
Chapter 2
From Radiated Energy to Electrical
Energy: Physics of Photovoltaic Cells

2.1 Prologue: The Photoelectric Effect

The transformation of the radiated energy coming from the Sun into electrical
energy implies the study of the interaction of electromagnetic waves with matter.

This mechanism can be understood starting from the photoelectric effect in
which electrons are emitted from a material when it is exposed to electromagnetic
radiation.

In particular, it was observed that (using visible light for alkali metals, near-
ultraviolet for other metals, and extreme ultraviolet for non-metals) the energy of
emitted electrons increased with the frequency and did not depend on the intensity
of the radiation.

This effect was first observed by Heinrich Hertz in 1887 and for several years it
was apparently in contrast with James Clerk Maxwell’s wave theory of light;
according to this theory, the electron energy would be proportional to the intensity
of the radiation.

The following main experimental results, for given material, were observed:

1. the rate at which photoelectrons are ejected is directly proportional to the
intensity of the incident light;

2. a threshold frequency, below which no photoelectrons are emitted, exists;
3. above the threshold frequency, if the intensity of light is increased, the number

of emitted electrons is increased as well but their maximum energy does not
vary; moreover very low intensity of incident light, with frequency greater that
the threshold, is able to extract electrons;

4. above the threshold frequency, if the frequency of incident light is increased,
the maximum energy of photoelectrons is also increased;

Albert Einstein theorized, in 1905, that light is composed of discrete quanta,
now called photons, and that the energy of a quantum of light is given by the
product of the frequency of the corresponding wave multiplied by a constant, later
called Planck’s constant.
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E ¼ hm ð2:1Þ

where E is the energy of a single quantum of light, h = 6.62 9 10-34 J�s is the
Planck’s constant and m is the frequency of the electromagnetic wave (incident
photon). For this discovery, Einstein earned the Nobel Prize in Physics in 1921 and
the quantum revolution in physics began.

If a photon has enough energy, it can give its energy to an electron and it is
ejected.

The maximum kinetic energy Kmax of an ejected electron is given by:

Kmax ¼ hm� u ð2:2Þ

where u = hf0 is the work function (sometimes denoted W), which is the mini-
mum energy required to remove a delocalized electron from the surface of any
given metal. It follows that the frequency m of the incident photon must be greater
than f0 to extract electrons.

The experimental setup to verify the photoelectric effect is sketched in Fig. 2.1.
The light beam hits the material that is situated inside a bulb. Two plates, subjected
to a variable potential, generate an electric field (n) that is able to break the
photoelectrons. The galvanometer measures the current generated by
photoelectrons.

When the frequency of the incident beam is greater that the threshold fre-
quency, by applying a potential such that Kmax ¼ eV , the measured current is null.

It should be noted that it is convenient to measure energy in electronvolt [eV]
instead of Joule (1 eV = 1.6�10-19 J).

It is easy to calculate that the energy associated with a photon emitted by Sun
having k = 0.5 lm (see Fig. 1.5) is equal to:

E k¼0:5 lm

�
� ¼ hv ¼ h

c

k
¼ 6:62 � 10�34 3 � 108

0:5 � 10�6
¼ 3:972 � 10�19J ¼ 2:48 eV
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IFig. 2.1 Experimental setup
for evaluation of the
photoelectric effect
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2.2 Metals, Semiconductors, Insulators

In a single isolated atom, energy levels of electrons are discrete. For hydrogen
atom, the Bohr’s model gives:

EH ¼
�moq4

8e2
o h2

1
n2

ð2:3Þ

where mo is the free electron mass and q its charge, e2
o is the free space permittivity

and n is a positive integer known as principal quantum number. The fundamental
level corresponds to n = 1 and the related energy is EHðn¼1Þ ¼ �13:6 eV.1

If N atoms interact (for example in a crystal), N outer levels have energy only
slightly different and thermal energy allows electrons to pass from one level to
another (the energy corresponding to T = 300 K is kT & 0.026 eV). Resulting
energy levels are grouped in bands. Two main bands are recognizable: conduction
band and valence band. These two bands are separated by a forbidden region that
is characterized by an energy value Eg. This value makes the difference among
insulators, conductors, and semiconductors.

In an insulator, the forbidden band has a wide energy (for example Eg = 9 eV
for SiO2) neither thermal energy nor an electric field is able to raise the energy of
an electron to send it into the conduction band. Due to the absence of free electrons
for conduction, the material behaves as an insulator.

On the contrary, in a conductor the conduction band is partially superimposed to
the valence band. As a consequence, there are many electrons available for con-
duction and an electric field can give them sufficient energy to perform conduction.

In a semiconductor, the two bands are separated but the energy of the forbidden
band is low (Eg = 1.12 eV for Si at T = 300 K) and it is easy to give energy to an
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Fig. 2.2 Schematic representation of the band structure for: a insulator, b semiconductor,
c conductor

1 The negative value of this energy corresponds to a tied electron
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electron to go into the conduction band. In this case, the hole in the valence band
contributes to the conduction as well as the electron in the conduction band (Fig. 2.2).

The forbidden band amplitude varies with temperature, for Si the amplitude is:

Eg Tð Þ ¼ 1:17� 4:73 � 10�4ð ÞT2

T þ 636
ð2:4Þ

The temperature coefficient is negative, it means that the forbidden band
amplitude decreases with temperature.

2.3 Inside the Band Structure of a Semiconductor

The motion of electrons inside a crystal is influenced by the periodical crystalline
structure of the semiconductor that determines a periodic potential field due to the
atom’s nucleus and the tightly bound core electrons.

The dynamic behavior is obtained by solving the Schrödinger equation.

D2wþ 2m0

h=2pð Þ2
E � U ~rð Þ½ �w ¼ 0 ð2:5Þ

where m0 is the free electron mass, E is the energy of the electron, and U ~rð Þ is the
periodic potential inside the semiconductor. The solution of Schrödinger equation
defines the band structure, the allowed energy, and the crystal momentum p ¼ �hk
where k is the wave vector and �h ¼ h=2p.

The relationship between energy and momentum near the minimum of the
conduction band and near the maximum of the valence band is nearly parabolic; as
a consequence, the effective mass is defined as the inverse of the second derivative
of the energy respect to the momentum2:

m� � d2E

dp2

� ��1

ð2:6Þ

This definition allows a particle to be considered as a classical particle with an
effective mass m*. The effective mass m* depends on the band.

Near the top of the valence band this value is negative. These places are usually
empty due to electrons thermally excited (as it will be explained in the next
section) that are in the conduction band.

It is easier to consider these states as occupied by another kind of particles said
holes that behaves as classical free particles with a positive effective mass m�p, while
electrons are considered as classical free particles with effective mass m�n.

Figure 2.3 describes a simplified energy band diagram for a semiconductor at
T [ 0 in energy versus momentum diagram.

2 It should be borne in mind that E ¼ p2=2m
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It should be noted that the minimum of the conduction band occurs for the same
momentum values of the maximum of the valence band. As a consequence, an
electron can do a transition maintaining constant the momentum. This kind of
semiconductor is a direct band-gap semiconductor.

The behavior of an indirect band-gap semiconductor and the energy band
diagram is illustrated in Fig. 2.4.

The difference between these two kinds of semiconductors is important for the
study of absorption and emission of light in a semiconductor.

