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Foreword

It is with great pleasure that I accepted to write the foreword for this book.
In our society, we use computers increasingly for all kinds of communication.

This means that for a language to work well for communication, we need to have
computer tools—language technology—for that language. Language technology
makes communication more efficient, and it enables many more users to have access
to information in various forms.

Arabic is an important language, spoken in a large region of the world, and it
is important to support the use of Arabic—in business, in public administration, in
private homes, and even in the exchange of information with the rest of the world.

As not all Arabic information is already available in electronic form, one of the
basic requirements in such a scenario is the ability of computers to “read” images
of written Arabic, be it handwritten or printed, be it online or offline. This kind
of technology (OCR—optical character recognition) is difficult to create even for
languages in Latin script, and written Arabic adds to the complexity.

This book is a comprehensive guide to the field of Arabic OCR, offering thor-
ough descriptions of the data sets for training and testing, several different OCR
methodologies, and the evaluation and assessment thereof.

Before closing, I would like to congratulate the editors in having assembled such
an important collection of contributions to a complex problem for which the Arabic
world, and the rest of the world, needs solutions.

Bente MaegaardCopenhagen, Denmark
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Preface

Arabic Scripts

The Internet is a source of information which is used by approximately 2 bil-
lion users worldwide (www.internetworldstats.com). Two aspects affect the way in
which the Internet is used, especially in searching for documents. One is the avail-
ability of more and more scanned documents with varying amounts of metadata for
searching these documents on the Internet, and the other os the appearance of more
and more languages with non-Latin characters. Both aspects show the importance of
developing recognition technology for all types of characters and languages to make
the content of scanned images of text available to the Internet users. A worldwide-
used acronym for any type of text recognition is OCR, which means optical char-
acter recognition. OCR is used not only for recognizing printed characters, but it is
often also used for cursive handwriting, even when words instead of single charac-
ters are recognized. Some alternative acronyms are used for the case of handwritten
words, like HWR (handwritten word recognition) but these are not in common use
today.

Knowing that about 200 million people in the world use Arabic as their first lan-
guage it is obvious that a growing interest of that huge group of Arabic-speaking
Internet users is to search for documents in their mother tongue. In parallel to this
situation is in the past few years a growing interest in Arabic word and text recog-
nition has been observed. During that time two events have been important land-
marks in Arabic text recognition technology development. In 2002 a database on
Arabic handwritten words (IFN/ENIT-database)1 was made available to the com-
munity and has served as a reference for competitions since 2005 (ICDAR 2005).2

In September 2006 a summit on Arabic and Chinese Handwriting Recognition was
held at College Park, MD in the USA (SACH2006),3 where experts from both re-

1http://www.ifnenit.com
2http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10526
3http://www.umiacs.umd.edu/lamp/meetings/SACH06/
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Table 1 Arabic characters (www.ethnologue.com)

Fig. 1 Example of an Arabic
printed text

search fields presented their actual work. From that time intensive research on Ara-
bic script recognition started and has resulted in a big step forward today.

Arabic script is the second most widespread script in the world; it is used not only
for Arabic but also for the Persian, Urdu, and Pashto languages, for example. Today
14 languages use Arabic script worldwide, which shows its importance. Character-
istics of Arabic script are a writing direction from right to left, characters within a
word being mostly connected, 28 characters with different shapes for different po-
sitions in a word, and dots and diacritical signs above and below characters. Table 1
shows all the shapes of the 28 Arabic characters.

For different languages some additional characters may be used. Typical for Ara-
bic script is also the variation of a word in length by elongation of the connecting
lines between the characters. Figure 1 shows an example.

http://www.ethnologue.com
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Table 2 Examples of
ligatures

A further important special Arabic script style is the possibility to write charac-
ters as vertical or horizontal ligatures. These ligatures modify the shape of the char-
acters significantly. Some examples of ligatures are shown in Table 2. All these typ-
ical Arabic script characteristics influence the processing and recognition of Arabic
script in different ways and make it clear that a simple adaptation of Latin character-
based processing is not possible.

This book presents the state of the art of OCR for Arabic scripts presented from
most active and successful groups. The parts of the book show that a lot of work still
has to be done on Arabic script recognition. But the techniques and algorithms used
are of general interest; many problems are typical not only for Arabic but for many
other scripts. We believe that the collection of Arabic OCR related work is also an
inspiration for other scripts and vice versa.

The book is divided into four parts. Part I, Pre-processing, presents different
aspects of pre-processing and feature extraction for Arabic OCR systems. Part II,
Recognition, includes chapters with details about different recognition approaches.
Part III collects chapters describing the important aspects of how to assess the per-
formance of a recognition system. The final Part IV, Applications presents system
solutions for selected application fields.

Part I: Pre-processing

Part I presents different approaches for the pre-processing of OCR systems for
Arabic. It starts with an overview of Arabic handwriting recognition technology.
Srihari and Ball present in their chapter the parts of a recognition system from
pre-processing to classification. Finally they discuss application fields and chal-
lenges. Chapters 2–6 deal with pre-processing tasks of an OCR system. Bukhari,
Shafait, and Breuel discuss layout analysis methods, Setlur and Govindaraju pre-
processing issues, Belaid and Ouwayed segmentation of ancient Arabic documents,
and Likforman-Sulem et al. features for word recognition systems.

Part II: Recognition

Chapters 7–15 present different approaches for the recognition of Arabic script. The
first six chapters all use HMM-based approaches. Borovikov and Zavorin present a
multi-stage approach to document analysis, Ahmed, Mahmoud, and Parvez a recog-
nizer for printed Arabic text, Pechwitz, El Abed, and Märgner an offline handwritten
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Arabic word recognizer, Dreuw, Rybach, Heigold, and Ney a large vocabulary op-
tical character recognition system, Alkhoury, Gimenez, and Juan a Bernoulli-based
handwriting recognition system, Jifroodian and Suen a handwritten Farsi word
recognition system, Kessentini, Paquet, and Ben Hamadou a multi-stream Markov
model recognizer.

Two chapters discuss further approaches. Graves presents a recognition system
based on multidimensional recurrent neural networks, and Mozaffari discusses the
application of fractal theory for document analysis and recognition. Khemakhem
and Belghith discuss an OCR system based on the combination of complementary
systems in Chap. 15.

Part III: Evaluation

The subject of Part III is the evaluation of recognition systems. In Chap. 16 Za-
vorin and Borovikov discuss data collection and annotation, and Arabic handwrit-
ing recognition competitions are described in Chap. 17 by Märgner and El Abed. In
Chap. 18, Slimane et al. describe benchmarking strategies for Arabic word recogni-
tion.

Part IV: Applications

The final Part IV presents different applications using Arabic script recognition
technology. In Chap. 19 Cheriet and Moghaddam present a robust word spot-
ting system for historical Arabic manuscripts. Natarajan discusses, in Chap. 20,
script-independent methods for Arabic handwriting recognition, and Kundu and
Hines present an Arabic handwriting recognition system using over-segmentation
in Chap. 21. Boubaker et al. discuss online Arabic databases and applications using
these data in Chap. 22, and Abdelazeem et al. present, in Chap. 23, techniques for
using online and offline features for Arabic handwriting recognition.

Target Audience

This book provides an overview of the state-of-the-art research in the field of OCR
for Arabic scripts. Different aspects and solutions have been addressed by the au-
thors, and we hope that this comprehensive collection of ideas, problems, and solu-
tions motivates researchers to continue this work. In that sense this book shall serve
as a reference for researchers and graduate students studying OCR technology and
methodology in general and for Arabic script in particular.

Volker Märgner
Haikal El Abed

Braunschweig, Germany
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Chapter 1
An Assessment of Arabic Handwriting
Recognition Technology

Sargur N. Srihari and Gregory Ball

Abstract Automated methods for the recognition of Arabic script are at an early
stage compared to their counterparts for the recognition of Latin and Chinese scripts.
An assessment of the technology for Arabic handwriting recognition is provided
based on the published literature. An introduction to the Arabic script is given fol-
lowed by a description of algorithms for the processes involved: segmentation, fea-
ture extraction, classification, and search. Existing corpora for Arabic are described
together with a design for corpus collection. The paper is concluded by identify-
ing technology gaps and providing a bibliography of the recent literature on Arabic
recognition.

1.1 Introduction

While automated handwritten text recognition technology for Latin script languages
has been the subject of significant research, Arabic script has received far less at-
tention. Existing recognition technology is still in its relative infancy. This paper is
a survey and qualitative assessment of the state of the art of technology for hand-
written Arabic recognition techniques. It covers recent articles related to the subject
that have been published in the International Conference on Document Analysis
and Recognition (ICDAR), Symposium on Document Image Understanding Tech-
nology (SDIUT), International Workshop on Frontiers in Handwriting Recognition
(IWFHR), The International Society for Optical Engineering-Document Recogni-
tion and Retrieval (SPIE-DRR), and International Journal of Document Analysis
and Recognition (IJDAR) proceedings and journals. We first provide a general pre-
sentation of the Arabic script and its main features relevant for automated recogni-
tion, followed by an overview of the recognition process itself. We then illustrate the
pre-processing tasks involved in the process and discuss recognition and document
search methods.

S.N. Srihari (�) · G. Ball
Center of Excellence for Document Analysis and Recognition (CEDAR), University at Buffalo,
State University of New York, Amherst, NY 14228, USA
e-mail: srihari@cedar.buffalo.edu

V. Märgner, H. El Abed (eds.), Guide to OCR for Arabic Scripts,
DOI 10.1007/978-1-4471-4072-6_1, © Springer-Verlag London 2012
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Fig. 1.1 The Arabic alphabet and the shapes of its letters

Fig. 1.2 The shapes of
(a) teh, a letter with two dots
above, (b) theh, a letter with
three dots above, (c) yeh, a
letter with two dots below

1.1.1 Features of Arabic Script

Arabic is a semi-cursive language with an alphabet of 28 letters, 22 cursive and 6
non-cursive. Cursive letters can have up to four different shapes depending on their
position within a sub-word. The shapes correspond to being placed at the start of a
sub-word (initial form), in the middle (medial form), and at the end (final form), as
well as a separate letter form (isolate form). Figure 1.1 shows the letters with their
different shapes. Non-cursive letters have one unique shape which does not depend
on their position. There is also no concept of case in Arabic letters.

Arabic uses various kinds of dot components to distinguish some characters. One
letter can have up to three dots which can be placed (depending on the letter) either
above or below the main form. Figure 1.2 illustrates the use of dots in some Arabic
letters.

Arabic also uses diacritical marks (vocalized text) to control the pronunciation of
words, but these rarely appear in handwritten documents since the context generally
makes the pronunciation unambiguous. They are used mostly in formal documents
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Fig. 1.3 Sub-words
occurring in the Arabic
equivalent of “the situation”

Fig. 1.4 Laam-heh,
laam-meem, and laam-alef
combinations

and where the context is ambiguous. Most Arabic handwriting research focuses on
non-vocalized Arabic text.

Since the non-cursive letters lack a connecting form, their presence in a word
necessitates a break in the word, making for a predictable pattern of sub-words. Fig-
ure 1.3 shows the different components for the word corresponding to the English
“the situation.”

When some combinations of letters appear, they have unique forms. These com-
binations are mostly pairs of letters, such as “laam-alef,” “laam-meem,” or “laam-
heh,” all common occurrences in handwritten text. Some, such as “laam-alef” are
even written the same way in machine printed text. Figure 1.4 shows examples of
connected letters.

Unlike Latin script languages, handwritten and machine printed Arabic are very
similar. While letter shapes have minor variations due to style in handwritten text,
the way letters are connected is always the same. Figure 1.5 shows an example of
the same text with a machine printed version and a handwritten version.

Arabic script is not used only for Arabic itself. Farsi and Urdu, for example,
use similar scripts with small differences. Figure 1.6 shows the Unicode table for
Arabic script as well as extended symbols including letters and numerals used in
Middle Eastern countries and some letters used in other languages. The actual range
for Arabic letters is from 0x0622 to 0x064A.

1.1.2 Related Surveys/Assessments

Some recent publications have focused on Arabic recognition technology. Lorigo
and Govindaraju [29] give an overview of the off-line handwriting recognition tech-
niques. Amara and Bouslama [8] focused on the hybrid methods in recognition
(methods which use more than one source of information).

1.2 Overview of the Recognition Process

While different algorithms vary in their implementation details, most follow a gen-
eral path from document to Unicode text (Fig. 1.7 shows an overview of Ara-
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Fig. 1.5 Machine printed (a) and handwritten (b) versions of the same Arabic text

bic handwritting recognition system). A document is generally input as a scanned
grayscale image. Pre-processing first converts the document to a black and white
image (binarization) and then converts to some representation which is easier to
process than the raw image itself, such as a chain code or a skeleton representa-
tion. From here, additional pre-processing steps such as noise reduction, removing
the slant angle, and smoothing are done. This cleaned image is then passed to a
segmentation algorithm.
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Fig. 1.6 Unicode table for Arabic script languages. Includes letters for Arabic and other languages
(Urdu, Farsi, Uighur, Kazakh, Kirghiz, Kurdish) with the numerals and symbols used in these
languages

A segmentation algorithm splits a large image into smaller regions of interest.
For example, a page segmentation algorithm segments an unconstrained page of text
into component lines. Lines are segmented into words, and words into characters or
sub-characters. The segmentation algorithm can then pass its output directly to a
recognition algorithm. If the segmentation algorithm is completely distinct from the
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Fig. 1.7 Overview of recognizing Arabic handwriting

recognition, its performance can be a bottleneck for recognition. If the segmentation
is incorrect, the lines, words, or characters might not be present in a single image, or
multiple ones might be present in the same image. For this reason, some algorithms
(segmentation-free algorithms) might make only partial use of a segmentation tool.
They might use the output of page segmentation, but not line, for example. Another
approach is to use a segmentation algorithm as a tool to make suggestions rather
than to dictate choices.

Word recognition algorithms fall into three broad main categories. Character-
based word recognition attempts to segment or over-segment words into pieces and
maximize the score of the component characters against some candidate word in the
lexicon. Word shape recognition matches whole word features against entire words.
Holistic line recognition attempts to maximize the score of a given line of text rather
than act on individual words (for an overview see Fig. 1.8).

1.3 Document Pre-processing, Segmentation, and Candidate
Generation

Before recognition is performed on handwritten documents, pre-processing must
first be performed. The choice of pre-processing steps ultimately depends on
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Fig. 1.8 Detailed breakdown of handwritten Arabic recognition. (a) Major methods, (b) charac-
ter-based recognition, (c) word shape recognition, (d) holistic line recognition

the desired recognition algorithm, but some common tasks include binarization,
skew/slant correction, and line detection and separation. Line separation often is
postponed to the segmentation step. Segmentation algorithms attempt to split a doc-
ument into pieces: pages into lines, lines into words, words into characters. These
algorithms generate candidate regions for recognition.

1.3.1 Pre-processing

As mentioned, the choice of pre-processing steps ultimately depends on the desired
recognition algorithm, but some common tasks include binarization, skew or slant
correction, and line detection and separation. One approach specifically used for
Arabic text to eliminate skew is to find the baseline of each word and rotate it on its
center of gravity so that the baseline becomes horizontal.

Some work has focused specifically on pre-processing Arabic handwritten doc-
uments for recognition. Farooq et al. [20] used the IFN/ENIT dataset to develop
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Fig. 1.9 Contour-based
representation

Fig. 1.10 The Arabic word
“al wataniya” (nationalism)
and its skeleton

and test their pre-processing methods by combining them into document-like im-
ages, in order to simulate skew, line separation, and other common features of such
images. They were able to recognize the correct baseline 78.5 % of the time with
their method based on the local minima points of words. However, they fail to find
a baseline in situations where the diacritics are large relative to the word, and sug-
gest removing diacritics as a potential solution. They did not do work on separating
overlapping handwritten lines. Methods for slant, skew correction, and separating a
line into words are discussed, but no specific results are presented.

1.3.2 Representation

Two main types of representation have been used in handwritten Arabic recognition
research. The chain code representation [22] traces the exterior and interior contours
of 8-connected groups of pixels. It preserves the positional and directional infor-
mation of adjacent pixels (an example is shown in Fig. 1.9). Skeletonization uses
various thinning algorithms to extract skeletons, generally single-pixel-wide forms
representing the “core” form of the writing. It is often used to generate structural
features from characters. An example of a word skeleton is shown in Fig. 1.10.

1.4 Discrimination of Handwriting and Machine Print

Several groups have worked on classifying regions or words of Arabic documents
that contain both handwriting and machine print into their own separate classes.
This is particularly difficult in the case of Arabic because of the cursive nature of
both the machine printed and handwritten forms.

Sridharan et al. hypothesize that in Arabic handwriting, horizontal runs and gra-
dients are not as uniform as in machine print [46]. Their method is trainable, and
thresholds were not selected empirically, unlike some previous approaches. Their
approach was based on Gabor filters followed by classification using an expecta-
tion maximization-based probabilistic neural network. An overall precision of about
95 % was found with this method on an internally collected dataset. Training was
done on 50 words each of handwritten and machine printed images, and the test-
ing data consisted of documents containing a total of 286 machine printed and 104
handwritten words.
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Femiani et al. [21] used data in the form of 430 “almost-randomly chosen” de-
graded 150 ppi 8-bit grayscale Arabic language document images that had been
extracted from compressed PDF files, suffering compression and scanning artifacts.
They described a set of 2D and 3D stroke attributes, and generated a classifier using
the JRip propositional rule learner. They were able to correctly identify about 95 %
of the components.

1.5 Segmentation

Unconstrained pages of text need to have some separation take place, grouping text
into regions. This is the process of segmentation, generating candidate regions for
recognition. Segmentation algorithms often attempt to split a document into pieces:
pages into lines, lines into words, and words into characters.

1.5.1 Line Segmentation

Several methods have been successfully used for line separation. Hough transform
methods are able to detect broken lines but are computationally slow. Horizontal
projection-based methods use the projection profile of the image with its local max-
ima and minima. Vectorization algorithms extract vectors from pieces of broken
lines and merge them together according to rules to form directional single con-
nected chains (DSCCs) which can represent lines in the text. This DSCC approach
was described further by Sridharan et al. [46].

A recent algorithm described by Arivazhagan et al. [11] starts by obtaining an
initial set of candidate lines from the piecewise projection profile of the document.
The lines traverse any obstructing handwritten connected component by associat-
ing it to the line above or below. A decision of associating such a component is
made by (i) modeling the lines as bivariate Gaussian densities and evaluating the
probability of the component under each Gaussian or (ii) evaluating the probability
obtained from a distance metric. The proposed method is robust to handle skewed
documents and those with lines running into each other. Experimental results show
that on 720 documents (including English, Arabic, and children’s handwriting) con-
taining a total of 11,581 lines, 97.31 % of the lines were segmented correctly. On
an experiment over 200 handwritten images with 78,902 connected components,
98.81 % of them were associated to the correct lines.

1.5.2 Word Segmentation

One method specific to automatic word segmentation of Arabic was presented re-
cently by Srihari et al. [51]. The process of automatic word segmentation begins
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Fig. 1.11 Automatic segmentation gaps (a) between characters and (b) between words

with obtaining the set of connected components for each line in the document image.
Figure 1.11(a) and Fig. 1.11(b) show the connected components (exterior and inte-
rior contours) of a small region of a document image. The interior contours or loops
in a component are ignored for the purpose of word segmentation as they provide
no information for this task. The connected components are grouped into clusters
by merging minor components such as dots above and below a major component.

Also particular to Arabic, many words start with the Arabic character “Alef.” The
presence of an “Alef” is a strong indicator that there may be a word gap between
the pair of clusters. The height and width of the component are two parameters used
to check if the component is the character “Alef.” Figure 1.12 shows samples of the
Arabic character “Alef.” All pairs of adjacent clusters are candidates for word gaps.

Nine features are extracted for these pairs of clusters, and a neural network is
used to determine if the gap between the pair is a word gap. The features are: width
of the first cluster, width of the second cluster, difference between the bounding box
of the two clusters, flag set to 1 or 0 depending on the presence or absence of the
Arabic character “Alef” in the first cluster, the same flag for the second cluster, num-
ber of components in the first cluster, number of components in the second cluster,
minimum distance between the convex hulls enclosing the two clusters, and the ratio
between the sum of the areas enclosed by the convex hulls of the individual clusters
to the total area inside the convex hull enclosing the clusters together. The minimum
distance between convex hulls is calculated by sampling points on the convex hull
for each connected component and calculating the minimum distance of all pairs of
such points. Some of the differences noted between the tasks of segmenting Arabic
script and segmenting Latin script are the presence of multiple dots above and below
the main body in Arabic and the absence of upper case letters at the beginning of
sentences in Arabic. The method presented was found to have an overall correctness
of about 60 %.

Another method, the Arabic Character Segmentation Algorithm (ACSA) dis-
cussed by Sari et al. [43], relies on local minima detection in connected compo-
nents (or sub-words). A preliminary step detects all local minima, which are then
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Fig. 1.12 Samples of Arabic
character “Alef.” The height
and width are two parameters
that are used to detect the
presence of “Alef” in the
clusters

Fig. 1.13 Segmentation of
the first component of the
word “meezan.” (a) All local
minima, (b) valid
segmentation points

classified into valid or non-valid segmentation points, depending on a set of six ac-
ceptance rules. Points that are not accepted go through a rejection test using three
rejection rules. The decision rules are based on the features of Arabic script in which
ascenders, descenders, and loops have a key role. ACSA also uses a character sepa-
ration method that extracts the outer contour between segmentation points and then
rebuilds the character with a filling procedure after adding the loops. Figure 1.13
shows an example of segmentation points.

The algorithm fails to segment words when it encounters special connections
between two letters or components that touch each other unexpectedly. The method
reports an 86 % success rate with 9 % over-segmentation and 5 % rejection.

Another similar approach described by Olivier et al. [39] was based on a simpli-
fication made on the upper contour of the processed words. A Freeman code repre-
sentation is first extracted from the contour. The algorithm then removes the small
variations in direction so that the contour used for segmentation is represented only
by horizontal segments, which will help avoid incorrect local minima. Local min-
ima are detected and filtered according to a set of three rules. The method reports a
success rate of 97.41 % with a sub-segmentation rate of 2.24 % and 0.35 % of un-
necessary segments. The method fails when an overlapping is encountered (a com-
bination of letters merged together). A solution is given which tries to find artificial
local minima in the overlapping area to separate the merged characters.

1.5.3 Character Segmentation

Ligatures are strong candidates for segmentation points in cursive scripts. If the
distance between y-coordinates of the upper half and lower half of the outer con-
tour for an x-coordinate is less than or equal to the average stroke width, then the
x-coordinate is marked as an element of a ligature. Concavity features in upper
contour and convexities in the lower contour are also used to generate candidate
segmentation points, which are especially useful for distinct characters which are
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touching, as opposed to being connected. A ligature will cause any overlapped con-
cavity features to be ignored. For a given x-coordinate, if a concavity and convexity
overlap, a segmentation point is added for that x-coordinate. This ligature-based
method was used by Ball et al. in [12] for their spotting recognition step.

Lorigo and Govindaraju [28] describe a character segmenter which over-
segments each word and then removes extra breakpoints using some prior knowl-
edge of letter shapes. On 200 images from the IFN/ENIT dataset, they found 92.3 %
of the segmentation points correctly with 5.1 % instances of over-segmentation.
They discuss the fact that they need to do additional work to correctly add pre-
recognition information on shadda and hamza.

1.5.4 Segmentation-Free Line Processing

Ball et. al [50] put forth a segmentation-free algorithm that processes entire lines
rather than relying on pre-segmented words. Rather than attempt to parse the line
into distinct words, it uses a sliding window approach in order to consider overlap-
ping regions of interest. By considering overlapping candidates, this algorithm can
avoid some of the bottleneck of straightforward word segmentation.

The algorithm can be viewed as a sequence of steps. First, the image is processed
into component lines. Candidate segmentation points are generated for a given line.
The line is scanned with a sliding window, generating candidate words and scor-
ing them, as well as filtering out nearly equivalent candidates. The segmentation
algorithm used on the line is essentially the same as the one used to generate can-
didate character segmentation points in candidate words in the actual spotting step.
It is performed via a combination of ligatures and concavity features on an encoded
contour of the components of the image. The average stroke width is estimated and
used to determine the features. The segmentation-free line processing method uses a
character segmentation algorithm applied to the split of entire lines, the motivation
being to generate candidate word regions on the line. Arabic has predicable breaks
in a word based on non-connective characters. Therefore, the number of connected
components in a word is predictable as well.

Line Scanning

The method utilizes a sliding window, as illustrated in Fig. 1.14. The direction of
the scan is unimportant because all realistic combinations of connected components
will be considered.

Each character class c in Arabic is associated with a minimum and a maximum
durational length (minlen(c) and maxlen(c), respectively). These lengths are gener-
ated by segmenting a representative dataset of characters with the same segmenta-
tion algorithm, and taking the min and max for each character. Due to the nature of
the Arabic character set, the upper bound for all characters is 5, not 4 as in [27].
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Fig. 1.14 Candidate word
regions

The scanning algorithm will scan for candidate words consisting of a range of
segments. For a given search word W consisting of n characters, c0 to cn−1 ∈ W ,
the minimum number of segments minlen(W) considered is

∑n−1
i=0 minlen(ci) and

the maximum considered length maxlen(W) is
∑n−1

i=0 maxlen(ci).
The scanning algorithm considers each segment s on a line generated by the

segmentation algorithm acting on the line. For a given segment si , if i = 0 or if
si .left > si−1.right (i.e., there is horizontal space to the left of the segment), it is
considered a valid start point. Similarly, for a given segment si , if i = max(s) or
if si .right < si+1.left (i.e., there is horizontal space to the right of the segment),
it is considered a valid endpoint. The algorithm considers candidate words to be
all ranges of segments starting with some valid start point si , ending with a valid
endpoint sj , such that minlen(W) ≤ j − i + 1 ≤ maxlen(W).

While this generally results in more candidate words than the other segmentation
method, it does not result in a dramatic decrease in performance since each Arabic
word is only broken into a few pieces separated by whitespace.

Filtering

Often, a candidate word influences neighboring candidate words’ scores. Neigh-
boring candidate words are those words with overlapping segments. Often, a high
scoring word will also have high scores for neighboring candidates. One issue arises
when the high scoring word is in fact an incorrect match. In this case, the incorrect
choice and several of its neighboring candidates may receive similarly good scores,
pushing the rank of the actual word lower in the list. Another issue is if the target
word appears multiple times in a document. The best matching words’ neighboring
candidates can depress the second occurrence’s rank. Various ways of dealing with
the overlap meet with different degrees of success.

The approach taken in the current implementation of the algorithm is to keep the
candidate word that has the highest score out of the overlapping words. The sliding
window method was able to increase performance significantly, offering 91 % raw
classification accuracy. Using five writers for providing prototypes and the other five
for testing, using manually segmented documents, 55 % precision was obtained at
50 % recall for the word shape method alone. The character-based method achieved
75 % precision at the same recall rate. The combined method is consistently better,
resulting in about 80 % precision.
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1.6 Features for Recognition

1.6.1 Isolated Characters

The features that are used most often for Arabic character recognition are ei-
ther structural, such as loops, endpoints, cross points, branch points, and ascen-
ders/descenders, or statistical, such as moments, Fourier descriptors, and projec-
tions. While some of these features may be good discriminative features as they
offer direct correlation to Arabic structures, some cannot be extracted easily from
training images. Loops appearing in characters might not always be closed, for in-
stance, which makes their detection difficult.

An example of a statistical feature set is the WMR (Word Model Recognizer)
feature set, which consists of 74 features (described in [47] among others). Two are
global features–aspect and stroke ratio of the entire character. The remaining 72 are
local features. Each character image is divided into 9 subimages. The distribution
of the 8 directional slopes for each subimage form this set (8 directional slopes × 9
subimages = 72 features). Fli,j = si,j /NiSj , i = 1,2, . . . ,9, j = 0,1, . . . ,7, where
si,j = number of components with slope j from subimage i, where Ni = number of
components from subimage i, and Sj = max(si,j /Ni). These features are the basis
of comparison for the character images derived from the segmentation of words to
be recognized.

In [27], a lexicon-based method for recognizing English words is discussed, and
in [12] a similar method is applied directly to Arabic for the purpose of word spot-
ting.

An example of a structural feature set is one used which relies on the relationships
between the basic stroke of the characters’ shape described in [9]. Each character
is thinned and its skeleton is extracted during pre-processing. It is then simplified
to include only basic strokes of a predetermined set. Those basic strokes are lines
in four directions, open curves in four directions, and loops. Once characters are
simplified, connections between these basic strokes are identified and classified into
classes. The character is represented by a propositional logic form that is specific to
the classifier used in the system which is based on inductive logic programming.

1.6.2 Word Shape Features

Word level features describe features of the overall word.
One feature set used recently is the Generalized Shape Context (GSC) feature

set, described in [53]. It has two types of features, distribution and local concav-
ity, extracted from sub-frames of the word image or cells. The word image is pre-
processed in order to extract the upper and lower baselines. The lower baseline is
the “traditional” baseline where most ligatures occur, and the upper baseline is the
height where many Arabic letter ascenders terminate. The image is also divided
into vertical frames of equal width which are themselves divided into cells of equal
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height. Features vectors are then extracted from each frame, each vector contain-
ing 24 features. Distribution features are essentially based on pixel densities. They
are extracted using different density ratios: number of black pixels in one cell, ratio
of black to white pixel in cell columns, positions of the centers of gravity, and a
derivative feature that gives differences between positions of the centers of gravity
of different frames. Local concavity features represent directions in turning points
detected in the cells, some of them involving specifically pixels that are between the
two baselines.

