback Control

PoC" =B W'R; (6.93)

o The unitary matrix W z-n ( 6.94 ) cqn be chosen as

.....

w=@Wv) (6.94)

where U and V are two unitary matrices defined by the singular value
decomposition,

B'CTR =USV (6.95)

and X represents the diagonal matrix of the corresponding wngulm values.

_________________________________ ___~..____.|

For minimum phase systems, the SPR property is 1mphed by (6 94). What the
estimator, such that the original system with the extended input becomes SPR
asymptotically, as v — 0. To do this, we “square-up the system” by adding extra
columns to B (to form B) and then apply.the LTR tuning process, whereby we
decrease the tuning parameter v irk(6.88), ugtil the system becomes almost SPR.

It was discussed earlier in Chap ) fhat in the LQR design problem, with the
penalty matrix Q factored as Q = Q Q2, the poles of the closed-loop system,
A(A — BK.), would approach the transmission zeros defined by Q#(s/ —A) 'B
asymptotically as the gains grew large. If no finite transmission zeros existed,
the roots would form a Butterworth pattern (or combinations of Butterworth
patterns) in the left half complex plane. Thus, by the proper selection of Q, the
designer places these zeros to achieve the desired response of the system. So,
the selection of the LQR penalty matrix is a key tuning mechanism in the LQR
controller design.

This same basic idea is in work under LTRLM. For the state estimator (aka
Kalman filter), the process covariance Oy is the equivalent to the LQR penalty
matrix. Factoring the process covariance Oy as Oy = LTL, the eigenvalues of the
Kalman filter, A (A - KfC), will approach the finite transmission zeros defined by
C(sl — A)flL. Thus, the selection of the process covariance O is an ideal tuning
mechanism in the design of the LTRLM controller. Placing the zeros of the
system in a desirable location is the key to achieving a robust design. This is
achieved threu-gh. the modified process covariance and measurement noise
matrices 1n (6 88)

------

to: (6.94) to (6.93), (6.94) to (6.93), (6.88) to (6.87), (6.88) to (6.87). The text in the

box should not be italic.
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31) Page 196, change

Step 1: LQR controller design: K,
Follow the robust servomechanism design approach outlined in Chap. 3. Design
LQR weighting matrices Q and R, such that the resulting loop gain Ligr(s) = K,

(sI — A) ~'B meets performance and stability robustness requirements and exhibits
the desired bandwidth.

Step 2: State estimator/Kalman filter design: K;

Select columns X to make B = [B X | have column rank equal to the row rank of
C and to make the extended system-minimum phase. Design the Kalman filter/state
estimator usmg (6.89), w1tﬁ (6.88) defining the plant process and measurement
noise covariance matrices. The -LFR parameter v is used to recover the LQR
frequency domain characteristics over the frequency range of interest. Ad hoc
adjustment of the sensor noise covariance magnitude may be needed to scale the
Kalman gains to prevent large gains from occurring. Examine plant input and
output frequency domain criteria and the sensor noise amplification in and limit
the LTR recovery so that the sensor noise is not amplified.

to: ), (6.89) to (6.88), (6.88) to (6.87).

32) Page 197, change

Xe =AXe + By + Beor

(6.102)
u=Ccxe+ Dc1y+ Der
Using the gains from (6 101), t}le state feedback controller is
Xe=|0x.+1[1 Oly+|[—-1|r
O+ 1 0ly+[-1] 6108

u=[—0.31623]x. + [33.261 6.7127 ]y + [0]r

to: (6.101) to (6.100)



Errata List E31
33) Page 198, change

%= A%+ Bu+Ki(y —3) (6.106)

-----

where u is formed usmg (6 102) and was implemented using steady-state matrices
obtained from the filter cOvariance equation

0= AP +PA" + 0, — P;C'R,”'CPy

(6.107)
K; = P;C'R,™!

