Chapter 12
First-Order Logic: Undecidability and Model
Theory *

The chapter surveys several important theoretical results in first-order logic. In
Sect. 12.1 we prove that validity in first-order logic is undecidable, a result first
proved by Alonzo Church. Validity is decidable for several classes of formulas de-
fined by syntactic restrictions on their form (Sect. 12.2). Next, we introduce model
theory (Sect. 12.3): the fact that a semantic tableau has a countable number of nodes
leads to some interesting results. Finally, Sect. 12.4 contains an overview of Godel’s
surprising incompleteness result.

12.1 Undecidability of First-Order Logic

We show the undecidability of validity in first-order logic by reduction from a prob-
lem whose undecidability is already known, the halting problem: to decide whether
a Turing machine will halt if started on a blank tape (Minsky (1967, Sect. 8.3.3),
Manna (1974, Sect. 1-5.2)). The proof that there is no decision procedure for valid-
ity describes an algorithm that takes an arbitrary Turing machine 7' and generates
a formula S7 in first-order logic, such that S7 is valid if and only if 7 halts on an
blank tape. If there were a decision procedure for validity, this construction would
give us an decision procedure for the halting problem.

12.1.1 Two-Register Machines

Instead of working directly with Turing machines, we work with a simpler form
of automata: two-register machines. The halting problem for two-register machines
is undecidable because there is a reduction from Turing machines to two-register
machines.
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Definition 12.1 A two-register machine M consists of two registers x and y which
can store natural numbers, and a program P = {Lg, ..., L,}, where L, is the in-
struction halt and for 0 <i < n, L; is one of the instructions:

e x =x + 1;

ey =y + 1;
e if (x == 0) gotolL;; else x = x - 1;
e if (y == 0) gotolLj; elsey =y - 1;

An execution sequence of M is a sequence of states sy = (L;, x, y), where L; is the
current instruction and x, y are the contents of the registers x and y. s is obtained
from s; by executing L;. The initial state is so = (Lq, m, 0) for some m. If for some
k, sy = (Ly, x, y), the computation of M halts and M has computed y = f(m). =

Theorem 12.2 Let T be a Turing machine that computes a function f. Then there
is a two-register machine Mt that computes the function f.

Proof Minsky (1967, Sect. 14.1), Hopcroft et al. (2006, Sect. 7.8). [ |

The proof shows how the contents of the tape of a Turing machine can be encoded
in an (extremely large) natural number and how the modifications to the tape can be
carried out when copying the contents of one register into another. Clearly, two-
register machines are even more impractical than Turing machines, but it is the
theoretical result that is important.

12.1.2 Church’s Theorem
Theorem 12.3 (Church) Validity in first-order logic is undecidable.

Proof Let M be an arbitrary two-register machine. We will construct a formula
Sy such that Sy, is valid iff M terminates when started in the state (Lg, 0, 0). The
formula is:

n—1
Sm = (Po(a, a) A /\ Si) — Jz1322pn (21, 22),
i=0

where S; is defined by cases of the instruction L;:

L; S;

X =x+1; VaVy(pi(x, y) = pi+1(s(x), y))

y =y +1; VxVy(pi(x,y) = pi+1(x,5(y)))

if (x == 0) goto Lj; Vx(pi(a,x) — pj(a,x)) A
else x = x - 1; VaVy(pi(s(x), y) = pit1(x, y))

if (y == 0) then goto Lj; Vx(pi(x,a)— pj(x,a)) A

elsey =y - 1; VaxVy(pi(x,s(y) = pi+1(x,y))
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The predicates are py, ..., p,, one for each statement in M. The intended meaning
of p;(x,y) is that the computation of M is at the label L; and the values x, y are in
the two registers. The constant a is intended to mean 0 and the function s is intended
to mean the successor function s(m) =m + 1.

s is used both for the function symbol in the formula Sy, and for states in the
execution of M. The meaning will be clear from the context.

We have to prove that M halts if and only if Sy, is valid.

If M Halts then S, Is Valid

Let sg, ..., s;, be a computation of M that halts after m steps; we need to show that
Sy is valid, that is, that it is true under any interpretation for the formula. However,
we need not consider every possible interpretation. If .# is an interpretation for Sy,
such that v ¢ (S;) = F for some 0 <i <n — 1 or such that v #(pg(a, a)) = F, then
trivially v_#(Sys) = T since the antecedent of Sy, is false. Therefore, we need only
consider interpretations that satisfy the antecedent of S),. For such interpretations,
we need to show that v #(3z13z2p, (21, z2)) = T. By induction on k, we show that
vy (Jz1322pk(21,22)) =T.

If kK = 0, the result is trivial since pg(a, a) — 3z13z2 po(z1, z2) is valid.

Let us assume the inductive hypothesis for k — 1 (provided that k > 0) and prove
V. ¢ (21322 pk (21, 22)) = T. We will work through the details when Ly is x=x+1
and leave the other cases to the reader.