In [51] and [49] a word shape-based method is utilized for word spotting.
Another feature set generates a simplified representation of the word’s skeleton

by taking an approximation of line strokes and loops. A word is then represented by
a two-dimensional feature vector for each line segment, the two components of the
vector being the distance between the segment’s endpoints and its orientation angle.
From that representation, each segment is classified into one of the 60 classes of ba-
sic strokes using a clustering algorithm that outputs a sequence of basic predefined
strokes which is then used for recognition. A chain code-based approach divides the
image into vertical frames and each frame into five zones. For each zone a histogram
of chain code slope is built with 45 steps. The histogram is normalized by dividing
it by the height of the zone. A Kohonen self-organizing feature map (SOFM) algo-
rithm is then used to limit the size of the feature set for the training phase.

1.6.3 Dealing with Dots

There are several approaches to dealing with the dots which distinguish Arabic char-
acters from one another. Since words are rarely distinguished from one another ex-
clusively by dots (as opposed to characters), some approaches simply ignore them,
reducing the character classes. Other approaches try to assign the dot groups to spe-
cific subsegments. Yet another approach is to act on the word level, and look at dot
groups independently of the main word itself.

1.7 Classification

1.7.1 Isolated Characters

Much work has been done on isolated characters. Several algorithms have been
described for the recognition of numerals used in Farsi postal codes. In one such
algorithm [37], the number is first smoothed and the skeleton is extracted using a
thinning algorithm. It is then used to generate a set of feature points. Features points
are intersection and terminal points. The character is then decomposed into prim-
itives (segments that join feature points). Another algorithm attempts recognition
using a quadtree-based fractal representation and an iterated function system. Both
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of these systems attempt to recognize 8 of 10 of the numerals since only these num-
bers are used in Iranian zip codes; the other two numerals have appearances which
can cause confusion due to similarity. A recognition rate of 94.44 % was obtained
for numerals on the test sets they produced internally. These sets were gained from
more than 200 people with different ages and different educational backgrounds.
There are 480 samples per digit in the database for a total of 3840 digit images.

Another method for recognizing such digits was presented [36] where a quadtree
is first built from the raw image of a character and then compressed using fractal en-
coding. Feature extraction uses vectors that have a variable number of components.
Principal component analysis is then used to normalize the length of the vectors.
After feature vectors are extracted and normalized, classification is done using two
methods. The first method is a nearest neighbor classifier using the feature vectors
and the signal to noise ratio between the fractal codes of the query image and the
database used for training. The other method measures the minimum Euclidean dis-
tance between the query after one iteration of the coding algorithm and the decoded
images of the database. The authors report a performance of 86.3 % on test sets with
the nearest neighbor classifier and 90.6 % with the fractal transformation method.

Earlier, an algorithm was presented [1] where pre-segmented characters are rep-
resented by fuzzy direction sets. After a skeleton is extracted from the character
image, a tree representation is built using four types of components present in the
skeleton: single dot, directions, single loops, and double loops. A fuzzy number rep-
resentation is built out of the tree structure and matched against a character model
during the recognition step. The system had a recognition rate of 73.6 % with 9.4 %
error and 17 % rejection.

A Bayesian classifier was used to classify isolated characters as well as char-
acters arising from word segmentation. A preclassification step was performed on
secondary character components, such as dots, based on heuristic thresholds for
components’ size and dimensions. The distance used for classification is shown be-
low. It represents the distance between the observation vector x and the group i, m

being the mean value of the group i and σi being its covariance matrix.

D(x)2
i = (x − mi)

T + σ−
i 1(x − mi) + ln |σi | (1.1)

Recognition of secondary characters in this method allows the authors to bring
the number of classes from 100 to 64. The results of the two recognition steps are
associated to give a final recognition score. The reported performance for isolated
characters was 99.5 %.

1.7.2 Isolated Words

A competition was held for ICDAR 2005 [32] which compared a variety of con-
temporary systems in progress. The competition used the IFN/ENIT database of
handwritten Arabic town names made available in 2002. This dataset was devel-
oped for the sake of advancing Arabic handwritten word recognition systems. Until
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recently, such a large, public dataset was not available for Arabic, in contrast to the
long and widely available English databases [41].

Five systems were submitted to the contest (see Sect. 17.3.1). Although one par-
ticipant wanted all details about their system to remain confidential, the four remain-
ing systems gave some rudimentary details about their approach to the problem.
ICRA was a two-tiered neural net approach using a derived lexicon. TH-OCR was
an extension of a multilingual recognition system utilizing statistical pattern recog-
nition. UOB [17] is a pure hidden Markov model (HMM) system using a toolkit
called HCM (details are in [17]). The system for handwritten word recognition uses
the feature extraction discussed in [35]. REAM uses a hybrid planar Markov model
to partition handwritten words into five logical horizontal bands. The approach was
presented in [52]. The presenters of the competition also added the results of their
system, presented in 2003, for comparison. Their system was based on a semicon-
tinuous one-dimensional HMM [40].

Of the systems tested, the highest recognition rate on a novel dataset similar to
IFN/ENIT was for UOB with a recognition rate of nearly 76 %, closely followed
by the authors’ own method, which achieved a recognition rate of about 75 %. The
other systems’ performances varied widely, ranging from 15–66 %, several suffer-
ing dramatically from apparent over-training. While the systems that performed the
best were HMM based with a neural net approach, other systems using an HMM or
neural network approach had very low recognition rates. This led the authors pre-
senting the competition results to conclude that features, normalization, and recog-
nition method all play critical parts in recognition performance.

The ICDAR 2005 competition results are as follows.

System Name Top 1 Top 5 Top 10

ICRA 65.74 83.95 87.75

SHOCRAN 35.70 51.62 51.62

TH-OCR 29.62 43.96 50.14

UOB 75.93 87.99 90.88

REAM* 15.36 18.52 19.86

ARAB-IFN 74.69 87.07 89.77

*(tested with 3000 names)

A follow-up competition in ICDAR 2007 [33] met with much more participation,
testing 14 systems by 8 groups, likely reflecting the increased interest with which
Arabic recognition is being investigated. Märgner noted that more than 54 research
groups are working with the IFN/ENIT database alone. In the 2007 competition, the
systems were compared on overall recognition rate as well as speed. The winning
system by Siemens had the highest recognition rate and was based on a hidden
Markov recognizer. The system by CEDAR had the shortest average processing
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time. While the range of performance reported in this competition was large, this
reflected the wide range of techniques and feature sets that were utilized.

Nadir et al. [38] tried using two types of features with a number of artificial neu-
ral networks (ANNs) in order to recognize isolated words. Their neural networks
were based on a three-layer perceptron. The number of neurons in the hidden layer
is calculated by a heuristic, and the overall system is made from two identical ANN
subsystems, each containing two ANNs. They have a statistical feature set based on
pixel information. A word image is cut into multiple pieces with various shapes, and
the features are the density of lit pixels in the regions. They also use a structural fea-
ture set expressed as a composition of structural units–they calculate such features
as the number of ascenders, descenders, and loops. They used a restricted lexicon of
48 words used by Arabic writers when writing the literal amount field on a check.
They had 4800 word images, the 48 words written by 100 different writers. The
rejection criterion was chosen to keep a reliability of at least 99 %. They showed
several combinations of their neural networks and had recognition rates in the low
to mid-90 %’s with reject rates of around 5 %.

Yousef Al-Ohali et al. described a check recognition system in [3]. Checks in-
clude numerical information which can be compared with written amounts and
therefore improve recognition. While recognition is performed, sub-words are ex-
tracted separately and combinations are tested and compared with the available nu-
merical values using a context-sensitive grammar. A database was built to show the
distribution of the different sub-words using a human tagging process which would
separate different components (or objects) into four classes as a preliminary step
(sub-words, numerical amounts, courtesy amount blocks and legal amount blocks).
The limited number of possible sub-words allows a limited number of grammar
rules to be used.

Lexicon-Based Approaches

“Lexicon-based” approaches make use of the sequences of Arabic characters for
words appearing in a collection of words (lexicon) in order to select sets of prototype
images representing the characters forming them. The word will be categorized as
one of the words in the lexicon and receive a relevance score (how closely the word
appears to be that prototype word). If the image’s real word does not appear in the
lexicon, it cannot be recognized correctly. In this case, although the word will be
assigned to one in the lexicon, it is hoped that the relevance score will indicate that
the word is, in fact, unrecognized.

Pre-processing steps often include line and word segmentation; it is most com-
mon for lexicon-based approaches to act on candidate words. In one algorithm [12],
the candidate word image is first split into a sequence of segments (as in Fig. 1.15).
The best possible sequence corresponds to the individual characters in the candidate
word being separated. In general, it is better to “over-segment” the words rather than
“under-segment” them because it is often easier to combine fragments of characters
together than to recognize unsegmented characters. Segments are then rejoined and
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Fig. 1.15 Arabic word
“king” with segmentation
points and corresponding best
segments shown below

features extracted, which are in turn compared to features of prototype images of
the characters. Further issues of under-segmenting unique to Arabic (such as char-
acters which are not horizontally segmentable) can be dealt with using compound
character classes.

A score that represents the match between the lexicon and the candidate word
image is then computed. The score relates to the individual character recognition
scores for each of the combined segments of the word image. Adjacent segments
are compared to the character classes dictated as possibilities by a given lexicon
entry. In the first phase of the match, the minimum Euclidean distance between the
WMR features of candidate super-segments and the prototype character images is
computed. In the second phase, a global optimum path is obtained using dynamic
programming based on the saved minimum distances obtained in the first matching
phase. The lexicon is ranked, the entries with the lowest total scores being the closest
matches.

One HMM approach, intended for the recognition of city names, is based on
dividing each word image into a given number of vertical frames from which fea-
ture vectors are extracted. Each entry in the lexicon will then have its own two-
directional HMM representation which gives estimated transition probabilities be-
tween the different frames. The maximum number of forward jumps considered in
the HMM was experimentally chosen between two and four.

For a given word model λc, if O is the set of K training samples, then

O = O(1),O(2), . . . ,O(K) (1.2)

Each training word is represented by a set of observation symbols:

O(k) = O
(1)
1 ,O

(2)
2 , . . . ,O

(K)
Tk

(1.3)

The probability of generating a word k with that model is then

Pk = P
(
O(k)|λc

)=
N∑

i=1

α
(k)
Tk

(i)γi (1.4)

where α(k) is the forward variable for a given word sample and γi are the last state
distribution probabilities.
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Fig. 1.16 A query word
image (left) matched against
four selected prototype
images. The 1024 binary
GSC features are shown next
to the images

The authors used different training schemes with and without a smoothing factor
for the HMM transition probabilities. The recognition rate increases dramatically
when a high smoothing factor is applied and reaches 95 % for the top 20 results
using a smoothing factor of 0.01. The performance is lower for a higher factor.

Word Shape Matching

In one word shape matching algorithm, binary features are compared using the
correlation similarity measure 1.7.2 to obtain a similarity value between 0 and 1.
This similarity score represents the extent of match between two word images. The
smaller the score, the better the match. For word spotting, every word image in the
test set of documents is compared with every selected prototype, and a distribution
of similarity values is obtained. The distribution of similarity values is replaced by
its arithmetic mean. Now every word is sorted in rank in accordance with this final
mean score. Figure 1.16 shows an example query word image compared with a set
of four selected prototypes.

Similarity Measure

The method of measuring the similarity or distance between two binary vectors
is essential. The correlation distance performed best for GSC binary features [53]
which is defined for two binary vectors X and Y , as in Eq. (1.5):

d(X,Y ) = 1

2

(

1 − s11s00 − s10s01

[(s10 + s11)(s01 + s00)(s11 + s01)(s00 + s10)] 1
2

)

(1.5)

where sij represent the number of corresponding bits of X and Y that have values i

and j .
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Summary of Approaches

Lorigo and Govindaraju [29] included a table of recognition engines in their survey.
To put the state-of-the-art methods in some context, we have built upon their work
to provide extended and reorganized versions, also comparing training, and testing
set information as well as reported results.

The most common approaches to recognition generally involve some usage of
hidden Markov models (HMMs) or artificial neural networks (ANNs).

Approaches involving HMMs are as follows:

Publication Description/Results

El-Hajj et al., 2005 [16] Character HMMs, 1D HMM system (analytical
approach)

IFN/ENIT database words with 8 or more
instances (21,500 images), up to 87.20 %
recognition

Safabakhsh, Adibi, 2005 [42] Continuous-density variable-duration HMM with
novel pre-processing, segmentation (targeting
avoidance of under-segmentation); three Fourier
descriptor features, five structural and discrete
features

Nastaaligh style words, 50 word lexicon, up to
91 % recognition rate on some words

Alma’adeed et al., 2004 [6] Skeleton-based features extracted, rule-based
classifier for global recognition, HMM used for
trial classification

47 word lexicon, 4,700 images rejecting 10 %
images in pre-processing, 100 writers, 45 %
recognition rate

Khorsheed, 2003 [26] Trains a single HMM with structural features;
uses multiple character HMMs

Historical manuscripts, 87 % recognition
accuracy with spell check, 72 % without

Pechwitz, Märgner, 2003 [40] Semicontinuous 1D HMM, character HMM for
each variation of characters

IFN/ENIT database (937 word lexicon), 89 %
accuracy

Dehghan et al., 2001 [14] Holistic approach, HMM for each word; uses
right-left discrete HMM and Kohonen
self-organizing vector quantization

198 Iranian city names, 17,000 images, 60 %
training, 40 % testing, 65.0 % top 1, 76.1 % top 2,
95.0 % top 20
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Approaches involving ANNs:

Publication Description/Results

Farah et al., 2004 [19] Holistic approach; ANN (multilayer perceptron with
supervised training), K-NN, fuzzy K-NN using classifier
combination

48 word lexicon written by 100 writers, 1,200 words for
training, 3,600 for testing; 91 % recognition for neural
network, 89.08 % for K-NN, 92.16 % for fuzzy K-NN,
after classifier combination, 96 % recognition rate overall

Snoussi Maddouri, 2002 [31] Transparent neural network, local/global vision modeling
(GVM-LVM) at the word level; GVM uses structural
features, LVM uses Fourier descriptors

70 word (from bank checks) lexicon, 2,070 images, 97 %
recognition

Fahmy, Ali, 2001 [18] Uses skeleton representation, features include locating
endpoints, junctions, turning points, loops, generating
frames (segmentation step), and detecting strokes

69.7 % word recognition rate on 600 words written by one
writer

Souici-Meslati, 2004 [44, 45] Knowledge-based ANN, perceptual features analysis for
creating knowledge base, translation into ANN

55 word lexicon, 92 % recognition

HMMs and ANNs have been applied to individual character recognition as well:

Publication Description/Results

Haraty, 2001, 2004 [24, 25] Conventional initial segmentation, generation of
pre-segmentation points, neural network verification

About 4000 words written by students and faculty, about
70 % accuracy (later paper 73 %)

Dehghani, 2001 [15] Two types of feature vectors based on regional projection
contour transformation, two-stage recognition, multiple
HMMs

92.76 % on training set, 71.82 % on testing (set size not
specified)

Miled, 2001 [34] Planar HMMs, architecture designed for printed Arabic
sub-words, testing underway for handwritten

“Encouraging” results

Amin, 1996 [10] Skeleton-based tracing, neural network approach;
combines rule-based (structural) and classification tests

Trained with 2,000 characters, tested with 1,000 more by
10 writers, 92 % recognition
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A variety of other interesting methods have been explored for recognizing indi-
vidual characters over the years:

Publication Description/Results

Mozaffari et al., 2005 [36] Quadtree, fractal encoding, nearest neighbor, minimum Euclidean
distance
8 digits (Iranian postal code digits), 280 image training, 200 testing
(per digit), 86.3 % fractal nearest neighbor, 90.6 % fractal
transformation

Mozaffari et al., 2005 [37] Statistical method embedded with statistical features, principal
component analysis, 94.44 % accuracy
8 digits (Iranian postal code digits), 280 image training, 200 testing
(per digit), nearest neighbor, 94.44 % accuracy

Al-Shaher, 2003 [4] Training point distribution models using the
expectation-maximization algorithm
Tested on 7 character classes, 100 samples of each character, 98.3 %

Amin, 2003 [9] Rule-based, stroke types and relationship extracted automatically,
inductive learning program generates first-order Horn clauses for
characters
120 characters, 40 samples (30 training, 10 testing), 86.65 %
accuracy

Clocksin, 2003 [13] Discriminative support vector machine with 10-fold cross-validation;
variety of segmentation methods/combinations of features, both on
characters and words
Syriac script, 91 % accuracy

Abuhaiba, 1998 [2] Fuzzy sequential machine character recognition
13 pages, 13 writers for training, 20 pages, 20 writers testing
Authors asked to write in a specific style, single stroke, etc.
55.4 % sub-word, 51.5 % character recognition rates

Abuhaiba, 1994 [1] Noise-independent, produces skeletons reflecting structural
relationships, converted to tree structure, uses fuzzy constrained
character graph models and rule-based matching
test data by 4 people, results varying from 73.6 % to 100 % with
tuning based on input

Al-Yousefi, 1992 [5] Statistical approach; primarily separated into dots/zigzags, secondary
characteristics then identified; using quadratic discriminant
classification
10 handwritten samples from database of 50, 81.0 %–98.79 %
accuracy

Goraine, 1992 [23] Eight-direction code used for stroke representation/classification at
primary/secondary levels, contextual postprocessor for detecting
errors and correction
180 words written neatly by three writers in a specific font, 90 %
success

Almuallim, 1987 [7] Skeleton representation, structural features, rules to join strokes into
characters
400 samples, 2 writers, 91 % success
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1.8 Document Search

1.8.1 Word Spotting

Recently, work has been started on spotting words in Arabic handwritten docu-
ments [48, 49, 51], and [12]. Given a set (or a page) of handwritten words, a common
query for a user to ask is whether or not a specific word is among that set. More gen-
erally, given a page of handwritten text, a common query is whether or not a word
or words of interest appear on the page. Such a query allows a user to sift through a
set of documents for a subset of documents that is of most interest. This is the mo-
tivation behind the word spotting problem: given a scanned image of a handwritten
document and a Unicode sequence of characters (the query word), the word spotting
problem asks if the image contains a handwritten image of the query word and, if
so, at what coordinates in the image does the word exist.

An algorithm and a system for searching handwritten Arabic documents to locate
such key words was presented. In this approach, the system had three main compo-
nents: a word segmenter, a shape-based matcher for words, and a search interface.
Two steps are involved in the search. First, the query is used to obtain a set of hand-
written prototype samples of that word from a known set of writers. In the second
step, the prototypes are used to spot each occurrence of the words in the documents
to be searched. The performance of the system was tested on a database of 20,000
word images contained in 100 scanned handwritten Arabic documents written by
10 different writers. On average, if five authors were used for providing prototypes
and the other five for testing, using manually segmented documents, 55 % precision
was obtained at 50 % recall, with increased performance if more writers were used
for training.

1.8.2 Versatile Search

The algorithm was later extended and incorporated into a framework for versatile
search [50]. Versatile search is a framework by which the query can be either text
or image and the retrieval method is a fusion of text and image retrieval methods.
A Unicode and an image query are maintained throughout the search, with the re-
sults being combined by a neural network. Preliminary results show positive results
that can be further improved by refining the component pieces of the framework
(text transcription and image search). The conclusion was that processing image-
and text-based queries in parallel can result in higher performance than either alone,
boosting precision of the same queries from roughly 55 % to 80 % at 50 % recall.

1.9 Databases of Handwritten Arabic Text

Until recently, a large, public dataset was not available for Arabic, in contrast to the
long and widely available English databases. The IFN/ENIT database of handwrit-
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ten Arabic town names was the first to be made available in 2002. Other databases
were used like the database of Arabic checks of the Saudi Al Rajhi bank, but were
not made available. Following is a list of the databases used by different recognition
systems either as training data or as lexicons:

Database Description/Results

Dehghan 2001 [14] More than 17,000 images of 198 Iranian city names

Fahmy 2001 [18] 600 words by one writer (300 different words, each written twice)

Alma’adeed 2004 [6] 10,000 words used on bank checks by 100 writers

Amin 2003 [9] 4,800 samples of isolated characters

Khorsheed 2003 [26] Ancient historical manuscript

Pechwitz 2003 [40] 26,459 images of Tunisian city names, by 411 writers

Haraty 2001, 2004 [24, 25] Ligatures and characters, handwritten in shapes they would have
in words

Mozaffari 2005 [36] Database of numerals, 480 samples per digit written by more than
200 people

1.10 Construction of a Handwritten Arabic Corpus

1.10.1 Corpus Collection

Most available corpora for Arabic consist of single word images. Perhaps the largest
bottleneck to continued research in Arabic handwriting recognition is that of a lack
of available large-scale corpora. Without such resources, developing and testing al-
gorithms for Arabic documents is highly problematic since there is difficulty in
judging the generality and effectiveness of results.

1.10.2 Handwritten Documents

One much-needed corpus needs to be created consisting of truthed, unconstrained
document images written by several different authors. Many interesting and chal-
lenging problems relate to the processing of real-world documents, which often
take this form. Thus far, some authors have resorted to creating pseudo-documents
out of single word images. Such approaches allow for theoretical testing only. Not
only is the generation of such documents inconvenient, researchers have to resort to
generating methods by testing on artificial data, and to report results that have never
actually been tested on real documents. While some methods may not suffer from
being developed on pseudo-documents, others rely on the natural flow of writing
from a single author, or rely on more complicated language models that are difficult
to approximate.
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Character Images

Another needed corpus is a large set of truthed handwritten character images, taken
from naturally written words. A large database of such images is useful in extract-
ing generic features of Arabic handwriting used in character-based recognition ap-
proaches. Such approaches are among the highest performing in English recogni-
tion, and recent results show promise for Arabic as well.

A large database is necessary to generate sufficient variation in the writing of the
characters for each author. A variety of authors is necessary to create generalized
features of different writing styles. Since individual character images written alone
may have significant differences with those written in the natural flow of a sentence,
it is necessary to extract them from words and not simply have them written alone.
In addition samples where the authors are making an effort to write neatly have
some use, but it is more important to get natural writing since the goal is to process
naturally written documents.

1.10.3 Execution Plan

Since there are very few databases applicable to Arabic, there are many areas of
need. However, the following set of data is the most needed.

1. Full, Handwritten Pages—Examples of full handwritten pages should be ob-
tained and truthed. Though difficult, the needed number is at least in the hun-
dreds.

2. Character Data—A minimum of several hundred examples of each variation of
each Arabic letter.

3. Representative of Many Styles—It is essential to encompass the writing styles
of a variety of authors, preferably representing all common variations of writ-
ing. This means the documents from which the samples are drawn should in-
clude a diverse set of authors (in terms of age, gender, geographic origin,
etc.).

4. Hierarchical—For page data, truth should be available in a hierarchical fashion,
tagging each page, paragraph, line, word, and character with truth values. Doc-
uments often contain multiple layers, incorporating such items as logos, printed
text, signatures, handwritten notes, and stamps. Each of these layers should be
isolated individually when possible.

5. Real World—Real-world documents are necessary to avoid the inherent issues
in collecting data specifically for the purpose of corpora, such as authors writing
too neatly.

One difficulty is finding a source for such documents, due to such issues as pri-
vacy. Very good sources include handwritten notes and forms. Full page corpus
generation can be greatly aided by transcription mapping.
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Document Representation

XML is one efficient way to address the hierarchical requirement listed above. XML
also has benefits such as data interoperability. One such document representing
XML structure was recently used in storing CEDARABIC documents by CEDAR,
with the following DTD:

<!ELEMENT File (Document,Writer,Page,Words)>
<!ATTLIST File Name CDATA #REQUIRED>
<!ELEMENT Document (#PCDATA)>
<!ELEMENT Writer (#PCDATA)>
<!ELEMENT Page (#PCDATA)>
<!ELEMENT Words (word+)>
<!ELEMENT word (top,left,right,bottom,Pronunciation,

Meaning,Alphabets)>
<!ATTLIST Word Line_Number CDATA #REQUIRED>
<!ATTLIST Word Word_Number CDATA #REQUIRED>
<!ELEMENT top (#PCDATA)>
<!ELEMENT left (#PCDATA)>
<!ELEMENT right (#PCDATA)>
<!ELEMENT bottom (#PCDATA)>
<!ELEMENT Alphabets (#PCDATA)>
<!ELEMENT Pronunciation (#PCDATA)>
<!ELEMENT Meaning (#PCDATA)>

The above DTD describes the following tags:

• <File>—Encloses the contents of the entire file. Contains the file name in the
attribute File Name. Encloses the tags <Document> <Writer> <Page>

<Words> . There can be only one <File> tag per XML file.
• <Document>—Contains the value of the document number. There can be only

one <Document> tag per XML file.
• <Writer>—Contains the unique number assigned to the writer who wrote the

document. There can be only one <Writer> tag per XML file.
• <Page>—Contains the page number of that file. Each file contains only a single

image of the handwritten document, and hence there can be only one <Page>

per XML document, which specifies if the image corresponds to the first or sec-
ond page.

• <Words>—This tag encloses all the words in the document using a <word>

tag for each word.
• <word>—The word tag gives the following details about that particular word.

The Word Number and Line Number are represented as attributes of this tag. It
encloses the <top>, <left>, <right>, <bottom>, <Alphabets>,
<Pronunciation> and <Meaning> tags.

• <top>, <left>, <right>, <bottom>—These tags give the x-, y-
coordinates of the top, left and right, and bottom of the bounding box that en-
closes that word.
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• <Alphabets>—This tag gives the alphabet sequence of the word, which con-
tains the root alphabets separated by order.

• <Pronunciation>—This gives the pronunciation of the word in English.
• <Meaning>—This tag gives the meaning of the word in English.

The following is the structure of a sample XML file:

<File Name="001_1_1.png"
<Document>1</Document>
<Writer>001</Writer>
<Page>1</Page>
<words>
<word Line_Number="1" Word_Number="1">
<top>299</top>
<left>2049</left>
<right>2187</right>
<bottom>387</bottom>
<alphabets>Alef|Lam|Teh|Qaf|Alef maksura|</alphabets>
<pronunciation>eltaqa</pronunciation>
<meaning>met</meaning>
</word>
<word Line_Number="1" Word_Number="2">
<top>303</top>
<left>1862</left>
<right>2017</right>
<bottom>395</bottom>
<alphabets>Reh|Yeh+hamza|Yeh|Seen|</alphabets>
<pronunciation>raees</pronunciation>
<meaning>leader-Head</meaning>
</word>
<word Line_Number="1" Word_Number="3">
<top>283</top>
<left>1679</left>
<right>1840</right>
<bottom>379</bottom>
<alphabets>Alef|Lam|Lam|Qaf|Alef|Hamza|</alphabets>
<pronunciation>alleqa?</pronunciation>
<meaning>meeting</meaning>
</word>
</words>
</File>

This structure can be extended to allow for layers mentioned, such as logos, printed
text, signatures, handwritten notes, and stamps, simply by adding corresponding
tags.
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1.11 Technology Gaps and Conclusions

1.11.1 Character and Word Recognition

Section 1.7 discussed many of the recent developments in character and word recog-
nition performance. While some results are encouraging, lack of a standard bench-
marking dataset has made it difficult to compare reported results. Additionally, since
Arabic is a cursive script, isolated character recognition has limited utility in recog-
nizing words. Word recognition needs significant improvements to approach even
the current levels of recognition for other languages, such as English.

1.11.2 Word Spotting

Word spotting has only recently received any attention. Reported performance re-
sults are steadily rising, but further progress need be made before it is on the level
of modern English algorithms. Section 1.8 discussed some of the recently presented
algorithms for document search. This result oriented research is especially interest-
ing because it is focused on generating useful information rather than the general
task of recognition.

1.11.3 Document Decomposition

A real-world document image may consist of text (handwritten or machine printed),
line drawings, tables, diagrams, pictures, icons, etc. To efficiently recognize the en-
tire image, it is necessary to decompose a document into component parts. Since
Arabic recognition is still in a relative infancy period, such document decomposi-
tion is not well developed.

1.11.4 Hand Drawn Diagram Recognition

Hand drawn diagrams in Arabic have many features in common with such diagrams
drawn in other languages. For this reason, little research has been done explicitly
on the problem. One interesting feature of analyzing such diagrams may be the
differences, if any, caused by the right-to-left script.

1.11.5 Phone Number, Date, and Address Recognition

As mentioned earlier in this document, one of the most extensively researched ar-
eas in Arabic involves address and number recognition. This is at least in part due
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to the availability of publicly available datasets involving Tunisian city names and
bank check amounts. Phone number and date recognition has received less attention.
Number recognition has some issues in common with recognizing Arabic, since
Arabic has its own set of digits (as opposed to the numerals used in languages such
as English).

1.11.6 Transcription and Transcription Mapping

Transcription of handwritten documents allows for easier and more accurate docu-
ment processing, such as searches. Transcript mapping is the alignment of words in
a text file with image regions in a document, allowing for speedier corpus building.
Transcript mapping is relatively new to Arabic; the first such method is to appear
shortly [30].

