Chapter 3
Propositional Logic: Deductive Systems

The concept of deducing theorems from a set of axioms and rules of inference is very
old and is familiar to every high-school student who has studied Euclidean geome-
try. Modern mathematics is expressed in a style of reasoning that is not far removed
from the reasoning used by Greek mathematicians. This style can be characterized
as ‘formalized informal reasoning’, meaning that while the proofs are expressed in
natural language rather than in a formal system, there are conventions among math-
ematicians as to the forms of reasoning that are allowed. The deductive systems
studied in this chapter were developed in an attempt to formalize mathematical rea-
soning.

We present two deductive systems for propositional logic. The second one 57
will be familiar because it is a formalization of step-by-step proofs in mathematics:
It contains a set of three axioms and one rule of inference; proofs are constructed
as a sequence of formulas, each of which is either an axiom (or a formula that has
been previously proved) or a derivation of a formula from previous formulas in the
sequence using the rule of inference. The system & will be less familiar because
it has one axiom and many rules of inference, but we present it first because it is
almost trivial to prove the soundness and completeness of ¢ from its relationship
with semantic tableaux. The proof of the soundness and completeness of .77 is then
relatively easy to show by using ¢. The chapter concludes with three short sections:
the definition of an important property called consistency, a generalization to infinite
sets of formulas, and a survey of other deductive systems for propositional logic.

3.1 Why Deductive Proofs?

Let U ={Ay,...,A,}. Theorem 2.50 showed that U = A if and only if &= A A
-+ A A, — A. Therefore, if U is a set of axioms, we can use the completeness of
the method of semantic tableaux to determine if A follows from U (see Sect. 2.5.4
for precise definitions). Why would we want to go through the trouble of searching
for a mathematical proof when we can easily compute if a formula is valid?
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There are several problems with a purely semantical approach:

e The set of axioms may be infinite. For example, the axiom of induction in arith-
metic is really an infinite set of axioms, one for each property to be proved. For
semantic tableaux in propositional logic, the only formulas that appear in the tab-
leaux are subformulas of the formula being checked or their negations, and there
are only a finite number of such formulas.

e Very few logics have decision procedures like propositional logic.

e A decision procedure may not give insight into the relationship between the ax-
ioms and the theorem. For example, in proofs of theorems about prime num-
bers, we would want to know exactly where primality is used (Velleman, 2006,
Sect. 3.7). This understanding can also help us propose other formulas that might
be theorems.

e A decision procedure produces a ‘yes/no’ answer, so it is difficult to recognize
intermediate results (lemmas). Clearly, the millions of mathematical theorems in
existence could not have been inferred directly from axioms.

Definition 3.1 A deductive system is a set of formulas called axioms and a set of
rules of inference. A proof in a deductive system is a sequence of formulas S =
{A1, ..., A,} such that each formula A; is either an axiom or it can be inferred from
previous formulas of the sequence A, ..., Aj,, where j; <--- < jx <i, using a
rule of inference. For A,, the last formula in the sequence, we say that A, is a
theorem, the sequence S is a proof of A,, and A, is provable, denoted F+ A,. If
F A, then A may be used like an axiom in a subsequent proof. ]

The deductive approach can overcome the problems described above:

e There may be an infinite number of axioms, but only a finite number will appear
in any proof.

e Although a proof is not a decision procedure, it can be mechanically checked,
that is, given a sequence of formulas, an syntax-based algorithm can easily check
whether the sequence is a proof as defined above.

e The proof of a formula clearly shows which axioms, theorems and rules are used
and for what purposes.

e Once a theorem has been proved, it can be used in proofs like an axiom.

Deductive proofs are not generated by decision procedures because the formulas
that appear in a proof are not limited to subformulas of the theorem and because
there is no algorithm telling us how to generate the next formula in the sequence
forming a proof. Nevertheless, algorithms and heuristics can be used to build soft-
ware systems called automatic theorem provers which search for proofs. In Chap. 4,
we will study a deductive system that has been successfully used in automatic theo-
rem provers. Another promising approach is to use a proof assistant which performs
administrative tasks such as proof checking, bookkeeping and cataloging previously
proved theorems, but a person guides the search by suggesting lemmas that are likely
to lead to a proof.
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3.2 Gentzen System ¥

The first deductive system that we study is based on a system proposed by Gerhard
Gentzen in the 1930s. The system itself will seem unfamiliar because it has one type
of axiom and many rules of inference, unlike familiar mathematical theories which
have multiple axioms and only a few rules of inference. Furthermore, deductions in
the system can be naturally represented as trees rather in the linear format character-
istic of mathematical proofs. However, it is this property that makes it easy to relate
Gentzen systems to semantic tableaux.

Definition 3.2 (Gentzen system &) An axiom of ¢ is a set of literals U containing
a complementary pair. Rule of inference are used to infer a set of formulas U from
one or two other sets of formulas U; and U;; there are two types of rules, defined
with reference to Fig. 3.1:

o Let {ay, a0} C Uy andlet U = Uy —{ay, a2}. Then U = U{ U{a} can be inferred.
o Let {81} C Uy, {B2} S Uz and let U] = Uy — {1}, U = Us — {B2}. Then U =
U{ U U; U (B} can be inferred.

