
Chapter 5
Diagnosis and Automata

Eric Fabre

5.1 Diagnosis vs. State Estimation

Automaton. Our starting point is a nondeterministic automaton A = (S,Σ , I,δ ),
with S the finite state set, I⊆ S possible initial states, action alphabet Σ and transition
function δ : S×Σ → 2S. The latter extends naturally into δ : 2S×Σ∗ → 2S by union
on the first variable and by iteration on the second one. As usual, the action alphabet
is partitioned into Σ = Σo�Σu, observable and unobservable (or silent, or invisible)
labels, respectively The transition set of A is denoted as T = {(s,α,s′)∈ S×Σ×S :
s′ ∈ δ (s,α)}, and for a transition t = (s,α,s′), we denote s−(t) = s,s+(t) = s′, and
σ(t) = α . If |I| = 1 and ∀(s,α) ∈ S×Σ , |δ (s,α)| ≤ 1, automaton A is said to be
deterministic.

A path or trajectory π of A is a sequence of transitions π = t1 . . . tn such that
s−(t1) ∈ I and s+(ti) = s−(ti+1), for 1≤ i < n. We adopt notations s−(π) = s−(t1),
s+(π) = s+(tn), |π | = n, the length of π , σ(π) = σ(t1) . . .σ(tn) and σo(π) =
ΠΣo(σ(π)) where ΠΣo is the natural projection of Σ∗ on Σ∗o . The language of
A is L (A ) = {σ(π) : π path of A }, and its observable language is Lo(A ) =
ΠΣo(L (A )). A is Σo-live iff from every state of A , one can reach a transition
labeled by Σo.

State estimation. Assume the system A performs some hidden run π , over which
one only gets a partial knowledge by means of the observed sequence of labels
w=σo(π) produced by π . A natural question is ‘What are the possible current states
of A given that w was observed?’ So one wishes to build a function f : Σ∗o → 2S

such that f (w) = {s+(π) : π path of A ,σo(π) = w}. There exists an obvious way
of building f , recusively on the length of π : from f n : Σn

o → 2S solving the problem
for observed sequences of length n, one can derive f n+1 by the so-called ‘guided
simulation’ of A .
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Alternately, one can build an observer Obs(A ) of A as a pair (O,φ), where
O = (Q,Σo,q0,δ ′) is a deterministic automaton over alphabet Σo, and φ : Q→ 2S

is a label function over its states. For any observed w ∈ Σ∗o , let q = δ ′(q0,w) be the
unique state reached by w in O , then φ satisfies φ(q) = f (w) ⊆ S. An observer can
thus be seen as a precompiled and finite version of the recursive function f . The
derivation of observers is detailed later in this chapter, which also examines some
of their properties.

Diagnosis. The problem is usually stated as follows. One first associates types to
the transitions of A . This is done simply by setting T = T1∪ ...∪TK, where each Tk

gathers transitions of ‘type k’. Sets Tk need not be disjoint, although the literature
generally makes this assumption [3, 15]: transition types are usually interpreted as
distinct failure modes, with one of them, say T1, representing the ‘safe’ (i.e. non
faulty) transitions. On wishes to build K diagnosis functions fk : Σ∗o → {y,a,n},
1≤ k ≤ K, such that

fk(w) =

⎧
⎨

⎩

y if ∀π ∈ σ−1
o (w), π 
∈ (T \Tk)

∗

n if ∀π ∈ σ−1
o (w), π ∈ (T \Tk)

∗

a otherwise
(5.1)

In other words, fk(w) answers ‘yes’ if all runs of A explaining w use a transition of
Tk, it answers ‘no’ if none of these runs uses a transition of Tk, and answers ‘ambigu-
ous’ otherwise. A diagnoser of A is now a pair (D ,ψ) where D = (Q,Σo,q0,δ ′) is
again a deterministic automaton over alphabet Σo, and ψ : {1, ...,K}×Q→{y,a,n}
is a (collection of) label function(s) over its states. For any observed w ∈ Σ∗o ,
let q = δ ′(q0,w) be the unique state reached by w in D , then ψ(k,q) = fk(w),
1 ≤ k ≤ K. A diagnoser is thus a finite and precompiled version of the K diagnosis
functions.

Relation between the two problems. Despite an apparent difference, observers
and diagnosers are similar objects. To build a diagnoser, the first step consists in
augmenting the states of A with some memory μ ⊆ {1, ...,K} to keep track of
transition types that are fired by A along its trajectory. This yields ¯A = (S̄ = S×
2{1,...,K},Σ , I×{ /0}, δ̄) where

(s′,μ ′) ∈ δ̄ ((s,μ),α) ⇔
{

s′ ∈ δ (s,α)
μ ′ = μ ∪{k : (s,α,s′) ∈ Tk}

(5.2)

In words, this ‘state augmentation trick’ does the following: as soon as A fires a
transition of Tk, the memory set μ stores index k (forever). Equivalently, the above
construction can be seen as computing the synchronous product (see Section 5.5 for
a definition) of A with K elementary memory automata1.

1 The memory automaton for Tk only has two states 0 and 1, and {1, ...,K} as label set. It is
deterministic and complete, and the only transition from 0 to 1 is labeled by k. Transitions
of A must of course be relabeled by their type before the synchronous product can be
computed, using types as labels. Details are left to the reader.
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Observe now that deriving a diagnoser for A is equivalent to computing an ob-
server for the augmented automaton ¯A . Given w ∈ Lo(A ) ⊆ Σ∗o and the unique
state q reached by w in Obs( ¯A ), the diagnosis function ψ is then given by

ψ(k,q) =

⎧
⎨

⎩

y if ∀(s,μ) ∈ q, k ∈ μ
n if ∀(s,μ) ∈ q, k 
∈ μ
a otherwise

(5.3)

Given this similarity, the chapter focuses on the derivation of observers and will
only mention diagnosers to comment specific aspects.

5.2 Observer and Diagnoser

Given Σ = Σo�Σu, an observer of A is obtained by first performing an ε-reduction,
and then determinizing the result: Obs(A ) = Det(Red(A )). The label function φ
is trivial (the identity), and thus can be omitted.

ε-reduction. The ε-reduction A ′ = Red(A ) = (S,Σo, I′,δ ′) amounts to bypassing
all transitions of A labeled by Σu (or equivalently the generic silent label ε). It can
be performed either to the left of visible transitions, or to their right. Without loss of
generality, in this chapter we focus on the reduction to the right. The ε-reduction
to the right (see Fig. 5.1) is defined by δ ′(s,α) = δ (s,αΣ∗u ) = ∪w∈αΣ∗u δ (s,w).
For the initial states, one has I′ = δ (I,Σ∗u ) = ∪s∈I δ (s,Σ∗u ). Observe that the re-
sulting automaton A ′ has the same states as A , operates on the reduced alphabet
Σo, but is generally nondeterministic. By construction, one has L (A ′) = Lo(A ).
By contrast, the ε-reduction to the left would take I′ = I and δ ′(s,α) = δ (s,Σ∗u α) =
∪w∈Σ∗u α δ (s,w), still preserving L (A ′) = Lo(A ).