References

1. Abuhaiba, I.S.I., Mahmoud, S.A., Green, R.J.: Recognition of handwritten cursive Arabic
characters. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 664–672 (1994)

2. Abuhaiba, I., Holt, M., Datta, S.: Recognition of off-line cursive handwriting. Comput. Vis.
Image Underst. 77, 19–38 (1998)

3. Al-Ohali, Y., Cheriet, M., Suen, C.Y.: Databases for recognition of handwritten Arabic
cheques. In: Proceedings of the Seventh International Workshop on Frontiers in Handwrit-
ing Recognition (2000)

4. Al-Shaher, A., Hancock, E.: Learning mixtures of point distribution models with the EM al-
gorithm. Pattern Recognit. 36, 2805–2818 (2003)

5. Al-Yousefi, H., Udpa, S.: Recognition of Arabic characters. IEEE Trans. Pattern Anal. Mach.
Intell. 14, 853–857 (1992)

6. Almaadeed, S., Higgens, C., Elliman, D.: Off-line recognition of handwritten Arabic words
using multiple hidden Markov models. Knowl.-Based Syst. 17, 75–79 (2004)

7. Almuallim, H., Yamaguchi, S.: A method of recognition of Arabic cursive handwriting. IEEE
Trans. Pattern Anal. Mach. Intell. 9, 715–722 (1987)

8. Amara, N.E.B., Bouslama, F.: Classification of Arabic script using multiple sources of infor-
mation: State of the art and perspectives. Int. J. Doc. Anal. Recognit. 5(4), 195–212 (2005)

9. Amin, A.: Recognition of hand-printed characters based on structural description and induc-
tive logic programming. Pattern Recognit. Lett. 24, 3187–3196 (2003)

10. Amin, A., Al-Sadoun, H., Fischer, S.: Hand-printed Arabic character recognition system using
an artificial network. Pattern Recognit. 29, 663–675 (1996)

11. Arivazhagan, M., Srinivasan, H., Srihari, S.: A statistical approach to line segmentation in
handwritten documents. In: Proceedings of SPIE (2007)

12. Ball, G., Srihari, S., Srinivasan, H.: Segmentation-based and segmentation-free methods for
spotting handwritten Arabic words. In: IWFHR (2006)

13. Clocksin, W., Fernando, P.: Towards automatic transcription of Syriac handwriting. In: Proc.
Intl Conf. Image Analysis and Processing (2003)

14. Dehghan, M., Faez, K., Ahmadi, M., Shridhar, M.: Handwritten Farsi (Arabic) word recogni-
tion: a holistic approach using discrete HMM. Pattern Recognit. 34, 1057–1065 (2001)



1 An Assessment of Arabic Handwriting Recognition Technology 33

15. Dehghani, A., Shabani, F., Nava, P.: Off-line recognition of isolated Persian handwritten char-
acters using multiple hidden Markov models. In: Proc. Intl. Conf. Information Technology:
Coding and Computing (2001)

16. El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting recognition using baseline
dependent features and hidden Markov modeling. In: Proc. Intl. Conf. Document Analysis and
Recognition (2005)

17. El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting recognition using baseline
dependent features and hidden Markov modeling. In: ICDAR ’05: Proceedings of the Ninth
International Conference on Document Analysis and Recognition. IEEE Comput. Soc., Seoul
(2005)

18. Fahmy, M., Ali, S.A.: Automatic recognition of handwritten Arabic characters using their
geometrical features. Studies in Informatics and Control J. 10 (2001)

19. Farah, N., Souici, L., Farah, L., Sellami, M.: Arabic words recognition with classifiers combi-
nation: an application to literal amounts. In: Proc. Artificial Intelligence: Methodology, Sys-
tems, and Applications (2004)

20. Farooq, F., Govindaraju, V., Perrone, M.: Pre-processing methods for handwritten Arabic doc-
uments. In: ICDAR ’05: Proceedings of the Ninth International Conference on Document
Analysis and Recognition, vol. 1. IEEE Comput. Soc., Seoul (2005)

21. Femiani, J.C., Phielipp, M., Razdan, A.: A system for discriminating handwriting from ma-
chine print on noisy Arabic datasets. In: SDIUT ’05: Proceedings of the Symposium on Doc-
ument Image Understanding Technology, College Park, Maryland (2005)

22. Freeman, H.: Techniques for the digital computer analysis of chain-encoded arbitrary plane
curves. In: Proceedings of the National Electronics Conference, vol. 17 (1961)

23. Goraine, H., Usher, M., Al-Emami, S.: Off-line Arabic character recognition. Computer 25,
71–74 (1992)

24. Haraty, R., Ghaddar, C.: Arabic text recognition. Int. Arab J. Inf. Technol. 1, 156–163 (2004)
25. Haraty, R., Hamid, A.: A neuro-heuristic approach for segmenting handwritten Arabic text.

In: ACS/IEEE International Conference on Computer Systems and Applications (2001)
26. Khorsheed, M.: Recognising handwritten Arabic manuscripts using a single hidden Markov

model. Pattern Recognit. Lett. 24, 2235–2242 (2003)
27. Kim, G., Govindaraju, V.: A lexicon driven approach to handwritten word recognition for real

time applications. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 366–379 (1997)
28. Lorigo, L., Govindaraju, V.: Segmentation and pre-recognition of Arabic handwriting. In:

ICDAR ’05: Proceedings of the Ninth International Conference on Document Analysis and
Recognition, vol. 2. IEEE Comput. Soc., Seoul (2005)

29. Lorigo, L., Govindaraju, V.: Off-line Arabic handwriting recognition: a survey. IEEE Trans.
Pattern Anal. Mach. Intell. 28(5), 712–724 (2006)

30. Lorigo, L.M., Govindaraju, V.: Transcript mapping for handwritten Arabic documents. In:
Proceedings SPIE (2007, to appear)

31. Maddouri, S.S., Amiri, H., Belaid, A., Choisy, C.: Combination of local and global vision
modeling for Arabic handwritten words recognition. In: Proc. Intl Conf. Frontiers in Hand-
writing Recognition (2002)

32. Märgner, V., Pechwitz, M., Abed, H.: ICDAR 2005 Arabic handwriting recognition com-
petition. In: ICDAR ’05: Proceedings of the Ninth International Conference on Document
Analysis and Recognition, vol. 1. IEEE Comput. Soc., Seoul (2005)

33. Märgner, V., Pechwitz, M., Abed, H.: ICDAR 2007—Arabic handwriting recognition com-
petition. In: ICDAR ’07: Proceedings of the Tenth International Conference on Document
Analysis and Recognition. IEEE Comput. Soc., Los Alamitos (2007)

34. Miled, H., Amara, N.B.: Planar Markov modeling for Arabic writing recognition: advance-
ment state. In: Proc. Intl. Conf. Document Analysis and Recognition (2001)

35. Mokbel, C., Akl, H.A., Greige, H.: Automatic speech recognition of Arabic digits over tele-
phone network. In: Proceedings of RTST (2002)

36. Mozaffari, S., Faez, K., Ziaratban, M.: Character representation and recognition using quad
tree-based fractal encoding scheme. In: ICDAR ’05: Proceedings of the Ninth International



34 S.N. Srihari and G. Ball

Conference on Document Analysis and Recognition, vol. 2. IEEE Comput. Soc., Seoul (2005)
37. Mozaffari, S., Faez, K., Ziaratban, M.: Structural decomposition and statistical description

of Farsi/Arabic handwritten numeric characters. In: ICDAR ’05: Proceedings of the Ninth
International Conference on Document Analysis and Recognition, vol. 1. IEEE Comput. Soc.,
Seoul (2005)

38. Nadir, F., Abdelatif, E., Tarek, K., Mokhtar, S.: Benefit of multiclassifier systems for Arabic
handwritten words recognition. In: ICDAR ’05: Proceedings of the Ninth International Con-
ference on Document Analysis and Recognition, vol. 1. IEEE Comput. Soc., Seoul (2005)

39. Olivier, C., Miled, H., Romeo, K., Lecourtier, Y.: Segmentation and coding of Arabic hand-
written words. In: Proceedings of the International Conference on Pattern Recognition (1996)

40. Pechwitz, M., Märgner, V.: HMM based approach for handwritten Arabic word recognition
using the IFN/ENIT—database. In: ICDAR ’03: Proceedings of the Seventh International Con-
ference on Document Analysis and Recognition. IEEE Comput. Soc., Edinburgh (2003)

41. Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H., et al.: IFN/ENIT-database
of handwritten Arabic words. In: Proc. CIFED 2002, Hammamet, Tunisia, October 21–23,
2002

42. Safabakhsh, R., Adibi, P.: Nastaaligh handwritten word recognition using a continuous-density
variable-duration HMM. Arab. J. Sci. Eng. 30, 95–118 (2005)

43. Sari, T., Souici, L., Sellami, M.: Off-line handwritten Arabic character segmentation algo-
rithm: ACSA. In: Proceedings of the Eighth International Workshop on Frontiers in Hand-
writing Recognition (2002)

44. Souici, L., Farah, N., Sari, T., Sellami, M.: Rule based neural networks construction for hand-
written Arabic city-names recognition. In: Proc. Artificial Intelligence: Methodology, Sys-
tems, and Applications (2004)

45. Souici-Meslati, L., Sellami, M.: A hybrid approach for Arabic literal amounts recognition.
Arab. J. Sci. Eng. 29, 174–194 (2004)

46. Sridharan, K., Farooq, F., Govindaraju, V.: Classification of machine print and handwriting in
mixed Arabic documents. In: SDIUT ’05: Proceedings of the Symposium on Document Image
Understanding Technology College Park, Maryland (2005)

47. Srihari, S.N., Tomai, C.I., Zhang, B., Lee, S.: Individuality of numerals. In: ICDAR ’03: Pro-
ceedings of the Seventh International Conference on Document Analysis and Recognition.
IEEE Comp. Soc., Washington (2003)

48. Srihari, S., Srinivasan, H., Babu, P., Bhole, C.: Handwritten Arabic word spotting using the
CEDARABIC document analysis system. In: SDIUT ’05: Proceedings of the Symposium on
Document Image Understanding Technology College Park, Maryland (2005)

49. Srihari, S.N., Srinivasan, H., Babu, P., Bhole, C.: Handwritten Arabic word spotting using the
CEDARABIC document analysis system. In: Proc. Symposium on Document Image Under-
standing Technology (SDIUT-05), College Park, MD (2005)

50. Srihari, S., Ball, G., Srinivasan, H.: Versatile search of scanned Arabic handwriting. In:
SACH’06: Summit on Arabic and Chinese Handwriting (2006)

51. Srihari, S., Srinivasan, H., Babu, P., Bhole, C.: Spotting words in handwritten Arabic docu-
ments. In: Proceedings SPIE, San Jose, CA (2006)

52. Touj, S., Amara, N.B., Amiri, H.: Arabic handwritten words recognition based on a planar
hidden Markov model. Int. Arab J. Inf. Technol. 2(4), 318–325 (2005)

53. Zhang, B., Srihari, S.N.: Binary vector dissimilarity measures for handwriting identification.
In: Document Recognition and Retrieval X, vol. 5010. SPIE, Bellingham (2003)



Chapter 2
Layout Analysis of Arabic Script Documents

Syed Saqib Bukhari, Faisal Shafait, and Thomas M. Breuel

Abstract Layout analysis—extraction of text lines from a document image and
identification of their reading order—is an important step in converting the docu-
ment into a searchable electronic representation. Projection methods are typically
employed for extraction of text lines in Arabic script documents. Although pro-
jection methods achieve good accuracy on clean, skew-free documents, their per-
formance drops under challenging situations (border noise, skew, complex lay-
outs, etc.). This chapter presents a layout analysis system for extracting text lines
in reading order from scanned Arabic script document images written in differ-
ent languages (Arabic, Urdu, Persian, etc.) and different styles (Naskh, Nastaliq,
etc.). The presented system is based on a suitable combination of different well-
established techniques for analyzing Latin script documents that have proven to be
robust against different types of document image degradations.

2.1 Introduction

Layout analysis deals with text line detection and their reading order determination
in document images. The wide variety of layouts in large-scale document digitiza-
tion projects poses stern challenges to document image analysis. A document image
may contain different types of contents like text, graphics, halftones, etc. The goal
of optical character recognition (OCR) is to extract text from a document image.
This is achieved in two steps. The first step, geometric layout analysis, locates text
lines in the image and identifies their reading order. In the second step, text lines
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Fig. 2.1 An example of printed Arabic text in Naskh script and Urdu text in Nastaliq script. Text
lines in Nastaliq have very little spacing between them compared to Naskh script

identified by the layout analysis step are fed to a character recognition engine which
converts them into text in an appropriate format (ASCII, UTF-8, etc.).

The Arabic script is used for writing several languages of Asia and Africa, e.g.,
Arabic, Urdu, Persian, Pashto, Kurdi, and Jawi. After Latin script, it is the second
most widely used script in the world. It is a cursive script; i.e., individual characters
are usually combined to form ligatures. Although there are many styles for writ-
ing Arabic script, the most widely used styles are Naskh and Nastaliq. The Naskh
writing style is dominant in Arabic and Pashto languages, whereas Nastaliq is the
standard style adopted for writing Urdu and Persian. Examples of printed Arabic
text written in Naskh script and Urdu text written in Nastaliq script are shown in
Fig. 2.1. From a layout analysis point of view, the main differences of Nastaliq script
as compared to Naskh script are: (i) very small interline and interword spacing and
(ii) tall ascenders and descenders that overlap into adjacent text lines.

Research on Arabic script OCR has primarily been focused on word recogni-
tion [1], and very few approaches have been proposed for text line extraction from
machine printed Arabic script document images. Since Arabic is generally written
in Naskh script, text line segmentation using horizontal projections works quite well
on machine printed documents due to the large interline spacing [22]. Segmentation
of a page image into individual lines by horizontal projection is a primitive approach
and works only on clean, single-column documents with large interline spacing. To
handle multi-column documents, either the x–y cut method [29] is used, or morpho-
logical operations are employed to get text blocks [38], which can then be further
subdivided into individual text lines by horizontal projection. More sophisticated
approaches for text line extraction have been presented in the domain of segment-
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Fig. 2.2 Processing flow of a high performance generic layout analysis system. Filled blocks show
the areas that this chapter discusses in detail

ing handwritten Arabic documents [4, 41]. However, the key problem addressed in
these approaches is handling the local nonlinearity of text lines.

Over the last two decades, several layout analysis algorithms have been proposed
in the literature (for a literature survey, please refer to [11, 28]) that work for dif-
ferent layouts and are quite robust to the presence of noise in the document. Many
of these algorithms have come into widespread use for analyzing document images
in different scripts. Kumar et al. [24] have evaluated the performance of six algo-
rithms for page segmentation on Nastaliq script: the x–y cut [29], the smearing algo-
rithm [40], whitespace analysis [2], the constrained text line finding algorithm [5],
Docstrum [30], and the Voronoi-diagram based approach [23]. These algorithms
work very well in segmenting documents in Latin script, as shown in [37]. However,
when Kumar et al. applied these algorithms to segment Nastaliq script documents,
none of these algorithms was able to achieve an accuracy of more than 70 % on
their test data, which had simple book layouts with no font size variations within
each page.

Contrary to Arabic OCR, there has been very little work in the area of Urdu or
Persian document analysis. Husain et al. [19] proposed an Urdu character recog-
nition system for the Nastaliq script. Urdu is written in Nastaliq script using more
than 20,000 ligatures [16]. Husain et al. skipped the layout analysis step to concen-
trate more on the OCR part. Pal et al. [32] presented an approach for recognizing
printed Urdu documents. First, they perform skew correction of the document using
a Hough transform. Text lines in the skew corrected document are then segmented
by horizontal projection. A similar approach is used by Jelodar et al. [20] to extract
text lines from printed Persian documents.

Shafait et al. [36] have presented an adaptation of the layout system described
in [6] to Urdu script documents. First, they evaluate empty whitespace rectangles as
candidates for column separators or gutters. Text lines are then detected by modify-
ing a RAST-based (Recognition by Adaptive Subdivision of Transformation Space)
text-line finding algorithm [5] where column separators are introduced as “obsta-
cles.” Finally, text lines are analyzed for determining the reading order using con-
straints on the geometric arrangement of text line segments on the page. Particular
advantages of their system are that it is nearly a parameter-free approach and robust
to the presence of noise in document images.

In this chapter we present a layout analysis system that is an extension of the
approach presented in [36] and is applicable to a wide variety of Arabic script binary
document images. A grayscale document image can be first converted into binary
form using an appropriate binarization approach such as those in Otsu [31] and
Sauvola [35], which are commonly used state-of-the-art binarization approaches.
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Fig. 2.3 A sample newspaper image printed in Arabic Naskh script and its corresponding layout
analysis result: gray region represents non-text components, color-coded labeling represent seg-
mented text lines, and magenta line shows text line reading order. [Note: left image has been taken
from the website [17]]

A possible flow of a generic layout analysis system is shown in Fig. 2.2. Here, we
will discuss text and non-text segmentation, text line detection, and reading order
determination. For a sample Arabic script document image, the output of the layout
analysis system is shown in Fig. 2.3.

The rest of the chapter is organized as follows. In Sect. 2.2, the multiresolution
morphology-based text and non-text segmentation algorithm [3, 10] is described.
State-of-the-art x–y cut [29] and ridge-based [7] text line finding methods are ex-
plained in Sect. 2.3. A topological sorting-based reading order determination algo-
rithm [36] is discussed in Sect. 2.4, followed by the conclusion in Sect. 2.5.

2.2 Text and Non-text Segmentation

Text and non-text segmentation is the process of separating text and non-text ele-
ments in document images. It is an important initial step in document image pro-
cessing like optical character recognition (OCR) systems. A character recognition
engine is designed for recognizing text elements, and it produces garbage for non-
text elements.

Different approaches have been proposed in the literature for text and non-text
segmentation. Wong et al. [40] presented a classical smearing-based page segmen-
tation approach. Bloomberg [3] introduced a method for text and halftone seg-
mentation using multiresolution morphology. Other state-of-the-art text and non-
text segmentation approaches can be generally categorized as classification-based
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approaches such as the pixel [27], connected component [9], or zone [21, 39]
classification-based text and non-text segmentation methods. In general, the accu-
racy of classification-based text and non-text segmentation approaches heavily de-
pends on the training samples.

The multiresolution morphology-based method [3] was specifically designed for
separating halftones from document images. It works well for halftone segmenta-
tion, but not for other types of non-text elements like drawings, maps, etc. It is
a simple approach, based on the assumption that the size of non-text elements is
larger than text elements in document images. We presented an improvement to the
multiresolution morphology-based text and non-text segmentation method in [10]
which can also segment drawing type non-text elements. A data flow diagram of the
improved version of Bloomberg’s text and non-text segmentation method is shown
in Fig. 2.4. A brief description of Bloomberg’s multiresolution morphology-based
text and non-text segmentation method [3] and our improved version [10] is de-
scribed below.

Bloomberg introduced the concept of threshold reduction for subsampling of
document images, which is defined as follows. Consider a binary document image
where a foreground pixel is represented by 1 and a background pixel is represented
by 0. Each 2 × 2 pixel block in the document image is replaced by a single value,
either 1 or 0, in a corresponding subsampled image. The value is set to 1 if the sum
of values in a particular 2×2 pixels block is greater than or equal to some predefined
threshold value; otherwise the value is set to 0. This threshold reduction operation
mimics the process of image dilation for a threshold value equal to 1 and erosion
for a threshold value equal to 4 that follows subsampling of each 2 × 2 pixel block
by its upper left pixel. The threshold reduction is also referred as multiresolution
morphology.

Bloomberg used the concept of threshold reduction for implementing the text
and halftone segmentation method that is shown in Fig. 2.4. An input image
is first processed by two threshold reduction operations, both with threshold
value equal to 1. These threshold reduction operations produce a subsampled
image. The subsampled image is further processed by two threshold reductions
with threshold values equal to 4 and 3, respectively, and a morphological open-
ing operation. The output image is referred to as a seed image. The seed im-
age, after expansion, is compared with the subsampled image for generating a
halftone-mask image. The halftone-mask image is composed of fully or par-
tially overlapped components between the seed image and the subsampled image.
The halftone-mask image is finally processed by a morphological dilation opera-
tion.

The performance of the multiresolution morphology-based text and halftone seg-
mentation method depends upon the residual portions of halftones of an input doc-
ument image in its corresponding seed image. In a document image, non-text ele-
ments (like drawings, maps, graphs, and even halftones) may also be composed of
line art. Threshold reduction operations wipe out these types of non-text elements
in the corresponding seed image.
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Fig. 2.4 Data flow diagram
of improved version of
Bloomberg’s text and
non-text segmentation
algorithm [10]. The original
Bloomberg’s text and
non-text algorithm [3] is
equivalent to the given data
flow diagram without the
hole-filling operation. (Note:
T: threshold; SE: structuring
element)

We introduced an improved version of the multiresolution morphology-based
segmentation method that can handle non-text elements like halftones, drawings,
and graphics, etc. In the improved version, which is shown in Fig. 2.4, the sub-
sampled image is first processed by a hole-filling morphological operation. The
hole-filling operation fills drawing type non-text elements, with a better possibil-
ity of keeping the residual portions of these non-text elements in the seed im-
age.

Figure 2.5 shows sample Arabic script document images and their text and non-
text segmentations for the original version of the multiresolution morphology-based
text and non-text segmentation method [3] and its improved version [10]. Our im-
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Fig. 2.5 Results of non-text
mask using Bloomberg’s
multiresolution
morphology-based text and
non-text segmentation
method [3] and our improved
version [10]. Top figure shows
a simple case where non-text
components are larger than
text components and can also
be separated by using median
size of connected components
analysis. Bottom figure shows
a challenging condition where
non-text components are
comparable to or even smaller
than text components. In
contrast to [3], improved
multiresolution
morphology-based text and
non-text segmentation
algorithm gives correct result
for both simple and
challenging conditions

proved version performs well in these examples compared to the original version.
In Arabic script document images, like Latin script images, the size of text elements
is usually smaller than that of non-text elements, which fits well the assumption of
multiresolution morphology-based text and non-text segmentation. Therefore, this
approach also works well for Arabic script document images.

2.3 Text Line Detection

Text line detection is an important layout analysis step in document image process-
ing. It is often used before feeding a page to a character recognition engine. The
performance of the text line detection operation directly influences the accuracy of
the recognition engine.

In the literature, a large number of text line detection approaches are proposed
for Arabic document images. Among them, projection profile analysis is a widely
used algorithm for detecting text lines in Arabic script document images [22]. It
works well for clean document images with large interline spacing, but fails for
document images which contain noise, multi-column formats, and small interline
spacing. The x–y cut [29] is a state-of-the-art page segmentation approach that is
based on project profile analysis. It can handle multi-column documents with small
interline spacing. However, it fails for skewed document images and images with
large amounts of noise. We presented a ridge-based text line detection approach for
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Fig. 2.6 Horizontal projection of Arabic scripts. The top figure shows the case of larger, well-de-
fined interline spacing in Naskh script; there are between-line zero valleys in the projection profile.
The bottom figure shows the case of small interline spacing in Nastaliq script (Urdu); there are no
between-line zero valleys in the projection profile

warped camera-captured document images [7, 8]. The ridge-based text line finding
method is robust to the presence of noise, skew, and small interline spacing. It can
also be used equally for text line detection in different types of Arabic script docu-
ment images. The x–y cut and ridge-based text line detection methods are described
in more detail below.

2.3.1 x–y Cut Text Line Detection Method

The x–y cut page segmentation method [29] is a tree-based algorithm. An input
document image is considered as a rectangular block. The x–y cut algorithm recur-
sively cuts a block into smaller blocks, until no block can be cut further. For splitting
a block, first its horizontal and vertical projection profiles are computed. The noise
removal thresholds txn and t

y
n are then used for computing valleys in the projection

profiles. The bins of horizontal and vertical projection profiles are set to zero if they
contain values less than linearly scaled threshold txn and t

y
n , respectively, with re-

spect to the width and height of the block. The valleys of the horizontal (vx ) and
vertical (vy ) projection profiles are compared with the predefined thresholds tx and
ty , respectively. The block is split into two blocks at the midpoint of the wider of vx

and vy , which are larger than tx and ty , respectively.
Horizontal projection profiles of sample paragraphs of Naskh and Natsaliq scripts

are shown in Fig. 2.6. There are clear zero valleys in the projection profile of the
Naskh script corresponding to interline gaps between text lines. In contrast, there is
no zero valley in the projection profile of the Nastaliq script. The x–y cut method
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Fig. 2.7 The x–y cut algorithm produces correct text line segmentation results for sample Arabic
script document images

can be used to segment Nastaliq script documents. In such cases, the noise thresh-
olds are set to a high value for finding the main body of text lines. Afterwards, the re-
maining portions of text lines are assigned to them through a simple post-processing
step. Sample document images of Nastaliq script and their correctly segmented text
lines are shown in Fig. 2.7. The following values of thresholds are used for generat-
ing these results: txn = 100, t

y
n = 100, tx = 100, and ty = 10.

The x–y cut algorithm usually fails on documents with a large amount of bor-
der noises and reports the whole page as one segment. It also produces wrong text
line segmentations for skewed document images. Failed cases of the x–y cut text
line segmentation method are shown in Fig. 2.8. The ridge-based text line finding
algorithm [7, 8] described next can be used in such cases.
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Fig. 2.8 The x–y cut method produces text line segmentation failures for sample document im-
ages which contain challenging conditions, like border noise, skew, and a large number of joined
characters

2.3.2 Ridge-Based Text Line Detection Method

We introduced a ridge-based text line finding algorithm [7, 8] for warped, Latin
script camera-captured document images. The ridge-based text line finding method
can be equally applied on different types of document images with respect to digiti-
zation methods (scanned or camera-captured), intensity values (binary or grayscale),
scripting languages (like Latin, Chinese, Arabic, etc.), and writing styles (typed-
text or handwritten). The method consists of two standard image processing tech-
niques: (i) oriented anisotropic Gaussian filter bank smoothing and (ii) ridge de-
tection. A detailed description of the ridge-based text line detection algorithm is
presented next.

Step 1: Anisotropic Gaussian Filter Bank Smoothing Here, Gaussian filter
bank smoothing is employed for enhancing text line structure in document images,
such that it fills intraline gaps and maintains interline spaces. The general formula
for an oriented, anisotropic Gaussian filter is shown in Eq. (2.1). It contains three
well-defined parameters: σx : x-axis standard deviation, σy : y-axis standard devia-
tion, and θ : angle of orientation.
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g(x, y,σx, σy, θ) = 1

2πσxσy
exp

{

−1

2

(
(x cos θ + y sin θ)2

σx
2

+ (−x sin θ + y cos θ)2

σy
2

)}

(2.1)

Input: Image I

Output: Smoothed Image IS

Set IS := 0;
foreach pixel location x, y do

for σx := wstart to wend do
for σy := hstart to hend do

for θ := θstart to θend do
val := g(x, y;σx,σy, θ);
/* The formula for g(x, y, σx, σy, θ) is given in

Equation 2.1 */
if val > IS(x, y) then

IS(x, y) := val

end
end

end
end

end
Algorithm 1: The text line structure enhancement algorithm using multioriented
and multiscale anisotropic Gaussian filter bank smoothing

A diverse collection of document images is composed of a wide variety of
font sizes, text line orientations, and interline and intraline spaces. Thus, a single
isotropic (σx = σy ) or anisotropic (σx �= σy ) Gaussian filter may either fill interline
gaps (for a high value of standard deviation) or leave intraline gaps unfilled (for a
small value of standard deviation). In contrast, a set of Gaussian filters, with varying
values of standard deviations and orientations, is applied to a document image, and
a maximum response is selected for each pixel for the corresponding smoothed im-
age. For generating a filter bank, first the range of values is defined for σx , σy , and θ .
These ranges can either be selected empirically or automatically by analyzing the
statistics of connected components in document images. Then, a set of Gaussian fil-
ters is generated; each filter is composed of a different combination of values for σx ,
σy , and θ . The text line structure enhancement algorithm is shown in Algorithm 1.
In order to speed up this algorithm, we used the fast anisotropic Gaussian filter im-
plementation [15, 25]. A sample document image and its corresponding smoothed
text line image are shown in Fig. 2.9(a) and 2.9(b), respectively. Now, text lines can
be extracted from the smoothed image using the ridge detection method, which is
described in the second step.

Step 2: Ridge Detection The ridge detection approach is used for representing
the shape of objects in digital and speech signal processing. Here, we use the ridge
detection approach for finding the main body of text lines in the smoothed docu-
ment images. Researchers have introduced and analyzed different approaches for
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Fig. 2.9 Steps of the ridge-based text line finding algorithm. (a) An example image of Arabic
Nastaliq script. (b) Smoothed text line (text lines enhanced) image, which is generated by using
oriented anisotropic Gaussian smoothing filter bank approach. (c) Detected ridges from smoothed
image using Riley-based ridge detection [33, 34] algorithm. There are over-segmentation errors
because of multi-column format. (d) Column separators that were detected through whitespace
analysis; these separators help in correcting over-segmentation errors. (e) Processed ridges using
whitespace separators; each ridge covers a complete region of a particular text line. (f) Color-coded
labeled text lines result using detected ridges

ridge detection [13, 14, 26, 34]. Riley [33, 34] introduced the concept of a differen-
tial geometry-based ridge detection approach for detecting spectral peeks in speech
signals. We use a ridge detection approach that has been derived from Riley’s work.
An open source version of the ridge detection method is made available as part of the
OCRopus OCR system [18]. The Riley-based ridge detection method is described
here in detail.