The set or sets of formulas Uy, U, are the premises and set of formulas U that is
inferred is the conclusion. A set of formulas U that is an axiom or a conclusion is
said to be proved, denoted - U . The following notation is used for rules of inference:

F U Ufar, oz} HU U {B1} HU;U{Ba}
- U Ula) U UU, U (B} '

Braces can be omitted with the understanding that a sequence of formulas is to be
interpreted as a set (with no duplicates). ]

Example 3.3 The following set of formulas is an axiom because it contains the
complementary pair {r, —r}:

FpAag,q,r,—r, gV T
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The disjunction rule for A| = g, A = —r can be used to deduce:

FpAg,q,r,—r,gV —r

FpAg,r,qV—or,gV—r
Removing the duplicate formula g v —r gives:

FpAag,q,r,—r, gV —F

FpAg,r,gV—r

Note that the premises {g, —r} are no longer elements of the conclusion. [ |

A proof can be written as a sequence of sets of formulas, which are numbered
for convenient reference. On the right of each line is its justification: either the set
of formulas is an axiom, or it is the conclusion of a rule of inference applied to a set
or sets of formulas earlier in the sequence. A rule of inference is identified by the
rule used for the a- or B-formula on the principal operator of the conclusion and by
the number or numbers of the lines containing the premises.

Example 3.4 Provet (pVvg) —> (gV p)in¥.

Proof

1. F=p,q,p Axiom
2. F—-q.,q,p Axiom
3. F=(pVvg),q,p BV, 1,2
4. F—=(pVveg),@Vp) aV,3
5. F(pvg) —(@VPp o—,4

Example 3.5 Prove=pVv(gAr) — (pvg)A(pVvr)in¥.

Proof
I. F=p,p,q Axiom
2. F=p.(pVvg) av,l
3. F=p,p,r Axiom
4. F—=p,(pVvr) aVv,3
5. F=p,(pvg)A(pVvr) BA 2,4
6. F—g,—rp,q Axiom
7. F=q,—r,(pVvyq) aVv,6
8. F-—q,—rp,r Axiom
9. F=gq,—r,(pVvr) aV, 8
10. F—=q,—-r,(pvVg)A(pVr) BA,T,9
1. F=@Ar),(pvg A(pVvr) a A, 10
12. F=(pVv@Ar),(pvg) AN(pVr) BV,5, 11
13. FpvgAar)y —> (pvg A(pVr) oa—, 12
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3.2.1 The Relationship Between ¢ and Semantic Tableaux

It might seem that we have been rather clever to arrange all the inferences in these
proofs so that everything comes out exactly right in the end. In fact, no cleverness
was required. Let us rearrange the Gentzen proof into a tree format rather than a
linear sequence of sets of formulas. Let the axioms be the leaves of the tree, and let
the inference rules define the interior nodes. The root at the bottom will be labeled
with the formula that is proved.

The proof from Example 3.4 is displayed in tree form on the left below:

-p.q,p —q.9,p —[(pVvq) — (qVp)]l
N v \:
—(pVq.q,p pVvVq,—(gVp)
A \:
—=(pVvaq),@Vp) pvqg,—q,—p
\: v N
(pVvq)—(qVp) p.—q,—p q9,7q,"p
X X

If this looks familiar, it should. The semantic tableau on the right results from
turning the derivation in ¢ upside down and replacing each formula in the labels on
the nodes by its complement (Definition 2.57).

A set of formulas labeling a node in a semantic tableau is an implicit conjunction,
that is, all the formulas in the set must evaluate to true for the set to be true. By taking
complements, a set of formulas labeling a node in a derivation in ¢ is an implicit
disjunction.

An axiom in ¢ is valid: Since it contains a complementary pair of literals, as a
disjunction it is:

which is valid.
Consider a rule applied to obtain an «-formula, for example, A1 V Az; when the
rule is written using disjunctions it becomes:

l_\/U{\/A]\/AZ
FV U V(A VA’

and this is a valid inference in propositional logic that follows immediately from
associativity.
Similarly, when a rule is applied to obtain a B-formula, we have:
F\V UV B \ U,V By
F\ U{ v\ U,V (By A By)

which follows by the distribution of disjunction over conjunction. This inference
simply says that if we can prove both B; and B, then we can prove By A Bj.
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The relationship between semantic tableaux and Gentzen systems is formalized
in the following theorem.

Theorem 3.6 Let A be a formula in propositional logic. Then = A in 9 if and only
if there is a closed semantic tableau for — A.

This follows immediately from a more general theorem on sets of formulas.

Theorem 3.7 Let U be a set of formulas and let U be the set of complements of

formulas in U. Then &= U in & if and only if there is a closed semantic tableau
for U.

Proof Let 7 be a closed semantic tableau for U. We prove - U by induction on ,
the height of 7. The other direction is left as an exercise.

If h =0, then .7 consists of a single node labeled by U. By assumption, .7 is
closed, so it contains a complementary pair of literals {p, — p}, that is, U=U'U
{p, — p}. Obviously, U = U’ U {— p, p} is an axiom in &4, hence - U.

If 4 > 0, then some tableau rule was used on an «- or S-formula at the root of
7 on a formula ¢ € U, that is, U = U’ U {¢}. The proof proceeds by cases, where
you must be careful to distinguish between applications of the tableau rules and
applications of the Gentzen rules of the same name.

Case 1: ¢ is an a-formula (such as) — (A V Ay). The tableau rule created a child
node labeled by the set of formulas U’ U {— A, = A,}. By assumption, the
subtree rooted at this node is a closed tableau, so by the inductive hypothe-
sis, = U"U{A], A}. Using the appropriate rule of inference from ¢, we obtain
U U{A] Vv Ay}, thatis, = U’ U {¢}, which is - U.

Case 2: ¢_> is a B-formula (such as) — (B A B»). The tableau rule created two child
nodes labeled by the sets of formulas U’ U {— By} and U’ U {— B,}. By assump-
tion, the subtrees rooted at this node are closed, so by the inductive hypothesis
F U’ U{B:} and U’ U {B,}. Using the appropriate rule of inference from ¢,
we obtain - U’ U {B; A By}, thatis, - U’ U {¢}, whichis - U. [ ]

Theorem 3.8 (Soundness and completeness of ¥)
EAifandonly if-Ain¥Y.

