
Chapter 7
First-Order Logic: Formulas, Models, Tableaux

7.1 Relations and Predicates

The axioms and theorems of mathematics are defined on sets such as the set of in-
tegers Z . We need to be able to write and manipulate logical formulas that contain
relations on values from arbitrary sets. First-order logic is an extension of proposi-
tional logic that includes predicates interpreted as relations on a domain.

Before continuing, you may wish to review Appendix on set theory.

Example 7.1 P(x) ⊂ N is the unary relation that is the subset of natural numbers
that are prime: {2,3,5,7,11, . . .}.
Example 7.2 S (x, y) ⊂ N 2 is the binary relation that is the subset of pairs (x, y)

of natural numbers such that y = x2: {(0,0), (1,1), (2,4), (3,9), . . .}.
It would be more usual in mathematics to define a unary function f (x) = x2 which maps
a natural number x into its square. As shown in the example, functions are special cases
of relations. For simplicity, we limit ourselves to relations in this chapter and the next; the
extension of first-order logic to include functions is introduced in Sect. 9.1.

Definition 7.3 Let R be an n-ary relation on a domain D, that is, R is a subset of
Dn. The relation R can be represented by the Boolean-valued function PR : Dn �→
{T ,F } that maps an n-tuple to T if and only if the n-tuple is an element of the
relation:

PR(d1, . . . , dn) = T iff (d1, . . . , dn) ∈ R,

PR(d1, . . . , dn) = F iff (d1, . . . , dn) �∈ R.

Example 7.4 The set of primes P is represented by the function PP :

PP (0) = F, PP (1) = F, PP (2) = T ,

PP (3) = T , PP (4) = F, PP (5) = T ,

PP (6) = F, PP (7) = T , PP (8) = F, . . .

M. Ben-Ari, Mathematical Logic for Computer Science,
DOI 10.1007/978-1-4471-4129-7_7, © Springer-Verlag London 2012

131

http://dx.doi.org/10.1007/978-1-4471-4129-7_7

132 7 First-Order Logic: Formulas, Models, Tableaux

Example 7.5 The set of squares S is represented by the function PS :

PS (0,0) = PS (1,1) = PS (2,4) = PS (3,9) = · · · = T ,

PS (0,1) = PS (1,0) = PS (0,2) = PS (2,0) =
PS (1,2) = PS (2,1) = PS (0,3) = PS (2,2) = · · · = F.

This correspondence provides the link necessary for a logical formalization of
mathematics. All the logical machinery—formulas, interpretations, proofs—that we
developed for propositional logic can be applied to predicates. The presence of a do-
main upon which predicates are interpreted considerably complicates the technical
details but not the basic concepts.

Here is an overview of our development of first-order logic:

• Syntax (Sect. 7.2): Predicates are used to represent functions from a domain to
truth values. Quantifiers allow a purely syntactical expression of the statement
that the relation represented by a predicate is true for some or all elements of the
domain.

• Semantics (Sect. 7.3): An interpretation consists of a domain and an assignment
of relations to the predicates. The semantics of the Boolean operators remains
unchanged, but the evaluation of the truth value of the formula must take the
quantifiers into account.

• Semantic tableaux (Sect. 7.5): The construction of a tableau is potentially infinite
because a formula can be interpreted in an infinite domain. It follows that the
method of semantic tableaux is not decision procedure for satisfiability in first-
order logic. However, if the construction of a tableau for a formula A terminates
in a closed tableau, then A is unsatisfiable (soundness); conversely, a systematic
tableau for an unsatisfiable formula will close (completeness).

• Deduction (Sects. 8.1, 8.2): There are Gentzen and Hilbert deductive systems
which are sound and complete. A valid formula is provable and we can construct
a proof of the formula using tableaux, but given an arbitrary formula we cannot
decide if it is valid and hence provable.

• Functions (Sect. 9.1): The syntax of first-order logic can be extended with func-
tion symbols that are interpreted as functions on the domain. With functions we
can reason about mathematical operations, for example:

((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)) → (x · y > 0).

• Herbrand interpretations (Sect. 9.3): There are canonical interpretations called
Herbrand interpretations. If a formula in clausal form has a model, it has a model
which is an Herbrand interpretation, so to check satisfiability, it is sufficient to
check if there is an Herbrand model for a formula.

• Resolution (Chap. 10): Resolution can be generalized to first-order logic with
functions.

7.2 Formulas in First-Order Logic 133

7.2 Formulas in First-Order Logic

7.2.1 Syntax

Definition 7.6 Let P , A and V be countable sets of predicate symbols, constant
symbols and variables. Each predicate symbol pn ∈ P is associated with an arity,
the number n ≥ 1 of arguments that it takes. pn is called an n-ary predicate. For
n = 1,2, the terms unary and binary, respectively, are also used.

Notation

• We will drop the word ‘symbol’ and use the words ‘predicate’ and ‘constant’ by
themselves for the syntactical symbols.

• By convention, the following lower-case letters, possibly with subscripts, will
denote these sets: P = {p,q, r}, A = {a, b, c}, V = {x, y, z}.

• The superscript denoting the arity of the predicate will not be written since the
arity can be inferred from the number of arguments.

Definition 7.7
∀ is the universal quantifier and is read for all.
∃ is the existential quantifier and is read there exists.

Definition 7.8 An atomic formula is an n-ary predicate followed by a list of n ar-
guments in parentheses: p(t1, t2, . . . , tn), where each argument ti is either a variable
or a constant. A formula in first-order logic is a tree defined recursively as follows:

• A formula is a leaf labeled by an atomic formula.
• A formula is a node labeled by ¬ with a single child that is a formula.
• A formula is a node labeled by ∀x or ∃x (for some variable x) with a single child

that is a formula.
• A formula is a node labeled by a binary Boolean operator with two children both

of which are formulas.

A formula of the form ∀xA is a universally quantified formula or, simply, a universal
formula. Similarly, a formula of the form ∃xA is an existentially quantified formula
or an existential formula.

The definition of derivation and formation trees, and the concept of induction
on the structure of a formula are taken over unchanged from propositional logic.
When writing a formula as a string, the quantifiers are considered to have the same
precedence as negation and a higher precedence than the binary operators.

Example 7.9 Figure 7.1 shows the tree representation of the formula:

∀x(¬∃yp(x, y) ∨ ¬∃yp(y, x)).

The parentheses in p(x, y) are part of the syntax of the atomic formula.

