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Preface

Control of discrete-event dynamic systems is the topic of this book. The aim is to
provide an introduction to the field, starting at an elementary level and going to close
to the current research front. The reader will find concepts, theorems, algorithms,
and examples. Particularly addressed to Ph.D. students and junior researchers work-
ing on control of discrete-event dynamic systems (DEDS) and, more generally, on
control theory, this monograph only presumes a little background of elementary
topics of control theory. The chapters are almost all based on lectures of a summer
school for Ph.D. students held in June 2011 in Cagliari, Sardinia, Italy.

Three related modeling formalisms of DEDS are covered: automata, Petri nets,
and systems in dioids. The first focus of the book is on control of decentralized and
of distributed DEDS, informally speaking composed by the interconnection of two
or more subsystems. Most engineering systems are currently of this type. The sec-
ond focus of the book deals with heavily loaded or populated DEDS, eventually dis-
tributed, for which the so called state explosion problem becomes particularly acute.
Therefore it becomes important to consider ‘coarse views’ obtained through flu-
idization of the discrete event model. Those fluid or continuous over-approximated
views of DEDS lead to special classes of hybrid systems.

Control theory for DEDS is motivated by the ordering of events or actions. Prob-
lems of control of DEDS arise in control engineering, computer engineering, and
sciences. Areas in which DEDS control problems arise include manufacturing sys-
tems, automated guided vehicles, logistics, aerial vehicles, underwater vehicles,
communication networks, mobile phones or chemical engineering systems, but also
software systems on computers, laptops, and readers. The research into control of
DEDS, heavily loaded or not, is thus well motivated by engineering but also theo-
retically quite deep.

A brief description of the book by parts and by chapters follows. The first part
(nine chapters) concerns control of automata. After a chapter on modeling of en-
gineering systems by automata (Chapter 1) there follows one with the concepts
of automata, decidability, and complexity (Chapter 2). Supervisory control of au-
tomata is summarized first with respect to complete observations and subsequently
with respect to partial observations (Chapters 3 and 4, respectively). Observers and
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diagnosers for automata, in particular distributed observers, are covered in Chap-
ter 5. Supervisory control of distributed DEDS is introduced by three special cases
in Chapter 6. That chapter is followed by one on distributed control with communi-
cation (Chapter 7) and one on coordination control (Chapter 8). Finally, Chapter 9
deals with timed automata.

The second part of the book addresses the control of Petri nets. It includes eleven
chapters and can be seen as structured into two main parts: the first one, includ-
ing eight chapters, dealing with discrete Petri nets; the second part, including three
chapters, dealing with fluid relaxations. The former eight chapters can be divided
into two blocks: the first six are devoted to untimed models, while the remaining
two are related to timed models. In particular, Chapters 10 and 11 introduce ba-
sic concepts and structural analysis techniques. Chapters 12 and 13 are related to
control. After considering supervisory control with languages specifications (Chap-
ter 12), structural methods tailored for resource allocation problems are studied in
the following one. Chapters 14 and 15 deals with diagnosis problems, the second
one using net unfolding. Petri nets enriched with different temporal metrics and se-
mantics are introduced in Chapter 16 and used in Chapter 17 for fault diagnosis,
now on-line over timed models.

Chapters 18, 19 and 20 are based on fluid relaxation of DEDS. In particular, the
fluid or continuous views of Petri nets are introduced in Chapter 18 on both untimed
and timed models, dealing even with improvements of the relaxation with respect to
the underlying discrete case. Finally, Chapters 19 and 20 are devoted to observability
and diagnosis, and controllability and control, respectively.

The third and last part deals with the modeling and control of DEDS in dioids.
A dioid is a mathematical structure with two operations, usually referred to as addi-
tion and multiplication, where the former, unlike in standard algebra, is idempotent.
The most well known example for a dioid is the so-called max-plus algebra. Re-
stricted classes of timed DEDS, in particular timed event graphs, become linear in
a suitable dioid framework. For such systems, control does not involve logical de-
cisions, only choices regarding the timing of events. They frequently appear in the
context of manufacturing systems, but also arise in other engineering areas. Chapter
21 shows how to model timed event graphs in dioid frameworks and provides a de-
tailed example from the area of high-throughput screening. Chapter 22 summarizes
and illustrates control synthesis for systems in dioids.

Cagliari, Italy Carla Seatzu
Zaragoza, Spain Manuel Silva
Amsterdam, Netherlands Jan H. van Schuppen
April 2012 Editors
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Tomáš Masopust and Jan H. van Schuppen
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Motivation of Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Concepts of Automata and of Languages . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Concepts of Control of Discrete-Event Systems . . . . . . . . . . . . . . . . 49
3.5 Problem of Existence of a Supervisory Control . . . . . . . . . . . . . . . . 51
3.6 Existence of a Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Implementation of a Supervisory Control by a Supervisor . . . . . . . 55
3.8 Computation of a Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Partially-Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Supremal Controllable Sublanguages . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.11 Supremal Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Supervisory Control with Partial Observations . . . . . . . . . . . . . . . . . . . 65
Jan Komenda
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Concepts of Supervisory Control with Partial Observations . . . . . . 66

4.2.1 Observer Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Supervisor with Partial Observations . . . . . . . . . . . . . . . . . 71

4.3 Existence of Supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Algorithm for Verification of Observability and Automata

Implementation of Supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 General Case of Unobservable Specifications . . . . . . . . . . . . . . . . . 77
4.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents XI

5 Diagnosis and Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Eric Fabre
5.1 Diagnosis vs. State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Observer and Diagnoser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Probabilistic Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Diagnosability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Modular Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Distributed State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 Conclusion and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Supervisory Control of Distributed Discrete-Event Systems . . . . . . . . 107
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Department of Computer Science and Systems Engineering, University of Zaragoza
Marı́a de Luna 1, E-50018, Zaragoza, Spain
e-mail: jpablo@unizar.es

Jan Komenda
Institute of Mathematics, Academy of Sciences of the Czech Republic
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Žižkova 22, 616 62 Brno, Czech Republic
e-mail: masopust@math.cas.cz

Jörg Raisch
Fachgebiet Regelungssysteme, TU Berlin, Sekr. EN11, Einsteinufer 17, 10587
Berlin, Germany.
Also: Fachgruppe System-und Regelungstheorie, Max-Planck-Institut für Dynamik
komplexer technischer Systeme, Magdeburg
e-mail: raisch@control.tu-berlin.de

S. Laurie Ricker
Department of Mathematics & Computer Science, Mount Allison University
67 York St. Sackville, NB Canada E4L 1E6
e-mail: lricker@mta.ca

Carla Seatzu
Department of Electrical and Electronic Engineering, University of Cagliari
Piazza D’Armi, 09123 Cagliari, Italy
e-mail: seatzu@diee.unica.it

Manuel Silva
Instituto de Investigación en Ingenierı́a de Aragón (I3A), University of Zaragoza
Marı́a de Luna 1, E-50018, Zaragoza, Spain
e-mail: silva@unizar.es

Jan H. van Schuppen
CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
e-mail: J.H.van.Schuppen@cwi.nl

C. Renato Vázquez
Instituto de Investigación en Ingenierı́a de Aragón (I3A), University of Zaragoza
Marı́a de Luna 1, E-50018, Zaragoza, Spain
e-mail: cvazquez@unizar.es



XXII List of Contributors

Reviewers
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Chapter 1
Modelling of Engineering Phenomena by Finite
Automata

Jörg Raisch

1.1 Introduction

In “conventional” systems and control theory, signals “live” in IRn (or some other,
possibly infinite-dimensional, vector space). Then, a signal is a map T → IRn, where
T represents continuous or discrete time. There are, however, numerous application
domains where signals only take values in a discrete set, which is often finite and
not endowed with mathematical structure. Examples are pedestrian lights (possible
signal values are “red” and “green”) or the qualitative state of a machine (“busy”,
“idle”, “down”). Often, such signals can be thought of as naturally discrete-valued;
sometimes, they represent convenient abstractions of continuous-valued signals and
result from a quantisation process.

Example 1.1. Consider a water reservoir, where z : IR+ → IR+ is the (continuous-
valued) signal representing the water level in the reservoir. The quantised signal

ỹ : IR+→{Hi,Med,Lo} ,

where

ỹ(t) =

⎧
⎨

⎩

Hi if z(t)> 2
Med if 1 < z(t)≤ 2
Lo if z(t)≤ 1

represents coarser, but often adequate, information on the temporal evolution of the
water level within the reservoir. This is indicated in Fig. 1.1, which also shows that
the discrete-valued signal ỹ can be represented by a sequence or string of timed
discrete events, e.g.,

(t0,Lo),(t1,Med),(t2,Hi), . . . ,

Jörg Raisch
Fachgebiet Regelungssysteme, TU Berlin, Sekr. EN11, Einsteinufer 17,
10587 Berlin, Germany. Also: Fachgruppe System- und Regelungstheorie,
Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
e-mail: raisch@control.tu-berlin.de

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 3–22.
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t

1

2

tt1 t2 t3

Lo

Med

Hi

Med Hi Med

t0

Lo

ỹ

z

Fig. 1.1 Quantisation of a continuous signal

where ti ∈ IR+ are event times and (ti,Med) means that at time ti, the quantised
signal ỹ changes its value to Med. �

Note that an (infinite) sequence of timed discrete events can be interpreted as a map
N0 → IR+×Y , where Y is an event set. Similarly, a finite string of timed discrete
events can be seen as a map defined on an appropriate finite subset I j = {0, . . . , j}
of N0.

Often, even less information may be required. For example, only the temporal
ordering of events, but not the precise time of the occurrence of events may be
relevant. In this case, we can simply project out the time information and obtain a
sequence (or string) of logical events, e.g.,

Lo,Med,Hi, . . . ,

which can be interpreted as a map y : N0 (resp. I j)→ Y , where Y is the event set.
It is obvious (but important) to note, that the domain N0 (respectively I j) does in
general not represent uniformly sampled time; i.e., the time difference tk+1− tk,
with k,k + 1 ∈ N0 (respectively I j), between the occurrence of subsequent events
y(k+ 1) and y(k) is usually not a constant.

Clearly, going from the continuous-valued signal z to the discrete-valued signal
ỹ (or the corresponding sequence of timed discrete events), and from the latter to a
sequence y of logical events, involves a loss of information. This is often referred to
as signal aggregation.
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We will use the following terminology: given a set U , the symbol UN0 denotes
the set of all functions mapping N0 into U , i.e., the set of all (infinite) sequences of
elements from U . The symbol U∗ denotes the set of all finite strings from elements
of U . More specifically, UIj ⊂ U∗, j = 0,1, . . ., is the set of strings from U with
length j + 1, and ε is the empty string. The length of a string u is denoted by |u|,
i.e., |u|= j+ 1 if u ∈UIj , and |ε|= 0.

We will be concerned with models that explain sequences or strings of logical
discrete events. In all but trivial cases, these models will be dynamic, i.e., to ex-
plain the k-th event, we will need to consider previous events. As in “conventional”
systems and control theory, it is convenient to concentrate on state models.

1.2 State Models with Inputs and Outputs

The traditional control engineering point of view is based on the following assump-
tions (compare Fig. 1.2):

• the system to be controlled (plant) exhibits input and output signals;
• the control input is free, i.e., it can be chosen by the controller;
• the disturbance is an input that cannot be influenced; in general, it can also not

be measured directly;
• the output can only be affected indirectly;
• the plant model relates control input and output signals;
• the disturbance input may or may not be modelled explicitly; if it is not, the

existence of disturbances simply “increases the amount of nondeterminism” in
the (control) input/output model;

• the design specifications depend on the output; they may additionally depend on
the control input.

outputcontrol input

disturbance

Fig. 1.2 System with inputs and outputs

1.2.1 Mealy Automata

The relation between discrete-valued input and output signals can often be modelled
by finite Mealy automata:
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Definition 1.1. A deterministic finite Mealy automaton (DFMeA) is a sixtuple
(X ,U,Y, f ,g,x0), where

• X = {ξ1, . . .ξn} is a finite set of states,
• U = {μ1, . . .μq} is a finite set of input symbols,
• Y = {ν1, . . .νp} is a finite set of output symbols,
• f : X×U → X represents the transition function,
• g : X×U → Y represents the output function,
• x0 ∈ X is the initial state.

Note that the transition function is a total function, i.e., it is defined for all pairs in
X ×U . In other words, we can apply any input symbol in any state, and the input
signal u is therefore indeed free. Furthermore, as xo is a singleton and the transition
function maps into X , any sequence (string) of input symbols will provide a unique
sequence (string) of output symbols. Finally, from the state and output equations

x(k+ 1) = f (x(k),u(k)), (1.1)

y(k) = g(x(k),u(k)), (1.2)

it is obvious that the output symbols y(0) . . .y(k− 1) will not depend on the input
symbols u(k),u(k+ 1), . . .. One says that the output does not anticipate the input,
or, equivalently, that the input output relation is non-anticipating [19].

Remark 1.2. Sometimes, it proves convenient to extend the definition of DFMeA
by adding a set Xm ⊆ X , the set of marked states. The role of Xm is to model ac-
ceptable outcomes when applying a finite string of input symbols. Such an outcome
is deemed to be achieved when a string of input symbols “drives” the system state
from x0 into Xm. One could argue, of course, whether the definition of an acceptable
outcome should be contained in the plant model or rather be part of the specification,
which is to be modelled separately. �

The following example illustrates how DFMeA can model discrete event systems
with inputs and outputs.

Example 1.3. Let us consider a candy machine with (very) restricted functionality.
It sells two kinds of candy, chocolate bars (product 1) and chewing gum (product
2). A chocolate bar costs 1e, chewing gum costs 2e. The machine only accepts
1e and 2e coins and will not give change. Finally, we assume that the machine is
sufficiently often refilled and therefore never runs out of chocolate or chewing gum.
In this simplified scenario, the customer can choose between the input symbols:

1e “insert a 1e coin”
2e “insert a 2e coin”
P1 “request product 1 (chocolate bar)”
P2 “request product 2 (chewing gum)”
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The machine can respond with the following output symbols:

G1 “deliver product 1”
G2 “deliver product 2”
M1 “display message insufficient credit”
M2 “display message choose a product”
R1e “return 1e coin”
R2e “return 2e coin”

Clearly, to implement the desired output response, the machine needs to keep track
of the customer’s current credit. To keep the system as simple as possible, we restrict
the latter to 2e. Hence, we will have the following states:

ξ1 “customer’s credit is 0e”,
ξ2 “customer’s credit is 1e”,
ξ3 “customer’s credit is 2e”,

where ξ1 is the initial state and the only marked state, i.e., x0 = ξ1 and Xm = {ξ1}.
The Mealy automaton shown in Fig. 1.3 models the functionality of our simple
candy machine. In this figure, circles represent states, and arrows represent transi-
tions between states. Transitions are labelled by a pair μi/ν j of input/output sym-
bols. For example, the arrow labelled 2e/M2 beginning in ξ1 and ending in ξ3 is
to be interpreted as f (ξ1,2e) = ξ3 and g(ξ1,2e) = M2. Hence, if the customer’s
credit is 0e and (s)he inserts a 2e coin, (s)he will subsequently have 2e credit,
and the machine will display the message choose a product. The initial state
is indicated by a small arrow pointing towards it “from the outside”, and a marked
state is shown by a small arrow pointing from the state “towards the outside”. �
The following notions characterise how a DFMeA responds to sequences (strings)
of input symbols:

The set of all pairs of input/output signals (or, equivalently, the set of all pairs of
sequences of input and output symbols) which are compatible with the automaton

P2/M1

P2/G2

1e/M2

P2/M1

P1/M1

P1/G1

2e/R2e
P1/G1

2e/M2

2e/R2e

1e/R1e

1e/M2

ξ3

ξ1 ξ2

Fig. 1.3 Mealy automaton modelling a candy machine
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dynamics is called the behaviour generated by a DFMeA and denoted by B.
Formally,

B =
{
(u,y) | ∃x ∈ XN0 s.t. (1.1) and (1.2) hold ∀k ∈ N0, x(0) = x0

}
.

Hence, a pair (u,y) of input and output sequences is in the behaviour B if and only
if there exists a state sequence x that begins in the initial state and, together with
(u,y), satisfies the next state and output equations defined by f and g.

The language generated by a DFMeA, denoted by L, is the set of all pairs (u,y) of
input and output strings with equal length such that applying the input string u∈U∗

in the initial automaton state x0 makes the DFMeA respond with the output string
y ∈ Y ∗. Formally,

L =
{
(u,y) | |u|= |y|, ∃x ∈ XI|u| s.t. (1.1) and (1.2) hold for

k = 0, . . . , |u|− 1, x(0) = x0} .

If a set of marked states is given, we can also define the language marked by a
DFMeA, Lm. It represents the elements of the language L that make the state end in
Xm. Formally,

Lm = {(u,y) | (u,y) ∈ L, x(|u|) ∈ Xm } .

Clearly, in our candy machine example, ((P1,P1,. . . ), (M1, M1, . . . )) ∈ B,
((1e,P2),(M2,M1))∈ L, and ((1e,P1),(M2,G1))∈ Lm.

Modelling is in practice often intentionally coarse, i.e., one tries to model only
phenomena that are important for a particular purpose (e.g., the synthesis of feed-
back control). In the context of input/output models, this implies that the effect of
inputs on outputs is, to a certain extent, uncertain. This is captured by the notion of
nondeterministic finite Mealy automata (NDFMeA).

Definition 1.2. A nondeterministic finite Mealy automaton (NDFMeA) is a quintu-
ple (X ,U,Y,h,X0), where

• X is a finite set of states,
• U is a finite set of input symbols,
• Y is a finite set of output symbols,
• h : X×U → 2X×Y \ /0 represents a set-valued transition-output function,
• X0 ⊆ X, X0 
= /0 is a set of possible initial states.

Hence, there are two “sources” of uncertainty in NDFMeA: (i) the initial state may
not be uniquely determined; (ii) if the automaton is in a certain state and an input
symbol is applied, the next state and/or the generated output symbol may be nonde-
terministic. The evolution is now governed by

(x(k+ 1),y(k)) ∈ h(x(k),u(k)). (1.3)

As in the deterministic case, the output symbols y(0) . . .y(k−1) will not depend on
the input symbols u(k),u(k+ 1), . . ., i.e., the output does not anticipate the input.
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Example 1.4. Consider the slightly modified model of our candy machine in
Fig. 1.4, which includes a limited “change” policy. The only difference compared
to Example 1.3 is when the machine is in state ξ2 (i.e., the customer’s credit is 1e),
and a 2e coin is inserted. Depending on whether 1e coins are available (which
is not modelled), the machine may return a 1e coin and go to state ξ3 (i.e., the
customer’s credit is now 2e), or it may return the inserted 2e coin and remain in
state ξ2. �

P2/M1

P2/G2

1e/M2

P2/M1

P1/M1

P1/G1

2e/R2e
P1/G1

2e/M2

2e/R2e

1e/R1e

2e/R1e

1e/M2

ξ1 ξ2

ξ3

Fig. 1.4 Nondeterministic Mealy automaton modelling a candy machine

Remark 1.5. Note that a combined transition-output function h : X×U → 2X×Y \ /0
is more expressive in the set-valued case than separate transition and output functions
f : X×U→ 2X \ /0 and g : X×U→ 2Y \ /0. This is illustrated by Example 1.4 above.
There, h(ξ2,2e) = {(ξ3,R1e),(ξ2,R2e)}. That is, in state ξ2, after choosing input
2e, there are two possibilities for the next state and two possibilities for the resulting
output symbol; however, arbitrary combinations of these are not allowed. This could
not be modelled by separate transition and output functions f ,g. �
Remark 1.6. The use of a combined transition-output function also leads to a more
compact formulation of the behaviour and the language generated by an NDFMeA:

B =
{
(u,y)

∣
∣
∣ u ∈UN0 ,y ∈ YN0 , ∃x ∈ XN0 s.t. (1.3) holds ∀k ∈ N0, x(0) ∈ X0

}
,

L =
{
(u,y) | u ∈U∗,y ∈ Y ∗, |u|= |y|, ∃x ∈ XI|u| s.t. (1.3) holds for

k = 0, . . . , |u|− 1, x(0) ∈ X0} . �

Remark 1.7. As in the deterministic case, we can extend the definition by adding
a set of marked states, Xm ⊆ X . The language marked by an NDFMeA is then the
subset of L that admits a corresponding string of states to end in Xm, i.e.,

Lm =
{
(u,y) | u ∈U∗,y ∈Y ∗, |u|= |y|, ∃x ∈ XI|u| s.t. (1.3) holds for

k = 0, . . . , |u|− 1, x(0) ∈ X0, x(|u|) ∈ Xm} .
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Note that at least one string of states compatible with a (u,y) ∈ Lm must end in Xm,
but not all of them have to. �

1.2.2 Moore Automata

Often, one encounters situations where the kth output event does not depend on the
kth (and subsequent) input event(s). In this case, it is said that the output strictly
does not anticipate the input. Clearly, this is achieved, if the output function of a
DFMeA is restricted to g : X → Y . The resulting state machine is called a Moore
automaton:

Definition 1.3. A deterministic finite Moore automaton (DFMoA) is a sixtuple
(X ,U,Y, f ,g,x0), where

• X is a finite set of states,
• U is a finite set of input symbols,
• Y is a finite set of output symbols,
• f : X×U → X represents the transition function,
• g : X → Y represents the output function,
• x0 ∈ X is the initial state.

The evolution of state and output is determined by

x(k+ 1) = f (x(k),u(k)),

y(k) = g(x(k)).

Remark 1.8. As for Mealy automata, the above definition can be extended by
adding a set of marked states, Xm ⊆ X , to model acceptable outcomes when ap-
plying a finite string of input symbols. �

Remark 1.9. A nondeterministic version (NDFMoA) is obtained by the following
straightforward changes in the above definition: the initial state is from a set Xo⊆ X ,
Xo 
= /0; the transition function and the output function map into the respective power
sets, i.e., f : X×U → 2X \ /0 and g : X → 2Y \ /0. �

1.3 Automata with Controllable and Uncontrollable Events

Although distinguishing between control inputs and outputs is a natural way of mod-
elling the interaction between plant and controller, in most of the work in the area
of discrete event control systems a slightly different point of view has been adopted.
There, plants are usually modelled as deterministic finite automata with an event
set that is partitioned into sets of controllable (i.e., preventable by a controller) and
uncontrollable (i.e., non-preventable) events. For example, starting your car is a
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controllable event (easily prevented by not turning the ignition key), whereas break-
down of a car is, unfortunately, uncontrollable. In this scenario, a string or sequence
of events is in general not an input and therefore not free. Hence, the transition
function is usually defined to be a partial function. The resulting machine is often
referred to as a finite generator.

Definition 1.4. A deterministic finite generator (DFG) is a sixtuple (X ,S,Sc, f ,
x0,Xm), where

• X = {ξ1, . . .ξn} is a finite set of states,
• S = {σ1 . . .σq} is a finite set of events (the “alphabet”),
• Sc ⊆ S is the set of controllable events; consequently Suc = S \ Sc represents the

set of uncontrollabe events,
• f : X× S→ X is a partial transition function,
• x0 ∈ X is the initial state,
• Xm ⊆ X is a set of marked states.

As for input/output automata, we distinguish the language generated and the
language marked by DFG:

L =
{

s ∈ S∗ | ∃x ∈ XI|s| s.t. x(k+ 1) = f (x(k),s(k)), k = 0, . . . , |s|− 1,

x(0) = x0} ,

Lm =
{

s ∈ S∗ | ∃x ∈ XI|s| s.t. x(k+ 1) = f (x(k),s(k)), k = 0, . . . , |s|− 1,

x(0) = x0, x(|s|) ∈ Xm} .

The set of events that can occur in state ξ is called the active event set, denoted by
Γ (ξ ), i.e.,

Γ (ξ ) = {σ | f is defined on (ξ ,σ)} .

Example 1.10. Consider the following simple model of a simple machine (taken
from [21]): the model has three states, idle, working, and broken. The event
set S consists of four elements:

a take a workpiece and start processing it,
b finish processing of workpiece,
c machine breaks down,
d machine gets repaired.

The events a and d are controllable in the sense that they can be prevented, i.e.,
Sc = {a,d}. It is assumed that neither the breakdown of the machine nor the finishing
of a workpiece can be prevented by control, i.e., Suc = {b,c}. The state idle is
both the initial state and the only marked state. The transition structure is shown in
Fig. 1.5, where, e.g., the arc from idle to working labelled by a means that the
transition function is defined for the pair (idle,a) and f (idle,a) = working.
To distinguish controllable and uncontrollable events, arcs labelled with controllable
events are equipped with a small bar. Clearly, in this example, the strings ab, aba,
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d
b

a

c

broken

idle

working

Fig. 1.5 Simple machine model

and acd are in the language generated by the DFG in Fig. 1.5, and ab, acd (but not
aba) are also in the marked language. �

As indicated in the previous section, nondeterminism is in practice a feature that is
often intentionally included to keep models simple.

Definition 1.5. A nondeterministic finite generator (NDFG) is a sixtuple
(X ,S,Sc, f ,X0,Xm), where

• X, S, Sc and Xm are as in Definition 1.4,
• f : X× S→ 2X is the transition function,
• X0 ⊆ X is the set of possible initial states.

Note that the transition function, as it maps into the power set 2X (which includes
the empty set), can be taken as a total function. That is, it is defined for all state-
event pairs, and σ ∈ Γ (ξ ) if and only if f (ξ ,σ) 
= /0. The definitions of languages
generated and marked by NDFGs carry over from the deterministic case with the
obvious change that x(k + 1) = f (x(k),s(k)) needs to be replaced by x(k + 1) ∈
f (x(k),s(k)).

1.4 Finite Automata as Approximations of Systems with Infinite
State Sets

We now discuss the question whether — for the purpose of control synthesis — fi-
nite automata can serve as approximate models for systems with an infinite state set.
The motivation for investigating this problem stems from the area of hybrid dynam-
ical systems. There, at least one discrete event system, e.g., in the form of a finite
Moore or Mealy automaton, interacts with at least one system with an infinite state
space, typically IRn. A composition of infinite and finite state components would
result in a hybrid system with state set IRn×X . This is neither finite nor a vector
space, as the finite automaton state set X is typically without mathematical struc-
ture. Hence, neither established control synthesis methods from continuous systems
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theory nor from the area of supervisory control of discrete event systems (DES) can
be applied. In this situation, it is then natural to ask whether the infinite state com-
ponent can be approximated by a suitable finite state automaton, and if control for
the resulting overall DES can be meaningful for the underlying hybrid system.

Assume that the component to be approximated can be represented by a state
model P defined on a discrete, but not necessarily equidistant, time axis. Assume
furthermore that the input is free and that both the input and output spaces are finite.
This is natural in the described context, where the input and output signals connect
the component’s infinite state space to (the) finite DES component(s) in the overall
hybrid system (Fig. 1.6).

DES

infinite state system

signal aggregation

U Y

P

Fig. 1.6 Hybrid system

Furthermore, we do not assume any knowledge on the initial state. The resulting
model is then the following infinite state machine:

P = (X ,U,Y, f ,g,X0) ,

where X = IRn is the state space, U and Y are finite input and output sets, f : X ×
U→ X is the transition function, g : X×U→Y is the output function, and X0 = IRn

is the set of possible initial states. In total analogy to Section 1.2, the input output
relation of P is non-anticipating and its behaviour is

B=
{
(u,y) | ∃x ∈ IRN0 s.t. x(k+ 1)= f (x(k),u(k)),y(k)=g(x(k),u(k)) ∀k ∈ N0

}
.

Note that the above system is time invariant in the sense of [19], as shifting a pair
(u,y) ∈ B on the time axis will never eliminate it from B. Formally, σB ⊆B,
where σ represents the backward or left shift operator, i.e., (σ(u,y))(k) = (u(k+
1),y(k+ 1)).

To answer the question whether control synthesis for a finite state approxima-
tion can be meaningful for P, we obviously need to take into account specifica-
tions. For DES and hybrid systems, we often have inclusion-type specifications,
i.e., the control task is to guarantee that the closed-loop behaviour is a (nonempty!)
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subset of a given specification behaviour, thus ruling out signals that are deemed
to be unacceptable. In this case, an obvious requirement for the approximation is
that its behaviour contains the behaviour of the system to be approximated. The ar-
gument for this is straightforward: as linking feedback control to a plant provides
an additional relation between the plant input and output sequences, it restricts the
plant behaviour by eliminating certain pairs of input and output sequences. Hence, if
there exists a controller that achieves the specifications for the approximation, it will
— subject to some technical constraints regarding implementability issues — also
do this for the underlying system (for a more formal argument see, e.g., [10, 11]).
There is another issue to be taken into consideration, though. This is the question of
whether the approximation is sufficiently accurate. In Willems’ behavioural frame-
work, e.g. [19, 20], a partial order on the set of all models which relate sequences
of symbols from U and Y and which are unfalsified (i.e., not contradicted by avail-
able input/output data) is readily established via the ⊆ relation on the set of the
corresponding behaviours. In particular, if BA ⊆BB holds for two models A and
B, the former is at least as accurate as the latter. B is then said to be an abstraction
of A, and, conversely, A is said to be a refinement of B. It is well possible that an
approximation of the given infinite state model with the required abstraction prop-
erty is “too coarse” to allow successful controller synthesis. An obvious example
is the trivial abstraction, whose behaviour consists of all pairs (u,y) ∈UN0 ×YN0 .
It will allow all conceivable output sequences for any input sequence, and we will
therefore not be able to design a controller enforcing any nontrivial specification.
Hence, if the chosen approximation of P is too coarse in the sense that no suitable
DES controller exists, we need to refine that approximation. Refinability is therefore
another important feature we require on top of the abstraction property.

1.4.1 l-Complete Approximations

An obvious candidate for a family of approximations satisfying both the abstraction
and refinability property are systems with behaviours

Bl =
{
(u,y) | (σ t (u,y))

∣
∣
[0,l] ∈B

∣
∣
[0,l] ∀t ∈N0

}
, l = 1,2, . . . (1.4)

where σ t is the backward t-shift, i.e., (σ t u)(k) = u(k + t), and (·)
∣
∣
[0,l] is the re-

striction operator. The latter maps sequences, e.g., u ∈ N0, to finite strings, e.g.,
u(0), . . . ,u(l) ∈UIl . Both the shift and the restriction operator can be trivially ex-
tended to pairs and sets of sequences (behaviours). The interpretation of (1.4) is
that the behaviour Bl consists of all pairs of sequences (u,y) that, on any interval
of length l + 1, coincide with a pair of input/output sequences in the underlying
system’s behaviour B. Clearly,

B1 ⊇B2 ⊇B3 ⊇ . . .⊇B,
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i.e., for any l ∈ N, we have the required abstraction property, and refinement can be
implemented by increasing l.

A system with behaviour (1.4) is called a strongest l-complete approximation
([10, 11]) of P : it is an l-complete system (e.g., [20]) as checking whether a signal
pair (u,y) is in the system behaviour can be done by investigating the pair on inter-
vals [t, t+ l], t ∈N0. Formally, a time-invariant system defined on N0 with behaviour
B̃ is said to be l-complete, if (u,y) ∈ B̃⇔ σ t(u,y))

∣
∣
[0,l] ∈ B̃

∣
∣
[0,l] ∀t ∈N0. Further-

more, for any l-complete system with behaviour B̃ ⊇B, it holds that B̃ ⊇Bl . In
this sense, Bl represents the most accurate l-complete approximation of P exhibit-
ing the abstraction property.

We now need to decide whether an arbitrary pair of input and output strings of
length l + 1, denoted by (ū, ȳ)

∣
∣
[0,l], is an element in B

∣
∣
[0,l], i.e., if the state model P

can respond to the input string ū
∣
∣
[0,l] with the output string ȳ

∣
∣
[0,l]. This is the case

if and only if X ((ū, ȳ)
∣
∣
[0,l]), the set of states of P that are reachable at time l when

applying the input string ū
∣
∣
[0,l] and observing the output string ȳ

∣
∣
[0,l], is nonempty

([11]). X ((ū, ȳ)
∣
∣
[0,l]) can be computed iteratively by

X ((ū, ȳ)
∣
∣
[0,0]) = g−1

ū0
(ȳ0)),

X ((ū, ȳ)
∣
∣
[0,r+1]) = f (X ((ū, ȳ)

∣
∣
[0,r]), ūr)∩ g−1

ūr+1
(ȳr+1), r = 0, . . . l− 1,

where g−1
ūr
(ȳr)) := {ξ | g(ξ , ūr) = ȳr} and f (A, ūr) := {ξ | ξ = f (ξ ′, ūr),ξ ′ ∈ A}.

As U and Y are finite sets, B
∣
∣
[0,l] = Bl

∣
∣
[0,l] is also finite, and a nondeterministic

finite Mealy automaton (NDFMeA)

Pl = (Z,U,Y,h,Z0)

generating the behaviour Bl can be set up using the following procedure. It is based
on the simple idea that the state of the NDFMeA memorises the past input and
output data up to length l , i.e.,

z(k) :=

⎧
⎨

⎩

ω for k = 0,
(u(0) . . .u(k− 1),y(0) . . .y(k− 1)) for 1≤ k ≤ l,
(u(k− l) . . .u(k− 1),y(k− l) . . .y(k− 1)) for k > l,

where ω is a “dummy” symbol meaning “no input/output data recorded so far”.
Then

Z = {ω}
⋃

1≤r≤l

(U×Y )r

Z0 = {ω}
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and

((ū0, ȳ0)
︸ ︷︷ ︸

z̄1

, ȳ0) ∈ h( ω︸︷︷︸
z̄0

, ū0) iff (ū0, ȳ0) ∈B
∣
∣
[0,0]

((ū0 . . . ūr, ȳ0 . . . ȳr)
︸ ︷︷ ︸

z̄r+1

, ȳr) ∈ h((ū0 . . . ūr−1, ȳ0 . . . ȳr−1)
︸ ︷︷ ︸

z̄r

, ūr)

iff (ū0 . . . ūr, ȳ0 . . . ȳr) ∈B
∣
∣
[0,r], 0 < r < l

((ū1 . . . ūl , ȳ1 . . . ȳl)
︸ ︷︷ ︸

z̄′ l

, ȳl) ∈ h((ū0 . . . ūl−1, ȳ0 . . . ȳl−1)
︸ ︷︷ ︸

z̄l

, ūl)

iff (ū0 . . . ūl , ȳ0 . . . ȳl) ∈B
∣
∣
[0,l].

1.4.2 A Special Case: Strictly Non-anticipating Systems

It is instructive to briefly investigate the special case where the system to be approx-
imated, P, is strictly non-anticipating, i.e., its output function is g : IRn → Y . This
implies that the input u(k) does not affect the output symbols y(0), . . . ,y(k). Hence,
as the input is free,

(ū, ȳ)
∣
∣
[0,l] ∈B

∣
∣
[0,l] iff X (ū

∣
∣
[0,l−1], ȳ

∣
∣
[0,l]) 
= /0,

where X ((ū
∣
∣
[0,l−1], ȳ

∣
∣
[0,l])) represents the set of states of P that are reachable at

time l when applying the input string ū
∣
∣
[0,l−1] while observing the output string

ȳ
∣
∣
[0,l]. As before, we can readily come up with a recursive formula to provide

X (ū
∣
∣
[0,l−1], ȳ

∣
∣
[0,l]):

X (ȳ
∣
∣
[0,0]) = g−1(ȳ0),

X ((ū
∣
∣
[0,0], ȳ

∣
∣
[0,1])) = f (X (ȳ

∣
∣
[0,0]), ū0)∩ g−1(ȳ1),

X ((ū
∣
∣
[0,r], ȳ

∣
∣
[0,r+1])) = f (X (ū

∣
∣
[0,r−1], ȳ

∣
∣
[0,r]), ūr)∩ g−1(ȳr+1), 0 < r < l.

We can now set up a nondeterministic finite Moore automaton (NDFMoA)

P̃l = (Z̃,U,Y, f̃ , g̃, Z̃0)

generating the behaviour Bl . This procedure is based on the idea that the automaton
state memorises the past input and output data up to length l− 1 plus the present
output symbol, i.e.,

z̃(k) :=

⎧
⎨

⎩

y(0) for k = 0,
(u(0) . . .u(k− 1),y(0) . . .y(k)) for 1≤ k < l,
(u(k− l+ 1) . . .u(k− 1),y(k− l+ 1) . . .y(k)) for k ≥ l.
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Hence, for l > 1, the state set of the NDFMoA is

Z̃ = Y ∪U×Y2∪ . . .Ul−1×Yl ,

and Z̃0 = Y . The transition function f̃ is defined by

(ū0, ȳ0ȳ1)
︸ ︷︷ ︸

z̄1

∈ f̃ ( ȳ0
︸︷︷︸

z̄0

, ū0) iff (ū0%, ȳ0ȳ1) ∈B
∣
∣
[0,1]

(ū0 . . . ūr, ȳ0 . . . ȳr+1)
︸ ︷︷ ︸

z̄r+1

∈ f̃ ((ū0 . . . ūr−1, ȳ0 . . . ȳr)
︸ ︷︷ ︸

z̄r

, ūr)

iff (ū0 . . . ūr%, ȳ0 . . . ȳr+1) ∈B
∣
∣
[0,r+1], 1 < r < l− 1

(ū1 . . . ūl−1, ȳ1 . . . ȳl)
︸ ︷︷ ︸

z̄′ l−1

∈ f̃ ((ū0 . . . ūl−2, ȳ0 . . . ȳl−1)
︸ ︷︷ ︸

z̄l−1

, ūl−1)

iff (ū0 . . . ūl−1%, ȳ0 . . . ȳl) ∈B
∣
∣
[0,l],

where the “don’t care” symbol % may represent any element of the input set U . For
this realisation, the output function is deterministic, i.e., g̃ : Z̃→Y and characterised
by

g̃(ȳ0) = ȳ0

g̃((ū0 . . . ūr−1, ȳ0 . . . ȳr)) = ȳr, r = 1, . . . l− 1.

For l = 1, the state only memorises the current output symbol, i.e., Z̃ = Z̃0 = Y ,
the transition function f̃ is characterised by

ȳ1 ∈ f̃ (ȳ0, ū0) iff (ū0%, ȳ0ȳ1) ∈B
∣
∣
[0,1],

and the output function g̃ is the identity.

Example 1.11. We now introduce an example, whose only purpose is to illustrate
the above procedure. Hence we choose it to be as simple as possible, although most
problems will become trivial for this example. It represents a slightly modified ver-
sion of an example that was first suggested in [15]. Consider the water tank shown
in Fig. 1.7. Its cross sectional area is 100cm2, its height x̂ = 30cm. The attached
pump can be switched between two modes: it either feeds water into the tank at
a constant rate of 1litre/min, or it removes water from the tank at the same flow
rate. The pump is in feed mode if the control input is u(k) = “+”, and in removal
mode if u(k) = “−”. We work with a fixed sampling rate, 1/min, and the con-
trol input remains constant between sampling instants. The output signal can take
two values: y(k) = E(mpty) if the water level x(k) is less or equal to 15cm, and
y(k) = F(ull) if the water level is above 15cm. Hence U = {+,−}, Y = {E,F},
and X = [0,30cm]. The behaviour B can be represented by an (infinite) state model
P = (X ,U,Y, f ,g,X0), where X0 = X , and f and g are defined by
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pump

xx̂

y = F (ull)

y = E(mpty)

Fig. 1.7 Simple tank example

x(k+ 1) = f (x(k),u(k))

=

⎧
⎪⎪⎨

⎪⎪⎩

x(k)+ 10cm if u(k) = “+” and 0≤ x(k)≤ 20cm,
30cm if u(k) = “+” and 20cm < x(k)≤ 30cm,
x(k)− 10cm if u(k) = “−” and 10cm < x(k)≤ 30cm,
0cm if u(k) = “−” and 0cm≤ x(k) ≤ 10cm,

y(k) = g(x(k))

=

{
F if 15cm < x(k)≤ 30cm,
E if 0cm≤ x(k)≤ 15cm.

As the system is strictly non-anticipating, we can use the procedure outlined in
this section to construct NDFMoA P̃l that realise the strongest l-complete approx-
imations. Let us first consider the case l = 1. We have to check whether strings
(ū, ȳ)

∣
∣
[0,1] ∈B

∣
∣
[0,1]. This is the case if and only if

X (ū0, ȳ0ȳ1) = f (g−1(ȳ0), ū0)∩g−1(ȳ1) 
= /0.

For our example, we obtain

X (+,EE) = [10,25]∩ [0,15] = [10,15] i.e. (+%,EE) ∈B
∣
∣
[0,1]

X (+,EF) = [10,25]∩ (15,30] = (15,25] i.e. (+%,EF) ∈B
∣
∣
[0,1]

X (+,FF) = (25,30]∩ (15,30] = (25,30] i.e. (+%,FF) ∈B
∣
∣
[0,1]

X (+,FE) = (25,30]∩ [0,15] = /0 i.e. (+%,FE) /∈B
∣
∣
[0,1]

X (−,EE) = [0,5]∩ [0,15] = [0,5] i.e. (−%,EE) ∈B
∣
∣
[0,1]

X (−,EF) = [0,5]∩ (15,30] = /0 i.e. (−%,EF) /∈B
∣
∣
[0,1]

X (−,FF) = (5,20]∩ (15,30] = (15,20] i.e. (−%,FF) ∈B
∣
∣
[0,1]

X (−,FE) = (5,20]∩ [0,15] = (5,15] i.e. (−%,FE) ∈B
∣
∣
[0,1].
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The described realisation procedure then provides the NDFMoA P̃1 shown in
Fig. 1.8, where the output symbols associated to the states are indicated by dashed
arrows. The (initial) state set is Z̃ = Z̃0 = Y , and there are six transitions. Clearly,
B is a strict subset of the behaviour generated by P̃1, i.e., B ⊂B1. For example, P̃1

allows the sequence EEE . . . as a possible response to the input sequence +++ . . .,
i.e., we can add water to the tank for an arbitrary period of time without ever ob-
serving the output symbol F . This would clearly not be possible for the system to
be approximated.

−

−

+

+

−
+

V L

Fig. 1.8 Realisation P̃1 of strongest 1-complete approximation

We now proceed to the case l = 2. To construct the strongest 2-complete approx-
imation, we need to establish whether strings (ū, ȳ)

∣
∣
[0,2] ∈B

∣
∣
[0,2]. As stated above,

this is true if and only if

X (ū0ū1, ȳ0ȳ1ȳ2) = f
(

f (g−1(ȳ0), ū0)∩g−1(ȳ1), ū1
)
∩g−1(ȳ2) 
= /0.

For example, we obtain

X (++,EEF) = f

⎛

⎜
⎝ f (g−1(E),+)∩g−1(E)
︸ ︷︷ ︸

X (+,EE)

,+

⎞

⎟
⎠∩g−1(F)

= [20,25]∩ (15,30] 
= /0 i.e. (++%,EEF) ∈B
∣
∣
[0,2].

Repeating this exercise for other strings and using the realisation procedure de-
scribed above, we obtain the NDFMoA P̃2 shown in Fig. 1.9. Its state set is
Z̃ = Y ∪U ×Y 2, its initial state set Z̃0 = Y . Note that only 8 out of the 10 ele-
ments of Z̃ are reachable. These are the initial states and states (ū0, ȳ0ȳ1) such that
(ū0%, ȳ0ȳ1) ∈B

∣
∣
[0,1]. To avoid unnecessary cluttering of the figure, the output sym-

bols are not indicated for each state, but summarily for all states generating the same
output.

We can readily check that for this simple example B2 = B, i.e., the NDFMoA
P̃2 exhibits exactly the same behaviour as the underlying infinite state model P.
In general, however, no matter how large l is chosen, we cannot expect that the
behaviour generated by P is l-complete and, in consequence, we will not be able to
recover it exactly by an l-complete approximation. �
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V

L

[V]

−

−

+

+

+

+

−

−

−

−

+

+ +

+

[L]

−
+

−

−

(+V)(%V)

(-V)(%V)

(-V)(%L) (-L)(%L)

(+L)(%L)

(+L)(%V)

Fig. 1.9 Realisation P̃2 of strongest 2-complete approximation

Remark 1.12. Suppose we design a feedback controller, or supervisor, for the ap-
proximating automaton Pl or P̃l . Clearly, this controller must satisfy the following
requirements: (i) it respects the input/output structure of Pl (respectively P̃l), i.e., it
cannot directly affect the output y; (ii) it enforces the (inclusion-type) specifications
when connected to the approximation, i.e., Bl ∩Bsup ⊆ Bspec, where Bsup and
Bspec are the supervisor and specification behaviours, respectively, and where we
assume that Bspec can be realised by a finite automaton; (iii) the approximation and
supervisor behaviours are nonconflicting, i.e., Bl

∣
∣
[0,k]∩Bsup

∣
∣
[0,k] = (Bl∩Bsup)

∣
∣
[0,k]

for all k ∈ N0, i.e., at any instant of time, the approximation and the controller can
agree on a common future evolution. In this chapter, we will not discuss the solution
of this control synthesis problem. [11] decribes how the problem can be rewritten
to fit the standard supervisory control framework (e.g., [16, 17]), and Chapter 3 of
this book discusses how to find the minimally restrictive solution to the resulting
standard problem. If we find a nontrivial (i.e., Bsup 
= /0) controller for the approx-
imation, we would of course like to guarantee that it is also a valid controller for
the underlying infinite state system P, i.e., items (i), (ii), and (iii) hold for P and its
behaviour B. As P and Pl (respectively P̃l) exhibit the same input/output structure,
(i) is straightforward and (ii) follows immediately from the abstraction property of
Pl (respectively P̃l). There is another (not very restrictive) technical requirement that
ensures that (iii) also holds for B, see [10, 11] for details. �

Remark 1.13. From the construction of Pl (respectively P̃l), it is immediately clear
that the order of the cardinality of the approximation state set is exponential in the
parameter l. In practice, one would therefore begin with the “least accurate” approx-
imation P1 (respectively P̃1) and check whether a nontrivial control solution can be
found. If this is not the case, one turns to the refined approximation P2 (respectively
P̃2). In this way, refinement and control synthesis alternate until either a nontrivial
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control solution is found or computational resources are exhausted. Hence, failure
of the control synthesis process to return a nontrivial solution triggers a “global” re-
finement step, although “local” refinements could well suffice. A more “intelligent”
procedure suggested in [12] therefore analyses failure of the synthesis process and
focuses its efforts on those aspects of the approximation that have “caused” the fail-
ure in synthesis. This procedure “learns from failure” in the synthesis step and thus
implements a refinement that is tailored to the particular combination of plant and
specification. �

1.5 Further Reading

Finite automata, including Mealy and Moore automata are discussed in a vast num-
ber of standard textbooks. Examples are [3, 7]. The latter contains a number of
instructive examples of how Moore and Mealy automata model various systems of
practical interests. [4] is the standard textbook on discrete events systems, and also
includes a number of examples that illustrate how finite generators can be used to
model engineering problems.

The problem of approximating systems with infinite state space by finite state
machines has attracted a lot of attention since hybrid systems theory became “en
vogue”. There are various approaches, and the reader is advised to consult spe-
cial journal issues on hybid systems, e.g., [2, 5, 13], proceedings volumes such as
[1, 9], or the recently published survey book [8] for an overview. In this chapter, we
have concentrated on finding approximations with the so-called abstraction prop-
erty. The closely related concepts of simulations and approximate bisimulations are
discussed, e.g., in [6, 18].
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Chapter 2
Languages, Decidability, and Complexity

Stefan Haar and Tomáš Masopust

2.1 Introduction

Control problems for discrete-event systems or hybrid systems typically involve
manipulation of languages that describe system behaviors. This chapter introduces
basic automata and grammar models for generating and analyzing languages of the
Chomsky hierarchy, as well as their associated decision problems, which are nec-
essary for the understanding of other parts of this book. Notions of decidability of
a problem (that is, is there an algorithm solving the given problem?) and of com-
putational complexity (that is, how many computation steps are necessary to solve
the given problem?) are introduced. The basic complexity classes are recalled. This
chapter is not intended to replace a course on these topics but merely to provide
basic notions that are used further in this book, and to provide references to the
literature.

In the following, we introduce the basic terminology, notation, definitions, and
results concerning the Chomsky hierarchy of formal languages to present the nec-
essary prerequisites for understanding the topic of this chapter, that is, the devices
recognizing and generating languages. As this is only an introductory material, not
all details and proofs are presented here. Usually, only the basic ideas or sketches
of proofs are presented. Further details can be found in the literature, see, e.g.,
[4, 5, 10, 12, 13, 15].
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2.2 Regular Languages and Automata

This section introduces the simplest type of languages and automata. First, however,
let us define the fundamental concepts. The cardinality of a set A is denoted by |A|.
For two sets A and B, we write A⊆ B to denote that A is a subset of B. If A⊆ B and
A 
= B, we write A � B. The notation 2A denotes the set of all subsets of A.

2.2.1 Words and Languages

An alphabet (also called an event set) is a finite, nonempty set Σ of abstract ele-
ments, which are called symbols or letters. Let Σ = {a1,a2, . . . ,an} be an alphabet.
A word or string over Σ is a (finite or infinite) concatenation w= a1a2a3 . . . of letters
ai ∈ Σ . For instance, a and ccbc are words over {a,b,c}. The empty word is a word
consisting of zero letters, denoted by ε . It holds that ε ·w=w·ε =w, for any word w.
The set of all finite words over Σ is denoted by Σ∗ � {a1a2a3 . . .an | n∈N, ai ∈ Σ}.
The set of all nonempty words over Σ is denoted by Σ+ � Σ∗ \ {ε}. A set L is
a language over Σ if L ⊆ Σ∗. The length of a word w is denoted |w|, that is,
|a1a2 . . .an| = n. Let |w|a denote the number of a’s in w. For instance, |ccbc| = 4
and |ccbc|b = 1. Write wR for the mirror image (or reversal) of w defined so that
for w = a1a2a3 . . .an, wR = anan−1an−2 . . .a1; ccbcR = cbcc. Word u∈ Σ∗ is a prefix
of v ∈ Σ∗ if there exists u′ ∈ Σ∗ such that v = uu′. Dually, u is a suffix of v if there
exists u′ ∈ Σ∗ such that v = u′u. Furthermore, u is an infix or factor of v if there exist
u′,u′′ ∈ Σ∗ such that v = u′uu′′, and a sub-word of v if there exist ui,vi ∈ Σ∗ such
that v = v0u1v1u2 . . .unvn with u = u1u2 . . .un.

For two languages K,L ⊆ Σ∗, we have the set theoretic operations K ∪L, K ∩L,
K \L, Kc = Σ∗ \K, etc. Define the concatenation of K and L as

K ·L � {u · v | u ∈ K, v ∈ L} .

The powers of a language L are defined as follows: L0 � {ε}, Ln+1 � Ln ·L = L ·Ln,

L∗ �
⋃

n�0

Ln and L+ �
⋃

n>0

Ln .

Finally, we have the quotient languages

K−1 ·L � {v ∈ Σ∗ | ∃u ∈ K : u · v ∈ L} and L ·K−1 � {u ∈ Σ∗ | ∃v ∈ K : u · v∈ L} .

A substitution is a mapping σ : Σ∗ → 2Γ ∗ such that σ(ε) = {ε} and σ(xy) =
σ(x)σ(y), where x,y ∈ Σ∗. A (homo)morphism is a substitution σ such that σ(a)
consists of exactly one string, for all a ∈ Σ . We write σ(a) = w instead of σ(a) =
{w}, i.e., σ : Σ∗ → Γ ∗. A projection is a homomorphism σ : Σ∗ → Γ ∗ with Γ ⊆ Σ
such that for all a ∈ Σ , σ(a) ∈ {a,ε}.
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2.2.2 Regular Languages

The above language operations can be abstracted into a class RE(Σ) of regular
expressions over an alphabet Σ as follows.

1. /0 and a, for a ∈ Σ , are in RE(Σ);
2. if E,F ∈ RE(Σ), then (E +F), (E ·F), (E∗) ∈ RE(Σ);
3. nothing else is in RE(Σ).

Regular expressions correspond to languages. To show this relation, we define the
operation L : RE(Σ)→ 2Σ∗ by L( /0)� /0, L(a)� {a}, for all a ∈ Σ , and

L(E +F)� L(E)∪L(F) , L(E ·F)� L(E) ·L(F) , L(E∗)� (L(E))∗ .

The class Reg(Σ∗) of regular (also called rational) languages over Σ is the smallest
class of languages over Σ that (i) contains the empty language /0 and all singletons
{a}, for a ∈ Σ , and (ii) is closed under the operations ∪, ·, and ()∗.

Example 2.1. The regular expression a + ba∗b represents the language L(a +
ba∗b) = {a}∪L(ba∗b) = {a}∪{baib | i � 0}. �

2.2.3 Automata

We now define the first model of dynamical systems to generate languages through
their behaviors.

Deterministic Automata

Deterministic automata are finite-state machines, where the input changes the cur-
rent state of the system. These machines have only finite memory.

Definition 2.1. A deterministic finite automaton (DFA, for short) over alphabet Σ is
a quintuple A = (Q,Σ , f ,q0,Qm), where Q is a finite set of states, f : Q×Σ → Q is
a transition function (total or partial), q0 ∈Q is an initial state, and Qm ⊆Q is a set
of final or marked states.

DFAs are associated to languages via the following central notions.

Definition 2.2. For q1,q2 ∈Q, and a∈ Σ , write q1
a−→ q2 if f (q1,a) = q2. A accepts

word w = a1a2 . . .an ∈ Σ∗ if there exist qi ∈ Q such that

q0
a1−→ q1

a2−→ . . .
an−→ qn ∈Qm;
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write q0
w−→ qn. Using this definition, we can extend f to be a function from Q×Σ∗

to Q so that f (q0,w) = qn if q0
w−→ qn, where q

ε−→ q for all q ∈ Q. The language
accepted (or recognized) by A is defined as the set

L(A) � {w ∈ Σ∗ | ∃q ∈Qm : q0
w−→ q}.

The class Rec(Σ∗) of recognizable languages in Σ is formed by those languages
L⊆ Σ∗ for which there exists a DFA A over Σ such that L = L(A).

Fig. 2.1 presents a simple example of a DFA which accepts or recognizes a language
described by the regular expression ba∗b+ a.

Fig. 2.1 A DFA A = ({1,2,3},{a,b}, f ,1,{3}) which accepts the language ba∗b+a, where
f is defined by the arrows

Nondeterministic Automata

It is often convenient or natural to work with nondeterministic models in the sense
of the following definition, cf. state 2 in Fig. 2.2.

Definition 2.3. A nondeterministic finite automaton (NFA, for short) over Σ is a
quintuple A = (Q,Σ ,T,I,Qm), where Q is a finite set of states, T ⊆ Q×Σ ×Q is
a set of transitions, I ⊆ Q is a set of initial states, and Qm ⊆ Q is a set of final or
marked states. For q1,q2 ∈Q, and a∈ Σ , write q1

a−→ q2 if (q1,a,q2)∈ T. A accepts

word w = a1a2 . . .an ∈ Σ∗ if there exist qi ∈ Q such that q0 ∈ I and q0
a1−→ q1

a2−→
. . .

an−→ qn ∈ Qm; write q0
w−→ qn. The language accepted (or recognized) by A is

defined as the set L(A)� {w ∈ Σ∗ | ∃q0 ∈ I, q ∈Qm : q0
w−→ q}.

We shall see below that the classes of DFAs and NFAs are equivalent in terms of
the recognized languages. First, however, we extend the notion of NFAs so that ε-
transitions are allowed. This corresponds to a situation where the automaton changes
the state, but reads no input letter.

ε-Automata

Definition 2.4. An NFA A = (Q,Σ ,T,I,Qm) such that T ⊆ Q× (Σ ∪{ε})×Q is
called an ε-automaton, or an NFA with ε-transitions.
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Similarly as for the deterministic automata, we can extend T so that T ⊆Q×Σ∗×Q.
Fig. 2.2 presents a simple example of an NFA with ε-transitions which accepts
the language a∗b+ a. The following theorem shows that we can always remove
ε-transitions from the automaton.

Fig. 2.2 An NFA with ε-transitions that accepts the language a∗b+a

Theorem 2.1. For every ε-automaton A there exists an ε-free automaton A′ such
that L(A) = L(A′).

Proof. The proof can be sketched as follows, see Fig. 2.3:

1. For every q
ε−→ q′

a−→ q′′, where a ∈ Σ , add q
a−→ q′′;

2. For every q
ε−→ q′ with q′ ∈ Qm, add q to Qm;

3. Remove all ε-transitions. �

Fig. 2.3 Removing ε-transitions: The NFA of Fig. 2.2 and the ε-free NFA that accepts a∗b+a

Determinizing NFAs

The disadvantage of the nondeterminism is that we can have two or more choices
how to continue from a state. In the right automaton of Fig. 2.3, this situation hap-
pens in state 1 for letter a. The following theorem shows that we can always elimi-
nate the nondeterminism by transforming an NFA to a DFA.

Theorem 2.2. For every NFA (with ε-transitions) A = (Q,Σ ,T,I,Qm) there exists a
DFA A′ = (Q′,Σ , f ,q0,Qm

′) such that L(A) = L(A′).
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Proof. The key idea to obtaining the determinized version of A is the following
powerset construction.

• Q′ ⊆ 2Q;
• initial state q0 is given by the set of initial states I and those states that are

ε-reachable from some initial state: q0 � {s ∈ Q | ∃s′ ∈ I : s′
ε−→ s};

• ∀U ⊆ Q and a 
= ε : f (U,a)� {q ∈Q | ∃qu ∈U : qu
aε−→ q};

• Qm
′ = {U ⊆ Q | U ∩Qm 
= /0}. �

Fig. 2.4 demonstrates the previous theorem. It should be noted that the automaton
A′ has, in general, a state space whose size is of the order of 2|Q|, that is, exponential
with respect to the state space of A. There exist examples of NFAs for which it can
be shown that any language-equivalent DFAs must be at least of this size, see [6]
and the references therein. Determinization should therefore be used moderately.

Fig. 2.4 Determinization: The NFA with ε-transitions of Fig. 2.2 and its DFA which accepts
the language a∗b+a

2.2.4 Closure Properties of Regular Languages

The algebraic properties considered here for regular languages – and below for other
language classes – are important results for testing whether or not a given language
belongs to a given class.

Theorem 2.3. Rec(Σ∗) is closed under the set operations union, intersection, and
complement.

Proof. Let K,L ∈ Rec(Σ∗) with DFAs AK , AL such that L(AK) = K and L(AL) = L.
An NFA to accept K ∪L is obtained by combining AK and AL via fusion of initial
states. Language K∩L is accepted by a DFA obtained as a synchronized product of
AK and AL. In this product automaton, the state set is QK ×QL, and the transition
function fprod : (QK×QL)×Σ → (QK×QL) is constructed componentwise so that

fprod((qK ,qL),a) = (q′K ,q
′
L) if fK(qK ,a) = q′K and fL(qL,a) = q′L .

Finally, to obtain a DFA for Kc, it suffices to replace Qm by Q\Qm in AK . �

Theorem 2.4. Rec(Σ∗) is closed under concatenation, iteration, substitutions, and
projection to subalphabets.
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Proof. Let K,L ∈ Rec(Σ∗) with DFAs AK , AL such that L(AK) = K and L(AL) = L.
An automaton AK·L such that L(AK·L) = K · L is obtained by combining AK and
AL via extra ε-transitions from QmK to q0L. For AL∗ , add to AL a new state for
recognizing ε , plus ε-transitions from QmL to q0L. If σ : Σ → 2Γ ∗ is a substitution,
replacing all a-transitions in AL by a copy of automaton Aσ(a) yields Aσ(L). Finally,

for any Γ ⊆ Σ and a ∈ Σ \Γ , replace q
a−→ q′ by q

ε−→ q′. �

2.2.5 Regularity and Recognizability

The following theorem (Kleene 1936) summarizes the relation between regular ex-
pressions and recognizable languages.

Theorem 2.5. Reg(Σ∗) = Rec(Σ∗).
Proof. To prove Reg(Σ∗) ⊆ Rec(Σ∗), we have /0 ∈ Rec(Σ∗) and {a} ∈ Rec(Σ∗),
for a ∈ Σ (construct the DFAs). The closure of Rec(Σ∗) under ∪, ·, and ()∗ then
implies Reg(Σ∗)⊆ Rec(Σ∗). To prove the converse inclusion, Reg(Σ∗)⊇ Rec(Σ∗),
we need to convert DFAs to regular expressions. The idea, depicted in Fig. 2.5, is to
construct a regular expression by a step-by-step fusion of transitions. �

Fig. 2.5 Converting a DFA to a regular expression: The DFA on the left is transformed to the
regular expression a∗b(a+b)∗

2.2.6 Criteria for Regularity

We now ask how to identify the limits of regularity. Is it true that all languages
are regular? The answer is negative; for instance, the following languages are not
regular:

• L1 = {anbn | n � 0},
• L2 = {u ∈ Σ∗ | |u|a = |u|b},
• L3 = {w ∈ Σ∗ | w = wR}.

To prove the nonregularity of these and other languages, a very important tool
is the use of results of the following type, which are called pumping lemmas or
star/iteration lemmas in the literature. Of course, one may have a choice to apply
one or the other result in cases where several such lemmas can be applied.
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Lemma 2.1 (Pumping Lemma). For every L ∈ Reg(Σ∗) there exists N � 0 such
that for all x ∈ L

• If |x|� N, then x = u1u2u3 with ui ∈ Σ∗, u2 
= ε , |u1u2|� N, and u1u∗2u3 ∈ L.
• If x = w1w2w3 with |w2| � N, then x = w1u1u2u3w3 with ui ∈ Σ∗, u2 
= ε , and

w1u1u∗2u3w3 ∈ L.

Proof. The idea for the proofs of this and similar results is as follows. Take a DFA
AL that accepts L. Since the number of states of AL is finite, every path of length
greater than some N that depends on AL has a loop. Iterating this loop allows to
construct the sublanguages whose existence is claimed in Lemma 2.1. �

Example 2.2. To use Lemma 2.1 to show that L1 = {anbn | n � 0} is not regu-
lar, assume for contradiction that L1 is regular. Then there exists N as claimed in
Lemma 2.1. Consider the word w = aNbN . Then, by Lemma 2.1, w = u1u2u3 with
u1u∗2u3 ∈ L1. There are three possibilities: u2 ∈ a∗, u2 ∈ b∗, or u2 ∈ aa∗bb∗. In all
cases, however, u1u2u2u3 /∈ L1, which is a contradiction. �
For proving that a given language L is non-recognizable, one often uses a pumping
lemma and the established closure properties of Reg(Σ∗). For instance, for L2 =
{u ∈ Σ∗ | |u|a = |u|b}, we have L2∩a∗b∗ = L1, hence L2 
∈ Reg(Σ∗).

2.2.7 Minimality

In general, there are infinitely many DFAs and NFAs that accept a given language
(for instance, aa∗). We shall see that one can find a canonical DFA which is minimal
(up to isomorphism) in the number of states. This is not true for NFAs (construct
two non-isomorphic two-state automata for the language aa∗).

Definition 2.5. For u ∈ Σ∗ and L⊆ Σ∗, the residual language of L with respect to u
is the quotient u−1L = {v ∈ Σ∗ | uv ∈ L}. The residual automaton for L is R(L) =
(QL,ΣL, fL,q0L,QmL) such that QL = {u−1L | u ∈ Σ∗}, fL(u−1L,a) = a−1(u−1L) =
(ua)−1L, q0L = L = ε−1L, QmL = {u−1L | ε ∈ u−1L}= {u−1L | u ∈ L}.
Theorem 2.6. Language L ⊆ Σ∗ is recognizable if and only if it has finitely many
residuals. Moreover, any DFA A with L(A) = L allows to inject R(L) into A by a
morphism (a fortiori, R(L) has minimal size among those automata that accept L).

However, for the construction, a more convenient algorithm is depicted in the fol-
lowing example.

Example 2.3. Consider a slightly modified automaton of Fig. 2.4. In the first step,
we add the dead state, d, to make the automaton complete, i.e., to complete the
transition function of the automaton. This is done by replacing all the transitions of
the form f (q,a) = /0 with f (q,a) = d. Then, in Step 1, we distinguish only final and
non-final states. In Step 2, we distinguish any two states of the same class for which
there exists a letter leading them to states from different classes. Step 2 is repeated
until no new class is constructed, see Fig. 2.6. �
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Fig. 2.6 Minimization: A modified DFA of Fig. 2.4 with the dead state d to be minimized,
computation of the states, and the minimal automaton without the dead state d

2.3 Chomsky Grammars

Formal languages do not stop at the boundary of Reg; the concept of grammars
for generating languages allows to classify a larger variety of language families in
which Reg will be embedded.

2.3.1 Type 0 Grammars and Languages

We begin with the most general type of grammars.

Definition 2.6. A type 0 grammar is a tuple G = (Σ ,V ,S,P), where Σ is the termi-
nal alphabet, V is the nonterminal alphabet (set of variables), S ∈ V is the axiom
(initial variable), P ⊆ (Σ ∪V )∗V (Σ ∪V )∗ × (Σ ∪V )∗ is a finite set of rules (pro-
ductions) where at least one nonterminal appears on the left-hand side. A sentential
form β ∈ (Σ ∪V )∗ is derived from a sentential form α ∈ (Σ ∪V )∗, written α⇒ β ,
if there exists (α2,β2) ∈ P such that α = α1α2α3 and β = α1β2α3.

Rules (α,β ) ∈ P are also written as α→ β (read α is rewritten by β ).

Definition 2.7. For a type 0 grammar G = (Σ ,V ,S,P) and a sentential form α ∈
(Σ ∪ V )∗, let

∗⇒ denote the reflexive and transitive closure of ⇒. The language
generated by α is the set LG(α) = {u∈ Σ∗ | α ∗⇒ u}. The language generated by G,
denoted L(G), is defined as the set LG(S). A language is type 0 if it is generated by
a type 0 grammar.

Example 2.4. The following type 0 grammar G = ({a},{S,D,X ,F,Y,Z},S,P) with
P defined as follows generates the language {a2n | n > 0}.

S → DXaF Xa→ aaX XF → Y F XF → Z
aY → Ya DY → DX aZ → Za DZ → ε

Note that the alphabet and the set of variables can be extracted from the productions,
so the set of productions characterizes the whole grammar. One possible derivation
of this grammar is S⇒DXaF⇒ DaaXF⇒ DaaZ⇒ DaZa⇒DZaa⇒ aa. �
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2.3.2 Type 1: Context-Sensitive

We move ”up” in the hierarchy by restricting the productions to be monotonic in the
length of the sub-words, that is, the generated word can never be shortened.

Definition 2.8. A grammar G = (Σ ,V ,S,P) is context-sensitive (or type 1) if for
all (α,β ) ∈ P, |α| � |β |. A language is context-sensitive (type 1 or in Cse) if it is
generated by a type 1 grammar.

Example 2.5. The following is a type 1 grammar that generates the language {xx |
x ∈ {a,b}∗} :

S → aAS | bBS | T Aa→ aA Ba→ aB Ab→ bA
Bb→ bB BT → T b AT → Ta T → ε

A derivation chain for abab is

S⇒ aAS⇒ aAbBS⇒ aAbBT ⇒ abABT ⇒ abATb⇒ abTab⇒ abab . �
Definition 2.9. A context-sensitive grammar G = (Σ ,V ,S,P) is in normal form
(NF) if every rule is of the form α1Xα2→ α1β α2 with X ∈ V and β 
= ε .

Theorem 2.7. Every type 1 language can be generated by a context-sensitive gram-
mar in NF.

Example 2.6. A type 1 NF grammar for {a2n | n > 0}:

S → aTa T → XA XY → Xa Xa → AAa ZY → ZX
S → aa T → AA XY → ZY ZA → AAA aA → aa �

2.3.3 Type 2: Context-Free Languages and Pushdown Automata

Note that a context-sensitive grammar in NF rewrites a variable X by a nonempty
word β according to contexts α1 and α2. The next level is reached by loosing the
information about these contexts.

Definition 2.10. A grammar G = (Σ ,V ,S,P) is context-free or type 2 if P ⊆ V ×
(Σ ∪V )∗. The class of languages generated by context-free grammars is denoted
Cfr. A language is linear if it is generated by a context-free grammar with P ⊆
V × (Σ∗ ∪Σ∗V Σ∗).

Lemma 2.2 (Fundamental Lemma). If G = (Σ ,V ,S,P) is context-free, then for
all α1,α2,β ∈ (Σ ∪V )∗, and n � 0

α1α2
n⇒ β ⇐⇒

{
α1

n1⇒ β1

α2
n2⇒ β2

,

with β = β1β2 and n = n1 + n2.
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Example 2.7. The languages L = {anbn | n� 0} and the nth Dyck language of well-
formed expressions with n brackets are in Cfr. �

Definition 2.11. For a context-free grammar G = (Σ ,V ,S,P), a derivation tree is a
tree labeled by V ∪Σ such that every interior node is V -labeled, and if the sons of
a node labeled x are labeled α1, . . . ,αk, then (x,α1 . . .αk) is a rule in P.

Example 2.8. Consider the language {anbn | n � 0} generated by a context-free
grammar with rules S→ ASb, A→ a, and S→ ε . A derivation tree of the derivation
S⇒ ASb⇒ aSb⇒ ab is shown in Fig. 2.7. �

Fig. 2.7 Derivation tree of the word ab

Lemma 2.3. If G = (Σ ,V ,S,P) is a context-free grammar, then (i) for all x
∗⇒ α

there exists a derivation tree with root x and yield α; (ii) if t is a derivation tree of
G, then there exists a derivation root(t)

∗⇒ yield(t).

The class Cfr of context-free languages satisfies the following property of the same
type as Lemma 2.1 for regular languages.

Lemma 2.4 (Pumping Lemma). For every L ∈ Cfr there exists N � 0 such that
for all w ∈ L with |w|� N, w = αuβ vγ , with |uv|> 0 and |uβ v|� N, and ∀n ∈ N :
αunβ vnγ ∈ L.

As in the regular case, the pumping lemma allows to show non-inclusion of a lan-
guage in Cfr; for instance, one can immediately see that L1 = {anbncn | n � 0} is
not context-free.

Closure Properties of Cfr: From the fact that L1 is not context-free, we obtain
that neither Cfr nor linear languages are closed under ∩; in fact, consider languages
{anbncp | n, p � 0} and {apbncn | n, p � 0} whose intersection is the language L1.
On the other hand, Cfr is closed under · and ()∗, as we will see below.

Pushdown Automata

As for regular languages, there exists a system model to recognize context-free
languages.
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Definition 2.12. A pushdown automaton (PDA) is a tuple A = (Q,Σ ,Z,T,q0,Qm),
where Q is a finite state set, Σ is an input alphabet, Z is a stack alphabet, T ⊆ ZQ×
(Σ ∪{ε})× Z∗Q is a finite set of transitions, q0 ∈ ZQ is the initial configuration,
and Qm ⊆Q is the set of final states. The pushdown automaton A is called real-time
if it is ε-free. The configurations of A are the words hqw ∈ Z∗QΣ∗, where h is the
content of the stack, q is the current state, and w is the unread part of the input.

Example 2.9. Consider the configuration β pw = Aγ pax from the first part of
Fig. 2.8. After the execution of transition (Ap,a,αq), the new configuration is αγqx.
We denote this transition by Aγ pax

a−→ αγqx. �

Fig. 2.8 Pushdown automaton executing (Ap,a,αq)

We have several notions of K-acceptance, with different values for K. Let L(A) =
{w ∈ Σ∗ | ∃q0

w−→ h, h ∈ K}, where

• K = Z∗Qm: final state acceptance.
• K = Q: empty stack acceptance.
• K = Qm: empty stack and final state acceptance.

Proposition 2.1. Let L⊆ Σ∗.

1. If L is K-accepted by a PDA A, there exists another PDA A′ that accepts L by
final state.

2. For every PDA A, the empty stack language LA can be generated by a context-free
grammar G that can be effectively constructed from A.

3. Conversely, for any context-free grammar G, a PDA A can be constructed that
accepts L(G) with empty stack.

The closure for · and ()∗ can be shown by combining the accepting automata.
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2.3.4 Type 3 Languages

Finally, on the last level, we find regular languages as a subclass of Cfr by further
restrictions of context-free rules so they cannot generate more than one nonterminal
at a step which is always the last (resp. the first) symbol of any sentential form.

Definition 2.13. A grammar G = (Σ ,V ,S,P) is left-linear if P⊆ V × (Σ∗ ∪V Σ∗),
and right-linear if P⊆ V × (Σ∗ ∪Σ∗V ).

Proposition 2.2. A language is regular if and only if it is generated by a left-linear
(or right-linear) grammar.

Example 2.10. There are linear languages that are not regular; in fact, languages
{anbn | n � 0} and {anbncp | n, p � 0} are linear. �

2.3.5 The Chomsky Hierarchy

The following chain of inclusions summarizes the hierarchical relations between the
language classes introduced here:

Reg � Cfr � Cse� REN . (2.1)

Here, we use REN to denote the class of type 0 languages, for reasons given below.

2.4 Turing Machines and Decidability

We now leave the realm of grammar generated languages and turn to the most fun-
damental model of computation, that of Turing machines or TMs. A TM consists of
k � 1 two-way infinite tapes, each of whose cells are Z-indexed. Every cell contains
a symbol which is either blank ($) or a letter from an auxiliary alphabet Σ . The
k read/write heads (one for each tape) controlled by its internal state and the tape
content move along the tapes. Formally, we have:

Definition 2.14. A k-tape Turing machine (TM) is a tuple M = (Q,Σ ,$,T,q0,Qm),
where (i) Q is a finite state set, (ii) Σ is an alphabet of tape symbols, (iii)
$ ∈ Σ is the blank symbol; set Σ̃ � Σ \ {$}; (iv) q0 ∈ Q is the initial state, (v)
Qm ⊆ Q is the set of final states, and (vi) T ⊆ Q×Σ k × Σ̃ k ×{L,R,S}k×Q is a
set of instructions (q,s,s′,m,q′) for reading from/writing to the tapes, moving the
k heads (left, right, stay) and state change. The TM M is deterministic (DTM)
if (q1,s1,s′1,m1,q′1),(q2,s2,s′2,m2,q′2) ∈ T with (s′1,m1,q′1) 
= (s′2,m2,q′2) implies
(q1,s1) 
= (q2,s2).

There exist several structurally different definitions for TMs in the literature. In par-
ticular, there may be k > 1 tapes, one-sided tapes (i.e., the indices are restricted
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to N), etc. All these models can be shown to be equivalent in the sense that the com-
putability/decidability notions they define coincide. Of course, the concrete con-
structions proving each of these equivalences involve non-trivial modifications of
alphabets, state spaces, etc., and produce very different machines.

The dynamics of TMs are illustrated in Fig. 2.9.

Fig. 2.9 One-Tape Turing Machine executing (q,a,b,R,q′)

Definition 2.15 (TM Languages). Let M = (Q,Σ ,$,T,q0,Qm) be a Turing ma-
chine. A global state/configuration (q,w,z) of M consists of the current state q,
the content w of the tape cells that are not $, and the index z ∈ Z

k of the current
positions of heads. The input is the non-$ tape content in the initial configuration.
Computation M (x) of M on input x halts if it is finite and ends in a final state. Input
x is accepted if M (x) halts in an accepting state, and rejected if M (x) halts in a
non-accepting (rejecting) state. The set T(M )⊆ Σ̃∗ of inputs accepted by M is the
language accepted by M . Languages accepted by TMs are called recursively enu-
merable; denote the class of recursively enumerable languages by REN. A language
L such that there exists a TM ML which always halts when given a finite sequence
of symbols from the alphabet of the language as input, and such that T(ML) = L, is
called recursive or decidable; the class of these languages is denoted REC.

The following is a small selection of results from a vast collection.

1. L ⊆ Σ∗ is type 0 if and only if it is recursively enumerable (and therefore REN
appears rightfully in (2.1) above).

2. Cse� REC� REN 
= 2Σ∗ .
3. For any multi-tape machine M there exists a single-tape machine M ′ that simu-

lates M , i.e., L(M ) = L(M ′), using only quadratically more computation time.
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4. Many more equivalences hold; e.g., every DTM can be simulated by a DTM
having only two states.

The following definition establishes TMs as a model for computation.

Definition 2.16 (Computability). For an input x such that M (x) halts, denoted by
fM (x) the tape content on halting. Any function f : Σ̃∗ → Σ̃∗ for which there exists
a TM M with f (w) = fM (w), for all w ∈ Σ̃∗, is called computable.

Theorem 2.8 (Decidability). A language L⊆ Σ∗ is decidable if and only if its char-
acteristic function χL : Σ∗ → {0,1} is computable.

We can now state the celebrated Church-Turing-Rosser Thesis.

EVERYTHING COMPUTABLE CAN BE COMPUTED BY A TM.

This thesis is not a claim about a mathematical object, and hence cannot have a
proof. Instead, it postulates that the computability notion defined via the TM model
is the “right” model. The reader willing to follow the thesis is therefore invited to
continue with the remainder of the chapter.

2.4.1 Universal Turing Machine

One can see the TM-based computational model as a “programmable machine”,
in the sense that one strives to find a universal TM U whose inputs consist of a
description 〈M ,x〉 of a TM M and an input x such that M (x) is simulated on U .

Such a construction is actually possible: Σ̃U encodes the i th symbol of Σ̃M by
the binary description of i; similarly for QM and x; L, R, S are 00,01,10; parts of the
encoding are separated by special symbols, e.g. “;”. Three tapes are needed: one for
the description of M and x, one for simulating M ′s tape, and one for the description
of M ′s current state and the symbol read by M ′s tape head. If M halts, then U
halts with the final state of M . If the input is not a valid description of a TM and an
input, U never halts.

Again, we give a selection of results on the halting problem.

Theorem 2.9. The universal language LU = {〈M ,w〉 | w ∈ L(M )} is recursively
enumerable.

Proof. Proof by construction of a universal TM. �

Let 〈M 〉 denote a string encoding of M . The following theorem says that there
exists a TM which can construct a description of M from its encoding.

Theorem 2.10. The function 〈M 〉 �→ 〈M ,〈M 〉〉 is computable.

Theorem 2.11. If L and Lc are recursively enumerable, then L and Lc are recursive.

Proof. A new TM to decide L runs TMs for both L and Lc in parallel. As each word
w is either in L or in Lc, the machine always halts. �
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Theorem 2.12. Lc
U is not recursively enumerable, so LU is not recursive.

Proof. The proof is by contradiction. Let MN be a TM with L(MN) = Lc
U . Con-

struct a TM D such that L(D) = {〈M 〉 | 〈M 〉 
∈ L(M )}. Apply MN to 〈D,〈D〉〉.
Then we have the absurdity 〈D〉 ∈ L(D)⇐⇒ 〈D〉 
∈ L(D). �

Theorem 2.13. The halting problem is undecidable, that is, the language Lhalt =
{〈M ,x〉 |M (x) halts} is recursively enumerable but not recursive.

Proof. The proof is by contradiction as in the above. �

2.4.2 Decidable and Undecidable Problems

Reduction is a strategy for showing that a problem P � (D ∈ S) is undecidable. It
consists of two steps:

1. Take an undecidable problem P′ � (D′ ∈ S′);
2. Reduce P′ to P by giving a recursive function f : S′ → S such that for all D′ ∈ S′,

(D′ ∈ S′)⇐⇒ ( f (D) ∈ S).

Examples of Decidable Problems

• The word problem for a DFA A: w ∈ L(A)?
• Emptiness problem for a DFA A: L(A) = /0?
• Equivalence of regular expressions.
• Emptiness problem, word problem, finiteness problems for context-free

languages.
• The word problem for context-sensitive languages.

Examples of Undecidable Problems

Rice’s theorem: For Q⊆ REN such that /0 
= Q 
= REN, the problem P � (L ∈ Q) is
undecidable.
Post’s Correspondence Problem (PCP): Given two sequences of words (u1, . . . ,un),
(v1, . . . ,vn) ∈ (Σ∗)n. The question is whether there exist k > 0 and indices i1, . . . , ik
such that ui1 . . .uik = vi1 . . .vik .

The PCP is a very popular undecidable problem in the literature for its reducibil-
ity to other problems since it often allows for shorter or more elegant proofs than
reducing directly the halting problem. There exist several proofs of undecidability of
the PCP; a reduction of the halting problem goes as follows (see, e.g., [15]): Given
a TM, construct pairs (ui,vi) as blocks, each of which has two fields, with name ui

in the top field and vi in the bottom field so that aligning these blocks, the top and
bottom rows form words that code the moves of the TM, which halts exactly if and
only if the PCP can be solved.
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Turning to other formal languages, the emptiness problem for type 1 grammars
is undecidable. Furthermore, for G1,G2 context-free, and R ∈ Reg, the following
problems are known to be undecidable:

• L(G1) = Σ∗?
• L(G1)∩L(G2) = /0?
• L(G1)⊆ L(G2)?
• L(G1) = L(G2)?

• R⊆ L(G1)?
• L(G1) ∈ Reg?
• Is L(G1)∩L(G2) context-free?
• Is L(G1)

c context-free?

2.5 Complexity Classes

While the previous section asked whether a given problem is possible to decide, we
now ask, for problems known to be decidable, how difficult it is to solve. That is:

• What type of computation is needed (deterministic/nondeterministic TM)?
• What is the time and space required?

Let us formalize this.

Definition 2.17. A non-decreasing function f : N→N is constructible if there exists
a TM M such that for input x with |x|= n, M (x) produces output of length f (x)

• in time (number of transitions) O(n+ f (n))
• and space O( f (n)) (number of cells visited).1

For fixed f , language L is in

• NTIME( f ) (TIME( f )) if there exists n0 ∈N and a TM (DTM) M that takes time
f (n) for every x ∈ L such that |x|� n0.

• NSPACE( f ) (SPACE( f )) if there exists n0 ∈ N and a TM (DTM) M that takes
space f (n) for every x ∈ L such that |x|� n0.

We have some obvious inclusions:

TIME( f ) ⊆ NTIME( f )

SPACE( f ) ⊆ NSPACE( f )

∀ k > 0 : TIME(k f ) ⊆ TIME( f )

NTIME(k f ) ⊆ NTIME( f )

∀ k > 0 : SPACE(k f ) ⊆ SPACE( f )

NSPACE(k f ) ⊆ NSPACE( f )

1 O( f (n)) denotes the class of functions that do not grow faster than f , i.e., O( f (n)) = {g :
N→ N | ∃c ∈ N,∀n ∈ N : |g(n)|� c · | f (n)|}; see the literature for more details.
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Other inclusions require more work, see [8, 15]. For every constructible f ,

NTIME( f ) ⊆ SPACE( f )

NSPACE( f ) ⊆
⋃

i∈N
TIME

(
i f+log(n)

)

The following list collects the classes most currently used, obtained by taking canon-
ical functions for f , i.e. f (n)≡ log2(n) or f (n)≡ nk.

LOGSPACE � SPACE(log2(n))

NLOGSPACE � NSPACE(log2(n))

P= PTIME �
⋃

k∈N
TIME(nk)

NP= NPTIME �
⋃

k∈N
NTIME(nk)

PSPACE �
⋃

k∈N
SPACE(nk)

NPSPACE �
⋃

k∈N
NSPACE(nk)

EXP= EXPTIME �
⋃

k∈N
TIME(2nk

)

NEXP=NEXPTIME �
⋃

k∈N
NTIME(2nk

).

We have the hierarchy of

LOGSPACE ⊆ NLOGSPACE⊆ PTIME⊆ NPTIME⊆ PSPACE⊆ NPSPACE .

Here, some inclusions may not be proper ones, see below.

2.5.1 Reduction

Reduction is used to prove that a particular problem belongs to a complexity class.

Definition 2.18. A reduction from f : A→{tt, ff} to f ′ : B→{tt, ff} is a computable
function h : A→ B such that ∀a ∈ A, f ′(h(a)) = f (a).

Complete and Hard Problems

Definition 2.19. A problem P in a class C is complete for C if every P′ in C reduces
to P via a function h computable in C.
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One frequently encounters the notion of NP-hard problems. A problem P is NP-hard
if there exists an NP-hard problem P′ that is polynomial-time Turing reducible to P.
Note that a problem can be NP-hard without being NP-complete; this is the case of
the (undecidable!) halting problem discussed above. Thus, an NP-hard problem is
NP-complete if it in addition belongs to NP.

Finally, the problem “Is P= NP?” is probably the most famous open question in
computer science.

Examples from NP

For more details, the reader is referred to [3].

Satisfiability (SAT)

Let φ be a propositional formula, i.e., connecting atoms pi ∈ At by ¬,∧,∨. The
question is: Is φ satisfiable, i.e., is there ν : At →{tt, ff} such that ν(φ) = tt?

• SAT is in NP: a TM “guesses” ν and computes ν(φ) in polynomial time.
• SAT is NP-complete; to see this, let L ∈ NP and let M be a TM that solves L in

(nondeterministic) polynomial time. One constructs a formula that holds if and
only if M halts and accepts (Cook 1971).

Hamiltonian Circuit (HC)

Take a directed graph G = (V,E) with V = {v1, . . . ,vn}. Does there exist a permu-
tation σ of {1, . . . ,n} such that ∀ 1 � i � n− 1, (vσ(i),vσ(i+1)) ∈ E?

• HC is in NP since a TM can solve HC by trial-and-error in polynomial time.
• HC is NP-complete, which can be shown by reducing SAT to it.

The Knapsack Problem

Given v1, . . . ,vn,w ∈ N. Is there I ⊆ {1, . . . ,n} such that ∑i∈I vi = w?
NP completeness of Knapsack is shown by reduction of (a variant of) SAT to it.

Weighted Path (WP)

In a weighted graph G = (V,E, p) with p : E → N and u,v ∈ V , find a path from u
to v such that the edge weights sum to a fixed value N.
NP-completeness follows here because Knapsack can be reduced to WP.
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The Class PSPACE

First of all, we have the following result:

Theorem 2.14. [Savitch 1970] The problem of accessibility in a directed graph with
n vertices can be solved in space O((logn)2).

As a corollary, we have that PSPACE = NPSPACE. The following problems are
from PSPACE:

• Satisfiability of a Boolean formula with quantifiers (∃, ∀).
• Universality of regular languages: L = Σ∗?

Note that L = /0 is in PTIME but L = Σ∗ is not!

2.6 Further Reading

An introduction to automata and formal language theory can be found in [5, 10, 15,
16], and advanced material in [11, 14, 17]. More details on complexity, computabil-
ity, and decidability can be found in [1, 2, 7, 8, 9], and a long list of NP-complete
problems can be found in [3].
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Chapter 3
Supervisory Control
with Complete Observations

Tomáš Masopust and Jan H. van Schuppen

3.1 Introduction

The purpose of this chapter is to introduce to readers not yet familiar with the topic
the problem of supervisory control, the required concepts, theorems, and algorithms.

Supervisory control is motivated by control engineering problems. An example
is the control of a patient table of a magnetic resonance imaging (MRI) scanner in
which a computer program controls all operations. The table is raised, shifted into
the machine, and the reverse operations. A computer program based on supervisory
control has been constructed to execute the requested operations in a safe order,
see [19].

Control theory in general has been developed extensively since the early part of
the twentieth century with a major contributions since the 1960’s. Since about 1980,
W.M. Wonham and many others have developed control theory of discrete-event
systems motivated by the use of computers in engineering.

3.2 Motivation of Supervisory Control

Engineering design gives rise to many control problems and a subset of these may
be formulated as control problems of discrete-event systems.
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Example 3.1. Control of the patient table of an MRI scanner. The example was
mentioned in the introduction. The patient table is to execute operations in a safe
manner. The table with a patient on it is to be raised to a prespecified level, shifted
into the scanner, and stay put at the required location. In addition, the reverse oper-
ations are to be carried out.

A model of the operations of the table has been made in the form of a generator.
The system consists of several components. The engineering control problem is
transformed into a formal specification consisting of control objectives of safety
and of required behavior. Safety describes that nothing bad should happen to the
patient while she or he is on the table. Required behavior describes that the machine
carries out the required movements to shift the patient in the scanner.

The control problem is to construct a supervisory control such that the closed-
loop system meets the control objectives of safety and of required behavior. The
closed-loop system consists of the interconnection of the generator and of the su-
pervisory control.

In this chapter it is shown how to construct a supervisory control for such a sys-
tem. The supervisory control can be implemented by a tuple consisting of a supervi-
sor and a control law. The supervisor and the control law can easily be transformed
into a computer code, say a C++ program, which then controls the machine. See
[19] for more details on this example. �

There follows a list of control engineering problems for which models in the form of
discrete-event systems have been formulated and for which supervisory control has
been investigated: (1) Control of a rapid thermal processor, [1]; (2) Databases, [4];
(3) Chemical pilot plant, [14, Ch. 7]; (4) Feature interaction in telephone networks,
[22]; (5) Theme park vehicles, [8]; (5) A controller for a traffic light is discussed in
the book by R.P. Kurshan, [11].

Research areas with examples of control laws for discrete-event systems include
manufacturing systems, automated guided vehicles, aerial vehicles, underwater ve-
hicles, communication networks, mobile phones, high-tech systems, but also soft-
ware systems on computers, laptops, and readers.

Control objectives of control problems are properties which an engineer strives to
attain for the closed-loop system. The main control objectives for control of discrete-
event systems are: (1) safety; (2) required behavior; and (3) noblockingness. The
safety control objective is motivated by the wish that the closed-loop system should
not do actions which endanger humans or machines, like causing death or damage.
That control objective may be formulated at the level of a discrete-event system as
the language of safe behavior or admissible behavior. In terms of the system, it may
be formulated by the partition of the state set into safe states and forbidden states.

The required behavior control objective is motivated by the wish that the sys-
tem should perform certain actions. For example, the safety objective can be met
by switching of the system or machine off completely. But then there is no produc-
tion or required behavior. The required behavior specifies what the machine should
produce. The nonblockingness control objective is motivated by the wish that the
required behavior really has to be fully completed.
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The control problem considered below in this chapter will take care of the above
three control objectives.

3.3 Concepts of Automata and of Languages

The reader of this chapter is assumed to be familiar with the concepts of automata,
languages, and complexity as described in Chapter 2. However, additional concepts
are needed in this chapter.

The reader should distinguish between the systems framework and the language
or behavioral framework for modeling of dynamic phenomena, see [16]. The frame-
works are often described by the term signals and systems. For a dynamic phe-
nomenon the systems framework uses the concept of a system, in discrete-event
systems a system is called an automaton or generator. Correspondingly, the lan-
guage framework uses the concept of a formal language. The reader best learns both
frameworks and how to convert a representation from one framework to the other
one.

Example 3.2. The elementary deterministic finite generator. Consider the follow-
ing discrete-event system, see Fig. 3.1. The system is specified by G = ({1,2,3,4},
{a,b,c}, f ,1,{3}) where f is given by the arrows of Fig. 3.1. The language descrip-
tion is described by the language of the generator G, L(G) = {ε,a,ab,abc}, and its
marked language Lm(G) = {ab}. Then prefix(Lm(G)) = {ε,a,ab}� L(G) hence G
is blocking as defined below. �

1 2 3 4
a b c

Fig. 3.1 The generator of the elementary deterministic finite generator

Definition 3.1. A deterministic finite generator (DFG) is a tuple1

G = (Q,E, f ,q0,Qm), where

Q denotes the finite state set and E denotes the finite event set,

|E| ∈ Z+ denotes the number of elements of the set E,

f : Q×E→ Q denotes the transition function, a partial function,

q0 ∈Q denotes the initial state,

Qm ⊆ Q denotes the subset of marked states,

f (q,e)! denotes that the transition is defined at (q,e) ∈ Q×E,

1 Compared to Definition 1.4 in Chapter 1, we do not consider controllable and uncontrol-
lable events here. They are considered later in Definition 3.5.
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E(q) = {e ∈ E | f (q,e)!}, ∀ q ∈Q, called the active event set at q ∈ Q,

Eac = ∪q∈QE(q), the active event set of the generator,

L(G) = {s ∈ E∗ | f (q0,s) ∈Q}, the language of G,

Lm(G) = {s ∈ E∗ | f (q0,s) ∈Qm}, the marked language of G.

Recall from Chapter 2 the notation E∗ = ∪∞
k=1Ek and the extension of the transition

function to f : Q×E∗ → Q by recursion.
It is of interest to describe the relation between a generator and the associated

language. If G is a generator then L(G)⊆E∗ is its language. If for a language K⊆E∗

there exists a generator GK such that K = L(GK) then call GK the recognizer of K.
In automata theory, it is customary to call GK the recognizer of the language K if
K = Lm(GK). It is a major result of automata theory that a language has a recognizer
if and only if the language is regular, which concept will not be defined here. Define
also the set of recognizable languages as

E∗DFG = {L(G)⊆ E∗ | G is a DFG over E}.

As usual, one constructs DFGs from smaller such generators. For this purpose, it is
useful to know the concept of the product of two generators.

Definition 3.2. Consider the generators G1 = (Q1,E1, f1,q1,0,Q1,m) and G2 = (Q2,
E2, f2,q2,0,Q2,m). Define their product generator as the reachable part of the gener-
ator (Q1×Q2,E1×E2, f ,(q1,0,q2,0),Q1,m×Q2,m), where

f ((q1,q2),e) =

⎧
⎪⎪⎨

⎪⎪⎩

( f1(q1,e), f2(q2,e)), if f1(q1,e)! and f2(q2,e)!
( f1(q1,e),q2), if f1(q1,e)! and e ∈ E1\E2,
(q1, f1(q2,e)), if f2(q2,e)! and e ∈ E2\E1,
undefined, otherwise.

In the remainder of the chapter several concepts are used for the issue of
nonblockingness. Recall from Chapter 2 the concepts of a prefix of a string s and
the set prefix(s) ⊂ E∗ of that string. The prefix of a language K ⊆ E∗ is defined
as prefix(K) = ∪s∈Kprefix(s). A language K ⊆ E∗ is called a nonblocking lan-
guage (in the language framework) if K = prefix(K). By definition of L(G), L(G) =
prefix(L(G)) hence L(G) is prefix closed.

In the systems framework nonblockingness of a system is defined differently.
Define for a generator G, initial state q0 ∈ Q, the subset of marked states Qm ⊆ Q,
and event subset E1 ⊆ E , the subsets

reachset(G,q0,E1) = {q ∈ Q | ∃s ∈ E∗1 such that q = f (q0,s)},
coreachset(G,Qm,E1) = {q ∈ Q | ∃s ∈ E∗1 such that f (q,s) ∈Qm},

called respectively the reachable subset and the co-reachable subset of the sys-
tem. The DFG G is called reachable if Q = reachset(G,q0,E), co-reachable if
Q = coreachset(G,Qm,E), and trim if it is both reachable and co-reachable. Note
that Lm(G) 
= /0 if reachset(G,q0,E)∩ coreachset(G,q0,E) 
= /0.
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A DFG G is called nonblocking if at any reachable state there exists a string
which transfers the automaton to a marked state. Then nonblockingness of the DFG
G holds if and only if reachset(G,q0,E)⊆ coreachset(G,Qm,E). This can be shown
to be equivalent to L(G) = prefix(Lm(G)) which is nonblockingness in the corre-
sponding language framework. A trim generator is thus nonblocking.

To establish nonblockingness the following results will be useful.

Definition 3.3. Consider languages K,L ⊆ E∗. The language K is said to be
L-closed if prefix(K) ∩ L = K. The language K is said to be L-marked if
prefix(K)∩L⊆ K.

Proposition 3.1. Consider languages K,L⊆ E∗.

(a) Assume that K ⊆ L. Then K is L-closed if and only if K is L-marked.
(b) If K ⊆ L and if K is prefix closed then K is L-closed.
(c) If K is prefix closed then K∩L is L-closed.

Proof. (a) (Only if) This follows directly from the definition of K being L-closed.
(If) K ⊆ prefix(K)∧K ⊆ L⇒ K ⊆ prefix(K)∩L.
(b) K = K∩L = prefix(K)∩L.
(c) prefix(K∩L)∩L ⊆ prefix(K)∩L = K ∩L, hence K∩L is L-marked, K∩L ⊆ L,
and from (a) follows that it is L-closed. �

Nonblockingness of a product of generators requires attention. There exists an ex-
ample of two nonblocking generators whose product is blocking. Therefore it is of
interest to know a characterization of nonblockingness of a product of generators.

Definition 3.4. The tuple of languages (L1, L2)⊆ E∗ ×E∗ is called nonconflicting
if prefix(L1∩L2) = prefix(L1)∩prefix(L2). A tuple of generators (G1,G2) is called
nonconflicting if their marked languages, Lm(G1) and Lm(G2), are nonconflicting.

Note that the inclusion prefix(L1∩L2)⊆ prefix(L1)∩prefix(L2) always holds so the
restriction of nonconflictingness imposes the converse inclusion.

3.4 Concepts of Control of Discrete-Event Systems

Definition 3.5. A controlled deterministic finite generator (CDFG) is a tuple

Gc = (Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc), where

G = (Q,E, f ,q0,Qm) is a deterministic finite generator,

{Ec,Euc} is a partition of E,

Ec ⊆ E is called the subset of controllable events,

Euc ⊆ E is called the subset of uncontrollable events,

Ecp = {Een ⊆ E | Euc ⊆ Een} is called the set of control patterns,

Een ∈ Ecp is called the set of enabled events,
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E\Een is called the set of disabled events,

fc : Q×E×Ecp→ Q is called the transition function of Gc,

fc(q,e,Een) =

{
f (q,e), if f (q,e)!∧ e ∈ Een,
undefined, otherwise.

An example of a controllable event is the switching on of a machine. An example
of an uncontrollable event is the switch of a machine from working to idle when a
task is completed.

Example 3.3. The elementary controlled deterministic finite generator. Recall Ex-
ample 3.2. In the following that example is modified so that the events are now
controllable events. Consider the controlled discrete-event system described by
Fig. 3.2 and the notations, Gc = (Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc), E = {a,b,c},
Ec = {a,b,c}= E , Euc = /0, Ecp = Pwrset(E). �

1 2 3 4
a b c

Fig. 3.2 The generator of the elementary controlled deterministic finite generator. Note that
dashed arrows denote controllable events while solid arrows denote uncontrollable events

Control of discrete-event systems is based on the principle of feedback. According
to the principle of feedback the observations of a system, in this case the string of
all generated events, are used by a controller to generate the input of the system.
Feedback is illustrated in Fig. 3.3.

� � �

�

�
CDFG

Supervisory
Control

Input Output

Fig. 3.3 A CDFG and a supervisory control in closed-loop

Below, a controller is defined by a supervisory control in the language framework.

Definition 3.6. A supervisory control (with complete observations) for a CDFG Gc

is a map v : L(G)→ Ecp. Thus for any string s ∈ E∗, v(s) ∈ Ecp specifies the subset
of events which are enabled.
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The supervisory control defined above is said to be with complete observations be-
cause at any stage of the generation of a string, the entire history of the system Gc

in the form of the string of L(G) is available to the supervisory control.

Definition 3.7. Define for a CDFG Gc and a supervisory control v : L(G)→ Ecp

their closed-loop behavior v/Gc as the smallest language L(v/Gc) such that
L(v/Gc) ⊆ L(G), (1) ε ∈ L(v/Gc), and (2) se ∈ L(v/Gc) if s ∈ L(v/Gc), e ∈ v(s),
and se ∈ L(G). In addition, Lm(v/Gc) = L(v/Gc) ∩ Lm(G). A supervisory con-
trol v is said to be nonblocking for Gc if v/Gc is nonblocking, or, equivalently, if
L(v/Gc) = prefix(Lm(v/Gc)).

From the definition of the closed-loop behavior v/Gc follows that {ε} ⊆ L(v/Gc)⊆
L(G), L(v/Gc) is nonempty and prefix closed, and Lm(v/Gc)⊆ Lm(G).

Example 3.4. The elementary controlled deterministic finite generator. Recall Ex-
ample 3.3. Consider the following supervisory control, see Fig. 3.2, and the math-
ematical specification, v1 : L(G) → Ecp, v1(ε) = {a}, v1(a) = {b}, v1(ab) = /0,
v1(abc) = /0. Then, L(v1/G) = {ε,a,ab}, Lm(v1/G) = L(v1/G)∩ Lm(G) = {ab},
L(v1/G) = prefix(Lm(v1/G)), hence v1/G is nonblocking. �

3.5 Problem of Existence of a Supervisory Control

Example 3.5. The line specification. Consider the generator Gc = (Q,E, f ,q0,Qm,
{Ec,Euc},Ecp, fc) with E = {a,b,c,d,e, f ,g,h, i,}, q0 = 1, Qm = {1,6,7,9}, and
Ec = {a,d, f ,g,h}. The transition function is displayed in Fig. 3.4. Note the marked
states 1,6,7, and 9. Note the difference between the uncontrollable events (solid ar-
row) and the controllable events (dashed arrow). Note that the specification is such
that the states 7,8,9,10 are forbidden states. Denote the language of the specifica-
tion by the sublanguage K = {abcde} ⊂ Lm(G). The problem is thus to control the
system in such a way that the forbidden states are never reached and such that the
marked state 6 is reached. �

1 2 3 4 5 6

7 8 9 10

(a)

21 3 4 5 6(b)

a b

f

c

g

d

h

e

i

a b c d e

Fig. 3.4 (a) The diagram of the generator of the line plant and (b) the specification of the line
plant
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The modeling of a specification is an art which the reader has to learn from exam-
ples. In the language framework one works with the specification of the admissible
language or, complementary, with the forbidden strings. In the system framework,
one works with a forbidden subset of the state set whose elements will be called
forbidden states.

Problem 3.1. Supervisory control problem with complete observations - Existence
of a supervisory control. Consider a controlled deterministic finite generator Gc and
a specification in terms of the marked languages: a required language Lrm ⊆ E∗

and an admissible language Lam ⊆ E∗ satisfying, Lrm ⊆ Lam ⊆ Lm(G). Under which
conditions does there exist a supervisory control v : L(G)→Ecp such that the closed-
loop system v/Gc satisfies: (1) Lrm ⊆ Lm(v/Gc)⊆ Lam; (2) v/Gc is nonblocking?�

If all events of a CDFG are controllable then the solution of the problem is easy,
one deduces directly the supervisory control from the specification. If all events are
uncontrollable and if the specification is nontrivial then the specification can never
be met. The interesting case of the problem is thus when there exist both controllable
and uncontrollable events.

Supervisory control is inspired by the earlier research of W.M. Wonham on the
geometric approach of control of time-invariant linear systems, see [28]. The con-
trol problem may be seen as a generalization of the verification problem of model
checking. It is also related to control of a deterministic or of a stochastic system,
for example, to optimal control on an infinite-horizon which results then in a time-
invariant control law.

In the construction of a supervisory control one is often provided a specifica-
tion in the form of a generator Gspec. Take then Lam = L(Gspec)∩Lm(G). Because
L(Gspec) is prefix closed, it follows from Proposition 3.1(c) that Lam is Lm(G)-
closed. By definition it holds that Lam ⊆ Lm(G). If Lam = Lm(G) then the un-
controlled plant meets the specification and no supervisory control is needed. If
Lam = Lm(v/Gc) = /0 then a nonblocking supervisory control implies that L(v/Gc) =
prefix(Lm(v/Gc)) = /0 which contradicts that ε ∈ L(v/Gc).

Assumption 3.1. Consider Problem 3.1. Assume that the admissible sublanguage
Lam ⊆ L(Gspec) satisfies (1) Lam ⊆ Lm(G), (2) Lam is Lm(G)-closed, and (3) Lam 
= /0
and Lam 
= Lm(G).

3.6 Existence of a Supervisory Control

Consider the supervisory control problem with complete observations, Problem 3.1.
Attention will first be restricted to the case where Lrm = Lam ⊆ Lm(G). The general
case will be discussed in Section 3.10. In this section, a necessary and sufficient con-
dition will be formulated for the existence of a supervisory control. The condition
is formulated below in terms of the control-theoretic concept of controllability.
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Definition 3.8. Consider a controlled deterministic finite generator Gc. The lan-
guage K ⊆ E∗ is said to be controllable with respect to Gc if

prefix(K)Euc∩L(G)⊆ prefix(K); (3.1)

equivalently, ∀s ∈ prefix(K), ∀e ∈ Euc, se ∈ L(G) implies that se ∈ prefix(K).

Controllability of a language differs from the system-theoretic concept of control-
lability of a linear system. Controllability of a language is equivalent with the lan-
guage being invariant with respect to supervisory control. The terminology of a
controllable language defined above is now standard in the literature.

Example 3.6. The line specification (continued). Consider Example 3.5 with the
plant and the specification, see Fig. 3.4. Is the language of the specification con-
trollable? By inspection of the plant it is clear that the specification language is
controllable because the events which lead one out of the specification, { f ,g,h},
are all controllable. In many other examples, the check of controllability is not that
simple! �
Proposition 3.2. Consider a CDFG Gc. The following languages in E∗ are control-
lable with respect to Gc: (a) /0 ∈ E∗; (b) L(G) ∈ E∗; (c) E∗.

Proof. (a) prefix( /0)Euc ∩ L(G) = /0Euc ∩ L(G) = /0 ∩ L(G) = /0 = prefix( /0). (b)
prefix(L(G))Euc∩L(G) = L(G)Euc∩L(G)⊆ L(G) = prefix(L(G)). �

Recall from Definition 3.1 the concept of an active event set at a state.

Algorithm 3.7. (Controllability of a regular language).
Consider a trim CDFG G and a trim DFG H such that Lm(H) = Lam hence H is

a recognizer of Lam.

1. Construct J = (QJ ,EJ, fJ ,qJ,0) = trim(H×G).
2. Check whether for all (qH ,qG)∈QJ the following inclusion holds, E(qG)∩Euc⊆

E(qH ,qG).
3. If Condition (2) is satisfied then the language Lam = Lm(H)⊆ E∗ is controllable

with respect to Gc. If Condition (2) is not satisfied then the language Lm(H) is
not controllable.

It can then be proven that the algorithm is correct. The time complexity of the algo-
rithm is O(|QG| · |QH | · |E|) where the notation is defined in Section 3.3.

Theorem 3.2. (Existence of a supervisory control with complete observations).
[29, Th. 3.4.1] Consider Problem 3.1 for a controlled deterministic finite genera-
tor Gc, which is such that the associated generator G is nonblocking. Consider the
special case of the problem in which the required language and the admissible lan-
guage are equal and denoted by K = Lrm = Lam, while the sublanguage K satisfies
Assumption 3.1. There exists a supervisory control v for Gc such that the marked
closed-loop language equals the specification, Lm(v/Gc) = K, and such that v/Gc

is nonblocking if and only if (1) K is a controllable language with respect to Gc; and
(2) K is Lm(G)-closed.
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Proof. (a) (⇐) (1) K ⊆ Lm(G) implies that prefix(K)⊆ prefix(Lm(G)) = L(G), be-
cause G is nonblocking, and K 
= /0 implies that ε ∈ prefix(K).
(2) Define the supervisory control, v : L(G) → Ecp, v(s) = Euc ∪ {e ∈ Ec | se ∈
prefix(K)}.
(3) It will be proven that, L(v/Gc) ⊆ prefix(K), by induction on the length of the
string. Note that ε ∈ L(v/Gc)∩prefix(K). Consider for n ∈ Z+,

se ∈ L(v/Gc), with |s|= n,

⇒ s ∈ L(v/Gc),e ∈ v(s), and se ∈ L(G), by definition of L(v/Gc),

⇒ s ∈ prefix(K),e ∈ v(s), and se ∈ L(G),

by the induction step s ∈ L(v/Gc)⊆ prefix(K),

⇒

⎧
⎨

⎩

se ∈ prefix(K)Euc∩L(G)⊆ prefix(K), if e ∈ Euc by controllability,
se ∈ prefix(K), if e ∈ Ec because e ∈ v(s)

and because of the definition of v(s).

(4) It will be shown that, prefix(K)⊆ L(v/Gc), by induction on the length of strings.
Again ε ∈ prefix(K)∩L(v/Gc). Consider again for n ∈ Z+,

se ∈ prefix(K), with |s|= n,

⇒ s ∈ prefix(K)⊆ L(v/Gc)∧ se ∈ prefix(K)⊆ L(G),

by the induction step and by (1),

⇒ se ∈ L(v/Gc), if e ∈ Euc because then e ∈ v(s),

and because of the definition of L(v/Gc), or

se ∈ L(v/Gc), if e ∈ Ec, because by definition of v(s),
se ∈ prefix(K)⇒ e ∈ v(s),
and because of the definition of L(v/Gc).

(5)

Lm(v/Gc) = L(v/Gc)∩Lm(G), by def. of Lm(v/Gc),

= prefix(K)∩Lm(G), by (3) and (4),

= K, because K is Lm(G)-closed, see Definition 3.3,

which establishes the specification,

prefix(Lm(v/Gc)) = prefix(K) = L(v/Gc), by (3) and (4),

hence v/Gc is nonblocking.
(⇒) (6)

prefix(K) = prefix(Lm(v/Gc)), because K = Lm(v/Gc),

= L(v/Gc), because v/Gc is nonblocking,

K = Lm(v/Gc) = L(v/Gc)∩Lm(G) = prefix(K)∩Lm(G),
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by the above, hence K is Lm(G)-closed. Note that

s ∈ prefix(K)∧ e ∈ Euc∧ se ∈ L(G)

⇒ s ∈ prefix(K) = L(v/Gc)∧ e ∈ v(s)∧ se ∈ L(G)

⇒ se ∈ L(v/Gc) = prefix(K),

by definition of L(v/Gc) and by the above relation between L(v/Gc) and K. Thus K
is a controllable language with respect to Gc. �

Example 3.8. The line specification (continued). Recall the example of the line gen-
erator of Example 3.5. From Fig. 3.4 it follows by inspection that the language
K = Lm(GK) is Lm(G)-closed. From Theorem 3.2 then follows that there exists a
supervisory control which achieves the language K, for example

v(ε) = {a}∪Euc, v(a) = Euc, v(ab) = Euc, v(abc) = Euc∪{d}, v(abcd) = Euc.

�

3.7 Implementation of a Supervisory Control by a Supervisor

In this section, it is described how to implement a supervisory control by a super-
visor in the form of a deterministic finite generator. Because such a supervisor is
easily converted into a computer program, the practical usefulness to engineering
design should be clear. This section is somewhat technical and outside the main line
of the chapter. It could be skipped in a first reading.

Definition 3.9 (Supervisor). Consider a controlled deterministic finite generator
Gc=(Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc). A supervisor for Gc is a tuple (GS,g), where
GS = (QS,E, fS,qS,0,QS,m) is a DFG called the supervisor generator and g : QS→
Ecp is the map g(qS) = Euc ∪E(qS) = Euc ∪ {e ∈ Ec | fS(qS,e)!} called the con-
trol law such that (1) GS is trim; (2) L(GS) ⊆ L(G); and (3) Lm(GS) is a control-
lable language with respect to Gc. It is called a proper supervisor if in addition (4)
(Lm(GS),Lm(G)) is a nonconflicting pair of languages (see Definition 3.4).

Example 3.9. Consider Example 3.8 of the line system. The supervisor associated
with the supervisory control coincides with the automaton from Fig. 3.4.(b) and the
control law g : QS→ Ecp can be chosen as g(1) = {a}∪Euc, g(2) = g(3) = g(5) =
Euc, and g(4) = {d}∪Euc, where Euc = {b,c,e, i}. �
Definition 3.10. Consider a CDFG Gc and a supervisor (GS,g) with the same event
set. Define the closed-loop deterministic finite generator (CLDFG) associated with
Gc and (GS,g) as, GS/Gc = (QS×Q,E, fcls,(qS,0,q0),QS,m×Qm), as in the product
generator GS×G but with

fcls((qS,q),e) =

{
( fS(qs,e), fc(q,e,g(qS))), if fS(qS,e)!∧ fc(q,e,g(qS))!,
( fS(qS,e), f (q,e)), if fS(qS,e)!∧ f (q,e)!∧{e ∈ g(qS)},
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where the equality follows from the definition of CDFG. The notation GS/Gc signi-
fies that the supervisor GS supervises the generator Gc.

Proposition 3.3. [29, Prop. 3.6.2] Consider a CDFG Gc and a supervisor (GS,g)
according to Definition 3.9.

(a) Then L(GS/Gc) = L(GS)∩L(G) and Lm(GS/Gc) = Lm(GS)∩Lm(G).
(b) Assume that G is nonblocking. Then GS/Gc is nonblocking if and only if (Lm(GS),

Lm(G)) is a nonconflicting pair of languages.

Next the relation between a supervisory control and a supervisor is discussed.

Definition 3.11. Consider a CDFG Gc and a supervisory control v. A supervisor
(GS,g) is said to implement the supervisory control v if L(v/Gc) = L(GS/Gc) and
Lm(v/Gc) = Lm(GS/Gc).

It can then be proven that for any maximally permissive supervisory control there
exists a supervisor which implements it and for any supervisor there exists a super-
visory control in which tuple is related by implementation.

3.8 Computation of a Supervisor

How to compute a supervisor from the plant and the specification?

Procedure 3.3. Design of a supervisor in the case that the marked admissible lan-
guage is controllable.

Data Consider a controlled deterministic finite generator Gc, representing the
plant, and a specification Gspec, Gc = (Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc), Gspec =
(Qspec,E, fspec,qspec,0,Qspec,m).

1. Compute G1 = trim(G) and G2 = (Q2,E2, f2,q2,0,Q2,m) = trim(Gspec).
2. Compute the DFG G3 by G3 = (Q2,E2, f2,q2,0,Q2)×G1. Then, by definition of

G3, Lm(G3) = L(G2)∩Lm(G1), and from Proposition 3.1(b) follows that L(G3)
is Lm(G1)-closed.

3. Compute Ga = trim(G3).
4. Check if Lm(Ga) 
= /0. If so proceed with Step 5 else output a message that the

marked admissible language is empty and stop.
5. Check if the language Lm(Ga) is controllable with respect to Gc by Algorithm 3.7.

If so proceed with Step 6 else output a message and stop.
6. Define GS = Ga and the map g : QS → Ecp, g(qS) = Euc ∪{e ∈ E | fS(qS,e)!}.

Then (GS,g) is a nonblocking proper supervisor such that Lm(GS/Gc) =
L(Gspec)∩Lm(G).

It can then be proven that the supervisor constructed by Procedure 3.3 is a solution
of Problem 3.1 and that it implements the corresponding supervisory control.
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Fig. 3.5 (a) Diagram of the generator of the two-ring system and (b) the diagram of the
specification of the two-ring system

Example 3.10. The two-ring example. Consider the CDFG Gc with the dynamics as
specified in Fig. 3.5.(a). Note that Gc = (Q,E, f ,q0,Qm,{Ec,Euc}, Ecp, fc), Qm =
{1}, and Ec = {a,c}. Consider the specification in terms of the generator Gspec

of which the discrete dynamics is specified in Fig. 3.5.(b). Let the corresponding
generator be denoted by Gspec = (Qspec,E, fspec,qspec,0,Qm,spec), where the same
event set is used as in Gc. �
Consider the problem of synthesizing a supervisor GS such that Lm(GS/Gc) =
Lm(Gspec). The construction of the supervisor is so simple that it can be illustrated.
The steps of Procedure 3.3 will be followed.

(1) Let G1 = trim(G) = G, G2 = trim(Gspec) = Gspec.
(2) Note that Lm(G) = ((ab) + (cd))∗, Lm(Gspec) = (ab)∗ ⊆ Lm(G), L(Gspec) =
(ab)∗,(ab)∗a, Lm(Gspec) = L(Gspec)∩Lm(G) = {(ab)∗}, and Ga = Gspec.
(3) Lm(Ga) = Lm(Gspec) 
= /0.
(4) Lm(Gspec) is controllable with respect to Gc because prefix(Lm(Gspec))Euc ∩
L(G)⊆ prefix(Lm(Gspec)). This follows from,

prefix(Lm(Gspec)) = {ε,a,ab, ...}, εa /∈ prefix(Lm(Gspec))Euc,

ab ∈ prefix(Lm(Gspec))Euc∩L(G)∩prefix(Lm(Gspec)), etc.

(5) GS = Ga = Gspec, g : QS → Ecp, g(1) = Euc ∪ {e ∈ E | f (1S,e)!} = {b,d,a},
g(2) = {b,d}, and g(3) = {b,d}. Then (GS,g) is a nonblocking supervisor for Gc

such that Lm(GS/Gc) = L(Gspec)∩Lm(G) = Lm(Gspec).

3.9 Partially-Ordered Sets

The problem of supremal supervision formulated in Section 3.11 requires several
concepts from universal algebra. It is useful to review these concepts briefly in this
chapter and to illustrate the concepts by the example of the set of subsets of a set.

Definition 3.12. A relation R⊆ X×X is said to be:

• reflexive if (x,x) ∈ R, ∀x ∈ R;
• anti-symmetric if (x,y) ∈ R and (y,x) ∈ R imply that x = y; and
• transitive if (x,y), (y,z) ∈ R imply that (x,z) ∈ R.
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A partial order R on a set X is a relation which is reflexive, anti-symmetric, and
transitive. A partially-ordered set or a poset is a set with a partial-order relation.
Notation (X ,R).

Example 3.11. (Powerset, inclusion) If X is a set then the set of all subsets of X
with the inclusion relation, (Pwrset(X),⊆), is a poset. �

Definition 3.13. Consider a poset (X ,≤) and a subset Y ⊆ X.

• An upper bound of x,y ∈Y is an element u ∈ X such that x≤ u and y≤ u.
• A lower bound of x,y ∈ Y is an element l ∈ X such that l ≤ x and l ≤ y.

Example 3.12. (Powerset, inclusion) (continued). Consider for the set X , the poset
(Pwrset(X),⊆). X1∪Y1 is an upper bound of the sets X1, Y1, and X1∩Y1 is a lower
bound of the same sets. �

Definition 3.14. Consider a poset (X ,≤) and a subset X1 ⊆ X.

• The supremum of X1 (also called join or lowest upper bound) is an element
sup(X1) ∈ X, denoted by sup(X1) = supx1∈X1

x1 = ∨x1∈X1x1 ∈ X, such that (1)
x2 ≤ sup(X1), ∀x2 ∈ X1; and (2) sup(X1)≤ u, ∀ u ∈ X which are upper bounds
of X1.