The steady-state covariance and Kalman filter gains design (using Qp and R) are

9.5843¢ — 006 3.8344e — 007
F= [3.83446 — 007 4.8957¢ — 005}
—0.053132  0.38344
A [0.0021257 48.957 }

(6.108)

To analyze this observer-based design-(Kalman filter), we will implement the
controller in our standard model (6 103). For the LQG controller, the RSLQR
control law is given by ~ Tteeeett

(6.109)
e=ye—r=A:-A4A.,
where X is the estimated state, and the RSLQR gain matrix is partmoned as K. =
[Ki K] To form,the- -estimated state, we need to substitute the control: (6 110) 1nté)
the state estimator’ (6 107). Dblng sogives  Tteaaae

.’
.......

to: (6.102) to (6.101), (6.103) to (6.102), (6.110) to (6.109), (6.107) to (6.106)

34) Page 199, change

The L:QG contrellér States are x. = [ [ &]". The controller state space model
usmg (6 110) apéi (6 111)1i 1;;

-------------

R o | S P e Y

u=—[K K] [Je] + [0]ymeas + [0]r

where A,; and Ay, are defined as m (6 111) Substltutlng the gains into (6 112), W.e
have — teallleet 0 T e -
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to: (6.110) to (6.109), (6.111) to (6.110), (6.111) to (6.110), (6.112) to (6.111)
35) Page 200, change

Note the magnitude increase in the gain Kr(2,2).
The last controller in this example uses the LTRLM. The first step in the design
process is to design the LQR control law. We will use the RSLQR controller from
£(6.102). The second step is to select columns X to make B = [B, X ] have column
“rank. eqﬁ'all to the row rank of C,. To complete this design, we must look at the
numbers within these matrices:

to: (6.102) to (6.101),

36) Page 201, change

FELLLTN

Solving for the steady-state covariance and gain matrix fron’i (6.108) )Zields

.
-------

-

~3.5561¢ — 005 0.018303
 [-035116 —0.19914
7~ 10.001104 1025

[ 0.011312 —3.5561e —005]
f =

(6.121)

to: (6.108) to (6.107)

37) Page 201, change

-------

0 0 0 [ 1 0 -1
e
H: 0  —19.48 0.16584 [f]+ —0.053183 0.83416 | ypoas + | O |7
X
036948 —42.794 —246.8 | = —0.0043243 237.93 0
u=[—0.3162333.2616.7127] Pf] +[00]ymeas+[0]F (6.122)
X

to: (6.112) to (6.111)
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38) Page 201, change

-------

0.00017018  0.0017429
I {0.0017429 0.15898 }

~0.0052832  9.7605
= [ —0.054109  890. 31}

(6.124)

-------

to: (6.108) to (6.107), (6.112) to (6.111)
39) Page 205, change

Exercise 6.1. Consider the unstable longitTudinal dynamics model, as defined in
Example 6.1, where x = [oc q 9. 56] . The matrices for the control design
model x = A,x + Bj,u are

P
" e,

—1.3946e 1. Q' —0.2.1420 0 0

47.71%----" 0 —104.83 0 0

[4p Byl = 0 0 0 1.0 0
0 0 —12769. —135.6| | 12769

“ Lt}

to: remove the
40) Page 206, change

() Compute the eigenstructure for (a) and (b) to show that the dominant
pute Nyquist, Bode a[] + L] all +.L !l frequency responses for a) and b) at
the plant input. Com‘puré GFS} and. G{T] frequency responses for a) and b) at the
plant output for the o loop. Compute the loop gain crossover frequency and
singular value stability margins for the design.

to

1Q
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41) Page 206 change

singular value stability margins for both designs. Determine the impact of using
the Kalman filter estimator on the stabll' "tS/'fobustness of the system.

(d) Use the LTR method of Sect. 6.2'.‘(6.59) tq. recover the frequency domain
properties of the state feedback desigii in-thé'LQG design. Evaluate the design
in the frequency domain as in (c). Compute the maximum singular value of the
noise-to-control transfer function matrix frequency response to examine the

noise amplification in the resulting LQG/LTR design.

to: (6.59) to (6.58)
42) Page 207

(b) Simulate the LQG design and compare it to the state feedback design.
(c), Analyz’e thls LQG design in the frequency domain. Compute Nyquist, Bode,
+ LJQ [+ B- 1 frequency responses for the LQG and state feedback at the

plant outpu.t-for the o loop. Compute the loop gain crossover frequency and
singular value stability margins for both designs. Determine the impact of using
the Kalman filter estimator on the stability robustness of the system,-**""* .,

(d) Use the Loop Transfer Recovery method of Lavretsky, Sect. 62 (6.88), to
recover the frequency domain properties of the state feedback deSign-in- tﬁe
LQG design. Evaluate the design in the frequency domain as in (c). Compute
the maximum singular value of the noise-to-control transfer function matrix
frequency response to examine the noise amplification in the resulting LQG/
LTR design.

to

o, (6.88) to (6.87)
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Part 11

Chapter 7

1. Page 222: Exercise 7.3: Change “(7.13), (7.14), (7.15), (7.16), (7.17), (7.18),
(7.19), (7.20), (7.21), (7.22), and (7.23).” to “(7.13) through (7.23).”