αs α
α

s α

Fig. 5.1 Epsilon-reduction to the right. Dashed arrows represent silent (epsilon) transitions

Determinization. The determinization A ′′ = Det(A ′) = (Q,Σo,q0,δ ′′) of A ′ is
obtained by the standard subset construction. One has Q = 2S, q0 = I′, and for q∈Q
and α ∈ Σo, the unique state q′ = δ ′′(q,α) in A ′′ is defined as q′ = δ ′(q,α) �
∪s∈q δ ′(s,α). Not all states in 2S are reachable, so one often directly takes for Q
the reachable part of 2S, starting from q0 = I′ and exploring recursively the δ ′(q,α)
for all α ∈ Σo until no new q is found (Fig. 5.2). Determinization obviously has
an exponential space complexity, in the worst case. Automaton A ′′ directly yields
a state estimator, or an observer of A , by taking the identity for φ . By abuse of
notation, one thus say that A ′′ is an observer of A , rather than (A ′′,φ).
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q q q’

Fig. 5.2 Determinization. The dashed arrow represents a transition not labeled by α in A ′

Remarks

1. As mentioned in the previous section, building a diagnoser boils down to build-
ing an observer. Without loss of generality, for the diagnosis problem one can di-
rectly assume that states of A are partitioned into S = S1� ...�SL with L = 2K ,
corresponding to the 2K possible values of the memory in ¯A . The diagnosis
then reduces to checking whether all final states compatible with observation
w ∈Lo(A ) lie into the union of some selected Sl .

2. If one is only interested in diagnosing independently the occurrence of each Tk,
it is simpler to build K diagnosers, one for each Tk, by augmenting A with a
simpler binary memory, or equivalently by assuming a partition S = Ss�S f into
safe and faulty states. In terms of complexity, this clearly saves an exponential in
K. The diagnoser derived in the previous section is much more powerful, since
it can also test for the simultaneous presence of several transition types in each
trajectory explaining an observed word w.

3. Surprisingly, the ε-reduction to the right is frequent in the literature about state
estimation (see the notion of ‘unobservable reach’), but the ε-reduction to the left
is preferred to derive a diagnoser. In other words, it is admitted that the super-
vised system changes its state silently, but not that it produce a fault silently. For
diagnosis, one is generally interested in the occurrence or not of some transition
type before the last observation of w (and not necessarily in the silent moves that
follow w), which can be considered as an optimistic assumption. This choice is
not bothering for Σo-live systems, since it only delays by one observation the
detection of a fault occurrence, and in particular it does not change the notions
of diagnosability. However, it makes a difference for non Σo-live systems, in the
case where some states necessarily lead to a failure after which no more obser-
vation is collected (system crash).

4. Some contributions introduced so-called ‘observation filters’ [16, 17]: rather than
a partition Σ = Σo � Σu, one gives a filter λ : S× Σ × S→ 2Λ∪{ε}, and when
t = (s,α,s′) is fired, one label β ∈ λ (t) ⊆ Λ ∪{ε} is observed (possibly none
if β = ε). This does not change the expressive power of the model, that can
be recoded in the classical setting by replacing (s,α,s′) by (s,β ,s′) for every
β ∈ λ (t). The only difficulty introduced by such a recoding is that two versions
of (s,β ,s′) may co-exist, one faulty and the other not. But this is captured by the
possibility that a transition belong to several Tk.

5. An extended notion of diagnoser was proposed in [9]. It tests the occurrence
(or not) of more complex properties on the partially observed trajectory of A ,
such as the crossing of specific states interleaved with the crossing of specific
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transitions. As long as these properties are regular and can thus be described by
an automaton, the ideas of this chapter adapt naturally: one simply has to replace
the simple state augmentation described previously by the product of A with the
automaton describing the property to check.

5.3 Probabilistic Observer

Probabilistic automata [14] form a subclass of weighted automata. The idea is that
the transitions rooted at any state are associated to firing probabilities. The state
estimation problem now evolves into computing the probability to stop in state s∈ S
given that w∈Σ∗o was observed (for diagnosis one wishes the conditional probability
that a transition in Tk was fired). Again, one can design a recursive way to compute
this conditional distribution over S; it takes the form of a filtering equation ‘à la
Kalman.’ This section rather examines the precompiled version of this filter, that
has great similarities with the non stochastic case.

Probabilistic automaton. We define it as A = (S,Σ ,P0,P) where P0 : S→ [0,1] is
an initial probability on states, with initial states I = supp(P0)

2, and P : S×Σ×S→
[0,1] a transition probability, i.e. ∀s ∈ S, P(s, ·, ·) is a probability distribution over
next labels and next states, given the current state s. Transitions are given by
T = supp(P), and the transition function by δ (s,α) = supp(P(s,α, ·)). This def-
inition assumes that A is live, for simplicity3. A is said to be deterministic iff
its support supp(A ) = (S,Σ , I,δ ) is a deterministic (non stochastic) automaton.
The probability of a path π = t1...tn is equal to the product of the probabilities
of its events P(π) = P(t1)...P(tn). And the language of A is defined as the for-
mal power series L (A ) = ∑w∈Σ∗L (A ,w) · w where coefficients are given by
L (A ,w) = ∑π ,σ(π)=wP0(s−(π))P(π).

Observable (or stopped) language. To define the observable language of A as
a weighted language, one must choose an appropriate notion of stopping time for
A , in order to define where runs should stop when they perform silent transitions.
We adopt the following : A stops immediately before the production of the next
observation, assuming A is Σo-live i.e. can reach an observable transition from
any reachable state. Equivalently, A stops when it has been decided that the next
step would produce an observation, but it is not yet decided which one4. This def-
inition allows one to consume all silent steps after each observation. It contrasts
with the usual choice of stopping immediately after an observable transition, which
is slightly easier to handle and thus has often been chosen. It corresponds to the

2 supp = support of; this operation selects the elements with non zero probability
3 One can easily extend this setting to include stopping probabilities at each state, just like

standard weighted automata include stopping weights.
4 For systems that have final states and stopping probabilities, one can choose to assimilate

(or not) the choice to terminate in some state to the production of an observation, for the
definition of the stopping time.
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‘optimistic’ assumption that the system does not evolve silently by itself. Or at least
that this evolution is ignored until there is evidence of it. Technically, the only im-
pact is on the ε-reduction below, performed to the right (our case) instead of to the
left (as in [16] for example).