134 7 First-Order Logic: Formulas, Models, Tableaux

Fig. 7.1 Tree for
∀x(¬∃yp(x, y)∨¬∃yp(y, x))

Example 7.10 Here are some examples of formulas in first-order logic:

∀x∀y(p(x, y) → p(y, x)),

∀x∃yp(x, y),

∃x∃y(p(x) ∧ ¬p(y)),

∀xp(a, x),

∀x(p(x) ∧ q(x)) ↔ (∀xp(x) ∧ ∀xq(x)),

∃x(p(x) ∨ q(x)) ↔ (∃xp(x) ∨ ∃xq(x)),

∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x)),

(∀xp(x) → ∀xq(x)) → ∀x(p(x) → q(x)).

For now, they are just given as examples of the syntax of formulas in first-order
logic; their meaning will be discussed in Sect. 7.3.2.

7.2.2 The Scope of Variables

Definition 7.11 A universal or existential formula ∀xA or ∃xA is a quantified for-
mula. x is the quantified variable and its scope is the formula A. It is not required
that x actually appear in the scope of its quantification.

The concept of the scope of variables in formulas of first-order logic is similar to
the concept of the scope of variables in block-structured programming languages.
Consider the program in Fig. 7.2. The variable x is declared twice, once globally
and once locally in method p. The scope of the global declaration includes p, but
the local declaration hides the global one. Within p, the value printed will be 1, the

7.2 Formulas in First-Order Logic 135

Fig. 7.2 Global and local
variables

class MyClass {
int x;

void p() {
int x;
x = 1;
// Print the value of x

}

void q() {
// Print the value of x

}

... void main(...) {
x = 5;
p;
q;

}

value of the local variable. Within the method q, the global variable x is in scope but
not hidden and the value 5 will be printed. As in programming, hiding a quantified
variable within its scope is confusing and should be avoided by giving different
names to each quantified variable.

Definition 7.12 Let A be a formula. An occurrence of a variable x in A is a free
variable of A iff x is not within the scope of a quantified variable x. A variable
which is not free is bound.

If a formula has no free variables, it is closed. If {x1, . . . , xn} are all the free
variables of A, the universal closure of A is ∀x1 · · · ∀xnA and the existential closure
is ∃x1 · · · ∃xnA.

A(x1, . . . , xn) indicates that the set of free variables of the formula A is a subset
of {x1, . . . , xn}.

Example 7.13 p(x, y) has two free variables x and y, ∃yp(x, y) has one free vari-
able x and ∀x∃yp(x, y) is closed. The universal closure of p(x, y) is ∀x∀yp(x, y)

and its existential closure is ∃x∃yp(x, y).

Example 7.14 In ∀xp(x) ∧ q(x), the occurrence of x in p(x) is bound and the
occurrence in q(x) is free. The universal closure is ∀x(∀xp(x) ∧ q(x)). Obviously,
it would have been better to write the formula as ∀xp(x) ∧ q(y) with y as the free
variable; its universal closure is ∀y(∀xp(x) ∧ q(y)).

136 7 First-Order Logic: Formulas, Models, Tableaux

7.2.3 A Formal Grammar for Formulas *

As with propositional logic (Sect. 2.1.6), formulas in first-order logic can be defined
as the strings generated by a context-free grammar.

Definition 7.15 The following grammar defines atomic formulas and formulas in
first-order logic:

argument ::= x for any x ∈ V

argument ::= a for any a ∈ A

argument_list ::= argument

argument_list ::= argument,argument_list

atomic_formula ::= p (argument_list) for any n-ary p ∈ P, n ≥ 1

formula ::= atomic_formula

formula ::= ¬ formula

formula ::= formula ∨ formula similarly for ∧, · · ·
formula ::= ∀ x formula for any x ∈ V

formula ::= ∃ x formula for any x ∈ V

An n-ary predicate p must have an argument list of length n.

7.3 Interpretations

In propositional logic, an interpretation is a mapping from atomic propositions to
truth values. In first-order logic, the analogous concept is a mapping from atomic
formulas to truth values. However, atomic formulas contain variables and constants
that must be assigned elements of some domain; once that is done, the predicates
are interpreted as relations over the domain.

Definition 7.16 Let A be a formula where {p1, . . . , pm} are all the predicates ap-
pearing in A and {a1, . . . , ak} are all the constants appearing in A. An interpretation
IA for A is a triple:

(D, {R1, . . . ,Rm}, {d1, . . . , dk}),
where D is a non-empty set called the domain, Ri is an ni -ary relation on D that is
assigned to the ni -ary predicate pi and di ∈ D is assigned to the constant ai .

Example 7.17 Here are three interpretations for the formula ∀xp(a, x):

I1 = (N , {≤}, {0}), I2 = (N , {≤}, {1}), I3 = (Z , {≤}, {0}).

7.3 Interpretations 137

The domain is either the N , the set of natural numbers, or Z , the set of integers.
The binary relation ≤ (less-than) is assigned to the binary predicate p and either 0
or 1 is assigned to the constant a.

The formula can also be interpreted over strings:

I4 = (S , {substr}, {""}).
The domain S is a set of strings, substr is the binary relation such that (s1, s2) ∈
substr iff s1 is a substring of s2, and "" is the null string.

A formula might have free variables and its truth value depends on the assign-
ment of domain elements to the variables. For example, it doesn’t make sense to ask
if the formula p(x, a) is true in the interpretation (N , {>}, {10}). If x is assigned
15 the truth value of the formula is T , while if x is assigned 6 the truth value of the
formula is F .

Definition 7.18 Let IA be an interpretation for a formula A. An assignment σIA
:

V �→ D is a function which maps every free variable v ∈ V to an element d ∈ D,
the domain of IA.

σIA
[xi ← di] is an assignment that is the same as σIA

except that xi is mapped
to di .

We can now define the truth value of a formula of first-order logic.

Definition 7.19 Let A be a formula, IA an interpretation and σIA
an assignment.

vσIA
(A), the truth value of A under IA and σIA

, is defined by induction on the
structure of A (where we have simplified the notation by writing vσ for vσIA

):

• Let A = pk(c1, . . . , cn) be an atomic formula where each ci is either a variable
xi or a constant ai . vσ (A) = T iff (d1, . . . , dn) ∈ Rk where Rk is the relation
assigned by IA to pk , and di is the domain element assigned to ci , either by IA

if ci is a constant or by σIA
if ci is a variable.

• vσ (¬A1) = T iff vσ (A1) = F .
• vσ (A1 ∨ A2) = T iff vσ (A1) = T or vσ (A2) = T ,

and similarly for the other Boolean operators.
• vσ (∀xA1) = T iff vσ [x←d](A1) = T for all d ∈ D.
• vσ (∃xA1) = T iff vσ [x←d](A1) = T for some d ∈ D.

7.3.1 Closed Formulas

We define satisfiability and validity only on closed formulas. The reason is both
convenience (not having to deal with assignments in addition to interpretations) and
simplicity (because we can use the closures of formulas).

