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  Pref ace   

 Organisms have rhythms, such as the rhythms of the cardiac and respiratory  systems, 
endocrinological networks, brain circuits, awake–sleep rhythms, and so on. All 
these rhythms have a tendency to oscillate, increasing and decreasing depending on 
several factors. Such oscillations can give information on the state of the complex 
systems involved. Oscillations have been shown to be an integral part of the cardio-
respiratory circle (Lotric and Stefanovska 2000), peripheral blood fl ow (Bracic and 
Stefanovska 1998a, b), renal functions (Constantinou and Yamaguchi 1981   ), the 
immunological system, cell metabolism (Selkov 1968), the extrapyramidal system 
(Brown 2003), and others. Several models have been developed to simulate systems 
or subsystems. It has been hypothesized that oscillations in dynamic coupled non-
linear environments serve as communication pathways for biological systems. 
Consequently, the uncoupling of oscillating organs would be the cause and not sur-
rogate of organ dysfunction (Godin and Buchman 1996   ). Recognition of the 
dynamic nature of regulatory processes has challenged the traditional view of 
homeostasis (Lipsitz 2002), leading to the introduction of the term homeodynamics 
(Yates 1993). 

 During my training as an anesthesiologist at the Humboldt University in Berlin, 
Germany, I became acquainted with an older, experienced consultant at the medical 
intensive care unit. When he arrived before the morning round, he would simply 
check the monitors for changes in the heart rhythm of individual patients over the 
previous 24 h. I wondered what he was doing. He explained on one occasion that he 
looked at the ups and downs of heart rhythm. If they decreased, he would be con-
cerned about the patient. He did not call this heart rate variability, but it was in fact 
exactly the concept I will discuss in this book. In most cases we can summarize it 
thus: variation is good and lack of variation is bad. This is probably true for many 
body rhythms, but there is already now substantial evidence that this is particularly 
true for the heart rhythm. 

 The cardiorespiratory circle is of special interest in many ways. Respiratory 
sinus arrhythmia (RSA) has been described in terms of a weak coupling between 
respiration and cardiac rhythms that are usually not phase locked (Lotric and 
Stefanovska 2000). The cardiorespiratory system has a high level of complexity 
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with different forms of self-organization, where oscillations show its complexity in 
a simple manifestation (Stefanovska 2002, Stefanovska et al 2002). The complexity 
of HRV decreases with increased age (Pikkujämsä et al. 1999; Acharya et al. 2004). 
Physiological explanations for HRV have been imbalances in sympathovagal acti-
vation and parasympathetic tone (Hughes 2000), changes in β-adrenergic receptor 
number and function, abnormal barorefl ex function, central abnormalities of auto-
nomic regulatory function, and, recently, changes in mediator levels (TNF) (Malave 
et al. 2003). 

 Increased interest developed as correlations between decreased heart rate vari-
ability and mortality, specially sudden heart death, was described early in landmark 
papers (Kleiger et al. 1987; Singer et al. 1988). Interest in this issue arose specially 
after the development of automated internal cardiac defi brillation devices as a thera-
peutic tool, when it became essential to identify risk patients who would benefi t 
from an implantation. Today, some hospitals use HRV for this (or other purposes), 
others not at all. Karemaker concludes “The predictive value of (absence of) heart 
rate variations is now an acknowledged risk factor, strongly associated with long- 
term outcome of disease in cardiac patients” (Karemaker and Lie 2000, p. 435) and 
asks “one wonders why cardiac monitors in our hospitals only represent mean heart 
rate predominantly, but do not take heart rate variations into account” (Karemaker 
and Lie 2000, p. 436). 

 In the last years, hypotheses are emerging that discuss nonlinear properties not 
only as surrogate of a system but more as a property on its own. A diminished com-
plexity of a system (a patient) is thus not a consequence of aging or disease but on 
the contrary, a more ordered system might be the cause of disease. Fractal dynamics 
is hence a fundamental feature of living or complex adaptive systems, and their 
disappearing is expected to have fatal consequences (Goldberger et al. 2002). 

 In this book I focus on heart rate variability in various ways. I decided in addition 
to discuss some algorithms that have either similar properties or also propose com-
mon mechanisms, such as heart rate turbulence. I discuss extensively the basic 
functional structures responsible for the generation of HRV. I summarize evidence 
for which structures are involved. In addition we regard it as essential to understand 
HRV under a systems biology perspective and present basic principles and mathe-
matical models based on them. 

 In the clinical part, I am most interested in diseases or conditions for which rele-
vant research has been done, like in the cardiologic fi eld or intensive care. This is of 
course also corresponds to my interests. I am intensivist, working together with car-
diologists and have special experience in pain treatment and palliative care. So it is 
not only by chance that I focus on different pain syndromes and cancer symptoms. 

 On the other hand, I am mostly interested in syndromes that are clearly defi ned. In 
some areas, particularly chronic fatigue, often synonymously called myalgic enceph-
alomyelitis, several studies with HRV measures have been published. In difference 
to cancer fatigue or fatigue associated with former chemotherapeutic treatment, I 
feel that this patient group is still not optimally characterized and HRV research in 
heterogeneous groups seems to bring about confusion rather than clarity. This is also 
the case for irritable bowel syndrome (IBS), but I chose to discuss it due to some 
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evidence leading to the idea of IBS as specifi c visceral or autonomic  neuropathic 
pain. I will discuss some of the problematic issues briefl y in the last chapter. 

 It is important for the reader to keep in mind that things changed around 1996. Before 
1996 – see also the fi rst chapter on history – no standard for HRV existed. Results were 
not completely comparable, some measures were used that later disappeared (e.g., the 
so-called middle band in frequency domain), and the technical equipment was rather 
heterogeneous. Only after the publication of the report of the Task Force of the European 
Society of Cardiology and the North American Society of Pacing and Electrophysiology 
(1996) and similar excellent articles (e.g., Berntson et al. 1997), studies started to use 
common methods and to report on them exactly. Even though many studies do not use 
this standard (even when they claim to do so (Nunan et al. 2010)), it was a great break-
through and diminished somewhat the value of studies conducted previously. 

 My intention with this book is to introduce an affordable diagnostic measure that 
provokes no adverse reactions and is feasible in hospitals and outpatient clinics as 
well as for general practitioners or rehabilitation units. At the same time I wish to 
make clear possibilities, but also some limitations. HRV is often used rather 
mechanically without deeper understanding of the background. I hope that my read-
ers will regard this book as a contribution to their clinical and scientifi c work. 
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                    The concept of heart rate variability is very old. Already early physicians observed 
variation in heart frequency, but only in the last 150 years more specifi c methods 
and ideas appeared. Rather than a comprehensive review, we offer here a sketch of 
the history of HRV. We mention names knowing that to relate a complex concept 
like HRV to single scientists is entirely wrong. In 1935, Ludwik Fleck was probably 
the fi rst to describe scientifi c progress as collective work, arguing that to relate 
results to single scientists is not appropriate (Fleck  2012 ). We are convinced that his 
approach and interpretation could be easily used in the history of HRV. Thus, if we 
use specifi c names, this is not to highlight them at the expense of others who are 
similarly important. The authors are rather examples that stand for emerging con-
cepts and discussions, while many more scientists and physicians also deserve 
credit. Therefore, we dedicate this chapter to the large historical community of 
clear-sighted and curious humans who have developed and are still developing the 
concept of heart rate variability in permanent collective interaction. 

 As Billman ( 2011 ) suggests, already early in their history, humans undoubtedly 
discovered pulsations at the thoracic wall and in peripheral arteria. The fi rst written 
remark about heart rhythm is found in quotations of Herophilus (ca. 335–280 BC), 
who not only discovered arteries and veins (and their difference) but also described 
the arteries as pulsing rhythmically. As Billman argues, this suggests that Herophilus 
was probably the fi rst person to measure heart rate. Herophilus was quoted by Galen 
who also quoted Archigenes describing eight different characteristics of the pulse. 
Galen of Pergamon focused on pulse and wrote not fewer than 18 books on it and at 
least eight treatises describing the use of pulse measurement for prognosis of ill-
nesses (Billman  2011 ). 

 Western medical historians most often quote Galen regarding pulse, but pulse 
diagnosis was also used early in Indian and Chinese medicine. In China, pulse diag-
nosis was developed (depending on historical sources) between 800 and 200 BC. 
Bian Que ( , about 500 BC, also known as Qin Yueren, ) is on record as 
one of the fi rst Chinese physicians who used and described pulse diagnosis. Bian 
Que, who lived about one generation before Hippocrates, was the fi rst to describe 
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the “four diagnostic methods” of Traditional Chinese Medicine including pulse and 
tongue diagnostics (Fig. 1.1 ).

   The golden age of physiology started already in the eighteenth century. At this 
time, there was no distinction between physiologists and physicists, something that 
was refl ected in both aims and methods. First observations of the permanent varia-
tion of pulse and arterial blood pressure were presented by Stephen Hales already in 
1733. Hales also observed its relation to the respiratory cycle. Heartbeat interval 
fl uctuations linked to spontaneous respiration were fi rst described by Ludwig in 
1847 (Ludwig  1847    ). This was eventually called respiratory sinus arrhythmia and is 
today regarded as part of the broad phenomenon of heart rate variability. He devel-
oped special instruments (“kymograph”) to measure amplitude and frequency of the 
pulse wave in dogs. Another early observer of this property was one of the founders 
of experimental psychology, Wilhelm Wundt. Already in 1868 Donders described a 
respiration dependent activation of N. Vagus and discussed its relation to sinus 
arrhythmia. Later on, several studies observed the manipulation of the vagus nerve 
(Fig.  1.2 ).

   Claude Bernard (12 July 1813–10 February 1878) was a French physiologist. He 
was the fi rst to defi ne the term “milieu intérieur” (now known as homeostasis, a term 
coined by Walter Bradford Cannon). His publications include “La fi xité du milieu 
intérieur est la condition d’une vie libre et indépendante” (“The constancy of the 
internal environment is the condition for a free and independent life”). This is still 
the basic principle related to homeostasis today. He also argued that “The living 
body, though it has need of the surrounding environment, is nevertheless relatively 

  Fig. 1.1    Bian Que (about 
500 BC)       
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independent of it. This independence which the organism has of its external environ-
ment derives from the fact that in the living being, the tissues are in fact withdrawn 
from direct external infl uences and are protected by a veritable internal environment 
which is constituted, in particular, by the fl uids circulating in the body.” 

 Walter Bradford Cannon (1871–1945) was an American physiologist and profes-
sor and chairman of the Department of Physiology at Harvard Medical School. 
Cannon expanded on Claude Bernard’s concept of homeostasis and developed four 
propositions around it. Of these, the last two claimed that the regulating system that 
determines the homeostatic state consists of a number of cooperating mechanisms 
that act simultaneously or successively and that homeostasis does not occur by 
chance but is the result of organized self-government. Dittmar proposed a vasomo-
tor center in rostral ventrolateral medulla (Dittmar  1873 ). 

 The classical model of autonomic control describes a continuum with parasym-
pathetic activation at one end and sympathetic activation at the other as Cannon 
proposed it (Cannon  1915 ). Langley divided the autonomic outfl ow to the cardio-
vascular and visceral tissues into sympathetic and parasympathetic components, 
based on their spinal origins (Langley  1921 ). He proposed that parasympathetic 

  Fig. 1.2    Claude Bernard 
( Source : Académie nationale 
de medicine)       
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efferents are more precise focused on target organs than sympathetic efferents. It 
were beyond others Eppinger and Hess, who focused on abnormalities of the regu-
lations of autonomic functions. They asserted, that “clinical facts, such as respira-
tory arrhythmia, habitual bradycardia, etc. have furnished the means of drawing our 
attention to the variations in the tonus of the vagal system in man” (Eppinger and 
Hess  1915 , p. 12, quoted after Berntson 1997). One report of early physiological 
research came from Bainbridge who tried to explain HRV in terms of alterations in 
baroreceptor and volume receptor responses associated with respiratoric alterations 
of intrathoracic pressure (Bainbridge  1920 ). 

 A step further to understand the autonomic nervous system was made by Adrian, 
who published the fi rst recordings of sympathetic nervous system (SNS) activity in 
anesthetized cats and rabbits (Adrian et al.  1932 ). In the same period, Malzberg    
fi rst described the association between major depression (then called “involution 
melancholia”) and cardiac disease (Malzberg  1937 ), opening up a new area of 
research. 

 After the Second World War, HRV started to be a clinical issue when Hon and 
Lee observed in 1965 for the fi rst time HRV fetal ECG. They noted that reduced 
beat-to-beat variation of the fetal heart was associated with distress before other 
detectable symptoms (Hon and Lee  1965 ), a principle still in use in every obstetric 
unit. In cardiology, Wolf was the fi rst to draw attention to the relationship between 
heart rate variability and nervous system status (Wolf  1967 ), shortly after Valbona 
found HRV changes in patients with brain injury in 1965. 

 Explanations of respiratory sinus arrhythmia were developed when Green and 
Heffron described respiration-independent sympathetic rhythms in 1967. Katona 
observed the activity of cardiac efferents in anesthetized dogs and its consequences 
for hemodynamics in 1970. Shortly afterwards, a landmark study by Jose and 
Collison described the intrinsic heart rate after blocking both SNS and PNS with 
help of propranolol and atropine (Jose and Collison  1970 ). 

 A noninvasive approach to measure cardiac parasympathetic control in the anes-
thetized dog was introduced by Katona and Jih ( 1975 ), who suggested that changes 
in the magnitude of sinus arrhythmia indicated proportional changes in vagal tone. 
At this time, it was based on three assumptions: (a) the change of heart period is a 
linear function of vagal efferent activity, (b) during inspiration cardiac vagal effer-
ent activity stops, and (c) the respiratory pattern and rate are constant (which at this 
time was guaranteed by the anesthesia used during the test). 

 Major breakthroughs were made in the 1980s. Axelrod and others started to ana-
lyze the frequency domain of HRV, and in connection to this they started to use 
short-term HRV of 10 min or less as well (Axelrod et al.  1987 ). Of particular impor-
tance was the increasing interest in nonlinear phenomena based on different lines of 
research. Especially Goldberger, the later founder of the important website 
PhysioNet, became increasingly interested in nonlinear algorithms (e.g., Goldberger 
et al.  1984 ,  1986 ; Goldberger and West  1987 ). An overview of his articles reveals 
the crucial infl uences, here he quotes signifi cant European researchers like Hermann 
Haken, May’s landmark paper about evolutionary models, and Shaw’s article about 
chaos theory and strange attractors. 

1 History of Heart Rate Variability
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 Probably the breakthrough of HRV in cardiology happened when Kleiger dem-
onstrated a possible role of SDNN for predicting mortality after acute myocardial 
infarction (Kleiger et al.  1987 ). This was the starting point for several important 
cardiologic studies. Together with Bigger’s introduction of short-term measures 
(Bigger et al.  1993 ), Kleiger’s study sparked a crucial development in the more 
recent history of HRV – the joint Task Force of the European Society of Cardiology 
and the North American Society of Pacing and Electrophysiology ( 1996 ). The Task 
Force established minimal technical requirements, defi nitions, range of Power 
bands in frequency domain and recommendations on how to conduct clinical 
research and patient examinations with the help of HRV. This paper is probably the 
most frequently cited HRV paper. Literally no modern HRV study abstains from 
relating to this important standard, and no major revision has been necessary until 
today – because of the comprehensive presentation of currently accepted “linear 
measures” and because of still insuffi ciently consistent results with respect to a 
plethora of nonlinear algorithms. 

 Today, HRV is somewhere between. Astonishingly more than 10,000 papers 
have been published on it today, it is part of any more expensive pulse watch for 
sport enthusiasts, but its clinical use is very varied. We discuss the situation and 
future of HRV in the last chapter.    
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Outline: In this chapter readers will be introduced to basic ideas and definitions of 
system theory, nonlinearity, nonlinear deterministic systems, and complexity. It will 
include examples and some hints to statistical and geometrical methods. This chap-
ter is not essential for the clinical part of the book, but it is meant to offer a deeper 
understanding of the concepts of time series analysis, especially for nonlinear meth-
ods. We therefore recommended reading it.

Linear Systems

A linear system is simply something that can be defined completely by one or more 
linear equations. We have summarized some (mathematical) definitions around sys-
tems in Table 2.1. As an example consider a bucket into which water flows. If the 
amount of water per time unit is always the same, the amount of water in the bucket 
can be described with help of a linear equation. The equation can be solved analyti-
cally. It is possible to calculate the amount of water at any time if you know the 
beginning value (the amount of water in the bucket at t = 0).

If you describe a system with the help of values taken at different intervals, you 
have a time series. Time series consist of a set of data and are necessarily discrete 
(not continuous). The linear numerical description of time series data consists of a 
first-power mathematical equation. This equation has therefore no exponents and 
describes a line in a Cartesian two-dimensional graphical system:

 
f x = a+bx.( )  

(2.1)

A given amount of input stimulus x produces a proportional corresponding mag-
nitude in output response y. The stimulus produces a response independent of initial 
conditions. To describe a linear system, statistics are appropriate, the stimuli being 
the independent, and response the dependent variable (Schumacher 2004).

Chapter 2
Linear, Nonlinear, and Complex Systems
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The Eq. (2.1) is in fact the simplified form of a differential equation. A time 
series, however, can also be described by one or more difference equations. A dif-
ference equation describes a system stepwise. It returns value at time step 1, 2, 3, 
and so on. You obtain a numerical solution in a difference equation if you start with 
an initial value, calculate it according to the equation, reaching so the first result r1. 
You put this result again into the equation, obtaining so the next result r2. This pro-
cess can be repeated infinitely and is called iteration.

 
f x = a+bx .n+ n1( )  

(2.2)

Difference equations were important for the discovery of mathematical chaotic 
systems, which will be explained later in this chapter.

Linear power spectrum techniques, which transform time series into frequency- 
domain data, are considered as linear signal analysis too. All power spectrum analy-
sis techniques (like fast Fourier transformation or autoregressive modelling) 
transform a time series data set into its frequency components by decomposing the 
original signal into a series of sinusoidal waves analogous to a prism separating 
light into its corresponding colors.

Nonlinear Systems

A nonlinear system is mathematically defined as a 2nd- or higher-power system, 
that is, the independent variable in the mathematical equation contains an exponent. 
In a linear system, the variables produce an output response; whereas, in a nonlinear 
system the variables contribute to the output response. Although a linear system can 
be decomposed into its component parts, in a nonlinear system the parts interfere, 
cooperate, or compete with each other. A small change can alter the nonlinear sys-
tem dramatically because the initial condition of all variables along with the input 
stimulus influences the output response (Strogatz 1994). Nonlinear dynamic sys-
tems theory allows for the mathematical reconstruction of an entire system from 
one known variable since the reconstructed dynamics are geometrically similar to 
the original dynamics.

Table 2.1 Definitions

A system is a collection of variables interacting with each other to accomplish some purpose 
(McGillem and Cooper 1974).

A dynamic system is a system that evolves over time by accepting, then operating on, an original 
signal to produce a new set of signals (Strogatz 1994).

Signals represent the means by which energy is propagated through a system and may depict any 
variable within a system (McGillem and Cooper 1974).

A time series data set is a collection of observations (data points) made sequentially over time 
(Chatfield 1989).

2 Linear, Nonlinear, and Complex Systems
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Probably the simplest form of a nonlinear equation is

 
f x = x .( ) 2

 
(2.3)

If you show a linear system in a graphical form, you see a (straight) line. Any non-
linear system will show a (more or less complicated) curve. A line has always the 
same slope at any point, a curve, however, has different slopes, maxima and minima.

These kinds of equations can in principle be solved analytically. We can calcu-
late at any point the value of f(x), but also the slope, global and local maxima and 
minima, or the position function. But in most cases, nonlinear systems cannot be 
solved analytically. Why are nonlinear systems so much harder to analyze than lin-
ear ones? The essential difference is that linear systems can be broken down into 
parts. Then each part can be solved separately and finally recombined to get the 
answer (Strogatz 1994). The problem here is that in the real world we do not find 
systems where variables act independently. It would be possible to describe the 
behavior of the heart rate over time if respiration would not have an effect on pre-
load, blood pressure not on afterload, volume not on heart rate, and so on. In reality, 
most systems have parts that interact in one way or another, and this makes it neces-
sary to describe such systems mathematically on a nonlinear way.

Chaos Theory

The misleading expression “chaos theory” describes the properties of nonlinear 
deterministic systems. It is a specialized sub-theory of nonlinear systems that 
describes the behavior of a system with few variables over time when the variables 
of the time step n + 1 are dependent on the variables at time step n (compare Eq. 
(2.2)). The process of turning the result of one time step into the independent vari-
able of the next time step is called iteration. In contradiction to the associations 
related with chaos, a chaotic system is directly dependent on its initial conditions, 
but the terminal state of the system after infinite time steps can vary considerably. 
With methods and algorithms of chaos theory it is possible to distinguish between 
stochasticity (real independent changes without any rule) and chaos (changes 
dependent on the conditions before). In fact, most biological time series are based 
on a combination of these two elements. The robustness of a chaotic system seems 
often to be dependent on stochasticity (also often called “noise”). This means that a 
physiological system, which is considerably deterministic, can possibly only be 
stable if some real random fluctuations are part of it.

Among many investigators and pioneers who paved the way of modern mathe-
matical chaos theory was the meteorologist E. Lorenz and the ethologist R. May. 
Lorenz modelled atmospheric convection in terms of three differential equations 
and described their extreme sensitivity to the starting values used for their calcula-
tions. May showed that even simple systems (in this case interacting populations) 
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could display very “complicated and disordered” behavior. Among other pioneers 
in the field were D. Ruelle and F. Takens. They related the still mysterious turbu-
lence of fluids to chaos and were the first to use the name “strange attractor.” Soon 
thereafter M. Feigenbaum revealed patterns in chaotic behavior by showing how the 
quadratic map switches from one state to another via period doubling. The term 
“chaos” had been already introduced by T.- Y. Li and J. Yorke during their analysis 
of the same map. Several Russian mathematicians like A. Kolmogorov and Y.G. 
Sinai have also contributed to the characterization of chaos, its relation to probabi-
listic laws, and information theory (Faure and Korn 2001).

There is no simple powerful and comprehensive theory of chaotic phenomena, 
but rather a cluster of theoretical models, mathematical tools, and experimental 
techniques. Chaos theory is a specialized application of dynamic system theory. 
Nonlinear terms in the equations of these systems can involve algebraic or more 
complicated functions and variables and these terms may have a physical counter-
part, such as forces of inertia that damp oscillations of a pendulum, viscosity of a 
fluid, nonlinear electronic circuits, or the limits of growth of biological populations, 
to name a few. Since this nonlinearity renders a closed form of the equations impos-
sible, investigations of chaotic phenomena try to find qualitative and quantitative 
accounts of the behavior of nonlinear differentiable dynamical systems. Qualitative 
approaches include the use of state spaces or phase spaces to characterize the behav-
ior of systems on the long run, or to describe fractals as pattern of self-similarity.

Phase space is a mathematical and abstract construct with orthogonal coordinate 
directions representing each of the variables needed to specify the instantaneous 
state of a system, such as velocity and position (of ,e.g., a pendulum) or pressure 
and volume changes (e.g., of a lung connected to a respirator). Common for vari-
ables is that they are time dependent. Time itself is not represented as coordinate, 
but on the phase space curve itself. Typically, a phase space starts at a certain point 
and the system goes through a finite (or infinite) time length. The system might be 
end at a certain point, which is often called an attractor or a limit point. A limit point 
for instance is the point where a pendulum finally ends. In the absence of friction, 
however, the pendulum moves on the same way for infinite time, which leads to a 
limit circle that describes a stable oscillation. A normal attractor shows a kind of 
equilibrium, either with or without movement of the system. A system can possibly 
never reach equilibrium. But beyond attractors or limit cycles, chaotic systems can 
also reach a kind of equilibrium without moving on the same track again. This is 
described by the term “strange attractor” that is shown by curves in state space that 
never repeat but are similar to each other. Limit points are in addition distinguished 
with regards to local stability. An attractor is regarded as locally stable when pertur-
bations are damped over time, whereas they are seen as unstable if small perturba-
tions increase over time. Locally unstable attractors are also called repellors. A third 
class of equilibrium points is saddle points that are attractors from some regions, but 
repellors for other regions.

A physical system can undergo transitions if some of the parameters are dis-
turbed. Perturbations can cause the system to oscillate until it finally returns and 
ends at the same end point. Consider a stress response of the body. Systemic- 
released adrenaline and synaptically released noradrenaline results in an increased 
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heart rate. The system will eventually adapt, catecholamines will be eliminated, and 
(if the stress becomes chronic) receptors will be internalized. At the end, the system 
will return to a kind of equilibrium.

The amount of perturbations a system is able to tolerate without coming into 
transition to another state correlates with its robustness. Most systems tend to be 
robust to most perturbations. The cardiac system can be perturbed in many ways. 
The blood volume can be increased or decreased, the concentrations of electrolytes 
can change with some consequences for frequency and rhythm patterns, the rhythm 
itself can be perturbed by the vegetative nervous system, but in most cases the heart 
rhythm as signal returns eventually to its basic values, the system is robust. But 
some quite small perturbations can change the system dramatically. This can lead to 
a transition to, for instance, atrial fibrillation or asystole. It is typical for systems to 
be generally robust but sensitive to some probably small perturbations.

Transitions can be showed in logistic maps. These usually two-dimensional maps 
show a final value of a measured or observed parameter after finite (or infinite) itera-
tions (nothing other than the attractor) dependent on a control parameter (the indepen-
dent value). The classical logistic map is derived from the already named population 
studies. The logistic equation is a first order difference equation of the form:

 
x = kx xn+ n n1 1−( )  

(2.4)

where x is the dependent value of the system and k is the independent factor. In 
population biology, x was a relative value between 0 and 1, where 1 represents the 
maximal possible population in an area and 0 extinction. k represents the growth 
factor: the higher k is, the faster the population grows. It turns out that for low 
values of k, the initial population settles down to a stable size that will reproduce 
itself each year. As k increases, the first unstable fix point appears. The successive 
value of the population x oscillates in a 2-year circle between two alternate num-
bers. For increasing values of k, a cycle repeats every 4 years, 8 years, and so on. 
This is called a period doubling or cascade. Finally, the behavior becomes chaotic; 
at this stage wild fluctuations hide very effectively the simplicity of the underlying 
rule (Fig. 2.1).

The cardiac cycle represents a deterministic system in which the RR-distance 
depends partially on the RR-distances of the last heartbeats. But there are only few 
mere deterministic systems. Usually, as stated earlier, systems have both determin-
istic and stochastic elements. Stochastic elements again represent either other com-
plex systems that might be partially deterministic in nature (pseudostochasticity) or 
might represent gradually real stochastic systems (consequences of quantum fluc-
tuations). This stochastic element is often called “noise” and is often of high impor-
tance. It has been repeatedly shown that noise is essential for the stability of artificial 
and real neural networks. Reducing the “noise” leads to a breakdown of the system, 
whereas a certain amount of stochasticity leads to stability and rhythmicity. Noise 
in neuronal communication increases the efficacy of the signal recognition.1

1 For a larger discussion, see (Rieke et al. 1999).
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Noise (stochasticity) is differentiated in white, brown, and pink noise. White 
noise is a random signal with a flat power spectral density. In other words, the sig-
nal’s power spectral density has equal power in any frequency band, having a given 
bandwidth. White noise is considered analogous to white light, which contains all 
frequencies. Brown noise,2 also called red noise, is the kind of noise produced by 
random Brownian motion. Its spectral density is 1/f2 denoting more energy at lower 
frequencies. Pink noise is defined as a signal with a frequency spectrum propor-
tional to the reciprocal of the frequency. It is called pink noise for being intermedi-
ate between white noise and brown noise (Figs. 2.2, 2.3, and 2.4).

2 It is not called after the color but in honor of Robert Brown, the discoverer of Brownian motion.
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An older linear tool for examining time series is Fourier analysis, specifically 
FFT (fast Fourier transform). FFT transforms the time domain into a frequency 
domain and examines the series for periodicity. The analysis produces a power 
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spectrum, the degree to which each frequency contributes to the series. If the series 
is periodic, then the resulting power spectrum reveals peak power at the driving 
frequency. Plotting log power versus log frequency:

•	 White noise (and many chaotic systems) has zero slope.
•	 Brown noise has slope equal to −2.
•	 1/f (Pink) noise has a slope of −1.

1/f noise is interesting because it is ubiquitous in nature, and it is a sort of tempo-
ral fractal. In the way a fractal has self-similarity in space, 1/f noise has self- 
similarity in time. Pink noise is also a major player in the area of complexity.

Several attempts have been made to quantify chaos (this means to describe the 
amount of deterministic behavior if there is something that might resemble a strange 
attractor). Some of them are based on the assumption that strange attractors fulfill 
the condition satisfying the “ergodic” hypothesis, which proposes that trajectories 
spend comparable amounts of time visiting the same regions near the attractor.

The Lyapunov exponent is used frequently. It is a measure of exponential diver-
gence of nearby trajectories in the state space. Otherwise stated, it depends on the 
difference between a trajectory and the path it would have followed in the absence 
of perturbation. Assuming two points x1 and x2 initially separated from each other 
by a small distance δ0, and at time t by distance δt, then the Lyapunov exponent λ is 
determined by the relation

 
d dx t x

»t= e( ) ( )0  
(2.5)

where λ is positive if the motion is chaotic and equal to zero if the two trajectories are 
separated by a constant amount as, for example, if they are periodic (a limit cycle).

Entropy is a quantity that comes originally from thermodynamics. It describes 
the amount of disorder in a given system (this is a rather simplified description. A 
probably better verbal approach is to term it as the number of degrees of freedom of 
a system). A chaotic system can be considered as a source of information. It makes 
prediction uncertain due to the sensitive dependence on initial conditions. Any 
imprecision in our knowledge of the state is magnified as time goes by. A measure-
ment made at a later time provides additional information about the initial state. 
From a macroscopic point of view, the second law of thermodynamics tells us that 
a system tends to evolve toward the set of conditions that has the largest number of 
accessible states compatible with the macroscopic conditions. In a phase space, the 
entropy of a system can be written as

 
H = i p i− p

i

n

=
∑ ( ) ( )

1

log
 

(2.6)

where p is the probability that the system is in state i. In practice one has to divide 
the region containing the attractor in n cells and calculate the relative frequency (or 
probability p) with which the system visits each cell. Entropy has a special signifi-
cance in time series and we shall revisit the methodology in the Chap. 4. The 
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prototype is the Kolmogorov–Sinai entropy or Shannon entropy. In heart rate varia-
tion approximate entropy and more recently sample entropy are used.

Where Lyapunov exponent and entropy focus on the dynamic of trajectories in 
the phase space, dimension emphasizes the geometric features of attractors. 
Traditionally, dimension is understood in the classic Cartesian way. A dimension is 
a parameter (or measurement) required to define the characteristic of an object. In 
mathematics generally, dimensions are the parameters required to describe the posi-
tion and relevant characteristics of any object within a conceptual space – where the 
number of dimensions of a space are the total number of different parameters used 
for all possible objects considered in the model. An even more abstract perspective 
generalizes the idea of dimensions in the terms of scaling laws. The so-called 
Hausdorff dimension is an extended nonnegative real number associated to metric 
space. To define the Hausdorff dimension for a given space X, we first consider the 
number N(r) of circles of radius r which are required to cover X completely. Clearly, 
as r gets smaller, N(r) gets larger. Roughly, if N(r) grows the same way as 1/rd as r 
is squeezed down to zero, then we say X has the dimension d. Related methods 
include the box-counting dimension, also called Minkowski–Bouligand dimension.

Fractals are irregular geometric objects. An important (defining) property of a 
fractal is self-similarity, which refers to an infinite nesting of structure on all scales. 
Strict self-similarity refers to a characteristic of a form exhibited when a substruc-
ture resembles a superstructure in the same form. Heart rate on the frequency 
domain (see time-domain analysis) is fractal in nature and measures of fractality 
have been used to characterize the amount of nonlinearity (see fractal analysis).

Nonlinear statistic tools have been introduced in the last decades. Return maps, 
also called Poincaré plots, have been used to distinguish between stochastic systems 
or deterministic systems (Clayton 1997). Briefly, return maps plot a point in a 
Cartesian system where x is the current value of the time series and y is the next 
point of the time series. This is repeated for the next pair of values. Stochastic time 
series show a distribution like in Figs. 2.1 and 2.5.

If we look at a time series produced with the already known logistic equation 
xn + 1 = kxn(1 − xn) with a k of 3.99, this time series looks graphically highly stochastic 
(Fig. 2.6).

A return map, however, reveals the deterministic properties of this time series 
(Fig. 2.7).

Complexity

Complex systems are sometimes positioned between simple systems and stochastic 
systems. One approach uses the idea of predictability. A system may be predictable 
(we know how it will develop over a certain time range) or may not be predictable 
(we know definitely that we don’t know how the system will develop over a certain 
time range). Highly predictable and highly unpredictable systems are simple, since 
the method of forecasting is so straightforward (Crutchfield 2002). But most inter-
esting systems are between those extremes. Interest in them arose because complex 
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systems seem to be sensitive to some small perturbations, but at the same time 
complex systems can be quite resistant to other perturbations, which makes them 
robust and adaptable (Holt 2004).

There exist several different definitions of complex systems. At the present time, 
the notion of complex system is not precisely delineated yet. The idea is somewhat 
fuzzy and it differs from author to author. Main approaches include:

•	 The number of components in the system (the system’s dimension)
•	 The degree of connectivity between the components
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•	 The dynamic properties and regularity of the system’s behavior
•	 The information content and compressibility of data generated by the system 

(Holt 2004)

But there is fairly complete agreement that the “ideal” complex systems, those 
that we would like most to understand, are the biological ones and especially the 
systems having to do with people: our bodies, our groupings, our society, and our 
culture. Lacking a precise definition, it is possible to convey the meaning of com-
plexity by enumerating what seem to be the most typical properties. Some of these 
properties are shared by many non-biological systems as well.

Complex Systems Contain Many Constituents Interacting 
Nonlinearly

Nonlinearity is a necessary condition for complexity, and almost all nonlinear sys-
tems whose phase space has three or more dimensions are chaotic in at least part of 
that phase space. This does not mean that all chaotic systems are complex. For one 
thing, chaoticity does happen with very few constituents; complexity does not.

The Constituents of a Complex System Are Interdependent

Here is an example of interdependence. Consider first a non-complex system with 
many constituents, say a gas in a container. Take away 10 % of its constituents, 
which are its molecules. Nothing very dramatic happens. The pressure changes a 
little or the volume or the temperature or all of them. But on the whole, the final gas 
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looks and behaves much like the original gas. Now, do the same experiment with a 
complex system. Take a human body and take away 10 %, let’s just cut out a leg! 
The result will be rather more spectacular than for the gas.

A Complex System Possesses a Structure Spanning Several 
Scales

Take the example of the human body again. Scale 1: head, trunk, limbs, and the 
macroscopic scale; Scale 2: blood vessels, nerves, and tissue level; Scale 3: cells 
and communications between individual cells; Scale 4: intracellular, genome, pro-
teonome, and translational processes; Scale 5: biological chemistry, enzymatic pro-
cesses, and physical chemistry. At every scale we find a structure. Different scales 
influence each other. This is an essential and radically new aspect of a complex 
system, and it leads to the fourth property.

A Complex System Is Capable of Emerging Behavior

Emergence happens when you switch the focus of attention from one scale to the 
coarser scale above it. A certain behavior, observed at a certain scale, is said to be 
emergent if it cannot be understood when you study, separately and one by one, every 
constituent of this scale, each of which may also be a complex system made up of 
finer scales. Thus, the emerging behavior is a new phenomenon special to the scale 
considered, and it results from global interactions between the scale’s constituents. 
The combination of structure and emergence leads to self-organization, which is 
what happens when an emerging behavior has the effect of changing the structure or 
creating a new structure. There is a special category of complex systems that was 
especially created to accommodate living beings. They are the complex adaptive 
systems. As their name indicates, they are capable of changing themselves to adapt 
to a changing environment. They can also change the environment to suit themselves. 
Among these, even narrower categories are self-reproducing: they know birth, 
growth, and death. Needless to say, we know very little that is general about such 
systems considered as theoretical abstractions. We know a lot about biology. But we 
don’t know much, if anything, about other kinds of life, or life in general.

Let us return now to the relationship between complexity and chaos. They are not 
at all the same thing. When you look at an elementary mathematical fractal, it may 
seem to you very “complex”, but this is not the same meaning of complex as when 
saying “complex systems.” The simple fractal is chaotic; it is not complex. Another 
example would be the simple gas mentioned earlier: it is highly chaotic, but it is not 
complex in the present sense. We already saw that complexity and chaos have in 
common the property of nonlinearity. Since practically every nonlinear system is 
chaotic some of the time, this means that complexity implies the presence of chaos. 
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But the reverse is not true. Chaos is a very big subject. There are many technical 
papers. Many theorems have been proved. But complexity is much, much bigger. It 
contains lots of ideas that have nothing to do with chaos. Chaos is basically pure 
mathematics, and by now it is fairly well known. Complexity is still almost totally 
unknown. It is not really mathematics, but more like theoretical physics. The field 
of chaos is a very small subfield of the field of complexity. Perhaps the most striking 
difference between the two is the following. A complex system always has several 
scales. While chaos may reign on scale n, the coarser scale above it (scale n − 1) 
may be self-organizing, which in a sense is the opposite of chaos. Therefore, let us 
add a fifth item to the list of the properties of complex systems.

Complexity Involves Interplay Between Chaos and Non-chaos

Many people have suggested that complexity occurs “at the edge of chaos” (Kauffman 
2002), but this is not entirely clear. Presumably it means something like the follow-
ing: imagine that the equations of motion contain some “control” parameter that can 
be changed depending on the environment (e.g., temperature, concentration, inten-
sity of some external factor like sunlight). We know that most nonlinear systems are 
not 100 % chaotic: they are chaotic for some values of the control parameter and not 
chaotic for others. Then there is the edge of chaos, i.e., the precise value of the con-
trol for which the nature of the dynamics switches. It is like a critical point in phase 
transitions. It is the point where the long-range correlations are most important. 
Perhaps complex systems, such as biological systems, manage to modify their envi-
ronment so as to operate as much as possible at this edge of chaos place, which 
would also be the place where self-organization is most likely to occur. It makes 
sense to expect self-organization to happen when there are strong long-range correla-
tions. Finally, there is one more property of complex systems that concerns all of us 
very closely, which makes it especially interesting. Actually, it concerns all social 
systems, all collections of organisms subject to the laws of evolution. Examples 
could be plant populations, animal populations, other ecological groupings, our own 
immune system, and human groups of various sizes such as families, tribes, city 
states, social or economic classes, sports teams, Silicon Valley dotcoms, and of 
course modern nations and supranational corporations. In order to evolve and stay 
alive, in order to remain complex, all of the above need to obey the following rule.

Complexity Involves Interplay Between Cooperation  
and Competition

Once again this is interplay between scales. The usual situation is that competition 
on scale n is nourished by cooperation on the scale below it (scale n + 1). Insect 
colonies like ants, bees, or termites provide a spectacular demonstration of this. For 

Complexity



22

a sociological example, consider the bourgeois families of the nineteenth century of 
the kind described by Jane Austen or Honoré de Balzac. They competed with each 
other toward economic success and toward procuring the most desirable spouses for 
their young people. And they succeeded better in this if they had the unequivocal 
devotion of all their members, and also if all their members had a chance to take part 
in the decisions. Then of course there is war between nations and the underlying 
patriotism that supports it. Once we understand this competition–cooperation 
dichotomy, we are a long way from the old cliché of “the survival of the fittest,” 
which has caused so much damage to the popular understanding of evolution 
(Baranger).

Monitoring, Predicting, and Managing Complex Systems

The wish to monitor complex systems can have several reasons. The conditions of 
complex systems might reflect their robustness or fragility. This can mirror robust-
ness against perturbations from outside the system, but also robustness against 
internal oscillations. As described, complex systems can move to a point where a 
transition occurs. Several forms of transitions have been described in theoretical 
models and also partially observed in real-world systems (Scheffer et al. 2009). 
Monitoring complex systems has to be done over time. Changes of surrogate param-
eters might describe that the system approach a possible threshold – a so-called 
tipping point – where the systems shifts abruptly from one stage to the next.

It is well known that it is not possible to predict the state of any iterative system 
beyond certain iterations. At the same time it is known that any system has a finite 
number of states of equilibrium or quasi-equilibrium that it can reach. This is not 
necessarily contradictory. The non-predictability of a system regards first the impos-
sibility to predict certain variables. It was originally recognized in meteorology – 
that even the best computer using the best model is not able to forecast the weather 
more than some days in advance. But on the other hand, rhythmicity leads to pre-
dictability. We know that usually winter is cooler than summer, rain falls in spring-
time even if we are not able to predict exactly a day’s temperature or the days when 
it will rain. The predictability in complex systems can mean that the number of 
possible states is known, but in the beginning, the attractor the system will be going 
toward is not yet known.

Illness interpreted within a complex systems paradigm can be described as a 
system being in equilibrium (an attractor state that means health) that is perturbed 
by an external or internal event. This perturbation is big enough to cast the system 
out of equilibrium. Then eventually it moves back to the same basin of attraction 
(equilibrium in health) or to another basin of attraction (chronic illness or death). 
The direction of the system (and the velocity of changes) might be more interesting 
as the state of the system itself at a certain point of time. A systems dynamic 
approach can be to monitor the system and in particular the system changes (using 
special variables that represent a system state) and to react fast according to these 

2 Linear, Nonlinear, and Complex Systems



23

changes. Part of this theory is that early reactions in beginning changes might 
require less measures or even minimal measures in difference to a system which is 
already far in the direction of another basin of attraction.

In nonlinear systems, big perturbations might only have small effects, but in the 
right moment, a small perturbation may be enough to cause a system change 
(Scheffer et al. 2009). If we assume that the latter situation can be defined, it should 
be possible either to perturb the system in an adequate manner, pushing it over the 
tipping point, or conversely to avoid a transition by using countermeasures when 
the system is evolving near transition points. It is important to recognize, however, 
that there is not only one kind of transition. In models, critical thresholds for transi-
tions correspond to bifurcations (Kuznetsov 1995). Particularly relevant are cata-
strophic bifurcations that occur after passing a critical threshold when a positive 
feedback propels the system through a phase of directional change toward a con-
trasting state (Scheffer et al. 2009). Other classes of bifurcations occur when one 
kind of attractor is exchanged with another, e.g., a terminal cycle against a strange 
(chaotic) attractor.

With help of models it is possible to identify clues that may be associated with a 
system near a transition point. One of the most important clues has been discussed 
as a “critical slowing down” phenomenon (Wissel 1984). “Critical slowing down” 
has been observed in very distinct phenomena, as in cell-signaling pathways 
(Bagowski and Frrell 2001), ecosystems (Scheffer et al. 2009), and climate (Lenton 
et al. 2008). Close to the bifurcation points, the exchange rates of the system around 
the equilibrium become zero. This implies that as the system approaches such criti-
cal points, it becomes increasingly slow in recovering from small perturbations 
(Scheffer et al. 2009). This slowing can begin already far from the tipping point and 
increases as the tipping point is approached (Van Nes and Scheffer 2007). In real 
systems this phenomenon could be tested by inducing small perturbations that are 
not sufficient to drive the system over the transition point and then by measuring the 
rates of change. Otherwise it can be possible to observe the effects of usually always 
existing natural perturbations on the exchange rates.

Slowing down can lead to an increase in autocorrelation in fluctuation patterns. 
This can be shown mathematically (Scheffer et al. 2009). The reason is that in case 
of a reduced exchange rate, the system at point b is more and more similar to the 
system at one point a in the past, the system has a memory of itself, so to say. This 
autocorrelation phenomenon can be measured with help of the frequency spectrum 
of the system (Livina and Lenton 2007). Another consequence can be increased 
variance – as eigenvalue approaches zero, the impacts of shock do not decay and 
their accumulating effects increase the variance of the state variable (Scheffer et al. 
2009). Another possibility is to look at the asymmetry of fluctuations (Guttal and 
Jayaprakash 2008). This is not necessarily a result of critical slowing down. It has 
rather something to with an approaching unstable attractor from one side in the state 
space. Also flickering can occur, if the system is near a system shift, being alter-
nately attracted by two basins of attraction. This has been discussed as an alarming 
sign before phase transitions, e.g., in models of lake eutrophication (Carpenter and 
Brock 2006).

Monitoring, Predicting, and Managing Complex Systems
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In conclusion, in the last years several interesting approaches to predict system 
transitions have been proposed. However, sophisticated ideas to manage complex 
systems are either lacking or only theoretical. Regarding complex social systems, 
scientists are rather skeptical about managing theories (Willke 1999).

Summary

•	 Linear systems are only a special condition. Most systems are only linear if they 
are simplified. Most biological systems are nonlinear in nature.

•	 In principle, systems consist of stochastic and deterministic elements. It is pos-
sible, but not always easy to analyze systems in order to quantify the fraction of 
determinism. Determinism means simply that the behavior of a system over time 
is dependent on its history.

•	 Nonlinear deterministic (“chaotic”) systems show robustness, which is partially 
dependent on stochastic noise. This robustness is with respect to some kinds of 
perturbation. On the other hand, nonlinear deterministic systems can be highly 
sensitive to certain other perturbations, leading to fast disintegration of the 
system

•	 Complex systems are nonlinear systems, where their parts interact nonlinear and 
where there exist different interacting scales. Complex system show emergent 
behavior, they can change from a disordered to an ordered state and vice versa.

Further Readings

Many excellent introductions to nonlinear and complex systems have been pub-
lished in the last years. Important ideas and materials of this chapter were obtained 
from Strogatz (1994), Clayton (1997), Faure and Korn (2001), Kauffman (2002), 
and Baranger.
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                     Outline : In this chapter we introduce the autonomic nervous system. Principles and 
newer views from neuroscience are presented and discussed. It    has a special focus 
on effects and interactions of the autonomic nervous system and the cardiovascular 
and respiratory systems, which are important for the understanding of the physiol-
ogy and pathophysiology of heart rate variations. 

   Introduction 

 The autonomic nervous system (or vegetative nervous system) controls the heart, 
smooth muscles, endocrine, and exocrine glands and has an afferent (sensory) and 
an efferent part. It is distinct from the somatic nervous system in several ways. The 
central control of the vegetative nervous system is allocated in the hypothalamus 
but several other brain regions including the amygdala, the prefrontal cortex, and 
the association areas of the limbic cortex exert infl uence on the hypothalamus itself. 
The efferent nervous activity of the ANS is largely regulated by autonomic refl exes; 
in many of them sensory information is fi rst transmitted to homoeostatic control 
centers to be processed there with a specifi c reaction. The autonomic nervous sys-
tem has its specifi c transmitter substances and receptors and a particular form of 
connections that can be divided in preganglionic and postganglionic fi bers. 

 The main role of the autonomic nervous system is to maintain balance in the 
body under varying conditions. The hypothalamus is able to control three different 
systems. Apart from the ANS the hypothalamus controls the endocrine system and 
an ill-defi ned neural system concerned with motivation (Saper et al.  2000    ). The 
autonomic system is a visceral sensory  and  motor system based on refl exes. These 
visceral refl exes are (almost) not under voluntary control. It has three major divi-
sions: sympathetic, parasympathetic, and enteral (the latter is often underestimated). 
In    principle, a real autonomic system (e.g., the enteric system) is sparsely connected 
with other parts of the nervous system and is largely self-contained. 

    Chapter 3   
 The Autonomic Nervous System 
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 In a traditional view, the sympathetic and the parasympathetic systems are 
opposed to each other, the former responsible for stress reactions and the latter for 
relaxing. Virtually all visceral refl exes are mediated by local circuits in the brain-
stem and spinal cord (Iversen et al.  2000 ). However, recently this view has been 
challenged. We discuss more recent views discussed at the end of this chapter. A 
more modern characterization is that the sympathetic nervous system is a “quick 
response mobilizing system” and the parasympathetic is a “more slowly activated 
dampening system.” 

 It has been proposed that there exist individual patterns in stress response that are 
highly reliable, such as primarily vagal cardiac withdrawal, primarily sympathetic 
cardiac activation, or both cardiac withdrawal and sympathetic activation. 
Correlations between high-frequency power (often related to the parasympathetic 
system) and sympathetic indices did not consistently covary across individuals and 
the median correlation was low (Cacioppo  1994 ). We    discuss the proposed relations 
between ANS and HRV in particular in Chap.   5    .  

   Anatomical Structures 

   Supraspinal Autonomic Network 

 The autonomic nervous system can be divided into sympathetic, parasympathetic, 
and enteric parts. In addition it can be divided into a central nervous and a periph-
eral part. The    central nervous part is rather a network, a highly interconnected set 
of structures in forebrain and brain stem. One of the most important components is 
the nucleus of the solitary tract (NTS), which receives extensive sensory inputs 
(through, among others, cranial nerves VII, IX, and X and N vagus). The nucleus 
itself projects to supraspinal and spinal circuits that control autonomic responses. 
Ascending projections from the NTS reach the forebrain sites including hypotha-
lamic nuclei, amygdala, and insular cortex. This includes the carotid sinus refl ex, 
the gag refl ex, the cough refl ex, the baroreceptor and chemoreceptor refl exes, sev-
eral respiratory refl exes, the aortic refl ex, and refl exes within the gastrointestinal 
system regulating secretion and motility. The other important part of the NTS 
regards integration of autonomic functions with a wider range of responses like 
from the endocrine and behavioral systems. Together with NTS, the hypothalamus 
plays a major role here. The projections from MTS to forebrain are partially pro-
cessed in the parabrachial nucleus (important for behavioral responses). This again 
has projections to the periaqueductal gray, amygdala, visceral thalamus, hypothal-
amus, and cortex. 

 Synaptic contacts exist also between the neurons in the NTS and C1 neurons in 
the rostral ventrolateral medulla (RVM), which have an important role in the control 
of cardiovascular homoeostasis. The RVM neurons in turn project to the locus coe-
ruleus (LC), which is the main source of noradrenergic innervations of higher brain 
sites including the hypothalamus and PVN. Projections arise from the RVM and LC 
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to sympathetic preganglionic neurons in the spinal cord. There are also descending 
pathways from the PVN to the RVM and NTS. 

 The periaqueductal gray coordinates vegetative reaction (e.g., in stress). 
Amygdala and prefrontal cortex regions have an important role in conditioned 
behavioral responses but also in the connection between visceral input, output, and 
emotional states. A typical clinical conditioning happens in cancer patients who get 
nausea already when they see the cancer clinic or cancer nurses. Repeated treat-
ments with emetogene cytostatics lead to an association between the view of the 
clinic and nausea, which is partially processed in the amygdala and forwarded to the 
hypothalamus and brain stem structures. 

 The connection between the parabrachial nucleus and thalamus is relayed to the 
anterior insular cortex where the internal organs are represented topically. This part 
of the visceral sensory cortex interacts with parts of the cingulate cortex (the 
infralimbic area), which represents the motoric part of the system and can cause 
blood pressure changes or gastric contractions. 

 The hypothalamus is a small, complex brain region. In case of the ANS, it has an 
integrative function by regulating fi ve basic physiological needs:

•    Blood pressure and electrolyte composition control by a set of regulatory mecha-
nisms (control of drinking, salt appetite, maintenance of blood osmolality, vaso-
motor tone, and others)  

•   Regulation of body temperature (control of metabolic increase of temperature, 
behavioral)  

•   Energy metabolism control (regulating eating, digestion, metabolic rate)  
•   Reproduction control (by hormonal regulation of pregnancy, lactation, and 

breastfeeding)  
•   Control of emergency functions and reactions to stress (muscle blood fl ow and 

tissue blood fl ow regulation, release of adrenal stress hormones) (Iversen et al. 
 2000 )    

 The hypothalamus is able to regulate this based on indirect and direct projections 
reporting internal states; own internal sensory neurons measuring changes in local 
temperature, osmolality, glucose, and sodium; and neurons responsive to circulating 
hormones like leptin and angiotensin II through circumventricular organs. Integrated 
in hypothalamic circuits are set points. For instance, the hypothalamus acts like a 
thermostat. A temperature is set (normally around 37 °C). In case of differences 
between the set temperature and the measured temperature, the hypothalamus acti-
vates cooling (e.g., sweating) or heating (e.g., shivering) mechanisms to reach the 
set temperature. In case of fever, the set temperature is increased (due to circulating 
interleukins, among other factors), which induces the typical shivering reaction in 
beginning infections. To accomplish this control function, the hypothalamus con-
tains a complex structure of interlinked nuclei, whose description is beyond the aim 
of this chapter. 

 One of the hypothalamic nuclei receiving input from the NTS is the paraven-
tricular nucleus (PVN). The PVN is associated with the synthesis and release of 
corticotropin-releasing hormone (CRH), an important substance in the HPA axis. 
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This ascending link between the NTS and PVN provides a pathway that can modu-
late neurohormonal anti-infl ammatory responses. The role of the medial prefrontal 
cortex has been emphasized; it has a critical role in the regulation and harmoniza-
tion of behavioral and physiological responses (Thayer  2006 ). 

 In a network-like structure like the brain, it is in fact not easy to designate brain 
regions that do not infl uence HRV. In ongoing research it is important to distinguish 
between the orders of magnitude of infl uences. The structures mentioned are major 
players, but they are not the only ones: the whole system consists of several inter-
linked subnetworks connected to each other. In fact, this refl ects the signifi cance of 
HRV as a possible surrogate index of this supraspinal networks (Thayer et al.  2012 ).  

   Spinal and Peripheral Autonomic Nervous System 

 In the somatic motor system the motor neurons are part of the central nervous sys-
tem. They are located in the spinal cord and the brain stem and project directly to 
skeletal muscle. In contrast to this, the motor neurons of the sympathetic and para-
sympathetic motor systems are located outside the spinal cord in autonomic gan-
glia. The autonomic motor neurons, also called postganglionic neurons, are 
innervated by central neurons (also called preganglionic neurons). Thus, there is 
one synapse between the central control and the target tissue. The sympathetic and 
parasympathetic system has sensory elements that project to the vegetative centers 
in the brain stem. Some branches project also directly to the autonomic ganglia as 
part of a local refl ex circuit. 

 Differently from somatic motor neurons, autonomic motor neurons have no spe-
cialized postsynaptic regions, but have their effects through nerve endings with 
several swellings (varicosities) where vesicles containing transmitter substances 
accumulate. Synaptic transmission occurs thus at multiple sides of the highly 
branched axon terminals of autonomic nerves. The neurotransmitter diffuses 
through the interstitial fl uid to wherever its receptors are located in the tissue. 
Control is therefore not exact, goal orientated, but more diffuse. On the other hand, 
a few autonomic nerves are able to control large areas of smooth muscle or other 
target tissues. This is due to gap junctions that allow the spread of electrical activity 
from cell to cell. As a result, the discharge of few autonomic nerve fi bers to an effec-
tor tissue might alter the activity of the whole area. 

 The ANS is composed of two anatomically and functionally different divisions 
called the sympathetic and the parasympathetic system (SNS, PNS, respectively). 
Their function is at all times tonical that means that it has every time some activity 
in form of action potentials, which can increase or decrease. Most though not all 
target tissues are innervated by both divisions, often with opposing effects. In gen-
eral, SNS dominates in stress situations, whereas PNS is idle. In addition, the PNS 
in particular is involved in basic body functions like digestion and urination. 

 Sympathetic preganglionic fi bers form a column in the intermediolateral horn of the 
spinal cord extending from the fi rst thoracic spinal segment to rostral lumbar segments 
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(Iversen et al.  2000 ). They leave the spinal cord and form synapses in the ganglia of the 
sympathetic chains, which lie along each side of the spinal cord. Preganglionic fi bers 
are thin but myelinated and are relatively slow conducting. Postganglionic fi bers in 
contrast are not myelinated. There exists a preganglionic/postganglionic fi ber ratio of 
1:10–1:20. A few preganglionic fi bers control many postganglionic fi bers by having 
synapses with them in often more than one ganglion. Apart from the postganglionic 
nerves in the head, postganglionic fi bers represent about 9 % of the spinal nerve. The 
fi bers that innervate the heart, lung, and vessels are probably most relevant for the 
physiology of heart rate variability. In addition, the adrenal medulla consists of pregan-
glionic SNS neurons synapsing directly with glandular tissue. The cells of the medulla 
do not have endocrinological origin, but came during the embryological development 
from neuronal lines. The medulla can so be seen as an aggregation of postganglionic 
SNS neurons that send their transmitter substances through the whole body with the 
help of blood circulation. A particular feature of SNS is to innervate blood vessels, 
primarily arterioles and veins, most of them only receiving SNS, not PNS fi bers. 
Therefore vascular tone (and sweating) is regulated by SNS only. 

 Cardiovascular sympathetic efferents can be broadly classifi ed into three groups 
according to their dominant characteristic: thermosensitivity, glucosensitivity, and 
barosensitivity (Lohmeier  2001 ). The  thermosensitive  cardiovascular efferents con-
sist mainly of cutaneous vasoconstrictors, which are activated by hypothermia, 
emotional stimuli, and hyperventilation. The  glucosensitive  group controls adren-
alin release from the adrenal medulla and is activated by hypoglycemia and physi-
cal exercise. The  barosensitive group  is the largest of the three. Regardless of organ 
or tissue being innervated, these neurons show ongoing activity in rest (sympathetic 
tone) and they discharge in bursts that are highly synchronized with the arterial 
pulse and respiration (Dempsey et al.  2002 ; Jänig and Habler  2003 ). Barosensitive 
sympathetic efferents control the heart and the kidneys as well as the release of 
noradrenalin from a subset of adrenal chromaffi n cells. They also constrict resis-
tance arterioles with the exception of those in the skin (Jänig and Habler  2003 ). 
Barosensitive efferents are subject to numerous refl ex regulations that operate as 
either feedback or feedforward mechanisms. For example, whereas ventilation 
(afferents of the lung) and arterial pressure (carotid and aortic receptors) inhibit 
activity, muscle receptors during exercise, nociceptors in the heart and skin, or cen-
tral and peripheral chemoreceptors (activated by hypoxia or hypercapnia) increase 
the discharge. Barosensitive receptors are usually activated in all organs simultane-
ously, with the exception of the selective inhibition of real sympathetic nerves by 
atrial stretch or volume expansion (Figs.  3.1  and  3.2 ) (Coote  2005 ).

    Barosensitive efferents seem to be regulated mainly by the rostral ventrolateral 
medulla (RVLM) and the cutaneous circulation by the rostral ventromedial medulla 
(RVMM). The central control of adrenalin secretion is not completely understood. 
It is not under baroreceptor control, but well regulated by the RVLM. One group of 
adrenaline-producing cells is the C1-cells located in the RVLM. Their discharge is 
similar to the barosensitive fi bers. In addition, most RVLM cells release glutamate. 
Some C1-cells are connected with the hypothalamus, probably involved in sodium 
and water balance. 

Anatomical Structures



32

 The sympathetic barorefl ex is a feedback loop. The afferent loop involves mech-
anoreceptors that are activated by distension of the arterial wall. Increase in blood 
pressure activates baroreceptors and cause inhibition of cardiac, real, and vasomo-
tor sympathetic efferents, which, in turn, leads to restoration of blood pressure. This 
refl ex effects in dampening short-term blood pressure fl uctuations (Dempsey et al. 
 2002 ) and can be modulated in case of need without decreasing refl ex sensitivity 
that involves both neural and humeral elements (see    Fig.  3.3 ). The mechanisms 
include activating C1 neurons in the RVLM by glutamate release induced by, for 
example, pain or exercise and simultaneous activation of GABAergic pathways that 
inhibit efferent parts of the refl ex circuit, blocking partially the baroreceptor refl exes. 
Angiotensin II’s effects on vessel endothelium involving production of nitrite oxide 
can increase this effect (Fig.  3.3 ).

   In contradiction to the sympathetic part, parasympathetic preganglionic nerves 
are located in several brain stem nuclei (beyond others, nucleus ambiguous, the 
dorsal vagal nucleus, and the Edinger-Westphal nucleus) and in parts of the sacral 
spinal cord. Preganglionic parasympathetic nerves innervating targets in thorax and 
abdomen leave the brain stem mainly through the vagal nerve (nerve X). The pre-
ganglionic to postganglionic fi ber ratio in the parasympathetic system is 1:3. 
Differently than sympathetic ganglia, parasympathetic ganglia are often localized 
near their target organs, making axons of the preganglionic neurons often quite long 
compared to those of SNS. Terminal ganglia are frequently near their target organs. 
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 Several preganglionic neurons exit the CNS through cranial nerves, in particular 
nerve III (oculomotorius, innervates the eyes), nerve VII (facial nerve, innervates 
the lacrimal gland, the salivary glands, and the mucus membranes of the nasal cav-
ity), nerve IX (pharyngeal nerve, innervates the saliva glands), and, most impor-
tantly, nerve X (vagal nerve, innervates visceral thoracal and most visceral 
abdominal organs). The vagal nerve is at the same time the main source for informa-
tion about the internal state of thoracic and abdominal organs. Visceral vagus affer-
ent fi bers, residing in the nodose ganglion, terminate primarily within the dorsal 
vagal complex (DVC) of the medulla oblongata. The DVC consists of the already 
mentioned nucleus tractus solitarius (NTS), the dorsal motor nucleus of the vagus 
(DMN), and the area postrema (AP) (Berthoud and Neuhuber  2000 ). The DMN is 
the major origin of preganglionic vagus efferent fi bers; cardiovascular vagal effer-
ents originate also within the medullar nucleus ambiguous. The AP, which lacks a 
blood–brain barrier, is an important circumventricular organ and the site for humoral 
immune-to-brain communication, as described below. The main portion of vagal 
sensory input is received by neurons in the NTS that coordinate autonomic function 
and interaction with the endocrine system (Iversen et al.  2000 ). 

 Ascending and descending vagal connections provide a neuronal substrate for 
interaction between HPA axis and SNS as an immunomodulatory mechanism. The 
transmission of cytokine signals to the brain through the vagal sensory neurons 
depends on the magnitude of the immune challenge. It is likely that the vagal affer-
ent neural pathway plays a dominant role in mild to moderate peripheral infl amma-
tory responses, whereas, acute, robust infl ammatory responses signal the brain 
primarily via humoral mechanisms (Pavlov et al.  2003 ). The role of the vagal affer-
ent pathway has been underlined by experimental studies where manipulation of the 
pathway resulted in changed system reactions after exposure to endotoxins.   
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  Fig. 3.3    Neural and humoral control 
of the barorefl ex (Guyenet ( 2006 ), 
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   Transmitter Substances 

 The main neurotransmitters of the vegetative nervous system are well known. 
Acetylcholine (ACh) and noradrenalin (NA, also called norepinephrine   ) have been 
discovered in relation to research targeted on the ANS. Preganglionic neurons of the 
ANS use ACh as neurotransmitter. Postganglionic    sympathetic neurons use nor-
adrenalin and postganglionic parasympathetic neurons use ACh. Nerve fi bers 
releasing ACh are also termed cholinergic fi bers. Nerve fi bers releasing noradrena-
lin are also termed adrenergic. ACh is rapidly inactivated by acetylcholinesterase 
(to its components choline and acetate). Acetylcholinesterase is one of the fastest 
enzymes in the body, needing less than 1 ms to remove ACh from the synaptic gap. 
Noradrenalin is taken up presynaptically where it is reused or metabolized by 
monoamine oxidase (MAO) transforming it to 3-methoxy-4-hydroxymandelic acid 
(vanillyl mandelic acid; VMA) that can be found in the urine. By contrast, circulat-
ing noradrenalin and adrenalin are inactivated by catechol-O-methyltransferase 
(COMT) in the liver. Catecholamines are often described as metabolized at sites 
distant from their sites of synthesis and release after their entry into the extracellular 
fl uid or even the blood stream. But there is overwhelming evidence suggesting that 
most noradrenalin is eliminated in presynaptic cells (Eisenhofer et al.  2004 ). In a 
fi rst step, catecholamines are transformed to 3-methoxy-4-hydroxyphenylglycol. 
Most VMA is produced by oxidation of circulating MHPG by alcohol dehydroge-
nase located mainly in the liver. 

 Not only noradrenaline but probably adrenaline as well plays a role in sympa-
thetic nerves as co-transmitter, being incorporated in postganglionic sympathetic 
nerves and released with noradrenaline up to 24 h after its uptake (Majewski et al. 
 1981 ; Quinn et al.  1984 ). Furthermore, infusion of pharmacologic doses of adrena-
line has been shown to promote noradrenergic transmission, probably by stimulat-
ing prejunctional β 2  receptors (Majewski et al.  1982 ). More recent studies showed 
evidence for cardiac adrenaline release also in chronic heart failure patients under 
baseline conditions possibly released by cardiac sympathetic nerve cells. There has 
also evidence for uptake both in heart and kidney neurons (Johansson et al.  1997 ). 
As mentioned above, adrenaline is co-released in the RVLM central barosensitive 
pathways together with glutamate. Normally the infl uence of glutamate is substan-
tially low; in dehydration or abnormal blood gas conditions, however, it makes a 
greater contribution (Guyenet  2000 ; Brooks et al.  2004 ). Autonomic ganglia also 
receive afferent fi bers containing neurokinins (SP, CGRP). 

 Adenosine triphosphate (ATP) is an important co-transmitter together with nor-
adrenaline in many postganglionic sympathetic neurons. By acting on ATP-gated ion 
channels (P 2  purinergic receptors), they are responsible for some of the fast reactions 
of the target tissues (for example smooth muscles). Adenosine is formed by the 
hydrolysis of ATP and acts on the P 1  purinergic receptor located both pre- and post-
synaptically. It possibly plays an important role in sympathetic transmission. 
Adenosine may dampen sympathetic function after intense sympathetic activation by 
activating receptors on sympathetic nerve endings that inhibit further noradrenaline 
and ATP release. Adenosine has also inhibitory actions in cardiac and smooth muscle 
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that tend to oppose the excitatory effect of noradrenaline, which generates an intra-
ganglionic refl ex loop with a mainly negative feedback effect. Another transmitter 
substance in sympathetic nerve endings is neuropeptide Y (in as many as 90 % of 
neurons). Neuropeptide Y potentiates both adrenergic and purinergic effects post-
synaptically (in tissues with less dense sympathetic innervation) or presynaptically 
inhibiting release of noradrenaline and ATP (in areas with dense sympathetic inner-
vation). Galanin and dynorphin are often co-localized with neuropeptide Y. 

 In some preganglionic nerve terminals, acetylcholine is co-localized with a 
luteinizing hormone-releasing hormone (LHRH)-like peptide. High-frequency 
stimulation causes release of this peptide resulting in a slow, long-lasting EPSP in 
all postganglionic neurons. To obtain this effect, the peptide diffuses beyond the 
synaptic gap. This slow peptidergic EPSP like the slow cholinergic EPSP result 
from the closure of M type channels and the opening of Na +  and CA ++  channels. The 
peptidergic excitatory potential alters the excitability of autonomic ganglion cells 
over long periods after intense activation of preganglionic inputs. This generates an 
intra-ganglionic refl ex loop that has mainly a negative feedback effect. Other neu-
ropeptides co-localized with ACh-containing fi bers include enkephalins, neuroten-
sin, somatostatin and substance P, postganglionic neurons in addition CGRP and 
vasoactive intestinal polypeptide (VIP) (Iversen et al.  2000 ). 

 Both ANS neurotransmitters and circulating catecholamines bind to specifi c recep-
tors on cell membranes. Adrenergic and muscarinergic receptors are G protein coupled. 
Activation of them leads to triggering of a second messenger system in the cell. Therefore 
the same catecholamine on the same receptor can cause different reaction in different 
cells, depending of the second messenger system coupled to the receptor. Muscarinergic 
receptors in postsynaptic nerve cells can be excitatory or inhibitory. In contrast to this, 
nicotinergic ACh receptors cause fast infl ux of sodium and calcium into the postsynaptic 
cell, leading to depolarization and excitation of the postganglionic neurons. 

 Adrenergic receptors can be divided into α and β receptors, which again can be 
divided into α 1  and α 2  and β 1  and β 2,  respectively. α 1  receptors are most widely dis-
tributed leading to an increase of intracellular calcium. Stimulated α 2  receptor cause 
a decrease in cAMP and have an inhibitory effect. α 2  receptor have an important role 
as presynaptic receptors causing inhibition. Their function is a negative feedback 
cycle that stops profuse release of noradrenalin. Stimulation of β receptors leads to 
an increase of cAMP, but this can lead to activating or inhibitory effects. β 1  activa-
tion in the heart leads to increased frequency, whereas β 2  activation leads to relax-
ation of smooth muscles, e.g., in the airway. There exist also β 3  receptors, 
predominantly in adipose tissue, that provoke lipolysis when activated (Table  3.1 ).

      Basal Sympathetic Tone 

 The network responsible for the basal sympathetic tone is located in the rostral ven-
trolateral medulla (RVLM), the spinal cord, the hypothalamus, and the nucleus of the 
solitary tract (NTS). Limbic, cortical, and midbrain structures are mainly responsible 
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for rapid behavior-related adjustments, but are probably not involved in the long-
term regulation of BP (with exception of stress-related hypertension). The    score of 
sympathetic network is regulated by many classes of sensory afferents that project 
either to the NTS or to the spinal cord. The central portion of this network is also 
regulated at multiple levels by circulating hormones and blood-borne factors. Peptide 
hormones (e.g., angiotensin II) and cytokines (e.g., interleukin 1) infl uence this net-
work via circumventricular organs (subfornical organ SFO, organum vasculosum 
lamina terminalis OVLT, and area postrema AP) or through endothelial receptors 

   Table 3.1    Effects of autonomic nerve activity on some effector tissues   

 Tissue 
 Sympathetic 
receptor 

 Sympathetic 
stimulation  Parasympathetic stimulation 

 Heart  β1, β2  Heart rate ↑  Heart rate ↓ 
 Force of contraction ↑  Rate of conduction ↓ 
 Rate of conduction ↑ 

 Arterioles 
 Skin  α1  Strong constriction  – 
 Abdominal viscera  α1  Strong constriction  – 
 Kidney  α1  Strong constriction  – 
 Skeletal muscle  α1, β2  Weak constriction  – 

 Lungs 
 Airways  β2  Bronchodilation  Bronchoconstriction 
 Glands  α1, β2  Secretion ↓  Secretion ↑ 

 Liver  α1, β2  Glycogenolysis  – 
 Gluconeogenesis  – 

 Sweat glands  Muscarinic;  Generalized sweating  – 
 α1  Localized sweating  – 

 Adrenal medullae  Nicotinic  Secretion of adrenalin ↑  – 
 Noradrenalin 

 Stomach 
 Motility  α1, β2  Decreased  Increased 
 Sphincters  α1  Contraction  Relaxation 
 Secretion  Stimulation 

 Intestine 
 Motility  α1, β2  Decreased  Increased 
 Sphincters  α1  Contraction  Relaxation 
 Secretion  Stimulation 

 Gallbladder  β2  Relaxation  Contraction 
 Kidney  β1  Renin secretion ↑  – 
 Eye 

 Radial muscle of iris  α1  Contraction (dilation of 
pupil; mydriasis) 

 – 

 Sphincter muscle of iris  –  Contraction (constriction of 
pupil; miosis) 

 Ciliary muscle  β2  Relaxation for far 
vision 

 Contraction for near vision 

  Modifi ed after McCorry ( 2007 )  
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triggering the release of mediators that subsequently cross the blood–brain barrier 
(e.g., nitric oxide and prostaglandins) (Ericsson et al.  1997 ). These transendothelial 
mechanisms operate in the hypothalamus, the RVLM, and the NTS. Freely diffusible 
hormones (e.g., ouabain-like substance and aldosterone) act also on this network, but 
their sites of action in the brain are not conclusively known (Geerling et al.  2006 ; 
Huang and Leenen  2005 ). This central network responds also to changes in sodium 
and osmolality, detected at multiple hypothalamic sites, to changes of CO 2  via brain 
stem chemoreceptors and is able to detect hypoxia directly in the brain stem. 
Moreover, virtually every component of the central network is infl uenced by the 
brain renin–angiotensin system through increased production of radical oxygen spe-
cies and possibly other mechanisms (Morimoto et al.  2001 ; Zimmerman and 
Davisson  2004 ). Finally, hormones such as angiotensin II also infl uence the sympa-
thetic ganglia. Transmitter release by sympathetic ganglionic neurons is regulated 
presynaptically by angiotensin II and catecholamines (Fig.  3.4 ) (Guyenet  2006 ).