• The infimum of X1 (also called meet or greatest lower bound) is an element
inf(X1) ∈ X1, denoted by inf(X1) = infx1∈X1 x1 = ∧x1∈X1x1 ∈ X, such that (1)
inf(X1)≤ x2, ∀x2 ∈ X1; and (2) l ≤ inf(X1), ∀ l ∈ X which are lower bounds of
X1.

Example 3.13. (Powerset, inclusion) (continued) Consider the set X , the associated
poset (Pwrset(X),⊆), and a subset X1 ⊆ Pwrset(X). Then X1 has the supremum
sup(X1) = ∪x1∈X1x1 and the infimum inf(X1) = ∩x2∈X1x2. �

Definition 3.15. Consider a partially-ordered set (X ,≤). It is called:

• a lattice if for all x,y ∈ X, sup(x,y) = x∨ y ∈ X, and inf(x,y) = x∧ y ∈ X;
• a complete upper semi-lattice if sup(X1) ∈ X1 for all X1 ⊆ X.
• a complete lower semi-lattice if inf(X1) ∈ X1 for all X1 ⊆ X.
• a complete lattice if it is both a complete upper semi-lattice and a complete lower

semi-lattice.

3.10 Supremal Controllable Sublanguages

Recall the notation of Problem 3.1.

Definition 3.16. Consider a CDFG Gc =(Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc) and as-
sume that the sublanguage Lam⊆ Lm(G) satisfies Assumption 3.1. Define the follow-
ing sets of controllable languages:
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(a) The set of controllable sublanguages of Lam,

C(Lam,Gc) = {K ⊆ Lam | prefix(K)Euc∩L(G)⊆ prefix(K)}.

(b) The set of prefix-closed controllable sublanguages of Lam,

Cpc(Lam,Gc) = {K ⊆ Lam | K = prefix(K),KEuc∩L(G)⊆ K}.

The tuple (C(Lam,Gc),⊆) of controllable sublanguages of a tuple (Lam,Gc) is a
poset. Is it also a complete upper semi-lattice or even a lattice?

Proposition 3.4. [29, Prop. 3.5.1] Consider a CDFG Gc and a language Lam ⊆
Lm(G) satisfying Assumption 3.1.

(a) C(Lam,Gc) is nonempty, in fact /0 ∈ C(Lam,Gc).
(b) (C(Lam,Gc),⊆) is a poset.
(c) C(Lam,Gc) is closed with respect to countable or arbitrary unions.
(d) There exists a unique supremal element supC(Lam,Gc) ∈ C(Lam,Gc) which will

be called the supremal controllable sublanguage of Lam.
(e) C(Lam,Gc) is a complete upper semi-lattice of the lattice (Pwrset(Lam),⊆).

Proof. (a) /0 ∈ C(Lam,Gc) because of Proposition 3.2.
(b) C(Lam,Gc) is a collection of sets that is easily verified to be a poset with respect
to set inclusion.
(c) Let {Ki ⊆ Lam, i ∈ I} ⊆ C(Lam,Gc) with I ⊆ Z and let K = ∪i∈IKi ⊆ Lam. Then

prefix(K) = prefix(∪Ki) = ∪i∈Iprefix(Ki), because of a result

on the commutativity of union and prefix closure,

prefix(K)Euc = ∪i∈Iprefix(Ki)Euc,

prefix(K)Euc∩L(G) = [∪i∈Iprefix(Ki)Euc]∩L(G) = ∪i∈I [prefix(Ki)Euc∩L(G)]

⊆ ∪prefix(Ki), because Ki ∈ C(Lam,Gc), ∀i ∈ I,

= prefix(∪Ki) = prefix(K).

(d) This follows from (c), Example 3.13, and from Definition 3.14.
(e) This follows from the definition of complete upper semi-lattice and from (d). �

The set C(Lam,Gc) is not closed with respect to intersection as is shown below.

Example 3.14. Set of controllable sublanguages not intersection closed. [29, Ex.
3.5.1]. There exists an example of a CDFG Gc and languages K1,K2 ⊆ E∗ such that:

(a) K1,K2 are controllable sublanguages with respect to Gc.
(b) K1∩K2 is not a controllable sublanguage with respect to Gc.
(c) prefix(K1)∩prefix(K2) is a controllable sublanguage with respect to Gc.
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Proof of the above three properties. Consider the CDFG of Fig. 3.6,

1 2 3

4

Gc K1 1 2 3

21K

K2 1 2

4

a b

c

a b

a

c

a

Fig. 3.6 Diagram of the generator and of the sublanguages K, K1, and K2

Gc = (Q,E, f ,q0,Qm,{Ec,Euc},Ecp, fc), E = {a,b,c}, Ec = {b,c}, Euc = {a},
K1 = {ε,ab}, prefix(K1) = {ε,a,ab}, K2 = {ε,ac},prefix(K2) = {ε,a,ac}.

(a) K1 is controllable with respect to Gc because, a = εa ∈ prefix(K1)Euc∩L(G) ⊆
prefix(K1). Similarly K2 is controllable with respect to Gc.
(b) K1 ∩K2 = {ε}, prefix(K1 ∩K2) = {ε}, a = εa =∈ prefix(K1 ∩K2)Euc ∩L(G),
and a /∈ prefix(K1∩K2), hence K1∩K2 is not controllable with respect to Gc.
(c) K = prefix(K1)∩prefix(K2) = {ε,a}, prefix(K) =K = {ε,a}, KEuc∩L(G)⊆K,
or K is controllable with respect to Gc. �

Proposition 3.5. [29, Prop. 3.5.2] Consider a CDFG Gc and a language Lam ⊆
Lm(G) satisfying the conditions of Assumption 3.1. Then C(Lam,Gc) is an upper-
semilattice of the lattice (Pwrset(Lam),⊆). Hence there exists a unique supremal
controllable and prefix-closed sublanguage supC(Lam,Gc) ∈ C(Lam,Gc) which also
displays the notation of this supremum.

A recursive algorithm to compute supC(Lam,Gc) ∈ C(Lam,Gc) is presented in [17]
but no explicit formula was given there. For the prefix-closed case, there exists an
explicit formula for the supremal controllable sublanguage due to the collection of
authors: R.D. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus, W.M. Wonham, see
[2]. The time complexity of the algorithm is O(|Q|2|Qa|). Another way to view the
problem of determining the supremal controllable sublanguage is to consider it as a
fixed point of an equation. Then Tarski’s fixed point theorem for a poset can be used
to prove the existence and to provide an algorithm.

Proposition 3.6. [29, Prop. 3.5.3], [4, pp. 153–155] Consider the CDFG Gc and a
language Lam ⊆ Lm(G) as in Assumption 3.1.

(a) Because Lam is Lm(G)-closed, so is supC(Lam,Gc).
(b) prefix(supC(Lam,Gc))⊆ supC(prefix(Lam),Gc).
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3.11 Supremal Supervision

Recall Assumption 3.1 and the notation defined there.

Problem 3.2. The supremal supervisory control problem with complete observa-
tions. Consider a CDFG Gc and a specification in terms of a sublanguage Lrm =
Lam ⊆ Lm(G) which is Lm(G)-closed. Does there exist and, if so, construct a su-
pervisory control v : L(G)→ Ecp and a language K ⊆ E∗ such that: (a) K ⊆ Lam;
(b) K = Lm(v/Gc); (c) K is supremal with respect to (a-b); (d) v/Gc is nonblock-
ing. A supremal supervisory control with respect to Gc and Lam is defined to be a
supervisory control which satisfies the conditions (a–c) above. A nonblocking supre-
mal supervisory control is a supervisory control which satisfies the conditions (a–d)
above. �

The difference between Problem 3.1 and Problem 3.2 is that in the first problem
one requires that K = Lam while in the second that only K ⊆ Lam. It follows from
Theorem 3.2 as a corollary that there exists a supervisory control v1 such that
Lm(v1/Gc) = Lam if and only if Lam is a controllable language with respect to Gc.
If the language Lam is not controllable with respect to Gc then the supremal control-
lable language within Lam is the best attainable goal. Another way to think of this is
to note that the supremal sublanguage supC(Lam,Gc) imposes the least-restrictive
behavioral constraints on the closed-loop language L(v/Gc).

Theorem 3.4. (Existence of the nonblocking supremal supervisory control with
complete observations). [29, Th. 3.5.1] Consider a CDFG Gc and a language
Lam ⊆ Lm(G) as in Problem 3.2. Consider supC(Lam,Gc) which exists because of
Proposition 3.5. Assume that supC(Lam,Gc) 
= /0. Then there exists a nonblocking
supremal supervisory control v for Gc and Lam such that Lm(v/Gc)= supC(Lam,Gc).

Proof. From Proposition 3.4 follows that supC(Lam,Gc)∈C(Lam,Gc) hence is con-
trollable with respect to Gc. From Proposition 3.6(a) follows that supC(Lam,Gc)
is Lm(G)-closed. From Theorem 3.2 then follows that there exists a supervisory
control v for Gc such that supC(Lam,Gc) = Lm(v/Gc), and v/Gc is nonblocking.
Moreover, supC(Lam,Gc)⊆ Lam. Because of the definition of supC(Lam,Gc) as the
supremal element of C(Lam,Gc) it follows that v is a supremal nonblocking super-
visory control. �

Recall that in Problem 3.1 the problem was to determine a supervisory control v
for the controlled discrete-event system Gc such that Lrm ⊆ L(v/Gc) ⊆ Lam. That
problem can now be solved by the methods of the previous sections.

Proposition 3.7. Consider Problem 3.1 in which the required Lrm and the admis-
sible language Lam may be different. There exists a solution of this problem if and
only if Lrm ⊆ supC(Lam,Gc).

In addition to the above problem, there has been formulated the infimal supervision
problem. In the corresponding problem one wants to determine the infimal control-
lable sublanguage in the range Lrm ⊆ K ⊆ Lam and the corresponding supervisory
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control. That problem has been solved, the theory corresponds to supremal supervi-
sion, and the reader will find it described in the book [4, Ch. 3].

3.12 Further Reading

The reader may want to continue with the following chapters of the collection in
which this chapter appears: Chapter 4 Supervisory Control with Partial Observa-
tions and Chapter 6 Supervisory Control of Distributed Discrete-Event Systems. The
latter chapter provides the theory for supervisory of complex or large-scale discrete-
event systems.

Books and lecture notes on supervisory control with complete observations. The
lecture notes of W.M. Wonham, [29], are available on the web and are regularly
updated, http://www.control.utoronto.ca/˜wonham/

The second edition of the book by C. Cassandras and S. Lafortune is [4]. See
Chapter 3 for supervisory control with complete observations.

Early papers. An early paper on the topic by P.J. Ramadge and W.M. Wonham is
[17]. An expository paper on the supervisory control with complete observations by
these authors is [18]. An expository paper published later is by John Thistle, [21].
Early work by S. Lafortune is [5, 12].

Algorithms etc. The main publication on the computation of the supremal con-
trollable sublanguage and the associated supervisory control is the six author paper
[2]. Computation of supremal controllable sublanguages is covered by [9].

Supervisory control of nondeterministic systems is treated in [7, 15].
Control of infinite string automata. Büchi automata and other infinite-string au-

tomata are described in the paper [25]. A game theoretic approach to control of
infinite-string automata is the paper [3]. Control of infinite-string automata is treated
by John Thistle, see [20, 23, 24, 27].

Algebra of discrete-event systems. Supervisory control of discrete-event systems
is based on concepts and theory of algebra. Books on algebra include [13, 26]. A
book on lattice theory is [6] and [10, Section 8.1].

Software. The following software programs and tools are recommended for su-
pervisory control with complete observations:

• DESUMA and UMDES.
http://www.mta.ca/giddes/desuma.html

• IDES. Developed by K. Rudie and co-workers.
http://qshare.queensu.ca/Users01/rudie/www.

• LibFAUDES and DESTool. Developed by T. Moor, K. Schmidt, and co-workers.
This package is recommended by the authors of this chapter.
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/

• LTCT, XPTCT, etc. Developed by W.M. Wonham and his students.
http://www.control.utoronto.ca/˜wonham/

• STSLib. Developed by Chuan Ma for state tree structures.
http://www.control.utoronto.ca/˜wonham/
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Chapter 4
Supervisory Control
with Partial Observations

Jan Komenda

4.1 Introduction

This chapter presents supervisory control of partially observed discrete-event sys-
tems represented as finite automata. In engineering systems it is often not realistic to
assume that all events are observable. For instance, some hidden (internal) actions
or failures are typically not directly observable. Sometimes it is simply too costly to
install the necessary equipment (sensors) to observe all events that are occurring in
the system. The partial observations are not only due to lack of some of the sensors
but due to economic reasons, it is too costly to install the sensors.

Therefore, supervisory control theory has been extended to deal with systems,
where only a part of the events that occur in the system is observable. Two indepen-
dent papers were the first to treat the important problem of supervisory synthesis
with partial observations: [6] and [10].

A closed-loop system under partial observations is defined using a supervisory
feedback map that specifies the enabled actions (events) after a string of (observable)
events has been observed.

Due to partial observations strings that are not distinguishable by the observations
require the same control action. There are two possible control laws that satisfy this
requirement: one is called permissive and the other antipermissive.

Partial observation about the state of the system is encoded by the observer au-
tomaton defined over the observable alphabet. These are helpful for implement-
ing supervisory control laws and for many algorithms solving supervisory control
problems.

An additional property, called observability, is required of a specification lan-
guage to be achievable as the language of the closed-loop system (no matter which

Jan Komenda
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of the two policies is chosen) in addition to controllability and relative closedness
conditions (known as Lm(G)-closedness) needed in the case of complete observa-
tions. Basic facts about observability will be presented together with the main ex-
istential result, the existence theorem of a supervisor in terms of observability, and
controllability conditions. Since observability is not in general preserved by lan-
guage unions, a stronger notion called normality of a language will be described.

Finally, algorithms for checking observability and normality, and for computing
supremal normal sublanguages and computing supremal normal and controllable
sublanguages will be presented. The algorithm for checking observability will be
of polynomial complexity, while the ones for constructing supremal sublanguages
are of exponential complexity. This is because they require an observer automaton.
Moreover, the representation of the specification language must have a special prop-
erty called the state-partition automaton. Such a representation requires that states
with indistinguishable past are partially disambiguated in the sense that different
states of the observer do not overlap. For any finite automaton such a state-partition
automaton always exists as a finite automaton.

Both the language-based (behavioral) [17] and the state-based based framework
[14] have been developed for supervisory control with partial observations. Since
both frameworks are equivalent, the state-based approach does not add much to the
originally developed language framework and there exist bidirectional transforma-
tions among them, only the language framework is presented in this chapter.

The concepts and results presented in this chapter will be illustrated by simple
examples.

4.2 Concepts of Supervisory Control with Partial Observations

The notation for (deterministic) generators G=(Q,E, f ,qo,Qm) and controlled gen-
erators (CDFG Gc) is the same as in the previous chapter on supervisory control
with complete observations. In addition, it is assumed that the set of events E is par-
titioned into the disjoint union of observable events (denoted Eo) and unobservable
events (denoted Euo), i.e. E = Eo ∪Euo. The concept of (natural) projection is as-
sociated with the observable event subset as the morphism of monoids P : E∗ → E∗o
defined by

P(ε) = ε and

P(se) =

{
P(s)e, if e ∈ Eo,
P(s), if e ∈ Euo.

The morphism property ensures that natural projection is catenative, i.e. P(uv) =
P(u)P(v) for any u,v ∈ E∗. The projection is extended to languages in a natural
way, for L⊆ E∗: P(L) =

⋃
w∈L P(w).

Given a set Q we use the notation Pwr(Q) to denote the set of all subsets of Q
including the empty set. Since the projection is not injective, the inverse projection



4 Supervisory Control with Partial Observations 67

P−1 : E∗o → Pwr(E∗) of P takes values on Pwr(E∗) and is defined as P−1(w) = {s∈
E∗ | P(s) = w}, where w ∈ E∗o is an observed sequence of events and P−1(w) is the
set of all possible sequences of the plant events that yield the observation w. The
following well-known properties of natural projections [3] are useful.

Lemma 4.1. Natural projection has the following properties:

1. Both projections and inverse projections are morphisms for language unions:

P(∪i∈ILi) = ∪i∈IP(Li) (4.1)

P−1(∪i∈ILi) = ∪i∈IP
−1(Li) (4.2)

2. For language intersections it holds that:

P(∩i∈ILi) ⊆ ∩i∈IP(Li) (4.3)

P−1(∩i∈ILi) = ∩i∈IP
−1(Li) (4.4)

Note that the converse inclusion in 4.3 does not hold in general.
It appears that partial observations cause a sort of nondeterminism, because after

a given string of observed events w ∈ E∗o the generator can in general be in several
possible states. An important construction is then the observer automaton that en-
ables effective implementation using finite automata notions and concepts of super-
visory control with partial observations. It is the reachable part of the so-called pro-
jected automaton defined below using a modified subset construction known from
determinization of a nondeterministic automaton.

4.2.1 Observer Automaton

Let G = (Q,E, f ,qo,Qm) be a generator with partial observations E = Eo ∪ Euo.
The notation Pwr+(Q) is reserved for the set of all nonempty subsets of Q, i.e.
B ∈ Pwr+(Q) means that B ⊆ Q : B 
= /0. Additional notation is needed for the
unobservable reach set, which can be as an instance of reach set defined in the
previous chapter, but with the event set restricted to the unobservable one. We define
for B ∈ Pwr+(Q)

UnobsReach(B) = {q′ ∈Q | ∃q ∈ B and ∃w ∈ E∗uo with f (q,w) = q′}.

In words, for a considered nonempty subset B of states of G, the unobservable reach
set UnobsReach(B) is the set of states that are reachable from a state of B by a
sequence of unobservable events.

Definition 4.1 (Projected generator). The projected generator over the observable
alphabet Eo is:

P(G) = (Pwr+(Q),Eo, fP,UnobsReach(qo),Qm
P ), where

for e ∈ Eo and B ∈ Pwr+(Q) we have
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fP(B,e) =UnobsReach(q∈Q : (∃x ∈ B) s. t. q = f (x,e)) and
Qm

P = {X ⊆ Q : X ∩Qm 
= /0}.

Note that fP(B,e) = ∪{q∈B}×{w∈E∗|P(w)=e} f (q,w).

Definition 4.2 (Observer). The observer is a generator over Eo that is defined as
the reachable part (subautomaton) of P(G), i.e.

Obs(G) = (Qobs,Eo, fObs,UnobsReach(qo),Qm
Obs) with Qobs ⊆ Pwr+(Q) defined in-

ductively as follows:
1) UnobsReach(qo) ∈Qobs

2) If Q ∈ Qobs then ∀e ∈ Eo: fP(Q,e) ∈Qobs.
The transition structure of the observer automaton is simply the structure of P(G)
restricted to Qobs, i.e. ∀e ∈ Eo and ∀Q ∈ Qobs: fobs(Q,e) = fP(Q,e) and Qm

Obs =
{X ∈ Qobs : X ∩Qm 
= /0}

Note that if f (x,w) is not defined for any x∈B and w∈E∗ : P(w)= e, then fobs(B,e)
is not defined.

Finally, let us mention that an alternative, equivalent, and well-known construc-
tion of the observer consists in replacing all events from Euo by ε and building the
corresponding deterministic automaton (using ε- removal).

Let us denote by ‖Q‖ the number of reachable states of an automaton G. A major
problem with the observer automaton is that the number of reachable states, denoted
‖Qobs‖, can be exponential, up to c.2‖Q‖ with a positive constant c ∈ R+. In special
cases, e.g. when P has the so-called observer property (see the definition below)
with respect to L(G), it is known that the observer has at most as many states as the
original automaton, i.e. ‖Qobs‖ ≤ ‖Q‖.

Definition 4.3 (Observer property). The projection P : E∗ → E∗o is an L-observer
for a language L⊆ E∗ if the following holds: for all strings s ∈ prefix(L), if P(s)t ∈
P(L), then there exists u ∈ E∗ such that su ∈ L and P(u) = t, see Fig. 4.1.

P(L)

L

P(s) t

s

P P

u

Fig. 4.1 Illustration of the observer property
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It is well known that the projected generator and the observer automata recognize
the same language, namely the projected plant language [3].

Theorem 4.1. Both P(G) and Obs(G) recognize P(L(G)), i.e.

Lm(P(G)) = Lm(Obs(G)) = P(Lm(G)), and L(P(G)) = L(Obs(G)) = P(L(G)).

The states of the observer automaton represent the states, in which the original au-
tomaton can be after a string with a given projection has occurred. It is seen from Ex-
ample 4.1 below that there exist different states of the observer automaton Obs(G)
that have nonempty intersections (as subset of states of G). There is an auxiliary con-
cept of observational indistinguishability relation on states of G induced by partial
observations. It is defined as follows: two states q,q′ ∈ Q are said to be observa-
tionally indistinguishable (denoted 〈q,q′〉 ∈ Aux(G)) if they can be reached by two
indistinguishable strings, i.e. if there exist two strings s,s′ ∈ E∗ with P(s) = P(s′)
such that f (q0,s) = q and f (q0,s′) = q′. This relation is reflexive and symmet-
ric, but it is not in general an equivalence relation, because it might be non transi-
tive. Such a relation is called a tolerance relation. Automata representations, where
observational indistinguishability is an equivalence relation are very important for
most of the algorithms presented in this chapter. Essentially, they enable to dis-
ambiguate partly the ambiguities (nondeterminism) caused by partial observations,
which helps in proving correctness of many algorithms in supervisory control of
partial observations.

There is a condition called state-partition automaton or M−recognizability for G,
see [4], to ensure that Aux(G) is an equivalence relation. It has been shown in [9]
that if G is a state-partition automaton then Aux(G) is an equivalence relation.

Definition 4.4 (State-partition automaton). G = (Q,E, f ,qo,Qm) is called a state-
partition automaton if different states of its observer Obs(G) are non overlapping,
i.e. ∀B 
= B′ ∈Qobs : B∩B′ = /0.

Below is an example of an automaton that does not satisfy the above condition.

Example 4.1. Let us consider the example from Fig. 4.2 with Eo = {a} and Euo =
{τ}. The problem is that there are two different states of the observer automaton,
namely the initial state {0,2} and the state {0,1,2,3}, that have nonempty intersec-
tion and still form two different states in the observer. �

A natural question that arises for non-state-partition automata is how to compute an
automaton that recognizes the same language and is a state-partition automaton.

The standard construction for the computation of a state-partition automaton is
known as the Schützenberger covering. It has been introduced in the more general
setting of automata with multiplicities in semirings, cf. [13]. For the special case
of logical automata that we consider this construction amounts to computing the
synchronous product of the original automaton with its observer.
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Fig. 4.2 A generator G
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Fig. 4.3 Its observer Obs(G)

For generators G1 = (Q1,E1, f1,q0,1,Qm,1) and G2 =(Q2,E2, f2,q0,2,Qm,2), their
synchronous product G1‖G2 is defined as the accessible part of the generator (Q1×
Q2,E1∪E2, f ,(q0,1,q0,2),Qm,1×Qm,2), where

f ((x,y),e) =

⎧
⎪⎪⎨

⎪⎪⎩

( f1(x,e), f2(y,e)), if f1(x,e) ∈ Q1 and f2(y,e) ∈Q2;
( f1(x,e),y), if f1(x,e) ∈ Q1 and e /∈ E2;
(x, f2(y,e)), if e /∈ E1 and f2(y,e) ∈ Q2;
undefined, otherwise.

Theorem 4.2 (Schützenberger covering). For any G = (Q,E, f ,qo,Qm):
G‖Obs(G) is always a state-partition automaton .

A proof of this result for finite state automata can be found in [4].
The construction of a state-partition automaton is now illustrated for

Example 4.1.

Example 4.2. The corresponding observer that satisfies the state-partition automa-
ton condition is on the right of Fig. 4.5. �
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Fig. 4.4 G′ = G‖Obs(G)
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Fig. 4.5 Its observer Obs(G′)
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4.2.2 Supervisor with Partial Observations

A controlled generator (with partial observation) is a structure Gc = (G,Ec,P,Ecp),
where G is a generator, Ec ⊆ E is the set of controllable events, Eu = E \Ec is the
set of uncontrollable events, P : E∗ → E∗o is the projection, and Ecp = {Een ⊆ E |
Eu ⊆ Een} is the set of control patterns that consists of all possible sets of enabled
events Een. Note that the set of enabled events must always include all uncontrollable
events, because these events cannot be disabled by the supervisor. In concrete plants
only feasible events that can actually occur in the plant are enabled. The definition
of controlled generator is almost the same as in the case of complete observations
(only the natural projection is added). In particular, any control pattern as a subset of
enabled event should always contain all uncontrollable events which, by definition,
cannot be prevented from happening.

The definition of a supervisory control law changes, because due to unobserv-
able events the supervisor has only access to the projected behavior, whence the
following definition. Note that a supervisor S is not formally defined, because it is
an automaton representation of the supervisory control law vP. Moreover, for super-
visors that satisfy certain properties (essentially their language is controllable and
observable) the closed-loop system S/G = S‖G. However, in this chapter we only
provide a language definition of the closed-loop system.

Definition 4.5 (Supervisory control with partial observations). A supervisory
control with partial observations for a controlled generator Gc is a map vP :
P(L(G))→ Ecp. In words, for any observed string s∈ P(L(G))⊆ E∗o , vP(s) specifies
corresponding control patterns, i.e. the subset of the enabled events.

The definition by induction of the closed-loop system language L(S/G) under partial
observations is then the same as in the previous chapter with v replaced by vP. It is
defined as the smallest language L(S/G)⊆ E∗ which satisfies

1. ε ∈ L(S/G),
2. if s ∈ L(S/G), se ∈ L(G), and e ∈ vP(P(s)), then se ∈ L(S/G).

The marked language is again defined as Lm(S/G) = L(S/G)∩Lm(G).

4.3 Existence of Supervisors

Given a plant automaton G = (Q,E, f ,qo,Qm) and a specification language K ⊆
E∗, the problem is to determine whether there exists a supervisor S such that
L(S/G) = prefix(K) and Lm(S/G) = K. Note that this means that the marked speci-
fication is achieved in a nonblocking way (closed-loop system is then nonblocking:
prefix(Lm(S/G)) = L(S/G).) It is not surprising that similarly as in the case of com-
plete observations not every language can be achieved as the behavior of the closed-
loop system. Indeed, it is sufficient to consider a specification which requires for two
strings of the plant with the same projection that one is included in the specification
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and the other is not. From the definition of the supervisor with partial observations
such a specification can never be matched as the behavior of the closed-loop system.
Another condition, called observability, is needed in addition to controllability. It is
called observability in the literature, but it has not much to do with observability for
linear or nonlinear discrete-time and/or continuous-time systems. It is not dual to
controllability, but it may be best viewed as a complementary condition needed for
achievability of the specification in addition to controllability in the presence of par-
tial observations. Note that it is not restrictive to assume that prefix(K)⊆ L, because
for a specification language that is not included in the plant language, it suffices to
consider the intersection K ∩L as a new specification that satisfies this assumption.

Definition 4.6. Let K ⊆ E∗ be a specification language and L = L(G) be a prefix-
closed plant language over an event set E. Let Ec ⊆ E be the subset of controllable
events, and let Eo ⊆ E be the set of observable events with P as the corresponding
projection from E∗ to E∗o . The specification language K is said to be observable with
respect to L, Ec, and P if for all s ∈ prefix(K) and all σ ∈ Ec,

(sσ /∈ prefix(K)) and (sσ ∈ L)⇒ P−1[P(s)]σ ∩prefix(K) = /0 .

There is the following equivalent formulation. K is said to be observable with re-
spect to L, Ec, and P if for all s,s′ ∈ prefix(K) and all σ ∈ Ec such that sσ ∈ L,
s′σ ∈ prefix(K), and P(s) = P(s′) we have sσ ∈ prefix(K).

Note that observability requires that if there is a specification string that can be
extended by a controllable event within the plant, but the continuation by this event
exits the specification then all observationally indistinguishable strings followed by
this event must be outside the specification as well. Thus, strings s′ ∈ prefix(K) :
P(s′) = P(s) must satisfy s′σ 
∈ prefix(K). We should point out here that the orig-
inal definition of observability from [10] does not require the event σ to be con-
trollable. However, from an application viewpoint both the controllability and the
observability of a language are needed in a DES with partial observations, and by
the controllability condition introduced in the previous chapter one cannot leave a
specification language by an uncontrollable event while remaining within the plant
language. Hence, it is reasonable to consider only extension by controllable events
in the definition of language observability.

It is easily seen that observability of a language is a property of its prefix closure,
meaning that K is observable with respect to L, Ec, and P if and only if prefix(K) is
observable with respect to L, Ec, and P.

Example 4.3. Let us consider the following specification and plant languages.
The only unobservable event is τ , i.e. Euo = {τ}, while all other events are ob-

servable. We assume that all events are controllable, i.e. Ec = E . We can see that
specification language K is not observable with respect to the plant language L
and projection P, because there are strings s = a and s′ = τa that violate the def-
inition of observability: sτ = aτ ∈ L \ prefix(K), while s′τ = τaτ ∈ prefix(K) and
P(s) = P(s′). �
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The main existential theorem, known as the controllability and the observability
theorem, follows.

Theorem 4.3. [F. Lin and W.M. Wonham, [10]] There exists a nonblocking super-
visory controller with partial observations S such that Lm(S/G) = K and L(S/G) =
prefix(K) if and only if

(i) K is controllable with respect to L(G) and Eu,
(ii) K is observable with respect to L(G) and P, and
(iii) K = prefix(K)∩Lm(G) (K is Lm(G)−closed).

Proof. (⇐)(Sufficiency) Let K ⊆ L be observable with respect to L and P, con-
trollable with respect to L(G) and Eu, and Lm(G)−closed. Define the supervisory
control for s ∈ P(L(G)),

vP : P(L(G))→ Ecp, with

vP(s) = Eu∪{e ∈ Ec : ∃s′ ∈ prefix(K) with P(s′) = P(s) and s′e ∈ prefix(K)}.

Then we show by induction that L(S/G) = prefix(K). The basic case is for strings
of length 0 : by respective definitions of prefix closure and of closed-loop systems
we have ε ∈ L(S/G) as well as ε ∈ prefix(K). The induction hypothesis is that for
all strings s such that |s| ≤ n, s ∈ L(S/G) iff s ∈ prefix(K). Let |s|= n and consider
se for e ∈ E . Both inclusions are easy to show:

“⊆”: If se ∈ L(S/G) then s ∈ L(S/G), e ∈ vP(P(s)) and se ∈ L(G). Hence s ∈
prefix(K) using the induction hypothesis. For e ∈ Eu controllability implies se ∈
prefix(K).
For e∈ Ec, by definition of vP there exists s′ ∈ prefix(K) with P(s′) = P(s) and s′e∈
prefix(K).
Since s ∈ L(G), observability of K implies that se ∈ prefix(K).
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“⊇”: If se ∈ prefix(K) then se ∈ L(G) since prefix(K)⊆ prefix(Lm(G)⊆ L(G).
If e ∈ Eu, then e ∈ vP(P(s)) by the definition of vP (admissibility).
If e ∈ Ec, then by definition of vP, se ∈ prefix(K) implies e ∈ vP(P(s)).
Overall, s ∈ prefix(K), e ∈ vP(P(s)), and se ∈ L(G), by the induction hypothesis
s ∈ L(S/G), e ∈ vP(P(s)), and se ∈ L(G). Therefore, se ∈ L(S/G).
The rest of the proof is similar to the proof of controllability theorem from complete
observations case. Namely, Lm(G)−closure of prefix(K) will imply Lm(S/G) = K,
i.e. that S is nonblocking.

(⇒)(Necessity) Let L(S/G) = prefix(K). We prove that observability holds.
Let s,s′ ∈ prefix(K) and e ∈ Ec :
se ∈ L, s′e ∈ prefix(K), and P(s) = P(s′).
We have s,s′,s′e ∈ L(S/G). Since P(s) = P(s′) we have vP(P(s)) = vP(P(s′)).
Hence, se ∈ L(S/G) = prefix(K) as well, which proves the observability condition.
Controllability and Lm(G)−closedness can be proved in the same way as in the case
of complete observations. �

In the proof of the controllability and observability theorem, the supervisor map
defined in the sufficiency part is called the permissive control policy. It is defined for
arbitrary specification languages, not necessarily observable and controllable ones.
Note that prefix(K) ⊆ L(S/G) always holds if S/G is computed using permissive
policy. This is because events can be enabled that exit the prefix of the specification
language whenever this event is uncontrollable or there exists at least one string
with the same projection that can be extended within prefix(K), while the extension
of a given string itself might exit prefix(K). A natural counterpart of the permissive
control policy is the so-called antipermissive control policy. Here, it is required for
an event to be enabled after a given observation that all distinguishable strings from
the system (plant) yielding the given observation can be continued by this event
within prefix(K), cf. the formula below.

vA(s) = Eu∪{e ∈ Ec : ∀s′ ∈ E∗ : P(s′) = P(s) : s′e ∈ L⇒ s′e ∈ prefix(K) }.

It should be noted that in the proof of the controllability and the observability the-
orem, we could have replaced the permissive control policy by the antipermissive
one without affecting the result, i.e. there is a unique notion of observability that
is common for achievability of a given language as the closed-loop language under
both antipermissive and permissive control policies. This is a significant property
of the centralized control under partial observations as opposed to the decentralized
control studied in the following chapters.

Returning to Example 4.3 we have:
vP(a) = Euc∪{e∈ E : ∃s′ ∈ prefix(K) with P(s′) = P(s) and s′e∈ prefix(K) }=

{τ}, while
vA(a) = Euc∪{e ∈ E : ∀s′ ∈ E∗ : P(s′) = P(s) : s′e ∈ L⇒ s′e ∈ prefix(K) }= /0!

In accordance with the controllability and the observability theorem the closed-
loop languages under both policies depicted in Figs. 4.8 and 4.9 are different from
the specification which is not observable. Note that since τ ∈ vP(a), the event τ is
enabled in all states of the plant that correspond to observation a, namely in states 1
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Fig. 4.9 Generator for L(S/AG): antipermis-
sive policy

and 4. Similarly, as τ 
∈ vA(a), the event τ is disabled in all states that correspond to
observation a, namely in states 1 and 3 as is easily seen from Fig. 4.8.

4.4 Algorithm for Verification of Observability and Automata
Implementation of Supervisors

In the last section existential results have been presented, namely necessary and suf-
ficient conditions for the specification language to be achievable as the language of
the closed-loop system. It remains to investigate whether observability can effec-
tively be verified and what is the computational complexity of checking it.

The time complexity of checking observability of the specification language K
with respect to the plant language L and projection P is O(n2

KnL) [3], where nK is
the number of states of recognizer of K and nL is the number of states of recognizer
of L. In fact, originally a different algorithm for checking observability has been
known, based on the observer construction, but it suffers from exponential worst
case complexity due to the construction of the observer automaton. It is known al-
ready from [15] that a test of observability can be done in polynomial time. There
are two similar polynomial-time algorithms. One of them is based on nondetermin-
istic automaton known as simplified M-machine [12], that has been introduced for
checking co-observability in the decentralized supervisory control. The second one
is a deterministic variant of this algorithm that uses a special alphabet composed of
event triples. We present here the variant of the polynomial algorithm that has ap-
peared in [3]. The construction of a deterministic automaton below will capture all
violations of observability. It is a variant of the M-machine, where instead of hav-
ing two copies of the specification and one copy of the plant with nondeterministic
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transition function, a special alphabet of event triples is used, and the test automaton
remains deterministic.

The polynomial algorithm for checking observability is presented below.
Input: plant generator G=(Q,E, f ,qo,Qm): L(G) = L and generator for the spec-

ification H = (X ,E, fs,x0,Xm): L(H) = prefix(K).
Let Eε = E ∪{ε}. The generator OTest(H,G) for testing observability of L(H)

with respect to L(G) and P is constructed below. The notation Ac(.) refers to the
accessible part of the associated automaton.

Algorithm 4.4

1. OTest(H,G) := Ac((X×X×Q)∪{ f ail},Eε×Eε×Eε , ftest ,(x0,x0,q0),{ f ail})
2. ftest : [X×X×Q∪{ f ail}]×Eε×Eε ×Eε → [X ×X×Q∪{ f ail}]
3. (a) For a ∈ Eo:

ftest ((x1,x2,x3),(a,a,a)) = ( fs(x1,a), fs(x2,a), f (x3,a))

ftest ((x1,x2,x3),(a,ε,a)) = f ail if Condition C holds.

An auxiliary condition C is used. It is defined as follows.
C: (a ∈ Ec) and fs(x1,a)! and (not fs(x2,a)!) and f (x3,a)!. (b) For a ∈ Euo:

ftest ((x1,x2,x3),(a,ε,ε)) = ( fs(x1,a),x2,x3)

ftest ((x1,x2,x3),(ε,a,a)) = (x1, fs(x2,a), f (x3,a))

ftest ((x1,x2,x3),(a,ε,a)) = f ail if Condition C holds.

The idea of this algorithm is that the test automaton captures all violations of
observability using marked state ” fail”: s,s′ ∈ prefix(K) : P(s) = P(s′) and sa ∈
prefix(K)∩L while s′a 
∈ prefix(K).

Note that (x1,x2,x3) ∈ X × X × Q is reachable by a string (s1,s2,s3) iff
fs(x0,s1) = x1, fs(x0,s2) = x2, f (q0,s3) = x3, si ∈ prefix(K), i = 1,2,3, P(s1) =
P(s2), and s2 = s3.

The theorem below states that the specification is not observable if there exists a
string leading to the only marked state fail and otherwise it is observable.

Theorem 4.4. (Polynomial test for observability) K = L(H) is observable w.r.t. L =
L(G) and P if and only if Lm(OTest(H,G)) = /0.

Proof. Let (s1,s2,s2) be any triple of strings such that ftest ((x0,x0,q0), (s1,s2,s2))=
(x1,x2,x3).

If ftest ((x1,x2,x3), (a,ε,a)) = f ail then (s2 ∈ prefix(K), a∈ Ec: s2a∈ prefix(K),
s2a ∈ L, P(s1) = P(s2)) and (s1a 
∈ prefix(K)!) witnesses violation of observability.

Conversely, any s1,s2 ∈ prefix(K),a ∈ Ec : s2a ∈ prefix(K), s2a ∈ L, P(s1) =
P(s2) and (s1a 
∈ prefix(K)!) correspond to having state

(x1,x2,x3) = ftest ((x0,x0,q0),(s1,s2,s2)) with fs(x1,a)! , not fs(x2,a)!,

and f (x3,a)!. Hence, state fail is reachable. �
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Yet another related problem is how to efficiently implement the supervisory con-
trol vP with partial observations using automata. It would be interesting to read the
control actions directly from automata representations as in the case of determinis-
tic systems with complete observations, where the supervisor can be viewed as the
generator of the specification or of its supremal controllable sublanguage and con-
trol actions v(s) are given by the active event set of the supervisor automaton after
the string s has been read.

Unlike the complete observations case it is not possible to read the control
actions directly from automata representations (generators) of the plant and of
the specification languages. In addition, the observer automaton of the specifica-
tion is needed. Effective computation of a supervisor with partial observations re-
quires the three generators for the plant, the specification and the observer of the
specification. Formally, let H = (X ,E, fs,x0) be a generator of K and Obs(H) =
(Xobs,Eo, fobs,UnobsReach(xo)) be its observer. Then for w ∈ E∗o : Obs(H) is in the
state fobs(UnobsReach(xo),w)⊆ X meaning that after observing w the specification
automaton H is in one of the states from this set.

Put vP(w) = ∪x∈ fobs(UnobsReach(xo),w)AH(x), where AH(x) is the active event set at
state x of H, i.e. AH(x) = {a ∈ E : f (x,a)!}.

Note that only feasible uncontrollable events are enabled, namely those occurring
in the plant generator G. We see that the situation is more complicated than in the
case of complete observations, where the product automaton of the specification and
the plant automata serve as a suitable supervisor.

Once the supervisor S under partial observation is given, the corresponding su-
pervisory control vP : P(L(G))→ Ecp is constructed as above using its observer and
union of active event sets of all states S that form a given observer state.

4.5 General Case of Unobservable Specifications

In the case, where the specification language is either not controllable or not ob-
servable, a controllable and observable sublanguage of the specification has to be
found. In the previous chapter it has been established that the supremal controllable
sublanguage of a given language as the union of controllable sublanguages always
exists.

Unfortunately, observability is not preserved by language unions, unlike control-
lability. In order to see this, it suffices to consider the plant language L= {ε,τ,a,τa}
with Eo = {a}. Then both K1 = {ε,τ} and K2 = {ε,a} are observable with respect
to L and P : E∗ → E∗o , but K1∪K2 is not observable with respect to L and P.

Consequently, the supremal observable sublanguage does not always exist.
If specification K fails to satisfy controllability, observability, and/or Lm(G)-

closedness, a search for a sublanguage satisfying these conditions should be per-
formed [16]. There are only maximal observable sublanguages, which are not
unique in general, cf. [5] or [16]. Therefore, a stronger property, called normality,
has been introduced.
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Definition 4.7. K ⊆ E∗ is said to be normal with respect to L = prefix(L) and P if
prefix(K) = P−1[P(prefix(K))]∩L.

According to the definition, normality (as well as observability) of a language is a
property of its prefix closure. However, the original definition of normality that can
be found in the literature does not use the prefix-closure.

Normality is conceptually simpler than observability, because it requires that
two indistinguishable strings are compatible with respect to the membership in
the prefix-closed specification and plant languages. Namely, if s,s′ ∈ L are such
that P(s) = P(s′) and s ∈ prefix(K) then s′ ∈ prefix(K) as well. Since the inclusion
prefix(K) ⊆ P−1[P(prefix(K))]∩L is always satisfied for prefix(K) ⊆ L, the inclu-
sion P−1[P(prefix(K))]∩L⊆ prefix(K), characterized by the string condition above,
is in fact equivalent to normality.

It is easy to show that normality implies observability and moreover it coincides
with observability in the case when all controllable events are observable, see [3]
and [10].

Proposition 4.1. Language normality implies observability. Conversely, if Ec ⊆ Eo,
K is observable with respect to L and P, and controllable with respect to L and Eu,
then K is normal with respect to L and P.

Proof. Let K be normal with respect to L and P and let s,s′ ∈ prefix(K) be such
that P(s) = P(s′), e ∈ Ec, se ∈ L, and s′e ∈ prefix(K). Then P(se) = P(s′e), hence
se ∈ P−1[P(prefix(K))]∩L = prefix(K) as well by normality. Now, let Ec ⊆ Eo and
K be observable with respect to L and P. We show by contradiction that K must
be normal with respect to L and P. If there are s,s′ ∈ L with P(s) = P(s′) such that
s ∈ prefix(K) and s′ 
∈ prefix(K), then let t ′ be the longest prefix of s′ that is still
in prefix(K). Clearly, such a t ′ exists, because ε ∈ prefix(K). Hence, s′ = t ′u′ with
u′ = u′1 . . .u

′
k and t ′u′1 
∈ prefix(K). Now there are two possibilities: either u′1 ∈ Eo or

u′1 ∈ Euo. If u′1 ∈ Euo then from Ec ⊆ Eo we have u′1 ∈ Eu, hence by controllability of
K it cannot happen that t ′u′1 
∈ prefix(K). Now, let u′1 ∈ Eo. Since P(s) = P(s′) and t ′

is the prefix of s′, there must exist the longest prefix t of s such that P(t) = P(t ′). We
get t, t ′ ∈ prefix(K), P(t) = P(t ′), u′1 ∈ Eo: tu′1 ∈ prefix(K) (since s ∈ prefix(K)) and
t ′u′1 
∈ prefix(K) and t ′u′1 ∈ L (because L is prefix-closed). Hence, by observability
of K we conclude that t ′u′1 ∈ prefix(K), which is a contradiction. �

Note that some authors define observability, where the condition e ∈ Ec is not re-
quired, i.e. e ∈ E . In this case it is not necessary to assume that K is controllable
with respect to L and Eu in order to get the second implication in Proposition 4.1.

Another important property is that language normality is preserved by language
unions as is shown below.

Proposition 4.2. Language normality is preserved under arbitrary unions.

Proof. Let Ki, i ∈ I be normal with respect to L and P. Then

P−1[P(∪i∈Iprefix(Ki))]∩L = P−1(∪i∈IP(prefix(Ki)))∩L =
∪i∈I [P−1P(prefix(Ki))∩L] = ∪i∈Iprefix(Ki).
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We have used above that both the projection and the inverse projection distribute
with language unions, cf. Lemma 4.1 and the last equation holds because Ki, i ∈ I
are all normal with respect to L and P. �

An important consequence of Proposition 4.2 is that the supremal normal sublan-
guage of a given specification language always exists. It is simply given by the union
of all normal sublanguages. Unfortunately, supremal normal sublanguages are dif-
ficult to compute, especially in the distributed framework. Only exponential time
algorithms are known for their computation. One such algorithm will be presented
in Section 4.6.

Problem 4.1. Basic Supervisory Control and Observation (BSCO)
Given generator G with partial observations, corresponding natural projection

P : E∗ → E∗o , and safety specification language K ⊆ L(G), find a P-supervisor S
such that:

(1) L(S/G)⊆ prefix(K),
(2) L(S/G) is the largest it can be, i.e. for any other P-supervisor S′ such that

L(S′/G)⊆ prefix(K) we have L(S′/G)⊆ L(S/G). �
Unfortunately, there is no single supremal solution for this problem, because su-
pervisors (and the associated closed-loop systems) are given by observable sublan-
guages of K and it is well known that there does not always exist the supremal
observable sublanguage of K. This is because observability is not preserved by lan-
guage unions (unlike controllability and normality). A natural way to solve (BSCO)
is to compute a maximal observable and controllable sublanguage of K with respect
to L, Eu, and P. A notion of maximal element of an ordered set is different from the
supremal element. Maximality means that there does not exist an observable and
controllable sublanguage that is strictly larger than M. There might be several such
maximal sublanguages [16].

Similarly as in the case of complete observations there is a dual problem, where
instead of safety (maximal behavior), a minimal behavior is required.

Problem 4.2. Dual Supervisory Control and Observation (DuSCOP)
Given G with partial observations, corresponding natural projection P : E∗ → E∗o ,

and a minimal required specification M ⊆ L(G), find a P-supervisor S such that:

(1) L(S/G)⊇M,
(2) L(S/G) is the smallest it can be, i.e. for any other P-supervisor S′ such that

L(S′/G)⊇M we have L(S/G)⊆ L(S′/G). �
It has been shown in [10] that, similar to controllability, observability of prefix-
closed languages is also closed with respect to intersections. Therefore, the infimal
observable superlanguage ([11]) as the intersection of all observable (prefix-closed)
superlanguages always exist!

The unique solution to DuSCOP is then to take S such that L(S) = inf{N ⊇M :
N is observable & controllable w.r.t. L(G),P, and Eu}.

Interestingly, the above language corresponds to the permissive control policy,
which naturally yields this language as L(S/G), cf. [9].
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4.6 Algorithms

In this section a construction procedure for supremal normal and supremal normal
and controllable sublanguages is presented. The notation supN(K,L,P) is adopted
to denote the supremal normal sublanguage of a specification language K with re-
spect to the plant language L and natural projection P. Similarly, supCN(K,L,P)
denotes the supremal normal and controllable sublanguage and supC(K,L) de-
notes the supremal controllable sublanguage of K with respect to L and a given
set of uncontrollable events that is for simplicity not specified. In the case of prefix-
closed languages, closed formulas are known for computation of supN(K,L,P) and
supCN(K,L,P). Namely, it has been shown in [2] that

supN(K,L,P) = prefix(K)−P−1(P(L− prefix(K)))E∗ and

supCN(K,L,P) = L∩P−1(supC(P(supN(K,L,P)),P(L))) .

Since all known algorithms for computing supCN(K,L,P,Eu) are of exponential
worst-case complexity, we present the original algorithm of [4] based on a particular
representation of the specification language K by a state-partition automaton and a
subautomaton of the plant automaton at the same time.

The algorithm below relies on the notion of subautomaton of an automaton
(generator) that is recalled below.

Definition 4.8. Let G = (Q,E, f ,qo,Qm) be a generator. G′ = (Q′,E, f ′,q′o,Q
′
m) is

called a subautomaton of G if the following hold true:

(1) q0 = q′0,
(2) Q′ ⊆ Q,
(3) ∀q ∈Q′ and e ∈ E: if f ′(q,e)! then f ′(q,e) = f (q,e).

In words, subautomaton G′ has the same initial state as G, its state set Q′ is a subset
(possibly a proper subset) of Q. Finally, the transition function f ′ coincides with f
on Q′, i.e. f ′ = f|Q′ . There exist other definitions of subautomata in the literature
that are not all equivalent, in particular for nondeterministic automata, which are
however not the subject of this chapter.

The very first algorithm for computation of supN(K,L,P) appeared in [4].

Algorithm 4.5. Given languages prefix(K)⊆ L = L(G) assume that H representing
K is a state-partition automaton (cf. Schutzenberger covering) and subautomaton of
G. Below are the steps of the algorithm.

(1) Compute the observer automata Obs(G) and Obs(H)
(2) If Obs(H) is a subautomaton of Obs(G) then K is normal, i.e.

supN(K,L,P) = K
(3) Otherwise construct Hobs

s , the largest subautomaton of Obs(H) that is also a
subautomaton of Obs(G).

(4) Compute the product Z = G×P−1(Hobs
s )

Then L(Z) = supN(K,L,P).
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Remark 4.6. The algorithm deserves a little explanation. It relies on the notion of
subautomaton and the construction of the largest subautomaton of an automaton,
which can be done in a standard way by eliminating states and edges of Obs(H) so
that Hobs

s is the largest subautomaton of G that is also subautomaton of Obs(H). The
notion of subautomaton is subtle, especially in the particular context of observer au-
tomata with powerset state sets that it is used. Two states of observer automata are in
fact equal if and only if they are composed of the same states of G. Otherwise they
are different and edges and states must be removed such that the largest subautoma-
ton in the step (3) is obtained. Finally, particular representation of the specification
automaton (that must be a state-partition automaton) is needed in order to ensure
the correctness of the algorithm. �

Complexity of the computation of supN(K,L,P) and supCN(K,L,Eu,P) is expo-
nential in the worst case (unlike the algorithms for checking observability and nor-
mality). This is because all known algorithms require to construct the observer of H
representing specification K and observer of G representing the plant language and
observers cannot be computed in polynomial time in general. These algorithms are
polynomial in special cases : e.g. if P satisfies the observer property (Definition 4.3)
with respect to K and L. In this case the observer automata Obs(H) and Obs(G) are
even guaranteed to be smaller or equal in size of the state set than H and G.

There follows an example of computation of the supremal normal sublanguage.

Example 4.7. Let us consider the following plant and specification languages.
Since the specification automaton of Fig. 4.11 is not a state-partition automaton,

another representation of the specification is needed and illustrated in Fig. 4.12.
Figure 4.13 then illustrates the resulting supremal normal sublanguage. �

Now an algorithm is recalled for computation of supremal normal and controllable
sublanguages based on iterative computations of supremal normal and supremal
controllable sublanguages.

Algorithmic computation of the supremal normal and controllable sublanguages
has been presented in [4].

Algorithm 4.8. Given K ⊆ L = L(G) assume that H representing K is a state-
partition automaton and subautomaton of G.

(1) Compute Obs(G) and Obs(H) and set i = 0 and let Gi
cn = H,

(2) Compute Gc : L(Gc) = supC(L(H),L(G),Eu) using standard algorithm pre-
sented in the previous chapter,

(3) If Gc is not state-partition automaton then Gi
c := Gi

c‖Obs(Gi
c) and compute

the automaton for supN(L(Gc),L(G),P) = L(Gi
c) using Algorithm 4.5,

(4) If Gi
cn = Gi−1

cn then Gi
cn = supCN(L(Gc),L(G),Eu,P)

Else put i := i+ 1 and Go to step (2).

The above algorithm relies on alternating computations of supremal controllable
sublanguage and supremal normal sublanguage. It has been shown that iterations are
not needed and a single-step algorithm based on direct coinduction-like definition
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Fig. 4.10 L(G) over E = {a,τ} with Euo = {τ}
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Fig. 4.12 Generator for the specification
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Fig. 4.13 supN(K,L,P)

of supCN(K,L,Eu,P) has been proposed in [9]. The advantage of the coalgebraic
framework is that there is a uniform treatment of automata and their languages in the
sense that languages are considered as automata with special transition functions,
which makes it easier to translate language properties into automata algorithms.
Another algorithm that avoids costly iterations on the supremal controllable sublan-
guage and supremal normal sublanguage operators has been presented in [8]. Note
however that even without iterations between computing supC and supN the time
complexity remains exponential (in the worst case), because the algorithm subsumes
computation of supN and no polynomial algorithm is known for that computation.
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4.7 Extensions

There have been many extensions and/or alternative approaches to supervisory con-
trol. The state-based framework has been developed as opposed to the language
(behavioral) framework. Since both frameworks are equivalent and there exist well-
known bidirectional transformations between them, state-based framework is not
presented in this chapter. We limit ourselves to explain that instead of language
specifications predicates on states are used and supervisors are state-based, i.e. state-
feedbacks. There exist notions of controllable, observable, and normal predicates
similar to corresponding language properties.

State-based framework is however useful for nondeterministic system and/or
specification, where language equality is too weak and therefore bisimilarity or
weak bisimilarity are required of supervised closed-loop systems with specification
automata instead of language equality.

State-based observability and controllability [14] are then sufficient conditions
for existence of bisimilarity enforcing supervisors with partial observations. Essen-
tially these conditions require that the property of controllability or observability
must be verified in ”every branch”, i.e. in every state that is reached by a given
string.

Other extensions of supervisory control theory have been developed to infinite
state systems such as timed automata, where general control synthesis problem un-
der partial observations is undecidable [1], or to push-down automata [7], where
decidable cases have been identified.

4.8 Further Reading

Below are listed the main books on supervisory control with partial observations,
where more information can be found.

• W.M. Wonham, Lecture notes on control of discrete-event systems, 2011 edition,
U. Toronto, Toronto, Canada. See Chapter 6 on supervisory control with partial
observations.

• C. Cassandras, S. Lafortune, Discrete-event systems, Springer, New York, 2008.
See Chapters 2 and 3 on supervisory control.
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Chapter 5
Diagnosis and Automata

Eric Fabre

5.1 Diagnosis vs. State Estimation

Automaton. Our starting point is a nondeterministic automaton A = (S,Σ , I,δ ),
with S the finite state set, I⊆ S possible initial states, action alphabet Σ and transition
function δ : S×Σ → 2S. The latter extends naturally into δ : 2S×Σ∗ → 2S by union
on the first variable and by iteration on the second one. As usual, the action alphabet
is partitioned into Σ = Σo�Σu, observable and unobservable (or silent, or invisible)
labels, respectively The transition set of A is denoted as T = {(s,α,s′)∈ S×Σ×S :
s′ ∈ δ (s,α)}, and for a transition t = (s,α,s′), we denote s−(t) = s,s+(t) = s′, and
σ(t) = α . If |I| = 1 and ∀(s,α) ∈ S×Σ , |δ (s,α)| ≤ 1, automaton A is said to be
deterministic.

A path or trajectory π of A is a sequence of transitions π = t1 . . . tn such that
s−(t1) ∈ I and s+(ti) = s−(ti+1), for 1≤ i < n. We adopt notations s−(π) = s−(t1),
s+(π) = s+(tn), |π | = n, the length of π , σ(π) = σ(t1) . . .σ(tn) and σo(π) =
ΠΣo(σ(π)) where ΠΣo is the natural projection of Σ∗ on Σ∗o . The language of
A is L (A ) = {σ(π) : π path of A }, and its observable language is Lo(A ) =
ΠΣo(L (A )). A is Σo-live iff from every state of A , one can reach a transition
labeled by Σo.

State estimation. Assume the system A performs some hidden run π , over which
one only gets a partial knowledge by means of the observed sequence of labels
w=σo(π) produced by π . A natural question is ‘What are the possible current states
of A given that w was observed?’ So one wishes to build a function f : Σ∗o → 2S

such that f (w) = {s+(π) : π path of A ,σo(π) = w}. There exists an obvious way
of building f , recusively on the length of π : from f n : Σn

o → 2S solving the problem
for observed sequences of length n, one can derive f n+1 by the so-called ‘guided
simulation’ of A .

Eric Fabre
INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes cedex, France
e-mail: eric.fabre@inria.fr

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 85–106.
springerlink.com c© Springer-Verlag London 2013



86 E. Fabre

Alternately, one can build an observer Obs(A ) of A as a pair (O,φ), where
O = (Q,Σo,q0,δ ′) is a deterministic automaton over alphabet Σo, and φ : Q→ 2S

is a label function over its states. For any observed w ∈ Σ∗o , let q = δ ′(q0,w) be the
unique state reached by w in O , then φ satisfies φ(q) = f (w) ⊆ S. An observer can
thus be seen as a precompiled and finite version of the recursive function f . The
derivation of observers is detailed later in this chapter, which also examines some
of their properties.

Diagnosis. The problem is usually stated as follows. One first associates types to
the transitions of A . This is done simply by setting T = T1∪ ...∪TK, where each Tk

gathers transitions of ‘type k’. Sets Tk need not be disjoint, although the literature
generally makes this assumption [3, 15]: transition types are usually interpreted as
distinct failure modes, with one of them, say T1, representing the ‘safe’ (i.e. non
faulty) transitions. On wishes to build K diagnosis functions fk : Σ∗o → {y,a,n},
1≤ k ≤ K, such that

fk(w) =

⎧
⎨

⎩

y if ∀π ∈ σ−1
o (w), π 
∈ (T \Tk)

∗

n if ∀π ∈ σ−1
o (w), π ∈ (T \Tk)

∗

a otherwise
(5.1)

In other words, fk(w) answers ‘yes’ if all runs of A explaining w use a transition of
Tk, it answers ‘no’ if none of these runs uses a transition of Tk, and answers ‘ambigu-
ous’ otherwise. A diagnoser of A is now a pair (D ,ψ) where D = (Q,Σo,q0,δ ′) is
again a deterministic automaton over alphabet Σo, and ψ : {1, ...,K}×Q→{y,a,n}
is a (collection of) label function(s) over its states. For any observed w ∈ Σ∗o ,
let q = δ ′(q0,w) be the unique state reached by w in D , then ψ(k,q) = fk(w),
1 ≤ k ≤ K. A diagnoser is thus a finite and precompiled version of the K diagnosis
functions.

Relation between the two problems. Despite an apparent difference, observers
and diagnosers are similar objects. To build a diagnoser, the first step consists in
augmenting the states of A with some memory μ ⊆ {1, ...,K} to keep track of
transition types that are fired by A along its trajectory. This yields ¯A = (S̄ = S×
2{1,...,K},Σ , I×{ /0}, δ̄) where

(s′,μ ′) ∈ δ̄ ((s,μ),α) ⇔
{

s′ ∈ δ (s,α)
μ ′ = μ ∪{k : (s,α,s′) ∈ Tk}

(5.2)

In words, this ‘state augmentation trick’ does the following: as soon as A fires a
transition of Tk, the memory set μ stores index k (forever). Equivalently, the above
construction can be seen as computing the synchronous product (see Section 5.5 for
a definition) of A with K elementary memory automata1.

1 The memory automaton for Tk only has two states 0 and 1, and {1, ...,K} as label set. It is
deterministic and complete, and the only transition from 0 to 1 is labeled by k. Transitions
of A must of course be relabeled by their type before the synchronous product can be
computed, using types as labels. Details are left to the reader.
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Observe now that deriving a diagnoser for A is equivalent to computing an ob-
server for the augmented automaton ¯A . Given w ∈ Lo(A ) ⊆ Σ∗o and the unique
state q reached by w in Obs( ¯A ), the diagnosis function ψ is then given by

ψ(k,q) =

⎧
⎨

⎩

y if ∀(s,μ) ∈ q, k ∈ μ
n if ∀(s,μ) ∈ q, k 
∈ μ
a otherwise

(5.3)

Given this similarity, the chapter focuses on the derivation of observers and will
only mention diagnosers to comment specific aspects.

5.2 Observer and Diagnoser

Given Σ = Σo�Σu, an observer of A is obtained by first performing an ε-reduction,
and then determinizing the result: Obs(A ) = Det(Red(A )). The label function φ
is trivial (the identity), and thus can be omitted.

ε-reduction. The ε-reduction A ′ = Red(A ) = (S,Σo, I′,δ ′) amounts to bypassing
all transitions of A labeled by Σu (or equivalently the generic silent label ε). It can
be performed either to the left of visible transitions, or to their right. Without loss of
generality, in this chapter we focus on the reduction to the right. The ε-reduction
to the right (see Fig. 5.1) is defined by δ ′(s,α) = δ (s,αΣ∗u ) = ∪w∈αΣ∗u δ (s,w).
For the initial states, one has I′ = δ (I,Σ∗u ) = ∪s∈I δ (s,Σ∗u ). Observe that the re-
sulting automaton A ′ has the same states as A , operates on the reduced alphabet
Σo, but is generally nondeterministic. By construction, one has L (A ′) = Lo(A ).
By contrast, the ε-reduction to the left would take I′ = I and δ ′(s,α) = δ (s,Σ∗u α) =
∪w∈Σ∗u α δ (s,w), still preserving L (A ′) = Lo(A ).

αs α
α

s α

Fig. 5.1 Epsilon-reduction to the right. Dashed arrows represent silent (epsilon) transitions

Determinization. The determinization A ′′ = Det(A ′) = (Q,Σo,q0,δ ′′) of A ′ is
obtained by the standard subset construction. One has Q = 2S, q0 = I′, and for q∈Q
and α ∈ Σo, the unique state q′ = δ ′′(q,α) in A ′′ is defined as q′ = δ ′(q,α) �
∪s∈q δ ′(s,α). Not all states in 2S are reachable, so one often directly takes for Q
the reachable part of 2S, starting from q0 = I′ and exploring recursively the δ ′(q,α)
for all α ∈ Σo until no new q is found (Fig. 5.2). Determinization obviously has
an exponential space complexity, in the worst case. Automaton A ′′ directly yields
a state estimator, or an observer of A , by taking the identity for φ . By abuse of
notation, one thus say that A ′′ is an observer of A , rather than (A ′′,φ).



88 E. Fabre

α
α
α

α

q q q’

Fig. 5.2 Determinization. The dashed arrow represents a transition not labeled by α in A ′

Remarks

1. As mentioned in the previous section, building a diagnoser boils down to build-
ing an observer. Without loss of generality, for the diagnosis problem one can di-
rectly assume that states of A are partitioned into S = S1� ...�SL with L = 2K ,
corresponding to the 2K possible values of the memory in ¯A . The diagnosis
then reduces to checking whether all final states compatible with observation
w ∈Lo(A ) lie into the union of some selected Sl .

2. If one is only interested in diagnosing independently the occurrence of each Tk,
it is simpler to build K diagnosers, one for each Tk, by augmenting A with a
simpler binary memory, or equivalently by assuming a partition S = Ss�S f into
safe and faulty states. In terms of complexity, this clearly saves an exponential in
K. The diagnoser derived in the previous section is much more powerful, since
it can also test for the simultaneous presence of several transition types in each
trajectory explaining an observed word w.

3. Surprisingly, the ε-reduction to the right is frequent in the literature about state
estimation (see the notion of ‘unobservable reach’), but the ε-reduction to the left
is preferred to derive a diagnoser. In other words, it is admitted that the super-
vised system changes its state silently, but not that it produce a fault silently. For
diagnosis, one is generally interested in the occurrence or not of some transition
type before the last observation of w (and not necessarily in the silent moves that
follow w), which can be considered as an optimistic assumption. This choice is
not bothering for Σo-live systems, since it only delays by one observation the
detection of a fault occurrence, and in particular it does not change the notions
of diagnosability. However, it makes a difference for non Σo-live systems, in the
case where some states necessarily lead to a failure after which no more obser-
vation is collected (system crash).

4. Some contributions introduced so-called ‘observation filters’ [16, 17]: rather than
a partition Σ = Σo � Σu, one gives a filter λ : S× Σ × S→ 2Λ∪{ε}, and when
t = (s,α,s′) is fired, one label β ∈ λ (t) ⊆ Λ ∪{ε} is observed (possibly none
if β = ε). This does not change the expressive power of the model, that can
be recoded in the classical setting by replacing (s,α,s′) by (s,β ,s′) for every
β ∈ λ (t). The only difficulty introduced by such a recoding is that two versions
of (s,β ,s′) may co-exist, one faulty and the other not. But this is captured by the
possibility that a transition belong to several Tk.

5. An extended notion of diagnoser was proposed in [9]. It tests the occurrence
(or not) of more complex properties on the partially observed trajectory of A ,
such as the crossing of specific states interleaved with the crossing of specific
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transitions. As long as these properties are regular and can thus be described by
an automaton, the ideas of this chapter adapt naturally: one simply has to replace
the simple state augmentation described previously by the product of A with the
automaton describing the property to check.

5.3 Probabilistic Observer

Probabilistic automata [14] form a subclass of weighted automata. The idea is that
the transitions rooted at any state are associated to firing probabilities. The state
estimation problem now evolves into computing the probability to stop in state s∈ S
given that w∈Σ∗o was observed (for diagnosis one wishes the conditional probability
that a transition in Tk was fired). Again, one can design a recursive way to compute
this conditional distribution over S; it takes the form of a filtering equation ‘à la
Kalman.’ This section rather examines the precompiled version of this filter, that
has great similarities with the non stochastic case.

Probabilistic automaton. We define it as A = (S,Σ ,P0,P) where P0 : S→ [0,1] is
an initial probability on states, with initial states I = supp(P0)

2, and P : S×Σ×S→
[0,1] a transition probability, i.e. ∀s ∈ S, P(s, ·, ·) is a probability distribution over
next labels and next states, given the current state s. Transitions are given by
T = supp(P), and the transition function by δ (s,α) = supp(P(s,α, ·)). This def-
inition assumes that A is live, for simplicity3. A is said to be deterministic iff
its support supp(A ) = (S,Σ , I,δ ) is a deterministic (non stochastic) automaton.
The probability of a path π = t1...tn is equal to the product of the probabilities
of its events P(π) = P(t1)...P(tn). And the language of A is defined as the for-
mal power series L (A ) = ∑w∈Σ∗L (A ,w) · w where coefficients are given by
L (A ,w) = ∑π ,σ(π)=wP0(s−(π))P(π).

Observable (or stopped) language. To define the observable language of A as
a weighted language, one must choose an appropriate notion of stopping time for
A , in order to define where runs should stop when they perform silent transitions.
We adopt the following : A stops immediately before the production of the next
observation, assuming A is Σo-live i.e. can reach an observable transition from
any reachable state. Equivalently, A stops when it has been decided that the next
step would produce an observation, but it is not yet decided which one4. This def-
inition allows one to consume all silent steps after each observation. It contrasts
with the usual choice of stopping immediately after an observable transition, which
is slightly easier to handle and thus has often been chosen. It corresponds to the

2 supp = support of; this operation selects the elements with non zero probability
3 One can easily extend this setting to include stopping probabilities at each state, just like

standard weighted automata include stopping weights.
4 For systems that have final states and stopping probabilities, one can choose to assimilate

(or not) the choice to terminate in some state to the production of an observation, for the
definition of the stopping time.
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‘optimistic’ assumption that the system does not evolve silently by itself. Or at least
that this evolution is ignored until there is evidence of it. Technically, the only im-
pact is on the ε-reduction below, performed to the right (our case) instead of to the
left (as in [16] for example).

We define the stopped language of A as follows: for a path π we take P
s(π) =

P0(s−(π))P(π)P(s+(π),Σo,S), where P(s+(π),Σo,S) is the probability of firing
an observable transition from state s+(π). Observe that a path cannot stop at a
state which has no observable outgoing transition, i.e. such a path has a vanish-
ing probability. Therefore some states in A are ‘unstable.’ Then L s(A ,w) =
∑π ,σ(π)=wP

s(π) and the stopped language of A is L s(A ) = ∑w∈Σ∗L
s(A ,w) ·w.

The observable language of A is given by Lo(A ) = ∑w∈Σ∗o Lo(A ,w) ·w where

Lo(A ,w) = ∑
v∈Σ∗,ΠΣo (v)=w

L s(A ,v). (5.4)

Notice that the support of the stopped language may be strictly smaller than the sup-
port of the ordinary language, since some states of A may forbid stopping. How-
ever, the observed stopped and non-stopped languages of A have identical supports.

Probabilistic observer. Given partitions Σ = Σo�Σu and S = S1� ...�SL, the ob-
jective is to derive a deterministic probabilistic automaton O = (Q,Σo,P

O
0 ,P

O), and
a labeling φ : Q→P(L) of its states, where P(L) is the set of probability distri-
butions over {1, ...,L}. Given w ∈ Σ∗o produced by A , and q ∈ Q the unique state
reached by w in O , we want (φ(q))(l) = P(A stops in Sl | w was observed) for
l ∈ {1, ...,L}. Every such probabilistic observer can trivially be derived from a uni-
versal one assuming the finest partition of S, i.e. we actually aim at building an
observer that computes P(A stops in s | w was observed) for every s ∈ S.

In fact, the probabilistic observer derived below exhibits more properties than
requested above: it guarantees that L (O) = Lo(A ), i.e. for any observed word
w ∈ Σ∗o , it can also compute the probability of this observed word in A . If one is
simply interested in the conditional distribution over S given w, the labeling function
φ is sufficient and O can be reduced to its support.

ε-reduction. We look for a probabilistic automaton A ′ = Red(A ) = (S,Σo,P
′
0,P
′)

such that L (A ′) =Lo(A ′)=Lo(A ). Structurally, the automaton will be the same
as in the non probabilistic case, and obtained by ε-reduction to the right. The diffi-
culty lies in the computation of transition probabilities, since an unbounded number
of silent steps may be performed until A decides to stop (and commits to fire a
visible transition at the next step). This requires to integrate probabilities over a
possibly infinite set of silent paths. The difficulty can addressed by different meth-
ods, of equivalent complexities. We give two of them below; see [8] for a graphical
one.

The transition probability of automaton A ′ can be expressed as P
′(s,α,s′) =

∑s′′∈SP(s,α,s′′)Pε(s′′,s′)P(s′,Σo,S), where
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P
ε(s,s′) = P(s,Σ∗u ,s

′) = ∑
π, σ(π) ∈ Σ ∗u

s−(π) = s, s+(π) = s′

P(π) (5.5)

and similarly for the initial probability: P
′
0(s
′) = ∑s′′∈SP0(s′′)Pε (s′′,s′)P(s′,Σo,S).

Notice that (5.5) does not represent the probability to reach s′ from s after an ar-
bitrary number of silent steps, because s′ can be met several times along such
paths. One must take into account a stopping or exit probability at s′ to turn this
quantity into a probability, as it is done in the definition of P

′(s,α,s′): the term
P

ε(s′′,s′)P(s′,Σo,S) does correspond to the probability of going from s′′ to s′

through an arbitrary number of silent steps and to exit at s′ towards a visible la-
bel. Similarly, Pε(s,s) ≥ 1 yields the inverse of the probability to leave state s for a
visible label (after performing an arbitrary number of silent loops around s).

The pseudo transition matrix P
ε can be obtained through a Floyd-Warshall pro-

cedure. It is usually applied to compute minimum distances between all pairs of
nodes in a graph. By replacing the (min,+) setting by the (+,∗) setting, one ob-
tains a simple way to integrate probabilities over all paths relating two nodes [4, 13].
Specifically, denoting S = {s1, ...,sN}, one defines Pε

n(s,s
′) as in (5.5), excepted that

the sum is limited to paths that go through states in {s1, ...,sn}. The desired P
ε cor-

responds to P
ε
N , and P

ε
0(s,s

′) = P(s,Σu,s′): probability of a direct silent step from s
to s′. The Pε

n satisfy the following recursion: for s 
= sn+1 
= s′

P
ε
n+1(s,s

′) = P
ε
n(s,sn+1)P

ε
n(sn+1,sn+1)

∗
P

ε
n(sn+1,s

′)+P
ε
n(s,s

′) (5.6)

P
ε
n(sn+1,sn+1)

∗ = ∑
k≥0

P
ε
n(sn+1,sn+1)

k =
1

1−Pε
n(sn+1,sn+1)

(5.7)

where (5.7) integrates over paths that make an arbitrary number of silent
loops around sn+1. For completeness, one must add to (5.6) three follow-
ing specific cases: P

ε
n+1(sn+1,sn+1) = P

ε
n(sn+1,sn+1)

∗, then P
ε
n+1(s,sn+1) =

P
ε
n(s,sn+1)P

ε
n(sn+1,sn+1)

∗, and finally P
ε
n+1(sn+1,s′) = P

ε
n(sn+1,sn+1)

∗
P

ε
n(sn+1,s′).

The complexity of the ε-reduction by this method is O(|S|3).
Instead of the Floyd-Warshall procedure, one may also consider a fix-point re-

lation satisfied by matrix P
ε . Let P̄ε = P

ε − I; this corresponds to Definition (5.5)
where Σ∗u is replaced by Σ+

u , i.e. paths must cross at least one unobservable transi-
tion. One then has

∀s,s′ ∈ S, P̄
ε(s,s′) = ∑

s′′∈S

P̄
ε(s,s′′)P(s′′,Σu,s

′)+P(s,Σu,s
′) (5.8)

Still denoting by Pε
0 the matrix with entriesP(s,Σu,s′), (5.8) means P̄ε = P̄

ε ·Pε
0+P

ε
0

(notice that P̄ε =P
ε
0 ·P̄ε +P

ε
0 holds as well). This entails Pε = I+P

ε ·Pε
0 = I+P

ε
0 ·Pε

whence Pε = (I−P
ε
0)
−1 (assuming invertibility holds). Deriving P

ε by this methods
reveals again a generic complexity in O(|S|3), due to the matrix inversion.

Determinization. To determinize a probabilistic automaton A ′ = (S,Σo,P
′
0,P
′),

one can rely on the standard determinization procedure of weighted automata, that
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adapts the recursive subset construction given in the previous section [2, 10, 11].
One has A ′′ = Det(A ′) = (Q,Σo,P

′′
0 ,P
′′) where Q ⊂ 2S×[0,1] and can be infinite.

P
′′
0 assigns probability 1 to the unique state q0 = {(s,P′0(s)) : s ∈ supp(P′0)}. Suc-

cessive states are obtained recursively as follows. Let q = {(s1, p1), ...,(sM , pM)} ∈
Q and α ∈ Σo, one has δ ′′(q,α) = q′ = {(s′1, p′1), ...,(s

′
N , p′N)} iff {s′1, ...,s′N} =

δ ′({s1, ...,sM},α) 
= /0, and for 1≤ n≤ N

p′′n = ∑
1≤m≤M

pm ·P′(sm,α,s′n) (5.9)

p′n = p′′n/C where C = ∑
1≤k≤N

p′′k = P
′′(q,α,q′) (5.10)

Proposition 5.1. Let w ∈ Σ∗o and δ ′′(q0,w) = q = {(s1, p1), ...,(sM , pM)} in A ′′,
then

pm = P(A ′ is in state sm|w was observed) (5.11)

Proof. This is obviously true at qo for w = ε . Assume it is true at q = δ ′′(qo,w) and
let q′ = δ ′′(q,α). Eq. (5.9) is a standard filtering equation for A ′ (based on Bayes
rule and the Markov property), so p′′n is the probability that A ′ produces α ∈ Σo and
reaches state s′n ∈ S given that w was observed. Consequently, C is the probability
to fire α given w was observed, and the (p′n)1≤n≤N give the conditional probability
of the current state of A ′ given the observed sequence wα . �

Corollary 5.1. The probabilistic automaton Det(Red(A )) built above yields a uni-
versal probabilistic observer. For state q = {(s1, p1), ...,(sM , pM)}, the index func-
tion φ(q) ∈P(S) is defined by [φ(q)](sm) = pm, for 1≤m≤M, and by [φ(q)](s) =
0 otherwise.

Proof. If A ′ = Red(A ), pm is the probability that A stops in sm given that w was
observed. To make A ′′ an observer for partition S = S1 � ...� SL, one simply has
to take the distribution defined by the [φ(q)](Sl), for 1 ≤ l ≤ L. Notice also that
L (A ′′) = L (A ′) = Lo(A ). �
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Fig. 5.3 A probabilistic automaton (left) and its determinized version (right). Transition
probabilities are only mentioned when they differ from 1
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Example 5.1. Figure 5.3 illustrates the determinization procedure. This simple ex-
ample seems to suggest that the conditional probabilities appear as extra information
attached to a standard (i.e. non-probabilistic) observer. This is not the case, and the
determinization procedure may very well not terminate, as revealed by the counter-
example in Fig. 5.4. While for weighted automata taking values in the (R+,min,+)
semiring there exist sufficient conditions to guarantee termination (see the twin
property in [12]), to our knowledge it is still not clear what these conditions could
be for probabilistic automata. �
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Fig. 5.4 Determinization may not terminate

Probabilistic diagnoser. Using the same technique as in the previous section, a
probabilistic diagnoser for A is nothing else than a probabilistic observer for an
augmented automaton ¯A , that keeps track of which transition types have been
crossed along the run of A :

P̄((s,μ),α,(s′,μ ′)) = P(s,α,s′) · Iμ ′=μ∪{k:(s,α ,s′)∈Tk} (5.12)

where I is the indicator function. From the conditional distribution on states of ¯A
given some observation w ∈ Σ∗o , one then easily derives the conditional distribution
on memory values μ , and further on transition classes Tk that were crossed by A .
Again, if one is only interested in this probability distribution, the observer can
be turned into an ordinary (non stochastic) deterministic automaton, by taking the
support of O .

Remark. The ‘observation filters,’ that randomly modify the labels of Σ produced
by transitions of A , can be processed in a similar manner as in Remark 4 of Sec-
tion 5.2. The slight difference here is that a given observed label β ∈ Λ ∪{ε} may
correspond to several underlying transition types Tk, that have different probabili-
ties. This case is captured simply as follows: one replaces the deterministic mem-
ory represented by the 1I term in (5.12) by a ‘randomized’ memory. Specifically,
given T = T1∪ ...∪TK and for μ ′ = μ �μ”, (5.12) becomes P̄((s,μ),β ,(s′,μ ′)) =
P(s,β ,s′) ·P(∧k∈μ” Tk∧

∧
k 
∈μ ′ T̄k |(s,β ,s′)). The first term is the probability to move

from s to s′ and produce label β , the second one is the (conditional) probability that
this move crosses a transition lying in all Tk for k ∈ μ”, and in none of the Tk for
k 
∈ μ ′.
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5.4 Diagnosability

For simplicity, and without loss of generality, this section assumes an automaton A
with a partition S = Ss � S f of its states into safe and faulty ones (recall the state
augmentation trick), and such that no safe state is reachable from a faulty one. It
is also assumed that A is Σo-live. For w ∈ Σ∗o , let us consider again the diagnosis
function f (w) for A defined as

f (w) =

⎧
⎨

⎩

y if ∀π ∈ σ−1
o (w), s+(π) ∈ S f

n if ∀π ∈ σ−1
o (w), s+(π) ∈ Ss

a otherwise
(5.13)

Definition 5.1. A is diagnosable iff there exists some integer N such that

∀π : s+(π) ∈ S f , ∀π ′ : s−(π ′) = s+(π), [ |π ′|Σo > N ⇒ f (σo(ππ ′)) = y ]

where |π ′|Σo denotes the number of visible transitions in path π ′.

In other words, as soon as a path hits a faulty state, at most N observations later the
fault will be diagnosed. Ambiguity cannot last forever.

Remarks

1. Some definitions rather take |π ′| rather than |π ′|Σo , with the assumption that A
has no silent circuit, which yields an equivalent definition for this smaller class
of systems. This restriction is not really necessary, and |π ′|Σo makes more sense
since it gives an observable criterion to position the fault.

2. Some authors do not require that A is Σo-live, and then extend the condition to
extensions π ′ that contain M ≤ N observations after which no more visible tran-
sition is reachable (deadlock or silent live-lock). This generalization introduces
minor technical changes, that are left to the reader.

Proposition 5.2. If A is not diagnosable, then a diagnoser (D ,ψ) of A necessarily
contains a circuit of ambiguous states.

Proof. In Def. 5.1, f (σo(ππ ′)) can only take values y or a. If A is not diagnosable,
let N be greater than the number of states in D . There exists π ,π ′ with s+(π) ∈ S f ,
|π ′|Σo > N and f (σo(ππ ′)) = a. Let q be the unique state reached by σo(π) in D ,
then ψ(q) = a and any state q′ crossed by σo(π ′) after q in D is also ambiguous,
ψ(q′) = a, since by construction the values of ψ can only evolve from n to a and
then y. And σo(π ′) necessarily crosses twice some state of D . �

This proposition gives a sufficient condition for diagnosability, which unfortunately
is not necessary. Consider the counter-example in Fig. 5.5, where safe states are rep-
resented as a white circle, and faulty states as a colored one. The diagnoser contains
an ambiguous circuit, because for any sequence (αβ )n or (αβ )nα it is not certain
that a fault occured. However, any path π leading to the faulty state s3 will neces-
sarily produce a γ as second next observation, which characterizes the occurrence
of the fault. So A is 2-diagnosable (N = 2).
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Fig. 5.5 A diagnosable system (left), and its observer/diagnoser (right)

Proposition 5.3. A is not diagnosable iff, for any integer N,

∃π ,π ′,π ′′ : s+(π) = s−(π ′) ∈ S f , |π ′|Σo > N, s+(π ′′) ∈ Ss, σo(ππ ′) = σo(π ′′)

The proof is straightforward by logical inversion of Def. 5.1. One can easily rein-
force the result into the existence of a faulty π (the same for all N) for which one
can find arbitrarily long extensions π ′ such that there exists a non faulty π ′′ with the
same visible signature: σo(ππ ′) = σo(π ′′) (hint: use the pumping lemma). Further,
if the result holds for some large enough N, then it holds for any N (same trick).

This simple result has interesting practical consequences. First of all, it allows
one to check if the ambiguous circuits of a diagnoser of A really entail non-
diagnosability. Specifically, A is not diagnosable iff a diagnoser of A contains an
indeterminate cycle, following the vocabulary in [15]. Such cycles are ambiguous
circuits of D where both a safe run of A and a faulty one are nested. Specifically,
the circuit from q to q in D , following the visible sequence w ∈ Σ∗o , is indeterminate
iff there exist two circuits π1,π2 in A such that π1 only crosses faulty states, π2 only
crosses safe states, and σo(π1) = σo(π2) = wn for some n. In such situations, using
the pumping lemma, one can easily build the π ,π ′,π ′′ of Prop. 5.3 that prove the
non diagnosability. And conversely.

A second consequence of Prop. 5.3 is to provide a direct and more practical
means of checking diagnosability (and actually polynomial rather than exponential).
The idea is based on the twin machine construction. Consider As, the restriction of
A to the safe states Ss: all transitions involving states in S f are discarded. The twin
machine is obtained as the synchronous product of the ε-reductions of A and As:
T = Red(A )×Red(As).

Proposition 5.4. A is diagnosable iff no cycle of the twin machine T = Red(A )×
Red(As) contains a faulty state of A .

The proof is directly based on Prop. 5.3, using again the pumping lemma (details are
left to the reader). Applied to the counter-example of Fig. 5.5, assuming all labels
are observable, this yields the construction of Fig. 5.6, where the unique circuit
crosses only safe states of A , which makes A diagnosable.

Probabilistic diagnosability. For the sake of completeness, let us briefly examine
how diagnosability extends to probabilistic automata. For simplicity, we assume that
A is already ε-reduced, based on some stopping time definition.

As a (live) stochastic automaton, A defines a probability Pn on the set Fn of
runs of length n. These (Fn)n define a natural filtration over the set of infinite runs
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Fig. 5.6 System A (left), its safe restriction As (center), and the twin machine (right)

of A , and since Pn is the restriction of Pn+1 to Fn, there exists a unique distribution
P over the set F of infinite runs of A , by the Kolmogorov extension theorem.

On this probability space, let us define two diagnosis indicators, as random vari-
ables. We denote by ω an infinite run (path) of A , and by ωn its restriction to
the first n transitions. The first diagnosis indicator is Xn(ω) = P({ω ′ : σo(ω ′n) =
σo(ωn), s+(ω ′n) ∈ S f }), which is an Fn-measurable random variable. Xn is thus a
failure likelyhood, and Xn(ω) = 0 iff all runs of length n that produce the same
observations as ωn finish in Sn f . The second indicator is Dn(ω) ∈ {0,1}, an-
other Fn-measurable random variable, defined by Dn(ω) = 0 iff ∃ω ′,σo(ω ′n) =
σo(ωn)∧ s+(ω ′n) ∈ Ss. So Dn(ω) switches to one when all runs of length n that
produce the same observation as ωn contain a failure, which corresponds to the
detection of that failure.

In [16], two notions of diagnosability were proposed. The A-diagnosability cor-
responds to the following: for all k, conditioned on Xk > 0, Dk+n converges to 1 in
probability. The AA-diagnosability only requires that Xk+n converges to 1 in proba-
bility, again conditioned on Xk > 0. The first criterion expresses that the ‘hard’ de-
tector Dn will ultimately switch to 1 (certain detection) after a failure has occurred,
while the second criterion means that the detection probability Xn will converge to
1 (the more one waits, the more the detection is certain). These convergences are
in probability: the more one waits, the more these events are likely. (There is still
space for defining and characterizing a diagnosability based on an almost sure con-
vergence.)
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Fig. 5.7 Left: a non-diagnosable probabilistic automaton that is A-diagnosable. Right: an
AA-diagnosable automaton that is not A-diagnosable

Fig. 5.7 (left) shows a probabilistic automaton that is not diagnosable, if proba-
bilities are ignored: after the faulty state s3 has been reached, one can observe an
arbitrary long sequence of αn that will not allow to discriminate between s2 and s3,
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i.e. safe and faulty. However, with probability 1 a β will ultimately be fired after
the faulty state s3, which will make the hard detector Dn jump to 1. The right hand
side in the figure shows a probabilistic automaton that is not diagnosable nor A-
diagnosable, since after the faulty transition, whatever the number of observations,
one can not be certain to be in s2. However, the longer one waits, the more likely the
system jumped from s1 to s2. So with probability 1 the soft detector Xn will converge
to 1.

One of the main results in [16] is to translate the A-diagnosability of A into a
structural property of its non probabilistic diagnoser/observer. Equivalently, this
amounts to first replacing A by its support ¯A . The A-diagnosability criterion then
observes the product B = Det(Red( ¯A ))×Red( ¯A ), where the ε-reduction corre-
sponds to the chosen notion of stopping time in A . This non-probabilistic automa-
ton B has Q× S as state set. One then has to examine the recurrent states of B,
i.e. the states (q,s) that belong to a terminal connected component of B, regarded
as a directed graph. This is standard in convergence analysis of Markov chains,
since with probability one the chain – here the probabilistic diagnoser of A – will
terminate in one of its recurrent components, and A-diagnosability deals with the
limit behaviors of the diagnoser of A . Theorem 3 in [16] then expresses that A is
A-diagnosable iff any recurrent state (q,s) in B with s ∈ S f satisfies ψ(q) = y or
equivalently q⊆ S f . In other words, after a faulty state s is crossed, the (probabilis-
tic) diagnoser will terminate with probability one in states where the failure is unam-
biguous. As B requires a determinization, the complexity of the A-diagnosability
test proposed in [16] is exponential. But as for standard diagnosability, one recovers
a polynomial complexity by performing the same test on the recurrent states of the
twin-machine derived for ¯A .

5.5 Modular Observers

A compound system is obtained by assembling components by means of a com-
position operator. Here we chose the usual synchronous product of automata. The
section proves that composition and derivation of an observer are two operations
that commute, under some circumstances. This has important consequences to de-
sign efficient observers for some compound systems. Results are presented in the
simple case of two components, but extend to larger compound systems through the
notion of interaction graph between components (see for example [7] where this
notion is used for distributed planning purposes).

Composition of Automata

Definition 5.2. The synchronous product (see Fig. 5.8) of two automata A1 and
A2 is the automaton A1 ×A2 = (S,Σ , I,δ ) such that: S = S1 × S2,Σ = Σ1 ∪
Σ2, I = I1 × I2, and the transition function δ is defined by ∀(s1,s2) ∈ S,∀α ∈
Σ , δ ((s1,s2),α) = δ+

1 (s1,α)× δ+
2 (s2,α), where δ+

i (si,α) coincides with δi for
α ∈ Σi, and δ+

i (si,α)� {si} for α 
∈ Σi.
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In other words, a transition carrying a shared label in one component must be fired
jointly with a transition carrying the same label in the other component. By contrast,
a transition carrying a private label only changes the state of one component, while
the other remains idle. Observe that a firable sequence u of transitions in A1×A2

leads to a unique firable sequence u1 in A1 (for example) by simply removing private
moves of A2, i.e. transitions ((s1,s2),α,(s1,s′2)) with α 
∈ Σ1, and then erasing the
states of component A2.

A plain synchronous product may yield an automaton that is not trimmed, i.e.
that contains unaccessible states. So we define the composition as a synchronous
product followed by a trimming operation, and still denote it by×, with a light abuse
of notation. This definition naturally extends to observers (or diagnosers) by simply
gathering the label functions on states, for example φ(q1,q2)� φ1(q1)×φ2(q2).

α

α1

α1

αα2
α α2α2

α1

α1

α1

α1

Fig. 5.8 Two automata (left) sharing only label α , and their synchronous product (right)

Observer of compound systems. We consider here the ‘canonical’ observers de-
rived in the previous section by epsilon-reduction and determinization. Such an ob-
server for A has Q = 2S as state set, if S represents states of A .

Proposition 5.5. Let A1,A2 be two automata, with Ai = (Si,Σi, Ii,δi) and Σo,i as
set of observable labels, i ∈ {1,2}. If all synchronizations are observable by each
automaton, i.e. Σ1∩Σ2 = Σo,1∩Σo,2 , then Obs(A1×A2) and Obs(A1)×Obs(A2)
are isomorphic.

Proof. We consider the epsilon-reduction to the right. For the proof, we show by
induction the bisimilarity of the two deterministic automata Obs(A1 ×A2) and
Obs(A1)×Obs(A2). Given the one to one correspondence of state sets, this will
induce isomorphism.

Our recursion assumption is the following: let w ∈ Σ∗o , and wi = ΠΣo,i(w), then

δ̄ (I′,w) = δ̄1(I′1,w1)× δ̄2(I′2,w2). In other words, all reachable states q in Obs(A1×
A2) have a product form q = q1× q2.

This is obviously true for w = ε . If nothing has been observed, then only (unob-
servable) private events of the Ai can have been fired. Let ui be any unobservable
transition sequence in Ai, starting from an initial state. So s−(ui) = si,0 ∈ Ii and
s+(ui) = si ∈ I′i = δi(Ii,Σ∗u,i) where Σu,i � Σi \Σo,i denote unobservable labels of
Ai. Any interleaving u of sequences u1 and u2 is a firable sequence of transitions in
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A1×A2, with s−(u) = (s1,0,s2,0) ∈ I and so s+(u) = (s1,s2) ∈ I′ = δ (I,Σ∗u ). Con-
versely, starting from an unobservable sequence u in A1×A2, one easily derives
the associated ui in Ai. So this proves I′ = I′1× I′2, i.e. that the initial state q0 of
Obs(A1×A2) is the product of the initial states qi,0 of the Obs(Ai).

For the recursion, let q = δ̄ (q0,w) = (q1,q2) be an accessible state in Obs(A1×
A2), and let α ∈ Σo. Three cases must be considered.

Case 1: α ∈ Σo,1 ∩Σo,2, which corresponds to a synchronization event. Let si ∈ qi,
ti = (si,α,s′i) be a transition of Ai and ui be a sequence of silent transitions in Ai,
with s−(ui) = s′i and s+(ui) = s′′i . Then ((s1,s2),α,(s′1,s

′
2)) is a transition of A1×A2

and any interleaving u of sequences u1,u2 is firable in A1×A2 after (s′1,s
′
2) and

leads to (s′′1 ,s
′′
2). This proves that q′ = δ̄ (q,α) in Obs(A1×A2) contains q′1× q′2

where q′i = δ̄i(qi,α) in Obs(Ai). For the converse inclusion, consider as above a
visible transition ((s1,s2),α,(s′1,s

′
2)) in A1×A2 followed by some unobservable

sequence u leading to (s′′1 ,s
′′
2), and split u into u1 and u2 as above. Then (si,α,s′i)ui

is firable in Ai and leads from si to s′′i . This proves q′ ⊆ q′1× q′2. So one concludes
δ̄ (q,α) = δ̄1(q1,α)× δ̄2(q2,α).

Case 2: α ∈ Σo,1 \ Σo,2, which corresponds to a private observable event of A1.
Let s1 ∈ q1, t1 = (s1,α,s′1) be a private (observable) transition of A1 and u1 be a
sequence of silent transitions in A1, with s−(u1) = s′1 and s+(u1) = s′′1. For any
s2 ∈ q2, the private sequence t1u1 of A1 is mapped into a sequence tu of A1×A2

leading from (s1,s2) to (s′′1 ,s2), thus leaving A2 idle. So q′ = δ̄ (q,α) ⊇ q′1× q2

where q′1 = δ̄1(q1,α). And the converse inclusion is derived again as above, which
proves δ̄ (q,α) = δ̄1(q1,α)× q2.

Case 3: α ∈ Σo,2 \ Σo,1, which corresponds to a private observable event of A2.
Similar to case 2.

The three cases above allow one to extend by one letter the recursion assumption,
which induces the desired bisimilarity. �

Remarks

1. The above proposition assumed an epsilon-reduction to the right, but it remains
valid with a reduction to the left.

2. Although canonical observers were assumed in the proof, it extends to general
observers with minor modifications. One simply has that the product Obs(A1)×
Obs(A2) yields one observer for A1×A2. In other words, the bisimilarity holds,
but not necessarily the isomorphism.

Application. The application of this proposition to modular/distributed observation
is direct: from a given observed sequence w ∈ Σ∗o , derive projections wi = ΠΣo,i(w)
and feed them to observers Obs(Ai) to get local state estimates qi. Then assemble
the latter by q = q1× q2 to get a state estimate of the global system. Reading this
property in the reverse direction, this means that the interleaving of private events in
w1 and w2 does not carry information to estimate the state of A =A1×A2. In other
words, it is equivalent to observe a total order of events, as sequence w or a partial
order of events under the form of two partially synchronized sequences (w1,w2).
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The assumption Σ1∩Σ2 = Σo,1∩Σo,2 is crucial and one can check that the proof
fails without this argument. Actually, without this assumption, it is possible to build
examples where there exists no pair of finite deterministic machines that would play
the role of local observers Obs(Ai), and such that their ‘composition’ in any way
would have the same power as an observer of the global system. This is due to the
possibly infinite number of assumptions that must be stored in each local observer
about the way the two components synchronize in their unobserved sequences.

This is briefly illustrated by the example in Figure 5.9, where A1 and A2 are two
automata such that Σo,1 = {α1,α2}, Σo,2 = {β1,β2} and Σ1 ∩Σ2 = {γ1,γ2} ⊆ Σuo.
Observe that, by construction, the production of α’s and β ’s in A1×A2 alternate5.
In other words, from a sequence w1 of α’s observed on A1 and a sequence w2 of β ’s
observed on A2, one can recover their interleaving w. So dealing with distributed
observations here does not bother state estimation: no interleaving information is
lost.

Then observe that as long as the indexes of the α’s observed in w1 match those
observed on the β ’s in w2, the component A2 will be in one of the states of its ‘upper
part,’ {s′o,s′1,s′2}. As soon as these two index sequences differ, A2 becomes trapped
in the states of its lower part {s′3,s′4}. A global observer of A1×A2 fed with w is
of course able to determine where A2 finished. But there is no pair of finite local
observers for A1 and A2 that would have this power, since they would have to store
the sequences of indexes of the α’s and of the β ’s they have seen along w1 and w2

in order to compare them and decide.

1

s’0

s’2

β2

s1

s0

s2
α1 α2

γ2γ1 β1

γ1 γ2

s’3

s’4

β2 β1

β1β2γ2γ1

A1 A2

s’

Fig. 5.9 For these two interacting components A1 and A2, with non observable interactions,
there are no finite local observers that would jointly have the same power as an observer of
their product A1×A2

5 This is not strictly the case, since between two consecutive γ the labels α and β can appear
in any order. This detail can be easily fixed, at the expense of a more complex example,
and does not really bother the rest of the reasoning.
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5.6 Distributed State Estimation

The lesson of the previous section is that distributed/modular state estimation (or
diagnosis) is easy when synchronizations are observable. What about the general
case? Assume a modular system A =A1×A2, with Σ1∩Σ2 
⊆ Σo,1∩Σo,2, performs
a hidden run π that is observed by two sensors, one per component Ai. This yields
the pair of observed words (w1,w2), with wi = ΠΣo,i(σ(π)), where shared events
may be observed by only one or none of the two sensors. Notice that the exact
interleaving of w1 and w2, that would be w = ΠΣo,1∪Σo,2(σ(π)), is definitely lost,
so all possible interleavings must be assumed to estimate the current state of A . In
other words, one truly observes a partial order of events, without the possibility to
come back to a unique sequence as in Section 5.5. This constitutes a major change.

In this section we consider automata with marked states A =(S,Σ , I,δ ,F) where
F ⊆ S. A path π of A is accepted by A iff s−(π) ∈ I and s+(π) ∈ F . The language
of A becomes L (A ) = {σ(π) : π is accepted by A }. And for the product of
automata, one takes F = F1 × F2. To address the state estimation (or diagnosis)
problem, we extend it into computing all paths π of A that can explain (w1,w2).
Without loss of generality, we also assume that A1 and A2 are deterministic, so the
problem amounts to finding words of L (A ) that match (w1,w2).

Product of languages

Definition 5.3. Let the Li ⊆ Σ∗i be two languages, i = 1,2, their product is defined
as L1×L L2 = Π−1

Σ1
(L1)∩Π−1

Σ2
(L2), where the ΠΣi : (Σ1 ∪ Σ2)

∗ → Σ∗i are the
natural projections.

For example, with L1 = {αγα} ⊆ {α,γ}∗ and L2 = {γβ ,γβ γ}⊆ {β ,γ}∗, one has
L = L1×L L2 = {αγαβ ,αγβ α} ⊆ {α,β ,γ}∗. The second word in L2 matches
no word of L1, while the first one interleaves in two different ways with the only
word of L1. Observe the following result:

Lemma 5.1. Let L = L1×L L2, and L ′
i = ΠΣi(L ), then L ′

i ⊆Li and one has
L = L ′

1×L L ′
2 . The L ′

i are the minimal sublanguages of the Li that allow one to
recover L .

The proof is left to the reader as an exercise. As a direct application of ×L, observe
that {w1}×L {w2}, denoted w1×L w2 for short, yields all interleavings w of w1 and
w2 that must be considered.

The products of automata and of languages are related by the following property:

Proposition 5.6. Let A = A1×A2, then L (A ) = L (A1)×L L (A2).

The proof is left to the reader as an exercise. Notice that ΠΣi(L (A )) ⊆ L (Ai)
represents the behaviors of Ai that remain possible once the other component is
connected.

Application to hidden run recovery. Assume centralized observation: one collects
w = ΠΣo(σ(π)) ∈ Σ∗o . The runs (or equivalently the words) of A that explain w are
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given by E =L (A )×L w. Let W be a deterministic automaton such that L (W ) =
{w}, one also has E =L (A ×W ). So one can take A ×W as a compact and finite
representation of this possibly infinite language (set of runs).

With distributed observations, one has (see Prop. 5.6)

E = L (A1×A2)×L (w1×L w2) (5.14)

= (L (A1)×L w1)×L (L (A2)×L w2) (5.15)

= E1×L E2 (5.16)

where Ei = L (Ai)×L wi represents local explanations to observation wi in com-
ponent Ai. One is actually interested in building a distributed explanation , under
the form (E ′1,E

′
2), where E ′i = ΠΣi(E ) represents the local view in component Ai

of runs of A that explain all observations w1 and w2. Again, one has E = E ′1×L E ′2
(see Lemma 5.1).

Distributed computation of a distributed explanation. The objective here is to
determine directly the elements E ′i of a distributed explanation... without computing
E itself! This can be done in a distributed manner, by message exchanges between
the local ‘supervisors’ in charge of each component. The key idea is a notion of
conditional independence on languages:

Proposition 5.7. Let Li ⊆ Σ∗i , i = 1,2, be two languages, and let Σ1 ∩Σ2 ⊆ Σ ′ ⊆
Σ1∪Σ2, then ΠΣ ′(L1×L L2) = ΠΣ ′(L1)×L ΠΣ ′(L2).

In our setting, taking Σ ′ = Σ1, this induces for example

E ′1 = ΠΣ1(E1×L E2) = E1×L ΠΣ1∩Σ2(E2) (5.17)

and symmetrically for E ′2. Equation (5.17) expresses that the local view E ′1 of global
explanations E are obtained by synchronizing the local explanations E1 on com-
ponent A1 with the message ΠΣ1∩Σ2(E2) from component A2. This message prop-
agates the constraints that explanations E2 impose on synchronizations. Given the
small alphabet Σ1 ∩Σ2 and the projection operation that removes private events of
A2, (5.17) generally involves smaller objects than E .

Example 5.2. The above computations involve possibly infinite languages. But
again, they can be translated into automata computations thanks to Prop. 5.6 and
to the fact that projection as well preserves the regularity (recall the construction of
observers in Section 5.2, where L (A ′′) = L (A ′) = ΠΣo(L (A )) ).

Consider the example in Fig. 5.10, with two components and a distributed obser-
vations (b,d) represented as two single word automata. Fig. 5.11 computes the local
explanations Ei by product Ei = L (Ai)×L wi, represented as Ai×Wi.

Eq. (5.17) is illustrated in Fig. 5.12 (top), where the central automaton (obtained
by projection) represents the message from A2 to A1. The bottom figure illustrates
the message propagation and integration in the reverse direction (bottom), i.e. the
symmetric version of (5.17).

The final distributed explanations are obtained by taking the languages of the
automata at the top left and bottom right in Fig. 5.12. One has E ′1 = {aαbα,β b} and
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Fig. 5.10 Components A1,A2, on Σ1 = {a,b,α,β} and Σ2 = {α,β ,d} resp. Only labels
b and d are observable (dashed transitions are unobservable). All states are final in the Ai.
Automata W1,W2 encode the observed words w1,w2; only their bottom states are final
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d
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Fig. 5.11 Local explanations to the observed word of wi in each component Ai, represented
as the language of Ei = Ai×Wi

E ′2 = {ααd,β d}. Each word in E ′1 matches at least one word of E ′2, and vice versa.
This yields two pairs of runs of A1 and A2 that explain the distributed observation
(b,d): (aαbα,ααd) and (β b,β d). Observe that each pair can be interleaved in
several manners to produce explaining runs of A1×A2. This shows the interest
of distributed state/run computations: useless interleavings need not be explored,
which can greatly reduce the search space. �

Remarks

1. If component A1 is not deterministic, one can easily recover its explaining runs
in the ‘automaton version’ of (5.17): A ′

1 � A1× [W1×ΠΣ1∩Σ2(A2×W2)]. The
bracketted term simply constrains the runs of A1. Any run of A ′

1 (restricted to
its component in A1) is a local view of a run π of A that explains the distributed
observation (w1,w2).

2. From the runs of the Ai that match the distributed observation (w1,w2), one
easily recovers the possible final states of Ai, and consequently can establish a
diagnosis, relying on the state augmentation trick.
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Fig. 5.12 Message propagation from A2 to A1 (top) and from A1 to A2 (bottom) to compute
the local views E ′1,E

′
2 of global explanations

3. Observe that, by contrast with the counter-example of the previous section, we
have a single observation and with limited length here. This does not prevent
however having to check an infinite number of assumptions on the possible (un-
observed) synchronizations that take place between the two components. What
makes the approach work is that this possibly infinite set of explanations can be
condensed into an automaton, thanks to its regularity.

5.7 Conclusion and Further Reading

What are the lessons of the above developments? First of all, diagnosis and state
estimation are closely related problems, if not equivalent. Diagnosers and observers
are obtained by simple and similar operations on automata. They extend without
difficulty to weighted automata, and in particular to probabilistic automata, with
the main difference that determinization may not yield a finite automaton. But if it
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is the case, they yield structures that output detection probabilities. Diagnosability,
or observability of a state property, represents the ability to detect a fault/property
not long after it occurs/becomes true. It can be checked on the observer/diagnoser,
but is more efficiently tested by a direct method, using the so-called twin-machine.
Observability/diagnosability extends to the probabilistic case, and takes the form of
the convergence (with probability 1) of some numerical indicator after this prop-
erty becomes true. In the simplest case, this indicator switches suddenly to 1 (A-
diagnosability), while for AA-diagnosability it converges to 1. The first case is rather
simple, and actually A-diagnosability can be translated into a structural property of
the non-probabilistic observer, or of the twin-machine of A .

Other important lessons relate to distributed or modular systems. Having dis-
tributed observations amounts to considering a global observation as a partial or-
ders of events. And similarly, representing runs of a distributed system as a tuple
of partially synchronized sequences amounts to considering them as partial orders
of events. This somehow invisible change of semantics greatly saves in complexity
when dealing with distributed systems. It still allows one to perform state estimation
or diagnosis, possibly with distributed methods. Notice that for distributed diagno-
sis, the properties one wishes to characterize must also be expressible as a product
of local properties (one per component). Or they should be separable, following
the vocabulary of [20]. Distributed/modular diagnosability has been examined by
different authors [18], assuming or not that synchronization events are observable,
which greatly simpifies the problem, as mentioned above. Modular state estimation
or diagnosis for probabilistic systems remains an open issue. A central difficulty in
such settings is to define a probabilistic setting that is compatible with the concur-
rency of events: a not careful way of combining probabilistic automata generally
produces weird phenomena, for example private events of some component may
change the occurrence probability of private events in another component... A next
step towards the management of distributed systems consists in adopting true con-
currency semantics. See [6] for a discussion, and Chapter 15 or [1, 5] for a detailed
treatment.
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Chapter 6
Supervisory Control
of Distributed Discrete-Event Systems

Jan Komenda, Tomáš Masopust, and Jan H. van Schuppen

6.1 Introduction

The purpose of this chapter is to introduce to the reader the problem of supervisory
control of distributed discrete-event systems. This problem area is highly relevant
for current engineering and for companies developing high-tech systems. There are
no fully satisfactory solutions yet. This chapter has therefore more the character of
an introduction to the problem area and a research program, rather than the exposi-
tion of a fully investigated research topic. This chapter may also be regarded as an
introduction to the Chapters 7 and 8.

Control engineering of high-tech systems nowadays is about systems consisting
of very many components or subsystems. Examples of distributed discrete-event
systems are large printers, an MRI scanner, a chemical plant, automobiles, aerial
vehicles, etc. Each component was separately designed and has a controller devel-
oped for that component exclusively. But a large high-tech system has to meet a
specification which requires the interaction of all the subsystems. Control engineer-
ing and control theory therefore have to address the cooperation or the coordination
of these subsystems.

In this chapter distributed discrete-event systems and the related concept of a
decentralized discrete-event system are defined. Four control architectures are then
defined: (1) distributed control, (2) distributed control with communication, (3) co-
ordination control, and (4) hierarchical control. The control problems and the re-
search approaches are then discussed. Results are presented for several subtopics
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of decentralized and distributed control. The chapter ends with research issues for
control of distributed discrete-event systems and advice of further reading.

6.2 Motivation

Example 6.1. The alternating bit protocol. The protocol or variants of it are used
in many communication networks. It is a canonical model of a distributed discrete-
event system.

The engineering model of the communication system consists of a sender, a re-
ceiver, and a communication channel. The sender gets packets from the host at
which it is located. The sender sends the package to the communication channel.
The communication channel delivers a packet to the receiver either fully, or in a
distorted way, or does not deliver the packet at all.

The alternating bit protocol operates as described below. The sender sends a
packet and attaches a bit, either a zero or a one, to the header of the packet. The
receiver receives information. If the receiver finds that the header of the packet is
undamaged then it sends an acknowledgement to the sender including the protocol
bit. The sender, if it does not receive an acknowledgement in a prespecified period,
sends the packet again with the same bit. The sender, if it receives an acknowledge-
ment of the receiver with the protocol bit, sends the next message with the next
alternate protocol bit.

Note that the sender possesses information about the packets to be sent and that
have been sent but not about the packets received by the receiver. Similarly, the
receiver knows what it has received but not what was sent by the sender. The dis-
tributed character of this system is in the different information and the different
control actions at the two locations, at the sender and at the receiver. There is also
communication from the receiver to the sender. The alternating bit protocol is a form
of distributed control with communication. An extension of the above protocol ex-
ists in which, instead of only one bit, two or more bits are used so four, eight, or
more messages can be in process simultaneously, see [54]. �
Example 6.2. Underwater vehicles. At the university of Porto in Portugal there is a
laboratory in which control engineering of underwater vehicles is developed. This
is a form of control of distributed systems. Part of the control deals with continu-
ous space systems, but part of the control addresses the distributed discrete-event
system.

Consider then a group of vehicles consisting of a surface vehicle, which acts as
the local command center, and two or more underwater vehicles. The communica-
tion between the surface vehicle and the underwater vehicle is sonar communication,
by sound waves. This form of communication requires relatively much energy from
the underwater vehicle having limited battery power on board.

The operation of the vehicles is a characteristic example of a distributed system.
Each vehicle is a subsystem of the group system. Each vehicle has a local observed
event stream of its position and speed, and of its control actions. An underwater
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vehicle may communicate its position, speed, and action to the surface vehicle, ei-
ther regularly, or when requested, or when required by a protocol.

A particular operation is formation flying. The surface vehicle follows a path
specified by the command center. It then sends instructions to the underwater vehi-
cles for a position and a speed to be reached at a particular time. The underwater
vehicles then carry out the instructions and react only if they cannot meet the re-
quirements, see [12].

Characteristic of this example is the local availability of the state information of
the subsystem and the communication. �

There follows a list of control engineering problems for which models in the form
of decentralized/distributed discrete-event systems have been formulated and for
which supervisory control has been investigated:

1. The alternating bit protocol described in Example 6.1. See [54], while discrete-
event models are described in [40, 38].

2. Communication networks are a rich source of control of distributed and decen-
tralized systems, see [8, 54].

3. Feature interaction in telephone networks [50].
4. Manufacturing cells.
5. Control of high-speed printers with many sensors and actuators [26].
6. A chemical pilot plant for which modular control is applied [21, Ch. 7].
7. Distributed algorithms are studied by computer scientists, see [25, 31, 48, 53].

Supervisory control is not studied in most of those references.

6.3 Systems

In this section, the reader is provided a classification of the system architectures
for decentralized and for distributed discrete-event systems. In the literature there is
no standardized nomenclature while one is needed. The concepts formulated below
should be regarded as preliminary. The terms and notations used below have been
introduced in the Chapters 2, 3, and 4.

Definition 6.1. (Overview of system architectures). The acronym DES stands for
a discrete-event system.

1. A decentralized discrete-event system is a global plant modeled as a DES with
two or more observed event streams and two or more inputs of enabled events.
Each controller receives an observed event stream defined by either a projection
or a mask, and inputs a subset of enabled events.

2. A distributed discrete-event system is a DES consisting of the interconnection
of two or more subsystems. Each subsystem has an observed event stream of
local events and an input of enabled events to the local subsystem. A modular
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discrete-event system is the same as a distributed DES, the term is still used in
the literature. The authors prefer the more general term of a distributed DES.

3. An asynchronous timed distributed discrete-event system. This is defined as a
distributed discrete-event system in which each subsystem has its own clock and
the clocks may drift with respect to each other. An example is an audio set con-
sisting of a tuner, a CD player, and an amplifier, see [3]. Asynchronous systems
require a timed DES model.

The main difference between a decentralized DES and a distributed DES is the use
of the decomposition of the system into an interconnection of subsystems in a dis-
tributed DES while in a decentralized DES such a distinction is not made. For future
research it is expected that the decomposition of the system into its subsystems can
be usefully exploited for control synthesis.

Definition 6.2. A decentralized discrete-event systems, see Fig. 6.1, is a tuple de-
noted by Gdec = (Q,E, f ,q0,Qm,{Ei,c, i ∈ I},{Ei,o, i ∈ I}), where I = {1,2, . . . ,n}
denotes the index set of the observed event streams, {Ei,c, Ei,uc ⊆ E, i ∈ I} is a
partition of E, Ei,c and Ei,uc denote, respectively, the subset of controllable events
and of uncontrollable events of Controller i, {Ei,o, Ei,uo ⊆ E, i ∈ I} is a partition
of E, and Ei,o and Ei,uo denote, respectively, the subsets of observable events and of
unobservable events of Controller i.

Definition 6.3. A distributed discrete-event system, see Fig. 6.2, is a set of discrete-
event systems denoted by Gdis = {Gi, i∈ I}, with Gi = (Qi,Ei, fi,qi,0,Qi,m) and Ei,c,
Ei,o, where I = {1,2, . . . ,n} denotes the index set of the subsystems, Gi for each i∈ I
is an automaton, Ei denotes the event set of Subsystem i, Ei,c⊆ Ei denotes the subset
of controllable events of Subsystem i, and Ei,o ⊆ Ei denotes the subset of observable
events of Subsystem i.

Definition 6.4 (Control architectures)

1. Decentralized/distributed control, see Fig. 6.3. The observed event stream of a
controller consists of a projection or mask of the strings of the system which for
a distributed system are restricted to the local subsystem. Each controller inputs
a subset of enabled events to the subsystem. There is no direct communication
whatsoever with other controllers though the controllers communicate indirectly
with other controllers via the system.

2. Distributed control with communication, see Fig. 6.4. Controllers may send part
of their observed event stream or of their states to other controllers. Each con-
troller uses besides its observed event stream received directly from the plant also
the other observed event stream received from other controllers. An example is
the class of nearest neighbor controls which use for the supervisory control the
state of the local subsystem and the states of the nearest neighbors of the local
subsystem.
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Fig. 6.1 Diagram of a decentralized system
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Fig. 6.2 Diagram of a distributed system
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Fig. 6.3 Diagram of distributed control of a distributed discrete-event system

3. Coordination control of a coordinated DES, see Fig. 6.5. A coordinated DES is
defined as a distributed DES distinguished into a coordinator and the remaining
subsystems. The coordinator has the control-theoretic task to coordinate the ac-
tions of the other subsystems. There is a controller for the coordinator and for
each of the subsystems.

4. Hierarchical control. There is a controller for each subsystem at each level of the
hierarchy.

Guidelines for the appropriate choice of a control architecture are not much dis-
cussed in the literature and deserve more attention. The tradeoff between more cen-
tral control or more distributed control has to be made on a case-by-case basis. The
principle is often stated that it is best to have the subsystems operate as indepen-
dently as possible. But in many examples of distributed control problems a degree
of coordination or centralized control is necessary to achieve the control objectives.
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Fig. 6.4 Diagram of distributed control with communication. In general, there is also com-
munication between the controllers C1 and C3 which however is not displayed in the figure.

� �

� �
� �

�
�Coordinator

S1 S2

Cc

C1 C2

Fig. 6.5 Diagram of a controlled coordinated discrete-event system

6.4 Problem Formulation

There follows a verbal general problem statement which will be refined in the
subsequent sections. The reader is assumed to be familiar with supervisory con-
trol of a discrete-event system both with complete observations and with partial
observations as described the Chapters 3 and 4.

Consider a distributed or a decentralized DES with two or more observed event
streams. Consider a specification language, either a global specification or a set
of local specifications. Determine a set of supervisory controls, as many as there
are inputs of enabled subsets of events, such that the closed-loop system meets the
control objectives of safety, required behavior, nonblockingness, and of fairness.

Definition 6.5 (Control objectives of control of distributed discrete-event
systems). There are of course the control objectives of supervisory control of
discrete-event systems such as safety, required behavior, and nonblockingness. In
addition, there are control objectives particular for control of distributed DES:

• Fairness. Each subsystem is regularly provided access to all shared resources.
• Non-starvation. No subsystem is denied access forever to a shared resource.
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The main difficulties of distributed control are: (1) control synthesis and design:
the construction of a tuple of supervisory controls; more specifically, the fact that
the partial observations of the subsystems differ and are not nested; and (2) the
decidability and the complexity issues of the problem which are enormous.

In the next sections follow special cases of the above problem.

6.5 Decentralized Control – Existence and Construction of a
Tuple of Supervisors

In this section, the solution is presented to the supervisory control problem of a
decentralized DES. It is remarkable that a necessary and sufficient condition for the
existence of a tuple of supervisory controls can be presented as will be explained
later. The main reference of this section is [39] and the results are extendable from
two to three or more supervisors.

Definition 6.6. [39] Consider a decentralized DES. For the supervisors (S1,g1) and
(S2,g2) over the event sets E1 and E2, respectively, where P1 : E∗o → E∗1,o and P2 :
E∗o → E∗2,o are natural projections, define a supervisor (S1 ∧ S2,g1 ∗ g2) over the
global observable event set Eo =E1,o∪E2,o with (g1∗g2)(s) = g1(P1(s))∩g2(P2(s))
for s ∈ E∗o .

Read this as: enable the event if both S1 and S2 enable the event. Hence it is called
the conjunctive (∩) and permissive control-implementation architecture. The alter-
native is called the disjunctive and antipermissive control-implementation architec-
ture. The supervisors working with partial observations are permissive while the
global fusion rule is conjunctive.

Proposition 6.1. [39]. Consider a distributed discrete-event system. The closed-
loop system has the following properties: L(S1 ∧ S2/G) = L(S1/G)∩L(S2/G) and
Lm(S1∧S2/G) = Lm(S1/G)∩Lm(S2/G).

Recall from Chapter 3 that E1,cp denotes the set of control patterns of Subsystem 1.

Definition 6.7 (Global and local supervisors). [39] Let (S1,g1), g1 : E∗1,o→ E1,cp

be a local supervisor. Its extension to the global event set E, called the global su-
pervisor, is defined as (S̃1, g̃1), where g̃1 : E∗o → Ecp, g̃1(s) = g1(s) ∀ s ∈ E∗1,o, and
it enables all events of Eo\E1,o. The corresponding extension is defined for (S2,g2).

