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Preface

Sequential images captured from a region may be used to detect changes there.
This technique may be used in different fields such as video surveillance, medical
imaging, and remote sensing. Especially in remote sensing, change detection is
used in land use and cover analysis, forest or vegetation inspection, and flood
monitoring. Although manual change detection is an option, the time required for
it can be prohibitive. It is also highly subjective depending on the expertise of the
inspector. Hence, the need for automated methods for such analysis tasks emerged.
This book is about such change detection methods from satellite images. Our focus
is on changes in urban regions. The layout of the book is as follows.

We start with a brief review of change detection methods specialized for remote
sensing applications. While the first Earth observation satellites were equipped
with 30-100 m resolution sensors; modern ones can capture images up to 0.5 m
resolution. This also led to the evolution of change detection methods for satellite
images. Early methods were generally pixel based. As the detail in the image
increased, more sophisticated approaches emerged (such as feature based methods)
for change detection.

Next, we consider pixel based change detection.We summarize well-known
methods such as: image differencing, image ratioing, image regression, and change
vector analysis. We introduce median filtering based background subtraction for
satellite images. We also propose a novel pixel based change detection method
based on fuzzy logic.

To benefit from color and multispectral information, we explore several
methods such as PCA, KTT, vegetation index differencing, time dependent
vegetation indices, and color invariants. Since these methods depend on a linear or
a nonlinear color space transformation, we labeled them as such. Naturally, they
can only be applied to the dataset having color or multispectral information.

We also considered texture based descriptors for change detection. Here, we
benefit from the gray level co-occurrence matrix. We extracted four texture
descriptors from it to be used for change detection. We also benefit from entropy to
summarize the texture.
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Different from previous approaches, we introduced a change detection frame-
work using structure information. Here, we extract the structure in an image by
edge detection, gradient magnitude based support regions, matched filtering, and
local features. Graph formalism also helped us to summarize the structure in the
image.

Finally, we introduced fusion of change detection methods to improve the
performance. Since different change detection methods summarize the change
information in different ways, they can be fused to get a better performance.
Therefore, we considered the decision level fusion based on binary logic. We also
developed a fusion method based on association.

We statistically evaluated the performance of the mentioned change detection
methods. On a large dataset, we obtained very promising results. Especially, the
change detection performance after fusion is noteworthy.

The brief summary above indicates that this book may be useful for automated
change detection studies. It summarizes and evaluates the existing methods on
change detection. It also proposes several novel methods for satellite image based
change detection. Therefore, the interested reader may benefit from both categories
to solve his or her research problems.

Istanbul, Turkey, May 2012 Murat _Ilsever
Cem Ünsalan
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Chapter 1
Introduction

Abstract Change detection is the process of identifying differences in a region by
comparing its images taken at different times. It finds applications in several fields
such as video surveillance, medical imaging, and remote sensing (using satellite
imagery). Several change detection applications using satellite images are in the areas
of land use and cover analysis, forest or vegetation inspection, and flood monitoring.
Especially for remote sensing applications, manually labeling and inspecting changes
is a cumbersome task. Also, manual inspection is prone to errors and highly subjective
depending on the expertise of the inspector.

Keywords Change detection · Literature review

1.1 Literature Review on Change Detection in Satellite Images

We start by giving a survey of change detection review articles in the literature. In
the following sections, we explore the existing methods in detail. In this section, we
benefit from these survey articles by their comparative results and a brief summary
of the advantage and disadvantage of each method in the literature.

In satellite image based change detection applications, the resolution is one of
the most important factors. While the first earth observation satellites (such as
LANDSAT) were equipped with 30–100 meter resolution sensors; modern ones can
capture images up to 0.5 meter resolution. This also led to the evolution of change
detection methods for satellite images. Early methods were generally pixel based.
As the detail in the image increased, more sophisticated approaches emerged (such
as feature based methods) for change detection. Therefore, initial survey papers only
focused on pixel based methods.

Singh [1] summarized several change detection methods such as image differ-
encing, image regression, image ratioing, vegetation index differencing, Principal
Component Analysis (PCA), post-classification comparison, and change vector
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2 1 Introduction

analysis in terms of land cover change. Singh indicated the relationship between
the land cover change and the intensity values of the satellite images as: “The basic
premise in using remote sensing data for change detection is that changes in land
cover must result in changes in radiance values and changes in radiance due to land
cover change must be large with respect to radiance changes caused by other fac-
tors”. These other factors are counted as differences in atmospheric conditions, sun
angle, and soil moisture. We can add intensity variations caused by the camera to
the list. These cause insignificant changes most of the times. On the other hand, we
are interested in significant changes. Singh recommended the use of images taken at
the same time of the year for reducing the intensity change caused by the sun angle
difference and vegetation phenology change. Accurate image registration is also
necessary before using satellite images for change detection. Using images without
registration can lead to false alarms. In his survey paper, Singh quantitatively eval-
uated the change detection methods. He concluded that, image regression produced
the highest change detection accuracy followed by image ratioing and image differ-
encing. Simple techniques such as image differencing performed better than much
more sophisticated transforms such as PCA.

Mas [2], in his survey paper, compared six change detection methods in terms of
land cover change. He focused on a tropical area which is subject to forest clearing.
Here, land cover can be classified based on the spectral reflectance of the vegetation
area. Mas pointed out that, classification based on the spectral reflectance is difficult
for areas where the vegetation diversity is high (such as humid tropics). Therefore,
change between land cover types (presenting similar spectral signatures) is difficult
to detect. As we referred previously, we can reduce the spectral change caused by
the sun angle difference and vegetation phenology change by using images from the
same time of the year. Mas indicated that, it is extremely difficult to obtain multi-date
images taken exactly at the same time of the year, particularly in tropical regions
where cloud cover is common. Therefore, he compared the performance of different
change detection methods using images captured at different times of the year.

Accurate image registration is vital before using the multi-temporal images for
change detection. In addition to geometric rectification, images should also be com-
parable in terms of radiometric characteristics. Mas referred to two ways to achieve
radiometric compensation: radiometric calibration (converting images from digital
number values into ground reflection values) and relative radiometric normalization
between multi-temporal images. Mas reported that, relative normalization is suffi-
cient for change detection. In relative normalization, one image is normalized using
the statistical parameters of the other.

Mas grouped change detection methods under three categories as: image enhance-
ment, multi-date data classification, and comparison of two land cover classifications.
He explained each category as: “The enhancement approach involves the mathemati-
cal combination of imagery from different dates such as subtraction of bands, ratioing,
image regression, and PCA. Thresholds are applied to the enhanced image to isolate
the pixels that have changed. The direct multi-date classification is based on the
single analysis of a combined dataset of two or more different dates, in order to
identify areas of changes. The post-classification comparison is a comparative
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analysis of images obtained at different moments after previous independent classifi-
cation”. He compared the following six methods on the test area: image differencing,
vegetation index differencing, selective PCA, direct multi-date classification, post-
classification analysis, and combination of image enhancement and post-classification
analysis. Mas reported that, post-classification comparison produced the highest
accuracy. In single band analysis such as single band differencing, Landsat MSS
band 2 (red) produced better results compared to Landsat MSS band 4 (infrared).
Based on the same band, PCA produced better accuracy than image differencing.
Superior performance of the post-classification comparison is attributed to the diffi-
culty in classifying land cover using the spectral data. Mas indicated that, methods
that are directly using the spectral data have problems in classifying land cover having
similar spectral signatures. He mentioned that, the use of classification techniques
avoids this problem.

Lu et al. [3] investigated a wide range of change detection techniques in their
recent survey paper. They listed change detection applications which have attracted
attention in the remote sensing community so far. These are: land use and land
cover change, forest or vegetation change, forest mortality, defoliation and damage
assessment, deforestation, regeneration and selective logging, wetland change, forest
fire, landscape change, urban change, environmental change, and other applications
such as crop monitoring. Lu et al. grouped change detection methods into seven
categories. For our application, the most important of these are: algebra, transforma-
tion, and classification based change detection. The algebra category includes image
differencing, image regression, image ratioing, vegetation index differencing and
Change Vector Analysis (CVA). Lu et al. listed the advantages and disadvantages of
these methods as follows. “These methods (excluding CVA) are relatively simple,
straightforward, easy to implement and interpret, but these cannot provide complete
matrices of change information. ... One disadvantage of the algebra category is the
difficulty in selecting suitable thresholds to identify the changed areas. In this cat-
egory, two aspects are critical for the change detection results: selecting suitable
image bands or vegetation indices and selecting suitable thresholds to identify the
changed areas”. Due to the simplicity of the mentioned methods, they only provide
the change and no-change information.

Lu et al. also addressed the concept of change matrix in the quotation. A change
matrix covers a full range of from-to change classification. A common exam-
ple includes land cover type changes such as from agricultural to urban or from
forest to grassland. They considered the PCA, Kauth-Thomas (KT), Gram-Schmidt,
and Chi-square transformations under the transformation category. They listed the
advantages and disadvantages of these methods as follows. “One advantage of these
methods is in reducing data redundancy between bands and emphasizing different
information in derived components. However, they cannot provide detailed change
matrices and require selection of thresholds to identify changed areas. Another dis-
advantage is the difficulty in interpreting and labeling the change information on
the transformed images”. Their classification category includes post-classification
comparison, spectral-temporal combined analysis, expectation-maximization algo-
rithm (EM) based change detection, unsupervised change detection, hybrid change
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detection, and artificial neural networks. The advantage of these methods is the capa-
bility of providing a change matrix. The disadvantage is the need for a qualified and
large training sample set for good classification results.

1.2 Layout of the Study

In this study, we investigate several change detection methods. We group them into
four categories as: pixel based, transformation based, texture based, and structure
based. We explain each method in detail (with their references) in the following
chapters. We also fuse the decision of these methods.

We investigate pixel based change detection methods in Chap. 2. We first focus
on direct algebraic calculations such as image differencing and ratioing. Then, we
consider image regression which estimates second-date image by use of linear regres-
sion. The following method is the CVA which accepts pixel values as vectors and
provides change information based on vector differences. Next, we consider median
filtering based background subtraction which estimates the change by subtracting
multi-temporal images from a background image (e.g. an image which represents
unchanged state of the observed scene in time). Finally, we develop a pixelwise fuzzy
XOR operator for change detection. Among these methods, change detection using
median filtering based background subtraction is a new adaptation to change detec-
tion in remote sensing. Pixelwise fuzzy XOR operator based method is the novel
contribution for any change detection problem.

In Chap. 3, we investigate the transformation based change detection methods.
Here, we first focus on PCA which is a common technique from the field of mul-
tivariate statistical analysis. Then, we consider the Kauth-Thomas transformation
where the transformed data is directly related to the analysis of land-cover. Next, we
explore vegetation index differencing and time-dependent vegetation indices (com-
monly used in the analysis of change in vegetation). Finally, we consider color invari-
ants. Among these, color invariants based change detection is a novel adaptation to
this field. Time-dependent vegetation indices are improved in this study.

We investigate texture based change detection methods in Chap. 4. Here, we bene-
fit from Gray Level Co-occurrence Matrix (GLCM) features to summarize the texture
information. We also benefit from the entropy of the image windows as another tex-
ture feature.

In Chap. 5, we investigate structure based change detection methods. These can
be summarized as the use of edge information, gradient magnitude based support
regions, matched filtering, mean shift segmentation, use of local features, graph
matching with local features, and shadow information. Among these methods, use
of local features, graph matching with local features and shadow information are
novel contributions to change detection for remote sensing.

We propose a novel method to fuse the decision of mentioned change detection
algorithms in Chap. 6. The rationale here is as follows. Each change detection method

http://dx.doi.org/10.1007/978-1-4471-4255-3_2
http://dx.doi.org/10.1007/978-1-4471-4255-3_3
http://dx.doi.org/10.1007/978-1-4471-4255-3_4
http://dx.doi.org/10.1007/978-1-4471-4255-3_5
http://dx.doi.org/10.1007/978-1-4471-4255-3_6
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provides a change map based on its design and assumptions. Fusing their decisions
may provide a better change map.