2. Page 239: Example 8.9: Change 6sint — 6¢cost — 1> < 6 + (t — tz) <6.25to

——
<

=

6sint —6tcost — 2 <6+ (61— 1) <15
9
<

3. Page 239: Example 8.9: Change

lx(2)] < |x(to)] exp(6.25 — 6sinty + 619 cost + 1) = |x(to)| c(ty) to

()

[x(£)] < |x(to)| exp(15 — 6sinty + 619 cos tg + 1) = |x(to)| c(to)

<(10)

Chapter 8

1. Page 261: Example 8.10: Change x,of = AXyer + b1 10 Xpof = AXpr +bK, 1
2. Page 258: Change sentence

“regressor vector”, which is assumed to be uniformly bounded.

to

“regressor vector”’, which is assumed to be uniformly bounded and Lipschitz-
continuous in ¢.
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3. Page 258: Change V(e, AK) = e’ Pe + AKTAK toV(e,AK) :eTPeJr%AKTAK.
4. Page 258: Change the next equation for Ve, AK = ... to
. 1 A
V(e,AK) = é"Pe+ e Pé+2-AK"K = (Ae+bAK D)
/4
Pe+e'P(Ae+bAK'®) — 20K e Ph=—e"Qe <0

5. Page 261: Change equation X,,t = AX,ef + b1 10 X, = AXpr + DK, 1.

Chapter 9

1. Page 282: Eq. (9.47): Right-justify the equation number (i.e., move it to the
right).

Chapter 10

1. Page 311: Table 2.10: Change the third equation from the bottom to:
= (L — KTty — ©' ®(x,).
This equation in the current book version has an incomplete sub-index in /.

2. Page 314: Exercise 10.1: In the problem statement, replace “have” with “has”.

3. Page 314: Exercise 10.2: Add the minus sign to the last equation in the problem
statement: Iex(O) = —K,.
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Chapter 11

1. Page 325: Replace text and equations starting from Eq. 11.26 through Eq. 11.29
with:

Using completion of squares, the sum of the first and the second terms in (11.25)
can be transformed into

~uia (O)|le (P)éuue
-0 H- 0] A

Similarly. the sum of the third and the fourth terms in (11.25) can be written as
-20]a0); A, +25]a@], ], Al

2 2 2
=-20A,, ~Ligy 1AL\, 1ele A
= 2 = Amm ZAm

Substituting these two expressions back into (11.25). gives

)& 2 2 &
(6. 80) -4 (0) -2 em | 1A=

1 ALY ol IAIP
20 jsel, Lot ke | . 610k I,
2 A 2A.

(11.26)

Hence, ¥ (e. A®) <0 if at least one of the following two relations take place:

2

f - ‘2 f’ ®2 Az
mg)(||4[_ﬁm(l°).m] A (P): = _ e Iaf,

0
/e (0) A (0 2
OR (11.27)
ALY A2 (P)E I\
2an_{1s0l, 3o}, Wl | _GEIE

or equivalently. when
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E38
||€||> I l mx[P}fin+o_] Rk P =,
\ e [0} we () 20, fuia ()
OR (11.28)
L (P& HG’ ||A||
[4@]; > 20| Aw(@) 10 2 +>lel.

In other words. V(e. A@) <0 outside of the compact (closed and bounded) set

Qc(R"#RY™ ) defined below.

={(e. 20):(|e| < &) A (Ja@), < <,)] (11.29)

2. Page 327: Change section number from “11.3” to subsection # “11.2.3”
3. Page 328: Replace the first sentence and the second sentences with the sentence
shown below in yellow:
a’"c’ PB|| This fact allows to amive at a compact set [4]. outside of which

V(e. A®) < 0. Once again, we can claim UUB of all trajectories. This completes
the stability analysis for the e - modification with a guaranteed UUB-type output

tracking performance.
4. Page 329: Change Eq. (11.59) to:

_ (1+ ej@)
2 (Om)?