   There has been discussion of an organotopy theory that maintains that separate 
groups of RVLM barosensitive neurons control different organs or areas like skel-
etal muscle arteries, splanchnic arteries, the heart, or the kidneys. Some physiologi-
cal evidence for this exists, but it is not conclusive (Guyenet  2006 ). In case of 
elevated blood pressure, both a general elevated sympathetic tone, but also selective 
elevated SNA in the kidneys, have been discussed.  

   Oscillations in the Sympathetic Nervous System 

 Oscillations in the human body can be found in every system investigated. Therefore 
it is not surprising when oscillations of the SNS can be recorded in various ways. 
Sympathetic rhythms were observed early in association with respiration. 
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Respiration-independent rhythms were observed about 50 years ago (Green and 
Heffron  1968    ), but their signifi cance and role is still under debate. Rhythms are both 
observed in preganglionic and postganglionic nerves, especially regulating heart 
and blood vessels (but also in muscle sympathetic nerve activity, see below). They 
are not always based on rhythms measured in single nerve fi bers, frequently it can 
be an emergent property of several hundred nerves measured simultaneously and 
show increasing and decreasing amplitude of the signal. Principally, two kind of 
rhythms can be distinguished, oscillations at a frequency between 2 and 6 Hz and 
oscillations around 10 Hz. 

 Oscillations between 2 and 6 Hz have been related to the cardiac cycle. Earlier, 
the main interpretation for this was that the cardiac-related rhythm refl ects pulse- 
synchronous baroreceptor-mediated inhibition of randomly generated activity 
(Barman and Gebber  2000 ). Recent ideas discuss this rhythm pattern as a result of 
a nonlinear oscillator that is forced to the frequency of the heartbeat by weakly 
coupling to pulse-synchronous baroreceptor nerve activity. This can be shown by 
phase walk (a property of weakly coupled nonlinear oscillators where a progressive 
and systematic change of the phase angle between input and oscillator happens), 
which occurs in experiments (Lewis et al.  2000 ; Barman and Gebber  2000 ). 

 Oscillations around 10 Hz are in contrast independent of respiration and heart-
beat. They exist both in baroreceptor denervated and normal cats (Barman and 
Gebber  1992 ) and disappear after transsection of the cervical spinal cord above the 
level of preganglionic sympathetic neurons, suggesting necessary central nervous 
parts for the mechanism (Allen et al.  1993 ). The level of arterial pressure plays a 
role. It is a bidirectional infl uence; the patterns of the oscillation can also have infl u-
ence on the BP (Barman and Gebber  2000 ). This is somehow surprising, because 
the high frequency of 10 Hz cannot be transmitted one to one to vasoconstriction 
patterns, because this effect is delayed and needs more time. Vascular smooth mus-
cles act in reality like a low-pass fi lter with a cutoff clearly under 10 Hz. Is this 
10 Hz oscillation- related to the old idea of a vasomotor center composed of neurons 
with intrinsic pacemaker properties? This has been proposed among others by 
Guyenet (e.g., Guyenet  1996 ), reinforcing the old observation by Dittmar ( 1873 ), 
who showed that ablation of a region in RVLM resulted in dramatic falls in BP. 
Barman and Gebber proposed a network of supraspinal centers responsible for it 
(Barman and Gebber  2000 ). 

 It seems obvious that the 10 Hz oscillation plays a certain role. A sudden appear-
ance of it is accompanied by increased BP and its elimination by a fall (Zhong et al. 
 1993 ), but within physiologic boundaries. Barman’s Model suggests that this sys-
tem of coupled 10 Hz oscillators is able and probably necessary to generate differ-
ent patters including the change from one to another. All that can be understood as 
a classical self-organized state. Absence of this oscillation according to the model 
would make it more diffi cult for the system to self organize, resulting in less adapta-
tion in case of external perturbations. 

 Quantifi cation of muscle sympathetic nerve activity (MSNA) in intraneural 
recordings is usually based on counting the neural bursts identifi ed by inspection of 
a mean voltage neurogram. Burst area or amplitude can be measured to evaluate 
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changes in MSNA within a recording session; absolute measures of burst size can-
not be used for interindividual comparisons for technical reasons (Vallbo et al. 
 1979 ; Sverrisdottir et al.  2000 ). As alternative analysis instrument, relative burst 
amplitude distribution has been proposed. It has been shown that before the occur-
rence of a signifi cantly augmented burst frequency, the relative burst amplitude 
distribution is shifted toward larger bursts (Sverrisdottir et al.  1998 ). It was conse-
quently possible to show that the distribution of multiunit MSNA burst amplitudes 
can discriminate between different conditions with similar MSNA burst frequencies 
(Sverrisdottir et al.  2000 ). Preganglionic activity of muscarinergic neurons can 
induce both brief excitatory postsynaptic potentials (EPSPs), which can last 20 ms, 
and longer lasting EPSPs and inhibitory postsynaptic potentials (IPSPs), which can 
last 500 ms or more (Iversen et al.  2000 ).  

   Vegetative Control of the Heart 

 The mammal heart has impressive properties to control itself. The well-known 
Starling mechanism (an isolated heart is capable of increasing its stroke volume by 
increasing the volume preload of the right ventricle) can increase the minute vol-
ume from resting levels of about 5 l per minute up to 13 l per minute without any 
infl uence of the nervous system. Stress conditions can initiate up to 20 l per minute 
in healthy individuals – the difference is based on vegetative control of the heart 
(Franchini and Cowley  2012 ). 

 The ANS is one of several systems with infl uence on the heart, but one of the 
most important ones. Both SNS and PNS infl uence the heart function. Early studies 
blocked SNS and PNS infl uences with medicaments (with help of propanolol and 
atropine), revealing an intrinsic heart rate, which is higher than in unblocked hearts 
(Jose and Collison  1970 ). This led to the hypothesis that the heart is under tonical 
infl uence of the PNS. In general, the sympathetic nerves to the heart are facilitatory, 
whereas the parasympathetic nerves have inhibitory effects. Efferent sympathetic 
neurons originate in cervical and thoracic sympathetic ganglia. Postganglionic neu-
rons end in the sinoatrial and atrioventricular node, the conduction system, the myo-
cardial fi bers, and the coronary vessels themselves. 

 The sympathetic system increases heart rate and strength of contraction; the 
parasympathetic system slows down the heart, but has less effect on contraction. 
Sympathetic-released noradrenalin increases the force of contraction by acting on 
beta-adrenergic receptors that activate the cyclic adenosine monophosphate (cAMP) 
second messenger system, which in turn increases the long-lasting (L-type) Ca 2+  
channel current in the muscle. Activation of beta-receptors also decreases the 
threshold for fi ring the cardiac pacemaker cells in the sinoatrial node, thereby 
increasing heart rate. Circulating noradrenalin released from the adrenal medulla 
can probably increase this local effect of sympathetic-released noradrenalin. The 
inotropic effect is largely based on β 1  receptors, the chronotropic effect both on β 1  
and β 2 . Sympathetic effects on coronary vessels are based on α 1  receptors, α 2  
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receptors are nearly not existent in the heart. The coronary vasoconstrictive effect of 
stimulated α 1  receptors is also probably overestimated because local factors are 
stimulated due to increased oxygen demand, leading to a vasodilatatory effect 
(Franchini and Cowley  2012 ). Compared to the parasympathetic system, the cardiac 
sympathetic system has a delayed onset and return to prestimulation levels. Heart 
rate and contractility increase after a latent period of about 3 s, fi rst approaching a 
steady state after 30 s. This is (partially) related to the relatively slow rate of nor-
adrenalin inactivation in the cardiac tissue (Franchini and Cowley  2012 ). 

 As is typical for the parasympathetic system, the ganglion is located near its tis-
sue target in the AV groove (epicardial neural plexus) in a region that is densely 
innervated by cardiac intrinsic neurons. Most parasympathetic neurons end in the 
nodal regions, but a smaller number is also situated within the atrial and ventricular 
myocardium. Parasympathetic acetylcholine is released from parasympathetic 
nerve terminals. It slows down the heart by acting on muscarinergic receptors in the 
cardiocytes of the sinoatrial and atrioventricular nodes, so increasing a resting K +  
conductance in these cells. This hyperpolarizes sinoatrial cells, slowing conduc-
tance through the atrioventricular node. Hyperpolarization of the sinoatrial cells 
appears to involve direct gating of a K +  channel by a G protein activated by the 
muscarinergic receptor. Acetylcholine also decreases heart rate by increasing the 
threshold for fi ring the pacemaker cells opposite to the sympathetic infl uence. ACh 
can also reduce muscle contraction by decreasing intracellular cAMP, thus reducing 
the L-type Ca 2+  current (Iversen et al.  2000 ). Vagal effects develop rapidly in con-
tradiction to sympathetic effects. The vagus nerves, infl uenced by respiratory cen-
ters, can exert almost a beat-to-beat control of cardiac function (Franchini and 
Cowley  2012 ). 

 Sympathetic and parasympathetic systems in the heart interact in a complex 
rather than in a simple algebraic manner. Even acknowledging that noradrenalin and 
Ach are the main transmitter substances, several other mediators are also actively 
released during stimulation of the cardiac ANS, including vasoactive intestinal pep-
tide (VIP), substance P, neuropeptide Y (NPY), and others; many of them also 
related to the intrinsic neurons of the heart. For instance, NPY released of SNS 
neurons can have inhibitory infl uence on PNS neurons.  

   Vegetative Control of Blood Pressure 

   Physiological Background 

 Blood pressure is a function of cardiac outcome and peripheral resistance, resulting 
in the (linear) equation:

   
BP Cardiac output total peripheral resistance central ven= ´ ´( ) +80 oous pressure

 
   ( 3.1 )    
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  Cardiac output again is dependent on stroke volume and heart rate, resulting in 
the linear equation:

   CO SV HR= ´    ( 3.2 )    

  Stroke volume is dependent on end-diastolic myocardial fi ber length (preload), 
the force that resists muscle shortening during myocardial contraction (afterload), 
and myocardial contractility. When the end-diastolic volume rises, SV increases 
proportionally as does the systolic pressure and maximum rate of pressure develop-
ment (dP   /dT) up to a point. Many factors affect  preload  such as total blood volume, 
intrathoracic pressure, venous tone, afterload, body position, pulmonary vascular 
resistance, atrial contraction, and venous return. In principle, ventricular volume 
can be determined with echocardiography, angiography, or radionuclide scans. In 
practice, preload is also estimated frequently with the pulmonary artery catheter and 
PCWP. In the intact heart,  afterload  is the impedance to ejection or the stress on the 
ventricular wall. Impedance to ejection includes aortic pressure, the aortic valve, 
distensibility of the vascular system, and total peripheral resistance. Ventricular vol-
ume, left ventricular wall thickness, and systolic intraventricular pressure can be 
used as determinant for afterload.  Myocardial contractility  is the intrinsic myocar-
dial ability to develop a tension from a given end-diastolic fi ber length. There is no 
specifi c value that represents normal contractility. It is defi ned by measurements of 
cardiac performance in isolated muscles, hearts, and intact hearts. Defi nitions 
include rate of development of ventricular pressure (dP/dT), amount of shortening 
produced by isolated papillary muscle, or amount of work generated by isolated or 
whole heart preparations. Clinically, the ejection fraction is often used to estimate 
contractility. It is the slope of the plot of SV against end-diastolic volume and can 
again be determined with echocardiography, angiography, or radionuclide scans. It 
is affected by changes of preload and afterload but can be used as reliable and sensi-
tive parameter of cardiac performance. Catecholamines, digitalis, and calcium ions 
increase contractility, hypoxia, and ischemia. Several drugs can decrease contractil-
ity. In contradiction to the Eqs. ( 3.1 ) and ( 3.2 ) every attempt to estimate stroke 
volume is necessarily nonlinear. 

 In Fig.  3.5  we show a curve illustrating the Frank–Starling law of the heart. The 
 Y  axis can describe the stroke volume, stroke work, or cardiac output and the  X  axis 
right atrial pressure, end-diastolic volume, or pulmonary capillary wedge pressure. 
The three curves illustrate how a change in preload can induce a change in afterload 
or contractility.

      Neural Control of Blood Pressure 

 The neural control of circulation operates via parasympathetic neurons that innervate 
the heart and via the three main classes of sympathetic efferents mentioned above – 
barosensitive, thermosensitive, and glucosensitive cardiovascular – innervating 
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blood vessels, the heart, the kidneys, and the adrenal medulla. The barosensitive 
sympathetic efferents are under the control of arterial baroreceptors. This large group 
of efferents plays a dominant role in both short-term and long-term blood pressure 
regulation. Their level of activity at rest is presumed to be the most crucial parameter 
for long-term blood pressure control. A core network of neurons sets this background 
activity in the rostral ventrolateral medulla (RVLM), the spinal cord, the hypothala-
mus, and the nucleus of the solitary tract. For rapid changes of blood pressure, pri-
marily other structures like the limbic system, the forebrain, and midbrain are 
responsible, but play only a minor role in long-term control (Guyenet  2006 ). Possible 
mechanisms in chronic arterial hypertension include changed refl ex circuits or acti-
vation of carotid body chemoreceptor afferents by hypoxia and hypercapnia. Notably, 
many overweight people have episodes of sleep apnea that can precisely induce these 
changes. Another possible mechanism is associated with a circuit involving atrial 
volume receptors, NTS, the paraventricular nucleus of the hypothalamus (PVH), and 
the real sympathetic nerves (see Figs.  3.6  and   2.6    ).

   Increased sodium in plasma and brain, increased volume by dietary sodium, and 
blood volume leads to activation of pathways of the OVH through RVLM in the 
kidneys (increased sodium excretion) and muscles (peripheral resistance). This 
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pathway again is blocked by neurons activated through NTS under activation of 
hepatic osmoreceptors and volume receptors in the carotids. Another pathway 
involved includes the dorsomedial hypothalamus and RVLM, which is activated by 
stress (for instance noise) and leads to tachycardia and chronic increase of real 
SNA. This might be dependent of genetic factors as experiments with rats have 
shown (DiBona and Kopp  1997 ). 

 There are several lines of evidence connecting ANS activity to the develop-
ment of arterial hypertension (Esler  2000 ; Brook and Julius  2001 ; Palatini  2001 ). 
Sustained sympathetic stimulation of the kidney promotes sodium and fl uid reten-
tion (Calhoun and Oparil  2012 ). Plasma noradrenalin spillover from the kidneys 
is increased in patients with hypertension (Jennings  1998 ). Sympathetic activa-
tion is a better predictor than overall heart reactivity to the immune response on 
short stressors (Berntson et al.  1996 ). Increased SNS activity is probably not an 
associated, but a causal factor as shown in population-based studies, were 
increased resting heart rate as a sign that sympathetic overactivity was present 
years before hypertension developed (Kim et al.  1999 ). Chronic hyperactivity of 
the SNS can also cause vascular remodelling. Noradrenaline promotes release of 
trophic substances in experimental models, like transforming growth factor-β, 
insulin-like growth factor or fi broblast growth factor (Calhoun and Oparil  2012 ). 
Different forms of inhibition of sympathetic overactivity prevent or diminish vas-
cular hypertrophy (Calhoun and Oparil  2012 ). In addition, catecholaminergic 
receptors show increased sensitivity to adrenaline and noradrenaline (Calhoun 
and Oparil  2012 ).   
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   Is There Something Like a General Sympathetic or 
Parasympathetic Activation? Recent Views on the Interaction 
Between the Sympathetic and the Parasympathetic Systems 

 The HRV literature is full of notions interpreting results as an increase in sympa-
thetic activity or an increase in parasympathetic activity, implicitly, or sometimes 
explicitly assuming a SNS or PNS that reacts in a coordinated form. If this is the 
case, we should be able to fi nd uniform changes in the activity of different vegeta-
tive efferents. In reality this is not so easy. In contrast to the cardiac SNS, several 
parts of the SNS do not have the same kind of oscillations or have none at all. For 
example, cutaneous vasoconstrictor fi bers, sudomotor fi bers, adrenaline-regulating 
adrenal preganglionic neurons, and nerves supplying the brown adipose tissue are 
generally devoid of this rhythm (Jänig et al.  1983 ; Macefi eld and Wallin  1996 ; 
Morrison  1999 ; Barman and Kenney  2007 ). There are many reasons to believe that 
at least the sympathetic output is not as uniform as many suppose (Morrison  2001 ). 

 The classical model of autonomic control describes a continuum with parasym-
pathetic activation at one end and sympathetic activation at the other end, as the 
physiologist William Cannon had proposed. The mutual infl uence leads to a 
decreased parasympathetic activity in case of increased sympathetic activity and 
vice versa. This view has been challenged. In contrast to this linear-continuum 
model of autonomic control, descending infl uences from higher neural systems can 
evoke reciprocal, independent, or even coactive changes in the autonomic branches 
(Berntson and Cacioppo  2004 , see Fig.   2.7    ). This is supported by studies in heart 
failure patients (Porter et al.  1990 ). According to Berntson, both divisions of the 
vegetative nervous system are tonically active and operate in conjunction with each 
other and with the somatic motor system to regulate most behavior, both in normal 
and in emergency conditions. Although one or the other division controls several 
visceral functions predominantly, and although both the sympathetic and the para-
sympathetic division often exert opposing effects on innervated target tissues, it is 
the balance of activity between the two that helps maintain an internal stable envi-
ronment in the face of changing external conditions (Fig.  3.7 ) (Iversen et al.  2000 ).
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   These views are supported by anatomical evidence showing that sympathetic 
ganglion cells innervate only one or few target tissues, for instance, regarding kid-
ney and spleen (Meckler and Weaver  1984 ; Weaver et al.  1984 ), but also other dif-
ferential innervations (Morrison  2001 ). It is diffi cult to characterize autonomic 
“fi ngerprints” of different organs in vivo and much research is based on rather arti-
fi cial experimental preparations (Morrison  2001 ). There is also some support from 
fi ndings suggesting that during stress responses the well-known cardiac stimulation, 
widespread visceral vasoconstriction, piloerection, and pupillary dilatation are 
caused by activated parts of the SNS (Coote et al.  1973 ); however, increased muscle 
blood fl ow, also characteristic, is mediated by activation of a cholinergic vasodilata-
tor pathway, with little evidence for marked inhibitions of adrenergic pathways 
(Coote et al.  1973 ; Horeyseck et al.  1976 ). This can be one good example for activa-
tion of parts of both the sympathetic and parasympathetic systems in the same 
response pattern. One of these response patterns has been described as diving refl ex. 
Submersion of the head under water elicits response of trigeminal afferents and 
leads to a powerful simultaneous reaction of SNS and PNS. The SNS increases in 
this situation, vascular constriction everywhere except brain and heart, the vagal 
activation elicits intense bradycardia and decreased cardiac contractility. All this 
results in a global reduction of energy demand in a stress situation with expected 
lack of oxygen in the body (Mantoni et al.  2006 ; Alboni et al.  2011 ). Such simulta-
neous activation of SNS and PNS is at the same time associated with a dramatic loss 
of fractal properties of the HRV signal (Tulppo et al.  2005 ). 

 Usually in science we look for simple concepts and models, such as the notion of 
an autonomic nervous system consisting of two parts in mutual dependence, where 
either one or the other part is predominant. This notion is often used for education 
and clinical explanations. In reality, however, a more complex model like the one 
delineated above might be more precise and this can have consequences for clinical 
practice.  

   Summary 

 The three divisions of the autonomic system comprise an integrated afferent/efferent 
system that acts in parallel with the somatic motor system. ANS is responsible for 
homeostases. The sympathetic and parasympathetic systems have partially opposed 
effects on each other, but this classical model has to be expanded by the possibility of 
a two-dimensional continuum model of different states of the sympathetic and para-
sympathetic systems. The vegetative nervous system is organized in different negative 
feedback and fast-forward circuits and other (negative) feedback mechanisms like 
parallel release of different transmitter substances. Central regions involved in cardio-
vascular control are the hypothalamus, the tractus of the solitary tract, and the rostral 
ventrolateral medulla. They contribute to a general sympathetic tone and a special 
renal sympathetic tone. Both short-term and long-term modulation mechanisms lead 
to oscillatory phenomena, which are dampened by negative feedback mechanisms.     
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Outline: In this chapter we provide information about different ways to process 
heart rate variability indices. We explain their mathematical background, provide 
their algorithms, and discuss their general relevance. In the second part we discuss 
standard test demands like validity and reliability. In the third part we discuss dif-
ferent physiological, pathophysiological, and pharmacological confounding factors 
that may have an impact on HRV calculations.

Introduction

The simple base of heart rate variability is the variation of the beat-to-beat time. 
This can be measured in different ways, e.g., with ECG, pulse waves, heart tones, 
or similar methods. In practice the most convenient and most precise method is to 
measure QRS-distances in milliseconds. The result is a series of three- and four- 
digit numbers depending on the measurement period. This is all. It may surprise the 
nonmathematician how many possible algorithms exist to process this time series 
(Fig. 4.1).

The second base is the time period. In principle, it is possible to measure HRV 
for minutes, hours, days, or even longer. In practice, HRV has been used for as short 
a time period as 2 min and rarely longer than 1 day. Based on this, usually two forms 
of HRV are distinguished, short-term HRV (usually 5 min, sometimes 10–20 min) 
and long-term HRV (usually 24 h, sometimes also only 12 h). The latter is based on 

Chapter 4
Methodological Issues

811 857 1,052 1,153 1,176 1,111
74 70 57 52 51 54

RR[ms]
Hf[S/min]

Fig. 4.1 HRV measured over a short period, with milliseconds between R and calculated heart 
frequency



52

Holter monitoring, where the patient is connected to a small transportable registra-
tion unit that can be taken home.

Heart rhythm is traditionally characterized by a mean value of a certain period, 
possibly supplemented by range and qualitative descriptions. Some critics have 
pointed out that the usefulness of these measures depends on the properties of the data 
satisfying certain assumptions. If these assumptions are not fulfilled, then the analysis 
might be not meaningful. The basic assumption for the classical statistical measures is 
that the probability density function is integrable and that its second moment is finite. 
Physical processes with self-similar structures often do not fulfill this assumption. The 
power density function then has a power-law form (Liebovitch et al. 1999).

There are several possible ways to analyze the variability of time measures. 
Seely and Macklem (2004) differentiates between time domain, frequency domain, 
fractal analysis, and measures of entropy. All approaches rely on feasible algorithms 
and can be used with certain assumptions. Some of them need a higher amount of 
data points than others (power law, detrended fluctuation analysis); others are sensi-
tive to artifacts or have a certain grade of arbitrariness (in time-domain analysis). In 
principle they can be distinguished as follows:

•	 Time-domain values are obtained by traditional descriptive statistics like mean 
and variation.

•	 Frequency domain is based on the relative portion of different frequency areas in 
the time series, which are usually calculated with the help of fast Fourier 
transformation.

•	 Different nonlinear methods.

An important achievement was the report from the Task Force of the European 
Society of Cardiology and the North American Society of Pacing and 
Electrophysiology published in 1996. In this report the following measures (to be 
explained in this chapter) are recommended: SDNN, HRV triangular index, SDANN, 
and rMSSD and VLF, LF, LFnu, HF, HFnu, and LF/HF. They concluded at the time 
that “HRV has considerable potential to assess the role of autonomic nervous system 
fluctuations in normal healthy individuals and in patients with various cardiovascu-
lar and noncardiovascular disorders” (Task Force of the European Society of 
Cardiology and the North American Society of Pacing and Electrophysiology 1996). 
Today it is considered a gold standard to follow the Task Force’s guidelines, and 
most published studies assert that they follow them. Recently, however, it has been 
shown that a great majority of research projects did not strictly adhere to the stan-
dards – only 44 of over 3,100 citations (Nunan et al. 2010).

Technical Requirements

In principle, any device able to measure heartbeat or its consequences (e.g., pulse) 
can be used, such as pulse oximetry, finger arterial BP (Finapres), invasive BP mea-
surement. In reality, by far most commercial HRV devices are recording ECG 
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signals and code the QRS-distances in milliseconds. These are then consecutively 
used to calculate the different indices.

Several recommendations are made by both the Task Force and other groups and 
investigators: for short-term HRV generally stationarity of the heart rhythm is rec-
ommended. They should optimally not have ectopic beats, arrhythmic events, miss-
ing data, or noise (with exception of heart rate turbulence where ectopic beats are a 
prerequisite). Sampling rate should be between 250 and 500 Hz. A lower sampling 
rate is only acceptable if appropriate interpolation algorithms are used; a minimum 
sampling rate of 100 Hz is mandatory. Some years ago the increasing need for 
memory was a problem in higher sampling rates; however, with more sophisticated 
equipment, that problem is a minor one now.

Berntson et al. (1997, p. 633) discusses the issue of stationarity in some more 
detail: “Spectral analysis inherently assumes that the data series is at least weakly 
stationary. Strict stationarity requires that the distributional characteristics of a 
series (including all moments) be invariant over time, whereas weak stationarity 
requires only that the first and second moments (mean and covariance) are stable 
across time. Stationarity is an important consideration because the presence of slow 
or irregular trends in the series can potentially distort and can lead to misinterpreta-
tions. (…) This is a difficult issue, because violations of stationarity in actual heart 
period data might be quite common.” This is not improbable. In fact, only very few 
studies test their time series on stationarity. The vast majority of the studies dis-
cussed in this book assume stationarity, mostly not even mentioning this as a pos-
sible problem. While short-term recordings might not be as affected, Holter 
monitoring approaches clearly are at risk of not being stationary. Also time series 
used under training are rather not stationary, but are calculated with algorithms that 
are based on it.

Wittling reported on the example a 75-year-old patient after myocardial infarc-
tion, showing that a sample rate below 246 Hz can already cause significant distor-
tion (Wittling and Wittling 2012, p. 151) (Table 4.1).

As we see, most parameters taken with a sampling rate of >100 Hz are relatively 
close to each other, but even there LF, HF, and rMSSD have considerable differ-
ences. In this patient, results first seem valid at a sampling rate of >200 Hz.

The fiducial point recognized on the ECG tracing that identifies a QRS complex 
may be based on the maximum or baricentrum of the complex or on the determina-
tion of the maximum of an interpolating curve or found by matching with a template 

Table 4.1 HRV depending of sampling rate in a 75-year-old patient after myocardial infarction

Sampling rate (Hz) TP VLF LF HF LF/HF SDNN rMSSD

500 25.1 18.19 3.74 3.17 1.181 6.23 4.91
246 24.3 17.45 3.75 3.10 1.207 6.23 4.98
125 28.3 19.63 4.66 4.03 1.155 6.66 8.19
62 40.7 24.55 7.00 9.09 0.771 7.80 8.06
31 64.1 21.58 23.19 19.28 1.203 10.92 12.66

Modified after Wittling and Wittling (2012, p. 151)
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or other event markers (Task Force 1996, p.). Most investigators edit their raw data 
manually to ensure sufficient quality (Fig. 4.2).

Time-Domain Analysis

Time-domain analysis measures the variation in heart rate over time or the intervals 
between successive normal cardiac cycles. From a continuous ECG, QRS-distances 
are detected. Calculated time-domain variables include mean RR-distance. Standard 
deviation of NN intervals (SDNN, sometimes also called SDRR) is a global index 
of HRV and is formally the standard deviation of all normal QRS-distances. It cor-
relates strongly with total power (TP), often r > 0.9 (Wittling and Wittling 2012). 
The simplest form of time-domain analysis, still used occasionally (e.g., Sridhar 
et al. 2010), is to calculate the difference between the longest and the shortest 
RR-distance. It is also mentioned as simple test, e.g., for anesthesiologists to inves-
tigate autonomic failure in patients preoperatively (Lu et al. 2012).

Standard deviation of the average NN intervals (SDANN) is calculated over 
short periods, usually 5 min, and requires thus longer measuring periods. While 
SDANN5 is used in many studies, a variant has been mostly used in critical ill 
patients, called short-term HR volatility. Short-term HR volatility is computed for a 
given patient every 5 min by calculating the standard deviation of all HR samples 
collected during that time interval. The 5-min time interval follows established 
practices for collecting data for HR variability analysis. The difference from tradi-
tional HR variability analysis is, however, that precise instantaneous HR is not 
acquired at every beat. The system samples HR from a standard monitor every 
1–4 s. Thus, a typical 5-min interval will contain between 100 and 150 HR data 
samples for a single patient. The standard deviation of these points is the basic 
parameter of short-term volatility (Grogan et al. 2004).

RR Interval
rejection

NN data
sequence

RR Data
editing

Artifact
identification

Microcomputer
digitising

Time
domain

Frequency
domain

HRV HRV

ECG
recording

Interpolation
+ sampling

Fig. 4.2 Recommended 
steps for recording and 
processing of ECG signals to 
obtain HRV data (Modified 
after Task Force (1979), 
reproduced with friendly 
permission from Wolters 
Kluwer Health)
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pNN50 and rMSSD are short-term variables based on interval differences. NN50 
is the number of pairs of successive NNs that differ by more than 50 ms, pNN50, the 
proportion of NN50 divided by total number of NNs over (normally) a 24 h-record-
ing, and is thought to show cardiac parasympathetic activity (Task Force of the 
European Society of Cardiology and the North American Society of Pacing and 
Electrophysiology 1996). rMSSD is calculated through squaring of each NN inter-
val, thus calculating the mean value and drawing the square root, called root mean 
square successive difference (Frenneaux 2004) (Table 4.2).

A variation of time-domain analysis is the detrended time series. Here, from the 
time series of the raw data, a running average is constructed using an interval length of 
2m with m = 4–5 (i.e., a window consisting of 16–32 heartbeats). Next, the running 
average is subtracted from the original time series (see Fig. 3.1). The difference 
between the two curves, denoted by ri, is called the detrended time series (DTS), and it 
is generally assumed that in this curve noise and slow oscillations without significance 
for short-term HRV are removed. The standard deviation δd of DTS has been success-
fully used to discriminate between healthy patients and cardiologic patients in a small 
group of patients and can be used in brief time series (Ashkenazy et al. 1998) (Fig. 4.3).

Table 4.2 Normal values of 
some time-domain values 
(Schumacher 2004)

Variable Normal value (ms)

Mean RR interval >750
SDNN 141 ± 39
SDANN 127 ± 35
rMSSD 27 ± 12

1.05
a

b

1.00

0.95

0.90R
-R

 in
te

rv
al

 (
s)

original series
running average

0.10

0.05

0.00

−0.05

−0.10
1000.0 1050.0 1100.0

Index i
1150.0 1200.0

Fig. 4.3 Detrended time series (raw data, solid curve; running average, broken curve) (Ashkenazy 
et al. (1998), with permission)
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Recently, remarkable correlations between SDNN and a 24-h minimum heart 
rate have been shown (r = −0.8) in a secondary analysis, and the latter has been pro-
posed as an easy algorithm if there is no possibility to measure ordinary HRV (Burr 
et al. 2006).

Another index for sympathetic activation was used earlier, PEP (pre-ejection 
period). Briefly, it is calculated as the time interval in ms from the onset of the ECG 
Q-wave to the B-point of the dZ/dt wave (Berntson et al. 1996).

Geometric Analysis

Geometric methods are derived and constructed from the conversion of sequences 
of NN intervals. Different geometric methods include the 24-h histogram, the HRV 
triangular index, the triangular interpolation of NN interval histograms, and  methods 
like the Poincaré plot.

The triangular HRV considers the major peak of the histogram as a triangle with 
its baseline width corresponding to the amount of RR interval variability and its 
height corresponding to the total number of all RR intervals use to construct it 
(Sztajzel 2004). It conforms to the integral of the density distribution (i.e., the num-
ber of all NN intervals) divided by the maximum of the density distribution. Using 
a measurement of NN intervals on a discrete scale, the measure is approximated by 
the value (total number of NN intervals)/(number of NN intervals in the modal bin), 
which is dependent on the length of the bin, that is, on the precision of the discrete 
scale of measurement (Task Force 1979) (Fig. 4.4).

Poincaré (or Lorenz) plots plot duplets of successive RR intervals with the 
implicit assumption that the next RR interval is significantly determined by the cur-
rent one. This assumption lends itself to further generalization of Poincaré plots by 
plotting m-lagged plots where m represents the distance (in number of beats) 
between the duplet beats, that is, the lag of the second beat from the first. It has been 
observed in the context of short-term variability that the current RR interval can 
influence up to approximately eight subsequent RR intervals. Therefore, a series of 
lagged Poincaré plots can potentially provide more information about the behavior 
of Poincaré plot indices in health and disease than the conventional 1-lagged plot 
does (Lerma et al. 2003; Thakre and Smith 2006).

In healthy states, the disparity between the current and next NN intervals becomes 
progressively greater at higher NN intervals, whereas in disease states, this does not 
happen (Frenneaux 2004). Poincaré plots have been analyzed qualitatively, describ-
ing different shapes (Woo et al. 1992) (Fig. 4.5).

Stein and colleagues have recently quantified Poincaré plots using the SD12 
index. SD12 is the ratio of length of the axis of an imaginary eclipse that has its 
center at the average RR interval and is fitted to the Poincaré plot (Stein and Reddy 
2005). Poincaré plots are frequently also discussed as a nonlinear method (Fig. 4.6).

Time duration for geometric methods should be at least 10 min, which makes it 
less feasible for short-term applications.
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Esperer tried to group different heart rhythms with the help of Poincaré plots and 
found the following patterns: (1) comet shape, (2) torpedo shape, (3) H-fan shape, (4) 
SZ-fan shape, (5) double-side lobe pattern type A (DSLP-A), (6) double-side lobe 
pattern type B (DSLP-B), (7) triple-side lobe pattern type A (TSLP-A), (8) triple- 
side lobe pattern type B (TSLP-B), (9) island pattern type A (IP-A), and (10) island 
pattern type B (IP-B). Comet and torpedo shapes were associated with sinus rhythm, 
whereas a “fan shape” was associated with AF. They propose to use this kind of 
analysis to improve rhythm analysis of Holter recordings (Esperer et al. 2008).

Another numerical analysis of Poincaré plots is termed HRV fraction (HRVF). The 
scatter plot area (0.2–1.8 s) is divided into 256 boxes of 0.1 × 0.1 s, having an area of 
0.01 s2. In each box the number of paired NN intervals is counted and a 3-dimensional 
density graph is plotted. HRVF is then calculated with help of the formula:

 
HRVF 1 N1 N2 Total NN NN50 100= − + / − ×( ) ( )( )

 

where N1 and N2 are the two highest numbers of counts in any boxes. Total NN is 
the number of all heartbeats and NN50 is the number of intervals which differ 
>50 ms. HRVF correlated highly with SDNN (r = 0.855), SDNN (r = 0.753), and 
triangular index (r = 0.834) (Sosnowski 2005; Sosnowski et al. 2011). This method 
has been also proposed to characterize AF (Fig. 4.7).

Y

Number of
normal RR intervals

Sample
density

distribution

Duration of
normal RR intervals

D

N x M

Fig. 4.4 To perform geometric measures on the NN interval histogram, the sample density distri-
bution D is constructed, which assigns the number of equally long NN intervals to each value of 
their lengths. The most frequent NN interval length X is established, that is, Y = D(X) is the maxi-
mum of the sample density distribution D. The HRV triangular index is the value obtained by 
dividing the area integral of D by the maximum Y. When the distribution D with a discrete scale is 
constructed on the horizontal axis, the value is obtained according to the formula HRV index = (total 
number of all NN intervals)/Y (Modified after Task Force (1979), reproduced with permission 
from Wolters Kluwer Health)
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Fig. 4.5 Representative 1-h Poincaré plots. (a) and (c) show normal HRV; (b) and (d) show 
abnormal, complex HRV patterns (Stein and Reddy 2005; Stein et al. 2005) (Reproduced with 
permission of the author)
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plot (Stein and Reddy 2005; 
Stein et al. 2005) 
(Reproduced with permission 
of the author)
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Frequency-Domain Analysis

LF, HF, and LF/HF

Frequency-domain (power spectral density) analysis describes in principle the peri-
odic oscillations of the heart rate signal, decomposed at different frequencies and 
amplitudes, and provides information on the amount of their relative intensity 
(termed variance of power) in the sinus rhythm of the heart (Sztajzel 2004). It was 
introduced 1981 by Akselrod et al. (1981).

Frequency domain is based on the relative portion of different frequency areas in 
the time series. This can be calculated in different ways. Often, power spectral den-
sity is used, e.g., in the discrete Fourier transformation (most often nonparametric 
with the fast Fourier transformation). Other methods (rarely used in HRV) are the 
Lomb–Scargle (LS) periodogram (Işler and Kuntalp 2007). FFT-based methods like 
bispectral index of the EEG are more established than parametric methods that are 
model dependent and more complex. Both require stationarity that can induce prob-
lems in situations with fast changing RR-distances. This can be problematic because 
using only FFT can hide structures that could be identified, e.g., with wavelet analy-
sis (Togo et al. 2006). An example for a parametric method is the autoregressive 
model estimation (Di Rienzo et al. 1989; Mainardi et al. 2002). Other algorithms 
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Fig. 4.7 Example for HRVF calculation (Modified from Sosnowski et al. (2011), with permission 
of John Wiley and Sons)
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have been proposed and used (Huang et al. 1997). The pseudo-Wigner–Ville trans-
formation (SPWVT) has been presented as an alternative to the fast Fourier trans-
formation. It has the advantage of being feasible for relative nonstationary time 
series, and it allows the assessment of instant center frequency (ICF), which has 
been proposed as a new global index for the relationship between sympathetic and 
vagal modulation (Yoshiuchi et al. 2004).

Typical variables include total power, VLF (very low-frequency power, < 0.003–
0.04 Hz), LF (low-frequency power, 0.04–0.15 Hz), and HF (high-frequency power, 
0.15–0.4 Hz). A frequently used ratio is LF/HF. This variables are feasible both for 
short-term and long-term use. ULF (ultra low-frequency, <0.003 Hz) is only feasi-
ble for long-term use. Power is expressed in ms squared (ms2) or normalized units 
(nu). Normalizing means here multiplying LF or HF by 100 and dividing the prod-
uct by HRV – VLF. It is possible to use natural logarithms of the absolute values 
because of the skewness of the distributions. Details of the normalization algorithms 
can be found in Sztajzel 2004.

Occasionally also another band, mid-frequency, MF (0.08–0.15 Hz), is used 
(Huang et al. 1997). Oscillations in this also so-called 0.10-Hz component reflect 
both sympathetic and parasympathetic effects on sinus node activity (van Roon 
et al. 2004). It has been used to test effects of cardiovascular performance and 
autonomous state on cognitive performance (Duschek et al. 2009). A number of 
studies indicated the MF magnitude is inversely related to the individual degree of 
effort during execution of a cognitive task (e.g., Boucsein and Backs 2000; Van 
Roon et al. 2004). Others consider MF as a variation of LF and advice that MF 
should be abandoned (Berntson et al. 1997) (Tables 4.3 and 4.4).

HF is generally interpreted as a marker of vagal modulation and is respiration 
mediated, thus dependent on the respiration pattern (Frenneaux 2004). It is partially 
identical with the respiratory sinus arrhythmia (Hayano et al. 1996; Berntson and 
Cacioppo 1999) and correlates partially with it (in one study r = 0.9, p < 0.0001 
(Weber et al. 2010)).

LF is modulated by both the sympathetic and parasympathetic systems. An 
increase of LF is often interpreted as a consequence of sympathetic activity (mental, 

Table 4.3 Analysis of short-term recordings

Variable Units Description
Frequency 
range (Hz)

5-min total power ms2 The variance of NN intervals over the temporal segment ≈≤ 0.4
VLF ms2 Power in VLF range ≤0.04
LF ms2 Power in LF range 0.04–0.15
LF norm nu LF power in normalized units LF/(total 

power − VLF) × 100
HF ms2 Power in HF range 0.15–0.4
HF norm nu HF power in normalized units HF/(total 

power − VLF) × 100
LF/HF Ratio LF (ms2)/HF (ms2)

Modified after Task Force (1979)
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physical stress, sympathomimetic pharmacological agents). A beta-blockade leads to 
a decrease of LF. Another reason for decreased HF can be a relative resistance of the 
sinus node for sympathetic impulses. LF power probably reflects in large parts the 
baroreflex modulation of heart period in response to spontaneous changes in blood 
pressure by both vagal and sympathetic efferent mechanisms (Frenneaux 2004). As 
discussed earlier, LF is not necessarily correlated with increased sympathetic activ-
ity, but can in the case of congestive heart failure patients be inversely correlated with 
sympathetic activity, thus being an indicator for a loss of modulation of the sympa-
thetic nervous system at the heart (Notarius et al. 1999; Notarius and Floras 2001).

The LF/HF ratio reflects the global sympathico-vagal balance and is normally in 
resting adults between 1 and 2.

VLF and ULF

Common to both components is that they have been associated with clinical data 
and used as predictive factors (Bigger et al. 1996). VLF has a cycle duration of 20 s 
to 5 min, and ULF from 5 min to 24 h. The measurement period should be at least 
twice as long as the cycle duration (Eller-Berndl 2010). VLF measurement should 
be therefore at least 5 and better 10 min minimum, whereas ULF only can be 
 interpreted if it is recorded over 24 h.

The VLF component is a major determinant of physical activity and possibly 
reflects sympathetic activity, though its origin is controversial (Frenneaux 2004). It 
is not used as often, but has been associated to clinical consequences more strongly 
than LF in some studies (Hadase et al. 2004). Decreased VLF is associated with 
increased inflammatory parameters like CRP, Il-6, and WBC (Kop et al. 2010). 
Other explanations are as diverse as thermoregulatory processes, the renin–angio-
tensin system (e.g., Axelrod et al. 1981), hemodynamic feedback delays, mechani-
cal and central neural effects of breathing patterns, a central oscillator, spinal 
reflexes, and vascular autorhythmicity (Berntson et al. 1997).

The ULF component introduced by Bigger et al. (1993) reflects circadian and 
neuroendocrine rhythms. ULF was associated with physical activity in one study 

Table 4.4 Analysis of entire 24 h

Variable Units Description
Frequency 
range (Hz)

Total power ms2 Variance of all NN intervals ≈≤ 0.4
ULF ms2 Power in the ULF range ≤0.003
VLF ms2 Power in the VLF range 0.003–0.04
LF ms2 Power in the LF range 0.04–0.15
HF ms2 Power in the HF range 0.15–0.4
α Slope of the linear interpolation of the spectrum in a log–log 

scale
≈≤0.04

Modified after Task Force (1979)
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with five men and five women, which found significant differences between activi-
ties typical of daily life and rest for 2–3 h (Serrador et al. 1999) (Tables 4.5 and 4.6).

Other relevant reference values have been produced by a multicenter study 
focusing on genetic variations in 1,797 participants (Stolarz et al. 2004).

Free software solutions have been presented and published to analyze HRV data 
(in ms of RR-distance) with different methods (Niskanen et al. 2004).

Power-law slope is the slope the HRV power spectrum shows between 0.01 and 
0.0001 Hz, when plotted on a log–log scale (Stein and Reddy 2005; Stein et al. 
2005) (Fig. 4.8).

The potential prognostic value of the power-law slope has been evaluated by 
Bigger et al. (1996) and Huikuri et al. (1998), the latter finding a significantly 
increased risk associated with a power slope < −1.5 (see Fig. 3.4). Slope and 
frequency- domain values show only a low correlation (Bigger et al.1996) (Fig. 4.9).

Variants of Frequency-Domain Measures

A variant of frequency-domain measurement is Vindex. Kiviniemi analyzed HF power 
from RRi lengths where the relationship between HF power and RRi is most linear 
to avoid the confounding effects of saturation, physical activity, and random RRi 

Table 4.5 Normal values 
for frequency-domain 
variables (Schumacher 
2004)

Variable Normal values

Total power (ms2/Hz) 3,466 ± 1,018
ULF (Hz) 0.00–0.003
VLF (Hz) 0.003–0.04
LF (Hz) 0.04–0.15
LF power (ms2/Hz) 1170 ± 416
LF power (nu) 54 ± 4
HF (Hz) 0.15–0.4
HF power (ms2/Hz) 975 ± 203
HF power (nu) 29 ± 3
LF/HF ratio 1.5–2.0

Table 4.6 Reference values for time domain and frequency domain for healthy persons, patients 
with recent myocardial infarction, and 1 year after myocardial infarction (Sztajzel 2004)

Variable Healthy subjects (n = 274) Recent MI (n = 684) 1 year after MI (n = 278)

SDNN (ms) 141 ± 39 81 ± 30 112 ± 40
SDANN(ms) 127 ± 35 70 ± 27 99 ± 38
rMSSD (ms) 27 ± 12 23 ± 12 28 ± 15
pNN50 (%) 9 ± 7 7 ± 9 10 ± 11
Total power (ms2) 21,222 ± 11,663 7323 ± 5720 14,303 ± 19,353
LF (ms2) 791 ± 563 277 ± 335 511 ± 538
HF (ms2) 229 ± 282 129 ± 203 201 ± 324
LF/HF ratio 4.61 ± 2.33 2.75 ± 2.13 3.60 ± 2.43
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Fig. 4.8 Log–log plot of the HRV power spectrum over 24 h (Modified after Task Force (1979), 
reproduced with permission from Wolters Kluwer Health)
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dynamics on the quantification of cardiac vagal outflow. The mean RRi and the cor-
responding HF power are obtained in 5-min sequences over 24-h recordings. All 
valid 5-min values of HF power are plotted as a function of the corresponding mean 
RRi values. The sigmoid regression model, based on automated mathematical com-
putation, is used to detect the RRi at which the relationship between the RRi and the 
HF power is most linear. Due to the differences in 5-min mean RRi values between 
the patients, the relative RRi scale is used where the maximum 5-min mean RRi 
value is defined as 100 %. Lower and higher deflection points are identified. For the 
purpose of the final analysis, the lower limit is calculated by adding standard devia-
tion to the mean and the upper limit by subtracting standard deviation from the 
mean, all this in order to define a more stringent range of RRi, in which the relation-
ship between HF power and RRi is most linear. All 5-min HF power values between 
82 and 92 % of the maximum 5-min mean RRi are averaged for each case to obtain 
Vindex (Kiviniemi, Tulppo et al. 2007).

PLF index is analyzed from power spectra of all 5-min periods containing >95 % 
accepted and detrended RRi data using the method of averaging periodograms based 
on discrete Fourier transformation. The frequencies of all maximum peaks within 
the LF band detected at 1/60 resolution are averaged over the whole recording to 
obtain the value of PLF. More than ten periods with detectable peaks per Holter 
recording are needed for a valid PLF calculation (Wichterle et al. 2004; Kiviniemi, 
Tulppo et al. 2007).

Correlations Between Time Domain and Frequency Domain

Several time-domain indices correlate with frequency-domain indices, and vice 
versa.

pNN50 and rMSSD correlate with HF power, SDNN and SDANN correlate with 
total power and ULF, and LF correlates with ASDNN (Frenneaux 2004) (Table 4.7).

In his dissertation Wittling examined different correlations, also observing the 
already mentioned high correlation coefficients between TP and SDNN, as well as 
HF and rMSSD (Wittling and Wittling 2012) (Tables 4.8 and 4.9).

Nonlinear Methods

Introduction

The difference between “linear” and “nonlinear” methods is not as clear as it may 
seem. Frequency-domain analysis is in principle based on predefined patterns. In 
Fourier transformations the assumed pattern is a sinusoidal wave, and in wavelet 
analysis a specific wavelet function. By contrast, nonlinear methods can start 
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without specifying any pattern simply by looking at similarities in the signals. This 
can be related to the entropy itself (which usually, but not entirely correctly, is 
described as a measure for regularity) or to self-similarities, which can be studied 
with the help of fractal methods.

Take a look at four different artificial time series showed in Fig. 3.1. The qualitative 
patterns are obviously different; however, some time domain and in cases c and d even 

Table 4.7 Approximate correspondence of time-domain and frequency-domain methods applied 
to 24-h ECG recordings

Time-domain variable Approximate frequency-domain correlate

SDNN Total power
HRV triangular index Total power
TINN Total power
SDANN ULF
SDNN index Mean of 5-min total power
rMSSD HF
SDSD HF
NN50 count HF
pNN50 HF
Differential index HF
Logarithmic index HF

Modified after Task Force (1979)

Table 4.8 Correlation between different time- and frequency-domain values

TP SDNN VLF LF HF rMSSD LF/HF

TP 0.87 0.80 0.89 0.75 0.80 0.02
SDNN 0.92 0.79 0.70 0.62 0.71 0.02
VLF 0.80 0.79 0.52 0.37 0.48 −0.03
LF 0.88 0.70 0.52 0.60 0.65 0.23
HF 0.75 0.62 0.37 0.60 0.93 −0.26
rMSSD 0.80 0.71 0.48 0.65 0.93 −0.18
LF/HF 0.2 0.02 −0.03 0.23 −0.26 0.18

Adapted after Wittling and Wittling (2012, p. 138)

Table 4.9 Correlations between different time- and frequency-domain indices

ln LF ln HF ln TP ln LF/HF ln SDNN ln pNN50 ln rMSSD ln mean heart rate

ln VLF 0.85 0.61 0.96 0.32 0.86 0.47 0.48 −0.55
ln LF 0.77 0.94 0.30 0.75 0.57 0.60 −0.39
ln HF 0.76 −0.38 0.63 0.87 0.93 −0.39
ln TP 0.22 0.86 0.59 0.62 −0.54
ln LF/HF 0.15 −0.48 −0.52 0.02
ln SDNN 0.53 0.54 −0.51
ln pNN50 0.94 −0.39
ln rMSSD −0.43

Modified from Tsuji et al. (1994)
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some frequency-domain values are the same. How to catch the differences anyway? 
This is the beginning point for nonlinear methods. Most established are entropy and 
fractal approaches, but there are also several others. Until today their significance is 
not completely clear. In meta-analysis there are still too few high- quality longitudinal 
studies to make it possible to reach a convincing conclusion on this.

To sound a note of warning, it is important to use some expressions from the 
nonlinear field with caution. It is quite usual to misunderstand ideas like entropy, 
fractality, fuzziness, and complexity. Entropy, for example, is frequently described 
as a disorder, which ignores its fundamental relationship to degrees of freedom. All 
these expressions are based on advanced theoretical concepts that cannot easily be 
simplified (Fig. 4.10).

Entropy

Approximate Entropy

Different measures of entropy are increasingly being used, among other things, 
because they need fewer data points than other nonlinear measures. One example of 
this is approximate entropy (ApEn). Pincus first presented this algorithm in 1991. It 
evaluates data sets for recurrent patterns and for the likelihood that other runs in the 
data set with the same length are similar. The input variables r and m must be fixed 
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Fig. 4.10 Example of four synthesized time series with identical means, standard deviations, and 
ranges (a–d). Series (c) and (d) also have identical autocorrelation functions and therefore identi-
cal power spectra (Modified after Task Force (1979), reproduced with friendly permission from 
Wolters Kluwer Health)
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to calculate ApEN. The variable r sets the tolerance limits and the variable m the 
window length for the comparisons of the RR interval runs. It is defined by

 
ApEn 1= r rm m+Φ Φ( ) − ( )  

where

 
Φm

i
mr = N m+ C r( ) −( ) ( )( )−

=

− +

∑1 log
1

1

1

i

N m

 

(Kaplan et al. 1991).
Healthy middle-aged subjects have approximate entropy of RR intervals some-

what over or 1. Approximate entropy (ApEN) achieves a number between 0 and 
about 1. Small values of ApEn indicate regularity, whereas higher numbers indicate 
a lower fraction of order or patterns in the data set. It has been shown that ApEN can 
be used reliably down to 1,000 data points (Pincus 1994). ApEN has been used suc-
cessfully in such different fields as the investigation of cortisol and ACTH secretion 
in patients with major depressive disorders (Posener et al. 2004), nonlinear dynam-
ics of heart rate in patients with major depression and unstable angina pectoris 
(Vigo et al. 2004), changes of respiration in patients with panic disorders (Yeragani 
et al. 2004), or heart rate variability of children (Srinivasan 2004) treated with anti-
depressant medicaments. It was also used for the analysis for the circadian tempera-
ture curve (Varela et al. 2003), the intracranial pressure (Beaumont and Marmarou 
2002), or insulin oscillations (Feneberg et al. 2002). Recently ApEN was used to 
analyze discharges of wide dynamic range neurons in the dorsal horn of rats. 
Different neurons showed constant values of ApEn over an hour. Using a low dose 
of morphine leads to a differentiated inhibition of the WDR neurons that correlated 
with ApEN. The authors concluded that the complexity of the signal output does not 
correlate with the nociceptive input and that the average firing rate does not describe 
adequately what happens at the dorsal horn (Zheng et al. 2004).

The main advantage of using tools like ApEN is the possibility of discovering 
unexpected interactions between apparently unconnected systems. It was possible 
to show, for instance, that cachectic patients with chronic obstructive pulmonary 
disease have an absent circadian rhythm of circulating leptin in contrast to nonca-
chectic patients with similar diseased and healthy controls. The same absence of 
circadian changes was noted in heart rate variations described by time- and 
frequency- domain analysis and another entropy parameter (maximal entropy). This 
means that heart rate variations and the circadian leptin rhythm are directly or indi-
rectly coupled (Takabatake et al. 2001). In cocaine-exposed neonates’ HRV analysis 
including spectral power distribution, ApEn, correlation dimension, and nonlinear 
predictability, no differences were found between them and a group of healthy neo-
nates. Using a rescaling method to obtain “surrogate data” (LaViolette et al. 2004) 
from the original time series, however, revealed that large intersubject variability 
can mask small differences in heart rate dynamics between the groups (Garde et al. 
2001). ApEN is also increasingly used in (small) time series for psychological data. 
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In one example it was used in a randomized study comparing two medicaments and 
placebo with all 56 data points (VAS scales). Despite similar mean and standard 
deviation, ApEN revealed differences between one and the two other groups that 
were not noted with traditional statistics (Yeragani et al. 2003).

ApEN has been criticized mainly because a lack of internal consistency and 
modified (Richman and Moorman 2000) or alternative (Wessel et al. 2000) algo-
rithms. Correlations between nonlinear measures themselves can be weak (Storella 
et al. 1998).

Systems have been developed that record simultaneously data from ICU patients 
to be stored and analyzed. Also bedside systems have been described to obtain and 
process data of single patients (Goldstein et al. 2003). There are computer algo-
rithms to obtain and process dynamical raw data, mainly based on the MATLAB 
programming language and usually freely available on the Internet (Aboy et al. 
2002; Goldberger et al. 2000, www.physionet.org). There is some evidence that 
editing has minor influence on ApEn and SampEn results (Shin et al. 2006). 
Different levels of noise in experimental models show only a small to moderate 
influence on nonlinear dynamical measures in multivariate discrimination (Rapp 
et al. 2002) (Fig. 4.11).

Sample Entropy

Sample entropy (SampEn) is an advancement of approximate entropy that is meant 
to overcome ApEN’s weak points. Like ApEn it determines the probability of find-
ing specific patterns or matches in a short-time series. By definition, SampEn is a 
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negative natural logarithm of an estimate for predictability in finding specific 
matches in a short-time series. To characterize the stringency of match recognition, 
the length (m) of the subseries and the tolerance (r) of the matches are previously 
set. Its results are between 0 and 2, whereby 0, for example, represents a sinus curve 
and 2 a complete chaos. Two parameters need to be declared: the embedding dimen-
sion and a filter parameter. The embedding dimension m represents the length of 
sequences to be compared and ranges between 2 and 10. Often fixing m to 2 is sug-
gested (e.g., in Kuusela et al. 2002). The filter parameter r represents tolerance for 
accepted matches and is often set to a value related to 20 % of standard deviation of 
the whole time series. It has been suggested that SampEn needs at least 200 data 
points to allow lower confidence intervals (Kuusela et al. 2002), and it has been used 
in time series with 200–250 data points (e.g., in Heffernan et al. 2007). In an inter-
vention study, HF did not explain significant parts of variance, but with sample 
entropy added to the regression model, variance increased considerably (Bornas 
et al. 2007).

In conclusion, ApEN and SampEn are promising algorithms that likely have 
some clinical value (Huikuri 2003a; Perkiömäki et al. 2005).

Lempel–Ziv Entropy

Lempel–Ziv entropy is based on Kolmogorov estimates and counts the numbers of 
different and repeating patterns, from short to long in the time series, and generates 
a string of symbols using binary coding: 1 for a value above the mean and 0 for a 
value below. The binary sequence is constructed by insertion of symbols to form a 
subcue and copying of this subcue. With the use of a comparison and accumulation 
method, LZEn is computed on the basis of the number of such insertion and copying 
operations needed to generate the original sequence (Batchinsky et al. 2007b; 
Heffernan et al. 2007).

Multiscale Entropy

Diseased systems typically show reduced entropy values. Some cardiac pathology 
such as atrial fibrillation is associated with highly erratic fluctuations and statistical 
properties similar to uncorrelated noise. Traditional algorithms, like approximate 
and sample entropy, show an increase in entropy values for such noisy time series 
when compared with healthy dynamics, even though the latter represents more 
physically complex states. This obvious inconsistency may be related to the fact 
that the entropy measures used are based on single-scale analysis without consider-
ing the complex temporal fluctuations of a healthy physiological control system. 
Instead of computing one single-scale entropy measure for the time series, the sig-
nal can be analyzed using a multiscale approach (Laitio et al. 2007). Consider a 
nonoverlapping window analysis of the original time series, where the sample mean 
inside each window is computed. This set of sample means constitutes a new time 
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series. Repeating the process N times with a set of window lengths starting from 1 
to a certain length N will produce a set of N time series of sample means. The mul-
tiscale entropy is obtained by computing any entropy measure (sample entropy is 
suggested) for each time series and displaying it as a function of the number of data 
points N inside the window (i.e., of the scale) (Costa et al. 2008; Bravi et al. 2011).

Other Entropy Indices

Multi-lag tone–entropy has been proposed as an alternative to other nonlinear 
parameters, tested in a cohort with diabetic patients (Karmakar et al. 2012).

To avoid the sensitivity to the threshold r (ApEn or sample entropy), a new entropy 
called fuzzy entropy was developed. All the computational steps are the same, with 
the difference that sample entropy uses r to produce a binary classification of the 
distance between two windows (zero if they are more distant than r, one otherwise), 
while fuzzy entropy uses a fuzzy membership function to evaluate the distance. This 
continuous function scores as one if the distance between two windows is infinitesi-
mal and decays exponentially to zero the more distant the vectors are. This improve-
ment avoids the discontinuity of the binary classification, therefore lowering the 
sensitivity to the threshold (Chen et al. 2009; Bravi et al. 2011). Other forms of 
entropy used in time series are Kullback–Leibler permutation entropy, conditional 
entropy, compression entropy, diffusion entropy, Kolmogorov–Sinai entropy, and 
Shannon entropy, the latter coming from information theory (Bravi et al. 2011).

Fractal Analysis

Short-Term Fractal Scaling Exponent (Detrended Fluctuation Analysis)

The short-term fractal scaling exponent (also termed α1) measured by the detrended 
fluctuation analysis has been feasible to predict fatal cardiac events in various popu-
lations (Huikuri et al. 2003a, b; Perkiömäki et al. 2005). It was introduced by Peng 
et al. (1994, 1995) and can be used for nonstationary data from time series. The raw 
data are first preprocessed as follows:

 
X T = x t x( ) ( ) −( )

=
∑
t

T

1  

where x(t) is the tth t-interval and x is the average RR interval of the series 
(Echeverria et al. 2003). After preprocessing, the RR interval data series is divided 
in the windows of same size. The RR interval variability is then analyzed in relation 
to a local trend in each window. This process is repeated for all different window 
sizes. The variability is shown on a log–log scale as a function of the size of the 
observation window. In the presence of scaling, this slope is linear and describes 
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fractal-like correlation properties of the signal. The first part of the slope (for win-
dow sizes < 11 beats, called α1) corresponds to the short-term scaling exponent; the 
second part (for window sizes > 11 beats, called α2) to the intermediate scaling expo-
nent (Perkiömäki et al. 2005). This algorithm was proposed by Peng (1995) and has 
been calculated from all RR intervals or from only normal intervals. It needs at least 
1,000 beats and reflects the amount of randomness in the heart rate time series, with 
the lowest values (~0.5) associated with a completely random series and the highest 
values (1.5) associated with a time series that is totally correlated (Stein and Reddy 
2005; Stein et al. 2005). A filter has been proposed to estimate the power law as a 
function of time scales. This αβ filter is a simplified version of a Kalman filter that 
provides a good compromise between performance and computational load and is 
described more thoroughly in Echeverria et al. (2003).

A spectral DFA has been proposed recently. It involves calculating sd(m), m as 
Fourier coefficient for several values of m; plotting the curve of log (sd(m)) in terms 
of log (1/m) = −log(m); and obtaining the slope γ, which has a similar role as the 
parameter α in the traditional DFA (da Fontoura Costa et al. 2005).

A recent review has concluded that fractal scaling exponents might provide more 
powerful prognostic information than traditional heart rate variability indexes 
(Perkiömäki et al. 2005).

Coarse-Grained Spectral Analysis

Corse-grained spectral analysis is used to reveal the percent fractal component in 
total HRV power (%fractal) and the spectral exponent β of each bin. The random 
fractal component is extracted from a given time series through computations in 
frequency domain (Yamamoto and Hughson 1991; Yamamoto et al. 1992).

Long-time data (8,500 beat) have been compared to short-time data (512, respec-
tively 256 beats), and significant differences have been shown for %fractals (con-
siderably lower in short-term series). Average fractal% has been 85 % in human 
data (Yamamoto and Hughson 1994).

Fano Factor

The Fano factor is defined as the variance of the number of signals divided by the 
mean number of signals in a time window of length T:

 
F = w

2

w

s
m  

where σw
2 is the number of signals in the ith window of length T. The Fano factor 

curve is constructed by plotting F(T) as a function of the window size on a log–log 
scale. For a data block of length Tmax, the window size T is progressively increased 
from a minimum of a single bin to a maximum of Tmax/10 so that >10 
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nonoverlapping windows are used for each measure of F(T). For a random process 
in which fluctuations in signals counts are uncorrelated, F(T) is 1 for all window 
sizes. For a periodic process, the variance decreases and F(T) approaches 0 as the 
window size is increased. For a fractal process, F(T) increases as a power of the 
window size and may reach values >1. Whether a power-law relationship in the 
Fano factor curve truly reflects a fractal process, and thus long-range correlations of 
events, is finally tested by constructing surrogate data sets in which signal distances 
are randomly shuffled. If shuffling of the signals eliminates the power-law relation-
ship, then it can be concluded that the signal intervals in the original times series 
were ordered and independent (Das et al. 2003).

Dispersional Analysis

Dispersional analysis involves calculation of the SD of the mean values of signal 
distances for groups of data points of a specified number m. Specifically the mean 
distance for each group of m data points is obtained, and the SD of these values is 
calculated for the total number of groups. The process is repeated each time m is 
increased progressively from the minimum of one data point to a maximum of one- 
quarter of the total number of data points. SD is then plotted against m on a log–log 
scale yielding a straight line with a negative slope. The lope is used to calculate the 
Hurst (H) exponent using the formula

 H = +Slope 1  

The value of the H exponent (0–1.0 range) indicates whether the time series is a 
fractal. The H exponent is 0.5 for a time series in which events are uncorrelated (i.e., 
random Poisson process). An H exponent ≠0.5 implies that the time series are frac-
tal. When H > 0.5, the long-range correlations among the events are positive (persis-
tence: values larger (smaller) than the mean tend to be followed by values also 
larger (smaller) than the mean). When H < 0.5, the correlations are negative (anti-
persistence: values larger than the mean tend to be followed by values lower than 
the mean, and vice versa). To test the validity, the DA curve for the original time 
series is compared with shuffled data series (Bassingthwaighte and Raymond 1995; 
Das et al. 2003).

Fractal Dimension

The Hurst exponent (see above) is related to the fractal dimension (FD): 
H = E + 1 + FD, where E is the Euclidean dimension (E = 0 for point, 1 for line, and 2 
for surface). The relation between H and FD of the graph of a random fractal is 
FD = 2H for one-dimensional signal. While H varies from 0 to 1, FD decreases from 
2 to 1 (Krstacic et al. 2001).
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Correlation Dimension

The correlation dimension of a data sequence is typically calculated according to 
the Grassberger–Procaccia algorithm. In a reconstructed phase space of dimension-
ality D, the correlation sum C = ∑ ijθ(r − │ i − rj │) is calculated as a function of the 
radius r and is expected to behave as a power-law C ά rv(D). Here, ri denotes the 
D-dimensional radius vector of the ith data point and θ(r) stands for the Heaviside 
function. The correlation dimension dc is found as the limit of ν at large volumes of 
D (in fact, it is expected that for D > dc the exponent ν is independent of D, and in 
that case ν = dc). For the reliable calculation of the correlation dimension, the length 
is often inadequate for high-values dc > 6. Other problems besides noise and non- 
stationarity are some inputs of the autonomic nervous system, which can lead to 
quasiperiodic signals (Kalda and Säkki 2003).

Largest Lyapunov Exponent (LLE)

Lyapunov exponent (λ) is a quantitative measure of the sensitive dependence on the 
initial conditions. It defines the average rage of divergence of two neighboring tra-
jectories. An exponential divergence of initially close trajectories in phase space 
coupled with folding of trajectories, to ensure that the solutions will remain finite, 
is the general mechanism for generating deterministic randomness and unpredict-
ability. Therefore, the existence of a positive λ for almost all initial conditions in a 
bounded dynamical system is a widely used definition for deterministic chaos. For 
dynamical systems, sensitivity to initial conditions is quantified by the Lyapunov 
exponent. A negative exponent implies that the orbits approach a common fixed 
point. A zero exponent means the orbits maintain their relative positions; they are on 
a stable attractor. Finally, a positive exponent implies the orbits are on a chaotic 
attractor (Acharya 2004). A feasible algorithm has been proposed by Wolf et al. 
(1985) for EEG data and has been applied by Acharya (2004) for HRV data. 
Regarding the problems of missing data, it has been estimated with help of artificial 
data sets that estimates of λ1 can readily be recovered with 15–20 % amounts of 
missing data (Kreindler and Lumsden 2007).

Other Nonlinear Methods

An algorithm using non-Markovian effects was recently introduced to study age- 
related alterations of relaxation processes ECG time series (Yulmetyev et al. 2006).

Scale-independent methods have been used to analyze nonlinear properties of 
HRV, in particular wavelet analysis (Thurner 1998b). They have been criticized as a 
merely fine-tuning of SDNN (Kalsa and Säkki 2003). The wavelet coefficient Wm,j is 
identified where m is a scale parameter and j is a position parameter (the scale m is 
related to the number of data points in the window by n = 2m) by means of a wavelet 
transform. The standard deviation σwav(m) of the wavelet coefficients Wm,j across the 
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parameter j is used as a parameter to separate healthy from sick subjects. The cor-
responding scaling exponent is denoted by αwav (Ashkenazy et al. 2000).

A variation of wavelet analysis is the cumulative variation amplitude analysis 
(CVAA). Briefly, this technique is based on consecutive wavelet and Hilbert trans-
forms and can be used for nonstationary time series. Mathematically, CVAA con-
sists of several steps:

 1. Choose adequate scales to analyze the data.
 2. From the original series, obtain a set of series each at a different scale using a 

continuous wavelet transform. (There are many wavelet families to choose from 
for this step, and several have been tried out. Each family eliminates local poly-
nomial trends from the signal in a different way. The coefficients c of the wavelet 
transformation in each scale reflect the cumulative variation of the signal.)

 3. Then, process each of the new time series with a Hilbert transform to extract the 
instantaneous amplitudes h of the variations at each point of the series.

 4. Construct the time series y = c + ih and calculate the amplitudes 

A = c + h2 2( ) .

 5. Finally, normalize the histogram of these amplitudes to 1 to form a probability 
distribution, P(x), which is then rescaled such that x → xPmax and P(x) → P(x)/Pmax 
(Ritto et al. 2004).

In a study analyzing 428 heart patients after MI, 105 healthy subjects and 11 
“cardiac-impaired” patients, DFA, DTS, and wavelet analysis were compared. It 
turned out that DTS performed better as a diagnostic tool, whereas the scaling expo-
nents of wavelet and DFA analysis were better risk stratification tools (Ashkenazy 
et al. 2000).

Another recently presented approach uses Zipf’s law to establish a rank order of 
low-variability periods. Local variability for each interbeat interval is calculated, a 
low-variability threshold is defined, and its length τ is measured in number of heart-
beats. The rank of a low-variability period is plotted versus its length in a logarith-
mic graph. Failure of power law is correlated weakly with pathological heart 
conditions. However, τend distinguished between patients and healthy controls. The 
calculation of τend is not easy, but alternatives are τmax (the longest low-variability 
period in the time series) with a considerable diagnostic value but low reliability 
because of fluctuations, the overall number of low-variability periods rmax. But 
the best alternative was to choose a set of critical ranks and determine the respec-
tive lengths, or to choose a set of critical length values and to determine the respective 
rank numbers. Both techniques were feasible for distinguishing between patients 
and healthy controls (Kalda et al. 2001).

A further approach is to use recurrence quantification analysis (RQA), also 
called recurrence plots. RQA was first introduced in physics by Eckmann in 1987. 
RQA is particularly useful in quantifying transient behavior far from equilibrium. 
It is based on the computation of a distance matrix between the rows (epoch) of 
the embedding matrix of the tachogram at unitary lag. This matrix represents the 
autocorrelation of the signal in all possible time scales. In other words, RQA 
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searches for repeating data sequences, which allows the data to be reconstructed 
as a time- ordered sequence of vectors. The resulting vector matrices are then 
indexed and compared on all possible I, J vector coordinate combinations, pro-
ducing the qualitative recurrence plot. The recurrence plot is a visual representa-
tion of the vectored data sequences, illustrating changes in the system as it evolves 
in time (Schumacher 2004).

In the recurrence plot, two points are considered recurring if the distance between 
them is less than a preset radius. The plot’s diagonal lines denote trajectories: two 
vectors (data sequences) starting from two close points, remain close together over 
a subsequent time period. In other words, the trajectory of one vector parallels the 
other over that distance in time. Recurrence plots dramatically illustrate one’s data. 
However, since statistical analysis is necessary for experimentation, RQA quantifies 
the information contained within the recurrence plots. To this end, only the upper 
triangle is used for variable calculations since the recurrence plot is symmetrical. 
(The central line of identity splits the two triangular halves.) Alongside each recur-
rence plot is a list of the parameter values used to generate the individual plot, the 
resulting variable values, and a histogram showing the various lengths of the line 
segments. RQA produces five variables: %recurrence, %determinism, entropy, 
maxline, and trend. Once a time series has been analyzed with RQA, statistical 
analysis is performed on these variables to examine the relationships with other 
pertinent variables or the significance of experimental results (Schumacher 2004). 
There are indexes for this: percentage of recurrence index and percentage of deter-
minism index. Usually the Shannon entropy is used (Giuliani et al. 1998; Marwan 
et al. 2002). RPs have been used to identify retrospectively structures in patients 
developing VT (Marwan et al. 2002).

One approach focuses specially on nonstationary signals where a short-time 
HRV and a short-time scale variability parameter are measured. The slope of 
changes is then linear and might provide information about the physiological state 
of the subjects (Siegel et al. 2004).

Large-scale dimension densities have been proposed as an analysis algorithm. 
This is estimated from a time series using a normalized Grassberger–Procaccia 
algorithm that enabled the analysis of nonstationary, rather short and unfiltered, data 
and made it possible to distinguish AF, CHF, older, and younger controls in a small 
study (Raab et al. 2006).

Another approach does not analyze RR-distances, but the times between events 
that disrupt the normal rhythm of the heart (for instance, ventricular tachycardia 
episodes or premature ventricular contractions). The authors calculated probability 
density functions of the events and conducted a Hurst analysis to look at fractal 
properties. They found a power-law form of the probability density functions and a 
fractal pattern for the disruption of normal sinus rhythm (Liebovitch et al. 1999).

An alternative nonlinear algorithm that has been named complexity rate informa-
tion (symbolic dynamic system complexity rate information) uses the Lempel–Ziv 
complexity measure (Lempel and Ziv 1976). The Lempel–Ziv complexity is calcu-
lated for subsets of the time series. The complexity rate of the whole time sequence 
can be calculated from the slope rate of a sequence fitting polynomial. In addition the 
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authors defined complexity saturation as a phenomenon when a deterministic system 
enters into chaos, then randomness. This complexity then is definite and does not 
rely on the starting point. This algorithm has been used on VT and VF data and it was 
possible to distinguish them by complexity rate information (Zhang 2000).