2.4 Absorption of Light

As explained in Sect. 2.1, radiated energy interacts with the matter, including
semiconductors, as photons, whose energy is E ¼ hm, and momentum pk ¼ h=k.
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Fig. 2.3 Energy versus
momentum representation of
the energy band structure for
a direct band-gap
semiconductor

Fig. 2.4 Energy versus
momentum representation of
the energy band structure for
indirect band-gap
semiconductor
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The excitation of an electron from the valence band to the conduction band is
called fundamental absorption and, as a consequence, a hole appears in the valence
band.

Both the total energy and the momentum must be conserved; in particular, for
direct band-gap semiconductors (GaAs, GaInP, CdTe, and CU(InGa)Se2) a tran-
sition can occur remaining constant the momentum of the photon as shown in
Fig. 2.3. The crystal momentum is equal to pk ¼ h=l where l is the lattice constant
and it is bigger than the photon momentum. Being the wavelength of sunlight of
the order of 10-4 cm and the lattice constant of 10-8 cm, it can be assumed that the
conservation law can be applied only to the photon momentum.

The probability of an induced transition from a level E1 into the valence band to
a level E2 into the conduction band for a photon with energy E2 � E1 ¼ hm is given
by a coefficient a that depends on the difference between the photon energy and the
forbidden band gap.

aðhmÞ � hm� Eg

� �1=2 ð2:7Þ

Some semiconductors allow only transitions with p 6¼ 0, in such cases:

aðhmÞ � 1
hm

hm� Eg

� �3=2 ð2:8Þ

In indirect band-gap semiconductor, like Si and Ge, the maximum of the valence
band and the minimum of conduction band occur for different values of the
momentum as sketched in Fig. 2.4. Conservation of the momentum implies in this
case the emission or the absorption of a phonon.3 In particular, if the photon energy is
greater than the difference between the starting electron energy level in the valence
band and the final level in conduction band, a phonon is emitted. On the contrary, if
the photon energy is lower than the difference between the starting electron energy
level in the valence band and the final level in conduction band, a phonon is
absorbed.

The absorption coefficient is different depending on absorption (aaðhmÞ) or
emission (aeðhmÞ) phenomenon.

aaðhmÞ / ðhm� Eg þ EphÞ2

eEph=kT � 1
ð2:9Þ

aeðhmÞ / ðhm� Eg � EphÞ2

1� eEph=kT
ð2:10Þ

where Eph is the phonon energy. It should be noted that for indirect band-gap
semiconductor, the absorption of a photon depends on the availability of energy
states, and on the absorbed/emitted phonons as well. This makes the absorption

3 The phonon is considered as a particle representation of a lattice vibration in the
semiconductor, it is a low energy particle with a relatively high momentum

24 2 From Radiated Energy to Electrical Energy



coefficient for indirect transition smaller than the corresponding one for direct
transition. As a result, light is able to penetrate more inside an indirect band-gap
semiconductor.

2.5 Allowable States for Holes and Electrons

By the Schrödinger equation, it is possible to obtain the density of states both for
electrons and holes. The influence of periodic potential is incorporated into the
effective mass. The density of available states for unit volume and energy gives the
energy levels allowable that could be occupied if the corresponding particle has
sufficient energy.

In the conduction band E [ ECð Þ, the density of states is given by:

gC Eð Þ ¼ m�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�n E � ECð Þ
p

p2�h3 cm�3 eV�1
� 	

ð2:11Þ

And in the valence band E\EVð Þ the density of states is given by:

gV Eð Þ ¼
m�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�p EV � Eð Þ
q

p2�h3 cm�3 eV�1
� 	

ð2:12Þ

where EC and EV are the energy of the conduction and valence band, respectively.

2.6 Energy Distribution for Holes and Electrons

Considering a semiconductor in thermal equilibrium, with no generation of carrier
and insulated from the external, the probability that a state is occupied by an
electron with energy E is given by the Fermi function.

f Eð Þ ¼ 1

1þ e E�EFð Þ=kT
ð2:13Þ

where EF is the Fermi energy. This value depends on the material.
At T = 0, the Fermi function is a step function. All electrons have energy

below or equal to EF. When temperature rises there is a non-null probability that
electrons could have energy above EF. In Fig. 2.5 Fermi function is plotted for
T = 0 K, T = 300 K, and T = 3000 K; Fermi level is set to 3 eV and the band
gap is 1.1 eV as in the Silicon. It should be noted that at environmental temper-
ature, the number of electrons with energy greater than the lower limit of
conduction band is negligible.

In the conduction band, a state is occupied if there is an available state and if an
electron has sufficient energy. As a consequence, to obtain the equilibrium electron
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density, it is necessary to multiply the corresponding density of state (Eq. 2.11) for
the probability that the electron has the corresponding energy (Eq. 2.13) and to
integrate it from the minimum level to be occupied (EC) to infinity.

n0 ¼
Z1

EC

gC Eð Þf Eð ÞdE ¼ 2
2p m�

n
kT

h2


 �3=2
e� EC�EFð Þ=kT ð2:14Þ

where the following position can be done:

NC ¼ 2
2p m�

n
kT

h2


 �3=2

ð2:15Þ

NC is the effective density of state in the conduction band. In the same way, the
holes concentration at the equilibrium is given by:

p0 ¼
ZEV

�1

gV Eð Þ 1� F Eð Þ½ �dE ¼ 2
2p m�pkT

h2


 �3=2

e EV�EFð Þ=kT ð2:16Þ

and the following position can be done:

NV ¼ 2
2p m�

p
kT

h2


 �3=2

ð2:17Þ

Equations (2.14) and (2.16) are obtained under the hypothesis that EF is suf-
ficiently far from EC and EV (EC-EF [ 3kT and EF-EV [ 3kT) in such a case, the
semiconductor is said nondegenerate and the product of electrons and hole con-
centration does not depend on Fermi energy. In an undoped (intrinsic)

Fig. 2.5 Fermi level and state density
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semiconductor, the electron and hole concentration is equal and this value is the
intrinsic carrier concentration ni.

ni ¼
ffiffiffiffiffiffiffiffiffiffi
n0 p0
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
NCNV
p

e EV�ECð Þ=2kT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
NCNV
p

e�Eg=2kT ð2:18Þ

This last equation represents the law of mass action: regardless of doping, the
product of hole and electron densities is a material property that does not depend
on temperature. It should be noted that the wider is the forbidden band the lower is
the intrinsic carrier concentration.

Finally, the Fermi level for an intrinsic semiconductor can be evaluated by
equating the electrons and hole concentration given by Eqs. (2.14) and (2.16),
respectively.

EFi ¼
EC þ EV

2
þ kT

2
ln

NV

NC


 �

ð2:19Þ

The Fermi level is very close to the middle of band gap.
The intrinsic carrier concentration for Silicon (ni & 1010 cm-3) makes it an

insulator, to exploit it as a semiconductor the introduction of specific impurities or
dopants is necessary.

2.7 Doping

The conductivity of a semiconductor can be varied by introducing specific
dopants. With reference to the part of periodic table sketched in Fig. 2.6, it can be
noted that phosphorous has five valence electrons (3s23p3) whereas boron has three
valence electrons (3s23p1).

If phosphorous atoms are introduced in a silicon crystal, one of its five valence
electrons becomes available for conduction, the remaining four electrons are tied
with covalence bonds of silicon lattice (see Fig. 2.7a). This kind of dopant is said
donor. In the same way by introducing boron, its three valence electrons are tied
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with covalence bonds of silicon lattice and a hole remains (see Fig. 2.7b). This
kind of dopant is said acceptor.

