
Chapter 15
Verification of Sequential Programs

A computer program is not very different from a logical formula. It consists of a
sequence of symbols constructed according to formal syntactical rules and it has
a meaning which is assigned by an interpretation of the elements of the language.
In programming, the symbols are called statements or commands and the intended
interpretation is the execution of the program on a computer. The syntax of program-
ming languages is specified using formal systems such as BNF, but the semantics is
usually informally specified.

In this chapter, we describe a formal semantics for a simple programming lan-
guage, as well as a deductive system for proving that a program is correct. Unlike
our usual approach, we first define the deductive system and only later define the
formal semantics. The reason is that the deductive system is useful for proving pro-
grams, but the formal semantics is primarily intended for proving the soundness and
completeness of the deductive system.

The chapter is concerned with sequential programs. A different, more complex,
logical formalism is needed to verify concurrent programs and this is discussed
separately in Chap. 16.

Our programs will be expressed using a fragment of the syntax of popular lan-
guages like Java and C. A program is a statement S, where statements are defined
recursively using the concepts of variables and expressions:

Assignment statement variable = expression ;
Compound statement { statement1 statement2 . . .}
Alternative statement if (expression) statement1 else statement2
Loop statement while (expression) statement

We assume that the informal semantics of programs written in this syntax is familiar.
In particular, the concept of the location counter (sometimes called the instruction
pointer) is fundamental: During the execution of a program, the location counter
stores the address of the next instruction to be executed by the processor.

In our examples the values of the variables will be integers.

M. Ben-Ari, Mathematical Logic for Computer Science,
DOI 10.1007/978-1-4471-4129-7_15, © Springer-Verlag London 2012

273

http://dx.doi.org/10.1007/978-1-4471-4129-7_15

274 15 Verification of Sequential Programs

15.1 Correctness Formulas

A statement in a programming language can be considered to be a function that
transforms the state of a computation. If the variables (x,y) have the values (8,7)

in a state, then the result of executing the statement x = 2*y+1 is the state in
which (x, y) = (15,7) and the location counter is incremented.

Definition 15.1 Let S be a program with n variables (x1,. . . ,xn). A state s of S
consists of an n + 1-tuple of values (lc, x1, . . . , xn), where lc is the value of the
location counter and xi is the value of the variable xi.

The variables of a program will be written in typewriter font x, while the corre-
sponding value of the variable will be written in italic font x. Since a state is always
associated with a specific location, the location counter will be implicit and the state
will be an n-tuple of the values of the variables.

In order to reason about programs within first-order logic, predicates are used to
specify sets of states.

Definition 15.2 Let U be the set of all n-tuples of values over some domain(s),
and let U ′ ⊆ U be a relation over U . The n-ary predicate PU ′ is the characteristic
predicate of U ′ if it is interpreted over the domain U by the relation U ′. That is,
v(PU ′(x1, . . . , xn)) = T iff (x1, . . . , xn) ∈ U ′.

We can write {(x1, . . . , xn) | (x1, . . . , xn) ∈ U ′} as {(x1, . . . , xn) | PU ′ }.
Example 15.3 Let U be the set of 2-tuples over Z and let U ′ ⊆ U be the 2-tuples
described in the following table:

· · ·
· · · (−2,−3) (−2,−2) (−2,−1) (−2,0) (−2,1) (−2,2) (−2,3)

· · · (−1,−3) (−1,−2) (−1,−1) (−1,0) (−1,1) (−1,2) (−1,3)

· · · (0,−3) (0,−2) (0,−1) (0,0) (0,1) (0,2) (0,3)

· · · (1,−3) (1,−2) (1,−1) (1,0) (1,1) (1,2) (1,3)

· · · (2,−3) (2,−2) (2,−1) (2,0) (2,1) (2,2) (2,3)

· · ·
Two characteristic predicates of U ′ are (x1 = x1)∧ (x2 ≤ 3) and x2 ≤ 3. The set can
be written as {(x1, x2) | x2 ≤ 3}.

The semantics of a programming language is given by specifying how each state-
ment in the language transforms one state into another.

Example 15.4 Let S be the statement x = 2*y+1. If started in an arbitrary state
(x, y), the statement terminates in the state (x′, y′) where x′ = 2y′ +1. Another way
of expressing this is to say that S transforms the set of states {(x, y) | true} into the
set {(x, y) | x = 2y + 1}.

The statement S also transforms the set of states {(x, y) | y ≤ 3} into the set
{(x, y) | (x ≤ 7) ∧ (y ≤ 3)}, because if y ≤ 3 then 2y + 1 ≤ 7.

15.2 Deductive System H L 275

The concept of transforming a set of states can be extended from an assignment
statement to the statement representing the entire program. This is then used to
define correctness.

Definition 15.5 A correctness formula is a triple {p} S {q}, where S is a program,
and p and q are formulas called the precondition and postcondition, respectively. S
is partially correct with respect to p and q , |= {p} S {q}, iff:

If S is started in a state where p is true and if the computation of S terminates,
then it terminates in a state where q is true.

Correctness formulas were first defined in Hoare (1969). The term is taken from
Apt et al. (2009); the formulas are also called inductive expressions, inductive as-
sertions and Hoare triples.