The non-Gaussianity index (λ) is a new index of heart rate variability (HRV) that 
characterizes increased probability of the large heart rate deviations from its trend.

The analysis of non-Gaussianity of HRV is divided into four steps, as the authors 
describe them:

In step 1, time series of normal-to-normal R–R intervals are interpolated with a 
cubic spline function and resampled at an interval(Δt) of 250 ms(4 Hz), yielding 
interpolated time series b(t). After subtracting average interval b(ave), integrated 
time series B(t) are obtained by integrating b(t) over the entire length.

In step 2, the local trend of {B(t)} is eliminated by third-order polynomial that is fit 
to {B(t)} within moving windows of length 2 s, where s is the scale of analysis.

In step 3, ΔsB is normalized by the SD to quantify the probability density 
function(PDF). Then, the non-Gaussianity index, λs, is estimated.

In step 4, intermittent deviation ΔsB(t) is measured as the increment with a time lag 
s of the detrended time series {B∗(t)}:
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where <|ΔsB|q> denotes an estimated value of the q-th-order absolute moment of 
{ΔsB}. If the λs is close to zero, the observed PDF is close to a Gaussian distribu-
tion. On the other hand, a larger value of λs means that the observed PDF has flatter 
tails and a sharper peak in comparison with the Gaussian distribution. This method 
has been tested in a large study with 570 post-AMI patients and showed predictive 
power (Hayano et al. 2011).

Heart Rate Turbulence (HRT)

A German research group led by Schmidt developed an interesting method to ana-
lyze heart rate (Schmidt 1999). Heart rate turbulence is not a classical HRV method, 
but shares some physiological mechanisms and can be used in similar ways. Last 
not least it is also dependent on Holter monitoring. We discuss therefore HRT as a 
complement of HRV measures and mention it in clinical sections.

Briefly, the method is based (and dependent) on the occurrence of ventricular extra 
systoles and observes the heart rate changes afterwards. Directly following the VES 
an increase of heart rate can be observed, followed eventually by a decrease. This pat-
tern is diminished or nonexistent in patients with recent myocardial infarction.
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The method is based on Holter monitoring and averages heart frequency changes 
after VES. With the help of an algorithm, two parameters are calculated, turbulence 
onset (TO) and turbulence slope (Bauer et al. 2008). Turbulence onset is calculated 
by subtracting the sum of the two preceding QRS-distances from the sum of the first 
two QRS-distances after the VES, divided by the sum of the last two preceding 
QRS-distances and multiplied by 100:

 
TO RR RR RR RR RR RR 100 %1 2 1 2 1 2= + − + / + ×− − − −( ) ( ) ( )  [ ].

 

Turbulence slope is defined as the maximum positive regression slope 
assessed over any five consecutive sinus rhythm RR intervals within the first 15 
sinus rhythm RR intervals after the VES (Bauer et al. 2008). In healthy volun-
teers TO ranges from −2.7 to −2.3 %, and TS ranges from 11.0 to 19.2 ms/RR 
interval (Grimm et al. 2003c; Lindgren et al. 2003; Diaz et al. 2002; Tuomainen 
et al. 2005).

In risk stratification studies (see the subsequent section), HRT values are usually 
classified into three categories: (1) HRT category 0 means TO and TS are normal, 
(2) HRT category 1 means 1 of TO or TS is abnormal, and (3) HRT category 2 
means both TO and TS are abnormal. If HRT cannot be calculated because no or too 
few suitable VPC tachograms are found in the recording, patients who are otherwise 
in sinus rhythm are classified as HRT category 0 (Barthel et al. 2003; Bauer et al. 
2008) (Figs. 4.12 and 4.13).

Heart rate turbulence is also interesting from a theoretical point of view. Systems 
near transition points can be tested by small perturbations and the reaction of the 
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Fig. 4.12 Physiological and pathological heart rate turbulence (Reproduced with friendly permis-
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system afterwards as we described it in Chap. 2 as a “critical slowing down” phe-
nomenon (Wissel 1984). The idea for real systems is to use this phenomenon induc-
ing small perturbations that are not sufficient to drive the system over the transition 
point and then to measure the rates of change. Otherwise it may be possible to 
observe the effects of natural perturbations on the exchange rates. But characteristic 
for these phenomena is that changes persist after perturbation. Like in the critical 
slowing down approach, HRT uses naturally occurring perturbations, but in contrast 
a decreased reaction pattern is observed.

HRT seems to share some of the physiological background of HRV, among oth-
ers, the involvement of the baroreceptor system. Early acceleration of heart rate 
during HRT might be related to vagal withdrawal in response to the missed barore-
flex afferent input due to reduced ventricular contraction after VES that causes 
decreased systolic and diastolic blood pressure. This drop also causes increased 
activity of the SNS. The late HRT phase is then caused by overcompensation, by an 
early sympathetic activation with delayed vasomotor response, as well as by vagal 
activation (Bauer et al. 2008).

HRT indices are influenced by the systolic function of the heart, especially the left 
ventricular ejection fraction (LVEF). Not surprisingly, HRT is reduced in patients with 
congestive heart failure (Koyama et al. 2002) but also in the case of structural heart 
disease with preserved LVEF (Sestito et al. 2004). It can be eliminated nearly com-
pletely through the use of atropine, but not of beta-blockers (Lin et al. 2002) (Table 4.10).

Interesting are fast changes of HRT after complete or incomplete restoration of 
coronary perfusion (Bonnemeier et al. 2003b) (Fig. 4.14).
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There are modest correlations between HRV and HRT probably due to the com-
mon physiological mechanisms already mentioned (Ghuran et al. 2002; Sestito 
et al. 2004; Cygankiewicz et al. 2004).

Table 4.10 Factors influencing HRT

Factor Effect Reference

Gender No effect Grimm et al. (2003a, b, c); Jeron et al. (2003)
Age Decrease Schwab et al. (2005)
Heart Rate Decrease Schwab et al. (2004a); Cygankiewicz et al. (2004)
Origin of VES No effect Schwab et al. (2004b)
Beta-blockade No effect Lin et al. (2002)
ACE hemmer Increase Chowdhary et al. (2000); Ozdemir et al. (2007)
Atropine Decrease Lin et al. (2002)
Amiodarone Unclear Grimm et al. (2003a, b, c)
Coronary reperfusion TS increase, TO 

decrease
Bonnemeier et al. (2003a, b)
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Further Methods Combining HRV and Other Measured 
Parameters

R-Wave to Pulse Interval (RPI)

Sympathetic cardiovascular tone may be estimated based on the measurement of 
R-wave to pulse interval (Contrada et al. 1995; Hugdahl 2001). This is probably not 
a pure sympathetic parameter (Duschek et al. 2009). The magnitude of RPI is pre-
dominantly determined by beta-adrenergic effects on myocardial contractility 
(Furedy et al. 1996; Hugdahl 2001).

During acute illnesses, patients in intensive care units are monitored 24 h. Several 
groups have worked with continuous signal analysis. As an example thereof, we 
present here an approach published recently by Ahmad: continuous individualized 
multiorgan variability analysis, or CIMVA (2009).

“To accomplish continuous variability analysis over time, CIMVA employs a mov-
ing window approach, whereby a window (interval-in-time) of user specified width 
and step marches through the input signal, computing and time-stamping different 
variability metrics at each step, thus making it possible to monitor a change in HRV 
over time. A standard RR cleaning algorithm (22) is employed inside each window to 
detect gross artifact or noise, and HRV analysis is performed on the cleaned data. The 
cleaning algorithm excludes RR intervals less than 0.25 s and greater than 2.5 s, as 
well as those that differ by more than 15 % from the previous one. The CIMVA sys-
tem stores the number of samples lost due to RR cleaning in each window instance, 
thus keeping track of signal quality.” A window width of 1,200 samples (~10 min) and 
steps of 200 samples (~2 min) are used to compute HRV over time (Fig. 4.15).

Concluding Remarks

A recent review argued that although concepts of chaos theory, fractal mathematics, 
and complexity measures of heart rate behavior are still far off from clinical medi-
cine, they are a fruitful area for future research (Perkiömäki et al. 2005). A study 
including a cohort of CHF patients examined 20 nonlinear parameters, some of 
them rarely used in HRV and identified only two relevant parameters that add addi-
tional information to clinical models: the ratio between the power associated with 
the first mode with frequency <LF1 and the modes with frequencies higher than 
LF1 and one variation pattern (from symbolic dynamics). Other parameters studied 
earlier, like sample entropy, 1/f slope, or different ways to analyze Poincaré plots, 
did not add any relevant information in the model (Maestri et al. 2007).

Bravi, Longtin, and Seely have recently provided an excellent overview of tech-
niques for variability analysis (Bravi et al. 2011), describing no fewer than 39 different 
features consisting of even more algorithms. All of them have been used to test physi-
ological time series, even though some were only used in pilot studies or open source 
data, e.g., from PhysioNet. Only few were used repeatedly. Bravi also tried recently to 
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construct a composite measure that can be used for early detection of sepsis develop-
ment (Bravi et al. 2012, see Chap 4). At the moment, most algorithms have not been 
sufficiently tested to allow for any conclusions. Most developed are several forms of 
entropy analysis and some fractal algorithms, which were discussed above. It is very 
likely that even more algorithms will eventually be published along with promising 
preliminary results, though often we will not know how feasible they are in clinical 
practice. To this day, the best tested and most relevant are the so-called linear measures, 
which should be a standard part of any studies or clinical work-ups with help of HRV.

Modulating and Confounding Factors

General Reliability

Early reports testing the feasibility of different methods to assess the sympathovagal 
balance in congestive heart failure noted the complete lack of correlation between 
time-domain and frequency-domain HRV, noradrenaline spillover, submaximal 
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heart rate training, and 24-h daytime and nighttime heart frequency (Adamopoulos 
1992). Also recent reports raised some doubts about the reliability of short-term 
measures of HRV. Variation ranged from 1 to 100 %. Patient position and medica-
tion had significant consequences on the variables, whereas reliability increased 
under resting conditions (Sandercock et al. 2005). The standard test battery for 
patients with DN showed a reliability of 4.3 % for metronomic breathing, 6.26 % 
for Valsalva test, and 6.66 % for stand (postural) test (Risk et al. 2001). Correlations 
between 24-h and short-term spectral indices were generally >0.75 in a post-MI 
study (Bigger et al. 1993).

Wittling studied both short-time and long-time reliability. They observed changes 
in 5-min HRV uptakes after 10, 20, 30, 60 min, and 2 days (Table 4.11).

They investigated also changes in 16 persons after 2 months with the same con-
ditions, showing a high level of stability (Table 4.12).

Stress and distraction can change HRV indices (Madden and Savard 1995). 
However, a longitudinal study revealed high test–retest correlations in frequency 
domain in a group of older subjects both at baseline and with mental stressors 
retested after a year (Cacioppo 1994).

In relation to a longitudinal study on patients with stable coronary artery dis-
ease, Tarkiainen followed 89 subjects over a period of 3–4 months, measuring 
seven times short-term HRV, including paced breathing. The mean of the RR inter-
vals and the total power showed the highest stability over time; SDNN tended to be 
unstable, whereas frequency-domain values showed acceptable stability (Tarkiainen 
et al. 2005).

In an evaluation study, test–retest reliability was assessed for rMSSD, Valsalva 
maneuver, orthostatic challenge (to calculate posture index), and paced breathing 
(with help of a feedback box). rMSSD was reliable, and all other measures also 
showed good reliability with the exception of the Valsalva maneuver, which was 
estimated as moderate (Haegele-Link et al. 2008).

Koskinen reports reference values for young adults in a Finnish study. It included 
1,780 healthy subjects between 24 and 39 years and computed frequency- and 

Table 4.11 Short-time stability in 50 healthy persons after different time periods (Wittling and 
Wittling 2012)

TP HF LF LF/HF SDNN rMSSD

10 min 0.75 0.93 0.68 0.92 0.76 0.89
20 min 0.82 0.96 0.78 0.83 0.87 0.81
30 min 0.84 0.88 0.82 0.78 0.84 0.93
60 min 0.65 0.86 0.75 0.74 0.62 0.82
2 days 0.84 0.81 0.75 0.52 0.68 0.69

Table 4.12 Correlation of HRV parameter in 16 persons after 2 months (Wittling and Wittling 
2012)

TP HF LF VLF LF/HF SDNN rMSSD

r 0.90 0.95 0.86 0.72 0.56 0.79 0.96

4 Methodological Issues



83

time- domain indices. In addition the study used the deep breathing test. Age and 
higher heart rate were inversely associated with all indices. Women had higher HF 
and lower LF, as well as a higher resting heart rate. According to the authors, age, 
sex, and heart rate have to be considered in reference values, but reproducibility is 
good (Koskinen et al. 2009b).

In younger diabetic patients, differences between two short-term HRV were not 
statistically significant; the 95 % limits of random variation however were quite 
high (Sacre et al. 2012).

It is unclear whether a “white coat effect” exists in short-term HRV. In a small 
study, patients were educated to take short-term HRV at home on several days, with 
acceptable reliability and no differences between measurements in hospital and at 
home (Fleischer et al. 2011).

One problematic point is the great variance within patient groups, which leads to 
overlaps with healthy controls in many studies (e.g., Orlov et al. 2012).

But, in conclusion, even taking into account the critical remarks by Sandercock 
et al. (2005), large studies have now shown reasonable reliability under different 
conditions. It is clearly important not to compare results of studies using different 
lengths of measurement. It is also important to include major confounding factors 
into the protocol both in studies and clinically. Taken all together, reliability of HRV 
measurements is acceptable.

Short Term Versus Holter Monitoring

The research literature shows that two kinds of heart rate variability methods are 
generally used. Short-time variability is usually defined as a heart rate series taken 
for a time period of 5–20 min (mostly 10, but in studies even with 2-min (e.g., 
Schroeder et al. 2003) or 3-min (e.g., Gerritsen et al. 2001) measurement time has 
been published). In addition some studies have only used 10-s stripes (Carnethon 
et al. 2006).

Mostly in cardiology 24-h Holter monitoring has been used in a plethora of 
studies. In the time domain, 5 min and 24 h appear to be equally appropriate 
(Mazzeo et al. 2011). This notion is based on a repeatability study showing that 
even some repeated 10-s series achieve similar results – in healthy persons and 
with some caveats – as 6-min intervals. This study however did not compare 
Holter monitoring with short-term monitoring (Schroeder et al. 2004). Another 
study compared 1-min and 5-min HRV in diabetic patients and found good cor-
relations for time-domain indices (Nussinovitch et al. 2012). Even 15- to 30-s 
strips have been used in depression patients, showing sensible results (Kamphuis 
et al. 2007). Correlations between 24-h and short-term spectral indices were 
generally >0.75 in a post-MI study (Bigger et al. 1993). So, generally, time-
domain variables might be similar, whereas frequency domain might possibly 
differ more.

Modulating and Confounding Factors



84

Different Forms of Measurement

Another interesting point is the post hoc analysis of ECG stripes in paper form. 
Automatic, computer-based analysis has been shown to be superior to manual anal-
ysis, but paper ECGs could be considered more often for retrospective analysis 
(Fleischer et al. 2012). Another study only used 10-s digitalized stripes to calculate 
SDNN and rMSSD (Carnethon et al. 2006). One study showed no differences 
between post-event and real-time analysis (Migliaro et al. 2004).

Pulse watches have been used in several studies, especially in training, but also 
in psychological investigations. This is of some interest, since the equipment is 
much cheaper. The Task Force does not endorse methods other than ECG. Some 
studies have compared pulse watches with regular approaches. The Polar S810 
(Suunto, Finland) watch was used under resting conditions to test validity and reli-
ability of a short-term HRV of 5 min. The watch demonstrated a good to near- 
perfect validity, but the reliability in regard of LF and HFnu was not high (Nunan 
et al. 2009). Another study compared Polar S810i and t6 (Suunto, Finland) and 
Cardiolite (Medset, Hamburg). Generally there were no major differences between 
the three different devices. In detail, the relative differences in LF were lower than 
5 %. HF showed more differences, mostly 5 %, but in single patients up to 30 %. 
The variation was generally higher at higher heart frequencies (Weippert 2004). In 
one multicenter depression study, pulse-based and ECG-based HRV were used 
simultaneously. ECG measurements were obtained by 15- to 30-s strips and pulse- 
based HRV by measuring radialis pulse manually over 30 s; SDNN was then calcu-
lated. SDNN values were similar between the methods. Interestingly, they do not 
discuss problems related to the measurement period at all (Kamphuis et al. 2007).

Schäfer and Vagedes have written a comprehensive review on the accuracy of 
pulse wave-based measurement compared with traditional forms of HRV. They con-
clude that pulse measurement as an estimate of HRV has been proved to be suffi-
ciently accurate only for healthy (and mostly younger) subjects at rest. They quote 
some studies showing that pulse-based techniques tend to overestimate HRV some-
what in variables associated with short-term variability (e.g., rMSSD, HF). More 
crucially, they found that “moderate physical or mental stress tends to diminish 
agreement between PRV and HRV to an extent that is or is not acceptable” and call 
for more exact studies (Schäfer and Vagedes 2013).

Confounding Factors

Genetic Factors

A problem in many clinical studies is the registration of subjects as of 
“Caucasian,” “Asian,” or “African” origin or “phenotype.” Many studies, espe-
cially those relating to FDA criteria, register their participants under these 
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categories. Sometimes results are reported in connection with these categories 
(e.g., Reed et al. 2006, see below). In terms of science, this is problematic. One 
of us (GE) has reviewed research protocols submitted to an ethical review board 
for a decade. But I cannot remember any clear definition as to who is “Caucasian” 
and who isn’t. One would certainly expect clear definitions in multicenter stud-
ies, but they also fail to provide them. There is no clear genetic concept for 
“races” or, for the supposedly nicer word, “ethnicities.” With some exceptions, 
we have no clear evidence for genetic differences between “races.” On the con-
trary, there is a line of evidence showing that the genetic differences within this 
constructed groups are higher than the genetic differences between them (Heinz 
and Kluge 2012).

A twin study showed that genetic polymorphism is important in the regula-
tion of ambulatory HRV. For SDNN, heritability in the model had an influence 
of 34–47 % on variance, and for rMSSD 40–48 % (Kupper et al. 2004). 
Comparing HRV (frequency domain) of siblings and spouses (682, respectively 
517 each), genes have been calculated to contribute for 13–23 % of variation 
(Singh et al. 2001). Genetic variation in CYP11B2 and AT1R had a correlation 
with LF/HF in supine position in subjects with sodium excretion >190 mmol/
day, but not in subjects with lower sodium excretion (Stolarz et al. 2004). 
Variations in apolipoprotein phenotypes showed different changes in HRV 
under mental stress (Ravaja et al. 1997). In a comparison of “Caucasian” and 
“Asian” children (n = 62) of a same community in Canada, Asian children had a 
higher LF/HF ratio (Reed et al. 2006). Angiotensin II receptor type 1 polymor-
phism (A11666C) was associated with a higher SDNN compared with patients 
with other polymorphism patterns (Mitro et al. 2008). A polymorphism in the 
glutathione S-transferase gene (homozygous GSTT 1 null) exhibits an average 
of 10 % lower TP and LF. Together with passive smoking >2 h/day, TP was 
26 % lower in these individuals, with obesity 22 % lower. Glutathione 
S-transferase is oxidant scavenging and the authors discuss the possibility that 
lower HRV in individuals with GSTT 1 null could be due to oxidative stress on 
the autonomic system (Probst-Hensch et al. 2008).

Another polymorphism exists in the dual-specific kinase-anchoring protein 2 
(AKAP 10 (A/G) I646V). The 646 V alleles exist in about 40 %. A sample of 122 
humans with known coronary heart disease was associated with increased resting 
HR and decreased HRV (SDNN) (Tingley et al. 2007). In a large sample (n = 1,033) 
of healthy humans between 30 and 54, this polymorphism was associated with 
greater resting heart rate and diminished HRV. The authors suggest that this variant 
may modulate the sensitivity of cardiac pacemaker cells to autonomic inputs 
(Neumann et al. 2009).

In a sample of 1,095 trauma patients with a mortality of 14.2 %, an association 
between changes in HRV and survival has been shown. Genetic polymorphisms to 
the beta-2-adrenergic receptor, the alpha-1-adrenergic receptor, and the catechol-O- 
methyltransferase (COMT) gene were tested. In particular, a beta-2-receptor poly-
morphism in 15.5 % of the study population was associated with increased survival 
(Morris et al. 2009)
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Physiological Factors

Endocrinological and Neurohumoral Factors

LF and LF/HF ratio tend to increase and HF to become reduced during the luteal 
phase compared to the follicular phase, which can be interpreted as a higher activity 
of the sympathetic system. This might be caused by estrogen activation of the para-
sympathetic system and by progesterone-dependent activation of the sympathetic 
nervous system (Saeki et al. 1997; Sato and Miyake 2005). A recent study, however, 
was not able to show HRV differences with respect to the menstrual cycle, but the 
number of subjects included was very low (n = 11) (Nagakawa 2006). Women with 
estrogen replacement therapy have higher BRS and total HR variance than women 
without (Huikuri et al. 1996a).

Neurohumoral factors like oscillations of adrenaline, noradrenaline, and angio-
tensin may be responsible for HRV variations with periods in the minute range 
(Moser et al. 1994). Sympathetic tone increases with stimulation of the renin–angio-
tensin system and is under the influence of salt intake (DiBona 2002).

Exercise leading to an increase of more than 1.5 METS causes a significant 
increase in SDNN, SDANN index, SDNN index, pNN50, TP, and HF (Pardo et al. 
2000). Similar results have been recorded in groups of young and old men. SDNN 
was lower in the older group, both groups had increased SDNN after 6 months of 
training, and the effect was larger in the older group (Levy et al. 1998). Similar 
changes were shown in an RCT including older men and women where the inter-
vention group (6 months of training for 45 min and thrice a week) showed increased 
frequency-domain values compared to the control group (Schuit et al. 1999). 
Nakamura showed a first decrease of PNS activity in subjects with up to moderate 
activity in a treadmill experiment, whereas SNS was activated more when they had 
moderate to heavy exercise. A fractal component increased at the same time 
(Nakamura et al. 1993). In patients with persistent atrial fibrillation undergoing 
training, SDNN recorded with Holter monitoring was the only independent predic-
tor of good exercise (Matsumoto et al. 2004). Exercise led to an increase in time- 
domain measures in patients with end-stage renal disease (Cashion et al. 2000); the 
same increase was observed in 12 chronic heart failure patients (Adamopoulos et al. 
1995). Exercise training in subjects after PTCA increased significantly HF com-
pared with a control group (Tsai et al. 2006). A 160-km ultramarathon did not 
induce changes in short-term HRV in 25 athletes (Scott et al. 2009). I discuss this as 
a confounding factor, especially when healthy controls are used. Investigators 
should have an idea about training manners and fitness of healthy participants in any 
HRV study. (HRV and physical exercise is discussed more extensively in a later 
chapter.)

Stress is often but not always associated with an increase in sympathetic cardiac 
control, a decrease in parasympathetic control, or both (Berntson and Cacioppo 
2004). This was reported for acute stress paradigms in laboratory (e.g., arithmetic 
tests or reaction time tasks (Berntson et al. 1994; Delaney and Brodie 2000), acute 
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stressor in real life like college examinations (Lucini et al. 2002), and chronic per-
ceived stress (Dishman et al. 2000)). By contrast, some experiments showed an 
increase in HF (e.g., forehead cold pressure manipulation (Hughes and Stoney 
2000) or water immersion (Schipke and Pelzer 2001)). Different tasks can lead to 
different responses. An arithmetic task led to sympathetic changes in PEP and 
decreased HF, whereas an illusion task led to increases in HF in the same group of 
test persons (Berntson et al. 1996). The concept of stress is exceedingly broad and 
poorly defined (Berntson and Cacioppo 2004), which makes it difficult to compare 
different experimental or observational settings. Another caveat exists regarding the 
reaction to psychological stressors that lead to wide interindividual differences in 
the mode of response, with some subjects consistently showing predominantly sym-
pathetic activation, others primarily vagal withdrawal, and still others a reciprocal 
pattern of autonomic response (Berntson et al. 1994). Cacioppo’s study mentioned 
above, however, revealed high test–retest correlations in frequency domain in a 
group of older subjects both at baseline and with mental stressors (Cacioppo 1994). 
The relation between stress, cardiac disease, and HRV changes is discussed in fol-
lowing chapters.

Sleep: In REM sleep, TP, VLF, and LF increase, and LF decreases. In non-REM 
sleep phases, TP, VLF, LF decrease, and LF increases. Accordingly, LF/HF ratio 
was lowest in the non-REM phase. LF/HF increases already before the onset of 
REM phase, in stage two of non-REM sleep (Busek et al. 2005). During an awake 
state, 70 % of total HRV in the power spectrum was fractal; in deep sleep the ratio 
decreased significantly to 40 % (measured with coarse-graining spectral analysis) 
(Togo and Yamamoto 2000). In another study, low HRV levels were observed dur-
ing slow-wave sleep, and high levels during REM sleep and intrasleep awakenings 
(Viola et al. 2002).

Of special interest is deep sleep (NREM sleep, Stage III/IV sleep) because it 
should be the least influenced by external and internal factors. A typical HF peak 
exists in the power spectrum, but oscillations in LF and VLF disappeared. It has 
been postulated that this is not due to a lack of oscillatory rhythms in vivo, but due 
to non-stationarity of the oscillations, which makes HRV analysis with help of 
Fourier analysis difficult. By using wavelet analysis (continuous wavelet transfor-
mation), a nonstationary periodicity in VLF was observed that was not detectable 
by Fourier analysis (Togo et al. 2006).

The effect of sleep on HRV is also influenced by ambient temperature. In 8 
healthy male subjects, no differences were observed during REM sleep or wakeful-
ness. In NREM sleep, however, LFnu decreased with 3 and 10 °C in NREM sleep 
phases (Okamoto-Mizuno et al. 2009).

In light sleep, SDNN, LF, and LF/HF values are similar to wakefulness; in slow- 
wave sleep the parameter decreases (n = 387 with or without sleep apnea) (Kesek 
et al. 2009).

Sleep deprivation was associated with an increase in LF and a decrease of HF 
(Zhong et al. 2005). In a field study with 147 engineers, LF/HF ratio changed in 
subjects with higher working hours and lower sleeping periods (Sasaki et al. 1999). 
There are also more conflicting results from other small studies (Muenter et al. 
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2000; Viola et al. 2002; Van den Berg et al. 2005). Compared to daytime nurses, 
permanent night-shift nurses showed an increased LF and LF/HF (Chung et al. 
2009). In a study we conducted on 16 nurses, we took short-term HRV before and 
after a night shift and did not find differences between the evening before and the 
morning after, even when we included subjective sleepiness into the model 
(Ernst and Rostrup 2013a).

Circadian Influences: Most cardiovascular activities show a circadian rhythm. 
Almost all noninvasive electrophysiological phenomena, such as electrocardio-
graphic indices, cardiac refractoriness and conduction, pacing, defibrillation thresh-
old, heart rate indices, QT-dispersion, and T-wave alternans, show diurnal variability 
(Guo and Stein 2002). Changes or deregulation of this variability has been associ-
ated with pathological developments. Most HRV measures did not change during 
sleep deprivation and were mainly sleep-stage dependent. Only one linear parame-
ter, SDNN, showed a nocturnal 140 % increase (Viola et al. 2002). Bonnemeier 
showed the effects of the circadian rhythm in 166 healthy volunteers investigated 
with Holter monitoring (Bonnemeier et al. 2003a, b) (Fig. 4.16).

Respiration: HRV was originally discovered in relation to respiration-dependent 
variability (RSA). Thus, it is not surprising that many studies found differences, and 
until today approaches recommend paced breathing to eliminate respiration- 
dependent effects. Both frequency and depth of ventilation can have effects on HF 
(Nakatsuka et al. 2002; Kanaya et al. 2003). Usually, with increased breathing fre-
quency, LF and HF are reduced (Brown et al. 1993). In several studies, respiration 
was maintained with different frequencies (with help of a metronome, called paced 
breathing), e.g., 12/min (Druschky et al. 2001). Altered breathing patterns, as may 
be seen in Cheyne–Stokes respiration, shift spectral power into the very 

1
0

200

400

600

800

1000

1200

600

700

800

900

1000

1100
ms RR-interval

sNN50

rMSSD

Triangular indux

20

10

30

40

5020-29years
30-39years
40-49years

50-59years

60-70years

20-29years

30-39years
40-49years
50-59years
60-70years

20-29years
30-39years
40-49years
50-59years
60-70years

20-29years
30-39years
40-49years
50-59years
60-70years

60

70

ms

25

20

15

10

0

30

ms

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hour of the day

20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 4.16 Circadian variations of different time-domain indices (Bonnemeier et al. (2003a, b), 
with permission of John Wiley and Sons)

4 Methodological Issues



89

low- frequency range (<0.05 Hz) in patients with moderate to severe heart failure 
(Mortara et al. 1997). Controlling ventilation for both rate and depth is likely to 
improve the reproducibility of measuring the heart rate variability associated with 
respiration; however, it remains to be established whether such controls are viable 
when comparing across different patient groups (Malpas 2002). Mean RR interval 
at a PaCO2 between 40 and 50 mmHg did not differ (controlling breathing frequency 
and tidal volume), but decreased at a PaCO2 of 30 mmHg. RSA magnitude increased 
progressively with PETCO2 (Sasano et al. 2002). Individual differences in breathing 
have probably more effect in short-term HRV and most on parasympathetic mea-
sures like HF and the LF/HF ratio. To avoid this influences several groups use paced 
breathing protocols, where patients are asked to breath to a rhythm presented 
through a computer (e.g., Neumann et al. 2009). Paced breathing has particularly 
been used in diabetic autonomic neuropathy test batteries. However, recent data and 
reviews argue that the effect of respiration patterns and consecutively the effect of 
paced breathing have probably been overestimated. Respiration frequencies 
between 9 and 24/min have been discussed as unproblematic (Wittling and Wittling 
2012), and a recent review concluded that variations in respiratory frequency are 
probably responsible for less than 2 % of variance of the HRV power (Denver et al. 
2007). Paced breathing is still used in cohort studies, sometimes due to historical 
reasons (e.g., Pop-Busui et al. 2009).

Gender: Healthy women have a significantly lower HRV than healthy men 
(Bonnemeier et al. 2003a, b; Stein et al. 1997b). These effects can disappear in dis-
ease (congestive heart failure (Stein et al. 1997a)). In a bigger study, middle-aged 
women showed lower BRS (8.0 ± 4.6 ms/mmHg vs. 10.5 ± 4.6 ms/mmHg). LF and 
LF/HF were lower and HF was higher than in men. The differences remained after 
adjustment of the variables such as blood pressure, HR, smoking, alcohol consump-
tion, and psychosocial score (Huikuri et al. 1996a, b). In a study comparing ten men 
and ten women, men had two to sixfold the adrenaline concentration of women in 
blood. There was no difference in frequency-domain values in resting subjects. 
Beta-blockade increased LF and HF in women, but not in men. Muscarinergic 
blockade reduced TP to almost zero. Women had a more negative slope. The authors 
conclude that men probably have a predominance of sympathetic vascular regula-
tion, whereas women have a dominant parasympathetic influence on heart rate regu-
lation (Evans et al. 2001). Younger women have a higher LF and lower HF (n = 1,780) 
(Koskinen et al. 2009a, b). Women with a new diagnosed essential hypertension had 
a lower SDNN and LF and a generally lower HRV during paced breathing (Pavithran 
et al. 2008).

Age has clear effects on HRV, but these effects can disappear in disease (conges-
tive heart failure (Stein et al. 1997a)). HRV time-domain and frequency-domain 
values are all decreased in older men and partially decreased in women (Stein et al. 
1997b). VLF, LF, and HF decreased with age, but not ULF (Holter ECGs (Bigger 
et al. 1995)).

In a study with 141 healthy individuals, the investigators aimed to find parame-
ters for a “cardiac age.” They used cluster analysis to identify different groups (5 in 
all) and found a correlation between frequency-domain values and different age 
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groups. They propose differences in chronological and neuroautonomic aging, call-
ing the latter also the cardiac age. Neuroautonomic changes correlate with age until 
the sixth decade and then reach a plateau state (Colosimo et al. 1997). Bonnemeier 
showed clear age effects in 166 healthy volunteers investigated with Holter moni-
toring (Bonnemeier et al. 2003a, b) (Fig. 4.17, Table 4.13).

A decrease in complexity of short-term heart rate measures with age was shown 
as early as 1991 after the introduction of approximate entropy (Kaplan et al. 1991). 
In a study with 150 subjects between 5 and 70 years, HRV was recorded in sitting 
and lying positions for 20 min and four different age groups. For analysis, linear 
(SDNN, rMSSD, Pnn50, triangular index, TINN, ULF, VLF, LF, HF) and nonlinear 
(Poincaré plot analysis, approximate entropy, largest Lyapunov exponent, detrended 
fluctuation analysis) algorithms were used. In summary, HRV were less  chaotic/
more ordered with higher age and linear measures for variability reduced (Acharya 
2004). Giuliani et al used a different approach, representing cardiac dynamics in 
terms of a first-order Markov model, considering heartbeat dynamics as a random 
walk. Older healthy subjects showed less stochasticity and more determinism than 
younger subjects (Giuliani et al. 1998) (Tables 4.14, 4.15, and 4.16).

Older otherwise healthy persons showed a decline in rMSSD in 5-min HRV mea-
sures (Haegele-Link et al. 2008). HRV decreases already in healthy age groups 
between 24 and 39 years (n = 1,780) (Koskinen et al. 2009a, b) (Fig. 4.18).

Males
Females

60–70 years50–59 years40–49 years30–39 years20–29 years
100

125

150

175

200

225

250

ms
SDNN275

Fig. 4.17 SDNN changes 
with age (Bonnemeier et al. 
(2003a, b), with permission 
of John Wiley and Sons)

Table 4.13 Time-domain changes with age

Decade 
(years)

RR interval 
(ms)

rMSSD 
(ms) sNN50 TI (ms) SDNN (ms)

SDNNi 
(ms) SDANN (ms)

20–29 800.2 ± 89.1 46.3 ± 17.9 810.1 ± 395.6 49.3 ± 11.4 177.4 ± 36.9 77.7 ± 18.4 157.5 ± 37.2
30–39 770.9 ± 77.2 35.5 ± 15.0 555.1 ± 419.6 41.4 ± 11.7 147.9 ± 33.9 63.5 ± 19.5 133.2 ± 32.0
40–49 764.7 ± 91.7 26.1 ± 9.1 273.7 ± 208.9 36.7 ± 10.9 141.3 ± 36.5 54.4 ± 15.6 127.1 ± 33.4
50–59 799.5 ± 77.4 24.2 ± 10.9 218.3 ± 279.8 34.9 ± 7.4 134.9 ± 34.2 52.9 ± 13.6 130.1 ± 37.7
60–70 802.9 ± 93.9 18.8 ± 6.8 109.4 ± 155.8 32.2 ± 7.1 117.6 ± 26.9 39.1 ± 9.6 106.8 ± 26.0

Modified from Bonnemeier et al. (2003a, b) with friendly permission of John Wiley and Sons
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These results are frequently supported by newer data such as in Abhishekh et al. 
(2013), who once again showed decreasing SDNN, rMSSD, HF, and TP with age, 
whereas LF/HF increased.

Weight: Anorexia nervosa patients with less than 75 % of their ideal weight 
showed reduced frequency-domain values. Anorexia nervosa patients with restored 
weight showed no differences to the controls (Rechlin et al. 1998). To analyze the 
effect of ANS activity levels on postmenopausal obesity-related factors, 175 women 
were divided in a low TP group (<220 ms2) and a high TP group (>220 ms2). There 
was no difference in age, age at menopause, or years after menopause between the 
two groups. Body mass index, percentage of body fat, and blood pressure was 
higher in the low TP group, as well as triglycerides, cholesterol, and LDL (Kimura 
et al. 2006). In a small study, BMI < 20 was associated with elevated HF (Molfino 
et al. 2009). Weight loss of 10 % induced increased HF (Poirier et al. 2003).

Food Intake: Ingestion of meals in 15 healthy subjects did not lead to changes in 
HRV values recorded over 5 min in a time period of 2 h (Ambarish et al. 2005). 
Longer-lasting dietary restriction leads to an increase in HF and a decrease in LF 
(Vögele et al. 2009). High-carbohydrate/high-fat nutrition in an experimental study 
revealed an increased LF/HF, which was associated with an increased respiratory 
quotient (Millis et al. 2009).

Cognitive Performance: Psychological research has focused repeatedly on the 
interaction between states of the autonomic nervous system and cognitive perfor-
mance. The basic idea has been that best functional results will be obtained if the 
cardiovascular system is neither too relaxed nor too stressed (underarousal and 
overarousal). Porges postulated an association between the resting cardiac vagal 
tone and the extent of cardiovascular reactivity (Porges 1992), which again may 
correlate with cognitive performance. An increase in blood pressure correlated with 
performance on five attentional tasks (Duschek et al. 2005) and decreases of RSA 
during a task were related to higher cognitive functional levels in children (DeGangi 
et al. 1991). It was not always possible to replicate these findings in other studies 
(e.g., Backs and Seljos 1994; Duschek et al. 2009; Wright et al. 2005), which may 
be explained through different attentional tasks demanding different cognitive 
 patterns (Duschek et al. 2009).

On the other hand, increased cognitive activity can lead to reductions in heart 
rate variability (Althaus et al. 1998; van Roon et al. 1995). The MF band is sensitive 
to the amount of mental workload (Boucsein and Backs 2000). In fact, MF is more 
closely related to attentional processing than HF (Althaus et al. 1998). MF reduc-
tions have also been shown in complex, more naturalistic attentional tasks like flight 
simulation or car steering (Mulders et al. 1982; Veltman and Gaillard 1993, 1998). 
As mentioned above, MF and LF have some similar though not identical 
properties.

Table 4.15 LF/HF in various age groups (Acharya 2004)

Parameters 10 ± 5 25 ± 10 40 ± 15 60 ± 5 p value

LF/HF 1.425 = 1.0591 1.26798 = 0.88745 2.29766 = 2.59557 1.57 = 1.867 0.018
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In a visual attention test conducted on 60 healthy subjects, R-wave to pulse inter-
val (RPI), RSA, HRV in the mid-frequency band, and sensitivity of the cardiac 
baroreflex (BRS) were assessed at rest and during the test. RPI, RSA, HRV, and 
BRS were inversely related to the attentional functioning and discussed as a bottom-
 up modulation of cerebral function by baroreceptor activity. HF and RSA accounted 
for the largest portion of test score variance among all on-task parameters. The 
authors argue that enhanced sympathetic and reduced vagal cardiovascular influ-
ences as well as baroreflex inhibition may induce an adaptive state associated with 
improved cognitive–attentional functioning. Reduced cardiac inhibition is of par-
ticular importance for the establishment of a physiological condition optimal for the 
mental process required by attentional tasks (Duschek et al. 2009).

Ethnicity

As suggested above, ethnicity is a problematic concept. In cardiovascular medicine 
it has been used to identify subgroups of African American origin that have an 
increased prevalence of hypertension (e.g., Wali and Weir 1999). The word “ethnic-
ity” is often used as a supposedly less problematic expression than “race” but is 
actually an equivalent term. However, there is no clear scientific basis for the con-
cept of ethnicity. Genetic variation within ethnicities is often bigger than between 
ethnicities. Summarizing all with black skin under “African Americans” is a very 
special idea regarding the fact that Africans are widely different in phenotypes. 
There is also no convincing genetic definition of ethnicity (compare a broader 
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Fig. 4.18 rMSSD decline in healthy persons dependent of age (n = 190) (Haegele-Link et al. 
(2008), with friendly permission)
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discussion in Heinz and Kluge 2012). Choi’s study is a good example for how “eth-
nicity” can be used to draw rather special conclusions. For it, researchers invited 
“African Americans” and “Caucasians” to participate in an HRV study. They claim 
that they assessed social class (“Social class was determined using the clinician- 
rated Hollingshead two-factor index.”), but this does not appear in any statistical 
model. One may take social differences between groups into account by looking at 
weight differences, which are often associated with social class. On this base the 
authors of the study find and describe “ethnic differences” and discuss them again 
without considering the problematic idea of ethnicity or possible social differences 
that might explain the results. Based on this they conclude, “These results suggest 
that young AA individuals might exhibit signs of premature aging in their auto-
nomic nervous system” (Choi et al. 2006). If ethnicity is a useful concept at all, 
studies need much better theoretical frameworks and methodological concepts 
before achieving reliable results.

Pathophysiological Factors

Persistent atrial fibrillation is closely related to disturbances of the autonomic ner-
vous system. AF requires usually one or several triggering factors and a vulnerable 
electrophysiological or anatomic substrate for maintenance. Once established, AF 
alters atrial electrical and structural properties (called atrial remodelation), which 
promotes its own maintenance and recurrences and may alter the response to antiar-
rhythmic drugs (Chen and Tan 2007). Most patients with idiopathic paroxysmal AF 
appear to be vagally dependent, with heightened susceptibility to vasovagal cardio-
vascular response. In patients with organic heart disease, paroxysmal AF appears 
more likely to be sympathetically induced (Huang et al. 1998). Already early studies 
documented that in patient subgroups RR intervals and pulse are mainly nonrandom 
(Rawles and Rowland 1986). The relevance and significance of traditional time-
domain and spectral HRV parameters in chronic AF is uncertain. However, although 
RR intervals are intrinsically irregular in AF, this irregularity is not random; it is 
complex and is dependent on a number of factors: the refractory period and conduc-
tivity of the AV node, the degree of concealed conduction and the irregularity, and 
frequency and direction of atrial wave fronts impacting on the AV node (Khand et al. 
2006). HRV in AF has been stated to be highly rate dependent (Friedman 2004).

Garfinkel et al. studied atrial fibrillation in humans, in a stabilized form of 
canine ventricular fibrillation, and in fibrillation-like activity of tin sheets of 
canine and human ventricular tissue, with the hypothesis of AF as deterministic 
chaos arising via a quasiperiodic transition.1 They analyzed data with help of 

1 A system’s behavior is said to be quasiperiodic if it displays several independent frequencies, for 
example, an oscillation at one frequency that is amplitude modulated at another frequency. When 
a quasiperiodic system becomes chaotic, the quasiperiodic frequencies often remain detectable in 
the chaotic regimen (Garfinkel et al. 1997).
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Poincaré plots where consecutive points were connected and the distance mea-
sured. Fifteen of 19 plots of humans showed a clear ring structure. Quasiperiodicity 
was detected with the help of a Fourier analysis of the intervals (not to be confused 
with a Fourier analysis of QRS-distances). The Lyapunov exponent was calculated 
with a range of 0.08–0.14 in a computer simulation, but it was not possible to 
calculate the Lyapunov exponent in the biological samples. The authors consid-
ered the behavior to suggest chaos in analogy to models of fluid turbulence 
(Garfinkel et al. 1997).

Holter monitoring has been used in patients with permanent AF to test HRV (Piot 
et al. 1998). In a small study, 500 RR intervals were studied in 16 patients with 
permanent AF and 12 healthy controls using SDNN, coefficient of variance, rMSSD, 
LF, and HF as feasible markers (van den Berg et al. 1997b).

Patients with AF are usually excluded in studies. However, in some studies, they 
have been used. Kamata analyzed with the help of Holter monitoring 12 patients 
after 1, 6, and 12 months following Maze interventions (ablation) and seven patients 
without, using RR intervals and computing time-domain (SDRR) and frequency- 
domain (HF, LF, TP) values. The circadian variation 1 month after surgery was 
significantly disturbed but restored after 6 and 12 months, possibly due to vegetative 
reinnervation of the sinus node (Kamata 1997). 24 patients with persistent AF were 
tested with continuous ECGs during bicycle exercise testing, their ventricular 
response was characterized by time-domain HRV indices, based on QRS-distances  
(Husser et al. 2007).

Stein and Borer conducted a landmark study in 21 patients with atrial fibrillation 
due to chronic severe mitral regurgitation using Holter monitoring and following 
the patients for up to 9 years (end points: mortality, surgery). They used time- and 
frequency-domain measurements and compared them with resting ventricular func-
tion measured by radionuclide cineangiography and the outcome. Reductions in 
frequency-domain measurements of ultra low- and high-frequency HR variability 
were significant predictors of the combined risk of mortality or requirement for 
surgery (Stein et al. 1994).

Friedman used a method to calculate regressions and examine the differences 
between the measured HRV and the expected HRV (Friedman 2004). Mostly, 
premature beats are removed and AF episodes ignored, using only SR periods 
(e.g., Vikman et al. 1999). SDNN and SDANN as indices for the ventricular 
response interval have been used in patients with persistent atrial fibrillation. 
They showed correlation to good exercise capacity during treadmill exercise 
testing, whereas LVEF (and age, BMI) did not correlate (Matsumoto et al. 
2004).

In a study including 40 patients with AF, QRS intervals labelled in 5th RR 
percentile intervals in each hour were calculated. This parameter has been shown 
to approximate the functional refractory period (FRP) of the atrioventricular node. 
In addition they used SDARR (the equivalent of SDANN), which has been shown 
to predict mortality in patients with chronic AF and heart failure. FRP did corre-
late with SDARR, mean RR interval, and NYHA class of heart failure (Khand 
et al. 2006).
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Exercise improved health and quality of life in patients with chronic AF com-
pared to controls; this correlated with HF in a 15-min frequency-domain HRV 
(Hegbom et al. 2006).

Segerson and colleagues measured short-term HRV in patients with paroxysmal 
AF during sinus rhythm and ventricular cycle length entropy during AF phases, 
using data from PhysioNet. Short-term HRV parameters were SDNN, rMSSD, 
SDANN, pNN50, and interbeat correlation coefficient (ICC) from 30-min short- 
term HRV and entropy measures (Shannon informational entropy and ApEN) from 
5-min AF. Reductions in rMSSD and increases in ICC were correlated with reduc-
tions of entropy during AF. They conclude that entropy during AF is possibly mod-
ulated by vagal activity (Segerson et al. 2008).

Esperer and colleagues used Poincaré plot patterns (here called Lorentz plots) to 
test their associations with different heart rhythms. They grouped the patterns in (1) 
comet shape, (2) torpedo shape, (3) H-fan shape, (4) SZ-fan shape, (5) double-side 
lobe pattern type A (DSLP-A), (6) double-side lobe pattern type B (DSLP-B), (7) 
triple-side lobe pattern type A (TSLP-A), (8) triple-side lobe pattern type B 
(TSLP-B), (9) island pattern type A (IP-A), and (10) island pattern type B (IP-B). 
Comet and torpedo shapes were associated with sinus rhythm, whereas a “fan 
shape” was associated with AF. They propose to use this kind of analysis to improve 
rhythm analysis of Holter recordings (Esperer et al. 2008). Kikillus used a similar 
kind of analysis in 60-min measures and was able to show that it is possible to iden-
tify patients with paroxysmal AF even if they don’t show this at the time of mea-
surement and state a sensitivity of 83 % (Kikillus et al. 2008).

In conclusion, using HRV in patients with persistent AF remains controversial. 
Some studies have revealed associations between exercise capacity, quality of life, 
and HRV (e.g., Stein et al. 1994); other studies did not find correlations between 
traditional heart measures and HRV (Friedman 2004). Clinical aspects are discussed 
in more detail in part II, Chap. 2.

Depression is a significant factor in frequency-domain HRV. Depending on the 
amount, HRV values decrease significantly more in depressed coronary patients 
than in nondepressed (Carney et al. 2005b). However, in a sleep study with female 
IBS patients, depressed patients showed no difference compared to nondepressed 
patients and healthy controls (Robert et al. 2004).

Growth hormone deficiencies led to decrease in LF, increase in HF, decrease in 
VLF, and decrease in LF/HF (Leong et al. 2000).

Isocapnic hypoxia in dogs leads to progressive decrease of HF during moderate 
to severe hypoxia (measured through invasive blood pressure oscillations, verified 
by ECG) (Yasumo 2000).

Total cholesterol and low-density lipoprotein correlated inversely with HRV- 
based measurements and did not normalize after 3 months of diet; hence, serum 
lipids decreased (Danev et al. 1997).

Smoking: HF (0.25 Hz) decreased 3 min after smoking a cigarette following an 
abstinence of 8 h under controlled respiration conditions (Hayano et al. 1990). 
Long-term effects of smoking in 81 subjects (25 nonsmokers, 31 moderate, and 25 
heavy smokers) were observable in younger smokers by a decrease of the HF 
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component and reduced postural changes in all smokers (Hayano et al. 1990). 
Heavy smokers (20–40 cigarettes a day) who stopped smoking for 3 days showed a 
reduction of HRV parameters (Holter monitoring) (Munjal et al. 2009).

Pollution: In treated stable heart failure patients (n = 132), heart rate vari-
ability measures (Holter monitoring) were independent of daily area PM10, 
particle number concentration, nitrogen oxides, daily estimated PM 2,5, PNC 
exposures, and 3-day cumulative nitrogen dioxide (N2O) (Barclay et al. 2009). 
In a study, five asthmatic adults were exposed to carbon and ammonium nitrate 
particles and ozone or filtered air over 4 h. SDNN, LF, and HF were reduced in 
20-min HRV (Power et al. 2008). In a group of 22 workers exposed to lead, a 
negative correlation between SDNN, TP, and LF and lead concentration was 
found (r = −0.48, −0.48, and −0.47, respectively), whereas overall HRV indices 
were not different to a control group of 13 age-matched healthy test persons 
(Gajek et al. 2004).

CRP: In 531 patients with unstable angina pectoris, high CRP correlated with 
low HRV. SDNN and VLF were the best predictors of high CRP (Lanza et al. 2006). 
In patients after acute myocardial infection, a strong inverse relation between sev-
eral HRV indices (SDNN, TP, HF, LF) and CRP was observed that remains also 
after adjustment for left ventricular function (Psychari et al. 2007). In stable coro-
nary heart disease, mixed results were presented. In a study with Holter monitoring, 
a high correlation was observed (Madsen et al. 2007). In another study with short- 
term data (5 min), no correlation was observed (Yue et al. 2007). In a further study 
that selected a small sample with low and higher CRP values using short-term HRV, 
HF was decreased in the high-CRP group (Nolan et al. 2007). In healthy persons, no 
association was found between CRP and HRV changes after a mental stress test 
(Owen and Streptoe 2003). Using only a 2-min HRV in 823 subjects without heart 
disease, Kon and colleagues showed that CRP predicted independently a low SDNN 
index (Kon et al. 2006). Sloan included 757 young healthy subjects in a 10-min 
ECG, and HF and LF were inversely correlated with HF and LF (Sloan et al. 2007). 
A recent review concluded that there is clear evidence for an association between 
ongoing subclinical inflammation and decreased heart rate variability (Haensel 
et al. 2008).

Medicaments

Antiarrhythmics

Amiodarone: Patients with a decreased HRV index < 20 had showed better response 
to treatment with amiodarone than patients with a higher HRV (Malik et al. 2000). 
Amiodarone reduced HRV indices in patients with paroxysmal AF and a predomi-
nant sympathetic type, whereas it did not change HRV in patients with vagal tone or 
mixed type (Shabalin et al. 2002).
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Antihypertensive Drugs

Angiotensin II Receptor Antagonists: All time- and frequency-domain values 
increased after a treatment with losartan. Decreasing effects of volume load disap-
peared (Petretta et al. 2000).

ACE Inhibitors: 32 patients with chronic cardiac failure underwent Holter ECG 
and were treated with captopril or placebo. pNN50 increased from 482 (23–6,120) to 
1,032 (48–7,437) (Flapan et al. 1992). In a small RCT, patients with congestive heart 
failure received either an ACE inhibitor (zofenopril) or a placebo. After 12 weeks, 
total power was increased by 50 % and HF increased twofold in the group receiving 
zofenopril (Binckley et al. 1993). 40 patients with a first uncomplicated MI got either 
captopril or placebo and were studied baseline and 3 days after with a Holter ECG. 
In the captopril group SDNN increased (from 90 ± 29 to 105 ± 30), SDANN increased 
(74 ± 24 to 90 ± 26), and SDNN 5 min increased (45 ± 17 to 49 ± 17). rMSSD and 
pNN50 remained unchanged. TP increased (8.28 ± 0.42 to 8.47 ± 0.3); ULF, VLF, 
and LF increased; HF remained unchanged (Bonaduce et al. 1994).

Beta-Blockers: Beta-blockers induced increasing values in TP, HF, LF, and VLF in 
long-time treatment (Lin et al. 1999). Metoprolol, but not celiprolol, restored BRS and 
HF in heart failure patients (Sanderson et al. 1999). Bisoprolol increased rMSSD, pNN50, 
SDNN (daytime), and HF (daytime) (Pousset et al. 1996). Propranolol did not lead to 
notable changes in coarse-graining spectral analysis (Yamamoto and Hughson 1994). 
Beta-blockers possibly increased the coupling of HRV and SPV (Gonzalez et al. 2000). 
Beta-blockers increased HRV indices in patients with MODS and increased survival (ret-
rospective study (Hennen et al. 2008)). The effect of beta-blockers on the recovery of HF 
power was studied in an RCT of postinfarction patients. HF recovered in all patients but 
more profoundly in patients treated with beta-blockers (Lampert et al. 2003). Propranolol 
increased HRV measures (Van den Berg et al. 1997a, b) in general as well as in patients 
with permanent AF (Van den Berg et al. 1997a, b). It increased (pathologically decreased) 
HF in patients with end-stage renal disease (Tory et al. 2004) (Fig. 4.19).
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Antidepressive

Bupropion: Decreased values for HRV both in rest and in response to mental and 
physical stressors (Straneva-Meuse et al. 2004).

Doxepine: Decreased SDNN after 14 days (Rechlin 1994; Rechlin et al. 1994), 
see also fluoxetine.

Fluoxetine: In a small study (n = 14), responders on fluoxetine (or doxepin) had 
an increase in SDANN of 17 %, and nonresponders a decrease in SDANN and a 
22 % decrease in SDNN. pNN50 and rMSSD remained unchanged (Khaikin et al. 
1998). SSRIs generally led to a decrease of SDNN and RAS in a large cross- 
sectional study (Licht et al. 2008).

Fluvoxamine: No change of SDNN after 2 weeks of treatment (Rechlin 1994; 
Rechlin et al. 1994).

Paroxetine: Unchanged values for HRV both in rest and in response to mental 
and physical stressors (Straneva-Meuse et al. 2004). Unchanged SDNN after 
14 days of treatment (Rechlin 1994; Rechlin et al. 1994).

Sertraline: Decreased HRV did not change after treatment with sertraline, but 
ultra low frequency was increased (Glassman et al. 2007).

SSRI General: Patients with depressions showed a similar HRV than controls, 
but HRV decreased 2 days after using SSRIs (Bär et al. 2004).

Tricyclic Antidepressants: The mean consecutive difference between RR inter-
vals was reduced in patients treated with different tricyclics (Jakobsen et al. 1984). 
150 mg amitriptyline per day reduced, after 14 days of treatment, heart rate and 
heart rate variability and all indices of frequency-domain HRV (Rechlin 1994; 
Rechlin et al. 1994). In a large cross-sectional study, patients with TCAs had a sig-
nificantly lower SDNN and RSA (Licht et al. 2008).

Other Psychopharmacological Drugs

Atypical Antipsychotics: In schizophrenic patients, already abnormal suppressed 
RR intervals (specially in LF) were further decreased with the use of atypical anti-
psychotics (Mujica-Parodi et al. 2005).

Caffeine: Caffeine intake increased HRV measures in both diabetic patients and 
the control group (Richardson et al. 2004). Caffeine intake increased ApEN and 
frequency-domain values of HRV (Yeragani et al. 2005). Blood pressure variability 
in healthy objects consuming 240-mg caffeine or placebo was assessed with ApEN 
and DFA (α exponent). ApEN did not change after caffeine intake, but the long-time 
scaling exponent α did increase from 0.99 to 1.04 (Papaioannou et al. 2006). In 
healthy participants, intake of 100- or 200-mg caffeine did not change HRV (Rauh 
et al. 2006). Caffeine intake in cardiologic patients with acute STEMI was investi-
gated in an RCT, where one group had unlimited access to caffeinated coffee and 
one to decaffeinated coffee. In the caffeine group SDNN after 5 days was higher 
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(97.7 ± 29.0 vs. 85.0 ± 18.5), also rMSSD (26.5 (21.7–31.2) vs. 19.4 (16.7–22.2)). 
No adverse cardiovascular effects associated with caffeine ingestion in the periin-
farct period were observed, in particular no predisposition to tachydysrhythmias 
(Richardson et al. 2009). Caffeine had no effect on SDNN in a small study 
(Karapetian et al. 2012).

Gabapentin: SDNN and HF increased significantly or LF/HF ratio decreased and 
LF remained unchanged after 3-month therapy in diabetic patients with peripheral 
polyneuropathy (Ermis et al. 2010).

Nicotine: Holter monitoring in subjects going over from smoking to nicotine 
patches to abstinence showed an increase in all frequency-domain variables of HRV 
(Stein et al. 1996).

Olanzapine: In 15 patients, some complexity measures (approximate entropy, 
compression entropy, fractal dimension) and the QT-variability were obtained and 
compared with matched controls. Untreated patients had reduced complexity indi-
ces; the QT-variability was increased. After initiation of treatment, complexity was 
reduced, and QT-variability unchanged (Bär et al. 2008).

Catecholamines

Dobutamine: CHF and healthy controls underwent dobutamine infusions and were 
scanned with help of Swan–Ganz catheters, ECG, and MSNA. In controls, dobuta-
mine inhibited MSNA probably due to the activation of arterial baroreceptors – if 
there was no increased blood pressure, the MSNA reaction was absent. A similar 
reaction was observed in CHF patients (Velez-Roa et al. 2003).

Adrenaline: Infusion of noradrenaline and adrenaline did not induce changes in 
frequency-domain values of short-term HRV (1 h each) in healthy subjects (Tulen 
et al. 1994).

Noradrenaline: Infusion of noradrenaline and adrenaline did not induce changes 
in frequency-domain values of short-term HRV (1 h each) in healthy subjects (Tulen 
et al. 1994).

Anesthesiological Drugs

Fentanyl: No effects on frequency-domain variables were detected (Galletly et al. 
1994a). It decreased absolute TP and LF, not HF. No effect on normalized measure-
ments of LF, HF, and LF/HF ratio (Riznyk et al. 2005). 1 ug/kg fentanyl decreases 
LFnu without increases of HFnu, in addition to decrease of TP from 3,345 ± 3,333 
to 1,806 ± 1,328 ms2 (Vettorello et al. 2008).

Midazolam: Slight depression of HF and LF and unchanged LF/HF ratio 
(Michaloudis et al. 1998). Depression of HF in deep-sedated ICU patients (Unoki 
et al. 2009).

Medicaments
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Nitrous Oxide: N2O in healthy subjects led to a reduction in HF and to a rise in 
LF/HF ratio (Galletly et al. 1993). Inhalation of nitrous oxide by healthy volunteers 
attenuated the increase of LF due to the procedure (compared with controls), 
whereas HF remained high, such as LF/HF increased by use of nitrous oxide 
(Okushima et al. 2008).

Propofol: Decreased LF, MF, and HF, LF to a lesser extent than the latter two 
(Galletly et al. 1994b). Decreased TP and HF and increased LF/HF ratio (Howell 
et al. 1995). Absolute TP and HF decreased (Riznyk et al. 2005).

Thiopental: Decreased TP and HF and increased LF/HF ratio (Howell et al. 
1995). Absolute TP, HF, and LF decreased. LFnu increased and HFnu decreased. 
Increase of LF/HF ratio (Riznyk et al. 2005).

Other Drugs

Allopurinol: No effect on time-domain values (Shehab et al. 2001).
Atropine: Decreased HRV (Van den Berg et al. 1997a, b). Decreased coupling 

between HRV and SPV (Gonzalez et al. 2000). Increased short-term scaling expo-
nent alpha-1 (Hautala et al. 2003a).

Beta-agonists: Beta-agonists had no effect on HRV in a study with COPD 
patients (Bédard et al. 2010).

Digoxin: In a study with 26 patients with heart failure recently set on digoxin, HF 
increased from 84 ± 24 to 212 ± 72 ms2, rMSSD increased from 20.3 ± 1.8 to 
27.0 ± 3.4 ms, and LF increased from 239 ± 80 to 483 ± 144 ms2 (Krum et al. 1995). 
Similarly, MSNA decreased in heart failure patients, but not in healthy controls 
(Ferguson et al. 1989).

Metformin: Metformin increased HRV after 4 months of treatment in obese dia-
betic patients (Manzella et al. 2004).

Omega-3 Fatty Acids: A crossover study with post-MI patients showed increased 
HF but no other HRV parameters in patients taking for 4 months omega-3 fatty 
acids (O’Keefe et al. 2006). On the other hand, a meta-analysis showed reduced 
basal heart rate in patients taking omega-3 fatty acids (in mean 1.6 bpm) (Mozaffarian 
et al. 2005). In a population-based study recording intake of tuna and other fish 
products, short-term SDNN and rMSSD was higher in persons consuming them 
regularly. Also HF was increased (and LF reduced), resulting also in a lower LF/HF 
ratio. In addition higher fish intake was associated with lower Poincaré ratio and 
higher DFA1 and VLF (Mozaffarian et al. 2008).

Proton-Pump Inhibitors: Use of esomeprazole did not induce changes in HRV 
(Yi et al. 2008).

Raloxifene: In one study time-domain values remained the same after 6 months 
of treatment, but HF increased and LF/HF decreased in this treatment period (Gol 
et al. 2006).

Simvastatin: 25 patients with a non-dilated cardiomyopathy were measured 
before and after a 6-week course of simvastatin. A 5-min ECG was used to deter-
mine frequency-domain values. There were no differences on baseline HRV, but a 
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modest relationship between the extent of LDL reduction and Lfa (Gentlesk et al. 
2005).

Spironolactone: 31 patients with chronic heart failure were treated with spirino-
lactone or placebo in addition to diuretics and ACE inhibitors. Spironolactone 
reduced a marker of vascular collagen turnover and increased time-domain param-
eters of heart rate variability (MacFadyen et al. 1997). It reduced HRV in diabetic 
patients (rMSSD, Lf, and HF) (Davies et al. 2004).
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                      Introduction 

 Heart rate variability is often discussed synonymously with imbalance within the 
autonomous system. HRV has been seen not only as an indicator for probable dis-
turbances in the autonomous system. In a signifi cant number of publications, it is 
even regarded as proof for ANS dysfunction without other kind of evidence (e.g., in 
Mazzeo et al.  2011 ). In this chapter I intend to review this hypothesis. 

 One basic problem is to fi nd methods to examine the autonomic nervous system. 
There is no gold standard to evaluate the ANS, and it is rather arguable whether 
there are evaluation methods that can display the real situation of the ANS. 

 Dysfunction    of ANS can be caused or impaired by several clinical and subclini-
cal conditions, summarized in the following Table  5.1 .

   We still have an insuffi cient understanding of the exact underlying mechanisms 
that induce alterations of HRV in CHF (Tulppo and Huikuri  2004 ) or in healthy 
persons.  

   Is There an Accordance Between Anatomical Structures 
Involved in HRV and Supraspinal Structures Related 
to ANV? 

 Given the increased possibilities of in vivo studies of the human brain, it is not sur-
prising that several studies have been conducted focusing on HRV. 

 Critchley used functional MRI experiments with simultaneous electrocardiogra-
phy to examine regional brain activity associated with autonomic cardiovascular 
control during performance of cognitive and motor tasks. Activity in the dorsal 
anterior cingulate cortex (ACC) related to sympathetic modulation of heart rate was 
observed using indices of heart rate variability and high- and low-frequency power 
in the cardiac rhythm. This could indicate that during effortful cognitive and motor 
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behavior, the dorsal ACC supports the generation of associated autonomic states of 
cardiovascular arousal. This idea was tested on three patients with damaged ACC 
regions who, in contrast to healthy volunteers, showed blunted autonomic arousal 
to mental stress (Critchley et al.  2003 ). 

 Matthews used a test that presented incongruent (INC) and congruent (CON) 
stimuli at two speeds to probe dorsal (dACC) and ventral (vACC) using functional 
magnetic resonance imaging (fMRI). He was able to distinguish functional subdivi-
sions within the ACC and to link the processes of cognitive interference and para-
sympathetic modulation with activation in specifi c subregions of the ACC, a 
structure that is critical for the interface between cognition and emotion. This acti-
vation correlated signifi cantly with HF and might represent the parasympathetic 
modulatory role of the vACC (Matthews et al.  2004 ). 

 Napadow and colleagues developed and implemented a new method that 
relates cardiac-gated fMRI time series with continuous-time heart rate variability 
(HRV) to estimate central autonomic processing. The ECG was analyzed with a 
novel point process adaptive-fi lter algorithm for computation of HF simultane-
ously. This combined HRV–fMRI approach demonstrated HF correlation with 
fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus coeru-
leus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/
dorsolateral prefrontal, posterior insular, and middle temporal cortices (Napadow 
et al.  2008 ). 

   Table 5.1    Principal causes of autonomic nervous system dysfunction   

 Degenerative 
disorders 

 Acute and subacute 
disease  Chronic diseases  Others 

 Pure autonomic 
failure (PAF) 

 Heart failure  Diabetes mellitus  Drugs acting on 
ANS 

 Multiple system 
atrophy (MSA) 

 Myocardial infarction  Hypertension  Cardiac 
transplant 

 Parkinson’s disease  Severe brain injury  Idiopathic orthostatic 
hypotension 

 Spinal cord injuries  Increased intracranial pressure 
 Guillain–Barré  Hereditary neuropathies 
 Paraneoplastic 

neuropathies 
 Dopamine beta-hydroxylase 

defi ciency 
 Botulism  Uremia 
 Drug-induced 

neuropathies 
 Alcoholism 

 Toxic neuropathies  Liver disease 
 Porphyria  Chronic pulmonary diseases 
 Immune autonomic 

neuropathies 
 Amyloidosis 
 Infective neuropathies 
 Chronic immune demyelinating 

polyneuropathies 
 Connective tissue diseases 

  Modifi ed from Mazzeo et al. ( 2011 )  
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 Lane correlated HF-HRV with measures of regional cerebral blood fl ow (rCBF) 
derived from positron emission tomography (PET) and (15)O-water in 12 healthy 
women during different emotional states. Three different emotional states and three neu-
tral conditions were each induced by videos or through recall of personal experiences. A 
60-s HRV was analyzed with the help of frequency domain. The six emotional and six 
neutral conditions were grouped together and contrasted. Substantial overlap was found 
between emotion-specifi c rCBF and the correlation between emotion-specifi c rCBF and 
HF-HRV, particularly in the medial prefrontal cortex. The study also observed that the 
elements of cognitive control had clear neural substrates that correlated with HF-HRV 
and to a large extent differed from the emotion- specifi c correlates of HF-HRV. The 
study proposed that the medial visceromotor network is a fi nal common pathway by 
which emotional and cognitive functions recruit autonomic support (Lane et al.  2009 ). 

 Thayer and colleagues executed a meta-analysis of this and four other imaging 
studies using Multilevel Kernel Density Analysis (MDKA). The study treats MDKA 
contrast maps as the unit of analysis and is therefore suitable for evaluating the con-
sistency of activation across studies (Thayer et al.  2012 ). They identifi ed three regions 
associated with emotion tasks investigated in earlier studies together with HRV 
(Thayer  2006 ), the right pregenual cingulate (BA 24/32) in the medial prefrontal cor-
tex, the right subgenual cingulate (BA 25), and the left sublenticular extended amyg-
dale/ventral striatum (SLEA). The latter region extends into the basolateral amygdale 
complex, the superior amygdale (central nucleus), and into the ventral striatum. 
Especially the involvement of SLEA is in accordance to its central role in ANS. One 
problem is that due to temporal aspects of the imaging investigations, only HF (need-
ing the shortest time periods) could be tested. 

 In conclusion, newer studies support the assumption developed in animal studies 
that ANV correlates in the brain and structures involved in HRV are largely similar.  

   Is There General Increased Autonomic Activity That Might 
Correlate with HRV Measures? 

 In frequency-domain analysis the idea of a possible correlation between alterations 
of the HF, or LF component and parasympathetic, or sympathetic activity comes 
largely from pharmacological studies in both humans and other animals. The basic 
idea that HRV measures could correlate with the functional state of the vegetative 
nervous system assumes a synchronicity between different parts of it. In other words 
it assumes that the vegetative nervous system is in either a sympathetic or parasym-
pathetic state, and this regards all parts simultaneously. This is probably only par-
tially true. There is evidence for quantitative regional differences in sympathetic 
outfl ow, particularly in patients with heart failure, with a bigger activation at the 
heart compared to the real noradrenaline spillover (Hasking et al.  1986 ). These dif-
ferences occur not only between different functional systems but also temporally. 
The increase in cardiac adrenergic drive precedes the rise in sympathetic nerve traf-
fi c to the skeletal muscle measured by MSNA (Rundqvist et al.  1997 ). Therefore, it 
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is diffi cult to sustain the idea of a generalized sympathetic or parasympathetic state. 
HRV might or might not mirror a generalized state, but it may also simply show just 
the sympathetic or parasympathetic state of the parts of the ANS involved in HRV 
(and not, for instance, ANV states in peripheral nerves).  

   Does HF Correlate with Parasympathetic Tone? 

 [ Pros :] Early evidence was interpreted to suggest that HF power can be promoted as a 
noninvasive index of vagal-cardiac nerve traffi c in humans (Eckberg  1983 ; Fouad et al. 
 1984 ). Administration of atropine or other parasympathetic blocking agents can abol-
ish the high-frequency component of heart rate variability (Rimoldi et al.  1990 ). High-
dose atropine was thought to block vagal parasympathetic activity, and it was shown to 
eliminate nearly all HF (and LF) in studies (Pomeranz et al.  1985 ; Koh et al.  1994 ). 
Using an experimental approach in which sympathetic infl uence was blocked by pro-
pranolol and vagal infl uence was blocked gradually with atropine under controlled 
respiration, HF (both calculated with autoregressive spectrum analysis and fast Fourier 
transformation) correlated strongly with vagal tone (Hayano et al.  1991 ). In volunteers 
after beta-adrenergic blockade with propranolol, phenylephrine and nitroprusside were 
used to achieve barorefl ex-mediated increases and decreases of the parasympathetic 
activity, with a dose–response experiment. In the analysis, which used linear and qua-
dratic models, quadratic models proved superior. The authors conclude that the rela-
tionship between HRV parasympathetic activities can be described best by a function 
with an ascending part that goes over to a plateau level (Goldberger et al.  2001 ). In 
post-AMI patients, plasma noradrenaline correlates with HF (Oya et al.  1999 ). 

 [ Cons :] Kollai and Mizsei compared respiratory peak minus valley RR interval 
changes with RR interval shortening provoked by large-dose atropine after β-adrenergic 
blockade. Although their study supported the use of respiratory RR interval fl uctua-
tions as indexes of vagal-cardiac nerve traffi c, it showed that this measure is not a 
perfect index (Kollai and Mizsei  1990 ). After β-adrenergic blockade, there was a rea-
sonable correspondence between RR interval fl uctuations and vagal-cardiac neural 
outfl ow but only when respiration was controlled. When respiration was not con-
trolled, respiratory frequency RR interval fl uctuations bore no signifi cant relation to 
tonic vagal-cardiac nerve activity (Grossman et al.  1991 ). Casadei noted a difference 
between absolute power of the HF component and the normalized power. The former 
increased, but the latter decreased at the onset of exercise (Casadei et al.  1995 ).  

   Does LF Correlate with Sympathetic Tone? 

 [ Pros :] Low frequency is thought to be associated with changes of sympathetic 
outfl ow. In dogs, an increase in low-frequency power was observed during barore-
ceptor unloading with nitroglycerin and was prevented by prior bilateral 
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stellectomy (Rimoldi et al.  1990 ). In four of ten subjects studied, a signifi cant cor-
relation between sympathetic nerve activity and normalized LF was found (Saul 
et al.  1990 ). Malliani and coworkers argued with parallel changes of increased sym-
pathetic activity and LF increase (Malliani et al.  1991 ); their review and data how-
ever have been recalculated and challenged (Eckberg  1997 ). In decerebrated cats, 
increased activity of cardiac sympathetic nerves and refl ex sympathetic excitation 
induced an increase in LF and a reduction in HF, the opposite effect occurring in 
sympathetic refl ex inhibition (Montano et al.  1992 ). Another argument for the cor-
relation of LF and sympathetic outfl ow came from studies showing synchronous 
changes of LF and HF oscillations of MSNA recordings and HRV recordings under 
stimulation with nitroprusside (Pagani et al.  1997 ). 

