
Chapter 10
First-Order Logic: Resolution

Resolution is a sound and complete algorithm for propositional logic: a formula in
clausal form is unsatisfiable if and only if the algorithm reports that it is unsatisfi-
able. For propositional logic, the algorithm is also a decision procedure for unsatis-
fiability because it is guaranteed to terminate. When generalized to first-order logic,
resolution is still sound and complete, but it is not a decision procedure because the
algorithm may not terminate.

The generalization of resolution to first-order logic will be done in two stages.
First, we present ground resolution which works on ground literals as if they were
propositional literals; then we present the general resolution procedure, which uses
a highly efficient matching algorithm called unification to enable resolution on non-
ground literals.

10.1 Ground Resolution

Rule 10.1 (Ground resolution rule) Let C1, C2 be ground clauses such that l ∈ C1
and lc ∈ C2. C1, C2 are said to be clashing clauses and to clash on the complemen-
tary literals l, lc. C, the resolvent of C1 and C2, is the clause:

Res(C1,C2) = (C1 − {l}) ∪ (C2 − {lc}).
C1 and C2 are the parent clauses of C.

M. Ben-Ari, Mathematical Logic for Computer Science,
DOI 10.1007/978-1-4471-4129-7_10, © Springer-Verlag London 2012

185

http://dx.doi.org/10.1007/978-1-4471-4129-7_10

186 10 First-Order Logic: Resolution

Example 10.2 Here is a tree representation of the ground resolution of two clauses.
They clash on the literal q(f (b)):

Theorem 10.3 The resolvent C is satisfiable if and only if the parent clauses C1
and C2 are both satisfiable.

Proof Let C1 and C2 be satisfiable clauses which clash on the literals l, lc. By
Theorem 9.24, they are satisfiable in an Herbrand interpretation H . Let B be the
subset of the Herbrand base that defines H , that is,

B = {p(c1, . . . , ck) | vH (p(c1, . . . , ck)) = T }
for ground terms ci . Obviously, two complementary ground literals cannot both be
elements of B . Suppose that l ∈ B . For C2 to be satisfied in H there must be some
other literal l′ ∈ C2 such that l′ ∈ B . By construction of the resolvent C using the
resolution rule, l′ ∈ C, so vH (C) = T , that is, H is a model for C. A symmetric
argument holds if lc ∈ B .

Conversely, if C is satisfiable, it is satisfiable in an Herbrand interpretation H
defined by a subset B of the Herbrand base. For some literal l′ ∈ C, l′ ∈ B . By the
construction of the resolvent clause in the rule, l′ ∈ C1 or l′ ∈ C2 (or both). Suppose
that l′ ∈ C1. We can extend the H to H ′ by defining B ′ = B ∪ {lc}. Again, by
construction, l �∈ C and lc �∈ C, so l �∈ B and lc �∈ B and therefore B ′ is well defined.

We need to show that C1 and C2 are both satisfied by H ′ defined by the Herbrand
base B ′. Clearly, since l′ ∈ C, l′ ∈ B ⊆ B ′, so C1 is satisfied in H ′. By definition,
lc ∈ B ′, so C2 is satisfied in H ′.

A symmetric argument holds if l′ ∈ C2.

The ground resolution procedure is defined like the resolution procedure for
propositional logic. Given a set of ground clauses, the resolution step is performed
repeatedly. The set of ground clauses is unsatisfiable iff some sequence of resolu-
tion steps produces the empty clause. We leave it as an exercise to show that ground
resolution is a sound and complete refutation procedure for first-order logic.

Ground resolution is not a useful refutation procedure for first-order logic be-
cause the set of ground terms is infinite (assuming that there is even one function
symbols). Robinson (1965) showed that how to perform resolution on clauses that
are not ground by looking for substitutions that create clashing clauses. The defini-
tions and algorithms are rather technical and are described in detail in the next two
sections.

10.2 Substitution 187

10.2 Substitution

We have been somewhat informal about the concept of substituting a term for a
variable. In this section, the concept is formally defined.

Definition 10.4 A substitution of terms for variables is a set:

{x1 ← t1, . . . , xn ← tn},
where each xi is a distinct variable and each ti is a term which is not identical to the
corresponding variable xi . The empty substitution is the empty set.

Lower-case Greek letters {λ,μ,σ, θ} will be used to denote substitutions. The
empty substitution is denoted ε.

Definition 10.5 An expression is a term, a literal, a clause or a set of clauses. Let E

be an expression and let θ = {x1 ← t1, . . . , xn ← tn} be a substitution. An instance
Eθ of E is obtained by simultaneously replacing each occurrence of xi in E by ti .

