
Chapter 5
Propositional Logic: Binary Decision Diagrams

The problem of deciding the satisfiability of a formula in propositional logic has
turned out to have many important applications in computer science. This chapter
and the next one present two widely used approaches for computing with formulas
in propositional logic.

A binary decision diagram (BDD) is a data structure for representing the seman-
tics of a formula in propositional logic. A formula is represented by a directed graph
and an algorithm is used to reduce the graph. Reduced graphs have the property that
the graphs for logically equivalent formulas are identical. Clearly, this gives a deci-
sion procedure for logical equivalence: transform A1 and A2 into BDDs and check
that they are identical. A formula is valid iff its BDD is identical to the trivial BDD
for true and a formula is satisfiable iff its BDD is not identical to the trivial BDD
for false.

Before defining BDDs formally, the next section motivates the concept by reduc-
ing truth tables for formulas.

5.1 Motivation Through Truth Tables

Suppose that we want to decide if two formulas A1 and A2 in propositional logic
are logically equivalent. Let us construct systematic truth tables, where systematic
means that the assignments to the atomic propositions are arranged in some consis-
tent order, for example, in lexicographic order by placing T before F and varying
the values assigned to the atoms from the right to the left. Now, all we have to do
is to check if the truth tables for A1 and A2 are identical. Of course, this is very
inefficient, because 2n rows are needed for each formula with n variables. Can we
do better?

M. Ben-Ari, Mathematical Logic for Computer Science,
DOI 10.1007/978-1-4471-4129-7_5, © Springer-Verlag London 2012

95

http://dx.doi.org/10.1007/978-1-4471-4129-7_5

96 5 Propositional Logic: Binary Decision Diagrams

Consider the following truth table for p ∨ (q ∧ r), where we have numbered the
rows for convenience in referring to them:

p q r p ∨ (q ∧ r)

1 T T T T

2 T T F T

3 T F T T

4 T F F T

5 F T T T

6 F T F F

7 F F T F

8 F F F F

From rows 1 and 2, we see that when p and q are assigned T , the formula evaluates
to T regardless of the value of r , and similarly for rows 3 and 4. The first four rows
can therefore be condensed into two rows:

p q r p ∨ (q ∧ r)

1 T T ∗ T

2 T F ∗ T

where ∗ indicates that the value assigned to r is immaterial. We now see that the
value assigned to q is immaterial, so these two rows collapse into one:

p q r p ∨ (q ∧ r)

1 T ∗ ∗ T

After similarly collapsing rows 7 and 8, the truth table has four rows:

p q r p ∨ (q ∧ r)

1 T ∗ ∗ T

2 F T T T

3 F T F F

4 F F ∗ F

5.2 Definition of Binary Decision Diagrams 97

Let us try another example, this time for the formula p ⊕ q ⊕ r . It is easy to
compute the truth table for a formula whose only operator is ⊕, since a row evaluates
to T if and only if an odd number of atoms are assigned T :

p q r p ⊕ q ⊕ r

1 T T T T

2 T T F F

3 T F T F

4 T F F T

5 F T T F

6 F T F T

7 F F T T

8 F F F F

Here, adjacent rows cannot be collapsed, but careful examination reveals that rows
5 and 6 show the same dependence on r as do rows 3 and 4. Rows 7 and 8 are
similarly related to rows 1 and 2. Instead of explicitly writing the truth table entries
for these rows, we can simply refer to the previous entries:

p q r p ⊕ q ⊕ r

1 T T T T

2 T T F F

3 T F T F

4 T F F T

5, 6 F T ∗ (See rows 3 and 4.)

7, 8 F F ∗ (See rows 1 and 2.)

The size of the table has been reduced by removing repetitions of computations of
truth values.

5.2 Definition of Binary Decision Diagrams

A binary decision diagram, like a truth table, is a representation of the value of a
formula under all possible interpretations. Each node of the tree is labeled with an
atom, and solid and dotted edges leaving the node represent the assignment of T

and F , respectively, to this atom. Along each branch, there is an edge for every
atom in the formula, so there is a one-to-one correspondence between branches and
interpretations. The leaf of a branch is labeled with the value of the formula under
its interpretation.

98 5 Propositional Logic: Binary Decision Diagrams

Fig. 5.1 A binary decision diagram for p ∨ (q ∧ r)

Definition 5.1 A binary decision diagram (BDD) for a formula A in propositional
logic is a directed acyclic graph. Each leaf is labeled with a truth value T or F .
Each interior node is labeled with an atom and has two outgoing edges: one, the
false edge, is denoted by a dotted line, while the other, the true edge, is denoted by
a solid line. No atom appears more than once in a branch from the root to an edge.