We define the stopped language of A as follows: for a path π we take P
s(π) =

P0(s−(π))P(π)P(s+(π),Σo,S), where P(s+(π),Σo,S) is the probability of firing
an observable transition from state s+(π). Observe that a path cannot stop at a
state which has no observable outgoing transition, i.e. such a path has a vanish-
ing probability. Therefore some states in A are ‘unstable.’ Then L s(A ,w) =
∑π ,σ(π)=wP

s(π) and the stopped language of A is L s(A ) = ∑w∈Σ∗L
s(A ,w) ·w.

The observable language of A is given by Lo(A ) = ∑w∈Σ∗o Lo(A ,w) ·w where

Lo(A ,w) = ∑
v∈Σ∗,ΠΣo (v)=w

L s(A ,v). (5.4)

Notice that the support of the stopped language may be strictly smaller than the sup-
port of the ordinary language, since some states of A may forbid stopping. How-
ever, the observed stopped and non-stopped languages of A have identical supports.

Probabilistic observer. Given partitions Σ = Σo�Σu and S = S1� ...�SL, the ob-
jective is to derive a deterministic probabilistic automaton O = (Q,Σo,P

O
0 ,P

O), and
a labeling φ : Q→P(L) of its states, where P(L) is the set of probability distri-
butions over {1, ...,L}. Given w ∈ Σ∗o produced by A , and q ∈ Q the unique state
reached by w in O , we want (φ(q))(l) = P(A stops in Sl | w was observed) for
l ∈ {1, ...,L}. Every such probabilistic observer can trivially be derived from a uni-
versal one assuming the finest partition of S, i.e. we actually aim at building an
observer that computes P(A stops in s | w was observed) for every s ∈ S.

In fact, the probabilistic observer derived below exhibits more properties than
requested above: it guarantees that L (O) = Lo(A ), i.e. for any observed word
w ∈ Σ∗o , it can also compute the probability of this observed word in A . If one is
simply interested in the conditional distribution over S given w, the labeling function
φ is sufficient and O can be reduced to its support.

ε-reduction. We look for a probabilistic automaton A ′ = Red(A ) = (S,Σo,P
′
0,P
′)

such that L (A ′) =Lo(A ′)=Lo(A ). Structurally, the automaton will be the same
as in the non probabilistic case, and obtained by ε-reduction to the right. The diffi-
culty lies in the computation of transition probabilities, since an unbounded number
of silent steps may be performed until A decides to stop (and commits to fire a
visible transition at the next step). This requires to integrate probabilities over a
possibly infinite set of silent paths. The difficulty can addressed by different meth-
ods, of equivalent complexities. We give two of them below; see [8] for a graphical
one.

The transition probability of automaton A ′ can be expressed as P
′(s,α,s′) =

∑s′′∈SP(s,α,s′′)Pε(s′′,s′)P(s′,Σo,S), where
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P
ε(s,s′) = P(s,Σ∗u ,s

′) = ∑
π, σ(π) ∈ Σ ∗u

s−(π) = s, s+(π) = s′

P(π) (5.5)

and similarly for the initial probability: P
′
0(s
′) = ∑s′′∈SP0(s′′)Pε (s′′,s′)P(s′,Σo,S).

Notice that (5.5) does not represent the probability to reach s′ from s after an ar-
bitrary number of silent steps, because s′ can be met several times along such
paths. One must take into account a stopping or exit probability at s′ to turn this
quantity into a probability, as it is done in the definition of P

′(s,α,s′): the term
P

ε(s′′,s′)P(s′,Σo,S) does correspond to the probability of going from s′′ to s′

through an arbitrary number of silent steps and to exit at s′ towards a visible la-
bel. Similarly, Pε(s,s) ≥ 1 yields the inverse of the probability to leave state s for a
visible label (after performing an arbitrary number of silent loops around s).

The pseudo transition matrix P
ε can be obtained through a Floyd-Warshall pro-

cedure. It is usually applied to compute minimum distances between all pairs of
nodes in a graph. By replacing the (min,+) setting by the (+,∗) setting, one ob-
tains a simple way to integrate probabilities over all paths relating two nodes [4, 13].
Specifically, denoting S = {s1, ...,sN}, one defines Pε

n(s,s
′) as in (5.5), excepted that

the sum is limited to paths that go through states in {s1, ...,sn}. The desired P
ε cor-

responds to P
ε
N , and P

ε
0(s,s

′) = P(s,Σu,s′): probability of a direct silent step from s
to s′. The Pε

n satisfy the following recursion: for s 
= sn+1 
= s′

P
ε
n+1(s,s

′) = P
ε
n(s,sn+1)P

ε
n(sn+1,sn+1)

∗
P

ε
n(sn+1,s

′)+P
ε
n(s,s

′) (5.6)

P
ε
n(sn+1,sn+1)

∗ = ∑
k≥0

P
ε
n(sn+1,sn+1)

k =
1

1−Pε
n(sn+1,sn+1)

(5.7)

where (5.7) integrates over paths that make an arbitrary number of silent
loops around sn+1. For completeness, one must add to (5.6) three follow-
ing specific cases: P

ε
n+1(sn+1,sn+1) = P

ε
n(sn+1,sn+1)

∗, then P
ε
n+1(s,sn+1) =

P
ε
n(s,sn+1)P

ε
n(sn+1,sn+1)

∗, and finally P
ε
n+1(sn+1,s′) = P

ε
n(sn+1,sn+1)

∗
P

ε
n(sn+1,s′).

The complexity of the ε-reduction by this method is O(|S|3).
Instead of the Floyd-Warshall procedure, one may also consider a fix-point re-

lation satisfied by matrix P
ε . Let P̄ε = P

ε − I; this corresponds to Definition (5.5)
where Σ∗u is replaced by Σ+

u , i.e. paths must cross at least one unobservable transi-
tion. One then has

∀s,s′ ∈ S, P̄
ε(s,s′) = ∑

s′′∈S

P̄
ε(s,s′′)P(s′′,Σu,s

′)+P(s,Σu,s
′) (5.8)

Still denoting by Pε
0 the matrix with entriesP(s,Σu,s′), (5.8) means P̄ε = P̄

ε ·Pε
0+P

ε
0

(notice that P̄ε =P
ε
0 ·P̄ε +P

ε
0 holds as well). This entails Pε = I+P

ε ·Pε
0 = I+P

ε
0 ·Pε

whence Pε = (I−P
ε
0)
−1 (assuming invertibility holds). Deriving P

ε by this methods
reveals again a generic complexity in O(|S|3), due to the matrix inversion.