Problem 6.1. [39]. Decentralized control for a global legal specification. Consider
a decentralized DES G with a regular specification language /0 
= K ⊆ Lm(G). Here
Euc = E\(E1,c ∪ E2,c). Construct supervisors (S1,g1) and (S2,g2) such that (1)
Lm(S̃1∧ S̃2/G) = K and (2) (S̃1∧ S̃2/G) is nonblocking.

The solution to the above formulated problem requires introduction of concepts.

Definition 6.8. [39] Consider Problem 6.1. Define the relations next action, de-
noted nextactK ⊆ E∗ × E × E∗, so that (s1,e,s2) ∈ nextactK if s1e ∈ prefix(K),
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s2 ∈ prefix(K), and s2e ∈ L(G) imply that s2e ∈ prefix(K); and mark action, de-
noted markactK ⊆E∗×E∗, so that (s1,s2)∈markactK if s1 ∈K and s2 ∈ prefix(K)∩
Lm(G) imply that s2 ∈ K.

Definition 6.9 (Coobservability). [39] Consider Problem 6.1. The sublanguage
K ⊆ Lm(G) is called coobservable with respect to (G,P1,P2) if

∀s,s1,s2 ∈ E∗ with P1(s) = P1(s1), P2(s) = P2(s2),

⇒∀e ∈ E1,c∩E2,c, (s,e,s1) ∈ nextactK ∨ (s,e,s2) ∈ nextactK ; (6.1)

∧ ∀e ∈ E1,c\E2,c, (s,e,s1) ∈ nextactK ; (6.2)

∧ ∀e ∈ E2,c\E1,c, (s,e,s2) ∈ nextactK ; (6.3)

∧ (s,s1) ∈markactK ∨ (s,s2) ∈markactK . (6.4)

The concept of next action describes that the events are related if the correspond-
ing observed strings are indistinguishable (Conjuncts 6.1-6.3). The marking relation
describes that marking actions are related (Conjunct 6.4). Coobservability of a de-
centralized system corresponds to invariance of the closed-loop system with respect
to control with distributed partial observations. There exists an algorithm to check
whether a language is coobservable, see [37].

Fig. 6.6 (a) A two-ring discrete-event system and (b) its specification

Example 6.3. Coobservability compared with observability. [39]. Consider the
plant G of which the diagram is displayed in Fig. 6.6(a) and its specification
K of which the diagram is displayed in Fig. 6.6(b). Denote the event sets by
E1,c =E1,o = {a,b,c1}, E2,c = E2,o = {a,b,c2}. Then K is coobservable; it is neither
observable with respect to (G,P1) nor with respect to (G,P2). There exists a tuple of
supervisory controls such that Lm(S̃1∧ S̃2/G) = K, see [39, Ex. 4.2]. �

Definition 6.10 (C & P Coobservability). Consider Problem 6.1. The sublanguage
K ⊆ Lm(G) is called C & P coobservable with respect to (L(G),{Eo,i, i ∈ I}) if

∀ s ∈ prefix(K), ∀ e ∈ Ec such that se ∈ L(G),

∃ i ∈ I such that e ∈ Ei,c, s′ ∈ prefix(K), Pi(s) = Pi(s
′), s′e ∈ prefix(K)

⇒ se ∈ prefix(K).
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The concept of C & P coobservability stated above is based on a corresponding con-
cept defined in [60] and [15]. C & P coobservability can be proven to be equiv-
alent to coobservability. Several researchers prefer its interpretation over that of
Definition 6.9.

Theorem 6.1 (Existence supervisors). See [39, Th. 4.1]. There exists a solution to
Problem 6.1 of decentralized control for a global regular legal specification lan-
guage K ⊆ Lm(G) if and only if (1) the language K is controllable with respect to
(G,Euc) and (2) the language K is coobservable with respect to (G,P1,P2).

An alternative proof is provided in [60]. There is a similar result in case of the D&A
control implementation architecture, see [60].

Note that the language K ⊆ Lm(G) is fixed by the problem statement and is not
to be determined in the problem. This is the main difference with respect to decen-
tralized control of nonlinear systems and is the main reason why this decentralized
control problem admits an explicit solution.

Algorithm 6.4. (Construction of a tuple of supervisors). [39, p. 1701].
Data algorithm. Consider Problem 6.1 with a decentralized DES and with the
regular language K ⊆ Lm(G) having a recognizer GK = (QK ,EK , fK ,qK,0,QK,m).
Compute

(Si,gi), Si = (Qi,Ei,o, fi,qi,0,Qi,m), i = 1,2,

Qi = Pwrset(QK)\{ /0}, Qi,m = {qi ∈ Qi | qi∩QK,m 
= /0},
qi,0 = { fK(qK,0,s) ∈QK | s ∈ E∗, Pi(s) = ε},

the unobservable (wrt. Pi) reachset from the initial state,

fi(qi,e) =

{
{ fK(q,e) ∈QK | s ∈ E∗, Pi(s) = e, q ∈ qi}, if not empty,
undefined, else.

gi : Qi×Ei,c→ Ei,cp,

gi(qi,e) = Ei,uc∪{e ∈ Ei,c | ∃ q ∈ qi ∈ Qi such that fi(q,e) is defined}.

Then {g1,g2} is a solution of Problem 6.1.

Proposition 6.2. [39, Prop. 4.1]. Consider Problem 6.1.

(a) If the sublanguage /0 
= K ⊆ Lm(G) is controllable, coobservable, and prefix-
closed then the supervisors constructed in the above algorithm satisfy (1)
Lm(S̃1∧ S̃2/G) = K and (2) (S̃1∧ S̃2/G) is nonblocking.

(b) The time complexity of Algorithm 6.4 is exponential in the size of the state set of
GK.

The new condition for the existence of a tuple of decentralized supervisors is the
concept of coobservability. A sufficient condition of coobservability is decompos-
ability.
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Definition 6.11. [39, p. 1696, p. 1702] Consider Problem 6.1

(a) The language K ⊆ Lm(G) is called decomposable with respect to (G,P1,P2) if
K = P−1

1 (P1(K))∩P−1
2 (P2(K))∩L(G).

(b) The language K is called strongly decomposable with respect to (G,P1,P2) if
K = L(G)∩

[
P−1

1 (P1(K))∪P−1
2 (P2(K))

]
.

Proposition 6.3. [39, Prop. 4.2]. Let K ⊆ Lm(G) be Lm(G)-closed. If prefix(K) is
strongly decomposable then K is coobservable.

There exists an example showing that K being coobservable does not imply that
prefix(K) is strongly decomposable, see [39, Ex. 4.1].

Proposition 6.4. [39, Prop. 4.3]. Assume that K ⊆ Lm(G) is regular, Lm(G)-closed,
and controllable, Ei,c ⊆ Ei,o, for i = 1, 2, E1,o∩E2,c ⊆ E1,c, and E2,o∩E1,c ⊆ E2,c.
Then K is coobservable if and only if K is decomposable.

The following example shows that there exists a discrete-event system for which
decentralized control can never meet the control objective. The control objective
can only be met if the two controllers communicate with each other. The focus
of research should therefore be extended or redirected to decentralized/distributed
control with communication as described in Chapter 7.

Fig. 6.7 The diagram of a distributed DES requiring communication between the supervisors.
The dotted arrows denote observable events.

Example 6.5. Decentralized control requiring communication. The distributed DES
is specified in Fig. 6.7. Note that E1,c = E2,c = {e, f}, E1,o = {c1,e, f}, E2,o =
{d2,e, f}, q5 is the forbidden state, q9 is an accepting/marked state. From the di-
agram it is then clear that neither of the supervisors knows whether in state 4 and in
state 8 to enable e, or f , or both because neither of them observes in which order the
events c1 and d2 occur. They must communicate with each other to determine this
order. �

6.6 Decentralized Control – Undecidability

Next follows a result on undecidability of a decentralized control problem. In [39]
it is proven that the decentralized control problems with the following relations are
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decidable: (1) Lm(S̃1∧ S̃2/G) = K, [39, Th. 4.1]; and (2) L(S̃1∧ S̃2/G)⊆K, [39, Th.
4.2]. Does the decidability still hold true in a further generalization of the problem?

Problem 6.2. [51, Def. 5.1]. Consider the setting of Problem 6.1 with a regu-
lar specification language K ⊆ Lm(G). Does there exist a tuple of supervisors
((S1,g1),(S2,g2)) such that Lm(S̃1∧ S̃2/G)⊆ K and such that the closed-loop sys-
tem is nonblocking?

Note the difference between Problem 6.1 and Problem 6.2 in the relation of the
marked language of the closed-loop system with the language of the specification.

Theorem 6.2. [51, Th. 5.1]. Problem 6.2 is undecidable.

The proof of the above theorem proceeds by reduction of an observability prob-
lem of [30] to Problem 6.2. A result corresponding to the above theorem for an
ω-language setting was proven in [20]. See further [36, 49].

6.7 Decentralized Control – Maximal Languages

In supervisory control of a discrete-event system if the specification is not control-
lable one considers the supremal controllable sublanguage. In the setting of control
of a distributed DES this cannot be done directly because there are always two or
more supervisors. Therefore, other concepts are needed, a maximal solution and a
Nash equilibrium as described below. The theory below was published before The-
orem 6.2 listed above. In this section, a slightly different definition of a supervisor
is used than in Section 6.5 borrowed from [27]. The reasons to do so are only nota-
tional, there is no inherent restriction.

Definition 6.12. Consider a discrete-event system denoted by G = (Q,E, f ,q0,Qm).
Denote a supervisory control based on partial observations of this system by
g : P(L(G))→ Pwrset(Ec), where P : E∗ → E∗o is a natural projection. Unlike the
previous sections, g(P(s)) denotes the subset of disabled controllable events,

L(g/G) = {s ∈ L(G) | ∀ we ∈ prefix(s), e 
∈ g(P(w))}.

Definition 6.13. Consider two supervisory controls ga,gb : P(L(G))→ Pwrset(Ec).
Define the implementation relation, denoted by ga � gb, and say that ga implements
gb, if gb(s)⊆ ga(s), ∀ s ∈ P(L(ga/G)). In words, ga disables more than gb.

Definition 6.14. Consider a discrete-event system G and two local supervisory con-
trols, g1 : P1(L(G)) → Pwrset(E1,c) and g2 : P2(L(G)) → Pwrset(E2,c), and let
P : E∗ → (E1,o ∪E2,o)

∗ = E∗o be a natural projection. Define the composition of
these two supervisory controls as the supervisory control, g1 ∧ g2 : P(L(G)) →
Pwrset(E1,c∪E2,c), (g1∧g2)(s) = g1(P1(s))∪g2(P2(s)), ∀s ∈ P(L(G)).
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Proposition 6.5. [27, Prop. 2.10]. Consider the setting of Definition 6.14 with a
discrete-event system and two local supervisory controls g1 and g2. Then L(g1 ∧
g2/G) = L(g1/G)∩L(g2/G).

Problem 6.3. The decentralized supervision safety problem. Consider a discrete-
event system G, a specification language K ⊆ Lm(G), E = E1∪E2, and the central-
ized optimal supervisory control g↑ such that L(g↑/G) = supC(K,G). Determine a
tuple of local supervisory controls, (g1,g2), such that g1∧g2 � g↑.

Definition 6.15. Consider Problem 6.3. The tuple of local supervisory controls
(g↑1,g

↑
2) is called an optimal decentralized solution if (1) g↑1∧g↑2� g↑; (2) ∀(g1,g2) :

g1∧g2 � g↑ implies that L(g1∧g2/G)⊆ L(g↑1∧g↑2/G). Thus, the closed-loop lan-
guage of the optimal decentralized solution is least restrictive.

An optimal decentralized solution may not exist. Therefore, the attention is re-
stricted to a maximal solution defined next.

Definition 6.16. Consider Problem 6.3. The tuple of local supervisory controls
(g�1 ,g

�
2 ) is called a maximal solution if (1) g�1 ∧ g�2 � g↑; (2) 
 ∃ (g1,g2) such that

g1∧g2 � g↑ and L(g�1 ∧g�2 /G)� L(g1∧g2/G). Equivalently, there does not exist
another tuple of supervisory controls with a strictly larger closed-loop language.

How to determine a maximal solution? There do not exist general results on how to
determine all maximal solutions. A way to proceed is to use the concept of a Nash
equilibrium.

Definition 6.17. The tuple of local supervisory controls (go
1,g

o
2) is called a Nash

equilibrium if

(1) (go
1∧go

2)� g↑;

(2.1) go
1∧g2 � g↑ ⇒ L(go

1∧g2/G)⊆ L(go
1∧go

2/G), ∀ g2

(2.2) g1∧go
2 � g↑ ⇒ L(g1∧go

2/G)⊆ L(go
1∧go

2/G), ∀ g1.

The concept of a Nash equilibrium is named after the mathematician/economist
John Nash who introduced the concept into game theory. Decentralized control is
a special case of a dynamic game problem, all players have the same cost function
though different observations. There exists an example such that a Nash equilibrium
is not a maximal solution. Therefore, the concept of Nash equilibrium has to be
strengthened. After that the equivalence condition of a maximal solution can be
stated.

Definition 6.18. The tuple of local supervisory controls (go
1,g

o
2) is called a strong

Nash equilibrium if (1) it is a Nash equilibrium and (2) ∀(g1,g2) : L(g1∧g2/G) =
L(go

1∧go
2/G) implies that (g1,g2) is a Nash equilibrium.

Theorem 6.3. [27, Th. 3.4]. Consider Problem 6.3. The tuple of local supervisory
controls (go

1,g
o
2) is a maximal element if and only if it is a strong Nash equilibrium.
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Procedure 6.4. Construction of a maximal tuple of supervisory controls.

1. Determine a tuple of supervisory controls which is a strong Nash equilibrium,
see below.

2. Then conclude with Theorem 6.3 that the considered tuple of supervisory controls
is a maximal element.

Example 6.6. Joint action. Consider the discrete-event system of which the dia-
gram is displayed in Fig. 6.8. Note that E1 = {a1,b1}, E2 = {a2,b2}, E1∩E2 = /0,
Ec = {a1,a2}. The centralized supervisory control which produces the specification
sublanguage is described by the language K = {(a2b1 + a1b2)

∗}. Consider the fol-
lowing tuple of supervisory controls (g1,g2). Supervisory control g1 always disables
controllable event a1 and the uncontrollable event b1 is always enabled. Supervisory
control g2 initially enables a2, and disables a2 only after the first occurrence of b2

and then a2 remains always disabled. Uncontrollable event b2 is always enabled.

Fig. 6.8 The diagram of a distributed DES for which there exists a strong Nash equilibrium

This tuple of supervisory controls in closed-loop, with the plant achieves the
specification, is a strong Nash equilibrium, and hence a maximal solution. See [27,
Ex. 4.5.]. �

There exists a procedure for computing Nash equilibria, see [27], but there is an
example of a controlled DES for which this procedure does not converge in a finite
number of steps while there exists a strong Nash equilibrium, see [27, Ex. 4.6].

6.8 Distributed Control of Distributed DESs

In this section distributed control is investigated. The older term used for this ap-
proach is modular control and both terms will be used in this section. By going
from a decentralized system, as discussed in the three preceding sections, to a dis-
tributed system, the decomposition of the global system into two or in general many
subsystems is to be noted.

The motivation for the investigation of distributed/modular discrete-event sys-
tems is the complexity of control design. The time complexity of the computation
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of the supervisor increases exponentially with respect to the number of subsystems.
If the computation of the supervisor can be carried out in parallel for each subsys-
tem then the overall time complexity will be much less. This is the main motivation
for the investigation of the control synthesis of distributed/modular systems.

Modular control synthesis of DES was first investigated in [57]. But approaches
of distributed/modular control have been investigated in control theory and other
areas of engineering and the sciences for many centuries.

Specifications for the control of distributed systems can be distinguished into a
global specification and a set of local specifications, where the latter contain one
specification per subsystem.

Problem 6.4. Distributed control of a distributed/modular discrete-event system.
Consider a distributed/modular discrete-event system and a specification. Restrict
the attention to the distributed control architecture introduced in Definition 6.4. De-
termine a set of supervisors, one for each subsystem, such that the closed-loop sys-
tem meets the specification.

Define the distributed/modular control synthesis as to synthesize a supervisor for
each of the local subsystems separately. The supervisor of the distributed system is
then the set of the local supervisors.

The global control synthesis is defined in two steps: (1) compose all subsystems
into one system and then (2) compute the supervisory control for the composed
system according to the method described in Chapter 3. The global control synthesis
is used only for a theoretical comparison.

Problem 6.4 leads to the following research issues:

1. Is the closed-loop system nonblocking? There exist examples in which the sys-
tem is blocking. The quest is therefore to find equivalent or sufficient conditions
for nonblockingness of the closed-loop distributed system.

2. Can a distributed control synthesis as described below achieve the same closed-
loop language as the global control synthesis?

The research issue of nonblockingness of a composition of two or more subsystems
has been discussed in Chapter 3. See also [57]. If the languages of two subsystems
satisfy the condition of nonconflicting languages, see Chapter 3, then the product
of their languages is nonblocking. But the time complexity of checking noncon-
flictingness is almost as high as the time complexity of checking nonblockingness
of the global systems. Alternative approaches are to use the observer property, see
[28] or abstractions with particular properties [7]. Coordination control, see Chap-
ter 8, is another approach to deal with nonblockingness of the interconnection of a
distributed system.

The second research issue is whether the closed-loop systems obtained by the
global control synthesis and by the modular control synthesis are equal. The answer
to the question depends on the interaction of the subsystems. It will be stated below
that the equality of the global control synthesis and of the modular control synthesis
is equivalent to the concept of modular controllability.

Recall from Definition 6.3 the notation of a distributed discrete-event system, in
this section also referred to as a modular DES,
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Gdis = {Gi, i ∈ I},
Gi = (Qi,Ei, fi,qi,0,Qi,m), Ei,c, Ei,o ⊆ Ei.

where the index set of the subsystems is denoted by I = {1,2, . . . ,n}, Gi is an au-
tomaton for each i ∈ I, Ei ⊆ E denotes the subset of the events of Subsystem i,
Ei,c ⊆ Ei denotes the subset of controllable events of Subsystem i, and Ei,o ⊆ Ei de-
notes the subset of observable events of Subsystem i. The interaction of the subsys-
tems of the distributed system is via common events of the local subsystems. Denote
further Li = L(Gi), L = ‖n

i=1L(Gi), Ec =∪n
i=1Ei,c, and Euc = ∪n

i=1Ei,uc. Pi : E∗ → E∗i
is a natural projection and P−1

i : Pwrset(E∗i )→ Pwrset(E∗).

Definition 6.19. Consider a modular DES. The subsystems are said to agree on the
controllability of their common events if Ei,c ∩E j = E j,c ∩Ei for all i, j ∈ I with
i 
= j. The subsystems are said to agree on the observability of their common events
if Ei,o∩E j = E j,o∩Ei again for all i, j ∈ I with i 
= j.

The definition that the subsystems agree on the controllability status of their events
implies that Ei,c = Ec∩Ei and Euc = ∪i(Ei \Ei,c).

Definition 6.20 (Local specification languages). Define the local specification lan-
guages corresponding to a global specification language K ⊆ E∗ as {Ki, i ∈ I},
Ki = K ∩P−1

i (Li) ⊆ E∗, for all i ∈ I. Then, K ∩L = ∩n
i=1Ki. One then says that Ki

locally overapproximates K.

Definition 6.21 (Modular control synthesis and global control synthesis). Define
global control synthesis by the associated closed-loop language of the plant and
the supervisory control, supC(K ∩L,L,Euc). Define a modular control synthesis by
the associated closed-loop language of the plant and the associated supervisory
controls, ∩n

i=1supC(Ki,Li,Euc).

Problem 6.5. Does the modular control synthesis equal the global control synthe-
sis? Which conditions imply that the modular control synthesis equals the global
control synthesis? Equivalently, when does the equality in the following expression
∩n

i=1supC(Ki,Li,Euc) = supC(K ∩L,L,Euc) hold true?

Definition 6.22. The modular system is called modularly controllable if LEuc ∩
P−1

i (Li)⊆ L, ∀ i ∈ I.

Theorem 6.5 (Modular equals global control synthesis in case of locally com-
plete observations). [14, Th. 6.7] Assume that the subsystems agree on the control-
lability of their common events.

(a) If the modular system is modularly controllable then ∩n
i=1supC(Ki,Li,Euc) =

supC(K∩L,L,Euc).
(b) If the above equality holds for all K ⊆ E∗ then the modular system is modularly

controllable.

In the literature there are other sufficient conditions that are much less complex to
check, called mutual controllability and global mutual controllability, [14].
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Proposition 6.6. [14, Prop. 8.3, Prop. 8.4] The time complexity of the computa-
tion of the supremal controllable sublanguage by the modular control synthe-
sis is O(n2

m(n
∗)2n2

Km2) where nm = the number of modules, n∗ = maxi∈I ni, m =
maxi∈I mi, ni = |Qi|, mi = |Ei|, and nK = |Qspec|, the size of the state set of a min-
imal recognizer of the specification. The time complexity of the computation of the
supremal controllable sublanguage by global control synthesis is O((n∗)2nmnK). The
gain in time complexity is then clear.

There exist concepts and theorems for modular control with only local partial ob-
servations. The main references for this section are [13, 14, 17, 16]; see also [55].

6.9 Research Issues

Engineering has a need for further research on control of distributed systems be-
cause the existing theory is far from being satisfactory.

• Decentralized control. The results presented earlier in this chapter require further
analysis of control theoretic interpretations of the operation of the supervisors
which may then be useful for the development of decentralized control also for
other classes of systems. Based on control theory of stochastic systems one ex-
pects to note how the structure of the control law deals with the common and the
private information of the subsystems.

• Distributed control of a distributed DES. An open problem is to find a condition
for nonblockingness of the closed-loop system which is of low time complexity
compared with the global control synthesis. What is decidable, computationally
attractive, and achievable by distributed control of distributed DES?

• Distributed control with communication. For particular engineering control prob-
lems this form of control is attractive and this motivates investigations of the
following research topics: (1) Experience with the forms of this type of control.
Examples of control of communication networks will be useful. (2) Synthesis
and design of communication laws and control laws. What, when, and to whom
to communicate? (3) A theoretical framework for synthesis of distributed control
laws with communication has to be developed using the concepts of common and
of private information, observers, and control. (4) The tradeoffs between control
and communication on the overall performance have to be investigated.

• Coordination control. Research issues needing attention include: Decomposition
of large systems into coordinated systems may be useful depending on the appli-
cation. The tradeoffs between control and communication also play a role in this
setting. The reader is referred to Chapter 8 for further information.

• Hierarchical control. The class of hierarchical systems to be considered will be
quite general. Research issues include decomposition, abstraction, system reduc-
tion, the algebra of hierarchical-distributed systems, the relations between con-
trollers of adjacent hierarchical levels, and the communication and computational
aspect of the different hierarchical layers.
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6.10 Further Reading

The reader is advised to read the following chapters of this book on other aspects of
control of distributed systems: Chapter 7 An Overview of Synchronous Communica-
tion for Control of Decentralized Discrete-Event Systems, and Chapter 8 Coordina-
tion Control of Discrete-Event Systems.

Books and lecture notes. The lecture notes of W.M. Wonham, see the Chapters 4,
5, and 6 of [58]. These are available on the web, see http://www.control.
utoronto.ca/˜wonham/. For a book on supervisory control of decentralized
DES, see [4, Chapter 3].

Decentralized control. The problem of decentralized control of discrete-event
systems was formulated in [5]. The concept of coobservability and the theorem that
it is equivalent to existence of a decentralized supervisor is due to [39]. The algo-
rithm to check coobservability is described in [37]. The space complexity of the
algorithm and related matters were investigated in [33, 34, 35]. Early papers on de-
centralized control include [23, 22, 24, 18]. Other papers on decentralized control
include [11, 19, 29, 42, 56, 59].

Decentralized control for non DES. To assist the reader, there follow several ref-
erences on decentralized control of systems which are not discrete-event systems.
Books on decentralized control include [6, 45, 46]. Survey papers are [10, 41]. Pa-
pers on complexity of decentralized control problems include [52, 2].

Hierarchical control of hierarchical discrete-event systems. The concept of a hi-
erarchical system is rather old. In artificial intelligence the study of these systems
was stimulated by Herbert Simon. An early framework for hierarchical DES was
proposed in [9] and is called state charts. Other references on the hierarchical con-
trol synthesis of DES include [61, 47]. The approach of hierarchical and distributed
DES is described in [44, 43].

Asynchronous timed DES. There are engineering distributed systems in which
each subsystem has its own clock and the clocks may drift with respect to each other.
An example is a set of audio equipment consisting of a tuner, a CD player, and an
amplifier, see the paper [3]. An approach to diagnosis of distributed asynchronous
systems is described in [1]; see also [32].
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45. Šiljak, D.D.: Decentralized Control of Complex Systems. Academic Press, New York
(1990)



126 J. Komenda, T. Masopust, and J.H. van Schuppen
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Chapter 7
An Overview of Synchronous Communication
for Control of Decentralized Discrete-Event
Systems

Laurie Ricker

7.1 Introduction

Communication plays a crucial role in the operation of many large decentralized and
distributed systems. In the classical formulation of the decentralized discrete-event
control problem, there are no communication channels between controllers. Recall
that decentralized controllers have only a partial observation of system behavior,
and thus, for each controller, there is some uncertainty as to the precise state of
the system. When a global disablement decision must be taken, a control strategy
succeeds if there is at least one controller, with the ability to take the decision that
can unambiguously determine that disablement is the correct decision. If no such
controller exists, then there is no control solution.1 To ameliorate this situation,
communication between controllers can occur when the communicated information,
in tandem with local observations, allows all the correct control decisions to be
taken.

The role of communication has been investigated within the context of synthesiz-
ing control strategies for decentralized discrete-event systems. This chapter presents
a brief overview of some of the ways in which communication protocols have been
incorporated into the decentralized control domain.

Some of the fundamental issues for incorporating communication into decentral-
ized control problems were identified in [12]. In particular, the answers to these
questions affect the model design and the subsequent synthesis of control and com-
munication solutions (adapted from [12] ):

Laurie Ricker
Department of Mathematics & Computer Science, Mount Allison University,
Sackville, NB Canada
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1 Note that all discussions about decentralized control in this chapter are made with respect
to the C&P decentralized architecture of Rudie and Wonham [11]. Analogous statements
can be made for the D&A architecture of Yoo and Lafortune [17].
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• Why should communication be introduced?
• Who should communicate with whom and when?
• What information should be communicated?
• Who should know what and when?

With inspiration from the work by Witsenhausen [15], the initial proposals for in-
formation structures with which the above questions can be addressed, focussed
primarily on controllers either keeping track of estimates of sequences, based on
observed strings [14, 16], or keeping track of state estimates of the system, based on
observed strings [2, 10].

We will examine two approaches to the synthesis of communication protocols:
state-based communication and event-occurrence communication. In each case, the
communication is presumed to take place with zero delay, i.e., synchronous commu-
nication. The literature includes some preliminary examination of communication
with non-zero delay [6, 13]; however, the communication protocol under consider-
ation requires no synthesis as every observation of a controller is communicated to
all other controllers. For the development of communication protocols beyond syn-
chrony in distributed control architectures, some considerations and possible future
directions are presented in [3].

7.2 Notation and Definitions

We assume that the uncontrolled system is described by a finite automaton GL =
(Q,E,δ ,q0) — with finite state set Q, finite alpabet E , partial transition function
δ : Q×E → Q, and initial state q0 — which generates a regular language L. The
corresponding specification automaton GK = (QK ,E,δ K ,q0), where QK ⊆ Q and
δ K ⊆ δ , generates a language K ⊆ L. Alternatively, we denote the transition set of
L by T , and the transition set of K by T K ⊆ T . The prefix closure of a language L is
defined as follows: L := {s ∈ E∗ | ∃t ∈ E∗ such that st ∈ L}. We assume, for the rest
of this chapter, that all languages are prefix-closed. To discuss decentralized control
for a set of controllers I = {1, . . . ,n}, the event set E is partitioned into controllable
events Ec and uncontrollable events Euc. Similarly, E is partitioned into observable
events Eo and unobservable events Euo. To describe events that each decentralized
controller i∈ I controls and observes, respectively, we use the notation Ec,i ⊆ Ec and
Eo,i ⊆ Eo. (The transition set T can similarly be partitioned into Tc and To, based on
the controllable and observable properties of the transition labels.) We refer to the set
of controllers that observe e∈ Eo by Io(e) := {i∈ I | e∈Eo,i}. Analogously, we refer
to the set of controllers that control e ∈ Ec by Ic(e) := {i ∈ I | e ∈ Ec,i}.The natural
projection describing the partial view of each controller is denoted by πi : E∗ →E∗o,i,
for i ∈ I.

A decentralized controller is an automaton Si, for i ∈ I, (see Fig. 7.1) that has
only a partial view of the system behavior. Each controller issues its own local con-
trol decision based on its current view of the system and a final control decision is
taken by fusing or combining all the local decisions with a particular fusion rule. The
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rule varies depending on the decentralized architecture in use. We can synthesize de-
centralized controllers that cooperate to ensure that the supervised system generates
exactly the behavior in the specification K if K is controllable (Definition 7.1) and
satisfies one of the versions of co-observability (Definition 7.2 or 7.3).

Definition 7.1. A language K ⊆ L is controllable wrt L and Euc if KEuc∩L⊆ K.

Definition 7.2. A language K ⊆ L = L is unconditionally co-observable [11] with
respect to L, πi, and Ec if

∀t ∈ K,∀σ ∈ Ec : tσ ∈ L\K⇒∃i ∈ Ic(σ) : π−1
i [πi(t)]σ ∩K = /0.

In this scenario, decentralized controllers take local control decisions based on their
partial observations and there must be at least one controller that has sufficient in-
formation from its own view of the system to take the correct control decision when
the system leaves K (i.e., to disable) for each σ ∈ Ec. When I = {1}, this condition
is called observability.

Definition 7.3. A language K ⊆ L = L is conditionally co-observable [18] with re-
spect to L, πi, and Ec, if

∀t ∈ K,∀σ ∈ Ec : tσ ∈ L\K⇒ ∃i ∈ Ic(σ) : ∀t ′σ ∈ π−1
i [πi(t)]σ ∩K⇒

∃ j ∈ Ic(σ) : π−1
j [π j(t

′)]σ ∩L⊆ K.

In this scenario, decentralized controllers that are incapable of taking the correct
disable decision can infer that there is at least one controller that will correctly know
when the system remains in K (i.e., to take an enable decision), leaving the uncertain
controller with the opportunity to take a conditional control decision “disable unless
another knows to enable”. That is, the enable decision, if taken by one controller,
overrides conditional decisions of any of the other controllers.

When K is neither unconditionally nor conditionally co-observable but is observ-
able, it may be possible to construct a communication protocol between controllers
such that when communication occurs all the correct control decisions are taken.

Definition 7.4. A language K ⊆ L = L is articulate wrt L, πi and Ec if

(∃t ∈ K)(∃σ ∈ Ec)tσ ∈ L\K⇒
⋂

i∈Ic(σ)

π−1
i [πi(t)]σ ∩K 
= /0.

This property corresponds to a complete absence of information that is available
to be inferred from other controllers in Ic(σ), thereby leaving communication as
the only means of acquiring information from which to take the correct control
decisions.

To discuss the various approaches to synthesizing communication protocols, we
will refer to the following common terminology. Communicating controllers can
be any controller in I. For simplicity, unless otherwise stated, we assume point-to-
point communication, i.e., controller i sends a message to controller j, for i, j ∈ I.
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Although the content varies from one approach to another, we refer to the finite
set of messages involved in a communication protocol by Δ := ∪i∈IΔi, where Δi is
the set of messages that controller i sends out to other controllers as directed by its
communication protocol.

Definition 7.5. A communication protocol for decentralized controller i is μ !
i j : L→

Δi ∪{ε} and represents the information that controller i sends to controller j fol-
lowing the occurrence of some sequence s ∈ L. The information that controller i
receives from controller j, following the occurrence of some sequence s ∈ L is de-
noted by μ?

i j : L→ Δ j ∪{ε}.

When μ?
i j(s) 
= ε , we can construct an alphabet of received information E?

i ⊆ Eo \
Eo,i. To incorporate the received information into the observed information of a
controller, we extend the natural projection as follows: π?

i : E∗ → (Eo,i ∪E?
i )
∗, for

i ∈ I. As a consequence, communicating controllers take local control decisions
based on π?

i (L).
The decentralized architecture that we will assume for this chapter is shown in

Fig. 7.1. The decentralized control problem that we will consider is described below.

Problem 7.1. Given regular languages K,L defined over a common alphabet E ,
controllable events Ec ⊆ E , observable events Eo,1, . . . ,Eo,n ⊆ E , and a finite set
of messages Δ . We assume that K ⊆ L ⊆ E∗ is controllable wrt L,Euc, observ-
able wrt L,π ,Ec and articulate wrt L,πi,Ec. Construct communication protocols
M!

i = 〈μ !
i,1, . . . , μ !

i, j, . . . ,μ !
i,n〉 (for i, j ∈ I) such that either

1. K is unconditionally co-observable wrt L, π?
i (for i ∈ I), and Ec; OR

2. K is conditionally co-observable wrt L, π?
i (for i ∈ I), and Ec. �

We will examine two main approaches to this problem: when messages are state
estimates (i.e., Δi ⊆ Pwr(Q)) and when messages are constructed from event occur-
rences (i.e., Δi ⊆ Eo,i or Δi ⊆ To,i). In particular, we consider only approaches which
synthesize a communication protocol, as opposed to approaches which assume that
part of the input is a set of communications that must be subsequently reduced to
satisfy some notion of optimality.

The motivation for introducing communication is independent of the message
content or the mode of communication: in the techniques examined here, communi-
cation is introduced to eliminate illegal configurations from the finite state structure
used to determine whether K is co-observable wrt the natural projection that has
been updated to include each controller’s received messages.

Example 7.1. We will use the following example (from [9]) to illustrate different
ways to synthesize a decentralized communication protocol. The joint automaton
for GL and GK is shown in Fig. 7.2. Here, we assume that I = {1,2}, E = {a,b,c,σ}
such that Eo,1 = {a,c,σ} and Eo,2 = {b,σ}. Further, Ec = {σ}, where Ec,1 = {σ}
and Ec,2 = /0. Note that K is neither unconditionally nor conditionally co-observable.
Since Ic(σ) = {1}, we just need to check the co-observability definitions wrt con-
troller 1. For the former case, let t = ac then π−1

1 [π1(t)]σ = {acσ ,bacσ}. To satisfy
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GL

H(π(t)) = ⊗i∈Ihi(π?
i (t))

t ∈ L

μ !
1(t)

μ !
i (t)

μ !
n(t)

μ?
1(t)

μ?
i (t)

μ?
n(t)

S1 Si Sn

Communication channel

h1(π?
1(t))

hi(π?
i (t))

hn(π?
n(t))

π?
1 (t) π?

i (t) π?
n (t)

Fig. 7.1 Decentralized architecture for communication and control, where decentralized con-
trollers Si (for i∈ I) make control decisions hi(t) that are combined by a fusion rule (denoted
here by ⊗) to produce a global control decision H(t) to either enable or disable events after
observing sequence t generated by GL and receiving communication from other controllers

01
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c
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σ

c

Fig. 7.2 Automata for joint GL (all transitions) and GK (only solid-line transitions). Initial
state is underlined

unconditional co-observability, {acσ ,bacσ}∩K must be empty; however, the in-
tersection is {bacσ}. It is trivial to show that K is not conditionally co-observable.
It suffices to note that Ic(σ) = {1} and thus there is no other j ∈ Ic(σ) to take
correctly the enable decisions regarding σ . It remains to show that K is articulate.
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Again, this follows in a straightforward manner from K not being unconditionally
co-observable. Let t = ac. Then ∩i∈Ic(σ)π−1

i [πi(ac)]σ ∩K = {bacσ} 
= /0. �

We synthesize communication protocols using this example as illustrated by two
state-based approaches described in [2] and [9] and the event-occurrence approach
introduced in [8].

7.3 State-Based Communication Protocols

When the communication protocol features messages that consist of local infor-
mation states (i.e., local state estimates), there are two main synthesis approaches
that have been proposed. The central idea is straightforward: build a finite struc-
ture that contains illegal configurations (i.e., states that correspond to violations of
co-observability). Identify states in the structure where communication would elim-
inate the illegal configurations (i.e., refine the structure so that such states are no
longer defined). The first approach requires an iterative update of the structure to
reflect the effect of each identified communication [2, 10], ideally converging to a
structure free of illegal configurations, whereas the second approach uses a much
larger structure which, by construction, takes into account the effect of communica-
tion at all states where the reception of a message improves the local state estimates
of the receiver and communications are chosen in such a way as to make illegal
configurations unreachable [9].

We begin with the communication strategy of [2], where we have taken the liberty
to adjust their notation for ease of comparison to the other models. To calculate the
information state for controller i at state q ∈ Q wrt Eo,i, we use the algorithm for
subset construction [7], which is based on the notion of ε-closure.

Definition 7.6. The ε-closurei(X), where X ⊆ Pwr(Q) and i∈ I, is the least set such
that

(i) X ⊆ ε-closurei(X);

(ii) ∀x ∈ ε-closurei(X),∀σ 
∈ Eo,i,(δ (x,σ) = x′ ⇒ x′ ∈ ε-closurei(X)).

When considering communication of information states, we build a structure V0 to
monitor the progress of automaton GL and each controller’s state-based partial view
of GL. To describe the transition function for V0, we also need to calculate the set of
states that can be reached in one step via a transition of an event σ from a given set
of states X ⊆ Pwr(Q):

stepσ (X) = {x′ ∈ Q | ∃x ∈ X such that δ (x,σ) = x′}.

Thus, in V0, a transition from (q,X1, . . . ,Xn,σ ′) to (q′,X ′1, . . . ,X
′
n,σ) via tran-

sition label σ ∈ E is defined as follows: δ (q,σ) = q; if σ ∈ Eo,i then X ′i =
stepσ (ε-closurei(Xi)), otherwise X ′i = Xi.
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There are several characteristics of V0 that set it apart from subsequent structures
described in this chapter. First, because communication is synchronous, for a given
state in the state set of V0, say (q,X1, . . . ,Xn,σ), the local state estimates for con-
troller i, namely Xi, do not include the ε-closurei of the incoming observation σ .
As a consequence, the initial state is always (0,{0}, ...,{0},ε). Second, the states
include the incoming transition σ to make clear which event observation triggers a
communication.

Formally, V0 = (X ,E,δV ,x0,Buncond ,Bcond), where the finite state set X ⊆ Q×
Pwr(Q)n×E; the transition function is δV : X ×E → X ; the initial state is x0 =
(q0,{q0}, . . . ,{q0},ε); Buncond ⊆ X is a set of illegal configurations that correspond
to violations of unconditional co-observability, where Buncond = {(q,X1, . . . ,Xn,γ)
∈ X | ∃σ ∈ Ec such that δ (q,σ) ∈ Q \QK and for all i ∈ Ic(σ) ∃q′ ∈ Xi such
that δ (q′,σ) ∈ QK}; and Bcond ⊆ X is an additional set of illegal configura-
tions that correspond to violations of conditional co-observability, where Bcond =
{(q,X1, . . . ,Xn,γ) ∈X | ∃σ ∈Ec such that δ (q,σ)∈QK and for all i∈ Ic(σ) ∃q′ ∈Xi

such that δ (q′,σ) ∈ Q\QK}.
For all three communication protocol synthesis approaches discussed here, the

common goal is to eliminate illegal configurations so that the resulting system sat-
isfies one of the notions of co-observability. Proofs of these theorems (in various
forms) can be found in the original papers [2, 8, 9].

Theorem 7.1. Buncond = /0⇔ K is unconditionally co-observable wrt L, π?
i , and Ec.

This theorem can be extended to include conditional co-observability, even though
only unconditional co-observability is considered in [2, 8, 9].

Theorem 7.2. Buncond 
= /0 and Bcond = /0⇔ K is conditionally co-observable wrt L,
π?

i , and Ec.

The structure V0 for Example 7.1 is shown in Fig. 7.3. Although Bcond = /0, there are
two illegal configurations: Buncond = {(2,{2,6},{0},c),((2,{2,6},{4},c))}. These
states are identified by their double box outline in Fig. 7.3.

The process for transforming V0 into a structure that contains no illegal configu-
rations begins by identifying communication states that will lead to the elimination
of illegal configurations by refining a controller’s set of local state estimates af-
ter taking into account communicated information. We first define the set of states
Ω ⊆ Q from which states in Q \QK are reachable. Let Ω = {q′ ∈ Q | ∃s1,s2 ∈
E∗ where δ (q0,s1) = q′ and δ (q′,s2) ∈ Q\QK}.

Definition 7.7. A state x = (q,X1, . . . ,Xn,σ) is a communication state if

∃i ∈ Io(σ) s.t. (Xi∩ (∩ j∈I\{i}ε-closure j(Xj)))\Ω = /0.

In [2] communication occurs “as late as possible” and thus the search for a com-
munication state begins at each b∈ Buncond . (Note that conditional control decisions
came about after [2] appeared; however, it is straightforward to extend the model to
detect violations of conditional co-observability.) If b is not suitable, then a back-
wards reachability is performed until a communication state is found. The proof of
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Fig. 7.3 The automaton V0 constructed from GL and GK in Fig. 7.2. Illegal configurations
are indicated by states with a double box. State where communication is initiated to resolve
illegal configuration 〈2,{2,6},{0},c〉 according to [2] is indicated by a �. States where com-
munication occurs to satisfy feasibility are indicated by a ��
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guaranteed existence of a communication state for each b ∈ Buncond can be found
in [2].

At a communication state, communication is initiated by a controller that has just
observed the most recently occurred event γ , as indicated by the event component
of the communication state. For simplicity, the initiator is fixed to be one of the
controllers in Io(γ). The initiator then broadcasts its information state to the others,
who respond by sending the initiator their information state. The communication
protocol for the sending and receiving of messages at a communication state x ∈ X ,
for sγ ∈ L such that δV (x0,sγ) = x, is defined as follows:

for initiator i ∈ Io(γ),∀ j ∈ I \ {i}, μ !
i j(sγ) = μ?

ji(sγ) = Xi,

μ !
ji(sγ) = μ?

i j(sγ) = ε-closure j(Xj).

The communication state in V0 wrt illegal configuration (2,{2,6},{0},c) for initia-
tor controller 1 is (2,{2,6},{0},c) itself. We can now specify the communication
protocol for V0: μ !

12(ac(acac)∗) = {2,6}, μ !
21(ac(acac)∗) = {0,1,2,3}.

It must be the case that communication occurs at all states that are indistinguish-
able to the initiator of the communication.

Definition 7.8. Two states are indistinguishable to initiator i if the incoming event
is identical and the local state estimate is the same:

(q,X1, . . . ,Xi, . . .Xn,γ)∼i (q
′,X ′1, . . . ,X

′
i , . . .X

′
n,γ
′)⇔ Xi = X ′i and γ = γ ′ ∈ Eo,i.

Thus, in addition to incorporating the effect of communication at a communication
state, one must also add the effect of communication at states that the initiator finds
indistinguishable from the communication state. This is called a feasible communi-
cation state.

There are two feasible communication states in V0 wrt com-
munication state (2,{2,6},{0},c), namely (6,{2,6},{4},c) and
(2,{2,6},{4},c). Extending the communication protocol for V0, we have
μ !

12((acac)∗bac((acbac)∗(acacbac)∗)∗) = {2,6} and μ !
12(ac(acac)+) = {2,6};

μ !
21((acac)∗bac((acbac)∗(acacbac)∗)∗) = {0..8} and μ !

21(ac(acac)+) = {0..8}.
When the controllers receive information after the occurrence of sγ ∈ L, they

update their local state estimates according to

(∀i ∈ I) Xi = Xi∩μ?
i,1(sγ)∩μ?

i,2(sγ)∩ . . . μ?
i,i−1(sγ)∩μ?

i,i+1(sγ)∩ . . .μ?
i,n(sγ).

This gives rise to the construction of a new version of V0, which we denote by V1,
where the effect of the communication is calculated and then propagated through the
calculation of a new state set and transition function, as well as an updated Buncond .

Taking into account the communication performed at the communication states
identified in V0, the next iteration V1 is shown in Fig. 7.4. In keeping with the no-
tational conventions in [2], the communication state and the transformed state after
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Fig. 7.4 The automaton V1 after the effects of the communication to eliminate illegal config-
uration 〈2,{2,6},{0},c〉 is taken into consideration. Additional communication states identi-
fied during this iteration are noted by a � whereas feasible communication states are indicated
by ��
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communication are shown as double states. Subsequent states in V1 are calculated
based on the post-communication state (the rightmost box of a double state). Note
that V1 still contains an illegal configuration. Thus, we must identify an additional
communication state by examining, states that precede the illegal configuration. It
can be verified that it is necessary to backtrack two states, to state (0,{0},{2,6},c),
to identify another communication state, where the initiator is controller 1. The
corresponding feasible communication state is (0,{0},{2},c).

The final iteration, V2, is shown in Fig. 7.5. Communication has resolved all
occurrences of illegal configurations. The communication protocol for the ini-
tiator controller 1 wrt V2 is μ !

12(ac) = {2,6}, μ !
12(((bacac)∗(acac)+)∗) = {0},

μ !
12((acac)∗bac((acbac)∗(acacbac)∗)∗)= {6}, μ !

12(((acac)∗(bacac)+)∗)= {0}.
The proof of convergence of this algorithm (i.e., that the iteration of V0 will termi-
nate in a finite number of steps) is presented in [2].

Synthesizing communication protocols using the results of [2] assumes that com-
munication to eliminate an illegal configuration occurs “as late as possible” and only
along sequences that eventually leave K. To explore a wider range of communication
opportunities, a different model was proposed in [9]. This model, denoted by W , is
more complex because, by construction, it explicitly contains communication and
subsequent effect of communication on the receiver’s information state, whenever
communication leads to the introduction of new information for a controller. As a
result, W is built only once and requires no further iterations; however, in the worst
case, it is significantly larger than V0. Other differences between the two models in-
clude the definition of an information state (the trailing incoming event is no longer
needed in states of W ) and communication occurs between a single sender and a
single receiver as a point-to-point communication and not as a two-way broadcast
between the initiator and the other controllers.

One of the most significant differences between the two models is the introduc-
tion of three different state types: ◦ represents an update state, � represents a con-
figuration state, and � represents a communication state. An update state reflects
the changes to information states as a result of a communication from sender i to
receiver j, thus avoiding the need for subsequent iterations of W . A configuration
state is equivalent to a state of V0 without the trailing incoming event. A communi-
cation state in the context of W encapsulates the information states just prior to a
message being sent from sender i to receiver j.

The second significant difference is the introduction of three different kinds of
transition labels: an update mapping, an event occurrence, and a communication
directive. An update mapping ϒ provides details of the mechanics of communica-
tion. In particular, given the event triggering the communication, the identity of the
sender, and the sender’s message (i.e., its local information state without ε-closure),
the update mapping indicates the identity of the receiver. For example, a transition
label of ϒ (b,2,{4}) = 1 means that at its information state {4}, the sender,
controller 2, will send information regarding the occurrence of event b (as encoded
by its information state {4}) to the receiver, controller 1. A communication directive
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Fig. 7.5 The automaton V2 after the effects of the communication to eliminate illegal config-
uration 〈2,{2,6},{2,6},c〉 is taken into consideration
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Φ simply indicates the identity of the sender and the receiver and is used to update
the information states after a communication occurs.

Formally, W = (R,E,δW ,r0,Φ,ϒ ,Buncond,Bcond), where the finite state set R⊆
({◦,�}∪ ({�}×E))×Q×Pwr(Q)n; the transition set is δW ⊆ R× (E∪Φ ∪ϒ )×
R; the initial state is r0 = 〈◦,q0,{q0}, . . . ,{q0}〉 ∈ R; the communication directive is
Φ ⊆ (I∪ /0)×(I∪ /0); the update mapping is ϒ : E× I×Pwr(Q)→ I∪ /0; Buncond ⊆ X
and Bcond ⊆ X are sets of illegal configurations, as defined previously for structure
V0.

Before continuing with a closer examination of the different transition and state
types, we first update the definition of ε-closure in light of received information. We
need to calculate the set of states that are reachable via unobservable events, with the
exception of those unobservable events that were just received in a communication.

Definition 7.9. The εεε-closurei,u(((XXX))), where X ⊆ Pwr(Q), i ∈ I and u ∈ I ∪ /0 is the
least set such that

(i) X ⊆ ε-closurei,u(X);

(ii) ∀x ∈ ε-closurei,u(X),∀σ 
∈ Eo,i,(∀ j ∈ I,∃y⊆ Pwr(Q), i 
∈ u =ϒ (σ , j,y)) and

(δ (x,σ) = x′ ⇒ x′ ∈ ε-closurei,u(X)).

The three types of transitions—communications, updates, and a move of the
system—are now described in more detail.

1. An update transition goes from an update state to a configuration state:

〈◦,q,X1, . . . ,Xn〉 u−→ 〈�,q,X ′1, . . . ,X ′n〉,

where u ∈ I∪ /0,∀i ∈ I X ′i = ε-closurei,u(Xi).
2. A system transition goes from a configuration state to a communication state:

〈�,q,X1, . . . ,Xn〉 σ−→ 〈(�,σ),q′,X ′1, . . . ,X
′
n〉,

where δ (q,σ) = q′, and ∀i ∈ I (σ ∈ Eo,i ⇒ X ′i = stepσ (Xi)) and (σ 
∈ Eo,i ⇒
X ′i = Xi).

3. A communication transition goes from a communication state to an update state:

〈(�,σ),q,X1, . . . ,Xn〉
φ−→ 〈◦,q,X ′1, . . . ,X ′n〉,

where φ = (i, j) ∈ Φ such that σ 
∈ Eo, j (X ′j = stepσ (Xj)) and (∀i ∈ I \ { j},
X ′i = Xi).

Update transitions are unobservable to all i ∈ I. An update is merely an automatic
consequence of a communication. A communication transition is observable to the
sender and to the receiver j. We abuse notation and define the set of communications
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observable to controller i by Φi := {φ ∈ Φ | (φ = (i, j), for i 
= j) and
(φ = (k, i), for i 
= k)}.

To build a communication protocol for W we choose an update mapping at an up-
date state such that illegal configurations are unreachable. Having chosen a specific
update mapping transition (i.e., either a specific sender or no communication at all),
it is necessary to propagate this choice to the relevant communication state, making
the feasible choice for the communication directive. In lieu of pruning the transi-
tions not chosen at update states and at communication states, it may be simpler
to think of the update mapping and communication directives as being controllable
events only for the senders involved. Then by taking a choice of a particular update
mapping transition, the sender enables the chosen transition and simply disables all
others at that particular update state. The sender then follows a similar strategy at
communication states. Subsequently, the communication protocol M!

i for each i ∈ I
consists of all enabled communication directives.

Although, the construction of W assumes that there is a general pattern of update
state, followed by configuration state, followed by communication state, for every
transition in GK , we can substantially reduce the size of the model as follows. For
a given violation of conditional or unconditional co-observability, we will consider
update transitions and communication states for only those transitions that corre-
spond to events in Eo, j \Eo,i, for j ∈ I \ {i} and i ∈ Ic(σ).

Figure 7.6 shows W for Example 7.1. Here, Buncond = {(�,2, {2,6},
{0,1,2,3}),(�,2, {2,6}, {0..8})}, and, as before, are indicated by a double
box. By enabling the update mapping transition ϒ (b,2,{4}) = 1 at update state
(◦,0,{0},{0}), the illegal configuration (�,2, {2,6}, {0,1,2,3}) is no longer
reachable. As a consequence, at communication state (�,b,4,{0},{4}), controller
2 must choose to communicate to controller 1, as indicated by the mapping transi-
tion, thereby enabling communication directive (2,1).

To satisfy feasibility, controller 2 must also choose to communicate to controller
1 at communication state (�,b,4,{0,4},{4}). To ensure that all other communica-
tion directives are consistent with these two communication directives, i.e., when
controller 2 has a local state of {4} after the occurrence of event b. Thus, controller
2 must enable any transition ϒ (b,2,{4}) = 1 at any other update state that has such
an outgoing transition label. Hence, ϒ (b,2,{4}) = 1 is enabled at update states
(◦,4,{4},{4}), (◦,0,{0},{0..8}), (◦,4,{0},{4}) and (◦,4,{0,4},{4}); however,
by enabling transition (2,1) at each of the communication states, the update states
(◦,4,{0},{4}) and (◦,4,{0,4},{4}) become unreachable, even though their out-
going transition ϒ (b,2,{4}) = 1 is enabled.

Thus, for Example 7.1, μ !
12(L) = /0 and μ !

21(((acac)∗b)+) = {4}, and for all
s ∈ L\ ((acac)∗b)+, μ !

21(s) = /0, where we interpret the message /0 to correspond to
silence. The behavior of W operating under communication protocol M! is shown
in Fig. 7.6 by the collection of transitions in bold.
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Fig. 7.6 The structure W (all transitions) for the automaton in Fig. 7.2. The collection of
transitions in bold represent W operating under communication protocol M!. The communi-
cation protocol M! is indicated by the collection of transitions with double arrowheads
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7.4 Event-Based Communication Protocols

The strategy for synthesizing communication protocols based on the communica-
tion of event occurrences to distinguish sequences in L \K from those in K is sig-
nificantly different from the information state strategy. Like V0 and W , the structure
U described below is finite-state. Like V0 there is only one type of state and one
type of transition label; however, it is this set of transition labels that distinguish U
from the other models.

The alphabet of U is based on vector labels of [1]. To begin the construction of
the alphabet, we use an augmented set of controllers I0 = {0}∪ I, where 0 repre-
sents the system. As well, we use an augmented alphabet Eε = {ε}∪E . A label
� : I0 −→ Eε is a mapping from each controller to either an event from E or ε . We
will sometimes refer to the ith element of label � = 〈�(0), �(1), . . . , �(n)〉 by �(i),
where i ∈ I0. The empty label is 〈ε, . . . ,ε〉, i.e., for all i ∈ I0, �(i) = ε .

Labels are generated from a given finite set of atoms denoted by A. The set of
atoms is defined as the union of the following sets of labels, based on the observ-
ability of events in E:

• σ ∈ Euo,i⇒ �(i) = σ and ∀ j ∈ I0 \ {i}, �( j) = ε; and
• ∀i ∈ I0 s.t. σ ∈ Eo,i⇒ �(i) = σ , otherwise �(i) = ε .

The set of atoms for Example 7.1 is A = {〈a,a,ε〉, 〈ε,ε,a〉, 〈b,ε,b〉, 〈ε,b,ε〉,
〈c,c,ε〉, 〈ε,ε,c〉}. We define Aε := A∪{〈ε, . . . ,ε〉}.

We require the following three properties of labels.

Definition 7.10. Two labels �1, �2 are compatible, denoted by �1 ↑ �2, iff ∀i ∈
I0, �1(i) = ε or �2(i) = ε or �1(i) = �2(i).

Definition 7.11. The least upper bound of two compatible labels, denoted by �1∨�2,
is computed as follows.

∀i ∈ I0,(�1∨ �2)(i) =

⎧
⎪⎨

⎪⎩

�1(i), if �1(i) 
= ε;

�2(i), if �2(i) 
= ε;

ε, otherwise.

Definition 7.12. Two labels, �1 and �2, are independent, denoted �1|�2, iff ∀i ∈
I0 �1(i) = ε or �2(i) = ε.

The alphabet for U is the least upper bound of compatible elements in Aε :

A := {a∨ � | a ∈ Aε , � ∈A and a ↑ �}.

To construct U , we build an augmented version of GL and GK as follows. Update
their alphabets to be E∪{ε} and add a self-loop of ε at each state of QL and QK . We
refer to the augmented automaton as Gε

L and Gε
K . We replace δ and δK with T and

T K , the transition sets for GL and GK , respectively. Finally, we add a set of special
transitions that correspond to whether or not the transition is part of L\K or K: in GK
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we add FK := {(q,e,q′) ∈ T | ∃s ∈ K such that se ∈ K and (q0,s,q)(q,e,q′) ∈ T ∗K}
and in GL we add FL := T \FK . We continue by composing Gε

L with n copies of Gε
K ,

one for each decentralized controller:

U = Gε
L×

n

∏
i=1

Gε
K = (X ,A,T U ,x0,Buncond,Bcond),

where (x(0),x(1), . . . ,x(n)) ∈ X ⊆ (Q)n+1; A is a finite alphabet of labels; the tran-

sition relation T U is defined according to: x
�−→ x′ ∈ T U iff � ∈ A and ∀i ∈ I0,

x(i)
�(i)−−→ x′(i) ∈ T ; the initial state x0 = (q0)

n+1; and Buncond,Bcond ⊆ T U , where the
set of illegal configurations wrt transitions that correspond to violations of uncondi-

tional co-observability is Buncond := {x �−→ x′ ∈ T U | x(0) �(0)−−→ x′(0) ∈ FL and (∀i ∈
Ic(�(0)))x(i)

�(i)−−→ x′(i) ∈ FK} and the set of illegal configurations wrt transitions

that correspond to violations of conditional co-observability is Bcond := {x �−→ x′ ∈
T U | |Ic(�(0))|> 1 and x(0)

�(0)−−→ x′(0)∈FK and (∀i∈ Ic(�(0)))x(i)
�(i)−−→ x′(i)∈ FL}.

The resulting U structure for Example 7.1 has 1513 states, 54 labels, and 3929
transitions. As was the case for the corresponding V0 and W , in U , Bcond =
/0; however, Buncond = {〈(1,5,2),〈σ ,σ ,σ〉,(2,6,2)〉,〈(1,5,6),〈σ ,σ ,σ〉,(2,2,6)〉}.
The portion of U containing the transitions in Buncond is shown in Fig. 7.7.

A communication protocol M! is synthesized using U by choosing transitions
representing potential communications. We rely on an architectural property of U
that provides a straightforward means of identifying communication transitions:

Definition 7.13. (Adapted from [4].) The diamond/step property holds at x1 ∈ X if
there exist labels �1, �2 ∈ A that satisfy the following axioms:

(i) x1
�1−→ x2,x1

�2−→ x3 ∈ T U and �1|�2⇒ x1
�1∨�2−−−→ x4 ∈ TU [Forward step];

(ii) x1
�1∨�2−−−→ x4 ∈ T U and �1|�2⇒ x1

�1−→ x2,x2
�2−→ x4 ∈ TU [Step decomposition];

(iii) x1
�1−→ x2,x2

�2−→ x4 ∈ T U and �1|�2⇒ x1
�1∨�2−−−→ x4 ∈ TU [Independent step].

Definition 7.14. A communication transition for (b, �,b′) ∈ Buncond ∪Bcond wrt i ∈
Ic(�(0)) is a transition x1

�1∨�2−−−→ x4 ∈ T U such that x1, �1, and �2 satisfy the forward
step axiom (axiom (i) of Definition 7.13) where �1(0), �2(i) ∈ Eo \Eo,i, and ∃s ∈ A

∗

such that x4
s−→ b.

At a communication transition for some illegal configuration b ∈ Buncond ∪Bcond ,
we interpret label �1 as the occurrence and observation of event �1(0), an event that
is not observed by controller i, and �2 controller i’s “guess” that �1(0) has occurred.
A label for an unobservable event for controller i acts merely as a placeholder. Then
�1∨ �2 represents the synchronous communication to controller i that �1(0) has just
occurred. Thus, by choosing this communication transition, the two other transitions
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Fig. 7.7 A portion of U that contains all the illegal configurations for the example from
Fig. 7.2. Initial state is underlined. Transitions in Buncond are denoted by a dashed/dotted line
(red). Potential communication transitions are indicated in bold (blue)
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Fig. 7.8 Result of pruning the portion of U from Fig. 7.7. The transitions in Buncond are no
longer reachable
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must be pruned from U . That is, when we prune x1
�1−→ x2 and x1

�2−→ x3, we must

prune all transitions x′
�1−→ x′′ such that x′(i) = x1(i), x′′(i) = x2(i) and all transitions

x′
�2−→ x′′′ such that x′(i) = x1(i), x′′′(i) = x3(i).

There is only one communication transition in U , namely (0,0,0)
〈b,b,b〉−−−−→

(4,4,4). We prune (0,0,0)
〈ε,b,ε〉−−−−→ (0,4,0) and (0,0,0)

〈b,ε,b〉−−−−→ (4,0,4). It is now

the case that illegal configuration (1,5,2)
〈σ ,σ ,σ〉−−−−→ (2,6,2) is unreachable. Pruning

of (0,0,4)
〈b,b,b〉−−−−→ (0,4,4) and (0,0,5)

〈b,b,b〉−−−−→ (0,4,5) makes the other illegal con-

figuration (1,5,6)
〈σ ,σ ,σ〉−−−−→ (2,2,6) unreachable.

To ensure that communication in U is feasible, we must also choose communi-
cation transitions at states of U that are indistinguishable to the sender.

Definition 7.15. Two states x = (x(0), . . . ,x(n)), x′ = (x′(0), . . . ,x′(n)) ∈ X are in-
distinguishable to controller i, denoted x ∼i x′, where ∼i is the least equivalence
relation such that
i. x

〈�(0),...,�(i)=ε ,...,�(n)〉−−−−−−−−−−−−−→ x′ ⇒ x∼i x′;

ii. x
〈ε,...,ε,�(i) 
=ε,ε,...,ε〉−−−−−−−−−−−−→ x′ ⇒ x∼i x′;

iii. if x∼i x′ and (x, �,x′′),(x′, �,x′′′) ∈ T U ⇒ x′′ ∼i x′′′.

As there is only one potential communication transition in U in Fig. 7.7, there
are no additional communications that must be identified to satisfy feasibility. The
final communication protocol is μ !

12(L) = ε and μ !
21(((acac)∗b)+) = b whereas

μ !
21(L\ ((acac)∗b)+) = ε .

7.5 Further Reading

Although this chapter has focussed on communication protocol synthesis for con-
trol, there are additional strategies to calculate optimal communication sets from a
given set of communications. This literature focuses on state disambiguation, where
the analysis is performed on the original state space (in contrast to the synthesis tech-
niques presented in this chapter). The problem of dynamic sensing is also closely
related to the synthesis of decentralized communication protocols, where one can
think of turning a sensor on and off as equivalent to communicating an event occur-
rence. Finally, communication has been examined in the context of decentralized
diagnosis. Some representative papers are noted below.

• K. Rudie, S. Lafortune and F. Lin, ”Minimal Communication in a Distributed Discrete-
Event System”, IEEE Trans. Autom. Control, vol. 48, no. 6, 957–975, 2003.

• W. Wang, S. Lafortune and F. Lin, ”Minimization of Communication of Event Occur-
rences in Acyclic DES,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2197–2202,
2008.

• F. Cassez and Tripakis, S., “Fault Diagnosis with Static and Dynamic Observers,” Funda-
menta Informaticae, vol. 88, no. 4, pp. 497–540, 2008.
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• R. Debouk, S. Lafortune and D. Teneketzis, “Coordinated Decentralized Protocols for
Failure Diagnosis of DES,” Discrete Event Dyn. S., vol. 10, no. 1/2, pp. 33–86, 2000.

• Qiu, W. and Kumar, R., “Distributed Diagnosis Under Bounded-Delay Communication of
Immediately Forwarded Local Observations,” IEEE Trans. Sys. Man Cyber Part A, vol.
38, no. 3, pp 628–643, 2008.
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Chapter 8
Coordination Control
of Distributed Discrete-Event Systems

Jan Komenda, Tomáš Masopust, and Jan H. van Schuppen

8.1 Introduction

This chapter discusses supervisory control of distributed discrete-event systems with
a coordinator. Discrete-event systems represented as finite automata have been stud-
ied by P.J. Ramadge and W.M. Wonham in [21]. Large discrete-event systems are
typically formed as a synchronous composition of many small components (sub-
systems) that are modeled by finite automata and run in parallel. Such systems are
called distributed. The aim of supervisory control is to ensure that the control ob-
jectives are satisfied by the closed-loop system. As only controllable specifications
can be achieved, one of the key issues is to compute the supremal controllable sub-
language of a given specification from which the supervisor can be constructed.

Supervisory control of distributed discrete-event systems with a global specifi-
cation and local supervisors is a difficult problem. There exist restrictive condi-
tions under which distributed control is maximally permissive, hence we introduce
the coordination control architecture to handle the general case. In a coordinated
distributed discrete-event system, one distinguishes a coordinator and two or more
subsystems. The coordinator directly influences the dynamics of the other subsys-
tems but the subsystems do not directly influence each other. Coordination con-
trol of a distributed system is to synthesize supervisors for the coordinator and for
each subsystem so that the closed-loop system meets the specification. A neces-
sary and sufficient condition on a specification to be achieved in the coordination
control architecture is presented. Moreover, the supremal conditionally-controllable
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sublanguage of a given specification always exists and is included in the supremal
controllable sublanguage. A procedure for its computation is proposed.

8.2 Definitions

Discrete-event systems are modeled as deterministic generators that are finite au-
tomata with partial transition functions. In this chapter, the notion of a language
stands for a regular language, see Chapters 2, 3, 4, 6 for more details.

A generator is a quintuple G = (Q,E, f ,q0,Qm), where Q is a finite set of states,
E is a finite set of events, f : Q×E → Q is a partial transition function, q0 ∈ Q is
the initial state, and Qm ⊆ Q is a set of marked states. Usually, f is extended to f̂ :
Q×E∗ →Q so that f̂ (q,ε) = q and f̂ (q,aw) = f̂ ( f (q,a),w), for a∈ E and w ∈ E∗.
The language generated by G is defined as the set L(G) = {s ∈ E∗ | f̂ (q0,s) ∈ Q},
and the marked language of G as the set Lm(G) = {s ∈ E∗ | f̂ (q0,s) ∈Qm}. The set
of all reachable events of G, denoted by Er(G), is defined as the set Er(G) = {e ∈
E | ∃s1,s2 ∈ E∗, s1es2 ∈ L(G)}.

For two sets E0⊆ E , a (natural) projection P : E∗ → E∗0 is a morphism defined by
P(a) = ε , for a∈E \E0, and P(a) = a, for a∈ E0. The inverse image P−1 : E∗0→ 2E∗

of P is defined as P−1(a) = {s ∈ E∗ | P(s) = a}. These definitions can be extended
to languages in a natural way. Given sets Ei, E j, Ek, E�, we denote by Pi+ j

k∩� the
projection from Ei∪E j to Ek∩E�. We use the notation Ei+ j = Ei∪E j.

The synchronous product of two languages L1 ⊆ E∗1 and L2 ⊆ E∗2 is defined as
L1‖L2 = P−1

1 (L1)∩P−1
2 (L2) ⊆ (E1 ∪E2)

∗, where Pi : (E1 ∪E2)
∗ → E∗i are projec-

tions, for i = 1,2.
For generators G1 = (Q1,E1,δ1,q0,1,Qm,1) and G2 = (Q2,E2,δ2,q0,2,Qm,2), the

generator G1‖G2 is defined as the accessible part of the generator (Q1×Q2,E1 ∪
E2,δ ,(q0,1,q0,2),Qm,1×Qm,2), where

δ ((x,y),e) =

⎧
⎪⎪⎨

⎪⎪⎩

(δ1(x,e),δ2(y,e)), if δ1(x,e) ∈ Q1 and δ2(y,e) ∈ Q2;
(δ1(x,e),y), if δ1(x,e) ∈ Q1 and e /∈ E2;
(x,δ2(y,e)), if e /∈ E1 and δ2(y,e) ∈ Q2;
undefined, otherwise.

It is known that L(G1‖G2) = L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).
A distributed discrete-event system is a concurrent system formed by the syn-

chronous product of several local subsystems. For simplicity, we consider only a
synchronous product of two subsystems in this chapter.

A controlled generator is a structure (G,Ec,Γ ), where G is a generator, Ec ⊆ E
is the set of controllable events, Eu = E \ Ec is the set of uncontrollable events,
and Γ = {γ ⊆ E | Eu ⊆ γ} is the set of control patterns. A supervisory control for
the controlled generator (G,Ec,Γ ) is a map v : L(G)→ Γ . A closed-loop system
associated with the controlled generator (G,Ec,Γ ) and the supervisory control v is
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defined as the minimal language L(v/G)⊆ E∗ satisfying (1) ε ∈ L(v/G) and (2) if
s ∈ L(v/G), a ∈ v(s), and sa ∈ L(G), then sa ∈ L(v/G).

In the automata framework, where the supervisory control v is represented by a
generator (supervisor), S, cf. Chapter 3, the closed-loop system can be recast as a
synchronous product of the supervisor and the plant, i.e., L(v/G) = L(S)‖L(G). In
what follows, for a supervisor S corresponding to a supervisory control v, we use
the notation L(S/G) = L(S)‖L(G) = L(v/G).

The prefix closure, prefix(L), of a language L is the set of all prefixes of all its
words; L is prefix-closed if L = prefix(L). Let L = prefix(L) ⊆ E∗ be a language
and Eu ⊆ E be a set of uncontrollable events. A language K ⊆ L is controllable with
respect to L and Eu if prefix(K)Eu∩L⊆ prefix(K).

Consider a language K = prefix(K) ⊆ E∗, the goal of supervisory control is to
find a supervisory control v and its corresponding supervisor S such that L(S/G) =
K. Such a supervisor exists if and only if K is controllable [21]. For uncontrol-
lable languages, supremal controllable sublanguages are considered. The notation
supC(K,L,Eu) denotes the supremal controllable sublanguage of K with respect to
L and Eu, which always exists and equals to the union of all controllable sublan-
guages of K [3]. In the following, we extend this notions to the case of distributed
discrete-event systems.

Definition 8.1 (Coordinator). A coordinator, denoted Gk, is a generator with the
specific control-theoretic task to coordinate the actions of the other subsystems (for
example, for safety, nonblockingness, etc.). In this paper, the focus is on coordina-
tors for safety.

Definition 8.2 (Conditional Independence). Generators G1 and G2 are condition-
ally independent with respect to a coordinator Gk if there is no common transition
of both G1 and G2 without the coordinator Gk being also involved in the global
system. In other words, Er(G1)∩Er(G2)⊆ Er(Gk).

Example 8.1. Database transactions are typical examples of discrete-event sys-
tems that should be controlled to avoid incorrect behaviors. Transactions are mod-
eled by a sequence of request (r), access (a), and write (w) events. Often, sev-
eral users access the database at the same time, which can lead to inconsistencies
when operations of different users are executed concurrently. Consider two users
and the corresponding events ri,ai,wi, for i = 1,2. Possible schedules are given
by the language {r1a1w1}‖{r2a2w2} of the generator G = G1‖G2 over the event
set E = {r1,r2,a1,a2,w1,w2}, where G1 and G2 are defined as in Fig. 8.1, and
Ec = {a1,a2,w1,w2} is the set of controllable events. Then Er(G1) = {r1,a1,w1}
and Er(G2) = {r2,a2,w2}. This means that for this example, G1 and G2 are condi-
tionally independent for any Gk because Er(G1)∩Er(G2) = /0⊆ Er(Gk). �

Definition 8.3 (Conditional Decomposability). A language K ⊆ (E1∪E2∪Ek)
∗ is

conditionally decomposable with respect to event sets E1, E2, Ek if it can be written
as K = P1+k(K)‖P2+k(K)‖Pk(K).
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Fig. 8.1 Generators G1 and G2

Note that there always exists an event set Ek with the corresponding projection Pk :
(E1∪E2∪Ek)

∗ → E∗k such that K is conditionally decomposable with respect to E1,
E2, Ek. The choice Ek = E1∪E2 satisfies the property. However, preferably a smaller
subset Ek ⊂ E1 ∪E2 is chosen. Polynomial-time algorithms to verify whether K is
conditionally decomposable and to extend the event set Ek are discussed in [9].

Example 8.2. Consider Example 8.1. The specification language K, defined by the
generator depicted in Fig. 8.2, describes the correct behavior consisting in finishing
the transaction in the write stage before another transaction can proceed to the write
phase. For Ek = {a1,a2}, the language K is conditionally decomposable. �

Fig. 8.2 Generator for the specification language K

Lemma 8.1. A language M ⊆ E∗ is conditionally decomposable with respect to
event sets E1,E2,Ek if and only if there exist languages M1+k ⊆ E∗1+k, M2+k ⊆ E∗2+k,
Mk ⊆ E∗k such that M = M1+k‖M2+k‖Mk.

Proof. If M = P1+k(M)‖P2+k(M)‖Pk(M), define Mi+k =Pi+k(M), i= 1,2, and Mk =
Pk(M). On the other hand, assume that there exist languages M1+k ⊆ E∗1+k, M2+k ⊆
E∗2+k, and Mk ⊆ E∗k such that M = M1+k‖M2+k‖Mk. Obviously, Pi+k(M) ⊆ Mi+k,
i = 1,2, and Pk(M) ⊆Mk, which implies that Pk(M)‖P1+k(M)‖P2+k(M) ⊆M. As it
also holds that M⊆ P−1

i+k[Pi+k(M)], the definition of the synchronous product implies
that M ⊆ Pk(M)‖P1+k(M)‖P2+k(M). �

If K =M1‖M2‖Mk, then P1+k(K)⊆M1, P2+k(K)⊆M2, and Pk(K)⊆Mk. This means
that even though several languages Mi may exist in general, the triple P1+k(K),
P2+k(K), Pk(K) is the smallest decomposition of K.

Definition 8.4 (Coordinated System). Let G1 and G2 be two subsystems, and let
Gk be a coordinator. A coordinated discrete-event system is a composition of both
subsystems with the coordinator, i.e., the system G1‖G2‖Gk.

The fundamental question is the construction of a coordinator. One possible way is
presented in the following algorithm.
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Algorithm 8.3. (Construction of a Coordinator). Let G1 and G2 be two subsystems
over the event sets E1 and E2, respectively. Construct the event set Ek and the coor-
dinator Gk as follows:

1. Set Ek = Er(G1)∩Er(G2).
2. Extend Ek so that K is conditionally decomposable.
3. Define Gk = Pk(G1) ‖ Pk(G2).

The aim is to extend Ek so that the coordinator is minimal. However, the concept
of minimality of the coordinator needs to be investigated. Furthermore, projections
in Step 3 can be of exponential size. To overcome this, Ek can be further extended
to satisfy an observer property that ensures that the projections are smaller (see
Definition 8.6 and Theorem 8.2 below). An advantage of this choice is that the
coordinator does not change the original plant, that is, G1‖G2‖Gk = G1‖G2.

Example 8.4. Continue Example 8.2. For Ek = {a1,a2}, the condition of Step 2
is satisfied. Thus, the coordinator Gk can be chosen as Gk = Pk(G1)‖Pk(G2), see
Fig. 8.3. �

Fig. 8.3 Coordinator Gk

8.3 Problem Statement

The problem with the computation of the global system, G = G1‖G2‖ . . .‖Gn, com-
posed of n subsystems is that the number of states of G is up to exponential with
respect to the number of subsystems. Therefore, another (distributed) method must
be used. A natural method is to find supervisors Si so that Si/Gi meets the corre-
sponding part Pi(K) of the specification K. Unfortunately, this approach does not
work.

Example 8.5. Consider Example 8.2. Even if you could find supervisors S1 and S2

such that L(S1/G1) = P1(K) and L(S2/G2) = P2(K), these supervisors do not solve
the problem because L((S1‖S2)/(G1‖G2)) = P1(K)‖P2(K) � K, which shows that
the solution is not safe because it permits behaviors that are not in the specification
language K. �
Coordination control is useful for systems such as autonomous underwater vehicles,
uninhabited aerial vehicles, road networks, automated guided vehicles, complex ma-
chines consisting of many different sensors, actuators, and local control computers
(such as high-speed printers), see [19], or a paint factory that produces cups of col-
ored fluids, see [1].



152 J. Komenda, T. Masopust, and J.H. van Schuppen

Problem 8.1. Consider a distributed system G1‖G2, where G1 and G2 are genera-
tors over E1 and E2, respectively. Let Gk be a coordinator over Ek ⊇ E1 ∩E2. Let
K ⊆ L(G1‖G2‖Gk) be a prefix-closed specification. Assume that the coordinator Gk

makes G1 and G2 conditionally independent and that K is conditionally decompos-
able with respect to E1, E2, Ek. The problem is to determine supervisors S1, S2, Sk

for the respective generators so that the closed-loop system with the coordinator
satisfies

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)]) ‖ L(Sk/Gk) = K .

We consider only such supervisors for which it holds that L(Sk/Gk) ⊆ Pk(K),
L(S1/[G1‖(Sk/Gk)])⊆ P1+k(K), and L(S2/[G2‖(Sk/Gk)])⊆ P2+k(K). �

8.4 Coordination Control with Complete Observations:
Existence

Example 8.6. Consider event sets Ek = {a,b,e,ϕ}, E1 ∪ E2 = {a,d,e,ϕ} ∪
{b, f ,ϕ}, where the set of controllable events is Ec = {e,b,ϕ}. Define generators
G1, G2, and the coordinator Gk as in Fig. 8.4. Define the specification language K
as the behavior of the generator D given in Fig. 8.5. It can be verified that Gk makes
G1 and G2 conditionally independent and that K is conditionally decomposable with
respect to event sets E1, E2, Ek. �

Fig. 8.4 Generators G1, G2, and Gk

This section presents a condition for the existence of a solution.

Lemma 8.2. Exercise 3.3.7 in [27] Let Ek ⊆ E1∪E2 be such that E1∩E2 ⊆ Ek. Let
L1 ⊆ E∗1 and L2 ⊆ E∗2 be languages. Let Pk : (E1∪E2)

∗ → E∗k be a projection, then
Pk(L1‖L2) = Pk(L1)‖Pk(L2).

The following lemma shows that the synchronous product of a language with its
projection does not change the language.

Lemma 8.3. Let L⊆ E∗ be a language, Ek ⊆ E, and Pk : E∗ → E∗k be a projection.
Then L‖Pk(L) = L.
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Fig. 8.5 Generator D

Proof. As L⊆ P−1
k Pk(L), L‖Pk(L) = L∩P−1

k Pk(L) = L. �

The solution of Problem 8.1 uses the following concepts.

Definition 8.5 (Conditional Controllability). A prefix-closed language K is said to
be conditionally controllable for generators G1, G2, Gk and locally uncontrollable
event sets E1+k,u, E2+k,u, Ek,u, where Ei,u = Eu∩Ei, for i = 1+ k,2+ k,k, if

1. Pk(K) is controllable with respect to L(Gk) and Ek,u; equivalently,

Pk(K)Ek,u∩L(Gk)⊆ Pk(K) .

2. P1+k(K) is controllable with respect to L(G1)‖Pk(K)‖P2+k
k [L(G2)‖Pk(K)] and

E1+k,u; equivalently,

P1+k(K)E1+k,u∩L(G1)‖Pk(K)‖P2+k
k [L(G2)‖Pk(K)]⊆ P1+k(K) .

3. P2+k(K) is controllable with respect to L(G2)‖Pk(K)‖P1+k
k [L(G1)‖Pk(K)] and

E2+k,u; equivalently,

P2+k(K)E2+k,u∩L(G2)‖Pk(K)‖P1+k
k [L(G1)‖Pk(K)]⊆ P2+k(K) .

Definition 8.5 can be extended to more subsystems with one central coordinator,
whose event set contains all shared events. Conditions 2 and 3 then result in: Pi+k(K)
is controllable with respect to Pi+k(‖n

i=1L(Gi)‖Pk(K)) = ‖n
i=1Pi+k[L(Gi)‖Pk(K)] and

Ei+k,u.
If K is conditionally controllable, then there exists a supervisor Sk such that

Pk(K) = L(Sk/Gk) because Pk(K) is controllable. The conditions of Definition 8.5
can be checked by classical algorithms with polynomial computational complex-
ity with respect to the number of states discussed in Chapter 3. The complexity
of checking conditional controllability is thus less than that of the global system
G1‖G2‖Gk. This is because instead of checking controllability with the global spec-
ification and the global system, we check it only on the corresponding projections to
E1+k and E2+k. The projections are smaller when they satisfy the observer property
(see Definition 8.6 below).

The following theorem presents the necessary and sufficient condition on a spec-
ification language to be exactly achieved in the coordination control architecture.
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Theorem 8.1. Consider Problem 8.1. There exist supervisors S1, S2, and Sk such
that

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)]) ‖ L(Sk/Gk) = K (8.1)

if and only if K is conditionally controllable for generators G1, G2, Gk and locally
uncontrollable event sets E1+k,u, E2+k,u, Ek,u.

Proof. To simplify the notation, denote Li = L(Gi), i = 1,2,k, and L = L1‖L2‖Lk.
By Lemma 8.1, P(L) = P1+k(L)‖P2+k(L)‖Pk(L) because L = (L1‖Lk)‖(L2‖Lk)‖Lk,
which follows from the fact that the synchronous product is idempotent.

To prove sufficiency, let K ⊆ L be conditionally controllable. Then Pk(K)⊆ Lk is
controllable with respect to Lk, and there exists a supervisor Sk such that L(Sk/Gk) =
Pk(K) [20]. Furthermore, K ⊆ L implies P1+k(K) ⊆ L1‖Lk‖P2

k (L2), by Lemma 8.2.
This, together with P1+k(K) ⊆ (P1+k

k )−1Pk(K), Pk(K) ⊆ Lk, and P2
k (L2)‖Pk(K) =

P2+k
k (L2‖L(Sk/Gk)), implies the inclusion P1+k(K) ⊆ L1‖Pk(K)‖P2+k

k (L2‖Pk(K)).
By conditional controllability of K, there exists a supervisor S1 such that P1+k(K) =
L(S1/[G1‖(Sk/Gk)‖P2+k

k (G2‖(Sk/Gk))]), where for a generator H and a projection
P, P(H) denotes a generator such that L(P(H)) = P(L(H)). Similarly, there exists a
supervisor S2 such that L(S2/[G2‖(Sk/Gk)‖P1+k

k (G1‖(Sk/Gk))]) = P2+k(K). Since
L = L‖Pk(L), by Lemma 8.3, L(Gi‖(Sk/Gk)‖Pi+k

k (Gi‖(Sk/Gk))) = L(Gi‖(Sk/Gk)).
Notice that L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)]) ‖ L(Sk/Gk) = P1+k(K) ‖
P2+k(K) ‖ Pk(K) = K because K is conditionally decomposable. This proves (8.1).

To prove necessity, projections Pk, P1+k, and P2+k will be applied to (8.1). First,
note that K = L(S1‖S2‖Sk)‖L, which follows from (8.1) by replacing / with ‖,
and by the commutativity of the operation ‖. This yields Pk(K) ⊆ L(Sk)‖Lk =
L(Sk/Gk). On the other hand, recall that L(Sk/Gk) ⊆ Pk(K), cf. Problem 8.1.
Hence, L(Sk/Gk) = Pk(K), which means that Pk(K) is controllable with respect
to L(Gk), i.e., item (1) of Definition 8.5 is satisfied. Now, we prove item (2);
item (3) is symmetric. As E1+k ∩ E2+k = Ek, L(S2)‖L(G2‖(Sk/Gk)) = L(S2) ∩
L(G2‖(Sk/Gk)), because the components are over the same event set E2+k, and
P2+k

1+k = P2+k
k , we get that P1+k(K) ⊆ L(S1‖G1‖(Sk/Gk)‖P2+k

k (G2‖(Sk/Gk))) ⊆
L(S1)‖L(Sk)‖L1‖Lk = L(S1/[G1‖(Sk/Gk)]) ⊆ P1+k(K). Then, we can take the sys-
tem G1‖(Sk/Gk)‖P2+k

k (G2‖(Sk/Gk)) as a new plant, i.e., the language P1+k(K)

is controllable with respect to L(G1‖(Sk/Gk)‖P2+k
k (G2‖(Sk/Gk))). Thus, (2) is

satisfied. �

Example 8.7. Consider Example 8.6. Languages P1+k(K), P2+k(K), and Pk(K) are
controllable with respect to the plant languages L(G1)‖Pk(K)‖P2+k

k [L(G2)‖Pk(K)],
L(G2)‖Pk(K)‖P1+k

k [L(G1)‖Pk(K)], and L(Gk), respectively. Hence, there exist su-
pervisory controls v1, v2, and vk, and respective supervisors S1, S2, and Sk such
that the closed-loop languages equal the languages P1+k(K), P2+k(K), and Pk(K),
respectively, see Fig. 8.6. Thus, L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)]) ‖
L(Sk/Gk)) = K. �
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(a) P1+k(K). (b) P2+k(K). (c) L(Sk/Gk) = Pk(K).

Fig. 8.6 Supervisors Sk , S1, and S2

8.5 Coordination Control with Complete Observations:
Supremal Supervision

It may happen that a specification language K is not achievable using the coordina-
tion control scheme. By Theorem 8.1, this occurs whenever K is not conditionally
controllable. In this case, the supremal conditionally-controllable sublanguage is
considered.

This section presents a procedure for the computation of the supremal conditi-
onally-controllable sublanguage of the specification language K.

Lemma 8.4. [4] Consider event sets E =E1∪E2 and Eu⊆E. For i= 1,2, let Ki⊆Li

be prefix-closed languages such that Ki is controllable with respect to Li and Ei,u.
Then K1‖K2 is controllable with respect to L1‖L2 and Eu.

Proof. Let s ∈ K1‖K2, e ∈ Eu, and se ∈ L1‖L2, then Pi(s) ∈ Ki and Pi(se) ∈ Li.
For e ∈ Ei, Pi(se) = Pi(s)e ∈ Li. As Ki is controllable with respect to Li and Ei,u,
Pi(s)e ∈ Ki. For e /∈ Ei, Pi(se) = Pi(s) ∈ Ki. Thus, for any e ∈ Eu, se ∈ K1‖K2. �

Lemma 8.5 (Transitivity of Controllability). Let K ⊆ L⊆M be prefix-closed lan-
guages over E where K is controllable with respect to L and Eu, and L is controllable
with respect to M and Eu. Then K is controllable with respect to M and Eu.

Proof. By the assumptions, KEu∩L⊆K and LEu∩M⊆ L. To show that KEu∩M⊆
K, assume that s∈K, a∈Eu, and sa∈M. Then, K ⊆ L implies that s∈ L. As sa∈M,
it follows from the controllability of L with respect to M that sa∈ L. However, sa∈L
implies that sa ∈ K, by controllability of K with respect to L. �

The following properties (Definitions 8.6 and 8.7), adopted from hierarchical su-
pervisory control and introduced by K. C. Wong and W. M. Wonham [25], play a
significant role in the rest of this chapter.

Definition 8.6 (Observer Property). Let Ek ⊆ E be event sets. The projection Pk :
E∗ → E∗k is an L-observer for a language L ⊆ E∗ if the following holds: for all
strings t ∈ P(L) and s ∈ prefix(L), if P(s) is a prefix of t, then there exists u ∈ E∗

such that su ∈ L and P(su) = t, see Fig. 8.7.

If G is a generator with n states, then the time and space complexity of the verifica-
tion whether P is an L(G)-observer are both O(n2), see [18]. Moreover, there is an
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Fig. 8.7 Diagram of the concept of an L-observer (cf. [4])

algorithm with the time and space complexities O(n3) and O(n), respectively, that
enlarges the event set so that the projection becomes an L(G)-observer, see [4].

The most significant consequence of this definition is the following theorem.

Theorem 8.2. [18, 26] If the projection P is an L(G)-observer, for a generator G,
then the minimal generator for the language P(L(G)) has no more states than G.

The other property is the output control consistency condition.

Definition 8.7 (Output Control Consistency). The projection P : E∗ → E∗k , for
Ek ⊆ E, is output control consistent (OCC) for L ⊆ E∗ if for every s ∈ prefix(L) of
the form s=σ1σ2 . . .σ� or of the form s = s′σ0σ1 . . .σ�, �≥ 1, where σ0,σ� ∈Ek and
σi ∈ E \Ek, for i = 1,2, . . . , �−1, if σ� ∈ Eu, then σi ∈ Eu, for all i = 1,2, . . . , �−1.

The time and space complexities of the verification whether P is OCC for L are
O(n2) and O(n), respectively, see [4].

Existence of Supremal Supervisors

Theorem 8.3. The supremal conditionally-controllable sublanguage of a language
K exists and is equal to the union of all conditionally-controllable sublanguages
of K. The notation supcC(K,L,Eu) denotes the supremal conditionally-controllable
sublanguage of K with respect to L = L(G1‖G2‖Gk) and uncontrollable event sets
E1+k,u, E2+k,u, Ek,u.

Proof. Let I be an index set, and let Ki, i ∈ I, be conditionally-controllable sub-
languages of K ⊆ L(G1‖G2‖Gk) with respect to generators G1, G2, Gk and uncon-
trollable event sets E1+k,u, E2+k,u, Ek,u. We prove that ∪i∈IKi is conditionally con-
trollable by showing that the items of Definition 8.5 hold. (1) Language Pk(∪i∈IKi)
is controllable with respect to L(Gk) and Ek,u because Pk(∪i∈IKi)Ek,u ∩ L(Gk) =
∪i∈I(Pk(Ki)Ek,u∩L(Gk))⊆ ∪i∈IPk(Ki) = Pk(∪i∈IKi) where the inclusion is by con-
trollability of Pk(Ki) with respect to L(Gk) and Ek,u, for i ∈ I. (2) Note that,
L(G1)‖Pk(∪i∈IKi)‖P2+k

k [L(G2)‖Pk(∪i∈IKi)] = L(G1)‖Pk(∪i∈IKi)‖P2+k
k (L(G2)) be-

cause, by Lemma 8.2, P2+k
k [L(G2)‖Pk(∪i∈IKi)] = P2+k

k (L(G2))‖Pk (∪i∈IKi), and the
second element is already included in the equation. Thus, we need to show that
P1+k(∪i∈IKi)E1+k,u∩L(G1)‖Pk(∪i∈IKi)‖P2+k

k (L(G2))⊆ P1+k(∪i∈IKi). However,
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P1+k(∪i∈IKi)E1+k,u∩L(G1)‖Pk(∪i∈IKi)‖P2+k
k (L(G2))

=∪i∈I (P1+k(Ki)E1+k,u)∩∪i∈I [L(G1)‖Pk(Ki)‖P2+k
k (L(G2))]

=∪i∈I ∪ j∈I(P1+k(Ki)E1+k,u∩L(G1)‖Pk(Kj)‖P2+k
k (L(G2))) .

For the sake of contradiction, assume that there are two different indexes i, j ∈ I such
that P1+k(Ki)E1+k,u∩L(G1)‖Pk(Kj)‖P2+k

k (L(G2)) 
⊆ P1+k(∪i∈IKi). Then, there exist
x ∈ P1+k(Ki) and u ∈ E1+k,u such that xu ∈ L(G1)‖Pk(Kj)‖P2+k

k (L(G2)), and

xu /∈ P1+k (∪�∈IK�) . (8.2)

It follows that (i) Pk(x)∈PkP1+k(Ki)=Pk(Ki), (ii) Pk(xu)∈Pk(Kj), and (iii) Pk(xu) /∈
Pk(Ki). Namely, (i) and (ii) are clear and (iii) can be shown as follows. If Pk(xu) ∈
Pk(Ki), then xu ∈ L(G1)‖Pk(Ki)‖Pk(L(G2)), and by controllability of P1+k(Ki) with
respect to L(G1)‖Pk(Ki)‖Pk(L(G2)) we get xu ∈ P1+k(Ki) ⊆ P1+k (∪i∈IKi), which
does not hold by (8.2). Now, assume that u /∈ Ek,u. Then, Pk(xu) = Pk(x) ∈ Pk(Ki),
which does not hold. Thus, u ∈ Ek,u. As Pk(Ki) ∪ Pk(Kj) ⊆ L(Gk), we get that
Pk(xu) = Pk(x)u ∈ L(Gk). However, controllability of Pk(Ki) with respect to L(Gk)
and Ek,u implies that Pk(x)u = Pk(xu) is in Pk(Ki). This is a contradiction. (3) The
last item of the definition is proven in the same way. �

Computation of Supremal Supervisors

This subsection presents a procedure for the computation of supremal conditionally-
controllable sublanguages.

Theorem 8.4. [10] Let K ⊆ L = L1‖L2‖Lk be two prefix-closed languages over an
event set E = E1∪E2∪Ek, where Li ⊆ E∗i , i = 1,2,k. Assume that K is conditionally
decomposable, and define the languages

supCk = supC(Pk(K),Lk,Ek,u) ,

supC1+k = supC(P1+k(K),L1‖supCk,E1+k,u) ,

supC2+k = supC(P2+k(K),L2‖supCk,E2+k,u) .

Let the projection Pi+k
k be an (Pi+k

i )−1(Li)-observer and OCC for (Pi+k
i )−1(Li), for

i = 1,2. Then, supCk‖supC1+k‖supC2+k = supcC(K,L,Eu).

It follows from Theorem 8.4 and Lemma 8.1 that the supremal conditionally-
controllable sublanguage is conditionally decomposable. The consequence of this
is stated in the next result.

Theorem 8.5. In the setting of Theorem 8.4, the supremal conditionally-
controllable sublanguage supcC(K,L,Eu) of K is controllable with respect to L
and Eu, hence supcC(K,L,Eu)⊆ supC(K,L,Eu).

Proof. It is sufficient to show that supcC = supcC(K,L,Eu) is controllable with
respect to L = L1‖L2‖Lk and Eu. There exist supCk ⊆ Ek, supC1+k ⊆ E1+k, and
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supC2+k ⊆ E2+k of Theorem 8.4 so that supcC = supCk‖supC1+k‖supC2+k. In
addition, supCk is controllable with respect to Lk and Ek,u, supC1+k is control-
lable with respect to L1‖supCk and E1+k,u, and supC2+k is controllable with re-
spect to L2‖supCk and E2+k,u. By Lemma 8.4, supcC is controllable with respect to
Lk‖(L1‖supCk)‖(L2‖supCk) = L‖supCk and Eu. Analogously, we can obtain that
L‖supCk is controllable with respect to L‖Lk = L and Eu. Finally, by the transitivity
of controllability, Lemma 8.5, we obtain that supcC is controllable with respect to
L and Eu, which was to be shown. �

Note that if the observer and OCC assumptions of Theorem 8.4 are not satisfied, it
still holds that the computed language is controllable.

Corollary 8.1. The sublanguage supCk‖supC1+k‖supC2+k of K is controllable
with respect to L and Eu.

If additional conditions are satisfied, the supremal conditionally-controllable sub-
language is also optimal, i.e., it coincides with the supremal controllable sublan-
guage of K with respect to L and Eu.

Lemma 8.6. [4] Let Li ⊆ E∗i , i = 1,2, be two (prefix-closed) languages, and let Pi :
(E1∪E2)

∗ → E∗i , where i = 1,2,k and Ek ⊆ E1∪E2, be projections. If E1∩E2 ⊆ Ek

and Pi
k∩i is an Li-observer, for i = 1,2, then the projection Pk is an L1‖L2-observer.

In the following lemma, we prove that conditions of Theorem 8.4 imply that the
projection Pk is OCC for L.

Lemma 8.7. Let Li ⊆ E∗i , i = 1,2, be two (prefix-closed) languages, and let Pi :
(E1 ∪ E2)

∗ → E∗i , where i = 1,2,k and Ek ⊆ E1 ∪ E2, be projections. Denote by
Eu ⊆ E1∪E2 the set of uncontrollable events. If E1∩E2 ⊆ Ek and Pi+k

k is OCC for
(Pi+k

i )−1(Li), for i = 1,2, then the projection Pk is OCC for L = L1‖L2‖Lk.

Proof. Let s ∈ L be of the form s = s′σ0σ1 . . .σk−1σk, for some k ≥ 1, and
assume that σ0,σk ∈ Ek, σi ∈ E \ Ek, for i = 1,2, . . . ,k − 1, and σk ∈ Eu.
We need to show that σi ∈ Eu, for all i = 1,2, . . . ,k − 1. However, Pi+k(s) =
Pi+k(s′)σ0Pi+k(σ1 . . .σk−1)σk ∈ (Pi+k

i )−1(Li) and the OCC property implies that
Pi+k(σ1 . . .σk−1) ∈ E∗u , for i = 1,2. Consider σ ∈ {σ1,σ2, . . . ,σk−1}. Then, σ ∈
(E1 ∪E2) \Ek. Without loss of generality, assume that σ ∈ E1. Then, P1+k(σ) =
σ ∈ Eu and P2+k(σ) = ε ∈ E∗u . Thus, {σ1,σ2, . . . ,σk−1} ⊆ Eu, which was to be
shown. �

Theorem 8.6. Consider the setting of Theorem 8.4. If, in addition, Lk ⊆ Pk(L) and
Pi+k is OCC for P−1

i+k(Li‖Lk), for i = 1,2, then supcC(K,L,Eu) = supC(K,L,Eu).

Proof. The inclusion ⊆ is proven in Theorem 8.5. Thus, we prove the other in-
clusion. From the assumptions, Pi+k

k is the (Pi+k
i )−1(Li)-observer, for i = 1,2, and

Pk
k is an Lk-observer because the observer property always holds for the identity

projection. Now, Lemma 8.6 applied to projections P1+k
k and P2+k

k implies that
Pk is an (P1+k

1 )−1(L1)‖(P2+k
2 )−1(L2) = L1‖L2-observer. Another application of this

lemma to projections Pk and Pk
k implies that Pk is an (L1‖L2)‖Lk = L-observer. In
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addition, by Lemma 8.7, the projection Pk is also OCC for L. For short, denote
supC = supC(K,L,Eu). We now prove that Pk(supC) is controllable with respect
to Lk and Ek,u. To do this, assume that t ∈ Pk(supC), a ∈ Ek,u, and ta ∈ Lk ⊆ Pk(L).
Then, there exists s ∈ supC such that Pk(s) = t. As Pk is the L-observer, there ex-
ists v ∈ E∗ such that sv ∈ L and Pk(sv) = Pk(s)Pk(v) = ta, i.e., v = ua, for some
u ∈ (E \Ek)

∗. Furthermore, from the OCC property of Pk, u ∈ E∗u . From controlla-
bility of supC with respect to L and Eu, this implies that sua ∈ supC, which means
that Pk(sua) = ta ∈ Pk(supC). Hence, (1) of Definition 8.5 is satisfied.

Next, we have that Pi+k
i+k (the identity) is the (Pi+k

i )−1(Li)-observers, for i = 1,2,

and that Pi+k
j+k = Pi+k

k is the (Pi+k
i )−1(Li)-observer, for {i, j}= {1,2}, and Pk

k = Pk
i+k

is the Lk-observer, for i = 1,2. Then, similarly as above, Lemma 8.6 applied to pro-
jections Pi+k

i+k , P j+k
i+k , j 
= i, and Pk

i+k implies that the projection Pi+k is an L-observer,
for i = 1,2. Thus, to prove (2) and (3) of Definition 8.5, assume that, for some
1 ≤ i ≤ 2, t ∈ Pi+k(supC), a ∈ Ei+k,u, and ta ∈ Li‖Pk(supC)‖P j+k

k (Lj‖Pk(supC)),
for j 
= i. Then, there exists s∈ supC such that Pi+k(s) = t. As Pi+k is the L-observer,
and Li‖Pk(supC)‖P j+k

k (Lj‖Pk(supC)) ⊆ Pi+k(L) = Li‖Lk‖P j+k
k (Lj‖Lk), j 
= i, be-

cause Pk(supC) ⊆ Pk(K) ⊆ Pk(L) ⊆ Lk, there exists v ∈ E∗ such that sv ∈ L and
Pi+k(sv) = Pi+k(s)Pi+k(v) = ta, i.e., v = ua, for some u ∈ (E \Ei+k)

∗. Since Pi+k

is OCC for P−1
i+k(Li‖Lk) and sua ∈ L ⊆ P−1

i+k(Li‖Lk), we obtain that u ∈ E∗u . Finally,
from the controllability of supC with respect to L and Eu, we obtain that sua∈ supC.
This means that Pi+k(sua) = ta ∈ Pi+k(supC), which was to be shown. �

The complexity of the computation of the supremal controllable sublanguage of a
specification language K with respect to the plant language L with n and m states
in their minimal generator representations, respectively, is shown (for prefix-closed
languages) to be O(mn) [2, 15]. We denote the number of states of the minimal
generators for L(G1), L(G2), and L(Gk) by m1, m2, and mk, respectively. As the
specification K is conditionally decomposable, K = P1+k(K)‖P2+k(K)‖Pk(K), we
denote the number of states of the minimal generators for P1+k(K), P2+k(K), and
Pk(K) by n1, n2, and nk, respectively. Then, in the worst case, m = O(m1m2mk) and
n = O(n1n2nk). The computational complexity of supCk, supC1+k, and supC2+k
gives the formula O(mknk +m1n1mknk +m2n2mknk), which is better than O(mn) =
O(m1m2mkn1n2nk) of the monolithic case.

Example 8.8. Continue Example 8.4. The assumptions of Theorem 8.4 are satisfied
for Ek = {a1,a2} and for the coordinator Gk = Pk(G1)‖Pk(G2). Thus, we can com-
pute supCk, supC1+k, supC2+k, see Fig. 8.8. The solution is optimal: the supremal
conditionally-controllable sublanguage of K coincides with the supremal control-
lable sublanguage of K.

An extension to more subsystems means to add new events ai and wi into Ec, ai

into Ek, for i ≥ 3, and to modify the specification in a natural way. The required
space results in a square root of the number of states needed by the global plant. �
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Fig. 8.8 Supervisors supCi+k , i = 1,2, where j = 1,2, j 
= i; supCk = Gk

8.6 Coordination Control with Partial Observations: Existence

In supervisory control with partial observations, the specification language must be
observable and controllable for a supervisor to exist so that the closed-loop sys-
tem meets the specification. See Chapter 4 for more details. An extension for dis-
tributed discrete-event systems with partial observations is described in this section.
The results are based on the concepts of conditional controllability and conditional
normality.

Let K and M be prefix-closed languages over an event set E . Let Ec ⊆ E be the
set of controllable events and Eo ⊆ E be the set of observable events with P as the
corresponding projection from E∗ to E∗o . The specification language K is observable
with respect to M, Ec, and P if for all s ∈ K and σ ∈ Ec,

(sσ /∈ K) and (sσ ∈M)⇒ P−1[P(s)]σ ∩K = /0 .

The language K is normal with respect to M and P if K = P−1[P(K)]∩M. Note that,
normality implies observability [3].

A controlled generator (with partial observations) is a structure (G,Ec,P,Γ ),
where G is a generator, Ec ⊆ E is the set of controllable events, Eu = E \Ec is the
set of uncontrollable events, P : E∗ → E∗o is the corresponding projection (partial
observation), and Γ = {γ ⊆ E | Eu ⊆ γ} is the set of control patterns. A supervi-
sory control for the controlled generator (G,Ec,P,Γ ) is a map v : P(L(G))→ Γ . A
closed-loop system associated with the controlled generator (G,Ec,P,Γ ) and the su-
pervisory control v is defined as the smallest language L(v/G)⊆ E∗ which satisfies
(1) ε ∈ L(v/G) and (2) if s ∈ L(v/G), sa∈ L(G), and a∈ v(P(s)), then sa∈ L(v/G).
Again, a supervisor S is a generator representation of the supervisory control v such
that L(v/G) = L(S)‖L(G). We write L(S/G) to denote L(S)‖L(G).

Let supCN(K,L,Eu,P) denote the supremal sublanguage of K which is both con-
trollable with respect to L and Eu and normal with respect to L, Eu, and P.

Problem Statement

The supervisory control problem with partial observations is formulated exactly in
the same way as Problem 8.1, therefore we do not recall it here. The only difference
is that the meaning of used symbols is now as defined in this section.
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Existence of Supervisors

Conditional observability, along with conditional controllability, are necessary and
sufficient conditions for a specification language to be exactly achieved according
to Problem 8.1.

Definition 8.8 (Conditional Observability). Call the specification language K ⊆
E∗ conditionally observable for generators G1, G2, Gk, controllable subsets E1+k,c,
E2+k,c, Ek,c, and projections Q1+k, Q2+k, Qk, where Qi : E∗i → E∗i,o, for i = 1+k,2+
k,k, if

1. Pk(K) is observable with respect to L(Gk), Ek,c, and Qk; equivalently, for all
s ∈ Pk(K) and for all σ ∈ Ek,c,

(sσ /∈ Pk(K)) and (sσ ∈ L(Gk))⇒ Q−1
k [Qk(s)]σ ∩Pk(K) = /0 .

2. P1+k(K) is observable with respect to L(G1)‖Pk(K)‖P2+k
k [L(G2)‖Pk(K)], E1+k,c

(E1+k,c = Ec∩ (E1∪Ek)), and Q1+k; equivalently, for all s ∈ P1+k(K) and for all
σ ∈ E1+k,c,

(sσ /∈ P1+k(K)) and (sσ ∈ L(G1)‖Pk(K)‖P2+k
k [L(G2)‖Pk(K)])

⇒Q−1
1+k[Q1+k(s)]σ ∩P1+k(K) = /0 .

3. P2+k(K) is observable with respect to L(G2)‖Pk(K)‖P1+k
k [L(G1)‖Pk(K)], E2+k,c,

and Q2+k; equivalently, for all s ∈ P2+k(K) and for all σ ∈ E2+k,c,

(sσ /∈ P2+k(K)) and (sσ ∈ L(G2)‖Pk(K)‖P1+k
k [L(G1)‖Pk(K)])

⇒Q−1
2+k[Q2+k(s)]σ ∩P2+k(K) = /0 .

Theorem 8.7. [11] Consider Problem 8.1. There exist supervisors S1, S2, and Sk

such that L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])‖ L(Sk/Gk) = K if and only if
the specification language K is both (1) conditionally controllable with respect to
generators G1, G2, Gk and locally uncontrollable event sets E1+k,u, E2+k,u, Ek,u, and
(2) conditionally observable with respect to generators G1, G2, Gk, locally control-
lable event sets E1+k,c, E2+k,c, Ek,c, and projections Q1+k, Q2+k, Qk from E∗i to E∗i,o,
for i = 1+ k,2+ k,k.

Supremal observable sublanguages do not exist in general and it is also the case of
conditionally-observable sublanguages. Therefore, this section introduces an anal-
ogous notion to normality, so-called conditional normality, and shows that condi-
tional normality along with conditional controllability are sufficient conditions for
the specification language to solve Problem 8.1.

Definition 8.9 (Conditional Normality). Call the specification language K ⊆ E∗

conditionally normal for generators G1, G2, Gk and projections Q1+k, Q2+k, Qk,
where Qi : E∗i → E∗i,o, for i = 1+ k,2+ k,k, if
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1. The language Pk(K)⊆ E∗k is normal with respect to L(Gk) and Qk; equivalently,

Q−1
k Qk(Pk(K))∩L(Gk) = Pk(K) .

2. The language P1+k(K) ⊆ (E1 ∪ Ek)
∗ is normal with respect to the language

L(G1)‖Pk(K)‖P2+k
k [L(G2)‖Pk(K)] and the projection Q1+k; equivalently,

Q−1
1+kQ1+k(P1+k(K)) ∩L(G1)‖Pk(K)‖P2+k

k [L(G2)‖Pk(K)] = P1+k(K) .

3. The language P2+k(K) ⊆ (E2 ∪ Ek)
∗ is normal with respect to the language

L(G2)‖Pk(K)‖P1+k
k [L(G1)‖Pk(K)] and the projection Q2+k; equivalently,

Q−1
2+kQ2+k(P2+k(K)) ∩L(G2)‖Pk(K)‖P1+k

k [L(G1)‖Pk(K)] = P2+k(K) .

Theorem 8.8. Consider Problem 8.1. If the specification language K is condition-
ally controllable with respect to G1, G2, Gk and E1+k,u, E2+k,u, Ek,u of locally un-
controllable events, and conditionally normal with respect to G1, G2, Gk and Q1+k,
Q2+k, Qk of projections from E∗i to E∗i,o, for i= 1+k,2+k,k, then there exist supervi-
sors S1, S2, Sk such that L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])‖L(Sk/Gk) = K.

Proof. As normality implies observability, the proof of this theorem follows imme-
diately from Theorem 8.7. �

Example 8.9. Controllability is discussed in the previous examples, so only con-
ditional normality is considered here. Let G = G1‖G2 be a plant over E = E1 ∪
E2 = {a1,c, t, t1} ∪ {a2,c, t, t2} = {a1,a2,c, t, t1, t2}, where G1 and G2 are given
in Fig. 8.9, and the set of unobservable events is Euo = {t, t1, t2}. The specifica-
tion K = prefix({t2t1, t2a1,a1t2,a1a2t, t1t2, t1a2,a2a1t,a2t1}). Let the coordinator Gk

over Ek = {c, t, t1} be as in Fig. 8.9. Projections of K are Pk(K) = prefix({t, t1}),
P1+k(K) = prefix({a1t, t1}), P2+k(K) = prefix({t2t1,a2t,a2t1, t1a2, t1t2}). It can be
verified that K is conditionally controllable and conditionally normal as required in
Theorem 8.8. The supervisors S1, S2, Sk then correspond to generators for P1+k(K),
P2+k(K), Pk(K). �

Fig. 8.9 Generators G1, G2, and the coordinator Gk
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8.7 Coordination Control with Partial Observations: Supremal
Supervision

If the specification language is not conditionally controllable or not conditionally
normal, the supremal sublanguage is to be considered. We present a procedure
for the computation of the supremal conditionally-controllable and conditionally-
normal sublanguage for a prefix-closed specification. Because of space restrictions,
the proofs are omitted and can be found in [11].

Theorem 8.9. [11] The supremal conditionally-normal sublanguage of a given lan-
guage K exists and is equal to the union of all conditionally-normal sublanguages
of K.

Consider generators G1, G2, Gk. Let supcCN(K,L,Eu,Q) denote the supremal
conditionally-controllable and conditionally-normal sublanguage of K with respect
to L = L(G1‖G2‖Gk), the sets of uncontrollable events E1+k,u, E2+k,u, Ek,u, and the
projections Q1+k, Q2+k, Qk, where Qi : E∗i → E∗i,o, for i = 1+ k,2+ k,k.

Theorem 8.10. [11] Consider Problem 8.1. Define the local languages

supCNk = supCN(Pk(K),L(Gk),Ek,u,Qk) ,

supCN1+k = supCN(P1+k(K),L(G1)‖supCNk,E1+k,u,Q1+k) ,

supCN2+k = supCN(P2+k(K),L(G2)‖supCNk,E2+k,u,Q2+k) .

Let Pi+k
k be a (Pi+k

i )−1L(Gi)-observer and OCC for (Pi+k
i )−1L(Gi), i = 1,2, and

the language P1+k
k (supCN1+k)∩P2+k

k (supCN2+k) be normal with respect to L(Gk)
and Qk. Then, supCNk‖supCN1+k‖supCN2+k = supcCN(K,L,Eu,Q) .

The assumptions that Pi+k
k is a (Pi+k

i )−1L(Gi)-observer and OCC are needed only
for controllability. Let supN(K,L,Q) denote the supremal normal sublanguage of K
with respect to L and Q, and let supcN(K,L,Q) denote the supremal conditionally-
normal sublanguage of K with respect to L and Q. Then we have:

Corollary 8.2. [11] Consider Problem 8.1. Define the local languages

supNk = supN(Pk(K),L(Gk),Qk) ,

supN1+k = supN(P1+k(K),L(G1)‖supNk,Q1+k) ,

supN2+k = supN(P2+k(K),L(G2)‖supNk,Q2+k) .

Assume that the language P1+k
k (supN1+k)∩P2+k

k (supN2+k) is normal with respect
to L(Gk) and Qk. Then, supNk‖supN1+k‖supN2+k = supcN(K,L,Q).

The computational complexity of the supremal controllable and normal sublan-
guage is O(2mn) [2]. Denote the number of states of the minimal generators for
L(G1), L(G2), and L(Gk) by m1, m2, and mk, respectively. As the specification
language K is conditionally decomposable, denote the number of states of the
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minimal generators for P1+k(K), P2+k(K), and Pk(K) by n1, n2, and nk, respec-
tively. Then, in the worst case, m = O(m1m2mk) and n = O(n1n2nk). The com-
putational complexity of supCNk, supCN1+k, and supCN2+k gives the formula
O(2mknk + 2m1n12mknk + 2m2n22mknk ), which is better than O(2m1m2mkn1n2nk) of the
monolithic case if mini >

2mknk

mknk
, for i = 1,2, i.e., if the coordinator is significantly

smaller than the subsystems. As the coordinator (and its event set) can be chosen
to be minimal, there is a possibility to choose the coordinator so that it, in addition,
satisfies the condition that the number of states of the minimal generator of supCNk
is in O(mknk) or even in O(min{mk,nk}). This requires further investigation.

Theorem 8.11. [11] The language supCNk‖supCN1+k‖supCN2+k is controllable
with respect to L = L(G1‖G2‖Gk) and Eu, and normal with respect to L and Q :
(E1+k∪E2+k)

∗ → E∗o .

Theorem 8.11 says that in the setting of Theorem 8.10, supcCN(K,L,Eu,Q) is con-
trollable and normal with respect to L, Eu, and Q. If additional conditions are satis-
fied, the constructed supremal conditionally-controllable and conditionally-normal
sublanguage is optimal.

Theorem 8.12. [11] Consider the setting of Theorem 8.10. If, in addition, it holds
that Lk ⊆ Pk(L) and Pi+k is OCC for the language P−1

i+k(Li‖Lk), for i = 1,2, then
supCN(K,L,Eu,Q) = supcCN(K,L,Eu,Q) if and only if

Pk[Q
−1Q(supCN)∩L] = Pk[Q

−1Q(supCN)]∩Lk (8.3)

and

Pi+k[Q
−1Q(supCN)∩L1‖L2‖Pk(supCN)]

= Pi+k[Q
−1Q(supCN)]∩Pi+k(L1‖L2‖Pk(supCN)) , (8.4)

for i = 1,2, where supCN = supCN(K,L,Eu,Q).

To verify this condition, we need to compute the plant language L. However, we
do not want to compute this language because of complexity reasons. It is an open
problem how to verify the conditions of Theorem 8.12 based only on the local lan-
guages L1, L2, and Lk.

Example 8.10. Consider Example 8.9 with a different specification language K de-
fined by the generator shown in Fig. 8.10. We construct the coordinator Gk as de-
scribed in Algorithm 8.3. To do this, Ek has to contain both shared events c and t. To
ensure that K is conditionally decomposable, at least one of t1 and t2 has to be added
to Ek. Assume t1 is added; Ek = {c, t, t1}. Set Gk = Pk(G1)‖Pk(G2), see Fig. 8.9.
The projections of K are Pk(K) = prefix({t, t1c}), P1+k(K) = prefix({a1t, t1c}),
P2+k(K) = prefix({t2t1,a2t,a2t1, t1a2, t1t2c}). We compute supNk = prefix({t, t1c}),
supN1+k = prefix({t1c,a1t}), supN2+k = prefix({t2t1, t1t2, t1a2,a2t1,a2t}). Then,
the supremal conditionally-normal sublanguage supNk‖supN1+k‖supN2+k of K re-
sults in prefix({t2t1, t2a1,a1t2,a1a2t, t1t2, t1a2,a2a1t,a2t1}), which is also normal by
Theorem 8.11. It can be verified that the resulting language coincides with the supre-
mal normal sublanguage of K with respect to L(G) and Q. �
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Fig. 8.10 Generator for the specification language K

8.8 Further Reading

The theory presented here is based on papers [11, 10]. For information about coordi-
nation control of distributed discrete-event systems with non-prefix-closed specifi-
cations, the reader is referred to [8]. This topic is, however, still under development.
The procedures will be implemented in libFAUDES [17]. For other structural condi-
tions on local plants under which it is possible to synthesize the supervisors locally,
but which are quite restrictive, see [6, 14]. Among the most successful approaches to
supervisory control of distributed discrete-event systems are those that combine dis-
tributed and hierarchical control [23, 24], or the approach based on interfaces [16].
Distributed computations of supremal normal sublanguages were further studied in
[13] for local specification languages and in [12] for global specification languages.
For further information on observers, the reader is referred to [5, 26]. For coordina-
tion control of linear and of stochastic systems, the reader is referred to [7, 22].
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Chapter 9
An Introduction to Timed Automata

Béatrice Bérard

9.1 Motivation and Example

The main verification problem is expressed by the question: does a system satisfy
a specification ? If P and S are two models, describing respectively a specifica-
tion and a system implementation, this question can be answered by checking the
inclusion:

L (S )⊆L (P) which is equivalent to L (S )∩L (P) = /0.

Therefore, intersection, complementation and emptiness check are interesting op-
erations, which are easy to perform when P and S are finite automata. In this
chapter, we investigate issues related to this problem for the model of timed
automata.

Timed models are needed to represent and analyze systems where explicit time
constraints must be integrated. This includes for instance time-out mechanisms for
a system:

After 3 time units without any command, the system returns in an idle state.

or response times as a specification:

When a request has been issued, it is granted in less than 5 time units.

The model of timed automata has been designed by Alur and Dill in the early 90s [3,
5] to deal with such requirements. The principle consists in associating with a finite
automaton a finite set of real valued variables called clocks. These clocks evolve
synchronously with time and can be reset or compared with constant values when
transitions are fired.
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A very simple example describes cooking some roast lamb, as depicted in the
timed automaton of Fig. 9.1.

L0
L1

x < 3
L2

startL, x := 0 2 < x < 3, endL

Fig. 9.1 A basic timed automaton for cooking a roast lamb

The start action consists in putting the dish in the oven and starting the clock x
(by the reset x := 0). In state L1, the clock value progresses and the roast is ready
between 2 and 3 time units, hence action endL is guarded by the constraint 2< x< 3.
State L1 is equipped with the constraint x < 3 to express that the clock value must
not reach 3 in this state. Of course, the time unit must be adequately defined. A
configuration of such a model is a pair (q,v) where q ∈ {L0,L1,L2} and v is the
value of clock x, with (L0,0) the initial configuration. A run of this model could be:

(L0,0)
1.5−→ (L0,1.5)

startL−−−→ (L1,0)
2.7−→ (L1,2.7)

endL−−→ (L2,2.7)

Note that in this case, there are only finite runs ending in state L2.

9.2 Definition and Timed Semantics

We now give formal definitions for the model and its semantics, described by timed
transition systems.