We test all mentioned change detection methods on 35 panchromatic and mul-
tispectral Ikonos satellite test image pairs. We provide the quantitative comparison
results on these images as well as the strengths and weaknesses of each method in
Chap. 7. Finally, in Chap. 8, we summarize the conclusions that we have reached in
this study.
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Chapter 2
Pixel-Based Change Detection Methods

Abstract In this chapter, we consider pixel-based change detection methods. First,
we provide well-known methods in the literature. Then, we propose two novel pixel-
based change detection methods.

Keywords Pixel-based change detection · Image differencing · Automated thresh-
olding · Percentile · Otsu’s method · Kapur’s algorithm · Image rationing · Image
regression ·Least-squares ·Change vector analysis (CVA) ·Median filtering ·Back-
ground formation · Fuzzy logic · Fuzzy xor

2.1 Image Differencing

In this technique, images of the same area, obtained from times t1 and t2, are sub-
tracted pixelwise. Mathematically, the difference image is

Id(x, y) = I1(x, y)− I2(x, y), (2.1)

where I1 and I2 are the images obtained from t1 and t2, (x, y) are the coordinates of
the pixels. The resulting image, Id , represents the intensity difference of I1 from I2.
This technique works only if images are registered.

To interpret the difference image, we need to recall the quotation from Singh [1]:
“The basic premise in using remote sensing data for change detection is that changes
in land cover must result in changes in radiance values and changes in radiance due
to land cover change must be large with respect to radiance changes caused by other
factors.” Based on this principle, we can expect that intensity differences due to land
cover change resides at the tails of the difference distribution of the image. Assuming
that changes due to land cover are less than changes by other factors, we expect that
most of the difference is distributed around the mean. We can illustrate the difference
distribution as in Fig. 2.1.

M. İlsever and C. Ünsalan, Two-Dimensional Change Detection Methods, 7
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-4255-3_2,
© Cem Ünsalan 2012
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Fig. 2.1 Distribution of a difference function. Significant changes are expected at the tails of the
distribution

For a zero mean difference distribution, we can normalize I2 as

Ĩ2(x, y) = σ1

σ2
(I2(x, y)− μ2)+ μ1, (2.2)

where Ĩ2 is the normalized form of I2. μ1, σ1 and μ2, σ2 are the mean and the
standard deviation of I1 and I2, respectively. After normalization, the mean and
standard deviation of the two images are equalized. Hence, the difference image will
have zero mean. Now, we can update Eqn. 2.1 as

Id(x, y) = |I1(x, y)− Ĩ2(x, y)|. (2.3)

To detect the change, we can apply simple thresholding to Id(x, y) as

T (x, y) =
{

1, Id(x, y) ≥ τ

0, otherwise,
(2.4)

where the threshold τ is often determined empirically.
Since the threshold value in Eqn. 2.4 is important, various automated thresh-

old selection algorithms are proposed. Most of the time, the performance of these
algorithms is scene dependent due to the assumptions they are based on. Rosin and
Ioannidis [2] investigated the performance of several automated thresholding algo-
rithms using a large set of difference images calculated from an automatically created
ground truth database. They give results based on several measures for a complete
evaluation. In this study, we benefit from three different threshold selection methods.
These are percentile thresholding, Otsu’s method [3] and Kapur’s algorithm [4].

We will briefly explain these thresholding methods next. To this end, we make
some assumptions about Id as follows. Id is a grayscale image which is represented
by Ng gray levels, {1, 2, . . . , Ng}. The number of pixels at level i is denoted by ni

and the total number of pixels is N .
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The first thresholding method is based on the percentile [5]. It is a statistics of
ordinal scale data. Assume that A is a sorted array of pixel values of Id in ascending
order. Rank of the Pth percentile of Id is given by

R = ceil

(
P

100
× N

)
(2.5)

where the ceil function rounds its argument to the nearest greater integer. Pth per-
centile is found by indexing A using that rank.

The second thresholding method is proposed by Otsu. It uses measures of class
separability in finding an optimal threshold value. Relative frequencies of pixel values
at level i are given by

pi = ni

N
, pi ≥ 0,

Ng∑
i=1

pi = 1. (2.6)

A threshold value at gray level k divides the histogram of Id into two classes.
Each class has its own probability of occurrence (total probability of its samples)
and own mean value. Evaluation function of the Otsu’s method is the between-class
variance given by

σ 2
b = [μIdω(k)− μω]2

ω(k)[1 − ω(k)] , (2.7)

where μId is the mean of Id ; ω(k) is the probability of the class which includes gray
levels up to k and μω is the mean of the class ω. The optimal threshold value k∗
maximizes

σ 2
b (k

∗) = max
1≤k≤Ng

σ 2
b (k). (2.8)

The last thresholding method we use is Kapur’s algorithm. Similar to Otsu’s
method, it divides the image histogram into two classes. It then utilizes the sum of
the entropy of these two classes as an evaluation function. The value which maximizes
this sum is taken as the optimal threshold value. For two classes A and B, Shannon
entropy of these classes are defined as

H(A) = −
k∑

i=1

pi

ω(k)
ln

pi

ω(k)
, (2.9)

H(B) = −
Ng∑

i=k+1

pi

[1 − ω(k)] ln
pi

[1 − ω(k)] , (2.10)

where the histogram is divided at gray level k. The optimal threshold value k∗
maximizes the sum φ(k) = H(A)+ H(B) such that
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Fig. 2.2 Images taken at two different times from a developing region of Adana

Fig. 2.3 Image differencing applied to the Adana image set. a The difference image b Thresholded
version

φ(k∗) = max
1≤k≤Ng

φ(k). (2.11)

To explain different change detection methods, we pick the Adana test image set
given in Fig. 2.2. The two images, taken in different times, in this set represent a
region with construction activity. These images are registered. Therefore, they can
be used for pixelwise change detection methods. The difference between these two
images is clearly seen. We will use this image set in the following sections also.

The difference image obtained from the Adana image set is as in Fig. 2.3a. This
image is color coded with the color scale given next to it. We also provide the
thresholding result in Fig. 2.3b. In thresholding, we benefit from Kapur’s method.
As can be seen, the thresholded image provides sufficient information about the
changed regions in the image.

Griffiths [6] used image differencing for detecting the change in urban areas. He
used Landsat TM data (with 30 m resolution), SPOT XS multispectral data (with
20 m resolution), and SPOT panchromatic data (with 10 m resolution) in his study.
He proposed using an urban mask to find changes in urban areas using image differ-
encing. Griffiths indicated that the mixture of buildings, streets, and small gardens in
urban areas produce a highly textured appearance compared with the much smoother
texture of arable fields. He used a standard deviation filter to quantify the texture. The
urban mask is multiplied by the difference image to eliminate non-urban areas. Fur-
thermore, he refined the results based on a previous study. In this technique, changes
that occur far from the urban areas are assumed to be non-urban change. This is
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because new urban development generally occurs at the periphery of existing urban
areas. Griffiths presented his results for each technique by visual interpretation.

Saksa et al. [7] used image differencing for detecting clear cut areas in boreal
forests. They tested three methods using Landsat satellite imagery and aerial
photographs as: pixel-by-pixel differencing and segmentation, pixel block-level dif-
ferencing and thresholding, pre-segmentation and unsupervised classification. In
the first method, they found the difference image. Then, they used a segmentation
algorithm to delineate the clear cut areas. In the second method, they included neigh-
boring pixels into the calculation of the difference image. Therefore, negative effects
of misregistration are reduced in the resulting image. In the third method, they first
segmented the images. Then, they obtained a segment-level image difference. They
labeled clear cut areas by using an unsupervised classification algorithm. Saksa et
al. concluded that, predelineated segments or pixel blocks should be used for image
differencing in order to decrease the amount of misinterpreted small areas.

Lu et al. [8] compared 10 binary change detection methods to detect land cover
change in Amazon tropical regions. They used Landsat TM (Thematic Mapper) data
in their study. In addition to band differencing, they tested a modified version of
image differencing where pixels are accepted as changed when majority of the bands
indicate change. For six-band Landsat TM data, if four of the bands indicate change
then the pixel value is labeled as changed. They reported that the difference of Landsat
TM band 5, modified image differencing, and principal component differencing
produced best results.

2.2 Image Rationing

Similar to image differencing, images are compared pixelwise in this method. There-
fore, images must be registered beforehand. The ratio image, used in this method, is
calculated by

Ir (x, y) = I1(x, y)

Ĩ2(x, y)
. (2.12)

In Eqn. 2.12, the Ir image takes values in the range [0,∞). If the intensity values
are equal, it takes the value 1. To normalize the value of Ir , we can benefit from the
arctangent function as

Ir (x, y) = arctan

(
I1(x, y)

Ĩ2(x, y)

)
− π

4
. (2.13)

Now, ratio image takes values in the range [−π/4, π/4]. To threshold Ir , we
can benefit from the same methods as we did in the previous section. In Fig. 2.4a,
we provide the Ir image obtained from the Adana test image set. We provide the
thresholded version of this image in Fig. 2.4b. As in the previous section, we used
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Fig. 2.4 Image ratio applied to the Adana image set. a The ratio image b Thresholded Version

Kapur’s method to obtain the optimal threshold value. As can be seen, the thresholded
image provides sufficient information on the changed regions in the image.

2.3 Image Regression

In image regression, the I2 image (obtained from t2) is assumed to be a linear function
of the I1 image (obtained from t1). Under this assumption, we can find an estimate
of I2 by using least-squares regression as

Î2(x, y) = aI1(x, y)+ b. (2.14)

To estimate the parameters a and b, we define the squared error between the measured
data and predicted data (for each pixel) as

e2 = (I2(x, y)− Î2(x, y))2 = (I2(x, y)− aI1(x, y)− b)2. (2.15)

The sum of the squared error becomes

S =
N∑

n=1

e2 =
N∑

n=1

(I2(xn, yn)− aI1(xn, yn)− b)2. (2.16)

Here, we assume that we have N observations. We want to find the parameters a
and b to minimize the sum of the squared error S. Therefore, we first calculate the
partial derivatives of S with respect to a and b as

∂S

∂b
= −2

N∑
n=1

(I2(xn, yn)− aI1(xn, yn)− b), (2.17)
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Fig. 2.5 Image difference after regression applied to the Adana image set. a The difference image
b Threshold Version

∂S

∂a
= −2

N∑
n=1

[(I2(xn, yn)− aI1(xn, yn)− b)I1(xn, yn)]. (2.18)

By equating Eqn. 2.17 and 2.18 to zero, we obtain two equations with two
unknowns as

0 =
N∑

n=1

I2(xn, yn)−
N∑

n=1

aI1(xn, yn)−
N∑

n=1

b, (2.19)

0 =
N∑

n=1

I2(xn, yn)I1(xn, yn)−
N∑

n=1

aI1(xn, yn)
2 −

N∑
n=1

bI1(xn, yn). (2.20)

Solving these equations, we obtain

a = n
∑N

n=1 I2(xn, yn)I1(xn, yn)− ∑N
n=1 I2(xn, yn)

∑N
n=1 I1(xn, yn)

n
∑N

n=1 I1(xn, yn)2 − (
∑N

n=1 I1(xn, yn))2
, (2.21)

b =
∑N

n=1 I2(xn, yn)− a
∑N

n=1 I1(xn, yn)

N
. (2.22)

We manually picked the observations (for n = 1, . . . , N ) from I1 and I2 (from the
unchanged areas). When we subtract I2 from Î2 as Id(x, y) = I2(x, y) − Î2(x, y),
we expect to find changes originating from land cover. When we apply this method to
the normalized I2 ( Ĩ2), we further eliminate the insignificant changes that still remain
after normalization. Consequently, this technique gives slightly better performance
compared to image differencing.