Proof A is valid iff — A is unsatisfiable iff there is a closed semantic tableau for
— A iff there is a proof of A in ¢. ]

The proof is very simple because we did all the hard work in the proof of the
soundness and completeness of tableaux.

The Gentzen system ¢ described in this section is not very useful; other versions
(surveyed in Sect. 3.9) are more convenient for proving theorems and are closer to
Gentzen’s original formulation. We introduced ¥ as a theoretical stepping stone to
Hilbert systems which we now describe.
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3.3 Hilbert System .77

In Gentzen systems there is one axiom and many rules of inference, while in a
Hilbert system there are several axioms but only one rule of inference. In this sec-
tion, we define the deductive system .5# and use it to prove many theorems. Actu-
ally, only one theorem (Theorem 3.10) will be proved directly from the axioms and
the rule of inference; practical use of the system depends on the use of derived rules,
especially the deduction rule.

Notation:  Capital letters A, B, C, ... represent arbitrary formulas in proposi-
tional logic. For example, the notation - A — A means: for any formula A of propo-
sitional logic, the formula A — A can be proved.

Definition 3.9 (Deductive system .%°) The axioms of 5 are:

Axiom1 (A — (B— A)),
Axiom2 +FA—->(B—->C)—> (A—B)— (A—>0)),
Axiom3 + (=B — —A)— (A— B).

The rule of inference is modus ponens (MP for short):

A FA—B
~B '

In words: the formula B can be inferred from A and A — B.
The terminology used for —premises, conclusion, theorem, proved— carries
over to J¢, as does the symbol - meaning that a formula is proved. ]

Theorem 3.10 - A — A.

Proof
. FA>(A—->A)—>A))—>(A—>(A—>A)—>(A— A)) Axiom?2
2. FA—> (A= A)— A) Axiom 1
3. FA—>A—=A)—> (A=A MP 1,2
4. FA—>(A—> A) Axiom 1
5. FA— A MP 3,4

When an axiom is given as the justification, identify which formulas are substi-
tuted for the formulas A, B, C in the definition of the axioms above.
3.3.1 Axiom Schemes and Theorem Schemes *

As we noted above, a capital letter can be replaced by any formula of propositional
logic, so, strictly speaking, - A — (B — A) is not an axiom, and similarly, - A — A
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is not a theorem. A more precise terminology would be to say that - A — (B — A)
is an axiom scheme that is a shorthand for an infinite number of axioms obtained by
replacing the ‘variables’ A and B with actual formulas, for example:

A B A

—_—
(pv—=q)<or) - ( =(@gAr—r) - (pv—g)<r) ).

Similarly, - A — A is a theorem scheme that is a shorthand for an infinite number
of theorems that can be proved in /¢, including, for example:

F(pv—g)<r)—>{(pVv—qg)<r).

We will not retain this precision in our presentation because it will always clear
if a given formula is an instance of a particular axiom scheme or theorem scheme.
For example, a formula ¢ is an instance of Axiom 1 if it is of the form:

A
/N

where there are subtrees for the formulas represented by A and B. There is a simple
and efficient algorithm that checks if ¢ is of this form and if the two subtrees A are
identical.

3.3.2 The Deduction Rule

The proof of Theorem 3.10 is rather complicated for such a trivial formula. In order
to formalize the powerful methods of inference used in mathematics, we introduce
new rules of inference called derived rules. The most important derived rule is the
deduction rule. Suppose that you want to prove A — B. Assume that A has already
been proved and use it in the proof of B. This is not a proof of B unless A is an axiom
or theorem that has been previously proved, in which case it can be used directly in
the proof. However, we claim that the proof can be mechanically transformed into a
proof of A — B.

Example 3.11 The deduction rule is used frequently in mathematics. Suppose that
you want to prove that the sum of any two odd integer numbers is even, expressed
formally as:

odd(x) A odd(y) — even(x + y),

for every x and y. To prove this formula, let us assume the formula odd(x) A odd(y)
as if it were an additional axiom. We have available all the theorems we have already
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deduced about odd numbers, in particular, the theorem that any odd number can be
expressed as 2k + 1. Computing:

xX+y=2ki+14+2kr +1=2(k1 +ky+ 1),

we obtain that x 4 y is a multiple of 2, that is, even(x + y). The theorem now follows
from the deduction rule which discharges the assumption. ]

To express the deduction rule, we extend the definition of proof.

Definition 3.12 Let U be a set of formulas and A a formula. The notation U +
A means that the formulas in U are assumptions in the proof of A. A proof is a
sequence of lines U; - ¢;, such that for each i, U; C U, and ¢; is an axiom, a
previously proved theorem, a member of U; or can be derived by MP from previous
lines Uy & ¢y, Ui &= ¢y, where i, i” <i. ]

Rule 3.13 (Deduction rule)
UU{A}FB
UFA— B’

‘We must show that this derived rule is sound, that is, that the use of the derived
rule does not increase the set of provable theorems in .77. This is done by showing
how to transform any proof using the rule into one that does not use the rule. There-
fore, in principle, any proof that uses the derived rule could be transformed to one
that uses only the three axioms and MP.

Theorem 3.14 (Deduction theorem) The deduction rule is a sound derived rule.

Proof We show by induction on the length n of the proof of U U {A} - B how to
obtain a proof of U - A — B that does not use the deduction rule.