138 7 First-Order Logic: Formulas, Models, Tableaux

Theorem 7.20 Let A be a closed formula and let IA be an interpretation for A.
Then vσIA

(A) does not depend on σIA
.

Proof Call a formula independent of σIA
if its value does not depend on σIA

. Let
A′ = ∀xA1(x) be a (not necessarily proper) subformula of A, where A′ is not con-
tained in the scope of any other quantifier. Then vσIA

(A′) = T iff vσIA
[x←d](A1)

for all d ∈ D. But x is the only free variable in A1, so A1 is independent of σIA

since what is assigned to x is replaced by the assignment [x ← d]. A similar results
holds for an existential formula ∃xA1(x).

The theorem can now be proved by induction on the depth of the quantifiers
and by structural induction, using the fact that a formula constructed using Boolean
operators on independent formulas is also independent.

By the theorem, if A is a closed formula we can use the notation vI (A) without
mentioning an assignment.

Example 7.21 Let us check the truth values of the formula A = ∀xp(a, x) under the
interpretations given in Example 7.17:

• vI1(A) = T : For all n ∈ N , 0 ≤ n.
• vI2(A) = F : It is not true that for all n ∈ N , 1 ≤ n. If n = 0 then 1 �≤ 0.
• vI3(A) = F : There is no smallest integer.
• vI4(A) = T : By definition, the null string is a substring of every string.

The proof of the following theorem is left as an exercise.

Theorem 7.22 Let A′ = A(x1, . . . , xn) be a (non-closed) formula with free vari-
ables x1, . . . , xn, and let I be an interpretation. Then:

• vσIA
(A′) = T for some assignment σIA

iff vI (∃x1 · · · ∃xnA
′) = T .

• vσIA
(A′) = T for all assignments σIA

iff vI (∀x1 · · · ∀xnA
′) = T .

7.3.2 Validity and Satisfiability

Definition 7.23 Let A be a closed formula of first-order logic.

• A is true in I or I is a model for A iff vI (A) = T . Notation: I |= A.
• A is valid if for all interpretations I , I |= A. Notation: |= A.
• A is satisfiable if for some interpretation I , I |= A.
• A is unsatisfiable if it is not satisfiable.
• A is falsifiable if it is not valid.

Example 7.24 The closed formula ∀xp(x) → p(a) is valid. If it were not, there
would be an interpretation I = (D, {R}, {d}) such that vI (∀xp(x)) = T and
vI (p(a)) = F . By Theorem 7.22, vσI (p(x)) = T for all assignments σI , in
particular for the assignment σ ′

I that assigns d to x. But p(a) is closed, so
vσ ′

I
(p(a)) = vI (p(a)) = F , a contradiction.

7.3 Interpretations 139

Let us now analyze the semantics of the formulas in Example 7.10.

Example 7.25

• ∀x∀y(p(x, y) → p(y, x))

The formula is satisfiable in an interpretation where p is assigned a symmetric
relation like =. It is not valid because the formula is falsified in an interpretation
that assigns to p a non-symmetric relation like <.

• ∀x∃yp(x, y)

The formula is satisfiable in an interpretation where p is assigned a relation that is
a total function, for example, (x, y) ∈ R iff y = x + 1 for x, y ∈ Z . The formula
is falsified if the domain is changed to the negative numbers because there is no
negative number y such that y = −1 + 1.

• ∃x∃y(p(x) ∧ ¬p(y))

This formula is satisfiable only in a domain with at least two elements.
• ∀xp(a, x)

This expresses the existence of an element with special properties. For example,
if p is interpreted by the relation ≤ on the domain N , then the formula is true for
a = 0. If we change the domain to Z the formula is false for the same assignment
of ≤ to p.

• ∀x(p(x) ∧ q(x)) ↔ (∀xp(x) ∧ ∀xq(x))

The formula is valid. We prove the forward direction and leave the converse as
an exercise. Let I = (D, {R1,R2}, { }) be an arbitrary interpretation. By Theo-
rem 7.22, vσI (p(x) ∧ q(x)) = T for all assignments σI , and by the inductive
definition of an interpretation, vσI (p(x)) = T and vσI (q(x)) = T for all assign-
ments σI . Again by Theorem 7.22, vI (∀xp(x)) = T and vI (∀xq(x)) = T , and
by the definition of an interpretation vI (∀xp(x) ∧ ∀xq(x)) = T .
Show that ∀ does not distribute over disjunction by constructing a falsifying in-
terpretation for ∀x(p(x) ∨ q(x)) ↔ (∀xp(x) ∨ ∀xq(x)).

• ∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x))

We leave it as an exercise to show that this is a valid formula, but its converse
(∀xp(x) → ∀xq(x)) → ∀x(p(x) → q(x)) is not.

7.3.3 An Interpretation for a Set of Formulas

In propositional logic, the concept of interpretation and the definition of properties
such as satisfiability can be extended to sets of formulas (Sect. 2.2.4). The same
holds for first-order logic.

Definition 7.26 Let U = {A1, . . .} be a set of formulas where {p1, . . . , pm} are all
the predicates appearing in all Ai ∈ S and {a1, . . . , ak} are all the constants appear-
ing in all Ai ∈ S. An interpretation IU for S is a triple:

(D, {R1, . . . ,Rm}, {d1, . . . , dk}),

140 7 First-Order Logic: Formulas, Models, Tableaux

where D is a non-empty set called the domain, Ri is an ni -ary relation on D that is
assigned to the ni -ary predicate pi and di ∈ D is an element of D that is assigned
to the constant ai .

Similarly, an assignment needs to assign elements of the domain to the free vari-
ables (if any) in all formulas in U . For simplicity, the following definition is given
only for closed formulas.

Definition 7.27 A set of closed formulas U = {A1, . . .} is (simultaneously) satis-
fiable iff there exists an interpretation IU such that vIU

(Ai) = T for all i. The
satisfying interpretation is a model of U . U is valid iff for every interpretation IU ,
vIU

(Ai) = T for all i.

The definitions of unsatisfiable and falsifiable are similar.

7.4 Logical Equivalence

Definition 7.28

• Let U = {A1,A2} be a pair of closed formulas. A1 is logically equivalent to A2
iff vIU

(A1) = vIU
(A2) for all interpretations IU . Notation: A1 ≡ A2.

• Let A be a closed formula and U a set of closed formulas. A is a logical conse-
quence of U iff for all interpretations IU∪{A}, vIU∪{A}(Ai) = T for all Ai ∈ U

implies vIU∪{A}(A) = T . Notation: U |= A.