Example 15.6 |= {y ≤ 3} x = 2*y+1 {(x ≤ 7) ∧ (y ≤ 3)}.

Example 15.7 For any S, p and q:

|= {false} S {q}, |= {p} S {true},
since false is not true in any state and true is true in all states.

15.2 Deductive System H L

The deductive system H L (Hoare Logic) is sound and relatively complete for
proving partial correctness. By relatively complete, we mean that the formulas ex-
pressing properties of the domain will not be formally proven. Instead, we will sim-
ply take all true formulas in the domain as axioms. For example, (x ≥ y)→ (x +1 ≥
y + 1) is true in arithmetic and will be used as an axiom. This is reasonable since
we wish to concentrate on the verification that a program S is correct without the
complication of verifying arithmetic formulas that are well known.

Definition 15.8 (Deductive system H L)

Domain axioms

Every true formula over the domain(s) of the program variables.

Assignment axiom

	 {p(x){x ← t}} x = t {p(x)}.
Composition rule

	 {p} S1 {q} 	 {q} S2 {r}
	 {p} S1 S2 {r} .

276 15 Verification of Sequential Programs

Alternative rule

	 {p ∧ B} S1 {q} 	 {p ∧ ¬B} S2 {q}
	 {p} if (B) S1 else S2 {q} .

Loop rule

	 {p ∧ B} S {p}
	 {p} while (B) S {p ∧ ¬B} .

Consequence rule

	 p1 → p 	 {p} S {q} 	 q → q1

	 {p1} S {q1} .

The consequence rule says that we can always strengthen the precondition or
weaken the postcondition.

Example 15.9 From Example 15.6, we know that:

|= {y ≤ 3} x = 2*y+1 {(x ≤ 7) ∧ (y ≤ 3)}.
Clearly:

|= {y ≤ 1} x = 2*y+1 {(x ≤ 10) ∧ (y ≤ 3)}.
The states satisfying y ≤ 1 are a subset of those satisfying y ≤ 3, so a computation
started in a state where, say, y = 0 ≤ 1 satisfies y ≤ 3. Similarly, the states satisfying
x ≤ 10 are a superset of those satisfying x ≤ 7; we know that the computation results
in a value of x such that x ≤ 7 and that value is also less than or equal to 10.

Since 	 p → p and 	 q → q , we can strengthen the precondition without weak-
ening the postcondition or conversely.

The assignment axiom may seem strange at first, but it can be understood by
reasoning from the conclusion to the premise. Consider:

	 {?} x = t {p(x)}.
After executing the assignment statement, we want p(x) to be true when the value
assigned to x is the value of the expression t. If the formula that results from per-
forming the substitution p(x){x ← t} is true, then when x is actually assigned the
value of t, p(x) will be true.

The composition rule and the alternative rule are straightforward.
The formula p in the loop rule is called an invariant: it describes the behavior of

a single execution of the statement S in the body of the while-statement. To prove:

	 {p0} while (B) S {q0},
we find a formula p and prove that it is an invariant: 	 {p ∧ B} S {p}.

15.3 Program Verification 277

By the loop rule:

	 {p} while (B) S {p ∧ ¬B}.
If we can prove p0 →p and (p ∧¬B)→q0, then the consequence rule can be used
to deduce the correctness formula. We do not know how many times the while-
loop will be executed, but we know that p ∧ ¬B holds when it does terminate.

To prove the correctness of a program, one has to find appropriate invariants. The
weakest possible formula true is an invariant of any loop since 	 {true ∧B}S {true}
holds for any B and S. Of course, this formula is too weak, because it is unlikely
that we will be able to prove (true ∧ ¬B) → q0. On the other hand, if the formula
is too strong, it will not be an invariant.

Example 15.10 x = 5 is too strong to be an invariant of the while-statement:

while (x > 0) x = x - 1;

because x = 5 ∧ x > 0 clearly does not imply that x = 5 after executing the state-
ment x = x - 1. The weaker formula x ≥ 0 is also an invariant: x ≥ 0 ∧ x > 0
implies x ≥ 0 after executing the loop body. By the loop rule, if the loop terminates
then x ≥ 0 ∧ ¬ (x > 0). This can be simplified to x = 0 by reasoning within the
domain and using the consequence rule.

15.3 Program Verification

Let us use H L to proving the partial correctness of the following program P:

{true}
x = 0;
{x = 0}
y = b;
{x = 0 ∧ y = b}
while (y != 0)

{x = (b − y) · a}
{
x = x + a;
y = y - 1;

}
{x = a · b}

Be careful to distinguish between braces { } used in the syntax of the program from
those used in the correctness formulas.

We have annotated P with formulas between the statements. Given:

{p1}S1{p2}S2 · · · {pn}Sn{pn+1},
if we can prove {pi} Si {pi+1} for all i, then we can conclude:

278 15 Verification of Sequential Programs

{p1} S1 · · · Sn {pn+1}
by repeated application of the composition rule. See Apt et al. (2009, Sect. 3.4) for
a proof that H L with annotations is equivalent to H L without them.

Theorem 15.11 	 {true} P {x = a · b}.

Proof From the assignment axiom we have {0 = 0}x=0 {x = 0}, and from the con-
sequence rule with premise true → (0 = 0), we have {true} x=0 {x = 0}. The proof
of {x = 0} y=b {(x = 0) ∧ (y = b)} is similar.