From the point-of-view of energy levels, the presence of donor introduces
additional energy levels near the conduction band (within few kT), hence thermal
energy can allow the added electron to move to the conduction band. In the same
way, the presence of an acceptor introduces additional energy levels near the
valence band.

In case of donor introduction, electrons are the primary source of conduction
and the semiconductor is said n-type, on the contrary, if an acceptor is introduced,
conduction is due to hole, and the semiconductor is said p-type.

The atoms of donors (ND) or acceptors (NA) are usually completely ionized, as a
consequence for n-type semiconductor n0 � ND and for p-type semiconductor
p0 � NA. This hypothesis will be maintained in the following, throughout the
chapter.

The presence of dopant changes the Fermi level compared to an intrinsic
semiconductor, this value can be recalculated by using Eq. (2.19); for an n-type
semiconductor:

EFn ¼ EFi þ kT ln
ND

ni


 �

ð2:20Þ

Compared to an intrinsic semiconductor the Fermi level is increased.
For a p-type semiconductor:

EFp ¼ EFi � kT ln
NA

ni


 �

ð2:21Þ

and the Fermi level is lower compared to the intrinsic semiconductor.
The Eq. (2.18) holds even for doped semiconductors, for an n-type:

n2
i ¼ n0 � p0 ¼ p0 � ND ð2:22Þ

and the donors’ concentration can be expressed versus the Fermi level for an
intrinsic semiconductor:

Si

(a) (b)

SiSi SiSi Si

Si SiSi Si

Si SiSi SiSi Si

P B

Fig. 2.7 a n-type doping with Phosphorous As, b p-type doping with Boron
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n0 ¼ NCe� EC�EFnð Þ=kT ¼ NCe� EC�EFið Þ=kT e EFn�EFið Þ=kT ¼ nie
EFn�EFið Þ=kT ð2:23Þ

where the ni is obtained by using Eqs.(2.18) and (2.19) with the position NC & NV.

For a p-type:

n2
i ¼ n0 � p0 ¼ n0 � NA ð2:24Þ

p0 ¼ nie
� EFp�EFið Þ=kT ð2:25Þ

In an n-type semiconductor, electrons represent majority carriers and holes
minority carriers. Usually, if necessary, their concentration symbol includes a
pedex to indicate the semiconductor type. Hence, in an n-type semiconductor there
are nn majority carriers and pn minority carriers. In a p-type semiconductor, there
are pp majority carriers and np minority carriers. If necessary, to specify the
equilibrium conditions a further pedex ‘‘o’’ can be added.

When double doping with both donors and acceptors is performed, the type of
the semiconductor is determined by the greatest impurity concentration.

Supposing the total ionization of both donors and acceptors, if ND [ NA an
n-type results with nn & ND-NA electrons and pn holes concentration, on the
contrary if NA [ ND a p-type results with pp & NA-ND holes and np electrons
concentration. As a matter of fact, considering, for example, the case of ND [ NA,
being the intrinsic semiconductor and both the dopants neutral after doping, the
final positive charge (due to holes and ionized donors) must be equal to the
negative charge (due to electrons and ionized donors):

nn þ NA ¼ pn þ ND ð2:26Þ

using the action mass law written in the form ni
2 = nnpn it is possible to obtain:

nn ¼ 1
2 ND � NA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ND � NAð Þ2þ4n2
i

q� �

pn ¼
n2

i

nn

8

>><

>>:

ð2:27Þ

usually the difference between donors and acceptors is greater than the intrinsic
concentration, it means ND � NAj j[ n2

i .

2.8 Carrier Transport

Until now, the semiconductor has been considered in equilibrium status with no

electron and p0 holes concentration. In this condition, electrons move continuously
inside the lattice in all directions but, if observed for sufficiently long time, its
displacement is null. The mean distance between two collisions is known as the
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free mean path (Lc) and the corresponding time interval between two collisions as
the mean free time (sc). This situation is schematically sketched in Fig. 2.8a.

By using the effective mass m�n, the electrons’ kinetic energy can be expressed
by assigning kT/2 for each degree of freedom.

1
2

m�n v2
th ¼

3
2

kT ð2:28Þ

where vth is the mean free speed, at environment temperature (T = 300 K) it is
equal to 107 cm/s both for Si and GaAs. Considering a typical value of 10-5 cm
for the free mean path it follows sc = Lc/vth = 10-12 s = 1 ps.

If an electric field is applied to the semiconductor, a carriers’ displacement
occurs. The motion is schematically sketched in Fig. 2.8b: the electron (hole) is
continuously scattered but there is a non-null mean displacement.

The motion of electrons and holes can be changed by applying an electric field
or by varying locally their concentration. In the former case the process is called
drift, in the latter diffusion.

2.8.1 Drift Current

With regard to drift current, if an electric field is applied to a uniformly doped
semiconductor, the energy of the bands does not remain constant but it is raised in
the direction of the field. Electrons are moved to the opposite direction of the field
toward lower energy of conduction band and holes toward higher energy of the
valence band. The motion is schematically sketched in Fig. 2.9: the electron (hole)
is continuously scattered but there is a non-null mean displacement.

Electrons have a drift velocity in the opposite direction of the electric field.

~vdrift n ¼ �ln
~n ¼ lnr/ ð2:29Þ

where / is the electrostatic potential and ln is the electrons mobility coefficient.
As a consequence a drift current occurs; its density is equal to the product of drift
velocity for the density of electrons (or holes) and for the unit charge.

~Jdrift n ¼ �qn~vdrift n ¼ qnln
~n ¼ �qnlnr/ ð2:30Þ

ξ=0(a) (b) ξFig. 2.8 a Random thermal
motion, b thermal motion
under electric field
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For a semiconductor whose length (corresponding to the x direction) is bigger
than the other two dimensions and the electric field is in the x direction. A one-
dimensional (1D) representation can be used, as depicted in Fig. 2.10; Eq. (2.30)
becomes:

Jdrift n ¼ �qnvdrift n ¼ �qnlnn ¼ �qnln
o/
ox

ð2:31Þ

where r/ reduces to the potential derivative along x.
The drift velocity is proportional to the electric field n or to the derivative along

x direction of the electrostatic potential u.

vdrift n ¼ �lnn ¼
o/
ox

ð2:32Þ

In the same way for holes:

~Jdrift p ¼ qp~vdrift p ¼ qplp
~n ¼ qplpru ð2:33Þ

~vdrift p ¼ lp
~n ¼ lpr/ ð2:34Þ

The coefficients that tie velocity to electric field can be evaluated by equating
the impulse of the force (-qn) multiplied for time interval to the quantity of
motion achieved in the same time. For electrons:

�qnsn ¼ m�n vdrift n ð2:35Þ

ln ¼
qsn

m�n
ð2:36Þ

And for holes:

qnsp ¼ m�p vdrift p ð2:37Þ

lp ¼
qsp

m�p
ð2:38Þ
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h
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Fig. 2.9 Energy levels and
electrons (holes) motion in
presence of an electric field
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Mobility coefficient takes into account scattering mechanism for lattice inter-
action and ionized impurity

2.8.2 Diffusion Current

When concentration is not uniform, carriers tend to move from regions with high
concentration to regions with low concentration. A diffusion current occurs and its
density is given respectively for electrons and holes by:

~Jdiff n ¼ qDnrn ð2:39Þ

~Jdiff p ¼ �qDprp ð2:40Þ

where Dn and Dp are the diffusivity coefficients for electrons and holes respec-
tively, and q is the electron charge.

