
Chapter 16
Petri Nets with Time

Béatrice Bérard, Maria Paola Cabasino, Angela Di Febbraro, Alessandro Giua,
and Carla Seatzu

16.1 Introduction and Motivation

Place/Transition nets have been used in previous chapters to model Discrete Event
Systems (DESs) with the aim of analyzing logical properties. However, since they
do not consider the duration associated with the activities occurring in a system, they
cannot be used for performance analysis of a DES, i.e., for computing the execution
time of a given process, identifying bottlenecks, optimizing the use of resources, and
so on. Petri nets with time are an extension of Place/Transition (P/T) nets endowed
with a timing structure and can be used as performance models.

When defining Petri nets with time, three main elements should be specified:
topological structure, timing structure, and transition firing rules. While the topo-
logical structure is generally that of a P/T net, the definition of the timing structure
is a crucial problem: several timing structures have been proposed in the literature
to extend P/T nets and firing rules are also based on them.

The chapter is structured as follows. Next section briefly describes the timing
structures and other basic concepts related to Petri nets with time. Starting with
Section 16.3 we focus on T-Timed Petri nets, the most commonly used class of
Petri nets with time, and discuss different firing rules that can be used in this con-
text. In Sections 16.4 and 16.5 we present several results related to deterministic
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and stochastic T-Timed Petri nets. Section 16.6 deals with a different class of Petri
nets with time, called T-Time Petri nets. Further readings are finally suggested in
Section 16.7.

16.2 Timing Structure and Basic Concepts

In this section, we point out a few general issues associated with a timing structure
that can be associated with Petri nets.

A P/T net is a logical DES model, and a possible evolution of a net is described
by a sequence

mmm0 [t j1〉 mmm1 [t j2〉 mmm2 [t j3〉 mmm3 . . . mmmk−1 [t jk 〉 mmmk . . .

of markings (i.e., states) mmmk (for k = 0,1,2 . . .) and transitions (i.e., events) t jk (for
k = 1,2,3 . . .). Marking mmm0 is the initial marking and the firing of transition t jk
changes the marking from mmmk−1 to mmmk.

In a PN with time the evolution of a system initialized at time τ0 is described by
a sequence

mmm0 [t j1 ,τ1〉 mmm1 [t j2 ,τ2〉 mmm2 [t j3 ,τ3〉 mmm3 . . . mmmk−1 [t jk ,τk〉 mmmk . . .

where τk ≥ τk−1 and τk denotes the firing time of transition t jk (for k = 1,2,3 . . .) or
equivalently

mmm0 [t j1 ,θ1〉 mmm1 [t j2 ,θ2〉 mmm2 [t j3 ,θ3〉 mmm3 . . . mmmk−1 [t jk ,θk〉 mmmk . . .

where θk = τk − τk−1 (for i = 2,3,4 . . .) denotes the delay between the firing of
transition t jk−1 and t jk and θ1 = τ1 − τ0 denotes the delay between the firing of
transition t j1 and the initial time.

A timing structure specifies the value that these delays may take.

16.2.1 Timed Elements

Although, in a timed evolution the delays denote the time elapsed between the firing
of two transitions, from a structural point of view a delay can be associated with
different elements of a net, such as places, transitions, or arcs.

As an example, consider the simple net in Fig. 16.1. Assume the systems behavior
is such that the firing of transition t should occur θ = 3 seconds after the initial time.
This can be done associating a delay θ with one of the following elements.

• Place p1: this denotes that the token in the place becomes available for transition
firings only after it has been in the place for θ seconds.
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• Transition t: this denotes that the transition will fire only after it has been enabled
for θ seconds.

• Arc (p1, t): this denotes that the token in the place becomes available for this arc
only after the token has reached an age of θ seconds (assuming its age at the
initial time was 0).

 

p2 t 
p1 

θ 

Fig. 16.1 A simple Petri net

In the rest of the chapter, we will assume that the timing structure associates delays
to transitions, and we denote θi the delay associated with transition ti.

16.2.2 Timed Petri Nets and Time Petri Nets

Another significant difference is among Timed Petri nets and Time Petri nets.
In Timed Petri nets (TdPNs) a delay is represented by a single value θ . As an ex-

ample, consider a net with delays associated with transitions: if a transition becomes
enabled at time τ and remains enabled henceforth, it must fire at time τ +θ .

In Time Petri nets (TPNs) a delay is represented by a time interval of the form
[l,u], where l ∈ R≥0, u ∈ R≥0 ∪{+∞}, and l ≤ u. As an example, consider a net
where interval [l,u] is associated with a transition: if the transition becomes enabled
at time τ and remains enabled henceforth, it cannot fire before time τ + l and it must
fire at latest at time τ + u.

When it is required to specify that delays are associated with transitions, one
speaks of T-Timed Petri nets and T-Time Petri nets. On the contrary, when delays are
associated with places one speaks of P-Timed Petri nets and P-Time Petri nets.

16.2.3 Deterministic and Stochastic Nets

The timing structure of a net can be: deterministic, when the delays are known a
priori, or stochastic, when the delays are random variables.