We write respectively N, Z and R>0 for the sets of natural numbers, integers and
non-negative real numbers. We denote by [a,b[ the interval of R which is open on
the right and closed on the left, i.e. contains a but not b, and we use similar notations
for the various types of intervals. Given an alphabet Σ , the set Σ∗ (respectively Σω )
contains all finite (respectively infinite) words over Σ and a language is a subset of
Σ∗ ∪Σω .

9.2.1 Timed Transition Systems

We first define the notion of timed words, where a date is associated with each
action.

Definition 9.1. A timed word on alphabet Σ is a sequence w = (a1, t1)(a2, t2) . . .,
where ai is in Σ for all i≥ 1 and (ti)i≥1 is a nondecreasing sequence of real numbers.
A timed language is a set of timed words.
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Hence, a timed word is a word over the (infinite) alphabet Σ ×R>0. For a timed
word w, the projection on Σ , removing the time component of actions, yields
Untime(w) = a1a2 . . ., hence a (standard) word over Σ . Similarly, for a timed lan-
guage L, we define Untime(L) = {Untime(w) | w ∈ L}.

Recall now that a transition system over a set Lab of labels is a triple T =
(S,s0,E), where:

• S is the set of configurations;
• s0 is the initial configuration;
• E is the transition relation, given as a subset of S×Lab× S.

A transition (s, �,s′) in E is denoted by s
�−→ s′.

Definition 9.2. A Timed Transition System over an alphabet Σ is a transition system
T over the set of labels Σ ∪{ε}∪R>0, such that the transitions with label in R>0

have the following properties:

• zero delay: s
0−→ s′ if and only if s′ = s;

• additivity: if s
d−→ s′ and s′

d′−→ s′′, then s
d+d′−−−→ s′′.

Transitions
a−→ with a in Σ ∪{ε} correspond to usual actions or events and are in-

stantaneous. Silent transitions, labeled by the empty word ε ∈ Σ∗, are useful for

modeling purposes: they represent internal actions of the system. A transition
d−→

with d ∈ R>0 represents a duration of d time units. The two additional conditions
above, satisfied by delay transitions, express the consistency of the system evolution
with respect to elapsing time.

Moreover, the system is sometimes required to be:

• time deterministic: if s
d−→ s1 and s

d−→ s2 then s1 = s2;

• continuous: if s
d−→ s′ then for all d1 and d2 such that d = d1 + d2, there exists s1

such that s
d1−→ s1 and s1

d2−→ s′.

A run of T is a path ρ = s0
d1−→ s′0

a1−→ s1
d2−→ s′1

a2−→ ·· · starting from the initial
configuration and where durations and actions strictly alternate. This specific form
can be ensured for systems which satisfy the zero delay and additivity properties.
With a run ρ are associated:

• the sequence (ti)i≥0 of absolute dates, defined by t0 = 0 and ti = ∑i
j=0 d j;

• the timed word w = (ai1 , ti1)(ai2 , ti2) . . . corresponding to the actions labeling the
runs with their dates, where all pairs such that ai = ε are removed.

For instance, the timed word associated with the execution of the introductory ex-
ample is w = (startL,1.5)(endL,4.2).
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9.2.2 The Model of Timed Automata

For a set X of clocks, C (X) denotes the set of clock constraints which are conjunc-
tions of atomic constraints of the form x �� c where x is a clock, c a constant (usually
in N) and �� an operator in {<,≤,=,≥,>}.

Definition 9.3. A timed automaton over alphabet Σ (of actions) is a tuple A =
(X ,Q,q0,Δ , Inv), where:

• X is a finite set of clocks;
• Q is a finite set of states (or control nodes);
• q0 ∈ Q is the initial state;
• Δ is a subset of Q×C (X)× (Σ ∪{ε})× 2X ×Q;
• Inv : Q �→C (X) associates with each state a constraint in C (X), called invariant,

using only the operators < and ≤.

A transition in Δ , written as q
g,a,r−−→ q′, expresses a change from q to q′ with action

a, if guard g is satisfied. Clocks in r ⊆ X are then reset, which is also written as
x := 0 for all x ∈ r, like in Fig. 9.1 for the reset of clock x. In all figures depicting
timed automata, true constraints are omitted, both for invariants and guards.

9.2.3 Semantics of Timed Automata

Given a set X of clocks, a valuation is a mapping v : X → R>0, with 0 the null
valuation assigning zero to all clocks in X . Note that, for a set X of cardinality n,
a geometric view is obtained by considering a valuation v as the tuple (v(x))x∈X ,
hence as a point in R

n
>0. We define the following operations on valuations.

• For d ∈ R>0, time elapsing of d time units from valuation v results in valuation
v+ d defined by: (v+ d)(x) = v(x)+ d for each clock x: all clocks evolve at the
rate of time. We write v≤ v′ if there exists d such that v′ = v+ d.

• For r ⊆ X , reset of the clocks in r from valuation v results in valuation v[r �→ 0]
defined by: v[r �→ 0](x) = 0 if x ∈ r and v(x) otherwise.

Clock constraints are interpreted on valuations: valuation v satisfies the atomic con-
straint x �� c, denoted by v |= x �� c, if v(x) �� c. The notation is extended to general
clock constraints by conjunction.

Definition 9.4. The semantics of a timed automaton A = (Σ ,X ,Q,q0,Δ , Inv) is
then given as the timed transition system TA = (S,s0,E), over Σ with:

• S= {(q,v)∈Q×R
X
>0 | v |= Inv(q)}. Hence, configurations are pairs (q,v) where

q ∈Q and v is a clock valuation satisfying the state invariant;
• The initial configuration is s0 = (q0,0);
• The transitions in E are:



9 An Introduction to Timed Automata 173

– either (q,v)
d−→ (q,v+ d), a delay of d ∈ R>0, possible if v+ d |= Inv(q);

– or (q,v)
a−→ (q′,v′), a discrete transition with label a ∈ Σ ∪ {ε}, possible if

there exists q
g,a,r−−→ q′ in Δ such that valuation v satisfies guard g and v′ =

v[r �→ 0].

A delay transition thus corresponds, as expected, to the time spent in a state of the
automaton. For such a transition system TA with time domain R>0, the four proper-
ties mentioned above hold: zero delay, additivity, time determinism and continuous
delays.

Consider for instance the timed automaton with two clocks on the left of Fig. 9.2.
Starting from valuation v0 = 0 = [0,0], the run

(q0, [0,0])
1.2−→ (q0, [1.2,1.2])

a−→ (q0, [1.2,0])
1.8−→ (q0, [3,1.8])

b−→ (q0, [0,1.8])

can be described in R
2
>0 by the trajectory on the right, where the dashed lines rep-

resent the reset operations that occurred when transitions a and b were fired.

q0

x ≥ 1,a,y := 0

y ≤ 2,b,x := 0 x

y

0

1

2

1 2 3

Fig. 9.2 A trajectory of a timed automaton

An important feature that should be noticed about the transition system of a timed
automaton interpreted with R>0 as time domain is the infinite noncountable number
of its configurations. This means that specific techniques must be developed for the
analysis of such systems (see Sections 9.4 and 9.5).

9.2.4 Languages of Timed Automata

In order to associate a timed language with a timed automaton A , several mecha-
nisms are possible, based on the definition of acceptance conditions on runs. The
timed word labeling an accepting run is then said to be accepted by A .
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For instance, if a subset F ⊆ Q of final states is added to a timed automaton
A = (Σ ,X ,Q,q0,Δ , Inv), an accepting run can be defined as a finite run

ρ = (q0,v0)
d1−→ (q0,v0 + d1)

a1−→ (q1,v1) · · ·
dn−→ (qn−1, ,vn−1 + dn)

an−→ (qn,vn)

ending in a state qn ∈ F . The timed language L f in(A ) is then the corresponding set
of accepted timed words. We write A = (X ,Q,q0,Δ , Inv,F) in this case.

Definition 9.5. A timed language L is timed regular if there is a timed automaton
A = (X ,Q,q0,Δ , Inv,F) such that L = L f in(A ).

This is what was done in the example of Fig. 9.1 where L2 was the final state. In this
case, the timed language is:

{(startL, t1)(endL, t2) | t1 ∈ R>0 and t1 + 2 < t2 < t1 + 3}.

Regarding infinite runs, Büchi or Muller conditions can be defined in a similar way
with conditions on the subset of Q containing the states appearing infinitely often in
the runs, leading to timed ω-regular languages.

Next, we present syntactical extensions of timed automata, with a special focus
on networks of timed automata.

9.3 Networks of Timed Automata

With the aim to make the modeling process easier without changing the expressive
power of the model, several extensions have been proposed. Recovering the original
basic model is usually done by unfolding the set of states, which can result in an
exponential blow-up. We mention the extensions described below.

• Addition to C (X) of diagonal constraints of the form x− y �� c was proposed in
early versions of the model. It is revisited in [14], where it is shown to lead to
exponentially more concise models.

• In another direction, variables with finite range which do not evolve with time
can also be added to the model. This extension is used in particular in the tool
UPPAAL [10], where arrays are also permitted.

• As explained in more details below, a network of timed automata, along with
a synchronization function, can be unfolded in a synchronized product which
is still a timed automaton. This feature appears in all analysis tools for timed
automata, making modular design possible.

To give an example of this product operation, we add a second timed automaton to
the one of Fig. 9.1. Suppose now that Alice and Bob want to prepare two different
dishes for a dinner, both being served at the same time. Alice will cook the roast
lamb while Bob will prepare a vegetable curry. For this, he first fries the vegetables
between 1 and 2 time units, then he adds some coconut milk several times between
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0 and 1 time unit, and finally the preparation has to slowly boil more than 3 time
units. This is modeled by the network of two automata depicted in Fig. 9.3.

V0
V1

y < 2
V2 V3

startV, y := 0 1 < y < 2, f ry, x := 0 y > 3, endV

0 < y < 1, add, y := 0

L0
L1

x < 3
L2

startL, x := 0 2 < x < 3, endL

Fig. 9.3 A network of 2 timed automata for preparing dinner

In this simple case, the only synchronization concerns the two actions endV and
endL, which occur as a single action end in the product, while all other actions are
performed asynchronously. The resulting automaton is given in Fig. 9.4, where the
following can be observed.

• In state (V1,L1) the invariant is the conjunction of those related respectively to
V1 and L1.

• For the synchronized action end, the guard is the conjunction of those related
respectively to actions endV and endL. No clock reset appears here, but in the
general case, the union of clocks to be reset by both transitions would be associ-
ated with the synchronized transition.

We now give the formal definition for the product of two timed automata.

Definition 9.6. Let A1 = (X1,Q1, i1,Δ1, Inv1) and A2 = (X2,Q2, i2,Δ2, Inv2) be two
timed automata, on alphabets Σ1 and Σ2 respectively, such that X1∩X2 = /0. Let− be
a new symbol and let f be a partial mapping from (Σ1∪{ε,−})×(Σ2∪{ε,−}) into
Σ ∪{ε}, for some alphabet Σ , such that f (−,−) is not defined. The synchronized
product is defined by (A1⊗A2) f = (X1∪X2,Q1×Q2,(i1, i2),Δ , Inv), with:

• Inv((q1,q2)) = Inv1(q1)∧ Inv2(q2) for all pairs (q1,q2) ∈Q1×Q2,

• A transition (q1,q2)
g,a,r−−→ (q′1,q

′
2) is in Δ if:

– either there exist transitions q1
g1,a1,r1−−−−→ q′1 in Δ1 and q2

g2,a2,r2−−−−→ q′2 in Δ2 with
g = g1∧g2, a = f (a1,a2) and r = r1∪ r2,

– or q1 = q′1 and q2
g,a2,r−−−→ q′2 is in Δ2 with f (−,a2) = a,

– or q2 = q′2 and q1
g,a1,r−−−→ q′1 is in Δ1 with f (a1,−) = a.

The operation can be extended to any finite number of timed automata. It should
be used carefully, however, to avoid timed deadlocks. This is illustrated in the next
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(V0 ,L0)
(V1 ,L0)
y < 2

(V2 ,L0)
startV, y := 0 1 < y < 2, f ry, y := 0

0 < y < 1, add, y := 0

(V0 ,L1)
x < 3

(V1 ,L1)
x < 3
∧ y < 2

(V2 ,L1)
x < 3

(V3 ,L2)

0 < y < 1, add, y := 0

startV, y := 0 1 < y < 2, f ry, y := 0

startL, x := 0 startL, x := 0 startL, x := 0

2 < x < 3∧ y > 3,end

Fig. 9.4 The resulting product automaton

A
x ≤ 7

B

C
D

z ≤ 8

x = 7, in!,x := 0

y ≥ 4,out?,y := 0

in?, z := 0

3 ≤ z ≤ 8,out!

A :

B:

M :

Fig. 9.5 Three communicating components

example from [21], where two components A and B communicate through a third
one, the medium M . Component A produces an in! message every 7 time units, B
emits out? messages, with at least 4 time units between them, and M performs the
communication by transmitting to B (out!) the messages received from A (in?),
with a delay between 3 and 8 time units.

The synchronized product (A ⊗M ⊗B) f shown in Fig. 9.6 simulates the two
channels between A and M and between M and B respectively, with function f
defined by: f (in!, in?,−) = in and f (−,out!,out?) = out.

Suppose now that the transmission interval [3,8] is replaced by ]7,8]. Then, a
timed deadlock occurs in configuration (A,D,B) with clock values x = 7 and z = 7,
since time progress is restricted by the invariant x≤ 7 so action out cannot be taken.
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(A,C,B)
x ≤ 7

(A,D,B)
x ≤ 7
∧ z ≤ 8

x = 7, in, x, z := 0

y ≥ 4 ∧ 3 ≤ z ≤ 8, out, y := 0

Fig. 9.6 Composition (A ⊗M ⊗B) f

We now present analysis techniques for timed automata. The basic idea under-
lying these techniques is to fold the transition system by defining subsets of valua-
tions, keeping together those for which the behavior of the automaton is the same
(in a sense that must be precisely stated). The two main categories of such subsets
are called respectively zones and regions.

9.4 Zone Graph of a Timed Automaton

Definition 9.7. Let X be a finite set of clocks. A zone is a subset of RX
>0 defined by

a conjunction of atomic clock constraints of the form x �� c or x− y �� c (diagonal
constraints), with x,y ∈ X, c ∈ Z and ��∈ {≤,<,=,>,≥}. For such a constraint g,
the corresponding zone is [[g]] = {v ∈ R

X
>0 | v |= g}. The set of all zones is denoted

by Z (X).

Operations on valuations are extended to zones as follows.

• The future of zone Z corresponds to the set of valuations reached from Z by
letting time elapse. It is defined by:

−→
Z = {v+ d | v ∈ Z,d ∈ R>0}. Note that,

−→
Z

contains Z itself since d can be equal to 0.
• The reset of zone Z with respect to a subset r ⊆ X of clocks corresponds to a

reset by r for all valuations in Z. It is defined by: Z[r �→ 0] = {v[r �→ 0] | v ∈ Z}.
Observe that, seen as a subset of Rn

>0, a zone is a convex set. Therefore, the union
of zones is not necessarily a zone. The following proposition describes the main
properties of zones. The first two points are easy to obtain and the closure under
future is essentially due to the addition of diagonal constraints.

Proposition 9.1. • The future of a zone is a zone;
• The reset of a zone is a zone;
• The intersection of two (and a finite number of) zones is a zone.

For a set X = {x,y} with two clocks, a zone Z defined by:

2 < x < 4 ∧ 1 < y < 3 ∧ x− 2 < y

is depicted on the left of Fig. 9.7, with its future
−→
Z on the right, defined by the

constraint: 2 < x ∧ 1 < y ∧ x−2 < y < x+1. Zones obtained by reset are in darker
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x

y

1

2

3

1 2 3 4

Z

x

y

1

2

3

1 2 3 4

−→
Z

Fig. 9.7 A zone and its future, with some resets

gray: Z[x �→ 0] is the open segment defined by x = 0 ∧1 < y < 3, while
−→
Z [y �→ 0]

is the open half-line defined by: y = 0 ∧ x > 2.
The construction of the zone graph Zone(A ) associated with a timed automaton

A is based on the following observation: starting from a zone Z in some state q, the
set of valuations reached in state q′ after transition q

g,a,r−−→ q′ is obtained by taking
the future of Z, intersecting it with the invariant of state q and with the guard g, and
applying on the resulting zone the reset r. The new set of valuations obtained this
way:

Z′ = (
−→
Z ∩ [[Inv(q)]]∩ [[g]])[r← 0]

is also a zone from Proposition 9.1. Then, shifting the application of the future
operator, we can define the zone graph as follows.

Definition 9.8. Let A = (X ,Q,q0,Δ , Inv) be a timed automaton. The zone graph
Zone(A ) associated with A is the transition system whose configurations are pairs
(q,Z) where q ∈Q and Z ∈Z (X), with:

• the initial configuration (q0,Z0), where Z0 =
−→
{0}∩ Inv(q0),

• transition (q,Z)
a−→ (q′,Z′) is in Zone(A ) if there is a transition q

g,a,r−−→ q′ in Δ
with Z′ =

−−−−−−−−−−−→
(Z∩ [[g]])[r← 0]∩ [[Inv(q′)]].

To illustrate reachability analysis with this technique, consider again the timed au-
tomaton of Fig. 9.4 for the dinner preparation.

• We first want to know if the state (V3,L2) can be reached from (V0,L0) along the
path corresponding to the sequence of actions startL,startV, f ry. We start from

the initial zone Z0 =
−→
{0}= [[x = y≥ 0]] in state (V0,L0), which has no invariant

(hence a value true). Then, computing the successive zones, we obtain in state
(V2,L1), just after transition f ry, the zone Z1 = [[y = 0 ∧ 1 < x < 3]]. Then,
Z2 =

−→
Z1 ∩ [[x < 3]] is defined by 0 ≤ y < x− 1 ∧ x < 3, which has an empty

intersection with the zone associated with the guard g : 2 < x < 3 ∧ y > 3 of
transition end. Moreover, applying the transition add in state (V2,L1) will not
change the emptiness result. As a consequence, this path must be eliminated to
prepare the dinner, implying that Bob must start to cook the vegetable first.
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• On the other hand, consistently with intuition, if we consider the path correspond-
ing to the sequence of actions startV, f ry,add,startL, we obtain in (V2,L1) the
zone Z3 = [[y ≥ x ≥ 0 ∧ x < 3]]. Intersecting Z3 with [[g]] yields exactly the
non empty zone [[g]] = [[2 < x < 3 ∧ y > 3]]. Hence, this is a possible way of
preparing the dinner.

• The third possible path to be investigated is the one corresponding to the se-
quence startV,startL, f ry, possibly followed by applications of action add.

Finally note that, as shown in Fig. 9.8, the set of configurations of the zone graph
can be infinite. In this example, all zones defined by: 0 ≤ y ≤ 1 ∧ y = x− k, for
k ∈N can be reached in state q0.

q0
y ≤ 1

x > 0 ∧ y = 1, a, y := 0

x

y

1

1 2 3 4

· · ·

Fig. 9.8 A timed automaton generating an infinite number of reachable zones

Therefore, to perform forward analysis with zones, approximations must be com-
puted to obtain a finite zone graph. Different approximations are studied in details
in [12]. On the other hand, dual operations involving the past of a zone or the re-
verse of a reset can be defined, leading to backward computation of zones. This
computation always terminate and can thus be used for reachability analysis.

9.5 Region Graph of a Timed Automaton

The region graph is obtained by applying the classical method of building a quotient
graph from the transition system associated with a timed automaton. This quotient
should be finite, while retaining enough properties of the original transition system.
Since the set of control states is finite, it can be kept unchanged, but a partition of the
set of valuations must be built, such that the corresponding equivalence∼ is consis-
tent with time elapsing, reset operations and the satisfaction of clock constraints.

More precisely, for a timed automaton A = (X ,Q,q0,Δ , Inv) over aphabet Σ , the
consistency properties are expressed by the following conditions:
(C) for two valuations v,v′ ∈R

X
>0 such that v∼ v′,

(i) for each clock constraint g of the form x �� c, v |= g if and only if v′ |= g;
(ii) if v ≤ v1 for some valuation v1, then there exists a valuation v′1 such that
v′ ≤ v′1 and v1 ∼ v′1;
(iii) for each subset r of clocks, v[r �→ 0]∼ v′[r �→ 0].
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Assuming such a quotient R = (RX
>0)/∼ can be built, we call region an element of

R. Hence, any region R ∈R is the equivalence class of some valuation v, which is
denoted by R = [v]. From conditions (C), operations ≤ and reset can be defined, as
well as the satisfaction relation R |= g for a region R ∈R and a guard g ∈ C (X). A
synchronized product of A and R again yields a transition system Reg(A ) which
is time abstract bisimilar (in the sense of conditions (C)) to the transition system
TA of A . More precisely:

Definition 9.9. Let A = (X ,Q,q0,Δ , Inv) be a timed automaton and let ∼ be an
equivalence relation satisfying (C). The region graph Reg(A ) is the transition sys-
tem whose configurations are pairs (q,R) where q ∈ Q and R ∈R. The initial con-
figuration is (q0, [0]) and transitions are:

• (q,R)
a−→ (q′,R′) if there exists a transition q

g,a,r−−→ q′ ∈ Δ with R |= g and R′ =
R[r �→ 0];

• (q,R)
ε−→ (q,R′) if R≤ R′.

In [3], Alur and Dill built such a relation∼ for timed automata, with a finite number
of equivalence classes. If m is the maximal constant appearing in the constraints of
the automaton A , the equivalence relation is defined by:
(D) v∼ v′ if

1. for each clock x, either the integral parts of v(x) and v′(x) are equal, or v(x)> m
and v′(x)> m;

2. for each clock x such that v(x)≤m, f rac(v(x)) = 0 if and only if f rac(v′(x)) = 0,
where f rac(t) is the fractional part of the real number t;

3. for each pair (x,y) of clocks such that v(x) ≤ m et v′(x) ≤ m, f rac(v(x)) ≤
f rac(v(y)) if and only if f rac(v′(x))≤ f rac(v′(y)).

It results from the conditions above that regions are particular zones, sometimes
called elementary zones. Moreover, any zone contained in the part bounded by m is
a union of regions.

Consider the two partitions depicted on Fig. 9.9 for a two-clock automaton with
m = 3. The one on the left satisfies only points 1. and 2. of definition (D) and does
not respect point (ii) of condition (C): starting from valuation v and letting time
elapse produces the region defined by x = 2 ∧ 0 < y < 1 while the same operation
applied to v′ yields the region defined by y = 1 ∧ 1 < x < 2. Hence, these valuations
cannot be equivalent. On the other hand, the partition on the right is consistent with
all the required conditions, thanks to the comparisons of the fractional parts of the
clocks. For instance region R1 in light gray is defined by

2 < x < 3 ∧ 1 < y < 2 ∧ y < x− 1,

while region R2 in darker gray is defined by x > 3 ∧ 1 < y < 2. On this figure,
regions are of several types:

• either points with integer coordinates between 0 and 3, for instance the three
corners of R1,
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• or open segments, for instance the three borders of R1 defined, respectively by
x = 3 ∧ 1 < y < 2, y = 1 ∧ 2 < x < 3 and y = x− 1 ∧ 2 < x < 3,

• or open triangles like R1,
• or half lines like the low and upper borders of R2,
• or unbounded rectangles like R2.
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Fig. 9.9 Partitions for two clocks and m = 3, satisfying only 1. and 2. on the left, satisfying
1., 2. and 3. on the right

In the general case of a set X of n clocks and maximal constant m, a region is defined
by:

• for each clock x ∈ X , an interval among [0,0], ]0,1[, [1,1], . . . [m,m], ]m,+∞[.
When the interval is different from ]m,+∞[, its lower bound gives the integral
part of the clock;

• for the clocks with value less than m, an ordering of the fractional parts of these
clocks.

The representation above shows that the total number of regions is bounded by n! ·
2n · (2m+ 2)n. Therefore, even if the construction is finite, the exponential blow up
makes analysis rather inefficient with this method.

For the timed automaton of Fig. 9.8, the maximal constant is m = 1 and the cor-
responding region automaton is depicted in Fig. 9.10, with the geometrical view of
the regions on the right. Note that, the finiteness of the graph comes from including
all zones except the first one in the three unbounded regions defined, respectively
by x > 1 ∧ y = 0, x > 1 ∧ 0 < y < 1 and x > 1 ∧ y = 1.

The main result proved by Alur and Dill states that Untime(L (A )) is a regular
language, accepted by the finite automaton Reg(A ). More precisely:

Proposition 9.2. Let A be a timed automaton and let (AC) be an accepting con-
dition (either a final state condition for finite timed words, or a Muller or Büchi
condition for infinite timed words).
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q0
x = 0 ∧ y = 0

q0
0 < y = x < 1

q0
x = 1 ∧ y = 1

q0
x = 1 ∧ y = 0

q0
x > 1 ∧ 0 < y < 1

q0
x > 1 ∧ y = 1

q0
x > 1 ∧ y = 0

ε

ε

ε

a

ε

ε

ε

a

ε

ε

x

y

1

1

Fig. 9.10 Regions and region automaton for the timed automaton of Fig. 9.8

Then, if L is the timed language accepted by A with this condition, there exists a
condition (AC′) such that Untime(L) is the language accepted by Reg(A ) for (AC′).

Since a timed language L is empty if and only if Untime(L) is empty, a consequence
of the proposition above is the decidability of emptiness for a language accepted by
a timed automaton A . Hence, reachability of a state of A is also decidable by
considering finite state acceptance. In fact, the following result is proved in [5]:

Theorem 9.1. The problems of:

• emptiness of a timed regular language,
• reachability of a state in a timed automaton

are PSPACE-complete. They are already PSPACE-hard for a fixed number n of
clocks, with n≥ 3.

This very important result was a breakthrough for the analysis of timed models
and initiated a large research field on real-time systems. Model checking timed ex-
tensions of CTL was proposed in [4, 17], as well as other analysis methods (for
instance [1, 15]) and several tools were developed, based on specific algorithms
using zones and zone approximations, like in UPPAAL [10] and KRONOS [24], or
composition, like in CMC [18].

9.6 Language Properties

Returning to the initial problem of language inclusion, we observe that the presence
of clocks clearly makes the model of timed automata strictly more powerful than
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the one of finite automata, in particular because the set of configurations is infinite
and noncountable. This main difference has significant consequences regarding the
properties of the corresponding languages.

In this section, we restrict the scope to families of timed regular languages (on
finite timed words): T Lε denotes the class of timed languages accepted by timed
automata (which may contain silent transitions) and TL the subclass of T Lε where
no ε-transition is permitted. It is well known [11] that TL is a strict subclass of T Lε .
In this context, we present several additional results linked to the problem above.

9.6.1 Closure Properties

Like for finite automata, we have:

Proposition 9.3. The family T Lε is closed under (finite) union and intersection. It
is also closed under projection and concatenation.

Proof. Since silent transitions are permitted in the model, closure under union,
projection and concatenation is trivial.

Concerning the closure under intersection, the proof (see [5]) imitates the one
for finite automata. The underlying mechanism is exactly the one used to build a
synchronized product: the intersection is obtained by considering a synchronization
function f : (Σ1 ∪ {ε})× (Σ2 ∪{ε})→ (Σ1 ∩Σ2)∪ {ε} such that f (a,a) = a for
a ∈ (Σ1∩Σ2)∪{ε} and f is undefined otherwise. �

Note that, the first three closure properties (union, intersection and projection) also
hold for languages of infinite words accepted with Büchi or Muller conditions. The
subclass T L is also closed under union, intersection and concatenation, but not under
projection.

However, in contrast to the case of finite automata, the complement of a language
in T Lε is not necessarily in T Lε . The timed language L accepted by the automaton
on the left in Fig. 9.11 consists of all timed words on alphabet {a,b} such that there
is some a, occurring at time t, such that no event occurs at time t + 1.

Proposition 9.4. [7] The language L does not belong to T Lε .

Proof. Let M be the timed language accepted by the timed automaton on the right
of Fig. 9.11. It consists of the words w such that Untime(w)∈ a∗b∗, with all a events
occurring strictly before time 1 and no two a events occur simultaneously. It is easy
to see that Untime(L∩M) = {anbp | p≥ n}, which is well known not to be a regular
language. Hence, from Proposition 9.2, L∩M itself is not timed regular. Since the
class of timed languages is closed under intersection by Proposition 9.3, we can
conclude that L is not timed regular. �

This nonclosure result also holds for a one-letter alphabet. The timed language N
defined by:

N = {(a, t1) . . . (a, tn) | t j− ti = 1 for some i < j}
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L :

p0 p1
a, x := 0

a,b x > 1, a,b

x < 1, a,b

M :

q0 q1
b

bx < 1 ∧ y > 0, a, y := 0

N :

r0 r1 r2
a, x := 0 x = 1, a

a a a

Fig. 9.11 Counter examples for the non closure under complement: languages L and N

is accepted by the automaton at the bottom of Fig. 9.11, hence it belongs to TL. But:

Proposition 9.5. [13] The language N does not belong to TLε .

Although the language was proposed in [5], with an intuitive argument, a complete
proof only appears in [13].

A consequence of this result concerns the determinization procedure, which is
always possible for finite automata on finite words, although with an exponential
blow up of the set of states.

Definition 9.10. A timed automaton A = (X ,Q,q0,Δ , Inv,F) on alphabet Σ is de-
terministic if the two following conditions hold:

• no transition is labeled by ε ,
• two transitions with same source and same label have disjoint guards.

A key property of deterministic timed automata is that, given a timed word, there
is at most one run accepting it. As in the untimed case, complementing such an
automaton is easy: it suffices to complete the automaton with respect to Σ and take
Q\F as subset of final states.

Let DTL be the subclass of TL containing timed languages accepted by deter-
ministic timed automata. Proposition 9.4 implies that, given a timed automaton A ,
a deterministic timed automaton D such that L f in(A ) = L f in(D) does not always
exists, hence the containment of DTL in T L is strict. Even finding an equivalent
timed automaton without silent transitions, which can be done for finite automata,
is not possible for timed automata, as soon as these transitions appear in loops. A
detailed study on the expressive power of silent transitions can be found in [11].

The good properties of the class DTL makes deterministic timed automata well
suited to specification purposes (recall that it is the part that must be complemented)
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and some work (see for instance [6, 9, 22]) has been devoted to deterministic or
determinizable timed automata.

9.6.2 Undecidability Results

Decidability issues concerning the questions of the previous paragraph were investi-
gated in details in [7, 8, 13, 16, 23] and the following problems (with variants) were
proved undecidable:

• given a timed automaton, is it determinizable ?
• given a language in T Lε , does it belong to T L ? (which amounts to asking if the

silent transitions can be removed),
• given a language in T Lε , is its complement in T Lε ?

For the third question, the subcase of languages in T L was handled in [16] and
the more involved general case with silent transitions was solved in [13]. Indeed,
when silent transitions are permitted, an infinite number of configurations may be
reached while reading a timed word. The case of infinite timed words was also
studied in [13].

We finally return to the inclusion problem, which is closely related to the univer-
sality problem:

given an automaton A , is L (A ) equal to the set of all words ?

While both problems are decidable for finite automata, it is not the case for timed
automata:

Theorem 9.2. [5] The problems: given two timed automata A and B,

• is L f in(A ) equal to the set of all timed words ?
• is L f in(A ) contained in L f in(B) ?

are undecidable.

The inclusion problem was proved to remain undecidable even for rather restricted
classes [2]. However, some subclasses where the problems are decidable were iden-
tified [20, 22] and a generic construction was proposed in [9], which applies to
several classes of timed automata.

9.7 Further Reading

Variants of the timed automata model are proposed in [21, 11, 14] and verification
methods are investigated in [15, 4, 17, 1, 12]. Moreover, (un)decidability results
about determinization and the inclusion problem can be found in [6, 23, 7, 8, 20, 2,
16, 22, 9, 13].



186 B. Bérard

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for
timed automata. Theoretical Computer Science 300(1-3), 411–475 (2003)

2. Adams, S., Ouaknine, J., Worrell, J.B.: Undecidability of Universality for Timed Au-
tomata with Minimal Resources. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS
2007. LNCS, vol. 4763, pp. 25–37. Springer, Heidelberg (2007)

3. Alur, R., Dill, D.L.: Automata for Modeling Real-Time Systems. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

4. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information
and Computation 104(1), 2–34 (1993)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

6. Alur, R., Fix, L., Henzinger, T.A.: A Determinizable Class of Timed Automata. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)

7. Alur, R., Madhusudan, P.: Decision Problems for Timed Automata: A Survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer,
Heidelberg (2004)

8. Asarin, E.: Challenges in timed languages from applied theory to basic theory. Bulletin
of the European Association for Theoretical Computer Science 83, 106–120 (2004)

9. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When Are Timed Automata Determiniz-
able? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. Part II. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009)

10. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo, M., Cor-
radini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg
(2004)

11. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of
silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)

12. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System
Design 24(3), 281–320 (2004)

13. Bouyer, P., Haddad, S., Reynier, P.-A.: Undecidability results for timed automata with
silent transitions. Fundamenta Informaticae 92(1-2), 1–25 (2009)

14. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. Journal of
Automata, Languages and Combinatorics 10(4), 393–405 (2005)

15. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time
systems. Formal Methods in System Design 1(4), 385–415 (1992)

16. Finkel, O.: Undecidable problems about timed automata. CoRR, abs/0712.1363 (2007)
17. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-

time systems. Information and Computation 111(2), 193–244 (1994)
18. Laroussinie, F., Larsen, K.G.: CMC: a tool for compositional model-checking of real-

time systems. In: Proc. IFIP Joint Int. Conf. Formal Description Techniques and Protocol
Specification, Testing and Verification, Paris, France (1998)

19. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Transactions on Compu-
tational Logic 386(3), 169–187 (2007)

20. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing
a decidability gap. In: Proceedings of LICS, pp. 54–63. IEEE Computer Society Press
(2004)



9 An Introduction to Timed Automata 187

21. Sifakis, J., Yovine, S.: Compositional Specifications of Timed Systems. In: Puech, C.,
Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 347–359. Springer, Heidelberg
(1996)

22. Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed Automata with Integer Re-
sets: Language Inclusion and Expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS
2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)

23. Tripakis, S.: Folk theorems on the determinization and minimization of timed automata.
In: Proc. FORMATS 2003. LNCS, vol. 2791, pp. 182–188. Springer (2004)

24. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal of
Software Tools for Technology Transfer 1(1-2), 123–133 (1997)



Part II
Petri Nets



Chapter 10
Introduction to Petri Nets

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu

10.1 Introduction

Petri nets (PNs) are a discrete event system model first introduced in the early 1960s
by Carl Adam Petri in his Ph.D dissertation [14]. In this chapter we focus on the
most common class of PNs, called place/transition (or P/T) net. It is a purely logic
model that does not aim to represent the occurrence time of events, but only the
order in which events occur.

Petri nets have been specifically designed to model systems with interacting com-
ponents and as such are able to capture many characteristics of an event driven sys-
tem, namely concurrency, asynchronous operations, deadlocks, conflicts, etc. Fur-
thermore, the PN formalism may be used to describe several classes of logical mod-
els (e.g., P/T nets, Colored PNs, nets with inhibitor arcs), performance models (e.g.,
Timed PNs, Time PNs, Stochastic PNs), continuous and hybrid models (continuous
PNs, hybrid PNs). Some of these models are considered in this book: timed PNs are
studied in Chapters 16 and 17 while continuous PNs are the object of Chapters 18,
19 and 20.

The main features of PNs can be summarized in the following items.

• PNs are both a graphical and mathematical formalism. Being a graphical formal-
ism, they are easy to interpret and provide a useful visual tool both in the design
and analysis phase.

• They provide a compact representation of systems with a very large state space.
Indeed they do not require to explicitly represent all states of a dynamical system
but only an initial one: the rest of the state space can be determined from the rules
that govern the system evolution. Thus a finite structure may be used to describe
systems with an infinite number of states.
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• They permit a modular representation, i.e., if a system is composed by several
subsystems that interact among them, it is usually possible to represent each sub-
system with a simple subnet and then, through appropriate net operators, combine
the subnets to obtain a model of the whole system.

Several PN analysis techniques have been presented in the literature. In this chapter
we focus on analysis by enumeration that requires the construction of the reachabil-
ity graph of the net representing the set of reachable markings and transition firings.
If this set is not finite, a finite coverability graph may be constructed. Techniques
based on structural analysis, on the contrary, permit the analysis of several proper-
ties based on the net structure, e.g., focusing on the state equation of the net or on
the net graph; they are described in the next chapter.

The chapter is structured as follows. P/T nets and the rules that govern their
evolution are introduced in Section 10.2. In Section 10.3 elementary PN structures
are described and a physical modeling example is presented. In Section 10.4 the
reachability and coverability graphs are presented. Behavioral properties of interest
are also defined and characterized. Finally, Section 10.5 points out some further
interesting reading.

10.2 Petri Nets and Net Systems

We will first define the algebraic and graphical structure of P/T nets. Adding a mark-
ing to such a structure, a marked net (or net system), i.e., a discrete event system, is
obtained. The laws that govern its dynamical evolution are also studied.

10.2.1 Place/Transition Net Structure

A P/T net is a bipartite weighted directed graph. The two types of vertices are called
places (represented by circles) and transitions (represented by bars or rectangles).

Definition 10.1. A place/transition (or P/T) net is a structure N = (P,T,PPPrrreee,PPPooosssttt)
where:

• P = {p1, p2, · · · pm} is the set of m places.
• T = {t1, t2, · · · tn} is the set of n transitions.
• PPPrrreee : P×T −→N is the pre-incidence function that specifies the number of arcs

directed from places to transitions (called “pre” arcs) and is represented as m×n
matrix.

• PPPooosssttt : P× T −→ N is the post-incidence function that specifies the number of
arcs directed from transitions to places (called “post” arcs) and is represented
as m× n matrix.
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Example 10.1. In Fig. 10.1 it is represented the net N = (P,T,PPPrrreee,PPPooosssttt) with set
of places P = {p1, p2, p3, p4} and set of transitions T = {t1, t2, t3, t4, t5}. Here:

PPPrrreee =

⎡

⎢
⎢
⎢
⎣

1 1 0 0 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

p1

p2

p3

p4

t1 t2 t3 t4 t5

PPPooosssttt =

⎡

⎢
⎢
⎢
⎣

1 0 0 0 1

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤

⎥
⎥
⎥
⎦

p1

p2

p3

p4

t1 t2 t3 t4 t5

2 

p1 p2 

p3 

p4 

t1 t2 

t3 

t4 

t5 

Fig. 10.1 A place/transition net

The element Post[p2, t2] = 2 denotes that there are two arcs from transition t2 to
place p2. This is represented in the figure by means of a single barred arc with
weight (or multiplicity) 2. �

We denote by PPPrrreee[·, t] the column of PPPrrreee relative to t, and by PPPrrreee[p, ·] the row of
PPPrrreee relative to p. The same notation is used for matrix PPPooosssttt.

The incidence matrix of a net defined as

CCC = PPPooosssttt−PPPrrreee, (10.1)

is represented by an m×n matrix of integers where a negative element is associated
with a “pre” arc (from place to transition), while a positive element is associated
with a “post” arc (from transition to place).

Note that the incidence matrix does not contain, in general, sufficient information
to reconstruct the net structure. As an example, in the net in Fig. 10.1 it holds:

CCC =

⎡

⎢
⎢
⎢
⎣

0 −1 0 0 1

0 2 −1 −1 0

0 0 1 0 −1

0 0 0 1 −1

⎤

⎥
⎥
⎥
⎦
.

In this net there exist both a “pre” and a “post” arc between place p1 and transition
t1; we say that p1 and t1 form a self-loop, i.e., a directed cycle in the graph of the
net only involving one place and one transition. In such a case, the algebraic sum
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of PPPrrreee and PPPooosssttt determines an element C[p1, t1] = 0, hiding the existence of arcs
between these two vertices. A net without self-loops is called pure.

Finally, given a transition t ∈ T we denote its set of input and output places as:

•t = {p ∈ P | Pre[p, t]> 0} and t• = {p ∈ P | Post[p, t]> 0},

while given a place p ∈ P we denote its set of input and output transitions as:

•p = {t ∈ T | Post[p, t]> 0} and p• = {t ∈ T | Pre[p, t]> 0}.

As an example, in the net in Fig. 10.1 it holds •t2 = {p1}, t•2 = {p2}, •p2 = {t2} and
p•2 = {t3, t4}.

10.2.2 Marking and Net System

The marking of a P/T net defines its state.

Definition 10.2. A marking is a function mmm : P→ N that assigns to each place a
nonnegative integer number of tokens.

As an example, in the net in Fig. 10.1, a possible marking mmm is m[p1] = 1,
m[p2] = m[p3] = m[p4] = 0. Other possible markings are: mmm′ with m′[p2] = 2,
m′[p1] = m′[p3] = m′[p4] = 0; mmm′′ with m′′[p2] = m′′[p4] = 1, m′′[p1] = m′′[p3] = 0;
etc. A marking is usually denoted as a column vector with as many entries as the
number m of places. Thus mmm = [1 0 0 0]T , mmm′ = [0 2 0 0]T , mmm′′ = [0 1 0 1]T .

Graphically, tokens are represented as black bullets inside places. See as an ex-
ample Fig. 10.4.

Definition 10.3. A net N with an initial marking mmm0 is called marked net or net
system, and is denoted 〈N,mmm0〉.

A marked net is a discrete event system with a dynamical behavior as discussed in
the following section.

10.2.3 Enabling and Firing

Definition 10.4. A transition t is enabled at a marking mmm if

mmm≥ PPPrrreee[·, t] (10.2)

i.e., if each place p ∈ P contains a number of tokens greater than or equal to
Pre[p, t]. To denote that t is enabled at mmm we write mmm[t〉. To denote that t ′ is not
enabled at mmm we write ¬mmm[t ′〉.



10 Introduction to Petri Nets 195

In the net in Fig. 10.1 the set of enabled transitions at mmm = [1 0 0 0]T is {t1, t2};
the set of enabled transitions at mmm′ = [0 2 0 0]T is {t3, t4}; {t3, t4} is also the set of
transitions enabled at mmm′′ = [0 1 0 1]T since t5 is not enabled, even if p4 is marked,
because p3 is not marked.

A transition with no input arcs, such as t in Fig. 10.2, is called a source transition.
A source transition t is always enabled, since, being in such a case PPPrrreee[·, t] = 000, the
condition in equation (10.2) is satisfied for all markings mmm.

p t 

Fig. 10.2 A transition with no input arcs

Definition 10.5. A transition t enabled at a marking mmm can fire. The firing of t re-
moves Pre[p, t] tokens from each place p∈P and adds Post[p, t] tokens in each place
p ∈ P, yielding a new marking

mmm′ = mmm−PPPrrreee[·, t]+PPPooosssttt[·, t] = mmm+CCC[·, t]. (10.3)

To denote that the firing of t from mmm leads to mmm′ we write mmm[t〉mmm′.
Note that the firing of a transition is an atomic operation since the removal of tokens
from input places and their addition in output places occurs in an indivisible way.
Consider the net in Fig. 10.1 at marking mmm = [1 0 0 0]T . If t2 fires, mmm′ = [0 2 0 0]T

is reached. Note that at marking mmm = [1 0 0 0]T , t1 may also fire; the firing of such
a transition does not modify the marking being CCC[·, t1] = 000, thus it holds mmm[t1〉mmm. If
the marking of the net in Fig. 10.1 is equal to mmm′ = [0 2 0 0]T , t4 may fire leading to
mmm′′ = [0 1 0 1]T ; note that t3 is also enabled at mmm′ = [0 2 0 0]T and may fire instead
of t4.

Finally, in the marked net in Fig. 10.2 t is always enabled and can repeatedly fire,
leading the initial marking mmm0 = [0] to markings [1], [2] etc.

Definition 10.6. A firing sequence at marking mmm0 is a string of transitions σ =
t j1t j2 · · · t jr ∈ T ∗, where T ∗ denotes the Kleene closure of T , such that

mmm0[t j1〉mmm1[t j2〉mmm2 · · · [t jr〉mmmr,

i.e., for all k ∈ {1, . . . ,r} transition t jk is enabled at mmmk−1 and its firing leads to
mmmk = mmmk−1 +CCC[·, t jk ]. To denote that the sequence σ is enabled at mmm we write mmm[σ〉.
To denote that the firing of σ at mmm leads to the marking mmm′ we write mmm[σ〉mmm′.

The empty sequence ε (i.e., the sequence of zero length) is enabled at all mark-
ings mmm and is such that mmm[ε〉mmm.

In the net in Fig. 10.1 a possible sequence of transitions enabled at marking mmm =
[1 0 0 0]T is σ = t1t1t2t3, whose firing leads to mmm′′′ = [0 1 1 0]T .

Let us now introduce the notion of conflict.
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Definition 10.7. Two transitions t and t ′ are in structural conflict if •t ∩•t ′ 
= /0, i.e.,
if there exists a place p with a pre arc to both t and t ′.
Given a marking mmm, we say that transitions t and t ′ are in behavioral conflict (or
in conflict for short) if mmm≥ PPPrrreee[·, t] and mmm≥ PPPrrreee[·, t ′] but mmm 
≥ PPPrrreee[·, t]+PPPrrreee[·, t ′],
i.e., they are both enabled at mmm, but mmm does not contain enough tokens to allow the
firing of both transitions.

In the net in Fig. 10.1 transitions t3 and t4 are in structural conflict. Such conflict is
also behavioral at marking mmm′′ = [0 1 0 1]T since p2 ∈ •t3∩•t4 only contains one to-
ken that can be used for the firing of only one of the two transitions. On the contrary,
the conflict is not behavioral at marking mmm = [1 0 0 0]T since the two transitions are
not enabled. Analogously, the conflict is not behavioral at marking mmm′ = [0 2 0 0]T ,
since p2 contains enough tokens to allow the firing of both transitions.

To a marked net 〈N,mmm0〉 it is possible to associate a well precise dynamics, given
by the set of all sequences of transitions that can fire at the initial marking.

Definition 10.8. The language of a marked net 〈N,mmm0〉 is the set of firing sequences
enabled at the initial marking, i.e., the set

L(N,mmm0) = {σ ∈ T ∗ | mmm0[σ〉}.

Finally, it is also possible to define the state space of a marked net.

Definition 10.9. A marking mmm is reachable in 〈N,mmm0〉 if there exists a firing sequence
σ such that mmm0[σ〉mmm. The reachability set of a marked net 〈N,mmm0〉 is the set of
markings that can be reached from the initial marking, i.e., the set

R(N,mmm0) = {mmm ∈ N
m | ∃σ ∈ L(N,mmm0) : mmm0[σ〉mmm}.

Note that in the previous definition the empty sequence, that contains no transition,
is also considered. Indeed, since mmm0[ε〉mmm0, it holds mmm0 ∈ R(N,mmm0).

As an example, let us consider the marked net in Fig. 10.3(a), where the initial
marking assigns a number r of tokens to p1. The reachability set is R(N,mmm0) =
{[i j k]T ∈ N

3 | i+ j + k = r} and it is thus finite. On the contrary, the language
L(N,mmm0) of such a net system is infinite since sequences of arbitrary length can fire.

(a) (b) (c) 

t1 

t3 t2 

p1 

p3 

p2 

t2 p1 p2 t1 

t1 

p1 

t2 

p2 

p3 

r 

Fig. 10.3 Some examples of marked nets
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In the net in Fig. 10.3(b), the reachability set is R(N,mmm0) = N
2 and such a set is

infinite. A generic marking mmm with m[p1] = i and m[p2] = j can be reached from
mmm0 firing the sequence t1i+ j t2 j. Also the language is infinite. Finally, in the net in
Fig. 10.3(c), it is R(N,mmm0) = {[1 0 0]T , [0 1 0]T , [0 0 1]T} and L(N,mmm0) = {ε, t1, t2}.

Summarizing, a double meaning is associated with the marking of a net: on one
side the marking denotes the current state of the system; on the other side it specifies
which activities can be executed, i.e., which transitions can fire. The transition firing
determines the dynamical behavior of the marked net.

10.3 Modeling with Petri Nets

In this section we present some elementary P/T structures and the semantics associ-
ated with them.

In a discrete event system, the order in which events occur can be subject to
constraints of different nature. In a PN model this corresponds to impose some con-
straints on the order in which transitions fire. In the following we present four main
structures.

e1 e2 e3 

par 
begin 

e1 

e2 

e3 

e1 

e2 

e3 
par 
end 

(a) 

(b) (c) 

(d) 

e1 

e2 

e3 

Fig. 10.4 Elementary structures of PNs: (a) sequentiality; (b) parallelism; (c) synchroniza-
tion; (d) choice

Sequentiality. Events occur in a sequential order.
In Fig. 10.4(a) event e2 can only occur after the occurrence of e1; e3 can occur
only after the occurrence of e2.

Parallelism (or structural concurrency). Events may occur with no fixed order.
In Fig. 10.4(b), after the firing of transition par begin (parallel begin) events e1,
e2, and e3 are simultaneously enabled. Parallelism implies that the three events
are not in structural conflict and can occur in any order since the occurrence of
any event does not modify the enabling condition of the others. Transition par
begin creates a fork in the flow of events.

Synchronization. Several parallel events must have occurred before proceeding.
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In Fig. 10.4(c), events e1, e2 and e3 can occur in parallel but transition par end
(parallel end) cannot fire until all of them have occurred. Transition par end
creates a join in the flow of events.

Choice (or structural conflict). Only one event among many possible ones can
occur.
In Fig. 10.4(d), only one event among e1, e2 and e3 can occur, because the firing
of any transition disables the others. Note that the choice is characterized by two
or more transitions sharing an input place that determines a structural conflict.

To the above elementary structures it is often possible to associate a dual semantics,
that takes into account the variation of markings, rather than the order in which
transitions fire. In such a case, tokens represent available resources.

4

milk

flour 

butter bechamelcar 

body 

wheels 

(a) (b) 

load 
M1

load 
M2 

robot 

(c) 

t1 

t4 t2 

t3 

Fig. 10.5 Elementary structures of PNs: (a) disassembly; (b) assembly; (c) mutual exclusion

Disassembly. A composite element is separated into elementary parts.
In Fig. 10.5(a) the marked net represents the disassembly of a car, obtaining four
wheels and a body. The transition is similar to the transition par begin previously
introduced.

Assembly. Several parts are combined to produce a composite element.
In Fig. 10.5(b), the marked net describes the recipe to prepare bechamel sauce.
The transition is similar to par end introduced above.

Mutual exclusion. A resource (or a set of resources) can be employed in several
operations. However, while it has been acquired for a given operation, it is not
available for other operations until it is released.
In Fig. 10.5(c), a single robot is available to load parts in two machines. When
the place robot is marked the robot is available, while if either place load M1 or
load M2 is marked the robot is acquired for the corresponding operation. From
the situation in figure, if t1 fires, the loading of the first machine starts and place
robot gets empty: thus t3, whose firing corresponds to the reservation of the robot
for the loading of the second machine, is disabled until the firing of t2 that moves
the token again in place robot. Analogously, from the situation in figure the fir-
ing of t3 disables t1 until the firing of t4. The structure is similar to “choice” in
Fig. 10.4(d).

We conclude this section presenting an example taken from the manufacturing do-
main. Note that manufacturing is one of the application areas where PNs have been
more extensively used since the early 1990s [4, 6].
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disassembly assembly 

Pab 

available 

machine 

Pa 

available 

Pb 

available 

processing
Pa 

processing 
Pb 

Pa 

processed 

Pb 

processed 

t1 t2 

t3 

t5 

t4 

t6 t7 t8 

Fig. 10.6 Petri net model of a manufacturing cell

Figure 10.6 presents the Petri net model of a manufacturing cell where compos-
ite parts Pab are processed. The cell consists of a single machine. A composite part
is initially disassembled in two elementary parts Pa and Pb, that are, one at a time,
processed by the machine. Finally, the two processed parts are assembled again and
removed from the cell. The PN in Fig. 10.6 describes such a system. Places associ-
ated with resources are: Pab available, Pa available, Pa processed, Pb available, Pb

processed, machine. In figure, four tokens are initially assigned to place Pab avail-
able: this denotes the presence of four parts Pab that are available to be disassembled.
The firing of t1 represents the withdrawal of a part Pab to be disassembled. The dis-
assembly operation is modeled by transition t2. After such an operation one part
Pa and one part Pb are available to be processed. A single machine is available to
process parts of both types. When transition t3 fires, the machine starts processing a
part of type Pa and no other part can be processed until t4 fires, i.e., the machine is
released. Analogously, transition t5 represents the acquisition of the machine for the
processing of a part of type Pb, while t6 represents its release. Transitions t7 models
the assembly operation, that can only occur when a part of each type is available.
At the end of the assembly operation, the processed part Pab exits the cell and a new
part to be processed enters the system. This is modeled by transition t8. Note that
this operation mode is typical of those processes where parts move on pallets, that
are available in a finite number.

10.4 Analysis by Enumeration

In this section we present an important technique for the analysis of PNs based
on the enumeration of the reachability set of the net and of the transition function
between markings. If the reachability set is finite, an exhaustive enumeration is pos-
sible and the reachability graph of the net is constructed. If the reachability set is
not finite, a finite coverability graph can still be constructed using the notion of
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ω-marking; the coverability graph provides a larger approximation of the reachabil-
ity set and of the net language.

10.4.1 Reachability Graph

The main steps for the construction of the reachability graph of a marked net 〈N,mmm0〉
are summarized in the following algorithm.

Algorithm 10.2. (Reachability Graph).

1. The initial node of the graph is the initial marking mmm0. This node is initially
unlabeled.

2. Consider an unlabeled node mmm of the graph.

a For each transition t enabled at mmm, i.e., such that mmm≥ PPPrrreee[·, t]:
i. Compute the marking mmm′ = mmm+CCC[·, t] reached from mmm firing t.
ii. If no node mmm′ is on the graph, add a new node mmm′ to the graph.
iii.Add an arc t from mmm to node mmm′.

b Label node mmm “old”.

3. If there exist nodes with no label, goto Step 2.

In the case of nets with an infinite reachability set the algorithm does not terminate.
However, a simple test to detect this case can be added at Step 2.a: if there exists
a marking mmm′′, computed previously, such that the new marking mmm′ is greater than
and different from mmm′′, then stop the computation because the reachability graph is
infinite.

An example of reachability graph is given in Fig. 10.7.

(b) 

[1 1 0] 

[0 2 0] [1 0 1] 

[2 0 0] 

[0 1 1] [0 0 2] 
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t1 

t1 

t3 

t3 

t3 
t2 

t2 

t2 

(a) 

t1 

p1 

t2 

t3 p3 p2 

Fig. 10.7 (a) A bounded PN system and its reachability graph

The following proposition holds, whose proof immediately follows from the def-
inition of reachability graph.

Proposition 10.1. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph.
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(a) Marking mmm belongs to the reachability set R(N,mmm0) ⇐⇒ mmm is a node of the
graph.

(b) Given mmm ∈ R(N,mmm0), sequence σ = t j1 t j2 · · · , belongs to L(N,mmm) and can be
generated with the trajectory mmm[t j1〉mmm′[t j2〉mmm′′ · · · ⇐⇒ there exists in the graph
a directed path γ = mmm t j1 mmm′ t j2 mmm′′ · · · .

As shown in [5], given a bounded PN, the problem of construction of the reacha-
bility graph is not primitive recursive. This implies that every method based on the
reachability graph construction has an unpredictable complexity. This explains the
importance of structural analysis which is the object of the following Chapter 11.

10.4.2 Coverability Graph

The procedure used for the construction of the reachability graph obviously does not
terminate if the net is unbounded. Indeed in such a case, a situation like the following
would surely occur. There exists a directed path that starts from mmm0 to m̃mm, and from
such a node there exists a directed path leading to mmm′ � m̃mm. To characterize the
existence of sequences of transitions whose firing indefinitely increase the marking
of some places, we assign a special symbol ω to all entries of mmm′ that are strictly
greater than the corresponding entries of m̃mm.

Definition 10.10. An ω−marking of a net N with m places is a vector mmmω ∈ (N∪
{ω})m, where one or more components may be equal to ω .

Thus ω should be thought as “arbitrarily large” and we assume that ∀n ∈N it holds
ω > n and ω± n = ω .
Using the notion of ω−marking, a finite approximation of the reachability graph,
called coverability graph, can be constructed. The construction of the coverability
graph first requires the construction of the coverability tree, a graph with no loops
where duplicated nodes may exist. The following algorithm summarizes the main
steps for the computation of the coverability tree of a marked net 〈N,mmm0〉 with inci-
dence matrix CCC.

Algorithm 10.3. (Coverability tree).

1 The root node of the tree is the initial marking mmm0. This node is initially unla-
beled.

2 Consider an unlabeled node mmm of the tree.

a For each transition t enabled at mmm, i.e., such that mmm≥ PPPrrreee[·, t]:
i. Compute the marking mmm′ = mmm+CCC[·, t] reached from mmm firing t.
ii. For all markings m̃mm � mmm′ on the path from the root node mmm0 to node mmm and

for all p ∈ P,
if m̃[p]< m′[p] then let m′[p] = ω .

iii.Add a new node mmm′ to the tree.
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iv. Add an arc t from mmm to the new node mmm′.
v. If there already exists a node mmm′ in the tree, label the new node mmm′ “dupli-

cated”.
b Label node mmm “old”.

3 If there exist nodes with no label, goto Step 2.

Karp and Miller [10] proved that Algorithm 10.3 always terminates in a finite num-
ber of steps even if the net has an infinite state space.

Consider as an example, the marked net in Fig. 10.8(a). The coverability tree is
shown in Fig. 10.8(b) where labels “old” in the internal nodes have been omitted to
make the figure more readable.
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Fig. 10.8 (a) A PN; (b) coverability tree; (c) coverability graph

As summarized in Algorithm 10.4, “merging” duplicated nodes of the coverabil-
ity tree, we obtain the coverability graph.

Algorithm 10.4. (Coverability graph).

1 If the tree contains no nodes with label “duplicated” goto Step 4.
2 Consider a node mmm of the graph with label “duplicated”.

Such a node has no output arcs but an input arc t from node mmm′.
Moreover, there surely exists in the graph another node mmm with label “old”.

a Remove arc t from node mmm′ to node mmm “duplicated”.
b Add an arc t from node mmm′ to node mmm “old”.
c Remove node mmm “duplicated”.

3 If there still exist nodes with label “duplicated” goto Step 2.
4 Remove labels from nodes.
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The coverability graph of the marked net in Fig. 10.8(a) is shown in Fig. 10.8(c).
In the case of nets with an infinite reachability set, the coverability graph provides

a finite description that approximates this infinite set.

Definition 10.11. A marking mmm ∈ N
m is said to be ω-covered by a vector mmmω ∈

(N∪{ω})m if mω [p] = m[p] for all places p such that mω [p] 
= ω; this relation is
denoted mmmω ≥ω mmm.

Thus a node mmmω in the graph represents all markings that are ω-covered by it.
Due to the presence of ω-markings, the coverability graph does not always pro-

vide necessary and sufficient conditions to decide the reachability of a marking
or the existence of a firing sequence. Such results are summarized in the follow-
ing proposition, where a node that can contain ω components is denoted with the
notation mmmω .

Proposition 10.2. Consider a marked net 〈N,mmm0〉 and its coverability graph.

(a) Marking mmm is reachable =⇒ there exists a node mmmω ≥ω mmm in the graph.
(b) Given a marking mmm∈R(N,mmm0), sequence σ = t j1 t j2 · · · , belongs to the language

L(N,mmm) and can be generated with a trajectory mmm[t j1〉mmm′[t j2〉mmm′′ · · · =⇒ there
exists in the graph a directed path γ = mmmω t j1 mmm′ω t j2 mmm′′ω · · · , with mmmω ≥ω mmm,
mmm′ω ≥ω mmm′ etc.

The main feature of the coverability graph is that of not providing a general algo-
rithm, valid in all cases, to determine the reachability of a marking.

Example 10.5. Consider the marked net in Fig. 10.8 and its coverability graph.
Based on Proposition 10.2(a) we conclude that marking [0 0 1]T is reachable, be-
cause it appears in the graph. On the contrary, based on Proposition 10.2(a), marking
[1 1 1]T is not reachable since it is covered by no node in the graph. Finally, if we
consider a marking [0 k 1]T for a given value k > 0, it is not possible to draw a
conclusion concerning its reachability, being it covered by node [0 ω 1]T : as an
example, [0 2 1]T is a reachable marking, while [0 3 1]T is not reachable.

Let us also observe that by Proposition 10.2(b) a coverability graph may contain
directed paths associated with sequences that are not enabled. As an example, in
the net in Fig. 10.8, σ = t1t2t3t3 cannot fire at the initial marking: indeed in an
admissible sequence, t3 can fire at most as many times as t1, due to the constraint
imposed by place p2 that is initially empty. However, starting from mmm0 there is in
the graph a path whose arcs form sequence σ . �

We conclude this section introducing the notion of covering set, that is a (not nec-
essarily strict) superset of R(N,mmm0).

Definition 10.12. Given a marked net 〈N,mmm0〉, let V ⊆ ({N∪{ω})m be the set of
nodes of its coverability graph. The covering set of 〈N,mmm0〉 is

CS(N,mmm0) = {mmm ∈N
m | ∃mmmω ∈V, m[p] = mω [p] if mω [p] 
= ω} .
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By Proposition 10.2, we can state the following result.

Proposition 10.3. Given a marked net 〈N,mmm0〉, it holds R(N,mmm0)⊆CS(N,mmm0).

As an example, in the case of the marked net in Fig. 10.8, it holds CS(N,mmm0) =
{[1 0 0]T , [0 0 1]T}∪{[1 k 0]T , k ∈ N}∪{[0 k 1]T , k ∈ N} ⊂ R(N,mmm0). However,
if N′ is a new net obtained from the net in Fig. 10.8 changing the multiplicity of the
arcs incident on place p2 from 2 to 1, then CS(N′,mmm0) = R(N′,mmm0).

Other approximations of the reachability set will be given in the following
Chapter 11.

10.4.3 Behavioral Properties

In this section we define the main behavioral properties of a marked net, i.e., those
properties that depend both on the net structure and on the initial marking.

10.4.3.1 Reachability

A fundamental problem in the PN net setting is the following, known as the reach-
ability problem.

• Given a marked net 〈N,mmm0〉 and a generic marking mmm, is mmm ∈ R(N,mmm0)?

As already discussed in the previous section, if the net has a finite state space, such
a problem can be solved constructing the reachability graph. However, in the case of
nets with an infinite state space, the coverability graph does not provide necessary
and sufficient conditions to test if a given marking is reachable.

It is easy to show that the reachability problem is at least semi-decidable1. In-
deed, if we consider a marked net 〈N,mmm0〉 and a marking mmm whose reachability has
to be verified, we can generate in an orderly fashion all sequences in L(N,mmm0), start-
ing first with those of length 1, then with those of length 2, etc., and compute the
markings reached with each of these sequences. If mmm is reachable with a sequence of
length k, at the kth step the algorithm terminates with a positive answer. However,
if mmm is not reachable, this algorithm never halts.

In the 1980s it has been proved that the reachability problem is also decidable,
even if the corresponding algorithm has a very high complexity [16].

1 A problem whose solution may either be YES or NO is said to be:

• decidable if there exists an algorithm that, for each possible formulation of the problem,
halts in a finite number of steps providing the correct solution;

• semi-decidable if there exists an algorithm that, for each possible formulation of the prob-
lem, halts in a finite number of steps providing the correct solution in one of the two cases
(e.g., if the answer is YES), while it may not halt in the other case (e.g., if the answer is
NO).
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10.4.3.2 Boundedness

The boundedness property, associated with a place or with a net, implies that the
number of tokens in the place or in the net, never exceeds a given amount. As an
example, this property may imply that no overflow occurs in a buffer, or can be used
to dimension the number of resources required by a process.

Definition 10.13. A place p is k−bounded in 〈N,mmm0〉 if for all reachable markings
mmm∈ R(N,mmm0) it holds m[p]≤ k. A place 1-bounded is safe (or binary). A marked net
〈N,mmm0〉 is k−bounded if all places are k−bounded. A marked net that is 1−bounded
is called safe (or binary) .

When it is not important to specify the value of k, the place (net) is simply called
bounded.

Proposition 10.4. [12] A marked net 〈N,mmm0〉 is bounded if and only if it has a finite
reachability set.

Proposition 10.5. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• A place p is k−bounded⇐⇒ for each node mmmω of the graph it holds mmmω [p] ≤
k 
= ω .

• The marked net is bounded⇐⇒ no node of the graph contains the symbol ω .

The net in Fig. 10.8 is unbounded. Places p1 and p3 are safe, while place p2 is
unbounded. The net in Fig. 10.9 is safe.

p3 

p1 

p2 

t2 t1 t1 

[1 1 0] [0 0 1] 

t2 

Fig. 10.9 A safe Petri net and its reachability graph

10.4.3.3 Conservativeness

A property strictly related to boundedness is conservativeness implying that the
weighted sum of tokens in a net remains constant. Such a property ensures that
resources are preserved.

Definition 10.14. A marked net 〈N,mmm0〉 is strictly conservative if for all reachable
markings mmm ∈ R(N,mmm0) the number of tokens that the net can contain does not vary,
i.e., if:

111T ·mmm = ∑
p∈P

m[p] = ∑
p∈P

m0[p] = 111T ·mmm0
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It is easy to verify graphically if a marked net is strictly conservative. Indeed all
transitions should have a number of “pre” arcs equal to the number of “post” arcs.

Note however, that such a condition is not necessary for strict conservativeness:
there may exist a transition with a different number of “pre” and “post” arcs that
never fires. The net in Fig. 10.7 is strictly conservative since the total number of
tokens is always equal to two. The net in Fig. 10.8 is not strictly conservative.

A generalization of strict conservativeness is the following.

Definition 10.15. A marked net 〈N,mmm0〉 is conservative if there exists a vector of
positive integers xxx ∈ N

m
+ such that for all reachable markings mmm ∈ R(N,mmm0) it is:

xxxT ·mmm = xxxT ·mmm0

i.e. the number of tokens weighted through xxx does not vary.

The net in Fig. 10.9 is not strictly conservative, but it is conservative. Indeed, con-
sider the vector xxx = [1 1 2]T . It is easy to verify that for all reachable markings mmm it
is xxxT ·mmm = xxxT ·mmm0 = 2.

Conservativeness is related to boundedness.

Proposition 10.6. If a marked net 〈N,mmm0〉 is conservative then it is bounded.

Note however, that there may also exist bounded nets that are not conservative. An
example is given in Fig. 10.10 that shows a safe net that is not conservative: indeed
its reachability set is {[1], [0]}, thus chosen an arbitrary positive integer x it holds
0 = x ·0 
= x ·1 = x.

t p 

Fig. 10.10 A bounded Petri net that is not conservative

In the following Chapter 11 it will be shown how, using the incidence matrix, it
is possible to compute a vector xxx with respect to whom the net is conservative.

10.4.3.4 Repetitiveness

Repetitiveness of a sequence of transitions ensures that the sequence can occur in-
definitely.

Definition 10.16. Given a marked net 〈N,mmm0〉, let σ be a non empty sequence of
transitions and mmm ∈ R(N,mmm0) a marking enabling it. Sequence σ is called repetitive
if it can fire an infinite number of times at mmm, i.e., it holds

mmm[σ〉mmm1[σ〉mmm2[σ〉mmm3 · · ·

A marked net 〈N,mmm0〉 is repetitive if there exists a repetitive sequence in L(N,mmm0).
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The following proposition characterizes repetitive sequences.

Proposition 10.7. Let σ be a non empty sequence of transitions such that mmm[σ〉mmm′.
Sequence σ is repetitive if and only if mmm≤ mmm′.

We distinguish two types of repetitive sequences.

Definition 10.17. A repetitive sequence σ enabled at mmm is called:

• stationary if mmm[σ〉mmm,
• increasing if mmm[σ〉mmm′ with mmm′ � mmm.

As an example, the net in Fig. 10.3(c) does not contain repetitive sequences. In the
net in Fig. 10.8 repetitive sequences are tk

1 and tk
4, with k ∈ N+: sequences tk

1 are
increasing, while sequences tk

4 are stationary.
Increasing sequences exist only on unbounded nets.

Proposition 10.8. [12] A marked net 〈N,mmm0〉 is bounded if and only if it does not
admit increasing repetitive sequences.

As discussed in Chapter 11 it is immediate to verify if a given sequence σ is repeti-
tive (either stationary or increasing) using the incidence matrix of the net. Here we
only consider the information given by the analysis of the reachability graph.

Proposition 10.9. Consider a marked bounded net 〈N,mmm0〉 and its reachability
graph. A sequence σ is stationary ⇐⇒ there exists a directed cycle in the graph
whose arcs form σ .

In the net in Fig. 10.7 each stationary sequence corresponds to a cycle in the reacha-
bility graph. Sequences that correspond to elementary cycles are called elementary.
As an example, t1t2 is an elementary sequence, while t1t2t1t2 is not elementary.

Proposition 10.10. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• A sequence σ is repetitive =⇒ there exists a directed cycle in the graph whose
arcs form σ .

• A sequence σ is stationary ⇐= there exists a directed cycle in the graph that
does not pass through markings containing ω and whose arcs form σ .

Note that a coverability graph has always at least one cycle associated with an in-
creasing sequence. Such is the case of sequence t1 in the net in Fig. 10.8. Moreover,
there can be cycles associated with non repetitive sequences. Such is the case of
sequence t3 in the net in Fig. 10.8: t3 is not repetitive because its firing leads to de-
creasing of two units the number of tokens in p2; however, this is hidden when t3
fires from [0 ω 1]T .

10.4.3.5 Reversibility

Reversibility implies that a system can always be reinitialized to its initial state. This
is a desirable feature in many man-made systems.
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Definition 10.18. A marked net 〈N,mmm0〉 is reversible if for all reachable markings
mmm∈R(N,mmm0) it holds mmm0 ∈R(N,mmm), i.e., if from any reachable marking it is possible
to reach back the initial marking mmm0.

As an example, the net in Fig. 10.11(a) is reversible because from any reachable
marking m = [k], transition t2 can fire k times leading the net back to the initial
marking m0 = [0] in figure. On the contrary, the net in Fig. 10.11(b) is not reversible
because any token that enters in p2 can never be removed coming back to the initial
marking.

(a) 

(b) 

t2 p1 t1 

t2 

t1 

t1 [0] [ω] 

t2 p1 p2 t1 

t1 

t2 

t1 

t1 [0 0] [ω 0] [ω ω] 
t2 

Fig. 10.11 (a) A reversible unbounded marked net and its coverability graph; (b) a non re-
versible unbounded marked net and its coverability graph

The reachability graph provides necessary and sufficient conditions for re-
versibiliy. On the contrary, the coverability graph only provides necessary condi-
tions. This is formalized by the following two propositions whose validity derives
from Propositions 10.1 and 10.2, respectively.

Proposition 10.11. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph. The marked net is reversible⇐⇒ the graph is strongly connected.

The reachability graph of the net in Fig. 10.7 is not strongly connected: as an exam-
ple, there exists no directed path from marking [1 0 1]T to the initial marking.

Proposition 10.12. Consider a marked net 〈N,mmm0〉 and its coverability graph. The
net is reversible =⇒ each ergodic2 component of the graph contains a node mmmω ≥ω
mmm0.

As an example, the only ergodic component of the coverability graph of the re-
versible net in Fig. 10.11(a) contains marking [ω ]≥ω [0] = m0. Note however, that
also the net in Fig. 10.11(b) has only one ergodic component that contains the mark-
ing [ω ω ]T ≥ω [0 0]T = mmm0 and it is not reversible. Finally, it is possible to conclude

2 Consider a maximal strongly connected component of a graph. Such a component is called
ergodic if there are no edges leading from a node that belongs to the component to a node
that does not belong to it. Otherwise the component is called transient [2].
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by the only analysis of the coverability graph, that the net in Fig. 10.8 is not re-
versible: indeed it has two ergodic components, each one with a single marking
[0 0 1]T and [0 ω 1]T , respectively, none of them covering the initial marking.

Note, finally, that even if the coverability graph does not provide necessary and
sufficient conditions for checking reversibility, such a property is decidable. In
fact checking for reversibility reduces to checking if the initial marking mmm0 is a
home marking, a problem that is known to be decidable [7] (see also Chapter 12,
Definition 12.8).

10.4.3.6 Liveness and Deadlock

Liveness of a transition implies the possibility that it can always eventually fire,
regardless of the current state of the net.

Definition 10.19. Given a marked net 〈N,mmm0〉, we say that a transitions t is:

• dead if no reachable marking enables it, i.e., ∀mmm ∈ R(N,mmm0) ¬mmm[t〉;
• quasi-live if it is enabled by some reachable marking, i.e., ∃mmm∈R(N,mmm0) : mmm[t〉;
• live if for all reachable markings mmm ∈ R(N,mmm0), t is quasi-live in 〈N,mmm〉.

In the net in Fig. 10.12 transition t4 is dead, transitions t1 and t2 are quasi-live,
transition t3 is live. Note a fundamental difference between quasi-live transitions t1
and t2: t1 can fire an infinite number of times, while t2 may only fire once.

t1 t2 

t4 

p1 p2 

t3 

[1 0] [0 1]
t2 

t3 t1 

Fig. 10.12 A PN for the study of liveness

It is also possible to define the liveness property for a marked net.

Definition 10.20. A marked net 〈N,mmm0〉 is:

• dead, if all its transitions are dead;
• not quasi-live, if some of its transitions are dead and some are quasi-live;
• quasi-live, if all its transitions are quasi-live;
• live, if all its transitions are live.

The net in Fig. 10.12 is not quasi-live because it contains both dead and quasi-live
transitions. The two nets in Fig. 10.11 are both live.
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Another important concept related to the notion of liveness is deadlock that de-
notes an anomalous state from which no further evolution is possible.

Definition 10.21. Given a marked net 〈N,mmm0〉 let mmm ∈ R(N,mmm0) be a reachable
marking. We say that mmm is a dead marking if no transition is enabled at mmm, i.e., if
〈N,mmm〉 is dead. A marked net 〈N,mmm0〉 is deadlocking if there exists a dead reachable
marking.

The net in Fig. 10.7 is deadlocking: marking [0 0 2]T is dead.
Once again the reachability graph provides necessary and sufficient conditions

for the verification of liveness and deadlock.

Proposition 10.13. Consider a bounded marked net 〈N,mmm0〉 and its reachability
graph.

• Transition t is dead⇐⇒ no arc labeled t belongs the graph.
• Transition t is quasi-live⇐⇒ an arc labeled t belongs the graph.
• Transition t is live ⇐⇒ an arc labeled t belongs to each ergodic component of

the graph.
• Reachable marking mmm is dead⇐⇒ node mmm in the graph has no output arc.

The coverability graph provides necessary and sufficient conditions for the analysis
of quasi-liveness, but only necessary conditions for the analysis of liveness.

Proposition 10.14. Consider a marked net 〈N,mmm0〉 and its coverability graph.

• Transition t is dead⇐⇒ no arc labeled t belongs the graph.
• Transition t is quasi-live⇐⇒ an arc labeled t belongs to the graph.
• Transition t is live =⇒ an arc labeled t belongs each ergodic component of the

graph.
• Reachable marking mmm is dead⇐= node mmmω in the graph has no output arc and

mmmω ≥ω mmm.

Note, finally, that even if the coverability graph does not provide necessary and suffi-
cient conditions for checking liveness, such a property is decidable. In fact checking
for liveness can be reduced to a reachability problem [13]. Thus liveness of a net is
a decidable property.

10.5 Further Reading

Further details on the proposed topics can be found in the survey paper by Murata
[12] and on the books of Peterson [13] and David and Alla [1].

Finally, we address to the book of Girault and Valk [8] for a discussion on the
effectiveness of model checking in the verification of the properties introduced in
Section 10.4.
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Chapter 11
Structural Analysis of Petri Nets

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu

11.1 Introduction

This chapter is devoted, as the previous one, to the presentation of background ma-
terial on P/T nets. In particular, here the main focus is on structural analysis that
consists in a set of algebraic tools that do not require the enumeration of the reach-
ability set of a marked net but are based on the analysis of the state equation, on the
incidence matrix, etc.

It is shown how the existence of some vectors, called P- and T-vectors, charac-
terize the behavior of the net. In particular P-vectors enable to express some im-
portant constraints on the number of places in certain subsets of places, e.g., they
can be constant, increasing or decreasing during the net evolution. On the contrary,
T-vectors are related to transitions and express the effect of some sequences of tran-
sitions on the marking of the net, e.g., they can keep it unaltered, or make it increase
or decrease.

The structural counterpart of several behavioral properties, that we had defined
in the previous chapter, will also be defined. The properties we will consider are
boundedness, conservativeness, repetitiveness, reversibility and liveness: in their
structural form they are related to the net structure regardless of the initial mark-
ing. These properties will be characterized in terms of P- and T-vectors.

Subclasses of Petri nets are finally defined. Some of these classes pose some re-
strictions on the nature of physical systems they can model. However, this restricted
modeling power often leads to simplified analysis criteria and this motivates the
interest in these subclasses.
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11.2 Analysis via State Equation

In this section we present an approach to characterize marking reachability by means
of the state equation of a net, that can be solved using integer programming tech-
niques. The main limitation of this approach consists in the fact that in general it
only provides necessary (but not sufficient) conditions for reachability. However, as
discussed at the end of this chapter, there exist classes of nets (such as acyclic nets,
state machines and marked graphs) for which the analysis based on the state equa-
tion provides necessary and sufficient conditions for reachability. Unfortunately,
both marked graphs and state machines are very restricted classes of models.

Definition 10.5 introduced the notion of transition firing and allows one to com-
pute the marking reached after the firing of an enabled transition through a simple
matrix equation. Such a condition can be generalized to a sequence of transitions σ .

Definition 11.1. Given a net N with set of transitions T = {t1, t2, · · · , tn} and a se-
quence of transitions σ ∈ T ∗, we call firing vector (or firing count vector) of σ the
vector

σ = [σ [t1] σ [t2] · · · σ [tn]]
T ∈ N

n

whose entry σ [t] denotes how many times transition t appears in sequence σ .

Consider the sequence σ = t1t2t2 in the net in Fig. 11.1(a). Since t1 appears once in
σ , while t2 appears twice, the firing vector of σ is σ = [1 2]T .

(a) 

t1 p1 p2 t2 

t2 

[1 0 0] 

[0 1 0] 

t1 

p3 

2 

[0 1 ω ] 

t2 

(b) 

Fig. 11.1 (a) A marked PN; (b) its coverability graph

Proposition 11.1 (State equation). Let 〈N,mmm0〉 be a marked net and CCC its incidence
matrix. If mmm is reachable from mmm0 firing σ it holds that

mmm = mmm0 +CCC ·σ . (11.1)

Proof. Assume that mmm0[σ〉mmm with σ = t j1t j2 · · · t jr , i.e., mmm0[t j1〉mmm1[t j2〉mmm2 · · · [t jr〉mmmr,
with mmmr = mmm. It holds that:

mmm = mmmr = mmmr−1 +CCC[·, t jr ] = · · ·= mmm0 +
r

∑
k=1

CCC[·, t jk ] = mmm0 +CCC ·σ

and the state equation is satisfied. �
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Consider the net system in Fig. 11.1(a). It is easy to verify that mmm′ = [0 1 4]T , reach-
able from the initial marking mmm0 = [1 0 0]T firing σ = t1t2t2, satisfies the equation
mmm′ = mmm0 +CCC ·σ .

Definition 11.2. Given a marked net 〈N,mmm0〉 with m places and n transitions, let CCC
be its incidence matrix. The potentially reachable set of 〈N,mmm0〉 is the set

PR(N,mmm0) = {mmm ∈N
m | ∃yyy ∈ N

n : mmm = mmm0 +CCC · yyy},

i.e., the set of vectors mmm ∈N
m such that there exists a vector yyy ∈Nn that satisfies the

state equation.

Proposition 11.2. [1] Let 〈N,mmm0〉 be a marked net. It is: R(N,mmm0)⊆ PR(N,mmm0).

Proof. We simply need to prove that if mmm is reachable, then mmm is also potentially
reachable. Indeed, if mmm is reachable, there exists a sequence σ such that mmm0[σ〉mmm.
Thus mmm = mmm0 +CCC · yyy with yyy = σ , i.e., mmm ∈ PR(N,mmm0). �

We show by means of an example that the converse of Proposition 11.2 does not
hold, i.e., it may happen that R(N,mmm0)� PR(N,mmm0).

Consider the marked net in Fig. 11.1(a) whose incidence matrix is CCC = [ −1 0;
1 0; 0 2 ]. The initial marking is mmm0 = [1 0 0]T . Let mmm = [1 0 2]T . Equation mmm =
mmm0 +CCC · yyy is verified by yyy = [0 1]T . However, σ = t2 is not enabled at the initial
marking and mmm is not reachable.

Definition 11.3. Given a marked net 〈N,mmm0〉, potentially reachable but not reach-
able markings are said to be spurious markings.

The presence of spurious markings implies that in general the state equation analysis
provides necessary, but not sufficient, conditions for reachability. Note however, that
the necessary condition in Proposition 11.2 often allows to verify that a marking is
not reachable. In the net in Fig. 11.1(a), consider the marking mmm = [0 2 0]T and a
generic vector yyy = [y1 y2]

T ∈ N
2. The equation mmm = mmm0 +CCC · yyy implies

mmm−mmm0 = CCC · yyy⎡

⎣
−1

2
0

⎤

⎦ =

⎡

⎣
−y1

y1

2y2

⎤

⎦ .

The first and second of such equalities require that: y1 = 1 and y1 = 2. Thus the
equation does not admit solution and mmm is not reachable because it does not satisfy
Proposition 11.2.

In the previous Chapter 10 we introduced the notion of covering set (cfr. Defi-
nition 10.12) that provides an approximation of the reachability set. In particular,
by Proposition 10.3, it is R(N,mmm0) ⊆ CS(N,mmm0). It is natural to wonder if an in-
clusion relationship exists between PR(N,mmm0) and CS(N,mmm0). The PN system in
Fig. 11.1(a) shows that no relationship exists. Indeed, it is

CS(N,mmm0) = {[1 0 0]T}∪{[0 1 k]T , k ∈ N}
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as it can be easily verified looking at the coverability graph in Fig. 11.1(b). More-
over, it is

PR(N,mmm0) = {[1 0 2k]T , k ∈ N}∪{[0 1 2k]T , k ∈ N}.

Therefore there exist markings that belong to PR(N,mmm0), but do not belong to
CS(N,mmm0), and viz. As an example, given mmm = [0 1 3]T , it is mmm ∈ CS(N,mmm0) but
mmm 
∈ PR(N,mmm0). On the contrary, if we consider mmm′ = [1 0 2]T , it is mmm′ ∈ PR(N,mmm0),
but mmm′ 
∈CS(N,mmm0).

11.3 Analysis Based on the Incidence Matrix

11.3.1 Invariant Vectors

Definition 11.4. Given a net N with m places and n transitions, let CCC be its incidence
matrix. A P-vector1 xxx ∈ N

m with xxx 
= 000 is called:

• P-invariant: if xxxT ·CCC = 000T ;
• P-increasing: if xxxT ·CCC � 000T ;
• P-decreasing: if xxxT ·CCC � 000T .

A T-vector2 yyy ∈ N
n with yyy 
= 000 is called:

• T-invariant: if CCC · yyy = 000;
• T-increasing: if CCC · yyy � 000;
• T-decreasing: if CCC · yyy � 000.

Consider the nets in Fig. 11.2 (a) and (b) whose incidence matrices are respectively

CCCa =

⎡

⎣
−1 2

1 −1
0 −1

⎤

⎦ and CCCb =CCCT
a =

[
−1 1 0

2 −1 −1

]

.

For the net in figure (a) one readily verifies that vector xxxI = [1 1 1]T is a P-invariant,
vector xxxC = [1 1 0]T is a P-increasing and vector xxxD = [0 0 1]T is a P-decreasing.
For the net in figure (b) one readily verifies that vector yyyI = [1 1 1]T is a T-invariant,
vector yyyC = [1 1 0]T is a T-increasing and vector yyyD = [0 0 1]T is a T-decreasing.

The following definition holds.

Definition 11.5. The support of a P-vector xxx ∈Nm, denoted ‖xxx‖, is the set of places
p ∈ P such that x[p]> 0. The support of a T-vector yyy ∈ N

n, denoted ‖yyy‖, is the set
of transitions t ∈ T such that y[t]> 0.

As an example, for the net in Fig. 11.2(a) it is ‖xxxI ‖= {p1, p2, p3}, ‖xxxC ‖= {p1, p2}
and ‖xxxD ‖= {p3}.

1 A P-vector can also be represented by a function xxx : P→ N.
2 A T-vector can also be represented by a function yyy : T → N.
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t1 t2 

p1 

p2 

p3 

2 
p2 

t1 

t2 

t3 

2 

p1 

(a) 
(b) 

Fig. 11.2 Two PNs for the analysis via invariants

The following proposition allows to give a physical interpretation of P-vectors.

Proposition 11.3. Given a net N, let xxxI be a P-invariant, xxxC a P-increasing, xxxD a
P-decreasing. For all markings mmm ∈ N

m and for all enabled sequences σ ∈ L(N,mmm)
such that mmm[σ〉mmm′ it holds that

xxxT
I ·mmm′ = xxxT

I ·mmm; xxxT
C ·mmm′ � xxxT

C ·mmm; xxxT
D ·mmm′ � xxxT

D ·mmm. (11.2)

Proof. If mmm′ is reachable from mmm with the firing of sequence σ it holds that: mmm′ =
mmm+CCC ·σ and for any P-vector xxx it holds that xxxT ·mmm′ = xxxT ·mmm+ xxxT ·CCC ·σ .

By definition of P-invariant xxxT
I ·CCC = 000T , i.e., xxxT ·CCC ·σ = 0 hence the first result

in (11.2) follows. By definition of P-increasing xxxT
I ·CCC � 000T and since σ � 000 it holds

that xxxT ·CCC ·σ ≥ 0, hence the second result in (11.2) follows. The last result can be
proved in a similar fashion. �

Applying the result of the previous proposition to the net in Fig. 11.2 (a), where
mmm0 = [1 0 3]T , one concludes that for all reachable markings mmm ∈ R(N,mmm0):

• the sum of the tokens in the net remains constant and equal to 4 because the P-
invariant xxxI = [1 1 1]T ensures that m[p1]+m[p2]+m[p3] = xxxT

I ·mmm = xxxT
I ·mmm0 = 4;

• the sum of the tokens in places p1 and p2 may increase starting from the initial
value 1 but never decreases, because the P-increasing xxxC = [1 1 0]T ensures that
m[p1]+m[p2] = xxxT

C ·mmm≥ xxxT
C ·mmm0 = 1;

• the number of tokens in place p3 may decrease starting from the initial value 3
but never increases, because the P-decreasing xxxD = [0 0 1]T ensures that m[p3] =
xxxT

D ·mmm≤ xxxT
D ·mmm0 = 3.

The following proposition provides a physical interpretation of T-vectors.

Proposition 11.4. Given a net N, let mmm ∈ N
m be a marking and σ ∈ L(N,mmm) be a

firing sequence such that mmm[σ〉mmm′. The following properties hold:

• the firing vector σ is a T-invariant⇐⇒ mmm′ =mmm, i.e., sequence σ is repetitive and
stationary;

• the firing vector σ is a T-increasing⇐⇒ mmm′ � mmm, i.e., sequence σ is repetitive
increasing;

• the firing vector σ is a T-decreasing⇐⇒ mmm′ � mmm.
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Proof. The three properties can be easily proved considering the state equation
mmm′ = mmm+CCC ·σ and recalling the properties of T-vectors given in Definition 11.4. �

As an example, consider the net in Fig. 11.2 (b). Given the marking mmm = [1 0]T

shown in the figure, sequence σ ′ = t1t2 is enabled and its firing yields marking
mmm′ = [1 1]T � mmm: the firing vector of σ ′ is the T-increasing yyyC = [1 1 0]T . From the
same marking mmm, the firing of sequence σ ′′ = t1t2t3 yields mmm′′ = mmm: the firing vector
of σ ′′ is the T-invariant yyyI = [1 1 1]T .

Remark 11.1. Many authors use a different terminology for P-invariants and T-
invariants, and call them, respectively, P-semiflow and T-semiflow. In particular,
this is the terminology used in the following Chapters 18 and 20. Moreover, in these
chapters the term invariant is used to denote the token conservation law xxxT

I ·mmm′ =
xxxT

I ·mmm in Proposition 11.3. �

11.3.2 P-Invariants Computation

Definition 11.6. A P-invariant xxx ∈ N
m is called:

• minimal if there does not exist a P-invariant xxx′ such that xxx′ � xxx;
• of minimal support if there does not exist a P-invariant xxx′ such that ‖xxx′ ‖�‖xxx‖.

Analogous definitions hold for T-invariants.

As an example, vector xxxI = [1 1 1]T for the net in Fig. 11.2(a) is a minimal P-
invariant that has also minimal support. Note however, that there may exist minimal
invariants that do not have minimal support. As an example, in the net in Fig. 11.3,
P-invariants xxx′ = [1 2 0]T and xxx′′ = [1 0 2]T are minimal and have minimal support;
P-invariant xxx′′′ = 0.5(xxx′ + xxx′′) = [1 1 1]T is minimal but does not have minimal
support.

2 

t1 p1 p2 

p3 

Fig. 11.3 A net with a minimal P-invariant that is not of minimal support

A non minimal or non minimal support P-invariant can always be obtained as the
linear combination, with positive coefficients, of one or more minimal and minimal
support P-invariants. As an example, given the net in Fig. 11.2(a) it holds that xxx′′′ =
0.5(xxx′+ xxx′′).
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The following algorithm determines a set of P-invariants of a net. In particular,
it computes all minimal P-invariants, but also many others that are not minimal
(in general an exponential number of non minimal). Solutions for this issue can be
found in [12].

Algorithm 11.2. (P-invariants computation). Consider a net N with m places and n
transitions and let CCC be its incidence matrix.

1. Compute the table AAA := |CCC | IIIm×m |, where IIIm×m is the m×m identity matrix.
2. For j := 1, . . . ,n (column index associated with transitions):

a. let J+ := {i | A[i, j] > 0} be the set of row indices that correspond to positive
entries in column j;

b. let J− := {i | A[i, j] < 0} be the set of row indices that correspond to negative
entries in column j;

c. for each pair (i+, i−) ∈ J+× J−:
i. let d := lcm{A[i+, j],−A[i−, j]} be the least common multiplier of entries

A[i+, j] and −A[i−, j];
ii. let d+ := d/A[i+, j] and d− :=−d/A[i−, j];

iii. add the new row d+ AAA[i+, ·]+ d− AAA[i−, ·] to the table (the new row has the
j−th entry equal to zero by construction);

d. remove from AAA all rows with index J+ ∪ J−, corresponding to non-null ele-
ments along the j−th column.

3. The resulting table AAA is in the form AAA = | 000r×m | XXXT |, where 000r×m is a null r× n
matrix, while XXX is a matrix with m rows and r columns. Each column of XXX is a
P-invariant.

Note that in the previous algorithm if any of the two sets J+ or J− is empty, at
Step 2(c) no row is added. Moreover, the resulting table will be empty, i.e., r = 0, if
the net N has no P-invariant.

Finally, note that it could be necessary to divide a column of XXX for the largest
common divisor of its entries to obtain a P-invariant that is minimal.

Let us now present a simple example of application of such algorithm. Consider
the net in Fig. 11.4.

t1 

p3 

p1 

p2 

t4 t3 

p4 

p5 

t2 

2 

2 

2 

Fig. 11.4 A net for the computation of P-invariants
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Initially construct the table

−1 0 0 2 1 0 0 0 0 p1

1 0 −2 0 0 1 0 0 0 p2

0 0 1 −1 0 0 1 0 0 p3

0 −2 0 1 0 0 0 1 0 p4

0 1 −1 0 0 0 0 0 1 p5

where for a better understanding each row has been labeled with the corresponding
place. At Step j = 1 the sum of rows p1 and p2 is computed and added to the table,
while the two rows are removed, thus obtaining the table

0 0 1 −1 0 0 1 0 0 p3

0 −2 0 1 0 0 0 1 0 p4

0 1 −1 0 0 0 0 0 1 p5

0 0 −2 2 1 1 0 0 0 p1 + p2

At step j = 2 the linear combination of row p4 with row p5 multiplied by 2 is
executed, and the two rows are removed, obtaining the table

0 0 1 −1 0 0 1 0 0 p3

0 0 −2 2 1 1 0 0 0 p1 + p2

0 0 −2 1 0 0 0 1 2 p4 + 2p5

At step j = 3 two combinations are computed and added to the table: the sum of
row p3 multiplied by 2 and either row p1 + p2 or row p4 +2p5. Removing the three
rows, we get the table

0 0 0 0 1 1 2 0 0 p1 + p2 + 2p3

0 0 0 −1 0 0 2 1 2 2p3 + p4 + 2p5

At Step j = 4 there are no possible combinations and we simply remove row 2p3 +
p4 + 2p5 that has a non-null entry in the fourth column. The resulting table is

0 0 0 0 1 1 2 0 0 p1 + p2 + 2p3

Thus the net has a single minimal and minimum support P-invariant xxx= [1 1 2 0 0]T .
From the definition of P-invariants and T-invariants, one can readily see that the

T-invariants of a net N with incidence matrix CCC are the P-invariants of the dual net3

with incidence matrix CCCT , and viz. Thus Algorithm 11.2 can also be used to compute
the T-invariants initializing the table as AAA := | CCCT | IIIn×n |. The i−th row in such a
case should be labeled by transition ti.

It is also important to observe that the previous algorithm can be modified to
determine increasing (or decreasing) P-vectors: at Step 2(d) rather than eliminating
all the rows in I+ ∪I− only the rows with index I− (or I+) should be removed

3 See Definition 11.19 for a formal definition of duality.
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since if xxx is an increasing (decreasing) vector positive (negative) entries in the prod-
uct zzzT = xxx ·CCC are allowed. However, in general, when the algorithm is applied for
the computation of increasing or decreasing vectors, the resulting vectors are not
only the minimal ones or those of minimum support, but many others as well that
can be obtained as a linear combination of them.

11.3.3 Reachability Analysis Using P-Invariants

In this section we discuss how P-invariants can be used to approximate the reacha-
bility set of a marked net.

Definition 11.7. [1] Let 〈N,mmm0〉 be a net with m places and XXX = [xxx1 xxx2 · · · xxxk] a
matrix m× k, whose generic column xxxi is a P-invariant of N.

The X−invariant set of 〈N,mmm0〉 is the set

IX(N,mmm0) = {mmm ∈ N
m | XXXT ·mmm = XXXT ·mmm0},

i.e., the set of vectors mmm ∈ N
m such that xxxT

i ·mmm = xxxT
i ·mmm0 for all i ∈ {1, . . . ,k}.

It is easy to prove that the potentially reachable set of a marked net is contained
in the X−invariant set for any matrix of P-invariants XXX . The following proposition
extends the results of Proposition 11.2.

Proposition 11.5. [1] Let 〈N,mmm0〉 be a marked net and XXX a matrix whose columns
are P-invariants of N. It holds: R(N,mmm0)⊆ PR(N,mmm0)⊆ IX(N,mmm0).
Proof. The first inequality derives from Proposition 11.2. It is sufficient to prove that
if mmm is potentially reachable, then mmm is also X−invariant. In fact, if mmm is potentially
reachable, there exists a vector yyy ∈ N

n such that mmm = mmm0 +CCC · yyy. Thus XXXT ·mmm =
XXXT ·mmm0 +XXXT ·CCC ·yyy. Being XXX a matrix whose columns are P-invariants of N it holds
that XXXT ·CCC · yyy = 000, thus mmm ∈ IX(N,mmm0). �

Let us now present an example where it is R(N,mmm0)⊂ PR(N,mmm0)⊂ IX(N,mmm0), i.e.,
where strict inclusion holds. Consider again the net in Fig. 11.1(a). There exists only
a minimal P-invariant xxx = [1 1 0]T , thus let XXX = xxx. Moreover,

R(N,mmm0) = { [1 0 0]T}∪{[0 1 2k]T , k ∈ N },

and, as already discussed in Section 11.2,

PR(N,mmm0) = { [1 0 2k]T , k ∈ N }∪{ [0 1 2k]T , k ∈ N } ⊂ R(N,mmm0).

A generic mmm is an X−invariant only if:

XXXT · mmm = XXXT · mmm0

[1 1 0] ·

⎡

⎣
m[p1]
m[p2]
m[p3]

⎤

⎦ = [1 1 0] ·

⎡

⎣
1
0
0

⎤

⎦
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or equivalently m[p1] +m[p2] = 1. Moreover, since each m[pi] should be a non-
negative integer, it holds that:

IX(N,mmm0) = {[1 0 k]T , k ∈ N }∪{ [0 1 k]T , k ∈ N },

i.e., it is PR(N,mmm0)⊂ IX(N,mmm0).
We conclude this section extending the result in Proposition 10.3.

Proposition 11.6. Let 〈N,mmm0〉 be a marked net and XXX a matrix whose columns are
P-invariants of N. It holds that: R(N,mmm0)⊆CS(N,mmm0)⊆ IX(N,mmm0).

Proof. The first inequality derives from Proposition 10.3. It is sufficient to prove
that mmm ∈CS(N,mmm0) implies that mmm is also X−invariant. To this aim we first observe
that the support of no P-invariant contains unbounded places. Therefore, if p is an
unbounded place, for all marking mmm∈ Ix(N,mmm0), m[p] may take any value in N. This
implies that the statement mmm∈CS(N,mmm0) ⇒ mmm∈ IX(N,mmm0) may be at most violated
by bounded places. However, either of this cannot occur since bounded places in
the coverability graph only contain reachable markings being by Proposition 11.5,
R(N,mmm0)⊆ IX(N,mmm0). �

11.4 Structural Properties

In this section we define meaningful structural properties of a P/T net. In Sec-
tion 10.4.3 of the previous chapter we defined several behavioral properties of
a marked net 〈N,mmm0〉, such as boundedness, conservativeness, repetitiveness, re-
versibility and liveness. In this section we define the structural counterpart of these
properties, relating them to the net structure independent of a particular initial mark-
ing. We also show how such properties can be verified using P-vectors and T-vectors.

Most of the proofs of the results presented in this section are omitted; the inter-
ested reader is addressed to [13].

11.4.1 Structural Boundedness

This property implies boundedness for all initial markings.

Definition 11.8. Consider a P/T net N and one of its places p ∈ P.

• Place p is structurally bounded if it is bounded in 〈N,mmm0〉 for all initial markings
mmm0.

• Net N is structurally bounded if the marked net 〈N,mmm0〉 is bounded for all initial
markings mmm0.

This property can be characterized in terms of P-vectors .
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Proposition 11.7. Consider a P/T net N and a place p ∈ P.

1. Place p is structurally bounded if and only if there exists a P-invariant or a P-
decreasing xxx with x[p]> 0, i.e., p ∈ ‖xxx‖.

2. The net N is structurally bounded if and only if there exists a P-invariant or a
P-decreasing of positive integers xxx ∈ N

m
+, i.e., P = ‖xxx‖.

As an example, the net in Fig. 11.1(a) has P-invariant [1 1 0]T . Thus places p1 and
p2 are structurally bounded while place p3 is not structurally bounded. Therefore
the net is not structurally bounded.

Structural boundedness implies (behavioral) boundedness, since it holds for all
initial markings. The opposite is not true: consider the net in Fig. 11.1(a) with initial
marking mmm0 = [0 0 r]T (for all r ∈ N). The resulting marked net is bounded, even
if it is not structurally bounded: indeed in such a net only places p1 and p2 are
structurally bounded.

11.4.2 Structural Conservativeness

Definition 11.9. Consider a P/T net N and one of its places p ∈ P.

• Net N is structurally strictly conservative if the marked net 〈N,mmm0〉 is strictly
conservative for all initial markings mmm0.

• Net N is structurally conservative if the marked net 〈N,mmm0〉 is conservative for
all initial markings mmm0.

This property can be characterized in terms of P-invariants.

Proposition 11.8. Consider a P/T net N.

• N is structurally strictly conservative if and only if vector 111 = {1}m is a P-
invariant.

• N is structurally conservative if and only if there exists a P-invariant of positive
integers xxx ∈ N

m
+, i.e., a P-invariant whose support contains all places.

Structural conservativeness implies (behavioral) conservativeness, since it holds for
all initial markings. The opposite is not true. As an example, the net in Fig. 10.12(a)
in Chapter 10 is conservative with respect to the vector [1 1]T for the given initial
marking, but such a net admits no P-invariant, thus it is not structurally conservative.
It is easy to see that the net system 〈N,mmm0〉 is not conservative if m0[p1] ≥ 1 and
m0[p1]+m0[p2]≥ 2, since in such a case transition t4 would be almost-live and its
firing would decrease the number of tokens in the net.

Let us finally observe, as already discussed for the corresponding behavioral
properties, that structural conservativeness implies structural boundedness while the
opposite is not true. The net in Fig. 10.10 (Chapter 10) is an example of a structurally
bounded net being vector [1] a P-decreasing, while it is not structurally conservative
since it admits no P-invariant.
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11.4.3 Structural Repetitiveness and Consistency

These properties are the structural counterpart of repetitiveness and stationarity in-
troduced for sequences of transitions.

Proposition 11.9. Consider a P/T net N.

• N is repetitive if there exists an initial marking mmm0 such that 〈N,mmm0〉 admits a
repetitive sequence containing all transitions.

• N is consistent if there exists an initial marking mmm0 such that 〈N,mmm0〉 admits a
repetitive stationary sequence containing all transitions.

These properties can be characterized in terms of T-vectors.

Proposition 11.10. Let N be a P/T net.

• N is repetitive if and only if it admits either a T-invariant or a T-increasing of
strictly positive integers yyy ∈ N

n
+, i.e., a T-increasing whose support contains all

transitions.
• N is consistent if and only if it admits a T-invariant of strictly positive integers

yyy ∈N
n
+, i.e., a T-invariant whose support contains all transitions.

As an example the net in Fig. 11.8(b) is repetitive and consistent. If such a net is
modified assuming that the multiplicity of the arc from t ′ to p′ is equal to 2, the
resulting net is repetitive but not consistent.

11.4.4 Structural Liveness

Definition 11.10. A P/T net N is structurally live if there exists an initial marking
mmm0 such that the marked net 〈N,mmm0〉 is live.

It is possible to give a necessary condition for such property.

Proposition 11.11. A P/T net N with incidence matrix CCC is structurally live only if
it does not admit a P-decreasing .

As an example, the net in Fig. 11.2(a) has a P-decreasing xxxD = [0 0 1]T , i.e., the
number of tokens in p3 can never increase. This net is structurally dead: regardless
of the initial marking, each time t2 fires the number of tokens in p3 decreases and
when the place gets empty, t2 becomes dead.

11.5 Implicit Places

We now introduce the notion of implicit place that is useful in a large variety of
problems, such as simulation, performance evaluation and deadlock analysis.
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Definition 11.11. [21] Let 〈N,mmm0〉 be a PN system with N = (P∪{p},T,PPPrrreee,PPPooosssttt).
Place p is implicit if and only if L(N,mmm0) = L(N′,mmm′0) where N′ = (P,T,PPPrrreee[P,T ],
PPPooosssttt[P,T ]) is the restriction of N to P, i.e., the net obtained from N removing p and
its input and output arcs, and mmm′0 = mmm0[P] is the projection of mmm0 on P.

In simple words, a place p of a marked PN is said to be implicit if deleting it does not
change the “behavior” of the marked net, i.e., the language it can generate. Therefore
a place p is implicit if there does not exist a marking mmm ∈ R(N,mmm0) and a transition
t ∈ T such that mmm[P]≥ PPPrrreee[P, t] and m[p]< Pre[p, t].

As an example, both places p1 and p2 in Fig. 11.5(a) are implicit places.
The following theorem provides a sufficient condition for a place p to be implicit.

Theorem 11.1. [21] Let 〈N,mmm0〉 be a PN system with N = (P∪{p},T,PPPrrreee,PPPooosssttt).
Let

γ∗ = min
{

yyyT ·mmm0[P]+ μ | yyyT ·CCC[P,T ]≤CCC[p,T ]
yyyT ·PPPrrreee[P, p•]+ μ ·1T ≥ PPPrrreee[p, p•]
yyy≥ 0, μ ≥ 0} .

(11.3)

If m0[p]≥ γ∗, then p is implicit.
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p2 

t2 

p3 

t4 

p4 

t5 

t3 
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p2 p1 p3 

t1 

(a) 

t2 

Fig. 11.5 (a) A PN with two implicit places; (b) a PN with a siphon and a trap

If a place p can be made implicit for every possible initial marking then it is called
structurally implicit.

Definition 11.12. [21] Let N = (P∪{p},T,PPPrrreee,PPPooosssttt) be a PN. Place p is struc-
turally implicit if for every mmm0[P], there exists a m0[p] such that p is implicit in
〈N,mmm0[P∪{p}]〉.

Both places p1 and p2 in Fig. 11.5(a) are also structurally implicit. An example of a
place that is implicit but not structurally implicit is given in [21].

A characterization of structurally implicit places is the following:

Theorem 11.2. [21] Let N = 〈P∪{p},T,PPPrrreee,PPPooosssttt〉. Place p is structurally implicit
iff (equivalently):

• ∃ yyy > 1 such that CCC[p,T ]≥ yyyT ·CCC[P,T ].
• 
 ∃ xxx≥ 1 such that CCC[P,T ] · xxx≥ 0 and CCC[p,T ]< 0.
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Structurally implicit places are very important when performing structural analy-
sis. Many approaches in this framework are based on either the addition or the re-
moval of structurally implicit places. Indeed, the addition of structurally implicit
places can: (i) increase the Hamming distance useful for error/fault detecting and
error/fault correcting codes [19]; (ii) decompose the system for computing perfor-
mance evaluation (divide and conquer techniques) [22]; (iii) decompose the system
for decentralized control [25]; (iv) cut spurious (deadlock) solutions improving the
characterization of the state equation [1]. On the contrary, the removal of struc-
turally implicit places can: (i) simplify the implementation having less nodes and
(ii) improve the simulation of continuous PNs under infinite server semantics [16] .

Note that other restrictions of the concept of implicit place have been proposed
in the literature [21], e.g., that of concurrent implicit place that is particularly useful
in performance evaluation or control of timed models. For a detailed study on this,
we address to [1].

11.6 Siphons and Traps

Let us now introduce two structural complementary objects, namely siphons and
traps. Siphons and traps are usually introduced for ordinary nets and most of the
literature dealing with them refers to such a restricted class of nets. However, some
authors extended their definitions to non ordinary nets. See e.g. [23] and the refer-
ences therein.

Definition 11.13. A siphon of an ordinary PN is a set of places S ⊆ P such that the
set of input transitions of S is included in the set of output transitions of S, i.e.,

⋃

p∈S

•p⊆
⋃

p∈S

p•.

A siphon is minimal if it is not the superset of any other siphon.

Definition 11.14. A trap of an ordinary PN is a set of places S⊆ P such that the set
of output transitions of S is included in the set of input transitions of S, i.e.,

⋃

p∈S

p• ⊆
⋃

p∈S

•p.

A trap is minimal if it is not the superset of any other trap.

The main interest on siphons and traps derives from the following two considera-
tions. Once a siphon becomes empty, it remains empty during all the future evo-
lutions of the net. Once a trap becomes marked, it remains marked during all the
future evolutions of the net.

Consider the net in Fig. 11.5(b). The set S = {p1, p2} is a siphon. The token
initially in p2 may move to p1 and again to p2, through the firing of t1 and t2,
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respectively. However, once t3 fires, S becomes empty and remains empty during all
future evolutions of the net. On the contrary, S′ = {p3, p4} is a trap. Once a token
enters in p3, it can only move to p4 and to p3 again, but it will never leave S′.

Traps and siphons have been extensively used for the structural analysis of PNs.
Following [21], here we limit to mention three of the most significant results in this
context.

• In an ordinary deadlocked system, the subset of unmarked places is a siphon,
otherwise one of its input transitions would be enabled.

• Taking into account that traps remain marked, if every siphon of an ordinary net
contains an initially marked trap, then the system is deadlock-free.

• If mmm is a home state of a live system, then every trap must be marked, otherwise
once the trap becomes marked — and it will eventually do by liveness — mmm
cannot be reached any more.

Linear algebraic characterizations of siphons and traps have been given since the
nineties [21] and can be considered as the starting point for extensive and fruitful
theories on liveness analysis and deadlock prevention, particularly in the case of
some net subclasses [4, 5, 6, 11, 24].

11.7 Classes of P/T Nets

The P/T net definition given in the previous chapter corresponds to a model some-
times called general P/T net. In this section we present some classes of P/T nets
that satisfy particular structural conditions. In particular, the considered classes are
summarized in the Venn diagram in Fig. 11.6.

Fig. 11.6 Venn diagram of the different classes of P/T nets
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11.7.1 Ordinary and Pure Nets

Definition 11.15. A P/T net N = (P,T,PPPrrreee,PPPooosssttt) is called:

• ordinary if PPPrrreee : P× T −→ {0,1} and PPPooosssttt : P× T −→ {0,1}, i.e., if all arcs
have unitary multiplicity;

• pure if for each place p and transition t it holds that Pre[p, t] ·Post[p, t] = 0, i.e.,
if the net has no self-loop;

• restricted if it is ordinary and pure.

Even if the definition of restricted net seems more restrictive than that of a general
P/T net, it is possible to prove that the two formalisms have the same modeling
power, in the sense that they can describe the same class of systems.

In the following we present a rather intuitive construction to convert a general net
into an equivalent4 restricted one, by removing arcs with multiplicity greater than
one and self-loops.

The first construction, shown in Fig. 11.7, removes arcs with a multiplicity
greater than one. Let r be the maximum multiplicity among all “pre” and “post”
arcs incident on place p. We replace p with a cycle of r places p(i) and transitions
t(i), i = 1, . . . ,r, as in the figure. Each arc “post” (“pre”) with multiplicity k ≤ r is
replaced by k arcs, each one directed (coming from) k different places. Disregard-
ing the firing of transitions t(i) and keeping into account that for each marking mmm of
the original net and a corresponding marking mmm′ of the transformed net it holds that
m[p] = ∑r

i=1 m′[p(i)], the two nets have the same behavior.

t1 

p 

2 

3 

t2 

t4 t3 

(a) 

p(1) p(2) 
p(3)

t(1)
t(3)t(2)

t1 t2 

t4 t3 

(b) 

Fig. 11.7 (a) A place of a non-ordinary net; (b) transformation to eliminate the arcs of non-
unitary multiplicity

The second construction, shown in Fig. 11.8, removes a self-loop from t to p: the
firing of t in the original net corresponds to the firing of t ′ and t ′′ in the modified
net.

4 Here the term equivalent is used in a purely qualitative fashion: a formal discussion of
model equivalence (e.g., in terms of languages, bisimulation, etc.) goes beyond the scope
of this book.
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(b) 

p p p’ 

t’ 

t” 

t 

(a) 

Fig. 11.8 (a) A self-loop; (b) transformation to remove the self-loop

11.7.2 Acyclic Nets

Definition 11.16. A P/T net is acyclic if its underlying graph is acyclic, i.e., it does
not contain directed cycles.

The net in Fig. 11.3 is acyclic. On the contrary, the net in Fig. 11.1 is not acyclic
because it contains the self-loop p2t2 p2. Analogously, the nets in Fig. 11.2 are not
acyclic because they both contain cycle p1t1 p2t2 p1.

The main feature of acyclic nets is that their state equation has no spurious solu-
tions.

Proposition 11.12. [13] Let N be an acyclic net. For all initial markings mmm0, it holds
that R(N,mmm0) = PR(N,mmm0).

Therefore for this class of nets, the analysis based on the state equation provides
necessary and sufficient conditions to solve the reachability problem.

11.7.3 State Machines

Definition 11.17. A state machine is an ordinary net whose transitions have exactly
one input and one output arc, i.e., it holds that ∑p∈P Pre[p, t] = ∑p∈P Post[p, t] = 1
for all transitions t ∈ T.

The net in Fig. 11.9(a) is a state machine, while all the other nets in the same figure
are not.

A state machine with a single token is analogous to a finite state automaton: each
place of the net corresponds to a state of the automaton and the position of the token
denotes the current state of the automaton. Since each place can have more than one
output transition, as place p1 in Fig. 11.9(a), state machines can model a “choice”.

The initial marking can also assign to a state machine a number of tokens greater
than one. In such a case it is possible to represent a limited form of “parallelism”,
that originates from the firing of transitions enabled by different tokens. On the
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Fig. 11.9 Ordinary PNs: (a) a state machine; (b) a marked graph; (c) a free-choice net; (d) a
non free-choice net

contrary, it is not possible to model a “synchronization” since the enabling of a
transition depends on a single place.

The particular structure of state machines leads to a more restrictive model than
ordinary nets, in the sense that it is not possible in general to find a state machine
that is equivalent to an arbitrary ordinary net. Nevertheless, such restriction allows
to significantly simplify the study of their properties [14, 17]. In particular, the fol-
lowing two important results can be proved.

• A state machine is always bounded.
• If a state machine is connected (but not necessarily strictly connected), then for

all initial markings mmm0, it holds that R(N,mmm0) = PR(N,mmm0), i.e., a marking is
reachable if and only if it is potentially reachable.

11.7.4 Marked Graphs

Definition 11.18. A marked graph, also called marked event (or synchronization)
graph, is an ordinary net whose places have exactly one input and one output tran-
sition, i.e., ∑t∈T Pre[p, t] = ∑t∈T Post[p, t] = 1 for all places p ∈ P.

The net in Fig. 11.9(b) is a marked graph, while all the other nets in the same figure
are not.

Since each place of a marked graph has a single output transition, this structure
cannot model a “choice”. However, it can model “parallelism” because a transition
may have more than one output place. Moreover, it can model a “synchronization”
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since the enabling state of a transition can depend on several places; such is the case
of transition t1 in Fig. 11.9(b).

There exists a dual relation between state machines and marked graphs.

Definition 11.19. Given a net N = (P,T,PPPrrreee,PPPooosssttt) with m places and n transitions,
the dual net of N is the net NT = (T,P,PPPrrreeeT ,PPPooossstttT ) with n places and m transitions.

The dual net can be obtained from the original one simply replacing each node
“place” with a node “transition” and viz., and inverting the directions of arcs. If the
original net has incidence matrix CCC, the dual net has incidence matrix CCCT . Moreover,
if N′ is the dual net of N, then N is the dual net of N′.

The two nets in Fig. 11.9(a)-(b) are one the dual net of the other.

Proposition 11.13. If N is a state machine (resp., marked graph) its dual net NT is
a marked graph (resp., state machine).

Proof. The construction of the dual net transforms each node “place” into a node
“transition” and viz., and does not change the multiplicity of the arcs but only their
orientation. Thus, if N is a state machine each transition has a single input place
and a single output place and in NT each place has a single input transition and a
single output transition, thus the resulting net is a marked graph. A similar reasoning
applies if N is a marked graph. �

As in the case of state machines, also for marked graphs some important properties
can be proved. For a detailed discussion on this we address to [14].

11.7.5 Choice-Free Nets

A generalization of state machines and marked graphs is the following.

Definition 11.20. A free-choice net is an ordinary net such that from p ∈ P to t ∈ T
is either the single output arc from p or the single input arc to t, i.e., for all places
p ∈ P if Pre[p, t] = 1 it holds that:

[∀t ′ 
= t : Pre[p, t ′] = 0] ∨ [∀p′ 
= p : Pre[p′, t] = 0].

The admissible structures in a free-choice net are shown in Fig. 11.10(a)-(b) while
a non-admissible structure is shown in Fig. 11.10(c).

A free-choice net thus can model “choice”, “parallelism” and “synchronization”.
As an example, in the free-choice net in Fig. 11.9(c) transitions t1 and t2 are in
structural conflict and model a choice in place p1; t3 models a synchronization.

However, a free-choice net cannot represent ”choice” and “synchronization” rel-
atively to the same transition. As an example, the net in Fig. 11.9(d) is not a free-
choice net since transition t3 models a synchronization and at the same time one of
the admissible choices for place p1.
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p1 t1 
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Fig. 11.10 Elementary structures: (a)-(b) free-choice; (c) not free-choice

Note that each state machine and each marked graph are also free-choice net.
However, the class of free-choice net is larger than the union of these two classes.
The net in Fig. 11.9(c) is a free-choice net even if it is neither a state machine nor
a marked graph. Also, free-choice nets satisfy particular conditions that allow to
reduce the computational complexity of the analysis of their properties with respect
to the case of ordinary nets. A rich literature exists on this topic. See e.g. [3].

11.8 Further Reading

As in the case of Chapter 10, further details on the proposed topics can be found in
the survey paper by Murata [13] and on the books of Peterson [14] and David and
Alla [2]. Moreover, for more details on methods to improve the state equation based
on implicit places, we address to the paper by Silva et al. [21]. Significant results
related to the analysis of structural boundedness and structural liveness can be found
in [20, 21], most of which are based on rank theorems. Finally, very interesting
results on deadlock analysis and prevention are summarized in the book of Li and
Zhou [10] and in the book edited by Zhou and Fanti [7].
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Chapter 12
Supervisory Control of Petri Nets
with Language Specifications

Alessandro Giua

12.1 Introduction

In this chapter, we study Petri nets (PNs) as language generators and we show how
PNs can be used for supervisory control of discrete event systems under language
specifications.

Supervisory control, originated by the work of Ramadge and Wonham [13], is
a system theory approach that has been gaining increasing importance because it
provides a unifying framework for the control of Discrete Event Systems (DESs). A
general overview of Supervisory Control has been presented in Chapter 3.

In the original work of Ramadge and Wonham finite state machines (FSMs) were
used to model plants and specifications. FSMs provide a general framework for es-
tablishing fundamental properties of DES control problems. They are not conve-
nient models to describe complex systems, however, because of the large number
of states that have to be introduced to represent several interacting subsystems, and
because of the lack of structure. More efficient models have been proposed in the
DES literature. Here the attention will be drawn to Petri net models.