Considering a long semiconductor where the injection is performed on a lateral
surface, the current occurs in x direction:

Jdiff n ¼ qDn
on

ox
ð2:41Þ

Jdiff p ¼ �qDp
op

ox
ð2:42Þ

The total current induced in a semiconductor is the sum of diffusion and drift
currents for electrons and holes:

~Jn ¼~Jdrift n þ~Jdiff n ð2:43Þ

~Jp ¼~Jdrift p þ~Jdiff p ð2:44Þ

ξ

e h

I

Fig. 2.10 Semiconductor with electric field applied: a drift current formed by holes and electron
occurs
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In thermal equilibrium, diffusion current and drift current must balance. Com-
paring these two terms, the Einstein relationship is obtained.

Dn ¼
kT

q


 �

ln ð2:45aÞ

Dp ¼
kT

q


 �

lp ð2:45bÞ

By using Eqs. (2.28), (2.36), and (2.38), the mean free path is obtained versus
diffusivity and mean free time:

Ln ¼
ffiffiffiffiffiffiffiffiffiffi
Dnsn

p
ð2:46aÞ

Lp ¼
ffiffiffiffiffiffiffiffiffiffi

Dpsp

p

ð2:46bÞ

Finally, a further term due to dielectric displacement field should be added.

~Jdisp ¼
o~D

ot
¼ e

o~n
ot

ð2:47Þ

where e is the electric permittivity of the semiconductor. However, it should be
considered that in case of photovoltaic cell that is operated in DC, this term can be
neglected.

For Silicon at T = 300 K and impurity concentration of 1016 cm-3, electron
mobility is about 1400 cm2/Vs and consequently diffusivity is about 35 cm2/s.
Lower values are exhibited by holes for which mobility is about 490 cm2/Vs and
consequently diffusivity is about 10 cm2/s. Another semiconductor as GaAs has
values greater of about five times. Mobility and diffusivity decrease with impurity
concentration.

2.8.3 Semiconductor Resistivity

Considering Eqs. (2.30) and (2.33), the total current density due to an electric field
is given by:

J ¼ Jn þ Jp ¼ qnln þ qplp

� �

n ð2:48Þ

This equation defines the resistivity of the semiconductor as:

q ¼ 1
r
¼ 1

qnln þ qplp

� � ð2:49Þ
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2.9 Semiconductor Fundamental Equations

The semiconductor obeys to two fundamental laws: the Poisson’s equation and the
continuity equation.

The Poisson’s equation comes from Gauss’ law for electricity, it says that in a
control volume the divergence of electric displacement field ~D is equal to the free
charge density qs. For a linear, isotropic, and homogeneous medium ~D ¼ e~E.

The continuity equation is a local conservation law. It affirms that a quantity
(no matter what: particles, charges or people) in a given volume can change in the
time only for a flux variation of the quantity through the surface that contains the
volume.

2.9.1 The Poisson’s Equation

The general form for a semiconductor was proposed by Van Roosbroeck in 1950:

r � e~n ¼ qs ð2:50Þ

where qs is the spatial charge density. For a semiconductor, qs can be expressed as
the contribution of positive charge (holes density plus the ionized donors) and the
negative charge (electron density and ionized acceptors).

r � e~n ¼ qðpþ ND � n� NAÞ ð2:51Þ

This last equation can be particularized along x direction:

e
dn
dx
¼ qðpþ ND � n� NAÞ ð2:52Þ

2.9.2 Continuity Equation

The continuity equation can be written both for electrons and holes. The general
form for electrons is:

r �~Jn ¼ q Rn � Gn þ
on

ot


 �

ð2:53Þ

The first member is the divergence of electron current density. It represents the
flux of electrons through an arbitrary volume.

The second member is the variation of the electrons’ number during the time. It
is composed of a first term that gives the velocity of the recombination Rn. The
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recombination process occurs when an electron falls from conduction band to
valence band and a couple electron–hole disappears.

Several recombination mechanisms are possible: by defects in the forbidden
band, radiative recombination, and a further term called Auger recombination.

The first type of recombination occurs when an electron or a hole makes a
transition to a parasitic energy level inside the forbidden band and phonons are
emitted. In radiative recombination, a transition from conduction band to valence
band origins a photon emission.

In Auger recombination, an electron and a hole recombine in a band-to-band
transition, but in this case the resulting energy is given off to another electron or
hole, in this last case three particles are involved.

The second term of Eq. (2.53), Gn, gives the velocity of generation, this occurs
for light absorption or carrier injection.

The third term is the time variation of electron density.
In 1D representation, as depicted in Fig. 2.11, the continuity equation for

electrons is:

oJn

ox
¼ q Rn � Gn þ

on

ot


 �

ð2:54Þ

For holes:

r �~Jp ¼ q Gp � Rp �
op

ot


 �

ð2:55Þ

oJp

ox
¼ q Gp � Rp þ

op

ot


 �

ð2:56Þ

ξ

I

dx

J(x+dx)J(x)

Gn

Rn

Fig. 2.11 Semiconductor with electric field applied: application of the continuity equation to a
volume with length dx
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2.10 Minority Carrier Diffusion Equations

A 1D representation of the semiconductor is considered in the following.
For steady state conditions, Eq. (2.54) can be used neglecting the time deriv-

ative. Moreover, current density derivative considering Eqs. (2.30) and (2.39) is
given by:

d

dx
Jn ¼ q Rn � Gnð Þ ¼ d

dx
�qnlnnþ qDn

on

ox


 �

ð2:57Þ

and for holes

d

dx
Jp ¼ q Rp � Gp

� �

¼ d

dx
�qnlpnþ qDp

op

ox


 �

ð2:58Þ

For small electric field, the contribution of electric field space derivative can be
neglected. It corresponds to neglect the drift current compared to diffusion current.

Under low level injection, the recombination rate for electrons can be written as
the difference between the minority carriers in that position and their equilibrium
value divided by the minority carrier lifetime.

Rn ¼
pn � pn0

sp
¼ Dpn

sp
ð2:59Þ

It should be noted that electron recombination depends on the corresponding
minority carriers. As a matter of fact, the recombination can occur when a minority
carrier is available. For an n-type material, from Eq. (2.58) the corresponding
minority carrier diffusion equation is obtained:

Dp
d2

dx2
Dpn �

Dpn

sp
¼ �GðxÞ ð2:60Þ

For a p-type material the corresponding minority carrier diffusion equation is:

Dn
d2

dx2
Dnp �

Dnp

sn
¼ �GðxÞ ð2:61Þ

When an n-doped semiconductor is lighted on a lateral surface, a carrier
injection is performed, the minority carrier concentration is given by Eq. (2.57)
imposing G(x) = 0 with boundary conditions:

pn x ¼ 0ð Þ ¼ pn 0ð Þ
pn x)1ð Þ ¼ pn0

�

ð2:62Þ

At the surface, the injection causes a constant value of minority carriers’
concentration pn(0), on the contrary, for x sufficiently far from the injection sur-
face, the concentration returns to the equilibrium value pn0.
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The solution is:

pn xð Þ ¼ pn0 þ pn 0ð Þ � pn0½ �e�x=Lp ð2:63Þ

The minority carriers’ concentration relaxes with exponential law. The relax-
ation space constant is given by Eqs. (2.46a, b).