Let us now show that x = (b − y) · a is an invariant of the loop. Executing the
loop body will substitute x + a for x and y − 1 for y. Since the assignments have
no variable in common, we can do them simultaneously. Therefore:

(x = (b − y) · a){x ← x + a, y ← y − 1} ≡ x + a = (b − (y − 1)) · a
≡ x = (b − y + 1) · a − a

≡ x = (b − y) · a + a − a

≡ x = (b − y) · a.

By the consequence rule, we can strengthen the precondition:

{(x = (b − y) · a) ∧ y �= 0} x=x+a; y=y-1; {x = (b − y) · a},
and then use the Loop Rule to deduce:

{x = (b − y) · a}
while (y != 0)
{
x=x+a;
y=y-1;

}
{(x = (b − y) · a) ∧ ¬ (y �= 0)}

Since ¬ (y �= 0) ≡ (y = 0), we obtain the required postcondition:

(x = (b − y) · a) ∧ (y = 0) ≡ (x = b · a) ≡ (x = a · b).

15.3.1 Total Correctness *

Definition 15.12 A program S is totally correct with respect to p and q iff:

If S is started in a state where p is true, then the computation of S terminates
and it terminates in a state where q is true.

15.4 Program Synthesis 279

The program in Sect. 15.3 is partial correct but not totally correct: if the initial
value of b is negative, the program will not terminate. The precondition needs to be
strengthened to b ≥ 0 for the program to be totally correct.

Clearly, the only construct in a program that can lead to non-termination is a
loop statement, because the number of iterations of a while-statement need not be
bounded. Total correctness is proved by showing that the body of the loop always
decreases some value and that that value is bounded from below. In the above pro-
gram, the value of the variable y decreases by one during each execution of the loop
body. Furthermore, it is easy to see that y ≥ 0 can be added to the invariant of the
loop and that y is bounded from below by 0. Therefore, if the precondition is b ≥ 0,
then b ≥ 0 → y ≥ 0 and the program terminates when y = 0.

H L can be extended to a deductive system for total correctness; see Apt et al.
(2009, Sect. 3.3).

15.4 Program Synthesis

Correctness formulas may also be used in the synthesis of programs: the construc-
tion of a program directly from a formal specification. The emphasis is on finding
invariants of loops, because the other aspects of proving a program (aside from
deductions within the domain) are purely mechanical. Invariants are hypothesized
as modifications of the postcondition and the program is constructed to maintain
the truth of the invariant. We demonstrate the method by developing two different
programs for finding the integer square root of a non-negative integer x = √a�;
expressed as a correctness formula using integers, this is:

{0 ≤ a} S {0 ≤ x2 ≤ a < (x + 1)2}.

15.4.1 Solution 1

A loop is used to calculate values of the variable x until the postcondition holds.
Suppose we let the first part of the postcondition be the invariant and try to establish
the second part upon termination of the loop. This gives the following program
outline, where E1(x,a), E2(x,a) and B(x,a) represent expressions that must
be determined:

{0 ≤ a}
x = E1(x,a);
while (B(x,a))

{0 ≤ x2 ≤ a}
x = E2(x,a);

{0 ≤ x2 ≤ a < (x + 1)2}.

280 15 Verification of Sequential Programs

Let p denote the formula 0 ≤ x2 ≤ a that is the first subformula of the postcon-
dition and then see what expressions will make p an invariant:

• The precondition is 0 ≤ a, so p will be true at the beginning of the loop if the first
statement is x=0.

• By the loop rule, when the while-statement terminates, the formula p ∧
¬B(x, a) is true. If this formula implies the postcondition:

(0 ≤ x2 ≤ a) ∧ ¬B(x, a) → 0 ≤ x2 ≤ a < (x + 1)2,

the postcondition follows by the consequence rule. Clearly, ¬B(x, a) should be
a < (x + 1)2, so we choose B(x,a) to be (x+1)*(x+1)<=a.

• Given this Boolean expression, if the loop body always increases the value of x,
then the loop will terminate. The simplest way to do this is x=x+1.

Here is the resulting program:

{0 ≤ a}
x = 0;
while ((x+1)*(x+1) <= a)

{0 ≤ x2 ≤ a}
x = x + 1;

{0 ≤ x2 ≤ a < (x + 1)2}.
What remains to do is to check that p is, in fact, an invariant of the loop: {p ∧
B} S {p}. Written out in full, this is:

{0 ≤ x2 ≤ a ∧ (x + 1)2 ≤ a} x=x+1 {0 ≤ x2 ≤ a}.
The assignment axiom for x=x+1 is:

{0 ≤ (x + 1)2 ≤ a} x=x+1 {0 ≤ x2 ≤ a}.
The invariant follows from the consequence rule if the formula:

(0 ≤ x2 ≤ a ∧ (x + 1)2 ≤ a) → (0 ≤ (x + 1)2 ≤ a)

is provable. But this is a true formula of arithmetic so it is a domain axiom.

15.4.2 Solution 2

Incrementing the variable x is not a very efficient way of computing the integer
square root. With some more work, we can find a better solution. Let us introduce
a new variable y to bound x from above; if we maintain x < y while increasing the
value of x or decreasing the value of y, we should be able to close in on a value that
makes the postcondition true. Our invariant will contain the formula:

15.4 Program Synthesis 281

0 ≤ x2 ≤ a < y2.