PNs have several advantages over FSMs. First, PNs have a higher language com-
plexity than FSM, since Petri net languages are a proper superset of regular lan-
guages. Second, the states of a PN are represented by the possible markings and
not by the places: thus they give a compact description, i.e., the structure of the net
may be maintained small in size even if the number of the markings grows1. Third,
PNs can be used in modular synthesis, i.e., the net can be considered as composed

Alessandro Giua
Department of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
e-mail: giua@diee.unica.it

1 However, we should point out that many analysis techniques for Petri nets are based on the
construction of the reachability graph, that suffers from the same state explosion problem
typical of automata. To take advantage of the compact PN representation, other analysis
techniques (e.g. structural) should be used.

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 235–255.
springerlink.com c© Springer-Verlag London 2013
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of interrelated subnets, in the same way as a complex system can be regarded as
composed of interacting subsystems.

Although PNs have a greater modeling power than FSMs, computability theory
shows that the increase of modeling power often leads to an increase in the compu-
tation required to solve problems. This is why a section of this paper focuses on the
decidability properties of Petri nets by studying the corresponding languages: note
that some of these results are original and will be presented with formal proofs. It
will be shown that Petri nets represent a good tradeoff between modeling power and
analysis capabilities

The chapter is structured as follows. In Section 1 Petri net generators and lan-
guages are defined. In Section 2 the concurrent composition operator on languages
is defined and extended to an operator on generators. In Section 3 it is shown how
the classical monolithic supervisory design can be carried out using Petri net mod-
els. Finally, in Section 4 some issues arising from the use of unbounded PNs in
supervisory control are discussed.

12.2 Petri Nets and Formal Languages

This section provides a short but self-standing introduction to Petri net languages.
PN languages represent an interesting topic within the broader domain of formal
language theory but there are few books devoted to this topic and the relevant mate-
rial is scattered in several journal publications. In this section and in the following
we focus on the definition of Petri net generators and operators that will later be
used to solve a supervisory control problem.

12.2.1 Petri Net Generators

Definition 12.1. A labeled Petri net system (or Petri net generator) [7, 12] is a
quadruple G = (N, �,mmm0,F) where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a Petri net structure with |P|= m and |T |= n;
• � : T → E∪{λ} is a labeling function that assigns to each transition a label from

the alphabet of events E or assigns the empty word2 λ as a label;
• mmm0 ∈N

n is an initial marking;
• F ⊂ N

n is a finite set of final markings.

Three different types of labeling functions are usually considered.

• Free labeling: all transitions are labeled distinctly and none is labeled λ , i.e.,
(∀t, t ′ ∈ T ) [t 
= t ′ =⇒ �(t) 
= �(t ′)] and (∀t ∈ T ) [�(t) 
= λ ].

2 While in other parts of this book the empty string is denoted ε , in this section we have
chosen to use the symbol λ for consistency with the literature on PN languages.
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• λ -free labeling: no transition is labeled λ .
• Arbitrary labeling: no restriction is posed on �.

The labeling function may be extended to a function � : T ∗ → E∗ defining: �(λ ) = λ
and (∀t ∈ T,∀σ ∈ T ∗) �(σ t) = �(σ)�(t).

Example 12.1. Consider the nets in Fig. 12.1 where the label of each transition is
shown below the transition itself. Net (a) is a free-labeled generator on alphabet
E = {a,b}. Nets (b) and (c) are λ -free generators on alphabet E = {a}. Net (d) is
an arbitrary labeled generator on alphabet E = {a}. �

Fig. 12.1 PN generators of Example 12.1

Three languages are associated with a generator G depending on the different no-
tions of terminal strings.

• L-type or terminal language:3 the set of strings generated by firing sequences
that reach a final marking, i.e.,

LL(G) = {�(σ) | mmm0 [σ〉 mmm f ∈ F}.

• G-type or covering language or weak language: the set of strings generated by
firing sequences that reach a marking mmm covering a final marking, i.e.,

LG(G) = {�(σ) | mmm0 [σ〉 mmm≥ mmm f ∈ F}.

• P-type or prefix language:4 the set of strings generated by any firing sequence,
i.e.,

LP(G) = {�(σ) | mmm0 [σ〉 }.
3 This language is called marked behavior in the framework of Supervisory Control and is

denoted Lm(G).
4 This language is called closed behavior in the framework of Supervisory Control and is

denoted L(G).
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Example 12.2. Consider the free-labeled generator G in Fig. 12.2. The initial mark-
ing, also shown in the figure, is mmm0 = [1 0 0]T . Assume the set of final markings is
F = {[0 0 1]T}. The languages of this generator are:

LL(G) = {amcbm | m≥ 0};

LG(G) = {amcbn | m≥ n≥ 0};

LP(G) = {am | m≥ 0}∪{amcbn | m≥ n≥ 0}. �

Fig. 12.2 Free-labeled generator G of Example 12.2

12.2.2 Deterministic Generators

A deterministic PN generator [7] is such that the word of events generated from the
initial marking uniquely determines the marking reached.

Definition 12.2. A λ -free generator G is deterministic iff for all t, t ′ ∈ T , with t 
= t ′,
and for all mmm ∈ R(N,mmm0): mmm [t〉∧mmm [t ′〉=⇒ �(t) 
= �(t ′).

According to the previous definition, in a deterministic generator two transitions
sharing the same label may never be simultaneously enabled and no transition may
be labeled by the empty string. Note that a free-labeled generator is also determin-
istic. On the contrary, a λ -free (but not free labeled) generator may be deterministic
or not depending on its structure and also on its initial marking.

Example 12.3. Consider generators (b) and (c) in Fig. 12.1: they have the same net
structure and the same λ -free labeling, but different initial marking. The first one
is deterministic, because transitions t1 and t2, sharing label a can never be simul-
taneously enabled. On the contrary, the second one is not deterministic, because
reachable marking [1 1 0]T enables both transitions t1 and t2: as an example, the ob-
served word aa may be produced by two different sequences yielding two different
markings

⎡

⎣
2
0
0

⎤

⎦ [t1〉

⎡

⎣
1
1
0

⎤

⎦ [t1〉

⎡

⎣
0
2
0

⎤

⎦ or

⎡

⎣
2
0
0

⎤

⎦ [t1〉

⎡

⎣
1
1
0

⎤

⎦ [t2〉

⎡

⎣
1
0
1

⎤

⎦ .

�
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The previous definition of determinism was introduced in [18] and used in [7, 12].
It may be possible to extend it as follows.

Definition 12.3. A λ -free generator G is deterministic iff for all t, t ′ ∈ T , with t 
= t ′,
and for all mmm ∈ R(N,mmm0): mmm [t〉∧mmm [t ′〉 =⇒ [�(t) 
= �(t ′)]∨ [PPPooosssttt[·, t]−PPPrrreee[·, t] =
PPPooosssttt[·, t ′]−PPPrrreee[·, t ′]].

With this extended definition, we accept as deterministic a generator in which two
transitions with the same label may be simultaneously enabled at a marking mmm,
provided that the two markings reached from mmm by firing t and t ′ are the same. Note
that with this extended definition, while the word of events generated from the initial
marking uniquely determines the marking reached it does not necessarily uniquely
determine the sequences that have fired.

12.2.3 Classes of Petri Net Languages

The classes of Petri net languages are denoted as follows:

• L f (resp. G f , P f ) denotes the class of terminal (resp. covering, prefix) lan-
guages generated by free-labeled PN generators.

• Ld (resp. Gd , Pd) denotes the class of terminal (resp. covering, prefix) languages
generated by deterministic PN generators.

• L (resp. G , P) denotes the class of terminal (resp. covering, prefix) languages
generated by λ -free PN generators.

• L λ (resp. G λ , Dλ , Pλ ) denotes the class of terminal (resp. covering, prefix)
languages generated by arbitrary labeled PN generators.

Table 12.1 shows the relationship among these classes. Here A→ B represents a
strict set inclusion A � B.

Table 12.1 Known relations among classes of Petri net languages. An arc→ represents the
set inclusion

L f → Ld → L → L λ

↑ ↑
G f → Gd → G → G λ

↑ ↑ ↑ ↑
P f → Pd → P → Pλ

While a formal proof of all these relations can be found in [1], we point out that
the relations on each line — that compare the same type of languages of nets with
different labeling — are rather intuitive. Additionally, one readily understands that
any P-type language of a generator G may also be obtained as a G-type language
defining as a set of final markings F = {0}.
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Parigot and Peltz [10] have defined PN languages as regular languages with the
additional capability of determining if a string of parenthesis is well formed.

If we consider the class L of PN languages, it is possible to prove [12] that L is a
strict superset of regular languages and a strict subset of context-sensitive languages.
Furthermore, L and the class of context-free languages are not comparable. An
example of a language in L that is not context-free is: L = {ambmcm | m ≥ 0}. An
example of a language that is context-free but is not in L is: L = {wwR | w ∈ E∗}5

if |E|> 1.
All these results are summarized in Fig. 12.3. Note that the class Ld , although

contained in L , occupies the same position as L in the hierarchy shown in the
figure.

Fig. 12.3 Relations among the class L and other classes of formal languages

In the framework of Supervisory Control, we will assume that the generators
considered are deterministic. In particular, class Ld (or possibly Gd for unbounded
nets) will be used to describe marked languages, while class Pd will be used to
describe closed languages. There are several reasons for this choice.

• Systems of interest in supervisory control theory are deterministic.
• Although each class of deterministic languages defined here is strictly included

in the corresponding class of λ -free languages, it is appropriate to restrict our
analysis to deterministic generators. In fact, several properties of interest are de-
cidable for deterministic nets while they are not for λ -free nets [1, 11, 18].

• In [1] it was shown that the classes Gd and Ld are incomparable, and furthermore
Gd ∩Ld = R, where R is the class of regular languages. Hence taking also into
account the G-type language (in addition to the L-type language) one extends the
class of control problems that can be modeled by deterministic unbounded PNs.

5 The string wR is the reversal of string w.
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12.2.4 Other Classes of Petri Net Languages

Gaubert and Giua [1] have explored the use of infinite sets of final markings in the
definition of the marked behavior of a net. With each more or less classical subclass
of subsets of Nm — finite, ideal (or upper), semi-cylindrical, star-free, recognizable,
rational (or semilinear) subsets — it is possible to associate the class of Petri net
languages whose set of accepting states belongs to the class.

When comparing the related Petri net languages, it was shown that for arbitrary
or λ -free PN generators, the above hierarchy collapses: one does not increase the
generality by considering semilinear accepting sets instead of the usual finite ones.
However, for free-labeled and deterministic PN generators, it is shown that one gets
new distinct subclasses of Petri net languages, for which several decidability prob-
lems become solvable.

12.3 Concurrent Composition and System Structure

In this section we recall the definition of the concurrent composition operator on
languages and introduce the corresponding operator on nets.

Definition 12.4 (Concurrent composition of languages). Given two languages
L1 ⊆ E∗1 and L2 ⊆ E∗2 , their concurrent composition is the language L on alpha-
bet E = E1∪E2 defined as follows:

L = L1 ‖ L2 = { w ∈ E∗ | w ↑E1∈ L1, w ↑E2∈ L2 }

where w ↑Ei denotes the projection of word w on alphabet Ei, for i = 1,2.

We now consider the counterpart of this language operator on a net structure.

Definition 12.5 (Concurrent composition of PN generators)
Let G1 = (N1, �1,mmm0,1,F1) and G2 = (N2, �2,mmm0,2,F2) be two PN generators.
Their concurrent composition, denoted also G = G1 ‖ G2, is the generator G =
(N, �,mmm0,F) that generates LL(G) = LL(G1) ‖ LL(G2) and LP(G) = LP(G1) ‖
LP(G2).

The structure of G may be determined with the following procedure.

Algorithm 12.4. Let Pi, Ti and Ei (i = 1,2) be the place set, transition set, and the
alphabet of Gi.

• The place set P of N is the union of the place sets of N1 and N2, i.e., P = P1∪P2.
• The transition set T of N and the corresponding labels are computed as follows:

– For each transition t ∈ T1∪T2 labeled λ , a transition with the same input and
output bag of t and labeled λ belongs to T .
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– For each transition t ∈ T1 ∪T2 labeled e ∈ (E1 \E2)∪ (E2 \E1), a transition
with the same input and output bag of t and labeled e belongs to T .

– Consider a symbol e ∈ E1 ∩E2 and assume it labels m1 transitions Te,1 ⊆ T1

and m2 transitions Te,2 ⊆ T2. Then m1×m2 transitions labeled e belong to
T . The input (output) bag of each of these transitions is the sum of the input
(output) bags of one transition in Te,1 and of one transition in Te,2.

• mmm0 = [mmmT
0,1 mmmT

0,2]
T .

• F is the cartesian product of F1 and F2, i.e., F = {[mmmT
1 mmmT

2 ]
T |mmm1 ∈ F1,mmm2 ∈ F2}.

The composition of more than two generators can be computed by repeated appli-
cation of the procedure. Note that while the set of places grows linearly with the
number of composed systems, the set of transitions and of final markings may grow
faster.

Example 12.5. Let G1 = (N1, �1,mmm0,1,F1) and G2 = (N2, �2,mmm0,2,F2) be the two
generators shown in Fig. 12.4. Here F1 = {[1 0]T} and F2 = {[1 0]T , [0 1]T}. Their
concurrent composition G = G1 ‖G2 is also shown in Fig. 12.4. The initial marking
of G is mmm0=[1 0 1 0]T and its set of final markings is F={[1 0 1 0]T , [1 0 0 1]T}. �

Fig. 12.4 Two generators G1, G2 and their concurrent composition G of Example 12.5

12.4 Supervisory Design Using Petri Nets

In this section we discuss how Petri net models may be used to design supervisors
for language specifications within the framework of Supervisory Control. The de-
sign of a supervisor in the framework of automata was presented in Chapter 3 and
we assume the reader is already familiar with this material.



12 Supervisory Control of Petri Nets with Language Specifications 243

12.4.1 Plant, Specification and Supervisor

Here we comment on some of the assumptions that are peculiar to the PN setting.

• The plant is described by a deterministic PN generator G on alphabet E . Its
closed language is L(G) = LP(G) while its marked6 language is Lm(G) = LL(G).
We assume such a generator is nonblocking, i.e., LL(G) = LP(G).

The transition set of G is partitioned as follows: T = Tc∪Tuc, where Tc are the
controllable transitions that can be disabled by a control agent, while Tuc are the
uncontrollable transitions. Note that this allows a generalization of the automata
settings where the notion of controllability and uncontrollability is associated to
the events. In fact, it is possible that two transitions, say t ′ and t ′′, have the same
event label �(t ′) = �(t ′′) = e∈ E but one of them is controllable while the other is
not. In the rest of the chapter, however, we will not consider this case and assume
that the event alphabet may be partitioned as E = Ec∪Euc where

Ec =
⋃

t∈Tc

�(t), Euc =
⋃

t∈Tuc

�(t) and Ec∩Euc = /0.

It is also common to consider plants composed by m PN generators G1, . . . ,Gm

working concurrently. The alphabets of these generators are E1, . . . ,Em. The
overall plant is a PN generator G = G1 ‖ · · · ‖ Gm on alphabet E = E1∪·· ·∪Em.

• The specification is a language K ⊂ Ê∗, where Ê ⊂ E is a subset of the plant
alphabet. Such a specification defines a set of legal words on E given by {w ∈
E∗ | w ↑Ê∈ prefix(K)}.
The specification K is represented by a deterministic nonblocking PN generator
H on alphabet Ê whose marked language is Lm(H) = LL(H) = K. As for the
plant, other choices for the marked language are possible.

• The supervisor7 is described by a nonblocking PN generator S on alphabet E .
It runs in parallel with the plant, i.e., each time the plant generates an event e
a transition with the same label is executed on the supervisor. The control law
computed by S when its marking is mmm is given by g(mmm) = Euc∪{e ∈ Ec | (∃t ∈
Tc)mmm[t〉, �(t) = e}.

12.4.2 Monolithic Supervisor Design

The monolithic supervisory design requires three steps. In the first step, a coarse
structure for a supervisor is synthesized by means of concurrent composition of
the plant and specification. In the second step, the structure is analyzed to check

6 While in the case of bounded nets the L-type language can describe any marked language,
in the case of unbounded generators other choices for the marked language are possible
considering the G-type language of the generator or even any other type of terminal lan-
guages as mentioned in § 12.2.4. This will be discussed in Section 12.5.

7 See also Definition 3.9 in Chapter 3.9.
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if properties of interest (namely, the absence of uncontrollable and blocking states)
hold. In the third step, if the properties do not hold, this structure is trimmed to avoid
reaching undesirable states.

Algorithm 12.6. (Monolithic supervisory design). We are given a plant G and a
specification H.

1. Construct by concurrent composition the generator J = G ‖H.
2. Determine if the generator J satisfies the following properties:

• nonblockingness, i.e., it does not contain blocking markings from which a final
marking cannot be reached;

• controllability, i.e., it does not contain uncontrollable markings such that
when G and H run in parallel an uncontrollable event is enabled in G but
is not enabled in H.

If J satisfies both properties, then both H and J are suitable supervisors.
3. If J contains blocking or uncontrollable markings, we have to trim it to obtain a

nonblocking and controllable generator S. The generator S obtained through this
procedure is at the same time a suitable maximally permissive supervisor and the
corresponding closed-loop system.

In the previous algorithm, the generator J constructed in step 1 represents the largest
behavior of the plant that satisfies all the constraints imposed by the specifications.
More precisely, its closed language

L(J) = {w ∈ E | w ∈ L(G),w ↑Ê∈ L(H)}

represents the behavior of the plant restricted to the set of legal words, while its
marked behavior

Lm(J) = {w ∈ E | w ∈ Lm(G),w ↑Ê∈ Lm(H)}

represents the marked behavior of the plant restricted to the set of legal words
marked by the specification.

In step 2 we have used informally the term ”blocking marking” and ”uncontrol-
lable marking”. We will formally define these notions in the following.

We first define some useful notation. The structure of the generators is J =
(N, �,mmm0,F), G = (N1, �1,mmm0,1,F1), and H = (N2, �2,mmm0,2,F2), where N = (P,T,
PPPrrreee,PPPooosssttt) and Ni = (Pi,Ti,PPPrrreeei,PPPooosssttti), (i = 1,2). We define the projection of a
marking mmm of N on net Ni, (i = 1,2), denoted mmm ↑i, is the vector obtained from mmm by
removing all the components associated to places not present in Ni.

We first present the notion of a blocking marking.

Definition 12.6. A marking mmm ∈ R(N,mmm0) of generator J is a blocking marking if
no final marking may be reached from it, i.e., R(N,mmm)∩F = /0. The generator J is
nonblocking if no blocking marking is reachable.

We now present the notion of an uncontrollable marking.
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Definition 12.7. Let Tu ⊆ T be the set of uncontrollable transitions of J. A marking
mmm∈ R(N,mmm0) of generator J is uncontrollable if there exists an uncontrollable tran-
sition t ∈ Tu that is enabled by mmm ↑1 in G but that is not enabled by mmm ↑2 in H. The
generator J is controllable if no uncontrollable marking is reachable.

Determining if a generator J is nonblocking and controllable is always possible, as
we will show in the next section. We also point out that for bounded nets this test
can be done by construction of the reachability graph8 as in the following example
of supervisory design.

Example 12.7. Consider the generators G1 and G2, and the specification H in
Fig. 12.5 (left). Note that all nets are free-labeled, hence we have an isomorphism
between the set of transitions T and the set of events E: in the following each tran-
sitions will be denoted by the corresponding event.

Fig. 12.5 Left: Systems G1,G2 and specification H for the control problem of Example 12.7.
Right: System J = G1 ‖ G2 ‖ H

G1 describes a conveyor that brings in a manufacturing cell a raw part (event a)
that is eventually picked-up by a robot (event b) so that a new part can enter. G2

describes a machine that is loaded with a raw part (event c) and, depending on the
operation it performs, may produce parts of type A or type B (events d or e) before
returning to the idle state. The set of final states of both generators consists of the
initial marking shown in the figure.

The specification we consider, represented by the generator H, describes a cyclic
operation process where a robot picks-up a raw part from the conveyor, loads it on

8 As we have already pointed out, the construction of the reachability graph suffers from the
state explosion problem. An open area for future research is the use of more efficient anal-
ysis techniques (e.g., structural) to check nonblockingness and controllability for language
specification.
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the machine and after recognizing that a part of type A has been produced repeats
the process. The set of final states consists of the initial marking shown in the figure.

The overall process is G = G1 ‖ G2 and the generator J = G ‖ H, is shown in
Fig. 12.5 (right). Its set of final states consists of the initial marking shown in the
figure.

Assume now that the controllable transition/event set is Ec = {a,c,d,e} and the
uncontrollable transition/event set is Eu = {b}.

It is immediate to show that generator J is blocking and uncontrollable. To show
this we have constructed the reachability graph of J in Fig. 12.6. The two markings
shown in thick boxes are blocking because from them it is impossible to reach the
initial marking (that is also the unique final marking). The three markings shaded in
gray are uncontrollable: in fact, in all these markings m[p2] = 1, i.e., uncontrollable
transition b is enabled in the plant G, while m[p5] = 0, i.e., b is not enabled in H. �

Fig. 12.6 Left: Reachability graph of generator J of Example 12.7. Right: the structure of the
trim generator S of Example 12.8

12.4.3 Trimming

Once the coarse structure of a candidate supervisor is constructed by means of con-
current composition, we need to trim it to obtain a nonblocking and controllable
generator.

The next example shows the problems involved in the trimming of a net.

Example 12.8. Let us consider the generator J constructed in Example 12.7.
Refining the PN to avoid reaching the undesirable markings shown in Fig. 12.6

is complex. First, we could certainly remove the transition labeled by e since its
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firing always leads to an undesirable state and it is controllable. After removal of
this transition, the transition labeled by a will be enabled by the following reachable
markings: mmm′ = [1 0 1 0 1 0 0]T ,mmm′′ = [1 0 1 0 0 1 0]T ,mmm′′′ = [1 0 0 1 0 0 1]T . We
want to block the transition labeled a when the markings mmm′′ and mmm′′′ are reached.
Since

m′[p5] = 1 > m′′[p5] = m′′′[p5] = 0,

we can add an arc from p5 to a and from a to p5 as in Fig. 12.6. �

The following algorithm can be given for the trimming of a net.

Algorithm 12.9. Let t be a transition to be controlled, i.e., a transition leading from
an admissible marking to an undesirable marking. Let e be its label.

1. Determine the set of admissible reachable markings that enable t, and partition
this set into the disjoint subsets Ma (the markings from which t should be al-
lowed to fire), and Mna (the markings from which t should not be allowed to fire,
to avoid reaching an undesirable marking). If Ma = /0 remove t and stop, else
continue.

2. Determine a construct in the form:

U (mmm) = [(m[p1
1]≥ n1

1)∧ . . .∧ (m[p1
k1]≥ n1

k1)]∨
. . .
∨[(m[pl

1]≥ nl
1)∧ . . .∧ (m[pl

kl ]≥ nl
kl)],

such that U (mmm) = TRUE if mmm ∈Ma, and U (mmm) = FALSE if mmm ∈Mna.
3. Replace transition t with l transitions t1, . . . , tl labeled a. The input (output) arcs

of transition t j, j = 1, . . . , l, will be those of transition t plus n j
i arcs inputting

from (outputting to) place p j
i , i = 1, . . . ,k j.

It is clear that following this construction there is an enabled transition labeled e
for any marking in Ma, while none of these transitions are enabled by a marking in
Mna. We also note that in general several constructs of this form may be determined.
The one which requires the minimal number of transitions, i.e., the one with the
smallest l, is preferable.

The following theorem gives a sufficient condition for the applicability of the
algorithm.

Theorem 12.1. The construct of Algorithm 12.9 can always be determined if the net
is bounded.

Proof. For sake of brevity, we prove this result for the more restricted class of
conservative nets. One should keep in mind, however, that given a bounded non
conservative net, one can make the net conservative adding dummy sink places that
do not modify its behavior.

A net is conservative if there exists an integer vector Y > 0 such that for any
two markings mmm and mmm′ reachable from the initial marking Y T mmm = Y T mmm′. Hence
if mmm 
= mmm′ there exists a place p such that m[p] > m′[p]. Also the set of reachable
markings is finite.
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On a conservative net, consider mmmi ∈Ma, mmm j ∈Mna. We have that Ma and Mna

are finite sets and also there exists a place pi j such that mi[pi j] = ni j > m j[pi j].
Hence

U (mmm) =
∨

i∈Ma

[
∧

j∈Mna

(m[pi j]≥ ni j)

]

is a construct for Algorithm 12.9. �

Unfortunately, the construct may contain up to |Ma| OR clauses, i.e., up to |Ma|
transitions may be substituted for a single transition to control. Note, however, that
it is often possible to determine a simpler construct as in Example 12.8, where the
construct for the transition labeled a was U (mmm) = [m[p5]≥ 1].

12.5 Supervisory Control of Unbounded PN Generators

As we have seen in the previous section, the monolithic supervisory design pre-
sented in Algorithm 12.6 can always be applied when the plant G and the specifica-
tion H are bounded PN generators. Here we consider the case of general, possibly
unbounded, generators.

In step 1 of the monolithic supervisory design algorithm the unboundedness of
the G or H does not require any special consideration, since the procedure to con-
struct the concurrent composition J = G ‖ H is purely structural in the PN setting.
Thus we need to focus on the last two steps, and discuss how it is possible to check
if an unbounded generator G is nonblocking and controllable, and eventually how it
can be trimmed.

We have previously remarked that in the case of bounded nets the L-type lan-
guage can describe any marked language. In the case of unbounded generators other
choices for the marked language are possible considering the G-type language of the
generator or even any other type of terminal language mentioned in § 12.2.4.

In the rest of this section we will only consider two types of marked languages
for a PN generator G.

• L-type language, i.e., Lm(G) = LL(G). This implies that the set of marked mark-
ings reached by words in Lm(G) is F = F , i.e., it coincides with the finite set of
final markings associated to the generator.

• G-type marked language, i.e., Lm(G) = LG(G). This implies that the set of
marked markings reached by words in Lm(G) is

F =
⋃

mmmf∈F

{mmm ∈ N
m | mmm≥mmm f },

i.e., it is the infinite covering set of F .
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12.5.1 Checking Nonblockingness

We will show in this subsection that checking a generator for nonblockingness is
always possible.

Let us first recall the notion of home space.

Definition 12.8. A marking mmm ∈ N
m of a Petri net is a home-marking if it is reach-

able from all reachable markings.
A set of markings M ⊆ N

m of a Petri net is a home space if for all reachable
marking mmm a marking in M is reachable from mmm.

The following result is due to Johnen and Frutos Escrig.

Proposition 12.1. [8] The property of being a home space for finite unions of linear
sets9 having the same periods is decidable.

We can finally state the following original result.

Theorem 12.2. Given a generator J constructed as in step 1 of Algorithm 12.6 it
is decidable if it is nonblocking when its marked language is the L-type or G-type
language.
Proof. Let F be the set of marked markings of the generator. According to Defini-
tion 12.6 generator J is nonblocking iff from every reachable markings mmm a marked
marking in F is reachable. Thus checking for nonblockingness is equivalent to
checking if the set of marked markings F is a home space.

When the marked language is the L-type language, F = F and we observe that
each marking mmm f can be considered as a linear set with base mmm f and empty set of
generators.

When the marked language is the G-type language,

F =
⋃

mmm f∈F

{mmm ∈ N
m | mmm≥ mmm f }= {mmmf +

m

∑
i=1

kieeei | ki ∈ N}

where vectors eeei are the canonical basis vectors, i.e., eeei ∈ {0,1}n, with ei[i] = 1 and
ei[ j] = 0 if i 
= j.

In both cases F is the finite unions of linear sets having the same periods, hence
checking if it is a home space is decidable by Proposition 12.1. �

12.5.2 Checking Controllability

We will show in this subsection that checking a generator for controllability is al-
ways possible. The material presented in this subsection is original and proofs of all
results will be given.

9 We say that E ⊆ N
m is a linear set if there exists some vvv ∈ N

m and a finite set
{vvv1, · · · ,vvvn} ⊆ N

m such that E = {vvv′ ∈ N
m |vvv′ = vvv+∑n

i=1 kivvvi with ki ∈ N}. The vector
vvv is called the base of E , and vvv1, · · · ,vvvn are called its periods.
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We first present some intermediate result.

Lemma 12.1. Let 〈N,mmm0〉 be a marked net with N = (P,T,PPPrrreee,PPPooosssttt) and |P|= m.
Given a marking m̄mm ∈ N

m and a place p̄ ∈ P, we define the set

S (m̄mm, p̄) = {mmm ∈ N
m | m[p̄] = m̄[p̄], (∀p ∈ P\ { p̄}) m[p]≥ m̄[p]}

of those markings that are equal to m̄mm in component p̄ and greater than or equal to
m̄mm in all other components.

Checking if a marking in this set is reachable in 〈N,mmm0〉 is decidable.

Proof. To prove this result, we reduce the problem of determining if a marking in
S (m̄mm, p̄) is reachable to the standard marking reachability problem (see Chapter 10)
of a modified net.

Consider in fact net N′ = (P′,T ′,PPPrrreee′,PPPooosssttt ′) obtained from N as follows. P′ =
P∪ {ps, p f }; T ′ = T ∪ {t f } ∪ {tp | ∀p ∈ P \ { p̄}}. For p ∈ P and t ∈ T it holds
PPPrrreee′[p, t] = PPPrrreee[p, t] and PPPooosssttt ′[p, t] = PPPooosssttt[p, t], while the arcs incident on the
newly added places and transitions are described in the following. Place ps is self-
looped with all transitions in T , i.e., PPPrrreee′[ps, t] = PPPooosssttt ′[ps, t] = 1 for all t ∈ T . Place
p f is self-looped with all new transitions tp, for all p ∈ P\{ p̄}. Transition t f has an
input arc from place ps and an output arc to place p f ; furthermore it has m̄[p] input
arcs from any place p ∈ P \ { p̄}. Finally, for all p ∈ P \ { p̄} transition tp is a sink
transition with a single input arc from place p.

We associate to N′ an initial marking mmm′0 defined as follows: for all p∈P, m′0[p] =
m0[p], while m′0[ps] = 1 and m′0[p f ] = 0. Such a construction is shown in Fig. 12.7
where the original net N with set of places P = { p̄, p′, . . . , p′′} and set of transitions
T = {t1, ldots, tn} is shown in a dashed box. Arcs with starting and ending arrows
represent self-loops.

We claim that a marking in the set S (m̄mm, p̄) is reachable in the original net if and
only if marking mmm′f is reachable in 〈N′,mmm′0〉, where m′f [p̄] = m̄[p̄], m′f [p f ] = 1 and
m′f [p̄] = 0 for p ∈ P′ \ { p̄, p f }.

This can be proved by the following reasoning. The evolution of net N′ before
the firing of t f mimics that of N. Transition t f may only fire from a marking greater
than or equal to m̄mm in all components but eventually p̄. After the firing of t f , the
transitions of the original net are blocked (ps is empty) and only the sink transitions
tp, for all p ∈ P \ { p̄}, may fire thus emptying the corresponding places. The only
place whose markings cannot change after the firing of t f is p̄. �

Theorem 12.3. Given a generator J = G ‖ H constructed as in step 1 of Algo-
rithm 12.6 it is decidable if it is controllable.

Proof. We will show that the set of uncontrollable markings to be checked can be
written as the finite union of sets of the form S (m̄mm, p̄).

Given an uncontrollable transition t ∈ Tuc let PG(t) (resp., PH(t)) be the set of in-
put places of t that belong to generator G (resp., H). Consider now a place p∈ PH(t)
and an integer k ∈ {0,1, . . . ,Pre[p, t]− 1} and define the following marking mmmt,p,k

such that mt,p,k[p] = k, mt,p,k[p′] =Pre[p′, t] if p′ ∈PG(t), else mt,p,k[p′] = 0. Clearly,
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Fig. 12.7 Construction of Lemma 12.1

such a marking is uncontrollable because the places in G contain enough tokens to
enable uncontrollable transition t while place p in H does not contain enough tokens
to enable it. All other markings in S (mmmt,p,k, p) are equally uncontrollable.

Thus the overall set of uncontrollable markings to be checked can be written as
the finite union

⋃

t∈Tuc

⋃

p∈PH(t)

⋃

k∈{0,1,...,Pre[p,t]−1}
S (mmmt,p,k, p)

and by Lemma 12.1 checking if an uncontrollable marking is reachable is
decidable. �

12.5.3 Trimming a Blocking Generator

The problem of trimming a blocking net is the following: given a deterministic
PN generator G with languages Lm(G) and L(G) ⊃ Lm(G) one wants to modify
the structure of the net to obtain a new DES G′ such that Lm(G′) = Lm(G) and
L(G′) = Lm(G′) = Lm(G).

On a simple model such as a state machine this may be done, trivially, by re-
moving all states that are reachable but not coreachable (i.e., no final state may be
reached from them) and all their input and output edges.

On Petri net models the trimming may be more complex. If the Petri net is
bounded, it was shown in the previous section how the trimming may be done with-
out major changes of the net structure, in the sense that one has to add new arcs and
eventually duplicate transitions without introducing new places. Here we discuss the
general case of possibly unbounded nets.

When the marked language of a net is its L-type Petri net language, the trim-
ming of the net is not always possible as will be shown by means of the following
example.
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Example 12.10. Let G be the deterministic PN generator in Fig. 12.8 (left), with
mmm0 = [1 0 0 0]T and set of final markings F = {[0 0 0 1]T}. The marked (L-type) and
closed behaviors of this net are: Lm(G) = {ambamb | m≥ 0} and L(G) = {ambanb |
m≥ n≥ 0}. The infinite reachability graph of this net is partially shown in Fig. 12.8
(right): here the unique final marking is shown in a box.

One sees that all markings of the form [0 k 0 1]T with k ≥ 1 are blocking. To
avoid reaching a blocking marking one requires that p2 be empty before firing the
transition inputting into p4. However, since p2 is unbounded this cannot be done
with a simple place/transition structure. �

Fig. 12.8 Left: Blocking net of Example 12.10: Right: Its labeled reachability graph

It is possible to prove formally that the prefix closure of the marked language of
the net discussed in Example 12.10 is not a P-type Petri net language. The proof is
based on the pumping lemma for P-type PN languages, given in [7].

Lemma 12.2. (Pumping lemma). Consider a PN language L ∈P . Then there exist
numbers k, l such that any word w ∈ L, with | w |≥ k, has a decomposition w = xyz
with 1≤| y |≤ l such that xyiz ∈ L,∀i ≥ 1.

Proposition 12.2. Consider the L-type PN language L′ = {ambamb | m ≥ 0}. Its
prefix closure L = L′ is not a P-type Petri net language.

Proof. Given k according to the pumping lemma, consider the word w= akbakb∈ L.
Obviously, there is no decomposition of this word that can satisfy the pumping
lemma. �

When the marked language of a net is its G-type Petri net language, the trimming
of the net is always possible because the prefix closure of such a language is a
deterministic P-type Petri net language. This follows from the next theorem, that
provides an even stronger result.

Theorem 12.4. [4] Given a deterministic PN generator G = (N, �,mmm0,F) with
LG(G) � LP(G), there exists a finite procedure to construct a new deterministic
PN generator G′ such that LG(G′) = LG(G) and LP(G′) = LG(G′).
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12.5.4 Trimming an Uncontrollable Generator

In this section we show by means of an example that given a PN generator J =G ‖H
obtained by concurrent composition of a plant and of a specification, it is not always
possible to trim it removing the uncontrollable markings.

Example 12.11. Consider a plant G described by the PN generator on the left of
Fig. 12.11 (including the dashed transition and arcs). We are interested in the closed
language of the net, so we will not specify a set of final markings F : all reachable
markings are also final. We assume Tuc = {t1, t3, t5}, i.e., Euc = {a}.

Consider a specification H described by the PN generator on the left of Fig. 12.9
(excluding the dashed transition and arcs).

On the right of Fig. 12.9 we have represented the labeled reachability graph of
G (including the dashed arcs labeled a on the bottom of the graph) and the labeled
reachability graph of H (excluding the dashed arcs labeled a on the bottom of the
graph). Now if we consider the concurrent composition J = G ‖ H and construct
its labeled reachability graph, we obtain a graph isomorphic to the labeled graph of
generator H (only the labeling of the nodes changes).

All markings of the form [0 k 0 1]T with k ≥ 1 are uncontrollable: in fact, when
the plant is in such a marking the uncontrollable transition t5 labeled a is enabled,
while no event labeled a is enabled on J. If we remove all uncontrollable markings,
we have a generator whose closed language is L = {ambamb |m≥ 0} that, however,
as shown in Proposition 12.2, is not a P-type language. �

Based on these results in [3] the following result was proven.

Theorem 12.5. The classes Pd , Gd , and Ld of PN languages are not closed under
the supremal controllable sublanguage operator10.

Fig. 12.9 Left: Generators of Example 12.11. Right: Their labeled reachability graphs

10 See Chapter 3 for a formal definition of this operator.
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12.5.5 Final Remarks

The results we have presented in this section showed that in the case of unbounded
PN generators a supervisor may not always be represented as a PN. In fact, while it
is always possible to check a given specification for nonblockingness and control-
lability — even in the case of generators with an infinite state space — when these
properties are not satisfied the trim behavior of the closed loop system may not be
represented as a net. A characterization of those supervisory control problems that
admit PN supervisors is an area still open to future research.

12.6 Further Reading

The book by Peterson [12] contains a good introduction to PN languages, while
other relevant results can be found in [1, 7, 10, 11, 16, 18].

Many issues related to PNs as discrete event models for supervisory control have
been discussed in the survey by Holloway et al. [5] and in the works of Giua and
DiCesare [3, 4]. The existence of supervisory control policies that enforce liveness
have been discussed by Sreenivas in [15, 17].

Finally, an interesting topic that has received much attention in recent years is the
supervisory control of PNs under a special class of state specifications called Gener-
alized Mutual Exclusion Constraints (GMECs) that can be enforced by controllers
called monitor places [2]. Several monitor-based techniques have been developed
for the control of Petri nets with uncontrollable and unobservable transitions and
good surveys can be found in [6, 9].
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Chapter 13
Structural Methods for the Control of Discrete
Event Dynamic Systems – The Case of the
Resource Allocation Problem

Juan-Pablo López-Grao and José-Manuel Colom

13.1 Introduction

Resource scarceness is a traditional scenario in many systems engineering disci-
plines. In such cases, available resources may be shared among concurrent pro-
cesses, which must compete in order to be granted their allocation. Discrete Event
Dynamic Systems (DEDSs) of this kind are named Resource Allocation Systems
(RASs). In this paper, we revisit a family of Petri net-based deadlock handling
methodologies which have been successfully applied in many application domains,
such as Flexible Manufacturing Systems (FMSs) [6], multicomputer interconnec-
tion networks [25] or multithreaded software engineering [20]. These methodolo-
gies are based in the attention to the RAS view of the system and are basically
deployed in three stages.

The first stage is that of abstraction and modelling, in which physical details of
the system not relevant to the Resource Allocation Problem (RAP) are discarded,
obtaining a Petri net as outcome. The Petri net is processed in the analysis stage,
in which potential deadlock situations due to diseased resource allocation patterns
are inspected. At the third stage, that of synthesis and implementation, the Petri
net is corrected in order to obtain a deadlock-free system, usually by the addition
of virtual resources. This correction is finally unfolded in the real system by the
correction of the processes involved and the inclusion of control mechanisms. Often
structural results exist which enable powerful structure-based analysis and synthesis
techniques for identifying and fixing potential or factual deadlocks [6, 22, 28].
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José-Manuel Colom
Aragon Institute of Engineering Research (I3A), University of Zaragoza, Spain
e-mail: jm@unizar.es

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 257–278.
springerlink.com c© Springer-Verlag London 2013
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Regarding the first stage of abstraction, and with a view to obtain a useful,
descriptive but tractable model, it is necessary to have into account the different
characteristics and physical restrictions derived from the application domain. Con-
sequently, the syntax of the RAS models obtained for different domains can differ
notably. On the following, we address a classification of the diverse models devel-
oped in the literature, and their specific features with regard to RAS modelling.

Basically, restrictions on Petri net models for RASs can be classified within two
categories: (a) on the processes structure, and (b) on the way the processes use the
resources. As far as (b) is concerned, resources can be serially reusable (i.e., they are
used in a conservative way by all processes), or consumable (i.e., they are consumed
and not regenerated). This work focuses on RAS with serially reusable resources.

Regarding the processes structure, most of the current works focus on Sequential
RASs (S-RASs), as opposed to Non-Sequential RASs (NS-RASs), in which assem-
bly/disassembly operations are allowed within the processes. Some works ([29, 9]),
however, have attempted to approach NS-RASs from the Petri nets perspective, de-
spite that finding effective solutions for them is, in general, much more complicated.

In the field of S-RASs (the scope of this paper), different Petri net models have
successively emerged, frequently extending previous results and hence widening the
subclass of systems that can be modelled and studied.

One of the first classes aimed to deal with the resource allocation problem in
S-RASs is the class of Cooperating Sequential Systems (CSSs) [14]. In CSS, con-
current processes share both the routing pattern and the way the resources are used
in the routes (i.e., the process type is unique). These processes may compete for
several resource types, allowing multiple instances of each type.

In more recent works, different process types with multiple concurrent instances
are allowed, sometimes allowing alternative paths per process. In [10], the path (i.e.,
route) a process will follow is selected at the beginning of the process execution.
Other works consider on-line routing decisions; in particular, this is dealt with in [6],
where the seminal System of Simple Sequential Processes with Resources (S3PR)
class is introduced. However, processes in an S3PR can use at most a single re-
source unit at a given state. A subclass of S3PR, called Linear S3PR (L-S3PR), was
presented in [7], which featured some useful properties.

The mentioned restriction over resources usage is eliminated by the (more gen-
eral) S4PR class [27]. This allows processes to simultaneously reserve several re-
sources belonging to distinct types. Many others [13, 29] were defined for this aim,
with specific attributes for modelling different configurations.

In Section 13.2, the most general Petri net classes for RASs are reviewed and cat-
egorized. In Section 13.3, the concept of insufficiently marked siphon is introduced
as an artifact to approach the liveness problem in RASs from the system structure.
It will be shown, however, that this artifact falls short on characterizing liveness in
the context of multithreaded control software. In Section 13.4, an iterative control
policy for RASs is presented. Section 13.5 summarizes the conclusions.
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13.2 Abstraction and Modelling: Class Definitions and
Relations

S4PR nets are modular models composed of state machines with no internal cycles
plus shared resources. One of the most interesting features of this kind of models
is their composability. Two S4PR nets can be composed into a new S4PR model
via fusion of the common resources. Since multiple resource reservation is allowed,
S4PR nets are not ordinary, i.e., the weight of the arcs from the resources to the state
machines (or vice versa) is not necessarily equal to one, in contrast to S3PR nets.

Definition 13.1. [28] Let IN be a finite set of indices. An S 4PR is a connected
generalized pure P/T net N = (P,T,PPPrrreee,PPPooosssttt) where:

1. P = P0∪PS∪PR is a partition such that:

a. [idle places] P0 =
⋃

i∈IN{p0i}.
b. [process places] PS =

⋃
i∈IN PSi , where:

∀i ∈ IN : PSi 
= /0, and ∀i, j ∈ IN, i 
= j : PSi ∩PS j = /0.
c. [resource places] PR = {r1,r2,r3, ...,rn},n > 0.

2. T =
⋃

i∈IN Ti, where ∀i ∈ IN : Ti 
= /0, and ∀i, j ∈ IN , i 
= j : Ti∩Tj = /0.
3. [i-th process subnet] For each i ∈ IN the subnet generated by {p0i}∪PSi , Ti is a

strongly connected state machine such that every cycle contains p0i .
4. For each r ∈ PR there exists a unique minimal p-semiflow associated to r, yyyr ∈

IN|P|, fulfilling: {r}= ‖yyyr‖∩PR,P0∩‖yyyR‖= /0,PS∩‖yyyr‖ 
= /0, and yr[r] = 1.1

5. PS =
⋃

r∈PR
(‖yyyr‖ \ {r}).

Fig. 13.1 depicts a net system belonging to the S4PR class. Places R1 and R2 are
the resource places. A resource place represents a resource type, and the number
of tokens in it represents the quantity of free instances of that resource type. If
we remove these places, we get two isolated state machines. These state machines
represent the different patterns of resource reservation that a process can follow. In
the context of FMSs, these two state machines model two different production plans.

Consequently, tokens in a state machine represent parts which are being pro-
cessed in stages of the same production plan. At the initial state, the unique tokens
in each machine are located at the so-called idle place (here: A0, B0). In general, the
idle place can be seen as a mechanism which limits the maximum number of con-
current parts being processed in the same production plan. The rest of places model
the various stages of the production plan as far as resource reservation is concerned.

Meanwhile, the transitions represent the acquisition or release of resources by the
processes along their evolution through the production plan. Every time a transition
fires, the total amount of resources available is altered while the part advances to the
next stage. The weight of an arc connecting a resource with a transition models the
number of instances which are allocated or released when a part advances.

1 The support of a p-semiflow yyy (marking mmm), denoted ‖yyy‖ (‖mmm‖), is the set of places such
that their corresponding components in the vector yyy (mmm) are non-null.
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Fig. 13.1 A (non-live) S4PR with an acceptable initial marking

For instance, place R1 could model a set of free robotic arms used to process
parts in the stage A2 of the first production plan (two arms are needed per each part
processed there) as well as in the stage B1 of the second production plan (only one
arm needed per part processed). Consequently, if transition TB1 is fired from the
initial marking then one robotic arm will be allocated and one part will visit stage
B1. Still, there will remain one robotic arm to be used freely by other processes.

Finally, it is worth noting that moving one isolated token of a state machine (by
firing its transitions) until the token reaches back the idle state, leaves the resource
places marking unaltered. Thus, the resource usage is conservative.

The next definition formalizes the fact that there should exist enough free re-
source instances in the initial state so as that every production plan is realizable:

Definition 13.2. [28] Let N = (P,T,PPPrrreee,PPPooosssttt) be an S 4PR. An initial marking mmm0

is acceptable for N iff ‖mmm0‖= P0∪PR and ∀p ∈ PS,r ∈ PR : m0[r]≥ yr[p].

Nowadays, the most general class of the SnPR family is the S∗PR class [8], in which
processes are ordinary state machines with internal cycles. Many interesting works
from different authors present and study other classes in the same vein. For a more
detailed revision of these, we refer the reader to [5].

All the aforementioned Petri net classes are frequently presented in the context
of FMS modelling, and make sense as artifacts conceived for properly modelling
significant physical aspects of this kind of systems. For all of these, except for S∗PR,
a siphon-based liveness characterization is known. Due to its structural nature, it
opens a door to an efficient detection and correction of deadlocks, by implementing
controllers (usually by the addition of places) that restrain the behaviour of the net
and avoid the bad markings to be reached.

Although there exist obvious resemblances between the RAP in FMSs and that in
parallel or concurrent software, previous attempts to bring these well-known RAS
techniques into the analysis of multithreaded control software has been, to the best
of our knowledge, either too limiting or unsuccessful. Gadara nets [30] constitute the
most recent attempt, yet they fall in the overrestrictive side in the way the resources
can be used [19]. Presumably, this is a consequence of being conceived with a pri-
mary focus on inheriting the powerful structural liveness results which were fruitful
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in the context of FMSs. Such a bias works against obtaining a model class capable
of properly abstracting RASs in many multithreaded systems [19]. In [20], it is ba-
sically analyzed why the net classes and results introduced in the context of FMSs
can fail when brought to the field of concurrent programming.

In [20], the class of Processes Competing for Conservative Resources (PC2R) is
introduced. This class is aimed to overcome the deficiencies identified in finding
models which properly capture the RAS view of multithreaded software systems.
Furthermore, it generalizes other subclasses of the SnPR family while respecting
the design philosophy on these. Hence, previous results are still valid in the new
framework. However, PC2R nets can deal with more complex scenarios which were
not yet addressed from the domain of SnPR nets. The generalization is also use-
ful in the context of FMS configuration but especially in other scenarios where the
following elements are more frequent: (1) Internal iterations (e.g., recirculating cir-
cuits in manufacturing, nested loops in software); (2) Initial states in which there
are resources that are already allocated.

Definition 13.3 presents a subclass of state machines used for modelling the con-
trol flow of the processes of a PC2R net in isolation. Iterations are allowed, as well
as decisions within internal cycles, in such a way that the control flow of structured
programs can be fully supported. Non-structured processes can be refactored into
structured ones as discussed in [20].

Definition 13.3. [20] An iterative state machine N = (P,T,PPPrrreee,PPPooosssttt) is a strongly
connected state machine such that: (i) P can be partitioned into three subsets: {pk},
P1 and P2, (ii) P1 
= /0, (iii) The subnet generated by {pk}∪P1,

•P1∪P1
• is a strongly

connected state machine in which every cycle contains pk, and (iv) If P2 
= /0, the
subnet generated by {pk}∪P2,

•P2∪P2
• is an iterative state machine.

As Fig. 13.2 shows, P1 contains the set of places of an outermost iteration block,
while P2 is the set of places of the rest of the state machine (the inner structure, which
may contain multiple loops within). Consequently, the subnet generated by {pk}∪
P1,
•P1 ∪P1

• is a strongly connected state machine in which every cycle contains
pk. Meanwhile, inner iteration blocks can be identified in the iterative state machine
generated by {pk}∪P2,

•P2 ∪P2
•. The place p0 represents the place “pk” that we

choose after removing every iteration block.
The definition of iterative state machine is instrumental for introducing the class

of PC2R nets. PC2R nets are modular models composed by iterative state machines
and shared resources. Two PC2R nets can be composed into a new PC2R model via

Fig. 13.2 Schematic diagram of an iterative state machine. For simplicity, no transition is
drawn
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fusion of the common resources. Note that, a PC2R net can simply be one process
modelled by an iterative state machine along with the set of resources it uses.

The class supports iterative processes, multiple resource acquisitions, non-
blocking wait operations and resource lending. Inhibition mechanisms are not na-
tively supported (although some cases can still be modelled with PC2R nets).

Definition 13.4. [20] Let IN be a finite set of indices. A PC2R net is a connected
generalized self-loop free P/T net N = (P,T,PPPrrreee,PPPooosssttt) where:

1. P = P0∪PS∪PR is a partition such that:

a. [idle places] P0 =
⋃

i∈IN{p0i}.
b. [process places] PS =

⋃
i∈IN PSi , where:

∀i ∈ IN : PSi 
= /0, and ∀i, j ∈ IN, i 
= j : PSi ∩PS j = /0.
c. [resource places] PR = {r1,r2,r3, ...,rn},n > 0.

2. T =
⋃

i∈IN Ti, where ∀i ∈ IN : Ti 
= /0, and ∀i, j ∈ IN , i 
= j : Ti∩Tj = /0.
3. [i-th process subnet] For each i ∈ IN the subnet generated by {p0i}∪PSi, Ti is an

iterative state machine.
4. For each r ∈ PR, there exists a unique minimal p-semiflow associated to r, yyyr ∈

IN|P|, fulfilling: {r}= ‖yyyr‖∩PR,(P0∪PS)∩‖yyyr‖ 
= /0, and yr[r] = 1.
5. PS ⊆

⋃
r∈PR

(‖yyyr‖ \ {r}).

Figure 13.3 depicts a PC2R net which models a special version of the classic
philosophers problem introduced in [20]. Since this net is modelling software, the
state machines represent the control flow for each type of philosopher (thread). To-
kens in a state machine represent concurrent processes/threads which share the same
control flow. At the initial state, every philosopher is thinking, i.e., the unique token
in each machine is located at the idle place. Note that, in order to have a concise
model, we considered the simplest case in which there exist only two philosophers.

The resources (here: the bowl of spaghetti and two forks) are shared among both
philosophers. From a real-world point of view, the resources in this context are not
necessarily physical (e.g., a file) but can also be logical (e.g., a semaphore). The
fact that resources in software engineering do not always have a physical counter-
part is a peculiar characteristic with consequences. In this context, processes do not
only consume resources but also can create them. A process will destroy the newly
created resources before its termination. For instance, a process can create a shared
memory variable (or a service!) which can be allocated to other processes/threads.
Hence, the resource allocation scheme is no longer first-acquire-later-release, but it
can be the other way round too. Still, all the resources are used conservatively by the
processes (either by a create–destroy sequence or by a wait–release sequence). As
a side effect, and perhaps counterintuitively, there may not be free resources during
the system startup (as they still must be created), yet the system is live.

As a result, and unlike S4PR nets, the support of the yyyr p-semiflows (point 4 of
Definition 13.4) may include P0. For such a resource place r, there exists at least a
process which creates (lends) instances of r. As a consequence, there might exist
additional minimal p-semiflows containing more than one resource place [20].
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Fig. 13.3 A (non-live) PC2R with a potentially acceptable initial marking

The next definition is strongly related to the notion of acceptable initial marking
introduced for the S4PR class. In software systems, all processes/threads are initially
inactive and start from the same point (the begin statement). Hence, all of the
corresponding tokens are in the idle place at the initial marking (the process places
being therefore empty). The definition takes this into account and establishes a lower
bound for the marking of the resource places.

Definition 13.5. [20] Let N = (P,T,PPPrrreee,PPPooosssttt) be a PC2R. An initial marking mmm0 is
potentially acceptable for N iff ‖mmm0‖\PR = P0, and ∀p ∈ PS,r ∈ PR : yyyT

r ·mmm0 ≥ yr[p].

The above definition is syntactically a generalization of the concept of acceptable
initial marking for S4PR nets. If the initial marking of some resource place r is lesser
than the lower bound established for m0[r] by Definition 13.5, then there exists at
least one dead transition at the initial marking.

At this point, it is worth stressing that an S4PR net with an acceptable initial
marking cannot have any dead transition at the initial marking (since every minimal
t-semiflow is firable in isolation from it). For PC2R nets, however, having a marking
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which is greater than that lower bound does not guarantee, in the general case, that
there do not exist dead transitions, as discussed in Section 13.3. Accordingly, the
preceding adverb potentially stresses this fact, in contrast to S4PR nets.

Furthermore, according to Definition 13.5, the initial marking of some resource
place r may be empty if some idle place is covered by ‖yyyr‖, as seen later.

Since the PC2R class generalizes previous classes in the SnPR family, these can
be redefined in the new framework as follows.

Definition 13.6. [20] Previous classes of the S nPR family are defined as follows:

• An S 5PR [18] is a PC2R where ∀r ∈ PR : ‖yyyr‖∩P0 = /0.
• An S 4PR [28] is an S 5PR where ∀i ∈ IN the subnet generated by {p0i}∪Pi,Ti

is a strongly connected state machine in which every cycle contains p0i (i.e., a
iterative state machine with no internal cycles).

• An S 3PR [6] is an S 4PR where ∀p ∈ PS : |••p∩PR|= 1,(••p∩PR = p•• ∩PR).
• An L-S 3PR [7] is an S 3PR where ∀p ∈ PS : |•p|= |p•|= 1.

Remark 13.1. L-S3PR ⊆ S3PR ⊆ S4PR ⊆ S5PR ⊆ PC2R. �

The preceding remark is straightforward from Definition 13.6. It is worth remark-
ing that Definition 13.5 collapses with the definition of acceptable initial markings
respectively provided for those subclasses [6, 7, 28, 20]. For all of these, the same
properties than for S4PR (i.e., no dead transitions at mmm0, non-empty resources) ap-
ply.

Finally, there exists another class for S-RASs, called System of Processes Quar-
relling over Resources (SPQR) [18], which does not strictly contain or is contained
by the PC2R class. Yet, there exist transformation rules to travel between PC2Rs
and Structurally Bounded (SB) SPQRs. Note that, by construction, PC2R nets are
conservative, and hence SB, but this is not true for general SPQRs. The SPQR class
seems interesting from an analytical point of view thanks to its syntactic simplicity,
as discussed in [18].

In the following, we will make clear that the approach followed to date does
not work with the new net classes for modelling multithreaded control applications
(PC2R, SPQR). In this sense, there does not exist any analogous non-liveness char-
acterization, and their inherent properties are much more complex. In particular, we
would like to stress the fact that siphons do not longer work, in general, with the
aforementioned superclasses.

Figure 13.4 summarizes the inclusion relations between the reviewed Petri net
classes for S-RASs. The lefter on the x-axis, the more complex the process structure
can be (i.e., linear state machines are on the right while general state machines are
on the left). The upper on the y-axis, the higher degree of freedom in the way the
processes use the resources (resource lending is on top). The figure also illustrates
the fact that every model of the SnPR family can be transformed into a PC2R net.
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Fig. 13.4 Inclusion relations between Petri net classes for RASs

13.3 Liveness Analysis and Related Properties

Traditionally, empty or insufficiently marked siphons have been a fruitful structural
element for characterizing non-live RASs. The more general the net class, however,
the more complex the siphon-based characterization is. The following results can
be easily obtained from previously published works. The originality here is to point
out the strict conditions that the siphons must fulfil.

Theorem 13.1. [6, 20] Let 〈N,mmm0〉 be a marked S 3PR with an acceptable initial
marking. 〈N,mmm0〉 is non-live iff ∃mmm ∈ R(N,mmm0) and a minimal siphon D : mmm[D] = 0.

For instance, the marked S3PR in Fig. 13.5 is non-live with K0 = K1 = 1, K3 = 2.
From this acceptable initial marking, the marking (A4+B4+R2+ 2 ·R3) can be
reached by firing σ , where σ = TB1 TA1 TB2 TA2 TB3 TA3 TB4 TA4. This firing
sequence empties the minimal siphon {A1,B1,A5,B5,R1,R4}.

However, this characterization is sufficient, but not necessary, in general, for
S4PR nets. Hence, the concept of empty siphon had to be generalized. Given a

KR2 R3 R4R1

TB2

1 3

TA1TA5 TA4 TA3TA6 A5 A4 A3 A1

TA2
A2

A0

TB7

TB3

TB8
TB4 TB5TB1

B0
B1 B3 B4 B5 TB6

B2

K

0K
TA7

Fig. 13.5 An S3PR which is non-live iff (K0 ≥ K1, K3 ≥ 2) ∨ (K0 ·K1 ·K3 = 0). Note that mmm0
is an acceptable initial marking iff (K0 ·K1 ·K3 
= 0)
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marking mmm in an S4PR net, a transition t is said to be mmm-process-enabled (mmm-process-
disabled) iff it has (not) a marked input process place, and mmm-resource-enabled (mmm-
resource-disabled) iff its input resource places have (not) enough tokens to fire it,
i.e., mmm[PR, t]≥ PPPrrreee[PR, t] (mmm[PR, t]� PPPrrreee[PR, t]).

Theorem 13.2. [28] Let 〈N,mmm0〉 be a marked S 4PR with an acceptable initial mark-
ing. 〈N,mmm0〉 is non-live iff ∃mmm ∈ R(N,mmm0) and a siphon D such that: i) There exists
at least one mmm-process-enabled transition; ii) Every mmm-process-enabled transition is
mmm-resource-disabled by some resource place in D; iii) All process places in D are
empty at mmm.

Such a siphon D is said to be insufficiently marked at mmm (also: bad siphon). In
Theorems 13.1 and 13.2, the siphon captures the concept of circular wait, revealing
it from the underlying net structure. In contrast to the S3PR class, it is worth noting
the following fact about minimal siphons in S4PR nets, which emerges because of
their minimal p-semiflows not being strictly binary.

Property 1. [20] There exists a S 4PR net with an acceptable initial marking which
is non-live but every siphon characterizing the non-liveness is non-minimal, i.e.,
minimal siphons are insufficient to characterize non-liveness.

For instance, the S4PR net in Fig. 13.1 is non-live, but there is no minimal siphon
containing both resource places R1 and R2. Note that, the siphon D = {R1,R2,A3,
B2} becomes insufficiently marked at mmm, where mmm = A1+ B1+ R1+ R2, but it
contains the minimal siphon D′ = {R2,A3,B2}. D′ is not insufficiently marked for
any reachable marking. It is also worth noting that no siphon is ever emptied.

Thus, non-minimal siphons must be considered in order to deal with deadlocks
in systems more complex than S3PR.

On the other hand, insufficiently marked siphons (even considering those non-
minimal) are not enough for characterizing liveness for more complex systems such
as S5PR models. This means that siphon-based control techniques for RASs do not
work in general for concurrent software, even in the ‘good’ case in which every
wait-like operation precedes its complementary signal-like operation.

Property 2. [20] There exists an S 5PR with an acceptable initial marking 〈N,mmm0〉
which is non-live but insufficiently marked siphons do not characterize non-liveness
(dead markings).

The S5PR net in Fig. 13.3 evidences the claim stated above. The figure depicts a
non-live system with three possibly bad siphons. These siphons are D1 = {A2,A3,
A4,A5,A6,B2,B4,B5,B6,FORK2,BOWL}, D2 = {A2,A4,A5,A6,B2,B3,B4,B5,
B6,FORK1,BOWL} and D3 = {A2,A4,A5,A6,B2,B4,B5,B6,FORK1,FORK2,
BOWL}. Besides, every transition in the set Ω = {TA2,TA3,TA4,TA5,TB2,TB3,
TB4,TB5} is an output transition of D1, D2 and D3. After firing transitions TA1
and TB1 starting from mmm0, the state A1+B1+BOWL is reached. This marking be-
longs to a livelock with other six markings. The reader can check that there exists a
firable transition in Ω for every marking in the livelock, and in any case there is no
insufficiently marked siphon.
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In other words, for every reachable marking in the livelock, there exist output
transitions of the siphons which are firable. As a result, the siphon-based non-
liveness characterization for earlier net classes (such as S4PR [28]) is not sufficient
in the new framework.

This is an a priori unexpected result since these nets fulfil some strong struc-
tural properties which also S4PR nets hold. PC2R nets are well-formed, i.e., SB and
Structurally Live (SL), and therefore also conservative and consistent [20]. Struc-
tural boundedness is straightforward, since PC2R nets are conservative by construc-
tion (every place is covered by at least one minimal p-semiflow), and a well-known
general result of Petri nets is that conservativeness implies structural boundedness
[26]. Structural liveness is derived from the fact that every resource place is a struc-
turally implicit place, and therefore its initial marking can be increased enough so
as to make it implicit. When every resource place is implicit, the net system behaves
like a set of isolated and marked strongly-connected state machines, and therefore
the system is live. Obviously, all the subclasses (S3PR, S4PR, etc.) are also well-
formed. However, SPQR nets are not necessarily SL [18].

By carefully observing the net in Fig. 13.3, it might seem that the difficulty in
finding a liveness characterization for PC2R nets lies in the appearance of certain
types of livelocks. In general, livelocks with dead transitions are not a new phe-
nomenon in the context of Petri net models for RASs. Fig. 13.6 shows that, even for
L-S3PR nets, deadlock-freeness does not imply liveness.

Property 3. [7] There exists a marked L-S 3PR with an acceptable initial marking
such that it is deadlock-free but not live.

This L-S3PR net system has no deadlock but two reachable livelocks: (i) {(A0+
B2 +C0 + D1 + R1),(A1 + B2 +C0 + D1)}, and (ii) {(A0 + B1 +C0 + D2 +
R3),(A0+B1+C1+D2)}. Nevertheless, these livelocks are captured by insuffi-
ciently marked siphons. Unfortunately, this no longer holds for some kind of live-
locks in S5PR or more complex systems. Indeed, PC2R nets feature some complex
properties which complicate the finding of a liveness characterization.

Another relevant property for studying liveness is its monotonicity. In this sense,
the negative results emerge further back than probably expected.

Property 4. [20] There exists an S 3PR such that liveness is not monotonic, nei-
ther with respect to the marking of the idle/process places, nor that of the resource
places, i.e., liveness is not always preserved when those are increased.

The net depicted in Fig. 13.5 illustrates this fact:

• With respect to PR: The system is live with K0 = K1 = K3 = 1 and non-live with
K0 = K1 = 1, K3 = 2 (however, it becomes live again if the marking of R1, R2
and R4 is increased enough so as to make every resource place an implicit place).

• With respect to P0: The system is live with K0 = 1, K1 = K3 = 2 and non-live
with K0 = K1 = K3 = 2.

Note that, liveness is monotonic for every net belonging to the L-S3PR class [7]
with respect to the resource places. But, from S3PR nets upwards, there is a discon-
tinuity zone between the point where the resource places are empty enough so that
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Fig. 13.6 A non-live L-S3PR which is deadlock-free

every transition is dead (also held for lower markings), and the point where every
resource place is implicit (liveness is preserved if their marking is increased). Mark-
ings within these bounds fluctuate between liveness and non-liveness. The location
of those points also depends on the marking of the idle/process places: the more
tokens in them, the farther the saturation point.

Nevertheless, an interesting property of S4PR nets is that liveness equals re-
versibility. This, along with the fact that the idle place does not belong to any p-
semiflow yyyr, is a powerful feature. If every token in a process net can be moved to
the idle place, then the net is not dead (yet).

Theorem 13.3. [20] Let 〈N,mmm0〉 be an S 4PR with an acceptable initial marking.
〈N,mmm0〉 is live iff mmm0 is a home state (i.e., the system is reversible).

However, Theorem 13.3 is false in general for S5PR nets. In fact, the directedness
property [1] does not even hold: a live S5PR may have no home state.

Property 5. [20] There exists an S 5PR with an acceptable initial marking 〈N,mmm0〉
such that the system is live but there is no home state.

The net system in Fig. 13.7 has no home state in spite of being live. It is worth
noting that this net is ordinary. Yet S5PR nets still retain an interesting property: its
minimal t-semiflows are eventually realizable from an acceptable initial marking.

Theorem 13.4. [20] Let 〈N,mmm0〉 be an S 5PR with an acceptable initial marking. For
every (minimal) t-semiflow xxx, there exists a reachable marking mmm ∈ R(N,mmm0) such
that xxx is realizable from mmm, i.e., ∃σ such that mmm σ−→, σσσ = xxx, where σσσ is the firing
count vector of σ .

However, for PC2R nets there may not exist minimal t-semiflows being eventually
realizable; even for live systems.

Property 6. [20] There exists a PC2R with a potentially acceptable initial marking
〈N,mmm0〉 such that the system is live and there exists a minimal t-semiflow xxx such that
∀mmm ∈ R(N,mmm0), �σ such that mmm σ−→ and σσσ = xxx, i.e. xxx is not realizable from mmm.

The reader can check that the PC2R net system in Fig. 13.8 has no home state in
spite of being live. Depending on which transition is fired first (either T 1 or T 8)
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Fig. 13.7 A live S5PR which has no home state. The arcs from/to PR are omitted for clarity.
Instead, the set of input and output resource places are listed next to each transition

a different livelock is reached. Besides, for every reachable marking, there is no
minimal t-semiflow such that it is realizable, i.e., firable in isolation. Instead, both
state machines need each other to progress from the very beginning.

Counterintuitively, the impossibility of realizing every t-semiflow in a live PC2R
net cannot be directly linked to the system reversibility. The net system in Fig. 13.8
has no home state. However, the net system in Fig. 13.9 is reversible, live, but no
minimal t-semiflow is realizable. In fact, these two properties (reversibility and t-
semiflow realizability) are usually strongly linked to the property of liveness for
many Petri net classes. Particularly, reversibility is powerful since its fulfilment im-
plies that the net is live iff there are no dead transitions at the initial marking. Both
properties together imply that the net is live, as the next theorem states.

Theorem 13.5. [21] Let 〈N,mmm0〉 be an PC2R with a potentially acceptable initial
marking. If the net system is reversible and every (minimal) t-semiflow xxx is even-
tually realizable (i.e., there exist a reachable marking mmm ∈ R(N,mmm0) and a firing
sequence σ such that mmm σ−→, σσσ = xxx) then the net is live.

Table 13.1 illustrates in a concise way the relation between those three properties
(liveness, reversibility, and eventual firability of all t-semiflows) in the context of
general PC2R nets with potentially acceptable initial markings. The table highlights
the fact that those properties are not totally independent because of PC2R nets being
consistent, as proved by Theorem 13.5. It also reveals that the simpler the sub-
class, the less combinations of the three properties are possible (up to the point that
liveness equals reversibility for S4PR and simpler subclasses). Fig. 13.10 and 13.11,
which have not been introduced before, are used to complete the table.
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Fig. 13.8 A live PC2R for which no minimal t-semiflow is ever realizable
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Table 13.1 Summary of the relationship between liveness (L), reversibility (R), and eventual
realizability of every t-semiflow (T) for PC2R nets with a potentially acceptable initial mark-
ing. For each cell, the first line indicates which (sub)class such combination of properties is
possible from. The second line references a proof of such behaviour

L R T L R T L R T
From L-S3PR upwards PC2R only From S5PR upwards

Fig. 13.5 with K0 = K1 = K3 = 1 Fig. 13.9 Figs. 13.7

L RT L R T L R T
PC2R only IMPOSSIBLE PC2R only
Fig. 13.8 Theorem 13.5 Fig. 13.10

L R T LRT
From L-S3PR upwards PC2R only

Fig. 13.5 with K0 = K1 = 1 and K3 = 2 Fig. 13.11
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Fig. 13.10 A non-live but reversible PC2R with no realizable minimal t-semiflow. It is worth
noting that transitions T 15 and T 16 are dead at mmm0, despite being a potentially acceptable
initial marking
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Fig. 13.11 A non-live, non-reversible PC2R with no realizable minimal t-semiflow

13.4 Structure-Based Synthesis Methods: An Iterative Control
Policy

In Section 13.3, we have seen that there exists a structural characterization of the
deadlock problem for Petri net classes usually explored in the context of FMSs, i.e.,
S4PR nets and subclasses. Unfortunately, only necessary or sufficient siphon-based
conditions have been found for more complex superclasses such as PC2R or SPQR,
in the context of static analysis of multithreaded control software.

In the present section, we review an algorithm for computing the system control
for S4PR nets [28] which is based in that structural characterization and is success-
fully deployed in the context of FMSs. With the help of the net state equation, a set
of Integer Linear Programming Problems (ILPPs) is constructed which prevents the
costly exploration of the state space. The foundation for such approach relies on bad
siphons fully capturing non-live behaviours. Since bad siphons do no longer chacter-
ize non-liveness for models beyond the S4PR frontier (Property 2) this also delimits
the applicability of such kind of structural techniques in more complex scenarios.
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Prior to the introduction of the algorithm, some basic notation must be settled.
In the following, for a given insufficiently marked siphon D, DR = D∩PR and

yyyDR
= ∑r∈DR

yyyr. Notice that yyyDR
is the total amount of resource units belonging to

D (in fact, to DR) used by each active process in their process places. Also:

Definition 13.7. Let 〈N,mmm0〉 be a marked S 4PR. Let D be a siphon of N. Then,
T hD = ‖yyyDR

‖ \D is the set of thieves of D, i.e., the set of process places of the
net that use resources of the siphon and do not belong to that siphon.

In each iteration, the algorithm searches for a bad siphon. If found, a control place
is suggested to prevent that siphon from ever becoming insufficiently marked. Such
control place will be a virtual resource, in such a way that the resulting Petri net
remains into the S4PR class. Thanks to this, a new iteration of the algorithm can be
executed. The algorithm terminates as soon as there do not exist more siphons to be
controlled, i.e., the system is live.

The next system of restrictions relates the liveness characterization introduced in
Theorem 13.2 with the ILPPs which are used in the forthcoming algorithm. Essen-
tially, the structural characterization is reformulated into a set of linear restrictions
given a reachable marking and a related bad siphon. It is worth noting that, in order
to compact the system of linear restrictions, three sets of variables have been pa-
rameterized: vp, et and ert (the latter being doubly parameterized, both by resource
places r and transitions t). Obviously, the ILPP would have appeared considerably
larger if it had not been compacted in this way for the sake of concision.

Proposition 13.1. [28] Let 〈N,mmm0〉 be a marked S 4PR. The net is non-live if and
only if there exist a siphon D and a marking mmm ∈ R(N,mmm0) such that the following
set of inequalities has, at least, one solution (D = {p ∈ PS∪PR|vp = 0}):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mmm[PS] ≥ 0 ∧ mmm[PS] 
= 0
∀t ∈ T \P0

• : being{p}= •t ∩PS,
m[p]≥ et

et ≥ m[p]
sb(p)

∀r ∈ PR : ∀t ∈ r• \P0
• : m[r]

Pre[r,t] + vr ≥ ert

ert ≥ m[r]−Pre[r,t]+1
m0[r]−Pre[r,t]+1

ert ≥ vr

∀t ∈ T \P0
• : ∑r∈•t∩PR

ert < |•t ∩PR|+ 1− et

∀p ∈ P\P0 : vp ∈ {0,1}
∀t ∈ T \P0

• : et ∈ {0,1}
∀t ∈ r• \P0

• : ert ∈ {0,1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.1)

where sb(p) denotes the structural bound 2 of p [4].

Thanks to the addition of the net state equation as another linear restriction, the
following theorem constructs an ILPP which can compute a marking and a bad

2 sb(p) is the max. of the following ILPP: sb(p) = max m[p] s.t. mmm = mmm0 +CCC ·σσσ ,mmm ≥ 000,
σσσ ∈ IN|T |.
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siphon holding System (13.1). Nevertheless, that marking can be a spurious solution
of the state equation. Since this kind of nets can have killing spurious solutions (i.e,
spurious solutions which are non-live when the original net system is live) then the
theorem establishes a necessary but not sufficient condition. This is usually not a
problem when the objective is to obtain a live system: the only consequence can
be that some harmless, unnecessary control places are added. These control places
would forbid some markings which are not really reachable.

Since one siphon must be selected, the ILPP selects that with a minimal number
of places, hoping that controlling the smallest siphons first may prevent controlling
the bigger ones. Other works present analogous techniques with a different objective
function for this ILPP [12].

Theorem 13.6. [28] Let 〈N,mmm0〉 be a marked S 4PR. If the net is non-live, then there
exist a siphon D and a marking mmm ∈ PR(N,mmm0) such that the following set of in-
equalities has, at least, one solution with D = {p ∈ PS∪PR | vp = 0}:

max ∑p∈P\P0
vp

s.t. mmm = mmm0 +CCC ·σσσ
mmm≥ 0,σσσ ∈ IN|T |

∀p ∈ P\P0,∀t ∈ •p : vp ≥ ∑q∈•t vq−|•t|+ 1
∑p∈P\P0

vp < |P\P0|
System (13.1)

The previous theorem can compute a marking mmm and a related bad siphon D. How-
ever, siphon D can be related with a high number of deadlocks, and not only with
that represented with mmm. For that reason, the aim is to compute a control place able
to cut every unwanted marking which the siphon D is related to. Consequently, two
different strategies are raised from the observation of the set of unwanted markings:
(i) adding a place that introduces a lower bound of the number of available resources
in the siphon for every reachable marking (D-resource-place), or (ii) adding a place
that introduces an upper bound of the number of active processes which are retaining
tokens from the siphon (D-process-place).

In order to define the initial marking of such places, two constants must be com-
puted which are the result of two ILPPs. These ILPPs evaluate every unwanted
marking that a bad siphon is related to:

Definition 13.8. [28] Let 〈N,mmm0〉 be a marked S 4PR. Let D be an insufficiently
marked siphon, mmax

D and mmin
D are defined as follows, with vp = 0 iff p ∈ D:

mmax
D = max ∑r∈DR

m[r] mmin
D = min ∑p∈T hD

m[p]
s.t. mmm = mmm0 +CCC ·σσσ s.t. mmm = mmm0 +CCC ·σσσ

mmm≥ 0,σσσ ∈ IN|T | mmm≥ 0,σσσ ∈ IN|T |

mmm[PS \T hD] = 0 mmm[PS \T hD] = 0
System (13.1) System (13.1)

The next definition establishes the connectivity and the initial marking of the control
place proposed for a given bad siphon D, both whether that place is a D-process-
place or a D-resource place.
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Definition 13.9. [28] Let 〈N,mmm0〉 be a non-live marked S 4PR. Let D be an insuf-
ficiently marked siphon, and mmax

D and mmin
D as in Definition 13.8. Then, the asso-

ciated D-resource-place, pD, is defined by means of the addition of the following
incidence matrix row and initial marking: CCCpD [pD,T ] =−∑p∈T hD

yDR [p] ·CCC[p,T ],
and mpD

0 [pD] = mmm0[D]− (mmax
D +1). The associated D-process-place, pD, is defined

by means of the addition of the following incidence matrix row and initial marking:
CCCpD [pD,T ] =−∑p∈T hD

CCC[p,T ], and mpD
0 [pD] = mmin

D − 1.

Finally, we can enunciate the algorithm that computes the control places for a given
S4PR net. In those cases in which a D-resource-place with an admissible initial
marking cannot be computed, the algorithm proposes the corresponding D-process-
place, which always has an admissible initial marking [28].

Algorithm 1. [28] (Synthesis of live S4PR net systems).
1. Compute an insufficiently marked siphon using the ILPP of Theorem 13.6.
2. Compute mmax

D (Definition 13.8).

a. If the associated D-resource-place (Definition 13.9) has an acceptable initial marking
according to Definition 13.2, then let pD be that place, and go to step 3.

b. Else, compute mmin
D (Definition 13.8). Let pD be the associated D-process-place (Def-

inition 13.9).

3. Add the control place pD.
4. Go to step 1, taking as input the partially controlled system, until no insufficiently marked

siphons exist.

Theorem 13.7. [28] Let 〈N,mmm0〉 be a marked S 4PR. Algorithm 1 applied to 〈N,mmm0〉
terminates. The resulting controlled system, 〈NC,mmmC

0 〉, is a live marked S 4PR such
that R(NC,mmmC

0 )⊆ R(N,mmm0).

Let us apply Algorithm 1 to the net depicted in Fig. 13.1. There exists one dead-
lock (mmm = A1+B1+R1+R2) and two insufficiently marked siphons at mmm, D1 =
{R1,R2,A3,B2} and D2 = D1∪{A2}. None of these is minimal. When applied step
1 of Algorithm 1, the ILPP of Theorem 13.6 returns D1. In step 2, we compute
mmax

D = 2. Since the associated D-resource-place has not an acceptable initial mark-
ing, then we compute mmin

D = 2. In step 3, we add the associated D-process-place pD

to the net. And finally, we go back to step 1. But now the net is live and the ILPP of
Theorem 13.6 has no solution, so the algorithm terminates. The resulting controlled
system is depicted in Fig. 13.12.

Let us now apply the algorithm to the S3PR net depicted in Fig. 13.5
with K0 = K1 = 1, K3 = 2. In this case, there exists one deadlock (mmm =
A4 + B4 + R2 + 2 · R3) which is reachable by firing the sequence σ =
TB1 TA1 TB2 TA2 TB3 TA3 TB4 TA4. This sequence empties the minimal siphon
D = {A1,B1,A5,B5,R1,R4}, which is also the siphon returned by the computa-
tion in step 1 of the algorithm. In step 2, we obtain mmax

D = 0. Then the associ-
ated D-resource-place pD has an acceptable initial marking (mpD

0 [pD] = 1), with
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Fig. 13.12 The controlled system after applying Algorithm 1 on the net depicted in Fig. 13.1

yyyr ∈ {0,1}|P| and ‖yyyr‖= {A4,B4}. Therefore, pD can be aggregated to the net (step
3), and we go back to step 1. Since the resulting net is live and the ILPP of Theo-
rem 13.6 has no solution, the algorithm terminates.

13.5 Further Reading

The material of this chapter is essentially related to structural techniques for dealing
with deadlocks in S-RASs with online routing decisions. The reader can find some
reference works on the family of Petri net models for tackling this kind of systems
in the following references: [6, 7, 8, 20, 27, 28, 22]

From a modelling point of view, the problem of integrating assembly/dissassem-
bly operations has been approached in works such as [29, 13, 8]. However, structural
liveness enforcing approaches can be computationally demanding in this scenario,
as evidenced for augmented marked graphs in [3]. An insight on the computational
complexity of such approaches on the S-RAS context is driven in [17].

Most works on modelling RASs by way of Petri nets are focused on FMSs. The
article [5] can serve as a succinct introduction to the discipline. The books [16, 24]
also focus on the RAP from this perspective. Besides, the latter book also features
some approximation to Automated Guided Vehicle (AGV) Transportation Systems
from the point of view of RAS modelling through Petri nets. Recently, AGVs have
been comprehensively tackled in [25]. Other application domains in which similar
methodological approaches have been deployed include multiprocessor intercon-
nection networks [25] and multithreaded software [30, 19, 20].

The most significant proliferation of works can be found in the context of synthe-
sis. Most of this papers are related to siphon computation (two recent works on this
issue can be found in [2, 15]) as well as to applying Mixed Integer Programming to
liveness enforcing [12, 28]. Another family of works focuses on synthesis based on
reachability state analysis and on the theory of regions [11, 23].
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Chapter 14
Diagnosis of Petri Nets

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu

14.1 Introduction

Failure detection and isolation in industrial systems is a subject that has received a
lot of attention in the past few decades. A failure is defined to be any deviation of a
system from its normal or intended behavior. Diagnosis is the process of detecting
an abnormality in the system behavior and isolating the cause or the source of this
abnormality.

As usual the first significant contributions in this framework have been presented
in the area of time driven systems. However, a quite rich literature on diagnosis of
discrete event systems has also been produced in the last two decades. Faults may be
described by discrete events that represent abnormal conditions. As an example, in
a telecommunication system, a fault may correspond to a message that is lost or not
sent to the appropriate receiver. Similarly, in a transportation system, a fault may be
a traffic light that does not switch from red to green according to the given schedule.
In a manufacturing system, it may be the failure of a certain operation, e.g., a wrong
assembly, or a part put in a wrong buffer, and so on.

In the first part of this chapter we recall an approach proposed in [16], that is a
generalization of [11]. The main feature of the diagnosis approach here presented is
the concept of basis marking. This concept allows us to represent the reachability
space in a compact manner, i.e., it requires to enumerate only a subset of the reach-
ability space. In particular, arbitrary labeled Petri nets (PNs) are considered where
there is an association between sensors and observable events, while no sensor is
available for certain activities — such as faults or other unobservable but regular
transitions — due to budget constraints or technology limitations.

It is also assumed that several different transitions might share the same sensor
in order to reduce cost or power consumption; in such a case if two transitions
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are simultaneously enabled and one of them fires, it is impossible to distinguish
which one has fired, thus they are called undistinguishable. Four diagnosis states
are defined that model different degrees of alarm. The only limitation on the system
is that the unobservable subnet should be acyclic. Such an assumption is common to
all discrete event systems approaches, not only those based on PNs, but those based
on finite state automata as well.

Note that the approach here presented, as most of the approaches dealing with di-
agnosis of discrete event systems [21, 28, 37, 39], assumes that the faulty behavior
is completely known, thus a fault model is available. Such an assumption is appli-
cable to interesting classes of problems, e.g., this is the case of many man-made
systems where the set of possible faults is often predictable and finite in number
[2, 24, 31, 44].

In the second part of this chapter, several extensions of this basic approach are
presented. The first result originates from the requirement of relaxing the assump-
tion of acyclicity of the unobservable subnet. To address this issue fluidification is
proposed [7, 8, 14] (see Chapters 18-20 of this book for a comprehensive presenta-
tion of fluidification in Petri nets). Second, the diagnosability problem is considered:
a system is said to be diagnosable if when a fault occurs, it is possible to detect its
occurrence after a finite number of events occurrences. Obviously, this is a major
requirement when performing online fault diagnosis. Finally, the problem of de-
signing a decentralized diagnoser is discussed. Indeed, due to the everincreasing
complexity of nowadays systems and the intrinsic distributed nature of many real-
istic systems, performing online centralized diagnosis often reveals not convenient,
or even unfeasible.

14.2 Basic Definitions and Notations

As already discussed in the Introduction, the goal of a diagnosis problem consists in
reconstructing the occurrence of a fault event based on the observation of the output
of some sensors. The association between sensors and transitions can be captured
by a labeling function L : T → L∪ {ε} assigns to each transition t ∈ T either a
symbol from a given alphabet L or the empty string ε .

The set of transitions whose label is ε is denoted as Tu, i.e., Tu = {t ∈ T | L (t) =
ε}. Transitions in Tu are called unobservable or silent. To denotes the set of transi-
tions labeled with a symbol in L. Transitions in To are called observable because
when they fire their label can be observed. In this chapter, it is assumed that the
same label l ∈ L can be associated with more than one transition. In particular, two
transitions t1, t2 ∈ To are called undistinguishable if they share the same label, i.e.,
L (t1) = L (t2). The set of transitions sharing the same label l is denoted Tl .

In the following, let CCCu (CCCo) be the restriction of the incidence matrix to Tu (To)
and nu and no, respectively, be the cardinality of these two sets. Moreover, given a
sequence σ ∈ T ∗, Pu(σ), resp., Po(σ), denotes the projection of σ over Tu, resp., To.
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The word w of events associated with sequence σ is w = Po(σ). Note that, the
length of a sequence σ (denoted |σ |) is always greater than or equal to the length
of the corresponding word w (denoted |w|). In fact, if σ contains k′ transitions in Tu

then |σ |= k′+ |w|.
Definition 14.1. [16] Let 〈N,mmm0〉 be a labeled net system with labeling function
L : T → L∪{ε}, where N = (P,T,PPPrrreee,PPPooosssttt) and T = To ∪Tu. Let w ∈ L∗ be an
observed word. Let

S (w) = {σ ∈ L(N,mmm0) | Po(σ) = w}

be the set of firing sequences consistent with w ∈ L∗, and

C (w) = {mmm ∈ INm | ∃σ ∈ T ∗ : Po(σ) = w ∧mmm0[σ〉mmm}

be the set of reachable markings consistent with w ∈ L∗.

In plain words, given an observation w, S (w) is the set of sequences that may have
fired, while C (w) is the set of markings in which the system may actually be.

Example 14.1. Consider the PN in Fig. 14.1. Assume To = {t1, t2, t3, t4, t5, t6, t7} and
Tu = {ε8,ε9,ε10, ε11,ε12,ε13}, where for a better understanding unobservable transi-
tions have been denoted εi rather than ti. The labeling function is defined as follows:
L (t1) = a, L (t2) = L (t3) = b, L (t4) = L (t5) = c, L (t6) = L (t7) = d.

First consider w = ab. The set of firing sequences that is consistent with w is
S (w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}, and the set of markings con-
sistent with w is C (w) = {[0 0 1 0 0 0 0 1 0 0 0]T , [0 0 0 1 0 0 0 1 0 0 0]T ,
[0 0 0 0 1 0 0 1 0 0 0]T , [0 1 0 0 0 0 0 1 0 0 0]T , [0 0 0 0 0 1 0 1 0 0 0]T}.

If w = acd is considered it holds S (w) = {t1t5t6, t1t5ε12ε13t7} and C (w) =
{[0 1 0 0 0 0 0 1 0 0 0]T}. Thus, two different firing sequences may have fired
(the second one also involving silent transitions), but they both lead to the same
marking. �
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Fig. 14.1 The PN system considered in Sections 14.2 to 14.5



282 M.P. Cabasino, A. Giua, and C. Seatzu

Definition 14.2. Given a net N =(P,T,PPPrrreee,PPPooosssttt), and a subset T ′ ⊆ T of its transi-
tions, let us define the T ′-induced subnet of N as the new net N′=(P,T ′,PPPrrreee′,PPPooosssttt ′)
where PPPrrreee′,PPPooosssttt′ are the restrictions of PPPrrreee,PPPooosssttt to T ′. The net N′ can be thought
as obtained from N removing all transitions in T \T ′.

Finally, given a sequence σ ∈ T ∗, we denote as π : T ∗ → N
|T | the function that

associates with σ a vector yyy∈N|T |, called the firing vector of σ . In particular, y[t] =
k if the transition t is contained k times in σ .

14.3 Characterization of the Set of Consistent Markings

To solve a diagnosis problem, it is essential to be able to compute the set of
sequences and markings consistent with a given observation w. In this section a
formalism that allows one to characterize these sets without resorting to explicit
enumeration is provided.

14.3.1 Minimal Explanations and Minimal e-Vectors

Let us now first recall the notion of minimal explanation for unlabeled PNs. Then,
it is shown how such a notion can be extended to labeled PNs.

Definition 14.3. [16] Given a marking mmm and an observable transition t ∈ To, let

Σ(mmm, t) = {σ ∈ T ∗u | mmm[σ〉mmm′, mmm′ ≥ PPPrrreee[·, t]}

be the set of explanations of t at mmm, and let

Y (mmm, t) = π(Σ(mmm, t))

be the e-vectors (or explanation vectors), i.e., firing vectors associated with the
explanations.

Thus Σ(mmm, t) is the set of unobservable sequences whose firing at mmm enables t.
Among the above sequences select those whose firing vector is minimal. The fir-
ing vector of these sequences are called minimal e-vectors.

Definition 14.4. [16] Given a marking mmm and a transition t ∈ To, let us define1

Σmin(mmm, t) = {σ ∈ Σ(mmm, t) | � σ ′ ∈ Σ(mmm, t) : π(σ ′)� π(σ)}
1 Given two vectors xxx and yyy, xxx � yyy denotes that all components of xxx are less than or equal

to the corresponding component of yyy and there exists at least one component of xxx that is
strictly less than the corresponding component of yyy.
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the set of minimal explanations of t at mmm, and let us define

Ymin(mmm, t) = π(Σmin(mmm, t))

the corresponding set of minimal e-vectors.

Example 14.2. Consider the PN in Fig. 14.1 introduced in Example 14.1. It holds
that Σ(mmm0, t1) = {ε}. Then Σ(mmm0, t2) = /0. Finally, let mmm = [ 0 0 1 0 0 0 0 1 0 0 0 ]T , it
holds that Σ(mmm, t5) = {ε,ε8,ε8ε9,ε8ε11,ε8ε9ε10}, while Σmin(mmm, t5) = {ε}. It follows
that Y (mmm, t5) = {[0 0 0 0 0 0]T , [1 0 0 0 0 0]T , [1 1 0 0 0 0]T , [1 0 0 1 0 0]T ,
[1 1 1 0 0 0]T}, and Ymin(mmm, t5) = {[0 0 0 0 0 0]T}. �
In [19] it was shown that, if the unobservable subnet is acyclic and backward
conflict-free, then |Ymin(mmm, t)| = 1. Different approaches can be used to compute
Ymin(mmm, t), e.g., [6, 29]. In [16] it is suggested an approach that simply requires al-
gebraic manipulations, and is inspired by the procedure proposed by [32] for the
computation of minimal P-invariants.

14.3.2 Basis Markings and j-Vectors

Given a sequence of observed events w ∈ L∗, a basis marking mmmb is a marking
reached from mmm0 with the firing of a sequence of transitions whose observable pro-
jection is w and whose unobservable transitions interleaved with the observable
ones are strictly necessary to enable it. Such a sequence of unobservable transi-
tions is called justification. Note that, in general several sequences σo ∈ T ∗o may
correspond to the same w, i.e., there are several sequences of observable transitions
such that L (σo) = w that may have actually fired. Moreover, in general, to any of
such sequences a different sequence of unobservable transitions interleaved with it
is necessary to make it firable at the initial marking. Thus, the introduction of the
following definition of pairs (sequence of transitions in To labeled w; corresponding
justification) is needed.

Definition 14.5. [16] Let 〈N,mmm0〉 be a net system with labeling function L : T →
L∪{ε}, where N = (P,T,PPPrrreee,PPPooosssttt) and T = To∪Tu. Let w ∈ L∗ be a given obser-
vation. Let

Ĵ (w) = { (σo,σu), σo ∈ T ∗o , L (σo) = w, σu ∈ T ∗u |
[∃ σ ∈S (w) : σo = Po(σ), σu = Pu(σ)]∧
[
 ∃σ ′ ∈S (w) : σo = Po(σ ′), σ ′u = Pu(σ ′)∧ π(σ ′u)� π(σu)]}

be the set of pairs (sequence σo ∈ T ∗o with L (σo) = w, corresponding justification
of w). Moreover, let

Ŷmin(mmm0,w) = {(σo,yyy),σo ∈ T ∗o , L (σo) = w, yyy ∈ INnu |
∃(σo,σu) ∈ Ĵ (w) : π(σu) = yyy}

be the set of pairs (sequence σo ∈ T ∗o with L (σo) = w, corresponding j-vector).
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In simple words, Ĵ (w) is the set of pairs whose first element is the sequence
σo ∈ T ∗o labeled w and whose second element is the corresponding sequence of un-
observable transitions interleaved with σo whose firing enables σo and whose firing
vector is minimal. The firing vectors of these sequences are called j-vectors.

Example 14.3. Consider the PN in Fig. 14.1 previously introduced in Example 14.1.
Assume w= ab. In this case Ĵ (w) = {(t1t2,ε)} and Ŷmin(mmm0,w) = {(t1t2,0)}. Now,
consider w = acd. The set Ĵ (w) = {(t1t5t6,ε),(t1t5t7,ε12ε13)} and Ŷmin(mmm0,w) =
{(t1t5t6,0),(t1t5t7, [0 0 0 0 1 1]T )}. �

The main difference among minimal explanations and justifications is that the first
ones are functions of a generic marking mmm and transition t, while justifications are
functions of the initial marking mmm0 and w. Moreover, as will be claimed in the fol-
lowing Proposition 14.1, in the case of acyclic unobservable subnets, justifications
can be computed recursively summing up minimal explanations.

Definition 14.6. [16] Let 〈N,mmm0〉 be a net system with labeling function L : T →
L∪{ε}, where N = (P,T,PPPrrreee,PPPooosssttt) and T = To∪Tu. Let w be a given observation
and (σo,σu) ∈ Ĵ (w) be a generic pair (sequence of observable transitions labeled
w; corresponding justification). The marking

mmmb = mmm0 +CCCu · yyy+CCCo · yyy′, yyy = π(σu), yyy′ = π(σo),

i.e., the marking reached firing σo interleaved with the justification σu, is called
basis marking and yyy is called its j-vector (or justification-vector).

Obviously, because in general more than one justification exists for a word w (the
set Ĵ (w) is generally not a singleton), the basis marking may be not unique as well.

Definition 14.7. [16] Let 〈N,mmm0〉 be a net system with labeling function L : T →
L∪{ε}, where N = (P,T,PPPrrreee,PPPooosssttt) and T = To ∪Tu. Let w ∈ L∗ be an observed
word. Let

M (w) = {(mmm,yyy) | (∃ σ ∈S (w) : mmm0[σ〉mmm) ∧
(∃(σo,σu) ∈ Ĵ (w) : σo = Po(σ), σu = Pu(σ), yyy = π(σu))}

be the set of pairs (basis marking, relative j-vector) that are consistent with w ∈ L∗.

Note that, the set M (w) does not keep into account the sequences of observable
transitions that may have actually fired. It only keeps track of the basis markings
that can be reached and of the firing vectors relative to sequences of unobservable
transitions that have fired to reach them. Indeed, this is the information really sig-
nificant when performing diagnosis. The notion of M (w) is fundamental to provide
a recursive way to compute the set of minimal explanations.
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Proposition 14.1. [16] Given a net system 〈N,mmm0〉 with labeling function L : T →
L∪{ε}, where N = (P,T,PPPrrreee,PPPooosssttt) and T = To∪Tu. Assume that the unobservable
subnet is acyclic2. Let w = w′l be a given observation. It holds:

Ŷmin(mmm0,w′l) = {(σo,yyy) | σo = σ ′ot ∧ yyy = yyy′+ eee :
(σ ′o,yyy′) ∈ Ŷmin(mmm0,w′), (t,eee) ∈ Ŷmin(mmm′b, l), L (t) = l},

where mmm′b = mmm0 +CCCu · yyy′ +CCCo · π(σ ′o) and Ŷmin(mmm′b, l) is the set of pairs (transi-
tion labeled l that may have fired at mmm′b, corresponding j-vector) introduced in
Definition 14.5.

Example 14.4. Consider the PN in Fig. 14.1 previously introduced in Example 14.1.
Assume w = ab. As shown in Example 14.3 Ĵ (w) = {(t1t2,ε)}, thus the basis
marking is mmmb = [0 0 1 0 0 0 0 1 0 0 0]T , and M (w) = {(mmmb,0)}.

Now, consider w = acd. As computed in Example 14.3, the set Ĵ (w) =
{(t1t5t6,ε), (t1t5t7,ε12ε13)}. All the above j-vectors lead to the same basis mark-
ing mmm′b=[0 1 0 0 0 0 0 1 0 0 0]T thus M (w)={(mmm′b,0),(mmm′b, [0 0 0 0 1 1]T )}. �

By Proposition 14.1, under the assumption of acyclicity of the unobservable subnet,
the set M (w) can be easily constructed as follows.

Algorithm 14.5. (Computation of the basis markings and j-vectors). [16]

1. Let w = ε .
2. Let M (w) = {(mmm0,0)}.
3. Wait until a new label l is observed.
4. Let w′ = w and w = w′l.
5. Let M (w) = /0.
6. For all mmm′ such that (mmm′,yyy′) ∈M (w′) , do

6.1. for all t ∈ Tl, do
6.1.1. for all eee ∈ Ymin(mmm′, t), do

6.1.1.1. let mmm = mmm′+CCCu · eee+CCC[·, t],
6.1.1.2. for all yyy′ such that (mmm′,yyy′) ∈M (w′), do

6.1.1.2.1 let yyy = yyy′+ eee,
6.1.1.2.2. let M (w) = M (w)∪{(mmm,yyy)}.

7. Goto Step 3.

In simple words, the above algorithm can be explained as follows. Assume that, after
a certain word w′ has been observed, a new observable t fires and its label l = L (t)
is observed. Consider all basis markings at the observation w′ and select among
them those that may have allowed the firing of at least one transition t ∈ Tl , also
taking into account that this may have required the firing of appropriate sequences

2 As discussed in Chapter 11 (see Proposition 11.12), the main feature of acyclic nets is
that their state equation has no spurious solutions. This implies that the reachability set
coincides with the potential reachability set.
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of unobservable transitions. In particular, let us focus on the minimal explanations,
and thus on the corresponding minimal e-vectors (Step 6.1.1). Finally, update the set
M (w′t) including all pairs of new basis markings and j-vectors, taking into account
that for each basis marking at w′ it may correspond more than one j-vector.

Definition 14.8. [16] Let 〈N,mmm0〉 be a net system where N = (P,T,PPPrrreee,PPPooosssttt) and
T = To ∪ Tu. Assume that the unobservable subnet is acyclic. Let w ∈ T ∗o be an
observed word. Let

Mbasis(w) = {mmm ∈ INm | ∃yyy ∈ INnu and (mmm,yyy) ∈M (w)}

be the set of basis markings at w. Moreover, denote as Mbasis =
⋃

w∈T∗o Mbasis(w)
the set of all basis markings for any observation w.

Note that if the net system is bounded then the set Mbasis is finite being the set of
basis markings a subset of the reachability set.

Theorem 14.1. [16] Consider a net system 〈N,mmm0〉 whose unobservable subnet is
acyclic. For any w ∈ L∗ it holds that

C (w) = {mmm ∈ INm | mmm = mmmb +CCCu · yyy : yyy≥ 0 and mmmb ∈Mbasis(w)}.

The above result shows that the set C (w) can be characterized in linear algebraic
terms given the set Mbasis(w), thus not requiring exhaustive enumeration. This is
the main advantage of the approach here presented.

14.4 Diagnosis Using Petri Nets

Assume that the set of unobservable transitions is partitioned into two subsets:
Tu = Tf ∪Treg where Tf includes all fault transitions (modeling anomalous or fault
behavior), while Treg includes all transitions relative to unobservable but regular
events. The set Tf is further partitioned into r different subsets T i

f , where i= 1, . . . ,r,
that model the different fault classes. Usually, fault transitions that belong to the
same fault class are transitions that represent similar physical faulty behavior.

Definition 14.9. [16] A diagnoser is a function Δ : L∗ × {T 1
f ,T

2
f , . . . ,T

r
f } →

{0,1,2,3} that associates with each observation w ∈ L∗ and with each fault class
T i

f , i = 1, . . . ,r, a diagnosis state.

• Δ(w,T i
f ) = 0 if for all σ ∈S (w) and for all t f ∈ T i

f it holds t f 
∈ σ .
In such a case the ith fault cannot have occurred, because none of the firing
sequences consistent with the observation contains fault transitions of class i.

• Δ(w,T i
f ) = 1 if:

(i) there exist σ ∈S (w) and t f ∈ T i
f such that t f ∈ σ but

(ii) for all (σo,σu) ∈ Ĵ (w) and for all t f ∈ T i
f it holds that t f 
∈ σu.
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In such a case a fault transition of class i may have occurred but is not contained
in any justification of w.

• Δ(w,T i
f ) = 2 if there exist (σo,σu),(σ ′o,σ ′u) ∈ Ĵ (w) such that

(i) there exists t f ∈ T i
f such that t f ∈ σu;

(ii) for all t f ∈ T i
f , t f 
∈ σ ′u.

In such a case a fault transition of class i is contained in one (but not in all)
justification of w.

• Δ(w,T i
f ) = 3 if for all σ ∈S (w) there exists t f ∈ T i

f such that t f ∈ σ .
In such a case the ith fault must have occurred, because all firable sequences
consistent with the observation contain at least one fault in T i

f .

Example 14.6. Consider the PN in Fig. 14.1 previously introduced in Example 14.1.
Let Tf = {ε11,ε12}. Assume that the two fault transitions belong to different fault
classes, i.e., T 1

f = {ε11} and T 2
f = {ε12}.

Let us observe w = a. Then Δ(w,T 1
f ) = Δ(w,T 2

f ) = 0, being Ĵ (w) = {(t1,ε)}
and S (w) = {t1}. In simple words, no fault of both fault classes may have occurred.

Let us observe w = ab. Then Δ(w,T 1
f ) = 1 and Δ(w,T 2

f ) = 0, being Ĵ (w) =
{(t1t2,ε)} and S (w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}. This means that
a fault of the first fault class may have occurred (firing the sequence t1t2ε8ε11) but
it is not contained in any justification of ab, while no fault of the second fault class
can have occurred.

Now, consider w = abb. In this case Δ(w,T 1
f ) = 2 and Δ(w,T 2

f ) = 0, being

Ĵ (w) = {(t1t2t2,ε8ε9ε10),(t1t2t3,ε8ε11)} and S (w) = {t1t2ε8ε9ε10t2, t1t2ε8ε9ε10

t2ε8, t1t2ε8ε9ε10t2ε8ε9, t1t2ε8ε9ε10t2ε8ε9ε10, t1t2ε8ε9ε10t2ε8ε11, t1t2ε8ε11t3}. This
means that no fault of the second fault class can have occurred, while a fault of
the first fault class may have occurred since one justification does not contain ε11

and one justification contains it.
Finally, consider w = abbccc. In this case Δ(w,T 1

f ) = 3 and Δ(w,T 2
f ) = 1.

In fact since Ĵ (w) = {(t1t2t3t5t4t4,ε8ε11),(t1t2t3t4t5t4,ε8ε11), (t1t2t3t4t4t5,ε8ε11),
(t1t2t3t4t4t4,ε8ε11)} a fault of the first fault class must have occurred, while a fault
of the second fault class may have occurred (e.g. t1t2ε8ε11t3t4t4t5ε12) but it is not
contained in any justification of w. �

The following two results proved in [11] for unlabeled PNs still hold in the case of
labeled PNs [16]. In particular, the following proposition presents how the diagnosis
states can be characterized analyzing basis markings and justifications.

Proposition 14.2. [16] Consider an observed word w ∈ L∗.

• Δ(w,T i
f ) ∈ {0,1} iff for all (mmm,yyy) ∈M (w) and for all t f ∈ T i

f it holds y[t f ] = 0.

• Δ(w,T i
f ) = 2 iff there exist (mmm,yyy) ∈M (w) and (mmm′,yyy′) ∈M (w) such that:

(i) there exists t f ∈ T i
f such that y[t f ]> 0,

(ii) for all t f ∈ T i
f , yyy′[t f ] = 0.

• Δ(w,T i
f ) = 3 iff for all (mmm,yyy) ∈M (w) there exists t f ∈ T i

f such that y[t f ]> 0.
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Proposition 14.3. [16] For a PN whose unobservable subnet is acyclic, let w ∈ L∗

be an observed word such that for all (mmm,yyy) ∈M (w) it holds y[t f ] = 0 ∀ t f ∈ T i
f .

Consider the constraint set

T (mmm,T i
f ) =

⎧
⎪⎪⎨

⎪⎪⎩

mmm+CCCu · zzz≥ 0,
∑

t f ∈T i
f

z[t f ]> 0,

zzz ∈ INnu .

(14.1)

• Δ(w,T i
f ) = 0 if ∀ (mmm,yyy) ∈M (w) the constraint set (14.1) is not feasible.

• Δ(w,T i
f ) = 1 if ∃ (mmm,yyy) ∈M (w) such that the constraint set (14.1) is feasible.

On the basis of the above two results, if the unobservable subnet is acyclic, diagnosis
may be carried out by simply looking at the set M (w) for any observed word w and,
should the diagnosis state be either 0 or 1, by additionally evaluating whether the
corresponding integer constraint set (14.1) admits a solution.

Example 14.7. Consider the PN in Fig. 14.1 where T 1
f = {ε11} and T 2

f = {ε12}.
Let w = a. In this case M (w) = {(mmm1,0)}, where mmm1 = [0 1 0 0 0 0 0 1 0 0 0]T .

Being T (mmm1,T i
f ) not feasible both for i = 1 and i = 2 it holds Δ(w,T 1

f ) =

Δ(w,T 2
f ) = 0.

Let w = ab. In this case M (w) = {(mmm2,0)}, where mmm2 = [0 0 1 0 0 0 0 1 0 0 0]T .
Being T (mmm2,T i

f ) feasible only for i = 1 it holds Δ(w,T 1
f ) = 1 and Δ(w,T 2

f ) = 0.

Let w = abb. It is M (w) = {(mmm2, [1 1 1 0 0 0]T ), (mmm3, [1 0 0 1 0 0]T )}, where
mmm3 = [0 0 0 0 0 0 1 1 0 0 0]T . It is Δ(w,T 1

f ) = 2 and Δ(w,T 2
f ) = 0 being both

T (mmm2,T 2
f ) and T (mmm3,T 2

f ) not feasible.
Let w = abbccc. In this case M (w) = {(mmm3, [1 0 0 1 0 0]T ),(mmm4, [1 0 0 1 0 0]T )},

where mmm4 = [0 0 0 0 0 0 1 0 1 0 0]T . It is Δ(w,T 1
f ) = 3 and being T (mmm4,T 2

f ) feasible

it holds Δ(w,T 2
f ) = 1. �

The approach described above requires to compute for each observed word w and
for each fault class i a diagnosis state Δ(w,T i

f ). Let us conclude this section with a
brief discussion on the definition of diagnosis states Δ = 1 and Δ = 2. First, observe
that both the diagnosis states correspond to uncertain states even if a higher degree
of alarm is associated with Δ = 2 with respect to Δ = 1. Second, observe that an
advantage in terms of computational complexity can be obtained by splitting the
uncertain condition in two diagnosis states, namely Δ = 1 and Δ = 2. In fact, the
diagnosis approach is based on the preliminary computation of the set M (w). If
Δ = 2 or Δ = 3 no additional computation is required. On the contrary, to distinguish
among Δ = 0 and Δ = 1 an integer programing problem should be solved.
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14.5 Basis Reachability Graph

Diagnosis approach described in the previous section can be applied both to
bounded and unbounded PNs. The proposed approach is an online approach that
for each new observed event updates the diagnosis state for each fault class com-
puting the set of basis markings and j-vectors. Moreover, if for the fault class T i

f
is necessary to distinguish between diagnosis states 0 and 1, it is also necessary to
solve for each basis marking mmmb the constraint set T (mmmb,T i

f ).
In this section, it is shown that if the considered net system is bounded, the most

burdensome part of the procedure can be moved offline defining a graph called Basis
Reachability Graph (BRG).

Definition 14.10. [16] The BRG is a deterministic graph that has as many nodes as
the number of possible basis markings.

To each node is associated a different basis marking mmm and a row vector with as
many entries as the number of fault classes. The entries of this vector may only take
binary values: 1 if T (mmm,T i

f ) is feasible, 0 otherwise.
Arcs are labeled with observable events in L and e-vectors: an arc exists from a

node containing the basis marking mmm to a node containing the basis marking mmm′ if
and only if there exists a transition t for which an explanation exists at mmm and the
firing of t and one of its minimal explanations leads to mmm′. The arc going from mmm to
mmm′ is labeled (L (t),eee), where eee ∈ Ymin(mmm, t) and mmm′ = mmm+CCCu · eee+CCC[·, t].

Note that, the number of nodes of the BRG is always finite being the set of ba-
sis markings a subset of the set of reachable markings, that is finite being the net
bounded by assumption. Moreover, the row vector of binary values associated with
the nodes of the BRG allows us to distinguish between the diagnosis state 1 or 0.

The main steps for the computation of the BRG in the case of labeled PNs are
summarized in the following algorithm.

Algorithm 14.8. (Computation of the BRG). [16]

1. Label the initial node (mmm0,xxx0) where ∀i = 1, . . . ,r,

xxx0[T
i
f ] =

{
1 if T (mmm0,T i

f ) is feasible,
0 otherwise.

Assign no tag to it.
2. While nodes with no tag exist, select a node with no tag and do

2.1. let mmm be the marking in the node (mmm,xxx),
2.2. for all l ∈ L
2.2.1. for all t : L(t) = l∧Ymin(mmm, t) 
= /0, do

• for all eee ∈ Ymin(mmm, t), do
• let mmm′ = mmm+CCCu · eee+CCC[·, t],
• if � a node (mmm,xxx) with mmm = mmm′, do
• add a new node to the graph containing
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(mmm′,xxx′) where ∀i = 1, . . . ,r,
xxx′[T i

f ] =
{

1 if T (mmm′,T i
f ) is feasible, 0 otherwise.

and arc (l,eee) from (mmm,xxx) to (mmm′,xxx′)
• else
• add arc (l,eee) from (mmm,xxx) to (mmm′,xxx′) if it does not exist yet

2.3. tag the node ”old”.

3. Remove all tags.

The algorithm constructs the BRG starting from the initial node to which it cor-
responds the initial marking and a binary vector that specifies for all fault classes,
if some transition in the class may occur at mmm0. Now, consider all the labels l ∈ L
such that there exists a transition t with L (t) = l for which a minimal explanation
at mmm0 exists. For each of these transitions compute the marking resulting from fir-
ing t at mmm0 +CCCu · eee, for any eee ∈ Ymin(mmm0, t). If a pair (marking, binary vector) not
contained in the previous nodes is obtained, a new node is added to the graph. The
arc going from the initial node to the new node is labeled (l,eee). The procedure is
iterated until all basis markings have been considered. Note that, the approach here
presented always requires to enumerate a state space that is a subset (usually a strict
subset) of the reachability space. However, as in general for diagnosis approaches,
the combinatory explosion cannot be avoided.

Example 14.9. Consider again the PN in Fig. 14.1, where To = {t1, t2, t3, t4, t5, t6, t7},
Tu = {ε8,ε9,ε10,ε11, ε12,ε13}, T 1

f = {ε11} and T 2
f = {ε12}. The labeling function is

defined as follows: L (t1) = a, L (t2) = L (t3) = b, L (t4) = L (t5) = c, L (t6) =
L (t7) = d.

The BRG is shown in Fig. 14.2. The notation used in this figure is detailed in
Tables 14.1 and 14.2. Each node contains a different basis marking and a binary
row vector of dimension two, being two the number of fault classes. As an example,
the binary vector [0 0] is associated with mmm0 because T (mmm0,T i

f ) is not feasible for
i = 1 and i = 2. From node mmm0 to node mmm1 there is one arc labeled a with the
null vector as minimal explanation. The node containing the basis marking mmm2 has
binary vector [1 0], because T (mmm2,T i

f ) is feasible only for i = 1. Node (mmm5, [0 1])
has two output arcs both labeled with d and both directed to node (mmm1, [0 0]) with

Table 14.1 The markings of the BRG in Fig. 14.2.

mmm0 [ 1 0 0 0 0 0 0 0 0 0 0 ]T

mmm1 [ 0 1 0 0 0 0 0 1 0 0 0 ]T

mmm2 [ 0 0 1 0 0 0 0 1 0 0 0 ]T

mmm3 [ 0 0 0 0 0 0 1 1 0 0 0 ]T

mmm4 [ 0 0 0 0 0 0 1 0 1 0 0 ]T

mmm5 [ 0 1 0 0 0 0 0 0 1 0 0 ]T

mmm6 [ 0 0 1 0 0 0 0 0 1 0 0 ]T



14 Diagnosis of Petri Nets 291

Fig. 14.2 The BRG of the PN in Fig. 14.1

two different minimal explanations 0 and eee1, respectively, plus another output arc
(b,0) directed to node (mmm6, [1 1]). �

The following algorithm summarizes the main steps of the online diagnosis car-
ried out by looking at the BRG.

Algorithm 14.10. (Diagnosis using the BRG). [16]

1. Let w = ε .
2. Let M (w) = {(mmm0,0)}.
3. Wait until a new observable transition fires.

Let l be the observed event.
4. Let w′ = w and w = w′l.
5. Let M (w) = /0, [Computation of M (w)]
6. For all nodes containing mmm′ : (mmm′,yyy′) ∈M (w′), do

6.1 for all arcs exiting from the node with mmm′, do
6.1.1. let mmm be the marking of the output node and eee be the minimal e-vector on

the edge from mmm′ to mmm,
6.1.2. for all yyy′ such that (mmm′,yyy′) ∈M (w′), do

6.1.2.1. let yyy = yyy′+ eee,
6.1.2.2. let M (w) = M (w)∪{(mmm,yyy)},

7. for all i = 1, . . . ,r, do [Computation of the diagnosis state]

7.1. if ∀ (mmm,yyy) ∈M (w) ∧ ∀t f ∈ T i
f it is y[t f ] = 0, do

7.1.1. if ∀ (mmm,yyy) ∈M (w) it holds xxx=0, where xxx is the binary vector in node mmm,
do

7.1.1.1. let Δ(w,T i
f ) = 0,

7.1.2. else
7.1.2.1. let Δ(w,T i

f ) = 1,
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Table 14.2 The e-vectors of the BRG in Fig. 14.2.

ε8 ε9 ε10 ε11 ε12 ε13

eee1 0 0 0 0 1 1
eee2 1 1 1 0 0 0
eee3 1 0 0 1 0 0

7.2. if ∃ (mmm,yyy) ∈M (w) and (mmm′,yyy′) ∈M (w) s.t.:
(i) ∃t f ∈ T i

f such that y[t f ]> 0,

(ii) ∀t f ∈ T i
f , yyy′[t f ] = 0, do

7.2.1. let Δ(w,T i
f ) = 2,

7.3. if ∀ (mmm,yyy) ∈M (w) ∃t f ∈ T i
f : y[t f ]> 0, do

7.3.1. let Δ(w,T i
f ) = 3.

8. Goto Step 3.

Steps 1 to 6 of Algorithm 14.10 enable us to compute the set M (w). When no event
is observed, namely w = ε , then M (w) = {(mmm0,0)}. Now, assume that a label l is
observed. All couples (mmm,yyy) such that an arc labeled l exits from the initial node
and ends in a node containing the basis marking mmm are included in the set M (l).
The corresponding value of yyy is equal to the e-vector in the arc going from mmm0 to mmm,
being 0 the j-vector relative to mmm0. In general, if w′ is the actual observation, and a
new event labeled l fires, one has to consider all couples (mmm′,yyy′) ∈M (w′) and all
nodes that can be reached from mmm′ with an arc labeled l. Let mmm be the basis marking
of the generic resulting node. Include in M (w) =M (w′l) all couples (mmm,yyy), where
for any mmm, yyy is equal to the sum of yyy′ plus the e-vector labeling the arc from mmm′ to
mmm.

Step 7 of Algorithm 14.10 computes the diagnosis state. Consider the generic
ith fault class. If ∀(mmm,yyy) ∈M (w) and ∀t f ∈ T i

f it holds y[t f ] = 0, the ith entry of
all the binary row vectors associated with the basis markings mmm has to be checked,
such that (mmm,yyy) ∈M (w). If these entries are all equal to 0, it holds Δ(w,T i

f ) = 0,

otherwise it holds Δ(w,T i
f ) = 1. On the other hand, if there exists at least one pair

(mmm,yyy) ∈M (w) with y[t f ] > 0 for any t f ∈ T i
f , and there exists at least one pair

(mmm′,yyy′) ∈M (w) with y[t f ] = 0 for all t f ∈ T i
f , then Δ(w,T i

f ) = 2. Finally, if for all

pairs (mmm,yyy) ∈M (w), y[t f ]> 0 for any t f ∈ T i
f , then Δ(w,T i

f ) = 3.

Example 14.11. Consider the PN in Fig. 14.1 and its BRG in Fig. 14.2. Let w = ε .
By looking at the BRG it holds that Δ(ε,T 1

f ) = Δ(ε,T 2
f ) = 0 being both entries of

the row vector associated with mmm0 equal to 0.
Now, consider w = ab. In such a case M (w) = {(mmm2,0)}. It holds Δ(ab,T 1

f ) = 1

and Δ(ab,T 2
f ) = 0 being the row vector in the node equal to [1 0].

Finally, for w = abbc it holds Δ(abbc,T 1
f ) = 2 and Δ(abbc,T2

f ) = 1. In fact
M (w) = {(mmm6,yyy1),(mmm3,yyy2),(mmm4,yyy3)}, where yyy1 = eee2, yyy2 = yyy3 = eee3, and the row
vectors associated with mmm6,mmm3 and mmm4 are respectively [1 1], [0 0] and [0 1]. �
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14.6 Some Important Problems Strictly Related to Online
Diagnosis

Let us discuss some important problems strictly related to online diagnosis.