The ridge detection method finds ridge points in an input signal by analyzing its
gradient vectors and the greatest downward curvatures. Let us consider a 2D image
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I in a Cartesian coordinate system. For a point (x, y), the content of I is repre-
sented by I (x, y), and the corresponding gradient vector and the greatest downward
curvature are represented by ∇I (x, y) and C(x, y), respectively. We chose symbol
C to represent the greatest downward curvature. The gradient vector (∇I (x, y)) is
defined as:

∇I (x, y) =
(

∂I (x, y)

∂x
,
∂I (x, y)

∂y

)

(2.2)

and the greatest downward curvature (C(x, y)) is defined as:

C(x, y) = es(x, y)

|es(x, y)| , (2.3)

where es(x, y) is the eigenvector of the small eigenvalue of the Hessian matrix
at point (x, y); λs(x, y) represents the small eigenvalue and λl(x, y) represents
the large eigenvalue. Each point in image I is analyzed by Eq. (2.4) for checking
whether it is a ridge point or not.

R(x, y) =
⎧
⎨

⎩
1 if

{
1. λs(x, y) < 0 and
2. (∇I (x, y) · C(x, y)) = 0

0 else
(2.4)

The condition in Eq. (2.4) is sufficient for finding ridges in continuous signals. In
order to make it applicable for discrete signals, more tests are needed for analyzing
whether or not a point is a ridge’s point. The ridge detection method that we have
used here is derived from Riley’s work of ridge detection for discrete signals. In this
case, each point is analyzed for a ridge’s point with each of its neighboring points
based on the rules mentioned in Eq. (2.5), and is considered a ridge point if the
output of Eq. (2.6) is 1. A complete description of the ridge detection method is
shown in Algorithm 2.

R(x, y, dx, dy) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. λs(x, y) < 0 and |λs(x, y)| > |λl(x, y)| and
2. λs(x + dx, y + dy) < 0 and

|λs(x + dx, y + dy)| > |λl(x + dx, y + dy)| and
3. ∇I (x, y) · ∇I (x + dx, y + dy) < C(x, y)

· C(x + dx, y + dy) and
4. (∇I (x, y) · C(x, y))(∇I (x + dx, y + dy)

· C(x + dx, y + dy))

(C(x, y) · C(x + dx, y + dy)) < 0
0 else

(2.5)

R(x, y) = max
(dx,dy)∈(0,1),(1,0),(0,−1),(−1,0)

R(x, y, dx, dy) (2.6)

The ridge detection output for the smoothed image of Fig. 2.9(b) is shown
in Fig. 2.9(c). A ridge covers a complete region of a particular text line for
single-column document images. For multi-column documents, the filter bank may
fill small gaps between text lines between different columns. Therefore, a single
ridge may cover either a single text line or multiple text lines at the same height
(Fig. 2.9(c)). This situation causes over-segmentation errors. This type of over-
segmentation error can be corrected by a whitespace analysis, as described below.
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Input: The Smoothed Image I

Output: Detected Ridges Image IR

Calculate gradient vectors image ∇I ;
Calculate greatest downward curvature image C : es , λs, el , λl ;
Set IR := 0;
foreach pixel location x, y do

if R(x, y,0,1) or R(x, y,1,0) or R(x, y,0,−1) or R(x, y,−1,0)

then /* The formula for R(x, y, dx, dy) is given in Eq. (2.5) */

IR(x, y) = 1
else

IR(x, y) = 0
end

end
Algorithm 2: The Riley [33, 34]-based ridge detection algorithm

Step 3: Whitespace Analysis Whitespace analysis aims to find a set of maxi-
mal white rectangles in a document image such that the union of these rectangles
completely covers the document’s background. It is usually used for page segmen-
tation [2] or multi-column separation [5]. An algorithm for finding maximal whites-
pace rectangles is presented in [5]. The main idea behind that algorithm is similar
to the quick-sort or branch-and-bound methods. The whitespace rectangles are eval-
uated as candidates for column separators or gutters based on their statistics, like
aspect ratio, width, etc. Whitespace cuts that correspond to column separators are
shown in Fig. 2.9(d). Now, over-segmentation errors (as shown in Fig. 2.9(c)) can
be corrected by cutting detected ridges at those points which lie over whitespace
rectangles. The output ridges are shown in Fig. 2.9(e), where a single ridge covers a
single text line. These ridges are considered as detected text lines.

Step 4: Text Line Labeling A text line labeling method assigns a unique label
to all of the connected components of a text line. As shown in Fig. 2.9(e), each de-
tected ridge represents the main region of a particular text line. Let us consider a
simple case where each connected component in a document image overlaps with a
single ridge. First, each ridge is assigned a unique label. Then, each connected com-
ponent is assigned the label of its corresponding ridge. Each unlabeled connected
component in the proximity of text lines is assigned the label of its nearest text line.
It is also possible that a connected component overlaps with more than one ridge,
which usually happens in the case of inter-line touching or overlapping. In such a
case, a connected component is cut in the center of each pair of consecutive ridges,
and then each portion is assigned the label of the particular ridge. The result of text
line labeling in color-coded form is shown in Fig. 2.9(f).

For some of the challenging problems like document skew and noise, the text
line detection results of the ridge-based text line extraction method are shown in
Fig. 2.10. As can be seen in the figure, the ridge-based text line detection method is
robust to document skew, small interline gaps, border noise, and interline touching
and/or overlapping as compared to the x–y cut method (whose results are shown in
Fig. 2.8).
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Fig. 2.10 The ridge-based text line finding method produces correct text line segmentation results
for sample document images with border noise, skew, and a large number of joined characters

2.4 Text Line Reading Order Determination

A reading order determination method tries to find the order of text lines with re-
spect to their corresponding reading flow. The reading order can be determined by
applying some ordering criteria over the positioning of the text lines. In contrast to
Latin script, the reading order of Arabic script is from right to left. A reading or-
der determination method is presented in [6] for Latin script, which is modified for
Nastaliq Arabic script in [36]. The ordering criteria that were presented in [36] are
stated as follows:

• “Text-Line ‘a’ comes before text-line ‘b’ if their ranges of x-coordinates overlap
and if text-line ‘a’ is above text-line ‘b’ on the page”.

• “Text-Line ‘a’ comes before text-line ‘b’ if a is entirely to the right of ‘b’ and if
there does not exist a text-line ‘c’ whose y-coordinates are between ‘a’ and ‘b’
and whose range of x-coordinates overlaps both ‘a’ and ‘b’ ”.

The reading order determination method [6, 36] finds the partial ordering of text
lines through the above-defined ordering criteria, and then finds a complete order
using a topological sorting algorithm [12].
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Fig. 2.11 Example images illustrating results of reading order for a newspaper and a book page.
Thin horizontal lines with different colors indicate detected text line segments, and the magenta
lines running down and diagonally across the image indicate reading order

Examples of reading order determination on sample document images are shown
in Fig. 2.11. The performance of the reading order determination method decreases
with a decrease in text line detection accuracy and/or the presence of noise in docu-
ment images.

2.5 Discussion

In this chapter, we have presented a generic layout analysis system which can be
used for a variety of typed-text (like Naskh and Nastaliq), handwritten, and ancient
Arabic script document images. Our layout analysis system first performs text and
non-text segmentation, then text line detection, and finally reading order determina-
tion. The output of our layout analysis system in conjunction with an efficient OCR
engine can be used for the digitization of a wide variety of typed-text Arabic script
document images.

We have demonstrated that the improved version of the multiresolution morphol-
ogy-based text and non-text segmentation approach is suitable for Arabic script
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document images. It gives correct text and non-text segmentation results, unless
a document image contains very large text element(s) and/or very small non-text
element(s).

The projection profile-based x–y cut method gives correct text line segmenta-
tion results for clean document images. It produces bad segmentation results for
document images containing large amounts of noise and/or document skew. We
have proposed a robust text line detection approach using standard image processing
methods (filter bank Gaussian smoothing and ridge detection) for Arabic script doc-
ument images. Our ridge-based text line finding approach is robust to large amounts
of border noises, handwritten marks, and document skew and curl and is equally
applicable on both binary and grayscale document images. It has well-understood
free parameters, such as ranges of orientation angles, and x- and y-axis standard de-
viations for oriented anisotropic Gaussian filter bank smoothing. These parameter
values can be easily tuned for a variety of document images with respect to the size
statistics of connected components.

The performance of the reading order determination algorithm heavily depends
on the text line detection accuracy. Manual inspection of the results showed the fol-
lowing types of errors: (1) if two text lines from different text columns are merged,
they are interpreted as a separator, and hence the algorithm gives a wrong reading
order, and (2) in some cases, the separation between different sections of a multi-
column document is not represented by a text line spanning the columns, but instead
a ruling (thick horizontal black line) is used. In that case the algorithm fails to detect
the start of a new section.

In general, our generic layout analysis system is quite robust to different types of
challenging problems in complex document image layouts, like books, newspapers,
and ancient Arabic script document images. To the best of our knowledge, there is
no public dataset available for the evaluation of different layout analysis systems
for Arabic document images. As a future goal, there is a need for a public dataset
with a large variety of Arabic script documents with text line level ground truth for
benchmarking existing layout analysis systems for Arabic scripts.
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Chapter 3
A Multi-stage Approach to Arabic Document
Analysis

Eugene Borovikov and Ilya Zavorin

Abstract We approach the analysis of electronic documents as a multi-stage pro-
cess, which we implement via a multi-filter document processing framework that
provides (a) flexibility for research prototyping, (b) efficiency for development, and
(c) reliability for deployment. In the context of this framework, we present our
multi-stage solutions to multi-engine Arabic OCR (MEMOE) and Arabic handwrit-
ing recognition (AHWR). We also describe our adaptive pre-OCR document image
cleanup system called ImageRefiner. Experimental results are reported for all men-
tioned systems.

3.1 Introduction

The analysis of electronic documents is usually a multi-stage process that typically
includes document image cleanup, content detection and segmentation, recognition,
and correction, possibly followed by named entity recognition (NER), automatic
summarization, and machine translation (MT). In this kind of system, every pro-
cessing stage naturally relies on the output of prior stages accompanied by confi-
dence measures, which could come directly from an algorithm that implements a
particular processing stage or from a confidence computation based on additional
types of evidence.

Each individual processing stage could potentially incorporate several substages
being run sequentially or in parallel with others. For instance, given multiple opti-
cal character recognition (OCR) engines, a combined OCR stage can execute those
engines in parallel on a single document with individual results combined into a sin-
gle output text stream. Alternatively, a recognition stage can be implemented via a
sequence of heterogeneous classifiers working at different levels of data granularity
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(e.g., characters versus words) with each classifier providing disambiguation of out-
put of a preceding classifier. Furthermore, an advanced document analysis system
may include a feedback loop that would allow it to learn something about an earlier
processing step by examining reliable evidence obtained at a later stage.

Here, we discuss the major stages of Arabic OCR and handwriting recognition
(HWR), address their goals and challenges, review related approaches, and present
a multi-stage solution that we have developed. We discuss the algorithms we de-
veloped and utilized for Arabic OCR and HWR in Sect. 3.2, including pre/post-
OCR processing as well as the recognition stages. In Sect. 3.3, we discuss in detail
our multi-filter framework, which was utilized and extended during the implemen-
tation of two specific systems for Arabic document analysis: Arabic Handwritten
Word Recognizer described in Sect. 3.2.2 and Multi-evidence Multi-OCR Engine
described in Sect. 3.2.3.

We conclude with a discussion of the results we were able to obtain with our
multi-stage solution, and we also identify some interesting R&D directions that
could be taken with the multi-stage approach as well as other modules that could
be integrated into the multi-filter document processing framework.

3.2 Arabic Document Processing Algorithms

In this section, we describe our Arabic document processing efforts related to pre-
OCR processing (adaptive document image cleanup), optical character and word
recognition (focusing on handwriting), and post-OCR accuracy boosting using sin-
gle and multiple OCR engines. We also discuss possible extensions, e.g., combining
pre-processing, recognition, and post-processing into one system using the frame-
work.

3.2.1 Pre-OCR Processing

Modern OCR engines are expected to handle document imagery that can have wide
variations in noise level, page layout, image quality, and pixel depth. While most
such engines perform some type of pre-recognition image enhancement on their
own, this enhancement is usually generic in nature and thus may not take into ac-
count specific types of artifacts that given OCR engine users often encounter in the
data that they are processing.

Many image enhancement methods that correct particular types of noise (such
as despeckling, filling broken lines, etc.) can actually degrade images without these
noise sources. Our experience suggests that many individual methods are likely to
harm OCR results at least as often as they improve them. Thus, selecting the right
image improvement method or methods to apply constitutes an important step in
using OCR to make the text of noisy document images available for searching or
further processing.
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In operational settings, the usual options are (a) to select some fixed set of image
transformations that are deemed likely to improve the bulk of the documents in a
large batch or (b) to assign a human operator to select appropriate techniques to
apply to each scanned image. Neither choice is fully satisfactory. The fixed choice
is subject to the problem described above, and individual decisions by a human
require time and effort—and the result that looks best to a human may not reflect
the best choice for OCR results.

When the task is to process a large volume of document images, it is necessary
to automate the pre-OCR cleanup stage by employing an intelligent image enhance-
ment system to determine and apply an optimal image transformation individually
for each document image in the OCR queue. Evidently, such a system needs to be
optimized for a given OCR engine (while treating the engine as a black box that
ingests a document image and outputs recognized text) and the varieties of expected
image noise in a typical document set.

In what follows, we discuss the problem of pre-OCR document image cleanup
and enhancement, and describe a system that solves this problem adaptively with
respect to the given OCR engine(s) and the document corpus [32, 34, 37]. The sys-
tem is called ImageRefiner, and it is based on machine learning. Using an artificial
neural net (or other multi-value classifiers), the system learns which image enhance-
ment transformations are best suited for a given document image type with respect
to the given OCR engine. The input feature set is based on various image measure-
ments (mostly noise characteristics). The method has been successfully applied to
both bitonal and grayscale Arabic document images, resulting in improved OCR
accuracy.

ImageRefiner

We have developed an approach to automate image pre-processing that is based on
machine learning. This approach has been implemented in a system called ImageRe-
finer. Our work was originally inspired by the Quality Assessment, Restoration, and
OCR (QUARC) system [5] developed at Los Alamos National Labs and related
work [23]. Like any system based on machine learning, ImageRefiner operates in
two modes: training and application (image refining, in our case).

During training (given an OCR engine and a set of document images together
with the corresponding ground truth text), ImageRefiner applies a set of transforma-
tions to each input image and passes the resulting transformed images to the OCR
engine. The resulting OCR output text is compared against the ground truth, the
OCR accuracy is computed, and the transformation which yields the highest accu-
racy is chosen as the best transformation for this kind of image. The schema of the
training process is shown in Fig. 3.1.

For each original image, a feature vector is computed via a set of scalar measure-
ments on this image. Thus, each training image yields a single feature vector and a
single (integer) class label that represents its best transformation. This data is then
used by ImageRefiner to train one of its classifiers.
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Fig. 3.1 Training mode of ImageRefiner

Fig. 3.2 Refining modes of ImageRefiner

During refining (given a pretrained classifier and a set of images that need to
be cleaned up), ImageRefiner computes a feature vector for each image which is
then used by the classifier to recommend an image transformation for the image.
The image may then be transformed and optionally passed to an OCR engine. See
Fig. 3.2 for the schema of the refining phase.

Our initial effort was geared toward computing best transformations that would
be applied to entire bitonal images [32]. While at that stage we only experimented
with English documents, the resulting system was language independent and could
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easily be trained on document collections in any other language, as long as an OCR
engine for that language was available.

We later extended this work in two parallel directions. First, we stayed in the
bitonal image domain but considered automatic segmentation of individual images
followed by finding separate best enhancement transformations for different seg-
ments [34]. Second, we looked into processing of grayscale images without seg-
mentation [37]. In both cases, we have applied the resulting extended systems to
Arabic document images.

Application to Bitonal Images

In this effort, we used the full set of specific image characteristics in QUARC, e.g.,
small and large speckle factors, and touching and broken character factors. In addi-
tion, we implemented several more general characteristics based on various statistics
such as mean and standard deviation for size, height, width, and other measures of
connected components. For machine learning, we used the standard backpropaga-
tion neural network. For image transformations, we used nine QUARC transforma-
tions, e.g., a moderate despeckling filter, morphological opening and closing, and
the kFill filter with different grid sizes.

Application to Segmented Bitonal Images

In the same way that different images may have different best transformation meth-
ods, it is possible that there may be different best image transformation methods
for different regions in the same image. We developed an approach to this problem
that combines a novel segmentation method and the neural network classification
method. The system functions in essentially the same way during both training and
refining as the original system described, except that the segmentation method is
applied to an input image to split it into characteristically homogeneous segments
and then each segment is treated as a separate image.

Segmentation consists of two recursive steps. The first step intentionally over-
segments, and the second step merges similar adjacent segments to compensate for
the over-segmentation.

In Step 1, we build a quadtree by recursive splitting. Initially, the image consists
of a single region; we then recursively split each region into four smaller segments
of equal size until either the smallest acceptable segment size is reached, or the re-
gion is characteristically homogeneous. To measure if a segment is homogeneous,
several characteristics of the image segment are used, e.g., the size of black con-
nected components. For all these characteristics, the sample standard deviations are
computed. A segment is regarded as homogeneous in the process of splitting if each
sample standard deviation of these four characteristics is less than its corresponding
threshold. These thresholds are selected based on empirical testing.



60 E. Borovikov and I. Zavorin

Fig. 3.3 Sample document image after Step 1 (a) and Step 2 (b) of the segmentation process

In Step 2, to reduce the number of homogeneous segments, we repeatedly merge
two adjacent rectangular segments that can form a single homogeneous segment,
until no further merges are possible. Two adjacent segments are considered homo-
geneous if any of the following three criteria is satisfied:

1. The difference of the sample means and the difference of sample standard devi-
ations of the two segments are smaller than certain separate thresholds (this cri-
terion works when the black connected components in these regions are mainly
noise).

2. The total connected components in both segments are less than certain numbers
(this criterion works when these regions are small and black connected compo-
nents in these regions are mainly characters)

3. The means of the size of black connected components in the two segments are
considered the same by a hypothesis test, and the means of the width of the black
connected components in the two segments are considered the same by a similar
hypothesis test (this criterion works when the black connected components are
mainly characters).

Normally, Step 1 produces a large number of image segments. Therefore, there
are many different possible sequences in which to consider merging the adjacent
segments during Step 2. Since this effort was focused on English and Arabic, in
which characters form horizontal lines, the algorithm looks for as many horizontal
merges as possible first, then as many vertical merges as possible; it then repeats
the process until no more merging can occur. This approach usually generated few
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Fig. 3.4 Sample segmented Arabic documents

homogeneous segments in the final stage of the segmentation, which was helpful in
reducing the amount of downstream processing. Figures 3.3(a) and 3.3(b) show a
sample document image after, respectively, Step 1 and Step 2 of the segmentation
process.

We trained the system on a small collection of about 100 Arabic documents using
a commercial Arabic OCR engine, and then applied it to another collection of test
documents. The resulting accuracy for segmented and enhanced documents was on
average 35 % higher than that for the original documents. Figure 3.4 shows some of
the segmented Arabic documents.

Application to Grayscale Images

In this effort, we focused on Arabic grayscale documents. We implemented two dif-
ferent types of image transformations: denoising and thresholding. The grayscale
image characteristics are all derived from the image histogram of an original
grayscale image, and are all byproducts of various thresholding methods. When
determining which transformations to include, we used the following criteria:

• The final selection should be representative of the various classes of transforma-
tions that have been developed to process document grayscale images.
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• The transformation should be well known and based on a solid mathematical
foundation.

• Although there are numerous transformations that can potentially be included
[30], since a limited amount of training data was available to us, the final selection
had to be small.

In addition to the identity transformation, which does not alter the original image
at all, we have chosen the following transformations: Otsu thresholding, which is a
classical global thresholding algorithm [27]; Niblack thresholding, which is a local
thresholding algorithm [25]; and median filtering with a 3 × 3 window, which is
a classical denoising transformation. Furthermore, if during training, none of the
above filters yields an OCR accuracy above a certain predetermined threshold, the
image is assigned the rejection class. Thus, a grayscale image classifier was trained
with training data assigned to five different classes.

There are various ways in which image characteristics may be selected. Since
they are to be used to determine the most appropriate transformation for a particu-
lar image, one approach is to work backwards, i.e., to choose those characteristics
that are somehow relevant to the types of transformations that will be applied. An
important requirement when choosing a characteristic is that it has to be cheap to
compute; otherwise, it would render ImageRefiner inefficient.

We have chosen five measurements that are computed by various thresholding
methods [28] when determining the best gray level that separates foreground from
background:

• Minimum entropy fuzziness is the smallest value of a fuzziness measure that is
based on Shannon’s entropy function and that is computed over a fuzzy set of
foreground pixels.

• Minimum Yager fuzziness is the smallest value of an alternative fuzziness measure
developed by Yager.

• Johansen minimum F is the smallest value of a measure of interdependence be-
tween gray levels separated into foreground and background.

• Otsu maximum η is the largest value of a measure of between-class scatter of the
foreground and background pixels for the given grayscale image. The threshold
at which this largest value is attained is selected as the optimal threshold for the
image by the Otsu thresholding method.

• Pun maximum F is the largest value of a measure of entropy of thresholded black
and white pixels of the given grayscale image.

We also experimented with several types of machine learning algorithms that
could be separated into two types: neural network based and all-pairs discrimi-
nants [6].

In our experiments, we used two performance measures: the matching ratio and
the cumulative accuracy improvement. The former metric is the fraction of the test
images for which trained ImageRefiner correctly selected the best transformation.
The rationale behind the latter measure was that the ultimate goal of ImageRefiner is
not just to pick the best transformation, but to improve the OCR accuracy as much
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as possible. Even if ImageRefiner picks a second-best transformation, the result-
ing accuracy improvement might still be substantial. Therefore, for a given set of
test document images, and a given set of transformations applied to these respec-
tive images, we compute the cumulative change in the OCR accuracy over all the
transformed images in the set compared to the OCR accuracy applied to the orig-
inal images. This value can actually be negative in the case when transformations
computed by the system for many documents result in worse OCR performance.

We used two different corpora of Arabic documents, one of which was the Ara-
bic News corpus [35], and performed cross-validation tests. These showed that, if
measured in terms of the matching ratio, the overall performance of the different
ML methods was comparable. However, when we took into account OCR accuracy
change, the single neural network that was originally implemented in the system
outperformed all other methods.

We also noticed that performance differed significantly between the two datasets.
For one of them, the image transformations that we evaluated were fairly adequate
at improving OCR quality, which was not the case for the other set. This implies
that the set of available image cleaning transformations has to be greatly extended
to account for the diversity that exists in real-world document imagery.

We also observed that there was quite a bit of feature correlation in both datasets.
This should probably be expected to hold in general since all the characteristics
are auxiliary quantities that are computed by different algorithms that belong to the
same family of global thresholding methods. Therefore, more work can be done to
extend the set of available characteristics.

3.2.2 Arabic Script Recognition

Research and development in the area of Arabic OCR resulted in a number of high
quality commercial recognition engines for printed Arabic text, any of which can
be embraced by our framework. These tools produce high quality output in gen-
eral, although the general problem of Arabic document recognition is not quite
solved yet. Among the challenges (partially solved in some systems) that still re-
main are: multi-column reading order, multi-language/script recognition, layout re-
tention, very noisy documents, and non-printed-text artifacts (stamps, handwriting).
Here we address various research aspects of converting Arabic document images to
text with an emphasis on handwriting recognition.

Printed Arabic Text Recognition

Arabic OCR has its specific challenges. To begin with, Arabic text is written, typed,
and printed cursively in blocks of interconnected characters. A word may consist of
several character blocks. Arabic characters in addition to their isolated form can take
different shapes depending on their position inside the block of characters: initial,
medial, or final, as shown for the letter “ain” in Fig. 3.5.
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Fig. 3.5 Four shapes of the
Arabic letter “ain” (right to
left): isolated, initial, medial,
and final

Fig. 3.6 Arabic diacritics

Arabic characters can also be written stacked one on top of another, which may
lead to character blocks having more than one base line. Additionally, Arabic uses
many types of external objects such as dots, Hamza and Madda. Optional diacrit-
ics (shown in Fig. 3.6, courtesy of lexicorient.com) also add to the set of external
objects.

Finally, Arabic font suppliers do not always follow a common standard. Given the
peculiarities of Arabic fonts and the characteristics of the Arabic language, building
an omni-font Arabic OCR becomes a difficult undertaking.

Our efforts in the Arabic OCR area have focused on adapting existing OCR en-
gines to handling (very) noisy documents, by building pre-OCR image cleaners
(e.g., ImageRefiner described in Sect. 3.2.1) and post-OCR accuracy boosters (e.g.,
MEMOE described in Sect. 3.2.3).

Arabic Handwriting Recognition

General handwriting recognition is a challenging and interesting problem. The main
difficulty here apparently stems from the large amount of variability that general
handwriting may exhibit. Two different writers are bound to write the same glyph
differently, which may be roughly analogous to font differences in printed text, but
even the same hand writes two instances of the same glyph somewhat differently,
and this introduces additional difficulty in general-purpose recognition.

Arabic script presents additional challenges for handwriting recognition systems
due to its highly connected nature, numerous forms of each letter, presence of liga-
tures, and regional differences in writing styles and habits. Having been interested

http://lexicorient.com
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Fig. 3.7 A configuration of our AHWR system

in off-line Arabic handwriting recognition for several years, we researched and de-
veloped several handwriting recognition methods that may be applicable to Arabic
handwriting recognition. Below we mention a few research papers that we perceive
to be particularly relevant to our work.

AbdulKader [1] describes the ICRA system for off-line Arabic handwriting
recognition. The system is a two-tier recognizer. The methodology exploits the fact
that, because six Arabic letters do not connect to other letters from the left, all Ara-
bic words consist of PAWs (Parts of Arabic Words). The number of unique PAWs
grows sublinearly with the number of words. Thus, the first tier of the system con-
sists of a PAW recognizer that processes connected components of a given word
image using a neural network and a PAW-to-letter lexicon. The second tier uses a
word-to-PAW lexicon to produce the final result using a variation of the best-first
search algorithm called beam search. This system was a participant of the compe-
tition at ICDAR 2005 [22] and was reported to have one of the best performance
levels when applied to the IFN/ENIT corpus [29].

Govindaraju [10] outlines the two currently accepted approaches to handwriting
recognition: holistic and analytical. Holistic approaches attempt to identify whole
words at once, while analytical methods try to build words from recognized charac-
ters. In order to unify the two, Govindaraju attempts to find a middle ground between
the two for AHWR by proposing a recognition tool that utilizes PAWs lexicons.

Lorigo [20] summarizes the state of the AHWR field and the direction in which
research appears to be trending. He also outlines attempts at the University of
Buffalo to analyze ancient Arabic documents using existing recognition tools. Af-
ter reviewing some basic image processing techniques related to AHWR, the au-
thor offers a broad look at the use of neural networks, hidden Markov models
(HMMs), and combinations of the two in handwriting recognition. The author con-
cludes by discussing a practical application of these tools in analyzing ancient doc-
uments.

Off-line Recognition An off-line handwriting recognition system typically con-
sists of multiple stages of information processing: starting with image handling, and
then continuing to feature extraction, pattern recognition, and text correction. The
implementation of such stages may vary, but the overall processing pattern appears
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to be common [21]. Here we present our multi-filter approach to the off-line AHWR
problem, and describe a solution using our filter-based document processing frame-
work described in Sect. 3.3. The system combines several heterogeneous classifiers,
which we implemented as filters. Here we briefly describe the major ones, whose
methodologies are discussed in detail in our prior publications [36, 39].

Glyph Tracer represents a word image as a sequence of discrete topological and
geometric features (such as loops, x-cross, T-cross, end points, turns, etc.) and
generates a sequence of the corresponding discrete observations.

PAW Segmenter splits input word/phrase into PAWs using horizontally connected
components and encodes each PAW as a PAW shape chain, with each element
corresponding to one of the 16 character shapes identified by character shape de-
tector. For instance, the class � corresponds to the characters �,

��,
��, and 9.

Ranking Lexicon Reducer evaluates each PAW shape chain against a list of candi-
date models, eliminates those models that do not match the chain, and ranks the
remaining ones in the range [0,1]. While it can function as a full recognizer, its
primary purpose here is in reducing the number of candidate terms to consider and
also providing initial scores that may be used as weights at later stages of recogni-
tion.

Recognizer is a stochastic sequence labeler that uses output of the Lexicon Reducer
and/or the Glyph Tracer filters to make the final decision in the word, PAW, or char-
acter recognition process. We typically use an HMM-based classifier that evaluates
an observation sequence against a collection of word models corresponding to a
predetermined lexicon. As an alternative, we have also employed a conditional
random field (CRF)-based recognizer designed to label PAW sequences.

We experimented with various combinations of the classifiers. Figure 3.7 shows a
typical filter configuration with the dashed boxes corresponding to optional filters.
In the case of an HMM recognizer, the system processes an input word image via
the Glyph Tracer and the PAW Segmenter followed by the Lexicon Reducer. The
latter processing branch produces a reduced lexicon that is fed, together with the
observation sequence generated by the former branch, to the HMM-based classifier,
producing the final list of candidate lexicon entries. In the case of PAW-based CRF,
the Glyph Tracer was not used and the recognition relied solely on features from
PAW shape chains.