As in propositional logic, the metamathematical concept A ≡ B is not the same
as the formula A ↔B in the logic, and similarly for logical consequence and impli-
cation. The relations between the concepts is given by the following theorem whose
proof is similar to the proofs of Theorems 2.29, 2.50.

Theorem 7.29 Let A, B be closed formulas and U = {A1, . . . ,An} be a set of
closed formulas. Then:

A ≡ B iff |= A ↔ B,

U |= A iff |= (A1 ∧ · · · ∧ An) → A.

7.4 Logical Equivalence 141

7.4.1 Logical Equivalences in First-Order Logic

Duality

The two quantifiers are duals:

|= ∀xA(x) ↔ ¬∃x¬A(x),

|= ∃xA(x) ↔ ¬∀x¬A(x).

In many presentations of first-order logic, ∀ is defined in the logic and ∃ is consid-
ered to be an abbreviation of ¬∀¬ .

Commutativity and Distributivity

Quantifiers of the same type commute:

|= ∀x∀yA(x, y) ↔ ∀y∀xA(x, y),

|= ∃x∃yA(x, y) ↔ ∃y∃xA(x, y),

but ∀ and ∃ commute only in one direction:

|= ∃x∀yA(x, y) → ∀y∃xA(x, y).

Universal quantifiers distribute over conjunction, and existential quantifiers dis-
tribute over disjunction:

|= ∃x(A(x) ∨ B(x)) ↔ ∃xA(x) ∨ ∃xB(x),

|= ∀x(A(x) ∧ B(x)) ↔ ∀xA(x) ∧ ∀xB(x),

but only one direction holds when distributing universal quantifiers over disjunction
and existential quantifiers over conjunction:

|= ∀xA(x) ∨ ∀xB(x) → ∀x(A(x) ∨ B(x)),

|= ∃x(A(x) ∧ B(x)) → ∃xA(x) ∧ ∃xB(x).

To see that the converse direction of the second formula is falsifiable, let D =
{d1, d2} be a domain with two elements and consider an interpretation such that:

v(A(d1)) = T , v(A(d2)) = F, v(B(d1)) = F, v(B(d2)) = T .

Then v(∃xA(x)∧∃xB(x)) = T but v(∃x(A(x)∧B(x))) = F . A similar counterex-
ample can be found for the first formula with the universal quantifiers and disjunc-
tion.

In the formulas with more than one quantifier, the scope rules ensure that each quantified
variable is distinct. You may wish to write the formulas in the equivalent form with distinct
variables names:

|= ∀x(A(x) ∧ B(x)) ↔ ∀yA(y) ∧ ∀zB(z).

142 7 First-Order Logic: Formulas, Models, Tableaux

Quantification Without the Free Variable in Its Scope

When quantifying over a disjunction or conjunction, if one subformula does not
contain the quantified variable as a free variable, then distribution may be freely
performed. If x is not free in B then:

|= ∃xA(x) ∨ B ↔ ∃x(A(x) ∨ B), |= ∀xA(x) ∨ B ↔ ∀x(A(x) ∨ B),

|= B ∨ ∃xA(x) ↔ ∃x(B ∨ A(x)), |= B ∨ ∀xA(x) ↔ ∀x(B ∨ A(x)),

|= ∃xA(x) ∧ B ↔ ∃x(A(x) ∧ B), |= ∀xA(x) ∧ B ↔ ∀x(A(x) ∧ B),

|= B ∧ ∃xA(x) ↔ ∃x(B ∧ A(x)), |= B ∧ ∀xA(x) ↔ ∀x(B ∧ A(x)).

Quantification over Implication and Equivalence

Distributing a quantifier over an equivalence or an implication is not trivial.
As with the other operators, if the quantified variable does not appear in one of

the subformulas there is no problem:

|= ∀x(A → B(x)) ↔ (A → ∀xB(x)),

|= ∀x(A(x) → B) ↔ (∃xA(x) → B).

Distribution of universal quantification over equivalence works in one direction:

|= ∀x(A(x) ↔ B(x)) → (∀xA(x) ↔ ∀xB(x)),

while for existential quantification, we have the formula:

|= ∀x(A(x) ↔ B(x)) → (∃xA(x) ↔ ∃xB(x)).

For distribution over an implication, the following formulas hold:

|= ∃x(A(x) → B(x)) ↔ (∀xA(x) → ∃xB(x)),

|= (∃xA(x) → ∀xB(x)) → ∀x(A(x) → B(x)),

|= ∀x(A(x) → B(x)) → (∃xA(x) → ∃xB(x)),

|= ∀x(A(x) → B(x)) → (∀xA(x) → ∃xB(x)).

To derive these formulas, replace the implication or equivalence by the equivalent
disjunction and conjunction and use the previous equivalences.

Example 7.30

∃x(A(x) → B(x)) ≡ ∃x(¬A(x) ∨ B(x))

≡ ∃x¬A(x) ∨ ∃xB(x)

≡ ¬∃x¬A(x) → ∃xB(x)

≡ ∀xA(x) → ∃xB(x).

7.5 Semantic Tableaux 143

The formulas for conjunction and disjunction can be proved directly using the
semantic definitions.

Example 7.31 Prove: |= ∀x(A(x) ∨ B(x)) → ∀xA(x) ∨ ∃xB(x).
Use logical equivalences of propositional logic (considering each atomic formula

as an atomic proposition) to transform the formula:

∀x(A(x) ∨ B(x)) → (∀xA(x) ∨ ∃xB(x)) ≡
∀x(A(x) ∨ B(x)) → (¬∀xA(x) → ∃xB(x)) ≡
¬∀xA(x) → (∀x(A(x) ∨ B(x)) → ∃xB(x)).

By duality of the quantifiers, we have:

∃x¬A(x) → (∀x(A(x) ∨ B(x)) → ∃xB(x))).

For the formula to be valid, it must be true under all interpretations. Clearly, if
vI (∃x¬A(x)) = F or vI (∀x(A(x) ∨ B(x))) = F , the formula is true, so we need
only show vI (∃xB(x)) = T for interpretations vI under which these subformulas
are true. By Theorem 7.22, for some assignment σ ′

I , vσ ′
I

(¬A(x)) = T and thus
vσ ′

I
(A(x)) = F . Using Theorem 7.22 again, vσI (A(x) ∨ B(x)) = T under all as-

signments, in particular under σ ′
I . By definition of an interpretation for disjunction,

vσ ′
I

(B(x)) = T , and using Theorem 7.22 yet again, vI (∃xB(x)) = T .

7.5 Semantic Tableaux

Before presenting the formal construction of semantic tableaux for first-order logic,
we informally construct several tableaux in order to demonstrate the difficulties that
must be dealt with and to motivate their solutions.