A full or partial interpretation Ib for A is associated with each branch b from
the root to a leaf. Ib(p) = T if the true edge was taken at the node labeled p and
Ib(p) = F if the false edge was taken at the node labeled p.

Given a branch b and its associated interpretation Ib , the leaf is labeled with
vIb

(A), the truth value of the formula under Ib. If the interpretation is partial, it
must assign to enough atoms so that the truth value is defined.

Example 5.2 Figure 5.1 is a BDD for A = p∨ (q ∧ r). The interpretation associated
with the branch that goes left, right, left is

I (p) = F, I (q) = T , I (r) = F.

The leaf is labeled F so we can conclude that for this interpretation, vI (A) = F .
Check that the value of the formula for the interpretation associated with each
branch is the same as that given in the first truth table on page 96.

The BDD in the figure is a special case, where the directed acyclic graph is a tree
and a full interpretation is associated with each branch.

5.3 Reduced Binary Decision Diagrams

We can modify the structure of a tree such as the one in Fig. 5.1 to obtain a more
concise representation without losing the ability to evaluate the formula under all
interpretations. The modifications are called reductions and they transform the tree
into a directed acyclic graph, where the direction of an edge is implicitly from a
node to its child. When no more reductions can be done, the BDD is reduced.

5.3 Reduced Binary Decision Diagrams 99

Algorithm 5.3 (Reduce)
Input: A binary decision diagram bdd.
Output: A reduced binary decision diagram bdd ′.
• If bdd has more than two distinct leaves (one labeled T and one labeled F),

remove duplicate leaves. Direct all edges that pointed to leaves to the remaining
two leaves.

• Perform the following steps as long as possible:

1. If both outgoing edges of a node labeled pi point to the same node labeled pj ,
delete this node for pi and direct pi ’s incoming edges to pj .

2. If two nodes labeled pi are the roots of identical sub-BDDs, delete one sub-
BDD and direct its incoming edges to the other node.

Definition 5.4 A BDD that results from applying the algorithm Reduce is a reduced
binary decision diagram.

See Bryant (1986) or Baier and Katoen (2008, Sect. 6.7.3) for a proof of the
following theorem:

Theorem 5.5 The reduced BDD bdd ′ returned by the algorithm Reduce is logically
equivalent to the input BDD bdd.

Let us apply the algorithm Reduce to the two formulas used as motivating ex-
amples in Sect. 5.1.

Example 5.6 Figure 5.1 shows a non-reduced BDD for A = p ∨ (q ∧ r).
First, merge all leaves into just two, one for T and one for F :

Now we apply Step (1) of the algorithm repeatedly in order to remove nodes that
are not needed to evaluate the formula. Once on the left-hand side of the diagram
and twice on the right-hand side, the node for r has both outgoing edges leading
to the same node. This means that the partial assignment to p and q is sufficient to
determine the value of the formula. The three nodes labeled r and their outgoing
edges can be deleted and the incoming edges to the r nodes are directed to the joint
target nodes:

100 5 Propositional Logic: Binary Decision Diagrams

Step (1) can now be applied again to delete the right-hand node for q:

Since neither Step (1) nor Step (2) can be applied, the BDD is reduced.
There are four branches in the reduced BDD for p ∨ (q ∧ r). The interpretations

associated with the branches are (from left to right):

Ib1(p) = F, Ib1(q) = F,

Ib2(p) = F, Ib2(q) = T , Ib2(r) = F,

Ib3(p) = F, Ib3(q) = T , Ib3(r) = T ,

Ib4(p) = T .

The interpretations Ib1 and Ib4 are partial interpretations, but they assign truth
values to enough atoms for the truth values of the formula to be computed.

5.3 Reduced Binary Decision Diagrams 101

Example 5.7 Consider now the formula A′ = p ⊕ q ⊕ r . We start with a tree that
defines full interpretations for the formula and delete duplicate leaves. Here is the
BDD that results:

The reduction of Step (1) is not applicable, but examination of the BDD reveals
that the subgraphs rooted at the left and right outermost nodes for r have the same
structure: their F and T edges point to the same subgraphs, in this case the leaves
F and T , respectively. Applying Step (2), the T edge from the rightmost node

for q can be directed to the leftmost node for r :

Similarly, the two innermost nodes for r are the roots of identical subgraphs and
the F from the rightmost node for q can be directed to the second r node from the
left:

102 5 Propositional Logic: Binary Decision Diagrams

Neither Step (1) nor Step (2) can be applied so the BDD is reduced. By rearrang-
ing the nodes, the following symmetric representation of the BDD is obtained:

Check that the truth values of A′ under the interpretations associated with each
branch correspond to those in the reduced truth table on page 97.