For n =1, B is proved in one step, so B must be either an element of U U {A} or
an axiom of .7 or a previously proved theorem:

e If Bis A, then A — A by Theorem 3.10, so certainly U - A — A.
e Otherwise (B is an axiom or a previously proved theorem), here is a proof of
U F+ A — B that does not use the deduction rule or the assumption A:

1. UFRB Axiom or theorem
2. UFB— (A— B) Axiom 1
3. UFA—B MP1,2

If n > 1, the last step in the proof of U U {A} - B is either a one-step inference
of B or an inference of B using MP. In the first case, the result holds by the proof
for n = 1. Otherwise, MP was used, so there is a formula C and lines i, j < n in the
proof such that line i in the proof is U U {A} - C and line j is U U {A} + C — B.
By the inductive hypothesis, U A — C and U - A — (C — B). A proof of U -
A — B is given by:
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1. UFA->C Inductive hypothesis
2. UFA—(C—B) Inductive hypothesis
3. UFA—-(C—->B)—>({(A—>C)— (A— B)) Axiom 2
4. UFA—->C)— (A— B) MP 2,3
5. UFA—B MP 1,4

3.4 Derived Rules in 7

The general form of a derived rule will be one of:

Uk ¢ Uk ¢ Uk ¢
Ul—(,b7 Uk ¢

The first form is justified by proving the formula U - ¢y — ¢ and the second by
Ut ¢1— (¢p2 — ¢); the formula U F ¢ that is the conclusion of the rule follows
immediately by one or two applications of MP. For example, from Axiom 3 we
immediately have the following rule:

Rule 3.15 (Contrapositive rule)

UF—-B——-A
U-A—B
The contrapositive is used extensively in mathematics. We showed the complete-
ness of the method of semantic tableaux by proving: If a tableau is open, the formula

is satisfiable, which is the contrapositive of the theorem that we wanted to prove: If
a formula is unsatisfiable (not satisfiable), the tableau is closed (not open).

Theorem 3.16 - (A — B) > [(B— C) — (A — C)].

Proof
1. {(A—-B,B—>C,A}FA Assumption
2. {A-B,B—>C,A}-A—~B Assumption
3. {A->B,B—~C,A}+B MP 1,2
4, {A—->B,B—>C,A}-B—C Assumption
5. {(A->B,B—C,A}-C MP 3,4
6. {(A->B,B—>C}FA—->C Deduction 5
7. {A—= B}F[(B—C)— (A— (O)] Deduction 6
8. F(A—-B)—[(B—C)— (A—(C)] Deduction 7
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Rule 3.17 (Transitivity rule)

U+A— B UB—C
UA—C ’

The transitivity rule justifies the step-by-step development of a mathematical the-
orem F A — C through a series of lemmas. The antecedent A of the theorem is used
to prove a lemma - A — Bj whose consequent is used to prove the next lemma
= B1 — B and so on until the consequent of the theorem appears as -+ B, — C.
Repeated use of the transitivity rule enables us to deduce - A — C.

Theorem 3.18 H[A — (B — C)] > [B— (A — O)].

Proof
1. {A->(B—>C),B,AlFA Assumption
2. (A->(B—-C),B,A}lr-FA— (B— () Assumption
3. {A->B—~>C),B,A}FrB—~>C MP 1,2
4. {A-(B—~>C),B,A}J-B Assumption
5. {(A-(B—C),B,A}-C MP 3, 4
6. {A->B—~>C),B}J-rA—>C Deduction 5
7. {A->B—->0)}}FB—>(A—C) Deduction 6
8. F[A->(B—->OC)]—[B—>(A—(O)] Deduction 7

Rule 3.19 (Exchange of antecedent rule)
UFA— (B—C0)
UFB— (A—C)

Exchanging the antecedent simply means that it doesn’t matter in which order
we use the lemmas necessary in a proof.

Theorem 3.20 - —-A — (A — B).

Proof
1. {—~A}F—-A— (—mB——A) Axiom 1
2. {—A}F-A Assumption
3. {mA}F=B—>—-A MP 1,2
4., {=A}lF(=B—>—-A)— (A— B) Axiom 3
5. {mA}FA—B MP 3,4
6. HF—mA— (A— B) Deduction 5

Theorem 3.21 WA — (— A — B).

Proof
1. F=A—> (A— B) Theorem 3.20
2. FA—-(—A— B) Exchange 1
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These two theorems are of major theoretical importance. They say that if you can
prove some formula A and its negation — A, then you can prove any formula B! If
you can prove any formula then there are no unprovable formulas so the concept of
proof becomes meaningless.

Theorem 3.22 - —-—A — A.

Proof
1. {—m=A}F==A—> (=== A—>—-—A) Axiom 1
2. {—m—A}F—-—-A Assumption
3, [—m—A}lF====A—>—-—A MP 1,2
4, {(m—-AlF-A—>—-—-—A Contrapositive 3
5. {—m-A}lF=—=A—> A Contrapositive 4
6. {——A}FA MP 2,5
7. F=—A—> A Deduction 6
[
Theorem 3.23 HA — ——A.
Proof
1. F===A—>-A Theorem 3.22
2. FA—>—--A Contrapositive 1
[

Rule 3.24 (Double negation rule)

U—-—A UrA
UA Uk—-—A"

Double negation is a very intuitive rule. We expect that ‘it is raining’ and ‘it is
not true that it is not raining’ will have the same truth value, and that the second
formula can be simplified to the first. Nevertheless, some logicians reject the rule
because it is not constructive. Suppose that we can prove for some number 7, ‘it is
not true that n is prime’ which is the same as ‘it is not true that » is not composite’.
This double negation could be reduced by the rule to ‘n is composite’, but we have
not actually demonstrated any factors of n.

Theorem 3.25 (A — B) > (=B — — A).

Proof
1. {A->B}FA—>B Assumption
2. {A->B}F—=—=A—> A Theorem 3.22
3. {(A->B}F—-—A—B Transitivity 2, 1
4. {A—> B}-B——-—-B Theorem 3.23
5. {A>B}F—=—-A—>—--B Transitivity 3, 4
6. {(A—->B}F—=B—>—-A Contrapositive 5
7. F(A— B)— (=B —>—A) Deduction 6



3.4 Derived Rules in .77 61

Rule 3.26 (Contrapositive rule)

UrA— B
Uk—=B——A’

This is the other direction of the contrapositive rule shown earlier.