Example 10.6 Here is an expression (clause) E = {p(x), q(f (y))} and a substitu-
tion θ = {x ← y, y ← f (a)}, the instance obtained by performing the substitution
is:

Eθ = {p(y), q(f (f (a)))}.
The word simultaneously in Definition 10.5 means that one does not substitute y for
x in E to obtain:

{p(y), q(f (y))},
and then substitute f (a) for y to obtain:

{p(f (a)), q(f (f (a)))}.

The result of a substitution need not be a ground expression; at the extreme, a
substitution can simply rename variables: {x ← y, z ← w}. Therefore, it makes
sense to apply a substitution to an instance, because the instance may still have
variables. The following definition shows how substitutions can be composed.

Definition 10.7 Let:

θ = {x1 ← t1, . . . , xn ← tn},
σ = {y1 ← s1, . . . , yk ← sk}

be two substitutions and let X = {x1, . . . , xn} and Y = {y1, . . . , yk} be the sets of
variables substituted for in θ and σ , respectively. θσ , the composition of θ and σ , is
the substitution:

θσ = {xi ← tiσ | xi ∈ X, xi �= tiσ } ∪ {yj ← sj | yj ∈ Y, yj �∈ X}.

188 10 First-Order Logic: Resolution

In words: apply the substitution σ to the terms ti of θ (provided that the resulting
substitutions do not collapse to xi ← xi) and then append the substitutions from σ

whose variables do not already appear in θ .

Example 10.8 Let:

E = p(u, v, x, y, z),

θ = {x ← f (y), y ← f (a), z ← u},
σ = {y ← g(a), u ← z, v ← f (f (a))}.

Then:

θσ = {x ← f (g(a)), y ← f (a), u ← z, v ← f (f (a))}.
The vacuous substitution z ← z = (z ← u)σ has been deleted. The substitution y ←
g(a) ∈ σ has also been deleted since y already appears in θ . Once the substitution
y ← f (a) is performed, no occurrences of y remain in the expression. The instance
obtained from the composition is:

E(θσ) = p(z,f (f (a)), f (g(a)), f (a), z).

Alternatively, we could have performed the substitution in two stages:

Eθ = p(u, v,f (y), f (a),u),

(Eθ)σ = p(z,f (f (a)), f (g(a)), f (a), z).

We see that E(θσ) = (Eθ)σ .

The result of performing two substitutions one after the other is the same as the
result of computing the composition followed by a single substitution.

Lemma 10.9 For any expression E and substitutions θ , σ , E(θσ) = (Eθ)σ .

Proof Let E be a variable z. If z is not substituted for in θ or σ , the result is trivial.
If z = xi for some {xi ← ti} in θ , then (zθ)σ = tiσ = z(θσ) by the definition of
composition. If z = yj for some {yj ← sj } in σ and z �= xi for all i, then (zθ)σ =
zσ = sj = z(θσ).

The result follows by induction on the structure of E.

We leave it as an exercise to show that composition is associative.

Lemma 10.10 For any substitutions θ , σ , λ, θ(σλ) = (θσ)λ.

10.3 Unification 189

10.3 Unification

The two literals p(f (x), g(y)) and ¬p(f (f (a)), g(z)) do not clash. However,
under the substitution:

θ1 = {x ← f (a), y ← f (g(a)), z ← f (g(a))},
they become clashing (ground) literals:

p(f (f (a)), g(f (g(a)))), ¬p(f (f (a)), g(f (g(a)))).

The following simpler substitution:

θ2 = {x ← f (a), y ← a, z ← a}
also makes these literals clash:

p(f (f (a)), g(a)), ¬p(f (f (a)), g(a)).

Consider now the substitution:

μ = {x ← f (a), z ← y}.
The literals that result are:

p(f (f (a)), g(y)), ¬p(f (f (a)), g(y)).

Any further substitution of a ground term for y will produce clashing ground literals.
The general resolution algorithm allows resolution on clashing literals that con-

tain variables. By finding the simplest substitution that makes two literals clash, the
resolvent is the most general result of a resolution step and is more likely to clash
with another clause after a suitable substitution.

Definition 10.11 Let U = {A1, . . . ,An} be a set of atoms. A unifier θ is a substitu-
tion such that:

A1θ = · · · = Anθ.

A most general unifier (mgu) for U is a unifier μ such that any unifier θ of U can
be expressed as:

θ = μλ

for some substitution λ.

Example 10.12 The substitutions θ1, θ2, μ, above, are unifiers of the set of two
atoms {p(f (x), g(y)), p(f (f (a)), g(z))}. The substitution μ is an mgu. The first
two substitutions can be expressed as:

θ1 = μ{y ← f (g(a))}, θ2 = μ{y ← a}.