At the time of our experiments, there were not very many publicly (or even com-
mercially) available Arabic handwriting datasets with segmented ground truth. The
best known standard set was the IFN/ENIT database of Tunisian villages [12] con-
veniently presegmented and cleaned up. Part of our research effort was to create
some additional Arabic handwriting corpora with rich, XML-based ground truth,
which resulted in AMA corpus [35], consisting of handwritten notes and lists. We
also have created a small on-line dataset [35] using the IFN/ENIT database as a
source of words and ground truth.

In our LexiconReducer → HMM combination approach [39], we identified the
following three configurations as the most promising, based on the experimental
results using both seen and unseen data [35]:



3 A Multi-stage Approach to Arabic Document Analysis 67

Table 3.1 Recognition rates
on IFN/ENIT corpus: training
on A, testing on B

Configuration PAW rate Term rate

PAWSeg → RLR → HMM N/A 0.42

PAWSeg → CRF 0.64 0.51

DHMM showed good generalization to unknown data.
DHMM → RLR showed improvements in top-N rates and robust overall recogni-
tion performance.

RLR → DHMM showed improved performance when tested on known data and
helped resolve some of the ambiguity that arises when HMM models are trained
using data that contains a significant number of outliers.

Here DHMM stands for Discrete HMM modified to produce top-N most likely
chains, and RLR stands for Ranking Lexicon Reducer. Overall, when tested on the
IFN/ENIT corpus, the system achieved a 73 % top-1 word recognition rate on seen
test data and 52 % on unseen data. While there is certainly room for improvement,
what is encouraging is that combining different classification approaches produced
better results than using the same approaches individually, which suggests that this
methodology should be developed further.

An interesting direction for experimenting with our AHWR system was to use
conditional random fields (CRFs) as an alternative to the HMM-based recognizer.
The CRF-based recognizer would consume the output of our PAW Segmenter, ex-
tracting features from the PAW shape chains and learning sequential labeling based
on partially recognized glyph sequences. We have compared the performance of our
CRF-based recognizer to that of an HMM-based classifier at PAW sequence recog-
nition using the IFN/ENIT corpus. Notice that the HMM classifier used an HMM
per term (whole village name) while the CRF recognizer was entirely PAW-based
and general purpose (not term-based).

We trained on subset A and tested on subset B. The PAW-based ground truth was
generated utilizing our PAW Segmenter (for images) and PAW Splitter (for text)
filters. The segmentation was imperfect and rather noisy, yet it was consistent (as
similar glyph shapes were recognized as such by the same filters employed during
the inference) and thus usable for testing. Table 3.1 shows the recognition rates
separately for PAWs and for terms. The adaptation of the CRF algorithm was by
no means complete or optimal for the task, and the training phase took substantial
time (about 52 hours) to complete on a 3 GHz Intel Pentium D PC with 4 GB of
RAM. The testing, however, was fairly quick and efficient, completing in a matter
of minutes.

We have also tested our CRF-based off-line recognizer on several parts of AMA
corpus (described in detail separately in this manuscript [35]) that we have collected
as part of our Arabic handwriting recognition project. The PAW recognition rates on
synthetically generated PAW shape chains appeared in a direct negative correlation
with the level of noise introduced; i.e., starting with perfect accuracy and zero noise,
we observed a 10 % decrease in accuracy for each 10 % increase in noise. On the
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real (non-synthetic) seen data, our CRF recognition rate was about 75 % on, while
on the unseen data it averaged at about 30 %. This was expected as AMA corpus
exhibits a much greater variety of the written contents, layout, scanning quality, and
kinds of paper used.

On-line Recognition For our on-line data collection task we have built a hand-
writing capture application working in the tablet PC environment. When a small
corpus based on IFN data was collected, we integrated our HMM-based AHWR
system into the handwriting capture application and tested it on the captured data.
The overall performance of the on-line recognition was respectable enough to make
it into an interactive demonstration system for AHWR.

Figure 3.8 shows an example of the on-line handwriting recognition. The hand-
writing sample (on the right) is passed to the recognition engine as digital ink, and
then the ten recognition candidates are displayed (on the left) in descending order of
their similarity score. As we can see in the top example, the best candidate is sepa-
rated from the rest by a fair score margin. In the bottom example, the best candidate
has a similar shape to the second best, which is reflected by the score.

3.2.3 Post-recognition Accuracy Boosting

Although modern recognition technology is capable of handling a wide variety of
document images, there is no single recognition engine that performs equally well
on all input documents. This is especially true in cases of recognition problems or
scripts/languages for which recognition technology has not yet fully matured. Ex-
amples of the former are handwriting recognition and processing of highly degraded
documents; examples of the latter are recognition of African and Arabic script lan-
guages.

Since each recognition engine has its strengths and weaknesses, the same engine
can vary in accuracy on different documents, and different engines can have differ-
ent error rates on the same document image. Because recognizers are usually used
as black-box software components, the problem of improving the accuracy of a sin-
gle engine or a set of engines without being able to explicitly tune or modify them
has attracted considerable attention in recent years. However, most of the existing
systems do not go beyond variations on majority voting.

While voting may work well in many cases, it has limitations. For instance, a
typical situation in which one would be inclined to use a multi-engine system is that
of a language for which recognition technology is still maturing, when there are few
independent engines available and some of these engines are expected to perform
poorly on many documents. When majority voting is applied in this situation, its
results are often skewed considerably by individual engine errors.

A more sophisticated approach would be to combine, in an optimal or near-
optimal way, output streams of one or more engines together with various types
of evidence extracted from these streams, original document images, statistics col-
lected about the engines as well as knowledge of the specifics of the target script or
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Fig. 3.8 On-line Arabic handwriting recognition

language, to produce higher quality final output. Besides added robustness, another
advantage of such an approach over simple voting is that it can be applied to the
case when only one or two engines are available.

Different types of evidence can be divided into two major categories with respect
to the system processing a set of documents: static and dynamic. Static evidence is
usually collected per language or script (e.g., language models) or per engine (e.g.,
character confusion map) using some learning corpus. Static evidence is used on
all processed documents. Dynamic evidence is collected per document (e.g., im-
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age speckle factor, engine disagreement) using both learning and testing corpora.
Dynamic evidence is used immediately on the processed document.

In recent years, the problem of combining classifiers for accuracy boosting has
been studied extensively in the context of many different classification problems [11,
16, 26, 40]. Abed and Märgner [7] give an overview of several papers published
within the last ten years that study this problem for the specific case of Arabic text
recognition. The methods presented in these papers attempt to perform classifier
fusion both at the feature level [31] and at the classifier level [3, 9], as well as
by using hybrid approaches [8]. Using the IFN/ENIT corpus, the authors [7] also
evaluated several classifier-level combination schemes.

Although there has been a significant amount of work on combining classifiers to
improve OCR that produced promising results [2, 13, 17, 19], most systems that are
currently available still employ some variations of majority voting [18]. More so-
phisticated heuristically driven voting schemes [14] may suffer less from the above
limitations, since they usually take into account additional sources of evidence, but
they rarely assess the statistical optimality of the corrected OCR output.

In what follows, we describe our approach in some detail as it was applied to the
problem of Arabic OCR [4, 38]. However, it is important to realize that this approach
can easily be extended to other similar problems such as handwriting recognition
and other scripts and languages. We approached the multi-engine OCR problem as
a statistically optimal combination of one or more OCR streams given one or more
types of evidence.

Our system is structured as shown in Fig. 3.9. Document images are processed
with one or more OCR engines. The resulting output sequences of characters, to-
gether with the original document images, are passed to the Multi-Evidence Proces-
sor Engine. The Multi-Evidence Processor Engine aligns the output text from the
engines [24] and also measures a number of other features, discussed in the sec-
tion “Evidence Types” below. These features include both image-based features that
are measured on the original input and text-based features that reflect the OCR en-
gines’ output. They can serve as evidence in selecting the preferred engine output
for a particular document and/or in directly selecting the most likely text, words or
characters. The output streams and calculated features go to the Evidence Combiner
and File Generator Engine, which combines these various inputs into a single out-
put sequence of characters that it deems most likely. More specifically, its Evidence
Analyzer Engine component identifies the significance of the measured features,
turning them into evidence for particular choices; the Combiner and File Generator
Engine resolves conflicts between the indicated results and produces a single output
sequence of characters. Possible implementations of the Evidence Analyzer Engine
and the Combiner are discussed in more detail in the sections “Single-Engine OCR
Accuracy Boosting” and “Multi-Engine OCR Accuracy Boosting” below.

Evidence Types

We investigated several types of OCR-related evidence to be later combined in the
post-OCR correction stage:
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Fig. 3.9 Overview of the multi-engine multi-evidence OCR system

• Image optical properties measured directly from a document image.
• Disagreement among OCR engines at the character and word level.
• Character confusion matrices that record information about single characters as

well as groups of characters.
• Language models on the character level (e.g., bigram statistics) and word level

(e.g., dictionaries).
• Characters as deformable shapes, a measure that functions like a confusion ma-

trix, but uses a measurement of the energy required to transform a skeleton of one
character into that of another.

• OCR confidence indicators, such as the presence of unrecognized character mark-
ers in OCR output.

• High-level context such as language models tuned to specific subject domains.
• Co-location, using other words in a document as sources of corrections for a word

likely to be incorrect.
• Multiple scripts in a document that help select an appropriate engine, or engines,

for a given document.

For each evidence type, we identified three key characteristics:

• Whether it may serve as a basis for prediction of OCR output accuracy, its im-
provement, or both.
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• Whether it may be attributed to single characters, words, or the entire document,
i.e., whether it may contain potentially useful information at these different levels
of output granularity.

• The extent to which it depends on the script or language of the document.

Most of these evidence types were found to provide at least some useful information
that could be exploited to boost the OCR accuracy.

Single-Engine OCR Accuracy Boosting

The first application of this approach was to accuracy boosting of the output of a sin-
gle OCR engine [4]. The major focus was on developing an OCR accuracy booster
based on the hidden Markov model (HMM). The HMM filter modeled OCR engine
noise as a two-layer stochastic process. The OCR correction problem is formulated
as follows. Given a lexicon Λ = {w1, . . . ,wN } that contains all known words wj ,
and an OCR output word sequence O = 〈o1, . . . , oK 〉, find the known word se-
quence WBEST = 〈w1, . . . ,wK〉 with wj ∈ Λ which best fits O , i.e.,

WBEST = argmax
W

P(W |O) = argmax
W

(
P(W)P (O|W)

P(O)

)

= argmax
W

P(W)P (O|W), (3.1)

where the terms of the right-hand side of (3.1) can be further decomposed into finer
components [15].

P(W) probabilistically models the language, e.g., via word bigram statistics ex-
tracted from a large corpus of ground truth text, while P(O|W) models the given
OCR engine, e.g., via a confusion matrix [33]. The OCR output O is corrected by
WBEST .

Our approach is similar to the above generic framework, but it works mostly
on the character level. That is, the lexicon Λ is replaced by an alphabet A =
{c1, . . . , cN } that contains all known characters cj , while O represents an OCR out-
put character sequence. This sequence, as well as others derived from it, are scored
in terms of probabilities P(C), which is determined from character bigram statis-
tics computed from a large corpus of text, and P(O|C), which characterizes a given
OCR engine via a character confusion matrix precomputed over the corpus. This
method is not purely character-based, but may include some word-level informa-
tion. When character bigram statistics are computed, the number of times a given
bigram appears in a given word may be multiplied by the number of times this word
appears in the corpus.

Experiments of the resulting system revealed its versatility in applications to dif-
ferent languages (it was able to handle both English and Arabic) as well as its ro-
bustness and generalization power (e.g., in correcting words on which the filter was
not trained).
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Multi-engine OCR Accuracy Boosting

The system described in the section “Single-Engine OCR Accuracy Boosting” above
is an example of a single-filter approach to implementing a multi-evidence boosting
system in which all types of evidence are combined together into a single mathemat-
ical apparatus like HMM. The major advantage of this approach is that it is possible
to assess its optimality in terms of a formulation like (3.1). The disadvantage is that,
when combining several possibly heterogeneous evidence types, it yields a large and
complex filter that is difficult to implement, maintain, and reuse. Therefore, when
building a multi-engine boosting system, we adopted a multi-filter approach where
the system is built as a collection of filters connected sequentially and/or in parallel,
with each filter based on a single evidence type. Below we describe several filters
that we have developed.

Lexicon look-up is applied to a single stream and performs word spell checking
based on a lexicon collected from a large body of text. Words from a stream are
selected for correction by the filter if they contain unrecognized character markers
that some OCR engines produce.

Multiple stream processor does not correct anything by itself. Instead, it aligns
multiple output streams using character-level synchronization implemented in the
synctext utility of the ISRI OCR toolkit (open source software) by Nartker
et al. [24]. Synchronization results are used, for instance, as input to the voting
corrector filter described next.

Voting corrector is a trainable filter applied to multiple OCR streams that uses
patterns of disagreement among engines as well as various heuristics to resolve
the cases when simple voting will likely fail, e.g., when three OCR streams
each produce a different candidate character for the same position in the docu-
ment.

Triage selects one or more better-quality streams using various text statistics col-
lected from a stream. These statistics include the total output size in bytes, the
total number of correct words, median and mean lengths of correct words, and
other similar metrics. The filter makes a decision based on analysis of these statis-
tics computed for the given OCR streams.

These individual filters were combined in several different configurations, and the
resulting OCR boosting systems were evaluated. One of the configurations, which
consisted of the lexicon look-up applied to individual output streams of three com-
mercial Arabic OCR engines followed by triage and in turn followed by the voting
corrector filter, performed better than majority voting or any of the engines individ-
ually.

3.3 Filter-Based Document Processing

Automatic document analysis typically involves multiple stages. Here we present
a multi-stage approach to the document analysis problems, and describe the filter-
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based document processing framework we developed to some problems of Arabic
text recognition, namely Arabic handwriting recognition (AHWR) and multi-engine
OCR accuracy boosting, both of which have been described above. The framework
defines and operates in terms of the following core classes of objects:

Document can be thought of as a virtual page binder, that various filters can look
at, add new pages to, or update the existing pages.

Page is a catalog of named streams carrying the source contents and some derived
information that various filers would act on.

Stream is a sequence of generic tokens (e.g., image patches, characters, or words)
that filters can generate and/or process. A stream can encapsulate arbitrary data
structures that are consumed/produced by one or more document filters.

Filter is an individual action unit that can process any of its non-obscured streams
or the whole document, if necessary.

As illustrated by Fig. 3.10(a), a filter would typically process one or more infor-
mation streams from the last page of the document and append a new page with
its results also stored in one or multiple streams. By default, document pages are
transparent, referencing contents of previous pages. Filters can augment (mod-
ify, erase, or obscure) the page contents or introduce some new information on a
page. Such manipulations are usually performed on the last page, leaving all pre-
vious pages intact. This conservative architecture preserves the document’s history
and allows for process backtracking and partial process completion (e.g., in case
of an error), with the possibility of a subsequent restart from any partial result
point.

Filters can be combined into filter assemblies. A filter assembly is a macro-filter
that maintains multiple sub-filters. Our framework implements two basic filter as-
sembly patterns: serial and parallel. The filter assemblies run their constituent filters
in separate processing threads. The serial filter assembly (a.k.a. pipeline) is partic-
ularly useful for efficient processing of document batches by a sequence of filters,
and is typically used to represent application use cases and frequently used filter
layouts, e.g.,

ImageCleanup → OCR → TextCorrection (3.2)

The parallel assembly is efficient at spawning independent sub-filters that run
in parallel, each producing or acting on independent streams. Examples of paral-
lel assemblies are arrays of independent recognition engines, single stream word
correctors, independent image feature extractors, etc.

Figure 3.10(b) presents a sample use case of filter-based document processing
involving both optical (OCR) and intelligent (ICR) character recognition. The high-
level assembly consists of three major stages (image processing, recognition, and
post-processing) implemented as filter assemblies (pipeline, parallel and hybrid, re-
spectively). A collection of document images is loaded by the Image Processing
assembly, where document images are processed in a sequential pipeline of respec-
tive image filters. Then the Recognition assembly runs various recognition filters
on the document image segments. The Post-processing stage then runs triage and
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Fig. 3.10 Filter-based document processing: a typical step (a) and sample use case (b)

voting filters on multiple OCR streams and lexicon corrector runs in parallel on both
OCR and ICR streams. The output text (e.g., main document text and handwritten
annotations) is stored in XML format carrying document-level information for each
resulting stream, e.g., recognition confidence values, detected reading order, and
detected fonts.

Filters can compute, accumulate and use batch-level information (also referred to
as batch evidence), e.g., lexicons, confusion matrices, or recognition models. Doc-
uments, on the contrary, usually carry document-level information (document evi-
dence), e.g., measures of image noise, recognition disagreement measures, or dom-
inant script/language. Trainable filters can “learn” from the accumulated evidence
and adapt to the kinds of data in a given corpus/batch. Hence each filter has two
basic modes: training and application.

All components of the system can serialize themselves from/to XML streams,
thus allowing for great flexibility in dynamic component creation and configuration.
For example, filters can store/load their state in/from the configuration files, thus
allowing for incremental training. Documents can serialize to/from XML streams,
thus allowing for partial results input/output. In a typical run, the complete input of
the system consists of the initial filter configuration and an input document batch,
and the complete output consists of the output document batch (with all derived
per-document evidence) and the final filter configuration after the batch (with all the
batch-level evidence).
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3.4 Conclusion

In our view, Arabic document analysis is a multi-stage process involving docu-
ment image cleanup, content segmentation, recognition, and correction. We have
discussed the major stages of Arabic OCR and handwriting recognition (HWR),
addressed their goals and challenges, and presented a multi-stage solution that we
have developed, as discussed in Sect. 3.2. Section 3.3 introduced our multi-filter
framework, which was utilized during the implementation of two specific systems
for Arabic document analysis:

Multi-evidence Multi-OCR Engine (MEMOE) system, which uses multiple OCR
engines to recognize a document and uses some extra information about the doc-
ument and resulting OCR streams to produce an output that is more accurate than
any of the individual OCR outputs. This system accounts for various types of OCR
evidence extracted from its multiple OCR streams and from the original document
images [38]. The system was designed with the goal of improving the OCR ac-
curacy on images that were likely to result in low recognition rates, which in turn
could significantly impact downstream processing (categorization, NEE, MT). The
system was tested on (very) noisy Arabic documents and produced some encour-
aging results, beating majority voting and each individual OCR engine it worked
with.

Arabic Handwritten Word Recognizer (AHWR), which combines several classi-
fiers and lexicon reducers in both sequential and parallel fashion to improve recog-
nition results relative to the individual classifiers [39]. The set of individual com-
ponents integrated as filters into the combined recognizer includes both internally
developed classifiers and components developed externally (not exclusively for this
integration), thus demonstrating that the proposed framework is well suited for im-
plementation of systems based on collaborative efforts. The recognition accuracy
of any system is inevitably biased by the training data (ours was no exception), but
we were able to build a general-purpose on/off-line handwriting recognizer that
was fairly accurate on datasets representative of its training corpora.

The proposed multi-filter framework can be extended into an advanced document
processing system with feedback that would combine pre-recognition processing
of Arabic document images (e.g., ImageRefiner described in Sect. 3.2.1), printed
text and/or handwriting recognition (e.g., AHWR described in Sect. 3.2.2), and post-
recognition error correction (e.g., MEMOE described in Sect. 3.2.3). The user in
the loop approach (also implemented as a filter) can be taken to incorporate things
like relevance feedback to expedite a system’s adaptability to the given data and to
narrow the perceptual gap between machine and human recognition apparatus.
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Chapter 4
Pre-processing Issues in Arabic OCR

Zhixin Shi, Srirangaraj Setlur, and Venu Govindaraju

Abstract Pre-processing of scanned documents is a necessary first step in the pro-
cess cycle of any document processing application. While pre-processing methods
are generally language independent, the effectiveness of downstream OCR pro-
cesses can often be improved by language/script specific adaptations, particularly
in the case of non-Latin scripts such as Arabic and Indic scripts. In this chapter, we
present some techniques that have proven effective for the pre-processing of hand-
written Arabic documents.

4.1 Introduction

The input to most optical character recognition (OCR) systems in use or under de-
velopment today consists of off-line document images. These images are usually
scanned from page documents of handwritten text written on various types of paper
including paper with pre-printed rule-lines, logos, graphics, and printed text. The
scanned images could be color, grayscale, or binarized images. Factors that could
have a significant impact on downstream OCR performance include the scanning
resolution, which could be as low as 200 dpi, binarization artifacts due to poor
built-in binarization algorithms used in many low-end scanners, and various types
of noise, ranging from dark backgrounds and salt-and-pepper noise (holes and small
blobs) to non-text objects such as form lines or rule-lines, logos, and other graphics
that need to be detected and removed. Figure 4.1 shows some examples of binary
document images illustrating some of these pre-processing issues.

Another source of document images are historical manuscripts often found in li-
braries such as the United States Library of Congress. These collections of handwrit-
ten historical document images are typically digitized by photographing the original
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Fig. 4.1 Examples illustrating problems requiring pre-processing. (a) Irregular clutter noise,
(b) salt noise resulting in broken strokes, (c) pepper noise, and (d) broken rule-lines, punch holes,
and other problems

documents. The poor quality of historical document images is a result of multiple
factors. Historical documents degrade due to aging and handling. Bleed-through of
ink, dirt, and other types of damage are also frequently seen in very old documents.
Since historical documents are also likely to be fragile, they are usually imaged us-
ing digital cameras instead of platen scanners. This causes the image to have uneven
intensities. Enhancement methods are required to improve the readability of histor-
ical documents for various purposes such as visual inspection by historians and for
OCR applications.

Figure 4.2 shows a typical historical handwritten document image, and Fig. 4.3
depicts the scanline view, which shows uneven background intensities across the
document. It is therefore not trivial to separate the foreground text from the back-
ground. Ideally, the thresholding along the scanline for the separation should be a
curve, rather than a straight line or lines determined by traditional global or locally
adaptive thresholding algorithms [20].

Targeted image enhancement algorithms for a few noise categories are avail-
able in the literature. For example, surrounding noise is addressed in [1, 17], and
filters such as modified median filters [8], the kFill operator [3], optimal Boolean
filters [10], and modified directional morphological filters (MDMFs) [18] have
been used to handle salt-and-pepper noise. However, when multiple noise types are
present in a single image, these methods sometimes result in unsatisfactory results.

In this chapter, we present techniques for three important pre-processing tasks:
(i) enhancement techniques for grayscale images, (ii) enhancement techniques for
binary images, and (iii) line separation for binary handwritten images.
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Fig. 4.2 Historical
handwritten document image
with uneven background

Fig. 4.3 Scanline view for a
typical photographic image of
a historical handwritten
document

The enhancement techniques for grayscale images focus on enhancing the quality
to enable better readability and better binarization.

The enhancement algorithms for binary images are designed to improve image
quality for automatic OCR. The proposed algorithms are executed in sequence. Clut-
ter noise, if any, in the document is first removed, and then a statistical approach is
designed for determining whether the image contains any pepper noise. A pivotal
text pixel identification process precedes a localized filtering algorithm to remove
the pepper noise from the background. A region growing algorithm is then applied
to enhance holes within text and broken text strokes (salt noise) by interpolation.
Documents with form lines and rule-lines are detected if present. These are then
removed using a stroke following approach without breaking the text strokes.

Generally, text line separation algorithms first locate the lines and then segment
and label them in their original logical reading order. We describe some methods
that have been very effective for line separation of handwritten Arabic documents.

4.2 Pre-processing for Grayscale Images

Three popular thresholding algorithms in the literature for text segmentation [11]
are Otsu’s thresholding technique, the entropy techniques proposed by Kapur et al.,
and the minimal error technique by Kittler and Illingworth. Another entropy-based
method specifically designed for historical document segmentation is [13], which
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deals with the noise inherent in paper quality, such as double-sided documents.
Techniques for dealing with bleed-through text have been addressed in [28] (using
direct image matching) and [29] (using directional wavelets).

In this section, a novel technique for historical document image binarization is
described. This method, which is targeted toward enhancing images with an uneven
background (Fig. 4.2), extends our earlier work [24] in which a linear model is used
to adaptively approximate the paper background by using a nonlinear model for the
approximation. The nonlinear model uses a combination of local and global line
fitting approaches to find the best straight line segment that fits all the points within
the neighborhood of each point on the scanline.

A linear approximation line at each scanline point is used to estimate the back-
ground intensity level at that point. A transformation based on a normalized approx-
imation is used to even out the background, resulting in enhanced contrast with the
foreground text. This method can also be adapted easily to color images.

4.2.1 Background Normalization for Variable-Intensity
Background Grayscale Images

Many of the scanned document images encountered in application scenarios such
as historical documents cannot be binarized using a simple global threshold. Even
adaptive approaches that use thresholds over local patches do not work well on
historical documents, since the background intensities vary significantly across the
images.

An image can be looked at as a three-dimensional object whose positional co-
ordinates are in the x–y plane and the pixel gray values are in the z direction.
Considering the extreme case of a document image that does not have any textual
content, the image will be approximately a two-dimensional plane which represents
the background surface of the paper. A traditional thresholding model would find a
plane H parallel to the x–y plane above the paper surface that can separate the z

value representing the textual content. In historical documents with an uneven back-
ground, it is typically not easy to find a single plane surface H parallel to the x–y

background surface that can separate the textual content.
Our initial approach to address this issue is to find a plane K above most of the

background pixels with almost all of the foreground pixels above the plane. We can
achieve this using a simple histogram. The objective of this initial approximation
is to keep most of the foreground pixels above K . The pixels below this threshold
plane K will contain some foreground pixels in addition to the background pixels.

Figure 4.4 is an image of the incomplete background, where the foreground pix-
els already removed by the approximate threshold plane are shown in white. The
next step is to better approximate the background in small local regions.
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Fig. 4.4 Majority of
background pixels are below
the thresholding plane

Background Separation by Linear Approximation

Since the leftover (residual) background in Fig. 4.4 may still have pixels which are
likely to be part of the foreground text, we make a second finer pass over the image
for separation of the foreground text and background.

To accomplish this, our first approach is to use a linear model to approximate
the background in small local regions. The residual background image is first parti-
tioned into m by n smaller regions, each of which approximates a flat surface in that
local neighborhood. In each such region we find a linear function in the form

Ax + By − z + D = 0 (4.1)

Pixels in this residual image are represented as points in the form (xi, yi, zi)

where (xi, yi) is the position of a pixel and zi is the pixel value. We apply the
minimal sum of distances,

min
∑

i

(Axi + Byi − zi + D)2 (4.2)

where the sum is taken for all the available points in the residual image. The mini-
mization gives a “best fit” linear plane (4.1) because the distance from any point to
the plane in (4.1) is a constant proportional to |Axi + Byi − zi + D|.

The solution for A, B , and D is obtained by solving a system of linear equations,
which are derived by taking the first derivatives of the sum function in (4.2) with
respect to the coefficients, and setting the derivative functions to zeros. Therefore,
in each small partition we find a plane that is a best fit to the image background in
the partition. The pixel value of the plane is evaluated by

z = Axi + Byi + D (4.3)

for each pixel located at (x, y).
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Fig. 4.5 Scanline histogram and background approximation. The histogram of black pixel in-
tensity along the selected scanline for a grayscale document. The horizontal line is the average
intensity level. The curve is the approximation of the background

Background Separation by Nonlinear Approximation

A second approach is to use a nonlinear curve for approximating the document
background. For efficiency, the nonlinear approximation is computed along each
scanline (Fig. 4.5).

The histogram corresponding to text line regions shows taller peaks with large
variations; background regions with no text pixels show a lower and less variant
distribution. Also, the number of background pixels in a document image is typically
significantly larger than the number of foreground text pixels. Our technique takes
advantage of these observations.

We first compute the mean or average intensity level from the histogram. This
average is used as a reference to set a background level at each pixel position along
the scanline. The scanline is traversed from left to right. If the intensity level at
the current position is less than the mean, then we will take this value for the next
computation of our approximation and update a variable previousLow with the value
of the current level. If the current level is higher than the mean, we will use the
value in previousLow as the background intensity level at the current location for
the subsequent computation of our approximation.

Thus, we have approximated a background intensity level for each pixel position
on the scanline. This is just a rough approximation and is not very accurate for the
following reasons. First, at the foreground pixel location, the foreground level is
set based on a previous background level which may be used multiple times for a
consecutive run of foreground pixels. Second, for low quality images, even the true
background pixels may be assigned an intensity level that is very different from the
ideal representation of the paper background. This roughly selected and estimated
background (SEB) is an intermediate step for a better approximation.

Using the SEB pixel levels on a scanline, the approximation of the paper back-
ground can be done in two ways. The first uses a sliding window approach where,
at every pixel position, the average of the SEB values in its local neighborhood is
used to compute the approximated background intensity level. The second approach
to find an approximated value on the curve at a point location is to use the SEB val-
ues in a neighborhood of fixed size, centered at the point, to find a best fitting line
using squared distance minimization. The approximated value is the value on the
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Fig. 4.6 Normalized
historical document image
showing an even background

line corresponding to the point location. The final approximation of the background
calculated in this manner usually results in a nonlinear curve.