Determinization. To determinize a probabilistic automaton A ′ = (S,Σo,P
′
0,P
′),

one can rely on the standard determinization procedure of weighted automata, that
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adapts the recursive subset construction given in the previous section [2, 10, 11].
One has A ′′ = Det(A ′) = (Q,Σo,P

′′
0 ,P
′′) where Q ⊂ 2S×[0,1] and can be infinite.

P
′′
0 assigns probability 1 to the unique state q0 = {(s,P′0(s)) : s ∈ supp(P′0)}. Suc-

cessive states are obtained recursively as follows. Let q = {(s1, p1), ...,(sM , pM)} ∈
Q and α ∈ Σo, one has δ ′′(q,α) = q′ = {(s′1, p′1), ...,(s

′
N , p′N)} iff {s′1, ...,s′N} =

δ ′({s1, ...,sM},α) 
= /0, and for 1≤ n≤ N

p′′n = ∑
1≤m≤M

pm ·P′(sm,α,s′n) (5.9)

p′n = p′′n/C where C = ∑
1≤k≤N

p′′k = P
′′(q,α,q′) (5.10)

Proposition 5.1. Let w ∈ Σ∗o and δ ′′(q0,w) = q = {(s1, p1), ...,(sM , pM)} in A ′′,
then

pm = P(A ′ is in state sm|w was observed) (5.11)

Proof. This is obviously true at qo for w = ε . Assume it is true at q = δ ′′(qo,w) and
let q′ = δ ′′(q,α). Eq. (5.9) is a standard filtering equation for A ′ (based on Bayes
rule and the Markov property), so p′′n is the probability that A ′ produces α ∈ Σo and
reaches state s′n ∈ S given that w was observed. Consequently, C is the probability
to fire α given w was observed, and the (p′n)1≤n≤N give the conditional probability
of the current state of A ′ given the observed sequence wα . �

Corollary 5.1. The probabilistic automaton Det(Red(A )) built above yields a uni-
versal probabilistic observer. For state q = {(s1, p1), ...,(sM , pM)}, the index func-
tion φ(q) ∈P(S) is defined by [φ(q)](sm) = pm, for 1≤m≤M, and by [φ(q)](s) =
0 otherwise.

Proof. If A ′ = Red(A ), pm is the probability that A stops in sm given that w was
observed. To make A ′′ an observer for partition S = S1 � ...� SL, one simply has
to take the distribution defined by the [φ(q)](Sl), for 1 ≤ l ≤ L. Notice also that
L (A ′′) = L (A ′) = Lo(A ). �
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Fig. 5.3 A probabilistic automaton (left) and its determinized version (right). Transition
probabilities are only mentioned when they differ from 1
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Example 5.1. Figure 5.3 illustrates the determinization procedure. This simple ex-
ample seems to suggest that the conditional probabilities appear as extra information
attached to a standard (i.e. non-probabilistic) observer. This is not the case, and the
determinization procedure may very well not terminate, as revealed by the counter-
example in Fig. 5.4. While for weighted automata taking values in the (R+,min,+)
semiring there exist sufficient conditions to guarantee termination (see the twin
property in [12]), to our knowledge it is still not clear what these conditions could
be for probabilistic automata. �

...β β

b

ca

α
1/2

α 1/2
β

β 1/2

β

1/2

b:1/2
c:1/2

b:1/4
c:3/4a:1 α

Fig. 5.4 Determinization may not terminate

Probabilistic diagnoser. Using the same technique as in the previous section, a
probabilistic diagnoser for A is nothing else than a probabilistic observer for an
augmented automaton ¯A , that keeps track of which transition types have been
crossed along the run of A :

P̄((s,μ),α,(s′,μ ′)) = P(s,α,s′) · Iμ ′=μ∪{k:(s,α ,s′)∈Tk} (5.12)

where I is the indicator function. From the conditional distribution on states of ¯A
given some observation w ∈ Σ∗o , one then easily derives the conditional distribution
on memory values μ , and further on transition classes Tk that were crossed by A .
Again, if one is only interested in this probability distribution, the observer can
be turned into an ordinary (non stochastic) deterministic automaton, by taking the
support of O .

Remark. The ‘observation filters,’ that randomly modify the labels of Σ produced
by transitions of A , can be processed in a similar manner as in Remark 4 of Sec-
tion 5.2. The slight difference here is that a given observed label β ∈ Λ ∪{ε} may
correspond to several underlying transition types Tk, that have different probabili-
ties. This case is captured simply as follows: one replaces the deterministic mem-
ory represented by the 1I term in (5.12) by a ‘randomized’ memory. Specifically,
given T = T1∪ ...∪TK and for μ ′ = μ �μ”, (5.12) becomes P̄((s,μ),β ,(s′,μ ′)) =
P(s,β ,s′) ·P(∧k∈μ” Tk∧

∧
k 
∈μ ′ T̄k |(s,β ,s′)). The first term is the probability to move

from s to s′ and produce label β , the second one is the (conditional) probability that
this move crosses a transition lying in all Tk for k ∈ μ”, and in none of the Tk for
k 
∈ μ ′.
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5.4 Diagnosability

For simplicity, and without loss of generality, this section assumes an automaton A
with a partition S = Ss � S f of its states into safe and faulty ones (recall the state
augmentation trick), and such that no safe state is reachable from a faulty one. It
is also assumed that A is Σo-live. For w ∈ Σ∗o , let us consider again the diagnosis
function f (w) for A defined as

f (w) =

⎧
⎨

⎩

y if ∀π ∈ σ−1
o (w), s+(π) ∈ S f

n if ∀π ∈ σ−1
o (w), s+(π) ∈ Ss

a otherwise
(5.13)

Definition 5.1. A is diagnosable iff there exists some integer N such that

∀π : s+(π) ∈ S f , ∀π ′ : s−(π ′) = s+(π), [ |π ′|Σo > N ⇒ f (σo(ππ ′)) = y ]

where |π ′|Σo denotes the number of visible transitions in path π ′.

In other words, as soon as a path hits a faulty state, at most N observations later the
fault will be diagnosed. Ambiguity cannot last forever.

Remarks

1. Some definitions rather take |π ′| rather than |π ′|Σo , with the assumption that A
has no silent circuit, which yields an equivalent definition for this smaller class
of systems. This restriction is not really necessary, and |π ′|Σo makes more sense
since it gives an observable criterion to position the fault.

2. Some authors do not require that A is Σo-live, and then extend the condition to
extensions π ′ that contain M ≤ N observations after which no more visible tran-
sition is reachable (deadlock or silent live-lock). This generalization introduces
minor technical changes, that are left to the reader.

Proposition 5.2. If A is not diagnosable, then a diagnoser (D ,ψ) of A necessarily
contains a circuit of ambiguous states.