190 10 First-Order Logic: Resolution

Not all atoms are unifiable. It is clearly impossible to unify atoms whose pred-
icate symbols are different such as p(x) and q(x), as well as atoms with terms
whose outer function symbols are different such as p(f (x)) and p(g(y)). A more
tricky case is shown by the atoms p(x) and p(f (x)). Since x occurs within the
larger term f (x), any substitution—which must substitute simultaneously in both
atoms—cannot unify them. It turns out that as long as these conditions do not hold
the atoms will be unifiable.

We now describe and prove the correctness of an algorithm for unification by
Martelli and Montanari (1982). Robinson’s original algorithm is presented briefly
in Sect. 10.3.4.

10.3.1 The Unification Algorithm

Trivially, two atoms are unifiable only if they have the same predicate letter of the
same arity. Thus the unifiability of atoms is more conveniently described in terms
of the unifiability of the arguments, that is, the unifiability of a set of terms. The set
of terms to be unified will be written as a set of term equations.

Example 10.13 The unifiability of {p(f (x), g(y)), p(f (f (a)), g(z))} is expressed
by the set of term equations:

f (x) = f (f (a)),

g(y) = g(z).

Definition 10.14 A set of term equations is in solved form iff:

• All equations are of the form xi = ti where xi is a variable.
• Each variable xi that appears on the left-hand side of an equation does not appear

elsewhere in the set.

A set of equations in solved form defines a substitution:

{x1 ← t1, . . . , xn ← tn}.

The following algorithm transforms a set of term equations into a set of equations
in solved form, or reports if it is impossible to do so. In Sect. 10.3.3, we show that
the substitution defined by the set in solved form is a most general unifier of the
original set of term equations, and hence of the set of atoms from which the terms
were taken.

Algorithm 10.15 (Unification algorithm)
Input: A set of term equations.
Output: A set of term equations in solved form or report not unifiable.

10.3 Unification 191

Perform the following transformations on the set of equations as long as any one
of them is applicable:

1. Transform t = x, where t is not a variable, to x = t .
2. Erase the equation x = x.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables.

• If the outermost function symbols of t ′ and t ′′ are not identical, terminate the
algorithm and report not unifiable.

• Otherwise, replace the equation f (t ′1, . . . , t ′k) = f (t ′′1 , . . . , t ′′k) by the k equa-
tions t ′1 = t ′′1 , . . . , t ′k = t ′′k .

4. Let x = t be an equation such that x has another occurrence in the set.

• If x occurs in t and x differs from t , terminate the algorithm and report not
unifiable.

• Otherwise, transform the set by replacing all occurrences of x in other equa-
tions by t .

Example 10.16 Consider the following set of two equations:

g(y) = x,

f (x,h(x), y) = f (g(z),w, z).

Apply rule 1 to the first equation and rule 3 to the second equation:

x = g(y),

x = g(z),

h(x) = w,

y = z.

Apply rule 4 to the second equation by replacing occurrences of x in other equations
by g(z):

g(z) = g(y),

x = g(z),

h(g(z)) = w,

y = z.

Apply rule 3 to the first equation:

z = y,

x = g(z),

h(g(z)) = w,

y = z.

192 10 First-Order Logic: Resolution

Apply rule 4 to the last equation by replacing y by z in the first equation; next, erase
the result z = z using rule 2:

x = g(z),

h(g(z)) = w,

y = z.

Finally, transform the second equation by rule 1:

x = g(z),

w = h(g(z)),

y = z.

This successfully terminates the algorithm. We claim that:

μ = {x ← g(z), w ← h(g(z)), y ← z}
is a most general unifier of the original set of equations. We leave it to the reader to
check that the substitution does in fact unify the original set of term equations and
further to check that the unifier:

θ = {x ← g(f (a)), w ← h(g(f (a))), y ← f (a), z ← f (a)}
can be expressed as θ = μ{z ← f (a)}.

10.3.2 The Occurs-Check

Algorithms for unification can be extremely inefficient because of the need to check
the condition in rule 4, called the occurs-check.

Example 10.17 To unify the set of equations:

x1 = f (x0, x0),

x2 = f (x1, x1),

x3 = f (x2, x2),

· · ·
we successively create the equations:

x2 = f (f (x0, x0), f (x0, x0)),

x3 = f (f (f (x0, x0), f (x0, x0)), f (f (x0, x0), f (x0, x0))),

· · ·
The equation for xi contains 2i variables.

10.3 Unification 193

In the application of unification to logic programming (Chap. 11), the occurs-
check is simply ignored and the risk of an illegal substitution is taken.

10.3.3 The Correctness of the Unification Algorithm *

Theorem 10.18

• Algorithm 10.15 terminates with the set of equations in solved form or it reports
not unifiable.

• If the algorithm reports not unifiable, there is no unifier for the set of term equa-
tions.