Consider, as an example, the class of T-Timed Petri nets to which most of this
chapter is dedicated. According to the nature of the associated delay, timed transi-
tions can be classified as follows.
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Definition 16.1. A transition ti of a T-Timed Petri net is called:

• Immediate, if it fires as soon as it is enabled, or equivalently, if its time delay is
null.

• Deterministic, if the delay θ is chosen deterministically. Note that the determin-
istic delay may be a constant value θi, may be variable according to a sequence
{θi,1,θi,2, θi,3, . . .} of delay times known a priori, and finally may also be marking
dependent.

• Stochastic, if the delay time θi is a random variable with a known probability
distribution.
If the delay θi has an exponential distribution fi(τ) = λie−λiτ (with λi > 0) tran-
sition ti is called stochastic exponential. If the delay is a random variable with
a distribution different from the exponential one the transition is called general-
ized stochastic. Finally if the parameters of the distribution depend on current
marking of the net, the transition is called stochastic marking dependent.

In this chapter only immediate, deterministic constant, and exponential stochastic
are considered. Therefore, in the following, the last two types of transitions are
briefly called deterministic and stochastic, respectively. In the most general case, the
same Petri net may contain transitions of all three types mentioned above (immedi-
ate, deterministic, and stochastic); however, this increases the analysis complexity
and very few analysis results exist for such a general net.

In Fig. 16.2 different PNs are shown. A deterministic transition ti is represented
by a black rectangle and is labeled with the value of its constant delay θi. A stochas-
tic timed transition ti is represented by a white rectangle and is labeled with the
value of its parameter λi. An immediate transition is represented by a black bar with
no label.

For a detailed comparison of the various timing mechanisms we refer to [6].
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Fig. 16.2 T-Timed Petri nets
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16.3 T-Timed Petri Nets and Firing Rules

In this section we focus on T-Timed Petri nets, that in the following we will simply
call Timed Petri nets (TdPNs).

A series of “rules” or “conventions” should be specified in order to clarify the
behavior of a given timed net. In the following subsections the most significant ones
are discussed, with some comments on their expressive power.

16.3.1 Atomic vs. Non Atomic Firing

In a P/T the firing of a transition is assumed to be an atomic event, i.e., in the same
instant the tokens that enable the transition are removed from the input places and
new tokens are produced in the output places.

In the case of TdPNs this notion depends on the semantics given to the delay θ
associated with a transition t.

• The delay represents the time that must pass between the enabling and firing of
a transition. In this case, if transition t is enabled at time τ and remains enabled
henceforth, it fires atomically at time τ +θ . If mmm is the marking before the firing,
then the firing yields the new marking mmm′ = mmm−PPPrrreee[·, t]+PPPooosssttt[·, t].

• The delay represents the time required to fire a transition. In this case, assume
marking mmm enabling transition t is reached at time τ . The transition starts its
firing at τ and all tokens from the input places are removed, yielding marking
m̂mm = mmm−PPPrrreee[·, t]. At time τ +θ , the firing is completed producing the tokens in
the output places thus yielding marking mmm′ = m̂mm+PPPooosssttt[·, t]. Such a firing policy
is called non atomic firing.

Note that following the non atomic firing rule, the intermediate marking m̂mm may not
represent a reachable marking in the underlying P/T net and many of the analysis
techniques for P/T nets, such as those based on invariants, do not apply. For this
reason, we will only consider atomic firings in the rest of this chapter.

16.3.2 Enabling Semantics

Another important “rule” concerns the different strategies for the enabling of a
transition.

• Reserved marking: as soon as a transition is enabled, the tokens of the input
places of such a transition that are necessary to enable it, are reserved becoming
completely invisible to all the other transitions. Moreover, in the case of actual
conflict, tokens are immediately assigned to transitions, with a criterion that is in
general independent of the length of their time delays.
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• Concurrent enabling: tokens are always visible to all places and priority is given
to the transition that first finishes of being enabled for a time period equal to its
time delay. So, even if a transition starts being enabled later, but its time delay is
small, it may happen that it fires before a transition that was enabled earlier but
whose time delay is longer.

The strategy of concurrent enabling is more general than the one of reserved mark-
ing. In fact, it is always possible to transform the structure of a net following the
strategy of reserved marking to an equivalent net based on concurrent enabling.
This can be done using the simple scheme illustrated via the example in Fig. 16.3. 
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Fig. 16.3 Reserved marking strategy versus concurrent enabling strategy

16.3.3 Server Semantics

Another fundamental notion that needs to be specified when defining a TdPN is the
so-called server semantics. Possible choices are described in the following:

• infinite server semantics: each transition represents an operation that can be exe-
cuted by an infinite number of operation units that work in parallel; as an exam-
ple, this is the case of the net in Fig. 16.4.a, where transition t1 fires three times at
time θ1 because the operation units can use (process) all tokens simultaneously;

• single server: each transition represents an operation that can be executed by a
single operation unit; an example of this is given in Fig. 16.4.b, where transition
t1 fires at time instants θ1, 2θ1, and 3θ1 since the single operation unit can only
consume (process) one token at a time;

• multiple servers: each transition represents an operation that can be executed by
a finite number k of operation units; this is the case of the net in Fig. 16.4.c,
where, assuming k = 2, transition t1 fires twice at time θ1 and once at time 2θ1,
since the two operation units can process only two tokens at a time.