 [ Cons :] Pagani reported that propranolol 0.2 mg/kg iv does not reduce normalized 
0.1-Hz RR interval spectral power (Pagani et al.  1986 ). Low-dose scopolamine as 
cholinergic blocking drug increases LF (Vibyral  1990 ). In healthy supine subjects 
there was no signifi cant correlation between myocardial noradrenaline spillover and 
absolute or relative 0.1-Hz RR interval spectral power (Kingwell et al.  1994 ). High-
dose atropine should block vagal parasympathetic activity and thus increase sympa-
thetic activity. By contrast, high-dose atropine abolished nearly all LF (and HF) in 
studies (Pomeranz et al.  1985 ; Koh et al.  1994 ). Heart rate variability recorded during 
severe exercise in healthy subjects (a condition known to increase sympathetic out-
fl ow) has been shown to decrease (Casadei et al.  1995 ). Two groups measured RR 
interval spectral power before and after high spinal anesthesia. Sympathetic block-
ade in the supine position did not alter absolute or relative 0.1-Hz RR interval spec-
tral power signifi cantly (Hopf et al.  1995 ; Introna et al.  1995 ). Short-term β-blockade 
can increase HF power (Jokkel  1995 ). In a mice model, cardiac-specifi c GTP-binding 
protein, G sα , which plays an important role in β-adrenergic signal transduction, was 
overexpressed. Contrary to expectations, the LF component was reduced in the 
mutant mice compared to wild-type mice, and the LF/HF ratio was also reduced 
(Uechi et al.  1998    ). LF however contains also vagal infl uence (Eckberg  1997 ). 
   MIBG-SPECT used to examine postganglionic sympathetic innervation showed 
reduced activity, whereas frequency-domain and time- domain values did not differ to 
the controls apart from a subgroup of patients (Druschky et al.  2001 ). 

 Some of the studies reporting associations between LF and sympathetic outfl ow 
have been criticized. The study of Saul et al. ( 1990 ) was not able to show the cor-
relation in six of ten subjects. The study of Pagani et al. ( 1997 ) was criticized for not 
using fi xed breath frequencies, using wrong statistic algorithms, and not normaliz-
ing the data (Eckberg  1997 ). 

 To explain the disconcordance of LF and known conditions with high sympa-
thetic outfl ow, the hypothesis was developed stating that under conditions of com-
plete receptor saturation or blockade, the modulation of autonomic activity is 
abolished and the relevant frequency band disappears (Malik and Camm  1993 ). The 
loss of LF in chronic heart failure can be viewed as evidence for a decrease in 
modulation of sinoatrial discharge, which may be due to constancy of sympathetic 
and parasympathetic fi ring rates or to a loss of pacemaker responsiveness to neu-
rally released noradrenaline and acetylcholine (Notarius and Floras  2001 ). 
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 In patients with severe heart failure, the LF pattern can be virtually absent in 
muscle sympathetic nerve activity, which correlates again close with HRV LF (van 
de Borne et al.  1997 ). A breakdown of fractal properties of HRV is often related to 
an unfavorable prognosis. In a study using an experimental stress model, fractal 
breakdown was associated with simultaneous activation of SNS and PNS (Tulppo 
et al.  2005 ). 

 In rats, there is a correlation between sympathetic nerve activity and blood pres-
sure in power spectra at 0.4 Hz, but not with heart rate (where the majority of spec-
tral power was lower than 0.4 Hz) (Brown et al.  1994 ).  

   Barorefl ex Gain 

 The barorefl ex manages blood pressure homeostasis in different body positions. 
Baroreceptors located in major systemic arteries monitor blood pressure. If PB 
decreases, sensory impulses transmitted to the vasomotor center in the brainstem 
also decrease, resulting in adjustment of ANS activity to increase heart rate and 
vascular resistance. This basic refl ex can be attenuated by higher brain centers and 
the limbic system. Blushing during an embarrassing moment involves the vasomo-
tor center but originates in the frontal association cortex, much like fainting reac-
tions, cold sweating, and racing heart rate. 

 The barorefl ex feedback theory describes low oscillations observed as a conse-
quence of changes in blood pressure (e.g., due to respiration). Arterial baroreceptors 
detect such changes and lead the central nervous system to adjust the heart rate 
through both fast vagal action and slower sympathetic action. The barorefl ex also 
adjusts sympathetic outfl ow to the vasculature and therefore peripheral resistance, 
leading to a change in blood pressure in an attempt to buffer the initial change in 
blood pressure (Malpas  2002 ). The critical point is that the combination of a series 
of time delays present among baroreceptors, the central nervous system, sympa-
thetic outfl ow, and the response of the vasculature means that the input change in 
blood pressure results in an output change in vasculature resistance that is slightly 
delayed in time. Instead of buffering the initial change in blood pressure, this leads 
to the development of yet another change in blood pressure. This was showed in a 
model that accounted for oscillations at 0.1 Hz in the human (DeBoer et al.  1987 ). 
Sympathecomy or combined alpha- and beta-adrenergic blockade leading to reduc-
tions of the spectral power at 0.1 Hz may be interpreted as interruption of the refl ex 
feedback loop (Malpas  2002 ). Some refi ned models have been presented to show 
this. Linear models seem to require strict relationships between the vasculature and 
the central nervous system (Burgess et al.  1997 ). A nonlinear model, however, 
needed only a set of rather mild assumptions to show a similar behavior of the sys-
tem (Ringwood and Malpas  2001 ). But even if the baroreceptor refl ex is removed 
by denervation, a reasonable amount of variability remains around this frequency 
(Cerutti et al.  1994 ; Julien et al.  1995 ). This can be due to other refl ex pathways or 
central nervous system components (Malpas  2002 ). 
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 LF spectral power is infl uenced by the barorefl ex function, cardiac beta- 
adrenoreceptor sensitivity, post-receptor signal transduction and parasympathetic 
modulation (Adamopoulos et al.  1992 ; Saul et al.  1990 ). By contrast, values for car-
diac noradrenaline spillover are not affected by postsynaptic mechanisms, but may be 
infl uenced by changes in reuptake of noradrenaline (Notarius and Floras  2001 ). 

 Frequency-domain measures have been challenged as too insensitive for indi-
vidual measures because of relatively large intersubject variability and dependency 
on the measurement conditions (Gregoire et al.  1996 ; Notarius and Floras  2001 ). 

 Coupling between the three main rhythms of respiration, HF and LF oscillations 
were determined to be weak (Janson et al.  2001 ). However, they tend to synchronize 
(Prokhorov et al.  2003 ). The high degree of nonlinear coordination between HRV 
and SPV may be mainly infl uenced by the respiratory component. If this was fi ltered, 
the coupling was signifi cantly reduced in an animal model (Gonzalez et al.  2000 ).  

   Conclusion 

 In a critical review, Eckberg considers the existing evidence about how heart rate vari-
ability refl ects the sympathovagal balance. He comes to the following conclusions:

•    Vagal contributions to baseline LF RR interval fl uctuations are great, and there is 
no evidence that baseline LF RR interval spectral power is related quantitatively 
to sympathetic-cardiac nerve traffi c.  

•   Most evidence refutes the notion that LF RR interval spectral power tracks 
barorefl ex- mediated changes of sympathetic nerve activity.  

•   Baseline respiratory frequency RR interval fl uctuations are related signifi cantly 
but imperfectly to the level of human vagal-cardiac nerve traffi c.  

•   Moderate changes of arterial pressure, which alter vagal-cardiac nerve activity, 
do not change HF RR interval fl uctuations, and changes of breathing frequency 
and depth, which profoundly alter HF RR interval fl uctuations, may not change 
vagal-cardiac nerve activity at all.  

•   Some physiological interventions provoke parallel, not reciprocal, changes of 
vagal and sympathetic nerve activity, and other interventions, such as barorecep-
tor stimulation, provoke reciprocal changes but only over a very limited range of 
arterial pressure.  

•   Measures of sympathovagal balance are not valid in heart failure patients and 
may not be valid in hypertensive or sleep apnea patients.  

•   Neither upright tilt nor light or heavy exercise provokes the reciprocal changes 
of sympathetic and vagal nerve traffi c predicted by calculations of sympathova-
gal balance.    

 He does not dispute the value of heart rate variability in stratifying risk in patients 
with cardiovascular diseases or in better understanding autonomic mechanisms, but 
argues against using the term “sympathovagal balance” because this relationship is 
not proven (Eckberg  1997 ).     

Conclusion
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                     Outline : In this chapter some general arguments about the signifi cance of changed 
time series patterns as a surrogate of a system are presented. I introduce the idea of 
decreased heart rate variability as a sign for illness and emphasize specially entropy 
and other nonlinear parameters. In the next section several subsystems of the body 
that may infl uence heart rate variability are discussed. I include commonly known 
(and already mentioned) elements, like the autonomic nervous system, the lung and 
the circulatory system, as well as other peripheral parts, such as the endocrinologi-
cal system in general or the immune system. This discussion will be essential for the 
next chapter, in which I present and discuss different models for heart rate 
variability. 

   General Considerations 

 Systems biology is a biology-based interdisciplinary fi eld of study that focuses on 
complex interactions within biological systems, using a more holistic perspective 
approach to biological and biomedical research. Usual tools in systems biology are 
mathematical models and time series analysis. Basically, systems biology analyses 
different parts of the body as a kind of network. Most research efforts are on the 
subcellular level, where gene networks or metabolic networks are summarized and 
then analyzed with the help of sophisticated network methods or mathematical 
models, which in turn are compared to real work data. Network analysis or models 
can be used even if the quantitative relationships are not known (using Boolean 
networks). Usually they can be used quantitatively even if some exact data are 
lacking. 

 Investigating quantitative relationships can also be based on different kind of 
models. Few models rely on linear quantitative relations between their parts; most 
however include at least some nonlinear relations. On an abstract level, network 
nodes can be characterized as oscillators that resonate all the time around one or 

    Chapter 6   
 Pathophysiological and Systems Biology 
Considerations 



130

more mean values. Through this, a network of coupled (nonlinear) oscillators is 
generated. Understanding a larger number of coupled oscillators is still a challenge 
for theoretical physicists. 

 Usually, systems biology is epistemological; it is seen as a method of generating, 
not testing, hypotheses. Therefore, results are only valid if they can be replicated 
with real observational data. The evidence increases strikingly when real systems 
and model systems are challenged with the same kind or perturbations and react in 
the same way, something regarded as a gold standard in modeling today. 

 Time series of biological markers are considered surrogates of the particular sys-
tem. Frequently the markers investigated include blood samples with different mol-
ecules and physical measurements like heartbeat, blood pressure, and EEG but also 
gait and eye blinking. An isolated marker can give information if it is elevated over 
a certain level that has been defi ned as abnormal or pathological. This applies to 
most but not all markers (e.g., not gait), as well as to heartbeat, for which tachycar-
dia (heart frequency over 100) or bradycardia (heart frequency below 60) is regarded 
as pathological. There are exceptions, for instance, athletes who frequently have 
frequencies below 50, which are not seen as pathological. Heart frequencies over 
100 are only considered pathological if they are measured without physical activity 
and psychic stress. 

 Small time series can also give information about a system. If they are not sta-
tionary, they might indicate increasing pathological states but also a return to nor-
mality. For instance, isolated measured values of kidney markers like creatinine 
may give less information about the system compared to short time series where the 
slope of the curve is more informative than the absolute value. In acute kidney dam-
age, fast increasing creatinine is important, even if the absolute level is (still) low; 
stationary pathological value might indicate stabilizing illness even if the absolute 
level is high; and a negative slope might indicate recovery even if it is far from 
normal values. 

 For many decades now, scientists and clinicians have ignored other qualities of 
time series. These are usually analyzed according to very simplistic criteria: patho-
logical or not, stationary, or increasing or decreasing? Inherent characteristics such 
as variability have been ignored. It was only in the 1990s that scientists began to look 
at further properties of times series and proposed new ideas. Ari Goldberger sug-
gested that increased regularity of signals may represent a decomplexifi cation 
through illness. Thus, health is more complex and illness shows decreased variabil-
ity, caused by reduction in the number of structural components and alterations in the 
coupling function between these components (Lipsitz and Goldberger  1992 ; 
Goldberger  1997 ). This notion has been extensively used in the analysis of heart rate 
variability. Pincus hypothesizes that decreased complexity and greater regularity cor-
respond to greater component autonomy and isolation. “The idea is that healthy sys-
tems have good lines of communication, marked both by numbers of external 
infl uences that interact and by the extent of interactions. Contrapuntally, disease and 
pathology would represent system decoupling and/or lessening external inputs, in 
effect isolating a central system component from its ambient universe” (Pincus  1994 , 
p. 162). This again leads to decreased reaction in the organism to changing 
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challenges; this decrease is therefore not only a surrogate but a relevant (secondary) 
pathogenetic factor. Complexity of physiological control systems serves an impor-
tant purpose; that is, it enables the organism to mount a focused response on a num-
ber of different time scales in order to return to a new steady state (Lipsitz  2002 ). 

 Coming from a complexity theory paradigm, another group has proposed HRV 
as measure of the degree to which a system provides fl exible adaptive regulation of 
its component systems (Thayer and Friedman  2002 ). They describe their view as 
follows: “When processes mutually constrain one another, the system as a whole 
tends to oscillate spontaneously within a range of states. The various processes are 
balanced in their control of the whole system, and thus the system can respond fl ex-
ibly to a range of inputs. However, such systems can also become unbalanced, and 
a particular process can come to dominate the system’s behaviour, rendering it unre-
sponsive to the normal range of inputs (…) A system, which is ‘locked in’ to a par-
ticular pattern, is dysregulated” (Thayer et al.  2012 ). 

 Other scientists observed both decreased and increased complexity and approximate 
entropy in several disease states (Vaillancourt and Newell  2002 ). Of particular impor-
tance is the concept of changed variability in age, based probably on reduced number of 
system components and reduced coupling between elements (Lipsitz and Goldberger 
 1992 ; Vaillancourt and Newell  2002 ). Increased complexity was observed mainly in 
endocrinological diseases. Patients with acromegaly induced by increased levels of 
growth hormone showed growth hormone release patterns over 24 h with higher approx-
imate complexity compared to healthy controls (Hartman et al.  1994 ). Similar changes 
were observed in patients with Cushing’s syndrome, where time series of ACTH and 
cortisol concentration levels increased approximate complexity compared to healthy 
persons (Van den Berg et al.  1997a ). Older males showed a more complex pattern of 
releasing luteinizing hormone and testosterone (Pincus et al.  1996 ). According to 
Kauffman’s argument about life being at the edge of chaos, some authors argue on an 
abstract level that “health is defi ned by a certain distance from thermodynamic equilib-
rium; too close (decreased variation, too little energy dissipation, low entropy) or too far 
(increased variation and energy dissipation, high entropy) each represents pathological 
alterations” (Buccelletti et al.  2012 , p. 1).  

   Some Physiological Systems with Infl uence on Heart Rate 
Variability 

   Sinoatrial Node 

 The pacemaker cells of the sinoatrial node are usually regarded as a population of 
electrically coupled oscillators, synchronized by a mechanism of mutual entrain-
ment or phase locking (Bergfeldt and Haga  2003 ). Cardiac mitochondria itself can 
behave as individual oscillators and interact. When the mitochondrial network of 
cardiomyocytes is stressed to a critical state, the cardiomyocytes exhibit 
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high- amplitude self-sustained oscillations. The temporal behavior of the mitochon-
dria membrane potential in cardiomyocytes under physiological conditions is oscil-
latory and shows a power law with a spectral component (Aon et al.  2006 ). 

 Left ventricular assist devices were used in two patients with stable heart failure. 
Through this, the infl uence of cardiac baroreceptors was diminished, and thus, the 
oscillations were determined mainly by the LVAD device. The normal heart contin-
ued to be innervated and controlled by the autonomic nervous system. LF, which 
was absent in the severe heart failure patients, was restored during the circulatory 
support with the LVAD. This restored LF was evident in the absence of any similar 
oscillation in blood pressure. The authors concluded that LF oscillations represent 
partly a central oscillation in autonomic outfl ow, which works without perturbations 
of blood pressure oscillations, albeit blood pressure oscillations can contribute to 
the LF component (Cooley et al.  1998 ).  

   Respiratory System 

 There is good evidence from both human and other animal experiments that a major 
cause of sinus arrhythmia is central coupling of respiratory drive to cardiac-vagal 
motor neurons (Pilowsky  1995 ; Hayano et al.  1996 ; Malpas  2002 ). Inputs from 
medullary respiratory neurons to medullary sympathetic premotor neurons are a 
possible mechanism (Pilowsky  1995 ). Cheyne–Stokes respiration patterns are pres-
ent in more than 50 % of patients with congestive heart failure (Sin et al.  1999 ). 
Probably it is an effort to improve the effi cacy of pulmonary gas exchange by 
entraining heartbeats with phasic hyperpnea within each cycle length of Cheyne–
Stokes respiration (Yasuma and Hayano  2004 ). Cheyne–Stokes respiration again 
can affect not only sinus rhythms but also AF, which otherwise does not react to 
normal ventilation, probably due to modulation of the atrioventricular nodal refrac-
tory period and concealed conduction (Leung et al.  2005 ).  

   Endocrinological System 

 An increased number of CYP11B2-344T alleles in subjects with increased sodium 
excretion led to increased LF/HF ratio, but not in carriers of the AT1R 1166C allele. 
This result is discussed as an effect of an expanded plasma volume increasing the 
parasympathetic tone (Stolarz et al.  2004 ). 

 17 patients with hypertension due to primary or secondary hyperaldosteronism 
were compared to 11 primary hypertensive subjects and 10 healthy controls. 
Frequency-domain variables of systolic and diastolic blood pressure were measured 
in supine and passive 60° head-up tilt position (20, respectively 10 min measuring 
each). LF and LF/HF were higher in patients with hypertension regardless of etiol-
ogy (Veglio et al.  1995 ). 
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 There is a reverse relationship between cortisol and HRV in healthy adults 
(Thayer and Sternberg  2006 ). 

 Controlled hypoglycemia in an experimental study (with 15 min HRV) caused 
decrease in HF and SD1 (derived from Poincaré plots), but no (signifi cant) changes 
in LF and SD2 (Koivikko et al.  2005 ). 

 Sex hormones like estrogens might activate the parasympathetic system, and 
progesterone might activate the sympathetic nervous system (Saeki et al.  1997 ; Sato 
and Miyake  2005 ). 

 The neuropeptides orexin A and orexin B are produced by about 7,000 cells in 
the human brain. Orexin pathways project widely to the entire neuroaxis excluding 
the cerebellum. The densest staining of orexin-immunoreactive nerve endings in the 
brain is found in the paraventricular nucleus of the thalamus, the arcuate nucleus, 
the locus coeruleus (containing noradrenergic neurons), dorsal raphe (containing 
serotonergic neurons), and tuberomammillary nucleus (containing histaminergic 
neurons) (Date et al.  1999 ). 

 Orexins have a role in regulating autonomic function. Injections increase heart 
rate and blood pressure, which indicates that orexins physiologically stimulate sym-
pathetic outfl ow and increase food intake and metabolic rate (Sakurai  2007 ). 

 In recent years, oxytocin’s role in human social behavior was investigated in 
several studies, mostly on observable social behaviors. In a study with 26 male 
participants, application of oxytocin did not have an effect on mood, but HRV 
changed. These effects were visible in HF and detrended fl uctuation scaling expo-
nent (but rather moderate) (Kemp et al.  2012 ).  

   Immunological System 

 Infl ammation is a normal response to disturbed homeostasis caused by infection, 
injury, and trauma. The host responds with a complex series of immune reactions to 
neutralize invading pathogens, repair injured tissues, and promote wound healing 
(Baumann and Gauldie  1994 ). The beginning of infl ammation is characterized by 
release of pro-infl ammatory mediators including, interleukin (IL)-1, adhesion mole-
cules, vasoactive mediators, tumor necrosis factor (TNF), and reactive oxygen spe-
cies. The early release of pro-infl ammatory cytokines by activated macrophages has 
a crucial role in triggering the local infl ammatory response. Excessive production of 
cytokines, such as TNF, IL-1beta, and high-mobility group B1 (HMGB1), however, 
may be more damaging than the inciting event, causing diffuse coagulation, tissue 
injury, hypotension, and death (Wang et al.  2001 ). The infl ammatory response is bal-
anced by anti-infl ammatory factors including the cytokines IL-10 and IL-4, soluble 
TNF receptors, and transforming growth factor (TGF beta). Although simplistic, the 
pro-/anti-terminology is widely used in the discussion of the complex cytokine net-
work. Apart from their involvement in local infl ammation, TNF and IL-1β are signal 
molecules for activation of brain-derived neuroendocrine immunomodulatory 
responses. Neuroendocrine pathways, such as the hypothalamic–pituitary–adrenal 
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(HPA) axis and the sympathetic division of the autonomic nervous system (SNS) 
(Rivest  2001 ; Elenkov et al.  2000 ), control infl ammation as an anti-infl ammatory 
balancing mechanism. The host thereby mobilizes the immunomodulatory resources 
of the nervous and endocrine systems to regulate infl ammation (Pavlov et al.  2003 ). 

 The cross talk between the immune system and the brain relies on classical 
humoral pathways and more recently discovered neural pathways. 

 The neural mechanism relies upon the activation of vagus nerve afferent sensory fi bers 
that communicate to the brain that infl ammation is occurring. Immunogenic stimuli acti-
vate vagal afferents either directly by cytokines released from dendritic cells, macrophages, 
and other vagal-associated immune cells or indirectly through the chemoreceptive cells 
located in vagal paraganglia. For instance, intraperitoneal administration of endotoxin can 
induce IL-1β immunoreactivity in dendritic cells and macrophages within connective tis-
sues associated with the abdominal vagus nerve and subsequently in vagal paraganglia 
(Goehler et al.  2000 ) and afferent fi bers (Goehler et al.  1999 ). Visceral vagus afferent 
fi bers, residing in the nodose ganglion, terminate primarily within the dorsal vagal com-
plex (DVC) of the medulla oblongata (see Chap.   3    ). The transmission of cytokine signals 
to the brain through the vagal sensory neurons depends upon the magnitude of the immune 
challenge. Subdiaphragmatic vagotomy inhibits the stimulation of the HPA axis (Gaykema 
et al.  1995 ) and noradrenaline (NE) release in hypothalamic nuclei (Ishizuka et al.  1997 ) 
in response to intraperitoneal administration of endotoxin or IL-1β. Vagotomy fails to sup-
press high-dose endotoxin-induced IL-1β immunoreactivity in the brain (Van Dam et al. 
 2000 ) and increases blood corticosterone levels (Hansen et al.  2000 ). Intravenous endo-
toxin administration induces expression of the neural activation marker c-Fos in the brain-
stem medulla, regardless of the integrity of the vagus nerve (Herrmann et al.  2001 ). It is 
possible that the vagal afferent neural pathway plays a dominant role in mild to moderate 
peripheral infl ammatory responses, whereas acute, robust infl ammatory responses signal 
the brain primarily via humoral mechanisms (Pavlov et al.  2003 ). 

 Acetylcholine is an important neurotransmitter and neuromodulator in the brain. 
It mediates neural transmission in the ganglion synapses of both sympathetic and 
parasympathetic neurons and is the principle neurotransmitter in the postganglionic 
parasympathetic/vagal efferent neurons. Acetylcholine acts through two types of 
receptors: muscarinic (metabotropic) and nicotinic (ionotropic). In addition to the 
brain and “wire-innervated” peripheral structures, the RNA for these receptor sub-
types (muscarinic) and subunits (nicotinic) has been detected on mixed populations 
of lymphocytes and other immune and nonimmune cytokine-producing cells (Sato 
et al.  1999 ; Tayebati et al.  2002 ). Most of these cells can also produce acetylcholine 
(Kawashima and Fuji  2000 ). Acetylcholine signifi cantly and concentration depend-
ently decreases TNF production by endotoxin-stimulated human macrophage cul-
tures via a posttranscriptional mechanism. Acetylcholine is also effective in 
suppressing other endotoxin-inducible pro-infl ammatory cytokines, such as IL-1β, 
IL-6, and IL-18, by a posttranscriptional mechanism; release of the anti- infl ammatory 
cytokine IL-10 from endotoxin-stimulated macrophages is not affected by acetyl-
choline (Borovikova et al.  2000 ; Wang et al.  2004 ). In experimental models for 
sepsis, myocardial ischemia, and pancreatitis, vagus stimulation blocked cytokine 
activity (Mioni et al.  2005 ; Saeed et al.  2005 ; van Westerloo et al.  2006 ). 
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 Changed activity of the vagal system thus modulates the infl ammatory response 
signifi cantly, which can be blocked or enhanced by local or systemic use of trans-
mitter substances like noradrenaline, acetylcholine, or nicotine. But this is no one- 
way street; infl ammatory infl uences can also enhance or block the sensory vagus 
activity. Pro-infl ammatory cytokines released upon immune challenge can activate 
vagal afferent signaling and subsequent direct or indirect (through NTS neurons) 
activation of vagal efferents in the DMN. Thus, the sensory vagal afferents, together 
with the regulatory vagus efferents, form an infl ammatory refl ex that continually 
monitors and modulates the infl ammatory status in the periphery (Tracey  2002 ). 
Consequently, animals with bilateral cervical vagotomy are more sensitive to endo-
toxemic shock (Pavlov et al.  2003 ). The cholinergic anti-infl ammatory pathway can 
also be activated by the area postrema, e.g., via increased blood concentrations of 
IL-1beta (Herrmann et al.  2001 ). 

 Soluble TNF-α receptors and IL-6 correlate (negatively) with time-domain HRV 
variables (SDNN, SDANN) (Malave et al.  2003 ; Straburzynska-Migaj et al.  2005 ; 
Mani et al.  2009 ), likewise endothelin 1 (including negative correlations with TP 
and ULF) (Aronson et al.  2001a ). In the same study, TNF-α did not correlate with 
HRV variables, but also with IL-6 (Aronson et al.  2001b ). An association between 
decreased linear HRV measures and increased CRP, which is again related to 
increased IL-1 and IL-6, among others, has been observed in several studies (Kon 
et al.  2006 ; Araujo et al.  2006 ; Carney et al.  2007 ; Ziegler et al.  2008 ). 

 In diabetic patients, both in newly diagnosed and in a chronic phase, increased 
IL-6 was correlated with decreased time-domain (SDNN) and frequency-domain 
parameters (Lieb et al.  2012 ), and in another study with decreased E/I ratio in pace 
breathing (González-Clemente et al.  2007 ). 

 In a long-time cohort study (follow-up 15 years), Holter monitoring with linear 
indices and DFA was associated to infl ammatory parameters at baseline. Inverse asso-
ciations were found between VLF and LF, TP and SDNN with CRP, and IL-6 and 
WBC. DFA had and inverse association with IL-6 and CRP, and HRT slope to WBC 
and IL-6. This was observed both for daytime HRV and 24-h HRV (Kop et al.  2010 ). 

 It can now be concluded that there is clear evidence for a negative correlation 
between increased infl ammatory parameters such as TNF-alpha, CRP, and IL-6 and 
decreased heart rate variability. Interestingly, this negative correlation did not attain 
for classical “parasympathetic” parameters like pNN50, rMSSD, or HF, but rather 
for more general or “sympathetic” parameters like SDNN, SDANN, TP, VLF, and 
LF (Haensel et al.  2008 ) (Fig.  6.1 ).

      Glucose Metabolism 

 Two different pathways mediate normal insulin signaling in cardiovascular tissues: 
one that is predominant in metabolic tissues (the phosphatidylinositol-3-OH kinase 
pathway) and a growth factor-like pathway (mediated by mitogen-activated protein 
kinase). In cardiovascular tissues, insulin resistance leads to inhibition of the 
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metabolic pathway and to overstimulation of the growth factor-like pathway (Nigro 
et al.  2006 ) and might lead to a decrease in glucose uptake, possibly hampering 
normal cardiac function (van Gaal et al.  2006 ; Ferrannini and Iozzo  2006 ). 

 Ectopic fat storage in the heart, blood vessels, and kidneys can impair their func-
tion, contributing to the increased risk in obesity. Besides the cardiac alterations that 
result from hemodynamic changes and hypertension, excessive lipid accumulation 
in the myocardium induced by weight gain might be directly cardiotoxic. 
Accumulation of large amounts of myolipids may result in apoptosis and systolic 
dysfunction. In peripheral vessels, high amounts of perivascular fat cells could con-
tribute mechanically to the increased vascular stiffness seen in obesity. 
Periadventitional adipose tissue in particular may regulate the arterial tone of mes-
enteric arteries, with increased arterial stiffness as consequence. In addition, 
increased adipose paracrine secretion may lead to vascular smooth muscle cell 
(VSMC) growth induced by growth factors (van Gaal et al.  2006 ). 

 The prothrombotic state in the atherosclerotic process encompasses platelet 
hyperaggregability, hypercoagulability, and hypofi brinolysis. In obesity and meta-
bolic syndromes, fi brinogen, von Willebrand factor (vWF), and PAI-1 have been 
studied as markers of the hemostatic and fi brinolytic system and as possible predic-
tors for cardiovascular disease. So far, only PAI-1 levels are increased in obese 
patients. PAI-1 is expressed in visceral adipose tissue and especially visceral tissue 
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seems to have up to fi ve times more PAI-1 compared to subcutaneous adipose tissue 
(van Gaal et al.  2006 ). 

 Obesity induces several cytokines and infl ammatory markers that might contrib-
ute to the cardiovascular outcome in overweight and obese people. It is also associ-
ated with increased levels of endothelial cell products such as intercellular adhesion 
molecule-1 (ICAM-1) (Pontiroli et al.  2004 ). 

 The extensive innervation of islets with insulin-producing beta-cells by both 
parasympathetic and sympathetic neurons and the intimate involvement of the cen-
tral nervous system in the regulation of metabolism suggest that the CNS might also 
have an important role in the functional adaptation to changes in insulin sensitivity. 
Increased insulin release is observed immediately after experimental lesioning of 
the ventromedial hypothalamus (VMH), and this effect is mediated by increased 
vagal activity, which can be blocked by vagotomy (Berthoud and Jeanrenaud  1979 ). 
Parasympathetic stimulation of insulin release occurs through activation by acetyl-
choline of the M2 muscarinic receptor on the beta-cell surface. The sympathetic 
nervous system is also important, with increased activity of the α2-adrenergic com-
ponent associated with decreased insulin release, whereas increased β-adrenergic 
activity enhances insulin output (Ahren et al.  1986 ; Kahn et al.  2006 ).  

   Psychological Functioning, Cardiac Health, and HRV 

 Any challenging circumstances in life can lead to stress. Stress is not unequivocally 
negative and can lead to both positive and negative physiological consequences. 
Stress can be defi ned as any disruption of homeostasis (Miller and O’Callagan 
 2002 ), and in the terminology of computational biology, it is also possible to call it 
perturbations of a system. The main two systems involved in stress reactions in the 
body are the hypothalamic–pituitary–adrenal axis (HPA) and the sympathetic ner-
vous system (SNS). The HPA axis meets the demands of stress primarily through 
the synthesis and release of 3 key hormones, corticotropin-releasing hormone 
(CRH), adrenocorticotropic hormone (ACTH), and a species-specifi c glucocorti-
coid, either cortisol (COR) (human, nonhuman primate, swine and dog) or corticos-
terone (CORT) (rodents). The key organs involved are the hypothalamus, the 
hippocampus, the anterior pituitary, and the adrenal gland. The HPA axis is a nega-
tive feedback system where the end product, cortisol, the transmitter substance of 
the SNS, noradrenaline and GABA, inhibits the production of the initiating sub-
stances (Mathe  2000 ). 

 CRH-producing neurons of the hypothalamus are concentrated in the paraven-
tricular nucleus (PVN, about 50–90 % of all neurons) and synthesize CRH due to 
internal and external stimuli. Interestingly, many of the CRH-containing neurons of 
the PVN also produce vasopressin. Vasopressin release is thus also under control of 
plasma cortisol. Vasopressin can also elevate ACTH levels through a distinct recep-
tor system. During chronic stress, CRH and vasopressin release is regulated differ-
entially, and novel stressors can lead to increased ACTH release through vasopressin 
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even if CRH response is suppressed due to earlier stressors (Aguilera  1998 ). CRH- 
containing neurons have also been identifi ed in the hippocampus, amygdale, and 
cortex (Miller and O’Callagan  2002 ). The main effect of CRH is in the anterior 
pituitary, where it induces the release of ACTH and β-endorphin through a common 
precursor protein, pre-opiomelanocortin. ACTH also exerts a negative feedback 
control on CRH. ACTH again induces release of cortisol, which is produced from 
the precursor cholesterol in the zona fasciculata/reticularis zone of the adrenal cor-
tex (Rosol et al.  2001 ). Apart from the systemic release, glucocorticoids are also 
released to the medullary area of the adrenal, where they regulate the level of the 
rate-limiting enzyme responsible for the conversion of noradrenaline to adrenaline 
(Miller and O’Callagan  2002 ). The sympathetic nervous system reacts to stress with 
a release of catecholamines, and the degree of sympathetic activity can predict the 
cortisol response engendered by the same stressor, even in healthy individuals. 
Subjects showing the greatest sympathetic response to a laboratory stressor also 
show the highest stress-related plasma cortisol level (Cacioppo et al.  1995 ). 

 Troubling life problems and the failure to resolve negative emotional states such 
as depression may generate continual physiological stimulation, frequently invok-
ing a chronic physiological stress response. The continual stimulation of the sympa-
thetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis that 
results from such chronic stress can produce a cascade of negative pathophysiologi-
cal consequences (Rozanski and Kubzansky  2005 ). 

 Normally, elevations of cortisol that are associated with acute stress serve to 
downregulate HPA function through the negative feedback mechanism. However, 
under chronic stress, cortisol binds to central nervous system receptors, resulting, 
paradoxically, in a continued secretion of cortisol (Dallman et al.  2004 ). This hyper-
cortisolemia is associated with a loss in the normal physiological plasticity of the 
HPA, as manifested by reduced variability in cortisol secretion measurements and 
diminution in the normal sensitivity of the HPA axis to exogenous suppression 
using dexamethasone. The enhanced SNS activation that is evoked under condi-
tions of chronic stress may also lead to elevated resting heart rates and autonomic 
nervous system imbalance, which might be refl ected by HRV changes. In addition, 
impaired function of the parasympathetic nervous system is known to cause reduced 
recovery in resting heart rates after exercise, and although the pathophysiological 
mechanisms remain to be clarifi ed, slow recovery of resting heart rate and blood 
pressure has been noted in the presence of both acute and chronic forms of psycho-
logical stress as well (Rozanski and Kubzansky  2005 ; Rozanski et al.  2005 ). 

 Chronic stress also appears to produce an intrinsic increase in cardiovascular 
reactivity (i.e., heightened heart rate and blood pressure responsivity to acute phys-
iological stimuli) that has been linked to the activation of an anatomical chronic 
stress network, involving several specifi c brain centers (Bathnagar and Dallman 
 1998 ). This pathophysiological change may be particularly important in light of 
recent studies that link heightened cardiovascular reactivity to a greater presence or 
progression of subclinical atherosclerosis (Barnett  1997 ; Mathews et al.  1998 ). 
Physiological hyperreactivity to acute stressors appears to be characteristic among 
various states (Rozanski and Kubzansky  2005 ; Rozanski et al.  2005 ). Among 
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cognitive states, job-related worry has been linked to higher cortisol levels on 
workdays (Schlotz et al.  2004 ), and preliminary studies suggest that laboratory-
induced state rumination may prolong recovery of heart rate and blood pressure 
after physiological stimulation (Glynn et al.  2002 ). Similarly, among emotional 
disorders, both depressed objects (Carney  2005 ) and those with hostility (Suarez 
et al.  1998 ) show heightened neuroendocrine responses in the laboratory compared 
with normal subjects. Among life situations, chronic job strain as characterized by 
high job demand but low job latitude (Karasek et al.  1981 ) has also been linked to 
prolonged heart rate and blood pressure elevations after work, which, in the case of 
blood pressure, may last for days at a time (Vrijkotte et al.  2000 ); to higher cortisol 
levels while at work (Schlotz et al.  2004 ); and to both enhanced blood pressure 
responsivity to pharmacological challenge [phenylephrine] and decreased barore-
fl ex sensitivity (Thomas et al.  2004 ). The accompanying feeling of being unable to 
relax after work (Suadicani et al.  1993 ) may present a clinical mirror of reduced 
physiological plasticity. Lack of adequate sleep may also result in neuroendocrine 
activation (Spiegel et al.  1999 ). Similarly, low social–economic status has been 
linked to physiological hyperreactivity (Steptoe et al.  2003 ). The heightened out-
put from the HPA and SNS associated with chronic stress serves to produce a 
variety of other changes that have been strongly linked to CAD, including signs of 
increased infl ammation, central obesity, hyperinsulinemia, diabetes, hypertension, 
and endothelial dysfunction (Rozanski and Kubzansky  2005 ; Rozanski et al.  2005 ). 
A signifi cant observation in this fi eld is that different consequences on brief stress 
stimuli can vary between subjects. Some may show rather big differences in HRV 
values before and during stress tasks, whereas others have rather small changes. 
“This result would have been missed entirely had this research been limited to 
description and discussion of group mean differences in responsitivity to stressors” 
(Cacioppo et al.  1995 ). 

 Visceral fat is possibly a yet underestimated but active element in chronic stress 
response. Visceral fat is much more endocrinological active than subcutaneous fat 
tissue. It contains cortisol receptors; increased cortisol production in Cushing’s syn-
drome leads to increases in abdominal fat. Abdominal obesity has thus been consid-
ered a “functional hypercortisolism” (Pasquali and Vicennati  2000 ). 

 Cognitive performance is associated with the autonomic function. Increased 
cognitive activity leads to reductions in heart rate variability (Althaus et al.  1998 ; 
van Roon et al.  1995 ), which refl ect vagal withdrawal (Berntson et al.  1997 ; 
Denver et al.  2007 ). In some studies, increased cardiovascular reagibility and cog-
nitive performance was predicted by lower parasympathetic activity shown with 
decreased HF (DeGangi et al.  1991 ). The MF band is sensitive to the amount of 
mental workload (Boucsein and Backs  2000 ). In fact, MF is more closely related 
to attentional processing than HF (Althaus et al.  1998 ). MF reductions have also 
been shown in complex, more naturalistic attentional tasks like fl ight simulation 
or car steering (Mulders et al.  1982 ; Veltman and Gaillard  1993 ,  1998 ). Reduced 
cardiac inhibition is of particular importance for the establishment of a physiolog-
ical condition optimal for the mental process required by attentional tasks 
(Duschek et al.  2009 ).   

Some Physiological Systems with Infl uence on Heart Rate Variability
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   HRV and Complexity: Revisited 

 Even if heart rate variability can be recognized as a complex system, this explanation 
needs to include more detailed concepts. It has been shown repeatedly that human 
HRV has a 1/f global scaling behavior independently of behavior. It has been postu-
lated that HRV is a system in a critical state (Struzik et al.  2004 ), which prevents by 
antagonistic control mode locking through a permanent far-from- equilibrium- like 
critical state and thus enhances error tolerance of the system (West  1990 ; Struzik 
et al.  2004 ). Thus, the theory of phase transitions and critical phenomena in nonequi-
librium systems should be useful to elucidate the mechanisms of complex heart rate 
dynamics. Characteristic features at a critical point of a second- order phase transition 
are the divergence of the relaxation time with strongly correlated fl uctuations and the 
scale invariance in the statistical properties. This has been confi rmed in a series of 
healthy human heart rates (Ivanov et al.  1999 ; Aoyagi et al.  2003 ; Kiyono et al. 
 2004 ). In addition it has been shown that a healthy human heart rate can exhibit 
transition-like dynamics between different behavioral states. Strongly correlated 
fl uctuations as typical property of criticality have been observed in heart rate during 
usual daily activity, but not in sleep or under stress (Kiyono et al.  2005 ).  

   Conclusions 

 Any number of factors may infl uence the variability of heart rate. Some of these 
factors have been described and offer a partial explanation. Nevertheless, it is obvi-
ous that it is not simply the vegetative nervous system that is refl ected in linear (or 
nonlinear) measures of heart rate variability.     
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                    Aging causes a range of physiological changes in the body. Some of them are well 
known; some of them were recently discovered. For instance, nerve conduction 
velocity decreases with age (Munsat  1984 ), hearing is impaired (Mader  1984 ), and 
the forced expiratory volume is reduced (Tobin  1981 ). The interaction between dif-
ferent factors is still insuffi ciently understood. It is generally agreed that decreased 
function of different systems is not crucial. Instead of that it is the interplay between 
the components that causes signifi cant function loss. Function level is often pre-
served in normal situations, but adaptation to stress – in systems theory termed 
perturbation – is strongly reduced. There are some subsystems, however, for which 
variability increases with age (Vaillancourt and Newell  2002 ). General mortality in 
a (Western) population is caused mainly by cardiovascular diseases (around 40 %) 
and cancer (around 25 %), followed by far more seldom diseases like respiratory 
syndromes, gastroenterological syndromes (all under 10 and 5 %, respectively) 
(Gaber  2011 ). 

 A general idea has been proposed linking higher HRV to better health, not only 
in association with cardiologic diseases. Weber concluded after an experimental 
study: “We, hence, posit that low resting HRV may identify healthy subjects at risk 
for future disease, be it cardiovascular (in the fi rst place), (auto-) immune or other 
stress-related condition” (Weber et al.  2010 ). 

 In one of the early observational studies using nonlinear algorithms, short-term 
HRV of younger (21–35 years) and older subjects (62–90 years) with quiet and 
paced respiration in two different positions was compared. Elderly persons showed 
a reduction in approximate complexity compared to the younger persons (Kaplan 
et al.  1991 ). Such changes have been observed in literally all studies independent of 
illnesses (e.g., Pikkujämsä et al.  1999 ). 

 If HRV would be a general surrogate marker for a risk of increased mortality in 
individual patients, it would be an extreme valuable tool in daily clinical practice. 
I evaluate existing evidence for and against this notion in this chapter. 

    Chapter 7   
 General Mortality 
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   HRV as General Risk Factor in Population Samples 

 Tsuji investigated the mortality rate of 736 elderly men and women with a mean age 
of 72 and followed those over 4 years. Seventy-four persons died in this period, 
most of them not surprisingly because of cardiovascular diseases and cancer. Time- 
and frequency-domain indices obtained over the fi rst 2 h of a Holter ECG showed 
an association between mortality and VLF, HF, LF as well as SDNN. Besides HRV 
parameters, the stepwise multivariable proportional hazards analysis used included 
age, sex, history of myocardial infarction or congestive heart failure, systolic and 
diastolic blood pressures, use of diuretics and beta-blockers, diabetes, cigarette 
smoking, alcohol consumption, the presence of complex or frequent ventricular 
arrhythmia, and the presence of supraventricular premature beats. LF was the only 
predictive parameter with hazard ratios (per 1 SD decrement) of 1.70–1.87. A stan-
dard deviation change in natural log-transformed low-frequency power was associ-
ated with an increase of 70 % in the hazard for all-cause mortality, adjusting for age, 
sex, and clinical risk factors. LF lower than 218.9 ms 2  was associated with the high-
est risk (Tsuji et al.  1994 ). One possible explanation for this was found shortly 
afterwards of van der Borne. In patients with severe heart failure, the LF pattern can 
be virtually absent in muscle sympathetic nerve activity, which correlates again 
closely to HRV LF (van de Borne et al.  1997 ). 

 In a study with a 10-year follow-up, 347 subjects >65 were examined at baseline 
with HRV (Holter monitoring, frequency domain, SDNN, and power slope). 
Different indices for mortality were found (among them, smoking, prior heart dis-
eases, increased glucose, decreased cholesterol (sic)). SDNN, VLF, and LF were 
associated with mortality, which was not the case for HF. The slope was the best 
univariate predictor with a cutoff value of 1.5. In a multivariate regression model, a 
steep slope of the power-law regression line and congestive heart failure were the 
only independent predictors, with a relative risk of 2.01 and 1.85, respectively. 
None of the measures of HRV had a univariate association with cancer death or 
other nonvascular reasons for death (Huikuri et al.  1998 ) (Fig.  7.1 ).
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  Fig. 7.1    Individual values of the 
slope of power-law regression of 
persons who were alive or died 
during a 10-year follow-up (Huikuri 
et al. ( 1998 ), reproduced with 
permission of Wolters Kluwer 
Health)       
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   A particular interesting study in relation to mortality was presented by de Bruyne 
et al. ( 1999 ). The authors examined the association between heart rate variability on 
a standard 10-s electrocardiogram and cardiac and all-cause mortality in the 
Rotterdam Study, a population-based cohort study of men and women aged around 
55 years, using data collected between 1990 and 1996 (mean follow-up = 4 years). 
Subjects with arrhythmia or fewer than six normal RR intervals were excluded. 
SDNN was categorized into quartiles, with 25th, 50th, and 75th percentile values of 
9.6, 15.2, and 25.9 ms, respectively, on the whole rather very low values compared 
to other studies. In all 5,272 men and women participated. Subjects in the lowest 
quartile of SDNN relative to those in the third quartile had an 80 % age- and sex- 
adjusted increased risk for cardiac mortality (hazard ratio = 1.8/1.0–3.2). 
Interestingly, for subjects in the highest quartile of SDNN, an even more pronounced 
risk for cardiac mortality was present (hazard ratio = 2.3; 95 % confi dence interval: 
1.3, 4.0). The authors conclude that a 10-s HRV might be feasible to identify older 
patients with an increased risk for cardiac mortality, but that increased HRV in this 
study was an even stronger indicator of cardiac mortality than decreased heart rate 
variability (De Bruyne et al.  1999 ). 

 A case-cohort study (the ARIC study) was conducted within a longitudinal 
study of 15,792 middle-aged men and women. A sample of 900 subjects without 
prevalent coronary heart disease in baseline was drawn and compared to all sub-
jects with CHD and all subjects who died before follow-up. HRV was determined 
by a 2-min rhythm strip; RR-distances were measured half-automatized. In addi-
tion plasma levels for cholesterol, HDL, LDL, triglycerides, serum insulin, and 
glucose were determined and diabetes was diagnosed according to the fasting 
blood glucose levels. Blood pressure, waist and hip circumferences, and carotid 
intima-media thickness were assessed. Four measures of HRV were determined: 
SDNN, rMSSD, SDSD, and pNN50, but no frequency-domain measures. 
Generally, low HRV was associated with an adverse cardiovascular risk profi le 
and elevated risk of death from all causes, including cancer, and of incident CHD. 
The age-, sex-, and race- adjusted relative risks of cardiovascular mortality in the 
lowest (< 23.9) compared with the intermediary tertile of SDNN was 2.10 (95 % 
CI 1.21–3.64). The elevated risk could not be attributed to other risk factors. 
Relative risk of low SDNN was lower than from the other parameters. The authors 
conclude that low HRV possibly precedes different manifested diseases (Dekker 
et al.  2000 ). 

 In the Hoorn study, 605 persons between 50 and 75 years were followed over 9 
years. 101 individuals died, 43 from cardiovascular causes. HRV indices were based 
on 3-min measurements while spontaneous breathing, SDNN, LF, Hf, and LF/HF 
was used. In diabetic subjects, but not in nondiabetic subjects, impaired HRV was 
consistently associated with an approximately doubled risk of mortality. Cutoff 
points for impaired autonomic function, taken from the lowest 25th percentile in the 
NGT group, were 25.7 ms for SDNN, 125 ms 2  for low-frequency LF, and 93 ms 2  for 
HF. Although signifi cant, the indices of survivors and non-survivors were quite 
similar, for instance in SDNN, where survivors had 33.2 (18.8–56.5) and non- 
survivors 27.7 (13.7–55.8) (Gerritsen et al.  2001 ). 
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 The variability of day-by-day blood pressure and HRV over 26 days was used in 
a volunteer sample ( n  = 2,455) aged between 35 and 96 years. Four hundred and 
sixty-two deaths occurred over a median of 11.9 years (168 cardiovascular, of them 
83 stroke, 85 cardiac, rest noncardiac). In a regression analysis, the following fac-
tors were additionally included: sex, age, obesity, current smoking and drinking 
habits, history of cardiovascular disease, diabetes mellitus, hyperlipidemia, and 
treatment with antihypertensive drugs. An increase in systolic blood pressure vari-
ability was associated with increased hazard ratios for cardiovascular and stroke 
mortality, but not for cardiac mortality alone. Decreased HRV was associated with 
cardiovascular and cardiac mortality, but not stroke mortality. The increased hazard 
ratios were moderate (up to 1.41) (Kikuya et al.  2008 ). 

 Kop evaluated participants in the Cardiovascular Health Study, 907 persons with 
an average age of 71 years and without clinical symptoms of CVD. They used a 
wide spectre of measures including time domain, frequency domain, DFA, and 
heart rate turbulence (Holter monitoring) and analyzed it together with infl amma-
tion parameters like C reactive protein, IL-6, fi brinogen, and white blood cell count. 
Participants were followed for up to 15 years. Importantly, ANS reductions correlat-
ing with depression and CVD mortality were largely explained with CVD alone. 
Increased VLF, LF, TP (but not HF), SDNN (<120 ms), DFA, HRT onset, and slope 
were associated with increased mortality. The predictive value had the two HRT 
parameters (Kop et al.  2010 ). 

 A recent high-quality meta-analysis summarizes much of the existing knowledge. 
They used a wide search strategy (among others including non-English articles) and 
retrieved at fi rst 3,613 studies. After different usual quality measures, eight studies 
remained, including in all 21,988 participants without cardiac disease in baseline and 
followed-up in cohort studies. Loss of follow-up in all studies was extraordinary low 
(about 5 %). Studies using indices not used in at least two other studies were excluded 
resulting in studies on time-domain and frequency-domain measures, but not nonlin-
ear indices. The main fi nding of the meta-analysis is a robust association between 
decreased variability and later cardiovascular events. For SDNN a pooled RR of 1.35 
was identifi ed, and the authors mention a higher RR for Holter monitoring than for 
2 min short-term HRV. Decreased LF was associated with a RR of 1.45 and decreased 
HF with a RR of 1.32. In addition they performed a meta-regression indicating “that 
an increase in SDNN of 1 % results in an about 1 % lower risk of the development of 
fatal or nonfatal CVD.” They summarize that individuals with low HRV have about 
40 % increased risk of fatal or nonfatal CVD compared with individuals with high 
HRV (Hillebrand et al.  2013 ) (Figs.  7.2  and  7.3 ).

       Conclusion 

 Studies of general mortality display some particular features. Several used extreme 
short-term measurements, most extreme de Bruyne’s study with 10-s stripes. Most 
evidence points to HRV as a predictor of CVD mortality, but some studies also 

7 General Mortality



153

Author N Comparison

Tsuji (1996) 2,501 Quartiles

Dekker (1997) 878 Tertiles

Bernstein (1997) 391 Quartiles

De Bruyne (1999) 5,272 Quartiles

Gernitsen (2001) (1) 446 Quartiles

Gernitsen (2001) (2) 159 Quartiles

Makikallio (2001) 232 Median

Liao (2002) (1) 10,372 Quartiles

Liao (2002) (2) 1,275 Quartiles

Kop (2010)

Overall (I-squared = 60.2 %, p = 0.007)

1.99 (1.55, 2.55)

1.67 (0.67, 4.17)

1.02 (0.77, 1.35)

0.78 (0.51, 1.19)

1.33 (0.52, 3.40)

1.32 (0.51, 3.42)

1.29 (0.87, 1.91)

1.26 (0.96, 1.65)

1.75 (1.04, 2.94)

1.71 (1.19, 2.46)

1.35 (1.10, 1.67)

908 Median

- 5 1 2 4 8

risk (95 % CI)

Relative

  Fig. 7.2    Meta-analysis comparing risk of fatal and nonfatal cardiovascular disease in low versus high 
heart rate variability measured as standard deviation of NN intervals. Gerritsen and Liao report two 
cohorts (Reproduced with permission of Oxford University Press from Hillebrand et al. ( 2013 ))       
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  Fig. 7.3    Dose–response meta-regression for the association between heart rate variability mea-
sured as standard deviation of NN intervals and fatal and nonfatal cardiovascular disease 
(Reproduced with permission of Oxford University Press from Hillebrand et al. ( 2013 ))       
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found associations between cancer mortality and HRV. Cutoff values were quite 
different. The most convincing ones, from probably the best study, are from Kop 
et al. ( 2010 ). They found (among others) a VLF < 1,000, a LF < 340, an SDNN < 120, 
and a DFA < 1 of signifi cance. Tsuji et al. ( 1994 ) found a LF < 218.9, which is quite 
similar. 

 Can we recommend using HRV in general population, e.g., by a general practi-
tioner? It depends. As any screening method, HRV has not a high predictive value: 
many false positive (and false negative) results can be expected. A low HRV should 
not result in high diagnostic activity or prescription of drugs otherwise not indi-
cated. A high HRV should not lead to a feeling of apparent safety. It is very impor-
tant not to scare patients. On the other hand, it is probably advisable if low HRV is 
used to motivate patients to undertake preventive measures and HRV is used to 
follow patients on the way. In such a context, HRV could be an interesting preven-
tive tool. This would not have negative impact in false positive patients. There is 
quite clear evidence that preventive measures will result in increasing HRV, which 
again can be used to motivate patients even more. Taking this into consideration, 
HRV can be a worthwhile addition for GPs and other medical staff working 
preventively.     
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                      Introduction 

 Heart disease causes more than one-third of all fatalities in humans. This has pro-
voked huge efforts to understand heart physiology and pathophysiology. After 
decades of research, better diagnostic and treatment options are now available. 
Several factors have contributed to an enormous rise in life expectancy in the last 
20 years. One such factor is certainly the progress in cardiology, in diagnosing, risk 
stratifying, and treating heart disease. 

 For scientists (and physicians) interested in HRV, heart diseases offer several 
interesting characteristics. The heart is obviously a crucial part in the system pro-
ducing HRV. Using HRV on the heart is the classical approach. But there is also a 
technical advantage. Fatal arrhythmias can lead to sudden cardiac death. Thus, 
Holter monitoring techniques have been developed to identify highly pathologic 
arrhythmias. This has produced an enormous amount of time series, which also 
have been used for HRV analysis. 

 There are important caveats. A large number of studies are discussed here, but 
only few of them are primary HRV studies. Many bigger studies are intervention 
studies, introducing new medicaments. Only one of several parts in these studies is 
Holter monitoring. In addition, studies usually investigate several interesting 
parameters such as LVEF investigated by echocardiography and laboratory results. 
Many results published as HRV studies are in principle post hoc analysis. That 
means the research protocol often did not include a hypothesis regarding HRV. 
Generally, if studies included an HRV hypothesis, this was a minor one next to the 
larger hypotheses of the given study. Another large group of studies intended to do 
risk analysis. Consistently, many kinds of parameters were included, often analyzed 
in rigorous and good statistical models. But again, these studies were not 
focused  primarily on HRV. Another problem is the lack of intervention studies. One 
would like to fi nd randomized studies that would actually use HRV to stratify 
patients in the treatment group, to give different treatments according to the assessed 
risk, whereas the control group would receive state of the art therapy. The various 
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studies contribute with virtually hundred thousands of patients, but they do not pro-
vide as much scientifi c insight on HRV as the fewer studies designed specifi cally 
around HRV. 

 In heart failure and after myocardial infarction (MI), complex changes in auto-
nomic function are typical. There is an increase in sympathetic outfl ow to the heart 
and to the peripheral vasculature and a reduction in cardiac vagal outfl ow to the 
heart. These changes are typically associated with increased plasma noradrenaline, 
partially because of increased release, partially because of decreased clearance as 
consequence of the reduced cardiac output (Frenneaux  2004 ). Other known distur-
bances include a reduced response of RR intervals to a change in blood pressure 
(reduced cardiac barorefl ex sensitivity (BRS) (Frenneaux  2004 ). In some studies, 
far-reaching interpretations about the state of the vagal system are drawn, which 
probably do not take into account the complexity of ANS changes in heart disease.  

   Coronary Heart Disease and Myocardial Infarction 

 The World Health Organization (WHO) (Task Force  1979 ) defi nes myocardial 
infarction as a combination of at least two of the following three characteristics:
•    Typical features like chest pain or discomfort  
•   A rise in cardiac enzymes  
•   ECG patterns involving Q waves    

 There is some debate about this defi nition. Introduction of new more sensitive 
cardiac biomarkers and imaging technologies might change the defi nition pro-
foundly, particularly extending it to patients who normally would not fall under this 
defi nition although they have ischemic conditions in the heart muscle. Already in 
the year 2000, the Joint European Society of Cardiology and the American College 
of Cardiology Committee (Alpert et al.  2000 ) proposed a new defi nition for an 
acute, evolving, or recent MI if at least one of the following conditions is fulfi lled:
•    Ischemic symptoms  
•   Development of pathologic Q waves on ECG  
•   ECG changes indicative of ischemia (e.g., ST changes)  
•   Percutaneous coronary intervention    

 Coronary heart disease leads to myocardial ischemia, fi rst in conditions with 
increased myocardial oxygen demand, in advanced disease also in rest. Myocardial 
ischemia is often described as an imbalance between myocardial oxygen require-
ment and myocardial perfusion. Other defi nitions have been proposed like a mis-
match between myocardial perfusion and contractile performance. According to 
this, in pathological conditions, increased heart rate reduces subendocardial fl ow 
and impairs contraction (Fox and Ferrari  2011 ). Strong clinical evidence exists for 
the relation between increased heart rate and ischemic episodes, for instance, in one 
study showing that 89 % of ischemic periods were preceded by increased heart rate 
of at least 10 beats/min (Panza et al.  1992 ). Therefore, observed correlations 
between minimum heart rate in Holter monitoring and SDNN are of interest 
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(Burr et al.  2006 ). Classical results have been published of 5,438 participants with 
coronary artery disease, left ventricular ejection fraction of less than 40 %, and end- 
diastolic short-axis internal dimension larger than 56 mm, identifi ed by echocar-
diography. There was a clear relationship between basal heart rate at the beginning 
of the study and mortality after a mean follow-up of 14.7 years (Fig.  8.1 ).

      HRV and General Prognosis After MI 

 In a landmark study of HRV and its association to CVD, Kleiger and colleagues 
analyzed Holter tapes of 808 patients who survived AMI using SDNN. Mean fol-
low- up time was 31 months. Of all Holter variables measured, HR variability had 
the strongest univariate correlation with mortality. The relative risk of mortality was 
5.3 times higher in the group with HR variability (SDNN) of less than 50 ms than 
the group with HR variability of more than 100 ms (Kleiger et al.  1987 ). This study 
was the fi rst to use HRV for this purpose. Several studies were conducted thereafter. 
In the following section, the focus is mainly on studies made after the Task Force 
published its recommendations. 

 In the ATRAMI study, 1,248 patients with a recent (<28 days) MI underwent 
Holter monitoring with time-domain indices and BRS with phenylephrine tech-
nique (arterial cannulation). Patients were in a relatively low-risk group (LVEF 
49 % in mean). SDNN <70 ms was an univariate predictor of cardiac 1 and 2-year 
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  Fig. 8.1    Association between basal heart rate and mortality in patients with coronary artery dis-
ease, ejection fraction of less than 40 %, and end-diastolic short-axis internal dimension larger than 
56 mm (Modifi ed after Fox et al. ( 2008 ), with permission of Elsevier)       
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mortality. In a multivariate model, BRS <3 ms/mmHg RR was 2.8 and for SDNN 
<70 ms 3.2. In combination with an LVEF <35 %, the RR was 11.5 and 5.9, respec-
tively (La Rovere et al.  1988 ) (Fig.  8.2 ).

   One study observed 64 patients with a fi rst acute myocardial infarction and 31 
control subjects. HRV was calculated, and LV systolic and diastolic function was 
characterized by echocardiography. HRV indices were signifi cantly reduced in 
patients with restrictive LV fi lling, whereas ejection fraction correlated only weakly 
with long-term HRV indices. Restrictive LV fi lling pattern was the strongest predic-
tor of adverse outcome, independent of HRV and EF but restrictive LV fi lling pat-
tern correlated with HRV (Poulsen et al.  2001 ). 

 Depressed patients with a recent MI ( n  = 307) and MI patients without depression 
( n  = 366) were compared using Holter ECGs. After adjustment for other medical 
and demographic factors, lnULF (8.52 ± 0.05 vs. 8.66 ± 0.05), lnVLF (6.32 ± 0.06 
vs. 6.59 ± 0.065), and lnLF (5.09 ± 5.34 vs. 5.34 ± 0.08) were signifi cantly lower in 
depressed patients, whereas HF did not differ. There was no difference between 
patients with minor or major depression, lnULF correlated slightly with lnULF 
(Carney et al.  2001 ). 
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  Fig. 8.2    Kaplan–Meier survival curves of patients with cutoff values of α1, SDNN, ln VLF, and 
β (Huikuri et al. ( 2000 ), with permission of Wolters Kluwer Health)       
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 Molnar and colleagues studied 14 SHD survivors, 14 patients matched to the 
data of the fi rst group and 14 healthy subjects. The mean QTc was signifi cantly 
longer in control patients and was less in the survivor group. Of the HRV indices, 
only SDANN and SDNN were signifi cantly lower in the survivor group. Reduced 
circadian variation was shown in the survivor group. In conclusion, the more 
advanced time- and frequency-domain measures were not suitable for characteriz-
ing survivors as compared to the other two groups (Molnar et al.  2002 ). 

 On univariate analysis, patients with HRT category 2 (i.e., TO ≥ 0 % and 
TS ≤ 2.5 ms/R-R interval) had a 4.4- to 11.3-fold risk of subsequent death within 
2 years compared with patients with normal HRT. The risk of subsequent deaths 
associated with HRT category 2 was consistently as high as in patients with left 
ventricular dysfunction. HRT as prognostic factor was independent of HRV, LVEF, 
or arrhythmias (Bauer et al.  2008 ). Persistent impairment of HRT after percutane-
ous coronary intervention in patients with incomplete reperfusion implies prolonged 
barorefl ex impairment and is consistent with poor prognosis (Sade et al.  2003 ). 

 HRT has been used in several large postinfarction studies and is discussed as a 
strong electrocardiographic risk factor. With a modifi ed HRV algorithm (heart rate 
turbulence, which analyzes changes in heart rhythm after premature beats), it was 
possible to identify risk populations (Barthel et al.  2003 ). 

 Three thousand seven-hundred and seventeen post-MI patients were enrolled for 
an intervention study with azimilide. Placebo patients with low HRV had a signifi -
cantly higher 1 year’s mortality than patients with higher HRV. HRV was deter-
mined with the HRV triangular index. HRV <20 was regarded as high risk, > 20 as 
low risk (Camm et al.  2004 ). 

 In 463 post-MI patients, Holter monitoring with analysis of SDNN, rMSSD, LF, 
HF, and TP revealed an association to both overall survival and sudden death. 
Variables indicating a bad prognosis were SDNN <50 ms, rMSSD <20 ms, Lf/HF 
>2, non-sustained ventricular tachycardia, and left ventricular ejection fraction 
<40 %. Patients after successful revascularization had higher indices. LF/HF >2 and 
SDNN <50 ms had the same relative risk as LVEF (Balanescu et al.  2004 ). 

 In another study, patients 70–120 days after MI were invited to an intervention 
with antiarrhythmic treatment with a follow-up of 362 ± 241 days. Seventy-nine 
patients died during this period. Holter monitoring with time-domain, frequency- 
domain, and nonlinear measures (alfa1, DFA, and Poincaré dimension SD12) was 
used. Increased daytime SD12 had the strongest association with mortality. In mul-
tivariate analysis, increased SD12, decreased ULF, a history of prior MI, or conges-
tive heart failure had the strongest associations in the model. The authors conclude 
that decreased long-term HRV and increased randomness of heart rate are each 
independent risk factors for mortality after MI (Stein et al.  2005 ). 

 In a trial comparing depressed patients with CHD and a recent MI and a nonde-
pressed group of cardiac patients with similar conditions (inclusion criteria to the 
ENRICHD study), Holter ECG were taken; lnVLF was lower in the depressed group. 
Depressed patients had a higher mortality (hazard ratio 2.8), which dropped to 2.1 
when low lnVLF was included into the model. This was interpreted to mean that low 
HRV partially mediates the effect of depression on survival (Carney et al.  2005 ). 
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 In a cohort study after myocardial infarction, a Holter ECG approach was used 
to measure traditional HRV values and deceleration capacity. Deceleration capacity 
was superior to LVEF and SDNN (Bauer et al.  2006 ). 

 In a population-based study including 4,263 individuals followed up for 10 years, 
there was a signifi cant association between HRV indices and CHD deaths. Adjusted for 
age, gender, race, education, smoking, diabetes, prevalent CHD, treated hypertension, 
and body mass index, the following signifi cant associations with relative risk (hazard) 
of CHD death were found: increased short-term SDNN: 1.1 % lower risk ( p  = 0.06); 
increased VLF: 4.8 % lower risk ( p  = 0.003); decreased Poincaré ratio: 5.9 % lower risk 
( p  = 0.003); and increased DFA1: 8.4 % lower risk ( p  < 0.001) (Mozaffarian et al.  2008 ). 

 A study focused on the association of fi brinogen, a known risk factor for coro-
nary heart disease, and indices of 24-h HRV. Included were 559 employees of an 
airplane manufacturing plant between 17 and 63 years, mostly men. The study cal-
culated nighttime RMSSD and correlated it with fi brinogen. Night-time RMSSD 
explained 1.7 % of the variance of fi brinogen ( p  < 0.001), with a stronger correlation 
in women (Von Känel et al.  2009 ). 

 Hayano introduced a new nonlinear index, non-Gaussianity index ( λ ), and used 
it in a study including 570 post-AMI patients following them up for 2 years. The 
unadjusted Cox hazards regression analysis revealed that decreases in SDNN and 
DC were associated with an increased risk of recurrent nonfatal AMI, while DFA 
 α 1, HRT, and  λ 25 s had no predictive power for the recurrence. All HRV indices, 
with exception of  λ 25 s and abnormal HRT, predicted increased risk of both cardiac 
and noncardiac death, while increased  λ 25 s predicted increased risk of only cardiac 
death but not noncardiac death (Hayano et al.  2011 ) (Table  8.1 ).

     Angina Pectoris 

 Twenty-fi ve patients with stable angina pectoris without previous MI were analyzed 
with Holter ECG using nonlinear measures. They were compared with 20 healthy 
controls. A fi lter was used to eliminate noise, artifacts, and premature beats. The 
group used the fractal dimension with Hurst exponent and DFA. The short-term, but 
not the long-term, fractal scaling exponent of DFA ( α  1 ) was signifi cantly lower in 
the patient group. AP patients had a higher fractal dimension (Krstacic et al.  2001 ). 

   Table 8.1    HRV and general mortality after MI   

  N   Observation  Method  Cutoff  RR  Source 

 808  31 months  SDNN  <50 ms  5.3  Kleiger et al. ( 1987 ) 
 715  Frequency domain  2–4  Bigger et al. ( 1993 ) 
 1248  1, 2 years  SDNN  <70 ms  3.2 (1.42–7.36)  La Rovere et al. ( 1998 ) 
 463    SDNN, RMSSD, LF/HF  <50 ms  Balanescu et al. ( 2004 ) 

 <20 ms 
 >2 
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 Six-hundred and forty-one patients with stable angina pectoris were analyzed with 
the help of HRV spectra. In the follow-up period (mean 40 months), 27 died of cardio-
vascular events and 26 developed nonfatal MIs. HRV spectra did not predict nonfatal 
MI, but cardiovascular mortality (total power, HF, LF, VLF) LF/HF ratio was not 
related to prognosis. Use of metoprolol increased HRV (Forslund et al.  2002 ). 

 In a study including 531 patients with unstable angina pectoris, the patients were 
grouped in quartiles according to their CRP levels. The upper CRP quartile had 
signifi cantly lower HRV values. Especially VLF and SDNN were signifi cant pre-
dictors. The authors conclude on a signifi cant relationship between infl ammation 
and HRV parameters (Lanza et al.  2006 ). 

 In a recent study, 809 patients with AP were followed 9 years. Inclusion criteria 
were age below 70 and a typical history of stable angina pectoris. Twenty-four-hour 
ambulatory long-term electrocardiographic registrations including analyses of ST 
segment depression, arrhythmias, and heart rate variability within the time and fre-
quency domains and by the differential index were performed. Independent predic-
tive variables were among others age, female gender, fasting blood glucose, serum 
creatinine, and leukocyte counts but not HRV (Kahan et al.  2013 ). This is a very 
important negative study regarding HRV. The publication fails to provide some 
details regarding data acquisition and processing and does not contain the exact 
HRV data. Regarding the diagnostic prediction in this patient group, HRV is disap-
pointing, but this might be because these patients had already low HRV indices at 
inclusion time.   

   Chronic Heart Failure 

   Introduction 

 Heat failure is a disease with increasing incidence and prevalence. Thought to be 
incurable earlier on, new treatment approaches have appeared more recently and 
have partially changed its trajectory from a fatal to a chronic disease. Treatment up 
to now was focused on hemodynamics in acute situations, but newer treatments 
focus on the chronic disease. Increased understanding of pathophysiological mech-
anisms offers new treatment options, including direct targeting of intracellular pro-
teins, delivering genes to repair enzyme abnormalities, replacing cell populations, 
or implanting microprocessors. Many of these advances come from insights into the 
intracellular signaling pathways that control cardiac hypertrophy and dilation, myo-
cardial energetics, cellular calcium signaling, and the contractile machinery itself 
(Mudd and Kass  2008 ). 

 Heart failure develops when the heart can no longer provide adequate blood fl ow 
and/or pressure to meet the body’s demands. This failure triggers countermeasures, 
including the retention of salt and water by the kidneys, the stimulation of the body’s 
organs by neurohormones, and the activation of intracellular signaling cascades in 
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the heart and vasculature that alter cellular and organ morphology and function 
(Mudd and Kass  2008 ). These counterbalancing effects may initially stabilize the 
situation, but they contribute in a longer run to deterioration and fatal outcome. 
About 50 % of patients end up in cardiac dilation with contractile failure (also 
called systolic heart failure), the other half ending up often with an hypertrophied 
heart and in a normal contraction but nevertheless diminished cardiac output (also 
called diastolic failure). 

 As in most diseases, intervention will be more effi cacious if it is done early. 
Traditional approaches for the early identifi cation of pathophysiological changes 
are not suffi cient (Gerszten and Wang  2008 ). At the same time it is well known that 
heart failure results in a variety of heart rhythm abnormalities. Many of them are 
well known, but others might be less obvious. Heart rate variability has been shown 
to contribute in this challenging diagnostic area. 

 There is considerable uncertainty as to whether or not HRV can show real 
changes of SNS in heart failure. The sinus node has changed responsiveness on 
adrenergic inputs. HRV interpretations regarding SNS activity in chronic heart 
failure should therefore be interpreted with caution (Piccirillo et al.  2009 ; Shen 
et al.  2012 ).  

   Pathophysiology and Phenomenology 

 Heart failure is as mentioned, a clinical symptom resulting from complex interac-
tions between initial myocardial insults and reactive, compensatory processes. 
Patients progress often from a clinically silent state, in which changes in the heart 
muscle already occur while cardiac output is preserved. This includes changes in 
cellular function to normalize ventricular wall stress, e.g., by hypertrophy. Heart 
failure leads to a chronic activation of barosensitive sympathetic efferents and con-
secutive increased (real) SNA. Because of decreased effect of the myocardium, this 
does not lead to hypertension (Guyenet  2006 ). In response to pressure-overloaded 
conditions, the heart reacts with remodelling and ventricular hypertrophy due to 
addition of myofi bril units, which leads to a lateral expansion of the myocytes. 
Volume overload causes ventricular enlargement without changes in wall thickness. 
CAD and MI lead to ventricular expansion because the infracted segment stretches. 
This causes in turn disruption of the normal architecture of the ventricular wall 
including loss of myocytes. 