• If the algorithm terminates successfully, the resulting set of equations is in solved
form and defines the mgu:

μ = {x1 ← t1, . . . , xn ← tn}.

Proof Obviously, rules 1–3 can be used only finitely many times without using
rule 4. Let m be the number of distinct variables in the set of equations. Rule 4 can
be used at most m times since it removes all occurrences, except one, of a variable
and can never be used twice on the same variable. Thus the algorithm terminates.

The algorithm terminates with failure in rule 3 if the function symbols are dis-
tinct, and in rule 4 if a variable occurs within a term in the same equation. In both
cases there can be no unifier.

It is easy to see that if it terminates successfully, the set of equations is in solved
form. It remains to show that μ is a most general unifier.

Define a transformation as an equivalence transformation if it preserves sets of
unifiers of the equations. Obviously, rules 1 and 2 are equivalence transformations.
Consider now an application of rule 3 for t ′ = f (t ′1, . . . , t ′k) and t ′′ = f (t ′′1 , . . . , t ′′k).
If t ′σ = t ′′σ , by the inductive definition of a term this can only be true if t ′iσ = t ′′i σ

for all i. Conversely, if some unifier σ makes t ′i = t ′′i for all i, then σ is a unifier for
t ′ = t ′′. Thus rule 3 is an equivalence transformation.

Suppose now that t1 = t2 was transformed into u1 = u2 by rule 4 on x = t . After
applying the rule, x = t remains in the set. So any unifier σ for the set must make
xσ = tσ . Then, for i = 1,2:

uiσ = (ti{x ← t})σ = ti ({x ← t}σ) = tiσ

by the associativity of substitution and by the definition of composition of substitu-
tion using the fact that xσ = tσ . So if σ is a unifier of t1 = t2, then u1σ = t1σ =
t2σ = u2σ and σ is a unifier of u1 = u2; it follows that rule 4 is an equivalence
transformation.

Finally, the substitution defined by the set is an mgu. We have just proved that the
original set of equations and the solved set of equations have the same set of unifiers.
But the solved set itself defines a substitution (replacements of terms for variables)

194 10 First-Order Logic: Resolution

which is a unifier. Since the transformations were equivalence transformations, no
equation can be removed from the set without destroying the property that it is a
unifier. Thus any unifier for the set can only substitute more complicated terms for
the same variables or substitute for other variables. That is, if μ is:

μ = {x1 ← t1, . . . , xn ← tn},
any other unifier σ can be written:

σ = {x1 ← t ′1, . . . , xn ← t ′n} ∪ {y1 ← s1, . . . , ym ← sm},
which is σ = μλ for some substitution λ by definition of composition. Therefore, μ

is an mgu.

The algorithm is nondeterministic because we may choose to apply a rule to any
equation to which it is applicable. A deterministic algorithm can be obtained by
specifying the order in which to apply the rules. One such deterministic algorithm
is obtained by considering the set of equations as a queue. A rule is applied to the
first element of the queue and then that equation goes to the end of the queue. If new
equations are created by rule 3, they are added to the beginning of the queue.

Example 10.19 Here is Example 10.16 expressed as a queue of equations:

〈 g(y) = x, f (x,h(x), y) = f (g(z),w, z) 〉
〈 f (g(y),h(g(y)), y) = f (g(z),w, z), x = g(y) 〉
〈 g(y) = g(z), h(g(y)) = w, y = z, x = g(y) 〉
〈 y = z, h(g(y)) = w, y = z, x = g(y) 〉
〈 h(g(z)) = w, z = z, x = g(z), y = z 〉
〈 z = z, x = g(z), y = z, w = h(g(z)) 〉
〈 x = g(z), y = z, w = h(g(z)) 〉

10.3.4 Robinson’s Unification Algorithm *

Robinson’s algorithm appears in most other works on resolution so we present it
here without proof (see Lloyd (1987, Sect. 1.4) for a proof).

Definition 10.20 Let A and A′ be two atoms with the same predicate symbols.
Considering them as sequences of symbols, let k be the leftmost position at which
the sequences are different. The pair of terms {t, t ′} beginning at position k in A and
A′ is the disagreement set of the two atoms.

Algorithm 10.21 (Robinson’s unification algorithm)
Input: Two atoms A and A′ with the same predicate symbol.
Output: A most general unifier for A and A′ or report not unifiable.

10.4 General Resolution 195

Initialize the algorithm by letting A0 = A and A′
0 = A′. Perform the following

step repeatedly:

• Let {t, t ′} be the disagreement set of Ai , A′
i . If one term is a variable xi+1 and the

other is a term ti+1 such that xi+1 does not occur in ti+1, let σi+1 = {xi+1 ← ti+1}
and Ai+1 = Aiσi+1, A′

i+1 = A′
iσi+1.