In the rest of this chapter, we always assume infinite server semantics. In fact, start-
ing from such a notion, it is possible to also represent the other two via appropriate
places (as place p in Fig. 16.4.b and in Fig. 16.4.c), that limit the maximum enabling
degree of the generic transition, as it will be explained in the following section.
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Fig. 16.4 Transitions with different server semantics

16.3.4 Memory Policy

Another notion that has to be specified concerns the memory associated with transi-
tions. We have seen that a transition ti can fire only if a time θi has elapsed since its
enabling. Now, let us observe the net in Fig. 16.5; assuming θ2 < θ1 < 2θ2, from the
initial marking (at time τ0 = 0) transitions t1 and t2 are enabled, thus at time τ1 = θ2

transition t2 fires and yields to the marking [0 0 1]T . After a delay equal to θ3, i.e.,
at time τ2 = τ1 +θ3, transition t3 fires and the net reaches again the initial marking.
Two different notions of memory can be introduced.

1. Total memory: transition t1 “remembers” being already enabled for a time interval
equal to θ2 and fires after a delay equal to θ1−θ2, i.e., at time τ3 = τ2+(θ1−θ2);

2. enabling memory: transition t1 has only memory of the current enabling and can
only fire after a delay equal to θ1, i.e., at time τ4 = τ2 +θ1.

In the rest of this chapter, we consider as basic notion the enabling memory policy.
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Fig. 16.5 Timed net with conflict
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16.4 Deterministic Timed Petri Nets

The first extension of the P/T nets via deterministic delays has been presented in
[21]. This approach uses timed transitions to address the idea of modeling the dura-
tion of activities of the represented DES, being in general the actions associated with
the transitions. These nets are called Deterministic Timed Transitions Petri Nets or
Deterministic T-Timed Petri Nets.

As discussed in Subsection 16.2.1, another timing structure is the one that assigns
the time to places [11] that are seen as processes that require a given execution time.
These nets, that are called Deterministic Timed Places Petri Nets or Deterministic P-
Timed Petri Nets, represent an excellent applicative field of DES modeling approach
based on max-plus algebra or minimax [2].

Finally there have been proposed also nets where the time is associated with arcs.
As an example, Zhu and Denton [24] showed that such Petri nets are more general
than those where the time is associated either with transitions or places.

In the rest of this section we focus on Deterministic T-Timed Petri Nets that are
most commonly used in the literature. As a result of this, they are often called De-
terministic Timed Petri Nets (DTdPN), without making explicit that delays are as-
sociated with transitions. Delays can be either constant or variable as clarified in the
following definition.

Definition 16.2. A deterministic timed Petri net is characterized by the algebraic
structure Nd = (N,Θ) where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a P/T net defined as in Definition 10.1 in Chapter 10;
• Θ = {Θi : ti ∈ T}, with Θi = {θi,1,θi,2, ...}, ti ∈ T , θi,k ∈ R+ ∪{0}, k ∈ N+ is a

deterministic timing structure; if the time delays are constant, the generic element
θi,k is denoted θi, ∀k ∈N+.

Even for timed Petri nets it is possible to define a marked Petri net. In general, the
marking vector at the time instant τ j is denoted mmm j.

Definition 16.3. A deterministic timed Petri net Nd with a marking mmm0 at the ini-
tial time instant τ0 is said a marked deterministic timed Petri net, and is denoted
〈Nd ,mmm0〉.

16.4.1 Dynamical Evolution

The state of a DTdPN is determined not only by the marking, as for P/T nets, but
also by the clocks associated with transitions.

Definition 16.4. A transition ti is enabled at a marking mmm j if each place p ∈ P of
the net contains a number of tokens equal to or greater than PPPrrreee[p, ti], i.e., mmm j ≥
PPPrrreee[·, ti].
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The enabling degree of a transition ti enabled at a marking mmm j is the biggest
integer number k such that mmm j ≥ k PPPrrreee[·, ti]. The enabling degree of ti at mmm j is
denoted αi( j).

In the net in Fig. 16.2.a, transition t1 has an infinite enabling degree; in the marked
net in Fig. 16.2.b, transition t1 has enabling degree equal to 2; in the marked net
Fig. 16.2.c, transition t1 is not enabled because p1 is empty, while transition t2 has
enabling degree equal to 2; in the marked net in Fig. 16.2.d, transition t1 has enabling
degree equal to 1, because its firing needs 2 tokens and in its pre place p1 there are
only 3 tokens, transition t2 has enabling degree equal to 3, while transition t3 is not
enabled. The case in which the enabling degree of a transition is infinite, as the case
of Fig. 16.2.a, is a degenerate case. In the following, we assume that the enabling
degree of a transition is finite (but not necessarily bounded).

At each time instant the number of clocks associated with a transition ti is equal
to its current enabling degree; this number changes with the enabling degree, thus
it can change each time the net evolves from one marking to another one, namely
each time that a transition fires.

The net evolution occurs in an asynchronous way on the basis of the events oc-
currence that is regulated by the clocks associated with the events according to the
algorithm of evolution here reported.