Looking at the postcondition, we see that y is overestimated by a +1, so a candidate
for the invariant p is:

(0 ≤ x2 ≤ a < y2) ∧ (x < y ≤ a + 1).

Before trying to establish p as an invariant, let us check that we can find an
initialization statement and a Boolean expression that will make p true initially and
the postcondition true when the loop terminates.

• The statement y=a+1 makes p true at the beginning of the loop.
• If the loop terminates when ¬B is y = x + 1, then:

p ∧ ¬B → 0 ≤ x2 ≤ a < (x + 1)2.

The outline of the program is:

{0 ≤ a}
x = 0;
y = a+1;
while (y != x+1)

{(0 ≤ x2 ≤ a < y2) ∧ (x < y ≤ a + 1)}
E(x,y,a);

{0 ≤ x2 ≤ a < (x + 1)2}.
Before continuing with the synthesis, let us try an example.

Example 15.13 Suppose that a = 14. Initially, x = 0 and y = 15. The loop should
terminate when x = 3 and y = x + 1 = 4 so that 0 ≤ 9 ≤ 14 < 16. We need to
increase x or decrease y while maintaining the invariant 0 ≤ x2 ≤ a < y2. Let us
take the midpoint (x + y)/2� = (0 + 15)/2� = 7 and assign it to either x or y, as
appropriate, to narrow the range. In this case, a = 14 < 49 = 7 ·7, so assigning 7 to y
will maintain the invariant. On the next iteration, (x +y)/2� = (0+7)/2� = 3 and
3 · 3 = 9 < 14 = a, so assigning 3 to x will maintain the invariant. After two more
iterations during which y receives the values 5 and then 4, the loop terminates.

Here is an outline for the annotated loop body; the annotations are derived from
the invariant {p ∧ B} S1 {p} that must be proved and as well as from additional
formulas that follow from the assignment axiom.

282 15 Verification of Sequential Programs

{p ∧ (y �= x + 1)}
z = (x+y) / 2;
{p ∧ (y �= x + 1) ∧ (z = (x + y)/2�)}
if (Cond(x,y,z))

{p{x ← z}}
x = z;

else
{p{y ← z}}
y = z;

{p}
z is a new variable and Cond(x,y,z) is a Boolean expression chosen so that:

(p ∧ (y �= x + 1) ∧ (z = (x + y)/2�) ∧ Cond(x, y, z)) → p{x ← z},
(p ∧ (y �= x + 1) ∧ (z = (x + y)/2�) ∧ ¬Cond(x, y, z)) → p{y ← z}.

Let us write out the first subformula of p on both sides of the equations:

(0 ≤ x2 ≤ a < y2) ∧ Cond(x, y, z) → (0 ≤ z2 ≤ a < y2),

(0 ≤ x2 ≤ a < y2) ∧ ¬Cond(x, y, z) → (0 ≤ x2 ≤ a < z2).

These formulas will be true if Cond(x,y,z) is chosen to be z*z <= a.
We have to establish the second subformulas of p{x ← z} and p{y ← z}, which

are z < y ≤ a + 1 and x < z ≤ a + 1. Using the second subformulas of p, they
follow from arithmetical reasoning:

(x < y ≤ a + 1)∧ z = (x + y)/2� → (z < y ≤ a + 1),

(x < y ≤ a + 1)∧ (y �= x + 1) ∧ z = (x + y)/2� → (x < z ≤ a + 1).

Here is the final program:

{0 ≤ a}
x = 0;
y = a+1;
while (y != x+1)

{0 ≤ x2 ≤ a < y2 ∧ x < y ≤ a + 1}
{
z = (x+y) / 2;
if (z*z <= a)
x = z;

else
y = z;

}
{0 ≤ x2 ≤ a < (x + 1)2}.

15.5 Formal Semantics of Programs * 283

15.5 Formal Semantics of Programs *

A statement transforms a set of initial states where the precondition holds into a
set of final states where the postcondition holds. In this section, the semantics of a
program is defined in terms the weakest precondition that causes the postcondition
to hold when a statement terminates. In the next section, we show how the formal
semantics can be used to prove the soundness and relative completeness of the de-
ductive system H L .

15.5.1 Weakest Preconditions

Let us start with an example.

Example 15.14 Consider the assignment statement x=2*y+1. A correctness for-
mula for this statement is:

{y ≤ 3} x=2*y+1 {(x ≤ 7) ∧ (y ≤ 3)},
but y ≤ 3 is not the only precondition that will make the postcondition true. Another
one is y = 1 ∨ y = 3:

{y = 1 ∨ y = 3} x = 2*y+1 {(x ≤ 7) ∧ (y ≤ 3)}.
The precondition y = 1 ∨ y = 3 is ‘less interesting’ than y ≤ 3 because it does not
characterize all the states from which the computation can reach a state satisfying
the postcondition.

We wish to choose the least restrictive precondition so that as many states as
possible can be initial states in the computation.

Definition 15.15 A formula A is weaker than formula B if B → A. Given a set of
formulas {A1,A2, . . .}, Ai is the weakest formula in the set if Aj → Ai for all j .