If it is impossible to perform the step (because both elements of the disagree-
ment set are compound terms or because the occurs-check fails), the atoms are
not unifiable. If after some step An = A′

n, then A, A′ are unifiable and the mgu
is μ = σi · · ·σn.

Example 10.22 Consider the pair of atoms:

A = p(g(y), f (x,h(x), y)), A′ = p(x, f (g(z),w, z)).

The initial disagreement set is {x, g(y)}. One term is a variable which does not
occur in the other so σ1 = {x ← g(y)}, and:

Aσ1 = p(g(y), f (g(y),h(g(y)), y)),

A′σ1 = p(g(y), f (g(z),w, z)).

The next disagreement set is {y, z} so σ2 = {y ← z}, and:

Aσ1σ2 = p(g(z), f (g(z), h(g(z)), z)),

A′σ1σ2 = p(g(z), f (g(z),w, z)).

The third disagreement set is {w, h(g(z))} so σ3 = {w ← h(g(z))}, and:

Aσ1σ2σ3 = p(g(z), f (g(z), h(g(z)), z)),

A′σ1σ2σ3 = p(g(z), f (g(z), h(g(z)), z)).

Since Aσ1σ2σ3 = A′σ1σ2σ3, the atoms are unifiable and the mgu is:

μ = σ1σ2σ3 = {x ← g(z), y ← z, w ← h(g(z))}.

10.4 General Resolution

The resolution rule can be applied directly to non-ground clauses by performing
unification as an integral part of the rule.

Definition 10.23 Let L = {l1, . . . , ln} be a set of literals. Then Lc = {lc1, . . . , lcn}.

196 10 First-Order Logic: Resolution

Rule 10.24 (General resolution rule) Let C1,C2 be clauses with no variables in
common. Let L1 = {l1

1, . . . , l1
n1

} ⊆ C1 and L2 = {l2
1, . . . , l2

n2
} ⊆ C2 be subsets of

literals such that L1 and Lc
2 can be unified by an mgu σ . C1 and C2 are said to be

clashing clauses and to clash on the sets of literals L1 and L2. C, the resolvent of
C1 and C2, is the clause:

Res(C1,C2) = (C1σ − L1σ) ∪ (C2σ − L2σ).

Example 10.25 Given the two clauses:

{p(f (x), g(y)), q(x, y)}, {¬p(f (f (a)), g(z)), q(f (a), z)},
an mgu for L1 = {p(f (x), g(y))} and Lc

2 = {p(f (f (a)), g(z))} is:

{x ← f (a), y ← z}.
The clauses resolve to give:

{q(f (a), z), q(f (a), z)} = {q(f (a), z)}.

Clauses are sets of literals, so when taking the union of the clauses in the resolu-
tion rule, identical literals will be collapsed; this is called factoring.

The general resolution rule requires that the clauses have no variables in com-
mon. This is done by standardizing apart: renaming all the variables in one of the
clauses before it is used in the resolution rule. All variables in a clause are implicitly
universally quantified so renaming does not change satisfiability.

Example 10.26 To resolve the two clauses p(f (x)) and ¬p(x), first rename the
variable x of the second clause to x′: ¬p(x′). An mgu is {x′ ← f (x)}, and p(f (x))

and ¬p(f (x)) resolve to �.
The clauses represent the formulas ∀xp(f (x)) and ∀x¬p(x), and it is obvious

that their conjunction ∀xp(f (x)) ∧ ∀x¬p(x) is unsatisfiable.

Example 10.27 Let C1 = {p(x),p(y)} and C2 = {¬p(x),¬p(y)}. Standard-
ize apart so that C′

2 = {¬p(x′),¬p(y′)}. Let L1 = {p(x),p(y)} and let Lc
2 =

{p(x′),p(y′)}; these sets have an mgu:

σ = {y ← x, x′ ← x, y′ ← x}.
The resolution rule gives:

Res(C1,C2) = (C1σ − L1σ) ∪ (C′
2σ − L2σ)

= ({p(x)} − {p(x)}) ∪ ({¬p(x)} − {¬p(x)})
= �.

10.4 General Resolution 197

In this example, the empty clause cannot be obtained without factoring, but we
will talk about clashing literals rather than clashing sets of literals when no confu-
sion will result.

Algorithm 10.28 (General Resolution Procedure)
Input: A set of clauses S.
Output: If the algorithm terminates, report that the set of clauses is satisfiable or
unsatisfiable.

Let S0 = S. Assume that Si has been constructed. Choose clashing clauses
C1,C2 ∈ Si and let C = Res(C1,C2). If C = �, terminate and report that S is un-
satisfiable. Otherwise, construct Si+1 = Si ∪ {C}. If Si+1 = Si for all possible pairs
of clashing clauses, terminate and report S is satisfiable.