Algorithm 16.1. (Temporal evolution of a DTdPN). Assume that the DTdPN at the
time instant τ j is in the marking mmm j and that the minimum values of the clocks
associated with the transitions, oi = min{oi,1, . . . ,oi,αi( j)}, ∀ti ∈ T, are known; the
marking evolution of the DTdPN follows the repetition of these steps:

1. Let o∗

o∗ = min
i:ti∈T
{oi} (16.1)

be the minimum among the values of the clocks oi associated with the transitions
enabled at marking mmm j; if o∗ is not unique more than one transition could fire at
the same time according to a sequence that should be specified a priori.

2. At the time instant τ j+1 = τ j + o∗ transition t∗ fires yielding the system from
marking mmm j to the marking mmm j+1 = mmm j +C[·, t].

3. Once marking mmm j+1 is reached, the clock associated with t∗ is discarded. Clocks
associated with each transition ti ∈ T are updated as follows:

• if the enabling degree αi( j + 1) at marking mmm j+1 is less than the enabling
degree αi( j) that transition ti had at previous marking mmm j, then [αi( j)−αi( j+
1)] clocks associated with ti have to be discarded: clocks that are discarded
from set {oi,1, . . . ,oi,αi( j)} are those having the higher values;

• if αi( j+ 1)> αi( j), [αi( j+ 1)−αi( j)] new clocks are associated with ti and
initialized to the values specified by the timing structure Θ ;

• if αi( j+ 1) = αi( j), do nothing;
• reduce to an amount equal to o∗ the values of all old clocks.

4. Repeat from step 1, setting j+ 1→ j.
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Note that if transition ti is not enabled at a marking, it has no clocks associated with
it, i.e., it has no active clocks. If at a marking mmm j the minimum value of the clock
oi of a transition ti corresponds to more than one clock, as an example k, in the set
{oi,1, . . . ,oi,αi( j)}, this means that if the transition will be the next one to fire, it will
fire k times at the same time.

The algorithm is based on the assumption of enabling memory and infinite server
semantics. If total memory is used, step 2 of the algorithm should be modified. Note
that the memory chosen depends on the kind of study one wants to do on the system
while does not depend on the system itself. For the server semantics we have chosen
the most general: in fact one can always lead the system to single or multiple servers
adding self loops to transitions, as shown in Fig. 16.4.b and 16.4.c. Obviously, the
algorithm is simplified if all transitions have single server semantics, because in
such a case each transition has associated one single clock.

Finally, at step 1 it is said that a politic for the resolution of conflicts has to be
applied if more than one transition can fire at the same time, to decide the sequence
in which these transitions will fire. This is needful only when the firing of one tran-
sition can disable other transitions, namely when the net is not persistent. Either a
firing priority or a firing probability can be associated with transitions.

Example 16.2. Let us consider the net in Fig. 16.2.b whose temporal evolution is
shown in Fig. 16.6.
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Fig. 16.6 Evolution of the net in Fig. 16.2.b

Transition t1 (with time delay θ1 = 2) has enabling degree α1(0) equal to 2 at the
initial time instant τ0 = 0; it has initially two active clocks o1,1, and o1,2. After two
time instants, i.e., at τ1 = τ0 +θ1, both clocks are deleted, transitions t1 fires twice
and the two clocks are again set to θ1 = 2. At the reached marking mmm1 = [2 2]T ,
transition t1 still has an enabling degree equal to 2 and the two clocks o1,1, and o1,2

are again active. The net continues to evolve following Algorithm 16.1. �

Example 16.3. A production line is composed by two machines M1 and M2, two
robotics arms R1 and R2, and two conveyor belts. Each machine uses one robotic arm
that loads and unloads parts that the machine has to process. One of the conveyor
belt can carry only two parts, while the other one carries empty pallets. Pallets in
the system are three.
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Each part is processed by machine M1 first and machine M2 later, with process
times respectively equal to 10 and 20 time units. The loading and unloading pro-
cesses require 1 time unit, while the time spent in the conveyor belts is assumed
negligible.

The DTdPN modeling this production system is shown in Fig. 16.7, while
Table 16.1 contains the meaning of places and transitions and the transitions
delay.
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Fig. 16.7 DTdPN modeling a production line formed by two machines

At the initial marking mmm0 = [3 0 0 0 0 0 1 2 1 1 1]T transition t1 is enabled and
after one time unit fires yielding to the marking mmm1 = [2 1 0 0 0 0 0 2 1 0 1]T , where
transition t2 is enabled. After 10 time units t2 fires and yields the net to the new
marking mmm2 = [2 0 1 0 0 0 1 21 0 1]T . The net continues to evolve following the
procedure indicated above. �

16.4.2 Timed Marked Graphs

A Timed Marked Graph (TdMG) is a DTdPN where each place has only one in-
put transition and one output transition and all arcs have unitary weight. A more
restricted class of such nets are the strongly connected timed marked graphs whose
importance is due to the fact that there exist some criteria to analyze the performance
of the system in an easy way.