Recall from Sect. 2.3.3 the definition of the logical constants frue as an abbrevi-
ation for p vV — p and false as an abbreviation for p A — p. These can be expressed
using implication and negation alone as p — p and — (p — p).

Theorem 3.27

= true,
= —false.

Proof b true is an instance of Theorem 3.10. - —false, which is - == (p — p),
follows by double negation. ]

Theorem 3.28 + (— A — false) — A.

Proof
1. {—=A— false}- = A — false Assumption
2. {—A— false} ‘- —false > —— A Contrapositive
3. {—A— false} ‘- —false Theorem 3.27
4. {—A— false}l——A MP 2,3
5. {—A—false}- A Double negation 4
6. F(—A—false)— A Deduction 5

Rule 3.29 (Reductio ad absurdum)

Ut —A— false
UFA

Reductio ad absurdum is a very useful rule in mathematics: Assume the negation
of what you wish to prove and show that it leads to a contradiction. This rule is also
controversial because proving that — A leads to a contradiction provides no reason
that directly justifies A.
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Here is an example of the use of this rule:

Theorem 3.30 - (A — —A) —> = A.

Proof
1. {A—->—-A —-—A}F—-—-A Assumption
2. {A—>—-A,—-—-A}FA Double negation 1
3. {A>—-A,——=AlFA—>—-A Assumption
4, {A——-A,~—A}F-—-A MP 2,3
5. {A—>—-A,—-—A}lFA— (—A— false) Theorem 3.21
6. {A—>—-A,—~—A}lF—A— false MP 2,5
7. {A—>—A,—~—=A}t+false MP 4,6
8. {A——-A}F—-—A— false Deduction 7
9. {A—>—-A}F—-A Reductio ad absurdum 8
10. F(A—>—-A)—>—-A Deduction 9

We leave the proof of the following theorem as an exercise.
Theorem 3.31 - (—A — A) — A.

These two theorems may seem strange, but they can be understood on the se-
mantic level. For the implication of Theorem 3.31 to be false, the antecedent
— A — A must be true and the consequent A false. But if A is false, then so is
—A— A= AV A, so the formula is true.

3.5 Theorems for Other Operators

So far we have worked with only negation and implication as operators. These two
operators are adequate for defining all others (Sect. 2.4), so we can use these def-
initions to prove theorems using other operators. Recall that A A B is defined as
—(A— —B),and AV B is defined as -~ A — B.
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Theorem 3.32 - A — (B — (A A B)).

Proof
1.

—_

Theorem 3.33 (Commutativity) - AV B < BV A.

Proof

1.

2
3
4
5.
6.
7
8
Th

e S A e

{A,B}(A— —-B)—> (A— —B)
{A,BJ-A— ((A— —-B)—> —B)
{A,B}FA
{A,B}-(A—>—-B)——B
{A,B}r—=—=B— —(A— —B)
{A,B}+B

{A,B}——B
{A,B}F—=(A— —B)

{A}F-B— —(A— —B)

FA— (B——-(A— —B))
FA— (B— (AAB))

{-A— B,—-B}F—A—B
{(-A—> B,—-B}FF—=B——-—A
{(-A— B,—-B}~-B

{-A— B,—B}F-——A
{(-A— B,—B}FA

{(-A—> B}F—=B—> A
F(—A— B)—> (—B— A)
FAVB—>BVA

e other direction is similar.

Theorem 3.10
Exchange 1
Assumption

MP 2,3
Contrapositive 4
Assumption
Double negation 6
MPS5,7
Deduction 8
Deduction 9
Definition of A

Assumption
Contrapositive 1
Assumption

MP 2,3

Double negation 4
Deduction 5
Deduction 6

Def. of v

The proofs of the following theorems are left as exercises.

Theorem 3.34 (Weakening)

FA— AVB,
FB— AV B,
F(A— B)— ((CV A)— (CV B)).

Theorem 3.35 (Associativity)

FAV(BVC)«< (AvB)vC.

Theorem 3.36 (Distributivity)

FAV(BAC)< (AVB)AAVO),
FAABVC)«< (AANB)V(AAC).

63
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3.6 Soundness and Completeness of 77°

We now prove the soundness and completeness of the Hilbert system .77°. As usual,
soundness is easy to prove. Proving completeness will not be too difficult because
we already know that the Gentzen system ¥ is complete so it is sufficient to show
how to transform any proof in ¢ into a proof in J7.

Theorem 3.37 The Hilbert system ¢ is sound: If = A then |= A.
Proof The proof is by structural induction. First we show that the axioms are valid,

and then we show that MP preserves validity. Here are closed semantic tableaux for
the negations of Axioms 1 and 3:

—=[A— (B— A)] =[(=B—>—A)—> (A— B)]
| !
A,—m(B— A) —-B——-A,—-(A—> B)
2 \!
A,B,—A —-B——A,A,—-B
X v N
-—-B,A,—B —-A,A,—B
N X
B,A,—B

X

The construction of a tableau for the negation of Axiom 2 is left as an exercise.
Suppose that MP were not sound. There would be a set of formulas {A, A —
B, B} such that A and A — B are valid, but B is not valid. Since B is not valid,
there is an interpretation .# such that v #(B) = F. Since A and A — B are valid,
for any interpretation, in particular for .#, v s (A) = v s (A — B) = T. By definition
of vy for implication, v #(B) = T, contradicting v #(B) = F. |

There is no circularity in the final sentence of the proof: We are not using the
syntactical proof rule MP, but, rather, the semantic definition of truth value in the
presence of the implication operator.

Theorem 3.38 The Hilbert system F¢ is complete: If = A then = A.