By assumption the antecedent is true, in particular, its subformula Sg_i:

vy (VXVy(pr—1(x,y) = pr(s(x), y) =T,

and by the inductive hypothesis:

vy (321322 pr-1(21,22)) =T,
from which:

vy (321322 pi(s(21),22) =T

follows by reasoning in first-order logic.

Let c¢1 and ¢, be the domain elements assigned to z; and z», respectively, such
that (succ(cy), c2) € Pk, where Py is the interpretation of pj and succ is the inter-
pretation of s. Since ¢3 = succ(cy) for some domain element c3, the existentially
quantified formula in the consequent is true:

vy (3z1322pk(z1,22) =T.
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If Sy Is Valid then M Halts

Suppose that Sy is valid and consider the interpretation:
j = (</V7 {P()’ LR Pﬂ}ﬂ {SuCC}, {0})5

where succ is the successor function on .47, and (x, y) € P; iff (L;, x, y) is reached
by the register machine when started in (Lo, 0, 0).

We show by induction on the length of the computation that the antecedent of
Sy is true in .. The initial state is (Lo, 0, 0), so (a,a) € Py and v #(po(a,a)) =
T. The inductive hypothesis is that in state sy_1 = (L;, xi, yi), (xi, y;) € P;. The
inductive step is again by cases on the type of the instruction L;. For x=x+1, s =
(Lit1,succ(x;), yi) and (succ(x;), y;) € Piy1 by the definition of P;.

Since Sy is valid, v #(3z1322pn(21,22)) = T and v g (p,(m1,my)) = T for
some m1, my € A . By definition, (m, my) € P, means that M halts and computes
my = f(0). [ |

Church’s Theorem holds even if the structure of the formulas is restricted:

e The formulas contain only binary predicate symbols, one constant and one unary
function symbol. This follows from the structure of Sy, in the proof.

e The formulas are logic programs: a set of program clauses, a set of facts and a
goal clause (Chap. 11). This follows immediately since Sy is of this form.

e The formulas are pure (Mendelson, 2009, 3.6).

Definition 12.4 A formula of first-order logic is pure if it contains no function
symbols (including constants which are 0-ary function symbols). ]

12.2 Decidable Cases of First-Order Logic

Theorem 12.5 There are decision procedures for the validity of pure PCNF formu-
las whose prefixes are of one of the forms (where m,n > 0):

Vo - ¥o 3y 3ms
Vxi---Vx, Ay Vz1---Vzu,
Vxi---Vx, 3y13y2 Vz1 - - - V2.

These classes are conveniently abbreviated V*3*, V*3v*, V*33v*.

The decision procedures can be found in Dreben and Goldfarb (1979). This is the
best that can be done because the addition of existential quantifiers makes validity
undecidable. See Lewis (1979) for proofs of the following result.
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Theorem 12.6 There are no decision procedures for the validity of pure PCNF
formulas whose prefixes are of one of the forms:

Az Vxy -+ -Vx, Ay - - Jym,
Vxi - -Vx, Ay13yadys Vzr - V.

For the first prefix, the result holds even ifn =m = 1:
dz Vx1 Iy,
and for the second prefix, the result holds even ifn =0, m = 1:
Jy13y23y3 Vzi.

Even if the matrix is restricted to contain only binary predicate symbols, there is
still no decision procedure.

There are other restrictions besides those on the prefix that enable decision pro-
cedures to be given (see Dreben and Goldfarb (1979)):

Theorem 12.7 There is a decision procedure for PCNF formulas whose matrix is
of one of the forms:

1. All conjunctions are single literals.

2. All conjunctions are either single atomic formulas or consists entirely of negative
literals.

3. All atomic formulas are monadic, that is, all predicate letters are unary.

12.3 Finite and Infinite Models

Definition 12.8 A set of formulas U has the finite model property iff: U is satisfi-
able iff it is satisfiable in an interpretation whose domain is a finite set.

Theorem 12.9 Let U be a set of pure formulas of the form:
Iy I Vyr VAL, o Xk Y1 e VD,

where A is quantifier-free. Then U has the finite model property.

Proof In a tableau for U, once the §-rules have been applied to the existential quan-
tifiers, no more existential quantifiers remain. Thus the set of constants will be finite
and the tableau will terminate once all substitutions using these constants have been
made for the universal quantifiers. ]

Theorem 12.10 (Lowenheim) If a formula is satisfiable then it is satisfiable in a
countable domain.

Proof The domain D defined in the proof of completeness is countable. ]
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Lowenheim’s Theorem can be generalized to countable sets of formulas U =
{Ag, A1, Ay, ...}. Start the tableaux with formula Aq at the root. Whenever con-
structing a node at depth d, add the formula A, into its label in addition to whatever
formulas are specified by the tableau rule. If the tableau does not close, eventually,
every A; will appear on the branch, and the labels will form a Hintikka set. Hin-
tikka’s Lemma and completeness can be proved as before.

Theorem 12.11 (Léwenheim—Skolem) If a countable set of formulas is satisfiable
then it is satisfiable in a countable domain.