Definition 16.5. A (deterministic) Strongly Connected Timed Marked Graph (SCT-
dMG) is a DTdPN Nd satisfying the following properties:

• the net structure Nd is a timed marked graph;
• the net is strongly connected, namely there exists an oriented path from each node

to any node: this implies that each place and each transition of the net belongs
to an oriented cycle; the set of the oriented elementary cycles of Nd is denoted
Γ = {γ1, . . . ,γr};

• the timing structure Θ associated with transitions is deterministic and has con-
stant time delays.
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Table 16.1 Description of places and transitions in Fig. 16.7

Place Description

p1 availability of parts and pallets
p2 M1 is working
p3 part ready to be unloaded by M1

p4 part ready to be processed by M2

p5 m2 is working
p6 part ready to be unloaded by M2

p7 M1 is available
p8 availability on the conveyor belts
p9 M2 is available
p10 R1 is available
p11 R2 is available

Transition Description Delay

t1 R1 loads a part on M1 1
t2 M1 ends the processing 10
t3 R1 ends the processing M1 to the conveyor belt 1
t4 R2 loads a part on M2 1
t5 M2 ends the processing 20
t6 R2 removes from M2 a processed part 1

Although, these nets could seem too much restrictive, they can model important
classes of discrete event systems. As an example two important classes of produc-
tion systems, such as job-shop systems and systems based on the Kanban philoso-
phy, can be modeled using SCTdMGs [14].

16.4.2.1 Performance Analysis

Let us now present some results that allow to perform the analysis, in steady condi-
tions, in the case of TdMGs and SCTdMGs.

Theorem 16.1. In a TdMG, the number of tokens in a cycle remains constant for
any firing sequence.

The proof of this theorem is based on the structural characteristics of a TdMG,
where each place has one single input and output transition. In fact, each time a
transition in a cycle fires, it removes a token from the input place that belongs to
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the cycle and put a token in the output place that belongs to the same cycle, thus the
number of tokens in the cycle remains unchanged.

Let us now introduce the notion of cycle time that can be a performance index in
a system modeled as a SCTdMG.

Definition 16.6. The cycle time Ci of a transition ti of a SCTdMG is defined on the
basis of its generic kth time firing τi,k

C(ti) = lim
k→∞

τi,k

k
(16.2)

where τi,k is the time instant at which transition ti fires for the kth time, starting from
the initial time instant τ0.

The above definition allows one to give two important results.

Theorem 16.2. [7, 12, 23] In a SCTdMG, all transitions belonging to a cycle γ j ∈ Γ
have the same cycle time Cγ j , defined as the ratio between the sum of the delay times
of transitions that form γ j and the number of tokens circulating in it, i.e.,

Cγ j =
∑ti∈γ j

θi

∑pk∈γ j
m[pk]

(16.3)

Theorem 16.3. [7, 10] In a SCTdMG in steady conditions, all transitions in a cycle
have the same cycle time C, equivalent to:

C = max
γ j∈Γ

Cγ j = max
γ j∈Γ

{
∑ti∈γ j

θi

∑pk∈γ j
m[pk]

}

(16.4)

that identifies the maximum among the cycle times of all elementary cycles of a
SCTdMG. This means that in steady conditions all transitions have the same firing
frequency equal to λr = 1/C.

The result presented above is intuitive, in fact due to the structural characteristics of
a SCTdMG, in steady conditions all cycles are synchronized on the “slower” cycle.

Example 16.4. Let us consider again the DTdPN shown in Fig. 16.7 already in-
troduced in Example 16.3. The elementary cycles that form the set Γ are 6: γ1:
p7t1 p2t2 p7; γ2: p2t2 p3t3 p10t1 p2; γ3: p8t3 p4t4 p8; γ4: p9t4 p5t5 p9; γ5: p5t5 p6t6 p11t4 p5;
γ6: p1t1 p2t2 p3t3 p4t4 p5t5 p6t6 p1. By Theorem 16.2 the time cycles are respectively:
Cγ1 = 11; Cγ2 = 12; Cγ3 = 1; Cγ4 = 21; Cγ5 = 22; Cγ6 = 11,3. Thus, by Theo-
rem 16.3, the firing frequency of all transitions of this DTdPN in steady condition
is λr = 1/C = 1/max

γ j∈Γ
Cγ j = 1/22 = 0,045. �
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16.5 Stochastic Timed Petri Nets

In this section, we present Stochastic Timed Petri Nets (STdPNs), i.e., P/T nets
where the delays associated with transitions are random variables. As a result of
this randomness STdPN can be considered stochastic processes.

We consider STdPNs with atomic firing and time delay described by a random
variable with negative exponential distribution function. At each stochastic transi-
tion ti is associated a parameter λi that characterizes its distribution, called firing
rate or firing frequency of the transition. Note that if we denote θ̄i the average firing
delay of transition ti, it holds θ̄i = 1/λi.

Definition 16.7. A stochastic timed Petri net (STdPN) is a triple Ns = (N,Ψ ,λλλ )
where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a Petri net defined as in Definition 10.1 in Chapter 10;
• Ψ = {Ψi : ti ∈ T} is a timing stochastic structure; Ψi is a probability distribution

function defined in R+ ∪ {0}, from which are extracted the values of the ran-
dom variables that form the delay firing θi,k of transition ti, ti ∈ T , k ∈ N+; in
particular in this section we consider all Ψi as negative exponential distribution
functions;

• λλλ = [λ1 λ2 · · · ] is the vector of the firing frequencies of transitions; elements λi

can depend on the marking, namely it can be λi = λi(mmmk), k ∈ N+.