We provide the difference image obtained by image regression using our Adana
image test set in Fig. 2.5a. We provide the thresholded version of this image in
Fig. 2.5b. As in the previous sections, we benefit from Kapur’s method in threshold
selection. As can be seen, the change map obtained is similar to image differencing.
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Fig. 2.6 Unchanged and
changed pixel vectors in a 2-D
spectral space

2.4 Change Vector Analysis

Change Vector Analysis (CVA) is a technique where multiple image bands can be
analyzed simultaneously. As its name suggests, CVA does not only function as a
change detection method, but also helps analyzing and classifying the change. In
CVA, pixel values are vectors of spectral bands. Change vectors (CV) are calcu-
lated by subtracting vectors pixelwise as in image differencing. The magnitude and
direction of the change vectors are used for change analysis. In Fig. 2.6, a changed
pixel and an unchanged pixel are given in a two-band spectral space.

The change vector magnitude can indicate the degree of change. Thus, it can
be used for change and no-change classification. Under ideal conditions, such as
perfect image registration and normalization, unchanged pixel magnitudes must be
equal to zero. However, this is not the case in practice. Therefore, thresholding must
be applied to the change magnitude. While the change vector magnitude behaves
like a multi-band version of the image differencing, the change direction gives us
additional information about the change type. This is often more valuable than the
amount of change, since in most applications we are interested in a specific change
type.

In practice, the number of CV directions are uncountable. Therefore, it is nec-
essary to quantize the CV space and assign directions accordingly. A simple quan-
tization of CV directions can be achieved by dividing the space by its main axes.
In Fig. 2.7, a 2D CV space is quantized into four subsets (quadrants) by the axis
of band 1 and band 2. For three band images, subsets can be octants. CVs can be
assigned to subsets via signs of their components.

As mentioned earlier, CV directions can be used in classifying the change. By
using subsets, we can determine 2n classes of change for an n dimensional space. CVA
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Fig. 2.7 Change vector space
is divided into four subsets

can also be applied to transformed data such as Kauth-Thomas Transformation (KTT)
(explained in Sect. 3.2) rather than to raw data. In the KTT space, a simultaneous
increase in the greenness feature and decrease in the brightness feature indicates gain
of vegetation. Therefore, in the change vector space of KTT bands, we can assign this
change class (change toward vegetation) to the subsets where greenness is positive
and brightness is negative.

CVA is used first by Malila [9] for change detection. He used the KTT with
CVA and reported results for change of forestation. He used change directions to
distinguish changes due to harvesting and regrowth. Johnson et al. [10] provided a
comprehensive investigation of CVA. They provided the details to the implemen-
tation of CVA after a functional description. They reported that, CVA can be used
in applications which require a full-dimensional data processing and analysis tech-
nique. They also found CVA to be useful for applications in which: the changes
of interest and their spectral manifestation are not well-known a priori; changes of
interest are known or thought to have high spectral variability; changes in both land
cover type and condition may be of interest.

In Fig. 2.8a, we provide the change vector magnitude image which can be used
for change and no-change classification. In Fig. 2.8b the change vector magnitude
image is thresholded by Kapur’s algorithm. This thresholded image also provides
sufficient information on changed regions.

http://dx.doi.org/10.1007/978-1-4471-4255-3_3
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Fig. 2.8 CVA (in terms of magnitude value) applied to the Adana image set. a The magnitude
value b Threshold Version

2.5 Median Filtering-Based Background Formation

In this method, we detect changes by subtracting the multi-temporal images from
a reference image (background). This technique is widely used in video processing
for detecting and analyzing motion. Although well known in video signal processing
community, this is the first time median filtering is used for change detection in
satellite images.

For this method, several background formation techniques are proposed in the
literature. In this study, we use temporal median filtering for background formation.
It is defined as

Ibg(x, y) = Med(I1(x, y), I2(x, y), . . . , IN (x, y)), (2.23)

where Ibg is the background image and (I1, I2, . . . , IN ) are the images from times
(t1, t2, . . . , tN ).

Parameters of the median operator are pixel values from the same spatial location
(x, y). Median is calculated by choosing the middle element of the sorted array of
its parameters. This leads to the removal of outliers (impulsive or salt and pepper
noise) from the input pixel set. This characteristic of the median filter helps us to find
a pixel value for every spatial location which is equal or approximately equal to the
majority of the elements of the temporal pixel set. We expect to find the change by
subtracting each image from the background, thus enchanting deviations from the
median value.

We provide our multi-temporal images for background formation in Fig. 2.9. We
also provide the median filtering result in Fig. 2.10.

Using the extracted background image, we obtain four difference images as in
Fig. 2.11. We also provide the thresholded version of these images in Fig. 2.12. As
in the previous sections, we used Kapur’s algorithm in finding the threshold value.
As can be seen in Fig. 2.12, majority of the significant changes are gathered in the
first and last images in the series. These correspond to the two extremes of the time
interval.
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Fig. 2.9 Multi-temporal images used in background formation

Fig. 2.10 Background image
generated by median filtering

2.6 Pixelwise Fuzzy XOR Operator

The last method for pixelwise change detection is a novel contribution to the
community. In this method, the binary XOR operation is taken as a benchmark. Its
fuzzy version is used for change detection. Our rationale here is as follows. Assume
that we have two binary images (composed of only ones and zeros) and we want
to detect the changed pixels in these. Each pixel p(x, y) in a binary image B is
valued according to a characteristic function βB, which could also be called as the
“whiteness” function defined as
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Fig. 2.11 Difference images for each sample generated by subtracting each sample from the back-
ground image

Fig. 2.12 Difference images are thresholded by Kapur’s algorithm

p(x, y) = βB(x, y) =
{

1, if B(x, y) is white

0, otherwise.
(2.24)
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Between two pixels p1 and p2, at the same (x, y) coordinates of the two binary
images B1 and B2, the existence of a change can only mean that either “p1 is white and
p2 is not” or “p1 is not white and p2 is.” This directly implies the XOR operation in
binary logic. Hence the obvious solution to the change detection problem is XOR-ing
the two binary images pixelwise as

C(x, y) = B1(x, y)⊕ B2(x, y). (2.25)

This operation gives ‘0’ for pixels having the same value in both images, and
gives ‘1’ for pixels having different values. Therefore, white pixels in the resulting
binary image C(x, y) represent the changed regions.

Unfortunately, this method cannot be applied to panchromatic or multispectral
satellite imagery (having pixel values in a certain range). In order to perform a
similar method on satellite imagery, we propose a fuzzy representation for these. We
also benefit from the combination of fuzzy and crisp (binary) operations.

Panchromatic images are composed of pixels with values p(x, y) in a certain
range. Normalizing these values and mapping them to the range [0, 1] effectively
translates the image into a fuzzy set, whose elements (pixels) have membership
grades in proportion to their “whiteness.” The membership grade g(x, y) of each
pixel p(x, y) in the grayscale image G is thus defined by the fuzzy membership
function μG as

g(x, y) = μG(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.00, if G(x, y) is pure white

... ...

0.50, if G(x, y) is gray

... ...

0.00, if G(x, y) is pure black.

(2.26)

Comparison of two binary images involves the crisp question “Are these two pixels
different?.” Whereas a fuzzy comparison of two panchromatic images involves the
fuzzy question “How different are these two pixels?.” Also the question of “Above
what amount of difference shall the two pixels be labeled as changed?.” The amount
of difference between gray level values in the image domain directly corresponds
to the difference between the degrees of membership in the fuzzy domain. For this
particular application, the fuzzy complement (NOT) operation, defined as

ḡ(x, y) = μḠ(x, y) = 1 − g(x, y) (2.27)

and the algebraic representation of the fuzzy intersection (AND) operation, defined
as the multiplication of membership functions

μG1∩G2 = μG1(x, y)μG2(x, y) = g1(x, y)g2(x, y) (2.28)

were used to obtain a fuzzy difference metric [11].
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Fig. 2.13 Fuzzy XOR applied to the Adana image set. a Fuzzy AND (g1(x, y)ḡ2(x, y)) b Fuzzy
AND (ḡ1(x, y)g2(x, y)) c Thresholded version

In a manner similar to the binary case, the measure of change between two pixels
p1 and p2 is given by the degree of truth of the following statement: either “p1
is lighter AND p2 is darker” OR “p1 is darker AND p2 is lighter”; which can be
rephrased as, either “p1 has a high membership grade AND p2 has a low membership
grade” OR “p1 has a low membership grade AND p2 has a high membership grade.”

Considering that “having a low membership grade” is the opposite of “having a
high membership grade,” the former statement’s degree of truth is the complement of
the latter’s, and the degree of truth in “having a high membership grade” is equivalent
to the membership grade g(x, y) itself. Consequently, the above fuzzy rule can be
formulated as

C(x, y) = μ(G1∩Ḡ2)∪(Ḡ1∩G2)
(x, y) = (g1(x, y)ḡ2(x, y)) ∪ (ḡ1(x, y)g2(x, y)).

(2.29)
The fuzzy value C(x, y) represents the measure of change between two images

at the coordinate (x, y). The decision of a significant change can be made by means
of applying an appropriate threshold and converting C(x, y) to a crisp YES/NO
value. Experiments have shown that, the results from the two fuzzy AND operations
are distributed in a way that automatically indicates an appropriate threshold for
defuzzification. More explicitly, threshold values are obtained for both fuzzy AND
operations from τ = argmax(Ha) + 2σa . Here, Ha is the histogram of the corre-
sponding fuzzy AND operation and σa is the standard deviation of the corresponding
fuzzy AND operation. In fact, applying this threshold and converting the fuzzy AND
results to a crisp binary value, and then combining them with the binary OR operator
yielded better results in detecting changed regions in satellite images. Therefore, the



2.6 Pixelwise Fuzzy XOR Operator 21

proposed method was eventually established as an ensemble of both fuzzy and binary
logic operations.

We provide the images obtained by fuzzy AND operations using our Adana image
set in Fig. 2.13a and Fig. 2.13b. We provide the thresholded version after finding the
C(x, y) in Fig. 2.13c. As can be seen, the resulting image shows the changed region
fairly well.
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Chapter 3
Transformation-Based Change Detection
Methods

Abstract This chapter deals with change detection methods based on color or mul-
tispectral space transformations. They are based on Principal Component Analysis
(PCA), Kauth-Thomas transformation, vegetation indices, and color invariants.

Keywords Transformation-based change detection · Principal component analysis
(PCA) · Eigenvectors · Eigenvalues · Kauth-Thomas transformation · Tasseled cap
transformation · Gram-Schmid orthogonalization · Ratio vegetation index (RVI) ·
Normalized difference vegetation index (NDVI) · Transformed vegetation index
(TVI) · Soil adjusted vegetation index (SAVI) · Modified soil adjusted vegetation
index (MSAVI) · Time-dependent vegetation indices (TDVI) · Color invariants

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is the transformation of the multivariate data
to a new set of components where data variation can be expressed by a first few
components. PCA achieves this by removing the redundancy in the data set. This
redundancy is quantified by the correlation of the variables. Hence, PCA transforms
a correlated set of data to an uncorrelated set.

In terms of linear algebra, what PCA does is a basis rotation. This can be defined
in an algorithmic manner as follows. Variance of the projections onto the first basis
vector (e1) takes its maximum after the rotation. Under the assumption that e1 is
fixed (e.g rotation axis is e1), variance of the projections onto the second basis vector
(e2) takes its possible maximum after the rotation. Variance of the projections onto
the basis vector em takes its possible maximum under the assumption that vectors
from the previous steps (e1, e2, . . . , em−1) are fixed. Data is redefined under a new
basis (e1, e2, . . . , en).

PCA is algebraically defined as follows. The sample covariance of N observations
of K variables (X1, X2, . . . , X K ) is the K × K matrix Cx = [c jk] with entries
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c jk = 1

N − 1

N∑
i=1

(xi j − μ j )(xik − μk), (3.1)

where xi j is the i th observation of the j th variable. μ j and μk are the mean of
j th and kth variables, respectively. Based on these, the PCA transformation can be
defined as Y = XU where U is the K × K rotation matrix whose columns are the
eigenvectors of Cx . X is the N × K data matrix whose columns and rows represent
the variables and observations respectively. Columns of Y are Principal Components
(PCs). Correlation of the variables to the PCs is a special measure. This is called
as principal component loadings. The principal component loadings indicate how
much variance in each of the variables is accounted for by the PCs.