5.4 Ordered Binary Decision Diagrams

The definition of BDDs did not place any requirements on the order in which atoms
appear on a branch from the root to the leaves. Since branches can represent partial
interpretations, the set of atoms appearing on one branch can be different from the
set on another branch. Algorithms on BDDs require that the different orderings do
not contradict each other.

Definition 5.8 Let O = {O1
A, . . . ,On

A}, where for each i, O i
A is a sequence of the

elements of PA (the set of atoms in A) defined by <i
PA

, a total relation that orders
PA. O is a compatible set of orderings for PA iff for all i �= j , there are no atoms
p,p′ such that p <i

PA
p′ in O i

A while p′ <j

PA
p in O

j
A.

Example 5.9 Here is a BDD that is the same as the one in Fig. 5.1, except that the
orderings are not compatible because q appears before r on the left branches, while
r appears before q on the right branches:

5.4 Ordered Binary Decision Diagrams 103

Example 5.10 Consider again the reduced BDD for p ∨ (q ∧ r):

The four branches define three distinct orderings of the atoms:

{(p, q), (p, q, r), (p)},

but the orderings are compatible.

Definition 5.11 An ordered binary decision diagram (OBDD) is a BDD such that
the set of orderings of atoms defined by the branches is compatible.

The proofs of the following theorems can be found in Bryant (1986).

Theorem 5.12 The algorithm Reduce constructs an OBDD if the original BDD is
ordered. For a given ordering of atoms, the reduced OBDDs for logically equivalent
formulas are structurally identical.

The theorem means that a reduced, ordered BDD is a canonical representation
of a formula. It immediately provides a set of algorithms for deciding properties of
formulas. Let A and B be formulas in propositional logic; construct reduced OBDDs
for both formulas using a compatible ordering of {PA,PB}. Then:

• A is satisfiable iff T appears in its reduced OBDD.

• A is falsifiable iff F appears in its reduced OBDD.

• A is valid iff its reduced OBDD is the single node T .

• A is unsatisfiable iff its reduced OBDD is the single node F .
• If the reduced OBDDs for A and B are identical, then A ≡ B .

The usefulness of OBDDs depends of course on the efficiency of the algorithm
Reduce (and others that we will describe), which in turn depends on the size of
reduced OBDDs. In many cases the size is quite small, but, unfortunately, the size
of the reduced OBDD for a formula depends on the ordering and the difference in
sizes among different orderings can be substantial.

104 5 Propositional Logic: Binary Decision Diagrams

Theorem 5.13 The OBDD for the formula:

(p1 ∧ p2) ∨ · · · ∨ (p2n−1 ∧ p2n)

has 2n + 2 nodes under the ordering p1, . . . , p2n, and 2n+1 nodes under the order-
ing p1,pn+1,p2,pn+2, . . . , pn,p2n.

Fortunately, you can generally use heuristics to choose an efficient ordering, but
there are formulas that have large reduced OBDDs under any ordering.

Theorem 5.14 There is a formula A with n atoms such that the reduced OBDD for
any ordering of the atoms has at least 2cn nodes for some c > 0.

5.5 Applying Operators to BDDs

It hardly seems worthwhile to create a BDD if we start from the full binary tree
whose size is about the same as the size of the truth table. The power of BDDs
comes from the ability to perform operations directly on two reduced BDDs. The
algorithm Apply recursively constructs the BDD for A1 opA2 from the reduced
BDDs for A1 and A2. It can also be used to construct an initial BDD for an arbitrary
formula by building it up from the BDDs for atoms.

The algorithm Apply works only on ordered BDDs.

Algorithm 5.15 (Apply)
Input: OBDDs bdd1 for formula A1 and bdd2 for formula A2, using a compatible
ordering of {PA1 ,PA2}; an operator op.
Output: An OBDD for the formula A1 op A2.

• If bdd1 and bdd2 are both leaves labeled w1 and w2, respectively, return the leaf
labeled by w1 op w2.