 Chronic systolic failure is most common and is synonymous to low-output fail-
ure. The stretched myocytes are unable to eject an adequate stroke volume. First, 
adaptive remodelling leads to changes in wall geometry and cavity size. Eventually 
the possibility for adaptation is exhausted and the volume overload ventricle will 
decompensate. Contractility decreases and fi lling pressure in the ventricle increases. 
This again leads to increased oxygen demand in myocytes and to a delivery prob-
lem, causing more cell deaths. The shape of the ventricle changes, cardiomegaly 
occurs, and the patient reaches then end-stage CHF. 
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 Diastolic failure, unlike systolic failure, is caused by a fi lling problem during 
diastole. Relaxation of the ventricle is impaired due to a loss of ventricular compli-
ance, most often caused by pathological conditions like left ventricle hypertrophy, 
coronary artery disease, or, simply, by aging. Often systolic and diastolic dysfunc-
tion exists together. In absence of a systolic dysfunction, pulmonary venous conges-
tion develops. Three main mechanisms are involved in diastolic failure: impaired 
ventricular wall relaxation, increased ventricular stiffness, and increased collagen 
deposition in the ventricular walls. 

 A number of neurohumoral alterations develop during the course of heart failure. 
The sympathetic activation in chronic heart failure is well established with increased 
MSNA (Ferguson et al.  1990 ) being paralleled by increased total body, real, cardiac, 
and central nervous system noradrenaline spill over (Hasking et al.  1986 ; Meredith 
et al.  1993 ; Kaye et al.  1994 ; Rundqvist et al.  1997 ). Patients do not have symptoms 
because increased neurohumoral activity compensates the situation by increasing heart 
rate and contractility. But this compensation has its prize, again through an increased 
oxygen demand of myocytes, causing a mismatch between oxygen delivery, which is 
reduced due to increased wall pressure and heart rate, and the increased demand. 

 In addition, the activated SNS, releasing high doses of noradrenaline, may cause 
myocarditis, myocardial necrosis, and cardiomyopathy. Beta-1 receptors density is 
downregulated parallel to increasing ventricular dysfunction. Elevated plasma nor-
adrenaline is a predictor of mortality in heart failure patients. In addition to direct 
effects on the myocytes, increased catecholamine concentrations can cause serious 
arrhythmias, one of the main reasons for sudden cardiac death. 

 The renin–angiotensin–aldosterone system is also activated in heart failure. 
When cardiac output decreases, the baroreceptor stimulation in the carotid and aor-
tic sinuses is reduced. This triggers a refl ex increase in sympathetic outfl ow and 
decrease of the vagal stimulation. Though less rapidly, this also causes increases in 
plasma rennin, arginine, vasopressin, aldosterone, and endothelin, combined cause 
for sodium and water retention and vasoconstriction. The response on atrial natri-
uretic peptide is reduced, peripheral dilatation, diereses, and natriuresis decreased, 
eventually resulting in general vasoconstrictor and volume overload conditions that 
contribute to the degradation of the heart function. 

 In summary, heart failure can be discussed as a series of adaptive and maladap-
tive processes after pathological events, causing vicious circles. CHF again has ring 
actions on other parts of the body, e.g., the kidneys, the gastrointestinal tract, the 
lung, including its gas exchange capacity.  

   Heart Failure and HRV 

 Already early research groups observed marked differences in HRV between 
patients with CHF and healthy controls. Casolo tested 20 patients with CHF charac-
terized by less than 30 % LVEF (Holter monitoring) and observed markedly reduced 
SDNN (97.5 ± 41 vs. 233.2 ± 26 ms) (Casolo et al.  1989 ). 
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 In a study comparing seven patients with chronic heart failure (NYHA II–IV) to 
eight age-matched healthy men, short-time HRV, MSNA, and plasma norepineph-
rine were obtained. Atropine was given in low dosage (assumed to increase central 
vagal–cardiac motoneurons). At rest, patients with heart failure had increased sym-
pathetic and decreased parasympathetic indices. It was shown that the heart failure 
patients had respiratory modulation of sympathetic, but not parasympathetic, indi-
ces. Atropine did not lead to changes in HRV or MSNA in heart failure patients, but 
10 μg/kg led to a reduction of SDNN in the control group (Porter et al.  1990 ). 

 In a study, 24 healthy volunteers and 24 patients with heart failure were com-
pared. Twenty-four-hour Holter EKG were used to calculate usual HRV measures 
(RR intervals, standard deviations) and Poincaré plots, using each R-R interval plot-
ted against the subsequent R-R interval. All healthy subjects showed a comet- 
shaped plot, whereas the patients showed three different patterns (torpedo shaped, 
fan shaped, complex) that could not be perceived from standard deviation informa-
tion (Woo et al.  1992 ). 

 Binder followed patients with CHF awaiting heart transplantation and com-
pared survivors with non-survivors: in non-survivors, SDNN was extremely low 
(18 ± 11 vs. 47 ± 24); the most sensitive parameter for survival was SDANN (Binder 
et al.  1992 ). 1  

 Guzzetti introduced spectral measures in CHF patients, showing markedly 
reduced LF and VLF and increased HF in association with NYHA classes II–V 
(Guzzetti et al.  1995 ). 

 Time-domain analysis of 24-h HRV was performed in 64 patients with dilated 
cardiomyopathy (DCM) and 33 healthy control subjects. Indices of HRV were 
reduced in patients with DCM compared with controls. Measures of HRV were 
lower in DCM patients in whom progressive heart failure developed during a fol-
low- up of 24 months. Reduced HRV was associated with NYHA functional class, 
left ventricular end-diastolic dimension, reduced left ventricular ejection fraction, 
and peak exercise oxygen consumption in all patients. DCM patients with SDNN 
<50 ms had a signifi cantly lower survival rate free of progressive heart failure than 
those with SDNN >50 ms. Stepwise multiple regression analysis showed that 
SDNN <50 ms was an independent predictor for developing progressive heart fail-
ure (Yi et al.  1997 ). 

 Ponikowski included 102 patients with moderate to severe CHF due to different 
causes. Non-survivors had lower SDNN, SDANN, and LF. In multivariate analysis, 
HRV parameters (SDNN, SDANN, LF) were found to predict survival indepen-
dently of NYHA functional class, EF, peak oxygen consumption, and ventricular 
tachycardia on Holter monitoring. The Kaplan–Meier survival curves revealed 
SDNN <100 ms to be a useful risk indicator: 1 year survival in patients with SDNN 
<100 ms was 78 % when compared with 95 % in those with SDNN >100 ms 
(Ponikowski et al.  1997 ). 

1   Note that in the abstract SDANN is described incorrectly as “The standard deviation of fi ve con-
secutive RR intervals (SDANN),” but in the article correctly as “SDANN – Standard deviation of 
5-minute mean RR intervals” 
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 Nolan recruited 433 outpatients with CHF (NYHA functional class I to III; mean 
ejection fraction, 0.41 ± 0.17). The annual mortality rate for the study population in 
SDNN subgroups was 5.5 % for >100 ms, 12.7 % for 50–100 ms, and 51.4 % for 
<50 ms. HRV did not predict SCD, but it did predict death due to progressive heart 
failure (Nolan et al.  1998 ). 

 Time- and frequency-domain analysis of heart rate variability obtained by Holter 
monitoring was assessed in 116 patients with idiopathic dilated cardiomyopathy. 
Mean follow-up was 53 months. Using multivariate analysis, only SDNN and ven-
tricular tachycardia during 24-h ECG recording predicted sudden death or arrhyth-
mic events. For SDNN, a cutoff level of 100 ms seemed most adequate for risk 
stratifi cation (Fauchier et al.  1999 ). 

 Galinier enrolled 190 patients with chronic heart failure. Time- and frequency- 
domain measures of heart rate variability were obtained from 24-h Holter ECG 
recordings; spectral measures were averaged for calculation of daytime (1000–
1900 h) and nighttime (2300–0600 h) values. SDNN <67 ms and daytime low- 
frequency power <3.3 ln were predictors for non-survivors (Galinier et al.  2000 ). 

 In chronic heart failure, it has been shown that increased neuronal norepineph-
rine release and decreased effi ciency of norepinephrine reuptake exist simultane-
ously (Eisenhofer et al.  1996 ). Cardiac noradrenaline spillover is a good predictor 
of mortality in advanced cardiac failure but requires an invasive catheterization 
laboratory for its determination (Kaye et al.  1995 ). An alternative to assess sym-
pathetic outfl ow, such as HRV, would be highly relevant for this patient population 
(Notarius and Floras  2001 ). In this context it is worth noting that differences in 
age, gender, and ethnic background disappear in congestive heart failure (Stein 
et al.  1997 ). 

 Boveda included 190 patients with CHF. Time-domain measures of heart rate 
variability were obtained from 24-h Holter ECG recordings. In multivariate analysis, 
SDNN <67 ms was an independent predictor for all-cause mortality (Boveda et al. 
 2001 ). In an independent publication most probably of the same patient group, lower 
daytime LF is discussed as predictor for sudden cardiac death (Galinier et al.  2000 ). 

 Bilchick performed a retrospective analysis of electrocardiographic data from 
127 patients in the Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in 
Congestive Heart Failure in order to determine if HRV (using only SDNN) would 
be feasible as a predictor of overall mortality and sudden death. SDNN <65.3 ms 
was the sole independent factor predictive of survival in a multivariate model. 
A Cox proportional hazards model revealed that each increase of 10 ms in SDNN 
conferred a 20 % decrease in risk of mortality. Furthermore, patients with SDNN 
<65.3 ms had a signifi cantly increased risk of sudden death ( p  = 0.016) (Bilchick 
et al.  2002 ). 

 In contrast to animal studies, the low-frequency component is virtually abolished 
in severe heart failure in humans and is associated with worsening clinical status 
and prognosis (van de Borne et al.  1997 ). This occurs paradoxically at a time when 
sympathetic activity as measured simultaneously by cardiac noradrenaline spillover 
and other methods is extremely high (Kingwell et al.  1994 ; Rundqvist et al.  1997 ; 
Notarius and Floras  2001 ). 
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 SDNN, HR variability index, frequency-domain indexes, and the short-term 
fractal scaling exponent of RR intervals were studied from 24-h Holter recordings 
in 499 patients with CHF and left ventricular ejection fraction ≤35 % during a mean 
follow-up of 665 ± 374 days. Conventional and fractal HR variability indexes pre-
dicted mortality by univariate analysis. SDNN for people who died during the study 
period was 112 ± 54, for survivors it was 130 ± 91. Here there were no differences in 
spectral measures with exception of (a small) difference in VLF. After adjusting for 
age, functional class, medication, and left ventricular ejection fraction in the multi-
variate proportional hazards analysis, the reduced short-term fractal exponent 
remained the independent predictor of mortality. All HR variability indexes were 
more signifi cant univariate predictors of mortality in functional class II than in class 
III or IV (Mäkikallio et al.  2001 ). 

 In 64 patients with decompensated congestive heart failure (NYHA III and IV), 
time- and frequency-domain HRV were obtained from 24-h Holter ECGs. Plasma 
renin, aldosterone, noradrenaline, and endothelin I levels were assessed. ET-1 cor-
related negatively with SDNN, SDANN, Tp, and ULF but not with LF/HF (Aronson 
et al.  2001a ). TNF-α did not correlate with HRV variable, but IL6 correlated nega-
tively with SDNN, SDANN, TP, and ULF (Aronson et al.  2001b ). 

 Five hundred and fi fty-three outpatients with chronic heart failure and left ven-
tricular dysfunction (EF < 45 %) were examined. After 2,365 patient–years follow- up, 
201 patients died, 76 due to progressive heart failure. Independent predictors using the 
Cox hazards model were identifi ed: SDNN, lower serum sodium, higher creatinine, 
higher cardiothoracic ratio, non-sustained ventricular tachycardia, higher left ventric-
ular end-systolic diameter, left ventricular hypertrophy, and increasing age. The haz-
ard ratio for a 10 % decrease in SDNN was 1.06 (1.01−1.12) (Kearney et al.  2002 ). 

 In 29 patients with class I to class IIIa heart failure (and consecutive lower EFs) and 
ten healthy subjects, TNF levels increased and HRV decreased in correlation with heart 
failure. TNF levels and HRV were inversely correlated, showing statistically robust-
ness using log linear and nonparametric tests. In a multiple linear regression analysis, 
only TNF and noradrenaline levels contributed signifi cantly to the variation observed 
in HRV, where TNF was a stronger independent predictor (Malave et al.  2003 ). 

 An interesting point was made by Arora, who studied CHF patients with pre-
dominant systolic or diastolic failure. He compared 19 patients with diastolic heart 
failure, 9 patients with systolic heart failure, and 9 healthy volunteers. Time- and 
frequency-domain indices were reduced in both groups compared to normal con-
trols. Patients with diastolic function had relatively higher values of HRV variables, 
compared to those with systolic dysfunction (SDNN, Total power, ULF power). 
Patients with diastolic dysfunction had generally reduced HRV, but values for HRV 
were not as profoundly reduced as in patients with systolic dysfunction. SDNN 
values for patients with systolic heart failure, diastolic heart failure, and controls 
were 94.4 ± 33, 121.9 ± 31 and 137.8 ± 32.9, respectively (Arora et al.  2004 ). 

 Fifty-four consecutive CHF patients with exacerbation of pulmonary congestion 
were included in a study using Holter monitoring. In univariate analysis, diabetes 
mellitus (DM), BNP, and New York Heart Association (NYHA) functional class 
were signifi cant as risk factors for cardiac events. VLF power, LF power, and TP 
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were strong predictors for cardiac events in HRV. In multivariate analysis, VLF 
power predicted cardiac events independently of LF power, TP, DM, BNP, and 
NYHA functional class (Hadase et al.  2004 ). 

 A study with a group of patients with chronic heart failure (with a LVEF <45 % 
and without atrial fi brillation, paced rhythms, or >10 % arrhythmias time domain) 
used a control group of 15 healthy persons. Twenty-four-hour HRV analysis was 
performed, and venous blood samples were screened for soluble TNF-α receptors 
sTNF-RI and sTNF-RII and IL6 using ELISA. In the CHF group, SDNN, SDANN, 
and SDNNI were lower, whereas rMSSD and pNN50 were not different than con-
trols. There was a signifi cant negative correlation between sTNF-RII and SDNN 
( r  = −0.26 and between SDNN, SDANN, and IL6 ( r  = −0.25,  r  = −0.28, respectively). 
These correlations were found both in the patient and the control group 
(Straburzynska-Migaj et al.  2005 ). 

 In 330 CHF patients, time domain, spectral domain, and fractal analyses of Holter 
monitoring were obtained. Data from clinical assessment, echocardiography, right heart 
catheterization, exercise test, blood biochemical examination, and arrhythmia pattern 
were included, and patients were followed up for 3 years. Lower nighttime normalized 
(≤509), high pulmonary wedge pressure (PWP ≥ 18 mmHg), and low left ventricular 
ejection fraction (LVEF ≤ 24 %) were independently related to death for progressive 
pump failure, while LF ≤ 20 and increased left ventricular end-systolic diameter 
(LVESD ≥ 61 mm) were linked to sudden mortality (Guzzetti et al.  2005 ) (Fig.  8.3 ).
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  Fig. 8.3    HRV in mild ( upper 
graph ) and severe ( lower 
graph ) congestive heart 
failure (From Notarius and 
Floras ( 2001 ), with 
permission of Oxford 
University Press)       
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   In normal subjects, a curvilinear association exits between lag and Poincaré plot 
indices (SD1, SD2, SDLD, and SD1/SD2 ratio even for a small sequence of 50 
beats). This curvilinearity was lost in a group of patients with CHF even in sequences 
with 50.000 R-R intervals (secondary data analysis with data from Physionet) 
(Thakre and Smith  2006 ). 

 Maestri used a very interesting approach. Twenty nonlinear HRV indices, repre-
sentative of symbolic dynamics, entropy, fractality–multifractality, predictability, 
empirical mode decomposition, and Poincaré plot families, were obtained from 24-h 
Holter recordings in 200 stable CHF patients (see Table  8.2 ). End point for survival 
analysis (Cox model) was cardiac death or urgent transplantation. Homogeneous 
variables were grouped by cluster analysis, and in each cluster redundant variables 
were discarded. A prognostic model including only known clinical and functional 
risk factors was built and the ability of each selected HRV variable to add prognostic 
information to this model assessed. Bootstrap resampling was used to test the models 

    Table 8.2    Nonlinear indexes tested in the Maestri study   

 1VP  One variation pattern  Symbolic dynamics 
 2UVP  Two unlike variations pattern  Symbolic dynamics 
 BNI  Binary nonrandomness index  Symbolic dynamics 
 BLZC  Binary Lempel Ziv complexity  Entropy 
 DELTA  Long-range memory in RR time series  Entropy 
 SampEn  Sample entropy  Entropy 
 DFA  Short-term detrended fl uctuation analysis  Fractality, multifractality 
 HFD  Higuchi fractal dimension  Fractality, multifractality 
 1/ f  slope  Slope of the power-law regression line  Fractality, multifractality 
 SMFSr  Ratio between the width of the singularity multifractal 

spectrum and the same quantity after phase 
randomization 

 Fractality, multifractality 

 UPI  Non-normalized unpredictability index  Predictability 
 UPIn  Normalized unpredictability index  Predictability 
 IMAI1  Ratio between the power associated with the mode with 

frequency closest to 0.1 Hz(LF1) and the power of 
modes with frequencies higher than LF1 

 Empirical mode 
decomposition 

 IMAI2  Ratio between the power associated with the fi rst mode with 
frequency <LF1 and the modes with frequencies higher 
than LF1 (see IMAI1) 

 Empirical mode 
decomposition 

 pLF2  Power associated with the fi rst mode with frequency <LF1 
(see IMAI1) 

 Empirical mode 
decomposition 

 LEN  Length of the bidimensional Poincaré plots  Poincaré plots 
 SD12  Ratio between the axis of the ellipse fi tting bidimensional 

Poincaré plots 
 Poincaré plots 

 RAD X  Radius of the semiellipse of inertia along the  X  axis of the 
3-dimensional Poincaré plot 

 Poincaré plots 

 RAD Y  Radius of the semiellipse of inertia along the  Y  axis of the 
3-dimensional Poincaré plot 

 Poincaré plots 

 RAD Z  Radius of the semiellipse of inertia along the  Z  axis of the 
3-dimensional Poincaré plot 

 Poincaré plots 

  Maestri et al.  2007   
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stability. Four nonlinear variables showed a correlation >0.90 with classical linear 
ones and were discarded (LEN, RAD Z, UPI, pLF2). Correlations >0.80 were found 
between several nonlinear variables. Twelve clusters were obtained, and from each 
cluster a candidate predictor was selected. Only two variables (IMAI2 and 1VP, from 
empirical mode decomposition and symbolic dynamics families) added prognostic 
information to the clinical model (Maestri et al.  2007 ) (Table  8.2 ).

   In a small pilot study, use of losartan, spironolactone, or a combination led to an 
improvement of HRV indices in eight patients 18 weeks after baseline (Shehab et al. 
 2008 ). 

 In 294 patients with LVEF < 35 %, Holter monitoring was used to calculate heart 
rate variability, heart rate turbulence, and repolarization dynamics (QT/RR). If two 
of three parameters were signifi cantly changed (beyond that SDNN < 86 ms), it pre-
dicted risk of death (30 % 3-year mortality rate) and sudden death (12 %) similar to 
LVEF < 35 % as risk factor (Cygankiewicz et al.  2009 ). 

 Five hundred and sixty-nine patients after AMI but with no initial history of CHF 
were followed over 8 years, and patients in need for hospitalization due to CHF 
were compared with the rest. SDNN (79 ± 28 vs. 100 ± 32), short-term scaling expo-
nent  α 1 (1.07 ± 0.30 vs. 1.26 ± 0.22), HRT (TS (ms/NN) 2.53 ± 2.77 vs. 6.17 ± 6.14), 
barorefl ex sensitivity, and heart rate were signifi cantly different in comparison. In 
the ROC curve analysis, BNP and the ratio of BNP to SDNN were the most accurate 
of the studied parameters in predicting HF hospitalization (Perkiömäki et al.  2010 ). 

 In 110 patients with CHF, HRV, and HRT was assessed from 24-h Holter recordings. 
TO ≥ 0 %, TS ≤ 2.5 ms/RR, and TT > 10 were considered as pathological. End point was 
development of end-stage CHF requiring heart transplantation (OHT) or mortality dur-
ing the follow-up of 6 years. Patients with at least one relatively preserved HRT param-
eter (TO, TS, or TT) ( n  = 98) had 5-year event-free rate of 83 % compared to 33 % of 
those in whom all three parameters were abnormal (only 12 patients). In multivariate 
analysis, the most powerful predictor of end point events was heart rate variability 
(SDNN < 70 ms, hazard ratio (HR) 9.41,  p  < 0.001), followed by LVEF ≤ 35 % (HR 
6.23), TT ≥ 10 (HR 3.14), and TO ≥ 0 (HR 2.54,  p  < 0.05) (Sredniawa et al.  2010 ). 

 Ho used multiscale entropy in 40 patients followed up 684 ± 441 days. Among all 
parameters, Area5, Area6–20, and LF were signifi cantly lower in the mortality 
group (Ho et al.  2011 ) (Tables  8.3  and  8.4 ).

    There are several open questions. One was assessed by Stein, looking at possible 
cumulative effects of CHF and diabetes on HRV. She found some cumulative effects on 
NYHA class 2 patients but little effect on NYHA class 3 (Stein and Deedwania  2010 ).  

   Conclusion 

 It can be presumed that the idea of decreased HRV in patients with CHF is now 
established. It has been shown repeatedly that different HRV indices have a predic-
tive value, both for deterioration and mortality. Best established is SDNN. In some 
studies, the cutoff point was 100 ms, in some around 60–70 ms, and in a few 50 ms. 
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This can be used as diagnostic parameter together with other clinical data to stratify 
patients for interventions and clinical follow-up. If we put this together with data 
from rehabilitation studies, CHF patients can be followed, and a restoration of HRV 
might be a prognostic positive sign, but evidence for this is still lacking.   

   Risk Prediction for Sudden Cardiac Death 

 Sudden cardiac death (SCD) outside of the hospital is clinically very important. It 
causes more than 60 % of all deaths due to cardiovascular disease, which in turn is 
the leading cause of deaths generally. Even worse, the large majority of SCD 

   Table 8.4    CHF and SDNN in selected studies   

 Number 
of patients  Method  SDNN patients and control group  Reference 

 20  Holter monitoring  97.5 ± 41 versus 233.2 ± 26 ms  Casolo et al. ( 1989 ) 
 9  Holter monitoring  94.4 ± 33 versus 137.8 ± 32.9  Arora et al. ( 2004 ) 
 433  Holter monitoring  Annual mortality 5.5 % for >100 ms, 

12.7 % for 50 to 100 ms, and 
51.4 % for <50 ms 

 Nolan et al. ( 1998 ) 

 64  Holter monitoring  57 ± 30 in deteriorating patients, 
121 ± 41 in stable patients, 144 ± 35 
in controls 

 Yi et al. ( 1997 ) 

 242  Short term (8 min)  21 ± 19, patients with moderate to 
severe CHF 

 La Rovere et al. ( 2003 ) 

 499  Holter monitoring  SDNN for non-survivors 112 ± 54, for 
survivors 130 ± 91 

 Mäkikallio et al. ( 2001 ) 

   Table 8.3    Cutoff points for SDNN in risk stratifi cations in some selected studies   

 Cutoff point  Observed differences  Reference 

 50  Lower in DCM patients in whom progressive heart 
failure developed during a follow-up of 24 months 

 Yi et al. ( 1997 ) 

 100  1-year survival in patients with SDNN <100 ms was 
78 % when compared with 95 % in those with SDNN 
>100 ms 

 Ponikowski et al. ( 1997 ) 

 100  DCM, follow-up 53 months  Fauchier et al. ( 1999 ) 
 67  Galinier et al. ( 2000 ) 
 65.3  Each increase of 10 ms in SDNN conferred a 20 % 

decrease in risk of mortality 
 Bilchick et al. ( 2002 ) 

 67  Survivors: 91.3 ± 33, non-survivors 69.3 ± 31.7  Boveda et al. ( 2001 ) 
 70  SDNN <70 predictive in univariate but not multivariate 

analysis 
 Mäkikallio et al. ( 2005 ) 

 86  ≥2 abnormal risk markers (SDNN; HRT, QT end/RR 
>0.21)were at risk of death (30 % 3-year mortality 
rate) and sudden death (12 %) 

 Cygankiewicz et al. 
( 2009 ) 

 70  Most powerful predictor compared with LVEF and HRT  Sredniawa et al. ( 2010 ) 
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happen in individuals without known cardiovascular disease and without high-risk 
criteria for it (Adabag et al.  2010 ). The majority of SCD are not witnessed. This is 
also the reason for a rather wide defi nition (unexpected death that occurs within 1 h 
from the start of symptoms when death is witnessed and within 24 h of being seen 
alive and well when it is not witnessed) (Myerburg et al.  2007 ). In relation to HRV 
annual incidences of SCD are of particular importance. Fifty-three deaths per 
100,000 were reported by one American study (Chugh et al.  2004 ) and 100 deaths 
per 100,000 by a Dutch study (de Vreede-Swagemakers et al.  1997 ). Data from 
China and Ireland have a similar order of magnitude (Hua et al.  2009 ; Byrne et al. 
 2008 ). In a recent study 3,276 patients were enrolled at the time of acute MI with or 
without diabetes, with a follow-up of 5 years. The incidence of SCD among diabetic 
patients was 5.9 %, in nondiabetic patients 1.7 % (Junttila et al.  2010 ). In most cases 
SDC is thought to be the consequence of ventricular tachycardia degenerating to 
ventricular fi brillation and subsequent asystole (Adabag et al.  2010 ). Most but not 
all people dying of SCD have coronary heart disease. Therefore SCD shares the 
same risk factors as CHD. These risk factors can be used on population level but are 
not suffi cient on the individual level because of relatively low absolute risk (Adabag 
et al.  2010 ). Multivariable risk algorithms have been developed (e.g., Buxton  2009 ), 
but they have their limitations. 

 Many studies with HRV focus on prediction of sudden cardiac death. The predic-
tion of SCD is of interest because there is a possible intervention, the implantation 
of an automatic defi brillator. This is an effective measure in risk groups, but the 
effectiveness clearly depends on the criteria for patient selection. In addition, this 
treatment is not inexpensive. For the prediction of SCD, several methods have been 
used (reviewed in Huikuri et al.  2003 ). Most of them are ECG based and have cer-
tain drawbacks. HRV with different methods has been tested extensively in the last 
few years. 

 In 715 patients, power spectral measures both from Holter monitoring and 
shorter 2–15 min series were used. Short-term and long-term values were similar 
(most correlations >0.75). Lower indices were correlated with increased risk for 
mortality (RR 2–4) (Bigger et al.  1993 ). 

 Bigger compared 274 healthy persons with 684 patients within 2 weeks after a 
myocardial infarction and 278 patients 1 year after myocardial infarctions. The 
study used Holter ECG recordings with frequency- and time-domain measures. 
All HRV measures were lower in patients with coronary heart disease. The HRV 
values 2 weeks after MI were lower than 1 year after MI. ULF was the best uni-
variate separator between healthy persons and persons with cardiac disease. 
Values that are strong predictors of premature death in cardiac patients were only 
found in about 1 % of the healthy population, indicating a high specifi city (Bigger 
et al.  1995 ). 

 Seven hundred and fi fteen patients with recent myocardial infarction, 274 healthy 
persons, and 19 patients after heart transplantation were compared and followed up 
3 years. Using frequency-domain values and power-law slopes, the MI group showed 
a steeper negative slope of –1.15, whereas the transplant group showed a slope of 
–2.08, whereas the healthy group had a slope of –1.08. In a Cox hazard ratio model, 
the slope was a far better predictor for all-cause mortality (Bigger et al.  1996 ). 
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 The positive effect of exercise on survival after myocardial infarction is well 
known. Exercise leading to the increase of more than 1.5 METS (metabolic equiva-
lents) leads to a signifi cant increase in SDNN, SDANN index, SDNN index, pNN50, 
TP, and HF (Pardo et al.  2000 ). 

 In a multicenter substudy in 37 coronary care units, 645 patients 5–10 days after 
MI were included, and 24-h Holter ECGs were obtained. Besides the usual HRV 
values, Poincaré plot analysis, Power-Law scaling analysis and Detrended 
Fluctuation analysis were used. During the follow-up period of 685 ± 360 days, 114 
patients died, 28 of them classifi ed as non-arrhythmic cardiac deaths. All power 
spectral components, except HF (!) differed between the groups, as did the nonlin-
ear values. Some Kaplan–Meier curves are shown in Figure   2.2    . The group calcu-
lated sensitivity and specifi city for the different values. Nonlinear values had 
generally a higher accuracy than frequency- or time-domain values. For all-cause 
deaths, the highest adjusted relative risk was 2.0 for the DFA value  α  1  (Huikuri et al. 
 2000 ) (Table  8.5 ).

   Patients with SDNN <65.3 ms had a signifi cantly increased risk of sudden death 
in a retrospective study (Bilchick et al.  2002 ). 

 With a standardized HRV study (fi xed respiration rate 12–15 over 5 min) and 
using LF (0.040.15 Hz), HF (0.15–0.45 Hz), and LF/HF ratio and echocardiogra-
phy, stable patients without atrial fi brillation were categorized to predict sudden 
death risk. HRV has an independent prognostic value identifying 38 % of patients 
with a mortality risk of 23 % over 3 years and more importantly a large population 
with a 3-year mortality less than 3 %. The author recommends use of HRV for risk 
stratifi cation (La Rovere et al.  2003 ). 

   Table 8.5    Sensitivity, specifi city, and predictive accuracy in prediction of mortality of MI patients   

 Sensitivity, %  Specifi city, % 

 Positive 
predictive 
accuracy, % 

 Negative 
predictive 
accuracy, % 

 Overall 
accuracy, % 

  α  1  < 0.75 ( n  = 168)  62  73  46  84  65 
  α  1  (edited) < 0.85 

( n  = 117) 
 48  80  43  81  62 

  β  < –15 ( n  = 112)  36  77  38  76  57 
 Mean R-R interval 

<750 ms ( n  = 147) 
 44  63  30  76  53 

 SDNN < 65 ms 
( n  = 131) 

 39  75  34  78  56 

 HRVI < 16 ( n  = 108)  35  79  37  78  57 
 ULF (ln) < 8.1 

( n  = 210) 
 36  55  29  78  53 

 VLF (ln) < 5.75 
( n  = 168) 

 54  67  38  79  58 

 LF (ln) < 5.5 ( n  = 228)  58  60  36  79  58 
 LF/HF ratio < 1.6 

( n  = 205) 
 58  59  35  79  56 

  Huikuri et al. ( 2000 )  
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 A multivariate survival model for the identifi cation of sudden (presumably 
arrhythmic) death was developed with data from 202 consecutive patients with 
moderate to severe CHF using time- and frequency-domain HRV parameters 
obtained by 8 min spontaneous breathing and 8 min paced breathing. This model 
was then validated in 242 consecutive patients. In the derivation sample, sudden 
death was independently predicted by a model that included low-frequency power 
(LFP) of HRV during controlled breathing ≤13 ms 2  and left ventricular end- diastolic 
diameter ≥77 mm (La Rovere et al. 2003). 

 An LF < 20 was predictive for SCD in a 3-year longitudinal study in 330 patients 
(Guzzetti et al.  2005 ). Pathological HRT has also been associated with SCD in one 
study (Cygankiewicz et al.  2008a ,  b ). 

 Arsenos reported in a letter a study assessing whether or not multiresolution 
wavelet analysis (MWA) of heart rate variability (HRV) has relevant prognostic 
information independently from other well-established predictive variables in the 
fi eld of sudden cardiac death (SCD) prediction. He included 231 patients with 
CHF. In the multiresolution wavelet analysis (MWA), Haar wavelet was used, and 
the fi nal index  σ  wav  was extracted as the standard deviation of the detailed coeffi -
cients of scale 8. The  σ  wav  index outperformed the conventional SDNN in SCD 
prediction. It is diffi cult to draw conclusions based on this study since at the 
moment it is only published as letter, and not all relevant details are known (Arsenos 
et al.  2012 ). 

   SCD Summarized 

 A recent review comes to the conclusion: “(…) these specialized markers have a 
high negative predictive value and a low positive predictive value. Thus, SCD risk 
is low with a negative test, but indeterminate with a positive test” (Adabag et al.  2012 ). 
In conclusion, different linear and nonlinear HRV measures have been used for risk 
stratifi cation of sudden cardiac death, and good evidence has been established. HRV 
seems to be feasible at bedside to distinguish between groups at risk and not at risk. 
Used alone as a marker, HRV has a low sensitivity and specifi city. Combinations of 
HRV variables alone or in combination with other parameters (e.g., barorefl ex sen-
sitivity, left ventricular ejection fraction, periodically non-sustained ventricular 
tachycardia) can increase sensitivity, specifi city, and calculation of the relative risk 
signifi cantly (Sztajzel  2004 ). There is a lack of interventional studies based on HRV 
risk stratifi cation.  

   SCD in Heart Failure Patients 

 Nolan did not fi nd HRV indices predicting SCD in CHF in a prospective study with 
433 patients (Nolan et al.  1998 ). Galinier enrolled 190 patients with chronic heart 
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failure. Time- and frequency-domain measures of heart rate variability were 
obtained from 24-h Holter ECG recordings, spectral measures were averaged for 
calculation of daytime (1000–1900 h) and nighttime (2300–0600 h) values. 
Daytime low-frequency power <3.3 ln was an independent predictor for SCD 
(Galinier et al.  2000 ). 

 In patients with idiopathic dilated cardiomyopathy, HRV time-domain variables 
and barorefl ex sensitivity correlated only weakly. HRV variables seemed feasible 
prognostic parameters, but results of prospective studies are warranted (Hoffmann 
et al.  2000 ). 

 Wessel and collaborators studied ICD data before the onset of 131 VT episodes and 
74 control intervals in 63 ICD patients with severe congestive heart failure. They used 
standard time and frequency-domain algorithms and nonlinear concepts. They used the 
recurrence quantifi cation analysis returning recurrence rate, determinism, averaged 
length of diagonal structures, (Shannon-) entropy, and trend and found signifi cant dif-
ferences between the groups. Increased short laminar phases with low variability pre-
ceded the onset of VT. The onset of slow VT was characterized by a signifi cant increase 
in heart rate and an increase in laminarity. The fast arrhythmias were preceded by 
decreased heart rates and a low degree of laminarity. (Wessel et al.  2001 ). 

 In the Marburg Cardiomyopathy Study including 343 patients with a mortality of 13 
patients after 5 years, HRV parameters (SDNN, barorefl ex sensitivity) did not predict 
sudden cardiac death. The only relevant parameter was LVEF, with a relative risk of 2.3 
per 10 % decrease of EF (Grimm et al.  2003 ). In 54 patients with deterioration of con-
gestive heart failure coming to an emergency department, HRV power spectra (VLF, 
LF) predicted cardiac events in the follow-up period (Hadase et al.  2004 ). 

 In a study with patients with congestive heart failure, 199 patients were followed 
312 ± 150 days. Forty patients (21 %) died. All patients underwent a 24-h Holter 
HRV analysis. In a multivariate model, SDNN (RR2.2), SDANN (RR2.1), TP (RR 
2.2), and ULF (RR 2.6) in the lower tertiale were predictive factors for mortality 
after hospital discharge (Aronson et al.  2004 ). 

 In a longitudinal study, 330 CHF patients (with sinus rhythm) were tested with 
help of Holter monitoring (using time domain, frequency domain, and fractal analy-
sis with the 1/f slope), echocardiography, right heart catheterization, exercise tests, 
blood biochemical examination, and arrhythmia patterns. Patients were followed 
3 years with the goal of fi nding prognostic models for different forms of cardiac 
death (pump failure vs. sudden cardiac death). Depressed power of nighttime VLF 
(<509 ms 2 ), high pulmonary wedge pressure (>18 mmHg), and low ventricular ejec-
tion fraction (LVEF > 24 %) were independently related to death for progressive 
pump failure, while power reduction between 0.04 and 0.15 Hz (LF, <20 ms 2 ) at 
nighttime and increased left ventricular end- systolic diameter (LVESD > 61 mm) 
were linked to sudden mortality. The relative risk for pump failure with a low VLF 
was 2.3 (PWP 2.0, LVEF 1.9) and for sudden cardiac death for LF < 20 ms 2  2.7, for 
HF < 60 ms 2  2.2, and for LVESD > 60 mm 2.6, but in multivariate analysis only LF 
remained signifi cant. Three-year mortality for patients with LF > 20 ms 2  was 8 %, 
for patients <20 ms 2  was 21 %. Cumulative mortality for patients with the identifi ed 
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risk factors for pump failure was 7 % without risk factors, 20 % for patients with 
one risk factor, 32 % for patients with two, and 44 % for patients with three risk 
factors (Guzzetti et al.  2005 ). 

 One study included data of 397 patients with implanted cardiac resynchroniza-
tion devices. HRV was measured as 5-min SDAAM. SDAAM <50 ms over 4 weeks 
was associated with increased mortality risk, SDAAM between 50 and 100 ms at 
intermediate risk. SDAAM decreased in a median of 16 days before a necessary 
hospitalization because of decompensation. Sensitivity for detecting a hospitaliza-
tion was 70 % (Adamson et al.  2004 ; Adamson  2005 ). 

 One hundred and fourteen patients were included in a study failing to show asso-
ciations between deterioration and autonomic markers. Correlations between the 
different autonomic markers were only modest. During a follow-up of 22 months, 
an end point event occurred in 15 patients. In univariate analysis, left ventricular 
ejection fraction and barorefl ex sensitivity were signifi cant predictors of arrhythmic 
events. In multivariate analysis, only barorefl ex sensitivity remained an indepen-
dent predictor (Klingenheben et al.  2008 ). 

 In 42 patients with diastolic heart failure, HRV was analyzed before and after 
compensation. HRV was more decreased in decompensation and in patients with 
more pronounced forms of diastolic failure (Tanindi et al.  2012 ). 

 Three hundred and eighty-eight patients with chronic heart failure were recruited 
for a Holter monitoring study and were followed over 4 years. VLF, LF, and turbu-
lence slope (TS) improved predictive discrimination and risk classifi cation when 
added to clinical variables (La Rovere et al.  2012 ).   

   Special Subgroups 

   Cachexia 

 A subgroup of chronic heart failure patients develops cachexia. In a cross-sectional 
study, 13 patients with cardiac cachexia (other reasons excluded), 26 noncachectic 
heart failure patients, and 11 healthy controls were observed (short-term HRV, BRS, 
hormonal measures). Cachectic patients had a signifi cantly lower LF and depressed 
barorefl ex sensitivity; furthermore, they presented elevated levels of catecholamines 
relative to noncachectic patients and controls (Ponikowski et al.  1999 ).  

   Hypertrophic Cardiomyopathy 

 Ambulatory Holter monitoring was performed in 106 HCM patients with sinus 
rhythm. No HRV parameters predicted fatal outcomes after 10 years (Kawasaki 
et al.  2012 ).   
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   HRV Biofeedback Training in Heart Failure Patients 

 Biofeedback has been used in patients with heart failure before, but without HRV, 
employing skin temperature as parameter (Moser et al.  1997 ). Moravec and col-
leagues use a standardized approach with eight training sessions and (among others) 
SDNN as biofeedback parameter. Their preliminary data demonstrate regulation of 
heart rate variability in patients with lower ejection fractions. Unfortunately they do 
not offer details about how SDNN is processed to make it available for the patients, 
e.g., how many minutes are collected (McKee and Moravec  2010 ; Moravec and 
McKee  2011 ). The only published randomized study included 29 patients either 
receiving six sessions of breathing retraining, HRV biofeedback and daily practice, or 
quasi- false alpha-theta biofeedback and daily practice. The method used is described 
as follows: “Various colour screens were displayed, refl ecting depth and frequency of 
respiration, HR, and HRV.” Here, again, details of HRV processing are not provided. 
HRV biofeedback signifi cantly increased exercise tolerance for the treatment group 
in the high LVEF category between baseline and follow-up, but there were no changes 
in SDNN ( p  = .09) or quality of life ( p  = .08), probably due to a low (and insuffi cient) 
number of participants (Swanson et al.  2009 ). More details on use of HRV biofeed-
back are provided in the chapter about therapeutic applications of HRV.  

   Chronic Heart Failure and Heart Rate Turbulence 

 There are only limited data for the prognostic value of HRT in patients with conges-
tive heart failure. TO and TS might be strongly correlated with the extent of heart 
failure (Cygankiewicz et al.  2006 ). TS was an independent predictor of decompen-
sation (Moore et al.  2006 ) and was a prognostic factor regarding sudden death in 
another study (Cygankiewicz et al.  2008a ,  b ). Yet another study analyzed various 
risk parameters from Holter monitoring for 2,130 AMI patients. During a median 
follow-up of 3 years, cardiac mortality was 113/2,130, including 52 SCDs. All 
Holter variables predicted the occurrence of SCD, but only reduced postectopic 
turbulence slope (TS) (from HRT) and non-sustained ventricular tachycardia 
remained as marked SCD predictors after adjustment for age, diabetes, and ejection 
fraction (EF) (Mäkikallio et al.  2005 ). The prognostic value of HRT has been dis-
cussed in relation to the etiology (Bauer et al.  2008 ).  

   Other Newer Approaches 

 An emerging analysis is QT beat-to-beat variability. One study included heart fail-
ure patients. Increased QTVI because of depressed heart rate variability predicted 
cardiovascular mortality and non-SCD but not SCD or extracardiac mortality in 
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heart failure independently of left ventricular dysfunction. Abnormally augmented 
QTVI separated 97.5 % of healthy individuals from heart failure patients at risk 
(Tereshchenko et al.  2012 ). Another variant of HF,  V  index , taken from 24-h Holter 
recordings was used on 590 post-AMI patients and was the most potent predictor of 
SCD (Kiviniemi et al.  2007 ).  

   Paroxysmal and Permanent Atrial Fibrillation 

   Introduction 

 Atrial fi brillation is the most common arrhythmia in adults in developed countries. 
It is a complex disease where it is possible to distinguish between trigger factors 
(pulmonary veins) (Haïssaguerre et al.  1998 ) and underlying pathological condi-
tions. Once present, AF leads to remodelling of the electrical and structural proper-
ties of the atria, initiating a vicious circle. Many patients start with paroxysmal AF 
eventually going over to permanent AF (Shen et al.  2012 ). Most studies only use 
HRV if sinus rhythm is present. As a consequence most data are based on studies 
with patients with paroxysmal AF. There are, however, a few studies that use this 
technique in patients with permanent AF. Prediction of AF has been tried with dif-
ferent algorithms and methods (see overview in Poli et al.  2003 ).  

   Pathophysiology 

 Pulmonary veins and the pulmonary–left atrial junction are richly innervated by 
parasympathetic and sympathetic nerve fi bers (Chen and Tan  2007 ). Enhanced 
activity is associated with increased (Patterson et al.  2005 ) ablation with reduced 
incidence of AF (Lu et al.  2009 ). Both increased sympathetic and parasympathetic 
tone are associated with increased vulnerability for AF (Shen et al.  2012 ). First 
reports describing ANS activity before onset of paroxysmal AF were published in 
1978 (Coumel), already then both regarding PNS (in younger healthy adults) and 
SNS (in older patients with organic heart disease). After introduction of HRV in 
clinical research, several reports appeared, observing changes in ANS activity 
immediately before the onset of AF, something which was discussed in the fi rst part 
of this book. These changes are nonspecifi c, all kinds of changes were observed 
(e.g., increased SNS activity, increased PNS activity, and mixed adrenergic and 
vagal activities) (de Vos et al.  2008 ). It would be desirable to observe ANS changes 
at the heart directly, but this and several other studies use short-term HRV changes 
as surrogate for ANS alterations and no local ANS data of the pulmonary vein/atrial 
junction. Therefore the results have been challenged (e.g., of (Shen et al.  2012 )). In 
advanced heart failure, for instance, the response of the sinus node on SNS activity 
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is diminished, which again has consequences for HRV indices, probably not show-
ing the real activity of SNS (Piccirillo et al.  2009 ). Also in other conditions where 
the sinus node is affected, HRV results can be biased. First direct recordings of SNS 
in animals were reported 2003 in renal SNS (Barrett et al.  2003 ), 2006 in stellatum 
neurons (Jung et al.  2006 ), confi rming to some degree HRV measurements. Another 
line of evidence relies on ablation sympathetic connections to the heart, stopping 
all episodes of paroxysmal AF in animal models (Ogawa et al.  2007 ). Clinical 
studies, however, showed markedly lower response rates between 34 and 90 % 
(Shen et al.  2012 ). This might be based not only on different technical approaches 
for ablation but also on more complex patterns of ANS activity in these patients or 
advanced remodelling of the electrical atrial system. 

 Assessing the underlying ANS changes in permanent AF is more diffi cult for 
obvious reasons. Most authors base their approaches on direct nerve recordings, 
showing a substantial infl uence of the ANS on the AF frequency (Shen et al.  2011 ). 
These challenges are discussed in the last part of this subchapter.  

   HRV Changes Prior to the Onset of Paroxysmal AF 

 Twenty-minute heart rate intervals immediately before onset of atrial fi brillation 
were analyzed in 22 without structural heart disease. Traditional HRV variability 
indices showed no signifi cant changes before onset of AF, but ApEN and  α 1 
decreased progressively before onset (Vikman et al.  1999 ). In a similar study, 26 
episodes of AF onset stored in pacemakers were analyzed with 2-min HRV directly 
before onset. SDNN of PP intervals and RMSSD of pp intervals increased the last 
10 s before the onset of AF (Wiegand and Bonnemeier  2001 ). 

 In 77 unselected patients with paroxysmal AF, a linear decrease in the RR inter-
val (925 ± 16 vs. 906 ± 16) was observed, at the same time as an increase in SDNN 
(65 ± 4 to 70 ± 4). HF increased, LF decreased, and LF/HF increased until 10 min 
before AF onset, followed by a sharp decrease immediately before onset. There 
were no differences between patients with idiopathic AF and patients with struc-
tural heart disease (Bettoni and Zimmermann  2002 ). A study by Dimmer did not 
show relevant changes of time-domain or frequency-domain indices. They included 
27 patients with paroxysmal AF. Five minutes before onset of AF, SDNN changed; 
all other indices remained unchanged (Dimmer et al.  2003 ). 

 In patients with COPD, patients who developed arrhythmias, including AF, had 
unchanged nighttime HF and increased LF all day (Tükek et al.  2003 ). In 23 patients, 
HRV was analyzed 60, 20 min, and immediately before onset of AF. Fourteen patients 
had an AF episode at night, 9 during daytime. In the night group, AF was preceded by 
a gradual increase of HF and LF, which left LF/HF unchanged. In the daytime group, 
LF and LF/HF, but not HF, increased before AF onset (Tomita et al.  2003 ). 

 Holter monitoring in 18 patients with paroxysmal AF and 19 healthy controls 
and assessing heart rate dynamics with the help of the power-law spectral exponent 
(slope) revealed a steeper slope in AF patients even while having sinus rhythm, 
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compared to the controls (Sato et al.  2003 ). In 269 patients with paroxysmal AF, a 
study showed a decline in TP, LF, and HF and an increase in LF/HF (Ivanov  2003 ) 

 An analysis of 110 paroxysmal atrial fi brillation episodes in 65 patients revealed 
in 37 cases a low LF/HF, in 73 cases a high LF/HF ratio as sign of autonomic imbal-
ance before fi brillation; after fi brillation, the ratio showed more physiologic num-
bers (Lombardi et al.  2004 ) (Fig.  8.4 ).

   Lombardi’s results seem to be challenged by follow-up results from the 
Framingham study. One thousand four hundred and thirty-two women and 1,142 
men around 54 were followed up for 12 years; in this time 132 of them developed 
persistent AF. A change of one SD in log LF/HF was associated with an increased 
risk of developing AF. This effect, however, disappeared after including confound-
ing variables in the analysis. Thus the authors conclude that much of the apparent 
association between HRV and AF is mediated by traditional risk factors (Singh et al. 
 2004 ). This view is most probably right, but the idea wrong – HRV changes should 
not be a cause but a surrogate marker for other changes within the complex cardio-
pulmonary system. 

 In Holter ECGs from 32 healthy persons and 54 patients with PAF, time- and 
frequency-domain measures were lower in patients with cardiac diseases. Patients 
with idiopathic AF had higher HF values at nighttime (Tadzhieva et al.  2005 ). 

 Tuzcu et al. included HRV data of 25 patients prior to the onset of AF, using two 
records of 30 min each, one immediately preceding AF and one during a period 
distant to the onset. Sample entropy was signifi cantly reduced prior to AF compared 
with the earlier period (0.45 ± 0.25 vs. 0.78 ± 0.46). The 30-min period before AF 
was divided in three 10-min periods; sample entropy was decreasing before AF 
(Tuzcu et al.  2006 ). 

 In an analysis of 105 Holter tapes, 44 PAFs were identifi ed in 33 patients. Time- 
and frequency-domain variables showed no change before PAF. ApEN and SampEn 
decreased 60 min before onset of PAF with about 0.1–0.15 and similar 10 min 
before onset. Interestingly, the results are similar in edited and unedited measures 
(Shin et al.  2006 ). 

 The observations made by several groups discovering vegetative disturbances 
just before the onset of AF seem plausible and fi t with pathophysiological consider-
ations. But no unambiguous changes were observed. Results are contradictory (see, 
e.g., Ivanov  2003  vs. Tomita et al.  2003 ). Lombardi’s study might give a hint: is it 
possible that we have here at least two different pathophysiological mechanisms, 
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probably even more? I fi nd no major methodological problems in the studies as an 
alternative explanation. Probably we have a patient group in which no major 
changes occur before AF, one in which complexity generally increases, one with an 
isolated increase of LF and, in some cases, patients whose TP decreases.  

   HRV to Predict the Onset of AF After Thoracic Surgery 

 A special case is related to AF after thoracic surgery, a frequent situation that has 
led to a particular interest in studying this group of patients. In 102 patients, HRV 
was analyzed before CABG using 24-h Holter monitoring. Twenty-nine patients 
developed AF. Independent predictors were identifi ed by logistic regression as age, 
vagal index <10 %, ectopic supraventricular beats, and episodes of non-sustained 
supraventricular tachycardia (Frost et al.  1995 ). 

 In 64 patients scheduled for elective coronary artery bypass grafting (CABG), 
HRV parameters were obtained with 96-h Holter tapes; 26 patients developed AF 
postoperatively. SDNN increased 15 min before onset of AF. LF/HF was lower 
30 min before onset followed by an increase (mainly because of a decrease of HF) 
(Dimmer et al.  1998 ). 

 Hogue et al. observed higher or lower measures of HRV before AF after CABG. 
They obtained HRV data of three sequential 20-min intervals preceding the onset of 
AF and compared it with data of matched postoperative CABG patients without AF. 
Logistic regression revealed that increased heart rate and decreased ApEn were 
independently associated with AF. Other HRV parameters showed either increased 
or decreased variability (in time-domain values and quantitative Poincaré plot anal-
ysis) (Hogue et al.  1998 ). 

 Two hundred and ninety-seven patients undergoing cardiovascular surgery were 
studied prospectively, using myocardial perfusion scanning, HRV, and D-dimers. 
Impaired HRV (and a positive thallium scan) was an independent predictor of 
adverse events, including arrhythmias (Mamode et al.  2001 ). 

 Eighty patients with a history of PAF were evaluated by Holter monitoring and 
blood samples measuring neuropeptides and catecholamines pre- and postopera-
tively. 36.3 % of these patients developed AF postoperatively. They showed a sig-
nifi cant lower circadian variation of HF and LF/HF ratio. HF decreased in both 
groups postoperatively. Neither neuropeptides nor catecholamines differed between 
the groups (Jideus et al.  2001 ). 

 Ninety-two patients with scheduled CABG were examined with a short-term HRV 
(power domain, time-domain indices), 30 patients developed postoperative HF. Logistic 
regression analysis revealed age and a higher BMI but not HRV parameter as risk factor 
for AF (Hakala and Hedman  2003 ). AF onset in 48 patients after thoracotomy was evalu-
ated by 2-h Holter monitoring. SDNN, pNN50, RMSSD, LF, and HF were increased 
before onset of AF, compared to patients who did not develop AF (Amar et al.  2003 ). 
In a study with 86 CABG patients, a lower exponent  α 1 predicted the onset of AF and 
postoperative morbidity (Wu et al.  2005 ). In 88 patients scheduled for CABG, 
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13 developed AF. Ten-minute electrogram recordings were processed. Off-line and 
time-domain, frequency-domain, Poincaré, and point correlation analyses were calcu-
lated. Logistic regression analysis was used to detect associations. Only peak point cor-
relation dimension and age were independent predictors (Chamchad et al.  2006 ). 

 Here, the situation is quite similar. An interesting result is related to decreased 
entropy before onset of AF (Hogue et al.  1998 ). Also here, the existence of several 
subgroups can be assumed.  

   HRV to Predict Recurrence After Cardioversion of Paroxysmal AF 

 One possible treatment, especially in newly developed AF, is electrical cardiover-
sion. A relevant number of patients, however, will experience recurrence. Since 
cardioversion itself is not without risks, it is desirable to identify patients where 
cardioversion has no sustainable effects. 

 In 40 patients with AF, HRV was evaluated immediately after defi brillation by 
Holter monitoring. Patients with relapse within the fi rst week had a signifi cant 
higher LF/HF ratio (Michelucci et al.  2001 ). Twenty-seven patients after successful 
cardioversion in case of paroxysmal AF and 20 healthy controls were examined by 
Holter monitoring, using HRV indices with time-domain parameters. In 15 persons, 
recurrence was observed; all HRV parameters in these patients were lower than in 
patients maintaining sinus rhythm. All cardiac patients had generally lower HRV 
values (after cardioversion) compared to healthy controls (Akyürek et al.  2003 ). 

 Also the Huikuri group tested patients with paroxysmal AF after electrical car-
dioversion. They included 78 patients, 27 of them had recurrence of AF within a 
month. In contradiction to Akyürek’s study, the patients with AF recurrence had 
higher SDNN (117 ± 34 vs. 100 ± 29), increased lnHF (5.7 ± 0.6 vs. 5.3 ± 0.7), lnLF 
(6.2 ± 0.8 vs. 5.6 ± 0.9), and lnVLF (7.1 ± 0.8 vs. 6.5 ± 0.8). Early AF recurrence was 
predicted best by lnHF, whereas lnVLF predicted best late recurrence. No clinical 
or echocardiographic parameters predicted recurrence (Vikman et al.  2003 ).  

   HRV in Persistent AF: A Challenge 

 Since most HRV studies were conducted in patients with sinus rhythm, patients with 
AF and heart failure are a challenge. Atrial fi brillation (AF) is markedly more preva-
lent in CHF patients than in the general population (Benjamin et al.  1994 ). In mild 
to moderate CHF, the prevalence of AF is estimated at 10–15 % while in patients 
with more advanced heart failure (in NYHA class IV), AF is present in up to 50 % 
of patients (Maisel and Stevenson  2003 ). Current AF management guidelines pro-
vide no treatment recommendations that take the various mechanisms and patterns 
of AF into account. It seems advisable to develop tests that quantify AF disease 
state and guide AF management (Bollmann et al.  2006 ). 
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 Most HRV studies exclude patients with permanent AF. The possible signifi -
cance of HRV is far from clear in this context. During AF, ventricular variability 
does not purely refl ect sinus node modulation but is also dependent on AV nodal 
refractoriness as well as degree of concealed conduction (Hayano et al.  1998 ). Some 
of the approaches were discussed earlier, but the focus here is on newer studies. 

 Van den Berg analyzed 16 patients with chronic AF treated with digoxin or vera-
pamil; 12 healthy men in sinus rhythm were used as controls. SDNN, RMSSD, LF, 
and HF were calculated after 500 recorded RR intervals at baseline, after adminis-
tration of propranolol, and after administration of methylatropine. HRV at baseline 
and changes in HRV after methylatropine were then related to vagal tone (vagal–
cardiac control), quantifi ed as the decrease in mean RR after methylatropine. 
Baseline HRV was higher in the atrial fi brillation group than in the control group; 
after propranolol, HRV increased in both groups; and after methylatropine, HRV 
neared zero in the control group, whereas it returned to baseline values in the atrial 
fi brillation group. SD, RMSSD, LF, and HF at baseline were signifi cantly correlated 
with vagal tone not only in the control group but also in the atrial fi brillation group 
(Van den Berg et al.  1997 ). 

 In persistent atrial fi brillation, lowered HRV correlated with increased left atrial 
dimensions (Friedman  2004 ). In a study testing a novel A1-receptor antagonist, 
Holter monitoring with time-domain indices was used to determine the effect. The 
test substance increased SDNN, pNN50, and rMSSD (Piot et al.  1998 ). 

 Stein and Lerman approached AF from the chaos theory paradigm. They developed 
an algorithm that, according to them, uses nonlinear predictive forecasting to search for 
evidence of sensitive dependence on initial conditions in a time series – a prerequisite 
to nonlinear deterministic systems. This algorithm seems to be based on strange attrac-
tor patterns in phase space. It was tested on simulated RR intervals and different con-
structed chaotic systems prior to its use on data of 16 patients with chronic AF due to 
heterogeneous reasons. They were able to discriminate linear, chaotic, and random 
types of ventricular behavior, measured as RR intervals. In AF, strictly chaos in a math-
ematical sense was not predominant. In a signifi cant group of patients (but not all) the 
beat-to-beat ventricular response was not fully predictable (Stein et al.  1999 ). 

 Using time-domain and nonlinear measures at Holter monitoring data (ApENbb, 
ApENmm, Shannon entropy), the nonlinear indices predicted fatal outcomes in 107 
patients with AF. When the patients were stratifi ed with the 33rd and 67th percentile 
values of ApENbb (1.83 and 1.94, respectively), the 5-year cardiac mortality rates 
for the upper, middle, and lower percentiles were 0, 13, and 43 %, respectively 
(Yamada et al.  2000 ) (Fig.  8.5 ).

   Another method of variability analysis in AF uses the RR interval histogram 
analysis. When constructing them from Holter recordings, uni-, bi-, or multimodal 
RR distribution patterns can be found (Bollmann et al.  2006 ). In about 55 % of 
patients, the bimodal pattern is predominant (Rokas et al.  2001 ), usually interpreted 
as conduction along two different atrio-nodal routes (Fig.  8.6 ).

   Friedman used Holter monitoring in 38 patients with AF and used time-domain 
indices to characterize HRV. To stratify data and taking into account the strong 
rate dependence of HRV in AF, he conducted linear regressions for each HRV 
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measurement with the average RR interval as independent variable. From the 
regression equations, the expected HRV measurements predicted from average 
RR intervals were obtained for each patient. The differences between derived 
values and actual measurements were interpreted as an estimate of the HRV refer-
enced to heart rate, with a negative difference denoting less HRV than expected 
with the data set. The HRV differences calculated this way correlated with left 
atrial size (Friedman  2004 ). 

 Khand used the minimal hourly RR interval, which he assumed to approximate 
the Av nodal functional refractory period (FRP) for that hour, and used it to examine 
changes during 24 h; in addition, Khand plotted RR interval histogram for each hour 
and calculated SDNN and SDANN. The study involved 40 patients with chronic 
AF. FRP correlated with SDANN and heart failure (Khand et al.  2006 ). 

 Corino analyzed BP variability rather than RR variability in 15 patients. He 
found a stable LF component partially independent of very irregular RR series 
(Corino et al.  2008 ). 

 Sosnowski analyzed Holter monitoring data of 197 patients with permanent AF 
and used HRVF, an index based on numerical processing of a Poincaré plot. The 
researchers divided the patients between subjects with HRVF under 5th percentile, 
respectively, under 35 % and above. In addition they calculated SDNN, SDANN, 
RMSSD, and pNN50. Patients with reduced HRVF were more likely to have 
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  Fig. 8.5    Two examples from the Yamada study showing how subtle differences can be between two 
patients with difference course. Note the very similar time-domain curve but clear differences in 
ApEN m-m (Yamada et al. ( 2000 ), reproduced with permission from Lippincott, Williams & Wilkins)       

 

Paroxysmal and Permanent Atrial Fibrillation



186

diseases like diabetes, previous MI, and coronary revascularization procedures; 
about one-third had an EF < 30 %. All traditional HRV parameters were signifi -
cantly lower as in healthy persons. The authors use HRVF to determine global heart 
rate variability. They discuss the similarity of HRVF reduction with age compared 
with sinus rhythm (Sosnowski et al.  2011 ). 

 HRV does not necessarily deteriorate in CHF but can increase in case of physi-
cal activity. Sixty-six participants aged 69 ± 5 years with HF were randomly 
assigned to 16 weeks of supervised exercise training or attention control. SDNN 
and RMSSD were measured at baseline and after completion of the study. The 
exercise group had a signifi cantly greater increase in both SDNN and RMSSD 
(Murad et al.  2012 ). 

 Corino used RR distances to calculate HRV in permanent AF at 127 patients and 
used time series of 15 min to calculate usual and rather unusual time-domain param-
eters (the latter pNN20 and pNN80 in addition to pNN50), as nonlinear indices 
ApEn and regularity index. Main fi ndings were signifi cant positive correlations 
between atrial fi brillation rate (AFR) and indices of RR irregularity and the pres-
ence of signifi cant correlations between AFR and time-domain measures of HR 
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variability during AF in patients not treated with rate- or rhythm-control drugs 
(Corino et al.  2013 ) (Table  8.6 ).

   As shown in this short overview, there is probably no reason to neglect HRV 
measurements in chronic AF. Several groups tried new approaches, but also normal 
linear and introduced nonlinear indices might be interesting. Often, the reason for 
not using HRV in AF might be that the traditional interpretation in SNS or PNS 
dominance is questionable. On the other hand, some intervention studies showed 
effects on traditional HRV parameters. In addition it has been shown in an animal 
model that SDNN in pigs with AF increases during vagal activation, indicating that 
HRV measures can at least indicate the state of parasympathetic activity (Kneip 
et al.  2010 ). HRV researchers should in the future not ignore AF patients, but rather 
study them separately. It is well possible that this group as well might show associa-
tions between HRV and survival or the general course of the disease.  

   Effects of the Maze Procedure on HRV 

 The maze procedure is a surgical procedure that cures atrial fi brillation by interrupt-
ing the electrical impulses that cause abnormal heart rhythm. The surgery involves 
the placement of incisions in both atria. When the incisions heal, scar tissue forms 
and prevents the abnormal electrical impulses from passing through the heart. 
Simple in concept, the maze procedure works essentially by creating blocks that the 
electrical impulses cannot cross. In so doing, it corrects all the major problems 
associated with atrial fi brillation: it stops the atrial arrhythmia, it restores normal 
rhythm between the atria and the ventricles, and it preserves the ability of the atria 
to contract on its own. 

 Kamata analyzed with the help of Holter monitoring 12 patients 1, 6, and 
12 months after maze interventions (ablation) and 7 patients without, using RR 
intervals and computing time-domain (SDRR) and frequency-domain (HF, LF, TP) 
values. The circadian variation 1 month after surgery was signifi cantly disturbed but 
restored after six and 12 months, possibly due to vegetative reinnervation of the 
sinus node (Kamata et al.  1997 ). 

 In 17 patients undergoing maze III, Holter monitoring was conducted preopera-
tively, 2 months and 7 months postoperatively. Two months after the operation, all 
HRV values were markedly reduced, 5 months later, only TP increased (Lönnerholm 
et al.  2003 ).  

   Table 8.6    Some HRV methods in permanent AF in different studies   

 Method  References 

 HRV indices compared before and after application of atropine  Van den Berg et al. ( 1997 ) 
 Minimal hourly RR interval (=minimal functional refractory 

period) 
 Khand et al. ( 2006 ) 

 HRVF  Sosnowski et al. ( 2011 ) 
 RR as base of HRV  Corino et al. ( 2013 ) 
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   Discussion and Conclusion 

 In conclusion, the role of HRV in predicting paroxysmal or permanent AF is still 
unclear. Its predictive value has been challenged in predicting AF after coronary 
artery bypass crafting (Hakala and Hedman  2003 ). Another review states good 
results in terms of sensitivity and specifi city but a lack of reliability (Poli et al. 
 2003 ). Its value in hypertension-generated AF is also unclear (Yildirir et al.  2002 ). 
Most studies and reviews use HRV to consider the vagal tone, not with a complexity 
paradigm.   

   Hypertension 

   Introduction 

 Elevated arterial pressure is one of the most important public health problems in 
developed countries and an increasing issue in non-industrialized countries as well. 
It is common, often asymptomatic, readily detectable, often easy treatable, and fre-
quently leads to lethal complications if untreated. 

 Patients with arterial hypertension and no defi nable cause are said to have pri-
mary or essential hypertension. Secondary hypertension can occur due to renal 
pathology or endocrine abnormalities. More than 90 % of patients with hyperten-
sion have the primary form. Hypertension has profound effects on the body over 
time. It causes concentric left ventricle hypertrophy and consecutively congestive 
heart failure. Angina pectoris might also occur because of the combination of 
accelerated coronary disease and increased myocardial mass. Hypertension causes 
or contributes to general arteriosclerosis, leading eventually to kidney failure and/
or cerebral arteriosclerosis with consecutive increased risk for stroke. 

 Hypertension has been early associated with dysfunction of the CNS, namely, the 
ANS. Before the development of effective medication, a number of operations on the 
sympathetic nervous system were devised in an attempt to lower blood pressure. 
Notable among these was radical lumbodorsal splanchnicectomy, developed in 1938 by 
Smithwick, which lowered blood pressure and reduced mortality but at the cost of often 
incapacitating side effects (Parati and Esler  2012 ). Antihypertensive medication even-
tually developed mostly affected ANS, such as central sympathetic inhibitors methyl-
dopa and clonidine, sympathetic neuronal blockers, such as guanethidine, and alpha- and 
beta-adrenergic blockers. For the past three decades, the major focus in high blood 
pressure research has been the renin–angiotensin system. The proven value of antihy-
pertensive drugs that block this system has led to a neglect of other blood pressure-
raising systems, including the sympathetic nervous system (Parati and Esler  2012 ). 

 HRV has been used both in individuals with risk factors for, but not established 
hypertension, patients with hypertension, and to check the effects of  antihypertensive 
treatment. Relevant studies are presented and their results discussed.  
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   A Short Description of the Pathophysiology of Hypertension 

 It is generally recognized that the renin–angiotensin system (RAS) plays an important 
role in the regulation of blood pressure and renal function. In the kidney, the key role 
of RAS in the regulation of sodium and extracellular fl uid homeostasis has been stud-
ied extensively (Kopkan et al.  2009 ). The relationship between fl uid volume, sodium, 
and endogenous RAS activity is critical for maintenance of normal blood pressure 
level. An enhanced activity of RAS can alter this relationship leading to the develop-
ment of hypertension. Angiotensin II (ANG II), as a major vasoactive agent, is respon-
sible for physiological as well as pathophysiological effects of RAS (Navar  2004 ). 

 RAS was discovered over a century ago, but its signifi cance in the pathogenesis 
of hypertension and renal disorders has gained wide acceptance only during the past 
several decades, largely due to the development of specifi c pharmacological agents 
designed to block the system. Renin is a protease mainly produced by the juxtaglo-
merular cells of the kidney and catalyzes the fi rst step in the activation pathway of 
angiotensinogen to angiotensin I. Angiotensinogen is a precursor of angiotensin and 
is mainly produced by the liver and found in the  α 2-globulin fraction of plasma. 
ACE (angiotensin I-converting enzyme), mainly produced by the lungs and kid-
neys, plays a pivotal role by hydrolyzing angiotensin I into angiotensin II. This 
product interacts with angiotensin II receptors, leading to potent vasoconstriction, 
release of aldosterone by the adrenal cortex, ADH (antidiuretic hormone) secretion 
by the pituitary gland, renal sodium and fl uid retention, sympathetic overdrive, and 
thirst. There are two distinct subtypes of cell surface receptors, angiotensin recep-
tors types 1 and 2 (AT1 and AT2). AT1 seems to mediate the major cardiovascular 
effects of angiotensin II. In pathologic conditions, RAS is hyperactive, leading to 
hypertension and kidney lesions in a “vicious cycle” (Santos et al.  2012 ). 

 Another system that plays an important role in the regulation of blood pressure 
and renal function is a group of enzymes producing NO (called NO synthases; 
NOS) (Kopkan 2009). NO is characterized as a major vasodilator agent regulating 
basal vascular tone. It also inhibits renal tubular transport of sodium. Any patho-
logical changes in NO function have consequences for blood pressure (Fig.  8.7 ).

   The metabolic syndrome plays a major role in hypertension. Roughly 80 % of 
essential hypertension in men and 65 % in women can be directly attributed to obe-
sity. There is a clear association between body mass index and arterial pressure even 
in non-obese, lean people (Mendizábal et al.  2013 ). There are three conditions typi-
cal of metabolic syndrome that may cause an exacerbation of sympathetic tone: 
hyperinsulinemia, hyperleptinemia, and hyperlipidemia. The insulin hypothesis of 
hypertension proposes that the compensatory hyperinsulinemia that occurs with 
insulin resistance increases sodium reabsorption and sympathetic activity, which 
combine to cause elevated arterial pressure (Mendizábal et al.  2013 ). Another newly 
researched pathophysiological player are adipocytes, which release so-called adipo-
kine-like leptin, adiponectin, adipocyte-derived prostaglandins, endothelin-1, 
angiotensin II, and cytokine-like TNF-α. Also infl ammatory infl uences are under 
discussion. Infl ammatory processes might induce changes in cardiac function, 
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peripheral vascular resistance, and renal control mechanisms of plasma electrolytes 
and volume. Furthermore, renal and vascular infl ammation might increase oxidative 
stress and endothelial dysfunction, thus favoring atherogenesis (Montecucco  2011 ). 

 Renal sympathetic nerves are pivotal in the pathogenesis of experimental and essen-
tial hypertension through infl uences on renin release, glomerular fi ltration rate, and 
renal tubular reabsorption of sodium (DiBona  2002 , DiBona and Esler  2010 ). With 
respect to the beginning of hypertensive disease, arguments have been made about a 
“high renin essential hypertension” (Parati and Esler  2012 ), where renal sympathetic 
activity is suffi ciently elevated to increase renal secretion of renin but not to reduce 
renal blood fl ow. On the other hand, in treatment-resistant hypertension, renal sympa-
thetic activity might play a major role as hypertension diminishes after radiofrequency 
ablation (Symplicity HTN-2 Investigators  2010 ). Other studies have highlighted the 
role of the kidneys. As discussed below, in end-stage renal disease, sympathetic ner-
vous activation is at a very high level, higher than in essential hypertension and equal 
to or exceeding that seen in cardiac failure (Converse et al.  1992 ). Renal injury studies 
used injection of phenol into the renal parenchyma to cause renal damage. They 
showed increased activity of renal afferent inputs to the hypothalamus, which again 
caused increased CNS sympathetic outfl ow and hypertension (Converse et al.  1992 ). 
Our group has recently shown that sympathetic nervous activity during mental arith-
metic predicts blood pressure 18 years later, indicating a possible causal factor in the 
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development of essential hypertension independent of the initial blood pressure (Flaa 
et al.  2008 ). Resting blood pressure is related to sympathetic activity in young men 
who are unaware of their blood pressure status in high, normal, and low ranges and 
refl ects both variation in resting arterial catecholamines and variation in cardiovascular 
and sympathetic responses specifi cally to mental stress (Flaa et al.  2006 ). 

 The pathophysiology of metabolic syndrome and its relation to vascular function 
have become a very complex subject. Besides the sympathetic system, other patho-
physiological aspects that affect vascular function include insulin, endothelium, perivas-
cular fat, and adipokines (Mendizábal et al.  2013 ). One element involved in hypertension 
are, for instance, serotonin (5-HT) and serotonin receptors, although “it is fair to say that 
the effects of 5-HT within the cardiovascular system are not well understood and inte-
grated compared with the well-established actions of 5-HT in the gastrointestinal sys-
tem, and the plethora of knowledge regarding the actions of 5-HT in the central nervous 
system” (Watts et al.  2012 ). Various 5-HT receptors are known that contribute to cardio-
vascular regulation. In humans and in animals, 5-HT predominantly causes direct arte-
rial constriction. The effects of 5-HT in the vasculature become less clear, however, 
when the subject are more complicated models and systems than an isolated vessel, 
probably because 5-HT is now known to possess the ability to stimulate multiple recep-
tors within multiple tissue types that might act in seemingly contradictory fashion 
(Watts et al.  2012 ). In addition, 5-HT has multiple effects on the central and peripheral 
nervous system that can lead to a modifi cation of sympathetic activity (Fig.  8.8 ).
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      HRV in Normotensive Individuals Developing Hypertension 

 Singh used fi rst 2 h of ambulatory ECG recordings obtained from 2,042 persons 
included into the Framingham Heart Study and used SDNN, pNN50, rMSSD, TP, 
HF, LF, VLF, and LF/HF. HRV was signifi cantly lower in already hypertensive men 
and women. Among 1,434 participants normotensive at baseline, 246 persons were 
newly hypertensive at follow-up 4 years later. After adjustments, multiple logistic 
regression analysis revealed an association between LF and incident hypertension in 
men but not in women. SDNN, HF, and LF/HF were not associated with hyperten-
sion in either sex (Singh et al.  1998 ). 