First, we need to clarify the concept of constant symbols. Recall from Defini-
tion 7.6 that formulas of first-order are constructed from countable sets of predicate,
variable and constant symbols, although a particular formula such as ∃xp(a, x) will
only use a finite subset of these symbols. To build semantic tableaux in first-order
logic, we will need to use the entire set of constant symbols A = {a0, a1, . . .}. If a
formula like ∃xp(a, x) contains a constant symbol, we assume that it is one of the
ai .

Definition 7.32 Let A be a quantified formula ∀xA1(x) or ∃xA1(x) and let a be
a constant symbol. An instantiation of A by a is the formula A1(a), where all free
occurrences of x are replaced by the constant a.

144 7 First-Order Logic: Formulas, Models, Tableaux

7.5.1 Examples for Semantic Tableaux

Instantiate Universal Formulas with all Constants

Example 7.33 Consider the valid formula:

A = ∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x)),

and let us build a semantic tableau for its negation. Applying the rule for the α-
formula ¬ (A1 → A2) twice, we get:

¬ (∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x)))

↓
∀x(p(x) → q(x)), ¬ (∀xp(x) → ∀xq(x))

↓
∀x(p(x) → q(x)), ∀xp(x), ¬∀xq(x)

↓
∀x(p(x) → q(x)), ∀xp(x), ∃¬xq(x)

where the last node is obtained by the duality of ∀ and ∃.
The third formula will be true in an interpretation only if there exists a domain

element c such that c ∈ Rq , where Rq is the relation assigned to the predicate q . Let
us use the first constant a1 to represent this element and instantiate the formula with
it:

∀x(p(x) → q(x)), ∀xp(x), ∃¬xq(x)

↓
∀x(p(x) → q(x)), ∀xp(x), ¬q(a1).

The first two formulas are universally quantified, so they can be true only if they
hold for every element of the domain of an interpretation. Since any interpretation
must include the domain element that is assigned to the constant a1, we instantiate
the universally quantified formulas with this constant:

∀x(p(x) → q(x)), ∀xp(x), ¬q(a1)

↓
∀x(p(x) → q(x)), p(a1), ¬q(a1)

↓
p(a1) → q(a1), p(a1), ¬q(a1).

Applying the rule to the β-formula p(a1) → q(a1) immediately gives a closed tab-
leau, which to be expected for the negation of the valid formula A.

From this example we learn that existentially quantified formulas must be in-
stantiated with a constant the represents the domain element that must exist. Once a
constant is introduced, instantiations of all universally quantified formulas must be
done for that constant.

7.5 Semantic Tableaux 145

¬ (∀x(p(x) ∨ q(x)) → (∀xp(x) ∨ ∀xq(x)))

↓
∀x(p(x) ∨ q(x)), ¬ (∀xp(x) ∨ ∀xq(x))

↓
∀x(p(x) ∨ q(x)), ¬∀xp(x), ¬∀xq(x)

↓
∀x(p(x) ∨ q(x)), ∃¬xp(x), ∃¬xq(x)

↓
∀x(p(x) ∨ q(x)), ∃¬xp(x), ¬q(a1)

↓
∀x(p(x) ∨ q(x)), ¬p(a1), ¬q(a1)

↓
p(a1) ∨ q(a1), ¬p(a1), ¬q(a1)

↙ ↘
p(a1), ¬p(a1), ¬q(a1) q(a1), ¬p(a1), ¬q(a1)

× ×
Fig. 7.3 Semantic tableau for the negation of a satisfiable, but not valid, formula

Don’t Use the Same Constant Twice to Instantiate Existential Formulas

Example 7.34 Figure 7.3 shows an attempt to construct a tableau for the negation
of the formula:

A = ∀x(p(x) ∨ q(x)) → (∀xp(x) ∨ ∀xq(x)),

which is satisfiable but not valid. As a falsifiable formula, its negation ¬A is satis-
fiable, but the tableau in the figure is closed. What went wrong?

The answer is that instantiation of ∃x¬p(x)) should not have used the constant
a1 once it had already been chosen for the instantiation of ∃¬xq(x). Choosing the
same constant means that the interpretation will assign the same domain element
to both occurrences of the constant. In fact, the formula A true (and ¬A is false)
in all interpretations over domains of a single element, but the formula might be
satisfiable in interpretations with larger domains.

To avoid unnecessary constraints on the domain of a possible interpretation, a
new constant must be chosen for every instantiation of an existentially quantified
formula:

∀x(p(x) ∨ q(x)), ∃¬xp(x), ∃¬xq(x)

↓
∀x(p(x) ∨ q(x)), ∃¬xp(x), ¬q(a1)

↓
∀x(p(x) ∨ q(x)), ¬p(a2), ¬q(a1).

Instantiating the universally quantified formula with a1 gives:

p(a1) ∨ q(a1), ¬p(a2), ¬q(a1).

146 7 First-Order Logic: Formulas, Models, Tableaux

Don’t Use Up Universal Formulas

Example 7.35 Continuing the tableau from the previous example:

∀x(p(x) ∨ q(x)), ¬p(a2), ¬q(a1)

↓
p(a1) ∨ q(a1), ¬p(a2), ¬q(a1)

we should now instantiate the universal formula ∀x(p(x) ∨ q(x)) again with a2,
since it must be true for all domain elements, but, unfortunately, the formula has
been used up by the tableau construction. To prevent this, universal formulas will
never be deleted from the label of a node. They remain in the labels of all descendant
nodes so as to constrain the possible interpretations of every new constant that is
introduced:

∀x(p(x) ∨ q(x)), ¬p(a2), ¬q(a1)

↓
∀x(p(x) ∨ q(x)), p(a1) ∨ q(a1), ¬p(a2), ¬q(a1)

↓
∀x(p(x) ∨ q(x)), p(a2) ∨ q(a2), p(a1) ∨ q(a1), ¬p(a2), ¬q(a1).

We leave it to the reader to continue the construction the tableau using the rule
for β-formulas. Exactly one branch of the tableau will be open. A model can be
defined by specifying a domain with two elements, say, 1 and 2. These elements
are assigned to the constants a1 and a2, respectively, and the relations Rp and Rq

assigned to p and q , respectively, hold for exactly one of the domain elements:

I = ({1,2}, {Rp = {1}, Rq = {2}}, {a1 = 1, a2 = 2}).
As expected, this model satisfies ¬A, so A is falsifiable.

A Branch May not Terminate

Example 7.36 Let us construct a semantic tableau to see if the formula A =
∀x∃yp(x, y) is satisfiable. Apparently, no rules apply since the formula is univer-
sally quantified and we only required that they had to be instantiated for constants al-
ready appearing in the formulas labeling a node. The constants are those that appear
in the original formula and those that were introduced by instantiating existentially
quantified formulas.