14.6.1 Online Diagnosis via Fluidification

In the case of discrete event systems with a large number of reachable states the
problem of fault detection, as well as many others, becomes computationally pro-
hibitive because of the state explosion. As discussed in detail in Chapters 18 to 20,
a common technique to overcome this is fluidification. Several discrete-event based
fluid models have been proposed in the literature, some of them derived by the fluid-
ification of queuing networks [4, 18, 43] or Petri nets [41, 20]. The main idea of the
fluidification of PNs is the relaxation of the transitions firings allowing them to fire
in positive real amounts. Therefore, the content of the places is no more restricted
to take natural values, but it may be expressed by non-negative real numbers. This
implies a series of significant properties. As an example, the reachability set is con-
vex [36]. Moreover, as proved in [7, 8, 14], in the case of partial observation of the
transitions firings (namely in the presence of silent transitions), the set of markings
that are consistent with a given observation is convex. Using this convexity property,
the fault detection problem for untimed continuous Petri nets has been studied [14].
In particular, as in the previous section, it is assumed that certain transitions are
not observable, including fault transitions and transitions modeling a regular behav-
ior. Thus, faults should only be detected on the basis of the observation of a subset
of transitions. Note, however, that the case of undistinguishable transitions has not
been dealt in [14], i.e., all transitions that are observable are also distinguishable.
Fault transitions are partitioned into different fault classes and three different diag-
nosis states are defined, each one representing a different degree of alarm: N means
that no fault of a given class has surely occurred; U means that a fault of a given
class may have occurred or not (uncertain state); F means that a fault of a given
class has surely occurred. A criterion to define, for each fault class, the value of the
diagnosis state, given the observation of a sequence of transitions firings has been
derived. Thus, another difference with the case in the previous section is that only
three diagnosis states, rather than four, are considered. This is a major requirement
originating from a technical assumption that is not discussed here for the sake of
brevity.

In [14] general PN structures are considered under the assumption, common to
all works dealing with fault diagnosis, that the unobservable subnet has no spurious
markings, i.e., all solutions of the state equation are reachable markings. Since
in continuous case this assumption is not very restrictive, this allows one to also
deal with unobservable subnets that are cyclic, making the procedure more general
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with respect to the approach developed for discrete PNs [11]. To the best of our
knowledge, the approach for fault diagnosis in [14] is the only one that can be ap-
plied to systems whose unobservable part contains cycles, regardless of the discrete-
event formalism used to model the plant: automata, Petri nets, etc.

On the other hand, in the case of acyclic unobservable subnets, it is not so easy to
evaluate the effectiveness of fluidification. In particular, the computational complex-
ity of the proposed approach is not a priori comparable with that of the diagnosis
approach for discrete nets in [11], based on the notion of basis markings. As it can
be shown via some numerical example, the computational complexity of both proce-
dures depends on the particular net structure, on the observed word and on the initial
marking as well, thus no general conclusion can be drawn. Nevertheless, there exist
cases in which the proposed approach provides a considerable improvement on the
computational costs.

As a result of the above considerations, we believe that fluidification is an appro-
priate technique when the unobservable subnet is cyclic, being in such a case the
only viable approach, or when the advantages in terms of computational complexity
are really significant such as in the case of systems with a very large number of
reachable states.

Note that, Section 19.7 of Chapter 19 is fully devoted to on-line diagnosis via
fluidification.

14.6.2 Diagnosability Analysis

In the fault analysis framework two different problems can be solved: the problem
of diagnosis and the problem of diagnosability. As explained in detail in the above
sections, solving a problem of diagnosis means that to each observed string of events
is associated a diagnosis state, such as “normal” or “faulty” or “uncertain”. Solving
a problem of diagnosability is equivalent to determine if the system is diagnosable,
i.e., to determine if, once a fault has occurred, the system can detect its occurrence in
a finite number of steps. This problem has been addressed in two different settings,
depending on the boundedness of the net system. In particular, in [9] a solution that
only applies to bounded nets has been proposed, where the major feature is to allow
to perform, using the same framework, both diagnosis and diagnosability analysis.
The computational complexity of such an approach is actually under investigation
as well as a comparison among the approach in [9] and the automata-based approach
by Sampath et al. [37].

Moreover, in [10, 17] an approach that also applies to unbounded PNs has been
presented. In particular in [17] two different notions of diagnosability have been
considered: diagnosability and diagnosability in K steps, or K-diagnosability. Di-
agnosability in K steps is stronger than diagnosability and implies not only that
the system is diagnosable, i.e., when the fault occurs we are able to detect it in a
finite number of transition firings, but also that if the fault occurs we are able to
detect it in at most K steps. Necessary and sufficient conditions for both notions of



14 Diagnosis of Petri Nets 295

diagnosability have been given together with a test to study both diagnosability and
K-diagnosability based on the analysis of the coverability graph of a special PN,
called Verifier Net, that is built starting from the initial system. Moreover, a proce-
dure to compute the bound K in the case of K-diagnosable systems is presented.
Then, sufficient conditions on diagnosability are derived using linear programing
techniques. To the best of our knowledge, this is the first time that necessary and
sufficient conditions for diagnosability and K-diagnosability of labeled unbounded
Petri nets are presented.

14.6.3 Decentralized Diagnosis

The extension of the approach presented in the previous sections to decentralized
fault diagnosis has been investigated in [12, 13, 15]. In particular, exploiting the
classical decentralized diagnosis architecture, it is assumed that the system is moni-
tored by a set of sites. Each site knows the structure of the net and the initial marking
but observes the evolution of the system with a different mask, i.e., the set of observ-
able transitions is different for each site. Diagnosis is locally performed using the
approach founded on basis markings introduced in [11, 16]. Using its own observa-
tion, each site performs diagnosis and, according to a given protocol, communicates
it, eventually with some other information, to the coordinator who calculates global
diagnosis states. In particular, three different protocols have been defined that dif-
fer for the amount of information exchanged between the coordinator and the local
sites, and vice versa. In all cases, an important property has been proved, namely
that the coordinator never produces false alarms.

Finally, the diagnosability property under decentralization has been investigated,
i.e., it is investigated if it is possible to guarantee that any fault occurrence can be
detected after a finite number of observations. To this aim, the definition of failure
ambiguous strings is first introduced. Second, it is shown that the absence of such
kind of sequences is a sufficient condition for the diagnosability of a given net sys-
tem in a decentralized framework, regardless of the considered protocol. It is also
shown that the absence of failure ambiguous strings is also a necessary condition for
codiagnosability, i.e., diagnosability in the case in which there is no communication
between the sites and the coordinator. Moreover, a procedure to detect the presence
of failure ambiguous strings is presented. Such a procedure is based on the construc-
tion of a particular net called Modified Verifier Net (MVN), that is an extension of
the Verifier Net (VN), introduced in [10] to analyze diagnosability in a centralized
framework.

Note that, the following Chapter 15 presents approaches for online diagnosis and
diagnosability analysis of large distributed systems modeled with Petri nets.
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14.7 Further Reading

The first contributions in the framework of fault diagnosis of discrete event systems
have been proposed in the context of automata by Sampath et al. [37, 38] who pro-
posed an approach to failure diagnosis where the system is modeled as a nondeter-
ministic automaton in which the failures are treated as unobservable events. In [37],
they provided a definition of diagnosability in the framework of formal languages
and established necessary and sufficient conditions for diagnosability. Moreover, in
[39] Sampath et al. presented an integrated approach to control and diagnosis. More
specifically, the authors presented an approach for the design of diagnosable systems
by appropriate design of the system controller and this approach is called active
diagnosis. They formulated the active diagnosis problem as a supervisory control
problem. In [21], Debouk et al. proposed a coordinated decentralized architecture
consisting of two local sites communicating with a coordinator that is responsible
for diagnosing the failures occurring in the system. In [5], Boel and van Schup-
pen addressed the problem of synthesizing communication protocols and failure
diagnosis algorithms for decentralized failure diagnosis of discrete event systems
with costly communication between diagnosers. In [28], a state-based approach for
on-line passive fault diagnosis is presented.

More recently, PN models have been used in the context of diagnosis. Indeed,
the use of PNs offers significant advantages because of their twofold representation:
graphical and mathematical. Moreover, the intrinsically distributed nature of PNs
where the notion of state (i.e., marking) and action (i.e., transition) is local reduces
the computational complexity involved in solving a diagnosis problem.

Among the first pioneer works dealing with PNs, let us recall the approach of
Prock [34]. He proposes an online technique whose goal is the identification of sen-
sor or process errors which are manifested in signals related to physical conservation
quantities. After a fault is detected a prognosis of the future system’s behavior can be
provided. Note that, preliminary results in this respect have already been presented
in the 80s by Silva and Velilla [40].

Sreenivas and Jafari [42] employ time PNs to model the discrete event system
(DES) controller and backfiring transitions to determine whether a given state is
invalid. Later on, time PNs have been employed by Ghazel et al. [26] who propose
a monitoring approach for DES with unobservable events and to represent the “a
priori” known behavior of the system, and track online its state to identify the events
that occur.

Hadjicostis and Veghese [27] use PN models to introduce redundancy into
the system and additional P-invariants allow the detection and isolation of faulty
markings.

Wu and Hadjicostis [45] use redundancy into a given PN to enable fault detection
and identification using algebraic decoding techniques. In this paper, the authors
consider two types of faults: place faults that corrupt the net marking, and transi-
tion faults that cause a not correct update of the marking after event occurrence.
Although this approach is general, the net marking has to be periodically observ-
able even if unobservable events occur. Analogously, Lefebvre and Delherm [30]
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investigate on the determination of the set of places that must be observed for the
exact and immediate estimation of faults occurrence.

Miyagi and Riascos [33] introduce a methodology, based on the hierarchical and
modular integration of PNs, for modeling and analyzing fault-tolerant manufactur-
ing systems that not only optimizes normal productive processes, but also performs
detection and treatment of faults.

Ramirez-Treviño et al. [35] employ Interpreted PNs to model the system behavior
that includes both events and states partially observable. Based on the Interpreted
PN model derived from an online methodology, a scheme utilizing a solution of a
programing problem is proposed to solve the problem of diagnosis.

Genc and Lafortune [25] propose a diagnoser on the basis of a modular approach
that performs the diagnosis of faults in each module. Subsequently, the diagnosers
recover the monolithic diagnosis information obtained when all the modules are
combined into a single module that preserves the behavior of the underlying modu-
lar system. A communication system connects the different modules and updates the
diagnosis information. Even if the approach does not avoid the state explosion prob-
lem, an improvement is obtained when the system can be modeled as a collection of
PN modules coupled through common places.

The main advantage of the approaches in [25] consists in the fact that, if the
net is bounded, the diagnoser may be constructed offline, thus moving offline the
most burdensome part of the procedure. Nevertheless, a characterization of the set
of markings consistent with the actual observation is needed. Thus, large memory
may be required.

An improvement in this respect has been given in [1, 3, 22].
In particular, Benveniste et al. [3] use a net unfolding approach for designing

an online asynchronous diagnoser. The state explosion is avoided but the online
computation can be high due to the online building of the PN structures by means
of the unfolding.

Basile et al. [1] build the diagnoser online by defining and solving Integer Linear
Programing (ILP) problems. Assuming that the fault transitions are not observable,
the net marking is computed by the state equation and, if the marking has negative
components, an unobservable sequence is occurred. The linear programing solution
provides the sequence and detects the fault occurrences. Moreover, an offline anal-
ysis of the PN structure reduces the computational complexity of the ILP problem.

Dotoli et al. [22] propose a diagnoser that works online in order to avoid the
redesign and the redefinition of the diagnoser when the structure of the system
changes. In particular, the diagnoser waits for an observable event and an algorithm
decides whether the system behavior is normal or may exhibit some possible faults.
To this aim, some ILP problems are defined and provide eventually the minimal
sequences of unobservable transitions containing the faults that may have occurred.
The proposed approach is a general technique since no assumption is imposed on the
reachable state set that can be unlimited, and only few properties must be fulfilled
by the structure of the PN modeling the system fault behavior. A problem strictly
related to diagnosis has been recently studied by Dotoli et al. [23]. They address the
problem of identifying the model of the unobservable behavior of PN systems in the
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industrial automation framework. Assuming that the fault-free system structure and
dynamics are known, the paper proposes an algorithm that monitors the system on-
line, storing the occurred observable event sequence and the corresponding reached
states.
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Chapter 15
Diagnosis with Petri Net Unfoldings

Stefan Haar and Eric Fabre

15.1 Motivation

Large systems or softwares are generally obtained by designing independent mod-
ules or functions, and by assembling them through appropriate interfaces to obtain
more elaborate functions and modules. The latter can in turn be assembled, up to
forming huge systems providing sophisticated services. Consider for instance the
various components of a computer, telecommunication networks, plane ticket reser-
vation sofwares for a company, etc. Such systems are not only modular in their
design, but often multithreaded, in the sense that many events may occur in parallel.

From a discrete event system perspective, such modular or distributed systems
can be modeled in a similar manner, by first designing component models and then
assembling them through an adequate composition operation. A first approach to
this design principle has been presented in Chapter 5 (see Section 5.5): composition
can be defined as the synchronous product of automata. The transitions of each
component carry labels, and the product proceeds by synchronizing transitions with
identical labels, while all the other transitions remain private. This construction is
recalled in Fig. 15.1 on the simple case of three tiny automata. The size of the
resulting system is rather surprising, given the simplicity of the three components!
And this deserves a detailed study.

One first notices the classical state space explosion phenomenon: the number of
states in the global system is the product of the number of states of their components
(here 2×2×3 = 12). So, the number of states augments exponentially fast with the
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Fig. 15.1 Three components (top) as labeled automata, and their synchronous product
(bottom)

number of components. Second, the number of transitions explodes as well: pri-
vate transitions of a component are cloned many times (see transition (a,u,b) of the
first component for example), and creates the so-called concurrency diamonds, rep-
resenting different possible orderings of transitions (from state ade, one can reach
bc f by firing either uβ or β u).

These phenomena motivate alternate methods of assembling components in order
to make explicit the concurrency of transitions. Petri nets are a natural tool toward
this objective. Reconsidering the above example under the form of Petri nets, one
gets Fig. 15.2. Components are recast into simple PNs with a single token, and their
assembling amounts to gluing transitions with identical labels. The explosion both
in states and in transitions is now kept under control, and the token semantics of PN
makes explicit the fact that several transitions are simultaneously firable. Observe
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in passing that the PNs obtained in this manner are safe: each place contains at most
one token. Moreover, here the number of tokens is constant and characterizes the
number of automata that were assembled.

Did all difficulties of large systems vanish with this simple modeling trick? Not
really. When considering runs of (safe) Petri nets, one may still face explosive phe-
nomena. In the usual sequential semantics, trajectories are modeled as sequences
of events. So, one recovers the difficulty that different interleaving of concurrent
events correspond to different trajectories. For example, trajectories ux and xu both
lead from the inital state ace to state bc f , but correspond to two distinct trajectories.
While it is clear that the exact ordering in which the private events u and x of the
first and third component respectively does not really matter.
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Fig. 15.3 Two trajectories of the PN in Fig. 15.2, as partial orders of events. ‘Time’ (or
precedence, or causality) is oriented from top to bottom

To avoid the explosion in the number of possible runs of a large concurrent sys-
tem, people soon realized the the parallelism, or the concurrency, also had to be
handled in the description of trajectories. The first ideas in this direction came from
Mazurkiewicz traces (not treated here), which consist in establishing an equivalence
relation between sequences of events that only differ by the ordering of their concur-
rent events. A related idea is to directly represent runs as partial orders of events,
rather than sequences. Fig. 15.3 illustrates this idea for the PN of Fig. 15.2. This
representation encodes the causality of events, as derived by the use of resources
(tokens), but discards any unnecessary timing information. The run on the left, for
example, encodes that events v and β occur after the first α , but their order is un-
specified. These simple five events partial order stands for five possible sequences,
obtained as different interleaving of concurrent events (exercise).

Such true concurrency semantics, which handle time as partially ordered, offer
many advantages. The first one being to keep under control the explosion due to the
intrinsic parallelism of events in large distributed systems. But it also allows one
to model that some global knowledge on the system may be unaccessible. It is a
common place that the knowledge of global time, or of global state, may be un-
reachable in distributed asynchronous systems. This idea was already illustrated in
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Chapter 5 in the case of distributed observations: if a sensor is placed on each com-
ponent, the events observed locally by each sensor may be totally ordered, but the
exact interleaving of observations collected on different sensors can not (always) be
recovered. Therefore, one should also be able to represent distributed observations
as partial orders of observations, rather than sequences.

This chapter aims at introducing the main concepts that make possible working
with partial orders of event, or true concurrency semantics. It first recalls the notion
of (safe) Petri net, and then introduces occurrence nets, a compact data structure
to handle sets of runs, where runs are partial orders of events. It then examines
how diagnosis can be performed with such semantics, by relating partially ordered
observations to possible runs of a Petri net. As for automata, the approach extends to
distributed systems. The chapter closes on the notion of diagnosability, which takes
a new meaning in this context.

15.2 Asynchronous Diagnosis with Petri Net Unfoldings

Nets and homomorphisms. A net is a triple N = (P,T,F), where P and T are
disjoint sets of places and transitions, respectively, and F ⊂ (P× T)∪ (T×P) is
the flow relation. 1 In figures, places are represented by circles, rectangular boxes
represent transitions, and arrows represent F; Fig. 15.4 shows two nets. For node
x ∈ P∪T, call •x � {x′ | F(x′,x)} the preset, and x• � {x′ | F(x,x′)} the postset of
x. Let < be the transitive closure of F and � the reflexive closure of <; further, let
[x] � {x′ | x′ � x} be the prime configuration or cone of x, and [x] � [x]\{x} the
pre-cone of x.

A net homomorphism2 from N to N′ is a map π : P∪ T �−→ P′ ∪ T ′ such that
(i) π(P) ⊆ P′, π(T) ⊆ T ′, and (ii) π|•t : •t → •π(t) and π|t• : t• → π(t)• induce
bijections, for every t ∈ T.

Petri Nets. Let N = (P,T,F) be a finite net. A marking of net N is a multi-set
m : P→ N. A Petri net (PN) is a pair N = (N,m0), where m0 : P→ N is an initial

marking. Transition t ∈ T is enabled at marking m, written m
t−→, iff •t � m, where

we interpret •t as the multi set whose value is 1 on all preplaces of t, and 0 otherwise.
If m

t−→, then t can fire, leading to m′=(m−•t)+ t• (in the multi-set interpretation);

write in that case m
t−→ m′. The set R(m0) contains m0 and the markings of N

reachable through the transitive closure
+−→ of −→.

Only safe nets are considered in this article; the net on the left-hand side of
Fig. 15.4 is safe. If m(p)> 0, we will draw m(p) black tokens in the circle represent-
ing p. A Petri net N = (N,m0) is safe if for all m∈R(m0) and p∈ P, m(p)∈ {0,1}.

1 Only ordinary nets are considered here, i.e. with arc weights 0 or 1.
2 There exist several notions of morphisms for nets and for Petri nets, which are needed e.g.

to formalize composition of nets; see [27, 19, 18, 6, 17] and the references therein.
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Fig. 15.4 A Petri net (left) and a prefix of its unfolding (right)

Semantics. The behavior of Petri nets can be recorded in either an interleaved or a
concurrent fashion. To formalize this, we introduce Occurrence Nets (due to [28])
and Branching Processes. Occurrence nets are characterized by a particular struc-
ture. In a net N = (P,T,F), let <N the transitive closure of F, and �N the reflexive
closure of <N . Further, set t1#imt2 for transitions t1 and t2 if and only if t1 
= t2 and
•t1∩•t2 
= /0, and define # = #N by

a # b⇔ ∃ta, tb ∈ T : [(ta#imtb) ∧ (ta �N a)∧ (tb �N b)] .

Finally, define concurrency relation co = co N by setting, for any nodes a,b ∈
P∪T,

a co b ⇐⇒ ¬(a � b) ∧ ¬(a # b) ∧ ¬(b < a) .

Definition 15.1. A net ON = (B,E,G) is an occurrence net if and only if it satisfies

1. �ON is a partial order;
2. for all b ∈ B, |•b| ∈ {0,1};
3. for all x ∈ B∪E, the set [x] = {y ∈ B∪E | y �ON x} is finite;
4. no self-conflict,i.e. there is no x ∈ B∪E such that x#ONx;
5. the set cut0 of �ON-minimal nodes is contained in B and finite.

In occurrence nets, the nodes of E are called events, and the elements of B are
denoted conditions. The right-hand side of Fig. 15.4 shows an occurrence net.

Occurrence nets are the mathematical form of the partial order unfolding seman-
tics for Petri nets [30]; although more general applications are possible, we will
focus here on unfoldings of safe Petri nets only.
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A branching process of safe Petri net N = (N,m0) is a pair β = (ON,π), where
ON = (B,E,G) is an occurrence net, and π is a homomorphism from ON to N such
that:

1. The restriction of π to cut0 is a bijection from cut0 to the set m0 � {p ∈
P : m0(p) = 1}, and

2. for every e1,e2 ∈ E, if •e1 =
•e2 and h(e1) = h(e2) then e1 = e2.

Branching processes β1 = (ON1,π1) and β2 = (ON2,π2) for N are isomorphic iff
there exists a bijective homomorphism h : ON1→ ON2 such that π1 = π2 ◦ h. The
unique (up to isomorphism) maximal branching process βU = (ONU ,πU ) of N
is called the unfolding of N . A canonical algorithm (see [30] for details) for con-
structing the unfolding of N = (P,T,F,m0) proceeds as follows: For any branch-
ing process β = (ONβ ,πβ ) of N = (P,T,F), with ONβ = (Bβ ,Eβ ,Gβ ), denote as
PE(β ) ⊆ T×Pwrset(B) the set of possible extensions of β , i.e. the set of the pairs
(t,W) such that

• W is a co-set of ONβ , i.e. for a,b ∈W, either a = b or a co b,
• •t = πβ (W),
• Eβ contains no event e such that πβ (e) = t and •e = W.

Now, let cut0 � m0×{ /0} and initialize β = (cut0, /0, /0); recursively, for given β =
(ONβ ,πβ ) with ONβ = (Bβ ,Eβ ,Gβ ), compute PE(ONβ ) and replace:

Eβ by Eβ ∪PE(ONβ ),

Bβ by Bβ ∪{(P,e) | e ∈ PE(ONβ ),p ∈ πβ (e)
•}, and

Gβ by Gβ ∪
{
(b,(t,W)) | (t,W) ∈ PE(ONβ ),b ∈W

}

∪
{
(e,(P,e)) | e ∈ PE(ONβ ),p ∈ πβ (e)

•} .

We will assume that all transitions t ∈ T have at least one output place, i.e. t• is not
empty.

Occurrence nets give rise to a specific kind of partially ordered set with conflict
relation that is known in computer science as event structure.

Definition 15.2 (compare [28]). A prime event structure is a tuple E = (E,�,#,λ ),
where E = ‖E ‖ is the support, or set of events of E , and such that

1. �⊆ E×E is a partial order satisfying the property of finite causes i.e. setting
[e]� {e′ ∈ E | e′ � e}, one has for all e ∈ E, |[e]|< ∞;

2. # ⊆ E×E an irreflexive symmetric conflict relation satisfying the property of
conflict heredity, i.e.

∀ e,e′,e′′ ∈ E : e # e′ ∧ e′ � e′′ ⇒ e # e′′. (15.1)

Events e,e′ ∈ E are concurrent, written e co e′, iff neither e � e′ nor e′ < e nor e # e′

hold. If co is the empty relation, we call E sequential.
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One notices quickly that occurrence nets form particular cases of event struc-
tures. The canonical association of an event structure to an occurrence net ON is by
restricting � and # to the event set E, ”forgetting” conditions.

Sequential and Nonsequential behavior. In the net on the left-hand side of
Fig. 15.4, the transition sequence αδγζ is enabled; so is the sequence αγδζ , and it
is immaterial to us which of the two sequences actually occurs; both lead to the same
final marking (which is identical with the initial marking), and the same actions are
performed, only in different order.

We therefore would like to use a unifying way to reason about such collections
of firing sequences without having to examine each individual one. One way of
capturing the equivalence up to permutation of independent events is developed in
the theory of Mazurkiewicz traces, see [15, 26]. We will use another relation, which
includes also the marking equivalence and which is provided by the concept of
configuration: a unique partially ordered set that represents in a unique and compact
way all enabled interleavings of a set of events. Let us formalize this.

Prefixes and Configurations. The set of causes or prime configuration of e ∈ E is
[e] � {e′ | e′ � e}, as defined above. A prefix of E is any downward closed subset
D ⊆ E, i.e. such that for every e ∈ D, [e] ⊆ D. Prefixes of E induce, in the obvious
way, subevent structures of E in the sense of the above definition. Denote the set
of E ’s prefixes as D(E ). Prefix c ∈ D(E ) is a configuration if and only if it is
conflict-free, i.e. if e ∈ c and e#e′ imply e′ 
∈ c. Denote as C (E ) the set of E ’s
configurations. Call any ⊆-maximal element of C (E ) a run of E ; denote the set of
E ’s runs as Ω(E ), or simply Ω if no confusion can arise.

In Fig. 15.4, the leftmost branch, with events labeled β ,γ,β , is an example of a
configuration.

Every finite configuration c terminates at a cut, i.e. a ⊆-maximal co-set, which
we denote cutc. The mapping c �→ cutc is bijective; for each cut cut, the union of the
cones of all conditions in cut yield the unique configuration c such that cut = ccut.
Moreover, one has the following two correspondences:

If c is a configuration of UN with N = (N,m0), then every occurrence sequence
σ obtained as a linear order extension, i.e. an interleaving, of the partial order �c
yields a firable transition sequence of N . Conversely, every firable transition se-
quence of N corresponds to a linear order extension of some configuration of UN .
To sum up: the nonsequential executions of N are in one-to-one correspondence
with the configurations of U (N ). We will therefore speak of N ’s configurations
and write C (N )� C (UN ) and Ω(N )� Ω(UN ).
• For every reachable marking m of N , there exists at least one cut cut of U (N )

such that ‖π(cut)(p) = m(p)‖ for all p ∈ P, and for the unique configuration c such
that cutc = cut, execution of c takes m0 to m; write m0

c−→ m for this. Conversely,
every finite configuration c corresponds to a unique reachable marking m(c) given
by m(c)� π(cutc). We call configurations such that m(c) = m(c′) marking equiva-
lent, and denote this by c≡m c′.
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15.3 Asynchronous Diagnosis

The fundamental challenge is the same as in the case of finite state machines: cor-
relation of the observation λ ∈ A1∗ with the system model, and thus extract those
runs that are compatible with the observation, i.e. whose image under the observa-
tion mask λ agrees with λ . To this end, one lets the observation steer the evolution
of the system model, by synchronizing with observable transitions. Formally, this
is ensured via a synchronous or Labeled Product: Let N1 = (P1,T1,F1,m1

0) and
N2 = (P2,T2,F2,m2

0) be two Petri nets, with associated labellings λ1 : T1→A1 and
λ2 : T2→ A1 into the same label alphabet A1. The λ -synchronized product of N1

and N2 is the Petri net N1×N2 � (P,T,F,m0), where

1. PV = P1�P2,
2. for i ∈ {1,2}, Tε

i � {t ∈ Ti | λ (t) = ε},
3. T12 � t{t ∈ T1 | λ (t) 
= ε},
4. Fε �

⋃2
i=1(Fi∩Pi×Tε

i )∪
⋃2

i=1(Fi∩Tε
i ×Pi),

5. F12 �
⋃2

i=1(Fi∩Pi×T12)∪
⋃2

i=1(Fi∩T12×Pi),
6. TV � Tε

1 �Tε
2 �T12 and FV � Fε �F12,

7. m0 � m1
0 +m2

0

Figure 15.5 shows the product of a system model N and a Petri net model of a
partially ordered alarm pattern A . The unfolding of this product is shown on the
right-hand side; it exhibits the behavior of N steered by the observation A . Un-
folding UN ×A thus contains exactly those behaviors that explain at least a prefix
of A ; the full explanations are highlighted as κ1 and κ2 in the figure.

Note that, the product of two 1-safe Petri nets is a 1-safe Petri net. Moreover, in
perfect analogy with the synchronous product of finite automata, the semantics of
the product projects into the semantics of the two factors; i.e., if ΠNi denotes the
operation of erasing, from any prefix of UN , all arcs and conditions that are not
mapped to parts of Ni, one has (see [10]):

∀ c ∈ C (N ) :

{
ΠN1 ∈ C (N1)
ΠN1 ∈ C (N1)

(15.2)

Remark: The above construction can be formalized as a pullback in appropriate
categories.

The advantage is that results such as 15.2 can be derived from much stronger
results which imply that the unfolding of the pullback of two safe nets is isomorphic
to the pullback of the two unfoldings. The theory necessary to detail these algebraic
tools is beyond the scope of this chapter; see [6, 7, 18] . In the asynchronous di-
agnosis setting, observations are partially ordered. The representation of alarm pat-
terns thus generalizes with respect to the linear automaton model above. Figure 15.5
shows , in the center, an alarm pattern represented as an occurrence net A (without
conflict), with concurrently observed alarm labels; for instance, the β -labeled event
on top is concurrent with the α-labeled one to its right. Time flows top-down; we
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Fig. 15.5 The methodology for unfolding-based Diagnosis. From left to right: A Petri net
model N of a system, taken from Fig. 15.4; the marked places are represented by thick-lined
circles. Then, a partially ordered observation (alarm pattern) A consisting of two disjoint
totally ordered chains of event labels β → ρ1→ β and α → ρ2→ α , is represented as
a small Petri net (arrows point downward) with added places between successive events.
Then, one forms the product N ×A by synchronizing transitions that bear the same label.
Finally (right), the unfolding UN ×A contains exactly two explanations for A , namely the
configurations κ1 and κ2. The events not belonging to either of these explanations are shown
in gray; they cannot be extended into any explanation of A and can be pruned away

have sometimes omitted arrows. The central step in the diagnosis procedure now
consists in computing computing UN ×A, shown on the right hand side.

Remark: In the example, this unfolding is finite, as opposed to the unfolding of
the system net N . This is an important feature, which requires a strong observabil-
ity property (compare Section 15.5):

• There must not exist any cyclic firing sequence m1
t1−→ m2

t2−→ . . .mn
tn−→ m1

between reachable markings in N such that λ (ti) = ε for all i ∈ {1, . . . ,n}.

In fact, otherwise UN ×A will contain at least one infinite branch, since the transi-
tions of any such loop can fire indefinitely, unrestrained by A. Conversely, if any
loop in the behavior of N must contain at least one observable transition, then it
can be performed only a finite number of times since A is finite. If this require-
ment cannot be met, another remedy consists in truncating branches that produce
two nested marking-equivalent configuration that are observation-equivalent; such
a pair κ ⊆ κ ′ with κ ′\κ 
= /0 need not be explored further. Cutoff criteria like this,
have been exploited by [29] and others to ensure all analysis can be carried out on
a complete finite prefix; 1-safeness of the system model ensures that for any fixed
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Fig. 15.6 Illustrating the correlation of an alarm pattern A on the right with a linearly
ordered alarm pattern (right-hand side)

observation A , a prefix of finite size of UN ×A is sufficient to find essentially all
explanations — up to the above surgery to remove unobservable loops — for A .

By relation (15.2), we deduce that the set of configurations that explain A is
obtained as the following prefix of UA×N :

DA � ΠN

(
Π−1

A (A)
)
, (15.3)

where as above ΠA is the operation of removing all non-A parts from UA×N .
Therefore, we have as diagnosis set

diag(A) = {c ∈ C (N ) : ∃ c̄ ∈ C (UA×N ) : c⊆ΠN (c̄)} . (15.4)

Notice that diag(A) is in general a proper superset of Ω(UA×N ). For the final
diagnosis task it remains, once diag(A) has been computed, to inspect all its con-
figurations for the presence of an occurrence of φ .

It should be noted that the computation of (a sufficient prefix of) UN ×A can
be ”sequentialized” and considerably simplified if A is linearly ordered, i.e. an
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observation sequence A = a1a2 . . .an ∈A1∗ (see [10, 29] for more details). In fact,
letting Ai be the ith prefix of A , one obtains diag(Ai+1) from diag(Ai) in the
following way:

1. Compute the extension with new events following the unfolding algorithm,
2. Stop each branch either after after the first occurrence e of an observable transi-

tion.
3. Then, remove all such e whose label is not ai+1, and ..
4. ... prune away all those events that do not allow to explain Ai+1, i.e. that are in

conflict with all occurrences of ai+1 computed in the previous steps.

In Fig. 15.6, we see that only the configuration shown in white in the unfolding
prefix at the bottom is capable of explaining entirely the alarm pattern on the right-
hand side. In fact, the ρ-labeled event shown in gray is part of an explanation for
an observation sequence β αρ (formed by its own prime configuration plus the α-
event on the right hand side), but this configuration cannot be extended to explain the
subsequent occurrence of α in the pattern. As a result, it is pruned away in the fourth
round, since it is in conflict with the second α in white, a conflict inherited from the
one indicated in the figure. Similarly, the other events shown in gray are pruned
away since they cannot provide explanations for the present alarm observation, nor
— a fortiori — for any of its extensions.

15.4 Taking the Methodology Further

The use of unfoldings brings conceptual and technical gains since it allows to ab-
stract away from interleavings of concurrent events. Still, the computation of the
diagnosis sets can still be hampered by the size of the necessary unfolding prefixes.
One notices that the main factor that leads to high widths of branching processeses
is the number of conflicting branches. Two approaches have launched for improving
the data structures used, and both tackle the impact of branching:

1. First, suppose that the supervised system N is decomposed into subcompo-
nents N1, . . . ,Nn that are supervised separately and locally; the observation A
is therefor also fragmented into local portions A1, . . . ,An. The global diagno-
sis prefix DA is in general too big to be computed directly; by contrast, local
prefixes DAi obtained by unfolding Ni×Ai are of more manageable size, and
can be computed locally. The number B(DA) of branches in DA is bounded by
K � ∏n

i=1 B(DAi), so we can expect an exponential gain in the storage space re-
quired. However, care must be taken to compute the right local diagnosis: since
not all combinations of local branches match into a global run, DAi is an over-
approximation of the local diagnosis obtained as the projection Πi(DA) of the
global diagnosis DAi to the ith component. The nontrivial task is thus to orches-
trate correctly the distributed computation of the unfolding of an n-component
net; see Fig. 15.7 for an illustration of the communication between two ”unfold-
ers” in the context of the running example. The work [17] carries out this task
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Fig. 15.7 The example from Fig. 15.5, with the distributed computation of the diagnosis net
on the right, in two components

in the context of composition via shared places, as in Fig. 15.7. Another lead
was followed in [6] where the composition was required to form a pullback in
a suitable Petri net category (see also [18]), which allows to use powerful alge-
braic tools to characterize the data exchange between two components. While
the details of this research are beyond the scope of this presentation, one should
note that all results point to the fact that best theoretical (and practical ?) results
can be obtained if the interfaces — i.e. the net parts that are shared between two
components — should be concurrency-free. This is the assumption made, e.g. in
[27].

2. In [16], the distributed approach is combined with a methodology for reducing
the width of unfoldings by using trellis structures: when a state is reached on
two or more different branches, the branches are fused on that state, and share
the different future extensions. This avoids the width explosion of the stored data
structures for long observations, by quotienting the occurrence net structure that
forces the inheritance of conflict and thus the separation of branches even if they
differ only on an initial segment. The technical challenges of this approach are
tackled and solved in [16, 19].

Note also that the approach presented here for the case of static system topologies
has been extended, in [21] and [7] to graph transformation systems (GTS) for mod-
eling dynamically evolving system topologies; GTS are a proper generalization of
Petri nets, yet share with them many properties and techniques, such as partial order
unfoldings.
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15.5 Asynchronous Diagnosability: Weak versus Strong

Let us turn now to analyzing the power of the unfolding-based diagnosis approach,
and ask under which circumstances a fault φ is diagnosable. Recall the classical
definition of diagnosability given by [31], which we give in the equivalent presenta-
tion of [14]. Write s ∼η s′ iff s,s′ ∈ T∗ are mapped to the same observable word in
o∗, and call any sequence s such that φ occurs in s a faulty sequence, and all other
sequences healthy. Then:

Definition 15.3 (Strong Diagnosability). Language L is not (strongly) diagnos-
able iff there exist sequences sN ,sY ∈L such that:

1. sY is faulty, sN is healthy, and sN ∼η sY ;
2. moreover, sY with the above is arbitrarily long after the first fault, i. e. for every

k ∈N there exists a choice of sN ,sY ∈L with the above properties and such that
the suffix sY/φ of sY after the first occurrence of fault φ in sY satisfies |sY | ≥ k.

Note that, verification of this property is possible without using unfoldings, see
[12, 13] and this book. The verification of strong diagnosability with the use of
unfoldings is studied in [29], via the construction of a verifier net: the verifier V
is obtained as the product of two isomorphic copies N1 and N2 of the diagnosed
system N , with synchronization only on observable transitions. Therefore, two
unsynchronized copies φ1 and φ2 of the unobservable fault event exist; the verifica-
tion then consists in checking (on a suitable complete finite prefix of the unfolding)
whether V allows some infinite run ω on which φ1 occurs and φ2 does not.

Weak Diagnosability. However, it was shown in [24, 25] that for Petri nets, this
property is not the only relevant one; a net may violate strong diagnosability and still
be weakly diagnosable, in the following sense : on any faulty execution, bounded
observation is sufficient to detect that on all maximal concurrent runs are compat-
ible with the observation, φ must have occurred or is inevitable, possibly in the
future. The presence of these weak and strong properties reflects the choice of se-
mantics that produces the event structure model of behavior for the system that is
investigated.

What Interleavings do and do not see. Figure 15.8 illustrates that choosing a par-
tial order versus an interleaving semantics has important consequences. Assume
that a is the only observable transition. In sequential semantics, the net is not ob-
servable: Consider the run ωs ∈ Ω(Eseq) which consists only of occurrences of v
and u; it contains no observable event. Further, when choosing fault φ = v, the net
is not diagnosable, since all runs without an occurrence y are observationally in-
discernible from the run ω ′ formed only by occurrences of b and a; this ∼η -class
therefore contains both faulty and healthy runs.

By contrast, when we consider the partial order semantics of the same net N , the
above ωs is not a run. Its only extension ω̄ into a maximal configuration contains
also an infinite number of occurrences of a and b; ω̄ is also the only run with this ob-
servation pattern. In fact, all runs ω ∈Ω(EU ) are fault-definite, i.e. every run must
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Fig. 15.8 A Petri Net (left) with a prefix of its unfolding (right) to illustrate the difference of
strong and weak diagnosability

contain an occurrence of v. The example allows to observe several important phe-
nomena. In fact, it illustrates that decentralized systems with weak synchronization
between subsystems may elude diagnosis under the interleaved viewpoint, while be-
ing well captured under partial order semantics. In the example, consider now b the
fault event, instead of v, and a observable. Then, the new system is neither classi-
cally observable nor classically diagnosable. However, removing the loop u−v from
the system leaves a classically diagnosable system. In other words, it is the presence
of the second loop, running in parallel and without influence on the fault occur-
rence, that blocks diagnosis of the fault.3 Thus, the partial order approach actually
increases precision for partial observation of highly concurrent systems.

Following [25], we argue that systems like this which allow to derive from the ob-
servation that the fault inevitably occurs are diagnosable as well, albeit in a weaker
sense: weakly diagnosable. The formalization given in [25] develops a topological
description which we will not follow here.

Defining Weak Diagnosability. Let Φ ⊆ E be a set of invisible fault events; in
particular, no event in Φ is observable, i.e. λ (Φ)∪Dom(η) = /0. A configuration
c ∈ C (E ) is called faulty iff c∩Φ 
= /0, and healthy otherwise. Denote as ΩF (CF)
the set of faulty runs (configurations), and ΩNF the set of healthy runs. Finally, set,
for ω ∈Ω :

[[ω ]]η �
{

ω ′ ∈Ω | ω ∼η ω ′
}
.

Then weak diagnosability for a Petri net means that for all maximal configurations,
observation equivalence implies fault equivalence:

3 Thanks to A. Giua who made the first author discover this aspect by a remark in a DISC
workshop discussion.
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Definition 15.4. Safe Petri net N = (P,T,F,m0) is weakly F-diagnosable iff for
every ω ∈Ω(N ),

ω ∈ΩNF ⇒ [[ω ]]η ⊆ΩNF, (15.5)

and weakly N-diagnosable iff for every ω ∈Ω(N ),

ω ∈ΩF ⇒ [[ω ]]η ⊆ΩF (15.6)

It is interesting to note that both notions are equivalent, i.e. N is weakly F-
diagnosable iff it is N-diagnosable. This property — obtained in [25] from the sym-
metry of pseudometrics — confirms a result in [32] for strong diagnosability, and
shows that the symmetry is intrinsic to the concept of diagnosability, rather than a
property of the semantic framework.

15.6 Conclusion and Outlook

The use of unfoldings in diagnosis constitutes an important tool in managing large
and highly distributed systems, since it allows to avoid the explosion of state space
size and the associated huge number of interleaved sequences that would other-
wise have to be dealt with. The exploitation of the partial order semantics allows
to exhibit concurrency and, dually, causal precedence exactly, thus permitting to
focus on essential dependencies in the system. Techniques of correlation via event
synchronizations, verifier construction, etc. that had been known in the sequential
framework carry over in a natural way to the concurrent case. Also, one notices that
systems that are highly distributed in space — both for the execution of their
processes and their observation — may necessitate a distributed multisupervisor
approach, to factorize the branching structure of the set of processes and curb
the number of such processes to be handled by any one diagnoser. This field still
leaves room for developments, both concerning diagnosis procedures and verifica-
tion methods for diagnosability.

Effective verification of weak diagnosability is work in progress. The verification
of strong diagnosability has been shown to PSPACE-complete for the sequential
case in [8]. This theoretical bound is a fortiori true for the non-sequential case. It
is therefore important now to develop efficient algorithms for verification of weak
diagnosability.

Another approach to partial observation in concurrent systems, introduced in
[22, 23, 24], consists in looking for inevitable occurrences that are revealed by ob-
servation, regardless of the possible time for occurrence (which may be concurrent
with the observation, with no synchronization). Knowledge of such relations in the
system allows to raise alarms and start countermeasures as soon as the threat be-
comes apparent, without waiting for evidence of its actual occurrence.
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Finally, let us point out that probabilistic measures for concurrent runs of Petri
net unfoldings have been studied in [1, 2, 3, 4, 5, 9, 20, 11]. It remains to develop, in
the concurrency setting, probabilistic diagnosis methods on the one hand, and char-
acterizations and verification methods of probabilistic diagnosability on the other,
generalizing the existing works for the sequential case.

15.7 Further Reading

The central reference for asynchronous diagnosis with Petri nets is [10]; for the
extension to graph grammar models of systems with evolving topology see [7].
Diagnosability for the unfolding-based approaches is treated in the references
[22, 23, 24, 25, 29]. Readers that which to better understand occurrence nets and
the partial order semantics in general may wish to read [28] and/or compare with
Mazurkiewicz Traces [15, 26]. The practical computation of (complete prefixes of)
unfoldings are very well described by [30].
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Chapter 16
Petri Nets with Time

Béatrice Bérard, Maria Paola Cabasino, Angela Di Febbraro, Alessandro Giua,
and Carla Seatzu

16.1 Introduction and Motivation

Place/Transition nets have been used in previous chapters to model Discrete Event
Systems (DESs) with the aim of analyzing logical properties. However, since they
do not consider the duration associated with the activities occurring in a system, they
cannot be used for performance analysis of a DES, i.e., for computing the execution
time of a given process, identifying bottlenecks, optimizing the use of resources, and
so on. Petri nets with time are an extension of Place/Transition (P/T) nets endowed
with a timing structure and can be used as performance models.

When defining Petri nets with time, three main elements should be specified:
topological structure, timing structure, and transition firing rules. While the topo-
logical structure is generally that of a P/T net, the definition of the timing structure
is a crucial problem: several timing structures have been proposed in the literature
to extend P/T nets and firing rules are also based on them.

The chapter is structured as follows. Next section briefly describes the timing
structures and other basic concepts related to Petri nets with time. Starting with
Section 16.3 we focus on T-Timed Petri nets, the most commonly used class of
Petri nets with time, and discuss different firing rules that can be used in this con-
text. In Sections 16.4 and 16.5 we present several results related to deterministic
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and stochastic T-Timed Petri nets. Section 16.6 deals with a different class of Petri
nets with time, called T-Time Petri nets. Further readings are finally suggested in
Section 16.7.

16.2 Timing Structure and Basic Concepts

In this section, we point out a few general issues associated with a timing structure
that can be associated with Petri nets.

A P/T net is a logical DES model, and a possible evolution of a net is described
by a sequence

mmm0 [t j1〉 mmm1 [t j2〉 mmm2 [t j3〉 mmm3 . . . mmmk−1 [t jk 〉 mmmk . . .

of markings (i.e., states) mmmk (for k = 0,1,2 . . .) and transitions (i.e., events) t jk (for
k = 1,2,3 . . .). Marking mmm0 is the initial marking and the firing of transition t jk
changes the marking from mmmk−1 to mmmk.

In a PN with time the evolution of a system initialized at time τ0 is described by
a sequence

mmm0 [t j1 ,τ1〉 mmm1 [t j2 ,τ2〉 mmm2 [t j3 ,τ3〉 mmm3 . . . mmmk−1 [t jk ,τk〉 mmmk . . .

where τk ≥ τk−1 and τk denotes the firing time of transition t jk (for k = 1,2,3 . . .) or
equivalently

mmm0 [t j1 ,θ1〉 mmm1 [t j2 ,θ2〉 mmm2 [t j3 ,θ3〉 mmm3 . . . mmmk−1 [t jk ,θk〉 mmmk . . .

where θk = τk − τk−1 (for i = 2,3,4 . . .) denotes the delay between the firing of
transition t jk−1 and t jk and θ1 = τ1 − τ0 denotes the delay between the firing of
transition t j1 and the initial time.

A timing structure specifies the value that these delays may take.

16.2.1 Timed Elements

Although, in a timed evolution the delays denote the time elapsed between the firing
of two transitions, from a structural point of view a delay can be associated with
different elements of a net, such as places, transitions, or arcs.

As an example, consider the simple net in Fig. 16.1. Assume the systems behavior
is such that the firing of transition t should occur θ = 3 seconds after the initial time.
This can be done associating a delay θ with one of the following elements.

• Place p1: this denotes that the token in the place becomes available for transition
firings only after it has been in the place for θ seconds.
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• Transition t: this denotes that the transition will fire only after it has been enabled
for θ seconds.

• Arc (p1, t): this denotes that the token in the place becomes available for this arc
only after the token has reached an age of θ seconds (assuming its age at the
initial time was 0).

 

p2 t 
p1 

θ 

Fig. 16.1 A simple Petri net

In the rest of the chapter, we will assume that the timing structure associates delays
to transitions, and we denote θi the delay associated with transition ti.

16.2.2 Timed Petri Nets and Time Petri Nets

Another significant difference is among Timed Petri nets and Time Petri nets.
In Timed Petri nets (TdPNs) a delay is represented by a single value θ . As an ex-

ample, consider a net with delays associated with transitions: if a transition becomes
enabled at time τ and remains enabled henceforth, it must fire at time τ +θ .

In Time Petri nets (TPNs) a delay is represented by a time interval of the form
[l,u], where l ∈ R≥0, u ∈ R≥0 ∪{+∞}, and l ≤ u. As an example, consider a net
where interval [l,u] is associated with a transition: if the transition becomes enabled
at time τ and remains enabled henceforth, it cannot fire before time τ + l and it must
fire at latest at time τ + u.

When it is required to specify that delays are associated with transitions, one
speaks of T-Timed Petri nets and T-Time Petri nets. On the contrary, when delays are
associated with places one speaks of P-Timed Petri nets and P-Time Petri nets.

16.2.3 Deterministic and Stochastic Nets

The timing structure of a net can be: deterministic, when the delays are known a
priori, or stochastic, when the delays are random variables.

Consider, as an example, the class of T-Timed Petri nets to which most of this
chapter is dedicated. According to the nature of the associated delay, timed transi-
tions can be classified as follows.
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Definition 16.1. A transition ti of a T-Timed Petri net is called:

• Immediate, if it fires as soon as it is enabled, or equivalently, if its time delay is
null.

• Deterministic, if the delay θ is chosen deterministically. Note that the determin-
istic delay may be a constant value θi, may be variable according to a sequence
{θi,1,θi,2, θi,3, . . .} of delay times known a priori, and finally may also be marking
dependent.

• Stochastic, if the delay time θi is a random variable with a known probability
distribution.
If the delay θi has an exponential distribution fi(τ) = λie−λiτ (with λi > 0) tran-
sition ti is called stochastic exponential. If the delay is a random variable with
a distribution different from the exponential one the transition is called general-
ized stochastic. Finally if the parameters of the distribution depend on current
marking of the net, the transition is called stochastic marking dependent.

In this chapter only immediate, deterministic constant, and exponential stochastic
are considered. Therefore, in the following, the last two types of transitions are
briefly called deterministic and stochastic, respectively. In the most general case, the
same Petri net may contain transitions of all three types mentioned above (immedi-
ate, deterministic, and stochastic); however, this increases the analysis complexity
and very few analysis results exist for such a general net.

In Fig. 16.2 different PNs are shown. A deterministic transition ti is represented
by a black rectangle and is labeled with the value of its constant delay θi. A stochas-
tic timed transition ti is represented by a white rectangle and is labeled with the
value of its parameter λi. An immediate transition is represented by a black bar with
no label.

For a detailed comparison of the various timing mechanisms we refer to [6].
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Fig. 16.2 T-Timed Petri nets
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16.3 T-Timed Petri Nets and Firing Rules

In this section we focus on T-Timed Petri nets, that in the following we will simply
call Timed Petri nets (TdPNs).

A series of “rules” or “conventions” should be specified in order to clarify the
behavior of a given timed net. In the following subsections the most significant ones
are discussed, with some comments on their expressive power.

16.3.1 Atomic vs. Non Atomic Firing

In a P/T the firing of a transition is assumed to be an atomic event, i.e., in the same
instant the tokens that enable the transition are removed from the input places and
new tokens are produced in the output places.

In the case of TdPNs this notion depends on the semantics given to the delay θ
associated with a transition t.

• The delay represents the time that must pass between the enabling and firing of
a transition. In this case, if transition t is enabled at time τ and remains enabled
henceforth, it fires atomically at time τ +θ . If mmm is the marking before the firing,
then the firing yields the new marking mmm′ = mmm−PPPrrreee[·, t]+PPPooosssttt[·, t].

• The delay represents the time required to fire a transition. In this case, assume
marking mmm enabling transition t is reached at time τ . The transition starts its
firing at τ and all tokens from the input places are removed, yielding marking
m̂mm = mmm−PPPrrreee[·, t]. At time τ +θ , the firing is completed producing the tokens in
the output places thus yielding marking mmm′ = m̂mm+PPPooosssttt[·, t]. Such a firing policy
is called non atomic firing.

Note that following the non atomic firing rule, the intermediate marking m̂mm may not
represent a reachable marking in the underlying P/T net and many of the analysis
techniques for P/T nets, such as those based on invariants, do not apply. For this
reason, we will only consider atomic firings in the rest of this chapter.

16.3.2 Enabling Semantics

Another important “rule” concerns the different strategies for the enabling of a
transition.

• Reserved marking: as soon as a transition is enabled, the tokens of the input
places of such a transition that are necessary to enable it, are reserved becoming
completely invisible to all the other transitions. Moreover, in the case of actual
conflict, tokens are immediately assigned to transitions, with a criterion that is in
general independent of the length of their time delays.
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• Concurrent enabling: tokens are always visible to all places and priority is given
to the transition that first finishes of being enabled for a time period equal to its
time delay. So, even if a transition starts being enabled later, but its time delay is
small, it may happen that it fires before a transition that was enabled earlier but
whose time delay is longer.

The strategy of concurrent enabling is more general than the one of reserved mark-
ing. In fact, it is always possible to transform the structure of a net following the
strategy of reserved marking to an equivalent net based on concurrent enabling.
This can be done using the simple scheme illustrated via the example in Fig. 16.3. 
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Fig. 16.3 Reserved marking strategy versus concurrent enabling strategy

16.3.3 Server Semantics

Another fundamental notion that needs to be specified when defining a TdPN is the
so-called server semantics. Possible choices are described in the following:

• infinite server semantics: each transition represents an operation that can be exe-
cuted by an infinite number of operation units that work in parallel; as an exam-
ple, this is the case of the net in Fig. 16.4.a, where transition t1 fires three times at
time θ1 because the operation units can use (process) all tokens simultaneously;

• single server: each transition represents an operation that can be executed by a
single operation unit; an example of this is given in Fig. 16.4.b, where transition
t1 fires at time instants θ1, 2θ1, and 3θ1 since the single operation unit can only
consume (process) one token at a time;

• multiple servers: each transition represents an operation that can be executed by
a finite number k of operation units; this is the case of the net in Fig. 16.4.c,
where, assuming k = 2, transition t1 fires twice at time θ1 and once at time 2θ1,
since the two operation units can process only two tokens at a time.

In the rest of this chapter, we always assume infinite server semantics. In fact, start-
ing from such a notion, it is possible to also represent the other two via appropriate
places (as place p in Fig. 16.4.b and in Fig. 16.4.c), that limit the maximum enabling
degree of the generic transition, as it will be explained in the following section.
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Fig. 16.4 Transitions with different server semantics

16.3.4 Memory Policy

Another notion that has to be specified concerns the memory associated with transi-
tions. We have seen that a transition ti can fire only if a time θi has elapsed since its
enabling. Now, let us observe the net in Fig. 16.5; assuming θ2 < θ1 < 2θ2, from the
initial marking (at time τ0 = 0) transitions t1 and t2 are enabled, thus at time τ1 = θ2

transition t2 fires and yields to the marking [0 0 1]T . After a delay equal to θ3, i.e.,
at time τ2 = τ1 +θ3, transition t3 fires and the net reaches again the initial marking.
Two different notions of memory can be introduced.

1. Total memory: transition t1 “remembers” being already enabled for a time interval
equal to θ2 and fires after a delay equal to θ1−θ2, i.e., at time τ3 = τ2+(θ1−θ2);

2. enabling memory: transition t1 has only memory of the current enabling and can
only fire after a delay equal to θ1, i.e., at time τ4 = τ2 +θ1.

In the rest of this chapter, we consider as basic notion the enabling memory policy.
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Fig. 16.5 Timed net with conflict
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16.4 Deterministic Timed Petri Nets

The first extension of the P/T nets via deterministic delays has been presented in
[21]. This approach uses timed transitions to address the idea of modeling the dura-
tion of activities of the represented DES, being in general the actions associated with
the transitions. These nets are called Deterministic Timed Transitions Petri Nets or
Deterministic T-Timed Petri Nets.

As discussed in Subsection 16.2.1, another timing structure is the one that assigns
the time to places [11] that are seen as processes that require a given execution time.
These nets, that are called Deterministic Timed Places Petri Nets or Deterministic P-
Timed Petri Nets, represent an excellent applicative field of DES modeling approach
based on max-plus algebra or minimax [2].

Finally there have been proposed also nets where the time is associated with arcs.
As an example, Zhu and Denton [24] showed that such Petri nets are more general
than those where the time is associated either with transitions or places.

In the rest of this section we focus on Deterministic T-Timed Petri Nets that are
most commonly used in the literature. As a result of this, they are often called De-
terministic Timed Petri Nets (DTdPN), without making explicit that delays are as-
sociated with transitions. Delays can be either constant or variable as clarified in the
following definition.

Definition 16.2. A deterministic timed Petri net is characterized by the algebraic
structure Nd = (N,Θ) where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a P/T net defined as in Definition 10.1 in Chapter 10;
• Θ = {Θi : ti ∈ T}, with Θi = {θi,1,θi,2, ...}, ti ∈ T , θi,k ∈ R+ ∪{0}, k ∈ N+ is a

deterministic timing structure; if the time delays are constant, the generic element
θi,k is denoted θi, ∀k ∈N+.

Even for timed Petri nets it is possible to define a marked Petri net. In general, the
marking vector at the time instant τ j is denoted mmm j.

Definition 16.3. A deterministic timed Petri net Nd with a marking mmm0 at the ini-
tial time instant τ0 is said a marked deterministic timed Petri net, and is denoted
〈Nd ,mmm0〉.

16.4.1 Dynamical Evolution

The state of a DTdPN is determined not only by the marking, as for P/T nets, but
also by the clocks associated with transitions.

Definition 16.4. A transition ti is enabled at a marking mmm j if each place p ∈ P of
the net contains a number of tokens equal to or greater than PPPrrreee[p, ti], i.e., mmm j ≥
PPPrrreee[·, ti].
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The enabling degree of a transition ti enabled at a marking mmm j is the biggest
integer number k such that mmm j ≥ k PPPrrreee[·, ti]. The enabling degree of ti at mmm j is
denoted αi( j).

In the net in Fig. 16.2.a, transition t1 has an infinite enabling degree; in the marked
net in Fig. 16.2.b, transition t1 has enabling degree equal to 2; in the marked net
Fig. 16.2.c, transition t1 is not enabled because p1 is empty, while transition t2 has
enabling degree equal to 2; in the marked net in Fig. 16.2.d, transition t1 has enabling
degree equal to 1, because its firing needs 2 tokens and in its pre place p1 there are
only 3 tokens, transition t2 has enabling degree equal to 3, while transition t3 is not
enabled. The case in which the enabling degree of a transition is infinite, as the case
of Fig. 16.2.a, is a degenerate case. In the following, we assume that the enabling
degree of a transition is finite (but not necessarily bounded).

At each time instant the number of clocks associated with a transition ti is equal
to its current enabling degree; this number changes with the enabling degree, thus
it can change each time the net evolves from one marking to another one, namely
each time that a transition fires.

The net evolution occurs in an asynchronous way on the basis of the events oc-
currence that is regulated by the clocks associated with the events according to the
algorithm of evolution here reported.

Algorithm 16.1. (Temporal evolution of a DTdPN). Assume that the DTdPN at the
time instant τ j is in the marking mmm j and that the minimum values of the clocks
associated with the transitions, oi = min{oi,1, . . . ,oi,αi( j)}, ∀ti ∈ T, are known; the
marking evolution of the DTdPN follows the repetition of these steps:

1. Let o∗

o∗ = min
i:ti∈T
{oi} (16.1)

be the minimum among the values of the clocks oi associated with the transitions
enabled at marking mmm j; if o∗ is not unique more than one transition could fire at
the same time according to a sequence that should be specified a priori.

2. At the time instant τ j+1 = τ j + o∗ transition t∗ fires yielding the system from
marking mmm j to the marking mmm j+1 = mmm j +C[·, t].

3. Once marking mmm j+1 is reached, the clock associated with t∗ is discarded. Clocks
associated with each transition ti ∈ T are updated as follows:

• if the enabling degree αi( j + 1) at marking mmm j+1 is less than the enabling
degree αi( j) that transition ti had at previous marking mmm j, then [αi( j)−αi( j+
1)] clocks associated with ti have to be discarded: clocks that are discarded
from set {oi,1, . . . ,oi,αi( j)} are those having the higher values;

• if αi( j+ 1)> αi( j), [αi( j+ 1)−αi( j)] new clocks are associated with ti and
initialized to the values specified by the timing structure Θ ;

• if αi( j+ 1) = αi( j), do nothing;
• reduce to an amount equal to o∗ the values of all old clocks.

4. Repeat from step 1, setting j+ 1→ j.



328 B. Bérard et al.

Note that if transition ti is not enabled at a marking, it has no clocks associated with
it, i.e., it has no active clocks. If at a marking mmm j the minimum value of the clock
oi of a transition ti corresponds to more than one clock, as an example k, in the set
{oi,1, . . . ,oi,αi( j)}, this means that if the transition will be the next one to fire, it will
fire k times at the same time.

The algorithm is based on the assumption of enabling memory and infinite server
semantics. If total memory is used, step 2 of the algorithm should be modified. Note
that the memory chosen depends on the kind of study one wants to do on the system
while does not depend on the system itself. For the server semantics we have chosen
the most general: in fact one can always lead the system to single or multiple servers
adding self loops to transitions, as shown in Fig. 16.4.b and 16.4.c. Obviously, the
algorithm is simplified if all transitions have single server semantics, because in
such a case each transition has associated one single clock.

Finally, at step 1 it is said that a politic for the resolution of conflicts has to be
applied if more than one transition can fire at the same time, to decide the sequence
in which these transitions will fire. This is needful only when the firing of one tran-
sition can disable other transitions, namely when the net is not persistent. Either a
firing priority or a firing probability can be associated with transitions.

Example 16.2. Let us consider the net in Fig. 16.2.b whose temporal evolution is
shown in Fig. 16.6.

 

m[p1] 

τ 

m[p2] 

2

4

6

θ1 2θ1 3θ1 4θ1 

8

Fig. 16.6 Evolution of the net in Fig. 16.2.b

Transition t1 (with time delay θ1 = 2) has enabling degree α1(0) equal to 2 at the
initial time instant τ0 = 0; it has initially two active clocks o1,1, and o1,2. After two
time instants, i.e., at τ1 = τ0 +θ1, both clocks are deleted, transitions t1 fires twice
and the two clocks are again set to θ1 = 2. At the reached marking mmm1 = [2 2]T ,
transition t1 still has an enabling degree equal to 2 and the two clocks o1,1, and o1,2

are again active. The net continues to evolve following Algorithm 16.1. �

Example 16.3. A production line is composed by two machines M1 and M2, two
robotics arms R1 and R2, and two conveyor belts. Each machine uses one robotic arm
that loads and unloads parts that the machine has to process. One of the conveyor
belt can carry only two parts, while the other one carries empty pallets. Pallets in
the system are three.
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Each part is processed by machine M1 first and machine M2 later, with process
times respectively equal to 10 and 20 time units. The loading and unloading pro-
cesses require 1 time unit, while the time spent in the conveyor belts is assumed
negligible.

The DTdPN modeling this production system is shown in Fig. 16.7, while
Table 16.1 contains the meaning of places and transitions and the transitions
delay.
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Fig. 16.7 DTdPN modeling a production line formed by two machines

At the initial marking mmm0 = [3 0 0 0 0 0 1 2 1 1 1]T transition t1 is enabled and
after one time unit fires yielding to the marking mmm1 = [2 1 0 0 0 0 0 2 1 0 1]T , where
transition t2 is enabled. After 10 time units t2 fires and yields the net to the new
marking mmm2 = [2 0 1 0 0 0 1 21 0 1]T . The net continues to evolve following the
procedure indicated above. �

16.4.2 Timed Marked Graphs

A Timed Marked Graph (TdMG) is a DTdPN where each place has only one in-
put transition and one output transition and all arcs have unitary weight. A more
restricted class of such nets are the strongly connected timed marked graphs whose
importance is due to the fact that there exist some criteria to analyze the performance
of the system in an easy way.

Definition 16.5. A (deterministic) Strongly Connected Timed Marked Graph (SCT-
dMG) is a DTdPN Nd satisfying the following properties:

• the net structure Nd is a timed marked graph;
• the net is strongly connected, namely there exists an oriented path from each node

to any node: this implies that each place and each transition of the net belongs
to an oriented cycle; the set of the oriented elementary cycles of Nd is denoted
Γ = {γ1, . . . ,γr};

• the timing structure Θ associated with transitions is deterministic and has con-
stant time delays.
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Table 16.1 Description of places and transitions in Fig. 16.7

Place Description

p1 availability of parts and pallets
p2 M1 is working
p3 part ready to be unloaded by M1

p4 part ready to be processed by M2

p5 m2 is working
p6 part ready to be unloaded by M2

p7 M1 is available
p8 availability on the conveyor belts
p9 M2 is available
p10 R1 is available
p11 R2 is available

Transition Description Delay

t1 R1 loads a part on M1 1
t2 M1 ends the processing 10
t3 R1 ends the processing M1 to the conveyor belt 1
t4 R2 loads a part on M2 1
t5 M2 ends the processing 20
t6 R2 removes from M2 a processed part 1

Although, these nets could seem too much restrictive, they can model important
classes of discrete event systems. As an example two important classes of produc-
tion systems, such as job-shop systems and systems based on the Kanban philoso-
phy, can be modeled using SCTdMGs [14].

16.4.2.1 Performance Analysis

Let us now present some results that allow to perform the analysis, in steady condi-
tions, in the case of TdMGs and SCTdMGs.

Theorem 16.1. In a TdMG, the number of tokens in a cycle remains constant for
any firing sequence.

The proof of this theorem is based on the structural characteristics of a TdMG,
where each place has one single input and output transition. In fact, each time a
transition in a cycle fires, it removes a token from the input place that belongs to
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the cycle and put a token in the output place that belongs to the same cycle, thus the
number of tokens in the cycle remains unchanged.

Let us now introduce the notion of cycle time that can be a performance index in
a system modeled as a SCTdMG.

Definition 16.6. The cycle time Ci of a transition ti of a SCTdMG is defined on the
basis of its generic kth time firing τi,k

C(ti) = lim
k→∞

τi,k

k
(16.2)

where τi,k is the time instant at which transition ti fires for the kth time, starting from
the initial time instant τ0.

The above definition allows one to give two important results.

Theorem 16.2. [7, 12, 23] In a SCTdMG, all transitions belonging to a cycle γ j ∈ Γ
have the same cycle time Cγ j , defined as the ratio between the sum of the delay times
of transitions that form γ j and the number of tokens circulating in it, i.e.,

Cγ j =
∑ti∈γ j

θi

∑pk∈γ j
m[pk]

(16.3)

Theorem 16.3. [7, 10] In a SCTdMG in steady conditions, all transitions in a cycle
have the same cycle time C, equivalent to:

C = max
γ j∈Γ

Cγ j = max
γ j∈Γ

{
∑ti∈γ j

θi

∑pk∈γ j
m[pk]

}

(16.4)

that identifies the maximum among the cycle times of all elementary cycles of a
SCTdMG. This means that in steady conditions all transitions have the same firing
frequency equal to λr = 1/C.

The result presented above is intuitive, in fact due to the structural characteristics of
a SCTdMG, in steady conditions all cycles are synchronized on the “slower” cycle.

Example 16.4. Let us consider again the DTdPN shown in Fig. 16.7 already in-
troduced in Example 16.3. The elementary cycles that form the set Γ are 6: γ1:
p7t1 p2t2 p7; γ2: p2t2 p3t3 p10t1 p2; γ3: p8t3 p4t4 p8; γ4: p9t4 p5t5 p9; γ5: p5t5 p6t6 p11t4 p5;
γ6: p1t1 p2t2 p3t3 p4t4 p5t5 p6t6 p1. By Theorem 16.2 the time cycles are respectively:
Cγ1 = 11; Cγ2 = 12; Cγ3 = 1; Cγ4 = 21; Cγ5 = 22; Cγ6 = 11,3. Thus, by Theo-
rem 16.3, the firing frequency of all transitions of this DTdPN in steady condition
is λr = 1/C = 1/max

γ j∈Γ
Cγ j = 1/22 = 0,045. �
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16.5 Stochastic Timed Petri Nets

In this section, we present Stochastic Timed Petri Nets (STdPNs), i.e., P/T nets
where the delays associated with transitions are random variables. As a result of
this randomness STdPN can be considered stochastic processes.

We consider STdPNs with atomic firing and time delay described by a random
variable with negative exponential distribution function. At each stochastic transi-
tion ti is associated a parameter λi that characterizes its distribution, called firing
rate or firing frequency of the transition. Note that if we denote θ̄i the average firing
delay of transition ti, it holds θ̄i = 1/λi.

Definition 16.7. A stochastic timed Petri net (STdPN) is a triple Ns = (N,Ψ ,λλλ )
where:

• N = (P,T,PPPrrreee,PPPooosssttt) is a Petri net defined as in Definition 10.1 in Chapter 10;
• Ψ = {Ψi : ti ∈ T} is a timing stochastic structure; Ψi is a probability distribution

function defined in R+ ∪ {0}, from which are extracted the values of the ran-
dom variables that form the delay firing θi,k of transition ti, ti ∈ T , k ∈ N+; in
particular in this section we consider all Ψi as negative exponential distribution
functions;

• λλλ = [λ1 λ2 · · · ] is the vector of the firing frequencies of transitions; elements λi

can depend on the marking, namely it can be λi = λi(mmmk), k ∈ N+.

For a stochastic Petri net the firing of a transition follows the same rule of a P/T
net, except for the fact that the choice of the next transition to fire is made on the
basis of the firing probabilities of single transitions. The probability that transition
ti, enabled at marking mmmk, fires is equal to

Pr{ti | mmmk}=
λi(mmmk)

∑
t j ∈A (mmmk)

λ j(mmmk)
(16.5)

where A (mmmk) is the set of transitions enabled at marking mmmk.
To describe the behavior of a STdPN, as for DTdPNs, clocks are associated with

transitions. For simplicity, it is assumed that each transition is associated with a
single clock, which is initialized to the value of the delay when the transition is
enabled for the first time after a firing. Clocks operate as in the case of DTdPNs. In
more detail, each time a new marking is reached, each enabled transition ti resamples
a new instance θi from the probability density function associated with its delay.

Many researchers formally demonstrated the potentiality of STdPNs as a tool for
performance analysis of real systems, particularly showing that, from the point of
view of the dynamic behavior, a STdPN is equivalent to a Continuous Time Markov
Chain (CTMC). This connection has been proved by the following results that can
be found in many classical books, such as [23].
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Theorem 16.4. In a STdPN, times spent in each marking are exponentially
distributed.

Theorem 16.5. The time evolution of a STdPN can be described by a CTMC where
each state corresponds to a different marking reachable by the STdPN.

As a result of the above two theorems and of the STdPN evolution rules, it is pos-
sible to compute the distribution of times spent in a given marking mmm j since the
delay of all the enabled transitions is a random variable with exponential distribu-
tion. Therefore, the time spent in a marking is the smallest of the delays before next
transition firing. As a consequence, the parameter that characterizes its exponential
distribution is α j = ∑ti∈A (mmmj) λi(mmmj); this element also identifies the negative com-
ponent−q j j along the diagonal frequency matrix QQQ of the CTMC equivalent to the
considered STdPN.

Example 16.5. Consider the STdPN in Fig. 16.8 whose reachability graph is re-
ported in the same figure, where mmm0 = [1 0 0 0 0]T , mmm1 = [0 1 1 0 0]T , mmm2 =
[0 0 1 1 0]T , mmm3 = [0 1 0 0 1]T , e mmm4 = [0 0 0 1 1]T .
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Fig. 16.8 A stochastic timed Petri net and its reachability graph

Let πππ be the row vector with as many components as the number of reachable
markings, where each component represents the steady state probability associated
with the corresponding marking. Since the graph is finite and strongly connected,
we can compute vector πππ solving the linear system

⎧
⎨

⎩

πππQQQ = 000

∑
x j∈X

π j = 1
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that in this example is equal to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πππ

⎡

⎢
⎢
⎢
⎢
⎣

−λ1 λ1 0 0 0
0 −(λ2 +λ3) λ2 λ3 0
0 0 −λ3 0 λ3

0 0 0 −λ2 λ2

λ4 0 0 0 −λ4

⎤

⎥
⎥
⎥
⎥
⎦
=
[

0 0 0 0 0
]

4

∑
j=0

π j = 1

Supposing that λ j = 1, j = 0, . . . ,4, the system solution is π0 = π4 = 2/7, π1 = π2 =
π3 = 1/7. �

The following section formalizes the rules of construction of the CTMC equivalent
to a given STdPN.

16.5.1 Construction of the Markov Chain Equivalent to the
STdPN

The CTMC equivalent to a given STdPN can be easily generated using the following
algorithm:

Algorithm 16.6. (CTMC equivalent to a STdPN).

1. Create a bijective correspondence between states X of the Markov chain and the
reachability set R(Ns,mmm0), such that to each marking mmmk corresponds the state
xk ∈ X.

2. Let π0(0) = 1 be the initial state probability vector, i.e., associate the maximum
probability with state x0 corresponding to mmm0.

3. Let the transition frequencies of the Markov chain, namely the elements of matrix
QQQ, equal to

− qkk = ∑
ti∈A (mmmk)

λi(mmmk) (16.6)

qk j = ∑
ti∈A j(mmmk)

λi(mmmk) (16.7)

where A j(mmmk) is the subset of A (mmmk) that includes transitions whose firing
yields to mmm j, i.e., A j(mmmk) = {ti ∈ A (mmmk) | mmmk[ti〉mmmj}; in general there exists
only one transition whose firing yields the state from marking mmmk to marking mmm j.

Example 16.7. Consider the behavior of a machine: when it is available, it can load
one part and starts its processing. The end of the process makes the machine avail-
able to process another part. The machine, however, may fail while working and
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therefore needs to be repaired. After the repair, the machine is ready to work again.
The behavior of this machine is modeled by the STdPN in Fig. 16.9. The meaning
of places and transitions is described in Table 16.2, where are also described the
characteristic parameters of exponential distributions that determine the firing time
of transitions.
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Fig. 16.9 STdPN of a machine that may fail

Table 16.2 Description of places and transitions in Fig. 16.9

Place Description

p1 the machine is available
p2 the machine is working
p3 the machine is being repaired

Transition Description Firing frequency

t1 beginning of a process α
t2 end of a process β
t3 failure of the machine μ
t4 completed repairing λ

States in which the machine can be are: x0 = machine available, corresponding
to marking mmm0 = [1 0 0]T ; x1 = machine working, corresponding to marking mmm1 =
[0 1 0]T ; x2 = faulty machine, corresponding to marking mmm2 = [0 0 1]T . The Markov
chain equivalent to the STdPN is characterized by the frequency transition matrix QQQ
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QQQ =

⎡

⎣
−α α 0
β −(β + μ) μ
λ 0 −λ

⎤

⎦

and the corresponding transitions diagram is shown in Fig. 16.10.
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Fig. 16.10 State transition frequency diagram of the CTMC equivalent to the STdPN in
Fig. 16.9

Note that such a diagram can be obtained by the reachability graph of the STdPN,
represented in Fig. 16.11, substituting to each marking the corresponding state of
the equivalent Markov chain and to each transition of the STdPN the parameter that
characterizes the exponential distribution of the firing time. �
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Fig. 16.11 Reachability graph of the STdPN in Fig. 16.9

16.5.2 Performance Analysis

An homogeneous CTMC that is finite and irreducible is always ergodic1 [9]. This
implies that a bounded STdPN whose reachability graph is strongly connected al-
ways corresponds to an ergodic CTMC. The reachability graph of a STdPN is equiv-
alent to the one of a P/T net obtained removing time delays. This happens because
time delays associated with transitions have probability density defined in R+. As
a result, the criteria and methodologies introduced in Chapter 11 for the structural
analysis of P/T nets also apply to STdPNs.

1 A Markov chain is ergodic if and only if, for any initial probability distribution, there
exists a limit probability distribution, i.e., there exists limt→∞ π(t), and such a distribution
is independent of the initial marking. Note that for ergodicity it is not necessary that the
graph is irreducible. It is sufficient that there exists a unique ergodic component, i.e., a
strongly connected component with no output arcs.
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The analysis of a STdPN is usually targeted to measure aggregate performance
indices that are more significant than the steady state probabilities πππ of the markings.
In the following items are reported the most common performance indices [1].

• The probability of event e defined as a function of the marking (e.g. no token in
a given set of places or at least one token in a place when another one is empty,
etc.) can be computed summing up the probabilities of all markings that satisfy
the condition expressed by the event; thus, the steady probability of event e is

Pr{e}= ∑
mmmk ∈Me

πk

where Me is the set of markings satisfying the condition expressed by e; note that
we can sum up the probabilities of the single markings because they are mutually
exclusive.

• The probability of having a certain number of tokens in a place pi can be com-
puted as a special event; then, if ei, j denotes the event of having j tokens in place
pi, the average number of tokens in pi can be computed as

n̄i = ∑
j

jPr{ei, j} (16.8)

• The firing frequency f j of a transition t j, i.e., the average number of times that
the transition fires in the time unit, under steady conditions can be computed as
the weighted sum of the firing rates of transitions enabled at each marking mmmi

f j = ∑
i:t j∈A (mmmi)

λ j(mmmi)πi (16.9)

• The average time θ̄ that a token spend to pass through a subnet in steady condi-
tions can be computed applying the Little’s law [9], that can be written for such
a case as

θ̄ =
n̄
λ

(16.10)

where n̄ is the average number of tokens passing through the subnet and λ is the
average speed of the tokens that are entering in the subnet.

Finally, note that the main problem of the evaluation of the performance indices
for a STdPN is the necessity of working with the equilibrium equations based on
the reachability graph. In fact, the dimension of the reachability graph grows ex-
ponentially both with the number of tokens of the initial marking mmm0 and with the
number of places; thus, except for some particular classes of nets, the dimension
of the reachability graph and the computational complexity of the procedure do not
allow to have exact analytical solutions.
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16.6 Time Petri Nets

In this section, we focus on T-Time Petri Nets, i.e., P/T nets where a timing interval
is associated with each transition. As in the case of T-Timed Petri nets, “T” (for
transition) is often assumed as implicit and the model is more briefly called Time
Petri nets (TPNs). This interval-based variant was first proposed in [20] and applied
later to other timed models (see [8, 16, 17, 19]). The basic principle is the following.
When an interval [li,ui] from the time domain is associated with a transition ti in a
P/T net, the bounds of the interval represent respectively the minimal and maximal
delay for firing the transition. In this case, an implicit clock can be associated with
the transition and the transition can be fired only if the clock value belongs to the
interval.

We give a formal definition for this model and its semantics, described by timed
transition systems.

We denote here by I the set of closed intervals with a lower bound in Q+ and
an upper bound in Q+∪{∞}, associated with transitions. In particular, I(ti) = [li,ui]
denotes the interval associated with transition ti.

For an interval I, the backward closure of I is defined by: I↓ = {x | ∃y∈ I, x≤ y}.

Definition 16.8. A Time Petri Net is characterized by the algebraic structure NT =
(N, I) where:

• N is a P/T net defined as in Definition 10.1 in Chapter 10;
• I : T →I associates with each transition a firing interval.

Fig. 16.12 depicts a Time Petri net. Each transition is equipped with its firing inter-
val. For instance, transition t1 has interval I(t1) = [1,∞[. The initial marking has two
tokens in place p1 and one token in place p2.
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Fig. 16.12 A time Petri net, with time intervals on transitions

We now explain the timing conditions, with IR+ as dense time domain. A transi-
tion t can be fired if the time elapsed since the last update belongs to its interval I(t).
Moreover, for all enabled transitions, time cannot progress when one of the upper
bounds is reached, thus enforcing urgency.

A configuration of NT is a pair (mmm,ν), for a marking mmm and a valuation ν ∈
(IR+∪{⊥})T . Relevant values of ν are those for which t belongs to A (mmm), and ν(t)
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contains the time elapsed since the last update in this case. We write ν(t) =⊥ other-
wise. For a real number d, the valuation ν +d is defined by (ν +d)(t) = ν(t)+d for
any t, with adequate conventions for ⊥ values. A configuration is admissible if for
all enabled transitions, ν(t) ∈ I(t)↓. We denote by ADM(NT ) the set of admissible
configurations of NT .

The important point that remains to be defined is the update of timing information
upon transition firing. In other words, we should precise when the implicit clock
associated with the transition is reset: transition t ′ is said to be newly enabled after
firing t from marking mmm if the predicate ↑enabled(t ′,mmm, t) defined by:

↑enabled(t ′,mmm, t) = (t ′ ∈A (mmm−PPPrrreee[·, t]+PPPooosssttt[·, t]))∧ (t ′ 
∈A (mmm))

evaluates to true.
Thus, t ′ is newly enabled if it was not enabled before firing t but becomes enabled

by this firing. This corresponds to the so-called persistent atomic semantics, which is
not the most frequently used but is easier to explain and equivalent to the other ones
for safe time Petri nets. Discussions and comparisons with atomic and intermediate
semantics can be found in [3, 22].

Definition 16.9. The semantics of a time Petri net NT is the timed transition system
T = (S,s0,E) where:

• S = ADM(NT );
• s0 = (mmm0,000), where 000 denotes the valuation with null values for all transitions

enabled in mmm0 and ⊥ otherwise;
• E ⊆ S× (T ∪ IR+)× S contains the two following types of transitions, from an

admissible configuration (mmm,ν):

– For each transition t enabled in mmm such that ν(t) ∈ I(t), a discrete transition

(mmm,ν) t−→ (mmm−PPPrrreee[·, t]+PPPooosssttt[·, t]),ν ′) such that for all t ′ ∈A (mmm−PPPrrreee[·, t]+
PPPooosssttt[·, t]),

ν ′(t ′) =

{
0 if ↑enabled(t ′,mmm, t),

ν(t ′) otherwise.

– For each d ∈ R+, such that for each t in A (M),ν(t) + d ∈ I(t)↓, a delay

transition (mmm,ν) d−→ (mmm,ν + d).

For instance, a possible run of the net in Fig. 16.12 is the following:

(mmm0, [0,0,⊥]) 1−→ (mmm0, [1,1,⊥])
t1−→ (mmm1, [1,1,0])

t1−→ (mmm2, [⊥,1,0])
t2−→ (mmm3, [⊥,⊥,0])

1.5−→ (mmm3, [⊥,⊥,1.5])
t3−→ (mmm4, [⊥,⊥,1.5]) · · ·

with markings mmm0 = [2 1 0]T , mmm1 = [1 1 1]T , mmm2 = [0 1 2]T , mmm3 = [0 0 2]T , and
mmm4 = [0 0 1]T .

This definition corresponds to what is called strong semantics, and implies
“urgency” for transition firing, because time delays cannot disable transitions. This
can be used to enforce priorities between transitions, which can lead to time locks,
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i.e., deadlocks due to conflicting timing constraints. In contrast, in the definition of
weak semantics [22], time elapsing is permitted beyond the upper bound of the inter-
val of a transition, by removing the condition: for each t in A (M),ν(t)+ d ∈ I(t)↓

for a transition with delay d. When this occurs, the transition is disabled, in a mech-
anism similar to what happens in ordinary P/T nets.

The class of time Petri nets with strong intermediate semantics has been largely
studied (see for instance [4, 18]), and tools like ROMÉO [15] and TINA [5] have
been developed for the analysis of bounded nets in this class.

16.7 Further Reading

This chapter is based on the Italian texbook on discrete event systems by Di Feb-
braro and Giua [13].

Many references are already cited along the chapter. Among them, particular
attention should be devoted to [1, 23] dealing with Timed nets, and to [4, 6] devoted
to Time nets. Interesting comparisons among different semantics for Time Petri nets
are given in [3, 22].
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Chapter 17
The On-Line Diagnosis of Time Petri Nets

René K. Boel and George Jiroveanu

17.1 Introduction

The Petri Net models that we analyse in the following consider the time as a quan-
tifiable and continuous parameter whereas in an untimed Petri Net model the time
is taken into account only via the partial order relation between the transitions that
are executed in the plant.

As presented in Chapter 16 there are two main time extensions of Petri Nets (PNs)
namely Time Petri Nets [21] and Timed Petri Nets [22]. The difference between the
two is that in Time Petri Nets (TPNs) a transition can be fired after its enabling
with a delay that belongs to a given time-interval and the execution takes no time to
complete, while in Timed Petri Nets a transition fires as soon as possible (without
delay) but its execution requires a certain amount of time to complete. Among the
two we have chosen Time Petri Nets for modelling our plant since this formalism is
convenient for expressing most of the temporal constraints regarding the execution
and the duration of the events.

For the diagnosis problem we adopt the setting proposed in [13] and [23]. Thus,
we consider the plant observation given via a subset of transitions (observable tran-
sitions) and the faults that should be detected are modelled by a subset of the un-
observable (silent) transitions. We assume that the model is correct and there are
no delays in receiving the plant observation. Moreover, the execution time of an
observed transition is measured with perfect accuracy w.r.t. a global clock. In this
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setting, the goal of this chapter is to design an on-line algorithm that derives the
plant diagnosis at time ξ based on the known plant model and on the observation
received up to time ξ .

As for untimed PNs all the interesting problems for the analysis of TPN mod-
els can be reduced to reachability analysis (e.g. for the diagnosis problem one must
calculate all the feasible time-traces that obey the received observation to check
whether or not they contain fault transitions). In a TPN, a transition t can be exe-
cuted in a given marking at a certain time if t is enabled as in an untimed PN and
additionally some timing constrains are satisfied. There are timing constrains that
relate the delay between the time when t has become enabled and the time when t is
allowed to be executed, as well as timing constrains regarding the execution time of
t before some other transitions that are also enabled in that marking are forced to be
executed by reaching the maximum delay allowed by the model for their execution.
In general to decide if a time-trace τθ is legal (valid) or not it is necessary to check
if its untimed support trace τ is legal in the untimed PN support of the TPN model
and additionally to check if the times when the transitions in τ are assumed to be
executed provide a solution for a system of linear inequalities (called the character-
istic system of τ). To calculate all the legal time-traces in the TPN model requires
to derive for each legal trace τ of the untimed PN model the entire set of solutions
of its characteristic system. Since a transition in a TPN can fire at any time in its
firing domain, TPN models have in general infinite state spaces because a state may
have an infinite number of successor states. Methods based on grouping states that
are equivalent under a certain equivalence relation into so-called state classes were
proposed in [4, 5, 12, 29, 30] where it was shown in [4] that for bounded TPNs
the state class graph is finite and it compactly represents the set of all sequences of
transitions that can be executed. Thus, the potentially infinite state spaces of TPNs
can be finitely represented and the analysis can be reduced to a decidable problem.

The on-line algorithms that we design can be briefly described as follows. First,
we construct the state class graph up to the time ξ . Then for each observable transi-
tion considered in the state class graph we derive the earlier time and the latest time
when it can be executed. If an observable transition is either executed sooner than
allowed or it is not observed prior to the latest time it could have been executed, then
the arc labelled by that transition is deleted. The arc is also deleted if some other ob-
servable transition has been executed in the plant. Otherwise an equality relation is
added to the characteristic system to express the fact that the observable transition
occurred at the time given by the received observation. Hence, there could be cases
when one can infer that a fault has happened for sure in the plant even though no
observation is received from the plant, since traces can be deleted from the state
class graph when the latest execution time of an observable transition has elapsed.

It is known that the analysis of PNs is a computationally hard problem because of
the state space explosion due to the interleaving of concurrent transitions (e.g. the
time computational complexity to construct the reachability graph is exponential
in the number of places of the PN model [9]). The same problem remains also for
TPN models where additionally the computation requires to solve for each untimed
trace a system of linear inequalities (that can be solved by a standard algorithm in
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polynomial time). To deal with this difficulty methods based on partial orders were
proposed for the analysis of untimed PNs [3, 11, 20], as well as for the analysis of
TPNs [1, 8, 19, 24].

As for the analysis based on state classes, the set of all legal time-traces can
be obtained using partial orders by computing for each configuration ccc of the un-
folding of the untimed PN support of the TPN model the entire solution set of a
(max,+)-system of linear inequalities called the characteristic system of configura-
tion ccc. The characteristic system of a configuration ccc comprises (max,+) inequal-
ities relating the execution times of the events within ccc and (max,+) inequalities
that assure that a conflicting event (an event that is not considered in ccc but that
has its pre-set of conditions in the set of conditions of ccc) was not forced to be ex-
ecuted. One way to derive the entire set of solutions of the characteristic system
of a configuration ccc is by deciding each max-term (i.e. by choosing nondetermin-
istically which is the maximum element of the max-term) and then solving sys-
tems of linear inequalities [1]. However, by deciding each max-term basically the
concurrent events whose occurrence times are included in a max-term are inter-
leaved, which is exactly what we tried to avoid by using partial orders. Alternatively
it has been shown in [17] that the system of (max,+) inequalities can be put in
the form of an Extended Linear Complementarity Problem (ELCP) and then the
solution set of the characteristic system of a configuration is provided more effi-
ciently as a union of faces of a polyhedron that satisfy a cross-complementarity
condition [10].

The chapter is organized as follows. In Section 17.2 we introduce Time Petri
Nets and then in Section 17.3 we present the setting and the diagnosis problem. The
analysis of TPN models based on construction of the state class graph and based
on time processes is presented in Section 17.4. In Section 17.5 we discuss issues
regarding the on-line implementation and then conclude the chapter in Section 17.6
with some suggestions for further readings.

17.2 Time Petri Nets

A Time Petri Net structure NT = (N,I ) consists of an (untimed) Petri Net N =
(P,T,PPPrrreee,PPPooosssttt) called the untimed support of NT and the static firing time inter-
val function I : T → I (Q+), where EFTt ,LFTt ∈ Q

+ are the earliest static firing
time respectively the latest static firing time and I(t) = [EFTt ,LFTt ] represents all
possible time delays associated to transition t ∈ T . A TPN system consists of a pair
〈NT ,mmmθ

0 〉, where NT is a TPN structure and mmmθ
0 is its initial marking.

We make the assumption that there is a start-up transition that fires only once at
the time zero producing the tokens considered by the initial marking. If this is not
suitable for the model under investigation then consider for each token in the initial
marking a fictitious transition that can fire only once and its static interval represents
the date of birth of the token in the initial marking [8]. The time the analysis starts
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is translated then to the time when all the fictitious transitions become enabled (in
each input place of the fictitious transitions simultaneously one token is produced).

The following definitions are borrowed from [4] with the difference that we con-
sider as in [29] that the time is counted according to a global clock relative to the
time the analysis starts (assumed as 0 for simplicity). This is motivated by our pur-
pose to perform on-line diagnosis where we assume that the plant observation in-
cludes also the time stamp when a transition is executed.

In a TPN 〈NT ,mmmθ
0 〉 we say that a transition t becomes enabled at the time θ en

t
(according to a global clock) then the clock attached to t is started and transition
t can and must fire at some time θt ∈ [θ en

t +EFTt ,θ en
t +LFTt ], provided t did not

become disabled because of the firing of another transition. Notice that t is forced
to fire if it is still enabled at the time θ en

t +LFTt .

Definition 17.1. A state at the time θ (according to a global clock) of a TPN
〈NT ,mmmθ

0 〉 is a pair S = (mmm,FI), where mmm is a marking and FI : T → I (Q+) is
a firing interval function that associates an interval FI(t) = [lt ,ut ] to each enabled
transition t in mmm.

We write (mmm,FI)
〈t,θt 〉−−−→ (mmm′,FI′) or simply S

〈t,θt 〉−−−→ S′ if θt ∈Q
+ and:

1. (mmm≥ PPPrrreee[·, t] ∧ θt ≥ θ en
t +EFTt) ∧ (∀t ′ ∈ T, mmm≥ PPPrrreee[·, t ′]⇒ θt ≤ θ en

t′ +LFTt′)
2. mmm′ = mmm−PPPrrreee[·, t]+PPPooosssttt[·, t]
3. ∀t ′′ ∈ T s.t. mmm′ ≥ PPPrrreee[·, t ′′] we have:

a. if t ′′ 
= t and mmm≥ PPPrrreee[·, t ′′] then FI(t ′′) = [max(θ en
t′′ +EFTt′′ ,θt),θ en

t′′ +LFTt′′ ]
b. else θ en

t′′ = θt and FI(t ′′) = [θ en
t′′ +EFTt′′ ,θ en

t′′ +LFTt′′ ].

Condition (1) above assures that a transition t that fires at the time θt is enabled
by the marking mmm ≥ PPPrrreee[·, t] and that it fires in its temporal interval FI(t) unless
it is disabled by another enabled transition that is executed sooner. Condition (2)
represents the marking transformation rule while (3) gives the rule how the firing
intervals are modified according to:

(3.a) if a transition t ′′ remains enabled after firing t then its lower limit remains
unaffected if θt ≤ θ en

t′′ + EFTt′′ while if θt ≥ θ en
t′′ + EFTt′′ then the earliest

firing time becomes θt

(3.b) for a newly enabled transition t ′′ its firing interval FI(t ′′) is obtained by adding
the time θ en

t′′ when transition t ′′ has become enabled (θt = θ en
t′′ ) to its static

firing interval I(t ′′) = [EFTt′′ ,LFTt′′ ].

Definition 17.2. A time-trace τθ in 〈NT ,mmmθ
0 〉 is defined as follows:

i) τθ = S0
〈t1,θt1 〉−−−−→ S1 . . .Sn−1

〈tn,θtn 〉−−−−→ Sn

ii) ∃θti+1 s.t. Si
〈ti+1,θti+1〉−−−−−−→ Si+1 according to Definition 17.1 for i = 0, . . . ,n− 1

iii) τ = mmm0
t1−→mmm1 . . .mmmn−1

tn−→ mmmn is the untimed support of τθ .

Definition 17.3. Denote the reflexive and transitive closure of → as
∗−→. The state

graph of 〈NT ,mmmθ
0 〉 is SG = (S ,

∗−→,S0), where:
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i) S =
{

S | S0
∗−→ S

}
is the set of reachable states from the initial state S0

ii) S0 = (mmm0,FI0), where FI0(t) = I(t) for all transitions t s.t. mmm0 ≥ PPPrrreee[·, t] other-
wise FI0(t) is not defined.

In the following we use also the notation mmmθ
0 for the initial state S0 . Let Lθ

NT
(mmmθ

0 )

be the set of all possible time-traces that can be executed in 〈NT ,mmmθ
0 〉. Then denote

by LNT (mmm
θ
0 ) =

{
τ | ∃τθ ∈ Lθ

NT
(mmmθ

0 )
}

the untimed support language of Lθ
NT
(mmmθ

0 ).

For a TPN 〈NT ,mmmθ
0 〉 we have that LNT (mmm

θ
0 ) ⊆ LN(mmm0) i.e. the untimed support

language of a TPN is included in the language of its untimed support PN. In other
words the timing information eliminates some untimed traces because some transi-
tions that are concurrent in the untimed model are forced to be executed in a certain
order in the timed model. The timing constraints of the time model may also elimi-
nate some choices that would be possible in the untimed model but are impossible
in the timed model.

Given a global time ξ ∈Q
+ denoted by Lθ

NT
(mmmθ

0 ,ξ ) the set of all time-traces that

can be executed up to the time ξ , that is τθ
ξ ∈ Lθ

NT
(mmmθ

0 ,ξ ) iff:

i) τθ
ξ ∈ Lθ

NT
(mmmθ

0 ) and S0

τθ
ξ−→ Sξ

ii) the last transition in τθ
ξ is executed at a time smaller than ξ or equal

iii) any transition enabled in Sξ can be executed only at times larger than ξ .

Then the set of untimed support traces that can be executed up to the time ξ is:

LNT (mmm
θ
0 ,ξ ) =

{
τξ | τθ

ξ ∈ Lθ
NT
(mmmθ

0 ,ξ )
}
.

17.3 The Diagnosis of TPNs – The Setting and the Problem
Description

We assume throughout this chapter that the following assumptions on the structure
and the dynamics of the plant are satisfied:

i) the TPN model 〈NT ,mmmθ
0 〉 is untimed 1-safe, i.e. the untimed PN support 〈N,mmm0〉

is 1-safe
ii) T = To∪Tuo and To∩Tuo = /0, where To is the set of observable transitions and

Tuo is the set of unobservable (silent) transitions
iii) � : T →A∪{ε} is the observation labeling function, where A is a set of labels

and ε is the empty label; �(t) = ε iff t ∈ Tuo and �(t) ∈ A iff t ∈ To; � is not
necessarily injective in A, that is ∃(t1, t2) ∈ To×To s.t. t1 
= t2 and �(t1) = �(t2)

iv) each time when an observable transition to ∈ To is executed in the plant the label
�(to) is emitted together with the global time θ�(to) ∈ Q

+ when this execution
of to took place

v) the observation is always correct, it is always received (there is no loss of ob-
servation) and there are no delays in receiving the observation
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vi) the execution of an unobservable transition does not emit anything (is silent)
vii) Tf ⊆ Tuo is the set of faulty transitions; Tf is partitioned as Tf = TF1 ∪ . . .∪TFk ,

where TFi is the subset of fault transitions that models a fault of class Fi for
i = 1, . . . ,k

viii) the time diverges when an infinite number of transitions are executed (e.g. any
cycle that can be executed infinitely often contains at least one transition that
has a nonzero lower limit of its static firing time interval).

Given the plant model as described above the goal of this chapter is to design an
on-line algorithm that derives at time ξ the diagnosis of the plant based on the plant
model and on the received observation up to time ξ . The exact meaning of diagnosis
is defined as follows.

Denote the observation received up to time ξ by wθ
ξ =

〈obs1,θobs1〉 . . . 〈obsn,θobsn〉, where obs1, . . . ,obsn ∈ A are the labels that are
emitted and θobs1 ≤ θobs2 . . . ≤ θobsn ≤ ξ are the global times at which the
observable transitions occurred.

We say that a time trace τθ
ξ ∈ Lθ

NT
(mmmθ

0 ,ξ ) obeys the observation wθ
ξ if �(τξ ) =

wξ and the kth observable transition in τθ
ξ is assumed to be executed at the

time θtk = θobsk for k = 1, . . . ,n. Then let Lθ
NT
(mmmθ

0 ,ξ ,w
θ
ξ ) denotes the set of all

time-traces that are feasible in 〈NT ,mmmθ
0 〉 up to the time ξ and that obey the received

observation wθ
ξ .

Denote by D(wθ
ξ ) the set of untimed strings that are obtained by projecting onto

the set of fault transitions Tf the untimed supports of the time-traces contained in
Lθ

NT
(mmmθ

0 ,ξ ,w
θ
ξ ):

D(wθ
ξ ) =

{
τ f | τ f = ΠTf (τ) and τθ ∈ Lθ

NT
(mmmθ

0 ,ξ ,w
θ
ξ )
}

(17.1)

where Π is the standard projection function that erases from a string τ all its ele-
ments that do not belong to a given set (in our case Tf ).

If we have the set of fault transitions partitioned into different fault classes
Tf = TF1 ∪ . . .∪TFk then the detection of a fault of class Fi is obtained by further
projecting the strings of D(wθ

ξ ) onto TFi :

DFi(w
θ
ξ ) =

{
τFi | τFi = ΠTFi

(τ f ) and τ f ∈D(wθ
ξ )
}

(17.2)

Definition 17.4. For a given fault class, say Fi, we have that the diagnosis result of
the plant w.r.t. fault class Fi at time ξ with received observation wθ

ξ is:

ΔFi(w
θ
ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

FFi iff ε 
∈DFi(w
θ
ξ )

NFi iff {ε}= DFi(w
θ
ξ )

UFFi iff {ε}� DFi(w
θ
ξ )

(17.3)
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where as in [23]: FFi means that a fault of kind Fi did necessarily happen in the
plant (∀τ f ∈ DFi(w

θ
ξ )⇒ ΠTFi

(τ f ) 
= ε); NFi means that a fault of kind Fi did not

happen in the plant (∀τ f ∈ DFi(w
θ
ξ ) ⇒ ΠTFi

(τ f ) = ε); and UFFi means that it is
uncertain whether a fault of kind Fi happened or not in the plant (there exist two
legal time-strings τ f ,τ ′f ∈DFi(w

θ
ξ ) s.t. ΠTFi

(τ f ) 
= ε and ΠTFi
(τ ′f ) = ε).

17.4 The Analysis of TPNs

In this section we consider first the analysis of TPN models based on state class
graph construction [4, 5, 29, 30] while the last part is devoted to the use of partial
order methods for the analysis of TPNs [1, 8, 19, 24].

17.4.1 Analysis of TPNs Based on State Classes

Consider a time-trace τθ = S0
〈t1,θt1 〉−−−−→ S1 . . .Sn−1

〈tn,θtn 〉−−−−→ Sn. The times at which
{t1, t2, . . . , tn} are executed {θt1 ,θt2 , . . . ,θtn} are called the path variables and are
denoted by the vector Θ . Given a state S = (mmm,FI), let ϑt ∈ FI(t) denote the possi-
ble firing time of an enabled transition t ∈ T in S. Then the vector vvv represents the
firing times of the transitions enabled in S.

For a time-trace τθ the path variables Θ and the state variables vvv are related by a
system of inequalities (called the characteristic system of τ) denoted Kτ having the
shape: ⎧

⎪⎨

⎪⎩

AAA ·Θ ≤ aaa

Θ en = BBB ·Θ
Θ en + lll ≤ vvv≤ Θ en + uuu

(17.4)

where: AAA is an n× n matrix (with n the number of transitions in τθ ) that relates the
execution times of the transitions in τ; aaa is an n-vector of constant rational numbers.
BBB is a k× n matrix (with k the number of enabled transitions in Sn) that determines
the enabling times of the enabled transitions in Sn; Θ en is a vector of dimension k
having the component i equal to the global time θ en

ti when ti has become enabled; lll,uuu
are vectors of dimension k with the components specifying the lower limit (EFTt )
respectively the upper limit (LFTt ) of the static firing intervals of the transitions
enabled in Sn.

Notice that by the assumption that 〈N,mmm0〉 is 1-safe we have that the parents of a
transition ti (the transitions in ••ti whose occurrence made ti enabled) are uniquely
defined for any trace τθ . We have that θ en

ti = maxt j∈••ti(θt j ) if the input places of ti
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are not marked by tokens from the initial marking. If a transition ti is enabled by the
tokens from the initial marking then θ en

ti = 0 since the marking is assumed produced
by a fictitious transition that fires at the time 0.

In order to have a finite representation of the set of reachable states [4] pro-
posed the analysis of the TPN models based on state classes (called also linear state
classes to distinguish them from some other state classes that are proposed in the
literature [5, 30]).

However, these methods do not consider a global clock (absolute time) but only
local clocks that measure the relative time between the enabling of a transition and
its execution. This could be simply understood by considering for each transition t
the new variable ϑ r

t = ϑt −θ en
t (i.e. the state variables w.r.t the relative time). Let vvvr

and FIr(t) be the vector of state variables respectively the firing time interval of an
enabled transition defined w.r.t to the relative time. The states w.r.t. the relative time
are then defined as pairs Sr = (mmm,FIr) and are represented by the state graph SGr.

Linear state classes are constructed based on the following fact: consider two
time-traces τθ

i and τθ
j that lead from the initial state Sr

0 into Sr
i respectively Sr

j such
that: i) mmmi = mmm j and ii) FIr

i (t) = FIr
j(t) for each transition t enabled in mmmi. Then

the subgraphs of the state graph SGr rooted in Sr
i and Sr

j are isomorphic. The states
are grouped in state classes such that all the states contained in a state class have
the same marking while the firing domain of a state class is the union of the fir-
ing domains of each state included in the state class. It is proven in [4] that for a
bounded TPN the linear state class graph LSCGr is finite and it explicitly represents
the untimed support language of 〈NT ,mmmθ

0 〉.
If we consider the state variables w.r.t a global clock we have also that the sub-

graphs of the state graph SG rooted in Si = (mmmi,FIi) and S j = (mmm j,FIj) are iso-
morphic if i) mmmi = mmm j and ii) FIi(t) = FIj(t) for each transition t enabled in mmmi.
Obviously, in this case the linear state class graph LSCG will not have in general
a finite number of state classes because the state variables ϑt are defined w.r.t. the
global clock and the global clock progress is infinite. Consequently, LSCG is a di-
rected acyclic graph (obtained by unrolling LSCGr).

We give the following motivation for choosing to define the states in the
TPN model w.r.t. a global clock. In the first place, our aim is different than the
verification of some properties of the behaviour of the time models as in [5, 30]. We
perform on-line diagnosis so that we are not interested in a compact representation
of the full plant behaviour (i.e. to construct LSCGr) but only to make some calcu-
lations in advance (depending on the computational capabilities and the diagnosis
requirements). Second, for most of the current man-made systems the plant obser-
vation includes also the time stamp according to a global clock when an observable
transition is executed. Hence, it would be necessary anyway to have some path vari-
ables that give the global time along a trace to be able to calculate the earliest time
and the latest time when an observable transition can fire. Moreover, the plant obser-
vation is taken into account by adding extra timing constraints to the characteristic
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system Kτ of each trace τ and adding these constraints implies that LSCGr should
be refined.

Definition 17.5. The linear state class graph of a TPN 〈NT ,mmmθ
0 〉 is:

LSCG = (K/∼=,
∗−→, [{S0}]∼=)

where K =
⋃

τ∈LN(mmm0)
SCτ is a cover of S (a set of subsets of S whose union

includes S ) inductively defined as:

1. SCε = {S0} and SCτt =

{

S′ | ∃S ∈ SCτ s.t. S
〈t,θt 〉−−−→ S′

}

2. SC∼= SC′ iff (∃S ∈ SC)(∃S′ ∈ SC′) s.t. mmm(S) = mmm(S′) and

⋃

S∈SC

FI(S) =
⋃

S′∈SC′
FI(S′)

3. SC
t−→ SC′′ iff ∃S ∈ SC and ∃S′′ ∈ SC′′ s.t. S

〈t,θt 〉−−−→ S′′.

Denote by LSCGξ the initial part of LSCG developed up to the time ξ , that is LSCGξ
contains all the state classes SCi of LSCG that have at least one enabled transition t
such that the lower bound of its firing time interval lt is smaller than ξ . Each state
class SCi that has no successors in LSCGξ either has no successors in LSCG or all
the enabled transitions in SCi can be executed only at times larger than the time ξ .
Let L(LSCGξ ) be the language generated by LSCGξ . We have then the following
results.

Proposition 17.1. If ξ is finite and 〈NT ,mmmθ
0 〉 is bounded then LSCGξ has a finite

number of states.

Proof. By assumption we have that the time diverges when an infinite number of
transitions are executed and that 〈NT ,mmmθ

0 〉 is bounded. Thus, in a finite time ξ only
a finite number of untimed traces can be executed. For each untimed trace τ there
exists only one state class in LSCG such that SC0

τ−→ SC. Hence, LSCGξ has a finite
number of state classes. �

Theorem 17.1. Given a TPN 〈NT ,mmmθ
0 〉 and a finite time ξ we have that L(LSCGξ )=

LNT (mmm
θ
0 ,ξ ).

Proof. The proof is straightforward from Theorem 3 in [4], Definition 17.5 and the
way LSCGξ is defined. �

Based on Proposition 17.1 and Theorem 17.1 we have that the plant diagnosis is
computable and provides the correct diagnosis result. Kτ is constructed in a recursive
manner for τn = t1 . . . tn by running the following algorithm.
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Algorithm (Computing characteristic systems)

1 Kε = {EFTt ≤ ϑt ≤ LFTt | t ∈ T ∧ mmm0 ≥ PPPrrreee[·, t]}
2 Assume SC0

τi−→ SCi (where τi = t1 . . . ti). Then for i = 0, . . . ,n− 1 we have
that ti+1 is fireable from SCi iff:

2.1 mmmi ≥ PPPrrreee[·, ti+1]
2.2 Kτi ∧

{
ϑti+1 ≤ ϑt j | ti+1 
= t j ∧ mmmi ≥ PPPrrreee[·, t j]

}
is consistent (the solu-

tion set is not empty)

3 if ti+1 is fireable then Kτi+1 is computable from Kτi as:

3.1 the fireability constraints for ti+1 given by 2.2 above are added to the
characteristic system Kτi

3.2 the state variable ϑti+1 is renamed into a path variable θti+1 = ϑti+1

3.3 for each newly enabled transition tk at mmmi+1 = mmmi − PPPrrreee[·, ti+1] +
PPPooosssttt[·, ti+1], a new state variable ϑtk is introduced and then:
3.3.1 for all the transitions t j that remained enabled after firing ti+1 we

have that: max(θ en
t j

+EFTtj ,θti+1)≤ ϑt j ≤ θ en
t j

+LFTt j

3.3.2 for the newly enabled transitions tk we have that θ en
tk

= θti+1 and
θ en

tk +EFTtk ≤ ϑtk ≤ θ en
tk +LFTtk .

The solution set of the characteristic system Kτn is derived using a standard algo-
rithm to solve systems of linear inequalities, e.g. Floyd’s shortest path algorithm
whose time computational complexity is O(n3). Then the projection of the solution
set onto vvv provides the firing time interval FI(t) for each transition enabled in the
marking mmmn of SCn. To construct LSCG we need to take into consideration all the
possible untimed traces τ ∈ L(mmm0). We illustrate this by the following example.

Example 17.1. Consider the TPN in Fig. 17.1 were the static firing time intervals
are: I(ti) = [3,10] for i = 1, . . . ,4; I(t j) = [4,8] for j = 6, . . . ,9 while the synchro-
nizing transition t5 has its static firing time interval I(t5) = [7,8].

The linear state class graph is constructed as follows. In the initial marking mmm0 =
[1,0,0,0,1,0,0,0]T we have t1 and t6 as enabled transitions, and we assume that the
tokens arrived in p1, respectively p5 at global time 0 (when the analysis starts).

SC0 Kε =

{
3≤ ϑt1 ≤ 10

4≤ ϑt6 ≤ 8
(17.5)

Consider the case that t1 fires first. The new marking is mmm1 = [0,1,0,0,1,0,0,0]T ,
the set of newly enabled transition is {t2, t3} while t6 remains enabled after firing t1.
The characteristic system Kt1 of the state class SC1 is:
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[7,8]
[4,8]

[4,8]

Fig. 17.1 The TPN model of Example 17.1

SC1 Kt1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3≤ θt1 ≤ 10

4≤ ϑt6 ≤ 8

θt1 ≤ ϑt6

θt1 + 3≤ ϑt2 ≤ θt1 + 10

θt1 + 3≤ ϑt3 ≤ θt1 + 10

FI(SC1) =

⎧
⎪⎨

⎪⎩

6≤ ϑt2 ≤ 18

6≤ ϑt3 ≤ 18

4≤ ϑt6 ≤ 8

(17.6)

Assume that t2 is the first transition to fire after t1. The new marking is mmm3 =
[0,0,1,0,1,0,0,0]T and the set of newly enabled transitions is {t4} while t6 remains
enabled after firing t2. The characteristic system Kt1t2 of the state class SC2 is:

SC2 Kt1t2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3≤ θt1 ≤ 8

θt1 + 3≤ θt2 ≤ θt1 + 10

4≤ ϑ6 ≤ 8

θt2 ≤ ϑt6

θt2 + 3≤ ϑt4 ≤ θt2 + 10

FI(SC2) =

{
9≤ ϑt4 ≤ 18

6≤ ϑt6 ≤ 8
(17.7)

If t6 is the first transition to fire after t1 we obtain the new marking mmm4 =
[0,1,0,0,0,1,0,0]T and the set of newly enabled transition is {t7, t8} while t2, t3
remain enabled after firing t6. The characteristic system Kt1t6 of SC3 is:
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SC3 Kt1t6 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3≤ θt1 ≤ 8

4≤ θt6 ≤ 8

θt1 ≤ θt6

θt6 ≤ ϑt2

θt6 ≤ ϑt3

θt1 + 3≤ ϑt2 ≤ θt1 + 10

θt1 + 3≤ ϑt3 ≤ θt1 + 10

θt6 + 4≤ ϑt7 ≤ θt6 + 8

θt6 + 4≤ ϑt8 ≤ θt6 + 8

FI(SC3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

6≤ ϑt2 ≤ 18

6≤ ϑt3 ≤ 18

8≤ ϑt7 ≤ 16

8≤ ϑt8 ≤ 16

(17.8)

Now consider that t1 fires at the time θt1 = 3 leading the plant into the state S1 ∈ SC1

(S0
〈t1,3〉−−−→ S1). It is easy to check that S1 has successors in SC2 and SC3 while if t1

fires at θt1 = 6 the state S′1 ∈ SC1 has successors in SC3 but not in SC2 because t2 can
fire in this case at the earliest time 9 which is larger than the latest time when t6 is
forced to fire at time 8. �

Thus, we have that in general not all the states within a linear state class have succes-
sors in a successor state class. In order to assure the atomicity property that all the
states within a state class have successors in all the successor state classes the linear
state classes have to be split. Although, this remark is not important for the cen-
tralized diagnosis since LSCG preserves all the untimed support traces of the TPN
model, for a distributed setting the local computations and the consistency check
may not be performed properly unless the atomicity property is maintained for the
local calculations of each local site. The procedure to refine the linear state class
graph LSCG such that the atomicity property is satisfied was proposed in [30] and
then improved in [5].

As for untimed PNs the approach based on state graph construction suffers from
the state space explosion due to the interleaving of the concurrent transitions. Even
for TPN models having a reasonable size the plant computation becomes practically
impossible. In order to overcome the state space explosion when the plant exhibits a
high degree of concurrency we present in the next section the analysis of Time Petri
Nets based on partial orders.

17.4.2 Analysis of TPNs Based on Time Processes

When applied to partially observable TPNs the state class graph method has the
drawback that the interleavings of the unobservable transitions must be enumerated
and this can make the analysis of TPNs of reasonable size sometimes impossible.
We illustrate this via the following example.
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Fig. 17.2 The TPN of the Example 17.2

Example 17.2. Consider the TPN displayed in Fig. 17.2. Static firing time intervals
are attached to each transition. The observable transitions are t4, t7 and t10 and they
emit the same label. t1 and t12 are faulty transitions.

For instance, if the plant analysis is based on the state class graph construction
one should consider all the possible interleavings of the unobservable concurrent
transitions t2, t5, t8, and t11. �

Hence, in this example the timing information does not reduce the number of the
interleavings of the concurrent (unobservable) transitions that are considered. The
partial order reduction techniques developed for untimed PNs [3, 11, 20], are shown
in [1, 8, 15, 19, 24] to be applicable for TPNs.

In what follows we assume the reader is familiar with the partial order techniques
for untimed PNs and we refer to Chapter 15 for the formal definitions of Petri Net
Unfoldings. Consider a configuration ccc in the unfolding UN of the untimed PN
support of a TPN 〈NT ,mmmθ

0 〉. Then consider a valuation Θ of the execution times at
which the events e ∈ Ec in the configuration ccc are executed. I.e. for each e ∈ Ec

consider a time value θe ∈Q
+ at which e occurs and Θ is an |Ec|-tuple comprising

all the values at which all the events e ∈ Ec are executed.
An untimed configuration ccc together with a valuation Θ of the execution times

for its events is called a time configuration (time process in [1]) of the TPN model
and is denoted as cccθ = (ccc,Θ).

A time configuration is legal if there is a legal time-trace τθ ∈ Lθ
NT
(mmmθ

0 ) in the

TPN 〈NT ,mmmθ
0 〉 whose untimed support τ is a linear order extension (an interleaving)

of the partial order ≤ccc, while the execution time θt of each transition t considered
in the time-trace τθ is identical with the valuation θe of the event e whose image
via π is t.

We compute the entire set of legal time configurations in the following way. Con-
sider an untimed configuration ccc ∈ C . Then attach to each event e the static firing
interval I(t) that corresponds in the original TPN to transition t s.t. π(e) = t. We use
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the notation EFTe and LFTe for the lower respectively the upper bound of the static
firing time interval of e.

Denote by K̃c the following system of inequalities:

K̃c =
{

max
e′∈••e

(θe′)+EFTe ≤ θe ≤ max
e′∈••e

(θe′)+LFTe for all e ∈ Ec (17.9)

where in (17.9) ••e = /0 implies maxe′∈••e(θe′) = 0. For each e ∈ Ec denoted by
F̃I(e) = [l̃e, ũe] the time interval obtained solving K̃c.

Proposition 17.2. ∀τθ ∈ Lθ
NT
(mmmθ

0 ) we have that if τ is a linear order extension

of ≤ccc for some ccc ∈ C , then Θ is a solution of K̃cθ , where Θ = (θt1 , . . . ,θt|Ec |) =

(θe1 , . . . ,θe|Ec |) with π(ei) = ti for i = 1, . . . , |Ec|.
Proof. The proof is straightforward since for a 1-safe PN there exists an unique
configuration ccc in the net unfolding UN s.t. τ = π(σ) and σ is obtained by inter-
leaving the events in ccc. Obviously the conditions required for Θ to be a solution of
K̃c are satisfied by any legal time-trace. �

Next we should impose the condition that the configuration ccc is complete w.r.t. the
global time (i.e. none of its concurrent parts is left behind). We say that a con-
figuration ccc is complete w.r.t time ξ if ∀e ∈ Ec ⇒ θe ≤ ξ and ∀e ∈ enabled(ccc),
maxe′∈••e(θe′)+EFTe > ξ (where enabled(ccc) is the set of events that can be ap-
pended from cutccc, i.e. e ∈ enabled(ccc) iff t is enabled in the marking mmm = π(cutccc)
and π(e) = t).

We cannot claim yet that for a configuration ccc ∈ C there exists at least one legal
time configuration (ccc,Θ) because for a general TPN the enabling of a transition
does not guarantee that it eventually fires because some conflicting transition may
be forced to fire before. All we have up to now is that K̃c can be used to explore the
future behaviour of the plant to roughly anticipate what kinds of fault events could
possibly occur and in which time interval.

To compute the exact plant behaviour we need to take into consideration the set
of conflicting events of a configuration ccc ∈ C (denoted by Ĕc). Ĕc comprises the
events that could have been executed, but are not included in Ec:

Ĕc = {ĕ ∈ E \Ec | ∃e ∈ Ec s.t. e � ĕ}

The characteristic system Kc of configuration ccc ∈ C is obtained adding to K̃c all
the inequalities regarding all the conflicting events:

Kc =

⎧
⎨

⎩

max
e′∈••e

(θe′)+EFTe ≤ θe ≤ max
e′∈••e

(θe′)+LFTe for all e ∈ Ec

min
e′�ĕ

(θe′)≤ max
e′′∈ •• ĕ

(θe′′)+LFTĕ for all ĕ ∈ Ĕc
(17.10)

Theorem 17.2. Given an arbitrary time ξ we have that τθ ∈ Lθ
NT
(mmmθ

0 ,ξ ) iff:

1. τ = π(σ) and σ is a linear order extension of ≤ccc for some ccc ∈ C
2. Θ is a solution of Kc
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3. ∀e ∈ Ec ⇒ θe ≤ ξ ,
4. ∀e ∈ enabled(ccc)⇒ maxe′∈••e(θe′)+EFTe > ξ .