 A stratifi ed random sample of 2,061 examinees from the biracial 
Atherosclerosis Risk in Communities (ARIC) cohort was used in this analysis. 
From this sample, 650 hypertensive persons were identifi ed. Of the other nor-
motensive persons at baseline, 64 participants developed hypertension during 
3 years of follow-up. A graded inverse association between baseline HF and the 
risk of incident hypertension was observed. No clear association was observed 
for LF. An association for LF/HF and SDNN and incident hypertension was also 
found (Liao et al.  1996 ). These results were followed up 7 years later (Schroeder 
et al.  2003 ). 

 Schroeder and collaborators investigated the temporal sequence linking 
hypertension, blood pressure, and heart rate variability in a population-based 
cohort of 11,061 individuals aged 45–54 years at baseline. HRV was assessed by 
2-min initially and 6-min beat-to-beat heart rate recordings approximately 
9 years apart, focusing on SDNN and RMSSD. SDNN, rMSSD, and R-R interval 
were lower among hypertensives compared with normotensives, and this differ-
ence persisted after adjustment for age, sex, race, study center, diabetes, smok-
ing, education, and BMI. Treated hypertensives had a higher rMSSD but no 
difference for SDNN. In general, those using β-blockers had HRV equal to or 
greater than that in untreated hypertensives, whereas those using diuretics or 
ACE inhibitors had a lower HRV. Higher blood pressure was associated with 
markedly lower HRV in the entire cohort. After adjustment for age, sex, race, 
study center, smoking, education, and BMI, researchers observed an inverse rela-
tion between HRV at baseline and development of hypertension. Twenty ms 
lower SDNN were associated with a 1.12 higher risk for hypertension at the 
follow-up. The authors concluded that individuals with low HRV at baseline 
were at an increased risk of developing hypertension over 9 years of follow-up, 
thus indicating that decreased HRV often precedes the development of hyperten-
sion (Schroeder et al.  2003 ). 

 One thousand six hundred and thirty-eight subjects were included in a study that 
included a short-term HRV (5 min). Nine hundred and ninety-two non-hypertensive 
participants completed the follow-up 7 years later, and 959 participants were 
included for the fi nal analysis. Incident hypertension was determined by blood pres-
sure status at follow-up. In a multivariate model LF/HF ratio and HF were indepen-
dently associated with incident hypertension (Wu et al.  2013 ).  
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   HRV in Hypertensive Compared to Normotensive Persons 

 Clear differences in HRV between hypertensive and normotensive persons have 
been shown in many studies, both prospective and cross-sectional ones (Chakko 
et al.  1993 ; Fagard  2001 ; Guzzetti et al.  1988 ; Huikuri et al.  1996a ,  b ; Langewitz 
et al.  1994 ; Liao et al.  1996 ; Mussalo et al.  2001 ; Petretta et al.  1995 ; Prakash et al. 
 2005 ; Radaelli et al.  1994 ; Schroeder et al.  2003 ; Siché et al.  1995 ; Singh et al. 
 1998 ; Virtanen et al.  2003 ; Wu et al.  2008 ). 

 A typical study was presented by Huikuri. Time- and frequency-domain mea-
sures of HR variability were compared in randomly selected, age-matched popula-
tions of 188 normotensive and 168 hypertensive males. SDNN was lower in the 
hypertensive subjects than in the normotensive ones (52 ± 19 vs. 59 ± 20). VLF ana-
lyzed as absolute unit was reduced in the hypertensive patients relative to the nor-
motensive controls. Multiple regression analysis showed that SDNN was predicted 
most strongly by systolic blood pressure, both in the patients with hypertension and 
in the normotensive subjects (Huikuri et al.  1996a ,  b ). These differences were also 
shown in studies using short-term HRV. In 34 patients with severe hypertension, 29 
patients with mild hypertension and healthy control subjects were studied using 
10-min recordings with frequency-domain values. In the group with severe hyper-
tension, SDNN, rMSSD, TP, LF, and HF were signifi cantly lower than in the healthy 
control group and the group with mild hypertension (with exception of rMSSD), 
whereas there was no relevant difference between the group with mild hypertension 
and the control group (Mussalo et al.  2001 ). 

 A Holter monitoring was established in 215 patients with untreated hyperten-
sion. Nine percent showed a corrected QT (QTc) >440 ms, which is a risk factor for 
ischemic heart disease in persons with essential hypertension. Time-domain indices 
(SDNN, RMSSD, pNN50) were reduced in this group, compared to patients with 
normal QTc (Maule et al.  2008 ). 

 Younger women have a higher LF and lower HF ( n  = 1,780) (Koskinen et al.  2009 ). 
Women with a new diagnosed essential hypertension had a lower SDNN, LF, and a 
generally lower HRV during paced breathing (Pavithran et al.  2008 ). 

 Most cross-sectional studies show convincingly reduced time-domain indices in 
relation to untreated hypertension. These differences decrease under effective treat-
ment and also probably as an effect of aging (Schroeder et al.  2003 ), when the lower 
time-domain indices of hypertensive persons and the initially higher indices of 
healthy persons converge. 

 Frequency-domain measures are more diffi cult to interpret in this context. In 
some studies, LF is higher in hypertensive participants (e.g., Guzzetti et al.  1995 ; 
Prakash et al.  2005 ; Pavithran et al.  2008  or Wu et al.  2008 ); in other LF is rather low 
(e.g., Liao et al.  1996 , Sevre and Rostrup  2001 ; Singh et al.  1998 ). This might be due 
to the heterogeneity of hypertension and to diffi culties of fi nding groups with iso-
lated hypertension without any other syndromes. Most participants in studies are 
necessarily in antihypertensive treatment. Given the confounding effects of different 
kinds of medication, it is not surprising that HRV indices can differ. But even 
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looking at patients with one identical treatment approach can reveal different effects 
in diverse studies. Persons taking beta-adrenergic blocker have in some studies 
increased (Schroeder et al.  2003 ) and in other studies decreased (Chiladakis et al. 
 2004 ) HRV.  

   Conclusion 

 Autonomic system abnormality, clinically manifested as a hyperkinetic circulation 
characterized by elevations in heart rate, blood pressure, plasma noradrenaline lev-
els, and cardiac output, has been repeatedly demonstrated in hypertension. A transi-
tion from the early hyperkinetic state to a high resistance, established hypertension 
has been documented in longitudinal studies. High blood pressure induces vascular 
hypertrophy, which in turn leads to increased vascular resistance. Cardiac output 
returns from elevated to normal values as beta-adrenergic receptors are downregu-
lated and stroke volume decreases. In parallel with the hemodynamic transition, the 
sympathetic tone is reset in the course of hypertension (Palatini and Julius  2009 ). 
We know that all this is associated with a moderate reduction of some HRV indices 
before clinical onset of hypertension. In manifest hypertension, HRV is reduced, 
which again might be a predictor of later cardiovascular pathology. Antihypertensive 
drugs increase different HRV indices often but not always. This should not be con-
fused with an established proof for their effectivity in preventing hypertension- 
associated deterioration or prolongation of life expectancy.   

   Other Cardiologic Diseases and Problems 

 Power spectrum analysis of HRV in cardiac transplant recipients showed a reduced 
HRV, which fi ts with the hypotheses that HRV is infl uenced by autonomic nerve 
tone. Furthermore, rejection reactions showed increased HRV (Sands et al.  1989 ). 
This has been reproduced in pediatric transplantation patients. In addition, in some 
patients 4 years posttransplantation increasing sympathetic infl uence can be shown 
by HRV changes (Pozza et al.  2006 ). 

 Twenty-three high-risk noncardiac patients were continuously monitored from 
the evening before surgery up to 80 h during the postoperative period. Nine of them 
demonstrated postoperative ventricular dysfunction, 14 had an uncomplicated post-
operative course. All but two patients had high ApEN (>0.7). Postoperative 
ApEn < 0.55 had a sensitivity of 88 % and a specifi city of 71 % to be associated with 
postoperative ventricular dysfunction, two times ApEn < 0.7 % with 8-h timeframe 
between had a specifi city of 79 % (Fleisher et al.  1993 ). 

 There is a phenomenon of  sudden cardiac death  in  epilepsy  patients. The risk of 
this might be attenuated through successful surgery. Twenty-one patients before and 
after temporal lobe epilepsy surgery were studied. The patients with poor outcome 
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after surgery (remaining attacks) had lower TP, SDNN, VLF, and LF than matched 
healthy controls; the patients with favorable outcome did not differ from the con-
trols. There were no postoperative changes in HRV compared with preoperative 
results. The present lower HRV in patients with bad surgical outcome was already in 
place before operation (Persson et al.  2006 ). Reduced heart rate variability has been 
observed in patients with refractory epilepsy and can be induced in animal models; 
its role in sudden unexplained death in epilepsy (SUDEP) is not known (So  2008 ). 

 Ninety-six patients with  viral myocarditis  were followed over 6 months. All 
time- and frequency-domain measures were signifi cantly reduced in the early stage 
of the disease but improved after 6 months (Gao et al.  2008 ). 

 HRV has been tested to distinguish between patients after syncope in emergency 
departments. Thirty-two patients were recruited, and HRV parameters were com-
pared with existing syncope risk guidelines of the department. No HRV parameter 
showed a statistical difference in relation to risk assignments (Bonney et al.  2009 ).     
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                      Introduction 

 For anesthesiologists preparing patients for operations, perioperative care involves 
inducing a reversible state of loss of responsiveness, amnesia, analgesia, decreased 
stress response, and possibly unconsciousness (depending on the kind of opera-
tion), maintaining homeostasis under operations, and any treatment after opera-
tions to support the initial phase in the patient’s recovery. Most anesthesiologic 
and surgical procedures can have profound effects on homeostasis, including fl uid 
balance, the cardiovascular system, and the autonomic nervous system. The fact 
that one-third of all postoperative complications and 50 % of postoperative mor-
tality are due to cardiac events underlines the importance of risk estimation (Laitio 
et al.  2007 ). But not only cardiac events are of interest. Simple methods like score 
or bedside investigations, which do not depend on advanced qualifi cations and 
experience (e.g., echocardiography) to detect fl uid imbalances, beginning SIRS or 
other circumstances that can have consequences for the planning and execution of 
anesthesia are needed. In this context, anesthetists have been well aware for 
decades now of the association of pathological changes in ANS and worse out-
come, for instance, in diabetic patients with advanced autonomous neuropathy 
(Burgos et al.  1989 ). 

 Not surprisingly, heart rate variability has been used to predict instability, to mon-
itor anesthesia, and to guide perioperative treatments. It is, however, far from being 
an established tool for anesthetists. HRV has been recently proposed as “helpful, 
non-invasive, bedside, low-cost monitoring tool to evaluate the perioperative risk in 
patients with suspected autonomic dysfunction, to select individuals who need fur-
ther cardiac testing and to optimize preoperative status” (Mazzeo et al.  2011 ). 

 Perioperative problems have been associated with ANS dysfunction (e.g., 
Mazzeo et al.  2011 ), but there is no clear evidence for this, as discussed in Chap.   4    . 
This is not an issue in this chapter. The question itself is a very interesting research 
question for anesthetists, but our main focus here is on the associations between 
alterations of HRV and perioperative morbidity and mortality.  

    Chapter 9   
 Perioperative Care 
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   Induction and Maintenance of General Anesthesia 

 General anesthesia is a pharmacologically induced and reversible state of amnesia, anal-
gesia, loss of responsiveness, loss of skeletal muscle refl exes, and decreased stress 
response. Anesthetic agents are intravenous drugs or inhalation agents. All anesthetic 
agents have more or less profound effects on the cardiac and circulatory system. Most 
volatile agents are potent vasodilators and reduce systemic vascular resistance. They can 
increase heart rate due to reduced blood pressure but also independently of blood pres-
sure. At least some volatile agents have a direct infl uence on SNS and PNS. They 
depress baroreceptor function and cause a decrease in stroke volume, which results in 
reduced cardiac output. All volatile agents sensitize the myocardium to adrenaline. In 
addition, anesthetic agents depress CNS function. All these elements are also part of the 
system that causes HRV; thus, one should expect any form of anesthesia to affect HRV.  

   Prediction of Hypotension 

 Nearly all forms of anesthesia cause hypotension, but some patients develop higher 
falls in blood pressure than others. Preoperative low blood volume is a frequent 
cause for low blood pressure after induction of anesthesia. In healthy patients, com-
pensatory mechanisms blunt the effect of blood loss or dehydration. At the moment 
when anesthetic agents diminish cardiocirculatory refl ex responses, blood pressure 
goes down. One issue in HRV research is therefore to identify patients at risk for a 
more pronounced blood pressure fall. Another issue is rhythm disturbances like 
brady- or tachycardia during or after the induction phase. 

 In an early study, low HF (then described as RF) predicted bradycardia in 80 % of 
included patients (Estafanous et al.  1992 ). Huang studied 46 patients with and 87 patients 
without diabetes, all of them ASA II or III undergoing elective surgery. They obtained 
5 min HRV measurements under paced breathing immediately before anesthesia. TP, LF, 
and HF were lower in participants with hypotension (defi ned as decrease of greater than 
30 % or a systolic BP under 85). Interestingly enough, in contradiction to results in asso-
ciation of spinal anesthesia presented later in this chapter, LF/HF showed no association. 
Unfortunately, Huang does not present mean and standard deviation of the HRV mea-
sures (Huang et al.  2006 ). In diabetic patients, HRV has been recommended as standard 
test, meant to give additional crucial information in preventing hypotensive episodes in 
diabetic patients with diabetic autonomic neuropathy (Oakley and Emond  2011 ).  

   Prediction of Cardiac Events 

 In a study, Mamode included 297 patients undergoing elective peripheral arterial 
surgery and used a plethora of blood samples, myocardial perfusion scanning, and 
heart rate variability (Holter monitoring) preoperatively. Patients were screened for 
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myocardial infarction the fi rst three postoperative days with ECG and cardiac iso-
enzymes (CK-MB). Primary end point of the study was the occurrence of myocar-
dial infarction or cardiac death within 30 days postoperatively. Twenty-one patients 
reached this end point (14 death, 7 myocardial infarction). Clinical risk factors were 
poor predictors. High predictive value had increased age, ECG evidence for previ-
ous myocardial infarction, prior aortic surgery, positive thallium scan, and impaired 
HRV (triangular index). For the interpretation of the study, it is of major signifi -
cance that several different HRV measures had no predictive value, so SDNN, 
SDANN, pNN50. They did not apply frequency-domain algorithms, neither nonlin-
ear measures. Their combined model showed a sensitivity and specifi city of 84 and 
80 %, respectively, for perioperative cardiac events (Mamode et al.  2001 ). 

 For measuring preoperative HRV on 32 patients >60 years of age undergoing 
operations for traumatic hip fractures, Holter ECG recordings were made using 
short-term fractal scaling exponent. In stepwise multivariate logistic regression, this 
variable was the only independent predictor of postoperative prolonged ischemia, 
showing an odds ratio of 7.7 (Laitio et al.  2004 ). 

 One hundred patients ASA 3–4 scheduled for major vascular or abdominal sur-
gery were examined with a 24-h Holter monitoring, and the revised cardiac risk 
index was calculated; patients were only included with a score of three or more. 
Intraoperative hypotension was defi ned as a fall of MAP to 60 % of preoperative 
MAP, bradycardia as a decrease of heart rate to 60 % of baseline or lower than 50 
beats per minute. The fi rst 50 patients were analyzed retrospectively, the second 50 
prospectively. A cutoff for TP of 500 ms 2  was chosen after the retrospective part to 
distinguish low-risk and high-risk patients, lower TP indicating possibly unstable 
patients. TP < 500 did predict bradycardia, hypotension, and use of vasopressors but 
not atropine (Hanss et al.  2008 ). 

 Mazzeo proposes HRV to guide premedication with beta-blockers. According to 
this idea, HRV with low variability should give a relative indication for periopera-
tive use of beta-blockers. This has not been studied yet, but Mazzeo quotes an inter-
vention study for myocardial infarction (Lampert     2003 ). This patient population 
consists of postmyocardial infarction patients. HF was a predictor for outcome. HF 
was more increased in patients treated with propranolol than in patients with pla-
cebo. The conclusion that beta-blockers should be considered for patients with low 
HF (or generally low HRV) is not backed by this evidence, but it is a good indica-
tion for a well-controlled study.  

   Effects of Anesthesia on HRV 

 Inducing anesthesia with propofol and maintaining it with isofl urane/nitrous oxide 
led initially to reduction of HF and increase of LF, but HF returned subsequently 
under isofl urane/nitrous oxide, while LF remained depressed (Galletly et al.  1992 ). 

 Thiopental has a bigger effect on HRV frequency domain than etomidate (Latson 
et al.  1992 ; Scheffer et al.  1993 ). Inhalation of 30 % N 2 O in healthy subjects led to 
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reduction in HF and to a rise in LF/HF ratio. The authors discussed the effect as 
consistent with an enhanced sympathetic balance of sinoatrial control through 
reduced parasympathetic tone (Galletly et al.  1993 ). No difference has been 
observed between isofl urane 1.5 % and halothane 0.75 % (Galletly et al.  1994a ). 

 Induction of anesthesia with propofol in ten women undergoing laparoscopy led to 
reduction of TP, LF, and HF, maintenance with propofol in further reductions of TP and 
LF but not HF. Placement of the laparoscopic trocar led to an increase in HF. This was 
interpreted to mean that propofol had less of an effect on the parasympathetic tone than 
on the sympathetic tone, which makes the patients more sensitive to bradycardia-
inducing events (Deutschman et al.  1994 ). In another study, LF, MF, and HF was 
decreased, but LF reduction was less than MF and HF reduction (Galletly et al.  1994b ). 

 Induction with thiopental alone caused a higher blood pressure increase than a 
thiopental/midazolam induction. After induction with thiopental alone, HF increased 
under intubation conditions, whereas in the thiopental/midazolam group, HF con-
tinued to decrease (Nishiyama et al.  2002 ). 

 In a study comparing propofol and sevofl urane anesthesia, propofol had no 
effects on LF but induced a decrease in HF. Sevofl urane decreased LF but had no 
effect on HF. LF/HF ratio was not changed in either group (Kanaya et al.  2003 ). 

 Premedication with temazepam before induction with propofol or thiopental led 
to a higher HF, LF, and TP as without premedication but not in the LF/HF ratio. The 
induction itself induced reductions in TP and HF and an increase in LF/HF ratio 
(Howell et al.  1995 ). 

 Thirty-eight patients undergoing lung resection for cancer were randomized to 
thoracic-epidural treatment or general anesthesia followed by patient-controlled 
analgesia (PCA) as postoperative pain treatment. After operation there were no dif-
ferences in regard to pain but lower incidence of hypertensive or tachycardia peri-
ods in patients with epidural. HRV data were collected four times, preoperatively, 
4 h after the operation and at the fi rst and second postoperative day. Frequency- 
domain measures were used. HRV values decreased generally after operation and 
remained low in both groups until the second postoperative day. However, in the 
epidural group, HRV increased day one and two. LF/HF remained unchanged in the 
PCA group all the time, whereas it was reduced during the whole observation period 
after use of epidurals. This was discussed as a shift in sympathovagal balance 
toward vagal predominance (Licker et al.  2003 ). 

 In a randomized study, propofol or propofol/midazolam inductions were compared 
and their effects on short-term HRV post-induction. Propofol was administered at 
2.5 mg/kg in the propofol group and midazolam at 0.1 mg/kg followed by propofol at 
1.5 mg/kg in the midazolam–propofol group. The midazolam–propofol combination 
had an increased LF/HF ratio the fi rst minutes after induction, which was interpreted 
as compensated modulatory effects on the cardiovascular system (Win et al.  2007 ). 

 In summary, there is good evidence that anesthesia changes HRV parameters. In 
most studies LF increases and/or HF decreases, leading to a changed LF/HF ratio. 
No nonlinear factors have been tested, probably due to the necessary use of short- 
term HRV of less than 10 min.  
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   Spinal Anesthesia 

 In spinal anesthesia, a small amount of local anesthetics is injected intrathecally on 
the level of L3 or L4, where damage to the spinal cord is unlikely. Depending on the 
amount, spinal anesthesia can anesthetize the legs or bigger parts of the body up to 
the Th4 level. The physiological effects of spinal anesthesia depend on the level. 
The effects depend also on the concentration of the agent, the speed of injection, the 
specifi c gravity of the solution, the position of the patient, the presence of increased 
intra-abdominal pressure, and other factors. The SNS is blocked in proportion to the 
height of the anesthesia level obtained. Total sympathetic block can be expected 
from high spinal anesthesia exceeding Th2. This produces a 15–20 % decrease in 
mean arterial pressure, central venous pressure, and total peripheral resistance. 
Cardiac output, stroke volume, and heart rate are not substantially affected but can 
change due the decreased resistance. Hypotension is a well-known side effect of 
spinal anesthesia and can be profound. In some departments, either infusion of 1 l 
saline or use of catecholamines is used as preventive measure. Here too, it is of 
interest to identify patients with possible major blood pressure drop after 
induction. 

 In a retrospective study, short-term HRV was analyzed in 41 patients scheduled 
for elective cesarean delivery. They were grouped in three categories: mild decrease 
of systolic blood pressure (>100 mmHg); moderate decrease (80–100); and severe 
decrease (<80). LF/HF was increased in patients with moderate to severe BP 
decrease (2.8; 2.7 and 1.2, respectively). In a prospective study with 19 patients, this 
result was confi rmed (Hanss et al.  2005 ). These results led to an intervention study 
in the same patient group: patients received vasopressors or preoperative colloid 
infusion if LF/HF was greater than 2.5. Hypotension did not occur in 17 of 20 
patients with LF/HF > 2.5; in the control group, 20 of 23 patients with LF/HF > 2.5 
developed hypotension (Hanss et al.  2006 ). 

 Fifty two Patients undergoing elective transurethral surgery were tested before 
and after onset of spinal anesthesia with HRV, using traditional indices and ultra 
short-term entropy (UsEn) as a nonlinear index. The patients were then assigned to 
two groups (Group LO and HI) according to preoperative UsEn. Spinal anesthesia 
decreased LF/HF but did not affect UsEn. The number of patients who developed 
hypotension was signifi cantly higher in the group with lower UsEn (Fujiwara et al. 
 2007 ). 

 Short-term HRV of 80 ASA I–II patients scheduled for spinal anesthesia was 
obtained, and the predictive value for severe bradycardia after onstart (defi ned as 
<45 bpm) was analyzed. Nineteen of 80 patients developed bradycardia. HF in the 
bradycardia group was signifi cantly higher (1,061 ± 1,301 vs. 696 ± 1,378). With the 
help of ROC analysis, a sensitivity and specifi city of 65 % was detected; however, 
low baseline HF had a sensitivity and specifi city of 74 % (Chatzimichali et al.  2011 ). 

 The studies by Hanss are one of the few examples that used HRV (successfully) 
to guide interventions. 
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   Maintenance of Anesthesia 

 In 20 spontaneously breathing patients undergoing minor surgical procedures with 
a propofol/fentanyl anesthesia, the relationship between heartbeats and respiration 
was examined. There was evidence for phase coupling in whole number ratios. 
Phase coupling seemed to be unidirectional from the respiratory system to the sinus 
rhythm. Six different coupling patterns were observed (Galletly and Larsen  1997 ). 
Apnea during stable anesthesia leads to reduction of HF but not LF (Nakatsuka 
et al.  2002 ). 

 Using point correlation dimension (PD2), it was possible to predict hypotension 
accompanying spinal anesthesia for cesarean delivery in all 11 patients with a sys-
tolic blood pressure <75 % of baseline compared to 11 patients without hypotension 
(Chamchad et al.  2004 ). Short-term HRV was used to monitor the stress response 
during awake craniotomy. Specially LF/HF ratio yielded a stress/response pattern 
and could probably be used to monitor stress responses during anesthesia (Conte 
et al.  2009 ).   

   Postoperative Course 

 One hundred and six patients admitted in the ICU after abdominal aortic surgery 
were analyzed with the help of 24-h Holter ECGs. VLF was a rather strong predic-
tor for length of stay at the ICU. Other predictors were increased age and insulin- 
dependent diabetes (Stein et al.  2001 ). 

 Eighty patients with a history of PAF were evaluated by Holter monitoring and 
blood samples measuring neuropeptides and catecholamines pre- and postopera-
tively. 36.3 % of patients developed AF postoperatively and showed a signifi cant 
lower HF and LF/HF ratio. HF decreased in both groups postoperatively. Neither 
neuropeptides nor catecholamines differed between the groups (Jideus et al.  2001 ). 

 Between 1994 and 1996, Mamode examined 297 patients in terms of different 
risk factors for perioperative mortality undergoing peripheral arterial surgery (92 
aortic, 47 carotid, 37 infrainguinal, 13 major amputation, and 108 miscellaneous 
procedures) and used Holter monitoring to obtain HRV (SDNN, SDANN5, triangu-
lar index, and pNN50). The primary end point of the study was the occurrence of 
myocardial infarction or cardiac death within 30 days of surgery. Twenty-one patients 
had myocardial infarction or died within 30 days. Independent end point predictors 
determined through a logistic regression analysis were increased age, ECG evidence 
of previous myocardial infarction, aortic surgery, impaired heart rate variability (tri-
angular index), and positive thallium scan. The mean triangular index for patients 
with fatal events was 21.5 (±1.7), for patients without 26.6 (±0.6). The authors pro-
pose a cutoff value of <25 to identify high-risk patients. Interestingly, SDNN seemed 
not to be a signifi cant factor in the statistical model, neither in univariate analysis; it 
is not mentioned in the results of the article (Mamode et al.  2001 ). 
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 Laitio studied 32 patients over 60 who had been admitted to hospital for surgical 
repair of a traumatic hip fracture. He used preoperative Holter monitoring. Twelve 
patients experienced in all 384 ischemic episodes. Preoperative α1 was signifi cantly 
lower (i.e., increased randomness in HRV) during nighttime compared with daytime 
in patients with postoperative myocardial ischemia. In stepwise multivariate logis-
tic regression analysis, increased preoperative night/day difference of α1 was the 
only independent predictor of postoperative prolonged ischemia. LF in patients 
with no ischemia was 179 ± 63 compared with 278 ± 131 in patients with ischemic 
episodes, HF 127 ± 34 compared to 325 ± 176. SDNN was 28.9 ± 3.3 compared to 
30.1 ± 4.8. Thus, although only α1 remained signifi cant in this small study, it is not 
improbable that LF and HF can be relevant predictive factors if analyzed in a higher 
number of patients (Laitio et al.  2004 ). 

 With a prospective study, Filipovic showed that LF/HF ratio <2 analyzed only 
6 min before induction of anesthesia was the best predictor for 2 year all-cause 
mortality in 167 patients (odds ratio 6.4, CI 1.9–21). This study included risk score 
established by Eagle et al. ( 2002 ) and Detsky et al. ( 1986 ) and the Revised Cardiac 
Risk Index (Lee et al.  1999 ). The only other main independent predictors were a 
history of congestive heart failure and age over 70 (Filipovic et al.  2005 ). 

 Our own preliminary results in hip fracture patients support the studies above. 
In a pilot study, we enrolled 22 consecutive patients with hip fracture scheduled for 
operation. Within 24 h after the event, we took a 10-min ECG analyzed for time 
and frequency domain, in addition ApEN. Perioperative complications were 
recorded, including pneumonia and cardiac events. Thirty percent of patients had 
some perioperative problems, such as stroke, MI, or pneumonia. We found signifi -
cant univariate associations between perioperative problem and several HRV 
parameters. Heart rate, TP, normalized LF and HF, LF/HF, and VLF were signifi -
cantly lower in patients developing postoperative problems. In multivariate analy-
sis, LF/HF and VLF had the highest predictive value (Ernst G,  2011 , unpublished 
results) (Fig.  9.1 ).

8

−2.00

no complications

LF
/H

F

complications

−1.00

0.00

1.00

2.00

3.00

  Fig. 9.1    LF   /HF and 
perioperative complications       

 

Postoperative Course



214

      Conclusion 

 There is evidence that preoperative HRV measurement offers a feasible technique 
for stratifying perioperative risks and for estimating the need for further preopera-
tive evaluation and optimization. Mazzeo concludes: “In an ideal setting, a pre- 
operative HRV measurement should be performed to evaluate perioperative risk in 
patients with known ANS dysfunction or in patients with suspected dysautonomia 
undergoing high risk procedures.” Mazzeo suggests that such an evaluation be per-
formed at least 2 weeks before scheduled operation (Mazzeo et al.  2011 ). Different 
linear and nonlinear HRV measures have been used to identify patients at risk before 
surgical procedures and to predict successful outcome in therapeutic procedures. 
There have been some promising results, but HRV analysis in anesthesiology has 
not been used often. Thus, it is not possible to draw conclusions regarding clinical 
usefulness. Mazzeo et al. ( 2011 ) proposes to investigate patients with cardiac his-
tory or an existing risk for ANS imbalances at least 2 weeks before elective surgery 
and to use HRV beyond others to select patients who need further examination (e.g., 
by cardiologists) preoperatively. Existing studies offer strong evidence in this 
regard, but this conclusion seems premature. We need more effi cacy studies that not 
only describe HRV abnormalities but also use the results within a preoperative 
algorithm.     
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                      Sepsis 

   Introduction 

 During the course of the twentieth century, impressive innovations were introduced 
that improved the treatment of critically ill persons. Such innovations include the 
identifi cation of the entity “shock” and its treatment by fl uid resuscitation in the 
1930s, introduction of dialysis in the 1950s, modern respiratory therapy following 
the big polio epidemics of the 1950s, and improved treatment of respiratory failure 
in the 1960s. Probably because patients survived such ailments, in the 1970s 
increased awareness of conditions eventually led to the description of what we now 
call “multiple organ failure.” The idea of sepsis is much older, but the concept has 
changed fundamentally over the last decades. Originally, sepsis was associated with 
the fatal effects of bacteria coming from a certain source and circulating in the 
blood. As early as in the 1970s, a concept arose which described the fatal effects of 
sepsis not as consequence of bacterial damage but as consequence of an overreact-
ing immune system. Lewis Thomas wrote 1972 “the microorganisms that seem to 
have it in for us… turn out… to be rather more like bystanders… It is our response 
to their presence that makes the disease. Our arsenals for fi ghting off bacteria are so 
powerful… that we are more in danger from them than the invaders” (Thomas 
 1972 ). In the following years, animal models were developed that led to the descrip-
tion of immunological cascades involving different pro- (and anti-) infl ammatory 
substances. Possible interventions were then outlined and tested on animals, albeit 
with disappointing results. Until now, only two non-antibiotic medicaments with 
effect on sepsis survival (see below) have been identifi ed. The concepts did not arise 
from an increased pathophysiological understanding; rather, pathophysiological 
concepts changed with the evolution of clinical experience. Enormous evidence 
about sepsis as a complex syndrome with multiple circuits and feedback mecha-
nisms has been published. Sepsis is perhaps one of the best-described pathological 
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conditions, but there is no qualitative comprehensive model, not even a quantitative 
temporal model. 1  

 Sepsis is today defi ned as an infection-induced syndrome with two or more of 
the following features of systemic infl ammation: fever or hypothermia, leukocyto-
sis or leucopenia, tachycardia and tachypnea, or supranormal minute ventilation. If 
proof for bacterial involvement is absent, it is called SIRS (systemic infl ammatory 
response syndrome). When an organ system begins to fail because of sepsis, the 
sepsis is considered severe (Bone  1992 ). Each year, sepsis develops in more than 
500,000 patients in the United States and only 55–65 % of them survive (Rangel- 
Frausto  1995 ). There have been considerable advances in the treatment of sepsis in 
the last years. Some landmark studies have focused on special treatment algorithms 
like low-dose steroids (Annane et al.  2004 ), tight glycemic control (van den Berghe 
et al.  2001 ), and active protein C (a coagulation factor) in special subgroups 
(Bernard et al.  2001 ). A landmark study changed focus on the early development of 
sepsis. Aggressive treatment of patients with fl uids, blood concentrates, and vasoac-
tive medicaments in addition to standard treatment was shown to have an effect if it 
was started within hours of the fi rst symptoms, whereas similar interventions 6 h 
later failed to have an effect on the outcome (Rivers  2001 ). The fi rst hours of sepsis 
have been termed the “golden hour” and “silver day” of early resuscitation (Rivers 
et al.  2005 ). Thus, early identifi cation of sepsis has become more important than 
ever. But also identifying treatment responders and nonresponders is an important 
part of clinical work. For both parts, heart variability analysis with different algo-
rithms has been advocated.  

   Pathophysiological Considerations 

 It is diffi cult to outline a general model of sepsis, but it is possible to draw a reason-
able picture of the early biochemical events involved. A trigger such as a microbial 
toxin stimulates the production of cytokines such as tumor necrosis factor and inter-
leukin- 1, which in turn promotes endothelial cell-leukocyte adhesion, release of 
proteases, and arachidonate metabolites, and activation of clotting. Interleukin-1 
and TNF are proinfl ammatory messenger molecules and have similar and synergis-
tic properties. In animal models, inhibiting their effects had positive effects on the 
sepsis course, but in human patients their use had disappointing results. Interleukin-8, 
a neutrophil chemotaxin, may play an especially important role in perpetuating tis-
sue infl ammation. Interleukin-6 and interleukin-10, which perhaps are counterregu-
latory, inhibit the generation of tumor necrosis factor, augment the reaction of acute 
phase reactants and immunoglobulins, and inhibit T-lymphocyte and macrophage 
function. 

1   To focus on the complexity of illnesses in the intensive care unit, mathematicians, physicists, and 
clinicians recently founded a new society on complexity in acute illnesses. See  www.scai-med.org . 
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 Sepsis has been considered a failure of the immune system. In this context, 
T-lymphocyte anergy and apoptosis have been described (Hotchkiss and Karl  2003 ). 
The arachidonic acid metabolites thromboxane A 2  (a vasoconstrictor), prostacyclin 
(a vasodilator), and prostaglandin E2 participate in the generation of fever, tachy-
cardia, tachypnea, ventilation/perfusion abnormalities, and lactic acidosis (Wheeler 
and Bernard  1999 ). 

 Over the course of sepsis, pulmonary dysfunction is frequent. Respiratory failure 
often progresses rapidly; a sustained respiratory rate that exceeds 30 breaths per 
minute is usually a sign of impending ventilatory collapse, even if arterial oxygen 
levels are normal. Timely intubation and mechanical ventilation reduce respiratory 
muscle-oxygen demand and the risk of aspiration. 

 Cardiovascular failure is part of any severe sepsis. Shock is caused by an inade-
quate supply or inappropriate use of metabolic substrates (especially oxygen), 
resulting in lactate acidosis and tissue damage. In a high percentage of patients, 
sepsis leads to acute heart failure with reduced contractility of the heart muscle. 
Frequently, a low systemic vascular resistance is observed and has to be treated. 
Real dysfunction due to hypotension, volume defi cits, and circulating infl ammatory 
agents can lead to renal failure. Hypoperfusion of bowels leads to atrophy of gut 
mucosal cells. This consecutively leads to aggravation of the immunologic barrier 
function of the gut and increased uptake of bacterial substances. Coagulopathy 
develops and is caused by defi ciencies of the coagulation system proteins, including 
protein C, antithrombin III, tissue pathway inhibitor, and the kinin system. A tem-
poral network of the genetic activation and deactivation patterns has been analyzed 
and described recently. It shows how different genes change their activity level 
dependent on their interaction within the fi rst 24 h (Calvano et al.  2005 ). 

 Schmidt and Werdan offer one possible explanation for the attenuation of HRV 
as consequence of sepsis (Werdan et al.  2009 ). As discussed in other chapters, the 
efferent sympathetic and vagal signals to the heart use binding of the neurotransmit-
ters norepinephrine to cardiac adrenoceptors and acetylcholine to muscarinic recep-
tors. Receptor binding triggers signal transduction pathways in the cardiac 
pacemaker cells that fi nally result in a modulation of the pacemaker current. This 
pacemaker current is mainly conducted through the  I  f  current. It is the result of ion 
fl ux through the hyperpolarization-activated cyclic nucleotide-gated (HCN) chan-
nel. The channel is controlled by direct interaction with cyclic adenosine mono-
phosphate and hence contributes to sympathetic and parasympathetic regulation of 
the heart rate. Schmidt and Werdan’s in vitro experiments demonstrated both a 
direct inhibitory effect of endotoxin on  I  f  and a sensitizing of  I  f  to b 1 -adrenergic 
catecholamines. These phenomena might trigger a narrowing of HRV and therefore 
might contribute to the autonomic cardiac dysfunction (reduced HRV) seen in 
patients with sepsis, SIRS, and MODS. Consequently, autonomic dysfunction is the 
result not only of an alteration of the autonomic nervous system but also of an 
impairment of the signal transduction pathways and ion channels mediating the 
autonomic nervous signals in the heart itself (Werdan et al.  2009 ). 

 Severe sepsis has been associated to a dysfunction of the HPA axis. It might be of 
signifi cance that subgroups of test persons with high sympathetic (like) reaction on 
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acute stress have at the same time higher cortisone levels and test persons with lower 
sympathetic activation similarly lower levels (Uchino et al.  1995 ). This might be 
refl ected in the circumstance that patients with a low LF/HF ratio have a worse prog-
nosis and at the same time might have higher steroid levels than survivors. 
Infl ammation in peripheral tissues alters neuronal signaling in the hypothalamus. 
This is a consequence of bidirectional communication between the immune and the 
nervous system. Neurons in the CNS can synthesize and express TNF and interleu-
kin- 1; cytokines can activate hypothalamic–pituitary release of glucocorticoids. In 
turn, glucocorticoids suppress further cytokine synthesis. Cells of the immune sys-
tem can produce neuropeptides, acetylcholine, and other neurotransmitters. Glial 
cells in the CNS play an active role in this process (Tracey  2002 ). The parasympa-
thetic system has been described as a cholinergic anti-infl ammatory pathway. Direct 
electrical activation of the vagus nerve has inhibitory effects on the synthesis of TNF 
in liver, spleen, and heart (Borovikova et al.  2000 ). The vagus nerve probably also 
has a sensory function, which in turn can modulate vegetative nervous system cir-
cuits around NTS and RVLM (Tracey  2002 , see the extended discussion in Chap.   5    ).  

   Clinical Studies 

 There exists evidence that decreasing complexity of different time series is corre-
lated with negative outcome in critically ill children and adults (Overview: see 
Buchman et al.  2002 ). Sympathetic–parasympathetic balance may be altered in 
critically ill patients (Schmidt et al.  2001 ). 

 The fi rst report about HRV changes in sepsis included 17 patients with sepsis 
who were studied in an ICU. A short-time ECG was taken. Acute and recovery data 
were obtained of 12 patients. HRV (TP) was signifi cantly lower during sepsis, as 
were LF and LF/HF (1.34 ± 1.61 vs. 4.27 ± 7.06 in recovery) (Garrard  1993 ). 

 In an early study, 12 patients with sepsis were characterized by HRV analysis, 
photoplethysmography, respiration pattern, and arterial pressure. All measures were 
taken at the same time (9 a.m.) at least 40 min before any other manipulations on the 
patient. LF fl uctuations were low or absent during sepsis, but increased under recov-
ering, or stayed absent in two patients who died. The HF component was elevated 
in relative units (Hfnu) but much lower in absolute values (2.5 ± 0.3 ln ms 2 ) with 
respect to age-matched controls (5.9 ± 0.1 ln ms 2 ). HF results did not appear to be 
affected by the presence or absence of mechanical ventilation. LF and HF changes 
occurred seemingly independent of use of catecholamines (Piepoli et al.  1995 ). 

 Winchell conducted automated 5-min HRV measures every 6 h in 742 patients. 
Low TP and low LF/HF ratio (authors used HF/LF) were associated with 
increased mortality, a high LF/HF with increased survival. The authors con-
cluded that monitoring HRV parameters has the potential to detect physiological 
deterioration or response to therapy (Winchell and Hoyt  1996 ). In a study focus-
ing on patients with head injuries, the same approach was used to obtain HRV 
values simultaneously with intracranial pressure (ICP) and cranial perfusion 
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pressure (CPP). In all, 80 patients with a mortality of 29 % were included in the 
study. Low HRV values were associated with increased mortality with a relative 
risk of 7.7 and predicted 80 % of acute deaths. High LF/HF was associated with 
higher survival rates; there was no association between low LF/HF and mortality. 
Analysis of temporally matched ICP and CPP showed signifi cant correlation 
between two types of abnormal HRV measurements (low TP and low LF/HF 
ratio) and pathologic changes in intracranial pressure relationships (high ICP or 
low CPP). High LF/HF was associated with apparent improvement in ICP and 
CPP (Winchell and Hoyt  1997 ). 

 Yien included in a study 65 consecutive patients of an ICU with noncardiac 
emergencies. Thirteen had to be excluded because of onset of AF, other forms of 
arrhythmias or implantation of a pacemaker. Mortality was around 50 %. The diag-
nosis of patients is mentioned and includes patients with advanced carcinoma and 
diverse bleeding conditions including in the brain, but the majority had variations of 
critical infections and sepsis. The study observed in survivors a progressive increase 
of both VLF and LF, progressive decreases of the same frequency components in 
the non-survivors (Yien et al.  1997 ). 

 Ten patients with sepsis syndrome for less than 48 h, ten patients in an early 
stage of septic shock, and six control subjects were analyzed using short-term 
measures of HRV via fi nger arterial blood pressure and pulse intervals. LFnu 
was lower in sepsis and septic shock than in controls, septic shock having the 
lowest values. LF/HF was 1.51 ± 0.32 for healthy persons, 4.58 ± 3.72 for patients 
with sepsis, and 1.36 ± 1.23 for septic shock. The authors used another coeffi -
cient “alpha,” which was the square root of the ratio between LF and systolic 
blood pressure. This was lowest in septic shock and lower than in controls in 
sepsis alone. LF/HF correlated with plasma noradrenaline in septic shock 
patients (Annane et al.  1999 ). 

 A retrospective study analyzed 22 critically ill patients: 16 had a septic and 6 a 
non-septic MODS (distinguished by means of the APACHE II Score > 19 and a 
sepsis score > 11 or < 11). Six patients without MODS were used as controls. 
Twenty-four-hour ECG recordings from the ICU were used. Patients with MODS 
had reduced HRV values, but there was no difference between MODS with or with-
out sepsis (Heinroth et al.  1999 ). 

 In a cohort study all patients of a medical ICU (no surgical patients) with an 
expected unit stay of 48 h or longer were included, very ill or only mildly ill patients 
excluded. Twenty-eight patients did not develop sepsis, 13 did. A 30-min recording 
in supine position was obtained between 8 a.m. and 12 p.m. A LF/HF ratio of <1.5 
in HRV power spectrum was associated with sepsis (odds ratio 3.63). The likelihood 
ratio for a sepsis with an existing LF/HF <1.0 was 6.47 (Korach et al.  2001 ) 
(Tables  10.1  and  10.2 ).

    Ellenby et al observed seven pediatric patients with the help of a computerized 
surveillance system that calculated HRV frequency-domain measures out of a time 
course of 128 s (sic, ?) every 6 h. Six of the seven patients had a favorable outcome. 
LF and LF/HF increased, HF decreased during the recovery process. The patient 
with fatal outcome showed a low LF/HF ratio that only increased for a short period 
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in which he had a clinical improvement. Short-term HRV data were thus suitable for 
monitoring the course of critically ill patients (Ellenby et al.  2001 ). 

 LFnu (normalized low-frequency power) as assessment of the relative sympa-
thetic contribution to the overall HRV was correlated with increased illness severity 
and accounted for 40–60 % of the variance in illness severity scores. LFnu and LF/
HF ratio measured in a 5-min period apparently provided a noninvasive early marker 
of disease severity in 14 patients with SIRS criteria at the emergency department 
(Barnaby et al.  2002 ). 

 The cardiac output oscillations of 13 consecutive patients with sepsis and MODS 
were analyzed. Ten patients showed 18 episodes of ultra low-frequency periodic 
oscillations in the frequency range of 0.0028–0.000053 Hz (6–316 min). The 
authors proposed ULF-Co as possible prognostic marker (Seiver and Szafl arski 
 2003 ) (Table  10.3 ; Fig.  10.1 ).

    Fifty pediatric patients with different grades of MODS were observed with the 
help of a 5-min recording under stable conditions. A power-law model was used, 
described through  r 2, slope, and  x -intercept. Time domain, frequency domain, and 
DFA were also used. Loss of HRV with increasing number of organ failure could be 

   Table 10.2    Diagnosing sepsis using LF/HF (Korach et al.  2001 )   

 LF/HF category  Presence of sepsis  Absence of sepsis  Likelihood ratio 

 <1  9  3  6.47 
 1–1.9  3  9  0.72 
 >1.9  1  16  0.13 
 Total  13  28 

   Table 10.3    Results of the retrospective study in MODS patients (Heinroth et al.  1999 )   

 MODS with sepsis ( n  = 16)  MODS without sepsis ( n  = 6)  Controls ( n  = 6) 

 SDNN  30.9 ± 19.6  25.1 ± 10.5  75.2 ± 29.4 
 SDANN  24.2 ± 15.2  17.1 ± 6.9  48.1 ± 23.4 
 ASDNN  16.1 ± 12.8  15.8 ± 7.1  46.5 ± 15.0 
 rMSSD  18.6 ± 13.0  16.7 ± 8.9  34.3 ± 7.9 
 TP  4.8 ± 1.4  4.9 ± 1.5  5.6 ± 1.1 
 LF  2.8 ± 1.7  2.3 ± 2.3  6.5 ± 1.1 
 HF  3.5 ± 1.4  3.2 ± 1.2  4.9 ± 0.6 
 LF/HF  0.7 ± 0.6  0.9 ± 1.2  2.8 ± 2.3 

  Table 10.1    Differences 
between survivors and 
non-survivors in frequency 
domain (Korach et al.  2001 )  

 Survivors (ms 2 )  Non-survivors (ms 2 ) 

 TP  164, 093 ± 272,163  8,112 ± 12,644 
 VLF  1,179 ± 932  194 ± 124 
 LF  891 ± 815  130 ± 106 
 HF  627 ± 811  273 ± 225 
 LF/HF  1.789 ± 0.852  0.578 ± 0.544 
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demonstrated for all measures, but only the power-law model was able to discrimi-
nate between the groups (Tibby et al.  2003 ). 

 In 29 patients with class I to class IIIa heart failure (and consecutive lower EFs) 
and ten healthy subjects, TNF levels increased and HRV decreased in correlation 
with heart failure. TNF levels and HRV were inversely correlated showing statisti-
cally robustness using log-linear and nonparametric tests. In a multiple linear 
regression analysis, only TNF and noradrenaline levels contributed signifi cantly to 
the variation observed in HRV, where TNF was a stronger independent predictor 
(Malave et al.  2003 ). 

 In 39 septic patients, HRV analysis was used at admission to the ICU. Eleven 
patients developed MODS with a mortality of 63 %, 28 did not develop MODS 
(mortality 0 %). Patients who developed MODS had a signifi cant lower HRV (LF, 
rMSSD). LF was the best predictor for MODS with a cutoff point of 18 ms (Pontet 
et al.  2003 ). 

 Zwiener compared the data of 14 patients with brain injuries or damages with the 
data of healthy subjects from a previous study by using an algorithm that analyzed 
the patterns of coherence between respiratory movements, heat rate fl uctuations, 
and arterial blood pressure fl uctuations. The patterns of coherence were almost the 
same, but there was a signifi cantly reduced frequency of HRF patterns in patients. 
In patients with fatal outcome, the number of pattern incidence was signifi cantly 
lower than in patients with a favorable outcome (Zwiener et al.  2003 ). 

 Sample asymmetry was used retrospectively to analyze 158 infants admitted 
consecutively to a neonatal intensive care unit. Fifty of them had in all 75 episodes 
of SIRS or sepsis. An ECG time series of 4,096 (approximately 20–30 min) was 
used. Three data sets were analyzed: before sepsis, immediately before sepsis, and 
after resolved sepsis. Sample asymmetry is an algorithm to analyze the asymme-
try of the time domain of a time series. The sample asymmetry value increased 
gradually days before sepsis and decreased after a sepsis period (Kovatchev et al. 
 2003 ). 

0 500 1,000

a b c

1,500 2,000 ms 0 500 1,000 1,500 2,000 ms 0 500 1,000 1,500 2,000 ms

  Fig. 10.1    Three typical patients with a non-septic MODS ( b ), a septic MODS ( c ), and a control ( a ) 
(Heinroth et al. ( 1999 ))       
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 In a prospective study, the hypothesis was tested that use of HRV in addition to 
standard laboratory tests is feasible to identify neonatal children with sepsis at the 
beginning of treatment. Six hundred and seventy-eight consecutive infants were 
monitored. One hundred and forty-nine episodes of sepsis (137 with positive blood 
cultures) were observed. HRC index was highly signifi cant associated with sepsis; 
the order of magnitude was nearly the same as all other laboratory tests. If included 
in a model, the accuracy of diagnosis increased (Griffi n et al.  2005a ,  b ). 

 Schmidt followed for 28 days 90 consecutively admitted score-defi ned MODS 
patients in a mono-center study. He investigated the correlation between different 
HRV parameters and mortality. lnVLF predicted mortality best and was comparable 
to the predictive value of the APACHE II Score. The sedated patients showed no 
signifi cant differences from the non-sedated patients in autonomic function, neither 
in a treatment with catecholamines. Attenuation of HRV values was similar in all 
age groups (Schmidt et al.  2005 ) (Table  10.4 ).

   In a prospective trial, 2,088 trauma patients were tested with HRV. The results 
and other data (age, ISS, AISA Head Score, total transfusion requirements) were 
included in a multivariate analysis (logistic regression). 63.5 % of patients showed 
HRV deviations during their ICU stay. This was interpreted as uncoupling phenom-
ena. There was a big difference between patients with “uncoupling phenomena” and 
others. The authors used an algorithm delivering the standard deviations of 5-min 
periods termed “short-term heart rate volatility,” which seems to be similar to a 
trend analysis of SDANN, in other words a two-dimensional analysis of 288 5-min 
periods. The authors conclude that “uncoupling” is an independent predictor of 
death in trauma patients; it has a predictive window of 2–4 days and appears to 
increase in response to infl ammation, infection, and multiorgan failure. It predicts 
death within 24 h with a sensitivity of 70 % and a specifi city of 80 % (if age and 
injury severity score is incorporated) (Norris    et al.  2006 , probably partially pub-
lished in Morris et al.  2006 ). 

 A retrospective study compared patients with MODS with and without beta- 
blockers. They included 157 patients, 69 of the with beta-blocker treatment, and 
took a 24-h ECG within the initial 48 h. Beta-blocker treatment was associated with 

   Table 10.4    HRV values of MODS patients   

 MODS patients ( n  = 85)  Normal values (Bigger et al.  1995 ) 

 SDNN  57.7 ± 30.7  141 ± 39 
 SDANN  51.2 ± 29.7  127 ± 35 
 pNN50  4.8 ± 8.4  9 ± 7 
 RMSSD  26.9 ± 26.6  27 ± 12 
 LF  129.3 ± 405.1  791 ± 563 
 HF  112.3 ± 267.3  229 ± 282 
 VLF  191.3 ± 661.1  1,782 ± 965 
 LF/HF  1.1 ± 0.9  4.61 ± 2.33 

  Modifi ed from Schmidt et al. ( 2005 )  
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a higher survival, especially if ischemic conditions were detected. HRV was less 
reduced in patients receiving beta-blockers (Hennen et al.  2008 ). 

 One hundred and sixty-eight trauma patients with penetrating and blunt trauma 
were monitored using short-term HRV. Patients with blunt trauma had a mortality 
of 24 %, those with penetrating trauma 19 %. In the analysis, data from surviving 
and deceased patients were compared. LF of the survivors remained unchanged 
until at least the third day after emergency room admission, whereas LF of non-
survivors increased after 12 and 24 h to nearly fi ve times normal and then declined 
to similar values as the survivors after 48 h. Survivors HF patterns were higher than 
normal, but HF of non-survivors was signifi cant higher than that of survivors. L/R 
was below normal for non-survivors, slightly higher for survivors (Colombo et al. 
 2008 ). 

 Ahmad og Seeley used a group of patients that frequently experience sepsis as 
therapy complication: bone marrow transplantation recipients. They monitored 
multiparameter HRV (continuous individualized multiorgan variability analysis, 
CIMVA) in average 12 days in 17 patients, 14 of them developing sepsis. Twelve of 
14 patients showed a 25 % or higher reduction of HRV in SDNN, RMSSD, SampEn, 
MSE, FFT, DFA, and wavelet analysis. Wavelet HRV showed a drop already 35 h 
before clinical symptoms of sepsis appeared. The three noninfected patients showed 
no difference. Interesting in this study is the focus on relative change instead of 
comparing with controls or using standard values (Ahmad    et al.  2009b ). The same 
group conducted another study with this patient group, using a composite measure 
of HRV. This study used a windowed analysis (5-min window size) and sophisti-
cated data reduction techniques based on Spearman correlation coeffi cient and ana-
lyzing change of the individual baseline (fi rst 24 h after admission). With this 
method, they identifi ed variability measures with the highest predictive value. In the 
end, they identifi ed 11 variability measures (SDNN, coeffi cient of variation, power 
law  Y -intercept, DFA, wavelet area under the curve, Shannon entropy, Plotkin–
Swarm average energy, fuzzy entropy, global correlation dimension, cardiac vagal 
index, and the largest Lyapunov exponent), which then were used to construct the 
composite measure system. The system was able of properly identifying 15 out of 
17 subjects, both those who did and those who did not develop sepsis (Bravi et al. 
 2012 ) (Fig.  10.2 ).

   Bradley and colleagues included not only ECG but also respiratory rate variabil-
ity (RRV, etCO 2 -waveforms) in a pilot study with 34 patients (Apache II Score 
22.8 ± 6.7). They reported very low HRV data loss (AF only 0.6 %) and were able to 
calculate continuous variability in 81 % of available ECG data (because of a conser-
vative approach whereby in case of missing data a whole 5-min period is removed) 
(Bradley et al.  2012 ). 

 The decrease in HRV observed in sepsis and MODS patients is most likely due 
to a mitigated heart rate regulation either by the rate-increasing sympathetic activ-
ity, the rate-decreasing vagal activity, or both (Werdan et al.  2009 ). Of importance 
is that HRV is comparatively little attenuated by sedation or catecholamines 
(Schmidt et al.  2005 ).  
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   Neonatal Sepsis 

 Many of the published studies on neonatal sepsis were done by one research group 
(Griffi n, Moorman, and colleagues). They developed their own proprietary mea-
sure, “heart rate characteristics.” In one of their studies, 30 pediatric patients with 
sepsis or septic shock were followed. Differences between shock and non-shock 
patients existed in LF (2.68 ± 0.24 vs. 3.37 ± 0.17), HF (2.18 ± 0.14 vs. 2.79 ± 0.23), 
and DFA (1.22 ± 0.06 vs. 1.00 ± 0.07). Recovery was associated with increases in LF 
and HF (Toweill et al.  2000 ). In 63 neonatal patients with sepsis or SIRS compared 
to 26 control patients, HRV analysis showed abnormal results up to 24 h before 
clinical deterioration (Griffi n and Moorman  2001 ). 

 The same group monitored 1,022 infants at two tertiary care centers, using stan-
dard deviation, sample asymmetry, and sample entropy. In 1,022 patients, 223 epi-
sodes of sepsis, 108 of urinary tract infections, and 48 deaths occurred. The group 
was able to distinguish between a high-risk and a low- risk group. Infants with HRV 
parameters associated with high risk had a fi ve- to sixfold risk of developing sepsis, 
UTI, or death, compared to the low-risk group (Griffi n et al.  2005a ,  b ). 
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  Fig. 10.2    Changes of different HRV parameters before onset of sepsis in 14 bone marrow trans-
plant patients (Ahmad et al. ( 2009a ,  b ), with permission)       

 

10 Intensive Care and Trauma



227

 As noted by Ahmad et al. ( 2009a ,  b ), one major fi nding of these studies is that 
HRV measurement (at least the group’s algorithm) independently complements 
information that is otherwise used to estimate the risk of a sepsis development. This 
is of special importance, because treatment of neonatal sepsis is possibly even more 
dependent on early antibiotics treatment. On the other hand, too generous use of 
antibiotics in patients who probably won’t develop sepsis has its own well-known 
problems (like resistance and adverse effects). There are some caveats to the use of 
HRC alone since, as Griffi n notes, not all abnormal readings in neonates predict 
pathological conditions. 

 The group around Griffi n developed yet another algorithm integrated in HRC, 
“sample asymmetry analysis” (SAA). It is based on shape changes of frequency 
histograms of the RR intervals and its dependency on periodic decelerations and 
reduced variability. SAA increased signifi cantly from its baseline as early as 4 days 
before clinical development of sepsis in a study including 158 infants. But it looks 
as if the variation between subjects might be even higher than for usual HRV indi-
ces, making it again diffi cult to use on the individual level (Kovatchev et al.  2003 ). 

 One problem is that heart rate signals in neonatals are basically non-stationary, 
and non-stationarity probably even increases when sepsis features appear (Cao 
 2004 ). This is a problem because nearly all HRV algorithms are based on the 
assumption of stationarity. 

 To meet this problem, sample entropy has been used in neonatals by the same 
research group. SampEn decreased already 24 h before onset of sepsis, which was 
clearly visible in subgroups that developed sepsis several times during the course of 
the study. Unfortunately, SampEn was particularly sensitive to artifacts and 
decreased due to noise in the signal without any association to a later sepsis (Lake 
et al.  2002 ). 

  In conclusion , different linear and nonlinear HRV measures have been used on a 
few groups of septic patients and seem feasible for risk stratifi cation. There is rea-
sonable theoretical background for this but only limited clinical data. It is possibly 
a promising bedside method for early identifi cation of risk patients.   

   Trauma 

 Mechanical trauma can cause different injuries, again resulting in changes in HRV. 
Beyond the mechanisms, we fi nd head trauma with brain injury, shock due to blood 
loss, pathological conditions in gas exchange, and more. Shock is here best defi ned 
as an abnormal physiological state in which oxygen delivery is inadequate to meet 
normal metabolic needs or metabolic needs in stress. HRV has been mostly used to 
estimate prognosis, interestingly in some studies also in the pre-hospital setting, 
while other studies have focused on the fi rst 24 h after admission. 

 Grogan and collaborators included 1,316 trauma patients and calculated heart 
rate volatility by sampling 100–150 heart rate data per 5 min (a sample every 1–4 s). 
Out of this a standard deviation was calculated. This method has some similarities 
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to SDANN, but in SDANN every RR-distance is included, whereas in heart rate 
volatility, only a sample of all the RR-distances is included. Heart rate volatility was 
able to predict an unfavorable outcome as early as 24 h before death. The prediction 
accuracy in the prospective study had an area in the receiver operator curve of 
0.816, and the sensitivity and specifi city were 70.1 and 80 %, respectively (Grogan 
et al.  2004 ). 

 Heart rate data points were prospectively collected from 1,316 trauma ICU 
patients and linked to outcome data in another study. Here too a variant of SDANN 
was calculated (using a moving 1-h window approach, similar to Ahmad  2009b ), 
and logistic regression identifi ed ranges predictive of death. The study group was 
randomly divided, and the fi rst group was used to establish the model, the second to 
validate it. SDANN predicted death at low (0.1–0.9 bpm) and survival at high (1.8–
2.6 bpm) ranges, as early as 12 h (ROC = 0.67) (Norris et al.  2005 ). 

 Seventy-fi ve patients with trauma requiring pre-hospital helicopter transport 
were assessed with short-term HRV. Pre-hospital SDNN predicted patients with 
base excess ≤ −6, those defi ned as seriously injured and benefi ting from trauma 
center care, as well as patients requiring a lifesaving procedure in the operating 
room (with an accuracy of 76 % for predicting a lifesaving intervention in the oper-
ating room). SDNN was far better for prediction than pre-hospital trauma triage 
criteria and pre-hospital en route vital signs including Glasgow Coma Scale and 
paramedic judgement (King et al.  2009 ). A similar study was conducted on trauma 
patients without signifi cant head injury requiring helicopter transport. These were 
identifi ed from a retrospective research database. An equal number, unmatched 
sample of patients who lived, were compared with those who died ( n  = 15 per 
group), all patients having hemorrhagic shock but no brain damage. Age, sex, 
Glasgow Coma Scale score (GCS), blood pressure, pulse pressure, pulse, intubation 
rate, SpO 2 , mechanism of injury, transport time, and time of death after admission 
were recorded. R-waves from the fi rst available 2 min of usable data were detected 
from normal electrocardiograms, and heart rate variability was assessed. Non- 
survivors had lower normalized LFnu (42 ± 6 vs. 62 ± 4), higher HFnu (42 ± 3 vs. 
32 ± 3), and higher HF/LF ratio (144 ± 30 vs. 62 ± 11) (Cooke et al.  2006 ). 

 An important prospective observational trial at a Level I Trauma Center was 
performed in 243 healthy student volunteers and 257 trauma patients, the latter 
receiving CT scans of the head at arrival. SDNN and RMSSD were obtained by a 
short-term HRV of 5 min. A head CT scan was considered as pathological if there 
were abnormalities in the parenchyma (diffuse axonal injury or contusion), vascu-
lature (intraparenchymal, subdural, or epidural hemorrhage), and/or structural or 
bony components (fractures of the face or cranium). In volunteers, SDNN was 
73 ± 15, CT-negative patients without sedation had 42 ± 22 (with sedation 31 ± 19). 
Patients with pathological CT founds had 28 ± 17 without sedation, 12 ± 8 with it. 
RMSSD differences were similar. For both SDNN5 and RMSSD5, in each category, 
there was a wide overlap in the range of values and strong inverse correlations with 
heart rate. Using multiple logistic regression in a subset with no missing data, an 
index was derived from ln(SDNN) adjusted for six confounding factors. With a 
negative predictive value held constant at 0.90, compared with ln(SDNN) alone, the 
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stepwise addition of heart rate, sedation, age, gender, and blood pressure progres-
sively improved the specifi city of the HRV index from 0.56 to 0.77, positive predic-
tive value from 0.55 to 0.68, and effi ciency from 0.68 to 0.80. This index was then 
normalized (0–100 scale) for ease of interpretation (Proctor et al.  2007 ). 

 All this studies look promising. Interesting is that 2–5 min HRV, partially with 
algorithms that can be used in diffi cult conditions, are able to provide additional 
information about the severity of trauma. HRV alone or in combination with estab-
lished trauma scores might help clinicians to decide on the right priorities for indi-
vidual trauma patients and could be used as one further instrument to anticipate 
complications.     
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                      Brain Damage 

 Any major brain injury can have consequences for brain control of ANS. A wide 
variety of changes in the ECG is seen in the context of neurological disease. Two 
major categories of change are regularly noted: arrhythmias and repolarization 
changes (Samuels  2007 ). The presence of altered HRV in patients with brain injury 
was reported as early as 1965 (Valbona et al.  1965 ). ANS control of the brain is 
impaired proportional to the damage itself (Goldstein et al.  1996 ). Increased intra-
cranial pressure (ICP) >30 mmHg or decreased cerebral perfusion can be associated 
with autonomic dysfunction (Goldstein et al.  1996 ; Biswas et al.  2000 ), at least in 
children. Another early study tested the variability of heart rate in ten patients with 
neurologic defi cits with acute onset. The variability decreased quickly if the intra-
cranial pressure rose. The rate of recovery of the variability refl ected the neurologic 
state better than a decreased ICP (Lowensohn et al.  1977 ). Another early study 
tested six ICU patients, four of them later with brain death, two in vegetative state, 
and described particular HRV patterns (Lacquaniti et al.  1993 ). 

 Winchell conducted a one-center study that included all patients with severe 
brain injury at admittance defi ned as Glasgow Coma Scale of 4 or 5 with a short- 
term HRV measurement of 5 min. They included also CPP and ICP data. The study 
focused on general low HRV (TP) and abnormalities of LF/HF (in both directions). 
Eighty trauma patients met the criteria and had feasible HRV measurements. Overall 
mortality was 29 %, most of it early and primarily caused by the brain injury. Low 
HRV (defi ned as being under the fi fth or over the 95th percentile for age-matched 
and diagnosis-matched patients) was associated with a relative mortality risk of 7.7 
and predicted 80 % of acute deaths. High HF/LF ratio was not associated with unfa-
vorable outcome; low HF/LF however was associated with better outcome (Winchell 
and Hoyt  1997 ). 

 In 24 brain-injured patients, neurological recovery and survival was associated 
with low-frequency bands in power spectra whereas brain-dead patients showed 
decreased low-frequency heart rate power. This phenomenon was discussed as 
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direct evidence for cardiovascular and autonomic uncoupling in case of acute brain 
injury and completes uncoupling in case of brain death (Goldstein    et al.  1998a ). 

 One hundred and thirty-fi ve critically ill children were analyzed with the help of 
HRV and different pediatric scores. Lower LF and HF correlated signifi cant with 
score systems and outcome (Goldstein et al.  1998a ,  b ). 

 In 15 critically ill children and 4 controls, Holter ECGs were taken and frequency- 
domain values calculated. There was no linear correlation between LF/HF and ICP 
but a signifi cant association if the ICP was >30 or the CPP >40 mmHg. GCS cor-
related with LF/HF. Patients who progressed to death had a markedly lower LF/HF 
with a signifi cant decrease the fi rst 4 h of hospitalization (Biswas et al.  2000 ). 

 Twenty-nine consecutive neurosurgical patients at an ICU with a Glasgow Coma 
Scale score <13 were investigated with help of a 60-min short-term HRV. Reductions 
in TP of those who subsequently died relative to those who survived were observed. 
This was also signifi cant for VLF and LF but not HF. Blood pressure variability did 
not differ between groups (Haji-Michael et al.  2000 ). 

 In ten patients with a brain-death diagnosis, HRV was measured. BRS was esti-
mated from the spontaneous fl uctuations of the systolic blood pressure and the pulse 
interval. A dramatic reduction of the global spectral power (44.919 ± 31511 vs. 
3.204 ± 1.469 ms 2    ) was observed (Baillard et al.  2002 ). In 11 patients BRS and HRV 
were obtained prior to and after brain death. VLF decreased signifi cantly and the 
respiratory peak at 0.1 Hz dropped, which was interpreted as a damage of the baro-
refl ex loop. BRS was nearly comparable with normal subjects before brain death 
but with highly dispersed values. After brain death, BRS disappeared nearly com-
pletely (Conci et al.  2001 ). 

 In 12 patients HRV was obtained 6 h prior and 6 h after brain death. TP began to 
decrease before brain death, and autonomic activity ceased after brain death. The 
authors concluded that HRV may be a very sensitive but less specifi c method to 
diagnose brain death (Rapenne et al.  2000 ). 

 Twenty patients with severe head trauma underwent 24-h Holter ECG 1 day after 
trauma and 48 h after withdrawal of sedative drugs. Both time-domain and 
frequency- domain values were calculated. Patients with fatal outcome were com-
pared with survivors; survivors’ data were analyzed regarding good or bad neuro-
logic outcome. The six patients with fatal outcome had higher global HRV and 
sympathetic tone. During the awakening period, global HRV and the parasympa-
thetic tone were signifi cantly lower in the patients with worse neurologic outcome 
(Rapenne et al.  2001 ). 

 Baillard conducted a prospective, observational study with ten patients with 
a diagnosis of acute and irreversible brain injury but without brain death at the 
time of admission in the intensive care unit. Patients were intubated endotracheally 
and mechanically ventilated at a respiratory frequency of 12/min. They measured 
heart rate, arterial blood pressure, and heart rate variability in time- and frequency- 
domain method, which included calculation of the instant center frequency of 
spectrum. Brain death was associated with tachycardia, dramatic reduction of TP 
(from 44919 ± 31511 to 3204 ± 1469   ), and LF/HF (from 1.01 ± 0.01 to 0.14 ± 0.05) 
(Baillard et al.  2002 ) (Figs.  11.1  and  11.2 ).
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    Rapenne included 20 patients with head trauma and GCS <9 at inclusion and 
took a 24-h ECG 1 day after trauma and 48 h after withdrawal of sedative drugs. 
HRV and HF of patients who later died were signifi cantly higher (Rapenne et al. 
 2001 ). This fi ts pre-hospital data where Cooke observed lower LF, higher HF, and 
consecutively higher HF/LF ratio in patients who died later, but GCS differences 
had more signifi cance in prediction as HRV abnormalities (Cooke et al.  2006 ). 

 Sixteen subjects after brain injury with or without dysautonomia and 16 age- 
matched controls were examined. In the traumatic brain injury group, subjects with 
and without dysautonomia showed HRV differences compared to controls. HRV of 
the disautonomic group showed evidence of uncoupling between heart and vegeta-
tive balance (Bagley  2006 ). 
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  Fig. 11.1    Typical changes of spectral power during brain death (occurring at this patient at 
45 min). LF disappears nearly completely and TP decreases dramatically (Baillard et al.  2002 )       
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  Fig. 11.2    Changes of HF during an apnea test of a typical patient. LF is already diminished, low 
HF from before (ventilator-treated patient with a RF of 12) is even more diminished (Baillard et al. 
( 2002 ), with permission   )       
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 For their study, Morris and colleagues had to screen 4,116 trauma ICU admis-
sions to fi nd 1,871 patients with suffi cient physiologic, laboratory, pharmacy, and 
demographic data for analysis, 75 of them failing corticotropin-stimulation testing, 
defi ned as adrenal insuffi ciency (AI). A variant of SDANN (short-term HR volatil-
ity) was used. HRV was different between patients with and without AI. It was simi-
lar in AI survivors and non-survivors before steroid treatment but increased 
substantially in survivors after steroid administration and did not increase in non- 
survivors unresponsive to steroids (Morris et al.  2007 ). 

 Mowery investigated 145 trauma patients with head injury having simultaneous 
HRV and ICP monitoring with a Camino monitor. ICP and heart rate (HR) data were 
matched and divided into 5-min intervals. In each interval, the median ICP and 
SDANN were calculated (note that this was not in accordance with usual SDANN, 
it differs from that used in traditional HRV analysis because precise instantaneous 
HR is not acquired at every beat). Cardiac uncoupling was defi ned as an interval 
with this modifi ed SDANN approach, between 0.3 and 0.6 bpm. Cardiac uncou-
pling was compared between ICP categories using the Wilcoxon Rank-Sum test, 
and logistic regression was used to assess the continuous relationship between ICP 
and risk of uncoupling. Cardiac uncoupling increased as ICP increased with clear 
trend and seemed to precede increases in ICP, at least when long (24 h) time periods 
were considered (Mowery et al.  2008 ). 

 By now it has been clearly established that HRV- and HRV-related measures 
decrease or change with increasing brain damage. This can be interpreted as the con-
sequence of a generalized autonomic storm, which occurs as a result of a life- 
threatening stressor, with both sympathetic and parasympathetic effects (Samuels  2007 ). 
The approach of Mowery et al. ( 2008 ) is interesting, because their system works auto-
matically and generates data without manual interpretation. This should not discour-
age ICUs using short-term HRV. The patient group with traumatic brain damage is 
younger and frequently has no heart problems, which makes uptake and interpretation 
of HRV data problematic. It is obviously too early for clear recommendations, but 
there are many good arguments to use HRV as one prognostic tool among others in this 
patient group. I agree with Ryan et al. ( 2011 ) about challenges, but at least solutions 
for technological challenges are on their way, for example, multiple wireless vital 
signs monitoring technologies. More important are guidelines for the monitoring and 
assessment of trauma and head injury patients using HRV and the development of 
normal values and thresholds for treatment, similar to other areas of clinical HRV use.  