The resultant diffusion current can be obtained by Eq. (2.41).
It should be noted that, if the semiconductor length is about Lp, a different

boundary condition must be imposed on the corresponding surface where the
minority concentration carriers are different from equilibrium value.

Figure 2.12 shows a typical situation in which the incident light on the lateral
surface causes charge injection, their concentration relaxes with spatial constant
Lp, if the distance is sufficiently far from the injection zone, the equilibrium
concentration is restored and the charge concentration equals the equilibrium value
p0.

2.11 P–N Junction

A p–n junction can be conceptually conceived as a two doped semiconductor of
n-type and p-type that have a surface in common. When both semiconductors are
separated, they are electrically neutral. As soon as they get in touch, majority
carriers of n-type semiconductors (the electrons) begin to diffuse into the p-type
semiconductor and vice versa. As a result, near the surface of separation between the
two semiconductors, in n-type semiconductor, holes coming from p-type
semiconductor tend to combine with electrons and the positive charge of
the corresponding ionized donors is not more compensated by majority carriers.
Inside the n-type region, near the junction, where there are no more majority

Fig. 2.12 Representation of a semiconductor bar with an incident light on the lateral surface that
causes charge injection: the charge concentration relaxes with spatial constant Lp, for x
sufficiently far from the injection zone the equilibrium concentration is restored
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charges, a depletion is observed and the corresponding zone remains with fixed
positive charges.

In the same way, in p-type side, electrons coming from n-type semiconductor
tend to combine with holes and the negative charge of the ionized acceptors is not
more compensated by majority carriers. Inside the p-type region, near the junction,
where there are no more majority charges, a depletion is observed and the cor-
responding zone remains with fixed negative charges.

As the fixed charges are uncovered, an electric field is produced and the
diffusion process is slowed down. A p–n junction is drawn in Fig. 2.13 in 1D
representation; the origin (x = 0) is the junction surface, xp and Wp are the
depletion boundary at the end of p-type region, while -xn and -Wn are the
depletion boundary at the end of n-type region. It should be noted that, if a
semiconductor is more doped than the other (usually indicated with apex +), the
greater quantity of free carrier diffused in the other semiconductor cause a more
extended depletion.

It is assumed a uniformed and nondegenerated doping and that dopants are fully
ionized.

The whole zone in which there are fixed uncompensated charge is called
depletion region or space charge region. The remaining zones can be considered
as neutral (often called quasineutral). The electric field due to the fixed charges
origins an electrostatic potential difference called built-in voltage.

The Poisson’s Eq. (2.50) can be rewritten as:

dn
dx
¼ �r2/ ¼ q

e
ðp0 þ ND � n0 � NAÞ ð2:64Þ

where / is the electrostatic potential, p0 and no are the hole and electron equi-
librium concentration, ND is the concentration of ionized donors (positive fixed
charges), and NA is the concentration of ionized acceptors (negative fixed charges).

Equation (2.64) can be particularized for each zone. In quasineutral zone, the
net charge is null and it follows r2/ ¼ 0, inside the positive charged depletion
region r2/ ¼ �qND=e and inside the negative charged depletion region
r2/ ¼ qNA=e.

The built-in voltage is the potential difference between points x = -xn and
x = xp.

n -type+ p-type

0 xp
-xn Wp

-Wn

Fig. 2.13 Schematic representation of a p–n junction
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Vbi ¼ /ð�xnÞ � /ðxpÞ ð2:65Þ

Assuming that /ðxpÞ ¼ 0 The process of the potential along x is:

/ ¼

Vbi for x� � xn

Vbi � qND

2e xþ xnð Þ2 for � xn\x\0
qNA

2e x� xp

� �2
for 0� x\xp

0 for x	 xp

8

>><

>>:

ð2:66Þ

Imposing that the second and the third relationship in Eq. (2.66) give the same values
of / for x = 0 and the continuity of the electric field in the same point, that gives:

xnND ¼ xpNA ð2:67Þ

the length of depletion zone is obtained versus built-in voltage.

WD ¼ xn þ xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e
q

NA þ ND

NAND


 �

Vbi

s

ð2:68Þ

Equation (2.68) says that the length of depletion zone depends on the built-in
voltage. For diode operation, this value can be lessened by applying a positive
voltage on p-side (forward bias) or widened by a positive voltage on n-side
(reverse bias).

In particular, in case of forward bias, the built-in voltage Vbi is lessened by a
quantity equal to the applied voltage and the corresponding electric field changes
the equilibrium conditions allowing holes belonging to p zone to pass through the
junction and reaching the n zone and electrons belonging to n zone to pass through
the junction and reaching the p zone, as well.

The depletion zone length can be calculated by Eq. (2.68) using the new value
of (Vbi-V) where V is the applied voltage.

For low level charge injection, a diffusion current due to minority charges as
described by Eq. (2.63) for holes in n zone occurs. The corresponding current is
calculated by (2.42)

Jdiff p ¼ qDp
op

ox
¼ q

Dp

Lp
pn 0ð Þ � pn0½ �e�x=Lp ð2:69Þ

Now, taking into account that the total current remains the same along x
because inside the quasineutral region there is no appreciable generation–
recombination rate, it is easy to evaluate Eq. (2.69) for x = 0.

Jdiff p 0ð Þ ¼ q
Dp

Lp
pn 0ð Þ � pn0½ � ¼ q

Dp

Lp
Dpn ð2:70Þ

It should be noted that, because current is constant along x direction, decreasing
the minoritary carriers current, a complementary current due to majority carriers
occurs along x. For x 
 Lp the current is due only to majority carriers.
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Next step consists on evaluating the term inside square brackets. Considering
the Eq. (2.58), its second member contains two terms with a high value. As a
matter of fact, there is a big value of the electric field and a great variation of the
concentration carriers. Being the first member small, as it represents a low level
injection the following approximated relationship can be used:

qplp
~n ¼ qDp

dp

dx
ð2:71Þ

By using Einstein relationship (2.45a) and assuming VT ¼ kT=q, Eq. (2.71)
becomes:

n ¼ VT

p

dp

dx
¼ � dV

dx
ð2:72Þ

As for the holes concentration, it should be observed that, inside the p zone it
assumes the value corresponding to the thermal equilibrium pp0, at the edge of the
n zone, near the depletion zone it is equal to pn(0). Rewriting Eq. (2.72) and
integrating over the depletion zone:

Zpnð0Þ

pp0

dp

p
¼ � 1

VT

ZVbi�V

0

dV ð2:73Þ

it follows that:

pn 0ð Þ ¼ pp0e�ðVbi�VÞ=VT ð2:74Þ

Finally, the relationship between pp0 and pn0 can be found by integrating
Eq. (2.72) under no bias condition (it means V = 0) obtaining:

pn0 ¼ pp0e�ðVbiÞ=VT ð2:75Þ

from which

pn 0ð Þ � pn0 ¼ pn0 eV=Vt � 1
� 	

ð2:76Þ

and the Eq. (2.70) becomes:

Jdiff p 0ð Þ ¼ q
Dppn0

Lp
eV=Vt � 1
� 	

ð2:77Þ

Finally, the junction current is determined by adding the contribution of elec-
trons and multiplying for the section area A.

I ¼ IsðeV=Vt � 1Þ ð2:78Þ

where
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Is ¼ Aq
Dppn0

Lp
þ Dnnp0

Ln


 �

ð2:79Þ

Equation (2.78) is known as the Shockley diode equation.
When the forward bias voltage approaches Vbi the depletion zone tends to

vanish and the current is limited by the semiconductor and ohmic contact, as well.
In this case, the voltage versus current characteristic is approximated by straight
line.