However, recall from Definition 7.16 that an interpretation is required to have a
non-empty domain; therefore, we can arbitrarily choose the constant a1 to represent
that element. The tableau construction begins by instantiating A and then instanti-
ating the existential formula with a new constant:

7.5 Semantic Tableaux 147

∀x∃yp(x, y)

↓
∀x∃yp(x, y), ∃yp(a1, y)

↓
∀x∃yp(x, y), p(a1, a2).

Since A = ∀x∃yp(x, y) is universally quantified, it is not used up.
The new constant a2 is used to instantiate the universal formula A again; this

results in an existential formula which must be instantiated with a new constant a3:

∀x∃yp(x, y), p(a1, a2)

↓
∀x∃yp(x, y), ∃yp(a2, y), p(a1, a2)

↓
∀x∃yp(x, y), p(a2, a3), p(a1, a2).

The construction of this semantic tableau will not terminate and an infinite branch
results. It is easy to see that there are models for A with infinite domains, for exam-
ple, (N , {<}, { }).

The method of semantic tableaux is not a decision procedure for satisfiability
in first-order logic, because we can never know if a branch that does not close de-
fines an infinite model or if it will eventually close, say, after one million further
applications of the tableau rules.

Example 7.36 is not very satisfactory because the formula ∀x∃yp(x, y) is sat-
isfiable in a finite model, in fact, even in a model whose domain contains a single
element. We were being on the safe side in always choosing new constants to in-
stantiate existentially quantified formulas. Nevertheless, it is easy to find formulas
that have no finite models, for example:

∀x∃yp(x, y) ∧ ∀x¬p(x, x) ∧ ∀x∀y∀z(p(x, y) ∧ p(y, z) → p(x, z)).

Check that (N , {<}, { }) is an infinite model for this formula; we leave it as an
exercise to show that the formula has no finite models.

An Open Branch with Universal Formulas May Terminate

Example 7.37 The first two steps of the tableau for {∀xp(a, x)} are:

{∀xp(a, x)}
↓

{p(a, a),∀xp(a, x)}
↓

{p(a, a),∀xp(a, x)}.
There is no point in creating the same node again and again, so we specify that
this branch is finite and open. Clearly, ({a}, {P = (a, a)}, {a}) is a model for the
formula.

148 7 First-Order Logic: Formulas, Models, Tableaux

∀x∃yp(x, y) ∧ ∀x(q(x) ∧ ¬q(x))

↓
∀x∃yp(x, y), ∀x(q(x) ∧ ¬q(x))

↓
∀x∃yp(x, y), ∃yp(a1, y), ∀x(q(x) ∧ ¬q(x))

↓
∀x∃yp(x, y), p(a1, a2), ∀x(q(x) ∧ ¬q(x))

↓
∀x∃yp(x, y), ∃yp(a2, y), p(a1, a2), ∀x(q(x) ∧ ¬q(x))

↓
∀x∃yp(x, y), p(a2, a3), p(a1, a2), ∀x(q(x) ∧ ¬q(x))

Fig. 7.4 A tableau that should close, but doesn’t

The Tableau Construction Must Be Systematic

Example 7.38 The tableau in Fig. 7.4 is for the formula which is the conjunction
of ∀x∃yp(x, y), which we already know to be satisfiable, together with the for-
mula ∀x(q(x) ∧ ¬q(x)), which is clearly unsatisfiable. However, the branch can
be continued indefinitely, because we are, in effect, choosing to apply rules only
to subformulas of ∀x∃yp(x, y), as we did in Example 7.36. This branch will never
close although the formula is unsatisfiable. A systematic construction is needed to
make sure that rules are eventually applied to all the formulas labeling a node.

7.5.2 The Algorithm for Semantic Tableaux

The following definition extends a familiar concept from propositional logic:

Definition 7.39 A literal is a closed atomic formula p(a1, . . . , ak), an atomic for-
mula all of whose arguments are constants, or the negation of a closed atomic for-
mula ¬p(a1, . . . , ak). If A is p(a1, . . . , ak) then Ac = ¬p(a1, . . . , ak), while if A

is ¬p(a1, . . . , ak) then Ac = p(a1, . . . , ak).

The classification of formulas in propositional logic as α and β formulas
(Sect. 2.6.2) is retained and we extend the classification to formulas with quan-
tifiers. γ -formulas are universally quantified formulas ∀xA(x) and the negations
of existentially quantified formulas ¬∃xA(x), while δ-formulas are existentially
quantified formulas ∃xA(x) and the negations of universally quantified formulas
¬∀xA(x). The rules for these formulas are simply instantiation with a constant:

γ γ (a)

∀xA(x) A(a)

¬∃xA(x) ¬A(a)

δ δ(a)

∃xA(x) A(a)

¬∀xA(x) ¬A(a)

7.5 Semantic Tableaux 149

The algorithm for the construction of a semantic tableau in first-order logic is
similar to that for propositional logic with the addition of rules for quantified for-
mulas, together with various constraints designed to avoid the problems were saw
in the examples.

Algorithm 7.40 (Construction of a semantic tableau)
Input: A formula φ of first-order logic.
Output: A semantic tableau T for φ: each branch may be infinite, finite and marked
open, or finite and marked closed.

A semantic tableau is a tree T where each node is labeled by a pair W(n) =
(U(n),C(n)), where:

U(n) = {An1, . . . ,Ank
}

is a set of formulas and:

C(n) = {cn1, . . . , cnm}
is a set of constants. C(n) contains the list of constants that appear in the formulas
in U(n). Of course, the sets C(n) could be created on-the-fly from U(n), but the
algorithm in easier to understand if they explicitly label the nodes.

Initially, T consists of a single node n0, the root, labeled with

({φ}, {a01 , . . . , a0k
}),

where {a01, . . . , a0k
} is the set of constants that appear in φ. If φ has no constants,

take the first constant a0 in the set A and label the node with ({φ}, {a0}).
The tableau is built inductively by repeatedly choosing an unmarked leaf l la-

beled with W(l) = (U(l),C(l)), and applying the first applicable rule in the follow-
ing list:

• If U(l) contains a complementary pair of literals, mark the leaf closed ×.
• If U(l) is not a set of literals, choose a formula A in U(l) that is an α-, β- or

δ-formula.
– If A is an α-formula, create a new node l′ as a child of l. Label l′ with:

W(l′) = ((U(l) − {A}) ∪ {α1, α2}, C(l)).

(In the case that A is ¬¬A1, there is no α2.)
– If A is a β-formula, create two new nodes l′ and l′′ as children of l. Label l′

and l′′ with:

W(l′) = ((U(l) − {A}) ∪ {β1}, C(l)),

W(l′′) = ((U(l) − {A}) ∪ {β2}, C(l)).