By the completeness of the Gentzen system ¢ (Theorem 3.8), if = A, then - A
in ¢. The proof of the theorem showed how to construct the proof of A by first
constructing a semantic tableau for — A; the tableau is guaranteed to close since A
is valid. The completeness of .77 is proved by showing how to transform a proof in
¢ into a proof in JZ. Note that all three steps can be carried out algorithmically:
Given an arbitrary valid formula in propositional logic, a computer can generate its
proof.



3.6 Soundness and Completeness of .77 65

We need a more general result because a proof in ¢ is a sequence of sets of
formulas, while a proof in J# is a sequence of formulas.

Theorem 3.39 If-U in Y, then =\/ U in .

The difficulty arises from the clash of the data structures used: U is a set while
\/ U is a single formula. To see why this is a problem, consider the base case of the
induction. The set {— p, p} is an axiom in ¢4 and we immediately have - — p Vv p in
S since this is simply - p — p. But if the axiom in ¢4 is {¢, — p,r, p, s}, we can’t
immediately conclude thatk-g v —=pVr Vv pVsin 2.

Lemma 340 I[fU' C U and+=\/ U in S thent=\/ U in 5.

Proof The proof is by induction using weakening, commutativity and associativity
of disjunction (Theorems 3.34-3.35). We give the outline here and leave it as an
exercise to fill in the details.

Suppose we have a proof of \/ U’. By repeated application of Theorem 3.34, we
can transform this into a proof of \/ U”, where U” is a permutation of the elements
of U. By repeated applications of commutativity and associativity, we can move the
elements of U” to their proper places. ]

Example 3.41 Let U' = {A,C} C {A, B,C} = U and suppose we have a proof of
F\/ U’ = A v C. This can be transformed into a proof of - \/ U = A Vv (B Vv C) as
follows, where Theorems 3.34-3.35 are used as derived rules:

1. FAvC Assumption
2. F(AvC)VB Weakening, 1
3. FAvV(CVB) Associativity, 2
4, H(CVB)— (BVC(0) Commutativity
5. FAvV(CVvB)— AV (BVvC(C) Weakening, 4
6. FAV(BVC(O) MP3,5

Proof of Theorem 3.39 The proof is by induction on the structure of the proof in ¢.
If U is an axiom, it contains a pair of complementary literals and - — p v p can be
proved in 7. By Lemma 3.40, this can be transformed into a proof of \/ U.

Otherwise, the last step in the proof of U in ¢ is the application of a rule to an «-
or B-formula. As usual, we will use disjunction and conjunction as representatives
of a- and f-formulas.

Case 1: A rule in ¢ was applied to obtain an a-formula - U; U {A] Vv A3} from
F U;U{A], Ay}. By the inductive hypothesis, - ((\/ U;) V A1) V Ay in S from
which we infer = \/ Uj v (A} V Aj) by associativity.

Case 2: A rule in 4 was applied to obtain a S-formula - U; U Uy U {A] A A}
from - Uy U{A} and i U, U {A,}. By the inductive hypothesis, - (\/ U;) vV A;
and = (\/ Uz) v A, in J#. We leave it to the reader to justify each step of the
following deduction of = \/ U; v \/ Uy V (A] A Ap):
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F= VU= (= VU — (A AAy)
F\N U VvV UV (Al AAy)

1. F\/U VA

2. F=VU — A

3. FAI—= (Ay— (A1 AA))

4. F=\ U — (Ay— (A1 A Ap)
5. FAy—> (= VU — (A AAy))
6. |—\/U2\/A2

7. F=\VUy— A

8.

9.

Proof of Theorem 3.38 1If = A then - A in & by Theorem 3.8. By the remark at the
end of Definition 3.2, - A is an abbreviation for - {A}. By Theorem 3.39, - \/{A}
in JZ. Since A is a single formula, - A in J7. [ ]

3.7 Consistency

What would mathematics be like if both 1 + 1 =2 and ~(1+1=2)=1+4+1+#2
could be proven? An inconsistent deductive system is useless, because all formulas
are provable and the concept of proof becomes meaningless.

Definition 3.42 A set of formulas U is inconsistent iff for some formula A, both
UF Aand U — A. U is consistent iff it is not inconsistent. A deductive system is
inconsistent iff it contains an inconsistent set of formulas. [ ]

Theorem 3.43 U is inconsistent iff for all A, U - A.

Proof Let A be an arbitrary formula. If U is inconsistent, for some formula B,
UF BandU - B.By Theorem3.21, B— (— B— A). Using MP twice, U |- A.
The converse is trivial. ]

Corollary 3.44 U is consistent if and only if for some A, U I A.

If a deductive system is sound, then - A implies |= A, and, conversely, [~ A
implies I/ A. Therefore, if there is even a single falsifiable formula A in a sound
system, the system must be consistent! Since - false (where false is an abbrevi-
ation for = (p — p)), by the soundness of 77, t/ false. By Corollary 3.44, 57 is
consistent.
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The following theorem is another way of characterizing inconsistency.
Theorem 3.45 U\ A if and only if U U {— A} is inconsistent.

Proof If U = A, obviously U U {— A} I A, since the extra assumption will not
be used in the proof. U U {— A} - — A because — A is an assumption. By Defi-
nition 3.42, U U {— A} is inconsistent.

Conversely, if U U {— A} is inconsistent, then U U {— A} - A by Theorem 3.43.
By the deduction theorem, U - = A— A, and U + A follows by MP from+ (— A —
A) — A (Theorem 3.31). [ |

3.8 Strong Completeness and Compactness *

The construction of a semantic tableau can be generalized to an infinite set of for-
mulas S = {A1, A», ...}. The label of the root is {A}. Whenever a rule is applied to
a leaf of depth n, A, 41 will be added to the label(s) of its child(ren) in addition to
the «; or ;.