When a reverse bias is applied, it means that a positive voltage is applied to the
n zone contact, and Eq. (2.78) can be still utilized. As a matter of fact, the
exponential term is negligible and a reverse saturation current given by Eq. (2.79)
is obtained. In this case, the obtained small current is given only by carriers
generated inside the junction and it does not depend on the applied reverse bias.

Figure 2.14 shows the voltage versus current characteristic of a diode.
From what explained above, it is clear that a diode allows the current to pass

from p zone to n zone when it is forward biased. The ohmic contact belonging to
the p zone is called anode while the ohmic contact belonging to the n zone is
called cathode.

2.12 P–N Junction Capacitance

In Sect. 2.11, it has been explained that current near the junction is due to minority
carrier injection. When the bias voltage changes, the corresponding charge con-
centration varies as well, but similarly to a capacitor, this concentration requires a
finite time interval to reach a new equilibrium.

The equivalent capacitance can be calculated by considering the minority
carrier diffusion in Eq. (2.63) in which injection is due to junction direct voltage
polarization for which electrons are injected in p region. If the p region is more
doped than the n region, it can be assumed that current is given only by holes
injected into the n region.

V

I

anode cathode

I

V

Fig. 2.14 Electric symbol and voltage versus current diode characteristic

2.11 P–N Junction 41



The whole charge variation compared to equilibrium condition can be calcu-
lated as:

Q ¼ A

Z1

0

q pn xð Þ � pn0½ �dx ¼ A

Z1

0

q pn 0ð Þ � pn0½ �e�x=Lpdx ¼

¼ Aq pn 0ð Þ � pn0½ �Lp ¼ AqLpDpn

ð2:80Þ

where A is the junction cross-sectional area. By comparing Eqs. (2.80) with (2.70)
and using Eq. (2.46b), it follows that:

Jdiff p ¼
Q

sp
ð2:81Þ

It means that the current is proportional to the excess of minority charges.
For direct polarization the capacitance of the junction is called diffusion

capacitance, for inverse junction polarization the capacitance is called transition
capacitance and it has lower value than the diffusion capacitance; moreover under
PV cells operation the inverse polarization of the junction does not occur, on the
contrary, diffusion capacitance evaluation gives information about dynamic
behavior.

By using Eq. (2.81), under static condition:

CD ¼
dQ

dV
¼ sp

dI

dV
¼ spg ð2:82Þ

where g is the differential conductance of the junction; it can be obtained on the
basis of Eq. (2.78) neglecting the terms corresponding to the inverse saturation
current.

g ¼ dI

dV
¼ d

dV
Is eV=VT � 1
� �� 	

¼ Is

VT
eV=Vt ¼ I

VT
ð2:83Þ

then:

CD ¼ sp
I

VT
ð2:84Þ

The diffusion capacity is proportional to the current. If both holes and electrons
contribute to the current, the diffusion capacity is the sum of two terms due to
electrons and holes respectively. Finally, comparing Eqs. (2.82) and (2.84), it can
be seen that the time constant of the RC equivalent circuit is equal to the minority
charges lifetime:

CD

g
¼ sp ð2:85Þ
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If applied voltage varies with time, the dynamic diffusion capacity is defined on
the basis of charge variation in time interval dt as:

i ¼ dQ0

dt
¼ dQ0

dv
� dv

dt
¼ C0D

dv

dt
ð2:86Þ

During the time interval dt, only the charge near the junction varies, as a matter
of fact, carrier diffusion requires more time to reach a new equilibrium condition.
For this reason, the charge variation is lower compared to static condition and a
lower value of diffusion capacity is expected. In any case, the dynamic value of
diffusion capacitance depends on the applied voltage waveform; an expression of
this voltage can be obtained for a sinusoidal case with amplitude Vm and pulsation
x superimposed to a fixed bias V1.

vðtÞ ¼ V1 þ Vm ejxt ð2:87Þ

if Vm is a small signal, nonlinear effect of I–V curve can be neglected and the
resulting current has the form

iðtÞ ¼ I1 þ gVmejxt þ jxC0DVmejxt ð2:88Þ

The excess minority carrier concentration contains, in addition to the term due
to static polarization, a further time dependent term:

Dpnðx; tÞ ¼ DpnðxÞejxt ð2:89Þ

By utilizing Eqs. (2.57) and (2.58) where there is no charge generation and
neglecting the electric field derivative, the differential equation for the excess
minority charges is obtained:

Dp
d2

dx2
Dpn �

Dpn

sp
� dðDpnÞ

dt
¼ 0 ð2:90Þ

By substituting Eq. (2.89) in Eq. (2.90) and taking into account that from Eq.
(2.46a) Lp ¼

ffiffiffiffiffiffiffiffiffiffi
Dpsp

p
:

d2

dx2
Dpn ¼

1þ jxsp

L2
p

Dpn ð2:91Þ

that gives:

Dpn ¼ ke
�
ð1þ jxspÞ 1

2 x

Lp ejxt ð2:92Þ

the resulting excess minority carriers’ concentration is given by the time constant
term defined by Eq. (2.63) plus the time varying term defined by Eq. (2.92).
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Dpn ¼ pno e
V1
VT � 1


 �

e�x=Lp þ ke
�
ð1þ jxspÞ 1

2 x

Lp ejxt ð2:93Þ

where k is a constant that can be found by equating the junction law Eq. (2.76)
considering that the junction voltage is defined by Eq. (2.87)

Dpn ¼ pno e

V1 þ Vmejxt

VT � 1

0

B
@

1

C
Ae�x=Lp ð2:94Þ

with the resulting excess minority carriers’ concentration expression Eq. (2.93)
both evaluated for x = 0.

Since, for y� 1, ey � 1þ y assuming ðVm=VTÞejxt ¼ y, the following
expression of k is obtained:

k ¼ pn0
Vm

VT
e

V1
VT ð2:95Þ

Finally, the junction current is obtained by using Eq. (2.42) for x = 0.

Jdiff p ¼ �qDp
op

ox

�
�
�
�
x¼0

Ipð0Þ ¼
AqDppn0

Lp
e

V1
VT � 1


 �

þ AqDppn0VmeV1=VT

VT
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ jxspÞ
p

Lp
ejxt ð2:96Þ

It should be noted that the first term of the second member of Eq. (2.96)
corresponds to the static current of the p–n junction, I1.

For low frequencies, corresponding to xsp � 1, the approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxsp

p
� 1þ jxsp

�

2 is valid, then Eq. (2.96) gives:

Ipð0Þ ¼ I1 þ
AqDppn0VmeV1=VT

VT Lp
1þ jxsp

2


 �

ejxt ð2:97Þ

g ¼ g0 ¼ AqDppn0eV1=VT

VT Lp

CD ¼ gsp

2

(

ð2:98Þ

It should be noted that the conductance is the same one of static value g0 but
capacitance is divided by two. They both depend on the static polarization voltage
by exponential term.

For high frequencies corresponding to xsp 
 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ jxspÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjxspÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ðxspÞ
q

e
j
p
4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xsp

2


 �
r

ð1þ jÞ
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and Eq. (2.96) gives:

g ¼ g0

ffiffiffiffiffiffiffiffiffiffi
xsp

2

� �
q

CD ¼ g0

ffiffiffiffiffiffiffiffiffi
sp

2x

� �
q

8

<

:
ð2:99Þ

In this last case, both diffusion capacitance and conductance depend on
frequency.