Proof. In Def. 5.1, f (σo(ππ ′)) can only take values y or a. If A is not diagnosable,
let N be greater than the number of states in D . There exists π ,π ′ with s+(π) ∈ S f ,
|π ′|Σo > N and f (σo(ππ ′)) = a. Let q be the unique state reached by σo(π) in D ,
then ψ(q) = a and any state q′ crossed by σo(π ′) after q in D is also ambiguous,
ψ(q′) = a, since by construction the values of ψ can only evolve from n to a and
then y. And σo(π ′) necessarily crosses twice some state of D . �

This proposition gives a sufficient condition for diagnosability, which unfortunately
is not necessary. Consider the counter-example in Fig. 5.5, where safe states are rep-
resented as a white circle, and faulty states as a colored one. The diagnoser contains
an ambiguous circuit, because for any sequence (αβ )n or (αβ )nα it is not certain
that a fault occured. However, any path π leading to the faulty state s3 will neces-
sarily produce a γ as second next observation, which characterizes the occurrence
of the fault. So A is 2-diagnosable (N = 2).
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Fig. 5.5 A diagnosable system (left), and its observer/diagnoser (right)

Proposition 5.3. A is not diagnosable iff, for any integer N,

∃π ,π ′,π ′′ : s+(π) = s−(π ′) ∈ S f , |π ′|Σo > N, s+(π ′′) ∈ Ss, σo(ππ ′) = σo(π ′′)

The proof is straightforward by logical inversion of Def. 5.1. One can easily rein-
force the result into the existence of a faulty π (the same for all N) for which one
can find arbitrarily long extensions π ′ such that there exists a non faulty π ′′ with the
same visible signature: σo(ππ ′) = σo(π ′′) (hint: use the pumping lemma). Further,
if the result holds for some large enough N, then it holds for any N (same trick).

This simple result has interesting practical consequences. First of all, it allows
one to check if the ambiguous circuits of a diagnoser of A really entail non-
diagnosability. Specifically, A is not diagnosable iff a diagnoser of A contains an
indeterminate cycle, following the vocabulary in [15]. Such cycles are ambiguous
circuits of D where both a safe run of A and a faulty one are nested. Specifically,
the circuit from q to q in D , following the visible sequence w ∈ Σ∗o , is indeterminate
iff there exist two circuits π1,π2 in A such that π1 only crosses faulty states, π2 only
crosses safe states, and σo(π1) = σo(π2) = wn for some n. In such situations, using
the pumping lemma, one can easily build the π ,π ′,π ′′ of Prop. 5.3 that prove the
non diagnosability. And conversely.

A second consequence of Prop. 5.3 is to provide a direct and more practical
means of checking diagnosability (and actually polynomial rather than exponential).
The idea is based on the twin machine construction. Consider As, the restriction of
A to the safe states Ss: all transitions involving states in S f are discarded. The twin
machine is obtained as the synchronous product of the ε-reductions of A and As:
T = Red(A )×Red(As).

Proposition 5.4. A is diagnosable iff no cycle of the twin machine T = Red(A )×
Red(As) contains a faulty state of A .

The proof is directly based on Prop. 5.3, using again the pumping lemma (details are
left to the reader). Applied to the counter-example of Fig. 5.5, assuming all labels
are observable, this yields the construction of Fig. 5.6, where the unique circuit
crosses only safe states of A , which makes A diagnosable.

Probabilistic diagnosability. For the sake of completeness, let us briefly examine
how diagnosability extends to probabilistic automata. For simplicity, we assume that
A is already ε-reduced, based on some stopping time definition.

As a (live) stochastic automaton, A defines a probability Pn on the set Fn of
runs of length n. These (Fn)n define a natural filtration over the set of infinite runs
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Fig. 5.6 System A (left), its safe restriction As (center), and the twin machine (right)

of A , and since Pn is the restriction of Pn+1 to Fn, there exists a unique distribution
P over the set F of infinite runs of A , by the Kolmogorov extension theorem.

On this probability space, let us define two diagnosis indicators, as random vari-
ables. We denote by ω an infinite run (path) of A , and by ωn its restriction to
the first n transitions. The first diagnosis indicator is Xn(ω) = P({ω ′ : σo(ω ′n) =
σo(ωn), s+(ω ′n) ∈ S f }), which is an Fn-measurable random variable. Xn is thus a
failure likelyhood, and Xn(ω) = 0 iff all runs of length n that produce the same
observations as ωn finish in Sn f . The second indicator is Dn(ω) ∈ {0,1}, an-
other Fn-measurable random variable, defined by Dn(ω) = 0 iff ∃ω ′,σo(ω ′n) =
σo(ωn)∧ s+(ω ′n) ∈ Ss. So Dn(ω) switches to one when all runs of length n that
produce the same observation as ωn contain a failure, which corresponds to the
detection of that failure.

In [16], two notions of diagnosability were proposed. The A-diagnosability cor-
responds to the following: for all k, conditioned on Xk > 0, Dk+n converges to 1 in
probability. The AA-diagnosability only requires that Xk+n converges to 1 in proba-
bility, again conditioned on Xk > 0. The first criterion expresses that the ‘hard’ de-
tector Dn will ultimately switch to 1 (certain detection) after a failure has occurred,
while the second criterion means that the detection probability Xn will converge to
1 (the more one waits, the more the detection is certain). These convergences are
in probability: the more one waits, the more these events are likely. (There is still
space for defining and characterizing a diagnosability based on an almost sure con-
vergence.)
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s1 s2
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α
α
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Fig. 5.7 Left: a non-diagnosable probabilistic automaton that is A-diagnosable. Right: an
AA-diagnosable automaton that is not A-diagnosable

Fig. 5.7 (left) shows a probabilistic automaton that is not diagnosable, if proba-
bilities are ignored: after the faulty state s3 has been reached, one can observe an
arbitrary long sequence of αn that will not allow to discriminate between s2 and s3,
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i.e. safe and faulty. However, with probability 1 a β will ultimately be fired after
the faulty state s3, which will make the hard detector Dn jump to 1. The right hand
side in the figure shows a probabilistic automaton that is not diagnosable nor A-
diagnosable, since after the faulty transition, whatever the number of observations,
one can not be certain to be in s2. However, the longer one waits, the more likely the
system jumped from s1 to s2. So with probability 1 the soft detector Xn will converge
to 1.