. (1+€9)
VI[IGAIP| =——156;
| | e (O™’

Chapter 12
1. Page 364: Replace 6 with § R in Fig 12.5, as shown below:

u(x)
1l------=---

:

i
. >

Fig. 12.5 State modulation function
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2. Page 372: Change “Example 12.3” to “Example 12.1”

3. Page 373: In the sentence “In addition, we impose a restriction on the runway
distance ...” : Change 7 to 41,

4. Page 374: Change the second equation as shown below (change B(2,2) to
0.00044):

1% —0.038 18.984 0 -32.174 0 1%
@ —0.001 —0.632 1 0 0 a
qil= 0 —0.759 —0.518 0 0 q
0 0 0 1 0 0 0
h 0 —250 0 250 0 h
N——
X A X
10.1 0

0 0.00044 (

| 0025 oo f;h)©
Hﬁ—/

0 0
0 0 u

5. Page 375: Change equation at the top of the page as shown below (change B(2,2)
to 0.00044):

1% —0.038 18.984 0 32174 0 v
a —-0.001 —0.632 1 0 0 a
g | = 0 —0759 —0.518 0 0 q
0 0 0 1 0 0 0
h 0 —250 0 250 0 h
N——

X A X

10.1 0 —18.984

0 0.00044 5 0.632
+10.025 —0.011 < 5‘”)+ 0.759 | ay(h)

0 0 ¢ 0

0 0 u 0

N’
B B,

6. Page 376: Change 4™ from the bottom equation as shown below:

Qi =diag(0.2 0 0 0 1), Ry =diag(10 10)
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Chapter 13

1. Page 406: Insert space between “y.ng~ and “y” in Eq. 13.87. There are two
equations there, not one, as shown below.

d(x,,)
évl Om><m Cp ey Om><m /T/%
. = T+ Alu+0,
(x,, > (0,,,,”1 Ap> <x,, B, 1+ 0, y(xy)
—— N ) N e N’
X A X B
_Imxm
+ ( 0 ) Yemd Y = (Om><m Cp) X (13.87)
n,xm N———
B/'e/

2. Page 409: Move superscript “T” in Eq. 13.99 to the right and outside of
parenthesis, as in:

T
i=Anpx—BA (é) _ @) O(x) + Bref Yoma (13.99)
———
A®

3. Page 416: Exercise 13.4: Change “Example 13.3” to “Example 10.2”.

Chapter 14

1. Page 429: Eq. 14.46: Change to:
. — 1 ~ ~
V(e A®) =—| 1 +- e/ Ry'ey— el P,OyP e,

1 ~ 2 ~ ~
—(1+=] [[B"Pyex| —2nelP,e.+2eT P,BAg
" f E

_1
X 2
+2trace | AA® {T5'® +® (£,uy) (! C") R, WS"
——
el

+2eTO(W)AAD B (£, up)
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2. Page 430: Eq. 14.48: Change to:

V(ex’Ag) < =27 Amin (Pﬁ) ||€x||2 Amin(Qo) mm( V) He)r”z
1 1 ~ ~
i (1 *c) Ao (Ry") e | - (1 *c) 1B7Py el + 2 ke |B7Pc ]

+2v [lex]l k Amax AO max || D (£, 1) |

3. Page 430: Eq. 14.49: Change to:

V(€0 48) < — (20 + Amin(Q0) Zmin (P ) ) douin (P) [l

1 1
— (1 T Amin (R ") HeyH2 - (1 +;> w2 42 Amax kgw [lex |

2 lex]l k Amax AB may |[@ (£, uer) |

4. Page 430: Eq. 14.50: Change to:

V(e A®) < — (27} + Amin(Qp) Amin (ﬁo>) Amin (ﬁo) llex|®

1 1
140 dain R | - (l +;) W22 A Ky ]

+2v [lex]l k Amax AO max ||D (£, 1) |
5. Page 431: Eq. 14.52: Change to:

1
V(e088) <~ [ 14+ 1) 2maes?) o
(277 +/1m1n Q() min (ﬁo)) Amin (ﬁ()) — 2vk Amax A@max by ||exH2

1 _
—14+=] w2+ 2 Amax kgwllex]] + 2V Amax k AO max b1 ||e]|
y
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6. Page 431: Eq. 14.53: Change to:
1 = lmin(QQ) /ﬁﬁn (i;O) = 2VkAmax ABmax b2, €2 = Amax kg