Application of the PCA to change detection requires the analysis of the PC load-
ings. There exist two approaches to analyze the multi-temporal images in the context
of change detection. The first approach is called separate rotation. In this approach,
the PCA is applied to multi-band images separately. Then, any of the change detection
techniques such as image differencing is applied to the PCs. The second approach
is called merged rotation. In this approach, data from the bi-temporal images are
merged into one set and PCA is applied to it. PCs which account for the change are
selected via analysis of the PC loadings. These PCs have negative correlation to the
bi-temporal data.

Fung and LeDrew [1] applied PCA to land cover change detection. They cal-
culated the eigenvectors from the correlation and covariance matrices. Then, they
compared the change detection performance when the PCA is applied using each
eigenvector. They reported that PCA with eigenvectors calculated from the correla-
tion matrix gives better results. They first reported results from the separate rotation
of the multi-temporal data. They indicated that a careful examination of the PC load-
ings is necessary before applying change detection to PCs obtained after separate
rotation. Second, they analyzed the results from the merged rotation. They listed the
PCs which are responsible for the change in terms of brightness and greenness. They
reported that, PC loadings from the correlation matrix are better aligned compared
to PC loadings from the covariance matrix. In applying the PCA to our test images,
we observed that the separate rotation approach gives better results compared to the
merged rotation approach.

We used multispectral images in our PCA application. Therefore, we benefit from
the near infrared band as well as visible red, green, and blue bands. Since multispectral
images have lower resolution compared to their panchromatic counterparts, obtained
results are not as rich as panchromatic images in terms of visual interpretation. Still
PCA gives good results compared to the pixel-based methods. In Fig. 3.1, we provide
the differences of principal components for the Adana image set. As in the previous
sections, we benefit from Kapur’s method in threshold selection. As can be seen, the
difference of the third principal components emphasized changes fairly well.
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Fig. 3.1 Difference of principal components for the Adana image set. First column first PC, second
PC, third PC3, fourth PC; second column their thresholded versions
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3.2 Kauth-Thomas Transformation

Kauth-Thomas transformation (KTT) is a linear transformation from the multispec-
tral data space to a new space (directly attributed to analyze the land cover) [15]. In
fact, similar to PCA, KTT is a redefinition of the data. Different from PCA, KTT is
a fixed transformation described as⎡

⎢⎢⎣
br
gr
ye
ns

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.433 0.632 0.586 0.264
−0.290 −0.562 0.600 0.491
−0.829 0.522 −0.039 0.194
0.223 0.012 −0.543 0.810

⎤
⎥⎥⎦

⎡
⎢⎢⎣

g
r
n1
n2

⎤
⎥⎥⎦ , (3.2)

where br, gr, ye, ns are the brightness, greenness, yellowness, and nonsuch values,
respectively.

The fixed character of this transformation is explained by the invariant nature of
the correlation between the visible and the near infrared bands. While the correlation
within the visible bands and the correlation within the near infrared bands are always
high, the correlation between the visible bands and the near infrared bands is always
low. Kauth and Thomas described this character by visualizing the four band data
via their principal components. They had a 3D representation of the data which
resembles a tasseled cap. Hence, this transformation is also known as the Tasseled
Cap transformation. By this character, KTT is scene independent and often referred
as a better choice against PCA.

Kauth and Thomas [15] used this transformation to describe the lifecycle of crop-
lands. They used the brightness feature to find the soil where crop grows on. Increase
in the greenness feature indicates the growth of crop until it matures. At the end of
the lifecycle, the crop reaches to senescent stage and yellowness feature increases in
parallel.

Seto et al. [3] applied the KTT for land use change detection in a fast developing
area, The Pearl River Delta in the People?s Republic of China. They referred to
the direct association between the physical scene attributes and KTT bands. They
observed that the KTT space is easily comprehensible. Land cover types such as forest
and urban are determined by the spectral locations in the KTT space (e.g. amount
of brightness, greenness, and yellowness). Land use change, such as agricultural to
urban, is classified based on the change from one land cover type to another.

In applying KTT to our test images, we first need a transformation matrix conve-
nient for Ikonos images. As defined earlier, KTT is applied to the data from green,
red, and two near infrared bands. However, in Ikonos images we have only one near
infrared band. In order to use the KTT matrix with green, red, and one near infrared
band, we first remove the fourth row and fourth column of the matrix. Since resulting
matrix is not orthogonal, we applied Gram-Schmidt orthogonalization [4] and obtain

⎡
⎣ br

gr
ye

⎤
⎦ =

⎡
⎣ 0.449 0.655 0.608

−0.267 −0.551 0.791
−0.853 0.517 0.072

⎤
⎦

⎡
⎣ g

r
n

⎤
⎦ . (3.3)
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Fig. 3.2 Difference of KTT bands for the Adana image set. First column brightness, greenness,
yellowness second column their thresholded versions

We provide the differences of brightness, greenness, and yellowness bands for the
Adana image set in Fig. 3.2. As in the previous sections, we used Kapur’s algorithm
in finding the threshold value. As can be seen, the brightness and yellowness bands
indicate changed regions.

3.3 Vegetation Index Differencing

Vegetation indices are obtained by transforming the multispectral data. They are used
as a measure of vegetation which depends on the fact that vegetation absorbs most
of the light in the red band and equally reflects the light in the infrared band. There
are several vegetation indices in the literature, such as: Ratio vegetation index (RVI),
normalized difference vegetation index (NDVI), transformed vegetation index (TVI),
soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index
(MSAVI). These are defined as
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RVI = n

r
, (3.4)

NDVI = n − r

n + r
, (3.5)

TVI =
√

n − r

n + r
+ 0.5, (3.6)

SAVI = n − r

n − r + L
(1 + L), (3.7)

MSAVI = 2n + 1 − √
(2n + 1)2 − 8(n − r)

2
, (3.8)

where n is the near infrared band and r is the red band. L in SAVI confirms the same
bounds between NDVI and SAVI.

RVI is an earlier attempt for measuring vegetation density by band ratios [5].
NDVI and TVI are proposed as an alternative to RVI [6]. Jackson and Huete [7]
showed that NDVI is more sensitive to sparse vegetation compared to RVI, but less
sensitive to dense vegetation. Lautenschlager and Perry [8] mathematically showed
that RVI and NDVI are highly correlated and thus contain the same information.
Ünsalan and Boyer [9] also showed that, both indices can be taken as angles. Hence,
RVI becomes a rotated version of the NDVI. Huete [10] introduced SAVI to minimize
soil brightness influences from spectral vegetation indices. He studied on cotton and
grassland canopies and showed that SAVI can eliminate variations originating from
soil in vegetation indices. Qi et al. [11] improved SAVI and called the new index as
MSAVI.

In terms of change detection, vegetation indices can be used for measuring the
change of vegetation density in a given area with time. Any of the pixel-based methods
described in this study can be applied using vegetation indices for an estimation
of change in vegetation. Lunetta et al. [12] investigated the applicability of high
resolution NDVI (250 m), MODUS NDVI, to land cover change detection. They
studied on a geographic area where biological diversity and regrowth rates are high.
Their results indicate that, up to 87 % correct change detection rates can be achieved.
Guerra et al. [13] used MSAVI with bi-temporal Landsat TM images to identify
vegetation changes. Guerra et al distinguished six types of land cover from a tropical
area based on the spectral locations in the MSAVI space. They applied normalized
image differencing for quantifying the change as

D = MSAVIt2 − MSAVIt1

MSAVIt2 + MSAVIt1
. (3.9)

In Fig. 3.3, we provide the difference images of RVI, NDVI, TVI, and SAVI for
our Adana image set. Unfortunately, none of the indices provided useful results for
change detection on the Adana image set.
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Fig. 3.3 Difference of RVI, NDVI, TVI, and SAVI for the Adana image set (first column). Second
column their thresholded versions

3.4 Time-Dependent Vegetation Indices

A time-dependent vegetation index (TDVI) is a bi-temporal vegetation index calcu-
lated by using multispectral bands from t1 and t2 [14]. Red and near infrared bands
from different times are involved in the same index formula. In a previous study,
Ünsalan and Boyer [9] defined angle vegetation indices as
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ψ = 4

π
arctan

(n

r

)
, (3.10)

θ = 4

π
arctan

(
n − r

n + r

)
, (3.11)

where ψ represents the angle obtained from RVI and θ represents angle obtained
from NDVI. Based on these definitions, time-dependent form of the angle vegetation
indices are defined as

ψt = 4

π
arctan

(
ni

r j

)
, (3.12)

θt = 4

π
arctan

(
ni − r j

ni + r j

)
, (3.13)

where i and j are the time indices of the near infrared and red bands. For bi-temporal
images i and j can take values from {1, 2}. Ünsalan tested TDVIs for every com-
bination of i and j . Among all, time-dependent RVI (ψt ) produced the best result.
In this study, we extend the previous method by using all the multispectral band
combinations in index calculation.

In Fig. 3.4, we provide the following TDVIs for our Adana image set. We used
the percentile thresholding, by 97.5 %, in finding the threshold value. As can be seen,
the results obtained are promising.

ψ
′
t = 4

π
arctan

(
r2

g1

)
, (3.14)

ψ
′′
t = 4

π
arctan

(
r2

b1

)
, (3.15)

θ
′
t = 4

π
arctan

(
r2 − g1

r2 + g1

)
, (3.16)

θ
′′
t = 4

π
arctan

(
r2 − b1

r2 + b1

)
. (3.17)

3.5 Color Invariants

Color invariants are transformations of the color images based on the correlations
between multiple bands. These correlations are between the sensor response of the
camera described in two parts: body reflection and specular reflection [15]. Gevers
and Smeulders [16] evaluated the invariance of several transformations from RGB
color space in terms of sensor responses based on the following criteria: viewing
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direction and object geometry, illumination direction, intensity of the illumination,
and varying illumination color. They showed that the ratio of sum of the sensor
responses are insensitive to surface orientation (object geometry), illumination direc-
tion, and illumination intensity. They proposed the following color invariants based
on this information.
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Fig. 3.5 Difference of c1, c2, c3 for the Adana image set

c1 = arctan

(
r

max(g, b)

)
, (3.18)

c2 = arctan

(
g

max(r, b)

)
, (3.19)

c3 = arctan

(
b

max(r, g)

)
. (3.20)

Furthermore, they showed that the ratio of sum of differences of the sensor
responses is insensitive to highlights (e.g. specular reflectance) as well as surface
orientation, illumination direction, and illumination intensity. They proposed the
following color invariants based on this information.

l1 = (r − g)2

(r − g)2 + (r − b)2 + (g − b)2
, (3.21)

l2 = (r − b)2

(r − g)2 + (r − b)2 + (g − b)2
, (3.22)

l3 = (g − b)2

(r − g)2 + (r − b)2 + (g − b)2
. (3.23)

Gevers and Smeulders pointed out the trade off between the discriminative power
and the invariance of the color invariants. Suppose that color model A is invariant
to illumination conditions w, x, y, and z, and color model B is invariant to illumina-
tion conditions y and z only. Under the illumination conditions where w, x, y, and
z are uncontrolled (varies from sample to sample) color model A produces better
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Fig. 3.6 Thresholded differ-
ence of c2 for the Adana image
set

results than B. On the other hand, the color model B gives better results than A under
the illumination conditions where w and x are controlled and y and z are uncon-
trolled. Hence, while the invariance of the color model increases, its discriminative
power decreases. For this reason, Gevers and Smeulders proposed color invariants
for several invariance levels.

In change detection applications, highlights and illumination colors are controlled
imaging conditions. Therefore, we need surface orientation and illumination inten-
sity invariant models. Gevers and Smeulders recommended (c1, c2, c3) color model
for this type of invariance. As in the other transformation-based change detection
methods, we can apply any of the pixel-based methods after transformation.