– If A is a δ-formula, create a new node l′ as a child of l and label l′ with:

W(l′) = ((U(l) − {A}) ∪ {δ(a′)}, C(l) ∪ {a′}),
where a′ is some constant that does not appear in U(l).

150 7 First-Order Logic: Formulas, Models, Tableaux

• Let {γl1, . . . , γlm} ⊆ U(l) be all the γ -formulas in U(l) and let C(l) = {cl1, . . . , clk }.
Create a new node l′ as a child of l and label l′ with

W(l′) =
(

U(l) ∪
{

m⋃
i=1

k⋃
j=1

γli (clj)

}
, C(l)

)
.

However, if U(l) consists only of literals and γ -formulas and if U(l′) as con-
structed would be the same as U(l), do not create node l′; instead, mark the leaf
l as open �.

Compare the algorithm with the examples in Sect. 7.5.1. The phrase first appli-
cable rule ensures that the construction is systematic. For δ-formulas, we added the
condition that a new constant be used in the instantiation. For γ -formulas, the for-
mula to which the rule is applied is not removed from the set U(l) when W(l′) is
created. The sentence beginning however in the rule for γ -formulas is intended to
take care of the case where no new formulas are produced by the application of the
rule.

Definition 7.41 A branch in a tableau is closed iff it terminates in a leaf marked
closed; otherwise (it is infinite or it terminates in a leaf marked open), the branch is
open.

A tableau is closed if all of its branches are closed; otherwise (it has a finite or
infinite open branch), the tableau is open.

Algorithm 7.40 is not a search procedure for a satisfying interpretation, because
it may choose to infinitely expand one branch. Semantic tableaux in first-order logic
can only be used to prove the validity of a formula by showing that a tableau for its
negation closes. Since all branches close in a closed tableau, the nondeterminism in
the application of the rules (choosing a leaf and choosing an α-, β- or γ -formula)
doesn’t matter.

7.6 Soundness and Completion of Semantic Tableaux

7.6.1 Soundness

The proof of the soundness of the algorithm for constructing semantic tableaux in
first-order logic is a straightforward generalization of the one for propositional logic
(Sect. 2.7.2).

Theorem 7.42 (Soundness) Let φ be a formula in first-order logic and let T be a
tableau for φ. If T closes, then φ is unsatisfiable.

Proof The theorem is a special case of the following statement: if a subtree rooted
at a node n of T closes, the set of formulas U(n) is unsatisfiable.

7.6 Soundness and Completion of Semantic Tableaux 151

The proof is by induction on the height h of n. The proofs of the base case
for h = 0 and the inductive cases 1 and 2 for α- and β-rules are the same as in
propositional logic (Sect. 2.6).

Case 3: The γ -rule was used. Then:

U(n) = U0 ∪ {∀xA(x)} and U(n′) = U0 ∪ {∀xA(x), A(a)},
for some set of formulas U0, where we have simplified the notation and explic-
itly considered only one formula.
The inductive hypothesis is that U(n′) is unsatisfiable and we want to prove
that U(n) is also unsatisfiable. Assume to the contrary that U(n) is satisfi-
able and let I be a model for U(n). Then vI (Ai) = T for all Ai ∈ U0 and
also vI (∀xA(x)) = T . But U(n′) = U(n) ∪ {A(a)}, so if we can show that
vI (A(a)) = T , this will contradict the inductive hypothesis that U(n′) is unsat-
isfiable.
Now vI (∀xA(x)) = T iff vσI (A(x)) = T for all assignments σI , in particular
for any assignment that assigns the same domain element to x that I does to a,
so vI (A(a)) = T . By the tableau construction, a ∈ C(n) and it appears in some
formula of U(n); therefore, I , a model of U(n), does, in fact, assign a domain
element to a.

Case 4: The δ-rule was used. Then:

U(n) = U0 ∪ {∃xA(x)} and U(n′) = U0 ∪ {A(a)},
for some set of formulas U0 and for some constant a that does not occur in any
formula of U(n).
The inductive hypothesis is that U(n′) is unsatisfiable and we want to prove that
U(n) is also unsatisfiable. Assume to the contrary that U(n) is satisfiable and
let:

I = (D, {R1, . . . ,Rn}, {d1, . . . , dk})
be a model for U(n).
Now vI (∃xA(x)) = T iff vσI (A(x)) = T for some assignment σI , that is,
σI (x) = d for some d ∈ D. Extend I to the interpretation:

I ′ = (D, {R1, . . . ,Rn}, {d1, . . . , dk, d})
by assigning d to the constant a. I ′ is well-defined: since a does not occur in
U(n), it is not among the constants {a1, . . . , ak} already assigned {d1, . . . , dk}
in I . Since vI ′(U0) = vI (U0) = T , vI ′(A(a)) = T contradicts the inductive
hypothesis that U(n′) is unsatisfiable.

7.6.2 Completeness

To prove the completeness of the algorithm for semantic tableaux we define a Hin-
tikka set, show that a (possibly infinite) branch in a tableau is a Hintikka set and

152 7 First-Order Logic: Formulas, Models, Tableaux

then prove Hintikka’s Lemma that a Hintikka set can be extended to a model. We
begin with a technical lemma whose proof is left as an exercise.

Lemma 7.43 Let b be an open branch of a semantic tableau, n a node on b, and
A a formula in U(n). Then some rule is applied to A at node n or at a node m that
is a descendant of n on b. Furthermore, if A is a γ -formula and a ∈ C(n), then
γ (a) ∈ U(m′), where m′ is the child node created from m by applying a rule.

Definition 7.44 Let U be a set of closed formulas in first-order logic. U is a Hin-
tikka set iff the following conditions hold for all formulas A ∈ U :

1. If A is a literal, then either A �∈ U or Ac �∈ U .
2. If A is an α-formula, then α1 ∈ U and α2 ∈ U .
3. If A is a β-formula, then β1 ∈ U or β2 ∈ U .
4. If A is a γ -formula, then γ (c) ∈ U for all constants c in formulas in U .
5. If A is a δ-formula, then δ(c) ∈ U for some constant c.

Theorem 7.45 Let b be a (finite or infinite) open branch of a semantic tableau and
let U = ⋃

n∈b U(n). Then U is a Hintikka set.

Proof Let A ∈ U . We show that the conditions for a Hintikka set hold.
Suppose that A is a literal. By the construction of the tableau, once a literal

appears in a branch, it is never deleted. Therefore, if A appears in a node n and Ac

appears in a node m which is a descendant of n, then A must also appear in m. By
assumption, b is open, so either A �∈ U or Ac �∈ U and condition 1 holds.