1
c3=1 +;, €4 =V Amax k ABOpyx by

7. Page 431: Eq. 14.54: Change to:

min

V(e A®) < —csdmin(Ry") ey |* = 20435 (Po) llecl

= [e1 lled” = 2¢allecllw + e w? = 2¢4 el ]

o(llexll.w)

_ 2 =
= —c32mn(Ry") ey = 20122 (Po) llexl® = (el w)
8. Page 432: Eq. 14.61: Change to:

Amin (QO) ﬂ“ﬁﬁn (ﬁo)
B 2k Amax A6ma){ b2

Vi

9. Page 432: Eq. 14.62: Change to:
detC =cic3 — C%

] ~ ]
=1+ [Amm(Qo)Aﬁm (Po) — 2k Ay AOp bz} - A k=0~

max g ~

10. Page 433: Eq. 14.66: Change to:

— 1 ~
V(e 88) < (147t ") s = 205 () e+ ()
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11. Page 433: Eq. 14.67: Change to:

. 2
Q= et [l <ALl 2 =°<V—)

2073 (Po)

12. Page 435: Table 14.1: Change 11™ and 12" equations in the table as shown
below:

( 7[11[‘11' selection ma-

S=(1] 0 )
— ——
tnix for adaptive laws
| i
Singular value de- oo A
P R —
composition | B C R UL}

Back cover

Second paragraph: Change “The text is a three-part treatment” to “The text is a
two-part treatment”."Errata List",6,1
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Actuator model
first-order, 335
second-order, 64, 335
Adaptive control models, 17
Aircraft dynamics
altitude rate, 11, 12
altitude, 11
angle of attack (AOA), 8
angle of sideslip (AOS), 8
angle-of-attack, 12
body axis rates, 5
body axis velocities, 9
drag, 9
equations of motion, 5
Euler angles, 7
lateral-directional, 1416
lift, 9
longitudinal, 12-14
output vector, 10
short-period, 12
sideslip, 16
stability axis rates, 15
state vector, 10
trim, 10
vertical acceleration, 13
Algebraic Riccati equation
asymptotic properties of, 399-406
derivation of, 38
Approximation-based adaptive control,
355-384
Artificial neural network
approximation properties of, 360
definition, 356
Asymptotic orders, 394-399

B
Barbalat’s lemma, 254-259

C
Closed-loop
characteristic polynomial,
108, 112
linear model, 18
transfer function, 99
Command tracking, 264-265
Complementary sensitivity,
82,99

D

Dyadic expansion, 105

Dynamic Inversion MRAC for scalar
dynamics, 274-281

F
Frequency domain analysis, 97-160
Frobenius norm, 22
Function
convex, 330
negative-definite, 241
positive-definite, 241
RBF, 356
sigmoid, 356, 357
uniformly-continuous, 256

G
Gain margin, 118
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H

Hamiltonian matrix, 45

H-inf optimal control
design model for, 73, 84
gamma-iteration design, 88—89
Hamiltonian for, 86
Hamiltonian matrix for, 87
performance index for, 90
regulated variables in, 83, 88
Riccati equation, 87

Hypercube, 145

I

Input loop gain linear model, 20
Integral control, 51

Internal model principle, 51

K

Kalman—Yakubovich—Popov lemma,
191-194

L

LaSalle—Yoshizawa theorem, 258-259
Linear plant model, 18
Linear controller model, 18
Linear Quadratic Gaussian

design models for, 176

Doyle and Stein loop transfer recovery,

178

Kalman filter for, 177, 182

Lavretsky loop transfer recovery, 190-194
Linear Quadratic Regulator, 35-37
Lipschitz condition, 229, 230, 231, 232, 421
Loop gain transfer function, 98—-100
Loop shaping

block diagram of, 83

weighting filters for, 83
LQG. See Linear Quadratic Gaussian
LQR. See Linear Quadratic Regulator
Lyapunov algebraic equation, 247
Lyapunov function

definition, 242

geometric interpretation, 243

radially unbounded, 245
Lyapunov stability

asymptotic, 240

definitions, 235-240, 242

geometric interpretation, 243

Index

global, 238
historical roots of, 259
local, 238
of motion, 225-261
theorems, 240-241
uniform, 240