Example 15.16 y ≤ 3 is weaker than y = 1∨y = 3 because (y = 1∨y = 3)→ (y ≤
3). Similarly, y = 1 ∨ y = 3 is weaker than y = 1, and (by transitivity) y ≤ 3 is also
weaker than y = 1. This is demonstrated by the following diagram:

which shows that the weaker the formula, the most states it characterizes.

284 15 Verification of Sequential Programs

The consequence rule is based upon the principle that you can always strengthen
an antecedent and weaken a consequent; for example, if p→q , then (p∧r)→q and
p → (q ∨ r). The terminology is somewhat difficult to get used to because we are
used to thinking about states rather than predicates. Just remember that the weaker
the predicate, the more states satisfy it.

Definition 15.17 Given a program S and a formula q , wp(S, q), the weakest pre-
condition of S and q , is the weakest formula p such that |= {p} S {q}.

E.W. Dijkstra called this the weakest liberal precondition wlp, and reserved wp
for preconditions that ensure total correctness. Since we only discuss partial correct-
ness, we omit the distinction for conciseness.

Lemma 15.18 |= {p} S {q} if and only if |= p → wp(S, q).

Proof Immediate from the definition of weakest.

Example 15.19 wp(x=2*y+1, x ≤ 7 ∧ y ≤ 3) = y ≤ 3. Check that y ≤ 3 re-
ally is the weakest precondition by showing that for any weaker formula p′,
�|= {p′} x=2*y+1 {x ≤ 7 ∧ y ≤ 3}.

The weakest precondition p depends upon both the program and the postcondi-
tion. If the postcondition in the example is changed to x ≤ 9 the weakest precondi-
tion becomes y ≤ 4. Similarly, if S is changed to x = y+6 without changing the
postcondition, the weakest precondition becomes y ≤ 1.

wp is a called a predicate transformer because it defines a transformation of a
postcondition predicate into a precondition predicate.

15.5.2 Semantics of a Fragment of a Programming Language

The following definitions formalize the semantics of the fragment of the program-
ming language used in this chapter.

Definition 15.20 wp(x=t, p(x)) = p(x){x ← t}.

Example 15.21 wp(y=y-1, y ≥ 0) = (y − 1 ≥ 0) ≡ y ≥ 1.

For a compound statement, the weakest precondition obtained from the second
statement and postcondition of the compound statement defines the postcondition
for the first statement.

Definition 15.22 wp(S1 S2, q) = wp(S1, wp(S2, q)).

15.5 Formal Semantics of Programs * 285

The following diagram illustrates the definition:

The precondition wp(S2, q) characterizes the largest set of states such that execut-
ing S2 leads to a state in which q is true. If executing S1 leads to one of these states,
then S1 S2 will lead to a state whose postcondition is q .

Example 15.23

wp(x=x+1; y=y+2, x < y) = wp(x=x+1, wp(y=y+2, x < y))

≡ wp(x=x+1, x < y + 2)

≡ x + 1 < y + 2

≡ x < y + 1.

Example 15.24

wp(x=x+a; y=y-1, x = (b − y) · a)

= wp(x=x+a, wp(y=y-1, x = (b − y) · a))

≡ wp(x=x+a, x = (b − y + 1) · a)

≡ x + a = (b − y + 1) · a
≡ x = (b − y) · a.

Given the precondition x = (b − y) · a, the statement x=x+a; y=y-1, considered
as a predicate transformer, does nothing! This is not really surprising because the
formula is an invariant. Of course, the statement does transform the state of the
computation by changing the values of the variables, but it does so in such a way
that the formula remains true.

Definition 15.25 A predicate I is an invariant of S iff wp(S, I) = I .

Definition 15.26

wp(if (B) S1 else S2, q) = (B ∧ wp(S1, q)) ∨ (¬B ∧ wp(S2, q)).

The definition is straightforward because the predicate B partitions the set of
states into two disjoint subsets, and the preconditions are then determined by the
actions of each Si on its subset.

286 15 Verification of Sequential Programs

From the propositional equivalence:

(p → q) ∧ (¬p → r) ≡ (p ∧ q) ∨ (¬p ∧ r),

it can be seen that an alternate definition is:

wp(if (B) S1 else S2, q) = (B → wp(S1, q)) ∧ (¬B → wp(S2, q)).

Example 15.27

wp(if (y=0) x=0; else x=y+1, x = y)

= (y = 0 → wp(x=0, x = y)) ∧ (y �= 0 → wp(x=y+1, x = y))

≡ ((y = 0) → (0 = y)) ∧ ((y �= 0) → (y + 1 = y))

≡ true ∧ ((y �= 0) → false)

≡ ¬ (y �= 0)

≡ y = 0.

Definition 15.28

wp(while (B) S, q) = (¬B ∧ q) ∨ (B ∧ wp(S; while (B) S, q)).

The execution of a while-statement can proceed in one of two ways.

• The statement can terminate immediately because the Boolean expression eval-
uates to false, in which case the state does not change so the precondition is the
same as the postcondition.

• The expression can evaluate to true and cause S, the body of the loop, to be
executed. Upon termination of the body, the while-statement again attempts to
establish the postcondition.

Because of the recursion in the definition of the weakest precondition for a
while-statement, we cannot constructively compute it; nevertheless, an attempt
to do so is informative.