Theorem 3.46 A set of formulas S = {A1, Aa, ...} is unsatisfiable if and only if a
semantic tableau for S closes.

Proof Here is an outline of the proof that is given in detail in Smullyan (1968,
Chap. IID).

If the tableau closes, there is only a finite subset Sy C S of formulas on each
closed branch, and Sy is unsatisfiable. By a generalization of Theorem 2.46 to an
infinite set of formulas, it follows that S = Sy U (S — Sp) is unsatisfiable.

Conversely, if the tableau is open, it can be shown that there must be an infinite
branch containing all formulas in S, and the union of formulas in the labels of nodes
on the branch forms a Hintikka set, from which a satisfying interpretation can be
found. [

The completeness of propositional logic now generalizes to:

Theorem 3.47 (Strong completeness) Let U be a finite or countably infinite set of
formulas and let A be a formula. If U = A then U - A.

The same construction proves the following important theorem.

Theorem 3.48 (Compactness) Let S be a countably infinite set of formulas, and
suppose that every finite subset of S is satisfiable. Then S is satisfiable.

Proof Suppose that S were unsatisfiable. Then a semantic tableau for S must close.
There are only a finite number of formulas labeling nodes on each closed branch.
Each such set of formulas is a finite unsatisfiable subset of S, contracting the as-
sumption that all finite subsets are satisfiable. [ ]
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3.9 Variant Forms of the Deductive Systems *

¢ and 7, the deductive systems that we presented in detail, are two of many pos-
sible deductive systems for propositional logic. Different systems are obtained by
changing the operators, the axioms or the representations of proofs. In propositional
logic, all these systems are equivalent in the sense that they are sound and complete.
In this section, we survey some of these variants.

3.9.1 Hilbert Systems

Hilbert systems almost invariably have MP as the only rule. They differ in the choice
of primitive operators and axioms. For example, .7 is an Hilbert system where
Axiom 3 is replaced by:

Axiom3 +(=B——-A)— (—mB— A)— B).

Theorem 3.49 7 and 3¢’ are equivalent in the sense that a proof in one system
can be transformed into a proof in the other.

Proof We prove Axiom 3’ in 57 . It follows that any proof in .##” can be transformed
into a proof in J#, by starting with this proof of the new axiom and using it as a
previously proved theorem.

1. (-B—-—-A,—-B—~>A,—-B}+-—-B Assumption
2. {(-B—>—-A-B— A —-B}Fr—-B—> A Assumption
3, {"B—>—-A,—-B—> A —-B}FA MP 1,2
4, {-B—->—-A,—-B— A, —-B}F—=B—>—A Assumption
5. ~-B—>—-A,—-B—A,—-B}FA— B Contrapositive 4
6. {(-B——-A,—-B— A —-B}FB MP 3,5
7. {(-B——-A,—-B—> A}F-—-B—B Deduction 7
8. {(-B——-A,-B—> A}-(—-B— B)— B Theorem 3.31
9. {"WB—>—-A,-B— A}FB MPS8, 9
10. {-B——-A}F(—-B— A)—B Deduction 9
11. v(=B—>—-A) - (—-B— A)— B) Deduction 10

The use of the deduction theorem is legal because its proof in 7 does not use
Axiom 3, so the identical proof can be done in .7#”.
We leave it as an exercise to prove Axiom 3 in 77", ]

Either conjunction or disjunction may replace implication as the binary oper-
ator in the formulation of a Hilbert system. Implication can then be defined by
—(AA—B)or —~AV B, respectively, and MP is still the only inference rule. For
disjunction, a set of axioms is:
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Axioml FHAVA— A,

Axiom2 +FA—> AV B,

Axiom3 FAVB-—>BVA,

Axiom4 (B —->C)—> (AvB—>AVC(C).

The steps needed to show the equivalence of this system with 7 are given in
Mendelson (2009, Exercise 1.54).
Finally, Meredith’s axiom:

- ({l(A = B) = (=C — = D)] = C} = E) = [(E — A) — (D — A)],

together with MP as the rule of inference is a complete deductive system for proposi-
tional logic. Adventurous readers are invited to prove the axioms of 7 from Mered-
ith’s axiom following the 37-step plan given in Monk (1976, Exercise 8.50).

3.9.2 Gentzen Systems

¢ was constructed in order to simplify the theoretical treatment by using a nota-
tion that is identical to that of semantic tableaux. We now present a deductive sys-
tem similar to the one that Gentzen originally proposed; this system is taken from
Smullyan (1968, Chap. XI).

Definition 3.50 If U and V are (possibly empty) sets of formulas, then U = V is
a sequent. ]

Intuitively, a sequent represents ‘provable from’ in the sense that the formulas in
U are assumptions for the set of formulas V that are to be proved. The symbol = is
similar to the symbol I in Hilbert systems, except that = is part of the object lan-
guage of the deductive system being formalized, while |- is a metalanguage notation
used to reason about deductive systems.

Definition 3.51 Axioms in the Gentzen sequent system . are sequents of the
form:
UU{A}= V U{A}.

The rules of inference are shown in Fig. 3.2. [ ]
The semantics of the sequent system . are defined as follows:

Definition 3.52 Let S = U = V be a sequent where U = {Uj,...,U,} and V =

{V1,..., Viu}, and let .# be an interpretation for U U V. Then v #(S) = T if and

only if v #(Uy) =--- =v ¢ (U,) = T implies that for some i, v #(V;) =T. [ |

This definition relates sequents to formulas: Given an interpretation . for UUV,
vy(U=V)=Tifandonlyif vy (AU —\V)=T.
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op Introduction into consequent Introduction into antecedent
A U= VU{A} U= VU(B} UU{A,B}=V
U= VU{AAB} UU{AAB}=V

v U= VU{A, B} UU{A}=V UU{B}=V
U= VU{AV B} UU{AVB}=V

N UU{A}= VU{B} U= VU{A} UU{B}=V
U=VU{A— B} UU{A—> B}=V

_ UU{A}=V U= VU{A}
U= VU{-A} UU{-A}=V

Fig. 3.2 Rules of inference for sequents

3.9.3 Natural Deduction

The advantage of working with sequents is that the deduction theorem is a rule
of inference: introduction into the consequent of —. The convenience of Gentzen
systems is apparent when proofs are presented in a format called natural deduction
that emphasizes the role of assumptions.