In Fig. 3.5, we provide the differences of c1, c2, c3 color invariants for our Adana
test image set. As can be seen, c1 and c3 color invariants mostly emphasize shadow
regions in images. Therefore, they cannot be used for change detection directly. On
the other hand, difference of the c2 color invariant emphasizes significant changes
such as missing and developing buildings. Hence, it can be used for change detection.
In Fig. 3.6, we provide its thresholded version. As can be seen, while some of the
important changes are kept, several other minor changes are enchanted. For this
reason, the performance of c2 difference is no better than simple image differencing.
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Chapter 4
Texture Analysis Based Change Detection
Methods

Abstract In this chapter, we provide two texture based change detection methods. In
both methods, we calculate the texture descriptors for bi-temporal images separately.
In order to detect possible changes, we find their difference. We start with gray level
co-occurrence matrix (GLCM) based texture descriptors next.

Keywords Texture analysis · Gray level co-occurrence matrix (GLCM) · Entropy

4.1 Gray Level Co-occurrence Matrix

Texture analysis focuses on the statistical explanation to the spatial distribution of the
image pixels in a given image. There are several texture analysis methods proposed
in the literature. A frequently used one is gray level co-occurrence matrix (GLCM)
introduced by Haralick et al. [1]. GLCM entries are number of occurrences of spatial
adjacency of gray tone values in an image. Adjacency is defined by the distance in
pixel units.

The formal definition of GLCM is as follows. Let I (x, y) be a grayscale image
which takes values from the set G = {1, 2, . . . , Ng}. The horizontal coordinate, x ,
of I (x, y) takes values from the set Lx = {1, 2, . . . , Nx }. The vertical coordinate, y,
of I (x, y) takes values from the set L y = {1, 2, . . . , Ny}. Then, the image I (x, y)
can be defined as a function from the set Lx × L y to G.

The relative frequency of the spatial adjacency of gray tones i and j is mathemat-
ically defined for four directions as

P(i, j, d, 0◦) = #{((k, l), (m, n)) ∈ (L y × Lx )× (L y × Lx )|
k − m = 0, |l − n| = d, I (k, l) = i, I (m, n) = j} (4.1)

M. İlsever and C. Ünsalan, Two-Dimensional Change Detection Methods, 35
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-4255-3_4,
© Cem Ünsalan 2012



36 4 Texture Analysis Based Change Detection Methods

P(i, j, d, 45◦) = #{((k, l), (m, n)) ∈ (L y × Lx )× (L y × Lx )|
(k − m = d, l − n = −d) or (k − m = −d, l − n = d),

I (k, l) = i, I (m, n) = j} (4.2)

P(i, j, d, 90◦) = #{((k, l), (m, n)) ∈ (L y × Lx )× (L y × Lx )

||k − m| = 0, l − n = d, I (k, l) = i, I (m, n) = j} (4.3)

P(i, j, d, 135◦) = #{((k, l), (m, n)) ∈ (L y × Lx )× (L y × Lx )|
(k − m = d, l − n = d) or (k − m = −d, l − n = −d),

I (k, l) = i, I (m, n) = j}, (4.4)

where d is the adjacency value, # sign indicates the number of occurrences under
given conditions. As we mentioned earlier, GLCM entities are number of occur-
rences. Therefore, i and j are matrix indices and GLCM is an Ng × Ng matrix.

Haralick et al. calculated an average matrix from the four co-occurrence matrices
as

P(i, j, d) = 1

4

3∑
n=0

P(i, j, d, n × 45◦). (4.5)

They used this matrix in calculating texture features. Thus, extracted features are
rotation invariant for 45◦ of rotation.

Several texture features can be extracted from GLCM. The most useful ones for
our purposes are

Contrast:
∑

i

∑
j

(i − j)2 P(i, j, d) (4.6)

Correlation:

∑
i
∑

j (i j)P(i, j, d)− μxμy

σxσy
(4.7)

Energy:
∑

i

∑
j

P2(i, j, d) (4.8)

Inverse Difference Moment (IDM):
∑

i

∑
j

P(i, j, d)

1 + (i − j)2
, (4.9)

where μx , μy , σx and σy are the mean and standard deviation of the marginal prob-

ability matrices Px = ∑Ng

j=1 P(i, j, d) and Py = ∑Ng

i=1 P(i, j, d).
As far as change detection is concerned, it is obvious that we can measure the

amount of change by finding the difference in the amount of texture. Here, our
approach must be slightly different from the pixel-based methods since in texture
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Fig. 4.1 Image differencing applied on GLCM features

analysis we study a region. One appropriate method is dividing the image into smaller
windows and calculating texture features for these. This way, we can calculate the
difference in texture by comparing the features on a window basis. As in pixel-based
methods, images must be geometrically registered.

Tomowskia et al. [2] applied texture analysis methods to detect changes in satellite
imagery. They used four change detection methods as image differencing, image
rationing, image regression, and PCA. These methods are applied on texture features
instead of the intensity values of the image. They benefit from four texture features
as: contrast, correlation, energy, and IDM of GLCM. They calculated texture features
in different window sizes ranging from 3 × 3 to 13 × 13. They reported the 13 × 13
windows to be the best. Tomowskia et al. tested their method on 16 change images.
They reported the use of PCA with the energy feature produced best results.

We calculated contrast, energy, and inverse difference moment features for 13 ×
13 windows on our Adana test image set. We applied image differencing, image
rationing, and PCA using texture features. All change detection methods produced
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Fig. 4.2 Entropy images calculated for test images

similar results. Therefore, we only present results from image differencing in Fig.
4.1 where the difference images calculated using texture features are presented.
In obtaining the change map, we applied percentile thresholding, percentile being
97.5 %.

4.2 Entropy

Entropy is a measure of randomness and can be used in quantifying texture [3]. The
formal definition of entropy is

E =
Ng−1∑
i=0

pi log2 pi , (4.10)

where pi is the relative frequency of the intensity level i in the region and Ng is the
number of possible intensity levels.

In using the entropy for change detection, we apply the following strategy. We
calculate the entropy of our test images separately for 11 × 11 windows around each
pixel. For the Adana test image set, we provide the obtained results in Fig. 4.2. As
can be seen, developing regions are well emphasized by the second entropy image.

In our tests, we observed that taking the difference of entropy images does not
produce expected results. Therefore, we first thresholded the images separately, then
obtain their difference. We provide the thresholded (by 80 %) entropy images in
Fig. 4.3a. Then, we obtain the difference by the binary XOR operation. To refine
results, we removed noise in the difference image by applying morphological opening
with a disk-shaped structuring element. We provide the final result in Fig. 4.3b. As
can be seen, changed regions are detected by this method.
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Fig. 4.3 Change detection by entropy texture feature
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Chapter 5
Structure-Based Change Detection Methods

Abstract This chapter deals with change detection methods based on the struc-
ture information in bi-temporal images. We define the structure using six different
methods. In the following sections, we explore each method in detail.

Keywords Structure · Edge detection · Gradient magnitude-based support regions
(GMSR) · Matched filtering · Laplacian of Gaussian (LoG) · Mean shift · Seg-
mentation · Solidity · Convex hull · Connected components · Local features · Scale
invariant feature transform (SIFT) · Features from accelerated segment test (FAST) ·
Gaussian pdf · Graph matching · Shadow extraction

5.1 Edge Detection

The first method for structural change detection is based on edge information. We
obtain edge pixels from two images using Canny’s edge detection method [1]. For
the registered image pairs, we expect to have correspondence between the edge maps
of the two images. However, direct comparison is not feasible. Although the images
can be registered, their looking angle may not be the same. Moreover, there may
be shadow effects. Therefore, instead of finding the difference of both edge maps,
we match the connected components between them [2]. We define a match between
connected components from two images, if there is an overlap between them. Here,
a partial overlap is also acceptable. Non-matched connected components in both
images are taken as changed regions. In Fig. 5.1, we provide the edge maps obtained
from the Adana image set. In Fig. 5.2, we provide the non-matched edge pixels.
These represent the changed areas in the Adana image set.
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Fig. 5.1 Edge maps obtained from the Adana image set

Fig. 5.2 Change detection
results from the edge map
matching of the Adana image
set

5.2 Gradient-Magnitude-Based Support Regions

Similar to edge-based change detection, we can represent the edge information by
gradient-magnitude-based support regions. The Gradient-Magnitude-based Support
Regions (GMSR) is introduced in a previous study for land classification [3]. Here,
we apply the same methodology as we had done for edge detection with GMSR at
hand. We provide the GMSR obtained for both images in the Adana image set in
Fig. 5.3. We provide the change detection results in Fig. 5.4. As in the edge-based
method, changed regions are detected in this figure.

5.3 Matched Filtering

In the matched filtering approach, we assume a generic shape for buildings in the
image. Using the prototype for this shape, we detect buildings in images using
matched filtering (a standard method for digital communication systems) [4]. In this
study, we picked the Laplacian of Gaussian (LoG) filter as a generic building shape.
We apply it to both images and obtain high response regions, possibly representing
buildings. After thresholding, we apply the same methodology as we had done in the
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Fig. 5.3 GMSR obtained from the Adana image set

Fig. 5.4 Change detection
results from the GMSR match-
ing of the Adana image set

edge detection based approach. We provide the thresholded LoG responses for both
Adana images in Fig. 5.5. We provide the change regions detected by this method in
Fig. 5.6. Again, changed regions are detected fairly well.

5.4 Mean Shift Segmentation

Mean shift segmentation is introduced by Comanicu and Meer [5] as an application of
feature space analysis. They referred to the density estimators for cluster analysis and
in particular to the kernel density estimators. They showed that, mean shift vectors
(obtained after the calculation of the density gradient) can be used for finding the
local maxima points in the feature space. Their feature space formation consists of
both spatial and spectral domain information. For segmentation, they first applied a
mean shift-based edge preserving smoothing filter to the image. Then, they found the
segments by delineating the feature space clusters which are the groups of mean shift
filtered image pixels that belong to the same basin of attraction. A basin of attraction
is defined as the set of all locations that converge to the same mode.

As far as change detection is concerned, similar to edge-based information, we
consider segmentation of both images and detect changes based on segments. We
refine segments based on their shape information using two region-based shape
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Fig. 5.5 Buildings detected from the Adana image set using matched filtering

Fig. 5.6 Change detection
results from the matched
filtering approach

Fig. 5.7 Segments obtained from the Adana image set

descriptors as area and solidity [2]. Area is the number of pixels the region con-
tains. Solidity is the ratio between the area and the area of the convex hull of the
region. We eliminate segments having area greater than a threshold value and solid-
ity less than a threshold value. Finally, we apply the methodology which we defined
for the edge-based comparison to the segments to detect changes. We provide the
segments obtained by mean shift clustering and shape refinement in Fig. 5.7. We pro-
vide the changed regions in Fig. 5.8. As in the previous structural methods, changed
regions are detected fairly well by this approach.
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Fig. 5.8 Change detection
results from the segments of
the Adana image set

5.5 Local Features

We can describe any object in an image if we can find some distinctive features for it.
Once extracted, these features can be used for recognizing the object in another image
by comparing either their spatial locations or descriptors. Local feature detectors try
to isolate these features. Lowe [6] pointed out the distinctiveness of the features as
“The features must also be sufficiently distinctive to identify specific objects among
many alternatives. The difficulty of the object recognition problem is due in large
part to the lack of success in finding such image features. However, recent research
on the use of dense local features has shown that efficient recognition can often be
achieved by using local image descriptors sampled at a large number of repeatable
locations”. He also refers to the repeatability of the local features in this quotation.
A feature detector should also be able to find distinctive features at the same location
under varying conditions such as scaling or illumination.

In this section, we propose a new change detection method based on local feature
matching. We use two widely used local feature detectors: Scale Invariant Feature
Transform (SIFT) and Features from Accelerated Segment Test (FAST) [6, 7]. SIFT
is a local feature detector with several valuable properties, such as invariance to
image scaling, translation, and rotation. It also has partial invariance to illumination
changes and affine or 3D projection. FAST is a high-speed feature detector.