• If the roots of bdd1 and bdd2 are labeled by the same atom p, return the following
BDD: (a) the root is labeled by p; (b) the left sub-BDD is obtained by recursively
performing this algorithm on the left sub-BDDs of bdd1 and bdd2; (c) the right
sub-BDD is obtained by recursively performing this algorithm on the right sub-
BDDs of bdd1 and bdd2.

• If the root of bdd1 is labeled p1 and the root of bdd2 is labeled p2 such that
p1 < p2 in the ordering, return the following BDD: (a) the root is labeled by p1;
(b) the left sub-BDD is obtained by recursively performing this algorithm on the
left sub-BDD of bdd1 and on (the entire BDD) bdd2; (c) the right sub-BDD is
obtained by recursively performing this algorithm on the right sub-BDD of bdd1
and on (the entire BDD) bdd2.
This construction is also performed if bdd2 is a leaf, but bdd1 is not.

• Otherwise, we have a symmetrical case to the previous one. The BDD returned
has its root labeled by p2 and its left (respectively, right) sub-BDD obtained by
recursively performing this algorithm on bdd1 and on the left (respectively, right)
sub-BDD of bdd2.

5.5 Applying Operators to BDDs 105

We now work out a complete example of the application of the Apply algorithm.
It is quite lengthy, but each step in the recursive algorithm should not be difficult to
follow.

Example 5.16 We construct the BDD for the formula (p ⊕ q) ⊕ (p ⊕ r) from the
BDDs for p ⊕ q and p ⊕ r . In the following diagram, we have drawn the two BDDs
with the operator ⊕ between them:

The sub-BDDs will be BDDs for the four subformulas obtained by substituting T

and F for p. Notations such as F ⊕ r will be used to denote the formula obtained
by partially evaluating a formula, in this case, partially evaluating p ⊕ r under an
interpretation such that I (p) = F .

Since there is only one atom in each sub-BDD, we know what the labels of their
roots are:

Let us now take the right-hand branch in both BDDs that represent assigning
T to p. Evaluating the partial assignment gives T ⊕ q ≡ ¬q and T ⊕ r ≡ ¬ r . To
obtain the right-hand sub-BDD of the result, we have to compute ¬q ⊕ ¬ r :

106 5 Propositional Logic: Binary Decision Diagrams

The recursion can be continued by taking the right-hand branch of the BDD for
¬q and assigning F to q . Since the BDD for ¬ r does not depend on the assignment
to q , it does not split into two recursive subcases. Instead, the algorithm must be ap-
plied for each sub-BDD of ¬q together with the entire BDD for ¬ r . The following
diagram shows the computation that is done when the right-hand branch of the BDD
for ¬q is taken:

Recursing now on the BDD for ¬ r also gives base cases, one for the left-hand (true)
branch:

and one for the right-hand (false) branch:

When returning from the recursion, these two results are combined:

Similarly, taking the left-hand branch of the BDD for ¬q gives:

5.6 Restriction and Quantification * 107

Fig. 5.2 BDD after the Apply and Reduce algorithms terminate

Returning from the recursion to the BDD for ¬q gives:

The BDD obtained upon termination of the algorithm is shown in Fig. 5.2 and
to its right is the BDD that results from reducing the BDD. Check that this is the
reduced BDD for q ⊕ r :

(p ⊕ q) ⊕ (p ⊕ r) ≡ (p ⊕ p) ⊕ (q ⊕ r) ≡ false ⊕ (q ⊕ r) ≡ q ⊕ r.

5.6 Restriction and Quantification *

This section presents additional important algorithms on BDDs.

5.6.1 Restriction

Definition 5.17 The restriction operation takes a formula A, an atom p and a truth
value w = T or w = F . It returns the formula obtained by substituting w for p and
partially evaluating A. Notation: A|p=w .

108 5 Propositional Logic: Binary Decision Diagrams

Example 5.18 Let A = p ∨ (q ∧ r); its restrictions are:

A|r=T ≡ p ∨ (q ∧ T) ≡ p ∨ q,

A|r=F ≡ p ∨ (q ∧ F) ≡ p ∨ F ≡ p.

The correctness of the algorithm Reduce is based upon the following theorem
which expresses the application of an operator in terms of its application to restric-
tions. We leave its proof as an exercise.

Theorem 5.19 (Shannon expansion)

A1 op A2 ≡ (p ∧ (A1|p=T op A2|p=T)) ∨ (¬p ∧ (A1|p=F op A2|p=F)).

Restriction is very easy to implement on OBDDs.

Algorithm 5.20 (Restrict)
Input: An OBDD bdd for a formula A; a truth value w.
Output: An OBDD for A|p=w .