2.13 The PV Cell

The photovoltaic (PV) cell is basically a p–n junction with a central depletion
region and two lateral quasineutral zone. At the end of each zone an electrical
contact is placed. The more heavily doped zone is called the emitter zone and the
other is the base zone. This last region is also called the absorber region because
the great part of incident light is absorbed here. Differently from a diode, the PV
cell is designed so to allow holes–electrons couples to be generated inside the
junction due to incident light.

The aim of this section is to define the law that ties voltage and current of a PV
cell including the dependence on incident light.

In a word, the total current due to both electrons and holes has to be found.

I ¼ A½JpðxÞ þ JnðxÞ� ð2:100Þ

where A is the semiconductor’s surface. To this aim, the electrons continuity
equation (2.54) in steady state condition can be integrated over the depletion
region obtaining:

ZxP

�xN

oJn

ox
dx ¼ JnðxPÞ � Jnð�xNÞ ¼ q

ZxP

�xN

RnðxÞ � GnðxÞ½ � dx ð2:101Þ

Now, evaluating Eq. (2.100) for x = -xN and using Eq. (2.101) to deduce
Jn �xNð Þ, the following equation is obtained:

I ¼ A Jpð�xNÞ þ JnðxPÞ þ q

ZxP

�xN

GnðxÞdx� q

ZxP

�xN

RnðxÞdx

2

4

3

5 ð2:102Þ

This last equation contains four terms. The first one is the hole density current
evaluated at the end of depletion zone in n-type region, the second is the electron
density current evaluated at the end of depletion zone in p-type region. These two
terms are referred to minority carriers. The third term is the optical generation rate
and the last term represents the recombination rate in the space charge region.
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2.13.1 Minority Carriers Current Density

The minority carrier diffusion equations in the quasineutral n-type and p-type regions
have to be solved with suitable boundary conditions. In particular, for n-type
semiconductor Eq. (2.60) with boundary condition at x = -WN and x = -xN; and
for p-type semiconductor Eq. (2.61) with boundary condition at x = WP and x = xP.

It has been explained in Sect. 2.8 that doping changes Fermi energy level. Thus,
the law of mass action can be written as:

n2
i ¼ pne�ðEFn�EFpÞ=kT ¼ pne�ðDEFnpÞ=kT ð2:103Þ

where DEFnp is the difference between Fermi level due to n doping and Fermi level
due to p doping.

Assuming that the majority carriers maintain a constant concentration in their
respective quasineutral zones, for n-type it means that Fermi energy level is
constant for �Wn� x� � xn and for p-type that Fermi energy level is constant for
xp� x�Wp, therefore it can be assumed everywhere inside the semiconductor:

DEFnp ¼ EFnð�WnÞ � EFpð�WpÞ ¼ EFnðxÞ � EFpðxÞ ¼ qV ð2:104Þ

Now, being in n-type semiconductor quasineutral region n = ND, the first
boundary condition is obtained:

pnð�xnÞ ¼
n2

i

ND
eqV=kT ð2:105Þ

And, being in p-type semiconductor quasineutral region p = NA, it follows that:

npðxpÞ ¼
n2

i

NA
eqV=kT ð2:106Þ

It should be noted the presence of the factor eqV=kT in Eqs. (2.105) and (2.106),
that will be present in the final expression of the current generated by the PV cell.

The last two boundary conditions are obtained considering that the front contact
at the n-type zone is built by a metallic grid with an effective front surface SF,eff,
and the effective recombination is given by:

d

dx
Dp ¼ SF;eff

Dp
Dpð�WnÞ ð2:107Þ

This situation is different from an ideal ohmic contact in which Dp ¼ 0.
For the p-type semiconductor the back contact is quite an ohmic contact,

however, if a thin more heavily doped region near this contact is introduced to
increase the number of collected minority carriers, a condition similar to
Eq. (2.107) can be imposed introducing the effective back surface SBSF:
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d

dx
Dn ¼ SBSF

Dn
DpðWpÞ ð2:108Þ

2.13.2 Optical Generation Rate

As explained before, only photons with wavelength k� hc
�

Eg can contribute to
generate holes–electrons couples. The generation rate depends on a grid shad-
owing factor s, on the reflectance r(k), on the absorption coefficient a(k) and on
incident photon flux f(k) according to the Eq. (2.109).

ZxP

�xN

GnðxÞdx ¼ ð1� sÞ
Z

k

1� rðkÞ½ �f ðkÞðe�aðWN�xNÞ � e�aðWN�xPÞÞdk ð2:109Þ

2.13.3 Recombination Rate

This term depends on the length of the depletion zone and on intrinsic carrier
concentration, it is inversely proportional to the effective lifetime in the depletion
region sD. Moreover, a further term is present in which the exponential contains
the voltage multiplied for (q/2kT) it is equal to about 19.23 J/C for T = 300 K.

ZxP

�xN

RnðxÞdx ¼ WDni

sD
ðeðqV=2kTÞ � 1Þ ð2:110Þ

2.13.4 Current Versus Voltage Law of Photovoltaic Cell

By solving minority carrier diffusion equation with boundary conditions and
considering the generation and recombination, the current versus voltage law of
photovoltaic cell is obtained after non-trivial calculations, not included here.

I ¼ Iph � Is1ðeqV=kT � 1Þ � Is2ðeqV=2kT � 1Þ ð2:111Þ

The first term is the short circuit current and collects the contributes of the two
quasineutral zones and of the depletion zone.

The second term contains the dark saturation current due to the recombination
in the quasineutral region Is1. It should be observed that in Eq. (2.111) this
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phenomenon is considered ideal. When the non-ideality of the diffusion is taken
into account, an ideality factor should be introduced in the exponential, as will be
discussed in Chap. 3.

Finally, the last term contains the dark saturation current due to the recombi-
nation in the space charge region Is2. This last term is bias dependent because it is
proportional to the length of the depletion zone.

2.14 Physical Model of a PV Cell

Equation (2.111) reproduces the physical phenomena of a PV cell. It can be
regarded as a Kirchhoff’s current law (KCL) written for a node in an electrical
circuit for which the sum of currents flowing into that node is equal to the sum of
currents flowing out of that node. On the basis of this law, an equivalent circuit can
be deduced. It represents a physical circuit model of a PV cell. This circuit is
drawn in Fig. 2.15.

It should be noted that the output current is the sum of a current given by a generator
that depends on solar irradiance minus the current that flows through the two diodes.
The first current corresponds to Iph in Eq. (2.111), the second current corresponds to
Is1ðeqV=kT � 1Þ ¼ Id1 and the third current corresponds toIs2ðeqV=2kT � 1Þ ¼ Id2.

As a matter of fact, the second and the third term of Eq. (2.111) can be
considered as Shockley diode equations. Finally, the output voltage is obtained by
the diodes direct bias due to the current generator.

During operating conditions, when solar radiation occurs, the generator current
flows through the diodes and a voltage appears at the terminals. If no load is
applied this voltage is an ‘‘open circuit’’ voltage, i.e., the voltage of a directly
polarized p–n junction and it is the maximum value achievable by a PV cell. If a
load is connected, a part of the current of the generator flows into the load, voltage
decreases and electric power is supplied to the load. The conversion process is
completed.

Starting from solar radiation, electric energy has been obtained.
It should be noted that if the load is raised (it corresponds to a lower resistance)

current rises too and voltage decreases; the supplied power reaches a maximum
and then decreases until the short circuit condition.