   Neurogenic Cardiomyopathy 

 Aneurysmal subarachnoid hemorrhage (SAH) is associated with many special, often 
interrelated systemic complications that impact on morbidity and mortality. 
Cardiopulmonary complications are common, but the most intriguing complication is 
the concomitant injury to the heart (Lee et al.  2006 ). Approximately 20–30 % of 
patients with SAH manifest a secondary cardiomyopathy and/or regional wall motion 
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abnormality, which is usually reversible in the absence of underlying obstructive 
CAD (Bybee and Prasad  2008 ). This entity has been referred to as neurocardiogenic 
stunning and “neurogenic stress cardiomyopathy” (NSC). Cardiac injury may be 
immediately evident or develop within hours after aneurysmal rupture. Some patients 
may have minor increases in cardiac enzymes and remain asymptomatic, whereas in 
others overt cardiac shock emerges. Approximately 10 % of patients develop pulmo-
nary edema (Friedman et al.  2003 ). SAH-induced heart syndromes can be confused 
with MI and cause a delay in appropriate treatment. An intriguing syndrome that 
overlaps substantially with SAH-related cardiac dysfunction is takotsubo cardiomy-
opathy. This syndrome is characterized by transient LV dysfunction that produces a 
distinctive confi guration during systole on the ventriculogram that resembles a 
Japanese octopus trap (Lee et al.  2006 ). There is clear evidence that cardiac lesions 
can be produced as the result of nervous system disease (Samuels  2007 ). 

 There have not been many studies looking at HRV changes in neurogenic cardio-
myopathy. Kawahara studied 42 patients with SAH and 42 healthy controls, the 
patients on admission and 30 days or more after admission with Holter monitoring. 
Thirty-nine of the 42 patients (i.e., 93 %) with acute SAH showed ECG abnormali-
ties, especially prolongation of QTc, presence of U wave, and ST depression. In the 
chronic phase, 16 of the 42 patients (38 %) had abnormalities. LF was signifi cantly 
higher in the chronic phase than in the acute phase, also compared to the controls. 
HF was higher in the acute phase. LF/HF was signifi cantly lower in the acute phase 
than in the chronic phase and in the control group. No signifi cant differences in 
these parameters were found between the chronic phase data and the control group 
(Kawahara et al.  2003 ). 

   Generalized Brain Damage, Impaired Consciousness, and HRV 

 Ultimately, brain damage is a consequence of ischemia. Most frequent causes for 
brain damage are stroke, trauma, or tumor. Some aspects of brain damage and its 
relation to HRV are discussed in this chapter (stroke), other important aspects in the 
previous chapter about intensive care. In this paragraph, we are interested in the 
relation between consciousness and HRV including prognostic aspects. 

 As Riganello et al. ( 2012 ) noted, there is emerging evidence that the autonomic 
system can also mediate in patterns of brain activation. Thus, measures of HRV 
might be interesting for description and decisions in patients with severe disorders 
of consciousness. 

 Subjects in a vegetative state, today also referred to as unresponsive wakefulness 
syndrome after severe brain injury, are, by defi nition, disconnected from the envi-
ronment, with no indication of awareness, voluntary or otherwise, purposeful move-
ment, or communication (Riganello et al.  2012 ). As noted in earlier chapters, higher 
brain regions are connected with central elements of the autonomic nervous system. 
The previous chapter detailed how severe brain damage has profound effects on 
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HRV, sometimes eliminating it almost entirely. But what is the relation between 
consciousness and HRV itself? 

 Our current conception of the brain is that of a precise structure of interconnected 
modules and with parallel processing. We know that these modules can to some 
extent work autonomously. For instance, circadian synchronization is dependent on 
the perception of light. Extensive experiments whereby subjects were isolated from 
this normal perception have shown that the human brain has its own time control 
with a period slightly longer than 24 h. This system is dominated by a specifi c center 
in the brain. The American biologist Curt Richter spent several decades working to 
identify this center, damaging countless brain regions and connections in animals. 
Finally, the suprachiasmatic nucleus, a tiny neuron network situated before the hypo-
thalamus, was identifi ed as the master clock. But at the same time it was discovered 
that every brain module isolated from the others had its own autonomic circadian 
rhythm. In fact, even every (brain) cell develops its own rhythm if it is isolated. 

 One central idea of consciousness is based on the connections between brain 
modules and their synchronization. If this synchronization fails, consciousness dis-
appears. It is important to remember that consciousness is not a Boolean condition, 
where we either are “on” or “off.” Between complete consciousness and complete 
unconsciousness, many intermediate states can be observed. 

 In subjects with severe brain damage in a vegetative state, interaction with near 
relatives, but not with other persons, can provoke changes in LFnu (Dolce et al. 
 2008 ). Gutiérrez assessed responses to auditory stimulation with emotional content 
by HRV in a case series of patients and found a pattern of changes induced by audi-
tory stimulation in some patients (decreased heart rate, increased HRV, decrease 
power in the low, and increased power in high frequencies) consistent with increased 
cardiovagal stimulation. Both time- and frequency-domain changes were more pro-
nounced during affective than during non-affective auditory stimulation (Gutiérrez 
et al.  2010 ). Most of the studies in this area have been done by the group around 
Riganello and included only a few patients (Riganello et al.  2012 ). 

 HRV might be used to investigate whether and how patients in the vegetative 
state perceive external stimuli. Based on the possibility of HRV to monitor sympa-
thetic activation as a surrogate of general arousal, HRV might be a useful part of a 
test battery for this patient group, for example, similarly to the test battery recom-
mended for autonomous neuropathy. Further investigations are required before 
more general conclusions can be drawn.   

   Stroke 

   Introduction 

 Stroke is a major cause of mortality and a leading cause of adult disability in many 
countries. Main causes for stroke are ischemic disease or acute bleeding in the 
brain, the fi rst responsible for more than 80 % of strokes. The incidence of stroke 
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increases with age. Many of the arterial and cardiac disorders underlying these 
 diseases are preventable; the morbidity and mortality have in fact been diminished 
the recent years, possibly due to increased primary and secondary prevention. 

 Cerebral ischemia occurs if a reduction of cerebral blood fl ow lasts longer than a 
few seconds. First – reversible – symptoms happen already after 10 s; if they are 
more pronounced, we talk about transient ischemic attack (TIA), which today is 
considered as an alerting symptom indicating increased risk for stroke and a need 
for a clinical workup. Stroke is usually associated not with general but rather with 
focal ischemia or infarction caused by thrombosis of cerebral vessels themselves or 
by emboli from proximal arterial sources or the heart. Cerebral hemorrhage pro-
duces similar neurologic symptoms to ischemic changes by producing a mass effect 
on neural structures and by the toxic effects of blood itself. 

 Increased probability for stroke is found in patients with a family history of 
stroke, advanced age, diabetes mellitus, hypertension, tobacco smoking, ele-
vated blood cholesterol levels, and other risk factors for atherosclerosis. Several 
cardiac conditions predispose for stroke, particularly atrial fi brillation and recent 
myocardial infarction. Since the probability of stroke is increased in several 
conditions known to be related to abnormal HRV fi ndings, it is not surprising 
that HRV has been used to evaluate patients at risk for stroke or after stroke. 
Many of the studies focused on general cardiovascular morbidity and mortality, 
including stroke, are summarized in the cardiology chapter. Some of the patho-
physiological phenomena are similar to the symptoms discussed in the neuro-
genic cardiomyopathy chapter. Most studies have been conducted under and 
after stroke, in both cases with an interest in the pathophysiological changes and 
in the possibility of stratifying patients in risk groups or of evaluating rehabilita-
tion potential.  

   Acute Stroke 

 ECG changes frequently in association to stroke. In a series of 100 consecutive 
stroke patients already published in 1977, 90 % of the subjects studied showed 
abnormalities on the ECG compared with 50 % of a control population of 100 
patients admitted for carcinoma of the colon (Dimant and Grob  1977 ), which was 
also shown by Orlandi et al. ( 2000 ). Confl icting results, however, have been 
 presented in patients in the acute poststroke phase. 

 Frequency-domain values in sleeping patients after acute stroke showed an 
increase in VLF and a decrease in HF (Giubilei et al.  1998 ). In another study, spec-
tral power and SDNN were reduced both in the initial phase and in a 6-month fol-
low- up period whereas complexity measures (among them, ApEn and detrended 
fl uctuation analysis for fractal correlation properties) remained similar compared to 
a control group (Korpelainen et al.  1999 ). 

 Forty-four patients were investigated within 10 h of the onset of stroke symp-
toms; Holter monitoring was performed after admission in the hospital and 
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thereafter on the third and seventh day. 70.5 % of patients had arrhythmia at admis-
sion. HRV on admission and after 3 days was signifi cantly different in patients with 
stroke plus arrhythmia, compared to patients with stroke alone and to controls. 
pNN50 and SDNN were reduced and LF/HF increased (around 6!) in the fi rst group. 
No further differences were discovered on the seventh day. LF and HF were not 
reported separately (Orlandi et al.  2000 ). 

 HRV and plasma NE levels were studied in six patients with medullary and eight 
patients with non-medullary brain stem stroke. HF and LF were smaller in the acute 
phase of patients with medullary strokes; LF and HF of patients without medullary 
stroke did not differ from controls. On the contrary, plasma levels of NE of patients 
with non-medullary stroke were higher than in controls (Meglic et al.  2001 ).  

   Poststroke 

 The already mentioned study of Korpelainen showed stable HRV reductions in 
spectral power and SDNN initially and after 6 months without abnormalities in 
nonlinear indices (Korpelainen et al.  1999 ). Ischemic lesions in the insula had sig-
nifi cantly lower power spectrum analysis of HRV (myocardial necrosis ruled out by 
echocardiography and CK-MB measurements), suggesting that cardiac autonomic 
tone may be regulated by insula and that the patients are more prone to cardiac 
complications such as arrhythmias and sudden death due to autonomic imbalance 
(Tokgözoglu et al.  1999 ). 

 In contrast to Korpelainen’s results, 25 patients with cerebral infarction in an age 
below 50 had a similar poststroke HRV taken 9 months after the event compared to 
age-matched healthy controls (Kouakam et al.  2000 ). Another study compared 86 
patients after stroke with 86 matched healthy controls. Stroke patients were included 
4–12 weeks after the initial symptoms, and HRV was obtained by Holter monitor-
ing. Patients had a lower HRV than healthy controls (SDNN 96 ± 27 vs. 136 ± 31, TP 
1,962 ± 1,338 vs. 3,968 ± 2,857) (Lakusic et al.  2003 ). 

 Decrease in all time- and frequency-domain variables and higher LF/HF 
ratios were confi rmed in a study focusing on insula damages on the right hemi-
sphere using 24-h Holter monitoring. It was possible to show that patients with 
a corresponding lesion in the right insula had even more decreased HRV vari-
ables which correlated with the amount of arrhythmias like ventricular couplets, 
non-sustained ventricular tachycardia, and supraventricular tachyarrhythmia 
(Colivicchi et al.  2004 ). This is in accordance to the results of an atrial fi brillation 
study that showed changed vegetative balances before the onset of paroxysmal 
fi brillation (Lombardi et al.  2004 ). 

 McLaren assessed 76 stroke patients and compared them with 70 age-matched 
controls on average 9 months after stroke. They used several methods, among  others 
active stand, isometric exercise, Valsalva maneuver, cold pressor, and forced respi-
ration tests. HRV was obtained with Holter monitoring. TP and LF, but not HF, were 
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reduced in stroke patients. Additionally, a trend for impaired HF ( P  = 0.111) in 
stroke patients was observed (McLaren et al.  2005 ). 

 Dütsch monitored HRV (with controlled breathing) in 15 patients after right- 
sided stroke, in 13 patients after left-sided stroke (both groups 18–43 months after 
lacunar stroke), and in 21 healthy controls at rest. Patients after right-sided stroke 
showed a trend toward elevated LF compared with patients after left-sided stroke 
and controls. HF was reduced in both patient groups (Dütsch et al.  2007 ). 

 A retrospective study analyzed 89 patients with an acute ischemic stroke or tran-
sient ischemic attack (TIA) who were evaluated with Holter monitoring. All patients 
underwent continuous ambulatory Holter monitoring within 15–30 days after the 
clinical events. The SDNN of the patients (103.52 ± 36.26) was signifi cantly lower 
than that of the controls (121.44 ± 40.11), also SDANN (88.92 ± 34.49 vs. 
109.96 ± 37.88). VLF, LF, HF, LF/HF, rMSSD, and pNN50 did not differ between 
patients and controls (Kwon et al.  2008 ).  

   HRV and Stroke Prognosis 

 A contradictory report included 84 patients with an acute fi rst-ever ischemic stroke 
who were studied using 24-h Holter ECG and followed up for 7 years. Thirty-three 
patients died during this period. A power-law slope  β  < −1.5 refl ecting an altered 
distribution of spectral characteristics over ultra and very low-frequency bands 
was the best univariate predictor of death with a hazard ratio of 4.5. Also short-
term HR variability α was a predictor, but in multivariate analysis after adjust-
ments for age, power-law slope  β  stayed the only independent predictor with a 
hazard ration of 3.8, whereas conventional HRV measures had no prognostic 
power (Mäkikallio et al.  2004 ). 

 Eighty-fi ve consecutive fi rst-ever stroke survivors underwent 24-h Holter moni-
toring before the beginning of a 60-day rehabilitation program. Outcome after the 
program and time-domain values were included in the analysis. After the program, 
an unfavorable functional outcome with dependency (Barthel Index score of <75) 
was found in 44.7 % of patients. Among others, lower SDNN was an independent 
predictor of an unfavorable functional outcome (104.4 ± 39.0 vs. 127.7 ± 39.1). 
SDNN < 100 was a possible cutoff value. 57.9 % of patients did not recover over a 
Barthel Index of 75. SDANN also showed signifi cant differences but not RMSSD 
or pNN50 (Bassi et al.  2007 ). The same research group enrolled 126 stroke patients 
using Holter monitoring before a rehabilitation program. An unfavorable functional 
outcome with dependency (Barthel Index score of <75) was found to be associated 
with SDNN < 100 in men but not in women (Bassi et al.  2010 ). 

 Two smaller studies used short-term recordings in stroke patients. Thirty-nine 
patients were included within the fi rst 48 h after arrival at the hospital. There was a 
signifi cant linear correlation between severity of neurological defi cits and SDNN. 
Heart rate variability was also positively associated with aerobic ability 2 weeks 
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after stroke, and lower HRV parameters correlated also with motor performance 
3 months later. Interpreting this study is not easy because statistical associations, 
but not HRV values, are reported (Katz-Leurer and Shochina  2005 ). The same 
group included 64 patients, again within the fi rst 48 h after a stroke, using 10–12 min 
short-term recordings. HF was reduced, but LF was equal to parameters of healthy 
persons from other studies. HRV parameters did not predict outcome in this study 
(Katz-Leurer and Shochina  2007 ).  

   Summary 

 Stroke, especially when it involves the insula, leads to changes in HRV, but the 
published studies showed differing patterns. HRV as predictive value for overall 
outcome as well as rehabilitation outcome is interesting, but surprising few studies 
have been conducted in a suffi ciently large patient group.      
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                      Introduction 

 The somatosensory system processes four broadly distinct sensory modalities:    tac-
tile, proprioceptive, thermal sensations, and pain. Interspersed between the delivery 
of a noxious stimulus and the subjective dimension of pain is a series of complex 
chemical and electrical events including local positive feed forward and negative 
feedback circuits, neuronal networks, and the involvement of several brain modules, 
including those of the vegetative nervous system. Pain stimulates different physio-
logical responses like increased breathing, heart rate, blood pressure, sweating, and 
general arousal. Pain is a multidimensional phenomenon being infl uenced and stim-
ulating different further body systems. 

 Pain is also a major medical problem. Most patients going to general practi-
tioners do this because of (acute or chronic) pain. The history of pain treatment 
efforts is as old as humanity, but only in the last 200 years major achievements 
beyond opium treatment have been made. Today, we are not able to imagine 
human life without local anesthesia at the dentist, general anesthesia for opera-
tions, epidurals in painful births, or pain treatment in cancer. Paradoxically, the 
burden of pain in the industrialized world seems rather to increase despite better 
treatment options. While cancer pain in more than 95 % of cases can be treated, 
if only existing recommendations are used properly, back pain, headaches, or 
fi bromyalgia have a major impact on the quality of life of a sizable part of the 
population. 

 HRV    has been used to evaluate pain physiology and also to gain insight in pain 
syndromes that still puzzle us today. The direction is similar to that in other clinical 
conditions. Can we understand? Can we identify patient subgroups? Do HRV 
parameters correlate with outcome and can they be used for prognosis?  

    Chapter 12   
 Pain 
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   Experimental Pain Models and Acute Pain 

 Experimental pain models have been used for decades and are well established by 
now. Standards have been described and substantial studies have been published. 
Models include tools as simple as cold water and the time period until the partici-
pant feels pain (pain threshold) and until the pain is unbearable (pain tolerance). 
Other methods include electrically induced pain, capsaicin (the substance in chilli) 
injections, heat, ischemia, and others. Pain models are a convenient approach to 
look at HRV changes. 

 Subjects undergoing cold pressure tests showed a small increase of normalized 
total power, decrease in HF, and increase in LF and VLF, all of them statistically not 
signifi cant Madan et al. ( 2005 ). Using the cold pressure test (here: 6 min cold water) 
in another study showed HRV decreases of LF and HF in healthy subjects (Wirch 
et al.  2006 ). 

 In a study focused on the gender effect of experimenters on subjective pain 
reports of healthy persons, a heat pain paradigm was used. A 30 × 30 mm aluminum 
contact electrode was applied on the right volar forearm. Subjects were instructed 
to let the thermode reach a painful temperature and let it maintain the temperature. 
It was possible to stop the test by the subject pushing a button. The pain test con-
sisted of 15 heat stimuli of 48° Celsius and a maximum duration of 12 s (the sub-
jects were not informed about the time limit). The interval between the pain stimuli 
was 2 min; the total duration of the experimental procedure was about 35 min per 
participant. During the stimuli, the participants rated their pain on pen-and-paper 
visual analogue scales. The group used spectral analysis with the LF/HF ratio. The 
LF/HF ratio in pain free intervals was about 1.25, during pain conditions about 1.75 
with a rather low distribution. In the article it is not specifi ed how they measured 
during the pain periods, e.g., if they calculated the frequency-domain values out of 
12 s pain or of the 15 accumulated pain periods (Aslaksen et al.  2007 ). 

 In another pain model, 13 subjects received subcutaneous or intramuscular injec-
tions of saline solutions. Regardless of whether the muscle pain was superfi cial or 
deep, LF/HF ratio increased (the mean ratio from 1.18 ± 0.26 at rest to 2.96 ± 0.49 
during pain) as did MSNA (Burton et al.  2009 ). 

 Appelhans used frequency-domain measures of HRV derived through spectral 
analysis. Fifty-nine participants provided ratings of pain intensity and unpleasant-
ness following exposure to 4 °C thermal pain stimulation and indicated their thresh-
olds for barely noticeable and moderate pain during three exposures to decreasing 
temperature. Greater low-frequency HRV was associated with lower ratings of 4 °C 
pain unpleasantness and higher thresholds for barely noticeable and moderate pain. 
High-frequency HRV was unrelated to measures of pain sensitivity (Appelhans and 
Luecken  2008 ). 

 Increased baroreceptor refl ex decreased pain sensitivity in two studies (Bruehl 
and Chung  2004 ; Duschek and Reyes del Paso  2007 ). 

 Cluster headache is in many respects a naturally existing pain model. It occurs 
frequently, is interrupted by pain free periods, and the pain has a high intensity. In 
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this regard it is relevant that no changes in HRV were observed in a group of cluster 
headache patients in pain states (van Vliet et al.  2006 ). 

 Several neuropathic pain forms are sympathetically maintained, for instance, 
nerve blocks blocking sympathetic inputs (but not sensory inputs) can diminish 
neuropathic pain. The periaqueductal gray is both involved in HRV processing and 
pain processing. In this context an interesting study showed that deep brain stimula-
tion in the PEG did alter HRV with increase of HF and consecutive decrease of LF/
HF, which again correlated with pain relief through stimulation (Pereira et al.  2010 ). 

 Induction of anesthesia with propofol in ten women undergoing laparoscopy led to 
reduction of TP, LF, and HF; maintenance with propofol in further reductions of TP 
and LF, but not HF. Placement of the laparoscopic trocar as acute pain incident lead to 
an increase in HF (Deutschman et al.  1994 ). Maximal surgical stimulation induced an 
increase in LF and LF/RF (respiratory frequency 0.06 Hz) (Schubert et al.  1997 ).  

   Irritable Bowel Syndrome 

 Irritable bowel syndrome (IBS, not to be confused with infl ammatory bowel syn-
drome) is defi ned as a functional bowel disorder in which abdominal pain is associ-
ated with defecation or a change in bowel habit with features of disordered defecation 
and distension. Three mainly interrelated factors are distinguished in the patho-
physiology of IBS:

•    Altered gut reactivity (motility and secretion) resulting in symptoms of diarrhea 
and/or constipation  

•   Gut hypersensitivity  
•   Dysregulation of the brain–gut axis (Mulak and Bonaz  2004 )    

 Irritable bowel syndrome is a common problem with an estimated prevalence 
between 10 and 20 % in the US and the Japanese population (Tori and Toda  2004 ). 
It affects females more often than males. Its natural history shows fl uctuations over 
time. In patients with IBS, prevalence of depression, anxiety, and other major psy-
chiatric disorders is high. There are considerable discussions about the resemblance 
between irritable bowel syndrome and pelvic pain (Matheis et al.  2007 ) and, in 
general, with fi bromyalgia-like symptoms. 

 IBS is of special interest for HRV issues due to the involvement of the vegetative 
nervous system. The function of the gastrointestinal system is modulated by exog-
enous (neural, hormonal) and endogenic (neural, hormonal, mediators) factors. 
Control is synchronized by coupling between the central nervous system and the 
enteric nervous system (ENS). The innervation of the gut is through two pathways, 
the vagal (and sacral) and the spinal (sympathetic). A control model involves four 
control levels (Fig.  12.1 ). Note that the ENS has been described to have a similar 
structure as the brain, consisting of sensory neurons, interneurons, and effector neu-
rons. It has autonomous activity depending on local factors but can be overridden by 
the vegetative nervous system and higher brain centers, respectively.
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   Irritable bowel syndrome might possibly begin due to changes in the CNS in the 
vegetative nervous system or due to local changes. It has been shown to be associ-
ated with autonomic dysfunction (cholinergic and adrenergic). Aggarwal showed 
that vagal dysfunction is particularly associated with a constipation subtype and 
patients with sympathetic dysfunction with a diarrheic subtype. The study included 
21 patients and assessed autonomic function (HRV, postural adjustment ratio), 
colon transit time, and psychological profi les (Aggarwal et al.  1994 ). Women with 
irritable bowel syndrome ( n  = 103) and without ( n  = 49) were explored with expira-
tory/inspiratory ratio, Valsalva, posture changes, cold pressure test, and spectral and 
time-domain HRV (24 h). Generally, there was little difference between the groups. 
A subgroup analysis of women with severe irritable bowel syndrome revealed dif-
ferences between the constipation-predominant group and the diarrhea- predominant 
group. The fi rst had lower HF than the latter (Heitkemper et al.  2001 ). Postprandial 
saliva cortisol concentration is increased in IBS patients with predominant diarrhea, 
but not in constipation-type IBS (Elsenbruch et al.  2001 ; Elsenbruch    and Orr  2001 ) 
(Fig.  12.2 ).

   In an initial study, 18 patients with IBS were compared with 36 controls. Patients 
with IBS had higher sympathetic values than controls, but no differences in para-
sympathetic activity (Karling et al.  1998 ). 

 In another pilot study, women with and without IBS were tested with HRV Holter 
monitoring in the mid-luteal phase. IBS patients had a lower vagal tone (lower HF) 
and a fl attened 24-h pattern of HRV, with lower levels of vagal tone during sleep 
(Heitkemper et al.  1998 ). 

 Thirty-fi ve patients and 18 healthy controls were tested in supine, standing, and 
deep breathing modes. In the supine position, VLF was higher than normal. Standing 
up, the controls had higher VLF and LF than patients, HF remained unchanged. 
Changing to the deep breathing mode, controls had more increase in HF and 
decrease in VLF, LF did not change, in contrast to IBS patients, where HF remained 
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Control level 4
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Control level 2
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  Fig. 12.1    Neural control of 
the gastrointestinal tract 
(Mulak and Bonaz ( 2004 ), 
with permission)       
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constant and LF increased and VLF was reduced. This was discussed as a reduced 
sympathetic reaction on orthostatic stress and diminished vagal response on deep 
breathing (Adeyemi et al.  1999 ). 

 LF was greater in IBS patients while awake; during REM sleep, there were no 
differences in HF in a sleep study with 15 patients and 15 controls (Orr et al.  2000 ). 

 Predominant diarrhea IBS patients showed an increase in LF/HF postprandial 
and a decrease in a postmeal period, which was different to controls and patients 
with constipation-type IBS. The latter also had a postprandial increase in saliva 
cortisol. There was a correlation between postprandial symptoms and the vagal 
response (Elsenbruch et al.  2001 ; Elsenbruch and Orr  2001 ). 

 Severe pain in 106 female IBS patients (and 41 controls without pain) was asso-
ciated with lower parasympathetic tone, but was higher in women with postprandial 
pain (Burr et al.  2000 ). 

 A study with 103 female patients with IBS and 49 female controls showed no or 
little differences in HRV between the groups. In a subgroup analysis with women 
with severe IBS symptoms, however, there were differences. Parasympathetic tone 
was lower and ANS balance higher in the constipation than in the diarrhea group 
(Heitkemper et al.  2001 ). 

 Postprandial mental stress in women with and without IBS was tested by a stressful 
mental test. HRV and cortisol were not different between the groups and cortisol was 
not elevated due to the test either (Elsenbruch et al.  2001 ; Elsenbruch and Orr  2001 ). 

Psychosocial factors
– Life stress
– Psychologic stress
– Coping
– Social support
– Psychiatric comordity

Outcome
– Medication
– MD visits
– Daily function
– Quality of life

Physiology
– Motility
– Sensation
– Inflammation
– Blood flow

Early life
– Genetics
– Environment

IBS
– Symptoms
 experience
– Behavior

CNS

ENS

  Fig. 12.2    Biopsychosocial model of IBS (Mulak and Bonaz  2004 )       
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 In a sleep study, patients were stratifi ed in patients with only lower abdominal 
symptoms and patients with both lower and upper abdominal symptoms (dyspep-
sia). HF was lower in IBS only patients compared to the other group and controls. 
LF/HF was higher during REM sleep in IBS only patients. IBS only patients had 
higher sympathetic dominance due to lower vagal activity during sleep (Thompson 
et al.  2002 ). 

 In a study targeting autonomic changes during sleep in women with IBS, partici-
pants were stratifi ed in patients with and without depressive symptoms. In addition 
to HRV, subjective sleep quality and symptom severity were obtained with stan-
dardized instruments. Depressive patients had more sleep complains than non- 
depressive patients and controls, and had more symptoms. There were no HRV 
differences between the groups (Robert et al.  2004 ). 

 HRV differences during rest and under a rectal balloon distension model were 
tested in IBS patients and controls with the goal to test sex differences. One-hundred 
and thirty IBS patients and 55 controls were used. Peak power ratio (PPR) and peak 
power high frequency (PPHF) were calculated as measures for sympathetic balance 
and parasympathetic response, respectively. Skin conductance tests were also per-
formed. IBS showed a larger skin conductance response than controls under the 
distension paradigm. They had a higher PPR and a lower PPHF than controls. Male 
IBS patients had higher conductance, PPR, and lower PPHF than controls (Tillisch 
et al.  2005 ). 

 HRV and MSNA were obtained before, under, and after a meal in male IBS 
patients and controls. Pre- and postprandial Valsalva tests, cold pressure test, and a 
deep breathing test were conducted and VAS for pain and nausea asked. During 
food intake there was no difference in blood pressure, heart rate, and MSNA, but 
LF/HF was higher in IBS. MSNA increase due to the pain test was higher in IBS 
than in controls. This was interpreted as reduced parasympathetic activity (van 
Orshoven et al.  2006 ). 

 Experimental pain in IBS patients and controls was caused by a standardized 
cold water immersion test (cold pressure pain, as mentioned above) on the forefoot. 
In healthy controls, heart rate increased more than in the IBS group when pain per-
ception was statistically controlled. IBS and healthy controls had opposite reactions 
on pain; IBS had increased parasympathetic and decreased sympathetic response 
(Tousignant-Lafl amme et al.  2006 ). 

 In a sleep study with IBS patients, those with diarrhea had lower parasympa-
thetic (REM and non-REM) and higher sympathetic dominance (only non-REM) 
than those with alternating patterns. Interestingly, lower pain correlated with sym-
pathetic dominance during sleep. The diarrhea patients were different to the patients 
with alternating but not with constipation pattern (Robert et al.  2006 ). 

 Ten patients with a mixed IBS pattern and ten healthy controls were compared 
by short-time HRV, deep breathing test, and data from Holter monitoring. In short- 
time HRV, all parameters were decreased in comparison to the control group 
(VLF468 vs. 906 ms 2 , LF 437 vs. 811 ms 2 , HF 271 vs. 854 ms 2 ). The same pattern 
occurred under the deep breathing test. In circadian HRV recordings, nuHF was 
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increased, nu LF decreased in all periods; generally the parasympathetic component 
was increased (Dobrek et al.  2006 ). 

 In a larger study, 45 constipation-predominant IBS patients were compared with 
64 diarrhea-predominant IBS patients, 56 with alternating pattern, and 50 healthy 
controls. Holter monitoring was accomplished. Severity of pain was asked retro-
spectively for this period. Among women with severe pain, those with constipation 
had lower HF and higher LF/HF than women with severe pain and diarrhea. In 
contrast, in women without severe pain the difference was smaller and in opposite 
direction (Cain et al.  2007 ). 

 If the colon is distended in IBS patients ( n  = 8 vs. 8), changes occur. HF decreases 
already after feeding in IBS, but not in healthy controls. LF/HF was higher in IBF, 
but decreased under colon distension. IBS patients demonstrated altered response of 
the ANS after feeding and distension compared to controls (Ng et al.  2007 ). 

 Women with IBS (distinguished after subgroups) compared to healthy controls 
( n  = 35 vs. 38) were tested on HRV differences during sleep in dependence of their 
sleep stadium. Generally, there was no difference between the groups. However, 
women with diarrhea-predominant IBS had increased parasympathetic modulation 
compared to constipation-predominant patients and patients with a mixed pattern 
(   Jarret et al.  2008 ). 

 In a recent study, 23 patients with IBS according to the Manning criteria and 30 
healthy controls were compared with the help of HRV and gastric myoelectric activ-
ity. IBS patients showed gastric dysrhythmia with lower LF and HF, increased LF/
HF ratio, and increased serum catecholamine concentrations. The authors discussed 
an increased sympathetic drive as reason for the gastric dysrhythmias (Mazur et al. 
 2007 ). 

  In conclusion  IBS does not produce a uniform picture. Most studies showed dif-
ferences between IBS patients and controls (but it is possible that there exist a pub-
lication bias for studies without differences). Early studies distinguished only 
between patients and controls, but there is some evidence for differences between 
the three classic subgroups in IBS, diarrhea predominant, constipation predominant, 
and alternating. Different paradigms and tests were used. Some studies showed 
increased sympathetic tone (e.g., Karling et al.  1998 ; Orr et al.  2000 ; Tillisch et al. 
 2005 ), one decreased (Adeyemi et al.  1999 ) but most no changes (e.g., Heitkemper 
et al.  1998 ; Burr et al.  2000 ; Heitkemper et al.  2001 ; Elsenbruch and Orr  2001 ; 
Elsenbruch et al.  2001 ; Robert et al.  2004 ; Van Orshoven et al.  2006 ; Tousignant- 
Lafl amme et al.  2006  and Cain et al.  2007 ). One study showed increase in vagal 
tone (Tousignant-Lafl amme et al.  2006 ), some studies no infl uence (Karling et al. 
 1998 ; Orr et al.  2000 ; Heitkemper et al.  2001 ; Elsenbruch and Orr  2001 ; Elsenbruch 
et al.  2001  and Robert et al.  2004 ), or decrease (Heitkemper et al.  1998 ; Adeyemi 
et al.  1999 ; Burr et al.  2000 ; Thompson et al.  2002 ; Tillisch et al.  2005 ; Van 
Orshoven et al.  2006 ; Cain et al.  2007 ). Physical stress (cold pressure) and pain was 
associated with bigger changes. Sex differences were rarely tested, most studies 
used female participants only, but the menstruation cycle was usually not controlled. 
Diarrhea subtype patients seem to have more differences than the other groups.  
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   Back Pain 

 As Gordon Waddell noted, back pain is a syndrome that is a twentieth century 
medical disaster (Waddell  1999 ). It can be related to simple muscle stiffness, 
which does not need any specifi c treatment, but it can also be based on spinal 
metastasis due to breast cancer, for instance. Prevalence of (uncomplicated) back 
pain is as high has 40 % in the adult population of an industrialized country. 
Many possible causes for nonspecifi c back pain have been presented and dis-
cussed, but the real origin is still not known. And although many today call it 
prolapse instead of back pain, also in this latter, radiology-based diagnosis, no 
conclusive evidence for causes exist. Using HRV on back pain is therefore diffi -
cult, because it affects a heterogeneous patient population with sometimes only 
pain itself in common. However, quality of life is probably more infl uenced by 
disability than pain intensity, and disability again correlates most with treatment 
approaches. Patients with similar pain intensity but higher disability are likely to 
be treated with operations and other invasive procedures, while patients with 
lower disability are not. 

 Heart rate variability measures were used on a group of 16 patients with back 
pain and sciatica for 3–12 months undergoing epidural treatment with a local anes-
thetic and a steroid. HRV and pain were measured before and after treatment. 
Patients with no signifi cant pain relief were used as controls. HRV was analyzed for 
a series of 500 normal RR intervals. Point correlate dimension (PD2) and ApEn 
were used as HRV algorithm. PD2 was signifi cantly increased after pain relief 
(Storella et al.  1999 ). 

 Gockel et al. ( 2008 ) enrolled 46 back pain patients. HRV was analyzed from 
short (5 min) ECG recordings during controlled and spontaneous quiet breathing. 
Deep breathing and active orthostatic tests were performed to exclude cardiac 
autonomic neuropathy. Gockel and colleagues used the Oswestry score, an estab-
lished instrument, to describe disability. HRV was signifi cantly lower among 
those with an Oswestry score ≥20 % than among those with a score <20 %, the 
highest difference in RMSSD (36.3 ± 8.4 vs. 56.5 ± 32.5). HRV did not differ to a 
high degree among the patients with a low (≤5) or high (>5) NRS pain score 
(Gockel et al.  2008 ). This is supported by results from a Taiwanese study. This is 
interesting because the authors there evaluated disability in a culturally different 
population but found similar results. They included 121 patients with chronic 
neck pain and performed cluster analysis to defi ne different patient groups. The 
second group included middle-to- older-aged women, and presented a higher 
level of pain, psychological distress, sleep disorder, and disability. Reduced heart 
rate variability was associated with subjective disability in these patients (Kang 
et al.  2012 ). 

 In a study, 51 participants were randomly allocated to a control group, treatment, 
and to sham treatment groups. A pulse watch was used to obtain data. A short-term 
HRV (5 min) was obtained before treatment and after treatment. LF/HF increased 
signifi cantly after treatment in the pain free group (Roy et al.  2009 ).  
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   Headaches 

   Migraine 

 Migraine is a primary episodic headache disorder characterized by various combi-
nations of neurological, gastrointestinal, and autonomic changes. Prevalence is 
about 15 % in women and 5 % in men. Formal diagnostic criteria were published in 
1988 by the International Headache Society. They recognize seven subtypes of 
migraine with two major varieties: migraine with aura (formerly classic migraine) 
and migraine without aura (formerly common migraine). Against all rumors, 
migraine is not personality dependent, not prevalent in special subgroups of the 
population (e.g., female teachers), not a female syndrome, and psychosomatic infl u-
ences are not dominant. Today it is rather considered as a classical somatic disease 
with a high genetic infl uence. Pathophysiological mechanisms have been proposed. 
Treatment recommendations exist and work acceptably in the majority of patients. 

 An early study identifi ed only minor differences in HRV between migraineurs 
and healthy controls and no differences between patients with migraine with and 
without aura (Pogacnik et al.  1993b ). 

 Tabata studied 27 patients with migraine in a headache-free period and 24 healthy 
controls with help of Holter monitoring and discovered signifi cant differences in 
circadian rhythm in SDNN, RMSSD, pNN50, and HF between the group with 
migraine and controls (Tabata et al.  2000 ). 

 Shechter investigated migraine patients, subdivided in groups with and without 
disabling headache, and used SDNN obtained by paced breathing. Disabled 
migraine cases had signifi cantly lower SDNN compared with nondisabled migraine 
cases and controls (Shechter et al.  2002 ). 

 Ebinger tested 70 children and adolescents with migraine during the headache- 
free period (and 81 healthy age-matched controls) with the help of heart rate vari-
ability during spontaneous breathing at rest and during metronomic breathing. He 
found a diminished mean heart frequency and at a breathing frequency of 6 breaths/
min, a lower LF/HF ratio (Ebinger et al.  2006 ). 

 Only moderate differences were found between 16 female migraine patients without 
aura aged 18–30 years and 14 age-matched healthy female controls (Nilsen et al.  2009 ). 

 These few studies do not reveal whether or not there are signifi cant HRV differ-
ences in migraine patients, especially because disability usually was not taken into 
the statistical models.  

   Tension-Type Headache 

 Pogacnik compared 51 patients with tension-type headache with the same number 
of controls and did not observe differences in HRV, neither between the episodic (19 
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patients) and chronic (32 patients) tension-type headache subgroups (Pogacnik 
et al.  1993a ). This is in contrast to their fi ndings in migraineurs mentioned above 
(Pogacnik et al.  1993b ).  

   Cluster Headache 

 Cluster headache is a distinct clinical and epidemiological entity known since 1958. 
Its importance as a primary headache derives from its extraordinary morbidity. It is 
characterized by a devastating pain. Headache attacks occur in series lasting for 
weeks or months (cluster periods), with an attack frequency between one every 
other day up to ten times a day or more. The cluster periods are separated by remis-
sion usually lasting months or even years. The International Headache Society’s 
criteria for cluster headache require at least fi ve attacks of severe, unilateral, orbital, 
suborbital, and/or temporal pain lasting 15–180 min if untreated and associated 
with at least one of the following points: conjunctival injection, lacrimation, nasal 
congestion, rhinorrhea, forehead and facial sweating, miosis, ptosis, or eyelid 
edema. Cluster headache has clear signs of ANS involvement, showing both signs 
of sympathetic dysfunction (Horner’s syndrome) and parasympathetic overactivity 
(e.g., lacrimation, nasal congestion, and injection of the eye). 

 Thirty-nine patients and 30 healthy controls were investigated with 24-h Holter 
ECG recording, 9 of them also in headache periods. The data obtained indicate a 
possible existence of a disordered chrono-organization in cluster headache (phase 
shift of approximately 1 h of heart rate rhythm during the cluster period) together 
with a moderate lower heart rate variability and a higher occurrence of arrhythmias 
in cluster headache patients with right-sided pain (Micieli et al.  1993 ). 

 Tubani followed eight patients with cluster headache during attacks and com-
pared HRV data during their headache-free periods with those of normal controls. 
During spontaneous attacks the parasympathetic indices are at once increased at the 
onset with a mild reduction of the sympathetic indices, and all these modifi cations 
slowly disappear at the end of each attack. Comparison of the average low- frequency 
and high-frequency values during headache-free periods showed a signifi cant reduc-
tion in LF even when LF/HF was normal (Tubani et al.  2003 ). In contradiction to 
these results, no differences in HRV were observed in patients with cluster headache 
during headache or in a headache-free period in another study (van Vliet et al.  2006 ).   

   Fibromyalgia 

 In fi bromyalgia (also called fi bromyalgia syndrome), chronic widespread pain that 
persists in all four quadrants of the body is often accompanied by a range of symp-
toms including fatigue, sleep disturbance, functional impairment, cognitive dys-
function, variable bowel habits (also IBS), depression, stiffness, and more. 
Fibromyalgia patients have frequently reduced pain thresholds (hyperalgesia) and 
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feel pain with normally innocuous stimuli (allodynia). Diagnostic criteria published 
in 1990 by a group of the American College of Rheumatology are currently used to 
diagnose the clinical disease. It is unclear whether these criteria characterize a 
homogeneous or rather a heterogeneous group of patients. Treatment is frustrating 
both for patients and practitioners and fi bromyalgia causes suffering in a big group 
of population, mostly women. 

 Autonomic dysfunction characterized by persistent ANS hyperactivity at rest 
and hyporeactivity during stress has been consistently demonstrated in FM patients 
(Staud  2008 ). ANS hyporeactivity appears to be correlated with persistent fatigue 
and other clinical symptoms associated with FM, including low blood pressure, diz-
ziness, and faintness (Vaeroy et al.  1989 ; Staud  2008 ). 

 Cohen studied 22 women with FM and 22 healthy controls with 20 min HRV. Heart 
rate was signifi cantly higher in FM patients compared with controls. FM patients had 
signifi cantly lower HRV compared with controls, higher LF, and lower HF. Quality of 
life, physical function, anxiety, depression, and perceived stress were moderately to 
highly correlated with LFnu, HFnu, and LF/HF (Cohen    et al.  2000c ). 

 Thirty patients with fi bromyalgia and 30 healthy controls were assessed with a 
24-h ambulatory recording of heart rate variability. Fibromyalgia patients had a 
decreased SDNN (126 ± 35 ms vs. 150 ± 33 ms in controls) and a decreased pNN50. 
Patients lost the circadian variations of sympathovagal balance, with nocturnal val-
ues signifi cantly higher than those of controls at time 0 and at 3 (Martinez-Lavin 
et al.  1998 ). 

 A study examined resting HRV in a sample of 84 patients with chronic benign 
pain, a subgroup of whom had fi bromyalgia. Fibromyalgia patients experienced 
higher levels of depression and greater diffi culties with physical functioning, but 
there were no signifi cant differences in any of the HRV indices between the two 
groups. Across all pain conditions, age, gender, physical health functioning, pain 
anxiety, and pain sensations were all signifi cant predictors of HRV suggesting that 
each is involved in the relationship between chronic benign pain and autonomic 
function (Mostoufi  et al.  2012 ).  

   The Case of Disability 

 In the last decade, disability has been identifi ed as a major problem in chronic pain. 
Disability has been described as an umbrella term, covering impairments, activity 
limitations, and participation restrictions. Impairment is a problem in body function 
or structure; an activity limitation is a diffi culty encountered by an individual in 
executing a task or action, while a participation restriction is a problem experienced 
by an individual in involvement in life situations. Thus, disability is a complex phe-
nomenon refl ecting an interaction between features of a person’s body and features 
of the society in which he or she lives. 1  Pain intensity and disability do not correlate 

1   From WHOs fact sheet. World Health Organization.  http://www.who.int/topics/disabilities/en/ . 
Retrieved 30 March 2013 
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necessarily. Back pain, for instance, has worldwide a similar variance in pain inten-
sity, but the disability varies extensively between different geographic regions, often 
discussed under “cultural differences.” 

 Until today several studies have shown that decreased HRV correlates with dis-
ability, so in back pain, where lower HRV correlates with disability, but not pain 
(Gockel et al.  2008 ) or with a moderately higher level of pain, psychological 
distress, and sleep disorder (Kang et al.  2012 ). Extended sick leave (>121 days) 
compared with short sick leave (<29 days) was associated with higher heart rate 
and lower heart rate variability (only frequency domain used particularly in LF 
and TP) in a study enrolling 65 persons on pain-related sick leave (Kristiansen 
et al.  2011 ). It is an interesting question whether the observed HRV increase after 
pain relief is due to diminished pain intensity or to decreased disability (Storella 
et al.  1999 ).  

   Conclusion 

 Pain causes distress and this alone would be suffi cient to cause changes in HRV. 
This was observed in several but not all studies. However, it fi ts into the picture 
when disability, principally subjective, is associated with attenuated HRV parame-
ters. With few exceptions, pain syndromes are generally heterogeneous, which is 
refl ected in varying results found in IBS, back pain, tension-type headache, or neu-
ropathic pain. Probably more homogeneous are cluster headache and migraine, but 
only few studies have looked at these. In pain, studies with HRV have focused 
mostly on pain syndromes with disappointing therapeutic results like IBS or fi bro-
myalgia. Whether or not HRV can provide information on the feasibility of sympa-
tholytic treatments for neuropathic pain is a major research question with clinical 
relevance. Another exciting question is whether or not specifi c constellations of 
HRV are associated or even predict pain treatment results.     
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                      Cancer Pathophysiology 

 Autonomic nervous system dysfunction is a problem that can be detected in about 
50–100 % of patients with advanced cancer (Bruera et al.  1986 ; Walsh and Nelson 
 2002 ; Strasser et al.  2006 ). It has been described in various primary malignancies 
(Table  13.1 ).

   It is, however, not easy and often not possible to distinguish between autono-
mous neuropathy as consequence of the tumor itself, as consequence of (often che-
motherapeutic) treatment, or as consequence of both. 

 Fadul and colleagues used short-term HRV as well as the Ewing test battery 
consisting of three tests for the parasympathetic function (heart rate changes after 
different perturbations) and two tests for the sympathetic system (blood pressure 
changes after perturbations). Most patients had an Ewing score greater than 2, 
which is reported as cutoff point to diagnose moderate to severe autonomic dys-
function. Only six (12 %) patients had diabetes before onset of cancer (Fadul et al. 
 2010 ). 

 A decreased HRV parameter can also be based on increased CRP. Many patients 
with advanced cancer have increased CRP, which has been related to an activated 
immune system. Already moderate increased CRP again has correlations to lower 
HRV values, as observed in several studies (Kon et al.  2006 ; Araujo et al.  2006 ; 
Carney et al.  2007 ; Ziegler et al.  2008 ). 

 Explanations for a possible pathophysiological relation between lower heart rate 
variability and cancer death are interesting issue for debate. In contrast to cardio-
logic diseases, advanced cancer patients show a plethora of symptoms that can be 
associated with HRV changes (like depression, cachexia, sleep disturbances, auto-
nomic dysfunction, pain, heart failure). An important point in the discussion is the 
ultimate reason for a cancer patient’s death. This is not as simple. Cancer patients 
die from a variety of causes. Inagaki et al. ( 1974 ) reported on 816 cancer patients 
and summarized as most important causes of death: infection (47 %), organ failure 
(25 %), infarction (11 %), carcinomatosis (10 %), and hemorrhage (7 %). 

    Chapter 13   
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 It is important to recall that cancer-related effects like paraneoplastic conditions 
leading to increased blood glucose may also cause diminished HRV (Haegele-Link 
et al.  2008 ).  

   Prognosis for Cancer Patients in a Palliative Phase 

 Prognosis is still a challenge in palliative patients. Prognostication in incurable dis-
eases assists clinicians in their decision making and helps them provide patients and 
their family with information about the (likely) future (Glare and Christakis  2005 ). 
Nevertheless, clinical estimation is uncertain (Oxenham and Cornbleet  1998 ). Score 
systems have been proposed (Pirovano et al.  1999 ) and validated (Maltoni et al. 
 1999 ); and the European Association for Palliative Care recommends their use. But 
prognostication is rough, giving information about 30-day survival probability 
(>70, 30–70, or <30 %). Any further simple approach would be highly benefi cial 
(Glare and Christakis  2005 ). In a small study of our own, we explored heart rate 
variability changes in a group of patients with advanced cancer in relation to 
survival. 

 In a study with a 10-year follow-up, 347 subjects under 65 were examined 
with a baseline that included HRV (Holter monitoring, frequency domain, 
SDNN, and Power slope). Different indices for mortality were found (among 
them: smoking, prior heart disease, increased glucose, decreased cholesterol 
(sic)). SDNN, VLF, and LF had an association with mortality, but not HF. The 
slope was the best univariate predictor with a cutoff value of 1.5. In a multivari-
ate regression model, a steep slope of the power    law regression line and conges-
tive heart failure were the only independent predictors, with a relative risk of 
2.01 and 1.85, respectively. None of the measures of HRV had a univariate 
association with cancer death or other nonvascular reasons for death (Huikuri 
et al.  1998 ). 

 A case cohort study was conducted within a longitudinal study of 15,792 
middle- aged men and women. A sample of 900 subjects without prevalent coro-
nary heart disease in baseline was drawn and compared with all subjects with 
CHD and all subjects who died before follow-up. HRV was determined by a 
2-min rhythm strip where RR distances were later measured half-automatized. 
In addition plasma levels for cholesterol, HDL, LDL, triglycerides, serum 

   Table 13.1    Autonomic disturbance in various cancer types   

 Cancer  Method  ANS abnormalities  Reference 

 Various  Ewing test  81 %  Strasser et al. ( 2006 ) 
 Various  Test battery  100 %  Walsh and Nelson ( 2002 ) 
 Various  Test battery including 

HRV 
 52 %  Bruera et al. ( 1986 ) 

 All survivors  HRV  LF/HF increased, depressed 
diurnal rhythm 

 Kamath et al. ( 1998 ) 
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insulin, and glucose were determined and diabetes was diagnosed according to 
the fasting blood glucose levels. Blood pressure, waist and hip circumferences, 
and carotid intima-media thickness were assessed. Four measures of HRV were 
determined: SDNN, rMSSD, SDSD, and pNN50, but no frequency-domain 
measures. Generally, low HRV was associated with an adverse cardiovascular 
risk profi le and elevated risk of death from all causes, including cancer, and of 
incident CHD. The elevated risk could not be attributed to other risk factors. 
Relative risk of low SDNN was lower than from the other parameters. The 
authors conclude that low HRV possibly precedes different manifest diseases 
(Dekker et al.  2000 ). 

 Thirty-fi ve patients with metastatic carcinoid tumors were studied with the help 
of 24 h Holter ECG calculating SDNN, rMSSD, and pNN50. During the follow-up 
of 18 ± 7 months, 15 of 35 (43 %) patients died. Patients with the combination of 
SDNN <100 ms and presence of carcinoid heart disease had a worse prognosis 
compared to the other patients (Hoffmann et al.  2001 ). 

 Fadul examined 47 patients with advanced metastatic solid cancers with a 
median survival of 139 days after inclusion (but a wide range between 4 and 
2,266 days) using short-term HRV (20 min). Frequency-domain measures were not 
associated with survival. They report a trend toward a signifi cant association 
between survival and SDNN ( p  = 0.056) (Fadul et al.  2010 ). 

 We conducted a study that included 24 patients with advanced cancer due to 
solid tumors. Short-term HRV (10 min) was taken at course of the disease, if avail-
able, several times. The last available HRV taken in mean 33 days before death was 
signifi cantly lower than healthy controls from other studies (Table  13.2 ).

   Most HRV parameters, with exception of SampEn did not change the last 
3 months before death (Table  13.3 ).

   It is not clear whether or not HRV can have a role in survival estimation for 
cancer patients. Only a few studies with a low number of patients included have 
been published. Only our small study examined cancer patients more than one 
time in the course of the disease. On the other hand we have some bigger longi-
tudinal studies that show a statistical relation between lower HRV parameters 
and cancer mortality. More studies have to be conducted before conclusions can 
be drawn.  

   Table 13.2    HRV in cancer patients short before death (Ernst and Rostrup  2013a ,  b )   

 Study  Fadul  Sztajzel ( 2004 )  Schumacher ( 2004 ) 

 SDNN  25.32 ± 20.75  51.4 ± 24.33  141 ± 39 
 RMSSD  24.9 ± 28.41  27 ± 12 
 TP  409.32 ± 898  21,222 ± 11,663 
 LF  86.33 ± 159  356.4 ± 228.39  791 ± 563  1,170 ± 416 
 HF  32.92 ± 52.1  477 ± 321.99  229 ± 282  975 ± 203 
 LF/HF  2.33 ± 1.85  4.61 ± 2.33  1.5 − 2.0 
 Sampen  2.0526 ± 0.416  – 

  In comparison results from advanced cancer patients (Fadul et al.  2010 ) and from healthy persons 
(Sztajzel  2004 ; Schumacher  2004 )  
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   Cancer Treatment and HRV: The Case of Anthracyclines 

 Particular challenges in cancer treatment are chemotherapeutic agents that induce 
cardiac dysfunction. In some treatment programs, evaluation of heart function at 
baseline and during the process is an integral part of the treatment, for instance, with 
anthracyclines. Since their introduction in the late 1960s, doxorubicin and epirubi-
cin have been used successfully in the treatment of a wide variety of hematopoietic 
and solid tumors. However, their use is limited by the occurrence of cardiotoxicity, 
which may result in congestive heart failure (Meinardi et al.  1999 ). This has resulted 
in maximum dosage recommendations to avoid major heart disease. To detect car-
diac dysfunction in patients who are treated with anthracyclines, regular monitoring 
of the heart function during treatment is important. After completion of chemo-
therapy, detection of cardiac dysfunction is also of relevance, since this might lead 
to timely medical intervention aiming at improving the cardiac prognosis. Multigated 
radionuclide angiography (MUGA) is a noninvasive technique that makes use of 
intravenously injected radionuclides ( 99 Technetium) that bind to erythrocytes and 
enable the cardiac pool to be visualized with a γ-camera. MUGA is widely consid-
ered a gold standard. 

 The value of HRV analysis for the detection of anthracycline-induced cardiotox-
icity has been evaluated in some studies. 

 Postma studied 31 young patients for late cardiotoxicity (9 years follow-up) with 
several techniques (MUGA, echocardiography) and also HRV. No correlation 
between the anthracycline dose and echocardiographic and MUGA parameters was 
found, but HRV analysis revealed a signifi cantly impaired HRV in the patients who 
received more than 400 mg/m 2  doxorubicin compared to those who received less 
than 400 mg/m 2 . This suggests that HRV could be a sensitive indicator for cardio-
toxicity (Postma et al.  1996 ). Tjeerdsma et al. ( 1999 ) found signifi cantly impaired 
HRV in breast cancer patients who had been treated with anthracyclines and high- 
dose chemotherapy compared to healthy age-matched females. They included 20 
patients with LVEF >50 %. They used Holter monitoring technique and time and 
frequency domain. SDNN and SDANN were not different to healthy controls. In 
contrast, PNN50 and rMSSD were signifi cantly lower in patients than in healthy 
controls. All frequency-domain indices were reduced. 

   Table 13.3    HRV changes in cancer patients during disease progression (Ernst and Rostrup  2013a ,  b )   

 Survival  >60 days  30–59 days  7–29 days  <7 days 

 SDNN  24.71  25.87  21.56  21.38 
 RMSSD  17.6  17.12  33.55  14.2 
 TP  243  525  88.9  438 
 VLF  115  29.8  39  118 
 LF  68.7  46.8  19.8  90.1 
 HF  30.9  28.5  42.7  20.96 
 LF/HF  2.3  1.46  1.64  2.4 
  Entropy    2.2013    2.0350    1.9391    1.8555  

13 HRV in Oncology and Palliative Medicine



265

 Ekholm looked at nine women treated for metastatic breast cancer with docetaxel. 
They were studied prior to the docetaxel treatment and after the third or fourth 
course and exhibited no differences in HRV (Ekholm et al.  2000 ). 

 Nousiainen was not interested in cancer, but in left ventricular dysfunction. 
Knowing that doxorubicin causes decreased LVEF, he investigated patients receiv-
ing this agent as a clinical model and focused on neuroendocrinological changes. 
After cumulative doxorubicin doses of 400 and 500 mg/m 2 , there was a decrease of 
HFnu and increase in LFnu leading also to an increase of LF/HF. However, after the 
cumulative doxorubicin dose of 500 mg/m 2 , the changes in HRV components 
returned toward baseline. This might suggest that doxorubicin-induced left ven-
tricular dysfunction is associated with an early change in sympathovagal balance 
toward sympathetic predominance. Further progression of left ventricular dysfunc-
tion is then associated with an attenuation of sympathetic tone (Nousiainen et al. 
 2001 ). 

 Meinardi followed breast cancer patients treated with fi ve cycles of fl uorouracil, 
epirubicin, and cyclophosphamide (FEC). Mean LVEF declined from 0.61 at T0 to 
0.54 during the treatment course, but no HRV changes were observed (Meinardi 
et al.  2001 ). 

 Twenty-four breast cancer patients were treated with docetaxel alone and 34 with 
a combination of docetaxel and epirubicin. Already after a therapeutic course of 
3 weeks, HRV alterations could be observed (Syvanen et al.  2003 ). 

 Salminen followed breast cancer patients treated with eight cycles of an epirubi-
cin–docetaxel combination. The patients had no clinical symptoms of cardiotoxic-
ity. Neither echocardiography nor HRV (Holter monitoring) changed compared to 
baseline (Salminen et al.  2003 ). 

 Brouwer followed doxorubicin-treated survivors of a malignant bone tumor 
(osteogenic sarcoma and malignant fi brous histiocytoma) with echocardiography 
and HRV (Holter monitoring) 22 years after treatment. Compared with age-matched 
controls, patients showed lower values of HRV parameters except for LF/HF and 
LFNU. Almost all HRV parameters decreased compared with the measurements in 
1997 while LF/HF and LFnu increased (Brouwer et al.  2006 ). 

 So  in conclusion  I have found confl icting results. Brouwer’s long-time follow-up 
study convincingly showed deterioration of former doxorubicin-treated patients 
while earlier studies had shown promising results. Later studies, however, were not 
able to show HRV decline during or after the treatment course, even in patients 
where mild echocardiographic was described. As usual in the HRV fi eld, the studies 
are (too) small. In addition, no nonlinear indices were used.  

   Cancer Symptoms and HRV 

 Only few studies have been conducted on the association between different cancer 
symptoms and changes in HRV.  Cardiac cachexia  is associated with a lower LF, 
BRS, and higher catecholamine concentrations than matched controls of 
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noncachectic cardiac patients or healthy controls (Ponikowski et al.  1999a ,  b ). In an 
experimental study, 17 female (healthy) subjects were exposed to  nauseogenic  
visual stimuli and HRV changes were analyzed. LF/HF increased associated with 
the extense of nausea, 1.54 ± 2.11 in relation to moderate, 2.57 ± 3.49 to strong nau-
sea, suggesting increased sympathetic involvement. They also observed short 
increases of HF preceding increased nausea (LaCount et al.  2011 ). 

  Fatigue  is the most common problem among long-term cancer survivors, par-
ticularly observed in breast cancer survivors. Fagundes included women who had 
completed treatment for stage 0–IIIA breast cancer within the past 2 years (except 
for tamoxifen/aromatase inhibitors) and were at least 2 months post-surgery, radia-
tion, or chemotherapy. HRV was continuously measured with the Polar s810 wrist-
watch and wearlink 31 belt band. HRV (only RMSSD documented in the publication) 
was lower among more fatigued women compared to those who were less fatigued 
(22.145 ± 13.327 vs. 28.875 ± 16.905) (Fagundes et al.  2011 ). 

  Cheyne – Stokes respiration  patterns reduce LF and HF power, but increase VLF 
(Mortara et al.  1997 ).     
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                      Introduction 

 Emotional regulation has been related to HRV patterns (Thayer     2000 ;    Appelhans 
and Luecken  2008 ). Emotion regulation ability has been operationalized and 
associated with lower or higher HRV (Appelhans and Luecken  2008 ; Thayer 
and Fischer  2009 ; Thayer et al.  2009 ). Thus, a meta-analysis proposed that 
“HRV is important not so much for what it tells us about the state of the heart as 
much as it is important for what it tells us about the state of the brain” (Thayer 
et al.  2012 ). 

   Depression 

 Depression has a prevalence of between 8 and 12 % around the world (Andrade 
et al.  2003 ). It is expected that depression will have the biggest health impact 
after cardiovascular disorders by 2020 (Murray and Lopez  1997 ; Kemp et al. 
 2010 ). Interesting enough, depression and cardiovascular disease do not develop 
independently. Rather, there is a clear association between depression and car-
diovascular disease. Twenty to forty percent of patients with CVD have at the 
same time depression (Woltz et al.  2012 ). The relation is bidirectional – it seems 
that patients with depression can develop CVD more readily and patients with 
CVD can develop depression more readily (Pratt et al.  1996 ; Woltz et al.  2012 ). 
HRV changes are well documented both in CVD and in depression. Here some 
recent theories regarding the genesis of depression will be introduced. In a sec-
ond part the relation between depression and heart disease will be examined and 
the fi ndings of HRV changes in relation to depression will be discussed in 
greater detail.  

    Chapter 14   
 Psychiatry 
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   Pathophysiology of Depressive Disorders 

 Major depressive disorder is the offi cial denomination of the malady commonly 
called depression. The idea of depression includes a wide variety of disorders. A 
cursory look at concomitant ICD codes reveal depressive symptoms in bipolar 
affective disorders, depressive episodes, recurrent depressive disorders, and anxiety 
disorders, not to mention several kind of somatization disorders where depressive 
symptoms might be more or less existent. One problem is gradation to differentiate 
between mild, moderate, and severe depression. Another problem regards diagno-
sis. It is, for instance, a well-known problem that several symptoms related to 
advanced cancer disease (e.g., anorexia, fatigue, sleep problems) might be due to 
the original disease, a coexistent depression, or a combination of both. Similar prob-
lems exist in the combination of severe cardiac diseases and depression. While at 
least diagnostic instruments can make it easier to collect a unitary group of study 
patients, it is far more diffi cult to agree on the pathophysiology of depressive disor-
ders, in case there is just one. 

 Major depressive disorder (MDD) is regarded as a familial disorder and some 
scientists argue that its familiarity is due to genetic factors, suggesting that parental 
social behavior and other familial environmental risk factors are not as important in 
the pathogenesis of MDD as previously assumed. However, there is no solid evi-
dence for specifi c genes and specifi c gene-by-environment interactions in the patho-
genesis of MDD (Hasler  2010 ). The infl uence of genetic factors might be up to 
40 %. Non-genetic factors, explaining the remaining 60 % of the variance in suscep-
tibility to MDD, are individual-specifi c environmental effects mostly adverse events 
in childhood and ongoing or recent stress due to interpersonal adversities, including 
childhood sexual abuse, other lifetime trauma, low social support, marital problems, 
and divorce (Sullivan et al.  2000 ; Kendler et al.  2002 ,  2006 ; Hasler  2010 ), that is, if 
it is at all possible to fi nd clear causal links. The point here is that, due to its genetic 
origin, depression probably cannot be circumvented, but once it manifests, several 
psychosocial concomitant circumstances can be used to control the symptoms. 

 Today’s ideas around the pathophysiology of depressive disorders focus on stress 
and maladaptive responses of the HPA axis, pathological changes in endogenous 
monoamines, the neurotrophic hypothesis, ideas around altered glutamatergic and 
GABAergic subsystems, and combinations of those theories. I summarize them 
here only briefl y with a main focus on theories that include similar brain structures 
as those involved in generating of HRV.  

   Stress Reactions and Immune System 

 There is a long history of discussion of the role of the endogenous stress system and 
its relation to depression. Stress response differs between genders; men have a 
higher stress response regarding achievement challenges, whereas women develop 
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more stress responses related to social situations. Generally, women show higher 
stress responses, which would match the higher prevalence of depression in women. 
Not matching are numerous studies that do not show impaired HPA patterns in 
MDD (Pariante and Lightman  2008 ). It is unclear whether HPA dysfunctions have 
an impact on the effect of antidepressive drugs (Schule  2007 ). One possible role of 
the endogenous stress system exists in depressed subjects with a history of child-
hood trauma. Several lines of evidence, in other animal, experimental and clinical 
studies suggest an infl uence of the HPA system on the disorders. Most recently, this 
is based on newer epigenetical ideas indicating that the effects of genes switched off 
(or on) as a consequence of trauma in childhood can be transferred to the following 
generations without changed genes. 

 Some sickness behavior, for instance that related to infl uenza, is well known to 
mimic several traits of depression. It shares many symptoms with depression, 
including fatigue, anhedonia, psychomotor retardation, and cognitive impairment. 
Recent theories (Maier and Watkins  1998 ; Dantzer et al.  2008 ; Raedler  2011 ) focus 
on brain systems that might be activated in association to this sickness behavior. 
The behavioral changes are mediated by pro-infl ammatory cytokines such as 
interleukin-1α, tumor necrosis factor-α, and interleukin-6, which activate the HPA 
axis and impair the central serotonin system. Depressive symptoms all the way up 
to suicide are a well-known serious adverse effect of treatment with immunological 
active substances like interferon. Some studies report drugs like aspirin and cele-
coxib with known effects on the synthesis of prostaglandins caused by infl ammation 
might have inherent or increase effects of antidepressive drugs (Rahola  2012 ). 
Depression, so the idea, might be induced by an infl ammatory process, which is 
extended in the brain causing depressive effects.  

   Monoamines 

 Most of the noradrenergic and dopaminergic neurons are located in midbrain and 
brain stem nuclei and project to large areas of the entire brain. Their role is similar 
to that other nuclei with specifi c receptors projecting to most of the brain – to have 
infl uence reactive patterns and to trigger general responses such as cholinergic or 
opioidergic neurons. All these systems are involved in the regulation of a broad 
range of brain functions, including mood, attention, reward processing, sleep, appe-
tite, and cognition. This led early on to the idea that defi ciencies in the monoaminer-
gic neurons could cause depression. The well-known properties of antidepressive 
drugs, to modify and mainly increase the release or the stay of monoamines in the 
synaptic gap, supported apparently this idea. Almost every compound that inhibits 
monoamine reuptake, leading to an increased concentration of monoamines in the 
synaptic cleft, has been proven to be a clinically effective antidepressant (Belmaker 
and Agam  2008 ; Hasler  2010 ). Serotonin is the most important candidate receptor. 
Decreased availability of this receptor has been found in multiple brain areas of 
patients with MDD. Despite several experimental approaches supporting this idea, 
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there are also confl icting results and the overall evidence is still contradictory 
(Hasler  2010 ; Rahola  2012 ). Also dysfunction of the central noradrenergic system 
has been discussed, but in part because of diffi culties in depleting isolated central 
noradrenaline, its role is unclear. 

 Almost all established antidepressants target noradrenaline or serotonin recep-
tors. However, full and partial resistance to these drugs and their delayed onset of 
action suggest that dysfunctions of monoaminergic neurotransmitter systems found 
in MDD represent the downstream effects of other, more primary abnormalities. 
Antidepressive drugs have far more effects than only on the monoaminergic recep-
tor, among others also effects on the brain immune system and intracellular transla-
tion mechanisms. Despite these limitations, the monoamine defi ciency hypothesis 
has proved to be the most clinically relevant neurobiological theory of depression 
until today. The monoamine hypothesis is particularly interesting for the interpreta-
tion of HRV because it is also related to the function of the ANS. In addition (as 
discussed above and below), several antidepressant drugs have profound effects on 
HRV.  

   Glutamate and GABA Receptors 

 Gamma-aminobutyric acid (GABA) and glutamate are two further ubiquitous- 
appearing transmitter–receptor systems in the brain. While gamma-aminobu-
tyric acid has a generally inhibitory effect, glutamate is exhibitory and has 
effects on long-term changes in neurons as well. Changed GABA concentra-
tions and diminished GABA receptor function has been reported in depressive 
patients. Contradictory evidence of the GABA hypothesis of depression includes 
the lack of effects of GABAergic drugs on core depressive symptoms 
(Birkenhager et al.  1995 ). 

 The role of the glutamate system received more attention recently when several 
studies showed decreased depressive symptoms short after application of ketamine, 
a glutamate receptor antagonist in depressed patients. Glutamate release inhibitors 
have also shown antidepressive effects. Additionally, abnormal NMDA (a gluta-
mate receptor subtype) function has been shown in depressive patients. All this 
suggests that this theory is promising and might offer a new therapeutic approach.  

   Neurotrophic Theory 

 The continuing function of (brain) neurons is dependent on the regular release of 
neurotrophic factors. Dysfunctions of neurotrophic systems have been shown in 
chronic pain and psychiatric diseases (Martinowich et al.  2007 ). Brain-derived neu-
rotrophic factor (BDNF) has been studied most. Preclinical studies have shown 
correlations between stress-induced depressive-like behaviors and decreases in 
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hippocampal BDNF levels, as well as enhanced expression of BDNF following 
antidepressant treatment (Martinowich et al.  2007 ; Hasler  2010 ). The administra-
tion of ATDs normalizes the levels of BDNF as has been observed both in studies 
with animals and in postmortem studies on human brains of people suffering from 
mood disorders (Rahola  2012 ). A different argumentation is based on the recently 
discovered phenomena that even in the adult brain cell division occur in at least two 
places, among them the hippocampal subgranular zone (SGZ). This is interesting in 
depression where the hippocampus is one of the involved brain regions. Blockade 
of hippocampal neurogenesis slightly inhibits the effect of antidepressant treat-
ments in rodents (Kempermann  2008 ) and antidepressant treatments increase the 
concentrations of different hippocampal growth factors that infl uence neurogenesis 
(Rahola  2012 ). This is signifi cant because neural progenitors of the hippocampal 
subgranular zone (SGZ), which differentiate and integrate into the dentate gyrus, 
need about 2–3 weeks to reach the hippocampus, fi tting with the number of weeks 
antidepressive drugs normally need to have an effect.  

   Depression and Heart Disease 

 Observed as early as 1937 (Maltzberg  1937 ), clear associations between depression 
and coronary heart disease have been reported many times (recent review (Nemeroff 
and Goldschmidt-Clermont  2012 )). There is also a clear relationship between the 
magnitude of depressive symptoms and increased cardiac morbidity. Already low 
scores in the Beck Depression Inventory of 5–9 are associated with an increased 
frequency of cardiac events (Sheps and Rozanski  2005 ; Kunzansky  2005 ). But there 
are some interesting details in this relationship that are worth a closer look. First, the 
association of depression and cardiac problems is robust and has been shown repeat-
edly with the help of statistical models where further common associated risk factors 
like smoking, overweight, diabetes, and lack of exercise were taken into consider-
ation. Most studies included patients with major depression. For instance, in one 
study about 400 patients with clinical depression and 400 matched controls, depres-
sive persons had a two-third increased likelihood to develop serious physical ill-
nesses including cardiac disease (Holahan et al.  2010 ). Another example is a study of 
2,832 adults without history of CAD followed up in mean 12 years. Depressed mood 
and lack of hope was associated with an increased risk of fatal and nonfatal ischemic 
heart events (RR 1.5 and 1.6, respectively) in a statistical model taking in other risk 
factors (Anda et al.  1993 ). Also bipolar disorders are associated with an increased 
risk for hospital admission due to ischemic events (Callaghan and Khizar  2010 ). 

 Several lines of evidence show the bidirectional effects of depression. Depression 
in patients with different cardiac diseases has a negative effect on the short- or long- 
term outcome, so in congestive heart failure (Lesman-Leegte et al.  2009 ), AF 
(Frasure-Smith et al.  2009 ), and after MI (Glassman et al.  2009 ). Also anhedonia, 
the incapability to feel pleasure, is strongly associated with fatal outcome after 
myocardial infarction (Davidson et al.  2010 ). 
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 However, not all reports are clear without ambiguity. Working in clinical prac-
tice, it is not possible to overlook a clear association between risk factors for CVD 
and depression. Depressive patients smoke, eat too much, exercise too little, and in 
addition take drugs predisposing them even more to excess weight. In the Heart and 
Soul study of 1,017 patients with coronary heart disease focused on depression and 
its consequences, the researchers argue that they were able to identify physical inac-
tivity, non-adherence to medications and other negative behaviors as main reason 
for cardiac disease (Cohen et al.  2010 ). The study is excellently conducted but has 
earned some critical remarks regarding the study population (Nemeroff and 
Goldschmidt-Clermont  2012 ). 

 On the pathophysiological level, several explanations have been proposed that 
can only be mentioned briefl y here. One line of argumentation is based on the com-
mon infl ammatory properties of both diseases. Depression is characterized by a 
sustained infl ammation (Raedler  2011 ). As mentioned, some authors argue that 
depression might mimic a motivational pattern normally associated with peripheral 
infections (“fl u”), where chronic immune signaling to the brain causes enduring 
depressive symptoms (Dantzer et al.  2008 ). 