Perform a recursive traversal of the OBDD:

• If the root of bdd is a leaf, return the leaf.
• If the root of bdd is labeled p, return the sub-BDD reached by its true edge if

w = T and the sub-BDD reached by its false edge if w = F .
• Otherwise (the root is labeled p′ for some atom which is not p), apply the algo-

rithm to the left and right sub-BDDs, and return the BDD whose root is p′ and
whose left and right sub-BDDs are those returned by the recursive calls.

The BDD that results from Restrict may not be reduced, so the Reduce algo-
rithm is normally applied immediately afterwards.

Example 5.21 The OBDD of A = p ∨ (q ∧ r) is shown in (a) below. (b) is A|r=T ,
(c) is A|r=F and (d) is (c) after reduction.

Compare the OBDDs in (b) and (d) with the formulas in Example 5.18.

5.7 Summary 109

5.6.2 Quantification

Definition 5.22 Let A be a formula and p an atom. The existential quantification of
A is the formula denoted ∃pA and the universal quantification of A is the formula
denoted ∀pA. ∃pA is true iff A is true for some assignment to p, while ∀pA is true
iff for all assignments to p, A is true.

These formulas are in an extension of propositional logic called quantified propo-
sitional logic. The proof of the following theorem is left as an exercise.

Theorem 5.23

∃pA ≡ A|p=F ∨ A|p=T , ∀pA ≡ A|p=F ∧ A|p=T .

Quantification is easily computed using OBDDs:

∃pA is Apply(Restrict(A,p,F),or,Restrict(A,p,T)),

∀pA is Apply(Restrict(A,p,F),and,Restrict(A,p,T)).

Example 5.24 For the formulas A = p ∨ (q ∧ r), we can use A|r=F ≡ p and
A|r=T ≡ p ∨ q from Example 5.18 to compute its quantifications on r :

∃r (p ∨ (q ∧ r)) ≡ p ∨ (p ∨ q) ≡ p ∨ q,

∀r (p ∨ (q ∧ r)) ≡ p ∧ (p ∨ q) ≡ p.

We leave it as an exercise to perform these computations using OBDDs.

5.7 Summary

Binary decision diagrams are a data structure for representing formulas in propo-
sitional logic. A BDD is a directed graph that reduces redundancy when compared
with a truth table or a semantic tree. Normally, one ensures that all branches of a
BDD use compatible orderings of the atomic propositions. An OBDD can be re-
duced and reduced OBDDs of two formulas are structurally identical if and only
if the formulas are logically equivalent. A recursive algorithm can be used to effi-
ciently compute A op B given the OBDDs for A and B . BDDs have been widely
used in model checkers for the verification of computer hardware.

110 5 Propositional Logic: Binary Decision Diagrams

5.8 Further Reading

Bryant’s original papers on BDDs (Bryant, 1986, 1992) are relatively easy to read.
There is an extensive presentation of BDDs in Baier and Katoen (2008, Sect. 6.7).

5.9 Exercises

5.1 Construct reduced OBDDs for p ↑ (q ↑ r) and (p ↑ q) ↑ r . What does this
show?

5.2 Construct reduced OBDDs for the formula (p1 ∧ p2) ∨ (p3 ∧ p4) using two
orderings of the variables: p1, p2, p3, p4 and p1, p3, p2, p4.

5.3 How can OBDDs be used to check if A |= B?

5.4 Compute the Shannon expansion of (p → (q → r)) → ((p → q) → (p → r))

with respect to each one of its atomic propositions. Why do you know the answer
even before you start the computation?

5.5 Prove the Shannon expansion (Theorem 5.19) and the formula for propositional
quantification (Theorem 5.23).

5.6 Prove that ∃r (p ∨ (q ∧ r)) = p ∨ q and ∀r (p ∨ (q ∧ r)) = p using BDDs
(Example 5.24).

References

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on

Computers, C-35:677–691, 1986.
R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Com-

puting Surveys, 24:293–318, 1992.

	Chapter 5: Propositional Logic: Binary Decision Diagrams
	5.1 Motivation Through Truth Tables
	5.2 Definition of Binary Decision Diagrams
	5.3 Reduced Binary Decision Diagrams
	5.4 Ordered Binary Decision Diagrams
	5.5 Applying Operators to BDDs
	5.6 Restriction and Quantification *
	5.6.1 Restriction
	5.6.2 Quantification

	5.7 Summary
	5.8 Further Reading
	5.9 Exercises
	References