For a stochastic Petri net the firing of a transition follows the same rule of a P/T
net, except for the fact that the choice of the next transition to fire is made on the
basis of the firing probabilities of single transitions. The probability that transition
ti, enabled at marking mmmk, fires is equal to

Pr{ti | mmmk}=
λi(mmmk)

∑
t j ∈A (mmmk)

λ j(mmmk)
(16.5)

where A (mmmk) is the set of transitions enabled at marking mmmk.
To describe the behavior of a STdPN, as for DTdPNs, clocks are associated with

transitions. For simplicity, it is assumed that each transition is associated with a
single clock, which is initialized to the value of the delay when the transition is
enabled for the first time after a firing. Clocks operate as in the case of DTdPNs. In
more detail, each time a new marking is reached, each enabled transition ti resamples
a new instance θi from the probability density function associated with its delay.

Many researchers formally demonstrated the potentiality of STdPNs as a tool for
performance analysis of real systems, particularly showing that, from the point of
view of the dynamic behavior, a STdPN is equivalent to a Continuous Time Markov
Chain (CTMC). This connection has been proved by the following results that can
be found in many classical books, such as [23].
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Theorem 16.4. In a STdPN, times spent in each marking are exponentially
distributed.

Theorem 16.5. The time evolution of a STdPN can be described by a CTMC where
each state corresponds to a different marking reachable by the STdPN.

As a result of the above two theorems and of the STdPN evolution rules, it is pos-
sible to compute the distribution of times spent in a given marking mmm j since the
delay of all the enabled transitions is a random variable with exponential distribu-
tion. Therefore, the time spent in a marking is the smallest of the delays before next
transition firing. As a consequence, the parameter that characterizes its exponential
distribution is α j = ∑ti∈A (mmmj) λi(mmmj); this element also identifies the negative com-
ponent−q j j along the diagonal frequency matrix QQQ of the CTMC equivalent to the
considered STdPN.

Example 16.5. Consider the STdPN in Fig. 16.8 whose reachability graph is re-
ported in the same figure, where mmm0 = [1 0 0 0 0]T , mmm1 = [0 1 1 0 0]T , mmm2 =
[0 0 1 1 0]T , mmm3 = [0 1 0 0 1]T , e mmm4 = [0 0 0 1 1]T .

 

p1 t1 

p2 

p3 

t2 

t3 

p4 

p5 

t4 

m0 

m1 

m2 m3 

m4 

t1 

t2 t3 

t2 t3 

t4 

Fig. 16.8 A stochastic timed Petri net and its reachability graph

Let πππ be the row vector with as many components as the number of reachable
markings, where each component represents the steady state probability associated
with the corresponding marking. Since the graph is finite and strongly connected,
we can compute vector πππ solving the linear system

⎧
⎨

⎩

πππQQQ = 000

∑
x j∈X

π j = 1
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that in this example is equal to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πππ

⎡

⎢
⎢
⎢
⎢
⎣

−λ1 λ1 0 0 0
0 −(λ2 +λ3) λ2 λ3 0
0 0 −λ3 0 λ3

0 0 0 −λ2 λ2

λ4 0 0 0 −λ4

⎤

⎥
⎥
⎥
⎥
⎦
=
[

0 0 0 0 0
]

4

∑
j=0

π j = 1

Supposing that λ j = 1, j = 0, . . . ,4, the system solution is π0 = π4 = 2/7, π1 = π2 =
π3 = 1/7. �

The following section formalizes the rules of construction of the CTMC equivalent
to a given STdPN.

16.5.1 Construction of the Markov Chain Equivalent to the
STdPN

The CTMC equivalent to a given STdPN can be easily generated using the following
algorithm:

Algorithm 16.6. (CTMC equivalent to a STdPN).

1. Create a bijective correspondence between states X of the Markov chain and the
reachability set R(Ns,mmm0), such that to each marking mmmk corresponds the state
xk ∈ X.

2. Let π0(0) = 1 be the initial state probability vector, i.e., associate the maximum
probability with state x0 corresponding to mmm0.

3. Let the transition frequencies of the Markov chain, namely the elements of matrix
QQQ, equal to

− qkk = ∑
ti∈A (mmmk)

λi(mmmk) (16.6)

qk j = ∑
ti∈A j(mmmk)

λi(mmmk) (16.7)

where A j(mmmk) is the subset of A (mmmk) that includes transitions whose firing
yields to mmm j, i.e., A j(mmmk) = {ti ∈ A (mmmk) | mmmk[ti〉mmmj}; in general there exists
only one transition whose firing yields the state from marking mmmk to marking mmm j.

Example 16.7. Consider the behavior of a machine: when it is available, it can load
one part and starts its processing. The end of the process makes the machine avail-
able to process another part. The machine, however, may fail while working and
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therefore needs to be repaired. After the repair, the machine is ready to work again.
The behavior of this machine is modeled by the STdPN in Fig. 16.9. The meaning
of places and transitions is described in Table 16.2, where are also described the
characteristic parameters of exponential distributions that determine the firing time
of transitions.