Iph

I

V

+

-

Id1 Id2

Fig. 2.15 Physical circuit
model of a PV cell
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When no solar radiation is present, the generated current is null and conse-
quently the voltage at terminals. However, this does not correspond to a short
circuit behavior, on the contrary, the PV cell does not allow negative current flow
imposed by external circuits.

2.15 Semiconductor Types

Silicon can be arranged in different forms to obtain a photovoltaic cell depending
on crystal structure. Following the classification on the basis of planar grain size,
microcrystalline, polycrystalline, and multicrystalline can be distinguished. In
particular, microcrystalline material exhibits a grain smaller than 1 lm, poly-
crystalline smaller than 1 mm, and multicrystalline smaller than 10 cm.

Si Si Si

Si Si

SiSiSi

Si

Si Si Si

Si Si

SiSiSi

Si

Si Si Si

Si Si

SiSiSi

Si

Si Si Si

Si Si

SiSiSi

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si Si Si

Si
Si

Si
Si

Si

Si

Si Si
Si

Si
Si

Si
Si

Si

Si Si Si

Si

Si

H H

H

Si

Si

Si

Si

SiSi Si

SiSi

(a)

(b) (c)

Fig. 2.16 Structure of crystalline (a), multicrystalline (b), and amorphous silicon (c)
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A schematic representation of structure of crystalline, multicrystalline, and
amorphous silicon is drawn in Fig. 2.16.

2.15.1 Crystalline Silicon

Crystalline silicon is considered as an ideal structure where the pattern is regular
throughout the whole surface. All theory explained above is developed with
reference to this structure. The main advantage consists of highest ratio solar irra-
diance—produced electric power. With Monocrystalline silicon, power conversion
efficiency ranging from 20 to 24 % is expected, with GaAs, power conversion
efficiency ranging from 20 to 29 % is expected.

Crystalline silicon, on the other hand, is expensive owing to manufacturing
process. For this reason, several alternative cheaper silicon structures have been
developed.

2.15.2 Multicrystalline

Multicrystalline and polycrystalline silicon can be produced by a less sophisticated
technique compared with crystalline. However, in this case, the presence of grain
boundaries must be taken into account. In particular, cell performance is reduced
because at the boundaries the carriers flow is blocked, the level structure is altered,
and the current that would flow across p–n junction is shunted away.

Some remedies have been devised as, for example, the use of grains of few
millimeters to cover the entire distance from the back to the front of the cell with
minimum number of grains. With Polycrystalline silicon, a power conversion
efficiency ranging from 13 to 18 % is expected.

2.15.3 Amorphous

Amorphous silicon presents a less regular structure with unsatisfied bonds. These
‘‘dangling’’ bonds are passivated by hydrogen by allowing doping (otherwise
impossible) and raising the band gap form 1.1 eV of crystalline silicon to 1.7 eV;
in this way, photons of higher energy can be absorbed and the required thickness
of the material is lower. As a consequence, amorphous silicon can be used as a
‘‘thin film’’ form deposited on glass or other substrates for low cost applications.

The band structure of amorphous materials is similar to the crystalline material
over short distance and a mobility gap, in which conduction occur, can be defined.
However, there are a great number of localized energy states within mobility gap,
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corresponding to band tails and gangling bonds that make different the amorphous
behavior compared to crystalline silicon.

2.15.4 Thin Film

The so called thin-film technologies, where thin-film cells are deposited on foreign
substrate, are indicated for a transition from other technologies for module
manufacturing.

It is possible, by increasing the ratio to hydrogen silane in the gas from which
amorphous silicon is deposited, to obtain a microcrystalline material in which
columns of crystallites are separated by amorphous region.

Actually, established thin-film technologies use amorphous silicon and nano-
crystalline Si film (a-Si), cadmium telluride (CdTe), and copper indium/gallium
diselenide (CIGs), they have efficiency of 8–13 % for a-Si, of 10–17 % for CdTe,
and for 10–19 % for CIGs. Moreover, a reduced cost is expected. As a matter of
fact, in a crystalline Si module about 40 % of cost is due to wafer or solar cell
ribbon manufacturing.

2.15.5 Polymer Solar Cell

In addition to the previously cited inorganic material as Silicon (Si), Gallium
Arsenide (GaAs), Cadmium Telluride (CdTe), and Cadmium-Indium-Selenide
(CIS), endeavors to reduce costs due to solar grade silicon and fabrication pro-
cesses have led to the exploitation of organic thin-film materials.

In particular, conjugated polymers and molecules are easy to be produced, they
have mechanical flexibility as plastics, and can exhibit electronic properties similar
to conductors and semiconductors. Moreover, recent progresses in soft lithography
techniques as inkjet printing and microcontact printing have increased the interest
toward the fabrication of integrated devices over both rigid and flexible substrates
having a large area.

However, properties of organic and inorganic semiconductors are significantly
different. In an organic semiconductor, as explained above, the absorption of a
photon generates a hole–electron couple and they are transported for their high
mobility and internal electric field.

On the contrary, in organic semiconductor dissociation into free charges
carriers does not occur at room temperature. As a consequence, two different
materials are necessary and charges are created as an effect of the transfer of
photoinduced electrons from one to the other material.

In particular, after the absorption of solar irradiance, for which a matching
between solar spectrum and absorption spectrum is desirable, a donor material (D)
is required to give the excited electron to the acceptor material (A). As a result, a
radical cation of the donor (D+) and a radical anion of the acceptor (A-) occur.
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In addition, competitive processes as fluorescence and non-radiative decay must
be inhibited and the transfer of photogenerated charges must be aided. For these
reasons, the transferred electron should be slowed down as much as possible.

These last considerations are schematized in Fig. 2.17 (a). Here, an electron is
excited by light absorption to the highest occupied molecular orbital (HOMO) in
the donor material and then it is transferred to the lowest unoccupied molecular
orbital (LUMO) in the acceptor material. Now, an extra electron is present in
acceptor material and a hole appears in the donor material. Figure 2.17 (b) sket-
ches the photovoltaic cell. Light passes through a glass and a transparent electrode
(ITO); the electrodes are dissimilar but both are metallic to collect charges and to
transfer them to external circuits.

Among organic cells the most successful appear to be: Dye-sensitized cells,
Double layer cells, and Bulk heterojunction cells.

Dye-sensitized cells use an organic dye adsorbed at the surface of an inorganic
wide band-gap semiconductor for absorption of light and injection of photoelec-
trons into the conduction band of the semiconductor.

Double layer cells consist on a sandwich of a single layer of organic dye between
two dissimilar electrodes.

Finally, in bulk heterojunction cells, p- and n-type materials are mixed together,
but, because of the intrinsic tendency of polymer materials to remain separate at
nanometer dimension, junctions throughout the material are created.

2.16 Conclusions

The energy under the form of an electromagnetic wave is transformed in the
electrons motion inside a semiconductor. Different semiconductor types allows a
p–n junction to be obtained and used as a photovoltaic cell from which electric
power, in terms of generated voltage and current at its terminal, is obtained.
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(a) (b)
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glass
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n-type

Au

donor acceptor

e

Fig. 2.17 Electron transfer from donor to acceptor material (a), section of an organic cell (b)
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Analyzing the electrons behavior inside a semiconductor, the fundamental
equations of the PV cell and a physical circuit model, using a current generator and
two diodes, is obtained.
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