 As mentioned earlier, depressive symptoms are associated with a wide range of 
immune system parameters, including increased numbers of peripheral leukocytes 
(particularly neutrophils and monocytes), decreased lymphocytes, and elevated 
cytokine production (e.g., IL-6) and acute phase proteins (e.g., CRP). Depressive 
symptoms are also associated with reduced functional tests such as natural killer 
cell activity and mitogen-induced lymphocyte stimulation. There is overlap in the 
characteristic immune system correlates of depression and the immune system- 
related risk factors for coronary artery disease (e.g., elevated CRP levels, pro- 
infl ammatory cytokines such as IL-6 and TNF-alpha, leukocytes, and increased 
antibody levels to viruses) (Kop and Gottdiener  2005 ). Several studies have shown 
increased CRP, not surprisingly also increased IL-1 and IL-6 (Howren et al.  2009 ). 
Evidence is confl icting, however. In one study infl ammatory changes could be 
explained mainly by existing risk factors like diabetes, hypertension, obesity, and 
smoking (Morris et al.  2011 ). The relationship between depression and immune 
system parameters is supposed to be bidirectional: central nervous system correlates 
of depressive symptoms result in immune system changes and vice versa (Kop and 
Gottdiener  2005 ). Administration of pro-infl ammatory cytokines results in elevated 
extracellular cerebral serotonin (Capuron  2004 ) as well as depressed mood, 
increased sleep, and general malaise (Maier and Watkins  1998 ). 

 Another argumentation line is related to the platelet clotting cascade, whose role 
in coronary heart disease is well known (Nemeroff and Goldschmidt-Clermont 
 2012 ). Platelet activation is increased in patients with depression even without car-
diac disease or medicaments (Musselman et al.  1996 ). The platelet function in 
depressive patients without coronary disease, with risk factors for it or with coro-
nary disease, is either comparable or even declined compared to patients with coro-
nary heart disease without depression (Bruce and Musselman  2005 ). There are 
some evidence that antidepressants of SSRI type have an anticoagulant effect 
including an increased risk for gastrointestinal bleeding, something that has not 
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been observed with traditional tricyclics (Bruce and Musselman  2005 ). Also, endo-
thelial dysfunction (Tomfohr et al.  2008 ), oxidative stress, and impaired arterial 
repair (Dome et al.  2009 ) have been linked with depressive disorders. 

 As discussed in Chap.   6    , some interesting models track the different interacting 
variables in depression and cardiac disease (Thombs et al.  2008 ; Stapelberg et al. 
 2011 ).  

   Depression and Changes in HRV 

 In 17 patients with major depressive disorder, 5-min short-term HRV measurements 
were conducted before and after treatment with antidepressants using SDNN and 
RMSSD. Depression was assessed with the Hamilton Rating Scale (HRS). Changes 
in HRV did correlate with posttreatment HRS and differences of HRS pre- and post-
treatment. These relationships were strongest in patients who responded positively 
to nontricyclic antidepressant medications. HRV before treatment was not predic-
tive of treatment response nor did HRV reliably refl ect the severity of depressive 
symptoms (Balogh et al.  1993 ). Thirty-two previously not medicated patients with 
major depression and 32 matched control persons were tested for heart rate vari-
ability (SDNN   ) while resting and during paced breathing. There were no differ-
ences between the groups before therapy. The patients were randomly allocated for 
daily treatment with 150 mg amitriptyline, 150 mg doxepin, 150 mg fl uvoxamine, 
or 20 mg of paroxetine. During treatment with either amitriptyline or doxepin, 
SDNN had signifi cantly decreased after 14 days, whereas patients treated with fl u-
voxamine or paroxetine showed no signifi cant changes (Rechlin     1994 ; Rechlin 
 1994 ). In this context it is relevant to point out that SSRI can increase HRV vari-
ability (Khaikin et al.  1998 ), whereas amitriptyline decreases variability (Rechlin 
 1994 ; Rechlin  1994 ). 

 Medically healthy patients have elevated levels of noradrenaline as result of an 
increased total body sympathetic activity (Veith et al.  1994 ). Carney compared 19 
depressed and 19 nondepressed CAD patients (with positive angiography) with 
Holter monitoring. He found a signifi cantly lower SDNN in depressed patients 
(90 ± 35 vs. 117 ± 26 ms) (Carney et al.  1995 ). 

 Patients with depression were tested before and after treatment with imipramine 
or mirtazapine in a small double-blind randomized study (ten patients in each 
group). HRV was studied before and after 4 weeks. They calculated LF, MF, and 
HF. Before treatment, all 20 patients were compared to age-matched controls. 
Depressed patients showed more suppression of HR variability (both mid- and 
high-frequency band fl uctuations) indicating stronger vagal inhibition and a reduced 
increase of BP variability (mid-frequency band fl uctuations). All patients had a 
decrease of HRV after 4 weeks of treatment (Tulen et al.  1996 ). 

 Regarding the bidirectional relation between immune changes and depression 
(Kop and Gottdiener  2005 ), it is interesting to observe that administration of pro-
infl ammatory cytokines result in elevated extracellular cerebral serotonin 
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(Capuron  2004 ) as well as depressed mood, increased sleep, and general malaise 
(Maier and Watkins  1998 ). 

 Twenty-seven patients after MI and with depressions were randomized to either 
sertraline 50 mg/day or placebo. Eleven post-MI patients without depression were 
used as a control group. HRV was taken 1–2 weeks after MI and at 6, 10, 14, 18, and 
22 weeks after being randomized. The rate of recovery of HRV was determined by 
use of a growth curve model based on repeated measures analysis of variance. 
SDNN increased linearly in the sertraline-treated group in comparison to the control 
group, in difference to a modest decline in SDNN in the placebo group from 2 to 
22 weeks (McFarlane et al.  2001 ). 

 Subjects with depressed mood showed greater reductions in HF during a cogni-
tive stress test (speech) and lower reductions in a cold pressure test (an ice bag 
3 min on the forehead). This suggests that the parasympathetic tone is diminished in 
subjects in depressed mood (Hughes and Stoney  2000 ). Subjects with depression 
showed lower normalized ULF, VLF, and LF, but not HF after other adjusted risk 
factors (Carney  2001 ). Patients with depression treated with fl uoxetine or doxepin 
had an increased SDANN in case of response but a decreased SDANN and SDNN 
in case of nonresponse in a small study ( n  = 13) (Khaikyn  1998 ). An interventional 
therapy with cognitive behavioral therapy reduced heart rate and increased rMSSD, 
but produced no changes in other time-domain measures (Carney et al.  2000 ). In a 
study comparing 21 depressed persons with healthy subjects using Holter ECG and 
both spectral and time-domain measures, there was no difference between the 
groups (Sayar et al.  2002 ). 

 Depression is a risk factor for medical morbidity and mortality in patients with 
coronary heart disease. Congestive heart disease patients show low VLF depending 
on their depressive state – VLF was low in 47 % of those who were moderately to 
severely depressed, in 29 % of those who were mildly depressed, and in 13 % of 
those without depression (Stein et al.  2000 ). Bär conducted a small study including 
18 patients with depression (without prior treatment with antidepressants) and 18 
matched controls. Before treatment, there were no differences in HRV. Differences 
developed after the start of treatment with antidepressants (Bär et al.  2004 ). In 873 
patients with stable cardiovascular disease, depression was assessed and found in 
195 of them. Holter monitoring using usual time and frequency-domain algorithms 
did not show any difference between CVD patients with or without depression 
(Gehi et al.  2005 ). 

 Cross-sectional analysis of a major depression cohort study included 524 con-
trols, 774 patients with a diagnosis of major depression earlier in life (remitted 
depression), and 1,075 patients with current depression. HRV was recorded over 
1.5 h, SDNN and RSA was used. Both depression groups had a lower SDNN and 
RSA. Anxiety and lifestyle factors in the analysis did not change this effect. 
Depressed patients who used SRIs, TCAs, or other antidepressants had a signifi -
cantly lower SDNN and RSA. So most of the HRV reduction was due to medica-
ments and not due to the illness (Licht et al.  2008 ). 

 Holter monitoring in 63 adult depressive but otherwise healthy patients was used 
to observe HRV changes. In addition, portable devices recorded physical activity, 
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social interaction, and negative mood. Depression was associated with higher heart 
rate and negative mood during the day. Persons with higher depression scores 
tended to have lower HRV. Participants had lower HRV indices while alone and 
higher HRV indices while in social interaction. The authors discuss whether or not 
social interaction can buffer adverse health effects of depression (Schwerdtfeger 
and Friedrich-Mai  2009 ). 

 In an intervention study with randomized administration of sertraline or placebo, 
patients with major depression had initially decreased HRV (Holter monitoring, using 
frequency-domain values). It had been hypothesized that after 16 weeks of sertraline 
treatment, HRV would partially recover, which did not occur (Glassman et al.  2007 ). 

 The already mentioned seminal “Heart and Soul” study investigated 863 outpa-
tients with stable CHD on depressive syndromes and HRV changes (Holter moni-
toring, time and frequency domain). It found an association between somatic 
depressive symptoms and lower HRV, but not with cognitive depressive symptoms. 
The inverse association of somatic symptoms with HRV was largely explained by 
differences in comorbidities and lifestyle factors (de Jonge et al.  2007 ). 

 Another multicenter study examined depression patients using 15–30 s strips or 
manual 30 s pulse measurement to calculate SDNN and following patients for over 
10 years. The resting heart rate was signifi cantly higher in patients with more severe 
depressive symptoms. There was no signifi cant association of low HRV and QTc- 
prolongation with depressive symptoms or mortality. An increase in resting heart 
rate/SD, adjusted for age, was associated with a 26 % increased risk of cardiovascu-
lar mortality (Kamphuis  2007 ). 

 In 26 elder patients, short-term HRV (5 min) was conducted: time domain, fre-
quency domain, DFA, sample entropy. The study used Charlson comorbidity index 
(CCI) and the Yesavage Geriatric Depression Scale (GDS). DFA was correlated 
with CCI, but not sample entropy. Interestingly, GDS was correlated with higher 
entropy, thus contradicting the notion that normally lower entropy is related to more 
severe illness (Blasco-Lafarga et al.  2010 ). Summarizing these studies, Servant 
concluded recently that at the moment there is no evidence of a link between 
decreased HRV and depression independent of CVD (Servant et al.  2009 ). 

 In the Cardiovascular Health Study, Kop evaluated 907 persons of an average 
age of 71 and without clinical symptoms of CVD. The study used a wide range of 
measures including time domain, frequency domain, DFA, and heart rate turbulence 
(Holter monitoring) and analyzed these indices together with infl ammation param-
eters like C reactive protein, IL-6, fi brinogen, and white blood cell count. Participants 
were followed for up to 15 years. One-hundred and thirty-one patients had depres-
sive symptoms at the time of assessment. As expected, depression was associated 
with increased CVD mortality. Depression was associated with changes in daytime 
HRV (there with reduced DFA, but no other HRV indices). None of the 24-h param-
eters were associated with depression. The authors consider the associations as rela-
tively weak. Importantly, ANS reductions correlated with depression and CVD 
mortality were largely explained with CVD alone (Kop et al.  2010 ). 

 In 2010 Kemp published a review and meta-analysis about the impact of both 
depression and antidepressant treatment on HRV that included 18 published studies. 
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The review concluded that depressed patients had reduced time domain and HF, 
increased LF/HF ratio, and decreased nonlinear indices (relative high frequency of 
largest Lyapunov (sic) exponent, minimum embedding dimension of the QT inter-
val) in drug free individuals in severe depression. Surprisingly, the authors found no 
differences in pre- and posttreatment measurements with TCA (amitriptyline, dox-
epin, and imipramine), SSRIs (paroxetine, escitalopram, venlafaxine), mirtazapine, 
nefazodone, and rTMS. First after secondary analysis, it was shown that, unlike 
other antidepressive drugs, TCA reduced HRV (Kemp et al.  2010 ).  

   Conclusion 

 I agree with Kemp et al. ( 2010 ) that there is clear evidence of an inverse association 
between depression and HRV parameters and that the effect size is rather small. 
Several confounders can make interpretation diffi cult, such as medications and anx-
iety (Stapelberg et al.  2012 ). 

 Use of HRV as diagnostic parameter for depression alone might not be appropri-
ate at the moment as long as new studies with more predictive parameters fail to 
appear. However, refl ecting the high comorbidity of CVD and depression, HRV can 
play nevertheless an important role in a comprehensive evaluation of depressive 
patients regarding their cardiovascular risk. Prospective intervention studies are 
lacking. We need studies that address potential preventive treatments in depressive 
patients with reduced HRV parameters and the effects thereof. Use of HRV in fur-
ther research can be useful provided that it is part of a research hypothesis and not 
only one of several parameters. It is important not to confuse HRV as outcome 
parameter. Increase in HRV does not necessarily signify a better outcome even if 
associations are reported. I agree with Stapelberg et al. ( 2012 ) that HRV is a good 
starting point to investigate the causal network linking depression and CVD, but the 
causal relationships have to be discussed cautiously.   

   Psychosis 

 Besides suicide and accidents, schizophrenic patients have an up to three times all- 
cause mortality and SCD has been discussed as important cause (Koponen et al. 
 2008 ). HRV has only been used in some few studies. In 23 patients with schizophre-
nia or schizoaffective disorder, 24-h Holter monitoring demonstrated a bimodal dis-
tribution: 11 of 23 patients had a PNN50 of > and = 8.0, and 12 had a PNN50 of < 
and = 4.0; no subject had a PNN50 value between 4.0 and 8.0. All 12 patients with 
low cardiovagal tone (vs. only 6/11 of the other patients) had schizophrenia. PNN50 
was not associated with present age, gender, smoking, IQ scores, or symptomatol-
ogy (Malaspina et al.  1997 ). Same patients in psychotic states show decreased HF 
without changes in LF, suggesting psychotic states suppressed the parasympathetic 
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function without affecting the sympathetic function (Toichi et al.  1999 ). In 53 
patients with chronic schizophrenia, no difference was noted between them and a 
control group regarding HRV. HRV was measured in 17 fi rst-episode patients with 
psychosis previously not treated with neuroleptics and 21 healthy controls during 
two tests. RMSSD and HF were signifi cantly reduced in patients and remained 
unaltered during the tasks; whereas, in controls the HRV diminished with increasing 
mental stress. The authors conclude that acute psychosis might be characterized by 
a limited capacity to respond to external demands at the level of the autonomic ner-
vous system (Valkonen-Korhonen et al.  2003 ). Patients with schizophrenia had 
decreased frequency-domain patterns compared to controls, especially in LF. This 
was exacerbated in patients receiving atypical antipsychotics (Mujica- Parodi et al. 
 2005 ). Fifteen patients with schizophrenia had lower complexity measures (approx-
imate entropy, compression entropy, fractal dimension) and increased QT-variability 
compared to matched healthy controls (Bär et al.  2008 ). Jindal was unable to repli-
cate these results in a group of neuroleptic naive patients with psychosis, except for 
some minor changes (Jindal et al.  2009 ).  

   Phobias 

 The Normative Aging Study enrolled 581 men between 47 and 86 years old and free 
of coronary artery disease and diabetes. Symptoms of anxiety were assessed using 
the Crown-Crisp index, an instrument that in previous prospective studies was a 
strong predictor of the risk of sudden cardiac death. HRV was assessed with the 
paced-breathing technique, SDNN. The maximal minus minimal HR over 1 min 
was calculated. Men with higher levels of phobic anxiety had lower SDNN (Kawachi 
et al.  1995 ). Fifty-four fl ight phobics were assessed with HF and sample entropy 
(paced breathing and under a fearful sequence of audiovisual stimuli at the end of 
treatment and at 6 months follow-up) and the results related to treatment outcome. 
A regression model could only be established when HR entropy was added to the 
HR variability measure in a second step of the analysis. HR variability alone was 
not found to be a good outcome predictor (Bornas et al.  2007 ).  

   Stress-Related Disorders 

   Introduction 

 After Selye introduced the notion of stress, defi nitions have been debated for many 
decades. Some distinguish between positive and negative stress; whereas, others 
focus exclusively on “negative” forms like threats or anticipated perturbations of 
safety (Thayer et al.  2012 ). Stress is also discussed as a psychological and somatic 
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reaction when the adaptive capacity of the individual is exhausted. There is increased 
interest in this adaptive capacity, also described as resilience, and there is no doubt 
that it relies on the social, psychological, but also genetic and epigenetic 
background. 

 For the mental processing of stress, the amygdale is understood to be a central 
structure. This brain structure has been characterized as a fi rst responder to potential 
threats and as an important part of adaptive fear responses (LeDoux  1996 ). Some 
argue for a function both for aversive and appetitive stimuli (e.g., Whalen and 
Phelps  2009 ), while others conclude on a predominant role in negative stimuli (e.g., 
Cunninham  2008 ). The role of prefrontal areas are usually underestimated due to 
many animal models based on rodents, only more recently newer imaging technol-
ogy has shifted the focus to humans. 

 Psychological stress is more and more identifi ed as an important risk factor, not 
the least for cardiovascular disease (Steptoe and Kivimäki  2012 ). Associated to the 
idea of variability as a sign of the stability of the whole system, higher indices of 
HRV should indicate robustness against stressors. In fact, this has been shown 
(Weber et al.  2010 ) in studies discussed below.  

   Physiology and Pathophysiology of Stress 

 Classical stress reactions include hormonal changes, activation of SNS, and 
decreased activity of PNS. The hormonal pathway is the well-known hypothalamic–
pituitary–adrenocortical axis. Stress activates hypothalamic neurons secreting corti-
cotropin-releasing hormone (CRH) and vasopressin. CRH promotes release of the 
adrenocorticotropic hormone (ACTH), which acts on the adrenal cortex, causing 
release of glucocorticoids. The released corticoids themselves trigger a negative 
feedback circle stopping further release of CRH and ACTH (Fig.  14.1 ).

   The SNS activation is associated with increased levels of adrenaline and nor-
adrenaline with the already discussed consequences. In addition, it has effects on 
the immune system, probably mediated in lymphatic nodes (which are innervated 
by SNS fi bers). Stress has remarkable effects on the immune system. Short stress 
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  Fig. 14.1    Physiological stress response (Reproduced with friendly permission of Nature publish-
ing group of (Steptoe and Kivimäki  2012 ))       
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situations usually trigger augmented immune activity, whereas chronic stress situa-
tions lead to immune depression. 

 A classical cardiologic disease associated with stress is coronary heart disease. 
The INTERHEART study included patients and controls from 52 countries and 
used a chronic stress classifi cation that included stress at work, at home, fi nancial 
problems, lack of control, and depression. The study took into account stress vari-
ables in a statistical model and added classical causal factors like apolipoprotein 
ratio, obesity, smoking, diabetes, hypertension, and others. Independent of other 
risk factors, the odds ratio for MI was doubled in case of stress. This was indepen-
dent of gender, nationality, and age (Yusuf et al.  2004 ). Not surprising, a temporal 
dose–response pattern between (work related) stress and metabolic factors has been 
observed (Chandola et al.  2008 ), as have been clear associations between long 
working time and CHD (Virtanen et al.  2012 ). 

 The pathological factors leading to CHD under chronic stress conditions are still 
under discussion. Greater morning increase of cortisol and reduced heart rate variabil-
ity (see below) as a sign for attenuation of ANS and neuroendocrine function have been 
reported (Chandola et al.  2008 ). Additionally, an increase of hypertension in relation of 
stress has been shown (Markovitz  2004 ), though not always in association with an 
increased incidence of CHD (Chandola et al.  2008 ). The association between depres-
sion and CHD is well known (Nemeroff and Goldschmidt- Clermont  2012 ). And there 
is evidence of an association between chronic stress and depression (Netterstrøm et al. 
 2008 ). Other observed factors include the already mentioned suppressed immune func-
tion (Cohen et al.  1997 ), reduced telomere length (Brouilette et al.  2007 ), and meta-
bolic syndrome (Chandola et al.  2006 ). Stress triggers health risky behavior like 
smoking (Kouvonen et al.  2005 ; Rod et al.  2009 ), decreased physical activity (Rod 
et al.  2009 ), shortened sleep, or sleep disturbances (Virtanen et al.  2009 ). 

 Acute stress can indeed cause MI events, as was fi rst shown systematically after 
a major earthquake in Athens (Trichopoulos  1983 ), terrorist attacks in the US (Feng 
et al.  2006 ), and missile attacks on the population in Israel (Kark et al.  1995 ). Even 
after dramatic soccer games, increases of cardiovascular events have been reported 
(in the Dutch study quoted, only in men) (Witte et al.  2000 ; Wilbert-Lampen et al. 
 2011 ). The biological bases to acute stress-related MI are not completely clear, but 
procoagulant factors, disturbed rhythm, and transient ischemia have been discussed 
(Steptoe and Kivimäki  2012 ).  

   HRV Changes in Stress-Related Disorders 

 Different mental states and their consequences on HRV in laboratory were assessed 
in healthy normotensive men and women. Spontaneous breathing subjects and sub-
jects under paced breathing showed no changes. Mental distraction (word puzzle) 
and mental stress (computer quiz) led to decreased HRV (Madden and Savard 
 1995 ). HRV was tested to measure stress responses during sleep following a stan-
dardized task and showed changes in frequency-domain values (Hall et al.  2004 ) 
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 Of particular interests are studies investigating the recovery after stress stimuli 
and their relationship to pretest HRV. Weber and colleagues tested 44 healthy men 
between 20 and 50 years old. As stress tests they used the manometer test (a test to 
recognize features on a screen under time pressure) and mental arithmetic tests. They 
analyzed both frequency domain and time domain (RMSSD), reporting a correlation 
between RMSSD and HF (of r 0.9). They divided the group by variability of HRV 
with help of RMSSD (split point 35.5 ms) resulting in one “low group” (with 
25.8 ± 6.5 ms) and one “high group” (with 51.7 ± 13.9 ms). These groups did not dif-
fer in certain aspects with exception of age (age was consequently used as covariate 
in further analysis). Most importantly, they observed signifi cant differences between 
the groups. Subjects with low baseline HRV had a more pronounced increase of 
diastolic blood pressure under the tests and did not recover in the following 5 min 
resting phase. The high-HRV group showed decrease of HRV under stress, returning 
immediately after tests to the pretest level. By contrast, the low- HRV group retained 
a lower HRV also under resting conditions. Additionally, cortisol decreased more 
slowly in this group and the recovery of the THF-alpha level was delayed. The 
authors concluded that the high group showed physiologically better coping of stress 
(Weber et al.  2010 ). This can be of importance. Delayed recovery of BP after stress 
can predict increases in BP several years later (Steptoe and Marmot  2006 ). 

 One study focused on the effects of  work stress  on blood pressure, heart rate, and 
heart rate variability. One-hundred and nine male white collar workers were 
included and their work stress level was assessed with a paradigm that included job 
overcommitment (inability to withdraw from job obligations) and imbalance 
between effort and reward (Siegrist model for work stress). The study used 
24 h-ECG and RMSSD as measure for the vagal tone. Men with a high imbalance 
had higher blood pressure. Overcommitment showed no association with blood 
pressure. There was a trend, but no signifi cant effect, for the RMSSD to be lower for 
subjects with imbalance, but not overcommitment. Large standard deviations for 
RMSSD were observed (Vrijkotte et al.  2000 ). 

 Caregivers (of patients with Alzheimer disease) compared to noncaregivers with 
a similar age and gender showed increased pre-ejection period values, whereas RSA 
values were not different. The authors regard this as evidence of increased sympa-
thetic activity (Cacioppo et al.  2000 ). 

 5-minute heart rate variability in frequency domain was measured in healthy 
subjects and correlated with self ratings of  trait anxiety and perceived emotional 
stress . There was an inverse relationship between emotional stress and HFnu, which 
was independent of age, gender, trait anxiety, and cardiorespiratory fi tness (Dishman 
et al.  2000 ). 

  Mental stress reaction  in subjects with several apolipoprotein E phenotypes 
caused different changes in HRV. Subjects with apoE4/2, 4/3, and 4/4 showed a 
stress-related decrease in HRV, while E3/2 and E3/3 showed a slight increase 
(Ravaja et al.  1997 ) 

 Short mental stress leads to physiological reactions in individuals. The amount 
of the stress reaction, however, is different and a study identifi ed different groups 
characterized either by high sympathetic markers for heart rate, high immunologi-
cal activation and higher levels of steroids and norepinephrine, or lower reactions in 
all areas (Cacioppo et al.  1995 ). 
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 In  generalized anxiety disorders,  diminished heart rate variability, especially in 
the HF band, has been reported (Thayer et al.  1996 ; Friedman and Thayer  1998 ; 
Cohen et al.  2000a ,  b ,  c ). 

 Nine patients with  post-traumatic stress disorder  with fl uoxetine treatment, nine 
PTSD patients without fl uoxetine, and nine healthy controls were tested with 15-min 
HRV measures. In PTSD patients with fl uoxetine, HRV measures were normal 
compared to the untreated PTSD patients (Cohen et al.  2000a ,  b ,  c ). Six female rape 
victims with PTSD were treated with CBT. This resulted in decreased HRV during 
REM sleep in 5 responders, whereas the nonresponder showed an increase (Nishith 
et al.  2003 ). 

 In 59 adults with post-traumatic stress disorder, HRV was taken in a laboratory 
setting where the subjects were confronted with neutral or trauma-related stimuli. A 
signifi cant proportion of the group had no elevated basal heart rate. The subgroup 
with elevated basal HR had signifi cant correlations with RSA. In their conclusion 
the authors outline a possible association between basal elevated heart rate and 
parasympathetic alteration independently of sympathetic infl uences in a subgroup 
of subjects with PTSD (Hopper et al.  2006 ). 

 In    pregnant and non-pregnant women, use of a standardized stress model (Trier 
Social Stress Test) led to decreased HF, increased LF/HF, and in tendency of 
increased LF. No differences between pregnant and non-pregnant women were 
recorded, neither differences between pregnancy in second and third trimester 
(Klinkenberg et al.  2009 ).      
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                      Introduction 

 Diabetes mellitus (DM) comprises a group of common metabolic disorders sharing 
the phenotype of hyperglycemia. Several subtypes are described and today much is 
known about the causes. In complex interaction, genetics, environmental, social, 
and lifestyle factors contribute to a phenomenon that more and more often is being 
called a diabetic epidemic. Depending on the etiology of DM, factors involved may 
include reduced insulin secretion, decreased glucose usage of the body, and 
increased glucose production. DM causes a plethora of pathophysiological changes 
in multiple organ systems that impose a tremendous burden on individuals and 
health systems. In the US, DM is the leading cause of end-stage renal disease, lower 
extremity amputations, and adult blindness. 

 Up to 50 % of patients with diabetes develop diabetic neuropathy. NIDDM 
patients have an increased likelihood to develop mononeuropathy and other forms 
(Boulton et al.  2004 ). Diabetic autonomic neuropathy causes substantial morbidity 
and increased mortality, particularly if cardiovascular autonomic neuropathy (CAN) 
is present (Boulton et al.  2005 ). The effects of DM on cardiac health are so profound 
that some cardiologists have termed DM as a cardiac disease with at the same time 
elevated blood glucose levels. 

 Diabetic autonomic neuropathy (DAN) is a common consequence of diabetes. It 
is related to an increased risk of cardiovascular mortality and associated with mul-
tiple symptoms and impairments. Various prevalences have been reported, in part 
because of the methods of assessment. In cohorts of asymptomatic individuals with 
diabetes, approximately 20 % had abnormal cardiovascular autonomic function 
already in early illness. DAN frequently coexists with other peripheral neuropathies 
and other diabetic complications, but DAN is frequently isolated, preceding the 
detection of other complications. 

 Major clinical manifestations of DAN include resting tachycardia, exercise 
intolerance, orthostatic hypotension, changed sudomotor dysfunction, constipation, 
gastroparesis, impaired neurovascular function, hypoglycemic autonomic failure, 
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and erectile dysfunction. GI disturbances are common, and any section of the GI 
tract may be affected. Gastroparesis should always be suspected in individuals with 
erratic glucose control. A    radiographic gastric emptying study can defi nitively 
establish the diagnosis of gastroparesis; a reasonable approach can also be use to 
conduct ultrasound exams (Kashyap and Farrugia  2010 ). Constipation is the most 
common lower GI symptom but can alternate with episodes of diarrhea and DAN 
can mimic irritable bowel syndrome. Diagnostic approaches should assess auto-
nomic function and rule out neoplasia. Disruption of microvascular skin blood fl ow 
and sudomotor function may be among the earliest manifestations of DAN and lead 
to dry skin, loss of sweating, and the development of fi ssures and cracks that allow 
microorganisms to enter. These changes ultimately contribute to the development of 
ulcers, gangrene, and limb loss. Cardiovascular autonomic neuropathy (CAN) is the 
most studied and clinically important form of DAN usually characterized by heart 
rate variability. DAN is associated with an increased risk of silent myocardial isch-
emia and mortality. Proceedings from a consensus conference in 1992 recom-
mended that three tests (RR variation, Valsalva maneuver, and postural blood 
pressure testing) or longitudinal testing of the cardiovascular autonomic system be 
conducted in diabetic patients (Vinik et al.  2003 ). 

 Early detection of DAN in a diabetic patient is of paramount importance since it 
can cause prompt therapeutic interventions with a signifi cant survival benefi t 
(Karayannis et al.  2012 ). Measurement of HRV at the time of diagnosis of type 2 
diabetes and within 5 years after diagnosis of type 1 diabetes (unless an individual 
has symptoms suggestive of autonomic dysfunction earlier) serves to establish a 
baseline, with which 1-year interval tests can be compared. Regular HRV testing 
provides early detection and makes early diagnostic and therapeutic interventions 
possible. Interventions include improving metabolic control and using therapies 
such as ACE inhibitors and beta-blockers are proven to be effective for patients with 
CAN (Vinik et al.  2003 ). 

 In diabetic autonomic neuropathy several test batteries are used. Minimal exami-
nation procedures should include (1) heart rate response during deep breathing (six 
times per minute), (2) Valsalva maneuver, and (3) postural blood pressure testing. 
(1) Heart rate response during deep breathing can be used without or with HRV 
algorithms. 1  It is possible to use either 24 h Holter ECG or 7 min HRV measures if 
frequency-domain measures are used (Vinik et al.  2003 ). The fi rst point (paced 
breathing) has been challenged. Most probably, usual HRV procedures with sponta-
neous breathing are suffi cient (Denver et al.  2007 ; Wittling and Wittling  2012 ). 
Normative values have been proposed (Ziegler et al.  1992 ; Risk et al.  2001 ) and 
HRV is mentioned as one of three standard techniques besides autonomic innerva-
tion imaging techniques, microneurography, and barorefl ex analysis for detecting 
DAN (Karayannis et al.  2012 ).  

1   Note that paced respiration has rather historical reasons related to early studies and to make newer 
data comparable with them. For a more extended discussion see Chap.  4 . 
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   HRV and Diabetes 

 Because of the early recognition of the association of HRV and autonomous dys-
function, diabetes is one of the most established areas in which clinical studies 
include HRV measurements. The Diabetes Control and Complications Trial 
Research Group ( 1988 ,  1993 ) conducted a major study looking at the effect of better 
diabetes treatment on different measures of outcome using HRV among others. 
They followed changes in autonomic tone by a paced-breathing approach. HRV as 
a measure of CAN remained signifi cantly higher in the former intensive treated 
group compared with the former conventional group (Pop-Busui et al.  2009 ). 
Marked abnormalities in heart rate variability were signifi cantly associated with and 
predictive of progressive renal deterioration at 1 year in diabetic patients. Heart rate 
variability was a signifi cant and independent predictor of abnormalities in creati-
nine clearance in this small study (Burger et al.  2002 ). 

 In a study with 217 nondiabetic and diabetic dialysis patients with and without 
left ventricle hypertrophy, 24 h HRV was obtained. Mean pNN50 and SDANN, TP, 
LF, and HF were lower in diabetic than in nondiabetic patients, but LF/HF ratio did 
not differ. In diabetic patients LVMI correlated negatively with pNN50 ( r  = −0.270) 
and HF ( r  = −0.277). In nondiabetic patients LVMI did not correlate with any HRV 
variables (Nishimura et al.  2004 ) (Fig.  15.1 ).

   In a longitudinal epidemiological study on a population-based cohort of 6,245 
individuals, a 2-min HRV measure was taken in the beginning and a 6 min record-
ing after 9 years. Due to the short-term recording, only SDNN and rMSSD were 
calculated. Diabetic subjects had lower SDNN and rMSSD than healthy partici-
pants. Diabetic persons had a greater decrease in SDNN and rMSSD by factors of 
1.4 and 1.9 (Schroeder et al.  2005 ) (Fig.  15.2 ).
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  Fig. 15.1    Two typical examples for power spectra during 24 h. ( a ) A 56-year-old man without 
diabetes. ( b ) A 64-year-old female with diabetes (Nishimura et al. ( 2004 ), with permission of 
Oxford University Press)       
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   In a study, 30 patients with painless and painful DN were followed over 2 years 
and examined with help of HRV, electrophysiological measures, and qualitative 
sensory testing (QST). Vibration thresholds deteriorated over time and c-fi ber func-
tion correlated with pain intensity, but there was no correlation between HRV values 
and painful DN (Krämer et al.  2004 ). Reduced heart rate variability (HRV) has been 
also related to diabetic sensorimotor polyneuropathy. Eighty-nine diabetic subjects 
and 60 healthy volunteers were assessed: SDNN had an inverse relationship with 
ordinal categories of increasing DSP severity. Despite statistical signifi cance, there 
was substantial overlap of SDNN between diabetic patients and the healthy volun-
teers. Higher glycated hemoglobin A(1c) and systolic blood pressure, and measures 
of large and small fi ber neuropathy, were independently associated with lower 
SDNN. In some control subjects without polyneuropathy, HRV was also low (Orlov 
et al.  2012 ). 

 In a population-based survey, 1,030 males and 957 females were assessed for 
cardiovascular risk factors like diabetes, hypertension, obesity, dyslipidemia, 
smoking, and low physical activity. In men, after adjustment for alcohol intake 
and age, independent determinant for low SDNN were diabetes, obesity, 
and smoking; in women only diabetes. The authors conclude that diabetes is the 
primary determinant of reduced HRV in the general population (Ziegler 
et al.  2006 ). 

 In a diabetes prevention program, early treatment options were tested on adults 
who were at high risk for developing diabetes (i.e., BMI ≥24 kg/m 2 , fasting glucose 
5.3–6.9 mmol/l, and 2-h glucose 7.8–11.0 mmol/l). The 2,980 participants were 
randomized to three different groups: (1) standard lifestyle recommendations plus 
placebo twice daily, (2) standard lifestyle recommendations plus 850 mg of metfor-
min twice daily, and (3) an intensive program of lifestyle modifi cation and followed 
up for 3, 2 years, with annual examinations. HRV measures were based on 10-s 
digital rhythm strips; SDNN and RMSSD were calculated. The lifestyle group 
showed lower basal heart rate and higher HRV with metformin and placebo arms. 
Increasing SDNN and rMSSD during the study were associated with lower diabetes 
risk in the lifestyle arm (Carnethon  2006    ). 
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 A study showed a relationship between subjects with different degrees of insu-
lin resistance and HRV alterations. In detail, SDNN showed signifi cant reduction 
in all tested groups compared with a healthy control group. At night LF nu was 
higher in all patient groups. Patients with several other potentially confounding 
factors had been excluded. Interestingly, the insulin-resistant subjects with not yet 
impaired glucose regulation showed reduced SDNN values already. The subjects 
with type 2 diabetes mellitus had greater autonomic dysfunction than the insulin-
resistant subjects in the other groups (Perciaccante et al.  2006 ). In a mixed group 
( n  = 34) with peripheral neuropathy due to diabetes, alcoholism, paraneoplasia, 
and lack of B12, HRV in rest (RMSSD), associated with Valsalva maneuver and 
posture, was reduced compared to 190 non-matched healthy controls (Haegele-
Link et al.  2008 ). 

 Heart rate variability correlates with lung diffusion capacity for carbon monox-
ide (DLCO), a general measure for lung diffusion capacity in diabetes patients with-
out clinical pulmonary abnormalities. The autonomic function was assessed by 
Holter monitoring. Strongest correlations were found with SDNN and LF. The 
authors debate a possible infl uence of a disturbed autonomic function on lung diffu-
sion capacity in early diabetes (Pitocco et al.  2008 ). 

 Metabolic syndrome in younger adults is associated with lower LF, Hf, and TP 
in short-term HRV. In men, waist circumference was the strongest individual meta-
bolic syndrome component associated with HRV ( n  = 1,889 subjects between 24 
and 39) (Koskinen et al.  2009 ). 

 Five-minute HRV was inversely correlated with IL-6 in 30 male patients 
with metabolic syndrome compared with 153 controls (Brunner et al.  2002 ). 
Patients with impaired glucose tolerance had increased TNF alpha, TNF alpha 
receptor II, and IL-6, but there were no correlations between HRV and inflam-
matory parameters (Diakakis et al.  2005 ). Looking further at these interactions, 
nondiabetic controls, newly diagnosed, and established diabetic patients were 
included in a study of inflammatory parameters and short-term HRV. As 
expected, heart rate variability was reduced in all diabetics. Interleukin-6 was 
higher in diabetics, as was the high-molecular- weight adiponectin to leptin 
ratio. Interleukin-6 correlated negatively with HRV. Ratios of adiponectin to 
leptin correlated positively with measures of autonomic balance (Lieb et al.  2012 ). 
This study confirmed and extended results observed in an earlier study where 
IL-6 correlated with HRV changes in paced- breathing investigations (González-
Clemente et al.  2007 ). 

 In a study including 57 diabetic and 54 nondiabetic subjects free of coronary 
heart disease, signifi cant reduction HF nu and TP was demonstrated in diabetic 
participants. An inverse association between total power and median HbA (1c) was 
observed (Fakhrzadeh et al.  2012 ). 

 In a study of the relationships between HRV and several measures of arterial 
stiffness in youth with ( n  = 344) and without ( n  = 171) type 1 diabetes, an association 
between low SDNN and peripheral arterial stiffness was demonstrated. The associa-
tion remained statistical signifi cant also after adjustment for CAD risk factors 
(Jaiswal et al.  2013b ).  

HRV and Diabetes



294

   Role of HRV in Evaluation of Diabetic Patients 

 HRV changes might not only predict cardiac events and mortality, but also progres-
sion of carotid atherosclerosis. Studies were carried out 5–6 years after diagnosis 
(baseline) and repeated 8 years after diagnosis (follow-up). At baseline, patients had 
decreased LF. Reduced common carotid artery diameter and atherosclerotic intima- 
media thickness (IMT) both correlated with HRV at baseline. At follow-up, all HRV 
variables decreased signifi cantly. Furthermore, patients with lower LF power at 
baseline had a larger increase in the thickness of the carotid bulb intima-media at 
follow-up (Gottsäter et al.  2006 ). This is in accordance with the already mentioned 
study of the Diabetes Control and Complications Trial Research Group (Pop-Busui 
et al.  2009 ). 

 The importance of Holter monitoring has been challenged in a study with a fol-
low- up of 15 years where only LF was an independent risk factor for all-cause 
mortality, but Valsalva test, heart rate response to standing (30:15 ratio), and hand-
grip test had a higher predictive value (May and Arildsen  2012 ). HRV decreases 
depending on the number of risk factors (Hsiao et al.  2011 ).  

   Early Detection of DAN: Desirable or Not Necessary? 

 Diabetic autonomic neuropathy (DAN) is associated with increased morbidity and 
mortality and can have an incidence of 23.4 per 1,000 person years in diabetic 
patients (Witte et al.  2005 ). As described, several data confi rm early HRV changes 
in different diabetic patients. 

 Already young diabetic patients around 18 with a mean duration of illness of 
9 years have obvious changes in HRV (Jaiswal et al.  2013a ). This has been shown 
in different studies, e.g., in one looking at participants with increased fasting blood 
sugar showing signifi cantly changed HRV parameters (Thiyagarajan et al.  2012 ). 
However, a closer look at the results reveals rather subtle differences. SDNN for 
instance is 30.94 ± 11.92 in participants with impaired glucose metabolism com-
pared with 37.82 ± 15.61, LF/HF 1.98 ± 1.92 compared with 1.18 ± 1.07. This makes 
it diffi cult to identify relevant changes in individual patients. 

 Vinik writes “Screening for autonomic dysfunction should be performed at the 
diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes, par-
ticularly in patients at greater risk due to a history of poor glycemic control, cardio-
vascular risk factors, and macro- or microangiopathic diabetic complications” 
( 2012 ). But are there data showing that early testing of HRV in diabetes patients is 
benefi cial? 

 Whether early diabetes testing has effects on the development of DAN is still 
controversial. A recent Danish study was not able to show differences in DAN 
development in an intensively treated group of patients compared with standard 
treatment (Charles et al.  2013 ).  
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   Concluding Remarks 

 Today    there is overwhelming statistical evidence that already early in the course of 
diabetes different HRV parameters are reduced. During the disease HRV diminishes 
further, together with changes in other clinical parameters discussed extensively by 
Vinik ( 2012 ). Several diabetologists regard HRV as a standard examination tool and 
recommend it highly for baseline examinations and follow-up patients. There is 
limited evidence that interventions can delay further fall of HRV, in some cases 
even cause an increase, which is considered (but not proven) as a surrogate of better 
health in this patient group. Considering this, it is surprising that HRV is not more 
often used in diabetologic outpatient departments. 

 In contrast to other clinical areas, nonlinear indices are not used very often in the 
evaluation of diabetic patients (with exceptions such as Khandoker et al. ( 2009 )). 
This is most probably because HRV seems to be “established” in this area. However, 
it is desirable to include some of the more often used nonlinear parameters in further 
studies.     
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                      Chronic Obstructive Pulmonary Disease 

 Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous 
clinical syndrome found in 6–8 % of the population (Handa et al.  2012 ), correlated 
to smoking habits and social structure. Prevalence of COPD in some countries has 
started to decline in male population, while prevalence in females is still increasing. 
Today, COPD is also a disease of lower social classes and the Third World, where 
smoking habits are different to parts of the industrialized world and particularly to 
the habits of the middle and upper class. 

 HRV is relevant in COPD patients because of the frequent co-prevalence of car-
diac and other diseases. COPD patients frequently develop arrhythmias, common 
also in disorders of the cardiac autonomic function (Tükek et al.  2003 ). In addition, 
microneurography of the peroneal nerve has shown evidence of increased peripheral 
sympathetic activation in patients with COPD and hypoxemia (Chen    et al.  2006a ). 

 Twenty-fi ve moderate to severe COPD patients were compared with 25 healthy 
controls using Holter monitoring. COPD patients had decreased sNN50, pNN50, 
SDANN, SDNN, SDNNI, and rMSSD and reduced values of heart rate turbulence 
(Gunduz et al.  2009 ). However, another study found HRV values in COPD patients 
at rest comparable to healthy controls and only becoming fi rst abnormal with chal-
lenges like controlled breathing or tilting (Andreas et al.  2005 ). 

 In the course of COPD, increasing respiratory muscle weakness is common and 
due to a variety of causes like cachexia or long-term use of cortisone. Reis included 
ten older chronic obstructive pulmonary disease patients. The COPD group had 
lower LF, but no other differences in HRV values. The low number of participants 
may partially explain this. The study also used a breath cycle-dependent measure of 
HRV, called the inspiratory–expiratory difference (ΔIE), which is the difference 
between the mean of the highest HR value obtained during the inspiratory phase and 
the mean of the lowest HR value obtained during the expiratory phase. IE difference 
correlated ( r  = 0.6) with maximal inspiratory pressure as a measure of muscle power 
(Reis et al.  2010 ). 

    Chapter 16   
 Other Studies 
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 In 41 clinically stable COPD patients and 19 healthy controls, no differences 
were obtained in the time domain and in the low-frequency or high-frequency 
domain (Holter monitoring). However, LF/HF was lower in the COPD group (1.9 
[1.5−3.4] vs. 3.9 [3.2−5.6]) (Bédard et al.  2010 ). 

 Carvalho analyzed data from 15 volunteers with COPD and 15 healthy partici-
pants, recording HRV for 30 min. COPD patients presented reduced levels of all 
linear exponents and decreased short-term fractal exponent. Really surprising were 
the very low values, e.g., of SDNN (14.13 ± 5.03) in COPD patients but also in 
controls (25.4 ± 9.5). With such low SDNN values, the healthy volunteers would in 
another context have been characterized as at high risk for, e.g., heart disease. 
A moderate difference between COPD patients and controls was discovered 
(0.9 ± 0.18 vs. 1.02 ± 0.09) (Carvalho et al.  2011 ). 

 Van Gestel investigated 60 patients with COPD and looked at pulmonary function, 
quality of life, and results of short-term HRV in an explorative study. RMSSD, HF, 
and LF/HF showed a moderate correlation with the quality of life score. RMSSD (but 
also HF) was independently associated with QoL. The HRV values obtained were 
comparatively low, SDNN, for instance, is 35.84 ± 25.55 (Van Gestel et al.  2011 ). 

 Dias de Carvalho studied 17 COPD patients and 17 healthy volunteers, fi nding 
differences in triangular index, TINN, SD1, and SD2 (of the Poincaré plot) (Dias de 
Carvalho et al.  2011 ). 

 Corbo studied heart rate variability (HRV) in 30 COPD patients at rest and dur-
ing the 6-min walk test (6mWT) and the association with lung function impairment, 
taking into account systemic infl ammation. Subjects with elevated CRP values had 
a signifi cant reduction of SDNN, VLF, and TP. Furthermore, subjects with 
Inspiratory Capacity-to-Total Lung Capacity ratio (IC/TLC) <36 % had a signifi -
cant reduced SDNN, VLF, and LF as well (Corbo et al.  2013 ). 

   Exercise in COPD Patients 

 Forty patients with COPD (FEV(1) 39 ± 13 %) were randomized into high- ( n  = 20) 
or low-intensity ( n  = 20) exercise training of 3 months duration. There was a signifi -
cant improvement in HRV after the high-intensity protocol (pre vs. post, SDNN 
29 ± 15 ms vs. 36 ± 19 ms, rMSSD 22 ± 14 ms vs. 28 ± 22 ms), but not with the low- 
intensity protocol. A higher SDNN at baseline increased the probability of a better 
result after training (Camillo et al.  2011 ).  

   Conclusion 

 One study did not show major differences between COPD patients and healthy con-
trols (Bédard et al.  2010 ); others showed moderate differences. Diminished HRV may 
occur due to secondary effects, such as heart disease or chronic infl ammatory states.   
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   Kidney Disease 

 Interest in HRV for patients with kidney failure arose in relation to the increased 
prevalence of sudden cardiac death in end-stage renal disease patients on dialysis. 
These patients have several known risk factors for SCD and usually much comor-
bidity (Ranpuria et al.  2008 ). The annual death rate for prevalent US dialysis 
patients for 2004 was 230 deaths per 1,000 patient years. The USRDS Cardiovascular 
Special Studies Center estimated the SCD rate among 2002 prevalent US dialysis 
patients to be ∼7 % per year (US Renal Data System  2006 ). 

   End-Stage Renal Disease and Dialysis 

 Vita investigated 30 chronic uremic patients who were on periodic bicarbonate 
hemodialysis by a battery of six cardiovascular autonomic tests, in addition to 
10-min short-term HRV in supine and tilt position, all that a day after the last dialy-
sis (dialysis-free day). Twenty healthy persons served as control. LF was signifi -
cantly lower (152 ± 34), compared with the healthy controls (415 ± 82), while HF 
was nearly identical, also LF/HF. TP was also markedly different between patients 
and controls (1,808 ± 270 vs. 563 ± 123). LF was not different between patients with 
or without autonomic neuropathy (Vita et al.  1999 ). Ranpuria interprets this as an 
indication that there is early sympathetic involvement that traditional autonomic 
tests are unable to detect (Ranpuria et al.  2008 ). 

 Patients with end-stage renal disease (184 nondiabetic, 60 type 1 and 34 type 2 
diabetes) and 64 healthy controls were characterized by 24-h HRV. Five patients 
had SCD during the study period. SDNN and pNN50 were signifi cantly changed in 
the patient with fatal outcome. Exercise led to higher HRV (Hathaway et al.  1998 ; 
Cashion et al.  2000 ). Holter ECG of 14 nondiabetic patients with end-stage renal 
disease without echocardiographic or clinical evidence of heart disease was per-
formed at interdialystic days and was compared to patients after renal transplanta-
tion. RR variability and power frequency determinations were all signifi cantly 
reduced in the uremic patients undergoing hemodialysis. Four patients were studied 
before and after transplantation, in two HRV increased “dramatically,” in one mod-
erately, and in one not at all. The combination of renal failure and amyloidosis led 
to more decreased HRV than renal failure alone (Rubinger et al.  1999 ). 

 Giordano investigated HRV differences between 10 healthy subjects, 10    type 2 
diabetic patients, and 20 end‐stage renal disease (ESRD) patients (11 nondiabetic 
and nine type II diabetic) undergoing hemodialysis. HRV was taken once in nondi-
alysis patients and twice (before and after) in dialysis patients. Diabetic dialysis 
patients had the lowest SDNN, HFnu, and TP and the highest LFnu and particularly 
LF/HF (7.4 ± 1.4 compared with 5.6 ± 0.3 in nondiabetic dialysis patients, 2.2 ± 0.6 
in diabetes-only patients, and 0.8 ± 0.1 in the healthy controls) (Giordano et al.  2001 ). 
These results are different to the fi ndings by Rubinger et al. ( 1999 ) and Tong and 
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Hou ( 2007 ), in which a decrease in LF/HF and sympathetic activity during dialysis 
was observed. 

 Tong included 35 patients, taking HRV before and after hemodialysis. SDNN 
and LF/HF ratio were signifi cantly reduced after HD, while the blood pressure lev-
els were relatively stable during the HD process. Ultrafi ltration rate and urea clear-
ance appeared to be the main determinants of the LF/HF ratio in HD. LF/HF ratio 
correlated positively with urea clearance and negatively with ultrafi ltration volume 
(Tong and Hou  2007 ). 

 There have only been a few longitudinal studies. A small study on 16 patients on 
hemodialysis or peritoneal dialysis (PD) followed them over approximately 3 years. 
HRV was obtained using time-domain analysis. The adequacy of dialysis was 
assessed by uremic clearance in the HD group; however, PD adequacy was mea-
sured subjectively by patients’ well-being and nutritional status. HRV parameters 
(SDNN/RMSM and rMSSD) were obtained from 5-min supine ECGs. Improvement 
in HRV time-domain parameters occurred only in patients who had a mean uremic 
clearance >1.2. A uremic clearance <0.87 was associated with progressive deterio-
ration of autonomic neuropathy. The four diabetic patients had a severely abnormal 
HRV at the beginning of the study, which did not improve in the course of the study 
(Laaksonen et al.  2000 ). 

 Dursun conducted a study with a shorter follow-up of 1 year. Twenty patients 
with end-stage renal disease undergoing different forms of dialysis and 15 healthy 
controls were evaluated with 24-h EKG-Holter monitoring. Patients with kidney 
disease prior to the initiation of dialysis were noted to have a signifi cant decrease in 
all parameters of time-domain HRV. After 12 months of dialysis, a signifi cant 
improvement was observed in time-domain analysis in patients undergoing contin-
uous ambulatory peritoneal dialysis (CAPD) (Dursun et al.  2004 ). 

 Regarding mortality, some small studies were conducted. Hayano observed 30 
HD patients after coronary angiography using Holter monitoring between dialysis 
sessions to assess prognostic value of HRV and followed them over 50 months. 
Fourteen patients died in this period, of them 11 with SDC. With a statistical model, 
the study found that a triangular index (TI) < 20 (4.1 risk) and TINN < 328 ms were 
independently associated with increased risk for all-cause death and SCD. In addi-
tion, an SDNN < 88 was associated with a risk of 3.7 (not signifi cant) and an 
SDNN < 50 with a risk of 3.8 for SCD (Hayano et al.  1999 ). 

 The same group conducted afterwards a larger study with a broader patient 
group. One-hundred and twenty patients receiving dialysis were analyzed with the 
help of both time- and frequency-domain HRV analysis over a period of 
26 ± 10 months. During that time period, 21 died, 10 due to cardiac problems (only 
two SCD) and 11 due to noncardiac reasons. Survivors and cardiac and noncardiac 
deaths compared with the healthy population demonstrated a decrease in all time- 
and frequency-domain HRV parameters. Among time- and frequency-domain HRV, 
a decrease in TI (17.9 ± 6.2 vs. 25.4 ± 8.9), LF/HF (0.77 ± 0.44 vs. 1.82 ± 1.34), VLF, 
and ULF (rather marginal, but statistical signifi cant differences) was predictive of 
cardiac death, though none was able to predict noncardiac death. SDNN differences 
(77.5 ± 35.0 vs. 96.8 ± 32.3) were not signifi cant and SDNN of cardiac non- survivors 
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was rather high compared with other studies. But one would have to consider the 
relatively low number of non-survivors (Fukuta et al.  2003 ). 

  In conclusion , I agree with Ranpuria that at this point there are insuffi cient data 
showing that normalization of HRV would improve clinical outcomes and patient 
survival in the ESRD population (Ranpuria et al.  2008 ).  

   Transplantation 

 In 37  kidney  and 20  kidney –pancreas transplant recipients, pre- and posttransplant 
HRV and quality of life measures were compared, using both time- and frequency- 
domain indices of Holter ECGs. Frequency-domain changes correlated best with 
physical functioning. Changes in HRV and QoL were related (Hathaway et al.  2000 ). 

 Fifty-one patients on hemodialysis were compared with 53 patients with moder-
ate to severe chronic kidney disease with Holter monitoring. HRV did not differ 
between the groups. Patients without hemodialysis showed a correlation between 
HRV and IL-6 (Psychari et al.  2005 ).  

   General Conclusion 

 I agree at this point that there are insuffi cient data showing that normalization of 
HRV would improve clinical outcomes and patient survival in the ESRD population 
(Ranpuria et al.  2008 ; Zhang and Wang  2013 ). Both medical and nonmedical strate-
gies could be used to improve HRV, but do they improve survival? We would like 
to see randomized intervention studies and their effect on patient groups that might 
challenge the phenomena called “therapeutic nihilism” or “renalism” (Chertow 
et al.  2004 ) in end-stage kidney disease patients.   

   Sleep Apnea 

 Patients with moderate to severe obstructive sleep apnea show increased normal-
ized LF and decreased normalized HF and an increased LF/HF. By contrast, blood 
pressure variability was increased. These changes seem to occur independent of 
concurring diseases (Narkiewicz et al.  1998 ). 

 LF and HF were not different between 11 snoring patients and 12 controls. HF 
was increased and LF decreased when they were treated with CPAP or when snor-
ing was abolished, whereas the values did not differ in the control group (Gates 
et al.  2005 ). 

 Sleep apnea was associated with lower HF in a study with 387 included females. 
There were no other signifi cant differences. Women with a high sleep apnea index 
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had changes in HRV, but these were similar to those in women with no or nearly no 
sleep apnea (Kesek et al.  2009 ).  

   Complementary Medicine 

   Acupuncture 

 Although the usual claim is that acupuncture has been practiced for over 3,000 years 
in China (e.g., Longhurst  1998 ), it is in reality based on a heterogeneous theoretical 
concept that changed over time and is partially contradictory (Unschuld  1980 ). In 
practice, treatment consists of inserting needles at exactly defi ned spots (the so- 
called acupuncture points) in the body, usually between 10 and 20 needles arranged 
symmetrically. According to acupuncture theory, the needles infl uence different 
functional systems named after organs (which are only partially related to Western 
ideas of organ systems), but some practitioners also use combinations of acupunc-
ture points out of experience. There are numerous explanations in Western medicine 
as to why acupuncture works, including activation of    endogenous opioids, of the 
immunological system, or also on neuronal level long-term potentiation or long- 
term depression mechanisms (Sandkühler  1996 ). The clinical effect of acupuncture 
is still challenged in meta-analyses (Ernst  2009 ). In addition, acupuncture is not 
without adverse effects (Ernst et al.  2003 ). 

 Acupuncture needles stimulate thinly myelinated Aδ and not myelinated C- 
fi bers (Li et al.  1998 ). Histologic studies using c-Fos as a nuclear activation factor 
in neuronal regions stimulated in the periphery showed activation of the arcuate 
nucleus, periaqueductal gray, caudal raphe, nucleus ambiguus, and rostral ventral 
lateral medulla (among others) (e.g., Li  1998 ; Guo et al.  2012 ). Out of such physi-
ological observations, infl uences on the vegetative nervous system and HRV are 
possible. 

 In a study, 15 healthy persons were randomly assigned sham or verum acupunc-
ture in a crossover design. The main goal of the study was to test resting state con-
nectivity, but also HRV changes were tested. After acupuncture there was increased 
resting state connectivity in a network called “default mode network.” This involves 
brain regions putatively engaged in self-referential cognition that are deactivated 
during external tasks. After acupuncture, the DMN network showed increased con-
nectivity with the periaqueductal gray (PAG), substantia nigra, middle temporal 
gyrus, supplementary motor area (SMA), and anterior cingulate. LFu (normalized LF) 
correlated with increasing hippocampal formation connectivity to DMN. In addi-
tion, increased DMN connectivity was anticorrelated to LFnu and correlated to 
HFnu (Dhond et al.  2008 ). In an experimental design, 60 females were randomized 
to no treatment or three treatments with kidney 6 and lung 7. Short- term HRV was 
used, and no differences in any HRV parameter were observed after acupuncture 
(Vickland et al.  2009 ). 
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 A double-blind randomized study looked at the effect of acupuncture on  insomnia 
after stroke, randomly assigning to either a real intradermal acupuncture group or a 
sham acupuncture group. The acupuncture group was treated with needles in heart 
7 and pericard 6 for 3 days, and the sham acupuncture group received sham treat-
ment on the same points. Sleep was better in the acupuncture group, who also had a 
greater decrease of the LF/HF ratio. These results were interpreted as a stabilization 
of sympathetic hyperactivities (Lee et al.  2009 ). 

  Meditation : Zen mediation practitioners and control subjects were compared 
during meditation and rest. Zen meditation practitioners had a decreased LF/HF 
ratio and LF norm and increased HF norm. The meditation technique involved nor-
mal breathing, in contrast to studies that use slow-breathing techniques (Wu    and Lo 
 2008 ; Wu et al.  2008 ). Short-term meditation training induced increased HRV, 
involving the brain region of the anterior cingular cortex (Tang et al.  2009 ).   

   HRV Biofeedback 

 The term “biofeedback” refers to an instrumentation or training process that allows 
biological information to be recorded, displayed, and communicated back to an 
individual, allowing the individual to make adjustments in physiological processes 
that may enhance health or performance. Pure biofeedback training consists of 
operant conditioning. That is, the subject learns to regulate his or her physiology in 
the right direction because of the feedback, which can be positive reinforcement 
like a pleasant image appearing on a computer screen or verbal reinforcement by the 
therapist (Moravec and McKee  2011 ). Biofeedback is one of several techniques in 
“mind–body” treatments that have been used in the last decades to achieve better 
symptom control (Emani and Binkley  2010 ). HRV biofeedback is meant to specifi -
cally target autonomic function and has been used in some studies with asthma, 
hypertension, as well as cardiac disorders (Cowan et al.  1990 ; Del Pozo et al.  2004 ; 
Lehrer et al.  2000 ; Lehrer and Vaschillo  2000 ). 

 Cowan did not use HRV actively in training, but to screen effects on six sudden 
cardiac arrest survivors and observed especially increased HF (Cowan et al.  1990 ). 
Del Pozo used it in patients with CAD who were randomly assigned to conventional 
therapy or to six biofeedback sessions consisting of abdominal breath training, heart 
and respiratory physiological feedback, and daily breathing practice. HRV was 
measured by SDNN at pretreatment, after treatment, and at a follow-up after 
12 weeks (Del Pozo et al.  2004 ). Thus, here HRV was used to look at effects within 
a therapeutic paradigm, but not as a biofeedback parameter on its own. 

 The group around Lehrer has the most documented experience with HRV in bio-
feedback. They describe their technique as follows: “The feedback takes several 
forms. One uses a beat-to-beat cardiotachometer, superimposed on a measure of 
respiratory activity. The patient is instructed to breathe approximately in phase with 
heart rate changes, with the goal of maximally increasing amplitude of RSA. In 
another display, the patient is shown a moving frequency analysis of heart rate, 

HRV Biofeedback



306

within the band of 0.005–0.4 Hz. The display is updated approximately every sec-
ond, and refl ects the frequency of heart rate fl uctuations within the past minute” 
(Lehrer et al.  2000 ; Lehrer and Vaschillo  2000 ). Their studies are based on earlier 
experiences, most of them published in Russian journals (Chernigovskaya et al. 
 1990a ;  b ; Pichugin et al.  1993 ; Sidorov and Vasilevskii  1994 ; Vasilevskii et al.  1993 ). 

 HRV biofeedback in the HF range was used in children with asthma. In this pro-
tocol, the children were taught to engage in relaxed abdominal pursed-lip breathing 
while they were administered respiratory sinus arrhythmia biofeedback. Participants 
were also encouraged to exhale for longer periods than they inhaled, where this was 
comfortable and produced higher RSA. They used an analogue device that outputs 
a pulse for each R-spike, which in turn is detected by a Schmidt trigger, which trig-
gers a pulse former. The computer calculates cardiac interbeat interval from the 
time interval between these pulses. Feedback is given for averages of two adjacent 
pulses. To eliminate noise, the device uses a differential amplifi er and contains a 
fi lter to eliminate 50-Hz noise. The device uses an amplifi er having a differential 
input and containing active fi lters to further reduce electrical noise and to ensure 
reliable selection of cardiac signals. They showed a moderate but signifi cant 
improvement in FEV1 and FEF50 % after 13–15 daily 20-min RSA biofeedback 
sessions with 20 children (Lehrer et al.  2000 ; Lehrer and Vaschillo  2000 ). In a later 
uncontrolled study on 45 adults, they did not fi nd age-dependent effects (Lehrer 
et al.  2006 ; Lehrer and Vaschillo  2000 ). A small pilot study with fi bromyalgia 
patients showed promising results (Hassett et al.  2007 ), as did studies on depression 
(Karavidas et al.  2007 ; Beckham et al.  2013 ), food craving (randomized (Meule 
et al.  2012 ) therapeutic effect in spite of that HRV decreased after treatment), con-
stipation (Ding et al.  2012 ), and more. HRV biofeedback has optimized motoric 
performance in sports in a small randomized study (Paul et al.  2012 ) and probably 
has some effects on hypertension (Lin et al.  2012 ). 

 In summary, HRV-based biofeedback might be promising. On the other hand it 
is rather unclear whether this effect is due to a specifi c consequence of HRV-based 
biofeedback or due to a rather unspecifi c consequence of biofeedback as a relax-
ation technique. The research fi eld is dominated by small pilot studies and some, 
though few, small randomized trials. I agree therefore with Wheat and Larkin that 
“the mechanism by which HRV biofeedback results in salutary effects are unclear” 
(Wheat and Larkin  2010 ). Studies with suffi cient statistical power are unfortunately 
still lacking, although the method is used at many institutions.     
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                    In 1996, a consensus panel issued a set of guidelines regarding the measurement 
and interpretation of HRV. In the 17 years since that report, there have been major 
technological advances and hundreds of publications on various patient 
populations. 

 There is now wide-ranging evidence of oscillation phenomena in different 
micro- or macro-systems in humans and other mammals. There is some evidence 
that disturbances in variations of oscillations may be refl ected in changes in the 
variability of oscillations. In other words: a decrease in complexity shows begin-
ning or advanced deterioration of (organ) systems. But decreased complexity may 
also cause further deterioration. In this approach, complexity is seen as an entity of 
its own and not as surrogate for system deterioration (Godin and Buchman  1996 ). 
This would imply that any therapeutic strategy that focuses on an increase of com-
plexity would increase survival. Bedside measurement would help to establish trial-
and- error interventions, which in turn would improve therapeutic results. 

 Buchman recently summarized possible advantages of using tools of complexity 
research in clinical science: (1) the possibility of managing large amounts of paral-
lel data sets, (2) the option to design experiments in cases when a traditional experi-
mental approach is not possible, (3) having a framework to build up mathematical 
models that are able to show or even explain clinical issues, and (4) an analysis tool 
can be used both for micro- and macro-systems and even for combinations of both 
(Buchman et al.  2001 ). Goldstein concludes, “Despite the multitude of physiologic 
signals available for monitoring, we suggest that a wealth of potential valuable 
information that may affect clinical care remains largely an untapped resource” 
(Goldstein et al.  2003 ). HRV has been used more often with linear measures like 
SDNN or power spectra as a predictor for sudden cardiac death, but that has its limi-
tations if HRV rates of patients with already established cardiac disease are exam-
ined. The possibility of extracting fractal variables can provide information even if 
HRV is already signifi cantly reduced (Lombardi  2000 ). 

 At the moment it seems that interest in physiological time series is increasing. 
But there are clear caveats. “As the scientifi c community continues to explore 
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mathematical complexity in biology and medicine and applies basic engineering 
principles to analyse large physiological data sets, it is important that this is done 
using thoroughly tested methods” (Goldstein and Ellenby  2000 , p. 3940). New 
methods are usually welcomed and several research groups experiment with them. 
Very many different measures have been used, and thus, the question arises about to 
what extent HRV analysis with linear and nonlinear methods is a form of data tor-
turing in order to produce an algorithm with a statistically signifi cant parameter. 

 Xhyveri    ( 2012 ) states that HRV has not been incorporated in clinical practice and 
argues that the time-consuming manual editing is a problem. She calls for further 
prospective randomized studies “specifi cally in patients with recent myocardial 
infarction or chronic heart failure.” Brahm Goldstein described HRV to identify 
neonatal sepsis as a premature tool, mentioning the problem of making possible 
suffi cient discrimination to distinguish between sick and healthy subjects (Goldstein 
 2005 ). In several areas HRV might be used clinically already today in a similar 
manner to the earlier use of erythrocyte sedimentation rate (ESR). ESR is pathologi-
cally related to many diseases and presents considerable variation between patients. 
However, it has been used over decades as a supplement to other clinical informa-
tion and has contributed to a comprehensive view of a clinical situation. Perhaps at 
this stage we ought to consider HRV in a similar way. 

 While I am writing this in 2013, new approaches continue to emerge. 
QT-variability has been successfully used as prognostic factor in patients with heart 
failure (Tereshchenko et al.  2012 ). Modifi ed SDANN techniques have been imple-
mented in standard ICU monitoring, making it far simpler to use in everyday prac-
tice (Mowery et al.  2008 ). 

 There are still many open questions, such as the following: What is the value of 
time-domain indices in short-term measures? Is it feasible to take VLF, for instance, 
in a 10-min short-term measurement? What is the value of all the new algorithms? 
Probably the most important challenge to clinical researchers is to start intervention 
studies. I have screened an enormous number of HRV studies. In some areas, such 
as CVD and CVD and depression, I found clear associations between decreased 
HRV and mortality in follow-ups. What we are missing are randomized studies in 
which half of the participants with decreased HRV parameters are treated with a 
battery of preventive measures. There have been some intervention studies. Hanss 
successfully used results of an earlier study (Hanss et al.  2005 ) to prevent hypoten-
sion due to spinal anesthesia with clinical interventions for a group of patients with 
an LF/HF >2.5 (Hanss et al.  2006 ). 

 In 2013, 407 studies using heart rate variability are listed, and 163 still open. 1  
Not surprisingly, the majority of them focuses on mostly specialized aspects of 
cardiovascular disease. Many studies address depression. There is still high activity 
in the fi eld of critical illnesses. Rehabilitation, exercise and prevention, and comple-
mentary medicine are also areas with a high use of HRV. Many of the protocols 
characterized as “other studies” investigate dietary changes, mostly omega-3 fatty 
acids as dietary supplement (Table  17.1 ).

1   www.clinicaltrials.gov , assessed 12 Mar 2013. 
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   A closer look at these ongoing studies reveals that HRV is often one of several 
parameters used. Only about 12 % of the studies focus on HRV directly or at least 
on the ANS. It seems as if HRV is still often used as a source of additional param-
eters in observational or interventional studies, simply as a way to have more data. 
HRV is not often integrated in research hypothesis, but rather analyzed retrospec-
tively and mentioned in case of signifi cant effects either in dichotomous analysis or 
multivariate models. In such cases it sometimes goes the way of Ronald Coase’s 2  
famous phrase: “If you torture the data long enough, it will confess.” Another set of 
the studies looking at dietary changes or complementary-medicine approaches 
appears to use HRV as a surrogate, suggesting that improvements in HRV might 
refl ect general health effects. At times, HRV is used simply to make the studies look 
more scientifi c. Only very few studies use HRV in order to select patients for 
interventions. 

   HRV as Publication-Generating Machine 

 Publish or perish is not a new phenomenon in the sciences. Already Albert Einstein 
used to complain about the pressure on young scientists to produce a vast amount of 
papers. HRV is very convenient for producing such papers. It is cheap and does not 
have adverse effects, and the short-term form is conducted rapidly. It delivers sev-
eral indices that increase the chances of fi nding differences between groups. It can 
be interpreted with physiological knowledge and discussed in terms of the ANS in 
seemingly scientifi c manner without real causal relationships. In addition, a stan-
dard exists since 1996, which makes the methodological part easier. HRV generates 
basically a row of integer numbers, which again makes it suitable for a vast amount 
of mathematical algorithms. Many scientists dream of fi nding a magic formula that 
could be used as diagnostic tool forever. Not surprisingly, a very high number of 

2   American economist, born 1910, received the Nobel Prize in Economics in 1991, and still scien-
tifi cally active. 

  Table 17.1    Open studies in 
  www.clinicaltrials.gov    . 
Accessed 12 March 2013  

 Area  Number of studies 

 Cardiovascular and hypertension  35 
 Psychiatry  20 
 Intensive care, trauma, and anesthesia  15 
 Rehabilitation, prevention  15 
 Complementary medicine  14 
 Brain damage and stroke  9 
 Diabetes  6 
 Lung diseases  6 
 Biofeedback  2 
 Other studies  41 
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algorithms have been published (Bravi et al.  2011 ), mostly without any much 
 apparent connection to useful clinical information. 

 HRV shares some properties with other easy and cheap methods without adverse 
effects. Not surprisingly, then, it has been used in at least one study in almost all 
symptom constellations or illnesses. It is used in patient groups where neither the 
mechanisms nor the effective treatments are known. Examples are fi bromyalgia 
(Petzke and Clauw  2000 ), tension-type headache (Pogacnik et al.  1993 ), or the so- 
called myalgic encephalomyelitis (Togo and Natelson  2013 ). HRV is also used in 
areas in which new technologies appeared and about which the general public sus-
pects that such technologies could be detrimental to health (e.g., Lyskov and 
Sandström  2001 , Ahamed et al.  2008 ). It is easy to fi nd differences between groups 
in illnesses, which trigger chronic distress, alone that a probable cause for differences 
to healthy controls. Clearly, there is a risk that HRV can be misinterpreted as “proof” 
for pathology, harmfulness of some modern technology, environmental pollution, 
bad working conditions, and so on. HRV with its many indices is in addition an ideal 
“data torturing” (Mills  1993 ) instrument that produces “something.” Of course, nega-
tive studies are rarely published anyway, but probably in the case of HRV, negative 
studies like in tension-type headache (Pogacnik et al.  1993 ) are simply rare. 

 Many studies do not have any clear hypothesis on why they use HRV or what 
HRV means in the studied patient group and which specifi c changes can be expected. 
This is a problematic situation for proper research on HRV. In addition, several stud-
ies give the impression that a good number of the ideas presented appeared after the 
results were on hand. I have expounded the problems of the relationship between 
ANS and HRV, and this has been discussed extensively. Nevertheless, simplistic 
conclusions are drawn again and again without even a suggestion that there are 
major caveats. 

 I am convinced that HRV can in fact contribute to many scientifi c and clinical 
questions. There is – thankfully – strong evidence in some fi elds that HRV has pre-
dictive values and weaker evidence in fewer fi elds that it can be used to guide inter-
ventions. If we really want to appreciate the value of HRV, we need to focus on 
more scientifi cally solid argumentation. Otherwise we could end up like the emperor 
in Hans Christian Andersen’s fairy tale: we could be told that the emperor is wear-
ing nothing at all (“The Emperor’s New Clothes”)!  

   Conclusion 

 HRV is a scientifi c and clinical instrument with some established applications, some 
experimental applications, and some caveats. Ideally, hard- and software for HRV 
should be capable of analyzing further clinical time series data (e.g., respiration 
rate, blood pressure, immunological data), should be able to use different algo-
rithms, or should be able to export digitalized data to be analyzed with MATLAB 
tools. A bedside tool to digitalize and analyze clinical data would very likely con-
tribute to novel approaches in complex clinical situations.     
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