 

p1 
t1 p3 

t2 

t3 

p2 

t4 

Fig. 16.9 STdPN of a machine that may fail

Table 16.2 Description of places and transitions in Fig. 16.9

Place Description

p1 the machine is available
p2 the machine is working
p3 the machine is being repaired

Transition Description Firing frequency

t1 beginning of a process α
t2 end of a process β
t3 failure of the machine μ
t4 completed repairing λ

States in which the machine can be are: x0 = machine available, corresponding
to marking mmm0 = [1 0 0]T ; x1 = machine working, corresponding to marking mmm1 =
[0 1 0]T ; x2 = faulty machine, corresponding to marking mmm2 = [0 0 1]T . The Markov
chain equivalent to the STdPN is characterized by the frequency transition matrix QQQ
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QQQ =

⎡

⎣
−α α 0
β −(β + μ) μ
λ 0 −λ

⎤

⎦

and the corresponding transitions diagram is shown in Fig. 16.10.

 

x0 x1 x2 

α μ 

β 

λ 

Fig. 16.10 State transition frequency diagram of the CTMC equivalent to the STdPN in
Fig. 16.9

Note that such a diagram can be obtained by the reachability graph of the STdPN,
represented in Fig. 16.11, substituting to each marking the corresponding state of
the equivalent Markov chain and to each transition of the STdPN the parameter that
characterizes the exponential distribution of the firing time. �

 

m0 m1 m2 
t1 

t2 

t3 

t4 

Fig. 16.11 Reachability graph of the STdPN in Fig. 16.9

16.5.2 Performance Analysis

An homogeneous CTMC that is finite and irreducible is always ergodic1 [9]. This
implies that a bounded STdPN whose reachability graph is strongly connected al-
ways corresponds to an ergodic CTMC. The reachability graph of a STdPN is equiv-
alent to the one of a P/T net obtained removing time delays. This happens because
time delays associated with transitions have probability density defined in R+. As
a result, the criteria and methodologies introduced in Chapter 11 for the structural
analysis of P/T nets also apply to STdPNs.

1 A Markov chain is ergodic if and only if, for any initial probability distribution, there
exists a limit probability distribution, i.e., there exists limt→∞ π(t), and such a distribution
is independent of the initial marking. Note that for ergodicity it is not necessary that the
graph is irreducible. It is sufficient that there exists a unique ergodic component, i.e., a
strongly connected component with no output arcs.
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The analysis of a STdPN is usually targeted to measure aggregate performance
indices that are more significant than the steady state probabilities πππ of the markings.
In the following items are reported the most common performance indices [1].

• The probability of event e defined as a function of the marking (e.g. no token in
a given set of places or at least one token in a place when another one is empty,
etc.) can be computed summing up the probabilities of all markings that satisfy
the condition expressed by the event; thus, the steady probability of event e is

Pr{e}= ∑
mmmk ∈Me

πk

where Me is the set of markings satisfying the condition expressed by e; note that
we can sum up the probabilities of the single markings because they are mutually
exclusive.

• The probability of having a certain number of tokens in a place pi can be com-
puted as a special event; then, if ei, j denotes the event of having j tokens in place
pi, the average number of tokens in pi can be computed as

n̄i = ∑
j

jPr{ei, j} (16.8)

• The firing frequency f j of a transition t j, i.e., the average number of times that
the transition fires in the time unit, under steady conditions can be computed as
the weighted sum of the firing rates of transitions enabled at each marking mmmi

f j = ∑
i:t j∈A (mmmi)

λ j(mmmi)πi (16.9)

• The average time θ̄ that a token spend to pass through a subnet in steady condi-
tions can be computed applying the Little’s law [9], that can be written for such
a case as

θ̄ =
n̄
λ

(16.10)

where n̄ is the average number of tokens passing through the subnet and λ is the
average speed of the tokens that are entering in the subnet.

Finally, note that the main problem of the evaluation of the performance indices
for a STdPN is the necessity of working with the equilibrium equations based on
the reachability graph. In fact, the dimension of the reachability graph grows ex-
ponentially both with the number of tokens of the initial marking mmm0 and with the
number of places; thus, except for some particular classes of nets, the dimension
of the reachability graph and the computational complexity of the procedure do not
allow to have exact analytical solutions.



338 B. Bérard et al.

16.6 Time Petri Nets

In this section, we focus on T-Time Petri Nets, i.e., P/T nets where a timing interval
is associated with each transition. As in the case of T-Timed Petri nets, “T” (for
transition) is often assumed as implicit and the model is more briefly called Time
Petri nets (TPNs). This interval-based variant was first proposed in [20] and applied
later to other timed models (see [8, 16, 17, 19]). The basic principle is the following.
When an interval [li,ui] from the time domain is associated with a transition ti in a
P/T net, the bounds of the interval represent respectively the minimal and maximal
delay for firing the transition. In this case, an implicit clock can be associated with
the transition and the transition can be fired only if the clock value belongs to the
interval.

We give a formal definition for this model and its semantics, described by timed
transition systems.

We denote here by I the set of closed intervals with a lower bound in Q+ and
an upper bound in Q+∪{∞}, associated with transitions. In particular, I(ti) = [li,ui]
denotes the interval associated with transition ti.