Our change detection method has two steps: matching keypoints (local features)
and finding changed regions based on these. Keypoint matching is applied in a similar
manner for both SIFT and FAST. FAST keypoints are matched as follows. A keypoint
in the first image is assumed to be matched to a keypoint in the second image if they
are spatially close. Closeness norm is determined by fixed threshold values such as
dx and dy for two dimensions. In this way, if a keypoint in the first image is located at
(x, y), we search the existence of a keypoint in a region bounded by [x −dx, x +dx]
and [y −dy, y +dy] in the second image. For SIFT keypoint matching, in addition to
the spatial constraint, we also compare the feature descriptor distances. Descriptor of
the keypoint in the first image is compared to the descriptor of the keypoints from the
previously defined bounded region. If there is a sufficiently close keypoint, then it is
assumed to be matched. No-matched keypoints are used for finding the change mask.
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Fig. 5.9 Change detection using SIFT features. a Change density distributions for the Adana image
set b Total change density distribution c Thresholded version

Centered at each non-matched keypoint, a Gaussian with a fixed variance is added
onto the mask. Gaussians are added up to determine the change density distribution.
Finally, a threshold is applied to this distribution to extract the change region.

We provide the change detection results for the Adana image set for three cases:
matching only SIFT keypoints, matching only FAST keypoints and sum of sepa-
rate results (SIFT and FAST). We provide the change detection results obtained by
matching SIFT keypoints in Fig. 5.9. In Fig. 5.9a sum of the Gaussians centered at
each non-matched keypoint is given. Separate change density distributions are added
up resulting in total change as provided in Fig. 5.9b. The change density function is
thresholded by 90th percentile, and the change regions are extracted. The result of
this operation is provided in Fig. 5.9c. In a similar manner, we provide the change
detection results obtained by matching FAST keypoints in Fig. 5.10. Finally, we pro-
vide the change detection results obtained after combining the SIFT and FAST results
in Fig. 5.11. As can be seen, in both methods, changed regions are labeled correctly
on the Adana image set.

5.6 Graph Matching

In this section, we propose a novel change detection algorithm based on the graph-
based representation of the structural information. Our focus is detecting changes in a
specific region using local features in a graph formalism. To represent the structure,
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Fig. 5.10 Change detection using FAST features. a Change density distribution for the Adana
image set. b Total change density distribution. c Thresholded version

we extract local features from both images using FAST. Then, we represent each
local feature set (extracted from different images) in a graph form separately. This
allows us to detect changes using a graph matching method.

To extract the structure information from local features, we represent them in a
graph form. A graph G is represented as G = (V, E), where V is the vertex set
and E is the edge matrix showing the relations between these vertices. Here vertices
are local features extracted by FAST. The edges are formed between them just by
their distance. If a distance between two vertices are small, there will be an edge
between them. In this study, we set this difference value to 10 pixels depending on
the characteristics of the objects in the image.

As we form graphs from both images separately, we apply graph matching between
them. In matching graphs, we apply constraints both in spatial domain and in neigh-
borhood. We can summarize this method as follows. Let the graph formed from
the first and second images be represented as G1(V1, E1) and G2(V2, E2). In these
representations, V1 = { f1, . . . , fn} holds the local features from the first image and
V2 = {s1, . . . , sm} holds the local features from the second image. We first take spa-
tial constraints in graph matching. We assume that two vertices match if the spatial
distance between them is smaller than a threshold. In other saying, fi and g j are
said to be matched if || fi − g j || < δ (δ being the threshold). This threshold adds
a tolerance to possible image registration errors. Non-matched vertices from both
graphs represent possible changed objects (represented by their local features). Since
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Fig. 5.11 Change detection using the combination of FAST and SIFT features. a Change density
distribution for the Adana image set. b Total change density distribution. c Thresholded version

local features simply represent a single location, we add a circular tolerance to the
non-matched ones to represent the changed area.

We can also add neighborhood information to graph matching. To do so, we first
eliminate vertices having neighbors less than a number. Then, we match these refined
vertices. This way, we eliminate some local features having no neighbors (possible
noise regions).

We provide the local features extracted from the Adana image set in Fig. 5.12.
Based on these, we provide the change detection results in Fig. 5.13. First, we did
not apply any neighborhood constraint. Then, we refined vertices having less than
three neighbors. Thus, we applied the neighborhood constraint. As can be seen, for
both methods, changed regions are detected. However, as we add a neighborhood
constraint, false alarms decreased dramatically.

5.7 Shadow Information

Shadow in a region gives indirect information about the elevation of the objects there.
This information cannot be extracted by the methods that we considered so far in
this study. Therefore, it is valuable. Elevation information can be helpful especially
in urban monitoring, since man-made structures have height. In this study, we will
use the shadow information for 2D change detection. We benefit from Sırmaçek and
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Fig. 5.12 Local features extracted by FAST which are used in graph formation

Fig. 5.13 Graph matching-based comparison results. a Using only spatial constraints b Adding
three neighborhood constraint

Ünsalan’s study [8] in extracting shadow regions. They used

ψb = 4

π
arctan

(
b − g

b + g

)
(5.1)

for shadow detection. In this equation, b and g are the blue and green bands of the
image.

In detecting changes, we compare the shadow information extracted from times
t1 and t2. Based on these, we estimate the spatial location of the change. In this
method, images must be registered (as in most other change detection techniques)
before comparison. Additionally, images must be taken at the same time of the year
for a healthy comparison. As a final comment, the detected change locations are in
terms of shadows. Therefore, they only represent the changed objects’ shadows.

Our method has three steps. First, we extract shadow indicators by applyingψb to
the test images. Then, we threshold the results and obtain the shadow regions. Finally,
we detect shadow regions that do not exist in the other image. We provide the shadow
indicators for our test images in Fig. 5.14. The thresholded (using Kapur’s method)
results are given in Fig. 5.15. Finally, we eliminate shadow regions that overlap with
any shadow region in the other image. Remaining regions are accepted as shadow
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Fig. 5.14 ψb applied to test images

Fig. 5.15 ψb results are threshold by Kapur’s algorithm

Fig. 5.16 Shadow differences

difference. We provide the obtained results in Fig. 5.16. While some shadow regions
are missed, most of the regions are detected. We note that detected regions are located
around the developing parts of the area.
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Chapter 6
Fusion of Change Detection Methods

Abstract In previous chapters, we introduced several change detection methods
working on different principles. They also had different assumptions. In this chapter,
we provide a method to fuse the change maps obtained from these. We applied
our fusion approach both in category (within a group) and inter-category (between
groups) levels. We explore these methods next.

Keywords Decision fusion · Association

6.1 Fusion Methodology

Since our approach is combining the results (decisions) taken from different methods,
it is a decision level fusion. Our fusion methodology consists of three operators:
binary AND, binary OR, and binary association. Binary AND operator accepts that
a pixel is truly classified as change only if all methods classified it as change. Binary
OR operator accepts that a pixel is truly classified as change, if at least one method
decided that way. In binary association, one method’s decision is chosen as base.
Decisions of other methods are compared with this decision on an object basis.
Here, we find the objects (connected components) from one method which overlap
the objects from the other method. In binary association, all decisions are compared
with the base decision and found objects are added to the base decision. As a result,
regions classified as change expand. The binary association result is this expansion
plus the base decision.

We provide the fusion of the pixel-based methods with three operators along
with the result from fuzzy XOR in Fig. 6.1. In calculating the binary association, we
selected the fuzzy XOR change map as the base. We will observe the effect of fusion
on the performance in the following chapter.
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Fig. 6.1 Fusion of pixel-based change detection results. a Fuzzy XOR change map b Fusion by
the AND opreator c Fusion by the OR operator d Fusion by association

6.2 Category Level Fusion

In category level fusion, all methods from one change detection method category
(e.g. pixel-based methods) are combined. We provide the association of the structure-
based results for the Adana test image set in Fig. 6.2. In this fusion example, decision
of the graph matching method is taken as the base decision.

6.3 Inter-Category Level Fusion

In inter-category level fusion, for each method category, we use the results from
the fusion operator with the best performance (to be provided in Sect. 7.2.6). We
restricted inter-category fusion only to association, since fusion of the structure-
based methods category produces results only in object basis. In Fig. 6.3, we provide
the fusion of pixel and structure-based change detection results.

http://dx.doi.org/10.1007/978-1-4471-4255-3_7
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Fig. 6.2 Category level fusion of structure-based change detection results a Edge detection b
Matched filtering c GMSR d Segmentation e Local features f Graph matching g Fusion by associ-
ation
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Fig. 6.3 Inter-category level fusion of pixel and structure-based change detection results a Pixel
category fusion b Structure category fusion c Inter-category level fusion



Chapter 7
Experiments

Abstract In this chapter, we provide experimental results obtained from all change
detection methods considered in this study. We first explain the data set used in
the experiments. Then, we provide performance results in tabular form for each
change detection method in detail.

7.1 The Data Set

Our data set consists of images extracted from high-resolution Ikonos images. These
are acquired from the particular regions of Ankara and Adana in four different times
between years 2001 and 2004. Besides using three band panchromatic images, we
also used their four band multispectral versions. Panchromatic Ikonos images have
one meter resolution. Corresponding multispectral images have four meter resolution
and contain red, green, blue, and near infrared spectral bands. In our data set, 18
image pairs are panchromatic (labeled with letter P in suffix) and 17 image pairs
are multispectral (labeled with letter M in suffix). Our test images are geometrically
registered. They are also radiometrically normalized as discussed in Sect. 2.1. We
provide a sample set of our test images in Figs. 2.2 and 7.1.

7.2 Performance Tests

In evaluating each method, we have a manually generated ground truth image set. In
forming the ground truth, we specifically focused on urban area changes. Therefore,
we mainly labeled the changed regions which occurred in the man-made structures
such as buildings and road segments. In Fig. 7.2, we provide three ground truth images
generated for Adana P2, Ankara P3, and Ankara P10 image pairs as an example.
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Fig. 7.1 Three sample image pairs acquired from Adana and Ankara a Adana P2 b Ankara P3
c Ankara P10

In Tables 7.1 and 7.2, we provide number of ground truth pixels (GT) and number
of image pixels (IP) for each image pair. ‘GT Pixels/Image Pixels’ ratio (GT/IP)
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Fig. 7.2 Ground truth images for three test image pairs for Adana P2, Ankara P3, and Ankara P10

Table 7.1 Ground truth pixel information for the panchromatic test image set

Image size GT IP GT/IP

Adana P1 270 × 180 5893 48600 0.1213
Adana P2 260 × 220 5500 57200 0.0962
Adana P3 200 × 240 2087 48000 0.0435
Adana P4 200 × 200 7180 40000 0.1795
Adana P5 260 × 400 8383 104000 0.0806
Adana P6 250 × 280 11185 70000 0.1598
Adana P7 350 × 350 18296 122500 0.1494
Adana P8 290 × 440 9549 127600 0.0748
Ankara P1 700 × 700 97684 490000 0.1994
Ankara P2 468 × 477 41573 223236 0.1862
Ankara P3 550 × 445 40931 244750 0.1672
Ankara P4 780 × 350 36525 273000 0.1338
Ankara P5 850 × 760 187970 646000 0.2910
Ankara P6 490 × 520 89876 254800 0.3527
Ankara P7 340 × 330 36074 112200 0.3215
Ankara P8 250 × 310 15800 77500 0.2039
Ankara P9 360 × 340 18878 122400 0.1542
Ankara P10 160 × 400 21215 64000 0.3315

indicates the amount of change involved in the specific image pair. We provide the
total panchromatic and multispectral image pixels in Table 7.3.