The original grayscale image can be normalized by using the linear or the non-
linear approximation. Assume a grayscale image with pixel values in the range 0 to
255 (0 for black and 255 for white). For any pixel at location (x, y) with pixel value
zorig, the normalized pixel value is then computed as

znew = zorig − z + c (4.4)

where z is the corresponding pixel value on the approximated background; c is a
constant fixed to some number close to the white color value 255. An example of a
normalized image is shown in Fig. 4.6.

4.2.2 Experiment and Results

The primary target documents for the techniques described are handwritten histori-
cal or other degraded document images digitized by using either conventional platen
scanners or digital cameras. The goal of the algorithms is to enhance the readability
of the document images both for humans as well as automated recognition systems.
Some images which are difficult to read for humans can be made at least human
readable for digital library applications. For images which are unable to be read by
automatic document processing systems due to problems with traditional binariza-
tion methods, our algorithm provides a better image enhancement method so that
the enhanced images can be easily binarized using a global binarization algorithm.

The evaluation of image enhancement and binarization algorithms can be a chal-
lenging task, since the ideal achievable result is hard to define.

There are two possible approaches. One is through visual inspection to compare
the resultant images (after processing) against the original images to make a qual-
itative judgment of the efficacy of the algorithm. Another approach is to provide a
quantitative metric by evaluating the improvement in performance in a downstream
process such as OCR results from a document recognition system. A quantitative
metric can also be obtained by using synthetic noisy image data generated from
clean binary images and evaluating the processed image against the clean, ideal im-
age.
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Fig. 4.7 An example Arabic
historical document. Above:
Color image of original
document with uneven
background. Below: Image
after background
normalization

Since our target images for the grayscale enhancement algorithms were aged,
handwritten, historical document images, quantitative evaluation was not feasible.
This is due to the following reasons. First, there is no readily available document
recognition system for handwritten historical document images, which makes it dif-
ficult to measure the algorithm using OCR performance. Second, it is very diffi-
cult to define the ground truth for a document image in terms of quality. Although
measures such as the number of readable words or characters in an image could
be candidates, it is still a subjective determination. And last, finding an algorithm
to simulate the aging process to generate synthetic images is equally challenging;
therefore, using synthetic image data is also not practical.

For the reasons outlined above, a qualitative evaluation was used to determine
the efficacy of our algorithm. Improving image quality for human readability was
the primary goal of the evaluation.

The results demonstrate that the enhanced images show a marked improvement
in image quality for human reading. Figures 4.7 and 4.8 show an Arabic histori-
cal document image and intermediate results using the techniques described in this
chapter.

There are many document binarization algorithms available in the literature. As
discussed in the introduction, most of the methods look for a threshold value glob-
ally or locally. When the threshold(s) is/are found for a document image, the image
is then segmented into foreground and background based on the threshold. The dif-
ference in our method is that we find a curve to approximate the background of the
image, which allows segmentation of the foreground and background of an image
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Fig. 4.8 Above: Binarized
image after background
normalization. Below: Text
line separation using the
binarized image

along a curved plane instead of a straight plane. Our test is designed to adjust the
claim. We downloaded 100 historical handwritten document images from the Li-
brary of Congress website. These images were selected because they all have obvi-
ous uneven background problems. From these images, we chose 20 random images
for the test. These images could not be segmented easily with a global threshold.
The images were successfully binarized using a global threshold after application
of our normalization algorithm. Example images can be found in Figs. 4.9 and 4.10.

4.3 Pre-processing for Binary Document Images

Scanned documents, after binarization, often produce a number of artifacts that hin-
der automatic recognition systems. Removing non-text objects and improving the
quality of the text are primary objectives for pre-processing. In this section, we de-
scribe methods to overcome four different types of issues.

1. Clutter noise, which we define as large connected components including large
solid black areas of various shapes. These typically result from improper scan-
ning.

2. Pepper noise, which consists of small connected components mostly due to over-
thresholding of document images scanned from text written on dark paper (or
other poor contrast settings) or dirty surfaces.
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Fig. 4.9 The best possible
binary image obtained from
the original document image
in Fig. 4.2 using a global
threshold. The binarized
image shows significant parts
of the text obliterated

Fig. 4.10 The image in
Fig. 4.2 normalized using the
method described in this
chapter can be binarized
better using a global threshold

3. Form lines and rule-lines, where the objective is to detect and remove the pixels
from the lines without removing any of the interfering text pixels. It is typical to
find handwritten text in form fields cutting across the form lines.

4. Salt noise and broken strokes or holes or gaps within text strokes, which usually
are a by-product of under-thresholding or pre-processing steps such as line re-
moval. Light uneven writing, such as pencil or marker writing, may also result in
holes within strokes after binarization.

4.3.1 Clutter Noise

Clutter noise is usually a result of improper scanning processes. This type of noise
is characterized by dark strips or irregular dark solid areas along the borders of
a document. These areas could also touch and interfere with text strokes near the
border. We use a multi-resolution approach for the detection and removal of clutter
noise. A biased downsampling algorithm is used to obtain a rough texture map of
the document. The input binary document image is reduced to a fraction of the
original size. This downsampling ratio is estimated based on a statistical sampling
of randomly selected training images. The biased downsampling approach is an
effective method for efficiently excluding the text components and focusing on the
clutter noise.

The bias in the downsampling is achieved by using an n by n window where the
pixel in the downsampled image corresponding to the center of the window is set
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Fig. 4.11 Removal of clutter
noise. Above: Original image.
Middle: Downsampled image
as a mask with text filtered
out. Below: Document image
with clutter noise removed

to black only if all the pixels in the window are black. This results in the region
of clutter noise being retained as black pixels, whereas the pixels corresponding to
the text strokes will be labeled white. The noise pixels thus identified can then be
removed from the original image (Fig. 4.11).

4.3.2 Pepper Noise

Pepper noise is characterized by small connected components of black pixels that
are not part of the foreground text.

Pepper noise can be identified by the size as well as the relative density of the
connected components. A window of n by n pixels is used to determine a distribu-
tion sampling of small connected components. The window size and noise threshold
are determined from randomly sampled training images.
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Fig. 4.12 Removal of pepper
noise by text pivoting. Above:
Original image including
pepper noise. Middle: Text
mask image. Below: Result
from pepper noise removal

Morphology operators and filter-based methods have been used in the literature
for pepper noise removal [3, 8, 18]. Our method is different from these approaches
in that it tries to preserve small components that are part of the text and are not noise
and it also handles pepper noise over a wide range of sizes.

Intuitively, the algorithm attempts to aggressively remove pepper noise that is
not close to text components; a more conservative approach is used if the noise
is near text elements. This is achieved by first using a morphology operator and
a size-based filter to roughly identify noise pixels. The remaining pixels form a
mask image which consists of primarily the text region. This mask image is then
used to generate what we term a noise evaluation image. Each black pixel which
is in the original image but not in the mask image is considered as a potential
noise candidate. At each noise candidate pixel, we apply a filter using a window
of n by n pixels and calculate the approximate text pixel density by counting the
number of black pixels in the mask image. If there are no black pixels in the
region corresponding to this window in the mask image, then the current noise
candidate pixel is removed as being true noise. Otherwise, the pixel value of the
current noise candidate is set to a grayscale value between 0 and 255 based on
the text pixel density corresponding to the window in the mask image. The new
grayscale values are saved into a new image buffer that we call the noise evalu-
ation image. A simple thresholding algorithm is then used to binarize this noise
evaluation image. The final output of the pepper noise removal is a combination
of the mask image with the thresholded result from the noise evaluation image
(Fig. 4.12).
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4.3.3 Rule-Lines

A directional local profiling approach is used for the detection of the rule-line loca-
tions. This is followed by a refined adaptive vertical runlength search for removing
the rule-line pixels. This approach minimizes breaks in text strokes when the rule-
line intersects the text.

In an ideal image, it would be trivial to detect the location of the rule-line with
a simple projection profile which would show a distinctive peak along the center of
the rule-line. However, the projection profile is very sensitive to skew in the image.
In many realistic scenarios, there is significant skew, and many times binarization
issues will result in broken rule-lines. In such cases, a simple projection profile
would not be helpful in detecting the rule-lines accurately.

In order to accurately detect rule-lines, we apply an adaptive local connectivity
transform [26] to a document image. This connectivity measure can be intuitively
understood as the likelihood of a pixel belonging to a line, thus acting as the local-
ized version of a projection profile. We first transform the document image into a
connectivity map using the concept of a fuzzy runlength.

The fuzzy runlength at each foreground pixel is the length of the cumulative
horizontal run in either direction. The fuzzy nature of the computation is introduced
by the fact that small gaps in the run are ignored when computing the runlength. The
maximum length of the accumulated gaps is capped at a predetermined threshold.
The connectivity map is a two-dimensional matrix that is the size of the original
binary image. Each entry in the matrix is the fuzzy runlength at that pixel position
(Fig. 4.13).

We use this matrix as an image and binarize it by using a modified local adap-
tive thresholding algorithm to reveal the locations of the rule-lines. The fuzzy runs
amplify the pixel intensities for the pixels that are on the rule-lines.

The rule-lines encountered in the real-world document images in our test set
show a wide variation in thickness, sometimes even within the same image. Fig-
ure 4.13 illustrates this variation. Although almost all of the pixels on the rule-lines
are covered by the detected line patterns, these line patterns cover pixels belonging
to text strokes also. This problem is particularly accentuated in Arabic documents,
where the text strokes run along the rule-lines. In the areas where the rule-lines in-
tersect with the handwritten text, the detected line patterns in Fig. 4.13 are generally
thicker than the real rule-lines. In the case of very thin or disconnected rule-lines,
the corresponding line pattern may also be disjointed.

To overcome this problem, we use the detected line patterns in Fig. 4.13 to recon-
struct the true rule-lines by estimating the best fitting line using linear regression.
See Fig. 4.14 and Fig. 4.15. Using the reconstructed rule-lines, we trace the vertical
runs in the original document image. If a vertical run is entirely overlapped by a
reconstructed rule-line, the run is removed from the original document image. If a
vertical run is longer than the width of a rule-line, we keep the run. Figure 4.16 and
Fig. 4.17 show the result of rule-line removal for the original image in Fig. 4.13.
This ensures that pixels belonging only to the rule-lines are removed, while the pix-
els belonging to intersecting text strokes are retained.



92 Z. Shi et al.

Fig. 4.13 Rule-line detection
using fuzzy runlength. Above:
Original image including
rule-lines. Middle: The fuzzy
runlength image. The fuzzy
runlength image is a
grayscale showing the
connectivity of the
foreground pixels. Below:
Binarized fuzzy runlength
image reveals the
approximate locations of the
rule-lines

Fig. 4.14 Using the average thickness of a rule-line estimated from its line pattern, the thick areas
are marked out (pointed by arrows). The rest of the pixels in the line pattern will be used in the
linear regression estimation of a best fitting line

4.3.4 Salt Noise or Holes

Salt noise refers to holes and gaps in text strokes. While the fix for pepper noise is
to remove the noise pixels, the fix for salt noise is to add black pixels. Salt noise can
be an unintended by-product of binarization, pepper noise removal, or rule-line re-
moval. We use a modification of the binary image enhancement algorithm presented
in [22] to address this problem. This method uses a region growing approach to fix
broken strokes.
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Fig. 4.15 Using the linear
regression method, a best
fitting line is estimated
(above). Then the entire
rule-line is reconstructed by
filling in pixels around the
best fitting line (below)

Fig. 4.16 Removing
rule-line pixels by removing
vertical runs covered by the
reconstructed lines

Fig. 4.17 Rule-line removal
result for image in Fig. 4.13

The algorithm uses a deformable filter window of n by n pixels. Starting at the
black pixel on which the window is centered, it is sheared to the left or right until
the parallelogram shape includes the maximum number of black pixels in the win-
dow neighborhood. Within the window, gaps are filled row by row (and column by
column) using the algorithm in [22] to enhance the strokes by filling the gaps. This
region growing algorithm continues to enhance the strokes until all the pixels in the
image are visited. Figure 4.18 shows an example of the enhanced image.

4.3.5 Experiments and Results

The pre-processing algorithms have been tested using a set of 204 handwritten Ara-
bic document images from the DARPA MADCAT data.

Visual examination of the experimental results show that the algorithm for re-
moval of clutter noise is efficient as well as effective on all images containing clutter
noise. The pepper noise removal algorithm is evaluated based on the results of text
line separation since the efficacy of the text line separation is severely influenced by
the presence of pepper noise. Using our algorithm for pepper line removal boosts
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Fig. 4.18 Binary image
enhancement by region
growing for fixing salt noise
and broken strokes

the line separation rate to 95 % from the 48 % line separation rate before using the
pre-processing algorithm.

To evaluate the rule-line removal, we decide that a rule-line is detected and re-
moved if 90 % of the pixels on the rule-line are removed. We count the total number
of removed rule-lines in the images include rule-lines. The successful rule-line re-
moval rate is 91 %.

Since downstream OCR results were not feasible, the region growing algorithm
to fix salt noise was evaluated by visual examination of the images exhibiting the
problem. The resulting images after our enhancement process showed significantly
improved text image quality due to a reduction in the number of broken strokes,
smoothing of the boundary of the written strokes, and “even”ing of the width of the
strokes.

4.4 Text Line Separation

Finding text lines is an important step in the pre-processing of a document recog-
nition system. A text line separation process segments a page document image into
isolated text lines which are organized according to the natural reading order. The
performance of a handwriting recognition system depends heavily on the results
of the text line extraction process. Although line separation is usually trivial in the
case of machine printed documents, text line extraction poses many challenges for
handwritten document images. The typical challenges include (i) variability in text
line orientation between different text lines, (ii) varying skew within the same text
line (undulating lines), (iii) overlapping text in pages with crowded writing where
characters of adjacent text lines have overlapping bounding boxes, (iv) characters in
one line touching text in adjacent lines, and (v) the presence of small symbols such
as those seen in Arabic which float between text lines (see Fig. 4.19).

There are a number of text line extraction algorithms in the literature. The pro-
jection profile method [4, 16, 21] produces a histogram along the direction of the
text lines in a text block. The valleys of the histogram represent inter-line gaps,
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Fig. 4.19 Challenges in handwritten Arabic document images

which are located to segment the text lines. Hough transform-based methods are
theoretically identical to the projection profile methods [27]. A set of selected di-
rections are used, and straight lines along the direction are determined to fit the
text elements. The best fit gives the general orientation and the location of the text
lines. The Hough transform can be applied on all black pixels, on reduced data from
horizontal and vertical runlength computations [7], or only on the bottom pixels of
connected components [9]. A nearest neighbor clustering of connected components
can also be used for text line separation [15]. Most of these methods are designed
primarily for machine printed documents and provide good results on printed docu-
ments only. They cannot usually be directly adapted to handwritten documents due
to their reliance on global features in an image and are therefore more suited for
well-structured documents.

Compared to machine printed documents, handwritten documents have more
complex local structures such as undulating text lines, skewed text lines, overlapping
characters, and touching and/or crossing text lines. There are methods that have been
designed specifically for handwritten documents addressing these challenges. Due
to the local rather than global structure characteristics in handwritten documents,
the methods in the literature for handwritten documents are generally “bottom-up”
and based on local analysis. Most methods extract text lines by grouping the basic
text elements such as pixels, connected components [12], or local minima detected
from a chain code structure [5]. These grouping algorithms are designed based on
heuristic rules [12], learning [19], or searching in structures [14]. The local-global
algorithm in [2] first partitions a document image into vertical strips. In each of these
strips, the algorithm applies a projection profile algorithm with the assumption that
the lines in a strip are almost all parallel to each other.

Most of these methods are dependent on the isolation of text elements such as
strokes or connected components. When adjacent text lines touch each other, split-
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ting of connected components, which is often difficult, must be performed before the
location of the text lines can be detected. One other problem is that these methods
use local decisions in the grouping process. They sometimes tend to be “trapped”
by strong local features. For example, in a page image with very crowded text,
connected components close to each other may not necessarily belong to the same
line.

In this chapter, we describe a text line extraction algorithm for handwritten doc-
uments. The algorithm is based on an adaptive local connectivity map (ALCM)
generated using a steerable direction filter. The text line extraction method is
specifically designed for addressing the complex problems in handwritten docu-
ments.

4.4.1 Line Separation Methodology

Humans can identify text lines in a document image by detecting the text line zones
as patterns on a reduced scale of the image. On a downsampled scale the text lines
appear distinct as zones or patterns, and the touching between lines loses promi-
nence.

Based on these observations, we have developed an adaptive local connectiv-
ity feature [26] to change the scale of a document image to reveal the distinctive
text line patterns. At each pixel, we define a connectivity measure by cumulatively
collecting its neighboring pixels’ intensities along a predetermined direction. In-
tuitively, the connectivity measure can be understood as the likelihood of a pixel
belonging to a line. As measured by the connectivity, the pixels in between text
lines are less likely to have an influence on the location of the text lines.

A fuzzy runlength [25] concept as a relaxed version of runlength computed from
background pixels in a binary image was also considered. It emphasizes using back-
ground features for text line extraction and it can efficiently extract text lines for
complex documents including mixed objects of graphics, handwritten, and printed
text. The drawback in the method [25, 26] is that it cannot adequately handle fluc-
tuating lines and lines with large skew.

We present in this chapter a generalization of the method in [26]. Instead of
using a rectangular window filter along the fixed horizontal direction to generate the
ALCM, we propose a steerable directional filter which calculates local connectivity
features from multiple directions. The most likely text line direction is then captured
by the maximum directional connectivity from the multiple directions.

Our proposed text line extraction algorithm consists of the following steps.
(1) Convert a downsampled version of the input image into an ALCM by using
a steerable directional filter. The resulting ALCM is represented as a grayscale im-
age. (2) Binarize the ALCM using a local adaptive thresholding algorithm. The text
line patterns are revealed as connected components in the binary ALCM. (3) Group
the connected components into location masks, one for each text line. (4) Extract
the text lines by collecting the connected components corresponding to the location
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Fig. 4.20 ALCM A(x,y) using the same size filter aligned along different directions. Using the
filter along the direction of the text (right) the ALCM has a greater response (connectivity) than
when using the filter in any other direction

masks in the original input binary image. (5) Group the leftover small components
into the spatially closest text lines. (6) When a connected component touches more
than one text line pattern in the ALCM, apply a splitting algorithm to split the com-
ponent into pieces, and group each of them with the closest text lines.

ALCM Using Steerable Filter

Let f : R2 → R represent a document image. which can be either binary or
grayscale. The adaptive local connectivity map (ALCM) is defined as a transform

ALCM :f → A

by the convolution

A(x,y) =
∫

R2
f (x, y)G

θ0
a,b(x − t, y − s) dt ds (4.5)

where

G
θ0
a,b(x, y) =

{
1 if (x, y) ∈ E

θ0
a,b

0 otherwise
(4.6)

where E
θ0
a,b is an ellipse with semi-minor axis a, b and rotated by an angle θ0:

E
θ0
a,b =

{

(x, y)
∣
∣
{
x < a cos(θ − θ0)

y < b cos(θ − θ0)
and 0 ≤ θ < 2π

}

When we choose a longer than b, the ellipse E
θ0
a,b is an elongated mask aligned

with its long axis in the θ0 direction. ALCM is a convolution that aggregates the
pixel intensities within the mask centered at (x, y). When the long axis of the filter
is aligned with the direction of a text line, the ALCM value A(x,y) at the pixel
location inside the text line will be greater than the value along any other direction
(see Fig. 4.20).

The transform can be implemented in many ways. We present a simple imple-
mentation in this chapter. For convenience, we first reverse the input image so that
255 represents the strongest level of intensity for foreground text. Often handwrit-
ten document images are scanned with resolutions ranging from 200 to 300 dpi or
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Fig. 4.21 A handwritten Arabic document image with varying skew, and its ALCM

higher, which is much higher than we need in text line location. A lower resolution
image is enough to retain the necessary information. So, we downsample the image
to 1/4 of its original size (1/2 in each direction). Values a and b, which determine
the size of the steerable filter, are generally chosen as follows. b is chosen to be a
value less than the height of the text, and a is chosen to be long enough to capture
the location profile aggregate. Our experiments showed that 5 times the text height is
a reasonable value for a. We estimate the text height dynamically. Our experiments
show that our method tolerates a large range of a and b.

Choosing different values for θ0 for the use of multiple directions in the filter
allows the extraction of text lines with changing skew and undulation. In our experi-
ments, for efficiency, we choose five directions: horizontal, slope ratio of 1 in 10 and
1 in 20, and their negations. Finally, we rescale the resulting ALCM values to the
range from 0 to 255 to obtain a true grayscale image (see Fig. 4.21). A binarization
algorithm can then be used to convert this grayscale image to a binary image.

Location of Text Lines

The value of each pixel in an ALCM image is the cumulative intensity of the fore-
ground pixels in the elliptical neighborhood around the pixel in the original docu-
ment image. A higher pixel value in the ALCM implies that the pixel is in a dense
text region. We therefore classify the pixels in the ALCM into two classes, one for
text regions and one for less likely text. A binarization algorithm is adapted for the
classification.

Otsu’s global thresholding algorithm is used in [26] to binarize the ALCM. The
algorithm works well for most English handwritten documents, including historical
manuscript images from the Library of Congress. However, we have found that it is
hard to use any global thresholding algorithm in locating distinctive text line patterns
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Fig. 4.22 Binarization of ALCM showing the patterns of text lines

when we have to deal with images with crowded writing, variability in thickness of
the strokes, and irregular line spacing.

A local adaptive thresholding algorithm similar to that presented in [6] is modi-
fied and implemented. The algorithm determines a pixel’s binary value by consider-
ing the pixel intensity distribution in a 5 neighborhood block structure. The 5 neigh-
borhood blocks are 5 n × n windows with one in the middle centered at the pixel
under consideration and 4 other blocks adjacent to the corner of the center block.
A weighted difference between the average pixel intensity in the middle block and
that in the other 4 blocks is used to decide the center pixel’s binary value. See [6] for
the general algorithm. Our modification is in the implementation of the algorithm
using a configurable value n for the block size. Figure 4.22(a) shows the binariza-
tion result using the adaptive thresholding algorithm. In order to use the connected
components to form the complete line pattern, we do some filtering and reconstruc-
tion as follows. First, we filter out the small pieces. Based on our experiments, we
observe that some pieces have a width that is significantly smaller than most other
components. Usually, they are also short. These pieces are not required and should
be filtered out. Second, for each connected component, we calculate its upper and
lower profiles and also the center points. All the pixels within each pair of upper and
lower profile points are filled to eliminate holes and gaps inside the line patterns.

In the ideal case, each connected component represents a complete text line. But
sometimes a text line pattern is made up of two to three components and requires
grouping. Grouping is done based on the horizontal alignments and on a determina-
tion of whether or not a group of two neighboring components is too wide to form
a line.
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Fig. 4.23 Splitting a connected component crossing multiple text lines. Left: Image showing de-
tected multi-line characters. Middle: Splitting of the contours with the center of mass marked.
Right: Character images are split and grouped to the closest text line

Extraction of Text Lines

After grouping of the connected components in the binary ALCM, we have a group
of connected components that can be used as a mask for an actual text line. Then the
text lines in the original document image are extracted by a second round of con-
nected component analysis as follows. (1) Generate connected components for the
text in the original document image. (2) Upsample ALCM to the scale of the origi-
nal image and superimpose the line patterns on the original document image. (3) For
each text line pattern (the mask), collect all the connected components of text touch-
ing the pattern and group these components together to form the text line. (4) Group
the small connected components that do not touch any line pattern with the closest
neighboring line. Figure 4.22(b) shows the line patterns that are superimposed on a
document image; the extracted text lines are shown in different colors.

If a text connected component touches more than one line pattern, then it repre-
sents characters that cross multiple text lines (the red color components in Fig. 4.23).
These crossing pieces can be easily detected, but it is a nontrivial task to split them
correctly and group them with the right text lines to which they belong. The touch-
ing connected components can be split using the splitting algorithm presented in
[23]. For each touching component, we first draw a reference line between the line
patterns. The splitting algorithm segments the contours of the piece into contour
segments. Based on the relative location of the center of mass of the contour seg-
ments to the reference line, we group them with the corresponding text lines. The
text images are then recovered using the contour segments (see Fig. 4.23).

4.4.2 Experiment

A set of 45 randomly chosen handwritten Arabic document images from the DARPA
MADCAT data were used for our experiments. These images are binary images and
were scanned at 300 dpi.

For performance evaluation, we used a connected component-based approach
in which connected components are used as the basic text objects. The numbers
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of connected components classified into the correct text lines are counted for the
performance numbers.

There was a total of 1,022 text lines in the 45 test pages. The total number of
text connected components was 32,936. There were two instances where two lines
were merged incorrectly and 144 isolated components were incorrectly classified
by the system. There were 178 connected components that touched more than one
line and 14 of them were incorrectly split or grouped. The error for the incorrectly
split components is counted twice. The overall performance measured in terms of
correctly classified connected components was (32936 − 144 − 2 × 14)/32936 =
99.5 %.
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Chapter 5
Segmentation of Ancient Arabic Documents

Abdel Belaïd and Nazih Ouwayed

Abstract This chapter addresses the problem of ancient Arabic document segmen-
tation. As ancient documents have neither a real physical structure nor a logical one,
the segmentation will be limited to textual areas or to line extraction in the areas. Al-
though this type of segmentation appears quite simple, its implementation remains a
challenging task. This is due to the state of many old documents; the image is of low
quality, and the lines are not straight, but sinuous and connected. Given the failure
of traditional methods, we proposed a method for line extraction in multi-oriented
documents. The method is based on an image meshing that allows one to detect the
orientations locally and safely. These orientations are then extended to larger areas.
The orientation estimation uses the energy distribution of Cohen’s class, which is
more accurate than the projection method. Then, the method exploits the projection
peaks to follow the connected components forming text lines. The approach ends
with a final separation of connected lines, based on the exploitation of the morphol-
ogy of terminal letters.

5.1 Introduction

Ancient handwriting is inherently complex because of its irregularity due to the
manual aspect of the script. Rarely, did the writers use line support (or layers) to
write, which resulted in sinuous lines of writing. Moreover, because of the calli-
graphic style of the writing, ligatures were easily introduced between the parts of
words, and attachment occurred between the words of successive rows. Adding to
this, as the document existed only on paper, updating was done directly on the text
itself, which led either to extending the lines in the margins or adding entire blocks
of lines in the margins.

All these artifacts complicate the problem of line segmentation which is essen-
tially contextual in old documents, whereas most segmentation techniques of mod-
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Fig. 5.1 Examples of four categories of handwritten ancient documents: (a) Mono-oriented,
(b) multi-oriented, (c) multi-scripts, and (d) heterogeneous

ern documents are rather “natural,” seeking essentially parallel alignments of con-
nected components. The problem of “contextual” segmentation is new and complex,
and has been a challenge in research over the last decade.

The literature suggests many techniques for extracting lines, and some are more
suitable than others. We will expose, in the first part of this chapter, a classification
of these techniques. Several classification choices are possible, by the focus type,
by the script type, or finally by the method procedure, bottom–up or top–down. The
second section will be devoted to the segmentation of a class of ancient Arabic doc-
uments. A further difficulty arises when dealing with Arabic, corresponding mostly
to the calligraphic aspect being more accentuated for Arabic (see Fig. 5.1, which
shows different document classes with different kinds of orientation).

Given the failure of traditional methods, we proposed a method for line extraction
in multi-oriented documents [33–38]. The technique has been studied for Arabic
documents but can be generalized to any other script for which the writing is linear.
The method starts by an image meshing allowing us to progressively and locally
determine the orientations. The orientation is estimated using the energy distribution
of Cohen’s class on the projection histogram profile. This local orientation is then
enlarged to extract the orientation areas. Afterwards, the text lines are extracted
locally in each area based on the connected components follow–up. Finally, the
connected components that touch in adjacent lines are separated.

The chapter is organized as follows. In Sect 5.2, we briefly describe the state
of the art concerning the segmentation approaches. The multi-skew detection algo-
rithm is detailed in Sect. 5.3. We present some experimental results in Sect. 5.4, and
the conclusion, along with future trends of this work, will be given in Sect. 5.5.

5.2 Previous Work

The literature proposes many approaches for document line segmentation. Some of
them are top-down, while others are bottom–up.
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Top–down methods start from the whole image and iteratively subdivide it into
smaller blocks to isolate the desired part. They use either a priori knowledge on the
documents such as inter-line or inter-column spaces, or a document model to reach
such a segmentation. The localization of white separations is generally done by
analyzing the projection histogram profile, either by analyzing vertical stripes like
in [3], by shredding the interline surface with local minima tracers like in [30], or
finally by using a vector distance between histogram peaks and pixels, as in [1]. To
face the inclination problem, one uses a Hough transform that considers the whole
image composed of straight lines [44]. Given the failure of these global methods,
other researchers are trying to use a knowledge model, such as the DMOS model
proposed in [9] which consists of a grammatical formalism position to model the
document structure, or the model of [51] corresponding to a vectorization-based
algorithm, parametrized by some line features such as angle and length, etc. Nico-
las, Paquet, and Heutte [31] propose an AI (artificial intelligence) problem solving
framework using production systems.