For an interval I, the backward closure of I is defined by: I↓ = {x | ∃y∈ I, x≤ y}.

Definition 16.8. A Time Petri Net is characterized by the algebraic structure NT =
(N, I) where:

• N is a P/T net defined as in Definition 10.1 in Chapter 10;
• I : T →I associates with each transition a firing interval.

Fig. 16.12 depicts a Time Petri net. Each transition is equipped with its firing inter-
val. For instance, transition t1 has interval I(t1) = [1,∞[. The initial marking has two
tokens in place p1 and one token in place p2.

 

p1 

p2 

t1, [1,∞ [ 

p3 

t3, [1,∞ [ 

t2, [1,1] 

Fig. 16.12 A time Petri net, with time intervals on transitions

We now explain the timing conditions, with IR+ as dense time domain. A transi-
tion t can be fired if the time elapsed since the last update belongs to its interval I(t).
Moreover, for all enabled transitions, time cannot progress when one of the upper
bounds is reached, thus enforcing urgency.

A configuration of NT is a pair (mmm,ν), for a marking mmm and a valuation ν ∈
(IR+∪{⊥})T . Relevant values of ν are those for which t belongs to A (mmm), and ν(t)
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contains the time elapsed since the last update in this case. We write ν(t) =⊥ other-
wise. For a real number d, the valuation ν +d is defined by (ν +d)(t) = ν(t)+d for
any t, with adequate conventions for ⊥ values. A configuration is admissible if for
all enabled transitions, ν(t) ∈ I(t)↓. We denote by ADM(NT ) the set of admissible
configurations of NT .

The important point that remains to be defined is the update of timing information
upon transition firing. In other words, we should precise when the implicit clock
associated with the transition is reset: transition t ′ is said to be newly enabled after
firing t from marking mmm if the predicate ↑enabled(t ′,mmm, t) defined by:

↑enabled(t ′,mmm, t) = (t ′ ∈A (mmm−PPPrrreee[·, t]+PPPooosssttt[·, t]))∧ (t ′ 
∈A (mmm))

evaluates to true.
Thus, t ′ is newly enabled if it was not enabled before firing t but becomes enabled

by this firing. This corresponds to the so-called persistent atomic semantics, which is
not the most frequently used but is easier to explain and equivalent to the other ones
for safe time Petri nets. Discussions and comparisons with atomic and intermediate
semantics can be found in [3, 22].

Definition 16.9. The semantics of a time Petri net NT is the timed transition system
T = (S,s0,E) where:

• S = ADM(NT );
• s0 = (mmm0,000), where 000 denotes the valuation with null values for all transitions

enabled in mmm0 and ⊥ otherwise;
• E ⊆ S× (T ∪ IR+)× S contains the two following types of transitions, from an

admissible configuration (mmm,ν):

– For each transition t enabled in mmm such that ν(t) ∈ I(t), a discrete transition

(mmm,ν) t−→ (mmm−PPPrrreee[·, t]+PPPooosssttt[·, t]),ν ′) such that for all t ′ ∈A (mmm−PPPrrreee[·, t]+
PPPooosssttt[·, t]),

ν ′(t ′) =

{
0 if ↑enabled(t ′,mmm, t),

ν(t ′) otherwise.

– For each d ∈ R+, such that for each t in A (M),ν(t) + d ∈ I(t)↓, a delay

transition (mmm,ν) d−→ (mmm,ν + d).

For instance, a possible run of the net in Fig. 16.12 is the following:

(mmm0, [0,0,⊥]) 1−→ (mmm0, [1,1,⊥])
t1−→ (mmm1, [1,1,0])

t1−→ (mmm2, [⊥,1,0])
t2−→ (mmm3, [⊥,⊥,0])

1.5−→ (mmm3, [⊥,⊥,1.5])
t3−→ (mmm4, [⊥,⊥,1.5]) · · ·

with markings mmm0 = [2 1 0]T , mmm1 = [1 1 1]T , mmm2 = [0 1 2]T , mmm3 = [0 0 2]T , and
mmm4 = [0 0 1]T .

This definition corresponds to what is called strong semantics, and implies
“urgency” for transition firing, because time delays cannot disable transitions. This
can be used to enforce priorities between transitions, which can lead to time locks,
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i.e., deadlocks due to conflicting timing constraints. In contrast, in the definition of
weak semantics [22], time elapsing is permitted beyond the upper bound of the inter-
val of a transition, by removing the condition: for each t in A (M),ν(t)+ d ∈ I(t)↓

for a transition with delay d. When this occurs, the transition is disabled, in a mech-
anism similar to what happens in ordinary P/T nets.

The class of time Petri nets with strong intermediate semantics has been largely
studied (see for instance [4, 18]), and tools like ROMÉO [15] and TINA [5] have
been developed for the analysis of bounded nets in this class.

16.7 Further Reading

This chapter is based on the Italian texbook on discrete event systems by Di Feb-
braro and Giua [13].

Many references are already cited along the chapter. Among them, particular
attention should be devoted to [1, 23] dealing with Timed nets, and to [4, 6] devoted
to Time nets. Interesting comparisons among different semantics for Time Petri nets
are given in [3, 22].
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