Our comparisons are based on the intersections, unions, and complements of the
ground truth and the result set. We use four measures as True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN). In terms of ground truth
set (GT) and the result set (RE) these quantities are defined as
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Table 7.2 Ground truth pixel information for the multispectral test image set

Image size GT IP GT/IP

AdanaM1 65 × 60 426 3900 0.1092
AdanaM2 120 × 140 1386 16800 0.0825
AdanaM3 140 × 260 13993 36400 0.3844
AdanaM4 75 × 70 381 5250 0.0726
AdanaM5 100 × 90 2063 9000 0.2292
AdanaM6 90 × 90 1019 8100 0.1258
AdanaM7 120 × 100 1571 12000 0.1309
AdanaM8 90 × 70 316 6300 0.2089
AnkaraM1 290 × 210 4724 60900 0.0776
AnkaraM2 150 × 250 6454 37500 0.1721
AnkaraM3 80 × 155 4276 12400 0.3448
AnkaraM4 80 × 70 1296 5600 0.2314
AnkaraM5 90 × 75 2279 6750 0.3376
AnkaraM6 65 × 100 1610 6500 0.2477
AnkaraM7 100 × 80 1084 8000 0.1355
AnkaraM8 90 × 90 1351 8100 0.1668
AnkaraM9 100 × 100 1268 10000 0.1268

Table 7.3 Ground truth total
pixel information for
panchromatic images and
multispectral images

Image type Total GT Total IP Total GT/IP

Panchromatic 654599 3125786 0.2094
Multispectral 46497 253500 0.1834

TP = GT ∩ RE (7.1)

FP = RE − GT (7.2)

TN = (GT ∪ RT)c (7.3)

FN = GT − RE (7.4)

where ‘−’ sign is the set-theoretic difference and superscript ‘c’ is the set comple-
ment. In Fig. 7.3, we demonstrate these four set regions.

In terms of pixel-based comparison, TP represents the number of change pixels
correctly detected. FP represents the number of no-change pixels incorrectly labeled
as change by the method. TN represents the number of no-change pixels correctly
detected. FN represents the number of change pixels incorrectly labeled as no-change
by the method. Based on these quantities, we benefit from three performance criteria
as: the percentage correct classification (PCC), the Jaccard coefficient (Jaccard), and
the Yule coefficient (Yule) [1]. These are defined as

PCC = TP + TN

TP + FP + TN + FN
(7.5)

Jaccard = TP

TP + FP + FN
(7.6)
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Fig. 7.3 Pixel correspon-
dence between the ground
truth and the result set

Yule = TP

TP + FP
+ TN

TN + FP
− 1 (7.7)

PCC is the most common performance measure. Literally, it is the comparison of
the truly found pixels to the whole pixel set. However, this measure is not sufficient
for our comparisons for images containing little change. From Tables 7.1 and 7.2, we
can see that ‘GT/IP’ value can drop as low as 0.043 which indicates minor change.
In such cases, any method can get very high PCC value by just labeling all pixels as
negative. TN dominates the PCC measure and it can easily reach the value one. To
avoid this, we use the Jaccard measure. This measure excludes TN in its formulation.
PCC and Jaccard measures are in the range [0, 1]. The Yule measure is in the range
[−1, 1]. The higher these measures, the better the performances.

7.2.1 Pixel-Based Change Detection Methods

We start providing our test results with pixel-based methods. They use only panchro-
matic image pairs. Therefore, in these tests we used only 18 image pairs from our
database. Instead of giving results for each image separately, we provide the total
image statistics. To this end, we sum TN, TP, FP, and FN for each image and then cal-
culate the performance measures. One exception to this is the background subtraction
method. It requires more than two images for background formation. In our study,
for most of our test set, we have four images from the same region. Unfortunately,
for five test image sets we do not have images from four different times. Therefore,
we used only 13 of the 18 regions in background formation. Furthermore, instead of
giving four subtraction results separately for background formation based method,
we only provide sum of the first and fourth subtractions. This is because, at the two
extremes of our time interval (first and fourth images) represent most of the change.
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Table 7.4 Performance measures for pixel-based change detection methods

TP TN FP FN PCC Jaccard Yule

Image differencing 139599 2386573 84614 515000 0.8082 0.1888 0.4451
Image ratioing 171727 2345767 125420 482872 0.8054 0.2202 0.4072
Image regression 141249 2366909 104278 513350 0.8024 0.1861 0.3971
CVA 132453 2393494 77693 522146 0.8081 0.1809 0.4512
Fuzzy XOR 72034 2435920 35267 582565 0.8023 0.1044 0.4783
Background sub. 148360 1976467 92328 457331 0.7945 0.2125 0.4285

We provide the performance of pixel-based change detection methods in Table 7.4.
For all methods, threshold values are obtained using Otsu’s algorithm.

As can be seen in Table 7.4, image differencing, image regression, and CVA
methods produced similar results. Image ratioing produced better Jaccard and worse
Yule values. This indicates that, while it finds more TP pixels compare to other
methods, it labels noise pixels as well. Fuzzy XOR method produced a similar PCC
value compared to other methods, but it failed to find comparable TP pixels using
Otsu’s method.

7.2.2 Transformation Based Change Detection Methods

We provide performance test results for transformation based methods in Table 7.5.
Again, Otsu’s algorithm is used in determining the threshold values. First four rows
of the table are principal component results. Since we used four band multispectral
images in PCA, we found four principal components. We used separate rotation-type
PCA (Sect. 3.1).

As can be seen in Table 7.5, the first PC produced results close to pixel-based
methods. Other principal components produced poor results, even the second PC
produced a negative Yule value. Low PCC and Yule values are due to the noise
generated by these principal components. For the KTT method, the brightness band
performed best. Other band results are comparable, but not close to pixel-based meth-
ods in terms of the Jaccard measure. Vegetation indices RVI, NDVI, TVI, and SAVI
performed fairly well. We tested four time-dependent vegetation indices (TDVI).ψ ′′

t
and θ ′′

t which use red and blue bands produced better results. For these, high PCC and
Yule values indicate that threshold values can be decreased for higher Jaccard value.
Finally, the color invariant based change detection method produced poor results.

7.2.3 Texture-Based Change Detection Methods

We provide the texture-based change detection results in Table 7.6. Here, we also
use Otsu’s algorithm in threshold selection. For entropy method, an 11 × 11 sliding
window is used. For GLCM, a 13 × 13 sliding window is used. As for GLCM fea-

http://dx.doi.org/10.1007/978-1-4471-4255-3_3
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Table 7.5 Performance measures for transformation based change detection methods

TP TN FP FN PCC Jaccard Yule

First PC 8859 199184 7819 37638 0.8207 0.1631 0.3722
Second PC 3519 190445 16558 42978 0.7651 0.0558 −0.0088
Third PC 3928 197725 9278 42569 0.7955 0.0704 0.1203
Fourth PC 2409 197068 9935 44088 0.7869 0.0427 0.0123
KTT-brightness 9750 201605 5398 36747 0.8337 0.1879 0.4895
KTT-greenness 8122 198718 8285 38375 0.8159 0.1483 0.3332
KTT-yellowness 8022 201363 5640 38475 0.8260 0.1539 0.4268
RVI 9409 199450 7553 37088 0.8239 0.1741 0.3979
NDVI 9387 199579 7424 37110 0.8243 0.1741 0.4016
TVI 9830 199268 7735 36667 0.8248 0.1813 0.4042
SAVI 8646 199113 7890 37851 0.8196 0.1590 0.3631
ψ ′

t 4173 205078 1925 42324 0.8254 0.0862 0.5132
ψ ′′

t 6093 205327 1676 40404 0.8340 0.1265 0.6198
θ ′

t 4173 205078 1925 42324 0.8254 0.0862 0.5132
θ ′′

t 6093 205327 1676 40404 0.8340 0.1265 0.6198
c2 12282 2440180 31007 642317 0.7846 0.0179 0.0753

Table 7.6 Performance measures for texture-based change detection methods

TP TN FP FN PCC Jaccard Yule

Entropy 111029 2344253 126934 543570 0.7855 0.1421 0.2784
Contrast 179817 2190678 280509 474782 0.7584 0.1923 0.2125
Energy 244870 1978734 492453 409729 0.7114 0.2135 0.1606
IDM 276922 1933660 537527 377677 0.7072 0.2323 0.1766

tures, Contrast, Energy, and Inverse Difference Moment (IDM) are calculated. PCC
values are lower than all pixel methods for all texture-based methods. Yule values
are also poor compared to pixel-based methods. In terms of the Jaccard measure,
IDM produced the best result but with a very poor PCC and Yule value.

7.2.4 Comparison of Thresholding Algorithms

Up to this point, we only provided change detection results using Otsu’s thresh-
olding algorithm. Now, we evaluate the effect of Kapur’s algorithm and percentile
thresholding in change detection performance. Kapur’s algorithm determines the
threshold value automatically. However, a percent value should be determined for
percentile thresholding. Therefore, we tested change detection methods starting from
99.0 to 75.0 %. Decreasing the percentile value added more TP to the results. This led
to an increase in the Jaccard measure. Rate of increase was high for the higher per-
centile values, and it gets lower when we drop the percentile to 75 %. We demonstrate
this behavior for image differencing method in Table 7.7. In this table, we focused
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Table 7.7 Effect of the percentile value on the performance measures

Percentile (%) TP TN FP FN PCC Jaccard Yule

99.0 17358 2465098 6089 637241 0.7942 0.0263 0.5349
97.5 43815 2451981 19206 610784 0.7985 0.0650 0.4958
95.0 86351 2425828 45359 568248 0.8037 0.1234 0.4658
90.0 164595 2360764 110423 490004 0.8079 0.2152 0.4266
85.0 231113 2279769 191418 423486 0.8033 0.2732 0.3903
80.0 286262 2184580 286607 368337 0.7905 0.3041 0.3554
75.0 365591 1954999 473481 283115 0.7541 0.3258 0.3092

on the Jaccard measure. As a reasonable level, we pick the percentile to be 85.0 %
and applied it to all our methods.

We compared percentile thresholding, Otsu’s method, and Kapur’s method using
results from pixel-based methods in Fig. 7.4. We compared the PCC, Jaccard, and
Yule values produced by thresholding algorithms. If a thresholding algorithm pro-
duced better PCC, Jaccard, and Yule value compared to another algorithm, then we
say that it performed better for the specific change detection method. Otsu’s algorithm
performed better than Kapur’s when used for image differencing, image regression,
and CVA. In this table, we also take the specific thresholding method for the fuzzy
XOR-based change detection method. We label it as std in the chart. As can be seen,
for this specific method, thresholds should be selected by the standard deviation as
mentioned in Sect. 2.6.

We also compared thresholding algorithms via PCA and KTT methods in Fig. 7.5.
Here, Otsu’s algorithm performed better than Kapur’s when used for KTT brightness
and greenness bands.

We next compared thresholding algorithms using the results from vegetation
indices, TDVIs, and color invariant in Fig. 7.6. For RVI and NDVI, Kapur’s algo-
rithm performed better than others. Otsu’s algorithm performed better than Kapur’s
when used for TVI and SAVI. Percentile thresholding performed better than Kapur’s
algorithm for TDVI and the color invariant.

We finally compared thresholding algorithms in terms of texture analysis based
methods in Fig. 7.7. Otsu’s algorithm performed better than Kapur’s when used for
entropy based change detection. Percentile thresholding performed better than Otsu’s
algorithm when used for contrast feature of the GLCM.

Based on all the above tests, we decided to use Otsu’s thresholding algorithm for
our change detection methods. However, for specific applications, other thresholding
methods may also be used. Therefore, there is no clear winner among thresholding
algorithms.

http://dx.doi.org/10.1007/978-1-4471-4255-3_2
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Fig. 7.4 Thresholding algorithms are compared in terms of pixel-based methods

Fig. 7.5 Thresholding algorithms are compared in terms of PCA and KTT

7.2.5 Structure-Based Change Detection Methods

So far, we provided results based on pixel-based comparison. However, this is not
the case for structural methods, since each generate a different type of output.
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Fig. 7.6 Thresholding algorithms are compared in terms of vegetation indices, TDVIs, and color
invariant

Fig. 7.7 Thresholding algorithms are compared in terms of texture-based change detection methods

For example, edge-based comparison produces thin lines representing object edges.
Graph matching based method produces only points. Segment-based method mea-
sures the change in terms of segments. Thus, in structure-based change detection
tests, we assume that the smallest element a method’s output is an object. Objects
are connected components which are set of spatially adjacent pixels. In order to
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handle object-based comparison, we adjusted our ground truth database in a way
that the ground truth is represented by unconnected objects. To do so, we removed
some parts such as roads and areas between structures which connect several objects.
Based on this definition, the number of objects in all test image sets (from Adana P1
to Adana P8 and from Ankara P1 to Ankara P10) is 18, 10, 5, 14, 6, 9, 15, 14, 33,
75, 47, 46, 215, 113, 29, 21, 19, 28, respectively.