While an unsatisfiable set of clauses will eventually produce � under a suitable
systematic execution of the procedure, the existence of infinite models means that
the resolution procedure on a satisfiable set of clauses may never terminate, so gen-
eral resolution is not a decision procedure.

Example 10.29 Lines 1–7 contain a set of clauses. The resolution refutation in lines
8–15 shows that the set of clauses is unsatisfiable. Each line contains the resolvent,
the mgu and the numbers of the parent clauses.

1. {¬p(x), q(x), r(x, f (x))}
2. {¬p(x), q(x), r ′(f (x))}
3. {p′(a)}
4. {p(a)}
5. {¬ r(a, y), p′(y)}
6. {¬p′(x), ¬q(x)}
7. {¬p′(x), ¬ r ′(x)}
8. {¬q(a)} x ← a 3,6

9. {q(a), r ′(f (a))} x ← a 2,4

10. {r ′(f (a))} 8,9

11. {q(a), r(a, f (a))} x ← a 1,4

12. {r(a, f (a))} 8,11

13. {p′(f (a))} y ← f (a) 5,12

14. {¬ r ′(f (a))} x ← f (a) 7,13

15. {�} 10,14

Example 10.30 Here is another example of a resolution refutation showing variable
renaming and mgu’s which do not produce ground clauses. The first four clauses
form the set of clauses to be refuted.

198 10 First-Order Logic: Resolution

1. {¬p(x, y), p(y, x)}
2. {¬p(x, y), ¬p(y, z), p(x, z)}
3. {p(x,f (x))}
4. {¬p(x, x)}
3′. {p(x′, f (x′))} Rename 3

5. {p(f (x), x)} σ1 = {y ← f (x), x′ ← x} 1,3′

3′′. {p(x′′, f (x′′))} Rename 3

6. {¬p(f (x), z), p(x, z)} σ2 = {y ← f (x), x′′ ← x} 2,3′′

5′′′. {p(f (x′′′), x′′′)} Rename 5

7. {p(x, x)} σ3 = {z ← x, x′′′ ← x} 6,5′′′

4′′′′. {¬p(x′′′′, x′′′′)} Rename 4

8. {�} σ4 = {x′′′′ ← x} 7,4′′′′

If we concatenate the substitutions, we get:

σ = σ1σ2σ3σ4 = {y ← f (x), z ← x, x′ ← x, x′′ ← x, x′′′ ← x, x′′′′ ← x}.
Restricted to the variables of the original clauses, σ = {y ← f (x), z ← x}.

10.5 Soundness and Completeness of General Resolution *

10.5.1 Proof of Soundness

We now show the soundness and completeness of resolution. The reader should
review the proofs in Sect. 4.4 for propositional logic as we will just give the modi-
fications that must be made to those proofs.

Theorem 10.31 (Soundness of resolution) Let S be a set of clauses. If the empty
clause � is derived when the resolution procedure is applied to S, then S is unsat-
isfiable.

Proof We need to show that if the parent clauses are (simultaneously) satisfiable,
so is the resolvent; since � is unsatisfiable, this implies that S must also be unsatis-
fiable. If parent clauses are satisfiable, there is an Herbrand interpretation H such
that vH (Ci) = T for i = 1,2. The elements of the Herbrand base that satisfy C1

and C2 have the same form as ground atoms, so there must be a substitutions λi

such that C′
i = Ciλi are ground clauses and vH (C′

i) = T .
Let C be the resolvent of C1 and C2. Then there is an mgu μ for C1 and C2 that

was used to resolve the clauses. By definition of an mgu, there must substitutions θi

such that λi = σθi . Then C′
i = Ciλi = Ci(σθi) = (Ciσ)θi , which shows that Ciσ is

satisfiable in the same interpretation.

10.5 Soundness and Completeness of General Resolution * 199

Let l1 ∈ C1 and lc2 ∈ C2 be the clashing literals used to derive C. Exactly one
of l1σ, lc2σ is satisfiable in H . Without loss of generality, suppose that vH (l1σ) =
T . Since C2σ is satisfiable, there must be a literal l′ ∈ C2 such that l′ �= lc2 and
vH (l′σ) = T . But by the construction of the resolvent, l′ ∈ C so vH (C) = T .

10.5.2 Proof of Completeness

Using Herbrand’s theorem and semantic trees, we can prove that there is a ground
resolution refutation of an unsatisfiable set of clauses. However, this does not gen-
eralize into a proof for general resolution because the concept of semantic trees
does not generalize since the variables give rise to a potentially infinite number of
elements of the Herbrand base. The difficulty is overcome by taking a ground reso-
lution refutation and lifting it into a more abstract general refutation.