One of the main results in [16] is to translate the A-diagnosability of A into a
structural property of its non probabilistic diagnoser/observer. Equivalently, this
amounts to first replacing A by its support ¯A . The A-diagnosability criterion then
observes the product B = Det(Red( ¯A ))×Red( ¯A ), where the ε-reduction corre-
sponds to the chosen notion of stopping time in A . This non-probabilistic automa-
ton B has Q× S as state set. One then has to examine the recurrent states of B,
i.e. the states (q,s) that belong to a terminal connected component of B, regarded
as a directed graph. This is standard in convergence analysis of Markov chains,
since with probability one the chain – here the probabilistic diagnoser of A – will
terminate in one of its recurrent components, and A-diagnosability deals with the
limit behaviors of the diagnoser of A . Theorem 3 in [16] then expresses that A is
A-diagnosable iff any recurrent state (q,s) in B with s ∈ S f satisfies ψ(q) = y or
equivalently q⊆ S f . In other words, after a faulty state s is crossed, the (probabilis-
tic) diagnoser will terminate with probability one in states where the failure is unam-
biguous. As B requires a determinization, the complexity of the A-diagnosability
test proposed in [16] is exponential. But as for standard diagnosability, one recovers
a polynomial complexity by performing the same test on the recurrent states of the
twin-machine derived for ¯A .

5.5 Modular Observers

A compound system is obtained by assembling components by means of a com-
position operator. Here we chose the usual synchronous product of automata. The
section proves that composition and derivation of an observer are two operations
that commute, under some circumstances. This has important consequences to de-
sign efficient observers for some compound systems. Results are presented in the
simple case of two components, but extend to larger compound systems through the
notion of interaction graph between components (see for example [7] where this
notion is used for distributed planning purposes).

Composition of Automata

Definition 5.2. The synchronous product (see Fig. 5.8) of two automata A1 and
A2 is the automaton A1 ×A2 = (S,Σ , I,δ ) such that: S = S1 × S2,Σ = Σ1 ∪
Σ2, I = I1 × I2, and the transition function δ is defined by ∀(s1,s2) ∈ S,∀α ∈
Σ , δ ((s1,s2),α) = δ+

1 (s1,α)× δ+
2 (s2,α), where δ+

i (si,α) coincides with δi for
α ∈ Σi, and δ+

i (si,α)� {si} for α 
∈ Σi.
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In other words, a transition carrying a shared label in one component must be fired
jointly with a transition carrying the same label in the other component. By contrast,
a transition carrying a private label only changes the state of one component, while
the other remains idle. Observe that a firable sequence u of transitions in A1×A2

leads to a unique firable sequence u1 in A1 (for example) by simply removing private
moves of A2, i.e. transitions ((s1,s2),α,(s1,s′2)) with α 
∈ Σ1, and then erasing the
states of component A2.

A plain synchronous product may yield an automaton that is not trimmed, i.e.
that contains unaccessible states. So we define the composition as a synchronous
product followed by a trimming operation, and still denote it by×, with a light abuse
of notation. This definition naturally extends to observers (or diagnosers) by simply
gathering the label functions on states, for example φ(q1,q2)� φ1(q1)×φ2(q2).

α

α1

α1

αα2
α α2α2

α1

α1

α1

α1

Fig. 5.8 Two automata (left) sharing only label α , and their synchronous product (right)

Observer of compound systems. We consider here the ‘canonical’ observers de-
rived in the previous section by epsilon-reduction and determinization. Such an ob-
server for A has Q = 2S as state set, if S represents states of A .

Proposition 5.5. Let A1,A2 be two automata, with Ai = (Si,Σi, Ii,δi) and Σo,i as
set of observable labels, i ∈ {1,2}. If all synchronizations are observable by each
automaton, i.e. Σ1∩Σ2 = Σo,1∩Σo,2 , then Obs(A1×A2) and Obs(A1)×Obs(A2)
are isomorphic.

Proof. We consider the epsilon-reduction to the right. For the proof, we show by
induction the bisimilarity of the two deterministic automata Obs(A1 ×A2) and
Obs(A1)×Obs(A2). Given the one to one correspondence of state sets, this will
induce isomorphism.

Our recursion assumption is the following: let w ∈ Σ∗o , and wi = ΠΣo,i(w), then

δ̄ (I′,w) = δ̄1(I′1,w1)× δ̄2(I′2,w2). In other words, all reachable states q in Obs(A1×
A2) have a product form q = q1× q2.

This is obviously true for w = ε . If nothing has been observed, then only (unob-
servable) private events of the Ai can have been fired. Let ui be any unobservable
transition sequence in Ai, starting from an initial state. So s−(ui) = si,0 ∈ Ii and
s+(ui) = si ∈ I′i = δi(Ii,Σ∗u,i) where Σu,i � Σi \Σo,i denote unobservable labels of
Ai. Any interleaving u of sequences u1 and u2 is a firable sequence of transitions in
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A1×A2, with s−(u) = (s1,0,s2,0) ∈ I and so s+(u) = (s1,s2) ∈ I′ = δ (I,Σ∗u ). Con-
versely, starting from an unobservable sequence u in A1×A2, one easily derives
the associated ui in Ai. So this proves I′ = I′1× I′2, i.e. that the initial state q0 of
Obs(A1×A2) is the product of the initial states qi,0 of the Obs(Ai).

For the recursion, let q = δ̄ (q0,w) = (q1,q2) be an accessible state in Obs(A1×
A2), and let α ∈ Σo. Three cases must be considered.

Case 1: α ∈ Σo,1 ∩Σo,2, which corresponds to a synchronization event. Let si ∈ qi,
ti = (si,α,s′i) be a transition of Ai and ui be a sequence of silent transitions in Ai,
with s−(ui) = s′i and s+(ui) = s′′i . Then ((s1,s2),α,(s′1,s

′
2)) is a transition of A1×A2

and any interleaving u of sequences u1,u2 is firable in A1×A2 after (s′1,s
′
2) and

leads to (s′′1 ,s
′′
2). This proves that q′ = δ̄ (q,α) in Obs(A1×A2) contains q′1× q′2

where q′i = δ̄i(qi,α) in Obs(Ai). For the converse inclusion, consider as above a
visible transition ((s1,s2),α,(s′1,s

′
2)) in A1×A2 followed by some unobservable

sequence u leading to (s′′1 ,s
′′
2), and split u into u1 and u2 as above. Then (si,α,s′i)ui

is firable in Ai and leads from si to s′′i . This proves q′ ⊆ q′1× q′2. So one concludes
δ̄ (q,α) = δ̄1(q1,α)× δ̄2(q2,α).

Case 2: α ∈ Σo,1 \ Σo,2, which corresponds to a private observable event of A1.
Let s1 ∈ q1, t1 = (s1,α,s′1) be a private (observable) transition of A1 and u1 be a
sequence of silent transitions in A1, with s−(u1) = s′1 and s+(u1) = s′′1. For any
s2 ∈ q2, the private sequence t1u1 of A1 is mapped into a sequence tu of A1×A2

leading from (s1,s2) to (s′′1 ,s2), thus leaving A2 idle. So q′ = δ̄ (q,α) ⊇ q′1× q2

where q′1 = δ̄1(q1,α). And the converse inclusion is derived again as above, which
proves δ̄ (q,α) = δ̄1(q1,α)× q2.