As we did for the pixel-based methods, we need to find comparison metrics
between the ground truth and the result sets. We consider the following statistics
before we define our performance criteria for object-based comparison. ‘TP’ is the
number of truly detected objects in the ground truth image. Objects are assumed
to be truly detected, if any object in the result image overlaps with a ground truth
object. We also refer to these as matching objects. ‘reTrue’ is the number of objects
in the result image which match an object in the ground truth image. ‘FN’ is the
number of objects in the ground truth image which are labeled as negative by the
method. ‘reFalse’ is the number of objects in the result image which do not overlap
with any object in the ground truth image. Based on these measures, we benefit from
two performance criteria named as Detection Percentage (DP) and Branching Factor
(BF) used in [2]. These measures are

DP = TP

TP + FN
(7.8)

BF = reTrue

reTrue + reFalse
(7.9)

The detection percentage is the comparison of the number of truly detected objects
to the number of ground truth objects. Branching factor decreases with respect to the
increase in the amount of result image objects which do not match any ground truth
object. Branching factor indicates noise objects in the result image.

A result image can obtain maximum detection percentage and branching factor by
rendering the whole image as true. In this case, all ground truth objects are matched.
Since there is only one object in the result image, ‘reTrue’ is equal to one and ‘reFalse’
is equal to zero. As a result, DP and BF will be equal to their maximum value of
one. In order to prevent this case, we additionally define the Pixel Correspondence
(PCorr) measure as

PCorr = rePxlOverlap

rePxlTrue
(7.10)

where ‘rePxlOverlap’ is the number of true pixels in the result image which overlap
with an object in the ground truth image. ‘rePxlTrue’ is the number of true pixels
in the result image. This measure gives an insight about the correspondence of the
result and the ground truth images. If pixel correspondence is very low, other criteria
are assumed to be unreliable. In Table 7.8 we provide the performance test results
for the structure-based change detection methods.

As can be seen in Table 7.8, shadow-based comparison provides the best DP.
Pixel correspondence cannot be used for interpreting shadow comparison results,
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Table 7.8 Performance measures for the structure-based change detection methods

Structure type TP FN reTrue reFalse DP BF Pcorr

Edge 314 403 419 643 0.4379 0.3945 0.2592
Matched filtering 475 242 1028 2387 0.6625 0.3010 0.3854
GMSR 326 391 615 1291 0.4547 0.3227 0.3674
Segment 183 534 213 382 0.2552 0.3580 0.3257
Local features 358 359 163 94 0.4993 0.6342 0.2980
Graph matching 405 312 2099 2882 0.5649 0.4214 0.4713
Shadow 521 196 765 1956 0.7266 0.2811 0.1717

Table 7.9 Performance measures for the pixel level fusion

TP TN FP FN PCC Jaccard Yule

Fusion by binary AND 67371 2436223 34964 587228 0.8009 0.0977 0.4641
Fusion by binary OR 229651 2267787 203400 424948 0.7990 0.2677 0.3725
Fusion by association 195260 2338887 132300 459339 0.8107 0.2481 0.4320

because this method produces regions in the vicinity of the changed areas (not on
them). When we discard PCorr for shadow comparison, it still has problems (low
BF value indicates high noise in detection which also affects DP). Matched filtering
based comparison produced the second best DP value. After that comes the graph
matching-based comparison. When we compare these two, even though the matched
filtering based method detected more changed objects than graph-based approach,
it produced more noise. Graph matching based method has the second highest BF
value after local feature-based comparison. Low PCorr of the local feature-based
approach is because of the large areas produced by the sum of the Gaussians as we
discussed in Sect. 5.5. This method produces few large components which have low
association with the ground truth. Segment-based approach produced poor detection
results. Other methods produced moderate results. Eventually, the graph matching
based method produced high detection rate, has low noise, and has good association
to the ground truth in pixel basis. Therefore, it is a good candidate for structural
change detection.

7.2.6 Fusion of Change Detection Methods

We start with pixel-based category level fusion and provide the change detection
results in Table 7.9. For comparison purposes, Table 7.4, which holds individual
pixel-based change detection results, may also be used. As can be seen in Table 7.9,
the association operator produced better PCC and Jaccard values compared to the
individual pixel-based results while producing a comparable Yule value.

http://dx.doi.org/10.1007/978-1-4471-4255-3_5
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Table 7.10 Performance measures for the transformation level fusion

TP TN FP FN PCC Jaccard Yule

Fusion by binary AND 1668 206763 240 44829 0.8222 0.0357 0.6960
Fusion by binary OR 15703 196987 10016 30794 0.8390 0.2779 0.4754
Fusion by association 14029 199926 7077 32468 0.8440 0.2619 0.5250

Table 7.11 Performance measures for the texture level fusion

TP TN FP FN PCC Jaccard Yule

Fusion by binary AND 41048 2447327 23860 613551 0.7961 0.0605 0.4320
Fusion by binary OR 387319 1677810 793377 267280 0.6607 0.2675 0.1906
Fusion by association 272160 2060244 410943 382439 0.7462 0.2554 0.2419

Table 7.10 summarizes transformation based fusion results. To note here, poor
performing methods (such as second, third, fourth principal components, and
vegetation indices) are excluded from the transformation based fusion tests. Adding
these methods to the fusion leads to labeling the whole region as either change or
no-change. For individual transformation based change detection results, Table 7.5
may be of help. As can be seen in Table 7.10, fusion with binary association and binary
OR operators produced good results especially in terms of the Jaccard coefficient.
Binary AND fusion produced high Yule and low Jaccard values as expected.

The association operator again produced good results in texture-based fusion tests
as given in Table 7.11. The Jaccard value of the association operator in texture-based
fusion is better than all individual texture-based methods (tabulated in Table 7.6).
Only the binary OR fusion operator produced a lower PCC value. In terms of the
Yule coefficient, fusion by association again performed fairly well.

In structure-based fusion tests, we only have the association operator since the
results can only be combined on an object basis. As we discussed in Sect. 7.2.5, the
optimal performance was produced by taking the graph matching based method as
base. We tabulate the result in Table 7.12. As can be seen, compared to the graph
matching based method, association based fusion produced better DP and BF values
with moderate pixel correspondence.

Inter-category level fusion tests are performed using the results obtained from
category level fusion tests. For category level fusion, we only considered fusion by
association results since it performed fairly well at every test. As the inter-category
level fusion operator, we choose the association since structure category is involved
in tests. Therefore, inter-category level fusion is the association of associations.

We first provide the fusion results in Table 7.13, where pixel and texture level
fusion results were taken as base decisions. In these tests, results are in terms of
PCC, Jaccard, and Yule measures since base decisions are pixel based. In this table,
pixel association and texture association indicates the results taken from category
level association fusion. Last two rows of the table provides the pixel structure and
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Table 7.12 Performance measures for the structure level fusion

Structure Type TP FN reTrue reFalse DP BF Pcorr

Edge 314 403 419 643 0.4379 0.3945 0.2592
Matched filtering 475 242 1028 2387 0.6625 0.3010 0.3854
GMSR 326 391 615 1291 0.4547 0.3227 0.3674
Segment 183 534 213 382 0.2552 0.3580 0.3257
Local features 358 359 163 94 0.4993 0.6342 0.2980
Graph matching 405 312 2099 2882 0.5649 0.4214 0.4713
Shadow 521 196 765 1956 0.7266 0.2811 0.1717
Fusion by association 466 251 305 283 0.6499 0.5187 0.3392

Table 7.13 Performance measures for pixel and texture structure inter-category level fusion

TP TN FP FN PCC Jaccard Yule

Pixel association 195260 2338887 132300 459339 0.8107 0.2481 0.4320
Texture association 272160 2060244 410943 382439 0.7462 0.2554 0.2419
Pixel structure fusion 156363 2415050 56137 498236 0.8226 0.2200 0.5648
Texture structure fusion 236444 2200463 270724 418155 0.7796 0.2555 0.3065

Table 7.14 Performance measures for structure pixel and structure texture inter-category level
fusion

TP FN reTrue reFalse DP BF Pcorr

Structure association 466 251 305 283 0.6499 0.5187 0.3392
Structure pixel association 447 270 281 192 0.6234 0.5941 0.3487
Structure texture association 395 322 223 103 0.5509 0.6840 0.3716

texture structure fusion, where fusion result of the first category is taken as the base
decision. These results indicate that, as we fuse structure with texture and pixel-based
results separately, the performances improved.

We finally provide the results for the test where structure level fusion is taken as
the base decision in Table 7.14. In this test, structure level fusion is associated with
the pixel level and texture level fusion. As can be seen in this table, for both cases
the DP value is decreased and the BF value is increased. This indicates an increase
in the noise level after fusion by association.
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Chapter 8
Final Comments

Abstract Two dimensional change detection methods are used extensively in image
processing and remote sensing applications. In this study, we focused on these meth-
ods and their application to satellite images. We grouped change detection methods
(based on the way they process data) under four categories as: pixel based, texture
based, transformation based, and structural.

In pixel-based change detection, we explored several methods, such as image
differencing, image ratioing, image regression, CVA, median filtering-based back-
ground subtraction, and pixelwise fuzzy XOR. The common characteristic of these
methods is their being straightforward and cost efficient. Besides, they were able to
detect changes as good as the other methods we explored.

Background subtraction-based change detection is well known in video image
processing community. To our knowledge, this is the first time it is used in satellite
images. This method has one shortcoming. It needs more than two images of the same
area to provide meaningful results. Similarly, pixelwise fuzzy XOR-based change
detection method is introduced in this study as a novel contribution to the community.
One advantage of this method is that, it automatically provides a threshold value for
change detection.

In transformation-based change detection, we explored several methods, such
as PCA, KTT, vegetation index differencing, time-dependent vegetation indices,
and color invariants. All of these methods depend on either color or multispectral
information. For PCA, we observed that the first principal component is useful for
change detection purposes. The greenness band of the KTT and vegetation indices
were not useful for change detection in urban areas. On the other hand, the yellowness
and brightness bands of the KTT and the TDVI performed fairly well for this purpose.

In texture-based change detection, we explored GLCM and entropy-based meth-
ods. Unfortunately, we could not get good results from them. One possible reason
may be the texture descriptor. Although the used descriptors are accepted as a bench-
mark for texture analysis, they could not perform well in emphasizing the change.
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For all these three change detection categories, we also considered threshold selec-
tion methods to automate the process. Therefore, we considered Otsu’s thresholding
method, Kapur’s algorithm, and percentile-based thresholding. Our general observa-
tion is as follows. The percentile-based thresholding method tends to provide a lower
threshold value compared to others. Besides, none of the three methods provided the
best result.

Different from previous methods, we also considered structure information for
change detection. In this category, we summarized the structure information based
on edges, GMSR, matched filtering, mean shift segmentation, local features, graph
formalism, and shadow. Based on these, we introduced a novel and generic change
detection method. We were able to detect changes based on the structure extracted
from two images as follows. If a structure (object) from one image overlaps with
another object from the other image, this indicates no-change. The remaining objects
indicate the change between these two images. We observed that, structure-based
change detection methods are well suited for detecting changes in urban areas since
in these man-made structure is dominant. To note here, structure-based methods
only provide changed objects. They do not provide a pixel-based change map. We
overcome this difficulty by using fusion methods. Among structure-based change
detection methods, local feature and graph matching performed best. Unfortunately,
they are computationally more complex compared to other methods.

Finally, we introduced fusion of change detection methods to improve the perfor-
mance. Since different change detection methods summarize the change information
in different ways, they can be fused to get a better performance. Therefore, we con-
sidered the decision level fusion based on binary logic AND and OR operations. We
also developed a fusion method based on association. We applied fusion for both
within category and between category levels. For both, we observed improvements
in change detection accuracy.

As a conclusion, we can claim that 2D change detection methods considered in
this study can be applied to detect changes in bi-temporal satellite images. They
can also be used for change detection problems in general. The user can select the
appropriate method for his or her needs.
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