Bottom–up methods deal with noise problems and writing variation. Most meth-
ods of line extraction in handwritten documents are bottom–up. The connected
component-based methods are the mainstay of the bottom–up approaches. They are
clustered into bigger elements such as words, lines, and blocks. In each research,
simple rules are used in a different way. These rules are based on the geometric re-
lationships between neighboring blocks, such as distance, overlap, and size compat-
ibility. The difference between the different works lies in their capabilities to cope
with space variation and influence of the script and writer peculiarities. Several ap-
proaches for clustering connected components have been proposed in the literature,
such as K_NN, the Hough transform, smoothing, repulsive–attractive networks, the
minimal spanning tree (MST), and deformable models.

Clustering methods related to the notion of mutual neighborhood have been con-
sidered in the clustering literature, as in [48] where the clustering is operated on
different kinds of textual blocks extracted from vertical strips, in [22] where a per-
ceptual grouping based on the “Gestalt theory” principles, such as proximity and
similarity, is operated, or in [13] where the grouping is based on the text line align-
ments. The Hough transform is also used in bottom–up approaches. The main ques-
tions are related to the voting points, the most representative of the text lines. In [23],
the voting points correspond to the center of gravity of connected components. In Pu
and Shi [41], they correspond to the minima of the connected components, located
in a vertical strip on the left side of the image. In [24], the voting points correspond
to character blocks whose size is estimated from the average of the character sizes
in the document.

The smoothing technique (run length smoothing or RLS) is to darken the small
spaces between the consecutive black pixels in the horizontal direction, which leads
to connecting them. The boxes which include the successive connected components
in the image form the lines. In [45], a fuzzy run length algorithm is used. In [19],
lines are extracted by applying an RLS algorithm (RLSA), adapted to a grayscale
image. Instead of connecting a series of white and black pixels, the gradient of the
image is expanded in the horizontal direction with a tilt angle that varies between
±30◦.
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The repulsive attractive network is a dynamic system to minimize energy, which
interacts with the textual image by attractive and repulsive forces defined on the
network components and the document image [39]. Experimental results indicate
that the network can successfully extract the baselines under significant noise in the
presence of overlaps between the ascending and descending parts of characters in
two lines.

Considering the connected components in a document as the vertices of a graph,
we can obtain a complete undirected graph. A spanning tree of a connected graph is
a tree that contains all the vertices of this graph. A minimal spanning tree (MST) of
a graph is that spanning tree for which the sum of the edges is minimal among all the
spanning trees of this graph. An MST of a graph can be generated with the Kruskal
algorithm. In this algorithm, the tree is built by inserting the remaining unused edge
with the smallest cost until all the vertices are connected [47].

The deformable model is an analytical approach which can act interactively on
the modeling. It allows one to change (in time and space) the model representation
of the model toward the solution of the minimization problem introduced in the
modeling. Concretely, this leads to the introduction of a term of time evolution in
the minimization criterion, which allows one, each time, to influence the prior model
when necessary and to readjust to a better solution. Early work in this area includes
that of Kass, Witkin, and Terzopoulos [16]. In the case of a two-dimensional image,
the deformable contour model is used to find an existing object. The process is
iterative. From an initial contour, a mechanism of deformable contour is applied
to change this form so that it is the target area. The evolution mechanism is an
energy function. The target area will be found by minimizing this energy. Several
deformable contour models exist in the literature. A few examples are parametric
active contour models (snake [16], the geometric snake [5], the level-set method
[32, 40, 43], the B-spline or B-snake [20], and the Mumford–Shah model [42].

Table 5.1 summarizes all the methods mentioned, divided according to 15 cri-
teria: line types (straight, oriented, and cursive), material types (printed, handwrit-
ten, multi-oriented, interval orientation (IO), Latin, Chinese, Indian, Arabic, Per-
sian, Urdu, image level (C: Color, G: Gray, and B: Binary) and mesh. All these
approaches are either too general, proceeding by projection or by alignment search,
or too local, operating by connected component following. They reach their lim-
its when challenged by the poor quality and multi-orientation of documents. Most
of these techniques have been applied to documents with a single orientation. The
adaptation of these approaches is impossible if we want to extract all directions.

5.3 Overview of the Proposed System

Given the failure of traditional methods, we have proposed a method for line ex-
traction in multi-oriented documents. The technique has been studied for Arabic
documents but can be generalized to any other script in which the writing is linear.
The method is based on an image meshing that allows it to detect the orientations
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locally and safely. These orientations are then extended to larger areas. The only as-
sumption is that initially the central part of the paper is horizontal. The orientation
estimation uses the energy distribution of Cohen’s class, which is more accurate than
the projection method. Then, the method exploits the projection peaks to follow the
connected components forming text lines. The approach ends with a final separation
of connected lines, based on the exploitation of the morphology of terminal letters.

5.3.1 Image Meshing

In this step, the document image is partitioned into small meshes. The mesh size
is generated, based on the idea that a mesh must approximately contain 3 lines,
so as to produce a projection histogram profile that is representative of the writing
orientation. To find the lines, the active contour model (or snake) is applied. The
traditional external energy has some limitations such as the edge initialization near
the contour and poor convergence to regions with concavities. For that reason, Xu
et al. [46] developed a new kind of external energy that permits the snake to start
far from the object, and forces it into boundary concavities. This energy is called
gradient vector flow (GVF).

In our application, the major axis (equal to the first harmonic of the Fourier de-
scriptor) of the connected components is used as the initial snake. We used the
GVF as external energy and a null internal energy. To detect the alignments, some
morphological operations such as dilation and erosion are first applied to the initial
image (see Fig. 5.2b) to expand the edges. Then, the major axis of each connected
component is determined using the Fourier descriptors [27] (see Fig. 5.2c). Finally,
the energy minimization mechanism is operated on the snake to deform and push
it to the text edge, more or less similarly to the connected component skeleton (see
Fig. 5.2d). To ensure that the lines will be detected, we increment the size of the
major axis by a threshold equal to a quarter of the average width of the connected
components. This threshold is obtained by experiments. Finally, the connected com-
ponents that belong to the same line are grouped to form the lines (see Fig. 5.2e).
Figure 5.4b shows the results of the automatic meshing of the document presented
in Fig. 5.4a.

In order to reduce the running speedup, we discard the meshes containing few
pixels because their inclination is insignificant. If a mesh contains some text (i.e.,
few connected components) and thus no noise, it is automatically merged with the
neighbor meshes.

5.3.2 Orientation Area Extraction

Orientation Estimation

As the lines are wavy, the orientation is first searched in small meshes where it
is more likely to have fragments of straight lines. Traditionally, the projection his-
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Fig. 5.2 Application of the snake for line detection: (a) initial image, (b) dilation and erosion of
the image, (c) major axis drawn for each connected component of the lines. The ellipse encapsu-
lates the initial connected component of (b). (d) shows the distorted snake of (c). (e) gives the final
result showing the connected components gathered in each line

togram profile is employed along different orientation angles to determine the local
orientation by the calculation of the difference between peaks and valleys. However,
we observed that this technique fails for Arabic, in which individual parts of words
(PAWs) can be oblique while the global word is horizontal. To face this problem,
we have examined other features to better analyze the histogram function. We then
used the energetic time–frequency distributions on the histogram as a signal.

Time–Frequency Distributions

To obtain a more robust estimator, we considered using a time–frequency repre-
sentation of the histogram projection. This distribution best relates that projection
to the peaks generated by the lines, translating their presence in high energy. It is
less sensitive to false maxima. We used the Cohen’s class distributions which are
quadratic and verify the invariance property by temporal or frequency translation.
Each member of this class is distinguished by a kernel which has a determinant role
in the quality of the provided images and in the properties it verifies. We limited it
to the Wigner–Ville distribution (WVD), whose properties allow it to be more re-
active to the presence of histogram peaks than the other distributions of the Cohen
class [37].

The traditional approaches of signal processing such as the Fourier transform
cannot study the signal variation over time and frequency. The energetic time–
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frequency distributions go beyond what these approaches allow by analyzing the
nonstationarity of a signal and distributing the signal energy in time and frequency.

According to [15], the energy Ex of a signal x(t) is defined as

Ex =
∫ +∞

−∞
∣
∣x(t)

∣
∣2 dt =

∫ +∞

−∞
∣
∣̂x(f )

∣
∣2 df, (5.1)

where x̂(f ) is the Fourier transform of the signal x(t). The value Ex is quadratic.
For this reason, the time–frequency distributions must keep this property.

Cohen’s Class In 1966, Cohen [2, 10, 12] proved that a significant number of
time–frequency distributions can be seen as particular cases of the following general
expression:

Cx(t, f ) =
∫ +∞

−∞

∫ +∞

−∞
φdD(τ, ξ)Ax(τ, ξ)ej2π(tξ−f τ) dξ dτ, (5.2)

where Ax(τ, ξ) is the ambiguity function defined by

Ax(τ, ξ) =
∫ +∞

−∞
x(t + τ/2)x∗(t − τ/2)e−j2πξt dt.

Cohen’s class contains all the time–frequency distributions that are covariant un-
der time and frequency shifts. The members of this class are identified by a particular
kernel φdD(τ, ξ) (expressed here in the delay-Doppler plane dD), which determines
their theoretical properties [6–8, 14, 15] and their practical readability.

We want to use these distributions on the signal representing the histogram pro-
jection profile in each mesh in order to estimate its orientation. The Cohen’s class
distributions are used to estimate the orientation because when computing the pro-
jection histogram of a document along one direction of projection, we obtain, if this
direction is the real orientation of the document, a histogram in which each line
leads to a clearly localized local maximum. Each block of the document leads in the
projection histogram to a succession of periodic peaks and valleys, whose period is
relatively constant. This periodic succession is delimited by the block size (“time”
support) and oscillates at a frequency determined by the space width between the
lines. As all the pixels are accumulated in the same positions, the local maxima
have higher energy levels than with other projection directions. This explains why
we can estimate the orientation of a document by seeking the projection angle for
which the time–frequency distribution localizes a large energy level on a small area
of the time–frequency plane. For example, Fig. 5.3 shows the increase of the max-
imum of the WVD when the number of peaks and valleys increases and when the
valleys become wider.

To estimate the orientation angle, we use the analytic signal xa(t) of the centered
squared root of the projection histogram x(t) of the document. The analytic signal
is the signal x(t) without its negative frequencies. The histogram x(t) is determined
by projecting each document with a chosen orientation. To calculate all possible
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Fig. 5.3 Examples of maximum value of the Wigner–Ville distribution obtained for different pro-
jection histogram profiles when the number of peaks and valleys increases and when the valleys
become wider

projection histograms, we turn the image around its center of gravity (which gives
us a point deduced from the image content and not from its size and framing) and
we choose the horizontal axis as an arbitrary reference for the zero degree angle.
Then, we compute a time–frequency representation for the squared root of each
projection histogram, whose average has been removed. The angle corresponding to
the histogram with the highest maximum value of its time–frequency representation
is chosen as the estimated angle of the document.

Kavallieratou et al. [17, 18] had already used the WVD to estimate the overall di-
rection of Latin documents printed or handwritten. In this work, we first determined
the properties of time–frequency representations that seemed desirable for such an
application, then we established a list of performances, and then the performances
were evaluated.

Orientation Area Extension

To extend the areas of orientation, we examine the orientations in neighboring
meshes and proceed to an extension or a correction. Considering the writing di-
rection in Arabic, we examine pairs of neighbors along three right–left directions:
straight, sloping upward, and sloping down. The two neighbor meshes are merged
if the orientation of the global mesh is equal to one of them; otherwise the orienta-
tions are maintained in both meshes. The operation is repeated for all the document
meshes. After this step, the zones are constructed.

When a mesh contains several orientations, the mesh orientation will be erro-
neous. To detect this phenomenon, we observe the orientation of the horizontal
(resp. vertical) surrounding meshes which have different angles. Since this case
arises inside the main horizontal (resp. vertical) writing, the vertical (resp. hori-
zontal) projection profile is used to resolve this case. We look for the first minimum
value in the projection profile from the right representing the end of the first incli-
nation (Im minimum index). Then the mesh is divided at Im into two meshes.
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Fig. 5.4 The results for the different steps of the multi-skew detection approach

Since they are applied automatically, the initial paving edges can cross the con-
nected components, creating problems (false maxima) in text line detection. The
incorrect paving exists only in the horizontal and the vertical zones. We need to
correct the position of these edges by performing a horizontal or vertical shift so
that the local paving covers the local connected components. In the horizontal (resp.
vertical) area, the edge that divides two consecutive rows (resp. columns) is moved
to the nearest position in these rows (resp. columns) when the horizontal (resp. ver-
tical) projection vector for each of their two consecutive meshes has a minimum
value (see Fig. 5.4g and see Fig. 5.4f).

5.3.3 Text Line Extraction

The text line follow–up starts in the first window on the right side of the page.
The algorithm starts by looking for the new maxima (see Fig. 5.5a). Each peak
represents the starting point Ps of the orientation line blj . The ending point Pe of the
orientation line is calculated using the Ps , the orientation, the width, and the height
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Fig. 5.5 Text line detection steps for a window. (a) Maxima detection, (b) orientation lines esti-
mation, (c) assignment of each connected component and diacritical symbol to its appropriate line,
(d) extracted lines

Table 5.2 Four types of
connection observed in
Arabic handwritten
documents

of each window (see Fig. 5.5b). The orientation line blj is calculated based on the
two points (Ps,Pe) and the orientation of the window. The connected components
that belong to a baseline are sought to construct the text line (see Fig. 5.5c).

A step of text line correction follows the text line detection to assign the non-
detected components and the diacritical symbols to the appropriate text line (see
Figs. 5.5c and d). A distance method is used to address this problem. First, the dis-
tance between the centroid of the nondetected component or diacritical symbol Ci

and the text line is calculated. Ci is assigned to the text line lj if dci,lj < dci,lj+1
else to lj + 1.

5.3.4 Connected Line Separation

The connections occur between two successive lines when their characters touch.
Often, these connections are made between ascenders in the lower line and descen-
ders in the higher line. Table 5.2 lists the four categories of connection in Arabic:
(a) a descender with right loop, connects a vertical ascender, (b) a left descender
with a loop touches a vertical ascender, (c) a right descender touches the higher part
of the loop of a character, and (d) a left descender connects the higher part of the
lower curve of a letter.
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Fig. 5.6 Connection areas and direction of descenders (the right direction indicated by the red
arrow, the erroneous direction by the blue arrow)

Fig. 5.7 Different steps of the separation of connected components

In all connection cases, we note the presence of a descender connecting a lower
end letter. The descenders are grouped into two categories: (a, c) where the descen-
der of the line starts from the right, and (b, d) where the descender of the line starts
from the left. To streamline the work, the analysis focuses on the connection areas
(see Fig. 5.6)

The method starts by extracting, in the two lines, the connected component cre-
ated by the connection between the two successive lines (see Fig. 5.7a). Then, the
intersection points of each connected component are detected (see Fig. 5.7b, the
points are in red). An intersection point is a pixel that has at least three neighboring
pixels. In the case chosen, the connection occurs at a single point of intersection
Sp close to the minimum axis (valley between two lines, see Fig. 5.7c). Thus, the
point Sp is the nearest point of the minimum axis (see Fig. 5.7d). We then look for
the starting point of the ligature, Bp , which is generally the highest point, near the
baseline of the top line. Then, from this point, the method is to follow the descend-
ing character (i.e., its skeleton, see Fig. 5.7f). The following continues beyond the
intersection point respecting an angular variation corresponding to the curvature of
the descending character.

Due to the symmetry of the curve branches, the value of the orientation an-
gle must always be positive. For example, in Fig. 5.8, the angular variances are
Var(C1+2) = 703,19, Var(C1+3) = 299, Var(C1+4) = 572,37. In this example, the
minimum angular variance Var(C1+3) is given by the correct direction to follow.
Figure 5.9 illustrates the effectiveness of the algorithm on a representative sample
of 12 arbitrarily chosen connected components from 640 occurrences found in 100
documents.
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Fig. 5.8 (a) Example of Arabic connected components (the Arabic letter “ra” is connected with
the letter “alif”), (b) estimation algorithm of the angular variation

Fig. 5.9 Results of some connected line separation

5.4 Experiments and Discussion

To study the effectiveness of our approach, we have experimented on 100 Arabic
ancient documents containing 2,500 lines. These documents belong to a database
obtained from web sites of the Tunisian National Library, the National Library of
Medicine in the USA, and the National Library and Archives of Egypt. The tests
were prepared after a manual area and line labeling step of each document. The
rotation angle examined during these experiments ranged from −75◦ to +90◦. The
execution time is measured from the meshing phase until the line separation phase,
and it depends on the document and the mesh sizes. The tests were performed on a
PC with a Pentium M 1.4 GHz and a cache of 1 GB in Windows XP. The application
was developed with MATLAB completed by the time–frequency toolbox tftb [2].

The approach is composed of two main steps: multi-oriented area detection and
text line extraction. Our results are measured according to these algorithms.

The multi-oriented algorithm is composed of three main steps: image meshing,
orientation estimation, and orientation extension and paving correction. A global
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Fig. 5.10 Meshing results of four different documents

accuracy rate of 97 % is reached. The 3 % error is shared by the three stages of
treatment: 1 % is due to the image paving, 1.3 % is due to the orientation estimation,
and 0.7 % is due to the orientation extension and paving correction.

In image meshing, three text lines are needed to obtain a projection profile rep-
resenting the orientation in each mesh. So, if this criterion is not obtained by the
paving algorithm, some errors may occur in the area detection. The error rate of 1 %
is divided into two cases: 0.7 % is due to the adjacent line connection and 0.3 %
is due to the small oriented areas. In the first case, the connection between lines is
very frequent in ancient Arabic documents. When the active contour model (snake)
is applied in a mesh to extract alignments, it is possible that it will connect two
adjacent lines. This will increase the alignment height and consequently the mesh
height. A large mesh may include different oriented areas. In the second case, the
oriented areas are composed of a few small lines. These areas can be gathered by
the paving in other meshes and naturally will not be extracted. Figure 5.10 shows
the image meshing results of four different documents. We note in these documents
the presence of at least three lines in each mesh.

The meshes in our documents have, in some cases, more than one orientation
or cursive lines. In these two cases, the orientation estimation is wrong and will be
wrong for the orientation extension and consequently for the area detection. The
error rate of 0.9 % is due to the meshes with multi-orientation. The 0.4 % er-
ror is due to the Arabic curvature lines in Arabic ancient documents. Figure 5.11
shows the results of the first orientation estimation of four documents selected in
our database. Each color represent an orientation (see Fig. 5.4 for the color legend).
We notice in these documents the presence of meshes with erroneous orientation
(multi-orientations or cursive lines (gray color)).

Four extension rules are applied for mesh extension having the same orientation.
In the extension phase, any error is happening because all possible orientations in the
documents are considered. The error rate of 0.7 % is due to the paving correction. As
this paving is rectangular, the correction can be applied just along the horizontal and
vertical directions. In some cases (oblique areas), the paving correction cannot be
applied, which will yield some segmentation errors. Figure 5.12 shows the results



118 A. Belaïd and N. Ouwayed

Fig. 5.11 Results of the first orientation estimation of the four selected documents

Fig. 5.12 Results of the multi-oriented areas of the four selected documents

Table 5.3 Results of the multi-skew estimation for the four documents

Figure Document
size

Resolution
(dpi)

w × h of
paving (pixels)

Execution
time

Zone number

True Detected

First document 572 × 800 72 75×75 35 s 5 5

Second document 410 × 625 72 75×75 30 s 5 5

Third document 750 × 941 72 120×120 34 s 2 2

Fourth document 362 × 500 72 90×90 30 s 2 2

of the multi-oriented area extraction of the four selected documents. Each area is
visualized by a color. In theses documents, all the multi-oriented areas are extracted
correctly.

Table 5.3 summarizes the results of the four representative documents chosen
arbitrarily from the 100 documents selected. These results show the effectiveness
and the performance of the multi-oriented area detection algorithm.



5 Segmentation of Ancient Arabic Documents 119

Fig. 5.13 Result examples of the text line extraction

For line segmentation, the extraction rate reaches 98.6 %. The 0.9 % of nonde-
tected lines is due to the detection area algorithm. The error rate of 0.5 % is due to
the presence of diacritical symbols in the beginning of lines that create false max-
ima. Figure 5.13 illustrates the effectiveness of our algorithm on a sample of three
documents chosen randomly among the 100 documents processed. To identify the
lines, each pair of consecutive lines is presented in two different colors.

5.5 Conclusion

A multi-oriented text line extraction approach is proposed in this chapter based on
the local orientation estimation. To extract the lines, the approach first performs an
image paving of the document. Then, the orientation in each mesh is estimated,
extended, and corrected. Finally, the text lines are extracted and separated.

The mesh size is estimated using the active contour model (snake) approach. This
size is fixed once three lines in the mesh are extracted. The skew detection approach
uses the Cohen’s class distributions applied on the projection histogram profile in
each mesh and considered as a signal. The Wigner–Ville distribution (WVD) from
this class is retained for our application due to its interesting properties adapted to
the properties of our signals. The mesh area is extended to similar oriented meshes
to obtain the largest orientation areas using four rules. These rules depend on the
orientations presented in the documents. The text lines are extracted in each mesh
using a follow–up connected components algorithm. The lines are separated based
on the analysis of the terminal Arabic letters.

Experimental results on various types of handwritten Arabic documents show
that the proposed method has achieved a promising performance for text line ex-
traction. This approach will be generalized to other document types (Latin, Urdu,
Farsi, etc.) and to heterogeneous documents with text and images.
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Chapter 6
Features for HMM-Based Arabic Handwritten
Word Recognition Systems

Laurence Likforman-Sulem, Ramy Al Hajj Mohammad, Chafic Mokbel,
Fares Menasri, Anne-Laure Bianne-Bernard, and Christopher Kermorvant

Abstract HMM-based systems need observation sequences as input. These ob-
servations consist of discrete values or vectors extracted from word images or text
lines. In this chapter we explore various types of features which are popular for Ara-
bic cursive handwriting recognition. Some of these features are statistical, based on
pixel distributions or local directions. Others are structural, based on the presence of
loops, ascenders, or descenders. We show how these features can be efficient within
HMM-based systems based on sliding windows or grapheme segmentation.

6.1 Introduction

The recognition of Arabic writing has many applications such as mail sorting, bank
check reading, and modern and historical handwritten document recognition. Ara-
bic and Latin handwriting share similarities (see Fig. 6.1): the core of the hand-
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Fig. 6.1 A flipped Latin
word shows similarities with
an Arabic word and vice
versa

writing lies between two baselines; ascenders and descenders lie above and under
these baselines, respectively. However; Arabic writing has specificities which make
it highly challenging for off-line recognition systems [2]. The handwriting is very
round-shaped which makes it difficult to deslant. It also includes various small-sized
marks which modify the meaning of letters. Moreover, there is a large number of
graphical forms (ligatures) which group several characters [3]. Last, the number of
Arabic words is potentially very large, since many distinct words can be formed
from word roots, with prefixes and suffixes [15].

Different approaches have been proposed for recognizing isolated words. Us-
ing the holistic approach, words are modeled as a whole without segmenting them
into smaller units. A feature vector is extracted directly from either an image, the
skeleton, or the contour of a word’s image [17]. This feature vector may include
statistical and/or structural features. Hidden Markov model (HMM)-based holistic
approaches extract a sequence of feature vectors instead of a single feature vec-
tor along the word image [10]. However, these frames are not associated to word
subunits. The holistic approach is convenient when the size of the lexicon is small.
Under the analytical approach, word models result from the concatenation of char-
acter models. The analytical strategy is convenient for enlarging a vocabulary with
new words, since new vocabulary words can be described through their compound
letters, without providing their images.

The HMM-based approach is very convenient for implementing the analytical
approach. Analytical systems may or may not pre-segment words into smaller units
such as characters or graphemes (subparts of characters). In both cases, HMM sys-
tems extract a feature vector from each pre-segmented unit or, by sliding a window
on the word image [21, 23], obtain a sequence of feature vectors (or frames). These
systems can be easily applied on both Latin and Arabic words and achieve state-of-
the-art performance [18, 25].

In the following, we focus on the feature extraction step within HMM systems.
We survey the features in use within such systems and present our results obtained
using three types of HMM-based systems: a context-independent sliding-window
system, a context-dependent system [1, 6], and a hybrid HMM/neural network sys-
tem which segments words into graphemes.

6.2 Features for Sliding-Window Systems

The principle of sliding-window systems is based on extracting a sequence of ob-
served feature vectors by moving (sliding) a window from right to left over an im-
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Fig. 6.2 Sliding windows
decomposed into 20 cells

Fig. 6.3 Upper and lower
baseline extraction

age word. The window starts at the extreme right of the word (at position or “time”
t = 1), and is regularly shifted by δ until t = T , as shown in Fig. 6.2. At each posi-
tion, a feature vector (or frame) is extracted, capturing writing shape and local pixel
distribution. Each frame is divided into a fixed number of cells in order to cope
with different word heights. HMM decoding will consist of associating consecu-
tive frames to states. Sections 6.2.2 and 6.2.3 describe the features we use in our
context-independent and context-dependent systems for Arabic recognition. These
features are enhanced by deriving from the initial features a set of dynamic ones
(see Sect. 6.2.4). The features’ values depend on the position of the word’s base-
lines which are extracted as an initial step (see Sect. 6.2.1). We also survey other
popular features for sliding-window systems in Sect. 6.2.5.

6.2.1 Baseline Extraction

Like Latin, Arabic handwriting uses two baselines: an upper baseline and a lower
one. Children at school learn how to write between one or two preprinted ruled lines.
Such baselines define three zones within a word: the core zone, the upper zone where
ascenders can be found, and the lower zone for descenders. Many systems thus start
by finding these main lines in order to extract baseline-dependent features. Such
features indicate the presence of ascenders, descenders, or both within a frame. The
quality of the feature extraction step depends on that of the baseline extraction step.
This step is therefore significant, and several variants have been proposed: extrac-
tion from whole lines or from connected components using projection profiles, or
characteristic points fitted through a line. Figure 6.3 shows the result of a baseline
extraction step. The approach relies on the algorithm described in [7] with few al-
terations. It is based on the vertical projection profile obtained by computing the
sum of pixel values along the horizontal axis for each y word image value. First, the
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peak corresponding to the maximum of the projection profile curve is determined:
the position of the maximum identifies the lower baseline. It is justified by the fact
that, in Arabic handwriting, most letters have many pixels on the lower baseline.
Then, the algorithm scans the image from top to bottom to find the upper baseline.
The position of the upper baseline corresponds to the position of the first line with a
projection value greater than the average row density. Inaccurate baselines may be
found in the case of very short words because of the great influence of diacritical
points. We note that in the IFN/ENIT database most of the words are horizontal: the
average orientation of ground truth baselines is only about 1.36 %.

6.2.2 Distribution Features

The set of distribution features consists of 16 features that characterize the density of
foreground pixels within frames and frame cells. Let H be the height of the frame in
an image, h the variable height of a cell, w the width of a frame, and nc the number
of cells in a frame. Feature f1 is the density of foreground pixels within the frame.
Feature f2 is the number of black/white transitions between two consecutive frame
cells:

f2 =
nc∑

i=2

∣
∣b(i) − b(i − 1)

∣
∣ (6.1)

where b(i) is the density level of cell i; b(i) is equal to one if the cell contains at
least one foreground pixel and is equal to zero otherwise. Feature f3 is a derivative
feature defined as the difference between the y-coordinate g of the center of gravity
of foreground pixels of two consecutive frames t and t − 1. g is given by

g =
∑H

j=1 j.r(j)
∑H

j=1 r(j)
(6.2)

where r(j) is the number of foreground pixels in the j th row of a frame. The eight
features f4 to f11 represent the densities of black (foreground) pixels for each ver-
tical column of pixels in each frame (in our case the width of the frame is 8 pixels).
Let L be the position of the lower baseline. Feature f12 is the vertical distance from
the lower baseline to the center of gravity of foreground pixels, normalized by the
height of the frame:

f12 = g − L

H
(6.3)

Feature f13 (resp. f14) represents the density of foreground pixels over (resp.
under) the lower baseline:

f13 =
∑H

j=L+1 r(j)

H.w
, f14 =

∑L−1
j=1 r(j)

H.w
(6.4)
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Fig. 6.4 Masks for
computing concavity features

Feature f15 is the number of transitions between two consecutive cells of differ-
ent density levels above the lower baseline:

f15 =
nc∑

i=k

∣
∣b(i) − b(i − 1)

∣
∣ (6.5)

where k is the cell that contains the lower baseline.
Feature f16 represents the zone to which the gravity center of black pixels be-

longs, with respect to the upper and lower baselines. Actually, the two baselines
divide a frame into three zones: above the upper baseline (f16 = 1), a core zone
(f16 = 2), and below the lower baseline (f16 = 3).

6.2.3 Concavity Features

Concavity features provide local concavity information and stroke directions within
each frame. Each of the concavity features f17 to f22 represents the (normalized)
number of white pixels (background) that belong to one of six types of concavity
configurations. These features are explored by using a 3 × 3 window (mask) as
shown in Fig. 6.4.

The concavity features are calculated as follows: Let Nlu (resp. Nur , Nrd , Ndl ,
Nv , and Nh) be the number of background pixels that have neighboring black pix-
els in the following directions: left and up (resp. up–right, right–down, down–left,
vertical, and horizontal). In our implementation, image border pixels are excluded.
Thus, the six normalized concavity features are defined as

f17 = Nlu

H
, f18 = Nur

H
, f19 = Nrd

H

f20 = Ndl

H
, f21 = Nv

H
, f22 = Nh

H

(6.6)
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By using the information coming from the detection of the two baselines (upper
and lower), we generate six new features f23–f28, describing the concavities in the
core zone of a word, that is, the zone bounded by the two upper and lower base-
lines. Let CNZlu (resp. CNZur , CNZrd , CNZdl , CNZv , and CNZh) be the number of
background pixels in the core zone that have neighboring black pixels in the config-
uration left–up (resp. up–right, right–down, down–left, vertical, and horizontal).