Look at the proof of Theorem 3.30, for example. The assumptions are dragged
along throughout the entire deduction, even though each is used only twice, once as
an assumption and once in the deduction rule. The way we reason in mathematics
is to set out the assumptions once when they are first needed and then to discharge
them by using the deduction rule. A natural deduction proof of Theorem 3.30 is
shown in Fig. 3.3.

The boxes indicate the scope of assumptions. Just as in programming where local
variables in procedures can only be used within the procedure and disappear when
the procedure is left, an assumption can only be used within the scope of its box,
and once it is discharged by using it in a deduction, it is no longer available.

3.9.4 Subformula Property

Definition 3.53 A deductive system has the subformula property iff any formula
appearing in a proof of A is either a subformula of A or the negation of a subformula
of A. [ ]

The systems ¢ and .¥ have the subformula property while .72 does not. For
example, in the proof of the theorem of double negation - =— A — A, the formula
F—=——-—=A— —— A appeared even though it is obviously not a subformula of the
theorem.

Gentzen proposed his deductive system in order to obtain a system with the sub-
formula property. Then he defined the system .’ by adding an additional rule of
inference, the cut rule:

U A=V U=V, A

U=V




3.10 Summary 71

1. A—>-A Assumption
2. ——-A Assumption
3. A Double negation 2
4., —-A MP 1,3
5. A— (—A— false) Theorem 3.21
6. —A— false MP 3,5
7. false MP 4,6
8. ——A— false Deduction 2, 7
9. —-A Reductio ad absurdum 8
10. (A—>—-A)—>—A Deduction 1, 9

Fig. 3.3 A natural deduction proof

to the system . and showed that proofs in .#’ can be mechanically transformed into
proofs in .. See Smullyan (1968, Chap. XII) for a proof of the following theorem.

Theorem 3.54 (Gentzen’s Hauptsatz) Any proof in .’ can be transformed into a
proof in . not using the cut rule.

3.10 Summary

Deductive systems were developed to formalize mathematical reasoning. The struc-
ture of Hilbert systems such as .# imitates the style of mathematical theories: a
small number of axioms, modus ponens as the sole rule of inference and proofs as
linear sequences of formulas. The problem with Hilbert systems is that they offer
no guidance on how to find a proof of a formula. Gentzen systems such as ¢ (and
variants that use sequents or natural deduction) facilitate finding proofs because all
formulas that appear are subformulas of the formula to be proved or their negations.

Both the deductive systems ¢ and ¢ are sound and complete. Completeness
of ¢ follows directly from the completeness of the method of semantic tableaux as
a decision procedure for satisfiability and validity in propositional logic. However,
the method of semantic tableaux is not very efficient. Our task in the next chapters
is to study more efficient algorithms for satisfiability and validity.

3.11 Further Reading

Our presentation is based upon Smullyan (1968) who showed how Gentzen systems
are closely related to tableaux. The deductive system .77 is from Mendelson (2009);
he develops the theory of .7 (and later its generalization to first-order logic) with-
out recourse to tableaux. Huth and Ryan (2004) base their presentation of logic on
natural deduction. Velleman (2006) will help you learn how to prove theorems in
mathematics.
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3.12 Exercises

3.1 Provein ¥:
F(A— B)—> (—B——A),
F((A— B)— (mA— B) — B),
F(A— B)—> A)— A.

3.2 Prove that if - U in ¢ then there is a closed semantic tableau for U (the forward
direction of Theorem 3.7).

3.3 Prove the derived rule modus tollens:

L—B A— B
F—A '

3.4 Give proofs in ¢ for each of the three axioms of J7.
3.5 Prove - (= A — A) - A (Theorem 3.31) in 7.
3.6 Prove(A— B)V (B— C)in J7.

3.7 Prove ((A— B) > A) > Ain J7.

3.8 Prove {— A} (=B —> A) — Bin 7.

3.9 Prove Theorem 3.34 in J7:

FA— AV B,
B - AV B,
F(A— B)— ((CV A)— (CV B)).

3.10 Prove Theorem 3.35 in J#:
FAV(BVC)«< (AVvB)VvC.

3.11 Prove Theorem 3.36 in 77:

FAV(BAC)< (AVB)A(AVCO),
FAAMBVC)<(AANB)V(AANC).

3.12 Prove that Axiom 2 of 7 is valid by constructing a semantic tableau for its
negation.

3.13 Complete the proof that if U’ C U and +\/ U’ then I \/ U (Lemma 3.40).

3.14 Prove the last two formulas of Exercise 3.1 in JZ.
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3.15 * Prove Axiom 3 of . in 57" .
3.16 * Prove that the Gentzen sequent system . is sound and complete.

3.17 * Prove that a set of formulas U is inconsistent if and only if there is a finite
set of formulas {A,...,A;} CU suchthat-—A;Vv.--Vv—A,.

3.18 A set of formulas U is maximally consistent iff every proper superset of U is
not consistent. Let S be a countable, consistent set of formulas. Prove:

1. Every finite subset of S is satisfiable.
2. For every formula A, at least one of S U {A}, SU {— A} is consistent.
3. S can be extended to a maximally consistent set.
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