Case 3: α ∈ Σo,2 \ Σo,1, which corresponds to a private observable event of A2.
Similar to case 2.

The three cases above allow one to extend by one letter the recursion assumption,
which induces the desired bisimilarity. �

Remarks

1. The above proposition assumed an epsilon-reduction to the right, but it remains
valid with a reduction to the left.

2. Although canonical observers were assumed in the proof, it extends to general
observers with minor modifications. One simply has that the product Obs(A1)×
Obs(A2) yields one observer for A1×A2. In other words, the bisimilarity holds,
but not necessarily the isomorphism.

Application. The application of this proposition to modular/distributed observation
is direct: from a given observed sequence w ∈ Σ∗o , derive projections wi = ΠΣo,i(w)
and feed them to observers Obs(Ai) to get local state estimates qi. Then assemble
the latter by q = q1× q2 to get a state estimate of the global system. Reading this
property in the reverse direction, this means that the interleaving of private events in
w1 and w2 does not carry information to estimate the state of A =A1×A2. In other
words, it is equivalent to observe a total order of events, as sequence w or a partial
order of events under the form of two partially synchronized sequences (w1,w2).
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The assumption Σ1∩Σ2 = Σo,1∩Σo,2 is crucial and one can check that the proof
fails without this argument. Actually, without this assumption, it is possible to build
examples where there exists no pair of finite deterministic machines that would play
the role of local observers Obs(Ai), and such that their ‘composition’ in any way
would have the same power as an observer of the global system. This is due to the
possibly infinite number of assumptions that must be stored in each local observer
about the way the two components synchronize in their unobserved sequences.

This is briefly illustrated by the example in Figure 5.9, where A1 and A2 are two
automata such that Σo,1 = {α1,α2}, Σo,2 = {β1,β2} and Σ1 ∩Σ2 = {γ1,γ2} ⊆ Σuo.
Observe that, by construction, the production of α’s and β ’s in A1×A2 alternate5.
In other words, from a sequence w1 of α’s observed on A1 and a sequence w2 of β ’s
observed on A2, one can recover their interleaving w. So dealing with distributed
observations here does not bother state estimation: no interleaving information is
lost.

Then observe that as long as the indexes of the α’s observed in w1 match those
observed on the β ’s in w2, the component A2 will be in one of the states of its ‘upper
part,’ {s′o,s′1,s′2}. As soon as these two index sequences differ, A2 becomes trapped
in the states of its lower part {s′3,s′4}. A global observer of A1×A2 fed with w is
of course able to determine where A2 finished. But there is no pair of finite local
observers for A1 and A2 that would have this power, since they would have to store
the sequences of indexes of the α’s and of the β ’s they have seen along w1 and w2

in order to compare them and decide.

1

s’0

s’2

β2

s1

s0

s2
α1 α2

γ2γ1 β1

γ1 γ2

s’3

s’4

β2 β1

β1β2γ2γ1

A1 A2

s’

Fig. 5.9 For these two interacting components A1 and A2, with non observable interactions,
there are no finite local observers that would jointly have the same power as an observer of
their product A1×A2

5 This is not strictly the case, since between two consecutive γ the labels α and β can appear
in any order. This detail can be easily fixed, at the expense of a more complex example,
and does not really bother the rest of the reasoning.
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5.6 Distributed State Estimation

The lesson of the previous section is that distributed/modular state estimation (or
diagnosis) is easy when synchronizations are observable. What about the general
case? Assume a modular system A =A1×A2, with Σ1∩Σ2 
⊆ Σo,1∩Σo,2, performs
a hidden run π that is observed by two sensors, one per component Ai. This yields
the pair of observed words (w1,w2), with wi = ΠΣo,i(σ(π)), where shared events
may be observed by only one or none of the two sensors. Notice that the exact
interleaving of w1 and w2, that would be w = ΠΣo,1∪Σo,2(σ(π)), is definitely lost,
so all possible interleavings must be assumed to estimate the current state of A . In
other words, one truly observes a partial order of events, without the possibility to
come back to a unique sequence as in Section 5.5. This constitutes a major change.

In this section we consider automata with marked states A =(S,Σ , I,δ ,F) where
F ⊆ S. A path π of A is accepted by A iff s−(π) ∈ I and s+(π) ∈ F . The language
of A becomes L (A ) = {σ(π) : π is accepted by A }. And for the product of
automata, one takes F = F1 × F2. To address the state estimation (or diagnosis)
problem, we extend it into computing all paths π of A that can explain (w1,w2).
Without loss of generality, we also assume that A1 and A2 are deterministic, so the
problem amounts to finding words of L (A ) that match (w1,w2).

Product of languages

Definition 5.3. Let the Li ⊆ Σ∗i be two languages, i = 1,2, their product is defined
as L1×L L2 = Π−1

Σ1
(L1)∩Π−1

Σ2
(L2), where the ΠΣi : (Σ1 ∪ Σ2)

∗ → Σ∗i are the
natural projections.

For example, with L1 = {αγα} ⊆ {α,γ}∗ and L2 = {γβ ,γβ γ}⊆ {β ,γ}∗, one has
L = L1×L L2 = {αγαβ ,αγβ α} ⊆ {α,β ,γ}∗. The second word in L2 matches
no word of L1, while the first one interleaves in two different ways with the only
word of L1. Observe the following result:

Lemma 5.1. Let L = L1×L L2, and L ′
i = ΠΣi(L ), then L ′

i ⊆Li and one has
L = L ′

1×L L ′
2 . The L ′

i are the minimal sublanguages of the Li that allow one to
recover L .

The proof is left to the reader as an exercise. As a direct application of ×L, observe
that {w1}×L {w2}, denoted w1×L w2 for short, yields all interleavings w of w1 and
w2 that must be considered.

The products of automata and of languages are related by the following property:

Proposition 5.6. Let A = A1×A2, then L (A ) = L (A1)×L L (A2).

The proof is left to the reader as an exercise. Notice that ΠΣi(L (A )) ⊆ L (Ai)
represents the behaviors of Ai that remain possible once the other component is
connected.

Application to hidden run recovery. Assume centralized observation: one collects
w = ΠΣo(σ(π)) ∈ Σ∗o . The runs (or equivalently the words) of A that explain w are
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given by E =L (A )×L w. Let W be a deterministic automaton such that L (W ) =
{w}, one also has E =L (A ×W ). So one can take A ×W as a compact and finite
representation of this possibly infinite language (set of runs).