If A is not atomic and not a γ -formula, by Lemma 7.43 eventually a rule is
applied to A, and conditions 2, 3 and 5 hold.

Let A be a γ -formula that first appears in U(n), let c be a constant that first
appears in C(m) and let k = max(n,m). By the construction of the tableau, the
set of γ -formulas and the set of constants are non-decreasing along a branch, so
A ∈ U(k) and c ∈ C(k). By Lemma 7.43, γ (c) ∈ U(k′) ⊆ U , for some k′ > k.

Theorem 7.46 (Hintikka’s Lemma) Let U be a Hintikka set. Then there is a (finite
or infinite) model for U .

Proof Let C = {c1, c2, . . .} be the set of constants in formulas of U . Define an inter-
pretation I as follows. The domain is the same set of symbols {c1, c2, . . .}. Assign
to each constant ci in U the symbol ci in the domain. For each n-ary predicate pi in
U , define an n-ary relation Ri by:

(ai1, . . . , ain) ∈ Ri if p(ai1, . . . , ain) ∈ U,

(ai1, . . . , ain) �∈ Ri if ¬p(ai1, . . . , ain) ∈ U,

(ai1, . . . , ain) ∈ Ri otherwise.

The relations are well-defined by condition 1 in the definition of Hintikka sets. We
leave as an exercise to show that I |= A for all A ∈ U by induction on the structure
of A using the conditions defining a Hintikka set.

7.7 Summary 153

Theorem 7.47 (Completeness) Let A be a valid formula. Then the semantic tableau
for ¬A closes.

Proof Let A be a valid formula and suppose that the semantic tableau for ¬A does
not close. By Definition 7.41, the tableau must contain a (finite or infinite) open
branch b. By Theorem 7.45, U = ⋃

n∈b U(n) is a Hintikka set and by Theorem 7.46,
there is a model I for U . But ¬A ∈ U so I |= ¬A contradicting the assumption
that A is valid.

7.7 Summary

First-order logic adds variables and constants to propositional logic, together with
the quantifiers ∀ (for all) and ∃ (there exists). An interpretation includes a domain;
the predicates are interpreted as relations over elements of the domain, while con-
stants are interpreted as domain elements and variables in non-closed formulas are
assigned domain elements.

The method of semantic tableaux is sound and complete for showing that a
formula is unsatisfiable, but it is not a decision procedure for satisfiability, since
branches of a tableau may be infinite. When a tableau is constructed, a universal
quantifier followed by an existential quantifier can result in an infinite branch: the
existential formula is instantiated with a new constant and then the instantiation of
the universal formula results in a new occurrence of the existentially quantified for-
mula, and so on indefinitely. There are formulas that are satisfiable only in an infinite
domain.

7.8 Further Reading

The presentation of semantic tableaux follows that of Smullyan (1968) although he
uses analytic tableaux. Advanced textbooks that also use tableaux are Nerode and
Shore (1997) and Fitting (1996).

7.9 Exercises

7.1 Find an interpretation which falsifies ∃xp(x) → p(a).

7.2 Prove the statements left as exercises in Example 7.25:

• ∀xp(x) ∧ ∀xq(x) → ∀x(p(x) ∧ q(x)) is valid.
• ∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x)) is a valid formula, but its converse

(∀xp(x) → ∀xq(x)) → ∀x(p(x) → q(x)) is not.

154 7 First-Order Logic: Formulas, Models, Tableaux

7.3 Prove that the following formulas are valid:

∃x(A(x) → B(x)) ↔ (∀xA(x) → ∃xB(x)),

(∃xA(x) → ∀xB(x)) → ∀x(A(x) → B(x)),

∀x(A(x) ∨ B(x)) → (∀xA(x) ∨ ∃xB(x)),

∀x(A(x) → B(x)) → (∃xA(x) → ∃xB(x)).

7.4 For each formula in the previous exercise that is an implication, prove that the
converse is not valid by giving a falsifying interpretation.

7.5 For each of the following formulas, either prove that it is valid or give a falsify-
ing interpretation.

∃x∀y((p(x, y) ∧ ¬p(y, x)) → (p(x, x) ↔ p(y, y))),

∀x∀y∀z(p(x, x) ∧ (p(x, z) → (p(x, y) ∨ p(y, z)))) → ∃y∀zp(y, z).

7.6 Suppose that we allowed the domain of an interpretation to be empty. What
would this mean for the equivalence:

∀yp(y, y) ∨ ∃xq(x, x) ≡ ∃x(∀yp(y, y) ∨ q(x, x)).

7.7 Prove Theorem 7.22 on the relationship between a non-closed formula and its
closure.

7.8 Complete the semantic tableau construction for the negation of

∀x(p(x) ∨ q(x)) → (∀xp(x) ∨ ∀xq(x)).

7.9 Prove that the formula (∀xp(x)→∀xq(x))→∀x(p(x)→ q(x)) is not valid by
constructing a semantic tableau for its negation.

7.10 Prove that the following formula has no finite models:

∀x∃yp(x, y) ∧ ∀x¬p(x, x) ∧ ∀x∀y∀z(p(x, y) ∧ p(y, z) → p(x, z)).

7.11 Prove Lemma 7.43, the technical lemma used in the proof of the completeness
of the method of semantic tableaux.

7.12 Complete the proof of Lemma 7.46 that every Hintikka set has a model.

References

M. Fitting. First-Order Logic and Automated Theorem Proving (Second Edition). Springer, 1996.
A. Nerode and R.A. Shore. Logic for Applications (Second Edition). Springer, 1997.
R.M. Smullyan. First-Order Logic. Springer-Verlag, 1968. Reprinted by Dover, 1995.

	Chapter 7: First-Order Logic: Formulas, Models, Tableaux
	7.1 Relations and Predicates
	7.2 Formulas in First-Order Logic
	7.2.1 Syntax
	7.2.2 The Scope of Variables
	7.2.3 A Formal Grammar for Formulas *

	7.3 Interpretations
	7.3.1 Closed Formulas
	7.3.2 Validity and Satisfiability
	7.3.3 An Interpretation for a Set of Formulas

	7.4 Logical Equivalence
	7.4.1 Logical Equivalences in First-Order Logic
	Duality
	Commutativity and Distributivity
	Quantification Without the Free Variable in Its Scope
	Quantification over Implication and Equivalence

	7.5 Semantic Tableaux
	7.5.1 Examples for Semantic Tableaux
	7.5.2 The Algorithm for Semantic Tableaux

	7.6 Soundness and Completion of Semantic Tableaux
	7.6.1 Soundness
	7.6.2 Completeness

	7.7 Summary
	7.8 Further Reading
	7.9 Exercises
	References