Proof. ⇒ Condition 1, 3 and 4 are trivial and the proof that Θ = (t1, . . . , tn) is a
solution of Kc is by induction.
⇐ The proof is trivial. �

Thus, we need to derive for each untimed configuration the entire solution set
of its characteristic system. The naive approach to enumerate all the possible
max-elements would imply to interleave concurrent events which is exactly what
we wanted to avoid by using partial orders to represent the plant behaviour. One
way to cope with this difficulty is to put the characteristic system in an ELCP form.

p1

b5

p2

t1
[2,15]

[5,20]
[10,20]
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[2,15]

[10,20]
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p4 p5
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t3t4
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p4

t5

p1
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t1
[2,15]

[5,20]
[10,20]

b2

[2,15]

[10,20]

p3
p4 p5

t2

t3t4
t6

[5,10]

p4

t5

Fig. 17.3 The TPN model of Example 17.3 and one of its configurations

Example 17.3. Consider the TPN 〈NT ,mmmθ
0 〉 displayed in Fig. 17.3-left. Static firing

time intervals are attached to each transition. Since NT is acyclic and 1-safe, NT is
isomorphic with its unfolding. Consider in Fig. 17.3-right configuration ccc that in-
cludes t1, t2, t3. The set of conflicting events is Ĕc = {t4, t5, t6} (depicted by dotted
lines). The following (max,+)-system of linear inequalities provides the character-
istic system Kc of configuration ccc.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2≤ θt1 ≤ 15

2≤ θt2 ≤ 15

max(θt1 ,θt2 )+ 5≤ θt3 ≤max(θt1 ,θt2)+ 20

min(θt1 ,θt2)≤ 10

θt3 ≤ θt1 + 20

θt3 ≤ θt2 + 20

(17.11)

The first three inequalities (K̃c) represent the firing conditions of the transitions t1, t2
and t3 within ccc, while the last three inequalities assure that the conflicting events t4,
t5 and t6 are not forced to fire by elapsing the maximum delay after their enabling.
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We use the notation xi for the execution time θti of transition ti, i = 1,2,3;
z1 = min(x1,x2), y1 = max(x1,x2) and AAAk for the kth row of matrix AAA. We have
the characteristic system Kc in (17.11) expressed in the form of an ELCP [10]:

⎧
⎪⎨

⎪⎩

AAA · xxx≥ 000

(AAA1 · xxx)(AAA2 · x) = 000

(AAA3 · xxx)(AAA4 · x) = 000

(17.12)

where xxx = [x1 x2 x3 y1 z1 δ ]T and

x1 x2 x3 y1 z1 δ

AAA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 −1 0
0 1 0 0 −1 0
−1 0 0 1 0 0

0 −1 0 1 0 0
−1 0 0 0 0 15

1 0 0 0 0 −2
0 −1 0 0 0 15
0 1 0 0 0 −2
0 0 1 −1 0 −5
0 0 −1 1 0 20
0 0 0 0 −1 10
1 0 −1 0 0 20
0 1 −1 0 0 20

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Additionally consider that x3 = 23, which simply means that we want to derive the
solution set of Kc considering that t3 is executed at the time θt3 = 23.

2
4

6
8

1
0

1
2

1
4

1
6

2 4 6 8 10 12 14 16

x1

x
2

Fig. 17.4 The projection of the solution set of the characteristic system Kc of the Exam-
ple 17.3 onto the plane (θt1 ,θt2)
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The solution set of the characteristic system is displayed in Fig. 17.4 as a union of
2 polytopes (trapezia). The first one has as vertices (3,3), (3,15), (10,15), (10,10)
and the second one has as vertices (3,3), (10,10), (15,10), (15,3). �
The plant behaviour up to time ξ is derived using time processes as follows:

1) Construct the branching process β̃ξ of the untimed PN support 〈N,mmm0〉 s.t.:

a. ∀e ∈ β̃ξ ⇒ l̃e ≤ ξ
b. ∀e′ ∈ enabled(β̃ξ )⇒ l̃e′ > ξ

where l̃e and l̃e′ are obtained solving the system of inequalities K̃c given by 17.9.
2) For each final configuration ccc in β̃ξ compute the entire solution set of Kc.
3) Add to Cξ all configurations ccc such that the solution set of Kc is not empty and
∀e ∈ Ec, le ≤ ξ and ∀e′ ∈ enabled(ccc), le′ > ξ

4) L(Cξ ) = LNT (mmm
θ
0 ,ξ ), where τ ∈ L(Cξ ) iff τ = π(σ) and σ is a linear order

extension of ≤ccc for some ccc ∈ Cξ .

Notice that step 3 is needed because if we solve Kc we may have for some events in a
configuration ccc∈Cβ̃ξ

that le > ξ although l̃e≤ ξ . Since these events can be executed

only at times larger than ξ they should not be considered in the configurations that
are added to Cξ .

17.5 The On-Line Implementation

The problem that we should answer next is: ”Up to what time ξ to make the calcu-
lations for the on-line diagnosis ?”.

There are different solutions to answer this question, depending on the computa-
tional capability, the plant behaviour and the requirements for the diagnosis result.

A first solution is to make calculations in advance e.g. up to the time when the
plant halts in a ”quiescent state” (a state s.t. no transition is executed until a trigger
event is executed). This solution is appropriate for a plant known to have a cyclic
behaviour, where each operation cycle is initiated by the plant operator. However, a
drawback of this method could be the large amount of calculations that is required
each time when an update is performed (i.e. when a new observation is taken into
account both the past behaviour and the future behaviour must be refined). Also the
size of the characteristic systems of the final traces/configurations maybe too large
to handle.

The second solution would be to make calculations up to a discarding time that is
given by the observable transition whose latest execution time is the smallest among
the observable transitions that are considered on different branches. When the calcu-
lations are made based on partial orders one keeps track of the time progress of the
entire time process and new unobservable events are appended only if their earliest
time of execution is not larger than the smallest among the latest execution times of
the observable events already appended.
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Fig. 17.5 A part of the unfolding of the TPN displayed in Fig. 17.2

Example 17.4. Consider again the TPN displayed in Fig. 17.2. The computation
based on partial orders is made as follows (see Fig. 17.5 where we attach to each
event e ∈ E the time interval F̃I(e) that results from solving K̃c). Each condition bi

has the same lower index i as place pi ∈ P if π(bi) = pi and similarly each event
e j has the same lower index j as transition t j if π(e j) = t j. First we append the
events e2, e5, e8 and e11 that have F̃I(e2) = I(e2), F̃I(e5) = I(e5), F̃I(e8) = I(e8)

and F̃I(e11) = I(e11). Then we append e1 and we obtain F̃I(e1) = [16,19] by adding
to F̃I(e2) = [2,4] the static firing interval of t1, I(e1) = [14,15]. Next we append e3,
e6, e9 and e12 and after that we append the events e4, e7 and e10 that correspond to
the observable transitions t4, t7 and t10 respectively.

At this moment the computation stops because we do not append events after the
observable events e4, e7 and e10 and from b′1 and b′′10 we can only append unobserv-
able events whose execution times are larger than 17 (which is the latest execution
time of e4 and e10). If it is received only one observation until the time 17, then we
have four possible configurations that are listed in Fig. 17.6. For each configuration
we calculate the solution set of its characteristic system with the timing constraint
taking into account the observation.

If the first observation is received at the time 17.5, then the only feasible config-
uration is ccc4. In this case we are sure that either the fault t1 has already happened or
it will happen for sure by the time 19 when e1 will reach its latest execution time
and will be forced to be executed.

Now consider configuration ccc1. It contains two observable events. If we have
observed only one event executed at time 15 we have two cases: either e4 was exe-
cuted at time 15 and in this case e5 can be executed only at a time larger than 15 or
vice-versa. �

Another choice is to make computations at regular times, e.g. compute first the plant
behaviour up to time ξ . Then record the plant observations up to time ξ and refine
what was already computed. Then extend the calculations up to the time 2ξ and
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Fig. 17.6 The valid configurations of Example 17.4

so on. The time ξ should be large enough to be sure that the calculation can be
performed and small enough to be able to take as fast as possible isolation actions
against the faults that are detected.

Notice that we have assumed here that the faults in the plant are unpredictable
(i.e. from any state of the plant there is at least one continuation that does not con-
tain a fault transition). This is a reasonable assumption since otherwise one should
make the calculations in advance (e.g. up to a ”quiescent state”) if there is the need
of detection a fault occurrence at the earliest possible time. In general the unpre-
dictability of a fault in a time model cannot be checked as it is the case for the
untimed models. However, there is a structural assumption on the TPN model that
is a sufficient condition for the faults to be unpredictable ∀t ∈ Tf , ∃t ′ ∈ T \Tf such
that i) •t ′ ⊆ •t and ii) EFTt′ ≤ LFTt .

The computational complexity of the two approaches based on the construction
of the state class graph and based on time processes cannot be compared because
they heavily depend on the TPN structure and on the number of observable transi-
tions. For instance if the untimed PN support is Extended Free Choice the calcula-
tions can be performed very easily using partial orders since for such models there
are no conflicting events and the solution set is provided simply by K̃c.

As a general consideration it should be noted that the use of partial orders re-
duces the computational effort to make calculations in the untimed PN, because it
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avoids the interleaving of the concurrent transitions as it is the case when the LSCG
is constructed. On the other hand, for a system of linear inequalities the computa-
tional complexity to derive the solution set is polynomial (it requires O(n3) time
and this can be reduced to O(n2) if the system of inequalities is constructed in an in-
cremental manner) whereas to derive the solution set of a system of (max,+)-linear
inequalities is a computationally harder problem. For instance the time required to
solve ELCP may grow exponentially with the size of the system. In general its com-
putational complexity depends on many factors and is difficult to be expressed in
terms of the number of variables and inequalities.

Although the ELCP is not suited for problems with a large size there are efficient
algorithms to decide if an ELCP has at least one solution. In the diagnosis setup
that we have considered this decision test would be enough to check the validity
of a configuration and thus to calculate the correct diagnosis result. However, the
calculation from time to time of the entire set of solutions is required to eliminate
inequalities that are redundant, reducing in this way the size of the system.

17.6 Further Reading

Various settings and methods for the monitoring and diagnosis of time Discrete
Event Systems were proposed in [2, 8, 14, 17, 18, 25, 26, 31]. They differ in the
way the untimed part of plant is modelled: as an automaton in [18, 25, 31], or a
Petri Net in [2, 8, 14, 17], in the way the faults are represented: as fault transitions
in [2, 8, 14, 17, 18] or fault states in [25, 26, 31], and in how the calculations in the
untimed support are performed: via forward reachability as in [2, 8, 14, 17, 18, 31],
via backward reachability as in [25, 26] or using algebraic techniques as in [2].
Also there are some other differences regarding how the time and the observations
are taken into account. The closest approaches to what has been presented in this
chapter can be found in [8, 14] and [17] with the remark that in [8, 14] the plant
observation does not include the time stamp when a transition is executed. Also
distributed implementations for diagnosis of TPNs are presented in [6] and [16].

The results of this chapter can be easily extended on the following directions.
The 1-safe assumption can be relaxed. The only condition needed is the bound-
edness of the TPN model. The approach can deal with different other representa-
tions of the faults e.g. a fault can be also defined as a violation of a certain time
separation between the execution of two transitions. Although only the centralized
setting has been considered in this chapter, the results can be applied for a dis-
tributed implementation that comprises different local sites modelled by TPNs. For
instance the distributed implementation is quite simple for the class of Extended
Free Choice TPNs.

Notice that here the problem of diagnosability of TPN models was not addressed,
i.e. if the model has the property that a fault occurrence is always detected within
a finite delay after its occurrence for any plant behaviour. We refer to the work
in [7, 27] and [28] where algorithms to test diagnosability are provided for Timed
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Automata. These algorithms can be easily adapted for TPN models and require the
construction of the state class graph LSCGr with the state variables defined w.r.t. the
relative time.
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Chapter 18
Introduction to Fluid Petri Nets

C. Renato Vázquez, Cristian Mahulea, Jorge Júlvez, and Manuel Silva

18.1 Introduction and Motivation

Several results can be found in the literature regarding the analysis of DEDS by
using models from the Petri net (PN) paradigm. Applications involve the imple-
mentation of sequence controllers, validation in software development, analysis of
communication protocols and networks, manufacturing systems, supply chains, etc.

It is well known that one of the most important limitations in the analysis (and
synthesis problems) of DEDS is the computational complexity that may appear. In
particular, the set of reachable markings of a Petri net frequently increases expo-
nentially w.r.t. the initial marking, what is known as the state explosion problem,
making prohibitive the application of enumerative techniques even for net systems
with a small structure (i.e., small number of places and transitions).

In this context, the fluidization or continuization (i.e., getting a continuous-state
approximation) has been proposed as a relaxation technique in order to overcome
the state explosion problem. The idea consists in the analysis of the DEDS via
a relaxed continuous approximation, i.e., a continuous-state system if behaves in
a “similar” way than the original model (or conserves certain interesting proper-
ties), reducing thus the computational efforts. Nevertheless, not all PNs models al-
low some continuous approximations. In DEDS, fluidization has been explored in
queueing networks (e.g., [11, 13, 1]), PNs ([6, 34]) and more recently in Process
Algebra [16].

Regarding PNs, David and Alla first introduced fluid PNs with constant and
variable speeds [6, 7]. From another perspective, the relaxation of the fundamen-
tal or state equation of the PN system was proposed in [29] (in the same meeting),
in order to systematically use Linear Programming for structural analysis. These
two approaches lead to continuous state equations (see Fig. 18.1), but the proposal
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(more conceptual) of David and Alla leads to the possibility of describing the tran-
sient behavior of timed models. The resulting fluid PN models can be analyzed as
state-continuous systems but behave (quantitatively) as T-timed discrete PNs (ex-
amples can be found in [9]). This topic was revisited in [26], making emphasis in
the connection with the original discrete models. In fact, there the infinite server
semantics (which is the same that the variable speed) was derived as the approxi-
mation of the average behavior of a Markovian stochastic T-timed PN (a PN whose
transitions fire after exponentially distributed random time delays). From another
perspective, different authors have proposed hybrid PN systems (some transitions
remain discrete while the others are fluidified) that can be used as models per se, for
instance fluid stochastic PNs [36], differential PNs [4], batch hybrid PNs [10], first-
order hybrid PNs [2], etc. These hybrid models enjoy a broad expressive power, but
the analysis of some of these systems is technically very complex.

Fig. 18.1 Two ways for the fluidization of Petri nets

In this and the following chapters, the basic model in [9, 26] will be mostly con-
sidered in both its autonomous version (untimed) and timed version (mostly under
infinite server semantics or variable speed). Then, from our perspective, a continu-
ous Petri nets model is derived as a potential approximation of an original discrete
PN. In this way, the analysis of these continuous models provides coherence, syn-
ergy, and economy with respect to the Petri net paradigm [31, 32].

The fluidization seems a promising technique when the initial marking can be
assumed as “large enough”(where the relative errors, and their consequences, tend
to be small, because the rounding effects are relatively less significant). In fact,
increasing the population does not affect the complexity of the analysis via fluid
models, since, in the resulting continuous PN, the number of state variables is upper
bounded by the number of places, being independent of the number of tokens in the
net system (thus, of the initial marking).

The risk of fluidization is a loss of fidelity. As linearization of nonlinear
models, fluidization does not always lead to relaxed models of similar behavior,
i.e., they are not always approximations. The first problem that may arise when
using this approach is that the fluid model does not necessarily preserve all the
behavioral properties of the original DEDS model. For example, mutex properties
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(e.g., two places cannot be concurrently marked) are always lost, spurious markings
(solutions of the state equation that are not reachable markings in the discrete PN)
may appear in the continuous model or liveness is not preserved in the general case.
Thus, for certain cases, the analysis through fluidization may be useless. In other
cases, the fluidization may provide only an educated guess. Moreover, the resulting
fluid model may exhibit an important technical complexity. For instance, a timed
continuous PN under infinite server semantics is a piecewise linear system (a linear
system whose state and input matrices change, among a countable set of matrices,
according to the state), from a continuous-state dynamical systems’ perspective.
The number of embedded linear operation modes (equivalently, sets of linear dif-
ferential equations) usually increases exponentially w.r.t. the number of transitions
representing rendez-vous (synchronizations). Thus, even if the behavior of a DEDS
is approximately preserved by its corresponding fluid relaxation, this could be still
too complex to be properly analyzed. The number of state variables does not depend
on the initial marking, but in the number of places. Thus, large net structures may
lead to continuous models with a large number of state variables, since one state
variable is usually defined per each place. Furthermore, the addition of time in the
continuous model brings important additional difficulties for analysis and synthesis.
In this sense, the expressive power of timed continuous PNs (under infinite server
semantics) is surprisingly high, because they can simulate Turing Machines [27]!
This means that certain important properties as the existence of a steady-state are
undecidable.

On the other hand, when a system admits a “reasonable” fluidization (in the sense
that the fluid model preserves the desired properties of the discrete one), several ad-
vantages can be visualized by using continuous models: the first one is obviously
the reduction of the complexity related to a large marking population, since in con-
tinuous models the state explosion problem does not appear. Furthermore, certain
problems can be analyzed by using more efficient algorithms, for instance, the set
of reachable markings (including infinite firing sequences) is convex, thus reducing
the complexity of optimization problems. Additionally, the ability to fire in isola-
tion minimal T-semiflows makes behavioral and structural synchronic relations 1

to collapse, thus, for example, the bound of a place can be straightforwardly com-
puted in polynomial time [28, 29]. Another interesting advantage is that techniques
and concepts developed in the Control Theory for continuous-sate systems can be
applied to the timed continuous PN model. For instance, techniques for the anal-
ysis and application of performance controllers that reject perturbations, stability,
observability, estimation, etc. In this way, fluidization represents a bridge between
particular classes of continuous-state and discrete event systems.

In this chapter, continuous Petri nets are first introduced as untimed, i.e., fully
non-deterministic, and later as timed formalisms. The relationship between the
properties of (discrete) PNs and the corresponding properties of their continuous

1 Synchrony theory is a branch of general net theory that deals with the characterization of
transition firing dependencies. Two transition subsets are in a given synchronic relation if
the corresponding quantitative firing dependency is bounded. Behavioral relations depend
on the initial marking, while structural relations hold for any (finite) initial marking.
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approximation is considered at several points. Observability and Control of timed
continuous Petri nets (TCPNs) will be considered in forthcoming chapters.

18.2 Fluidization of Untimed Net Models

This section presents the formalism of continuous Petri nets and its behavior in
the untimed framework. It deals with basic concepts, as lim-reachability [25] and
desired logical properties, and relates them to those ones of the discrete systems.

18.2.1 The Continuous PN Model

A continuous Petri net system [9, 26] is understood as the fluid relaxation of all the
transitions of a discrete Petri net one (as a consequence, the marking at all the places
becomes continuous). In the sequel, the set of input and output nodes of v will be
denoted as •v and v•, respectively.

Definition 18.1. A continuous PN system is a pair 〈N,mmm0〉 where N is a P/T net

(like in a P/T system) and mmm0 ∈ R
|P|
≥0 is the initial marking. The evolution rule is

different to the case of discrete P/T systems, since in continuous PNs the firing is

not restricted to integer amounts, and so the marking mmm ∈ R
|P|
≥0 is not forced to be

integer. Instead, a transition ti is enabled at mmm iff for every p j ∈ •ti, m[pi]> 0; and
its enabling degree is enab(ti,mmm) = minp j∈•ti{m[p j]/Pre[p j, ti]}. The firing of ti in
a certain amount 0≤ α ≤ enab(ti,mmm) leads to a new marking mmm′ = mmm+α ·CCC[P, ti],
where CCC = PPPooosssttt−PPPrrreee is the token flow or incidence matrix, and CCC[P, ti] denotes
the column of CCC corresponding to ti.

The usual PN system, 〈N,MMM0〉 with MMM0 ∈ N
|P|, will be said to be discrete so as to

distinguish it from a continuous PN system 〈N,mmm0〉, in which mmm0 ∈ R
|P|
≥0. In the fol-

lowing, the marking of a continuous PN will be denoted in lower case mmm, while the
marking of the corresponding discrete one will be denoted in upper case MMM. Observe
that Enab(ti,MMM) ∈ N in discrete PNs, while enab(ti,mmm) ∈ R≥0 in continuous PNs.
Notice that to decide whether a transition in a continuous system is enabled or not, it
is not necessary to consider the weights of the arcs going from the input places to the
transition. However, the arc weights are important to compute the enabling degrees.
Here no policy for the firing of transitions is imposed, that is, a full non-determinism
is assumed for the order and amounts in which transitions are fired.

Right and left natural annullers of the token flow matrix are called T- and
P-semiflows, respectively (i.e., vectors yyy and xxx, whose entries belong to N∩ {0},
fulfilling yyyT ·CCC = 000 and CCC · xxx = 000, respectively). The existence of P-semiflows in-
duces conservation laws, i.e., if ∃yyy ≥ 0,yyyT ·CCC = 0 then by the state equation it
holds yyyT ·mmm0 = yyyT ·mmm for any initial marking mmm0 and any reachable marking mmm.
On the other hand, T-semiflows represent potential cyclic behaviors, i.e., if ∃xxx≥ 0,
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CCC · xxx = 0 then ∃mmm0 such that mmm0
σ−→mmm0 with σ being a firing sequence whose fir-

ing count vector equals xxx. As in discrete nets, when yyyT ·CCC = 0 for some yyy > 0 the
net is said to be conservative, and when CCC · xxx = 0 for some xxx > 0 the net is said to
be consistent. Given a vector xxx ∈ R

|T |, its support is defined as the set of transitions
||xxx||= {ti ∈ T | x[i] 
= 0}, where xxx[i] denotes the ith entry of xxx. Similarly, for a vector
yyy ∈ R

|P|, ||yyy||= {pi ∈ P | y[i] 
= 0}.
The definitions of subclasses that depend only on the structure of the net are also

generalized to continuous nets. For instance, in join free nets (JF) each transition has
at most one input place, in choice free nets (CF) each place has at most one output
transition, and in equal conflict nets (EQ) all conflicts are equal, i.e., •t ∩•t ′ 
= /0⇒
PPPrrreee[P, t] = PPPrrreee[P, t ′]. Moreover, a net N is said to be proportional equal conflict if
•t ∩•t ′ 
= /0⇒ ∃q ∈ R>0 such that PPPrrreee[P, t] = q ·PPPrrreee[P, t ′]. Finally, a net N is said
to be mono-T-semiflow (MTS) iff it is conservative and has a unique minimal T-
semiflow whose support contains all the transitions (a T-semiflow is minimal if its
support does not contain the support of another T-semiflow).

18.2.2 Reachability

Let us now illustrate the firing rule in an untimed continuous Petri net system. For
this, consider the system in Fig. 18.2(a). The only enabled transition at the initial
marking is t1, whose enabling degree is 1. Hence, it can be fired in any real quantity
going from 0 to 1. For example, by firing it an amount equal to 1, the marking
mmm1 = [1 1]T is reached. At mmm1 transition t2 has enabling degree equal to 1; if it is
fired in an amount of 0.5, the resulting marking is mmm2 = [1.5 0.5]T . In this way, both
mmm1 and mmm2 are reachable markings with finite firing sequences. On the other hand,
at mmm1 the marking at p1 is equal to 1, leading to an enabling degree for t1 of 0.5,
i.e., the half amount that at mmm0. By firing t1 an amount of 0.5, the marking reached
is mmm3 = [0.5 1.5]T . Notice that by successively firing t1 with an amount equal to
its enabling degree, the marking of p1 will approach to 0. The marking reached in
the limit (with an infinite firing sequence), namely mmm′ = [0 2]T , corresponds to the
emptying of an initially marked trap Θ = {p1} (a trap is a set of places Θ ⊆ P s.t.
Θ • ⊆ •Θ ), fact that can not occur in discrete systems. Thus, in continuous systems
traps may not trap! Nevertheless, such trap cannot be emptied with a finite firing
sequence. This leads us to consider two different reachability concepts.

Definition 18.2. A marking is said to be reachable if it is reachable with a fi-
nite firing sequence. On the other hand, a marking is said to be lim-reachable
if it can be reached with either a finite or an infinite firing sequence. More for-

mally: mmm ∈ R
|P|
≥0 is lim-reachable if a sequence of reachable markings {mmmi}i≥1 ex-

ists such that mmm0
σ1−→mmm1

σ2−→mmm2 · · · · · ·mmmi−1
σi−→mmmi · · · and lim

i→∞
mmmi = mmm. For a given

system 〈N ,mmm0〉, the set of all markings that are reachable in a finite number of
firings is denoted as R(N,mmm0), while lim-R(N,mmm0) denotes the set of lim-reachable
markings.
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Fig. 18.2 (a) Autonomous continuous system (b) Lim-Reachability space

As an example, Fig. 18.2(b) depicts lim-R(N,mmm0) of the system in Fig. 18.2(a).
The set of lim-reachable markings is composed of the points on the line connecting
[2 0]T and [0 2]T . On the other hand, all the points of that line excepting the circled
one [0 2]T belong to R(N,mmm0), i.e., R(N,mmm0) = lim-R(N,mmm0)\ {[0 2]T}.

For any continuous system 〈N,mmm0〉, the differences between R(N,mmm0) and
lim-R(N,mmm0) are just in the border points on their convex spaces. In fact, it holds
that R(N,mmm0)⊆ lim-R(N,mmm0) and that the closure of R(N,mmm0) is equal to the clo-
sure of lim-R(N,mmm0) [17].

18.2.3 Some Advantages

A system can be fluidizable with respect to a given property, i.e., the continuous
model preserves that property of the discrete one, but may be not with respect to
other properties. Thus, the usefulness of continuous models highly depends on the
properties to be analyzed and the systems being studied.

An interesting property is that RD(N,mmm0) ⊆ R(N,mmm0) (where RD(N,mmm0) is the
set of markings reachable by the system as discrete). This can be explained as fol-
lows: for any marking mmm reached by firing transitions in discrete amounts from

mmm0 ∈ N
|P|
≥0, i.e., as if the system were discrete, mmm is also reachable by the system as

continuous just by applying the same firing sequence.
The fact that RD(N,mmm0) ⊆ R(N,mmm0) might involve a mismatch among some

properties of the discrete and continuous systems, e.g., the new reachable markings
might make the system live or might deadlock it (examples can be found in [25, 35]).
This non-fluidizability of discrete net systems with respect to the deadlock-freeness
property, that may be surprising at first glance, can be easily accepted if one thinks,
for example, on the existence of non-linearizable differential equations systems .

Let us recall the concept of boundedness in discrete Petri nets: a PN system is
said bounded if k ∈ N exists such that for every reachable marking mmm, mmm≤ k ·1,
with 1 is the vector of ones, and it is structurally bounded if it is bounded with
every initial marking. These concepts can also be applied to continuous Petri net
systems. Similarly, a continuous system is said lim-live if for any transition t and
any lim-reachable marking mmm, a successor mmm′ exists such that t is enabled [25].
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A continuous net N is said structural lim-live if there exists an initial marking mmm0

such that the continuous system 〈N,mmm0〉 is lim-live.
The concept of limit-reachability in continuous systems provides an interesting

approximation to liveness properties of discrete nets, in the sense that lim-liveness
and boundedness of the continuous system is a sufficient condition for structural
liveness and boundedness of the discrete one [25]:

Proposition 18.1. Let 〈N,mmm0〉 be a bounded lim-live continuous PN system. Then,
N is structurally live and structurally bounded as a discrete net.

From Proposition 18.1 it is clear that any necessary condition for a discrete system
to be str. live and str. bounded, is also necessary for it to be str. lim-live and bounded
as continuous. In particular rank theorems [24] establish necessary liveness condi-
tions based on consistency, conservativeness and the existence of an upper bound
on the rank of the token flow matrix, which is the number of equal conflict sets.
Even more, for the EQ subclass, such structural conditions are also sufficient for
lim-liveness [25].

There are some interesting advantages when dealing with fluid PN models. An
important one is that the reachability set R(N,mmm0) is convex [25].

Proposition 18.2. Let 〈N,mmm0〉 be a continuous PN system. The set R(N,mmm0) is
convex, i.e., if two markings mmm1 and mmm2 are reachable, then for any α ∈ [0,1],
αmmm1 +(1−α)mmm2 is also a reachable marking.

Notice that in a continuous system any enabled transition can be fired in a suffi-
ciently small quantity such that it does not become disabled. This implies that every
transition is fireable if and only if a strictly positive marking is reachable. This is
equivalent to the non existence of empty siphons (a siphon is a set of places ∑ s.t.
•∑ ⊆ ∑•, then an unmarked siphon cannot gain marks). From this, realizability of
T-semiflows can be deduced [25], and therefore behavioral and structural synchronic
relations [28] coincide in continuous systems in which every transition is fireable at
least once. In particular, considering boundedness and structural boundedness as in
discrete systems, both concepts coincide in continuous systems in which every tran-
sition is fireable. And, as in discrete systems, structurally boundedness is equivalent
to the existence of yyy > 0 such that yyy ·CCC ≤ 0 (see, for example, [3, 33]).

Another interesting property is that RSD(N,mmm0)⊆R(N,mmm0) implies that bound-
edness of the continuous system is a sufficient condition for boundedness of the
discrete one. Moreover, it is important to stress that the set lim-R(N,mmm0) can be
easily characterized if some common conditions are fulfilled [25].

Proposition 18.3. Let 〈N,mmm0〉 be consistent and such that each transition can
be fired at least once. Then mmm ∈ lim-R(N,mmm0) iff there exists σ > 0 such that
mmm = mmm0 +CCC ·σ .

Hence, if a net is consistent and all the transitions are fireable, then the set of lim-
reachable markings is fully characterized by the state equation . This immediately
implies convexity of lim-R(N,mmm0) and the inclusion of every spurious discrete so-
lution in lim-R(N,mmm0). Fortunately, every spurious solution in the border of the
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convex set lim-R(N,mmm0) can be cut by adding some implicit places (more precisely
the so-called cutting implicit places [5]) what implies clear improvements in the
state equation representation. This will be detailed in Subsection 18.4.1.

On the other hand, if 〈N,mmm0〉 is not consistent or some transitions cannot be fired,
lim-R(N,mmm0) can still be characterized by using the state equation plus a simple ad-
ditional constraint concerning the fireability of the transitions in supportσ . The set
R(N,mmm0) can also be fully determined by adding one further constraint related to
the fact that a finite firing sequence cannot empty a trap [17] (in contrast to infi-
nite sequences which might empty initially marked traps as shown in the previous
section).

18.3 Fluidization of Timed Net Models

This section introduces the notion of time in the continuous Petri net formalism
presenting the most used firing semantics. The main focus will be on infinite server
semantics. Some basic properties will be discussed.

18.3.1 Server Semantics

If a timed interpretation is included in the continuous model (time is associated to
the transitions, thus they fire with certain speed), the fundamental equation depends
on time: mmm(τ) =mmm0+CCC ·σ(τ), which, by assuming that σ(τ) is differentiable, leads
to ṁmm(τ) = CCC · σ̇(τ). The derivative of the firing count vector of the sequence σ is
fff (τ) = σ̇(τ), called the (firing) flow, and leads to the following equation for the
dynamics of the timed continuous PN (TCPN) system:

ṁmm(τ) =CCC · fff (τ). (18.1)

Depending on how the flow fff is defined, different firing semantics can be obtained.
For finite server semantics (FSS), if the markings of the input places of t j are strictly
greater than zero (strongly enabled), its flow will be constant, equal to λ j, i.e., all
servers work at full speed. Otherwise (weakly enabled), the flow will be the mini-
mum between its maximal firing speed and the total input flow to the input empty
places. Formally,

f j(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ j if ∀pi ∈• t j, m[pi]> 000

min

⎧
⎨

⎩
min

pi ∈• t j|mmmi = 0

⎧
⎨

⎩ ∑
t ′ ∈• pi

f [t ′] ·Post[t ′, pi]

Pre[pi, t j]

⎫
⎬

⎭
,λ j

⎫
⎬

⎭
otherwise

(18.2)
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The dynamical system under FSS corresponds to a piecewise constant system and
a switch occurs when a marked place becomes empty and the new flow values are
computed ensuring that the marking of all places remain positive. Many examples
using this semantics are given in [9] while in [21] a model is studied using this and
the following semantics.

In the case of infinite server semantics (ISS), the flow of transition t j is given by:

f j(τ) = λ j · enab(t j,mmm(τ)) = λ j · min
pi∈•t j

mi

Pre[pi, t j]
. (18.3)

Under ISS, the flow through a transition is proportional to the marking of the in-
put place determining the enabling degree. As already advanced, TCPNs under ISS
have the capability to simulate Turing machines [27], thus they enjoy an impor-
tant expressive power; nevertheless, certain important properties are undecidable
(for example, marking coverability, submarking reachability or the existence of a
steady-state).

The flow through a transition under product (population) semantics (PS) 2 is
given by

f j(τ) = λ j · ∏
pi∈•t j

mi

Pre[pi, t j]
. (18.4)

Product semantics can lead to chaotic models, i.e., models of deterministic dynam-
ical systems that are extremely sensitive to initial conditions. This semantic is fre-
quently adopted in population systems, like predator/pray, biochemistry, etc. (see,
for example, [15]).

In the case of manufacturing or logistic systems, it is natural to assume that the
transition firing flow is the minimum between the number of clients and servers and,
FSS or ISS are mainly used [35, 9]. Since, these two semantics provide two different
approximations of the discrete net system, an immediate problem is to decide which
semantics will approximate “better” the original system. In [9], the authors observed
that most frequently ISS approximates better the marking of the discrete net system.
Furthermore, for mono-T-semiflow reducible net systems [18], it has been proved
that ISS approximates better the flow in steady state under some (general) conditions
[21]. For this reason, ISS will be mainly considered in the rest of this work. Let us
recall the formal definition.

Definition 18.3. A timed continuous Petri net (TCPN) is a time-driven continuous-
state system described by the tuple 〈N,λλλ ,mmm0〉, where 〈N,mmm0〉 is a continuous PN

and the vector λλλ ∈R|T |>0 represents the transitions rates that determine the temporal
evolution of the system. Under ISS the flow (the firing speed) through a transition ti
is defined as the product of the rate λi and enab(ti,mmm), i.e., fi(mmm) = λi ·enab(ti,mmm) =
λi ·minp∈•ti{m[p]/Pre[p, ti]}.

Let us recall now some useful concepts.

2 Through discoloration of colored (discrete) nets, the minimum operator of ISS is trans-
formed into a PS [34].
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Definition 18.4. A configuration of a TCPN, denoted as Ck, is a set of (p, t) arcs,
one per transition, covering the set T of transitions. It is said that the system at
marking mmm is at a configuration Ck if the arcs in Ck provide the minimum ration
in the ISS definition (18.3), or equivalently, Ck is the active configuration at mmm. A
configuration matrix |T |× |P| is associated to each configuration as follows:

ΠΠΠ k[t j, pi] =

{
1

Pre[pi,t j ]
, if (pi, t j) ∈ Ck

0, otherwise
(18.5)

The reachability set of a TCPN system can be partitioned (except on the borders) ac-
cording to the configurations, and inside each obtained convex region Rk the system
dynamics is linear. More formally, Rk = {mmm ∈ lim-R(N,mmm0)|ΠΠΠ k mmm≤ΠΠΠ j mmm,∀ΠΠΠ j ∈
{ΠΠΠ}}, where {PPPiii} denotes the set of all configuration matrices.

The number of regions and configurations is upper bounded by ∏t∈|T | |•t| but some
of them can be redundant, thus removed [22]. Let us define the firing rate matrix
ΛΛΛ = diag({bmλ}) (i.e., a diagonal |T |× |T | matrix containing the rates of the tran-
sitions). The evolution of a TCPN, under ISS, can be represented as:

ṁmm(τ) =CCC · fff (τ) =CCC ·ΛΛΛ ·ΠΠΠ(mmm) ·mmm(τ), (18.6)

where ΠΠΠ(mmm) is the configuration matrix operator (ΠΠΠ(mmm) = ΠΠΠ k where Ck is the
active configuration at mmm). Notice that, while the system is evolving inside a region
Rk, it behaves linearly as ṁmm = CCCΛΛΛΠΠΠ kmmm, thus a TCPN under ISS is a piecewise-
linear system.

18.3.2 Qualitative Properties under ISS

According to (18.3), it is obvious to remark that being the initial marking of a con-
tinuous net system positive, the marking will remain positive during the (unforced
or non-controlled) evolution. Hence, it is not necessary to add constraints to ensure
the non-negativity of the markings. On the other hand, according to (18.3) as well,
two homothetic properties are dynamically satisfied:

• if λλλ is multiplied by a constant k > 0 then identical markings will be reached,
but the system will evolve k times faster;

• if the initial marking is multiplied by k, the reachable markings are multiplied by
k and the flow will also be k times bigger.

Unfortunately, ISS has not only “good” properties and some “paradoxes” appear.
For example, it could be thought that, since fluidization relax some restrictions, the
throughput (flow at steady-state) of the continuous system should be at least that
of the timed discrete one. However, the throughput of a TCPN is not in general
an upper bound of the throughput of the discrete PN [35]. Moreover, if only some
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components of λλλ or only some components of mmm0 are increased the steady state
throughput is not monotone in general.

Two monotonicity results of the steady-state throughput are satisfied under some
general conditions [21]:

Proposition 18.4. Assume 〈N,λλλ i,mmmi〉, i = 1,2 are mono-T-semiflow TCPNs under
ISS which reach a steady-state. Assume that the set of places belonging to the arcs
of the steady state configuration contains the support of a P-semiflow. If

1. 〈N,λλλ 1,mmm1〉 and 〈N,λλλ 1,mmm2〉 verify mmm1 ≤ mmm2 or
2. 〈N,λλλ 1,mmm1〉 and 〈N,λλλ 2,mmm1〉 verify λ1 ≤ λλλ 2,

then the steady state flows satisfy fff 1 ≤ fff 2.
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Fig. 18.3 A Mono-T-semiflow net and its “fluid” throughout in steady-state. Observe that it
is not smooth, and that increasing λ2 > 0.5 the throughput is counterintuitive (faster machine,
slower behavior

Let us consider for instance, the mono-T-semiflow TCPN in Fig. 18.3(a) under ISS
with λ1 = λ3 = 1 and mmm0 = [15 1 1 0]T . Different modes can govern the evolution of
the system at steady-state. For example, if 0 < λ2 ≤ 0.5, the flow in steady-state is
f1(τ) = m1(τ), f2(τ) = m4(τ) and f3(τ) = m3(τ), respectively (i.e., m1(τ)

2 < m4(τ)
2

and m4(τ)<m2(τ) in steady state). Therefore, C2 = {(p1, t1),(p4, t2),(p3, t3)} is the
steady-state configuration and the set of places {p1, p4, p3} determines (constrains)
the flow. Since this set contains the support of the P-semiflow yyy = [1041], the
steady-state flow is monotone (Fig. 18.3(b)). When λ2 > 0.5, the steady-state config-
uration becomes C3 = {(p4, t1),(p2, t2),(p3, t3)}, i.e., the set of places governing the
evolution becomes {p4, p2, p3}, that is the support of the P-flow yyy = [01 − 3 − 1],
not a P-semiflow, and monotonicity may not hold (Fig. 18.3(b)).

The connection between liveness in the autonomous (untimed) continuous model
and the timed ones has been investigated. First of all, notice that if a steady-state ex-
ists in the timed model, from (18.1) ṁmm = CCC · fff ss = 000 is obtained (independently of
the firing semantics), where fff ss is the flow vector of the timed system in the steady
state, fff ss = limτ→∞ fff (τ). Therefore, the flow in the steady state is a T-semiflow of
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the net. Deadlock-freeness and liveness definitions can be extended to timed contin-
uous systems as follows:

Definition 18.5. Let 〈N,λλλ ,mmm0〉 be a timed continuous PN system and fff ss be the
vector of flows of the transitions in the steady state.

• 〈N,λλλ ,mmm0〉 is timed-deadlock-free if fff ss 
= 0;
• 〈N,λλλ ,mmm0〉 is timed-live if fff ss > 0;
• 〈N,λλλ 〉 is structurally timed-live if ∃ mmm0 such that fff ss > 0.

Notice that if a timed system is not timed-live (timed-deadlock-free), it can be con-
cluded that, seen as untimed, the system is not lim-live (lim-deadlock-free), since
the evolution of the timed system just gives a particular trajectory that can be fired in
the untimed system. This fact allows us to establish a one-way bridge from liveness
conditions of timed and untimed systems. The reverse is not true, i.e., the untimed
system can deadlock, but a given λλλ can drive the marking along a trajectory without
deadlocks. In other words, the addition of an arbitrary transition-timed semantics to
a system imposes constraints on its evolution what might cause the timed system to
satisfy some properties, as boundedness and liveness, that are not necessarily satis-
fied by the untimed system [38, 39]. The relationships among liveness definitions
are depicted in Fig. 18.4.

by definition

by definition

untimed

timed

behavioral structural

lim−liveness

timed−liveness

lim−liveness
structurally

timed−liveness
structurally

Fig. 18.4 Relationships among liveness definitions for continuous models

As an example, let us show how some conditions initially obtained for timed sys-
tems can be applied to untimed ones. It is known that if a MTS timed net 〈N,λλλ 〉 is
structurally live for any λλλ > 000 then for every transition t there exists p ∈ •t such that
p• = {t}, i.e., p is structurally persistent or conflict-free [19]. Let 〈N,λλλ 〉 be a MTS
timed net containing a transition t such that for every p ∈ •t, |p•|> 1. According
to the mentioned condition, λλλ exists such that 〈N,λλλ 〉 is not structurally timed-live.
Therefore N is not structurally lim-live, since structurally timed-liveness is a neces-
sary condition for structurally lim-liveness (see Fig. 18.4).

18.3.3 On the Quantitative Approximation under ISS

Fluid PNs are usually considered as relaxations of original discrete models. In fact,
the definitions for the most usual semantics for timed continuous PNs were inspired
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by the average behavior of high populated timed discrete PNs [9, 26]. Nevertheless,
the dynamic behavior of a timed continuous PN model does not always approxi-
mate that of the corresponding timed discrete PN. For this reason, it is important to
investigate the conditions that lead to a valid relaxation. In some sense, this subsec-
tion deals with the legitimization of the so called ISS and the consideration of some
issues that affect the quality of the approximation.

Let us consider Markovian Petri nets (MPN), i.e., stochastic discrete Petri nets
with exponential delays associated to the transitions and conflicts solved by a race
policy [23]. In [37] it was shown that, in certain cases, the marking of a TCPN un-
der ISS approximates the average marking of the corresponding MPN (having the
same structure, rates and initial marking, under the assumption of ergodicity). The
approximation is better when the enabling degrees of the transitions (the number
of active servers) is large and the system mainly evolves inside one marking region
(according to one configuration or linear mode), i.e., for each synchronization, a
single place is almost always constraining the throughput. Errors in the approxima-
tion may appear due to the existence of sychronizations: arc weights greater than
one and joins (rendez-vous). The reason is that the enabling degree (thus the flow)
definition for the TCPN does not accurately describe the enabling degree (thus the
throughput) of the discrete model in these cases. In fact, the approximation is perfect
for ordinary Join-Free Petri nets.

Let us provide an intuitive explanation about how the arc weights introduce ap-
proximation errors. Assume that the continuous marking of a TCPN approximates
the average marking of the corresponding MPN at certain time τ , i.e., E{MMM(τ)} ∼
mmm(τ). Given an arc with weight q connecting a place p j to a transition ti, the expected
enabling degree of ti in the MPN would be E{Enab(ti)}= E{$M[p j]/q%}, which is
different from the enabling degree in the TCPN enab(ti) = m[p j]/q∼ E{M[p j]}/q,
due to the presence of the operator $ ·% (note that in ordinary arcs q = 1, thus
$M[p j]/q% = M[p j]/q), and the quality of the approximation will be reduced or
lost for future time.

As an example, consider the MPN system of Fig. 18.5(a) with timing rates
λ1 = λ2 = 1, and initial marking MMM0 = [k · q, 0]T , where k,q ∈ N

+. This system,
and its corresponding TCPN, were evaluated for different values of k and q. The
obtained values for the throughput and flow of t1, at steady state, are shown in Ta-
ble 18.1. Note that, when k = 1 (Table 18.1(a), here the marking is relatively very
small), the larger the weight of the input arc of t1 (i.e., q), the larger the differ-
ence (error) between the throughput in the MPN (χ[t1]) and the flow in the TCPN
( f [t1]). Observe that the flow in the continuous model remains unchanged. On the
other hand, when the arc weights are fixed but the initial marking (i.e., k) is in-
creased (Table 18.1(b)), the relative approximation error decreases (in such case,
E{$M[p1]/q%} ∼ E{M[p1]}/q for M[p1]>> q). Concluding, the relative errors in-
troduced by arc weights become smaller when the marking in the net is increased
w.r.t. those weights.

Let us illustrate now, how joins (rendez-vous) introduce approximation errors.
Given a synchronization ti with two input places {p j, pk}, the expected enabling in
the MPN would be E{Enab(ti)}= E{min(M[p j], M[pk])}, which is not equal to the
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Fig. 18.5 a) Cycle net with arc weights. b) Marked graph which evolves through different
regions

Table 18.1 Throughput and its approximation for t1 of the net of Fig. 18.5(a)

(a)

k = 1 \ q = 1 2 4 8 16
MPN,χ [t1] 0.50 0.40 0.32 0.26 0.22
TCPN, f [t1] 0.50 0.50 0.50 0.50 0.50

(b)

q = 4 \ k = 1 2 4 8 16
MPN,χ [t1] 0.32 0.80 1.76 3.78 7.68
TCPN, f [t1] 0.50 1.00 2.00 4.00 8.00

enabling in the TCPN enab(m[p j],m[pk]) ∼ min(E{M[p j]}, E{M[pk]}), because
the order in which the expect value and the “min” operator are applied cannot be
commuted.

As an example, the MPN system of Fig. 18.5(b) was simulated with timing
rates λ1 = λ2 = λ3 = 1 and different rates for t4: λ4 ∈ {2,1.5,1.2,1}. The cor-
responding TCPN model was also simulated. The average markings at the steady
state are shown in Table 18.2 (columns MPN and TCPN). The column denoted as
E{Enab(t4)} is the average enabling degree of t4 at the steady state (this represents
a lower bound for the number of active servers in the transitions). The value in col-
umn P(MMM ∈Rss) is the probability that the marking is inside the region Rss, related
to the steady state of the TCPN (equivalently, the fraction of time that MMM(τ) evolves
according to a single configuration or linear mode). Note that the lower the prob-
ability that MMM(τ) belongs to Rss, the larger the difference (the error) between the
MPN and the TCPN, even if the average enabling degrees increase. On the other
hand, a good approximation is provided when the probability that MMM(τ) ∈ Rss is
high, which occurs for λ4 = 2. The approximation holds because, in this case, MMM(τ)
mainly evolves in one region Rss (in particular, E{min(M[p4],M[p5])}∼ E{M[p4]}
and E{min(M[p2],M[p3])} ∼ E{M[p2]}).

Table 18.2 Marking approximation of p3 for the MPN of Fig. 18.5(b)

λ4 MPN TCPN TnCPN E{Enab(t4)} P(MMM ∈Rss)

2 54.62 55 54.63 2.53 0.8433
1.5 53.87 55 53.88 3.22 0.661
1.2 51.16 55 51.17 3.88 0.413
1 29.97 55 30.73 4.93 0.036
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From a continuous-systems perspective, it can be deduced that approximation
does not accumulate in time if the steady state marking of the continuous model is
asymptotically stable (because the deviations of the MPN from its expected behav-
ior, which is similar to that of the TCPN, vanish with the time evolution). Therefore,
asymptotic stability is a necessary condition (together with liveness, otherwise, the
continuous system may die while the discrete is live) for the approximation of the
steady state.

18.4 Improving the Approximation: Removing Spurious
Solutions, Addition of Noise

Since the approximation provided until now by a fluid PN is not always accurate, a
question that may arise is the possibility of improving such approximation by means
of modifying the continuous Petri net definition. Through this section, a couple of
approaches, for such improvement, will be discussed.

18.4.1 Removing Spurious Solutions

The state equation provides a full characterization of the lim-reachable markings (in
the autonomous continuous model) for consistent nets with no empty siphons. This
allows one to use the state equation to look for deadlocks, i.e., markings at which
every transition has at least one empty input place. In some cases, at such a deadlock
mmm there is an empty trap that was initially marked. Nevertheless, it is well known
that initially marked traps cannot be completely emptied in discrete nets. Thus, mmm
is a spurious solution of the state equation if we consider the system as discrete,
equivalently, deadlock-freeness has not been preserved during fluidization.

Consider for instance the net in Fig. 18.6 with mmm0 = [10 11 0]T . The marking
mmm = [0 1 10]T is a deadlock and can be obtained as a solution of the state equation
with σ = [10 0]T as firing count vector. Thus given that the system satisfies the
conditions of Proposition 18.3, mmm is lim-reachable, i.e., the system lim-deadlocks.
Notice that p1 is a trap (•p1 = p1

•) that was initially marked and can be emptied by
an infinite firing sequence. Thus, mmm is not reachable in the discrete net, thus it is an
spurious deadlock.

Fortunately, some spurious deadlocks can be removed from the state equation by
adding implicit places [5]. For this, it is first necessary to detect if a deadlock mmm is
spurious or not. Let us define PPPreΘ and PPPostΘ as |P|× |T | sized matrices such that:

• PreΘ [p, t] = 1 if Pre[p, t]> 0, PreΘ [p, t] = 0 otherwise
• PostΘ [p, t] = |•t| if Post[p, t]> 0, PostΘ [p, t] = 0 otherwise.
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Fig. 18.6 A continuous MTS system that integrates a discrete spurious deadlock mmm =
[0 1 10]T , reachable through the firing sequence 5t1,2.5t1,1.25t1, . . .

Equations {yyyT ·CCCΘ = 0, yyy ≥ 0} where CCCΘ = PPPostΘ −PPPreΘ define a generator of
traps (Θ is a trap iff ∃yyy≥ 0 such that Θ = supportyyy, yyyT ·CCCΘ = 0) [14, 33]. Hence:

Proposition 18.5. Given mmm, if the following bilinear system:

• mmm = mmm0 +CCC ·σ , mmm,σ ≥ 0, {state equation}
• yyyT ·CCCΘ = 0,yyy≥ 0, {trap generator}
• yyyT ·mmm0 ≥ 1, {initially marked trap}
• yyyT ·mmm = 0, {trap empty at mmm}

has solution, then mmm is a spurious solution, and the support of vector yyy defines a
trap that becomes empty.

The result of Proposition 18.5 follows directly from the fact that the support of yyy
is a trap that has been emptied. Let us illustrate now how spurious solutions can be
cut by adding an implicit place (a place is said to be implicit if it is never the unique
place that forbids the firing of its output transitions, i.e., it does not constraint the
behavior of the sequential net system).

Recalling the example of Fig. 18.6, since p1 is an initially marked trap, its
marking must satisfy m[p1] ≥ 1. This equation together with the conservative law
m[p1]+m[p3] = 10 leads to m[p3]≤ 9. This last inequality can be forced by adding
a slack variable, i.e., a cutting implicit place q3, such that m[p3]+m[q3] = 9. Thus
q3 is a place having t2 as input transition, t1 as output transition, and 9 as initial
marking. The addition of q3 to the net system renders p2 implicit (structurally iden-
tical but with a higher marking) and therefore p2 can be removed without affecting
the system behavior [5, 33]. In the resulting net system, mmm = [0 1 10]T is not any
more a solution of the state equation, i.e., it is not lim-reachable and then the net
system does not deadlock as continuous.

Since deadlock markings in continuous systems are always in the borders of the
convex set of reachable markings, discrete spurious deadlocks can be cut by the
described procedure. Nevertheless, such an addition creates more traps that might
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be treated similarly in order to improve further the quality of the continuous ap-
proximation. It is important to remark that, by eliminating spurious deadlocks, the
approximation of the performance of the discrete net system, provided by the timed
relaxation, is also improved even if the deadlock is not reached in the timed con-
tinuous model. In any case, removing spurious solutions always represents an im-
provement of the fluidization, being specially important when those are deadlocks
or represent non-live steady states.

As an example, consider again the MPN given by the net of Fig. 18.6 with ini-
tial marking MMM0 = [10110]T and rates λλλ = [0.41]. As already shown, this PN has
a spurious deadlock, which can be removed by eliminated the two frozen tokens
from p2. This is equivalent to consider MMM′0 = [10 9 0]T as the initial marking. The
MPN and the corresponding fluid model TCPN have been simulated for both initial
markings MMM0 (with spurious deadlocks) and MMM′0, for different rates at t1 ranging in
λ1 ∈ [0.4,4]. The throughput at t1, for both models, is shown if Fig. 18.7(a). It can
be seen that the MPN is live for any λ1 ∈ [0.4,4], furthermore, the throughput seems
as a smooth function of λ1. On the other hand, the continuous model with the orig-
inal MMM0 reaches the (spurious) deadlock for any λ1 ∈ (2,4]. Note the discontinuity
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Fig. 18.7 Throughput for the MPN of Fig. 18.6 and its continuous relaxations, for λ1 ∈
[0.4,4], λ2 = 1 and initial marking a) MMM0 = [10 11 0]T and b) MMM0 = [50 55 0]T . TCPN′ and
TnCPN′ represent the models without spurious deadlock. c) Average transient throughput at
t1 for MMM0 = [10 11 0]T and λ1 = 2
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at λ1 = 2 for the TCPN model with both initial markings, i.e., the continuous model
is neither monotonic nor smooth w.r.t the timing. Finally, it can be appreciated that
the TCPN provides a much better approximation when the spurious deadlock is
removed (TCPN′ with MMM′0), for any λ1 > 2 (for λ1 ≤ 2 there is no change in the
TCPN).

18.4.2 Adding Noise: Stochastic T-Timed Continuous PN

The approximation of the average marking of an ergodic (ergodicity means that
the steady state is independent on the initial state, providing the P-flows have
the same total marking) Markovian Petri net may be improved by adding white
noise to the transitions flow of the TCPN [37]. Intuitively speaking, the tran-
sition firings of a MPN are stochastic processes, then, the noise added to the
flow in the TCPN may help to reproduce such stochastic behavior, which even
at steady state is particularly relevant at the synchronizations. The model thus
obtained (here denoted as TnCPN) is represented, in discrete time with a sam-
pling Δτ , as: mmmk+1 = mmmk +CCC(ΛΛΛΠΠΠ(mmmk)mmmkΔτ + vvvk), with vvvk being a vector of
independent normally distributed random variables with zero mean and covari-
ance matrix ∑vvvk

= diag(ΛΛΛΠΠΠ(mmmk)mmmkΔτ). This modification is particularly rele-
vant when the system evolves near to the border between different regions, be-
cause in these cases, the continuous flow does not approximate the throughput
of the discrete transitions (remember that, in a join {p1

i , .., pk
i } = •ti, the differ-

ence between E{Enab(ti)} = E{min(M1
i , ..,M

k
i )} and its continuous approxima-

tion enab(ti) = min(m[p1
i ], ..,m[pk

i ]) ∼ min(E{M[p1
i ]} , ..,E{M[pk

i ]}) may become
large). The approximation improves as the enabling degrees of the transitions (the
number of active servers) increase, as already mentioned, assuming asymptotic sta-
bility and liveness in the continuous system (thus it is important to previously re-
move any spurious deadlock).

An interesting issue is that the new continuous stochastic model approximates not
only the average value but also the covariance of the marking of the original MPN.
Moreover, since the TnCPN model is actually the TCPN one with zero-mean gaus-
sian noise, many of the results known for the deterministic model can be used for
analysis and synthesis in the stochastic continuous one. Nevertheless, the addition
of noise cannot reduce the error introduced by arc weights.

For instance, consider again the MPN system of Fig. 18.5(b). The corresponding
TnCPN was simulated for λ4 ∈ {2,1.5,1.2,1}. The average steady state marking is
also shown in Table 18.2. As it was pointed out in the previous section, the lower the
probability that MMMk belongs to Rss, the larger the difference (the error) between the
MPN and the deterministic TCPN. On the other hand, the approximation provided
by the TnCPN system is good for all of those rates.

Now, consider again the MPN of Fig. 18.6 with MMM0 = [10110]T . The steady
state throughput of the MPN and its different relaxations is shown if Fig. 18.7(a),
for different values λ1 ∈ [0.4,4]. Note that the noise added to the TCPN makes this
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to reach the spurious deadlock quickly and the approximation to the MPN does
not hold since the liveness precondition is not fulfilled. On the other hand, after
removing the spurious deadlock with MMM′0 = [10 9 0]T , the TnCPN approximates
better the MPN than the TCPN model (curves TnCPN′ and MPN). Fig. 18.7(a)
shows the results of the same experiment but with a bigger population. In this case,
MMM0 = 5 · [10 11 0]T = [50 55 0]T and the spurious solution is removed by considering
the initial marking MMM′0 = [50 49 0]T (in this case, six frozen tokens are removed from
p2). Note that this marking is not equal to five times the one used in the first case,
i.e., MMM′0 
= 5 · [10 9 0]T , then the curve TCPN′ in Fig. 18.7(b) is not in homothetic
relation with that in Fig. 18.7(a) (but the original TCPN does it). It can be observed
in Fig. 18.7(b) that now the continuous models provide a better approximation than
in the case of Fig. 18.7(a), because the population is bigger. Finally, Fig. 18.7(c)
shows the transient trajectory described by the average throughput of t1, for the case
MMM0 = [10 11 0]T and λ1 = 2. It can be observed, that not only the steady state of the
MPN is well approximated by the TnCPN′ (after removing the spurious deadlock),
but also the transient evolution.

18.5 Steady State: Performance Bounds and Optimization

Product semantics may lead to continuous PN systems with steady orbits or limit cy-
cles [34]. This semantic also allows the existence of chaotic behaviors. Analogously,
when ISS are considered, a TCPN system may exhibit stationary oscillations (that
can be maintained for ever). An example of an oscillatory behavior, can be found
in [20] (Fig. 2 and 3). Usually, a TCPN evolves toward a steady state marking, like
in the examples of Section 18.3. The knowledge of this final marking is interesting
for performance evaluation purposes, since this represents the number of useful re-
sources and active clients in the long term behavior of the modeled system. This is
explored through this section.

A performance measure that is often used in discrete PN systems is the through-
put of a transition in the steady state (assuming it exists), i.e., the number of firings
per time unit. In the continuous approximation, this corresponds to the firing flow.

In order to study the throughput in discrete systems, the classical concept of “visit
ratio” (from the queueing network theory) is frequently used. In Petri net terms, the
visit ratio of a transition t j with respect to ti, vvv(i)[t j], is the average number of times
t j is visited (fired), for each visit to (firing of) the reference transition ti.

Let us consider, consistent nets without empty siphons at mmm0 (Proposition 18.3).
In order to simplify the presentation, let us assume that the net is MTS. Therefore,
for any ti, fff ss = χi · vvv(i), with χi the throughput of ti. The vector of visit ratios is a
right annuler of the incidence matrix CCC, and therefore, proportional to the unique
T-semiflow in MTS systems. For this class of systems, a throughput bound can be
computed using the following nonlinear programming problem that maximize the
flow of a transition (any of them, since all are related by the T-semiflow)
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max fff ss[t1]
s.t. mmmss = mmm0 +CCC ·σ

fff ss[t j] = λ j · min
pi∈•t j

{
mmmss[pi]

Pre[pi,t j ]

}
,∀ti ∈ T

CCC · fff ss = 0
mmmss,σ ≥ 0

(18.7)

where mmmss is the steady-state marking. A way to solve (18.7), that due to the min-
imum operator is nonlinear, consists in using a branch & bound algorithm [18].
Relaxing the problem to a LPP, an upper bound solution can be obtained in polyno-
mial time, although this may lead to a non-tight bound, i.e., the solution may be not
reachable if there exists a transition for which the flow equation is not satisfied. If
the net is not MTS, similar developments can be done adapting the equations in [12].

In the case of controlled systems, a LPP transformation of (18.7) can be used
to compute an optimal steady-state assuming only flow reduction (the speed of the
machines can only be reduced), fff ≥ 000 and the steady-state flow should be repetitive
CCC · fff = 000. If all transitions are controllable, it can be solved introducing some slack
variables in order to transform the inequalities derived from the minimum operator
in some equality constraints. These slack variables are used after to compute the
optimal steady-state control [20]. For example, let us consider the following LPP:

max kkk1 · fff − kkk2 ·mmm− kkk3 ·mmm0

s.t. CCC · fff = 000, fff ≥ 000
mmm = mmm0 +CCC ·σ , mmm,σ ≥ 000

fi = λi ·
(

m[p j ]

Pre[p j ,ti ]

)
− v[p j, ti],∀p j ∈ •ti, v[p j, ti]≥ 0

(18.8)

where v[p j, ti] are slack variables. The objective function represents the profit that
has to be maximized where kkk1 is a price vector w.r.t. steady-state flow fff , kkk2 is the
work in process (WIP) cost vector w.r.t. the average marking mmm and kkk3 represents
depreciations or amortization of the initial investments over mmm0. Using the slack
variables v the optimal control in steady-state for a transition ti if it is controllable,
i.e., permits a control ui > 0, is just ui = min

p j∈•ti
v[p j, ti]. Therefore, this control prob-

lem (a synthesis problem) seems easier than the computations of performance (an
analysis problem) even if, in general, is the opposite. Controllability issues will be
considered from dynamic perspective in chapter 19.

18.6 Further Reading

For a broad perspective on fluidization of DEDS dealing with other modeling
paradigms (as queueing networks or process algebra) and further reading on the
presented topics, the reader is referred to [30]. Two complementary more basic
presentations of fluid or continuous Petri net models can be found in [34, 35]. A
comprehensive definition and application examples can be found in [9].
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17. Júlvez, J., Recalde, L., Silva, M.: On Reachability in Autonomous Continuous Petri Net
Systems. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
221–240. Springer, Heidelberg (2003)

18. Júlvez, J., Recalde, L., Silva, M.: Steady state performance evaluation of continuous
mono-T-semiflow Petri nets. Automatica 41(4), 605–616 (2005)
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Chapter 19
Continuous Petri Nets: Observability and
Diagnosis

Cristian Mahulea, Jorge Júlvez, C. Renato Vázquez, and Manuel Silva

19.1 Introduction and Motivation

The observability problem for CPNs has been studied for both untimed and timed
models. In the case of untimed systems, the state estimation is close to the one of
discrete event systems since the firing of transitions can be assumed/seen as sequen-
tial and the corresponding events are not appearing simultaneously. In the case of
timed systems, since the evolution can be characterized by a set of switching dif-
ferential equations, the state estimation problem is more related to the linear and
hybrid systems theory.

In this chapter, we first study different aspects of observability of CPN under infi-
nite server semantics. The notion of redundant configurations is presented together
with a necessary and sufficient condition for a configuration to be redundant. In
some cases, this permits to reduce the system dimension. Three different concepts
of observability can be defined for timed CPN based on the firing rate vector λλλ . The
classical observability problem is the one where the question is to estimate the ini-
tial state/marking measuring only a subset of states, while assuming a constant value
for the firing vector. In this case, the set of differential equations is time invariant
and the concept is called punctual or classical observation. Observability criteria of
piecewise affine systems [4] can be applied to CPN since CPN is a subclass of those
systems.

As already known, observability of a hybrid system requires not only the estima-
tion of the continuous states but also of the discrete ones. To characterize this, the
notion of distinguishable regions is introduced and a quadratic programing prob-
lem (QPP) is given to check if two regions are or are not distinguishable. Then, an
observability criterion is given for general CPN systems. Since the complexity of a
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potential algorithm based on this criterion may be high, some rules permitting the
“deletion” of join transitions are given.

In many real systems it is impossible to have the exact values of the machine
speeds. In the extreme case, nothing is known about the firing rate vector and the
observability criteria of piecewise affine systems cannot be applied anymore. In
this case, structural observability is defined and approaches based on the graph
theory are used to study it. Only the knowledge of the system structure and the
firing count vector (even if not constant) is assumed to be known. The idea is to
determine which state variables can be estimated independently of the time values
associated to transitions.

Finally, if one wants to estimate the system for “almost all” possible values of
firing rate, generic observability is defined. In many cases, some punctual values of
firing count vector can produce the loss of observability but it is not very important
since it is observable outside a proper algebraic variety of the parameter space. Also
here, graph based approaches are used. This concept is similar to the works on linear
structured systems [7].

In the last part of the chapter, we present the effect of fluidization of Petri nets
with respect to fault diagnosis. Untimed CPNs are considered and it is assumed that
the amount in which some transitions are fired can be observed. It is pointed out that
the set of potential marking after a sequence of observed transitions is convex. Based
on this convexity, two linear programing problems (LPP) are given that permit us
to assign three diagnosis states. The fluidization allows us to relax the assumption,
common to all discrete event system diagnosis approaches, that there exists no cycle
of unobservable transitions.

This chapter is mainly developed based on the theoretical results presented in [10,
17] and in the survey [22] for the observability of timed CPN under infinite server
semantics. Theoretical results for state estimation and fault diagnosis for untimed
CPN have been presented in [18].

19.2 A Previous Technicality: Redundant Configurations

We assume that the reader is familiar with the notions and definition given in
Chapter 18 where CPNs have been introduced.

The number of configurations of a CPN is exponential and upper bounded by
∏t j∈T |•t j|. A necessary condition for the observability of a CPN system is the ob-
servability of all linear systems. Therefore, if some configurations are “removed”,
the complexity analysis of the observability may decrease. Notice that the notion
of implicit places [21] and time implicit arcs [14] cannot be used in the context of
observability since the implicitness in these cases is proved for a given initial mark-
ing and for a given time intepretation. In our case, the initial marking is assumed to
be partially known. In this section, we study a stronger concept, only depending on

the net structure and valid for all possible initial markings mmm0 ∈R|P|≥0, concept called
redundant configuration.
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Definition 19.1. Let Ri be a region associated to a CPN system. If for all mmm0,
Ri ⊆

⋃
j 
=i R j then Ri is a redundant region and the corresponding configuration a

redundant configuration.
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Fig. 19.1 Continuous PN with redundant regions

Example 19.1. Let us consider the left subnet in Fig. 19.1 and assume all mmm ∈ R
|P|
≥0

for which the enabling degree of t1 is given by m[p1]. Therefore, the following in-
equality is satisfied: m[p1] ≤ m[p2]. Assume also that the enabling degree of t2 is
given by m[p2]. Hence, m[p2] ≤ m[p1]. Finally, let us assume that the enabling de-
gree of all other transitions are given by the same places. Obviously, these markings
belong to a region R1 such that for each marking mmm ∈ R1 the following is true
m[p1] = m[p2].

Let us consider now all markings mmm ∈ R
|P|
≥0 for which the enabling degrees of t1

and t2 are given by m[p1] and the enabling degree of all other transitions is given
by the same set of places as for markings belonging to R1. It is obvious that these
markings belong to a region R2 for which m[p1]≤ m[p2].

From the above definition of R1 and R2, it is obvious that R1 ⊆ R2 for all
mmm ∈ R

|P|
≥0. Therefore, R1 (and the corresponding configuration) can be ignored in

the analysis of the CPN system. �

According to Definition 19.1, a region Ri is non-redundant if it is a full-dimensional
convex polytope in R

|P|
≥0. Therefore, for a given region we need to check if the

inequalities composing its definition are strictly satisfied. If for a join t j with

pi, pk ∈ •t j does not exist mmm ∈ R
|P|
≥0 such that m[pi]

Pre[pi,t j ]
< m[pk]

Pre[pk,t j ]
then the linear

systems of the regions containing in its definition m[pi]
Pre[pi,t j ]

≤ m[pk]
Pre[pk,t j ]

are redundant.

Proposition 19.1. Let N be a timed CPN system. The region Ri with the correspond-

ing configuration Ci is redundant iff �mmm ∈ R
|P|
≥0 solution of the following system of

strict inequalities of the form m[pk]
Pre[pk,t j ]

<
m[pu]

Pre[pu,t j ]
, one for each m[pk]

Pre[pk,t j ]
≤ m[pu]

Pre[pu,t j ]

defining Ri.

The existence of a solution for the system of strict inequalities in Proposition 19.1
can be checked solving a linear programing problem using a variable ε . For each

m[pk]
Pre[pk,t j ]

< m[pu]
Pre[pu,t j ]

, a constraint of the following form is added: m[pk]
Pre[pk,t j ]

+ ε ≤
m[pu]

Pre[pu,t j ]
. The objective function will be to maximize ε . If the resulting LPP is infea-

sible or has as solution ε = 0 then Ri is a redundant region.
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A pre-arc (an arc connecting a place pi with a transition t j) is called implicit
in an untimed system, if for any reachable marking, the marking of pi is never
constraining/restricting the firing of t j. If the system is under a timed interpretation,
it is called timed implicit. It may seem that if a mode is redundant, a set of arcs has
to be implicit or timed implicit, since they cannot define the enabling. However, it is
not true, since it is not that an arc never defines the enabling, but that a combination
of arcs may never define the enabling. For example, in the left net in Fig. 19.1, none
of the arcs is implicit, although a region (the one corresponding to m[p1] = m[p2])
is reduced to its borders. In this example, the redundant mode could also have been
avoided by fusing transitions t1 and t2 into a single one [14]. However, this kind of
transformation cannot always be applied, as shown in the following example.

Example 19.2. Let us consider the right CPN in Fig. 19.1 and let us consider the
region R1 = {m[p2]≤ m[p1],m[p3]≤ m[p2],m[p1]≤ m[p3]} that it is equivalent to
assume that the enabling degree of t1 is given by m[p2], the one of t2 by m[p3] and
of t3 by m[p1]. Applying Proposition 19.1 we want to check if R1 is redundant. We
have to consider the following system:

⎧
⎨

⎩

m[p2]< m[p1] (1)
m[p3]< m[p2] (2)
m[p1]< m[p3] (3).

(19.1)

Combining 19.1(2) and 19.1(3) we obtain m[p1] < m[p2] that is in contradiction
with 19.1(1). Therefore, region R1 and configuration C1 are redundant. �

The same problem of reducing dimension of a CPN under infinite server seman-
tics has been studied in [19] using the concept of symmetry. It is shown that such
a symmetry leads to a permutation of the regions and to equivariant dynamics (dy-
namical systems that have symmetries). This can be used for reductions to systems
of smaller dimension.

19.3 Observability Criteria

Let us assume that the marking of some places Po ⊆ P can be measured, i.e., the
token load at every time instant is known, due to some sensors. The observabil-
ity problem is to estimate the other marking variables using these measurements.
Defining AAAi =CCC ·ΛΛΛ ·ΠΠΠ i (see Chapter 18 for the definitions of ΛΛΛ and ΠΠΠ i), the sys-
tem dynamic is given by:

{
ṁmm(τ) = AAAi ·mmm(τ), mmm ∈Ri

yyy(τ) = SSS ·mmm(τ) (19.2)

where SSS is a |Po| × |P| matrix, each row of SSS has all components zero except the
one corresponding to the ith measurable place that is 1. Observe that the matrix SSS
is the same for all linear systems since the measured places are characteristic to
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the CPN system. Here, it is considered that all linear systems are deterministic, i.e.,
noise-free.

Definition 19.2. Let 〈N,λλλ ,mmm0〉 be a timed CPN system with infinite server seman-
tics and Po ⊆ P the set of measurable places. 〈N,λλλ ,mmm0〉 is observable in infinitesi-
mal time if it is always possible to compute its initial state mmm0 in any time interval
[0,ε).

Let us first assume that the system is a Join Free (JF) CPN (a CPN is JF if there is
no synchronization, i.e., ∀t j ∈ T, |•t j|= 1). Therefore, it is a linear system and let us
assume that its dynamical matrix is denoted by AAA. In Systems Theory a very well-
known observability criterion exists which allows us to decide whatever a contin-
uous time invariant linear system is observable or not. Besides, several approaches
exist to compute the initial state of a continuous time linear system that is observ-
able. The output of the system and the observability matrix are:

yyy(τ) = SSS · eAAA·τ ·mmm(τ0) (19.3)

ϑ =
[

SSST , (SSSAAA)T , . . . ,(SSSAAAn−1)T
]T

. (19.4)

Proposition 19.2. [12, 13] Eq. (19.3) is solvable for all mmm(τ0) and for all τ > 0 iff
the observability matrix ϑ has full rank (in our case, rank(ϑ) = |P|).

The initial state can be obtained solving the following system of equations that has
a unique solution under the rank condition:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

yyy(0)
d
dt yyy(0)
d2

dt2 yyy(0)
...
dn−1

dtn−1 yyy(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ϑ ·mmm(0). (19.5)

The observability of a JF CPN systems has been considered in [10], where an in-
teresting interpretation of the observability at the graph level. Let us assume that a
place pi is measured, therefore m[pi](τ) and its variation ṁ[pi](τ) are known at ev-
ery time moment τ . Because the net has no join, the flow of all its output transitions
t j of pi is the product of λ j and m[pi](τ) according to the server semantics defini-
tion. Assume that pi is not an attribution (a place p ∈ P is an attribution if |•p| ≥ 1).
Hence, has at most one input transition tk. Knowing the derivative and the output
flows, the input flow through the input transition tk is estimated. Applying again the
server semantics definition, f [tk] = λk ·mmm[•tk] (|•tk| = 1 since the net is join free).
Obviously, the marking of •tk can be computed immediately. Observe that this is a
backward procedure: measuring pi, •(•pi) is estimated in the absence of joins and
attributions.

The problem of state estimation of general CPN systems and not only JF net sys-
tems is not so easy. In this case, a very important problem for the observability is the
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determination of the configuration, also called discrete state, i.e, the linear system
that governs the system evolution. It may happen that the continuous state estima-
tion fits with different discrete states, i.e., observing some places, it may happen that
more than one linear system satisfies the observation. If the continuous states are on
the border of some regions, it is not important which linear system is assigned, but
it may happen that the solution corresponds to interior points of some regions and it
is necessary to distinguish between them.

Example 19.3. Let us consider the left timed CPN in Fig. 19.2. Assume the firing
rate of all transitions equal to 1 and Po = {p3} implying SSS = [0 0 1]T . This system
has two configurations corresponding to two linear systems:

Σi =

{
ṁmm(τ) = AAAi ·mmm(τ)
yyy(τ) = [0 0 1] ·mmm(τ) , i = 1,2 (19.6)

where A1 is the dynamic matrix corresponding to the configuration in which the
marking of p1 is defining the flow of t3 while for A2, the marking of p2 is giving the
flow of t3.

1
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t
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t1 t2

p2

t3

p3

p

Fig. 19.2 Two CPN

The observability matrices of these two linear systems are:

ϑ1 =

⎡

⎣
0 0 1
1 0 −1
−3 1 1

⎤

⎦ ; ϑ2 =

⎡

⎣
0 0 1
0 1 −1
1 −3 1

⎤

⎦ .

Both have full rank, meaning that both linear systems are observable. Let us take
mmm1 = [1 2 0]T ∈ R1 \R2 and mmm2 = [2 1 0]T ∈ R2 \R1. As it is well-known, the
corresponding observations are ϑi ·mmmi(τ) = [yyy(τ) ẏyy(τ) . . .]T . Nevertheless, for the
selected markings we have that ϑ1 ·mmm1 = ϑ2 ·mmm2 = [0 1 − 1]T . Therefore, it is
impossible to distinguish between mmm1 and mmm2. �
Definition 19.3. Two configurations i and j of a CPN system are distinguishable if
for any mmm1 ∈R1\R2 and any mmm2 ∈R2\R1 the observation yyy1(τ) for the trajectory
through mmm1 and the observation yyy2(τ) for the trajectory through mmm2 are different on
an interval [0,ε).
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Remark that we remove the solutions at the border R1∩R2 since for those points
both linear systems lead to identical behavior, therefore it is not important which one
is chosen. If all pairs of modes are distinguishable, it is always possible to uniquely
assign a configuration (or region) to an observed continuous state. Assuming that
the linear systems corresponding to all configurations are observable, a QPP per
pair of regions can be proposed to check their distinguishability.

z = max β T ·β
s.t. ϑ1 ·mmm1−ϑ2 ·mmm2 = 000

β = mmm1−mmm2

mmm1 ∈R1

mmm2 ∈R2.

(19.7)

First, let us observe that if the feasible set of (19.7) is empty (i.e., the problem is
infeasible), linear systems are distinguishable. If in QPP (19.7) z = 0, using the fact
that both systems are observable, i.e., ϑ1 and ϑ2 have both full rank, mmm1 = mmm2 is
obtained. Therefore, there exist no interior markings mmm1 ∈ R1 and mmm2 ∈ R2 with
the same observation, i.e., ϑ1 ·mmm1 = ϑ2 ·mmm2, and the modes are distinguishable. Fi-
nally, if the solution is z > 0 the linear systems are undistinguishable being the same
evolution in a small interval starting from two markings belonging to different re-
gions. Finally, if the solution is z > 0 we cannot say nothing about distinguishability
of the linear systems. Moreover, the exact solution of (19.7) is not necessary to be
computed and if a feasible solution with z > δ , with δ a small positive number, is
found the search can be stopped.

Example 19.4. In Example 19.3, for the left timed CPN in Fig. 19.2 it is shown
that ϑ1 ·mmm1 = ϑ2 ·mmm2 = [0,1,−1]T . Solving QPP (19.7), the problem is found to
be unbounded, thus the linear systems Σ1 and Σ2 are undistinguishable. For the
interpretation of this result, let us consider the equations that govern the evolution
of the system:

f3 = λ3 ·min{m[p1],m[p2]} (19.8)

ṁ[p1] = λ2 ·m[p2]−λ1 ·m[p1]− f3 (19.9)

ṁ[p2] = λ1 ·m[p1]−λ2 ·m[p2]− f3. (19.10)

Summing (19.9) and (19.10) and integrating, we obtain

(m[p1]+m[p2])(τ) = (m[p1]+m[p2])(0)− 2
∫ τ

0
f3(θ ) ·dθ (19.11)

Obviously, if p3 is measured, f3 can be estimated since f3(τ) = ˙m[p3](τ) + λ4 ·
m[p3](τ). Therefore, according to (19.8), the minimum between m[p1] and m[p2] is
estimated. Moreover, due to (19.11) their sum is also known. Nevertheless, these
two equations are not enough to compute the markings, i.e., we have the values but
it is impossible to distinguish which one corresponds to which place.
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We use the same CPN system to illustrate that if the solution of LPP (19.7) is
z > 0 or unbounded we cannot decide. Let us take now λλλ = [2 1 1 1]T . In this case,
the dynamical matrices are:

AAA1 =

⎡

⎣
−3 1 0

1 −1 0
1 0 −1

⎤

⎦ , AAA2 =

⎡

⎣
−2 0 0

2 −2 0
0 1 −1

⎤

⎦ ,

and the observability matrices (assuming also Po = {p3}):

ϑ1 =

⎡

⎣
0 0 1
1 0 −1
−4 1 1

⎤

⎦ ; ϑ2 =

⎡

⎣
0 0 1
0 1 −1
2 −3 1

⎤

⎦ .

Let mmm1 = [1 5 1]T ∈R1\R2 and mmm2 = [2 1 1]T ∈R2\R1. Making the computations,
we have: ϑ1mmm1 = ϑ2mmm2 = [1 0 2]T . So, we have the same observations for these two
markings at a time τ but the modes are distinguishable. To see this let us assume
the marking at τ + δ , where δ is a very small value. Being a small time variation,
we can consider that the flow of the transitions are constant during the time interval
(τ,τ + δ ) and we can write:

mmm′1(τ + δ ) = mmm1(τ)+AAA1mmm1(τ)δ = [1+ 2δ 5− 4δ 1]T ,

and
mmm′2(τ + δ ) = mmm2(τ)+AAA2mmm2(τ)δ = [2− 4δ 1+ 2δ 1]T .

The corresponding observations for these markings are: ϑ1mmm′1 = [1 2δ 2−12δ ]T 
=
ϑ2mmm′2 = [1 2δ 2− 14δ ]T . Since in all linear systems the set of measured places is
the same and the firing rates are also the same can be observed immediately that any
mmm′′1 ∈R1, mmm′′2 ∈R1 with ϑ1mmm′′1(τ) =ϑ2mmm′′2(τ) it holds that ϑ1mmm′′1(τ+δ ) 
=ϑ2mmm′′2(τ+
δ ). Therefore, according to Definition 19.3, the modes are distinguishable. �

Using the notion of distinguishable modes, an immediate criterion for observability
in infinitesimal time is:

Theorem 19.1. A timed CPN system 〈N,λλλ ,mmm0〉 under infinite server semantics is
observable in infinitesimal time iff:

1. All pairs of configurations are distinguishable,
2. For each region, the associated linear system is observable.

A complementary observability problem is presented in [11]. For the discrete-time
model and measuring some places, the problem is to estimate the firing flow (speed)
of the transitions and not the marking of the other places. Since the flow of a transi-
tion is the product between its firing rate (constant value) and the enabling degree,
in some cases, measuring places or transitions is equivalent. Anyhow, in order to
compute the flow through joins it is necessary to measure all of its input places.
Moreover, we may also have different markings that have the same firing flow.
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19.4 Reducing Complexity

Theorem 19.1 provides a criterion of observability of a CPN system. Observe that
the complexity of an algorithm to check this property is not small. The algorithm
based on this criterion should be linear in the number of subsystems (for each
subsystem the observability matrix and its rank should be computed) but this num-
ber is exponential in the number of joins. Moreover, for each pair of subsystems,
their distinguishability is necessary to be checked. For this reason, some results
have been proposed in order to “delete” the joins without affecting the observable
space. After that, observability can be checked using only the observability matrix.
This reduction can be done under some general conditions if the net system is attri-
bution free (AF — a net is attribution free if there exists no place p ∈ P such that
|•p| ≥ 2) or equal conflict (EQ — a net is equal conflict if for any t1, t2 ∈ T such that
•t1∩•t2 
= /0 then PPPrrreee[·, t1] = PPPrrreee[·, t2]) [17].

Definition 19.4. Let N = 〈P,T,PPPrrreee,PPPooosssttt〉 be a net and N′ = 〈F,T ′,PPPrrreee′,PPPooosssttt ′〉 a
subnet of N, i.e., F ⊆ P, T ′ ⊆ T and PPPrrreee′,PPPooosssttt ′ are the restrictions of PPPrrreee,PPPooosssttt to
F and T ′. N′ is a strongly connected p-component of N if for all p1, p2 ∈ F there
exists a path from p1 to p2 of the form 〈p1, t1, pi, ti, . . . , t j, p j, t2, p2〉 with t1 ∈ p1

•,
pi ∈ t1•, . . ., p j ∈ t j

•, t2 ∈ p j
•, p2 ∈ t2•.

Further, a strongly connected p-component N′ = 〈F,T ′,PPPrrreee′,PPPooosssttt ′〉 is called termi-
nal if for all p ∈ F it holds that: there exists a path from p to other place p′ implies
p′ ∈ F .

Proposition 19.3. [17] Let 〈N,λλλ 〉 be a timed AF CPN and assume that for any join
ti there exists no strongly connected p-component containing all •ti. Let N′ be the
net obtained from N by just removing all join transitions together with its input and
output arcs. N is observable iff N′ is observable.

Observe that the left net in Fig. 19.2 is not satisfying the conditions of the previous
theorem since •t3 = {p1, p2} belongs to a strongly connected p-component. How-
ever, if the net has attributions, joins cannot be removed in general.

p5

p3 p4

t4t3 t5t2

p1 p2

t1

Fig. 19.3 CPN used in Example 19.5
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Example 19.5. Let us consider the CPN system in Fig. 19.3 with λλλ = [a,1,2,3,4]T ,
a ∈ R>0 and p5 the measured place. This net has an attribution in place p5 and
has a join in t1. The linear system obtained by removing the join t1 is observable
and p1 and p2 do not belong to a strongly connected p-component. However, the
join transition t1 cannot be removed without affecting the observability space. The
dynamical matrices of the two linear systems are:

AAA1 =

⎡

⎢
⎢
⎢
⎢
⎣

−1− a 0 0 0 0
−a −4 0 0 0

a 0 −2 0 0
a 0 0 −3 0
1 2 3 4 0

⎤

⎥
⎥
⎥
⎥
⎦
, AAA2 =

⎡

⎢
⎢
⎢
⎢
⎣

−1 −a 0 0 0
0 −4− a 0 0 0
0 a −2 0 0
0 a 0 −3 0
1 2 3 4 0

⎤

⎥
⎥
⎥
⎥
⎦
.

Computing the determinants of the corresponding observability matrices, we have:

det(ϑ1) = 192 ·a3− 912 ·a2+ 720 ·a+ 288,

which has two positive real roots (a1 = 3.5885 and a2 = 1.4498), and

det(ϑ2) =−96 ·a3− 408 ·a2− 216 ·a+ 288,

with one positive real root (a3 = 0.5885). Obviously, if λ1 is equal to one of these
roots, the CPN system will not be observable since one of the corresponding linear
system will not be observable.

Hence, for some particular values of λλλ , the system obtained removing the join is
observable but the original system (with join) is not observable. �

Proposition 19.4. [17] Let 〈N,λλλ ,mmm0〉 be a timed EQ continuous Petri net system
and N′ obtained from N by just removing all join transitions together with its input
and output arcs. N is observable iff N′ is observable.

The previous two propositions provide necessary and sufficient conditions to “re-
duce nonlinearity” and study the observability of a nonlinear system on an equiv-
alent, with respect to the observability space, linear system. Hence, it is enough to
check the rank of only one observability matrix in order to decide the observability
of these CPN net systems.

19.5 Structural and Generic Observability

In this section, the main results of structural and generic observability of CPN are
presented. First, we will illustrate by an example that the presence of an attribution
may lead to the loss of the observability. For this reason, the main result for struc-
tural observability has been given assuming that the net has no attribution while
generic observability may be studied easily in the case of nets with attributions.
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From the previous graph-based interpretation (the backward strategy) of the ob-
servability, it is obvious that the output connectedness is required for a place p to
be estimated from an observation. For those places for which there is no path to
an output, their marking cannot be estimated. Therefore, the terminal strongly con-
nected p-components present a special interest because any place of the net should
be connected to those components in order to be able to be estimated.

Definition 19.5. A strongly connected p-component N′ = 〈F,T ′,PPPrrreee′,PPPooosssttt′〉 of a
net N is said to be terminal if there is no path from a place belonging to F to a place
not in F.

Strongly connected p-components of a PN can be computed immediately, adapting
the classical polynomial time algorithms (for example the one in [6]) to a bipartite
graph.

Definition 19.6. Let 〈N,λλλ ,mmm0〉 be a CPN system and Po the set of measured places.

N is structurally observable if 〈N,λλλ ,mmm0〉 is observable for all values of λλλ ∈R
|T |
>0.

Proposition 19.5. [17] Let N be a join and attribution free CPN. N is structurally
observable iff at least one place from each terminal strongly connected component
is measured.

Let us consider now attributions and see that this construction can lead to the loss
of observability. Assume the right CPN system in Fig. 19.2 where p3 (an attribution
place) is the measured place. Writing down the differential equation we have:

ṁ[p3](τ) = λ1 ·m[p1](τ)+λ2 ·m[p2](τ)−λ3 ·m[p3](τ).

From the previous equation, λ1 ·m[p1](τ)+λ2 ·m[p2](τ) can be computed since the
other variables are known. However, if λ1 = λ2, will be impossible to distinguish
between m[p1](τ) and m[p2](τ) and the system is not observable. In general, if there
exist two input transitions to an attribution place with the same firing rate, the system
is not observable [17]. Nevertheless, this is not a general rule since the observability
is a global property.

Let us consider the timed CPN is Fig. 19.4 with λλλ = 111, assume that p2 is mea-
sured and let us see if the system is observable using the backward strategy pre-
sented before. Then m[p4] and m[p5] cannot be estimated directly, but their sum (a
linear combination of them) is computable (place p45 in the figure). Going back-
wards, m[p1] is estimated and, even though m[p1] is an attribution, since m[p2] is
measured, then m[p3] can also be estimated. Using m[p3], now m[p4] is estimated
and, through the linear combination of p45, m[p5] as well. Therefore, by measuring
p2 the system is observable for all λλλ , i.e., structurally observable.

Observe that this loss of the observability is due to the presence of attributions
happens for very specific values of λλλ . If the firing rates of the transitions are chosen
randomly in R>0, the probability to have such a loss of observability is almost null.
Hence, a concept weaker than structural observability can be studied. It is similar
with the concept of “structural observability” defined in [5, 7] for linear systems.
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Fig. 19.4 A JF net that is observable measuring the attribution place p2 even if λ4 = λ5 =
λ2 = λ3

Definition 19.7. Let 〈N,λλλ ,mmm0〉 be a CPN system and Po the set of measured places.
N is generically observable if 〈N,λλλ ,mmm0〉 is observable for all values of λλλ outside a
proper algebraic variety of the parameter space.

The relation between structural and generic observability is immediate. If N is struc-
turally observable then it is generically observable. In general, the reverse is not true.

In [5], generic observability is studied for structured linear systems using an asso-
ciated graph; observability is guaranteed when there exists a state-output connection
for every state variable (the system is said to be output connected) and no contrac-
tion exists. The transformation of a JF net into its corresponding associated directed
graph is straightforward (see Fig. 19.5 for an example).

Using the associated graph and Proposition 1 in [5], the following result has been
obtained to characterize the generic observability.

Corollary 19.1. [17] Let N be a pure JF CPN. N is generically observable iff at
least one place from each terminal strongly connected p-component is measured.

The previous result can be extended immediately to general CPNs, i.e., it is not true
only for JF nets. In Example 19.3, a CPN system is given containing two undistin-
guishable configurations. Then, changing the firing rates of the transitions in Ex-
ample 19.4, these modes become distinguishable. Obviously, two configurations are
undistinguishable when the path from states (markings) to the outputs are identical
in both linear systems. This happens for some particular values of firing rates, e.g.,
λ1 = λ2 in the left CPN of Fig. 19.2. If the firing rates are chosen randomly, the
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Fig. 19.5 (a) A JF ContPN; (b) Its associated graph

backward paths cannot be identical. Therefore, any pair of subsystems are distin-
guishable.

Corollary 19.2. [17] Let N be a pure CPN. N is generically observable iff at least
one place from each terminal strongly connected p-component is measured.

For example, the left net in Fig. 19.2 is not observable (hence neither structurally
observable) but it is generically observable.

19.6 Observers Design

JF nets lead to linear systems, for which, Luenberger’s observers [12, 13] are fre-
quently used for the estimation of the states. Such an observer for a JF PN, i.e., with
a single linear system, can be expressed as:

˙̃mmm(τ) = AAA · m̃mm(τ)+KKK · (yyy(τ)− SSS · m̃mm(τ)),

where m̃mm(τ) is the marking estimation, AAA and SSS are the matrices defining the evo-
lution of the marking of the system and its output in continuous time, yyy(τ) is the
output of the system, and KKK is a design matrix of parameters.

At a particular time instant, a CPN evolves according to a given linear system.
Thus, an online estimation can be performed by designing one (Luenberger) linear
observer per potential linear system of the PN (in a similar way to [8] for a class of
piecewise linear systems) and selecting the one that accomplishes certain properties.
The “goodness” of an estimate can be measured by means of a residual [3]. Let us
use the 1-norm || · ||1, which is defined as ||xxx||1 = |xxx1|+ . . .+ |xxxn|. The residual at a
given instant, r(τ), is the distance between the output of the system and the output
that the observer’s estimate, m̃mm(τ), yields

r(τ) = ||SSS · m̃mm(τ)− zzz(τ)||1.
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In order to be suitable, the estimations of the observers must verify the following
conditions:

• The residual must tend to zero.
• The estimations of the places in a synchronization have to be coherent with the

operation mode for which they are computed.

Thus, at a given time instant, only coherent estimations are suitable. Moreover, a
criterion must be established to decide which coherent estimation is, at a given time
instant, the most appropriate. An adequate heuristics is to choose the coherent esti-
mation with minimum residual.

2

p1 t1 p2

t2

p3

t3

Fig. 19.6 A CPN with two linear systems

Consider the CPN system in Fig. 19.6. Let its output be the marking of place p1,
i.e., SSS = [1 0 0]. The net has two configurations: C1 = {(p1, t1),(p1, t2),(p3, t3)} and
C2 = {(p1, t1),(p2, t2),(p3, t3)}. For the linear system corresponding to C1, m[p2] is
not observable. However, for the linear system corresponding to C2, the marking of
all the places can be estimated. Let λλλ = [0.9 1 1]T and mmm0 = [3 0 0]T . The marking
evolution of this system is depicted in Fig. 19.7(a).

One observer per linear system is designed. Let the initial state of observer 1
be eee01 = [1 2]T and its eigenvalues be [−12+ 2 ·

√
3 · i, −12− 2 ·

√
3 · i]. Since

observer 1 can only estimate m[p1] and m[p3], the first component of its state vector
corresponds to the estimation of m[p1], and its second component to the estimation
of m[p3]. For observer 2, let the initial state be eee02 = [1 0 2]T and its eigenvalues be
[−15, −12+ 2 ·

√
3 · i, −12− 2 ·

√
3 · i]. The evolution of the coherent estimation

with minimum residual is shown in Fig. 19.7(a).
The resulting estimation can be improved by taking into account some consid-

erations. When the first system switch happens, the estimation becomes discontin-
uous and, what is more undesirable, the estimation for the marking of p3 becomes
worse. A similar effect happens when the second system switch occurs. Another
undesirable phenomenon is that, after the first switch, the estimation of m[p2] just
disappears (since it is unobservable in configuration C1).
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Fig. 19.7 The marking evolution is given by (m[p1], m[p2], m[p3]). (a) The estimate of the
minimum residual and coherent observer is (omcr1, omcr2, omcr3) . (b) The estimate of the
observer that makes use of a simulation is (obss1, obss2, obss3)
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One way to avoid discontinuities in the resulting estimation, is to use the estima-
tion of the observer that is going to be filtered out in order to update the estimation of
the observer that is not going to be filtered out. This estimation update must be done
when a system switch is detected. In order not to loose the estimation of the marking
of a place when it was “almost perfectly” estimated (recall the case of m[p2] when
the first switch happened) a simulation of the system can be launched. The initial
marking of this simulation is the estimation of the system just before the observabil-
ity of the marking is lost. Such a simulation can be seen as an estimation for those
markings that are not observable by the observer being considered. The simulation
should only be carried out when an estimation for all the places exists and the resid-
ual is not significant. Figure 19.7(b) shows the evolution of the estimation obtained
by this strategy.

One of the main advantages is that the residual does not increase sharply when
the mode of the system changes. Another interesting feature is that the use of a
simulation allows one to estimate the marking of places that in some modes are in
principle not observable: in Fig. 19.7(b) it can be seen that the marking of p2 can be
estimated, even when it is unobservable due to configuration C1 being active.

19.7 Diagnosis Using Untimed CPNs

Let us now consider untimed CPN (see Chapter 18 for a short introduction and the
differences among the timed and untimed models). Observability and state estima-
tion problems in systems modeled by an untimed CPN have also been studied [18].
Nevertheless, in this case it is assumed that the initial marking is known (and not
unknown as in previous sections) and the set of transitions is partitioned in two
subsets: observable (To ⊆ T ) and unobservable transitions (Tu ⊆ T , To ∩ Tu = /0)
(hence transitions are observed and not places). When an observable transition fires,
its firing quantity is measured/observed. From the initial marking and given a se-
quence of observed transitions each one with a given firing amount, it is impossible
to uniquely determine the actual marking because the unobservable transitions can
fire intercalated with the observable transitions. All markings in which the net may
be given the actual observation is called the set of consistent markings.

Proposition 19.6. [18] Let 〈N,mmm0〉 be a CPN system where N = 〈P,T,PPPrrreee,PPPooosssttt〉
and T = To ∪Tu. Assume that the net system obtained from N removing all transi-
tions To has no spurious solution (solution of the state equation but corresponding to
unreachable markings). Given an observed word t1(α1)t2(α2) . . . tk(αk) with ti ∈ To

∀i = 1, . . . ,k, the set of consistent markings is convex.

Based on this proposition, an iterative algorithm has be derived [18] in order to char-
acterize the set of consistent markings after an observation word w. The main idea
of the algorithm is to start from each vertex of the previous set and compute the ver-
tices of some polytopes. Taking the convex hull of all new vertices, the new set of
consistent markings is obtained. The computational complexity of the algorithm is
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exponential because requires the computation of vertices, but the compact represen-
tation as a convex polytope is a real advantage. The fluidization allows us to relax
the assumption, common to all the discrete event system diagnosis approaches, that
there exist no cycle of unobservable transitions.

Fault diagnosis problem has been considered in Chapter 14 in the case of discrete
Petri nets. Similarly, let us assume that a certain number of anomalous (or fault)
behaviors may occur in the system. The occurrence of a fault behavior corresponds
to the firing of an unobservable transition, but there may also be other transitions that
are unobservable as well, but whose firing corresponds to regular behaviors. Then,
assume that fault behaviors may be divided into r main classes (fault classes), and
we are not interested in distinguishing among fault events in the same class. Usually,
fault transitions that belong to the same fault class are transitions that represent
similar physical faulty behavior.

This is modeled in PN terms assuming that the set of unobservable transitions is
partitioned into two subsets

Tu = Tf ∪Treg,

where Tf includes all fault transitions and Treg includes all transitions relative to
unobservable but regular events. The set Tf is further partitioned into r subsets,
namely,

Tf = T 1
f ∪T 2

f ∪ . . .∪T r
f

where all transitions in the same subset correspond to the same fault class. We will
say that the ith fault has occurred when a transition in T i

f has fired.

Definition 19.8. Let 〈N,mmm0〉 be a CPN system, T = To∪Tu and w an observed word.
A diagnoser is a function

Δ : T ∗o ×{T 1
f ,T

2
f , . . . ,T

r
f }→ {N,U,F}

(where T ∗o denotes the possible sequences obtainable combining elements in To,
where each sequence is characterized by the firing amounts of all the transitions in
it) that associates to each observation w and to each fault class T i

f , i = 1, . . . ,r, a
diagnosis state.

• Δ(w,T i
f ) =N if the ith fault cannot have occurred. This is true if none of the firing

sequences consistent with the observation contains fault transitions of class i.
• Δ(w,T i

f ) = U if a fault transition of class i may have occurred or not, i.e., it is
uncertain, and we have no criteria to draw a conclusion in this respect.

• Δ(w,T i
f ) = F if the ith fault has occurred since all fireable sequences consistent

with the observation contain at least one fault transition of class i. �

Thus, states N and F correspond to “certain” states: the fault has not occurred or it
has occurred for sure; on the contrary state U is an “uncertain” state: the fault may
either have occurred or not. Given an observation, the diagnosis state is computed
solving two LPPs. Since the set of consistent marking is convex, it can be charac-
terized by a set of vertices. Each vertex of the set of consistent markings is reached



404 C. Mahulea et al.

from the initial marking by firing the observed word w plus, eventually, some unob-
servable transitions. Moreover, after the observation w, other unobservable transi-
tions may fire. For a given observed word w, the vectors of unobservable transitions
that are fired in order to enable transition in w or after w are called fireable firing
sequences consistent with the observation w and are denoted by Y (mmm0,w).

Proposition 19.7. [18] Consider an observed word w ∈ T ∗o and Y (mmm0,w) be the
polytope containing all fireable sequences consistent with the observation w. Let

⎧
⎪⎪⎨

⎪⎪⎩

li = min ∑
t j∈T i

f

ρ [t j]

s.t.
ρ ∈Y (mmm0,w)

⎧
⎪⎪⎨

⎪⎪⎩

ui = max ∑
t j∈T i

f

ρ [t j]

s.t.
ρ ∈ Y (mmm0,w).

(19.12)

It holds:
Δ(w,T i

f ) = N ⇔ ui = 0
Δ(w,T i

f ) =U ⇔ li = 0∧ui > 0
Δ(w,T i

f ) = F ⇔ li > 0.

19.8 Further Reading

For timed continuous Petri nets under infinite server semantics the problem of sen-
sor placement has been considered in [15]. It is assumed that each place can be
measured using a sensor, each sensor having associated a cost. The problem is to
decide the set of places with minimum cost ensuring the observability of the sys-
tem. Since the observability is a global property, the brute force algorithm has an
exponential complexity because has to consider all combinations of places. Some
properties permitting to reduce this complexity have been proved in [15]. A similar
problem but using a geometrical approach has been considered in [1] where some
results in [15] received a different perspective. An observability problem for this fir-
ing semantics has been considered also in [11] using a discrete-time model. In this
case, the problem was to estimate the firing flow of transitions and not the marking
of the places.

In the case of timed CPN under finite server semantics the problem has not been
considered in the literature. However, for a similar semantics, the continuous part of
so called First-Order Hybrid Petri Nets [2], a timed reachability problem has been
considered in [16]. The observation problem reduces to determining the set of mark-
ings, in which the net may be at a given time. It is shown under which conditions
the reachability set of the timed net under finite server semantics coincides with that
of the untimed one and a procedure to compute the minimum time ensuring that the
set of consistent markings is equal to the reachability set of untimed system is given
for some net classes.
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Different problems regarding observability of CPNs deserve a more deep study.
For example, to check the distinguishability of two configurations, there exists no
necessary and sufficient criterion. Moreover, the concept can be extended to more
than two configurations. In the case of redundant regions, the structural symmetry
can be considered and, in many cases, such symmetry will conduct to redundant
linear systems. In the case of state estimation of untimed CPN, new approaches can
be studied in order to decrease the complexity of the actual algorithms.
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Chapter 20
Continuous Petri Nets: Controllability and
Control

Jorge Júlvez, C. Renato Vázquez, Cristian Mahulea, and Manuel Silva

20.1 Introduction and Motivation

The previous chapter has dealt with the concept of observability and the design of
observers in the framework of continuous Petri nets. Controllability and observabil-
ity can be seen as dual concepts. Similar to observability, a system requirement for
a successful design of a control method is controllability, i.e., the possibility to drive
the system to “any” desired state. In order to manipulate, i.e., control, the system be-
havior, control actions can be applied on transitions in order to modify (slow-down)
their flows.

Example 20.1. As a simple introductory example, consider the net system in 18.2(a)
of Chapter 18 and assume that the system works under infinite server semantics
with λ1 = λ2 = 1. Thus, the flow of transitions is f1 = m1/2 and f2 = m2. If the
system is left to evolve freely from the initial marking mmm0 = [2 0]T , it will tend
to the steady-state marking mmm = [4/3 2/3]T at which the flow of both transitions
is the same, f1 = f2 = 2/3. Assume now that control actions can be applied on
transitions in order to modify their flow. Let us just apply a constant control action
u1 = 0.5 on transition t1; this means that the original flow of t1 will be decreased by
0.5, i.e., f1 = (m1/2)− 0.5 and f2 = m2 (notice that the flow of transitions cannot
be negative, i.e., f1 ≥ 0 and f2 ≥ 0 must hold). In this particular case, if such a
control action is kept indefinitely, the system marking will evolve to the steady state
mmm = [5/3 1/3]T at which the flows of transitions are f1 = f2 = 1/3. It is important
to remark that the control actions that will be introduced can only slow down the
original flow of transitions, and they are dynamically upper bounded by the enabling
degree of the transition, e.g., in this simple example the initial control action for
transition t1 cannot be higher than 1 given that the initial enabling degree of t1 is 1.
Notice that the constraint that the flow of transitions can only be decreased when
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control actions are applied, does not necessarily imply a decrease in the overall
system throughput. In fact, due to the non-monotonic behavior that continuous nets
can exhibit, its overall throughput can increase. This effect has already been shown
in Chapter 18 (Fig. 18.3), where a decrease in the firing speed of a transition can
involve a higher global system throughput. �

Notice that continuous Petri nets are relaxations of discrete Petri nets, but at the
same time, they are continuous-state systems (in fact, they are technically hybrid
systems in which the discrete state is implicit in the continuous one). That is why it
is reasonable to consider at least two different approaches for the controllability and
control concepts:

1) the extension of control techniques used in discrete Petri nets, such as the
supervisory-control theory (for instance, [11, 13, 14]);

2) the application of control techniques developed for continuous-state systems.

Usually, the control objective in the first approach is to meet some safety specifica-
tions, like avoiding forbidden states, by means of disabling transitions at particular
states. The objective of the second approach consists in driving the system, by means
of a usually continuous control action, towards a desired steady state, or state trajec-
tory (see, for instance, [10]). Regarding continuous Petri nets, most of the specific
works that can be found in the literature deals with the second control approach
applied to the infinite server semantics model.

Several works in the literature have addressed the study of controllability in the
context of continuous Petri nets. For instance, the work in [1] studies controllability
for linear nets, i.e., Join-Free nets, pointing out that the classical rank condition
is not sufficient (detailed in Subsection 20.3.2). In [15] controllability was studied
for Join-Free continuous nets from a different perspective, by characterizing the
set of markings that can be reached and maintained. Unfortunately, those results
are difficult to extend to general subclasses of nets, where the existence of several
regions makes the general reachability problem intractable.

It is important to remark that enforcing a desired target marking in a continu-
ous Petri net is analogous to reaching an average marking in the original discrete
model (assuming that the continuous model approximates correctly the discrete
one), which may be interesting in several kinds of systems. This idea has been il-
lustrated by different authors. For example, the work in [2] proposes a methodology
for the control of open and closed manufacturing lines. The control actions consist
in modifying the maximal firing speeds of the controlled transitions. It was also il-
lustrated how the control law can be applied to the original discrete Petri net model
(a T-timed model with constant firing delays). This approach has been used in [20]
and [19] as well, in the same context of manufacturing lines. A related approach was
presented in [27] for a stock-level control problem of an automotive assembly line
system originally modeled as a stochastically timed discrete Petri net [9]. The re-
sulting scheme allows to control the average value of the marking at the places that
represent the stock-level, by means of applying additional delays to the controllable
transitions.
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The rest of the chapter is organized as follows: Section 20.2 introduces control
actions and the way they modify the flow of transitions in systems working under
infinite server semantics. In Section 20.3, the controllability property is discussed
and some results are extracted for the case in which all transitions are controllable,
and the case in which there are some non-controllable transitions. Section 20.4 de-
scribes some control methods for systems in which all transitions are controllable
and sketches a couple of methods that can be applied when some transitions are not
controllable. Finally, Section 20.5 discusses how a distributed control approach can
be designed on a net system composed of several subsystems connected by buffers.

20.2 Control Actions under Infinite Server Semantics

Like in discrete Petri nets, control actions are applied on the transitions. These ac-
tions can only consist in the reduction of the flow, because transitions (machines for
example) should not work faster than their nominal speed. The set of transitions T
is partitioned into two sets Tc and Tnc, where Tc is the set of controllable transitions
and Tnc is the set of uncontrollable transitions. The control vector uuu∈R|T | is defined
s.t. ui represents the control action on ti. In the following infinite server semantics
will be assumed. Since ui represents a reduction of the flow, then the following in-
equality must hold 0≤ ui ≤ λi ·enab(ti,mmm). The behavior of a forced (or controlled)
continuous Petri net can be described by the state equation:

ṁmm =CCCΛΛΛΠΠΠ (mmm)mmm−CCCuuu
s.t. 000≤ uuu≤ΛΛΛΠΠΠ(mmm)mmm and ∀ti ∈ Tnc, ui = 0.

(20.1)

where matrix ΠΠΠ is the configuration matrix defined in Chapter 18:

Πk[t, p] =

{ 1
Pre[p,t] , if (p, t) ∈ Ck

0, otherwise
(20.2)

where Ck denotes a configuration as defined in Chapter 18. Notice that the slack
variables introduced in Section 5 of Chapter 18 play a similar role to the one of
the control actions. There are, however, important differences, in that case slack
variables are associated to places and only the steady state was optimized.

20.3 Controllability

Among the many possible control objectives, we will focus on driving the system,
by applying a control law, towards a desired steady state, i.e., a set-point control
problem, frequently addressed in continuous-state systems. This control objective
is related to the classical controllability concept, according to which a system is
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controllable if for any two states xxx1,xxx2 of the state space it is possible to transfer the
system from xxx1 to xxx2 in finite time (see, for instance, [10]).

Marking conservation laws frequently exist in most Petri nets with practical sig-
nificance. Such conservation laws imply that timed continuous Petri net (TCPN)
systems are frequently not controllable according to the classical controllability
concept [22, 25]. More precisely, if yyy is a P-flow then any reachable marking mmm
must fulfill yyyT mmm = yyyT mmm0, defining thus a state invariant. Nevertheless, the study of
controllability “over” this invariant is particularly interesting. This set is formally

defined as Class(mmm0) = {mmm ∈ R
|P|
≥0|BBBT

y mmm = BBBT
y mmm0}, where BBBy is a basis of P-flows,

i.e., BBBT
y CCC = 000. For a general TCPN system, every reachable marking belongs to

Class(mmm0).
Another important issue that must be taken into account in TCPN systems is the

nonnegativeness and boundedness of the input, i.e., 000 ≤ uuu ≤ ΛΛΛΠΠΠ(mmm)mmm. An appro-
priate local controllability concept, once these issues are considered, is [26]:

Definition 20.1. The TCPN system 〈N,λλλ ,mmm0〉 is controllable with bounded input
(BIC) over S ⊆Class(mmm0) if for any two markings mmm1,mmm2 ∈ S there exists an input
uuu transferring the system from mmm1 to mmm2 in finite or infinite time, and it is suitably
bounded, i.e., 000≤ uuu≤ΛΛΛΠΠΠ(mmm)mmm, and ∀ti ∈ Tnc ui = 0 along the marking trajectory.

20.3.1 Controllability When All the Transitions Are Controllable

An interesting fact is that when all the transitions are controllable, the controllability
of TCPNs, depends exclusively on the structure of the net. Let us give some intuition
about this by rewriting the state equation as:

ṁmm =CCC ·www (20.3)

where the innovation vector www = ΛΛΛΠΠΠ(mmm)mmm− uuu can be seen as an auxiliary input.
The constraints for uuu are transformed into 000 ≤ www ≤ ΛΛΛΠΠΠ(mmm)mmm. In this way, given a
marking mmm1 ∈Class(mmm0), if ∃σσσ ≥ 000 such that CCCσσσ = (mmm1−mmm0) then mmm1 is reachable
from mmm0. This can be achieved by setting www = ασσσ (with a small enough α > 0),
so the field vector results ṁmm = CCCασσσ = α(mmm1−mmm0) which implies that the system
will evolve towards mmm1 describing a straight trajectory (assuming that the required
transitions can be fired from this marking, what always happens if mmm is a relative
interior point of Class(mmm0)).

Example 20.2. Consider, for instance, the left TCPN in Fig. 20.1 and the markings
mmm0 = [2 3 1 1]T , mmm1 = [1 3 2 1]T and mmm2 = [2 1 1 3]T . Given that this system has 2 P-
semiflows (involving {p1, p3} and {p2, p4} respectively), the marking of two places
is sufficient to represent the whole state. For this system ∃σσσ ≥ 000 such that CCCσσσ =
(mmm1−mmm0), but �σσσ ≥ 000 such that CCCσσσ =(mmm2−mmm0), so, mmm1 is reachable but mmm2 is not.
The shadowed area in right Fig. 20.1 corresponds to the set of reachable markings,
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Fig. 20.1 Two TCPN systems with identical P-flows. The shadowed areas correspond to the
sets of reachable markings. Only the system on the right is consistent and controllable over
Class(mmm0).

note that it is the convex cone defined by vectors ccc′1 and ccc′2, which represent the
columns of CCC (here restricted to p1 and p2). �

A full characterization of controllability [26] can be obtained from this structural
reachability reasoning:

Proposition 20.1. Let 〈N,λλλ ,mmm0〉 be a TCPN system in which all the transitions are
controllable. The system 〈N,λλλ ,mmm0〉 is BIC over the interior of Class(mmm0) iff the net
is consistent. Furthermore, the controllability is extended to the whole Class(mmm0)
iff (additionally to consistency) there exist no empty siphon at any marking in
Class(mmm0).

It is important to remark that controllability does not depend on the timing λλλ . In
fact, the key condition here is consistency, i.e., ∃xxx> 0 such that CCC ·xxx= 000. Remember
that a reachable marking mmm ≥ 000 fulfills mmm = mmm0 +CCC ·σσσ with σσσ ≥ 000, which implies
BBBT

y mmm = BBBT
y mmm0 (equivalently, mmm ∈ Class(mmm0)). In the opposite sense, if the net is

consistent then ∀mmm ≥ 000 s.t. BBBT
y mmm = BBBT

y mmm0 (i.e., mmm ∈ Class(mmm0)) it exists σσσ ≥ 000
s.t. mmm = mmm0 +CCC ·σσσ , thus mmm is reachable (assuming σσσ is fireable). A very informal
and intuitive explanation is that consistency permits movements of marking in any
direction inside the reachability space (see right Fig. 20.1), i.e., if there exists σσσ
such that mmm1 = mmm0 +CCC ·σσσ , under consistency any σσσ ′ = σσσ + k · xxx ≥ 0, permits the
reachability of mmm1.

Let us consider again the right TCPN system of Fig. 20.1. Given that the net
is not consistent, it can be deduced by Proposition 20.1 that it is not controllable
over Class(mmm0). Let us now consider the system of Fig. 20.1(b). In this case, due to
the consistency of the net, it holds that the vector (mmm−mmm0) is in the convex cone
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defined by the vectors ccc′1, ccc′2 and ccc′3 for any marking mmm ∈ Class(mmm0). Therefore mmm
is reachable from mmm0. Furthermore, since at the border markings of Class(mmm0) there
are not unmarked siphons then, according to Proposition 20.1, the system is BIC
over Class(mmm0).

20.3.2 Controllability When Some Transitions Are Uncontrollable

If a TCPN contains uncontrollable transitions it becomes not controllable over
Class(mmm0), even if the net is consistent. Thus, the concept of controllability must
be constrained to a smaller set of markings. The work in [15] studies this idea
by defining a set named Controllability Space (CS) for Join-Free nets, over which
the system is controllable. Unfortunately, this set depends on the marking, and
therefore, its characterization for general subclasses of nets is difficult. The exis-
tence of several regions makes the general reachability problem intractable. For
practical reasons, the controllability was studied in [26] over sets of equilibrium
markings : mmmq ∈ Class(mmm0) is an equilibrium marking if ∃uuuq suitable such that
CCC(ΛΛΛΠΠΠ(mmmq)mmmq− uuuq) = 000, i.e., there exists a control action that keeps the system
marking constant at mmmq. They represent the possible stationary operating points
of the original discrete system. These markings are particularly interesting, since
controllers are frequently designed in order to drive the system towards a desired
stationary operating point.

Given that inside each region Ri the state equation is linear (ΠΠΠ(mmm) is constant),
it becomes convenient to study, in a first step, the controllability over equilibrium
markings in each region and later over the union of them. This approach is supported
by the following proposition:

Proposition 20.2. Let 〈N,λλλ ,mmm0〉 be a TCPN system. Consider some equilibrium
sets S1, S2,..., S j related to different regions R1, R2,..., R j. If the system is BIC (in

finite time) over each one and their union
⋃ j

i=1 Si is connected, the system is BIC
over the union.

The connectivity of the set of all the equilibrium markings in Class(mmm0) has not
been demonstrated for the general case. Nevertheless, in every studied system such
property holds.

Example 20.3. Let us consider as an example the timed continuous marked graph
of Fig. 20.2 with Tc = {t4} and λλλ = [1112]T . According to the net structure, there
are four possible configurations, but given the initial marking, one of them cannot
occur. The polytope in Fig. 20.2 represents the Class{mmm0}. Since the system has 3
P-semiflows, the marking at {p1, p3, p5} is enough to represent the whole state. This
is divided into the regions R1, R3 and R4, related to the feasible configurations. The
segments E1 = [mmm1,mmm2], E3 = [mmm2,mmm3] and E4 = [mmm3,mmm4] are the sets of equilibrium
markings in regions R1, R3 and R4, respectively. Since the union of E1, E3 and
E4 is connected, if the system was BIC over each Ei (this will be explored in a
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Fig. 20.2 TCPN system with its E. Transition t4 is the only controllable one. There are four
possible configurations: C1 = {(p2, t2), (p4, t3)}, C2 = {(p3, t2), (p4, t3)}, C3 = {(p2, t2),
(p5, t3)} and C4 = {(p3, t2), (p5, t3)}, however, C2 cannot occur from the given mmm0 because
p3 and p4 cannot concurrently constrain t2 and t3, respectively. Equilibrium sets depend on
the timing, but regions do not.

forthcoming example) then, according to Proposition 20.2, the system would be
BIC over E1∪E3∪E4. For instance, the system could be driven from mmm3 to mmm1 and
in the opposite sense. �

Notice that the behavior of the TCPN system is linear and time-invariant in a given
region Ri, then some of the classical results in control theory can be used for its
analysis. Null-controllability (controllability around the origin) of this kind of sys-
tems with input constraints was studied in [7]. Recalling from there, if a linear
system ẋxx = AAAxxx+BBBuuu, with input constraint uuu ∈ Ω (called the set of admissible in-
puts), is controllable then the controllability matrix Contr(AAA,BBB) = [BBBAAABBB ...AAAn−1BBB]
has full rank (equivalently, ∀xxx1,xxx2: ∃zzz s.t. (xxx2− xxx1) = Contr(AAA,BBB) · zzz). Moreover,
if 000 is in the interior of Ω then the previous rank condition is also sufficient for
null-controllability. Otherwise, if there are inputs that can be only settled as pos-
itive (or negative) then the controllability depends also on the eigenstructure of
the state matrix. These results can be adapted to TCPNs. For this, the state equa-
tion of a TCPN is first transformed in order to represent the behavior around an
equilibrium marking mmmq, i.e., the evolution of Δmmm = mmm−mmmq. As a consequence,
some transformed inputs Δuuu = (uuu− uuuq) can be settled only as nonnegative while
others can be settled as either positive or negative. The set of transitions related
to this last kind of inputs is denoted as T i

c f ⊆ Tc. Let us denote as E∗i the set of

all equilibrium markings in a region Ri s.t. Δuuu[T i
c f ] can be settled as either pos-

itive or negative (equivalently, [ΛΛΛΠΠΠ immmq] j > uq
j > 0 for all t j ∈ T i

c f ). In this way,
it can be proved that if a TCPN is controllable over a set E∗i then ∀mmm2,mmm1 ∈ E∗i :
∃zzz s.t. (mmm2 −mmm1) = Contr((CCCΛΛΛΠΠΠ i),CCC[Tc]) · zzz. This condition is only necessary,
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as already pointed out in [1], because the existence of input constraints. Further-
more, a system is controllable (in finite time) over E∗i if ∀mmm2,mmm1 ∈ E∗i : ∃zzz s.t.
(mmm2−mmm1) =Contr((CCCΛΛΛΠΠΠ i),CCC[T i

c f ]) · zzz. This sufficient condition is also necessary

if T i
c f = Tc (but not if T i

c f ⊂ Tc). Note that now the controllability depends not only
on the structure of the net, but also on the timing [26].