Example 15.29 Let W be an abbreviation for while (x>0) x=x-1.

wp(W, x = 0)

= [¬ (x > 0) ∧ (x = 0)] ∨ [(x > 0) ∧ wp(x=x-1; W, x = 0)]
≡ (x = 0) ∨ [(x > 0) ∧ wp(x=x-1, wp(W, x = 0))]
≡ (x = 0) ∨ [(x > 0) ∧ wp(W, x = 0){x ← x − 1}].

We have to perform the substitution {x ← x − 1} on wp(W, x = 0). But we have just
computed a value for wp(W, x = 0). Performing the substitution and simplifying
gives:

15.5 Formal Semantics of Programs * 287

wp(W, x = 0)

≡ (x = 0) ∨ [(x > 0) ∧
wp(W, x = 0){x ← x − 1}]

≡ (x = 0) ∨ [(x > 0) ∧
((x = 0) ∨ [(x > 0) ∧ wp(W, x = 0){x ← x − 1}]){x ← x − 1}]

≡ (x = 0) ∨ [(x − 1 > 0) ∧
((x − 1 = 0) ∨ [(x − 1 > 0) ∧ wp(W, x = 0){x ← x − 1}{x ← x − 1}])]

≡ (x = 0) ∨ [(x > 1) ∧
((x = 1) ∨ [(x > 1) ∧ wp(W, x = 0){x ← x − 1}{x ← x − 1}])]

≡ (x = 0) ∨ (x = 1) ∨ [(x > 1) ∧
wp(W, x = 0){x ← x − 1}{x ← x − 1}].

Continuing the computation, we arrive at the following formula:

wp(W, x = 0) ≡ (x = 0) ∨ (x = 1) ∨ (x = 2) ∨ · · ·
≡ x ≥ 0.

The theory of fixpoints can be used to formally justify the infinite substitution
but that is beyond the scope of this book.

15.5.3 Theorems on Weakest Preconditions

Weakest preconditions distribute over conjunction.

Theorem 15.30 (Distributivity) |= wp(S, p) ∧ wp(S, q) ↔ wp(S, p ∧ q).

Proof Let s be an arbitrary state in which wp(S, p) ∧ wp(S, q) is true. Then both
wp(S, p) and wp(S, q) are true in s. Executing S starting in state s leads to a state
s′ such that p and q are both true in s′. By propositional logic, p ∧ q is true in s′.
Since s was arbitrary, we have proved that:

{s ||= wp(S, p) ∧ wp(S, q)} ⊆ {s ||= wp(S, p ∧ q)},
which is the same as:

|= wp(S, p) ∧ wp(S, q) → wp(S, p ∧ q).

The converse is left as an exercise.

288 15 Verification of Sequential Programs

Corollary 15.31 (Excluded miracle) |= wp(S, p) ∧ wp(S, ¬p) ↔ wp(S, false).

According to the definition of partial correctness, any postcondition (including
false) is vacuously true if the program does not terminate. It follows that the weakest
precondition must include all states for which the program does not terminate. The
following diagram shows how wp(S, false) is the intersection (conjunction) of the
weakest preconditions wp(S, p) and wp(S, ¬p):

The diagram also furnishes an informal proof of the following theorem.

Theorem 15.32 (Duality) |= ¬wp(S, ¬p) → wp(S, p).

Theorem 15.33 (Monotonicity) If |= p → q then |= wp(S, p) → wp(S, q).

Proof
1. |= wp(S, p) ∧ wp(S, ¬q) → wp(S, p ∧ ¬q) Theorem 15.30
2. |= p → q Assumption
3. |= ¬ (p ∧ ¬q) 2, PC
4. |= wp(S, p) ∧ wp(S, ¬q) → wp(S, false) 1,3
5. |= wp(S, false) → wp(S, q) ∧ wp(S, ¬q) Corollary 15.31
6. |= wp(S, false) → wp(S, q) 5, PC
7. |= wp(S, p) ∧ wp(S, ¬q) → wp(S, q) 4, 6, PC
8. |= wp(S, p) → ¬wp(S, ¬q) ∨ wp(S, q) 7, PC
9. |= wp(S, p) → wp(S, q) 8, Theorem 15.32, PC

The theorem shows that a weaker formula satisfies more states:

15.6 Soundness and Completeness of H L * 289

Example 15.34 Let us demonstrate the theorem where p is x < y −2 and q is x < y

so that |= p → q . We leave it to the reader to calculate:

wp(x=x+1; y=y+2;, x < y − 2) = x < y − 1

wp(x=x+1; y=y+2;, x < y) = x < y + 1.

Clearly |= x < y − 1 → x < y + 1.

15.6 Soundness and Completeness of H L *

We start with definitions and lemmas which will be used in the proofs.
The programming language is extended with two statements skip and abort

whose semantics are defined as follows.

Definition 15.35 wp(skip, p) = p and wp(abort, p) = false.

In other words, skip does nothing and abort doesn’t terminate.

Definition 15.36 Let W be an abbreviation for while (B) S.

W0 = if (B) abort; else skip

Wk+1 = if (B) S;Wk else skip

The inductive definition will be used to prove that an execution of W is equivalent
to Wk for some k.

Lemma 15.37 wp(W0, p) ≡ ¬B ∧ (¬B → p).