Uncountable sets such as the real numbers can be described by countably many
axioms (formulas). Thus formulas that describe real numbers also have a countable
model in addition to the standard uncountable model! Such models are called non-
standard models.

As in propositional logic (Theorem 3.48), compactness holds.

Theorem 12.12 (Compactness) Let U be a countable set of formulas. If all finite
subsets of U are satisfiable then so is U.

12.4 Complete and Incomplete Theories

Definition 12.13 Let .7 (U) be a theory. .7 (U) is complete if and only if for every
closed formula A, U - A or U - —A. 7 (U) is incomplete iff it is not complete,
that is, iff for some closed formula A, U I# A and U I/ — A. [ ]

It is important not to confuse a complete theory with the completeness of a deduc-
tive system. The latter relates the syntactic concept of proof to the semantic concept
of validity: a closed formula can be proved if and only if it is valid. Completeness
of a theory looks at what formulas are logical consequences of a set of formulas.

In one of the most surprising results of mathematical logic, Kurt Godel proved
that number theory is incomplete. Number theory, first developed by Guiseppe
Peano, is a first-order logic with one constant symbol 0, one binary predicate sym-
bol =, one unary function symbol s representing the successor function and two
binary function symbols +, *. A set of axioms for number theory .47 consists of
eight axioms and one axiom scheme for induction (Mendelson, 2009, 3.1).

Theorem 12.14 (Godel’s Incompleteness Theorem) If T (A7) is consistent then
T (N T) is incomplete.

If (A7) were inconsistent, that is, if a theorem and its negation were both
provable, then by Theorem 3.43, every formula would be a theorem so the theory
would have be of no interest whatsoever.

The detailed proof of Godel’s theorem is tedious but not too difficult. An informal
justification can be found in Smullyan (1978). Here we give a sketch of the formal
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proof (Mendelson, 2009, 3.4-3.5). The idea is to define a mapping, called a Godel
numbering, from logical objects such as formulas and proofs to natural numbers,
and then to prove the following theorem.

Theorem 12.15 There exists a formula A(x,y) in A T with the following prop-
erty: For any numbers i, j, A(i, j) is true if and only if i is the Gddel number
associated with some formula B(x) with one free variable x, and j is the Godel
number associated with the proof of B(i). Furthermore, if A(i, j) is true then a
proof can be constructed for these specific integers = A(i, j).

Consider now the formula C(x) = Vy— A(x, y) which has one free variable x,
and let m be the Godel number of this formula C(x). Then C(m) = Vy— A(m, y)
means that for no y is y the Godel number of a proof of C(m)!

Theorem 12.16 (Godel) If AT is consistent then b C (m) and t/ — C (m).

Proof We show that assuming either - C(m) or = — C(m) contradicts the consis-
tency of A 7.

e Suppose that - C(m) = Vy— A(m, y) and compute n, the Godel number of this
proof. Then A(m,n) is true and by Theorem 12.15, = A(m, n). Now apply Ax-
iom 4 of first-order logic to C(m) to obtain - — A(m,n). But - A(m,n) and
F — A(m, n) contradict the consistency of .47 .

e Suppose that - =C(m) = =Vy—A(m,y) = IyA(m, y). Then for some n,
A(m, n) is true, where n is the Godel number of a proof of C(m), that is, - C (m).
But we assumed - — C(m) so 4.7 is inconsistent. [

12.5 Summary

The decidability of validity for first-order logic has been investigated in detail and it
is possible to precisely demarcate restricted classes of formulas which are decidable
from less restricted classes that are not decidable. The Léwenheim-Skolem Theo-
rem is surprising since it means that it is impossible to characterize uncountable
structures in first-order logic. Even more surprising is Godel’s incompleteness re-
sult, since it demonstrates that there are true formulas of mathematical theories that
cannot be proved in the theories themselves.

12.6 Further Reading

The two sides of the decidability question are comprehensively presented by Dreben
and Goldfarb (1979) and Lewis (1979). The details of Godel numbering can be
found in (Mendelson, 2009, Chap. 3) and (Monk, 1976, Chap. 3). For an introduc-
tion to model theory see (Monk, 1976, Part 4).
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12.7 Exercises
12.1 Prove that a formula is satisfiable iff it is satisfiable in an infinite model.

12.2 Prove the Lowenheim-Skolem Theorem (12.11) using the construction of se-
mantic tableaux for infinite sets of formulas.

12.3 A closed pure formula A is n-condensable iff every unsatisfiable conjunction
of instances of the matrix of A contains an unsatisfiable subconjunction made up of
n or fewer instances.

e Let A be a PCNF formula whose matrix is a conjunction of literals. Prove that A
is 2-condensable.

e Let A be a PCNF formula whose matrix is a conjunction of positive literals and
disjunctions of negative literals. Prove that A is n + 1-condensable, where n is
the maximum number of literals in a disjunction.

12.4 * Prove Church’s Theorem by reducing Post’s Correspondence Problem to
validity in first-order logic.
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