As an example, let us consider the region R3 in the system of Fig. 20.2, where
T 3

c f = {t4}. Given that T 3
c f = Tc then the span condition introduced above is sufficient

and necessary for controllability. In this case, it can be verified that the system is
BIC over E∗3 = E3. Consider now the same system but with λ4 = 1 instead of λ4 =
2. In this case, T 3

c f = /0 (this set depends on the timing), then we cannot use the
same sufficient condition. Nevertheless, it is still fulfilled that ∀mmm2,mmm1 ∈ E∗3 : ∃zzz s.t.
(mmm2−mmm1) = Contr((CCCΛΛΛΠΠΠ 3),CCC[Tc]) · zzz. Therefore, the controllability matrices do
not provide enough information for deciding whether the system is BIC or not over
E∗3 . By using other results from [26], it can be proved that the system is not BIC
with λ4 = 1. This implies that controllability is a timing-dependent property.

20.4 Control Techniques under Infinite Server Semantics

This section describes some few techniques proposed in the literature for the con-
trol of TCPNs when all transitions are controllable. Similarly to the set-point control
problem in state-continuous systems, the control objective here consists in driving
the system towards a desired target marking here denoted as mmmd . This desired mark-
ing can be selected, in a preliminarily planning stage, according to some optimality
criterion [24], e.g., maximizing the flow. Most of the work done on this issue is
devoted to centralized dynamic control assuming that all the transitions are control-
lable. We will first present those control techniques that require all the transitions to
be controllable, then a basic comparison of such techniques will be performed, and
finally a couple of approaches where uncontrollable transitions are allowed will be
presented.

20.4.1 Control for a Piecewise-Straight Marking Trajectory

This subsection introduces a control approach that aims at reaching a given target
marking by following a piecewise-straight trajectory. A similar approach was stud-
ied in [16] for Join-Free nets where the tracking control problem of a mixed ramp-
step reference signal was explored, and later extended to general Petri nets in [17].
In such a work, a high & low gain proportional controller is synthesized, while a
ramp-step reference trajectory, as a sort of path-planning problem at a higher level,
is computed. We will discuss the more simple synthesis procedure introduced in [3].

Let us consider the line l connecting mmm0 and mmmd , and the markings in the inter-
section of l with the region’s borders, denoted as mmm1

c , mmm2
c , ...., mmmn

c . Define mmm0
c = mmm0
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and mmmn+1
c = mmmd . Then, ∀k ∈ {0,n} compute τk by solving the linear programming

problem (LPP):

min τk

s.t. : mmmi+1
c = mmmi

c +CCC · xxx
000≤ xxx j ≤ λλλ jΠΠΠ z

ji min{mmmi
c,i,mmm

i+1
c,i }τk

∀ j ∈ {1, ..., |T |} where i satisfies ΠΠΠ z
ji 
= 000

(20.4)

where the first constraint is the fundamental state equation and the second constraint
ensures the applicability of the input actions. This way, the control law to be applied
is www = xxx/τk (the model is represented as in (20.3)), when the system is between the
markings mmmk

c and mmmk+1
c . The time required for reaching the desired marking is given

by τ f = ∑n
k=0 τk. Feasibility and convergence to mmmd were proved in [3].

If one aims at obtaining faster trajectories, intermediate states, not necessarily on
the line connecting the initial and the target marking, can be introduced [17]. Ac-
cording to [3], they can be computed by means of a bilinear programming problem
(BPP). The idea is to currently compute the intermediate markings mmmk

c, on the bor-
ders of the regions that minimizes the total time τ f = ∑n

k=0 τk with some additional
monotonicity constraints. Finally, the same algorithm can be adapted in order to
recursively compute intermediate markings in the interior of the regions, obtaining
thus faster trajectories.

20.4.2 Model Predictive Control

Within the Model Predictive Control (MPC) framework, two main solutions can be
considered based on the implicit and explicit methods (see, for instance, [6]). The
evolution of the timed continuous Petri net model (20.3), in discrete-time, can be
represented by the difference equation: mmm(k+ 1) = mmm(k)+Θ ·CCC ·www(k), subject to
the constraints 000 ≤ www(k) ≤ fff (k) with fff (k) being the flow without control, which
is equivalent to GGG · [wwwT (k),mmmT (k)]T ≤ 000, for a particular matrix GGG. The sampling
Θ must be chosen small enough in order to avoid spurious markings, in particular,
for ensuring the positiveness of the markings. For that, the following condition is
required to be fulfilled ∀ p ∈ P : ∑t j∈p• λ jΘ < 1.

A MPC control scheme can be derived [23] by using this representation of the
continuous Petri net. The considered goal is to drive the system towards a desired
marking mmmd , while minimizing the quadratic performance index

J(mmm(k),N) = (mmm(k+N)−mmmd)
′ZZZ(mmm(k+N)−mmmd)

+∑N−1
j=0 [(mmm(k+ j)−mmmd)

′QQQ(mmm(k+ j)−mmmd)

+(www(k+ j)−wwwd)
′RRR(www(k+ j)−wwwd)]
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where ZZZ, QQQ and RRR are positive definite matrices and N is a given time horizon. This
leads to the following optimization problem that needs to be solved in each time
step:

min J(mmm(k),N)
s.t. : ∀ j ∈ {0, ...,N− 1}, mmm(k+ j+ 1) = mmm(k+ j)+Θ ·CCC ·www(k+ j)

GGG ·
[

www(k+ j)
mmm(k+ j)

]

≤ 000

www(k+ j)≥ 000

(20.5)

Let us show that, in general, the standard MPC approach does not guarantee con-
vergence [23].

Example 20.4. Consider the net system in Fig. 20.3 with λλλ = [1 5]T . Let Θ = 0.1,
mmmd = [0 1]T and wwwd = [0 0]T . Moreover, let QQQ = ZZZ = RRR = III and N = 1.

Fig. 20.4 shows the marking evolution of the system controlled with the MPC
policy. It can be seen that the desired marking is not reached. Observe that to obtain
mmmd , only t1 should fire. Given that the timing horizon is too short and λ2 = 5 >>
λ1 = 1, the optimality of (20.5) implies that it is better to fire at the beginning “a
little” t2 so that m1 approaches the desired final value m f ,1 = 0. However, once t2
has fired, mmmd cannot be reached because there is not enough marking in p1 to be
transferred to p2. �

p
2
p11

2
t

2
2

Fig. 20.3 Example of an unstable TCPN system with basic MPC scheme
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Fig. 20.4 Marking evolution of the TCPN system in Fig. 20.3
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The work in [23] shows that the standard techniques used for ensuring converge in
linear/hybrid systems (i.e., terminal constraints or terminal cost) cannot be applied
in continuous nets if the desired marking has zero components. However, several
approaches can be considered to improve convergence. Let us discuss one of them
that consists in constraining the system state at time k+N to belong to the straight
line mmm(k) — mmmd . Roughly, this is equivalent to add a terminal constraint of the form:

{
mmm(k+N) = mmmk +α · (mmmd−mmm(k))
0≤ α ≤ 1

(20.6)

to the optimization problem (20.5), where α is a new decision variable. As stated in
the following proposition, the inclusion of this constraint guarantees asymptotically
stability.

Proposition 20.3. Consider a TCPN system with mmm0 and mmmd the initial and target
markings, respectively, being mmm0 > 000 and mmmd reachable from mmm0. Assume that the
system is controlled using MPC with a terminal constraint of the form (20.6) and
prediction horizon N = 1. Then, the closed-loop system is asymptotically stable.

Example 20.5. Let us exemplify this result through the TCPN in Fig. 20.5. Assume
mmm0 = [1 0.1]T > 000, mmmd = [0 0]T , wwwd = [0 0 0]T , λλλ = [1 1 1]T , ZZZ = RRR = III, QQQ =
[1 0;0 100] and Θ = 0.1.

Fig. 20.6 shows the marking evolution after applying MPC with the terminal
constraint mmm(k+N) = α ·mmmd +(1−α) ·mmm(k), for N = 1 and N = 2 respectively.
It can be observed that if N = 1, mmmd is reached, but if N = 2, mmmd is not reached.

p
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Fig. 20.5 A TCPN showing that the terminal equality constraint may not ensure stability if
N > 1
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Fig. 20.6 Marking evolution of the net in Fig. 20.5 with N = 1 (left) and N = 2 (right)
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Notice that mmmd = [0 0]T is on the boundary of the feasible states since in a Petri net,
mmm(k)≥ 0 for all reachability markings. �

An alternative MPC approach for this problem is the so-called explicit solution [6],
where the set of all states that are controllable is split into polytopes. In each poly-
tope the control command is defined as a piecewise affine function of the state. The
closed-loop stability is guaranteed with this approach. On the contrary, when either
the order of the system or the length of the prediction horizon are not small, the com-
plexity of the explicit controller becomes computationally prohibitive. Furthermore,
the computation of the polytopes sometimes is unfeasible.

20.4.3 ON-OFF Control

If the control problem is constrained to particular net subclasses, stronger results
may be obtained. For instance, for structurally persistent continuous Petri nets, i.e.,
net systems where the enabling of any transition t j cannot decrease by the firing of
any other transition ti 
= t j (in continuous nets this corresponds to choice-free nets),
the minimum-time control problem has been solved [30].

The solution to this problem can be obtained as follows. First, a minimal firing
count vector σσσ s.t. mmmd = mmm0 +CCCσσσ is computed (σσσ is minimal if for any T-semiflow
xxx, ||xxx||� ||σσσ ||, where || · || stands for the support of a vector). Later, the control law
is defined, for each transition t j, as:

uuu[t j] =

{
0 if

∫ τ−
0 www(t j,δ )dδ < σσσ [t j]

fff [t j] if
∫ τ−

0 www(t j,δ )dδ = σσσ [t j]

where www(t j,δ ) is the controlled flow of t j at time δ . This means that if t j has not
been fired an amount of σσσ [t j], then t j is completely ON. Otherwise, t j is completely
OFF (it is blocked).

t1 t2 t4

p2

p3

p1

t2

t3

p4

p5

Fig. 20.7 Structurally persistent Petri net system
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Fig. 20.8 Marking trajectories of the net system in Fig. 20.7 under ON-OFF control

Example 20.6. Let us consider the structurally persistent net in Fig. 20.7 to show the
ON-OFF control. Let us assume that the initial marking is mmm0 = [1 0 0 0 0]T , the tar-
get marking is mmmd = [0.3 0.4 0.3 0.4 0.4]T and that λλλ = [1 1 1 1]T . Fig. 20.8 shows
the marking trajectory after the application of the control. It can be appreciated that
the trajectory exhibits sudden changes (the first derivative is not continuous) due to
the change from ON to OFF in the transitions. The marking mmmd is reached in 1.65
time units. �
According to the ON-OFF approach, once the final marking is reached, all transi-
tions are stopped. This trivially produces a steady state with no flow in which the
final marking is kept. As it has been seen in previous sections, steady states with
positive flows can be easily maintained as long as the flow vector is a T-semiflow.
The system in Fig. 20.7 has no T-semiflows, and therefore, the final marking cannot
be kept with a non-null flow vector.

In [30], it is proved that this ON-OFF control policy drives structurally persistent
continuous Petri net systems towards mmmd in minimum time. An intuitive reason for
this is that, for persistent nets, the firing order is irrelevant for reaching a marking.
Hence, what only matters is the amount of firings required, which is provided by σσσ .

20.4.4 Comparison of Control Methods

The availability of several control methods for TCPNs raises concerns about the se-
lection of the most appropriate technique for a given particular system and purpose.
In order to make an appropriate choice, several properties may be taken into ac-
count, e.g., feasibility, closed-loop stability, robustness, computational complexity
(for the synthesis and during the application), etc.

Table 20.1 summarizes a few qualitative properties of some of the control meth-
ods described above. According to the presented properties, if the TCPN under
consideration is structurally persistent, then the natural choice will be an ON-OFF
control law, since it does not exhibit computational problems, ensures convergence
and provides the minimum-time transient behavior. For non-persistent nets, MPC
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Table 20.1 Qualitative characteristics of control laws (assuming mmmd > 0). The following ab-
breviations are used: config. (configuration), min. (minimize), func. (function), compl. (com-
plexity) and poly. (polynomial).

Technique Computational Optimality Subclass Stability
issues criterion

PW-straight a LPP for heuristic for all yes
trajectory each config. min. time

MPC poly. compl. min. quadratic or all under suf.
on |T |,N linear func. of mmm,uuu conditions

ON-OFF linear compl. minimum structurally yes
on |T | time persistent

ensures convergence and minimizes a quadratic criterion. Nevertheless, when the
number of transitions grows, the complexity may become intractable. In such a case,
control synthesis based on other approaches as piecewise-straight trajectories would
be more appropriate.

Given a TCPN system with just few configurations and transitions most of the
described control laws could be synthesized and applied to it, ensuring convergence.
In such a case, the criterion for selecting one of them may be a quantitative one, like
minimizing either a quadratic optimization criterion or the time spent for reaching
the desired marking.

20.4.5 Control with Uncontrollable Transitions

This subsection briefly discusses two control methods that can be used when the
system contains uncontrollable transitions.

Gradient-based control with uncontrollable transitions [21]. This method pro-
duces control actions that reduce the rates of the controllable transitions from their
nominal maximum values. This is equivalent to reducing the transitions flow, as
considered along this chapter. However, the goal of the control problem is slightly
different, since it is no longer required to drive the whole marking of the system to a
desired value, but only the marking of a subset of places (the output of the system).
The analysis is achieved in discrete time. Let us provide the basic idea for the case
of a single-output system. Firstly, a cost function is defined as v(k) = 1/2ε(k)2,
where ε(k) denotes the output error. The control proposed has a structure like:
uuu(k) = uuu(k− 1)− (sss(k)sss(k)T +αIII)−1sss(k)ε(k), where the input uuu(k) is the rate of
the controllable transitions and sss(k) is the output sensitivity function vector with re-
spect to the input (the gradient vector ∇uuu y). The factor α > 0 is a small term added
to avoid ill conditioned matrix computations. The gradient is computed by using
a first order approximation method. One of the advantages of this approach is that
the change of regions (or configurations) is not explicitly taken into account during
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the computation of the gradient. Furthermore, a sufficient condition for stability is
provided.

Pole assignment control with uncontrollable transitions [28]. This technique as-
sumes initially that the initial and desired markings are equilibrium ones and belong
to the same region. The control approach considered has the following structure:
uuu = uuu′d +KKK(mmm−mmm′d), where (mmm′d , uuu′d) is a suitable intermediate equilibrium mark-
ing. The gain matrix KKK is computed, by using any pole-assignment technique, in
such a way that the controllable poles are settled as distinct, real and negative. In-
termediate markings mmm′d , with their corresponding input uuu′d , are computed during
the application of the control law (either at each sampling period or just at an ar-
bitrary number of them) by using a given LPP with linear complexity that guar-
antees that the required input constraints are fulfilled. Later, those results are ex-
tended in order to consider several regions. For this, it is required that the initial
and desired markings belong to a connected union of equilibrium sets (as defined
in Subsection 20.3.2), i.e., mmm0 ∈ E∗1 , mmmd ∈ E∗n and ∪n

i=1E∗i is connected. Thus, there
exist equilibrium markings mmmq

1, ...,mmm
q
n−1 on the borders of consecutive regions, i.e.,

mmmq
j ∈ E j∩E j+1, ∀ j ∈ {1, .., j−1}. A gain matrix KKK j, satisfying the previously men-

tioned conditions, is computed for each region. Then, inside each jth region, the
control action uuu = uuu′d +KKK j(mmm−mmm′d) is applied, where mmm′d is computed, belonging to
the segment [mmmq

j ,mmm
q
j+1], by using a similar LPP. It was proved that this control law

can always be computed and applied (feasibility). Furthermore, convergence to the
desired mmmd was also demonstrated, whenever the conditions for controllability are
fulfilled and ∪n

i=1E∗i is connected (see Section 20.3.2). The main drawback of this
technique is that a gain matrix and a LPP have to be derived for each region in the
marking path.

Similarly to the previous subsection, Table 20.2 summarizes the main features of
the two presented methods.

Table 20.2 Qualitative characteristics of control laws (assuming mmmd > 0) with uncontrollable
transitions. The following abbreviations are used: min. (minimize), compl. (complexity) and
poly. (polynomial).

Technique Computational Optimality Subclass Stability
issues criterion

Gradient-based poly. compl. min. quadratic all under a suf.
on # outputs error condition

Pole-assignment a pole-assignment none all yes
for each config.

Given that a pole assignment is required for each configuration, if the TCPN has
many configurations, the implementation of the pole assignment method becomes
tedious although automatizable. This problem does not appear for the gradient based
controller. On the contrary, the gradient based controller does not guarantee conver-
gence for the general case, while the pole assignment does it.
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20.5 Towards Distributed Control

A natural approach to deal with systems having large net structures is to consider de-
centralized and distributed control strategies. In a completely distributed approach,
the model can be considered as composed of several subsystems that share informa-
tion through communication channels, modeled by places. This problem has been
addressed in few works. For instance, [29] proposes the existence of an upper-level
controller, named coordinator. This coordinator may receive and send information
to the local controllers, but it cannot apply control actions directly to the TCPN
system. The existence of such coordinator increases the capability of the local con-
trollers, allowing to consider wider classes for the net subsystems (they are assumed
to be separately live and consistent, but they are not restricted to particular net
subclasses). Affine control laws are proposed for local controllers. Feasibility and
concurrent convergence to the required markings are proved.

We will describe in more detail an alternative approach [4] that considers a sys-
tem composed of mono-T-semiflow (MTS) subsystems working under infinite server
semantics connected through places (recall that a net is said to be MTS if it is con-
servative and has a unique minimal T-semiflow whose support contains all the tran-
sitions). For each subsystem, a local controller will be designed, being its goal to
drive its subsystem from its initial marking to a required one. In order to achieve this
goal, it must take into account the interaction with the other subsystems. For this,
it is required that neighboring local controllers share information in order to meet
a consensus that determines the amounts in which transitions must fire in order to
reach the target marking. We propose to reach such a consensus by means of an
iterative algorithm executed locally at each subsystem.

In order to illustrate the kind of systems that will be handled, consider a simple
net modeling a car manufacturing factory composed by two plants A and D in two
different cities. The Petri net model is given in Fig. 20.9. The plant A produces the
car body (place p1) and then sends it to the plant D (place p2). The plant A can
produce concurrently a limited number of car bodies (the initial marking of p3). In
plant D, the engine is constructed (p4) and then it is put in an intermediate buffer
p5. The same plant paints the body received from plant A in p6 and puts it in p7 to
be assembled together with the engine. The firing of t8 means the production of a
new car. We assume that D can produce concurrently a limited number of engines
(initial marking of p8) and can paint a limited number of car bodies in parallel
(initial marking of p9). Place pb is the buffer containing the car bodies produced
by plant A while pa is the buffer containing the finished products. Since we do not
want to produce more than we sell, the plant A starts to produce a new body (firing
of t1) only when a car is sold.
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Fig. 20.9 A distributed marked graph modeling a car manufacturing plant where pa and pb
are buffer places

20.5.1 Distributed Continuous Petri Nets

We will focus on distributed continuous Petri nets (DcontPN) which consists of a set
of MTS net systems (called subsystems) interconnected through buffers modeled as
places. Let K denote the set of subsystems of a given DcontPN. The set of places,
transitions and token flow matrix of subsystem k ∈ K is denoted by Pk, T k and CCCk ∈
R
|Pk |×|Tk|, respectively. We assume, Pk ∩Pl = /0 and Tk ∩Tl = /0 , ∀k, l ∈ K, k 
= l.

The directional connection between subsystems is provided by a set of places called
channel or buffer places. In particular, the directional connection from subsystem k
to l is provided by a set of places denoted B(k,l), whose input transitions are con-
tained only in subsystem k and output transitions are contained only in subsystem l,
i.e., B(k,l) = {p ∈ P|•p ∈ Tk, p• ∈ Tl , p 
∈ Pq ∀q ∈ K} for every k, l ∈ K, k 
= l, and
B(l,l) = /0 for every l ∈ K.

Note that a place p ∈ B(k,l) is an input buffer of subsystem l and an output buffer
of subsystem k. The set of all output buffers of subsystem k is denoted by B(k,∗),
i.e., B(k,∗) =

⋃

l∈K
B(k,l), and the set of all input channels of subsystem k is denoted by

B(∗,k), i.e., B(∗,k) =
⋃

l∈K
B(l,k).

The marking vector of a subsystem k is denoted by mmm[Pk] ∈R|P
k|
≥0 . When design-

ing a controller, it must be taken into account that the controller of a given subsystem
only knows its marking and the marking of its input buffers, i.e., the marking of the
other subsystems and their input buffers are not observable.

Among the different existing control problems, we will deal with a control prob-
lem of DcontPN which aims at reaching a particular target marking mmmd at each
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subsystem. That is, after a finite period of time each subsystem is at its target mark-
ing. In contrast to a centralized control, each subsystem is equipped with its own
controller that computes the control actions that drive the subsystem to the target
marking. Given that the subsystems are interconnected, they may require resources
to be available in the communication buffers to reach the target marking. The fol-
lowing example shows this situation.

Example 20.7. Consider the DcontPN in Fig. 20.9 with mmm0[P1] = [0 0 3]T , mmm0[P2] =
[0 0 0 0 2 2]T , m0[pa] = 1, m0[pb] = 0 and let mmmd [P1] = [0 0 3]T , mmmd [P2] =
[0 0 1 0 2 1]T be the target markings of each subsystem. Let the flow integrals
of subsystem 1 and 2 be denoted as sss1 and sss2 respectively.

Let us assume that the controller of the second subsystem computes s2[t6] = 1,
s2[t4] = s2[t5] = s2[t7] = s2[t8] = 0 so that the subsystem reaches the target marking.
Given that the initial marking and target marking of subsystem 1 are the same, a
controller for that subsystem could yield: s1[t1] = s1[t2] = s1[t3] = 0. Since m0[pb] =
0, transition t6 cannot fire unless t3 fires. Unfortunately, according to the computed
controls, t3 will not fire (s1[t3] = 0). Hence, these controls are not valid to reach the
desired target marking of subsystem 2. In order to solve this situation, subsystem
2 may ask subsystem 1 to put enough tokens in pb. This can be achieved easily by
firing t3. However, this will imply that subsystem 1 moves away from its desired
target marking. �
Apart from the problem of tokens (resources) required in the buffer places at the
initial time, it could happen that the target markings cannot be reached due to the
system structure and initial marking (the following example deals with this case).
When stating the problem we are implicitly assuming that all target markings of
subsystems are reachable, meaning that the final marking of the overall net system,
i.e., the net containing all subsystems and buffers, is reachable.

Example 20.8. Consider again the DcontPN in Fig. 20.9. For subsystem 1, let the
target marking be mmmd [P1] = [0 0 3]T which is reachable from mmm0[P1] = [0 0 3]T

locally. For subsystem 2, let the target marking be mmmd [P2] = [0 0 1 0 2 1]T which
is reachable from mmm0[P2] = [0 0 0 0 2 2]T locally by firing t6, i.e., if it is consid-
ered isolated from the rest of the system. But when both subsystems are connected
through the buffers pa and pb with m0[pa] = m0[pb] = 0, the target markings are not
reachable. �

20.5.2 A Control Strategy for DcontPNs

In this subsection, a distributed controller for DcontPN with tree structure is pro-
posed (this extends the results in [5] where the problem has been studied for
DcontPN with two subsystems). In a system with tree structure cycles are not al-
lowed. The following assumptions will be taken on the considered DcontPNs: (A1)
The target marking mmmd is strictly positive and reachable at the overall system; (A2)
The DcontPN is composed of MTS subsystems. The minimal T-semiflows of the
subsystem i is denoted by xxxi; (A3) The overall system is a MTS net system.
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The first assumption is simply a necessary condition for reachability of the target
markings. The second assumption reduces the class of DcontPN to those systems
composed by MTS subsystems while the third one states that the overall system is
MTS. In order to drive the subsystems from their initial states to the target states,
Algorithm 20.9 is developed. It represents logic of the rules to be executed in each
subsystem to meet a consensus.

Algorithm 20.9. [Distributed controller of subsystem k]
Input: CCCk,mmm0[Pk],mmmd [Pk], B(k,∗), B(∗,k), mmm0[B(k,∗)]
Output: flow integral vector sss
1) Solve

min 111T · s̄ss
s.t. mmmd [Pk]−mmm0[Pk] =CCCk · s̄ss,

s̄ss≥ 0
(20.7)

2) Repeat |K|−1 times
3) For every p ∈ B(∗,k) calculate

qreq
p =

(

∑
t∈p•

Pre[p, t] · s̄[t]
)
−m0[p] (20.8)

4) For all p ∈ B(∗,k) send qreq
p to the connected subsystem

5) For all p ∈ B(k,∗) receive rreq
p from the connected subsystem

6) For all p ∈ B(k,∗) calculate

hp =
(

∑
t∈•p

Post[p, t] · s̄[t]
)
− rreq

p (20.9)

7) If min
p∈B(k,∗)

{hp}< 0 then solve

min 111T · sss
s.t. mmmd [Pk]−mmm0[Pk] =CCCk · sss,

∑
t∈•p

Post[p, t] · s[t]≥ rreq
p ,∀p ∈ B(k,∗)

sss≥ 0

(20.10)

Else
sss = s̄ss

End If
8) s̄ss = sss
9) End Repeat
10) return sss

In step 1, each subsystem computes the flow integral s̄ss required to reach its target
marking without taking into account the marking of the buffers. Step 2 computes the
amounts of tokens qreq

p to be produced in each input buffer p in order to be able to fire
s̄ss. The connected subsystems are informed about the amounts of required tokens qreq

p

in step 4. In step 5, each subsystem receives the amount of tokens it has to produce
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(if any) in its output buffers. In step 6, it is computed how many tokens would remain
in each output buffer if the present control was applied. If this value is negative,
more tokens must be produced in the output buffers, and therefore the control law
must be recomputed. This re-computation is achieved in step 7 using LPP (20.10).
Observe that comparing with LPP (20.7) of step 2 only one extra constraint is added
in order to ensure that enough tokens are produced in the output buffers. Steps 4-7
are repeated |K| − 1 times in order to allow the communication along the longest
path connecting a pair of subsystems.

The following Theorem shows that Algorithm 20.9 computes a control law for
all subsystems that ensures the reachability of their target markings (see [4] for the
proof).

Proposition 20.4. Let N be a DcontPN with tree structure satisfying assumptions
(A1), (A2) and (A3), and let sssk be the flow integral vectors computed by Algorithm
1 for each subsystem for a given initial and target marking. The application of sssk

drives the subsystems to their target markings.

Example 20.10. Consider the net system in Fig. 20.9 used also in Example 20.8.
Assume for the first subsystem the same initial and desired markings: mmm0[P1] =
mmmd [P1] = [0 0 3]T while for the second one: mmm0[P2] = [0 0 0 0 2 2]T and mmmd [P2] =
[0 0 1 0 2 1]T . For the buffers, let us assume m0[pa] = 1, m0[pb] = 0. Let us compute
local control laws in each subsystem. For the first one, since mmm0[P1] = mmm f [P1], the
minimum firing vector is unique equal to sss1 = [0 0 0]T , i.e., not firing any transition.
For the second subsystem, it is easy to observe that the minimum firing vector is
sss2 = [0 0 1 0 0]T , i.e., firing t6 in an amount equal to 1. Notice that t6 cannot fire
from the initial marking because m0[pb] = 0. In order to avoid this, it is possible to
fire once the T-semiflow of subsystem 1 (equal to the vector of ones). This is the
control action that Algorithm 20.9 computes for subsystem 1 after the first iteration.
The algorithm performs just one iteration because, in this example, |K|= 2. �
Once the flow integral vectors sss of the evolution from the initial marking to the
target marking have been computed by Algorithm 20.9, the value of the control
actions uuu can be derived in several ways (for example applying the procedure in
[3]) as long as sss =

∫ τb
τa
( fff − uuu)dτ is satisfied where τa and τb are the initial and final

time instants respectively. Remark that sss can be seen as a firing count vector in
the untimed system and the problem of finding a control law uuu is equivalent to a
reachability problem: if the desired marking is reachable in the untimed net system
it is reachable in the timed one with an appropriate control law if all transitions
are controllable. This result is proved in [22] (Prop. 14. 3) where a procedure that
executes a firing sequence of the untimed system in the timed one is also presented.

20.6 Further Reading

The reader is referred to [24] for a general introduction to fluidization with some
advanced topics, and to the the book by R. David and H. Alla [8] for several
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examples. Further information about some of the presented control topics can be
found in the survey paper [25].

Several control approaches have been proposed for continuous nets in which all
transitions are controllable. In [12] a fuzzy control approach is presented where it
is shown that the flow of a fluid transition, under infinite servers semantics with
an implicit self-loop, can be represented as the output of two fuzzy rules under the
Sugeno model. A low and high gain control method that generates a piecewise-
straight marking trajectory for a tracking control problem was first suggested for
Join-Free nets [16] and the extended to general nets [17]. Model predictive con-
trol techniques can be consulted in [23]. Details about an approach related to pro-
portional control synthesis with LMI can be found in [18]. Finally, the ON-OFF
approach is described in [30].

With respect to approaches that allow uncontrollable transitions, other ap-
proaches, as well as model predictive control have been proposed. In [21] a gradient-
based control that manipulated the rates of transitions is presented. A description of
control method based on pole assignment can be found in [28].
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Chapter 21
Discrete-Event Systems in a Dioid Framework:
Modeling and Analysis

Thomas Brunsch, Jörg Raisch, Laurent Hardouin, and Olivier Boutin

21.1 Timed Event Graphs

As discussed in the previous chapters, a Petri net graph is a directed bipartite graph
N = (P,T,A,w), where P = {p1, . . . , pn} is the finite set of places, T = {t1, . . . , tm}
is the (finite) set of transitions, A⊆ (P×T )∪(T ×P) is the set of directed arcs from
places to transitions and from transitions to places, and w : A→N is a weight func-
tion. Note that this notation differs slightly from the notation introduced in Part II
of this book. However, for the description of timed event graphs, i.e., a specific type
of Petri nets, our notation is very convenient. In the sequel, the following notation
is used for Petri net graphs:

•t j := {pi ∈ P |(pi, t j) ∈ A}
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is the set of all input places for transition t j, i.e., the set of places with arcs to t j.

t j
• := {pi ∈ P |(t j , pi) ∈ A}

denotes the set of all output places for transition t j, i.e., the set of places with arcs
from t j. Similarly,

•pi := {t j ∈ T |(t j , pi) ∈ A}

is the set of all input transitions for place pi, i.e., the set of transitions with arcs to
pi, and

pi
• := {t j ∈ T |(pi, t j) ∈ A}

denotes the set of all output transitions for place pi, i.e., the set of transitions with
arcs from pi. Obviously, pi ∈ •t j if and only if t j ∈ pi

•, and t j ∈ •pi if and only
if pi ∈ t j

•. Graphically, places are shown as circles, transitions as bars, and arcs as
arrows. The number attached to an arrow is the weight of the corresponding arc.
Usually, weights are only shown explicitly if they are different from one.

A Petri net system (or Petri net) is a pair (N,mmm0), where N = (P,T,A,w) is a
Petri net graph and mmm0 ∈Nn

0 with n = |P| is a vector of initial markings. In graphical
representations, the vector of initial markings is shown by m0

i dots (“tokens”) within
the circles representing places pi, i = 1, . . . ,n. A Petri net can be interpreted as a
dynamical system with a state signal mmm : N0→ N

n
0 and an initial state mmm(0) = mmm0.

Its dynamics is governed by two rules, also called firing rules:

(i) In state mmm(k), a transition t j can occur (or “fire”) if and only if all of its in-
put places contain at least as many tokens as the weight of the arc from the
respective place to the transition t j, i.e., if

mi(k) ≥ w(pi, t j),∀pi ∈ •t j.

(ii) If a transition t j fires, the number of tokens in all its input places is decreased
by the weight of the arc connecting the respective place to the transition t j , and
the number of tokens in all its output places is increased by the weight of the
arc connecting t j to the respective place, i.e., the state changes according to

mi(k+ 1) = mi(k)−w(pi, t j)+w(t j, pi), i = 1, . . . ,n,

where mi(k) and mi(k+ 1) represent the numbers of tokens in place pi before
and after the firing of transition t j.

Note that a place can simultaneously be an element of •t j and t j
•. Hence the number

of tokens in a certain place can appear in the firing condition for a transition whilst
being unaffected by the actual firing. It should also be noted that a transition enabled
to fire might not actually do so. In fact, it is well possible that, in a certain state,
several transitions are enabled simultaneously, and that the firing of one of them
will disable the other ones.
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A Petri net (N,mmm0) is called an event graph (or synchronization graph), if each
place has exactly one input transition and one output transition, i.e.,

|•pi|= |pi
•|= 1,∀pi ∈ P,

and if all arcs have weight 1. It is obvious that an event graph cannot model conflicts
or decisions, but it does model synchronization effects. A small example of an event
graph is given in Fig. 21.1.

Fig. 21.1 Example of an event graph

A standard Petri net (N,mmm0) only models the ordering of firings of transitions,
but not the actual firing times. However, it is possible to “attach” timing informa-
tion to the “logical” DES model (N,mmm0). This can be done in two ways: time can
be associated with transitions (representing transition delays) or with places (repre-
senting holding times). In timed event graphs (TEG), transition delays can always
be transposed into holding times by simply shifting each transition delay to all in-
put places of the corresponding transition. However, it is in general not possible to
convert holding times into transition delays. Therefore, we will only consider timed
event graphs with holding times. In TEG with holding times, tokens in place pi have
to be held for a certain time (called “holding time”) before they can contribute to
the firing of the output transition of pi. The holding time for a token in place pi is
denoted vi.

Figure 21.2 shows a part of a general timed event graph with holding times. In
general, the earliest time instant when place pi receives its kth token is denoted πi(k),

pitr t j

vi

Fig. 21.2 Part of a general timed event graph with holding times
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and τ j(k) denotes the earliest time instant when transition t j can fire for the kth time.
Then the earliest time of the kth firing of transition t j can be determined by

τ j(k) = max
pi∈•t j

(πi(k)+ vi),

i.e., a transition is enabled to fire as soon as all input places of this transition have
received their kth token and their corresponding holding times have elapsed. Sim-
ilarly, the earliest time instant when place pi receives its (k +m0

i )
th token can be

determined by the kth firing of its input transition, i.e., πi(k+m0
i ) = τr(k), tr ∈ •pi.

Note that a place in an event graph has exactly one input transition and consequently,
the place can only receive tokens when this input transition fires. Therefore, it is pos-
sible to eliminate the πi to give recursive equations for the (earliest) firing times of
transitions.

21.2 Motivational Example

From the previous section, it is clear that it is possible to recursively compute the
earliest possible firing times for transitions in timed event graphs. In the correspond-
ing equations, two operations were needed: maximization and addition. To illustrate
this, a small example (taken from Cassandras, Lafortune & Olsder [4]) is used.
Imagine a simple public transportation system consisting of three lines: an inner
loop and two outer loops. There are two stations where passengers can change lines,
and four rail tracks connecting the stations. The basic structure of the system is given
in Fig. 21.3. Initially, it is assumed that the train company operates one train on each
track. A train needs 3 units of time to travel from station 1 to station 2, 5 units of
time for the track from station 2 to station 1, and 2 and 3 units of time for the outer
loops, respectively. The aim is to implement a user-friendly policy where trains wait
for each other at the stations to allow passengers to change lines without delay, i.e.,
the departure times of trains from stations shall be synchronized. This can be easily
represented in a timed event graph with holding times (see Fig. 21.4). The tokens

travel time: 2 travel time: 5

travel time: 3 travel time: 3

Station 1 Station 2

Fig. 21.3 Simple transportation network taken from [4]
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3

3

p2

p4

p3

t1

5

t2

p1

2

Fig. 21.4 Timed event graph of the transportation network

in places p1 to p4 model trains on the tracks and the holding times are the traveling
times for trains on the tracks. The firing times of transitions t1 and t2 represent the
departure times of the trains in stations 1 and 2, respectively. These times can there-
fore be interpreted as the “time table” for the simple public transportation system.
The recursive equations for the firing times of transitions t1 and t2 are

τ1(k) = max(π1(k)+ 2,π4(k)+ 5)

τ2(k) = max(π2(k)+ 3,π3(k)+ 3)
(21.1)

and

π1(k+m0
1) = π1(k+ 1) = τ1(k) (21.2)

π2(k+m0
2) = π2(k+ 1) = τ1(k) (21.3)

π3(k+m0
3) = π3(k+ 1) = τ2(k) (21.4)

π4(k+m0
4) = π4(k+ 1) = τ2(k). (21.5)

Inserting (21.2)–(21.5) into (21.1), it is possible to eliminate πi(k)

τ1(k+ 1) =max
(
τ1(k)+ 2,τ2(k)+ 5

)

τ2(k+ 1) =max
(
τ1(k)+ 3,τ2(k)+ 3

)
.

(21.6)

Now, given initial firing times, i.e., the first departures of trains, τ1(1) = τ2(1) = 0,
the timetable can be determined as follows:

[
0
0

]

,

[
5
3

]

,

[
8
8

]

,

[
13
11

]

,

[
16
16

]

, · · ·

If the initial departure times are chosen to be τ1(1) = 1 and τ2(1) = 0, the sequence
is

[
1
0

]

,

[
5
4

]

,

[
9
8

]

,

[
13
12

]

,

[
17
16

]

, · · ·
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In both cases the average departure interval is 4 units of time, however, in the second
case the departure interval is constant, i.e., the system has a so-called 1-periodic
behavior, while in the first case the system shows a 2-periodic behavior.

Eventually, the train company may consider to realize shorter (average) depar-
ture intervals. This could be achieved by using additional trains. For example the
company provides a second train in the inner loop, e.g., initially on the track from
station 1 to station 2. With respect to the timed event graph shown in Fig. 21.4, this
means to add a second token in place p2. In this case the firing times of transitions t1
and t2 as functions of πi (Eq. 21.1) do not change, but the time instants when places
pi receive their tokens change to

π1(k+ 1) = τ1(k) (21.7)

π2(k+ 2) = τ1(k) (21.8)

π3(k+ 1) = τ2(k) (21.9)

π4(k+ 1) = τ2(k). (21.10)

Therefore the recursive equations for the firing times τ1 and τ2 change to

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)
(21.11)

τ2(k+ 2) = max
(
τ1(k)+ 3,τ2(k+ 1)+ 3

)
. (21.12)

By introducing a new variable τ3, with τ3(k+1) := τ1(k), one may transform (21.11)
and (21.12) into a system of first-order difference equations

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)
(21.13)

τ2(k+ 1) = max
(
τ3(k)+ 3,τ2(k)+ 3

)
(21.14)

τ3(k+ 1) = τ1(k). (21.15)

Initializing this system with τ1(1) = τ2(1) = τ3(1) = 0, the following evolution can
be determined:

⎡

⎣
0
0
0

⎤

⎦ ,

⎡

⎣
5
3
0

⎤

⎦ ,

⎡

⎣
8
6
5

⎤

⎦ ,

⎡

⎣
11
9
8

⎤

⎦ ,

⎡

⎣
14
12
11

⎤

⎦ , · · ·

After a short transient phase, trains depart from both stations at intervals of three
units of time. Obviously, shorter intervals cannot be reached by additional trains
in the inner loop of the system, as the outer loop at station 2 now represents the
“bottleneck” of the system.

In this simple example, several phenomena have been encountered: 1-periodic
solutions (for τ1(1) = 1 and τ2(1) = 0), 2-periodic solutions (for τ1(1) = τ2(1) = 0),
and a transient phase (for the extended system). These phenomena (and more) can
be conveniently analyzed and explained within the formal framework of idempotent
semirings or dioids.
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21.3 Dioid Algebraic Structures

An idempotent semiring (or dioid) is an algebraic structure based on two monoids
(one of which is commutative). A structure (M, ·,e) is a monoid if · is an internal
law, associative and of which e is the identity element. If the law · is commutative,
(M, ·,e) is called a commutative monoid. Then, a dioid (or idempotent semiring) is
a set, D , endowed with two binary operations, addition (⊕) and multiplication (⊗),
such that:

• (D ,⊕,ε) is an idempotent commutative monoid, i.e., ∀a ∈D ,a⊕ a = a
• (D ,⊗,e) is a monoid
• ⊗ is distributive with respect to ⊕
• ε is absorbing for ⊗, i.e., ∀a ∈D ,ε⊗ a = a⊗ ε = ε.

The identity element of addition (ε) is also called the zero element of the dioid,
while the identity element of multiplication (e) is also called the unit element of the
dioid. Often, the multiplication sign is omitted in written equations when they are
unambiguous.

Due to the idempotency property, any dioid can be endowed with a natural (par-
tial) order defined by a ( b⇔ a⊕ b = b, i.e., the sum of two elements a and b is
the least upper bound of a and b. Thus, any dioid forms a sub-semilattice. A dioid is
said to be complete if it is closed for infinite sums, i.e., there exists the greatest ele-
ment of D given by )=

⊕
x∈D x, and if ⊗ distributes over infinite sums. Formally,

a complete dioid forms a complete lattice for which the greatest lower bound of a
and b is denoted a∧b [1].

Example 21.1. [Max-plus algebra] Probably the best known idempotent semiring
is the so-called max-plus algebra, often denoted Zmax. It is defined over the set
Z∪{−∞} and its binary operations are defined as follows:

• addition: a⊕ b := max(a,b)
• multiplication: a⊗ b := a+ b

and the zero and unit elements are ε = −∞ and e = 0, respectively. Defining the
operations over the set Z∪{−∞,∞} defines a complete dioid (often denoted Zmax),
with the top element )=+∞. �

Example 21.2. [Min-plus algebra] The set Z∪{−∞,∞} endowed with addition de-
fined as a⊕ b := min(a,b), and multiplication (a⊗ b := a+ b) forms a complete
dioid also known as min-plus algebra, often denoted Zmin. Its zero, unit, and top
elements are ε = ∞, e = 0, and )=−∞, respectively. �

Note that the (partial) order is a property of a given dioid. For two elements a = 5
and b = 3 the max-plus addition is defined as a⊕b= 5⊕3= 5, which indicates that
5 * 3 in Zmax. The same calculation can be done in min-plus algebra, i.e., a and b
belonging to Zmin. In this case we get a⊕b = 5⊕3 = min(5,3) = 3 and, according
to the definition of the natural order of a dioid, this means 5( 3 in Zmin.
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As in classical algebra the binary operations can be extended to the matrix case
in dioids. For the matrices AAA,BBB ∈Dn×m, and CCC ∈Dm×p we get

Addition: [AAA⊕BBB]i j = [AAA]i j⊕ [BBB]i j

Multiplication: [AAA⊗CCC]i j =
m⊕

k=1

(
[AAA]ik⊗ [CCC]k j

)
.

Note that max-plus algebra (and min-plus algebra) may also be defined on other
sets, e.g., the set of real numbers. Depending on the set of definition, these idempo-
tent semirings are denoted Rmax or Rmin, respectively. An exhaustive description on
idempotent semirings such as max-plus and min-plus algebra can be found e.g. in
[1, 8, 11, 14].

21.4 Linear Dynamical Systems in Max-Plus Algebra

The usefulness of max-plus algebra becomes clear, when we take a second look at
the previously introduced transportation network. Recall that the recursive equations
for the earliest departure times in Fig. 21.4 are

τ1(k+ 1) = max
(
τ1(k)+ 2,τ2(k)+ 5

)

τ2(k+ 1) = max
(
τ1(k)+ 3,τ2(k)+ 3

)
.

Due to the max-operation, these equations are nonlinear in conventional algebra.
However, rewriting these equations in max-plus algebra with xxx := [τ1 τ2]

T , results
in the following linear system:

xxx(k+ 1) =

[
2 5
3 3

]

⊗ xxx(k)

= AAA⊗ xxx(k).

In general, it is possible to convert any timed event graph into a linear system in
max-plus algebra, also called a “max-plus linear system”. In max-plus algebra, the
variable xi(k) is the earliest possible time instant that event xi occurs for the kth

time. Therefore, max-plus algebraic functions xxx(k) are often called dater functions,
giving every event a precise earliest date. Note that, besides max-plus algebra, it is
also possible to convert any timed event graph into a min-plus linear system. Then,
the min-plus variable xi(t) represents the maximal number of occurrences of event
xi up to time t. Min-plus algebraic functions are, therefore, often called counter
functions.

As mentioned in Section 21.2, depending on the vector of initial firing times,
a number of different phenomena have been observed: 1- and 2-periodic behav-
iors, with and without an initial transient phase. For many application scenarios as,
e.g., transportation networks, a 1-periodic solution is desirable. It is therefore natural
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to ask which initial firing vectors will indeed generate 1-periodic solutions and what
the duration for one period is. In conventional algebra this means that the following
equation shall be satisfied:

τi(k+ 1) = λ + τi(k),
k = 1,2, . . .
i = 1,2, . . . ,n.

Rewriting this requirement in max-plus algebra provides

xi(k+ 1) = λ xi(k),
k = 1,2, . . .
i = 1,2, . . . ,n,

or, equivalently,

xxx(k+ 1) = λ xxx(k), k = 1,2, . . . .

This amounts to solving the max-plus eigenproblem. If, for a given AAA ∈ Z
n×n
max , there

exists ξξξ ∈ Z
n
max and λ ∈ Z such that

AAAξξξ = λ ξξξ ,

we call λ eigenvalue and ξξξ eigenvector of matrix A. If we choose the vector of
initial firing times, xxx(1), as an eigenvector, we get

xxx(2) = AAAxxx(1) = λ xxx(1)

and therefore

xxx(k) = λ (k−1)xxx(1), k = 1,2, . . . .

This is the desired 1-periodic behavior and the period length is the eigenvalue λ .
Note that powers in max-plus algebra (and in dioids in general) are defined by ai =
a⊗ ai−1, with a0 = e.

To solve the max-plus eigenproblem, we need the notion of matrix
(ir)reducibility, i.e, a matrix AAA ∈ Dn×n is called reducible, if there exists a permu-
tation matrix PPP, i.e., a square binary matrix that has exactly one 1-element in each
column and row and zeros elsewhere, such that ÃAA= PPPAAAPPPT is upper block-triangular.
Otherwise, AAA is called irreducible. If AAA ∈Dn×n is irreducible, there exists precisely
one eigenvalue. It is given by

λ =
n⊕

j=1

(
tr
(
AAA j)

)1/ j

, (21.16)

where “trace” and the jth root are defined as in conventional algebra, i.e., for any
BBB ∈Dn×n,

tr(BBB) =
n⊕

i=1

bii
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and for any α ∈D ,

(
α1/ j

) j
= α.

Whereas an irreducible matrix AAA ∈Dn×n has a unique eigenvalue λ , it may possess
several distinct eigenvectors. We will not go into the details of how to compute
the eigenvectors of matrices in dioids. There are several algorithms, e.g., Howard’s
algorithm and the power algorithm (see [14] for details), to determine the eigenvalue
and the corresponding eigenvector(s).

Recalling the transportation network, we have determined the max-plus system
matrix

AAA =

[
2 5
3 3

]

and one can check that AAA2 =

[
8 8
6 8

]

.

According to (21.16), the eigenvalue of the system can be calculated by

λ =
2⊕

j=1

(
tr
(
AAA j))1/ j

= 31⊕ 81/2 = 3⊕ 4 = 4.

It turns out that ξξξ = [1 e]T is an eigenvector of matrix AAA, i.e., it satisfies AAA⊗ ξξξ =
λ ⊗ ξξξ . Not surprisingly, this result confirms our observation of the transportation
network. When the initial departure times are set to xxx(1) = [1 0]T = ξξξ , we obtain a
1-periodic schedule with a departure interval of λ = 4.

21.5 The 2-Dimensional Dioid M ax
in [[γ,δ ]]

Max-plus algebra is, as shown in the previous section, suitable to model the be-
havior of timed event graphs. However, for more complex TEG, the corresponding
representation in max-plus algebra becomes more complicated. For the transporta-
tion network with three trains in the inner loop, we had to introduce a new variable
τ3 to find the state model. Taking a look at another TEG (taken from [1]), this issue
becomes even clearer. The linear dynamical system of Fig. 21.5 in max-plus alge-
bra, with xi(k),u j(k),y(k) being the earliest time instants that the transitions xi,u j,
and y fire for the kth time, is

x1(k+ 1) = 1u1(k+ 1)⊕ 4x2(k)

x2(k+ 1) = 5u2(k)⊕ 3x1(k+ 1)

x3(k+ 1) = 3x1(k+ 1)⊕ 4x2(k+ 1)⊕ 2x3(k− 1)

y(k+ 1) = x2(k)⊕ 2x3(k+ 1).
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Fig. 21.5 Timed event graph (taken from [1])

Rewriting the linear system in matrix-vector form, we get

xxx(k+ 1) = AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

y(k) =CCC0xxx(k)⊕CCC1xxx(k− 1),
(21.17)

where

AAA0 =

⎡

⎣
ε ε ε
3 ε ε
3 4 ε

⎤

⎦ , AAA1 =

⎡

⎣
ε 4 ε
ε ε ε
ε ε ε

⎤

⎦ , AAA2 =

⎡

⎣
ε ε ε
ε ε ε
ε ε 2

⎤

⎦ ,

BBB0 =

⎡

⎣
1 ε
ε ε
ε ε

⎤

⎦ , BBB1 =

⎡

⎣
ε ε
ε 5
ε ε

⎤

⎦ , CCC0 =
[

ε ε 2
]
, CCC1 =

[
ε e ε

]
.

In this example one observes that the equations are not in explicit form, and they are
not first-order. Recursively inserting the equation into itself changes the system to

xxx(k+ 1) =AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

=AAA0
(
AAA0xxx(k+ 1)⊕AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

︸ ︷︷ ︸
xxx(k+1)

⊕

AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

=AAA2
0xxx(k+ 1)⊕ (III⊕AAA0)

(
AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

=AAA3
0xxx(k+1)⊕ (III⊕AAA0⊕AAA2

0)
(
AAA1xxx(k)⊕AAA2xxx(k−1)⊕BBB0uuu(k+1)⊕BBB1uuu(k)

)
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Since matrix AAA0 is not cyclic, AAAη
0 contains only ε-entries for η ≥ n. Therefore, the

first term of the right-hand side is equal to zero, i.e.,

xxx(k+ 1) =(III⊕AAA0⊕AAA2
0)
(
AAA1xxx(k)⊕AAA2xxx(k− 1)⊕BBB0uuu(k+ 1)⊕BBB1uuu(k)

)

=

⎡

⎣
ε 4 ε
ε 7 ε
ε 11 ε

⎤

⎦xxx(k)⊕

⎡

⎣
ε ε ε
ε ε ε
ε ε 2

⎤

⎦xxx(k− 1)

⎡

⎣
1 ε
4 ε
8 ε

⎤

⎦uuu(k+ 1)⊕

⎡

⎣
ε ε
ε 5
ε 9

⎤

⎦uuu(k),

y(k) =
[

ε ε 2
]

xxx(k)⊕
[

ε e ε
]

xxx(k− 1).

Then, we can transform this system into a first-order system by suitably augmenting
the state space, e.g., by defining a new state vector x̃xx(k) =

[
xxx(k) xxx(k− 1) uuu(k)

]T
.

The resulting first-order system is

x̃xx(k+ 1) = ÃAAx̃xx(k)⊕ B̃BBuuu(k+ 1)

y(k) = C̃CCx̃xx(k),

where

ÃAA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε 4 ε ε ε ε ε ε
ε 7 ε ε ε ε ε 5
ε 11 ε ε ε 2 ε 9
e ε ε ε ε ε ε ε
ε e ε ε ε ε ε ε
ε ε e ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃BB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ε
4 ε
8 ε
ε ε
ε ε
ε ε
e ε
ε e

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C̃CC =
[

ε ε 2 ε e ε ε ε
]
. (21.18)

Clearly, modeling even a simple TEG as given in Fig. 21.5 in max-plus alge-
bra is not really efficient. However, applying the so-called γ-transform in max-
plus algebra results in another idempotent semiring. The γ-transform is defined by
xxx(γ) =

⊕
k∈Z xxx(k)γk. The resulting dioid is denoted Zmax[[γ]] and is the set of for-

mal power series in one variable γ with coefficients in Zmax and exponents in Z [1].
Addition and multiplication of two formal power series s and s′ are defined by

(
s⊕ s′

)
(k) = s(k)⊕ s′(k),

(
s⊗ s′

)
(k) =

⊕

i+ j=k

s(i)⊗ s′( j).
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The neutral element of addition is the series ε(γ) =
⊕

k∈Z εγk and the neutral
element of multiplication is the series e(γ) =

⊕
k∈N eγk. Furthermore )(γ) =

⊕
k∈Z)γk.
Applying the γ-transform to (21.17), we get

γxxx(γ) = AAA0γxxx(γ)⊕AAA1γ2xxx(γ)⊕AAA2γ3xxx(γ)⊕BBB0γuuu(γ)⊕BBB1γ2uuu(γ)

or equivalently

xxx(γ) =
(
AAA0⊕ γAAA1⊕ γ2AAA2

)

︸ ︷︷ ︸
AAA(γ)

xxx(γ)⊕ (BBB0⊕ γBBB1)
︸ ︷︷ ︸

BBB(γ)

uuu(γ)

y(γ) = (CCC0⊕ γCCC1)
︸ ︷︷ ︸

CCC(γ)

xxx(γ)

where

AAA(γ) =

⎡

⎣
ε 4γ ε
3 ε ε
3 4 2γ2

⎤

⎦ , BBB(γ) =

⎡

⎣
1 ε
ε 5γ
ε ε

⎤

⎦ , CCC(γ) =
[

ε γ 2
]
. (21.19)

Consequently, the TEG given in Fig. 21.5 can be modeled by (21.19), i.e., the γ-
transformed system, instead of (21.18), i.e., the system one would obtain by aug-
menting the state space as described above. Hence, it may be more efficient to use
the dioid Zmax[[γ]] to model more complex TEG.

The system given in Fig. 21.5 can also be modeled in min-plus algebra (denoted
Zmin). In this case the state space has to be augmented as well, in order to obtain
a first-order model. However, similar to the γ-transformation in max-plus algebra,
there is the so-called δ -transformation in min-plus algebra. The transform consti-
tutes an idempotent semiring denoted Zmin[[δ ]]. It is the set of formal power series
in δ with coefficients in Zmin and exponents in Z.

As mentioned before, it is possible to model any timed event graph in max-plus
algebra as well as in min-plus algebra. Which dioid one uses is often based on the
specific application which shall be modeled. If for example the model is supposed
to be used in combination with a PLC (programmable logic controller) it may be
favorable to model the system in min-plus algebra as the min-plus variable xxx(t) is
dependent on time and a PLC also works with a specific cycle time.

It would, however, of course be preferable to combine the assets of max-plus
and min-plus algebra. To do so, we first introduce a 2-dimensional dioid denoted
B[[γ,δ ]]. It is the set of formal power series in two variables (γ,δ ) with Boolean co-
efficients, i.e, B = {ε,e} and exponents in Z (see [1, 5, 10] for more information).
Thus, a series in this dioid may be, for example, s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5. Graphi-
cally the series s can be represented as dots in the event-time plane (see Fig. 21.6).
The interpretation of a monomial γkδ t is that the (k+ 1)st occurrence of the corre-
sponding event happens exactly at time t1. In terms of timed event graphs, however,

1 Following the convention defined between Remarks 5.22 and 5.23 in [1, Section 5.4].
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Fig. 21.6 Graphical representation of the series s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5 ∈ B[[γ ,δ ]]

the following interpretation of γkδ t would be more useful: the (k+ 1)st occurrence
of the event happens at time t at the earliest or at time t, the event has occurred
at most (k + 1) times. If, in this interpretation, we add two monomials γkδ t and
γk+κ δ t−τ , κ ,τ ∈ N0, we clearly get γkδ t . In words, if an event can happen at time t
at most k+1 times and it can happen at an earlier time t−τ at most k+1+κ times,
the resulting statement is that at time t it can happen at most k+ 1 times. We there-
fore identify all points γkδ t and γk+κ δ t−τ , κ ,τ ∈ N0, i.e., instead of a single point,
we consider the “South-East cone” of this point. This establishes an equivalence
relation and the resulting dioid of equivalence classes (quotient dioid) in B[[γ,δ ]] is
denoted M ax

in [[γ,δ ]] (see [1, 5, 10]). Note that this dioid admits only nondecreasing
series and has the following properties:

γkδ t ⊕ γ lδ t = γmin(k,l)δ t

γkδ t ⊕ γkδ τ = γkδ max(t,τ)

γkδ t ⊗ γ lδ τ = γ(k+l)δ (t+τ).

The zero, unit, and top element of M ax
in [[γ,δ ]] are ε = γ+∞δ−∞, e = γ0δ 0, and ) =

γ−∞δ+∞, respectively. As a consequence of this construction, e.g., the series s̃ =
γ1δ 1⊕γ3δ 2⊕γ4δ 5⊕γ5δ 2 is equivalent to the series s = γ1δ 1⊕γ3δ 2⊕γ4δ 5, which
is shown in Fig. 21.7.

Using M ax
in [[γ,δ ]], we can immediately write down a dioid model for TEG. For

example, the TEG in Fig. 21.5 can be represented by

x1 = γ1δ 4x2⊕ γ0δ 1u1

x2 = γ0δ 3x1⊕ γ1δ 5u2

x3 = γ0δ 3x1⊕ γ0δ 4x2⊕ γ2δ 2x3

y = γ1δ 0x2⊕ γ0δ 2x3

or, more compactly,

xxx = AAAxxx⊕BBBuuu

y = CCCxxx,
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Fig. 21.7 Graphical representation of the series s = γ1δ 1⊕ γ3δ 2⊕ γ4δ 5 ∈M ax
in [[γ ,δ ]]

where

AAA =

⎡

⎣
ε γ1δ 4 ε

γ0δ 3 ε ε
γ0δ 3 γ0δ 4 γ2δ 2

⎤

⎦ , BBB =

⎡

⎣
γ0δ 1 ε

ε γ1δ 5

ε ε

⎤

⎦ , CCC =
[

ε γ1δ 0 γ0δ 2
]
.

Clearly, it is possible to model even very complex TEG in a compact form using the
dioid M ax

in [[γ,δ ]].

21.6 High-Throughput Screening Systems

Among the vast variety of systems that can be modeled as timed event graphs is
the operation of so-called High-Throughput Screening Systems. High-throughput
screening (HTS) has become an important technology to rapidly test thousands of
biochemical substances [13, 20]. In pharmaceutical industries, for example, HTS is
often used for a first screening in the process of drug discovery. In general, high-
throughput screening plants are fully automated systems containing a fixed set of
devices performing liquid handling, storage, reading, plate handling, and incubation
steps. All operations which have to be conducted to analyze one set of substances
are combined in a so-called batch. The testing vessel carrying the biochemical sub-
stances in HTS systems is called microplate. It features a grid of up to 3456 wells.
The number of wells is historically grown and represents a multiple of 96 reflecting
the original microplate with 96 wells [18]. Several microplates may be included in a
batch to convey reagents or waste material. While conducting a screening run, more
than one batch may be present in the system at the same time, a single batch may
pass the same machine more than once, a single batch may occupy two (or more)
resources simultaneously, e.g., when being transferred from one resource to another,
and there are minimal and maximal processing times defined by the user.

For better understanding we introduce a simple example of an HTS operation.
One single batch of this example consists of three activities which are executed on
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three different resources. The first activity, executed on R1, represents the filling of
some biochemical substance A into the wells of a microplate. After that, the mi-
croplate is moved to a second resource R2, where the second activity is executed.
This activity basically mixes substance A with some substance B. Substance B is
provided by another activity executed on resource R3. This resource operates inde-
pendently of the other resources and may produce substance B even when resources
R1 and R2 are not working. Due to hardware constraints the user sets the following
minimal time durations:

• act1 :

- filling compound A into the wells of microplate: 7 units of time
- post-processing after transfer of microplate to R2: 1 unit of time

• act2 :

- pre-processing before transfer of microplate from R1: 1 unit of time
- waiting time before substance B can be added: 1 unit of time
- mixing of substances: 12 units of time

• act3 :

- providing one heap of substance B: 5 units of time
- post-processing after providing one heap of substance B: 1 unit of time

• The transfer processes are assumed to be possible in zero time.

The corresponding timed event graph is given in Fig. 21.8.
For real HTS systems, further activities, such as incubation steps or reading oper-

ations, would be executed on the compound AB. Screening runs of HTS plants may
easily involve 150 resource allocations, i.e., activities, per batch. Since all relations

0

0

x2x1

1

0

x3

act1

act2

x7
R2 :

R1 :

x4 x5 x6

x10x9
R3 :

1

1

1

12

7

x8
5

act3

Fig. 21.8 TEG of a single batch of our example HTS operation
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Fig. 21.9 TEG of a single batch and resource capacities

given in Fig. 21.8 belong to one single batch, there are no tokens in the timed event
graph. However, additional constraints between events of different batches need to
be taken into account. For example, all resources have a specific capacity. If a re-
source has a capacity of 1, an activity may only occupy this resource if the preceding
activity (which may be of a different batch) has been finished. In our small example
resources R1 and R3 have a capacity of 1 while resource R2 has a capacity of 2, i.e.,
this resource may execute two activities at the same time. To model this, the TEG
has to be extended by places with 1 and 2 initial tokens. The resulting TEG is shown
in Fig. 21.9. Finally, the user has to evaluate which transitions he or she is able to
control and what the output of the system is. For HTS plants, it is usually possible
to control the starting events of every activity and the output is directly connected
to the last transition of a single batch. Note that, depending on the specific system,
the controllable transitions and the output transitions may be different. Without loss
of generality, we fix all starting events of all activities of our example, i.e., x1, x4,
and x8, to be controllable and the output of our system shall be the last event of a
single batch, i.e., x7. Thus the timed event graph modeling the single batch of our
HTS operation is extended according to Fig. 21.10. Then the TEG can be written as
a M ax

in [[γ,δ ]]-model:

xxx =AAAxxx⊕BBBuuu

y =CCCxxx,
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Fig. 21.10 TEG of a single batch, with resource capacities, and input and output transitions

with

AAA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε ε γ ε ε ε ε ε ε ε
δ 7 ε ε ε e ε ε ε ε ε
ε δ ε ε ε ε ε ε ε ε
ε ε ε ε ε ε γ2 ε ε ε
ε e ε δ ε ε ε ε ε ε
ε ε ε ε δ ε ε ε e ε
ε ε ε ε ε δ 12 ε ε ε ε
ε ε ε ε ε ε ε ε ε γ
ε ε ε ε ε ε ε δ 5 ε ε
ε ε ε ε ε ε ε ε δ ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, BBB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e ε ε
ε ε ε
ε ε ε
ε e ε
ε ε ε
ε ε ε
ε ε ε
ε ε e
ε ε ε
ε ε ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

CCC =
[

ε ε ε ε ε ε e ε ε ε
]
.

Clearly, the M ax
in [[γ,δ ]]-model of the HTS operation is very compact. In the next

chapter, it is explained how this model can be used to efficiently compute control
laws for such systems.

21.7 Further Reading

In this chapter, the modeling and analysis of linear systems in a dioid framework
have been presented. However, the chapter only provides a rough overview of this
topic. A more exhaustive and mathematical presentation of dioids and systems in
dioids can be found in [1, 2]. Many other works on max-plus algebra, dioids in
general, and performance evaluation in idempotent semirings have been published,
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e.g., [5, 8, 10, 11, 14]. Besides that, there are several software packages available
to handle max-plus algebraic systems, e.g., the max-plus algebra toolbox for Sci-
cosLab (www.scicoslab.org), or the C++ library MinMaxGD to manipulate
periodic series in M ax

in [[γ,δ ]] [6]. For more information on high-throughput screen-
ing systems the reader is referred to [13, 18, 20]. However, please note, that HTS
is only one possible application that has a linear representation in dioids. Other ap-
plications are, e.g., traffic systems, computer communication systems, production
lines, and flows in networks. The reader is also invited to read the next chapter on
control theory, developed for discrete-event systems in a dioid framework.
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Chapter 22
Discrete-Event Systems in a Dioid Framework:
Control Theory

Laurent Hardouin, Olivier Boutin, Bertrand Cottenceau, Thomas Brunsch,
and Jörg Raisch

22.1 Motivation

This chapter deals with the control of discrete-event systems which admit linear
models in dioids (or idempotent semirings), introduced in the previous chapter (see
also the books [1, 19]). These systems are characterized by synchronization and
delay phenomena. Their modeling is focused on the evaluation of the occurrence
dates of events. The outputs correspond to the occurrence dates of events produced
by the system and the inputs are the occurrence dates of exogenous events acting
on it. The control of the system inputs will lead to a scheduling of these occurrence
dates such that a specified objective for the system be achieved. For example, in a
manufacturing management context, the controller will have to schedule the input
dates of raw materials or the starting of jobs in order to obtain required output dates
for the produced parts.
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The nature of the considered systems is such that they cannot be accelerated,
indeed the fastest behavior of the system is fixed and known. The only degree of
freedom is to delay the inputs. For example, in a manufacturing system, the maximal
throughput of a machine is obtained with its fastest behavior, hence the only thing
which can be done is to delay the starting of jobs or decrease its production speed.
Hence, the control synthesis presented in this part will aim at controlling the input
dates in the system in order to get the outputs at the specified date. More precisely,
it will be shown that the proposed control strategies will aim at delaying the inputs
as much as possible while ensuring that the outputs occur before the specified dates.
This kind of strategy is rather popular in an industrial context, since it is optimal
with regard to the just-in-time criterion, which means that the jobs will start as late
as possible, while ensuring they will be completed before the required date. The
optimization of this criterion means that the parts will spend a minimal time in the
system, i.e., it will avoid useless waiting time. This strategy is worthwhile from an
economic point of view.

This chapter will be organized as follows. In a first step, some theoretical results
will be given; they come in addition to the ones introduced in Chapter 21. Then the
control strategies will be presented, starting with open-loop strategies and conclud-
ing with closed-loop ones. For both, an illustration based on the example introduced
in Chapter 21 will be provided.

22.2 Theory and Concepts

The systems considered and the algebraic context were described in the previous
chapter. Classically, the control of a system has to do with system inversion. Hence
we recall in this section several algebraic results allowing us to invert linear equa-
tions in dioids, i.e., we focus on the resolution of a system AAA⊗XXX = BBB, where AAA, XXX
and BBB are matrices with entries in a given dioid. The product law of semirings does
not necessarily admit an inverse, nevertheless it is possible to consider residuation
theory to get a pseudo inverse. This theory (see [3]) allows us to deal with inver-
sion of mappings defined over ordered sets. In our algebraic framework, it will be
useful to get the greatest solution of the inequality AAA⊗XXX ( BBB. Indeed, a dioid is an
ordered set, because the idempotency of the addition law defines a canonical order
(a⊕ b = a⇔ a * b). Hence this theory is suitable to invert mappings defined over
dioids. The main useful results are recalled in the first part of the chapter. Another
useful key point is the characterization of solutions of implicit equations such as
x = a⊗ x⊕ b. It will be recalled in a second step that the latter admits a smallest
solution, namely a∗b, where ∗ is the Kleene star operator. Some useful properties
involving this operator will then be recalled.
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22.2.1 Mapping Inversion Over a Dioid

Definition 22.1 (Isotone mapping). An order-preserving mapping f : D → C ,
where D and C are ordered sets, is a mapping such that: x * y⇒ f (x) * f (y).
It is said to be isotone in the sequel.

Definition 22.2 (Residuated mapping). Let D and C be two ordered sets. An iso-
tone mapping Π : D → C is said to be residuated, if the inequality Π(x)( b has a
greatest solution in D for all b ∈ C .

The following theorems yield necessary and sufficient conditions to characterize
these mappings.

Theorem 22.1. [2, 1] Let D and C be two ordered sets. Let Π : D → C be an
isotone mapping. The following statements are equivalent.

(i) Π is residuated.
(ii) There exists an isotone mapping denoted Π � : C → D such that Π ◦Π � (

IdC and Π � ◦Π * IdD .

Theorem 22.2. Let D and C be two ordered sets. Let Π : D → C be a residuated
mapping; then the following equalities hold:

Π ◦Π � ◦Π = Π

Π � ◦Π ◦Π � = Π �
(22.1)

Example 22.1. In [1], the following mappings are considered:

La : D →D

x �→ a⊗ x (left product by a),

Ra : D →D

x �→ x⊗ a (right product by a),

(22.2)

where D is a dioid. It can be shown that these mappings are residuated. The corre-
sponding residual mappings are denoted:

L�
a(x) = a◦\x (left division by a),

R�
a(x) = x◦/a (right division by a).

(22.3)

�

Therefore, equation a⊗ x ( b has a greatest solution denoted L�
a(b) = a◦\b. In the

same way, x⊗ a ( b admits R�
a(b) = b◦/a as its greatest solution. Let AAA,DDD ∈ Dm×n,

BBB∈Dm×p, CCC ∈Dn×p be some matrices. The greatest solution of inequality AAA⊗XXX (
BBB is given by CCC = AAA◦\BBB and the greatest solution of XXX⊗CCC( BBB is given by DDD = BBB◦/CCC.
The entries of matrices CCC and DDD are obtained as follows:
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CCCi j =
m∧

k=1
(AAAki◦\BBBk j)

DDDi j =
p∧

k=1
(BBBik◦/CCC jk),

(22.4)

where ∧ is the greatest lower bound. It must be noted that ∀a ∈D , ε⊗ x( a admits
ε◦\a =) as its greatest solution. Indeed, ε is absorbing for the product law. Further-
more,)⊗ x( a admits)◦\a = ε as a solution, except if a =). Indeed, in the latter
case )◦\)=), that is to say )⊗ x() admits ) as a greatest solution.

Example 22.2. Let us consider the following relation AAAXXX ( BBB with AAAt =

[
2 ε 0
5 3 7

]

and BBBt =
[
6 4 9

]
being matrices with entries in Zmax. By recalling that in this dioid

the product corresponds to the classical sum, the residuation corresponds to the
classical minus. That is to say, 5⊗ x ( 8 admits the solutions set X = {x|x (
5◦\8, with 5◦\8= 8−5= 3}, with 3 being the greatest solution of this set1. Hence, by
applying the computation rules of Equation (22.4), the following result is obtained:

CCC = AAA◦\BBB =

[
2◦\6∧ ε◦\4∧0◦\9
5◦\6∧3◦\4∧7◦\9

]

=

[
4
1

]

.

This matrix CCC is the greatest such that AAA⊗CCC ( BBB. See the verification below.

AAA⊗ (AAA◦\BBB) =

⎡

⎣
2 5
ε 3
0 7

⎤

⎦

[
4
1

]

=

⎡

⎣
6
4
8

⎤

⎦(

⎡

⎣
6
4
9

⎤

⎦= BBB.

According to Theorem 22.2, the reader is invited to check that:

AAA◦\
(
AAA⊗ (AAA◦\BBB)

)
= AAA◦\BBB. (22.5)

Furthermore, it can be noticed that equation AAA⊗XXX = BBB admits a greatest solution if
matrix BBB is in the image of matrix AAA, which is equivalent to say that there exists a
matrix LLL such that BBB = AAA⊗LLL. By considering the matrix

BBB = AAA⊗LLL =

⎡

⎣
2 5
ε 3
0 7

⎤

⎦

[
0
1

]

=

⎡

⎣
6
4
8

⎤

⎦ ,

the reader is invited to check that AAA⊗ (AAA◦\BBB) = BBB. �

As in the classical algebraic context, in the absence of ambiguity, the operator ⊗
will be omitted in the sequel.

Below, some properties about this “division” operator are recalled. Actually, only
the ones that are useful in control synthesis are recalled. The reader is invited to
consult [1, pp. 182-185] and [9] to get a more comprehensive presentation.

1 Residuation achieves equality in the scalar case.
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Property 22.3

Left product Right product

a(a◦\x)( x (x◦/a)a( x (22.6)

a◦\(ax)* x (xa)◦/a* x (22.7)

a
(
a◦\(ax)

)
= ax

(
(xa)◦/a

)
a = xa (22.8)

(ab)◦\x = b◦\(a◦\x) x◦/(ba) = (x◦/a)◦/b (22.9)

(a◦\x)b( a◦\(xb) b(x◦/a)( (bx)◦/a (22.10)

Proof. Proofs are given for the left product, the same hold for the right one.
Equations (22.6) and (22.7): Theorem 22.1 leads to La ◦L�

a ( IdD (i.e., a(a◦\x)( x)
and L�

a ◦La * IdD (i.e., a◦\(ax)* x).
Equation (22.8): Theorem 22.2 leads to La ◦L�

a ◦La = La (i.e., a
(
a◦\(ax)

)
= ax).

Equation (22.9): It is a direct consequence of the associativity of the product law.
Equation (22.10): According to associativity of the product law, a(xb) = (ax)b

then a
(
(a◦\x)b

)
=
(
a(a◦\x)

)
b and a◦\

(
a
(
(a◦\x)b

))
= a◦\

((
a(a◦\x)

)
b
)

. According

to Equation (22.7), (a◦\x)b ( a◦\
(

a
(
(a◦\x)b

))
and according to Equation (22.6)

a◦\
((

a(a◦\x)
)
b
)
( a◦\(xb) . Then, inequality (22.10) holds. �

22.2.2 Implicit Equations over Dioids

Definition 22.3. Let D be a dioid and a ∈ D . The Kleene star operator is defined
as follows:

a∗ � e⊕ a⊕ a2⊕ ...=
⊕

i∈N0

ai,

with a0 = e and an = a⊗ a⊗·· ·⊗ a
︸ ︷︷ ︸

n times

.

Theorem 22.3. a∗b is the least solution of equation x = ax⊕ b.

Proof. By repeatedly inserting equation into itself, one can write:

x = ax⊕ b = a(ax⊕ b)⊕ b= a2x⊕ ab⊕ b= anx⊕ an−1b⊕·· ·⊕ a2b⊕ ab⊕ b.

According to Definition 22.3, this leads to x = a∞x⊕ a∗b. Hence x * a∗b. Further-
more, it can be shown that a∗b is a solution. Indeed:

a(a∗b)⊕ b = (aa∗⊕ e)b = a∗b,

which implies that a∗b is the smallest solution. �
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Now we give some useful properties of the Kleene star operator.

Property 22.4 Let D be a complete dioid. ∀a,b ∈D ,

a∗a∗ = a∗ (22.11)

(a∗)∗ = a∗ (22.12)

a(ba)∗ = (ab)∗a (22.13)

(a⊕ b)∗ = (a∗b)∗a∗ = b∗(ab∗)∗ = (a⊕ b)∗a∗ = b∗(a⊕ b)∗ (22.14)

Proof. Equation (22.11): a∗ ⊗ a∗ = (e⊕ a⊕ a2⊕ . . .)⊗ (e⊕ a⊕ a2⊕ . . .) = e⊕ a⊕
a2⊕ a3⊕ a4⊕ . . .= a∗.
Equation (22.12): (a∗)∗ = e⊕ a∗⊕ a∗a∗ ⊕ . . .= e⊕ a∗⊕ a∗.
Equation (22.13): a(ba)∗ = a(e⊕ ba⊕ baba⊕ . . .) = a⊕ aba⊕ ababa⊕ . . .= (e⊕
ab⊕ abab⊕ . . .)⊗ a = (ab)∗a.
Equation (22.14): x = (a⊕ b)∗ is the smallest solution of x = (a⊕ b)⊗ x⊕ e =
ax⊕ bx⊕ e. On the other hand, this equation admits x = (a∗b)x⊕ a∗ = (a∗b)∗a∗

as its smallest solution. Hence (a⊕ b)∗ = (a∗b)∗a∗. The other equalities can be
obtained by commuting a and b. �

Theorem 22.4. [7, 32] Let D be a complete dioid and a,b∈D . Elements (a◦\a) and
(b◦/b) are such that

a◦\a = (a◦\a)∗,
b◦/b = (b◦/b)∗.

(22.15)

Proof. According to Equation (22.7), a◦\(ae) = a◦\a * e. Furthermore, according
to Theorem 22.2, a◦\(a⊗ (a◦\a)) = a◦\a. Moreover, according to Inequality (22.10),
a◦\(a⊗ (a◦\a)) * (a◦\a)⊗ (a◦\a). Hence, e ( (a◦\a)⊗ (a◦\a) = (a◦\a)2 ( (a◦\a). By
recalling that the product law is isotone, these inequalities can be extended to
e( (a◦\a)n ( (a◦\a). And then by considering the definition of the Kleene star oper-
ator, e( (a◦\a)∗ = (a◦\a). A similar proof can be developed for b◦/b. �

Theorem 22.5. Let D be a complete dioid and x,a ∈D . The greatest solution of

x∗ ( a∗ (22.16)

is x = a∗.

Proof. First, according to the Kleene star definition (see Definition 22.3), the fol-
lowing equivalence holds:

x∗ = e⊕ x⊕ x2⊕ . . .( a∗ ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e( a∗

x( a∗

x2 ( a∗

. . .

xn ( a∗

. . .

. (22.17)
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Let us focus on the right-hand side of this equivalence. From Definition 22.3, the
first inequality holds. The second admits a∗ as its greatest solution, which is also
a solution to the other ones. Indeed, according to Equation (22.11), a∗a∗ = a∗ and
(a∗)n = a∗. Hence x = a∗ satisfies all these inequalities and is then the greatest
solution. �

22.2.3 Dioid M ax
in [[γ,δ ]]

In the previous chapter, the semiring of non-decreasing series in two variables with
exponents in Z and with Boolean coefficients, denoted M ax

in [[γ,δ ]], was considered
to model timed event graphs and to obtain transfer relations between transitions. In
this section, the results introduced in the previous chapter are extended. Formally,
the considered series are defined as follows:

s =
⊕

i∈N0

s(i)γni δ ti , (22.18)

with s(i) ∈ {e,ε} and ni, ti ∈ Z. The support of s is defined by Supp(s) = {i ∈
N0|s(i) 
= ε}. The valuation in γ of s is defined as: val(s) = min{ni|i ∈ Supp(s)}. A
series s ∈M ax

in [[γ,δ ]] is said to be a polynomial if Supp(s) is finite. Furthermore, a
polynomial is said to be a monomial if there is only one element.

Definition 22.4 (Causality). A series s ∈M ax
in [[γ,δ ]] is causal if s = ε or if both

val(s) ≥ 0 and s * γval(s). The set of causal elements of M ax
in [[γ,δ ]] has a complete

semiring structure denoted M ax
in

+[[γ,δ ]].

Definition 22.5 (Periodicity). A series s ∈M ax
in [[γ,δ ]] is said to be a periodic series

if it can be written as s = p⊕ q⊗ r∗, with p =
n⊕

i=1
γniδ ti , q =

m⊕

j=1
γNj δ Tj are poly-

nomials and r = γνδ τ , with ν ,τ ∈ N, is a monomial depicting the periodicity and
allowing to define the asymptotic slope of the series as σ∞(s) = ν/τ . A matrix is
said to be periodic if all its entries are periodic series.

Definition 22.6 (Realizability). A series s ∈M ax
in [[γ,δ ]] is said to be realizable if

there exists matrices such that s = CCC(γAAA111⊕ δAAA222)
∗BBB where AAA111 and AAA222 are n× n

matrices with n a finite integer, BBB and CCC are n× 1 and 1× n matrices respectively,
with the entries of these matrices are in {ε,e}. A matrix H ∈M ax

in [[γ,δ ]]p×q is said
to be realizable if all its entries are realizable.

In other words, a matrix H is realizable if it corresponds to the transfer relation of a
timed event graph2.

2 Timed event graphs constitute a subclass of Petri nets as introduced in the previous
chapters.
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Theorem 22.6. [4] The following statements are equivalent:

(a) A series s is realizable.
(b) A series s is periodic and causal.

Definition 22.7 (Canonical form of polynomials). A polynomial p =
n⊕

i=0
γniδ ti is

in canonical form if n0 < n1 < · · ·< nn and t0 < t1 < · · ·< tn.

Definition 22.8 (Canonical form of series). A series s = p⊕ q⊗ r∗, with p =
n⊕

i=0
γniδ ti , q =

m⊕

j=0
γNj δ Tj and r = γνδ τ is in proper form, if

• p and q are in canonical form
• nn < N0 and tn < T0

• Nm−N0 < ν and Tm−T0 < τ

furthermore, a series is in canonical form if it is in proper form and if

• (nn, tn) is minimal
• (ν,τ) is minimal

Sum, product, Kleene star, and residuation of periodic series are well-defined (see
[12, 20]), and algorithms and software toolboxes are available in order to handle pe-
riodic series and to compute transfer relations (see [6]). Below, useful computational
rules are recalled

δ t1 γn⊕ δ t2γn = δ max(t1,t2)γn, (22.19)

δ tγn1⊕ δ tγn2 = δ tγmin(n1,n2), (22.20)

δ t1 γn1⊗ δ t2γn2 = δ t1+t2γn1+n2 , (22.21)

(δ t1 γn1)◦\(δ t2 γn2) = δ t2−t1γn2−n1 , (22.22)

δ t1 γn1 ∧δ t2 γn2 = δ min(t1,t2)γmax(n1,n2). (22.23)

Furthermore, we recall that the order relation is such that δ t1 γn1 * δ t2γn2 ⇔ n1 ≤
n2 and t1 ≥ t2. Let p and p′ be two polynomials composed of m and m′ monomials
respectively, then the following rules hold:

p⊕ p′ =
m⊕

i=1

γniδ ti ⊕
m′⊕

j=1

γn′j δ t′j , (22.24)

p⊗ p′ =
m⊕

i=1

m′⊕

j=1

γni+n′j δ ti+t′j , (22.25)

p∧ p′ =
m⊕

i=1

(γniδ ti ∧ p′) =
m⊕

i=1

m′⊕

j=1

γmax(ni,n′j)δ min(ti ,t′j), (22.26)

p′◦\p = (
m′⊕

j=1

γn′j δ t′j )◦\p =
m′∧

j=1

(γ−n′j δ−t′j ⊗ p) =
m′∧

j=1

m⊕

i=1

γni−n′j δ ti−t′j . (22.27)
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Let s and s′ be two series, the asymptotic slopes satisfy the following rules

σ∞(s⊕ s′) = min
(
σ∞(s),σ∞(s

′)
)
, (22.28)

σ∞(s⊗ s′) = min
(
σ∞(s),σ∞(s

′)
)
, (22.29)

σ∞(s∧ s′) = max
(
σ∞(s),σ∞(s

′)
)
, (22.30)

if σ∞(s) ≤ σ∞(s
′) then σ∞(s

′◦\s) = σ∞(s), (22.31)

else s′◦\s = ε.

Theorem 22.7. [7] The canonical injection Id|M ax
in

+[[γ,δ ]] : M ax
in

+[[γ,δ ]]→M ax
in [[γ,δ ]]

is residuated and its residual is denoted Pr+ : M ax
in [[γ,δ ]]→M ax

in
+[[γ,δ ]].

Pr+(s) is the greatest causal series less than or equal to series s ∈M ax
in [[γ,δ ]]. From

a practical point of view, for all series s ∈M ax
in [[γ,δ ]], the computation of Pr+(s) is

obtained by:

Pr+

(⊕

i∈I

s(ni, ti)γni δ ti
)
=
⊕

i∈I

s+(ni, ti)γniδ ti

where

s+(ni, ti) =

{
e if (ni, ti)≥ (0,0)

ε otherwise
.

22.3 Control

22.3.1 Optimal Open-Loop Control

As in classical linear system theory, the control of systems aims at obtaining control
inputs of these systems in order to achieve a behavioral specification. The first result
appeared in [4]. The optimal control proposed therein tracks a trajectory a priori
known in order to minimize the just-in-time criterion. It is an open-loop control
strategy, well detailed in [1], and some refinements are proposed later in [29, 30].
The solved problem is the following.

The model of a linear system in a dioid is assumed to be known, which implies
that entries of matrices AAA ∈Dn×n, BBB ∈Dn×p, CCC ∈Dq×n are given and the evolution
of the state vector xxx ∈ Dn and the output vector yyy ∈ Dq can be predicted thanks to
the model given by:

xxx = AAAxxx⊕BBBuuu

yyy =CCCxxx
(22.32)

where uuu∈D p is the input vector. Furthermore, a specified output zzz∈Dq is assumed
to be known. This corresponds to a trajectory to track. It can be shown that there
exists a unique greatest input denoted uuuopt such that the output corresponding to this
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control, denoted yyyopt , is lower than or equal to the specified output zzz. In practice,
the greatest input means that the inputs in the system will occur as late as possible
while ensuring that the occurrence dates of the output will be lower than the one
given by the specified output zzz. Control uuuopt is then optimal according to the just-
in-time criterion, i.e., the inputs will occur as late as possible while ensuring that
the corresponding outputs satisfy the constraints given by zzz. This kind of problem
is very popular in the framework of manufacturing systems: the specified output zzz
corresponds to the customer demand, and the optimal control uuuopt corresponds to
the input of raw parts in the manufacturing system. The latter is delayed as much as
possible, while ensuring that optimal output yyyopt of the processed parts occurs before
the customer demand. Hence the internal stocks are reduced as much as possible,
which is worthwhile from an economic point of view. According to Theorem 22.3,
the smallest solution of System (22.32) is given by:

xxx = AAA∗BBBuuu

yyy =CCCAAA∗BBBuuu.
(22.33)

This smallest solution represents the fastest evolution of the system. Formally, the
optimal problem consists in computing the greatest uuu such that yyy ( zzz. By recalling
that the left product is residuated (see Example 22.1), the following equivalence
holds:

yyy =CCCAAA∗BBBuuu( zzz⇔ uuu( (CCCAAA∗BBB)◦\zzz.

In other words the greatest control achieving the objective is:

uuuopt = (CCCAAA∗BBB)◦\zzz. (22.34)

22.3.1.1 Illustration

High-Throughput Screening (HTS) systems allow researchers to quickly conduct
millions of chemical, genetic, or pharmacological tests. In the previous chapter, an
elementary one was considered as an illustrative example. Below, its model in the
semiring M ax

in [[γ,δ ]] is recalled.

xxx(γ,δ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε ε γ ε ε ε ε ε ε ε
δ 7 ε ε ε e ε ε ε ε ε
ε δ ε ε ε ε ε ε ε ε
ε ε ε ε ε ε γ2 ε ε ε
ε e ε δ ε ε ε ε ε ε
ε ε ε ε δ ε ε ε e ε
ε ε ε ε ε δ 12 ε ε ε ε
ε ε ε ε ε ε ε ε ε γ
ε ε ε ε ε ε ε δ 5 ε ε
ε ε ε ε ε ε ε ε δ ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xxx(γ,δ )⊕

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e ε ε
ε ε ε
ε ε ε
ε e ε
ε ε ε
ε ε ε
ε ε ε
ε ε e
ε ε ε
ε ε ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

uuu(γ,δ )

y(γ,δ ) =
[
ε ε ε ε ε ε e ε ε ε

]
xxx(γ,δ )

(22.35)
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This model leads to the following transfer matrices, where the entries are periodic
series in M ax

in [[γ,δ ]]:

xxx(γ,δ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(e)
(
γδ 8

)∗ (
γδ 2

)(
γδ 8

)∗ (
γ3δ 19

)(
γδ 8

)∗
(
δ 7
)(

γδ 8
)∗

(δ )
(
γδ 8

)∗ (
γ2δ 18

)(
γδ 8

)∗
(
δ 8
)(

γδ 8
)∗ (

δ 2
)(

γδ 8
)∗ (

γ2δ 19
)(

γδ 8
)∗

(
γ2δ 20

)(
γδ 8

)∗
e⊕

(
γ2δ 14

)(
γδ 8

)∗ γ2δ 17⊕
(
γ3δ 23

)(
γδ 8

)∗
(
δ 7
)(

γδ 8
)∗

(δ )
(
γδ 8

)∗ (
γ2δ 18

)(
γδ 8

)∗
(
δ 8
)(

γδ 8
)∗ (

δ 2
)(

γδ 8
)∗ δ 5⊕

(
γδ 11

)(
γδ 8

)∗
(
δ 20

)(
γδ 8

)∗ (
δ 14

)(
γδ 8

)∗ δ 17⊕
(
γδ 23

)(
γδ 8

)∗

ε ε (e)
(
γδ 6

)∗

ε ε
(
δ 5
)(

γδ 6
)∗

ε ε
(
δ 6
)(

γδ 6
)∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

uuu(γ,δ )

y(γ,δ ) =
[(

δ 20
)(

γδ 8
)∗ (

δ 14
)(

γδ 8
)∗ δ 17⊕

(
γδ 23

)(
γδ 8

)∗]uuu(γ,δ ).
(22.36)

The following reference trajectory is assumed to be known:

z(γ,δ ) = δ 37⊕ γδ 42⊕ γ3δ 55⊕ γ4δ+∞. (22.37)

It models that one part is expected before or at time 37, 2 parts before (or at) time
42 and 4 parts before (or at) time 55. It must be noted that the numbering of parts
starts at 03. According to Equation (22.34) and the computation rules given in the
previous section, the optimal firing trajectories of the three inputs are as follows:

uuuopt(γ,δ ) =

⎡

⎣
δ 6⊕ γδ 14⊕ γ2δ 22⊕ γ3δ 35⊕ γ4δ+∞

δ 12⊕ γδ 20⊕ γ2δ 28⊕ γ3δ 41⊕ γ4δ+∞

δ 11⊕ γδ 19⊕ γ2δ 25⊕ γ3δ 38⊕ γ4δ+∞

⎤

⎦ , (22.38)

and the resulting optimal output is:

yopt(γ,δ ) =CCCAAA∗BBBuuuopt(γ,δ ) = δ 28⊕ γδ 36⊕ γ2δ 42⊕ γ3δ 55⊕ γ4δ+∞, (22.39)

which means that the first part will exit the system at time 28, the second part at time
36, the third part at time 42 and the fourth part at time 55. This output trajectory is
the greatest in the image of matrix CCCAAA∗BBB, that is the greatest reachable output, such
that the events occur before the required dates. This example4 was computed with
library MinMaxGD (a C++ library which is interfaced as a toolbox for both Scilab
and Matlab software, see [6]).

3 Following the convention defined between remarks 5.22 and 5.23 in [1, Section 5.4].
4 The sources are available at the following URL: www.istia.univ-angers.fr/
˜hardouin/DISCBookChapterControlInDioid.html .

file:www.istia.univ-angers.fr/~hardouin/DISCBookChapterControlInDioid.html
file:www.istia.univ-angers.fr/~hardouin/DISCBookChapterControlInDioid.html
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22.3.2 Optimal Input Filtering in Dioids

In the previous section, the proposed control law leads to the optimal tracking of
a trajectory, which is assumed to be a priori known. In this section, the aim is to
track a reference model in an optimal manner. This means that the specified out-
put is a priori unknown and the goal is to control the system so that it behaves as
the reference model which was built from a specification. Hence, this problem is a
model matching problem. The reference model describing the specified behavior is
assumed to be a linear model in the considered dioid. The objective is to synthesize
an optimal filter controlling the inputs (sometimes called a precompensator in the
related literature) in order to get an output as close as possible to the one you would
obtain by applying this input to the reference model.

Formally, the specified behavior is assumed to be described by a transfer matrix
denoted GGG ∈Dq×m leading to the outputs zzz = GGGvvv ∈Dq where vvv ∈Dm is the model
input. The system is assumed to be described by the transfer relation CCCAAA∗BBB ∈Dq×p

and its output yyy is given by yyy = CCCAAA∗BBBuuu ∈ Dq. The control is assumed to be given
by a filter PPP∈D p×m, i.e., uuu = PPPvvv∈D p. Therefore the aim is to synthesize this filter
such that, for all vvv:

CCCAAA∗BBBPPPvvv( GGGvvv, (22.40)

which is equivalent to
CCCAAA∗BBBPPP( GGG. (22.41)

Thanks to residuation theory, the following equivalence holds:

CCCAAA∗BBBPPP( GGG⇔ PPP( (CCCAAA∗BBB)◦\GGG (22.42)

Hence the optimal filter is given by PPPopt = (CCCAAA∗BBB)◦\GGG and it leads to the control
uuuopt = PPPoptvvv. Furthermore, if GGG is in the image of the transfer matrix CCCAAA∗BBB (i.e., ∃LLL
such that GGG =CCCAAA∗BBBLLL), then the following equality holds:

GGG =CCCAAA∗BBBPPPopt . (22.43)

Obviously, this reference model is reachable since it is sufficient to take a filter
equal to the identity matrix to satisfy the equality. The optimal filter is given by
PPPopt = (CCCAAA∗BBB)◦\(CCCAAA∗BBB) and Equality (22.43) is satisfied. Formally GGG = CCCAAA∗BBB =
CCCAAA∗BBBPPPopt =CCCAAA∗BBB

(
(CCCAAA∗BBB)◦\(CCCAAA∗BBB)

)
. This means that output yyy will be unchanged

by the optimal filter, i.e., yyy = CCCAAA∗BBBvvv = CCCAAA∗BBBPPPvvv hence the output occurrences of
the controlled system will be as fast as the one of the system without control. Nev-
ertheless the control uuuopt = PPPoptvvv will be the greatest one leading to this unchanged
output. In the framework of manufacturing systems, this means that the job will
start as late as possible, while preserving the output. Hence the work-in-progress
will be reduced as much as possible. This kind of controller is called neutral due
to its neutral action on the output behavior. The benefit lies on a reduction of the
internal stocks.
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22.3.2.1 Illustration

By applying these results to the previous example, the optimal input filter is given
by:

PPPopt(γ ,δ ) = (CCCAAA∗BBB)◦\(CCCAAA∗BBB) =

⎡

⎣

(
γδ 8

)∗ (
δ−6

)(
γδ 8

)∗ (
δ−5

)(
γδ 8

)∗
(
δ 6
)(

γδ 8
)∗ (

γδ 8
)∗ (

δ 1
)(

γδ 8
)∗

(
δ 3
)(

γδ 8
)∗ (δ−3

)(
γδ 8

)∗
e⊕

(
γδ 6

)(
γδ 8

)∗

⎤

⎦

(22.44)
It must be noted that some powers are negative (see the computational rule 22.27).
This means that the filter is not causal, and therefore not realizable (see Theo-
rem 22.6). In practice, it is necessary to project it in the semiring of causal series,
denoted M ax

in
+[[γ,δ ]]. This is done thanks to the rule introduced in Theorem 22.7.

By applying this projector to the previous filter, the optimal causal filter is given
by:

PPP+
opt (γ ,δ ) = Pr+(PPPopt) =

⎡

⎣

(
γδ 8

)∗ (
γδ 2

)(
γδ 8

)∗ (
γδ 3

)(
γδ 8

)∗
(
δ 6
)(

γδ 8
)∗ (

γδ 8
)∗ (

δ 1
)(

γδ 8
)∗

(
δ 3
)(

γδ 8
)∗ (γδ 5

)(
γδ 8

)∗
e⊕

(
γδ 6

)(
γδ 8

)∗

⎤

⎦ . (22.45)

This filter describes a 3-input 3-output system of which a realization can be ob-
tained either in time or in event domain. As explained in the previous chapter, in the
time domain, the variables, and their associated trajectory, will represent the max-
imal number of events occurred at a time t. Dually, in the event domain, they will
represent the earliest occurrence dates of the kth event. The adopted point of view
will depend on the technological context leading to the implementation. Indeed, the
control law can be implemented in a control command system or in a PLC, which
can be either event driven or synchronized with a clock. In both cases, the following
method may be used to obtain a realization of the control law. First, we recall the

expression of the control law ui =
p⊕

j=1
(PPPopt)i jv j with i ∈ [1..p], where each entry

(PPPopt)i j is a periodic series which can be written as follows: (PPPopt)i j = pi j⊕qi jr∗i j.
This leads to the following control law:

ui =
p⊕

j=1

(PPPopt)i jv j (22.46)

with
(PPPopt)i jv j = pi jv j⊕ qi jr

∗
i jv j.

The last line can be written in an explicit form, by introducing an internal variable
ζi j (we recall that x = a∗b is the least solution of x = ax⊕ b, see Theorem 22.3):

ζi j = ri jζi j⊕ qi jv j

(PPPopt)i jv j = pi jv j⊕ ζi j
. (22.47)
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This explicit formulation may be used to obtain the control law, either in the time
domain or in the event domain. Below, the control law (Equation (22.45)) is given
in the time domain:

ζ11(t) = min(1+ ζ11(t− 8),v1(t))
ζ12(t) = min(1+ ζ12(t− 8),1+ v2(t− 2))
ζ13(t) = min(1+ ζ13(t− 8),1+ v3(t− 3))
ζ21(t) = min(1+ ζ21(t− 8),v1(t− 6))
ζ22(t) = min(1+ ζ22(t− 8),v2(t))
ζ23(t) = min(1+ ζ23(t− 8),v3(t− 1))
ζ31(t) = min(1+ ζ31(t− 8),v1(t− 3))
ζ32(t) = min(1+ ζ32(t− 8),1+ v2(t− 5))
ζ33(t) = min(1+ ζ33(t− 8),1+ v3(t− 6))
u1(t) = min(ζ11(t),ζ12(t),ζ13(t))
u2(t) = min(ζ21(t),ζ22(t),ζ23(t))
u3(t) = min(ζ21(t),ζ22(t),ζ23(t),v3(t)).

(22.48)

22.3.3 Closed-Loop Control in Dioids

The two previous sections have proposed open-loop control strategies. In this sec-
tion, the measurement of the system outputs are taken into account in order to
compute the control inputs. The closed-loop control strategy considered is given
in Fig. 22.1. It aims at modifying the dynamics of system CCCAAA∗BBB ∈ Dq×p by using
a controller FFF ∈ D p×q located between the output yyy ∈ Dq and the input uuu ∈ D p

of the system and a filter PPP ∈ D p×m located upstream of the system, as the one
considered in the previous section. The controllers are chosen in order to obtain a
controlled system as close as possible to a given reference model GGG ∈ Dq×m. The
latter is assumed to be a linear model in the considered dioid.

Fig. 22.1 Control architecture, the system is controlled by output feedback FFF and filter PPP
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Formally, the control input is equal to uuu= FFFyyy⊕PPPvvv∈D p and leads to the follow-
ing closed-loop behavior:

xxx = AAAxxx⊕BBB(FFFyyy⊕PPPvvv)

yyy =CCCxxx( GGGvvv ∀vvv.
(22.49)

By replacing yyy in the first equation, one can write

xxx = (AAA⊕BBBFFFCCC)xxx⊕BBBPPPvvv = (AAA⊕BBBFFFCCC)∗BBBPPPvvv

yyy =CCCxxx =CCC(AAA⊕BBBFFFCCC)∗BBBPPPvvv( GGGvvv ∀vvv.
(22.50)

Hence the problem is to find controllers FFF and PPP such that:

CCC(AAA⊕BBBFFFCCC)∗BBBPPP( GGG. (22.51)

By recalling that (a⊕b)∗ = a∗(ba∗)∗ = (a∗b)∗a∗ (see Equation (22.14)), this equa-
tion can be written as:

CCCAAA∗(BBBFFFCCCAAA∗)∗BBBPPP =CCCAAA∗BBB(FFFCCCAAA∗BBB)∗PPP( GGG. (22.52)

According to the Kleene star definition (FFFCCCAAA∗BBB)∗ = EEE ⊕FFFCCCAAA∗BBB⊕ (FFFCCCAAA∗BBB)2⊕
. . ., so Equation (22.52) implies the following constraint on the filter PPP:

CCCAAA∗BBBPPP( GGG, (22.53)

which is equivalent to:
PPP( (CCCAAA∗BBB)◦\GGG = PPPopt , (22.54)

where PPPopt is the same as the optimal filter introduced in Section 22.3.2. By con-
sidering this optimal solution in Equation (22.52), the following equivalences hold:

CCCAAA∗BBB(FFFCCCAAA∗BBB)∗PPPopt ( GGG⇔CCCAAA∗BBB(FFFCCCAAA∗BBB)∗ ( GGG◦/PPPopt

⇔ (FFFCCCAAA∗BBB)∗ ( (CCCAAA∗BBB)◦\GGG◦/PPPopt = PPPopt◦/PPPopt .
(22.55)

By recalling that (a◦/a) = (a◦/a)∗ (see Theorem 22.4) and that x∗ ( a∗ admits x = a∗

as its greatest solution (see Theorem 22.5), this equation can be written as:

(FFFCCCAAA∗BBB)( PPPopt◦/PPPopt . (22.56)

By using the right division, the optimal feedback controller is obtained as follows:

FFF ( (PPPopt◦/PPPopt)◦/(CCCAAA∗BBB) = PPPopt◦/
(
(CCCAAA∗BBB)PPPopt

)
= FFFopt . (22.57)

And the causal feedback is given by: FFF+
opt = Pr+(FFFopt). It can be noted that, as

for the optimal filter, the reference model describes the required behavior. From a
practical point of view, an interesting choice is GGG = CCCAAA∗BBB. This means that the
objective is to obtain the greatest control inputs, while preserving the output of
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the system without control, i.e., to delay the input dates as much as possible while
preserving the output dates.

Remark 22.5. This kind of closed-loop control can be useful to deal with stabiliza-
tion problem. This problem is not addressed here, but the reader is invited to consult
[13, 8, 24]. In a few words we can recall that a timed event graph, which always
admits a max-plus linear model, is stable if and only if the number of tokens in
all places is bounded. A sufficient condition is fulfilled if the timed event graph is
strongly connected. Hence, it is sufficient to modify the timed event graph thanks to
a feedback controller in order to obtain a new graph with only one strongly con-
nected component. Indeed, a feedback controller adds some arcs binding the output
transitions and the input transitions. In [13], the author provides a static feedback
(FFFs) allowing the graph to be strongly connected. A static feedback means that the
places added between output transitions and input transitions are without delay and
contain only tokens. In fact, the author gives the minimal number of tokens which
are necessary to preserve the throughput of the system. He has also shown that this
minimal number of tokens (which can be seen as a minimal number of resources)
can be obtained by considering an integer linear programming problem. In [8, 24],
the feedback is improved by considering the residuation theory and the computation
of an optimal control. The idea is to use the static feedback as obtained thanks to
the approach in [13] in order to compute a specification GGG =CCC(AAA⊕BBBFFFsCCC)BBB. Then
this specification is considered to find a feedback controller, like the one proposed
in this section, which can be seen as a dynamic feedback. It must be noted that the
numbers of tokens added in the feedback arcs are the same as the ones obtained by
S. Gaubert in [13]. Hence, the minimal number of resources is preserved and the
dynamic feedback will only modify the dynamic behavior by adding delay in order
to be optimal according to the just-in-time criterion. To summarize, this strategy
ensures the stability and is optimal according to the just-in-time criterion. This kind
of control leads to the greatest reduction of internal stocks in the context of man-
ufacturing systems, as well as waiting times in a transportation network, and also
avoids useless buffer saturation in a computer network.

22.3.3.1 Illustration

The example of Section 22.3.2.1 is continued, i.e., the reference model is GGG=CCCAAA∗BBB.
Then, the optimal filter is given by Equation (22.45) and the feedback controller is
obtained thanks to Equation (22.57). The practical computation yields:

FFF+
opt =

⎡

⎣

(
γ3δ 2

)(
γδ 8

)∗
(
γ2
)(

γδ 8
)∗

(
γ3δ 5

)(
γδ 8

)∗

⎤

⎦ (22.58)

Then the control law, uuu = PPP+
optvvv⊕FFF+

opty is obtained by adding the feedback control
to law (22.48). By using the same methodology as in Section 22.3.2.1, the control
law in the time domain can be obtained. An intermediate variable βββ is considered:
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β11(t) = min(1+β11(t− 8),3+ y(t− 2))
β21(t) = min(1+β21(t− 8),2+ y(t))
β31(t) = min(1+β31(t− 8),3+ y(t− 5)),

(22.59)

then the following control law is obtained:

u1(t) = min(ζ11(t),ζ12(t),ζ13(t),β11(t))
u2(t) = min(ζ21(t),ζ22(t),ζ23(t),β11(t))
u3(t) = min(ζ21(t),ζ22(t),ζ23(t),v3(t),β11(t)),

(22.60)

where variable ζζζ is given in Equation (22.48) and βββ in Equation (22.59). This equa-
tion can easily be implemented in a control system. It can also be realized as a timed
event graph, such as the one given in Fig. 22.2.

Fig. 22.2 Realization of the optimal filter PPP+
opt and of the optimal feedback FFF+

opt

22.4 Further Reading

One should notice that some other classical standard problems can be considered
from this point of view. Indeed, it is possible to synthesize a linear observer in Lu-
enberger’s sense, which allows us to estimate the unmeasured state of the system
by considering its output measurement (see [17, 16]). Another related problem con-
sists in the disturbance decoupling problem (see [18, 21]), which aims at taking
into account disturbances acting on the system to compute the control law. About
uncertainty, the reader is invited to consider a dioid of intervals [15, 25] allowing
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the synthesis of robust controllers in a bounded error context (see [22, 23]). The
identification of model parameters was also considered in some previous work (see
e.g., [11, 27, 33]). It can also be noted that some other points of view were con-
sidered in the related literature. In [10, 31], the authors considered the so-called
model predictive control in order to minimize a quadratic criterion by using a linear
programming approach. The same authors have extended their control strategy to a
stochastic context (see [34]), in order to take uncertain systems into account.

To summarize, automatic control of discrete-event systems in a dioid framework
is still an improving topic with many problems yet to solve.
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A

abstraction, 14
alarm pattern, 309
algorithm

controllability language, 53
alphabet, 24
approximation

l-complete, 14
arc

of a Petri net, 192
assembly, 198
atomic firing of a transition, 323
automaton

ε-automaton, 26
canonical, 30
composition of automata, 97
deterministic, 25
language, 85
marked, 101
minimal, 30
nondeterministic, 26
path, 85
probabilistic, 89
projected, 67
pushdown, 34

real-time, 34
state-partition, 70
trajectory, 85
trimmed, 98
weighted, 89

B

basis marking, 283–285
basis reachability graph, 289
behaviour, 8

generated by infinite state machine, 13
generated by Mealy automaton, 8

boundedness, 206
structural, 222, 223

branching process, 306

C

characteristic system, 352
choice, 198
Church-Turing-Rosser Thesis, 37
clock, 169
closed-loop system

behavior, 51
co-set, 306

cut, 307
communication

event-based synchronous protocol, 142
state-based synchronous protocol, 132
articulate, 129
feasible protocol, 135

concatenation, 24
concurrency, 197, 303, 305

co-set, 306
concurrent, 306
concurrent composition

of Petri nets, 241–242
concurrent enabling, 324
condition, 305
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conditional controllability, 153
conditional decomposability, 149
conditional normality, 161
conditional observability, 161
cone, 304
configuration, 307

of event structure, 307
prime, 304, 307

conflict, 196, 198, 306
behavioral, 196
self-conflict, 305
structural, 196

conflict relation, 305
conservativeness

structural, 223
conservativity

strict, 205
consistency, 224
consistent

firing sequence, 281
marking, 281, 282
reachable marking, 281

continuous Petri net
lim-live, 370
lim-reachability, 369
attribution, 391, 397
bounded, 370, 371
choice free, 369
consistent marking, 402
continuization, 365
deadlock, 370
diagnoser, 403
diagnosis state, 403, 404
equal conflict, 369
fluidization, 365
implicit place, 372
initial marking, 365
join free, 369
marked graph, 412
marking, 368
proportional equal conflict, 369
reachability, 369
reachability set, 371
rendez-vous, 367
siphon, 371
spurious discrete solution, 371
spurious marking, 367
spurious solution, 371
state equation, 371

state estimation, 402
strongly connected p-component, 395
structurally bounded, 370, 371
structurally live, 371
structurally persistent, 376
synchronic relation, 367
synchronic theory, 367
trap, 372

control architectures
coordination control, 111
distributed control, 110
distributed control with communication,

110
hierarchical control, 111

control objectives
fairness, 112
non starvation, 112

control of RAS, 272
D-process-place, 274, 275
D-resource-place, 274, 275
integer linear programming problem, 272
iterative control policy, 272, 273
synthesis of live S4PR net systems, 275
thieves of a siphon, 273
virtual resource, 257, 273, 274

control synthesis
global, 121
modular, 121

controllability
of a Petri net, 244, 249–251

coobservability, 114
C & P, 114
conditional, 129
unconditional, 129

coordinator, 149
cut, 307

D

deadlock, 210
decidability, 37
derivation tree, 33
deterministic Petri net, 321
deterministic timed Petri net, 326
determinization, 87

of probabilistic automaton, 91
diagnosability, 94

A-diagnosability, 96
AA-diagnosability, 96
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for discrete event systems, 313
probabilistic, 95
weak

F-, 314
N-, 314

diagnosabiliy
weak, 313

diagnosabilty of Petri nets, 294
diagnoser, 86

probabilistic, 93
diagnosis, 86, 348

using fluid Petri nets, 293
using Petri nets, 286

diagnosis set, 310
diagnosis state, 286
diagnosis using Petri nets

decentralized, 295
dioid, 437, 453

complete dioid, 437
max-plus algebra, 437
min-plus algebra, 437
minmaxgd, 443

disassembly, 198
discrete event, 3
discrete event system

decentralized, 110
distributed, 110

discrete-event system, 109
distributed system, 97

E

e-vector, 282
minimal, 282

enabled, 304
epsilon-reduction, 87

probabilistic, 90
event, 305, 306
event graph, 433
event set, 24
event sets

agree on controllability, 121
agree on observability, 121

event structure, 306
configuration, 307
prefix, 307

example
alternating bit protocol, 108
underwater vehicles, 108

explanation, 282, 309, 310
minimal, 282, 284

extension, 306

F

factor, 24
fault class, 286
fault transition, 286
finite causes, 306
firing sequence, 195, 196, 224

empty, 195
repetitive, 206

increasing, 207
stationary, 207, 217, 224

firing time interval, 345
firing time of a transition, 320
firing vector, 214
flow relation, 304
fluid Petri net, see continuous Petri net
function

computable, 37
constructible, 39

G

generator
controlled deterministic finite, 49
deterministic, 11
deterministic finite, 47
nondeterministic, 12

generators
conditionally independent, 149

grammar, 31
context-free, 32
context-sensitive, 32
left-linear, 35
linear, 32
right-linear, 35
type 0, 31
type 1, 32
type 2, 32

graph
basis reachability, 289
coverability, 199
marked, 214, 230
reachability, 199
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H

high-throughput screening, 445
home marking, 249
home space, 249
homomorphism, 24

I

idempotent semiring, 437
implicit place, 225
infimum, 58
infix, 24
interleaving, 307

J

j-vector, 283–285
justification, 284

K

K-diagnosability, 294
Kleene star, 452, 455, 456

L

L-observer, 155
labeling function, 280
labeling function of Petri nets, 236
language, 8, 24, 85

L-closed, 49
L-marked, 49
accepted, 26
controllable, 53
decidable, 36, 37
decomposable, 116
generated by Mealy automaton, 8, 9
marked by generator, 11
marked by Mealy automaton, 8, 9
observable, 85
of a marked net, 196
of Petri nets, see Petri net languages
product of languages, 101
recognizable, 26
recursive, 36
recursively enumerable, 36
regular, 25

stopped, 90
strongly decomposable, 116
visible, 85
weighted, 89

lattice, 58
complete, 58
complete lattice, 437
sub-semilattice, 437

letters, 24
linear set, 249
liveness, 209, 210

structural, 224
liveness in RAS, 265, 267

characterization of liveness
in S3PR, 265
in S4PR, 266
in S5PR, 266

empty siphon, 265
insufficiently marked siphon, 266
m-process-enabled transition, 266
m-resource-disabled transition, 266

M

marked graph
strongly connected timed, 329
timed, 329

marked net, 194
marking, 194

X−invariant, 221
blocking, 244
controllable/uncontrollable, 245
dead, 210
enabling a transition, 194
final, 236
initial, 194
potentially reachable, 215
reachable, 196, 304
spurious, 215

matrix
of incidence, 214–216
post, 192
pre, 192

max-plus algebra, 437
γ-transform, 442
eigenproblem, 439
eigenvalue, 439
eigenvector, 439
max-plus linear system, 438
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Mealy automaton
deterministic, 6
nondeterministic, 8

memory policy, 325
min-plus algebra, 437

δ -transform, 443
MinMaxGD, 443, 461
mirror image, 24
modular DES

modularly controllable, 121
modular system, 97
monoid, 437
monolithic supervisory design, 243
Moore automaton

deterministic, 10
nondeterministic, 10

morphism, 24
mutual exclusion, 198

N

net, 304
homomorphism, 304
marking, 304
occurrence, 305
occurrence net, 305
ordinary, 304
Petri net, 304
verifier, 313

non-anticipation, 6
strict, 10

nonblockingness
of a Petri net, 244, 249

normality, 77

O

observability, 72
observer, 69, 86

distributed, 98
probabilistic, 90

observer property, 155
occurrence net, 305

co-set, 306
output control consistency, 156

P

P-decreasing, 216, 222, 224
P-increasing, 216, 220

P-invariant, 216, 218, 220, 221, 223
parallelism, 197
partial observation, 67
periodic series, 457
Petri net, 191, 304

acyclic, 229
binary, 205
bounded, 205
conservative, 206
dead, 209
deadlocking, 210
deterministic, 238
free-choice, 231
generator, 236
labeled, 236
languages, 236–241
live, 209
not quasi-live, 209
ordinary, 228
place/transition, 192
pure, 194, 228
quasi-live, 209
repetitive, 206
restricted, 228
reversible, 208
safe, 205, 303, 304
strictly conservative, 205
structurally bounded, 222
structurally live, 224
structure, 192–194
system, 194
time/timed, see time/timed Petri net
token, 304
unfolding, 306

philosophers problem, 262
place, 304

implicit, 225
of a place/transition net, 192
structurally implicit, 225

poset, 58
postset, 304
powers, 24
prefix, 24

of event structure, 307
preset, 304
prime configuration, 307
prime event structure, 306
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problem
complete, 40
existence supervisory control, 52
halting problem, 37
Post’s correspondence, 38
supremal supervisory control complete

observations, 61
procedure

design supervisor, 56
process

branching, 306
product

labeled, 308
synchronous, 308

projection, 24
properties of RAS, 265, 269

deadlock-freeness, 267
directedness, 268
livelocks, 267
liveness monotonicity, 267
reversibility, 268, 269
t-semiflow realizability, 268, 269

pruning, 309
pullback, 308
pumping lemma, 29, 33

for Petri nets, 252

Q

quantisation, 3
quotient, 24

R

RAP, see resource allocation problem
RAS, see resource allocation system
RAS models, 258

abstraction methodology, 258, 259, 261
acceptable initial marking, 260
idle place, 259, 262
iterative state machine, 261
L-S3PR, 264
modularity, 259, 261
PC2R, 261, 262
potentially acceptable initial marking,

263
process place, 259, 262
resource lending, 262

resource place, 259, 262
S3PR, 258, 264
S4PR, 259
S5PR, 264

reachability
of a marking, 214, 221, 229

reachability set, 196
reachable, 304
reduction, 40
refinement, 14
region, 180
regular expressions, 25
relation

observational indistinguishability, 69
partial order, 58
tolerance, 69

repetitiveness, 206, 207
structural, 224

reserved marking, 323
residuation theory, 452
resource allocation problem, 257
resource allocation system, 257, 258

classes, see RAS models
control, see control of RAS
liveness analysis, see liveness in RAS
properties, see properties of RAS

reversal, 24
reversibility, 207, 209
run

of event structure, 307

S

self-loop, 193, 228
sequentiality, 197
server semantics, 324
set

X−invariant, 221
controllable sublanguages, 59
partially-ordered sublanguages, 58
potentially reachable, 215, 221
prefix-closed controllable sublanguages,

59
reachability, 221

signal, 3
continuous-valued, 3
discrete-valued, 3
quantised, 3

signal aggregation, 4
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siphon, 226
minimal, 226

state class graph, 351
state estimation, 85

distributed, 98, 101
state machine, 214, 229
state space

explosion, 301
stationarity, 207
stochastic Petri net, 321
stochastic timed Petri net, 332, 334
string, 24
sub-word, 24
subautomaton, 81
substitution, 24
suffix, 24
supervisory control

complete observations, 50
nonblocking, 51
of Petri nets, 235, 242–254

supremum, 58
symbols, 24
synchronization, 197
synchronization graph, 433
synchronous product, 69, 97
system

l-complete, 15
coordinated, 150
hybrid, 13
time invariant, 13

T

T-decreasing, 216, 217
T-increasing, 216, 217
T-invariant, 216, 217
TCPN, see timed continuous Petri net
time configuration, 355
time Petri net, 321, 338–340
time-trace, 346
timed automaton, 172

deterministic, 184
timed continuous Petri net, 368, 373, 376

adding noise, 382
approximation under ISS, 376
bounded input controllable, 410
chaotic model, 373
configuration, 374, 375, 387, 393, 400,

409, 413

configuration matrix, 374
control action, 409
control methods, 414, 419
controllability, 409, 410
controllability with uncontrollable

transitions, 412
distinguishable configuration, 393
distributed control, 422
finite firing semantics, 372
firing semantics, 372
fluidization, 372
generic observability, 398
homothetic properties, 374
incidence matrix, 383
infinite firing semantics, 373
model predictive control, 415
mono-T-semiflow, 373, 375, 422
monotonicity, 375
observability, 391, 394–396, 404
observability matrix, 391, 392
observers, 399
on-off control, 418
product semantics, 373
reachability set, 374
redundant configuration, 387, 388
redundant region, 389
region, 374
steady state, 373, 374
stochastic T-timed Petri net, 366
structural observability, 397
structurally timed-live, 376
terminal strongly connected p-component,

397
throughput, 374, 408
timed continuous Petri net, 373
timed reachability, 404
timed-deadlock-free, 376

timed event graph, 433
timed marked graph, 329
timed Petri net, 321, 323–337
timed transition system, 171
timing structure of a Petri net, 320
token, 194, 304
trace, 303

Mazurkiewicz, 307
transition, 304

dead, 209
deterministic, 322
enabled, 194
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fault, 286
firing, 195
immediate, 322
live, 209
observable, 280
of a place/transition net, 192
quasi-live, 209
silent, 280
source, 195
stochastic, 322
unobservable, 280

transition of a Petri net
controllable/uncontrollable, 243

trap, 226
minimal, 226

trimming
of a Petri net, 244, 246–248, 251–253

tuple of supervisors
maximal solution, 118
Nash equilibrium, 118
strong Nash equilibrium, 118

Turing machine, 35

deterministic, 35
universal, 37

twin machine, 95
twin plant, 95

U

unfolding, 306

V

verifier net, 295

W

word, 24
empty, 24
length, 24

Z

zone, 177
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