The problem is that several literals in C1 or C2 might collapse into one literal
under the substitutions that produce the ground instances C′

1 and C′
2 to be resolved.

Example 10.32 Consider the clauses:

C1 = {p(x), p(f (y)), p(f (z)), q(x)},
C2 = {¬p(f (u)), ¬p(w), r(u)}

and the substitution:

{x ← f (a), y ← a, z ← a, u ← a, w ← f (a)}.
The substitution results in the ground clauses:

C′
1 = {p(f (a)), q(f (a))}, C′

2 = {¬p(f (a)), r(a)},
which resolve to: C′ = {q(f (a)), r(a)}. The lifting lemma claims that there is a
clause C = {q(f (u)), r(u)} which is the resolvent of C1 and C2, such that C′ is a
ground instance of C. This can be seen by using the unification algorithm to obtain
an mgu:

{x ← f (u), y ← u, z ← u, w ← f (u)}
of C1 and C2, which then resolve giving C.

Theorem 10.33 (Lifting Lemma) Let C′
1, C′

2 be ground instances of C1, C2, re-
spectively. Let C′ be a ground resolvent of C′

1 and C′
2. Then there is a resolvent C

of C1 and C2 such that C′ is a ground instance of C.

200 10 First-Order Logic: Resolution

The relationships among the clauses are displayed in the following diagram.

Proof The steps of the proof for Example 10.32 are shown in Fig. 10.1.
First, standardize apart so that the names of the variables in C1 are different from

those in C2.
Let l ∈ C′

1, lc ∈ C′
2 be the clashing literals in the ground resolution. Since C′

1 is
an instance of C1 and l ∈ C′

1, there must be a set of literals L1 ⊆ C1 such that l is an
instance of each literal in L1. Similarly, there must a set L2 ⊆ C2 such that lc is an
instance of each literal in L2. Let λ1 and λ2 mgu’s for L1 and L2, respectively, and
let λ = λ1 ∪ λ2. λ is a well-formed substitution since L1 and L2 have no variables
in common.

By construction, L1λ and L2λ are sets which contain a single literal each. These
literals have clashing ground instances, so they have a mgu σ . Since Li ⊆ Ci , we
have Liλ ⊆ Ciλ. Therefore, C1λ and C2λ are clauses that can be made to clash
under the mgu σ . It follows that they can be resolved to obtain clause C:

C = ((C1λ)σ − (L1λ)σ) ∪ ((C2λ)σ − (L2λ)σ).

By the associativity of substitution (Theorem 10.10):

C = (C1(λσ) − L1(λσ)) ∪ (C2(λσ) − (L2(λσ)).

C is a resolvent of C1 and C2 provided that λσ is an mgu of L1 and Lc
2. But λ

is already reduced to equations of the form x ← t for distinct variables x and σ

is constructed to be an mgu, so λσ is a reduced set of equations, all of which are
necessary to unify L1 and Lc

2. Hence λσ is an mgu.
Since C′

1 and C′
2 are ground instances of C1 and C2:

C′
1 = C1θ1 = C1λσθ ′

1 C′
2 = C2θ2 = C2λσθ ′

2

for some substitutions θ1, θ2, θ
′
1, θ

′
2. Let θ ′ = θ ′

1 ∪ θ ′
2. Then C′ = Cθ ′ and C′ is a

ground instance of C.

Theorem 10.34 (Completeness of resolution) If a set of clauses is unsatisfiable, the
empty clause � can be derived by the resolution procedure.

Proof The proof is by induction on the semantic tree for the set of clauses S. The
definition of semantic tree is modified as follows:

10.5 Soundness and Completeness of General Resolution * 201

C1 = {p(x), p(f (y)), p(f (z)), q(x)}
C2 = {¬p(f (u)), ¬p(w), r(u)}

θ1 = {x ← f (a), y ← a, z ← a}
θ2 = {u ← a, w ← f (a)}

C′
1 = C1θ1 = {p(f (a)), q(f (a))}

C′
2 = C2θ2 = {¬p(f (a)), r(a)}

C′ = Res(C1,C2) = {q(f (a)), r(a)}

L1 = {p(x), p(f (y)), p(f (z))}
λ1 = {x ← f (y), z ← y}
L1λ1 = {p(f (y))}

L2 = {¬p(f (u)), ¬p(w)}
λ2 = {w ← f (u)}
L2λ2 = {¬p(f (u))}

λ = λ1 ∪ λ2 = {x ← f (y), z ← y,w ← f (u)}
L1λ = {p(f (y))}
C1λ = {p(f (y)), q(f (y))}
L2λ = {¬p(f (u))}
C2λ = {¬p(f (u)), r(u)}