Lyapunov’s direct method, 241

M
Matching conditions, 282, 295
Matrix norm, 22
Matrix square root, 400
Micchelli’s theorem, 360
Model reference adaptive control, 215-220
augmentation of an optimal baseline
controller, 303-313
direct, 215-220
historical roots of, 221-222
MIMO systems, 281, 286
observer-like, 408412, 415
output feedback, 418, 423, 434
parameter convergence in, 221, 269, 271,
290, 301, 302, 311
scalar linear systems, 220-221, 265, 270
state-feedback, 263-292
with improved transient dynamics,
387-394, 407412, 413, 415
with integral feedback, 293-313
with state-limiting constraints, 362-364,
370, 371
Model reference control, 211-215
MRAC design examples
helicopter pitch dynamics, 270-274
delta wing dynamics at high angle of attack,
285-291
aircraft short-period dynamics, 298-303
DC-8 short-period dynamics, 310-313
dead-zone mod for aircraft roll dynamics,
320-323
sigma mod for aircraft roll dynamics,
326-327
e-mod mod for aircraft roll dynamics,
328-329
aircraft lateral-directional dynamics,
340-350
automatic landing system for transport
aircraft, 372-383
control of a flexible transport aircraft,
435-447
MRAC. See Model reference adaptive control
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N

Norms, 22

Nyquist
D-contour, 107
multivariable criterion, 107
encirclements, 111

(0]
Open-loop characteristic polynomial, 108, 112
Optimal control
Hamilton—Jacobi—Bellman equation,
29-33
performance index, 29
optimal control policy, 29
principle of optimality, 30
Hamiltonian, 32
boundary conditions for, 32
linear quadratic regulator, 35-37
quadratic performance index, 35
LQR Hamiltonian, 35
Riccati equation, 36
infinite-time LQR problem, 37-39
infinite-time performance index, 37
algebraic Riccati equation, 38
conditions on plant and performance index
to solve, 39
root locus, 41
guaranteed margins for, 4244
state feedback control law, 42
loop transfer function, 42
return difference matrix, 42, 43
eigenstructure of closed-loop, 44, 45
Hamiltonian matrix, 45
Ordinary differential equations
existence and uniqueness of solutions, 227,
230-231
energy-based analysis, 231
initial value problem, 36, 227
equilibrium of, 233
Orlicz’s theorem, 232, 233
Output loop gain linear model, 21

P
Peano’s theorem, 229-230
Persistency of excitation, 269, 302, 322, 329
PE conditions. See Persistency of excitation
Phase margin, 118-125
Positive real
lemma, 191
transfer function, 190-191
Power signals, 75-76
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Projective control
design example, 165-176
dynamic output feedback, 164
eigenstructure of, 163
static output feedback, 162
Proportional plus integral control, 100-103

R
Real stability margin, 143-146, 149
Return difference dynamics, 98, 108
Ridge function. See Sigmoid
Robust MRAC design

dead-zone mod, 319-323

e-mod, 327-328

projection operator, 329-330, 336, 337,

340, 352, 368
sigma-mod, 323-326

S
Sensitivity, 80, 98
Servomechanism design model, 52-58
control law for, 60
controllability of, 56
loop gain crossover frequency, 67
LQR performance index, 59, 65
LQR (See Linear Quadratic Regulator)
overshoot, 67
rise time (63%), 67
settling time (95%), 67
singular stability margins, 67
tracking constant commands, 57
undershoot, 67
Singular
matrices, 115
perturbations, 394-396
Singular value
decomposition, 104
maximum (2-norm), 104
minimum, 104
robustness tests, 133—-136
stability margins, 118-125
Small gain theorem, 134
Squaring-up
method, 420
plant, 193
Stability analysis model, 109, 127
Stability margins, 103-125
State feedback control law, 18
Strictly positive real, 190
Structured singular value, 133
System type, 51
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T

Transfer function
matrix, 98-103, 112
scalar, 101

U
Uncertainty
additive, 114
dynamic models of, 125
multiplicative, 114
real parameter, 126, 129-133, 144

Index

Uniform ultimate boundedness
comparison with Lyapunov stability, 249
concept, 247
definition, 249
Lyapunov-based analysis of, 250

\'%

Vector norms
1-norm, 23, 75
2-norm, 23, 75
inf-norm, 23, 75
p-norm, 22
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