Proof

wp(W0, p) ≡
wp(if (B) abort; else skip, p) ≡
(B → wp(abort, p)) ∧ (¬B → wp(skip, p)) ≡
(B → false) ∧ (¬B → p) ≡
(¬B ∨ false) ∧ (¬B → p) ≡
¬B ∧ (¬B → p).

290 15 Verification of Sequential Programs

Lemma 15.38
∨∞

k=0 wp(Wk, p) → wp(W, p).

Proof We show by induction that for each k, wp(Wk, p) → wp(W, p).

For k = 0:

1. wp(W0, p) → ¬B ∧ (¬B → p) Lemma 15.37
2. wp(W0, p) → ¬B ∧ p 1, PC
3. wp(W0, p) → (¬B ∧ p) ∨ (B ∧ wp(S;W, p)) 2, PC
4. wp(W0, p) → wp(W, p) 3, Def. 15.28

For k > 0:

1. wp(Wk+1, p) = wp(if (B) S;Wk else skip, p) Def. 15.36
2. wp(Wk+1, p) ≡ (B → wp(S;Wk, p))∧ Def. 15.26

(¬B → wp(skip, p))

3. wp(Wk+1, p) ≡ (B → wp(S, wp(Wk, p)))∧ Def. 15.22
(¬B → wp(skip, p))

4. wp(Wk+1, p) ≡ (B → wp(S, wp(Wk, p))) ∧ (¬B → p) Def. 15.35
5. wp(Wk+1, p) → (B → wp(S, wp(W, p))) ∧ (¬B → p) Ind. hyp.
6. wp(Wk+1, p) → (B → wp(S;W, p)) ∧ (¬B → p) Def. 15.22
7. wp(Wk+1, p) → wp(W, p) Def. 15.28

As k increases, more and more states are included in
∨k

i=0 wp(Wi , p):

Theorem 15.39 (Soundness of H L) If 	HL {p} S {q} then |= {p} S {q}.
Proof The proof is by induction on the length of the H L proof. By assumption,
the domain axioms are true, and the use of the consequence rule can be justified by
the soundness of MP in first-order logic.

By Lemma 15.18, |= {p} S {q} iff |= p → wp(S, q), so it is sufficient to prove
|= p → wp(S, q). The soundness of the assignment axioms is immediate by Defini-
tion 15.20.

Suppose that the composition rule is used. By the inductive hypothesis, we can
assume that |= p→wp(S1, q) and |= q →wp(S2, r). From the second assumption
and monotonicity (Theorem 15.33),

15.6 Soundness and Completeness of H L * 291

|= wp(S1, q) → wp(S1, wp(S2, r)).

By the consequence rule and the first assumption, |= p → wp(S1, wp(S2, r)),
which is |= p → wp(S1;S2, r) by the definition of wp for a compound statement.

We leave the proof of the soundness of the alternative rule as an exercise.
For the loop rule, by structural induction we assume that:

|= (p ∧ B) → wp(S, p)

and show:

|= p → wp(W, p ∧ ¬B).

We will prove by numerical induction that for all k:

|= p → wp(Wk, p ∧ ¬B).

For k = 0, the proof of

|= wp(W0, p ∧ ¬B) = wp(W, p ∧ ¬B)

is the same as the proof of the base case in Lemma 15.38. The inductive step is
proved as follows:

1. |= p → (¬B → (p ∧ ¬B)) PC
2. |= p → (¬B → wp(skip, p ∧ ¬B)) Def. 15.35
3. |= (p ∧ B) → wp(S, p) Structural ind. hyp.
4. |= p → wp(Wk, p ∧ ¬B) Numerical ind. hyp.
5. |= (p ∧ B) → wp(S, wp(Wk, p ∧ ¬B)) 3, 4, Monotonicity
6. |= (p ∧ B) → wp(S;Wk, p ∧ ¬B) 5, Composition
7. |= p → (B → wp(S;Wk, p ∧ ¬B)) 6, PC
8. |= p → wp(if (B) S;Wk else skip, p ∧ ¬B) 2, 7, Def. 15.26
9. |= p → wp(Wk+1, p ∧ ¬B) Def. 15.36

By infinite disjunction:

|= p →
∞∨

k=0

wp(Wk, p ∧ ¬B),

and:

|= p → wp(W, p ∧ ¬B)

follows by Lemma 15.38.

292 15 Verification of Sequential Programs

Theorem 15.40 (Completeness of H L) If |= {p} S {q}, then 	HL {p} S {q}.

Proof We have to show that if |= p→wp(S, q), then 	HL {p}S {q}. The proof is by
structural induction on S. Note that p → wp(S, q) is just a formula of the domain,
so 	 p → wp(S, q) follows by the domain axioms.

Case 1: Assignment statement x=t.

	 {q{x ← t}} x=t {q}
is an axiom, so:

	 {wp(x=t, q)} x=t {q}
by Definition 15.20. By assumption, 	 p→wp(x=t, q), so by the consequence
rule 	 {p} x=t {q}.

Case 2: Composition S1 S2.
By assumption:

|= p → wp(S1 S2, q)

which is equivalent to:

|= p → wp(S1, wp(S2, q))

by Definition 15.22, so by the inductive hypothesis:

	 {p} S1 {wp(S2, q)}.
Obviously:

|= wp(S2, q) → wp(S2, q),

so again by the inductive hypothesis (with wp(S2, q) as p):

	 {wp(S2, q)} S2 {q}.
An application of the composition rule gives 	 {p} S1 S2 {q}.