σ = {u ← y}
C = Res(C1λ,C2λ) = {q(f (y)), r(y)}, using σ

λσ = {x ← f (y), z ← y, w ← f (y), u ← y}
C1λσ = {p(f (y)), q(f (y))}
C2λσ = {¬p(f (y)), r(y)}
C = Res(C1,C2) = {q(f (y)), r(y)}, using λσ

θ ′
1 = {y ← a}

C′
1 = C1θ1 = {p(f (a)), q(f (a))} = C1λσθ1

θ ′
2 = {y ← a}

C′
2 = C2θ2 = {¬p(f (a)), r(a)} = C2λσθ2

θ ′ = {y ← a}
C′ = Res(C′

1,C′
2) = {q(f (a)), r(a)}

Fig. 10.1 Example for the lifting lemma

A node is a failure node if the (partial) interpretation defined by a branch falsifies some
ground instance of a clause in S.

The critical step in the proof is showing that an inference node n can be associated
with the resolvent of the clauses on the two failure nodes n1, n2 below it. Suppose
that C1, C2 are associated with the failure nodes. Then there must be ground in-

202 10 First-Order Logic: Resolution

stances C′
1, C′

2 which are falsified at the nodes. By construction of the semantic
tree, C′

1 and C′
2 are clashing clauses. Hence they can be resolved to give a clause C′

which is falsified by the interpretation at n. By the Lifting Lemma, there is a clause
C such that C is the resolvent of C ′

1 and C′
2, and C′ is a ground instance of C.

Hence C is falsified at n and n (or an ancestor of n) is a failure node.

10.6 Summary

General resolution has proved to be a successful method for automated theorem
proving in first-order logic. The key to its success is the unification algorithm. There
is a large literature on strategies for choosing which clauses to resolve, but that is
beyond the scope of this book. In Chap. 11 we present logic programming, in which
programs are written as formulas in a restricted clausal form. In logic programming,
unification is used to compose and decompose data structures, and computation is
carried out by an appropriately restricted form of resolution that is very efficient.

10.7 Further Reading

Loveland (1978) is a classic book on resolution; a more modern one is Fitting
(1996). Our presentation of the unification algorithm is taken from Martelli and
Montanari (1982). Lloyd (1987) presents resolution in the context of logic program-
ming that is the subject of the next chapter.

10.8 Exercises

10.1 Prove that ground resolution is sound and complete.

10.2 Let:

θ = {x ← f (g(y)), y ← u, z ← f (y)},
σ = {u ← y, y ← f (a), x ← g(u)},
E = p(x,f (y), g(u), z).

Show that E(θσ) = (Eθ)σ .

10.3 Prove that the composition of substitutions is associative (Lemma 10.10).

10.4 Unify the following pairs of atomic formulas, if possible.

p(a, x,f (g(y))), p(y,f (z), f (z)),

p(x, g(f (a)), f (x)), p(f (a), y, y),

p(x, g(f (a)), f (x)), p(f (y), z, y),

p(a, x,f (g(y))), p(z,h(z,u), f (u)).

References 203

10.5 A substitution θ = {x1 ← t1, . . . , xn ← tn} is idempotent iff θ = θθ . Let V be
the set of variables occurring in the terms {t1, . . . , tn}. Prove that θ is idempotent iff
V ∩ {x1, . . . , xn} = ∅. Show that the mgu’s produced by the unification algorithm is
idempotent.

10.6 Try to unify the set of term equations:

x = f (y), y = g(x).

What happens?

10.7 Show that the composition of substitutions is not commutative: θ1θ2 �= θ2θ2
for some θ1, θ2.

10.8 Unify the atoms in Example 10.13 using both term equations and Robinson’s
algorithm.

10.9 Let S be a finite set of expressions and θ a unifier of S. Prove that θ is an
idempotent mgu iff for every unifier σ of S, σ = θσ .

10.10 Prove the validity of (some of) the equivalences in by resolution refutation of
their negations.

References

M. Fitting. First-Order Logic and Automated Theorem Proving (Second Edition). Springer, 1996.
J.W. Lloyd. Foundations of Logic Programming (Second Edition). Springer, Berlin, 1987.
D.W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, Amsterdam, 1978.
A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Program-

ming Languages and Systems, 4:258–282, 1982.
J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,

12:23–41, 1965.

	Chapter 10: First-Order Logic: Resolution
	10.1 Ground Resolution
	10.2 Substitution
	10.3 Unification
	10.3.1 The Unification Algorithm
	10.3.2 The Occurs-Check
	10.3.3 The Correctness of the Unification Algorithm *
	10.3.4 Robinson's Unification Algorithm *

	10.4 General Resolution
	10.5 Soundness and Completeness of General Resolution *
	10.5.1 Proof of Soundness
	10.5.2 Proof of Completeness

	10.6 Summary
	10.7 Further Reading
	10.8 Exercises
	References