With distributed observations, one has (see Prop. 5.6)

E = L (A1×A2)×L (w1×L w2) (5.14)

= (L (A1)×L w1)×L (L (A2)×L w2) (5.15)

= E1×L E2 (5.16)

where Ei = L (Ai)×L wi represents local explanations to observation wi in com-
ponent Ai. One is actually interested in building a distributed explanation , under
the form (E ′1,E

′
2), where E ′i = ΠΣi(E ) represents the local view in component Ai

of runs of A that explain all observations w1 and w2. Again, one has E = E ′1×L E ′2
(see Lemma 5.1).

Distributed computation of a distributed explanation. The objective here is to
determine directly the elements E ′i of a distributed explanation... without computing
E itself! This can be done in a distributed manner, by message exchanges between
the local ‘supervisors’ in charge of each component. The key idea is a notion of
conditional independence on languages:

Proposition 5.7. Let Li ⊆ Σ∗i , i = 1,2, be two languages, and let Σ1 ∩Σ2 ⊆ Σ ′ ⊆
Σ1∪Σ2, then ΠΣ ′(L1×L L2) = ΠΣ ′(L1)×L ΠΣ ′(L2).

In our setting, taking Σ ′ = Σ1, this induces for example

E ′1 = ΠΣ1(E1×L E2) = E1×L ΠΣ1∩Σ2(E2) (5.17)

and symmetrically for E ′2. Equation (5.17) expresses that the local view E ′1 of global
explanations E are obtained by synchronizing the local explanations E1 on com-
ponent A1 with the message ΠΣ1∩Σ2(E2) from component A2. This message prop-
agates the constraints that explanations E2 impose on synchronizations. Given the
small alphabet Σ1 ∩Σ2 and the projection operation that removes private events of
A2, (5.17) generally involves smaller objects than E .

Example 5.2. The above computations involve possibly infinite languages. But
again, they can be translated into automata computations thanks to Prop. 5.6 and
to the fact that projection as well preserves the regularity (recall the construction of
observers in Section 5.2, where L (A ′′) = L (A ′) = ΠΣo(L (A )) ).

Consider the example in Fig. 5.10, with two components and a distributed obser-
vations (b,d) represented as two single word automata. Fig. 5.11 computes the local
explanations Ei by product Ei = L (Ai)×L wi, represented as Ai×Wi.

Eq. (5.17) is illustrated in Fig. 5.12 (top), where the central automaton (obtained
by projection) represents the message from A2 to A1. The bottom figure illustrates
the message propagation and integration in the reverse direction (bottom), i.e. the
symmetric version of (5.17).

The final distributed explanations are obtained by taking the languages of the
automata at the top left and bottom right in Fig. 5.12. One has E ′1 = {aαbα,β b} and



5 Diagnosis and Automata 103

βa

b

α
βα

α β

d

d

d d

b

W2A1W1 A2

Fig. 5.10 Components A1,A2, on Σ1 = {a,b,α,β} and Σ2 = {α,β ,d} resp. Only labels
b and d are observable (dashed transitions are unobservable). All states are final in the Ai.
Automata W1,W2 encode the observed words w1,w2; only their bottom states are final
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Fig. 5.11 Local explanations to the observed word of wi in each component Ai, represented
as the language of Ei = Ai×Wi

E ′2 = {ααd,β d}. Each word in E ′1 matches at least one word of E ′2, and vice versa.
This yields two pairs of runs of A1 and A2 that explain the distributed observation
(b,d): (aαbα,ααd) and (β b,β d). Observe that each pair can be interleaved in
several manners to produce explaining runs of A1×A2. This shows the interest
of distributed state/run computations: useless interleavings need not be explored,
which can greatly reduce the search space. �

Remarks

1. If component A1 is not deterministic, one can easily recover its explaining runs
in the ‘automaton version’ of (5.17): A ′

1 � A1× [W1×ΠΣ1∩Σ2(A2×W2)]. The
bracketted term simply constrains the runs of A1. Any run of A ′

1 (restricted to
its component in A1) is a local view of a run π of A that explains the distributed
observation (w1,w2).

2. From the runs of the Ai that match the distributed observation (w1,w2), one
easily recovers the possible final states of Ai, and consequently can establish a
diagnosis, relying on the state augmentation trick.
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Fig. 5.12 Message propagation from A2 to A1 (top) and from A1 to A2 (bottom) to compute
the local views E ′1,E

′
2 of global explanations

3. Observe that, by contrast with the counter-example of the previous section, we
have a single observation and with limited length here. This does not prevent
however having to check an infinite number of assumptions on the possible (un-
observed) synchronizations that take place between the two components. What
makes the approach work is that this possibly infinite set of explanations can be
condensed into an automaton, thanks to its regularity.

5.7 Conclusion and Further Reading

What are the lessons of the above developments? First of all, diagnosis and state
estimation are closely related problems, if not equivalent. Diagnosers and observers
are obtained by simple and similar operations on automata. They extend without
difficulty to weighted automata, and in particular to probabilistic automata, with
the main difference that determinization may not yield a finite automaton. But if it
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is the case, they yield structures that output detection probabilities. Diagnosability,
or observability of a state property, represents the ability to detect a fault/property
not long after it occurs/becomes true. It can be checked on the observer/diagnoser,
but is more efficiently tested by a direct method, using the so-called twin-machine.
Observability/diagnosability extends to the probabilistic case, and takes the form of
the convergence (with probability 1) of some numerical indicator after this prop-
erty becomes true. In the simplest case, this indicator switches suddenly to 1 (A-
diagnosability), while for AA-diagnosability it converges to 1. The first case is rather
simple, and actually A-diagnosability can be translated into a structural property of
the non-probabilistic observer, or of the twin-machine of A .

Other important lessons relate to distributed or modular systems. Having dis-
tributed observations amounts to considering a global observation as a partial or-
ders of events. And similarly, representing runs of a distributed system as a tuple
of partially synchronized sequences amounts to considering them as partial orders
of events. This somehow invisible change of semantics greatly saves in complexity
when dealing with distributed systems. It still allows one to perform state estimation
or diagnosis, possibly with distributed methods. Notice that for distributed diagno-
sis, the properties one wishes to characterize must also be expressible as a product
of local properties (one per component). Or they should be separable, following
the vocabulary of [20]. Distributed/modular diagnosability has been examined by
different authors [18], assuming or not that synchronization events are observable,
which greatly simpifies the problem, as mentioned above. Modular state estimation
or diagnosis for probabilistic systems remains an open issue. A central difficulty in
such settings is to define a probabilistic setting that is compatible with the concur-
rency of events: a not careful way of combining probabilistic automata generally
produces weird phenomena, for example private events of some component may
change the occurrence probability of private events in another component... A next
step towards the management of distributed systems consists in adopting true con-
currency semantics. See [6] for a discussion, and Chapter 15 or [1, 5] for a detailed
treatment.
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