Case 3: if-statement. Exercise.
Case 4: while-statement, W = while (B) S.

1. |= wp(W, q) ∧ B → wp(S;W, q) Def. 15.28
2. |= wp(W, q) ∧ B → wp(S, wp(W, q)) Def. 15.22
3. 	 {wp(W, q) ∧ B} S {wp(W, q)} Inductive hypothesis
4. 	 {wp(W, q)} W {wp(W, q) ∧ ¬B} Loop rule
5. 	 (wp(W, q) ∧ ¬B) → q Def. 15.28, Domain axiom
6. 	 {wp(W, q)} W {q} 4, 5, Consequence rule
7. 	 p → wp(W, q) Assumption, domain axiom
8. 	 {p} W {q} Consequence rule

15.7 Summary 293

15.7 Summary

Computer programs are similar to logical formulas in that they are formally defined
by syntax and semantics. Given a program and two correctness formulas—the pre-
condition and the postcondition—we aim to verify the program by proving: if the
input to the program satisfies the precondition, then the output of the program will
satisfy the postcondition. Ideally, we should perform program synthesis: start with
the pre- and postconditions and derive the program from these logical formulas.

The deductive system Hoare Logic H L is sound and relatively complete for
verifying sequential programs in a programming language that contains assignment
statements and the control structures if and while.

15.8 Further Reading

Gries (1981) is the classic textbook on the verification of sequential programs; it
emphasizes program synthesis. Manna (1974) includes a chapter on program veri-
fication, including the verification of programs written as flowcharts (the formalism
originally used by Robert W. Floyd). The theory of program verification can be
found in Apt et al. (2009), which also treats deductive verification of concurrent
programs.

SPARK is a software system that supports the verification of programs; an open-
source version can be obtained from http://libre.adacore.com/.

15.9 Exercises

15.1 What is wp(S, true) for any statement S?

15.2 Let S1 be x=x+y and S2 be y=x*y. What is wp(S1 S2, x < y)?

15.3 Prove |= wp(S, p ∧ q) → wp(S, p) ∧ wp(S, q), (the converse direction of
Theorem 15.30).

15.4 Prove that

wp(if (B) { S1 S3 } else { S2 S3 }, q) =
wp({if (B) S1 else S2} S3, q).

15.5 * Suppose that wp(S, q) is defined as the weakest formula p that ensures
total correctness of S, that is, if S is started in a state in which p is true, then
it will terminate in a state in which q is true. Show that under this definition |=
¬wp(S, ¬q) ≡ wp(S, q) and |= wp(S, p) ∨ wp(S, q) ≡ wp(S, p ∨ q).

http://libre.adacore.com/

294 15 Verification of Sequential Programs

15.6 Complete the proofs of the soundness and completeness of H L for the alter-
native rule (Theorems 15.39 and 15.40).

15.7 Prove the partial correctness of the following program.

{a ≥ 0}
x = 0; y = 1;
while (y <= a)

{
x = x + 1;
y = y + 2*x + 1;

}
{0 ≤ x2 ≤ a < (x + 1)2}

15.8 Prove the partial correctness of the following program.

{a > 0 ∧ b > 0}
x = a; y = b;
while (x != y)
if (x > y)
x = x-y;

else
y = y-x;

{x = gcd(a, b)}
15.9 Prove the partial correctness of the following program.

{a > 0 ∧ b > 0}
x = a; y = b;
while (x != y)
{
while (x > y) x = x-y;
while (y > x) y = y-x;

}
{x = gcd(a, b)}

15.10 Prove the partial correctness of the following program.

{a ≥ 0 ∧ b ≥ 0}
x = a; y = b; z = 1;
while (y != 0)
if (y % 2 == 1) { /* y is odd */
y = y - 1;
z = x*z;

}
else {
x = x*x;
y = y / 2;

}
{z = ab}

References 295

15.11 Prove the partial correctness of the following program.

{a ≥ 2}
y = 2; x = a; z = true;
while (y < x)

if (x % y == 0)
z = false;
break;

}
else
y = y + 1;

{z ≡ (a is prime)}

References

K.R. Apt, F.S. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent Programs
(Third Edition). Springer, London, 2009.

D. Gries. The Science of Programming. Springer, New York, NY, 1981.
C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10): 576–580, 583, 1969.
Z. Manna. Mathematical Theory of Computation. McGraw-Hill, New York, NY, 1974. Reprinted

by Dover, 2003.

	Chapter 15: Verification of Sequential Programs
	15.1 Correctness Formulas
	15.2 Deductive System HL
	15.3 Program Verification
	15.3.1 Total Correctness *

	15.4 Program Synthesis
	15.4.1 Solution 1
	15.4.2 Solution 2

	15.5 Formal Semantics of Programs *
	15.5.1 Weakest Preconditions
	15.5.2 Semantics of a Fragment of a Programming Language
	15.5.3 Theorems on Weakest Preconditions

	15.6 Soundness and Completeness of HL *
	15.7 Summary
	15.8 Further Reading
	15.9 Exercises
	References