Thus, the six additional and baseline-dependent concavity features related to the
core zone are defined as

f23 = CNZlu

d
, f24 = CNZur

d
, f25 = CNZrd

d

f26 = CNZdl

d
, f27 = CNZv

d
, f28 = CNZh

d

(6.7)

where d is the distance between the two baselines (upper and lower). This results
in a 28-feature vector per frame; 17 of them are baseline independent (f1–f11, f17–
f22), whereas the 11 remaining ones are calculated with respect to baseline posi-
tions. Actually, those features are convenient to any script that can be decomposed
into three zones (core, ascending, and descending zones), such as the Latin cursive
script.

6.2.4 Dynamic Features

We introduce context at the feature extraction level through derivative features. Such
features represent the dynamics of features around the current window. The feature
vector at horizontal pixel position p contains information on the frame at position
p but also on the context of this frame from windows at positions p − δ ∗ K to
p+δ∗K (δ is the shift of the window and K is the number of windows participating
to the derivative feature). The derivation is computed with a regression. In the speech
recognition domain the first and second order regressions are known as delta and
delta-delta coefficients.

Let ok be the feature vector at the horizontal pixel position p and ok+i (resp.
ok−i ) the feature vector of the sliding window shifted by i ∗ δ (resp. −i ∗ δ) pixels
from the current window, at pixel position p + i ∗ δ (resp. p − i ∗ δ). The first
order regression feature vector ok is the slope of the regression line around ok . It is
written

�ok =
∑K

i=1 i(ok+i − ok−i )

2
∑K

i=1 i2
(6.8)

K is the chosen depth of the regression, giving the number of surrounding feature
vectors (2 ∗ K) used for computing the dynamic features. The second order regres-
sion is simply derived from Eq. (6.8) by replacing ok by �ok :

��ok =
∑K

i=1 i(�ok+i − �ok−i )

2
∑K

i=1 i2
(6.9)
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Fig. 6.5 Word divided into strips. In each strip, the histogram of the chain code direction is com-
puted (from [10])

The final feature vector is thus the concatenation of the original vector ok , its first
order regression vector �ok , and possibly its second order regression vector ��ok .

6.2.5 Other Features for Sliding-Window HMM Systems

There are many ways of extracting features from sliding windows. We have pre-
sented in this chapter a set of distribution and concavity features (see Sects. 6.2.3
and 6.2.2). To model the distribution of foreground pixels, raw pixel values (some-
times called appearance-based features) can also be used such as in [11, 23]. More-
over, several neighboring windows consisting of pixel values can be concatenated
into one frame in order to include contextual information around the current win-
dow. The number of pixel values (features) within one frame is thus high and can
be reduced by a principal component analysis (PCA) or a Karhunen–Loeve trans-
formation.

Besides raw features, directional features are popular for both Arabic and Latin.
These features may be extracted from word contour points and their local direction
expressed within chain codes [10]. The contour image of the word is subdivided
into zones corresponding to the core zone and two upper and two lower zones for
ascenders, descenders, and diacritical marks (see Fig. 6.5). Structural features are
extracted in [8, 27] within windows which are also divided into zones. The presence
of diagonal, vertical, horizontal, and curved strokes and their orientation is collected
into the feature vector. Derivative features such as the difference vector between two
frames can also be included [11].

Percentile features are extracted within the frames of binary images [22, 26]. At
each y-position, the number of black pixels from the frame’s top to y is computed.
This function of y is then normalized from 0 to 100, which means 0 % to 100 % of
the total blackness of the frame. The y-axis is also normalized from 0 to 1, which
means 0 % to 100 % of the total height of the frame. The total blackness is then di-
vided into 20 percentiles, and the corresponding percentile values (percentile height
of the frame) are the percentile features (see Fig. 6.6).
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Fig. 6.6 Percentile features
(on the y-axis) (adapted
from [22])

6.3 Features for Grapheme-Based Systems

Grapheme-based systems are based on an explicit segmentation of the word into
subparts called graphemes. The segmentation is an over-segmentation, which means
that a grapheme is either a character or a subpart of a character.

6.3.1 Segmentation into Graphemes

In the hybrid HMM/NN system detailed in Sect. 6.4.3, the grapheme segmentation
process is composed of the following steps:

• Detection of the connected components and of the internal and external contour
information.

• Extraction of the skeleton of each connected component and representation as a
graph.

• Detection of segmentation points (bottom part of concavities, extremities of hor-
izontal segments). Graphemes are defined as vertical or diagonal arcs which can
be linked without crossing a potential segmentation point.

• Attribution of the remaining arcs to a neighboring grapheme or identifying them
as a ligature.

• Retrieval of the image of each potential grapheme from the labeled arcs.

6.3.2 Features Extracted from Graphemes

The features extracted for each grapheme are relatively simple and can be computed
very quickly, as follows:

• Height and width of the bounding box of the grapheme (2 values).
• Height–width ratio (1 value).
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Fig. 6.7 Baseline and
grapheme extraction

Fig. 6.8 Grapheme divided
into strips. In each strip, the
local direction is computed
and encoded (from [28])

• Position of the top and bottom of the bounding box with respect to the baseline
(2 values).

• Position of the gravity center of the grapheme in the bounding box (2 values).
• Black pixel density in the bounding box (1 value).
• Black pixel density in three zones: above, under, and inside the baseline (3 val-

ues).
• Surface of the loops in the three previous areas (3 value).
• Value of the top, bottom, left and right profiles of the grapheme taken in five

points (4 ∗ 5 values).
• Cumulated thickness of the grapheme, horizontally, vertically, and along the

two diagonals. For each direction, the thickness is computed in 5 parallel areas
(4 ∗ 5 values).

• Number of intercepts along the four same directions, in the 5 parallel areas
(4 ∗ 5 values).

The features are normalized with respect to the baseline height; the total number of
features is 74.

6.3.3 Other Features Extracted from Graphemes

We have presented above different features related to the grapheme position and
pixel density. Other types of features can be extracted. Similarly to sliding windows,
directional and structural features can be extracted on graphemes (see Fig. 6.7).

In [28], graphemes are divided into a fixed number of horizontal strips. Within
each strip, the direction of the grapheme is extracted with the Hough transform
(see Fig. 6.8). Thus, the local directions of the grapheme can be encoded. In [4],
directions are extracted by dividing graphemes into 3 × 3 zones and computing the
direction histograms of contour points.

From the word’s skeleton, structural elements such as loops and segments are
extracted from words [16]. Length and orientation of segments, types of loops and
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Fig. 6.9 Modeling of a word
by its compound character
models

presence of turning points, and branch and cross points are computed. All elements
are turned into discrete symbols.

6.4 Application to Arabic Handwriting Recognition

The features presented in Sect. 6.2 are evaluated on Arabic word recognition tasks
within state-of-the-art hidden Markov model (HMM) systems. We conduct experi-
ments with two sliding-window systems and one grapheme-based system. Sliding-
window systems are both based on the segmentation-free analytical strategy.

6.4.1 Context-Independent Sliding-Window System

In the context-independent system, a word is modeled by the concatenation of its
compound character models. This is illustrated in Fig. 6.9. For Arabic, we define
character models which can be letters (with diacritical marks or not), ligatures, or
numerals: 120 character models are defined for the IFN/ENIT database and 150 for
the OpenHart database. Since the lexicon corresponding to the OpenHart database
is much larger than the lexicon of the IFN/ENIT database, more character models
are needed.

All character models share the same HMM topology: the same number S of
emitting states, left-right transitions with one skip allowed. The observation proba-
bility density for each state is a mixture of NG Gaussian distributions. This mixture
is obtained by incrementing step by step the number of Gaussian distributions in
each state until a convenient HMM topology is reached. The number of Gaussian
distributions is increased as follows:

• The mixture has n components and it is to be increased to n + m.
• For the kth mixture to be added, k ∈ [1 . . .m], find the mixture with the largest

weight and split this mixture:
– Divide the weight into two halves
– Clone the mixture
– Add perturbation to each mean vector cloned by adding (resp. subtracting) a

normal distribution centered at zero and with a small standard deviation σsplit

(default σsplit is 0.2) to each term.

The HMM models are initialized with one Gaussian distribution per state and are
trained according to the Baum–Welch algorithm. Then, for each Gaussian mixture
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Fig. 6.10 Illustration of the influence of context for handwriting. The three words
���	
�� ������	���� �����  have been written by the same writer. However, characters laB, aaE,

and saM yield different shapes

incrementing step (n → n + 1), HMM models are retrained with this same algo-
rithm.

We optimized the features extraction parameters on a validation database: win-
dow width w, overlap between two sliding windows δ, number of cells per win-
dow nc. We start from binary images and extract the set of features presented in
Sects. 6.2.2 through 6.2.4.

Decoding is performed with the Viterbi algorithm. We use the Hidden Markov
Model Toolkit (HTK) for training and recognition.

6.4.2 Context-Dependent Sliding-Window System

The previous context-independent system can be enhanced by refining character
models. For a given character, we have considered the influence of neighboring
characters on its shape (see Fig. 6.10). We have used our knowledge of ligatures
and the shapes of leftmost or rightmost parts of neighboring characters to assist the
modeling of individual letters. In the context-dependent system, we build different
character models according to different contexts, i.e., the characters on the right and
the left of a central character. Contextual approaches lead to an excessive growth
in the number of models, since one model is needed for each pair of adjacent char-
acters. Parameter estimation may be unreliable since, for practical applications, a
restricted set of training data is generally available. It is thus desirable to reduce
the number of models and model parameters while preserving model refinement.
Hence, model sharing and parameter tying are necessary to reduce the number of
parameters. State tying determines which states can share the same Gaussian distri-
butions. The state position-based principle is that, for a given central letter, all states
corresponding to the same position in an HMM model are subject to agglomerative
clustering. Our approach consists of building expert-based rules and decision trees
to perform this state clustering.

The merging or splitting of state clusters is driven by a binary tree whose nodes
correspond to rhetorical questions on the characteristics of the models. Such de-
cision trees have been designed for speech recognition at the phone level by ex-
perts [9].

In our case, decision trees are based on a set of questions on the behavior of left
and right contexts, and are applied to states (see the Appendix). Based on the same
initial set of questions, one tree is built for every state position of all trigraphs with
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the same central letter. Starting at the root node, all the states corresponding to the
same position and the same central letter are gathered into a single cluster. Then,
the binary question which maximizes the likelihood of the two children clusters it
would create is chosen and the split is made, creating two new nodes. This splitting
continues until the increase in likelihood falls below a threshold or no questions are
available to create nodes with a sufficient state occupancy count. An example of a
decision tree is shown in Fig. 6.11.

Let us consider a node containing the set of states S to be split in a given tree. The
set S corresponds to the set of training frames {of }f ∈F . As all states in S are tied
in the node, they all share the same mean μ(S) and variance Σ(S). The likelihood
of S generating the set of frames is hence given by

L(S) =
∑

f ∈F

∑

s∈S

log
(
Pr
(
of ;μ(S),Σ(S)

))
γs(of ) (6.10)

where γs(of ) is the a posteriori probability of frame of being generated by state s.
Based on the work of Young [29] and assuming that we adopt Gaussian probability
density functions, L(S) can be rewritten

L(S) = −1

2

(
log
[
(2π)n

∣
∣Σ(S)

∣
∣
]+ n

)
Γ (S) (6.11)

Γ (S) is the accumulated state occupancy of the node, Γ (S) =∑f ∈F

∑
s∈S γs(of ),

and n is the dimension of the feature vectors.
Then, we introduce �Lq :

�Lq = L(Sq+) + L(Sq−) − L(S) (6.12)

The split of the state set into two subsets Sq+ (answer to q is yes) and Sq− (answer
to q is no) is made by question q∗ which maximizes �Lq , provided that Γ (Sq+)

and Γ (Sq−) are over the minimal state occupancy threshold, and that �Lq is above
the threshold of minimal increase in likelihood. This condition can be reformu-
lated [31]:

q∗ = argminq

{
1

2

[
Γ (Sq+) log

(∣
∣Σ(Sq+)

∣
∣
)

+ Γ (Sq−) log
(∣
∣Σ(Sq−)

∣
∣
)− Γ (S) log

(∣
∣Σ(S)

∣
∣
)]
}

(6.13)

The parameters ensuring efficient sizes of state clusters, namely the minimal state
occupancy threshold and the minimal increase in likelihood, are tuned on the vali-
dation database. Trees reduced to their only root can be observed. They correspond
to monographs with few examples which aim to tie all their corresponding trigraphs
into a single model.

Decision trees have the ability of modeling unseen trigraphs with existing ones.
This property is useful when test and training dictionaries differ. Each state of a new
trigraph is positioned at the root node of the tree corresponding to the same state
position and the same central letter. Then each state descends its belonging tree,
answering questions on the trigraph contexts, until it reaches a node where a cluster
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Fig. 6.11 Example of a decision tree for state clustering: questions and clusters are shown for the
second state of all *-seB+* (�) trigraphs

Fig. 6.12 Illustration of state clustering for the trigraphs centered on character seB (�)

is positioned. The state model representing the cluster will be the model assigned to
the considered state number of the trigraph for its recognition.

The training of trigraphs is performed as follows:

• We start with trained monographs with one Gaussian distribution associated to
each state. Trigraphs are initialized by copying monographs. All the trigraphs
associated to a given central letter are listed in the training database, and the
initialized monograph model of the central letter is given as a first model for all
those trigraphs.

• Then, a first and rough estimation of the trigraph parameters is obtained with
a single iteration of the Baum–Welch estimation algorithm on all the different
trigraphs.

• State tying is performed at each state position as described above.
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Fig. 6.13 The neural network used to predict the probability of each grapheme given a feature
vector

• Using the Baum–Welch algorithm for model re-estimation, we increase the num-
ber of Gaussian distributions per state up to a chosen number NG.

An illustration of state clustering is shown in Fig. 6.12.

6.4.3 Grapheme-Based HMM

In this system, a neural network (NN) is trained to evaluate the posterior probability
of each grapheme with respect to the feature vector. The neural network is a multi-
layer perceptron (MLP) with as many input neurons as features (74), one layer of
hidden neurons (500 neurons), and as many output neurons as grapheme classes
(200). The transfer function is a softmax function. The neural network was trained in
a supervised way with a stochastic backpropagation training algorithm. A simplified
schema of the neural network is shown in Fig. 6.13.

Training and Recognition Hidden Markov models (HMMs) are used to model
the decomposition of words into letters and then each letter into graphemes. The
topology of the model is a left-to-right topology with four states for each let-
ter HMM (see Fig. 6.14), each state corresponding to a grapheme. The hybrid
NN/HMM was trained using the following procedure:

1. Decode the training set with the hybrid NN/HMM recognizer in order to create
an annotated base of feature vectors.

2. Train the NN on the annotated base of feature vectors.
3. Compute the sequences of observation probability with the new NN for all words

in the training set.
4. Train the HMM on the sequences of observation probability using the Baum–

Welch algorithm.
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Fig. 6.14 HMM topology of a letter. The weights are initialized uniformly

5. Go back to step 1 until no improvement is observed on the recognition rate.

This procedure needs a basic recognizer to bootstrap the process; the convergence
is usually observed after a few iterations.

6.5 Experiments

The features presented in Sect. 6.2 were experimented on several databases and
within the systems presented in Sect. 6.4. These systems have also been combined,
which increased performance.

6.5.1 Results on Arabic Databases

Systems were first tested on the benchmark IFN/ENIT database of Arabic city
names [24]. The total amount of binary images of handwritten Tunisian town/village
names is 26,459. Those names were written by 411 writers and they were labeled
according to 937 name classes. Ground truth information is added to each entry of
the database including character shape sequence and corresponding postcode. More
details about ground truth data can be found in [23]. The database is separated into
four sets, a, b, c, and d, in order to perform 4-fold cross-validation experiments. For
the ICDAR 2005 competition, systems were tested on a novel data set, e, of 6,033
word images.

First, competing systems are single systems which are further enhanced by
system combination. The first combined systems are context-independent systems
which differ in the way that the feature extraction sequence is extracted. Sliding
windows are slanted, and each system corresponds to a different slant angle. Com-
bination is performed by an NN.

Then, different HMMs can be combined: we obtain a context-independent, a
context-dependent, and a hybrid MLP-HMM system. The sliding-window sys-
tems (context-dependent and context-independent) are trained with more parameters
(number of Gaussian distributions associated to states) than the previous systems.
A combination of HMM systems always increases performance.

The systems presented above deal with a closed-vocabulary task. The results
presented here correspond to a word recognition task, but the position of the words
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Table 6.1 Results on Arabic databases

Primary system Parameters Competition Test set Voc.
size

W. rec.
in %

Context-independent
HMM

3G/state,
4states/charact.

ICDAR 2005 IFN/ENIT set e 936 75.93

Context-independent
HMM

3G/state,
4states/charact.

ICDAR 2007 IFN/ENIT set e 936 81.8

Combination
3 context-independent
HMMs

HMM + NN
param.

ICDAR 2007 IFN/ENIT set e 936 85.13

Combination
3 context-independent
HMMs

HMM + NN
param.

ICDAR 2007 IFN/ENIT set f 936 81.93

Combination
3 context-independent
HMMs

HMM + NN
param.

ICDAR 2009 IFN/ENIT set f 936 83.98

Combination
context-independent +
grapheme MLP-HMM

20G/state
11states/charact. +
NN param.

ICDAR 2009 IFN/ENIT set f 936 89.42

Context-independent
HMM + LM

20G/state
11states/charact.

OpenHart 2011 Eval_Phase2 20 K 44.9

Context-dependent
HMM + LM

20G/state
11states/charact.

OpenHart 2011 Eval_Phase2 20 K 54

Combination
(CD + CI + grapheme
MLP-HMM) + LM

HMM + NN
param.

OpenHart 2011 Eval_Phase2 20 K 62.3

within text lines is known. Moreover, the size of the dictionary has been increased,
since the vocabulary is open. The systems thus include a language model (LM)
based on trigrams. The results shown in Table 6.1 are the official results of the Open-
Hart competition (see [13]). A language model has been trained on a subset of the
training documents. The lexicon has been limited to the 20,000 most frequent words
and a bigram, trigram model is used. The combination of the three systems above,
context-independent, context-dependent, and hybrid systems, has been achieved by
training an NN as described in [6].

6.5.2 Results on Latin Databases

As mentioned in Sect. 6.1, Latin handwriting shares similarities with Arabic hand-
writing. Thus, our features and systems have now been tested on publicly available
Latin databases such as the English IAM database [19] and the French RIMES [12]
databases. The IAM database provides 9,862 handwritten text lines segmented into
words. We extract from the correctly segmented and annotated text line images [32]
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Table 6.2 Results on Latin databases

Primary system Parameters Competition Test set Voc.
size

W. rec.
in %

Grapheme MLP-HMM ICDAR 2009 5,334 75.7

Context-dependent
HMM

11states/charact.
20G/state

ICDAR 2009 RIMES 7,464 5,334 76.1

Context-independent
HMM

4states/charact.
5G/state

ICDAR 2009 RIMES 7,464 5,334 72.0

Best combination
(CI + CD + grapheme)

HMM + NN
param.

ICDAR 2009 RIMES 7,464 5,334 86.9

Context-independent
HMM

20G/state
10states/charact.

– IAM 13,752 10.5 K 64.6

Context-dependent
HMM

20G/state,
10states/charact.

– IAM 13,752 10.5 K 67.3

Best combination
(CI + CD + grapheme)

HMM + NN
param.

– IAM 13,752 10.5 K 78.1

a training set of 46,901 word images, two distinct validation sets containing re-
spectively 6,442 and 7,061 word images, and a 13,752-word test set. The RIMES
database was used during the ICDAR 2009 handwriting recognition competition
(word recognition WR3 task). The database is composed of French words which in-
clude a number of diacritical marks (accents); the meaning of words is changed ac-
cording to these marks. For instance “annule” means “cancel” and “annulé” means
“canceled.” 44,197 word images are given for training, 7,542 word images for val-
idation, and 7,464 word images for testing. The training lexicon includes 4,500
words, and the validation lexicon includes 1,600 words, as does the test lexicon.
Note that the lexicons are case and accent sensitive and that lexicons are different
from training/validation to test. The dictionary sizes explain the different results
between both databases. Results of the different systems on these databases are re-
ported in Table 6.2.

6.6 Conclusion

We have presented a number of features based on pixel distributions, concavities,
and local directions currently imbedded within state-of-the-art HMM-based systems
for Arabic word recognition. These features can be enhanced by dynamic features;
alternatively, one can continue to discover new efficient features.

Automatic construction of features from pixel images can also be achieved within
neural network-based architectures, deep-belief nets, or recurrent nets.

With the development of text databases, HMM systems will need to process text
lines rather than, or in addition to, words. The features which are presented in this
chapter for word recognition tasks can also be useful, with minor modifications, for
processing text lines.
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Fig. 6.15 Example of
previous and following
contexts for letter 	
 in word

�	
 ��
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Appendix

As we have stated in previous work [5, 6], it is quite obvious that the way of writing a
character within a word is affected by adjacent letters; therefore lies the justification
of using context models to improve the accuracy of modeling. We have formerly
used the terms “left context” and “right context” to designate the adjacent letters. In
order to avoid any confusion due to the Arabic writing direction, we will now refer
to “previous context” and “following context” instead.

We use HMM Toolkit (HTK) syntax [30] to designate trigraphs, and IFN/ENIT
transliteration [24] to make it writable with ASCII characters. For example, in the

Arabic word � 	
 �� , the letter 	
 is surrounded by the letters
�� (previous context)

and � (following context); see Fig. 6.15. Using HTK notation, previous context is
defined by “-” and following context is defined by “+”, which gives the trigraph:
faB-yaM+laE.

The construction of our question sets is driven by the two following hypotheses:

• Letters with similar ending strokes will have a tendency to affect the following
central letter in a similar manner.

• Letters with similar beginning strokes will have a tendency to affect the previous
central letter in a similar manner.

According to these hypotheses, Arabic letters which share the same shapes [20]
should be good candidates to build question sets (QSs). Those QSs will be later
used in our clustering decision trees.
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Similar endings will lead to groupings in previous-context question sets (P_QS),

whereas similar beginnings will lead to groupings in following-context question sets

(F_QS).

For example, the beginning (right part) of letters {
�� �� �� ��} is very similar. They

will be regrouped in the same F_QS: {*+faM, *+kaM, *+faE, *+kaE}.

The same is true for {� ��} → {*+raE, *+zaE}.

In {� � �� �� �	 	
 	� �	 �	 �� �� ��}, all letters do not share the same shapes,

but again their beginning (right part) looks similar. This should lead to the creation

of the following F_QS: {*+seM, *+shM, *+seE, *+shE, *+naM, *+baM, *+taM,

*+thM, *+baE, *+taE, *+thE}.

The same is true for the ending (left part) of letters, used to build P_QS:

{� ��} → {ayM-*, ghM-*}

{ � � ! �� �!} → {waE-*, waA-*, raE-*, raA-*, zaE-*, zaA-*}

The full list of QSs can be found at [14].
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Chapter 7
Printed Arabic Text Recognition

Irfan Ahmed, Sabri A. Mahmoud, and Mohammed Tanvir Parvez

Abstract This chapter addresses automatic printed Arabic text recognition. Ara-
bic text recognition has its own difficulties due to the cursive nature of the scripts,
overlapping characters, large number of dots and diacritics, etc. In this chapter, we
present a general framework for a printed Arabic text recognition system. We then
discuss different phases of such a system, e.g., pre-processing, feature extraction,
and classification. We present different reported techniques for each phase. In addi-
tion, different databases for printed Arabic text recognition are discussed here. We
conclude this chapter by presenting several experimental results for hidden Markov
model (HMM)-based printed Arabic text recognition.

7.1 Introduction

Since the advent of writing as a form of communication, paper prevailed as the
writing medium. However, electronic media are replacing paper with time. Because
they conserve space and are quickly accessed, electronic media are constantly gain-
ing popularity. The convenience of paper, its widespread use for communication and
archiving, and the amount of information already on paper call for quick and accu-
rate methods to automatically read that information and convert it into electronic
form [6].

The potential application areas of automatic reading machines are numerous.
One of the earliest and most successful applications is sorting checks in banks, as
the volume of checks that circulates daily has proven to be too enormous for manual
entry. Other applications are detailed in [45, 64].
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The machine replication of human reading, i.e., optical character recognition
(OCR), has been the subject of extensive research for more than five decades. Char-
acter recognition is a pattern recognition application with the ultimate aim of sim-
ulating the human reading capabilities of both machine printed and handwritten
cursive text. The currently available systems may read faster than humans, but they
cannot reliably read such a wide variety of text or consider context. One can say
that a great amount of further effort is required to at least narrow the gap between
human reading and machine reading capabilities. The practical importance of OCR
applications, as well as the interesting nature of the OCR problem, has led to great
interest and measurable advances in this field. Now, commercial OCR systems for
Latin characters are widely available on personal computers and can achieve recog-
nition rates above 99 % [65, 91]. Furthermore, systems on the market can now read
a variety of writing styles (e.g., handwritten, printed omnifont) and character sets
including Chinese, Japanese, Korean, Cyrillic, and Arabic.

Since the 1950s, researchers have carried out extensive work and published many
papers on character recognition. Most of the published work on OCR has been on
Latin, Japanese, or Chinese characters. This started in the mid-1940s for Latin and
in the mid-1960s for Chinese and Japanese. The following are some useful surveys
and reviews on Latin character recognition. Reference may be made to [68] for a
historical review of OCR research and development. The survey of [45] includes
surveys of other languages, [64] has an overview of character recognition method-
ologies, [49] reviews commercial OCR systems, [89] machine printed OCR, and
[88, 90] on-line handwriting recognition. Suen et al. [87] has a survey on automatic
recognition of hand printed characters (viz., numerals, alphanumeric, Fortran, and
Katakana), while [69] produced a review of the recognition of hand printed (non-
cursive) characters and conducted beta tests on a commercial system. Bozinovic and
Srihari [27] and Simon [81] surveyed off-line cursive word recognition, Jain et al.
[51] reviewed statistical pattern recognition techniques, and [73] is a comprehensive
survey of on-line and off-line handwriting recognition. Bibliographies of the fields
of OCR and document analysis appeared in [52, 55]. Stallings [85] and Mori et al.
[67] produced surveys on recognition of Chinese machine printed and hand printed
characters, respectively, and Liu et al. [61] addressed the state of the art of on-line
recognition of Chinese characters.

7.2 Issues in Arabic Printed Text Recognition

In this section, we present some characteristics of Arabic script. We also discuss
some issues related to the recognition of printed Arabic text.

Arabic text is written cursively from right to left. The Arabic alphabet has 28 ba-
sic characters, as shown in Fig. 7.1. An Arabic character may have up to four basic
different shapes depending on the position of the character in a word: isolated, be-
ginning, ending, or middle form (see Table 7.1). Characters of a word may overlap
vertically with or without touching. Different Arabic characters have different sizes
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Fig. 7.1 Basic characters in Arabic

Fig. 7.2 An example of an Arabic sentence indicating some characteristics of Arabic text

(height and width). Characters in a word can have short vowels (diacritics). These
diacritics are written as strokes, placed either on top of or below the letters. A dif-
ferent diacritic on a character may change the meaning of a word. Each diacritic has
its own code as a separate character when it is considered in a digital text. Read-
ers of Arabic are accustomed to reading unvocalized text by deducing the meaning
from context. Figure 7.2 shows some of the characteristics of Arabic text related to
character recognition. It shows a baseline, overlapping letters, diacritics, and three
shapes of the Meem character (ending, middle, and beginning).

Regularities present in printed text offer some advantages in the recognition of
printed Arabic text compared to Arabic handwriting recognition. The shapes of the
characters, the spacing between words and lines, etc., are more regular in printed text
than in handwritten text. The baseline in printed Arabic text is straighter compared
to handwritten text. Thus, baseline-dependent features can be used more reliably in
printed Arabic text recognition. However, there are several issues that researchers
need to consider while developing techniques for printed Arabic text recognition.

• Cursive Text: Arabic is written cursively both in printed and in handwritten form.
This means that the segmentation of printed Arabic text is not straightforward
compared to Latin printed text. Moreover, overlapping of characters is common
in printed Arabic text. Thus, segmentation of words into characters is less trivial.

• Ligatures: Ligatures are very common in Arabic text, both in printed and hand-
written form. Some of the ligatures are optional and depend on the type of fonts
being used. Ligatures are difficult to segment and are generally modeled by con-
sidering each ligature as a separate character.
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Table 7.1 Shapes of Arabic characters

• Large Number of Fonts: Despite the regularities in printed Arabic text, the
large number of available fonts for Arabic makes the recognition task chal-
lenging. Shapes of letters may vary between fonts. In addition, spaces between
words/subwords, overlapping of characters, number of ligatures, etc., can vary
widely in different fonts. A robust printed Arabic text recognition system should
be trained on as many different fonts as possible.

7.3 Databases for Arabic OCR

In this section, we discuss different printed Arabic text databases reported and/or
used by researchers of printed Arabic text recognition.
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Several printed Arabic text databases are reported in the literature; however, we
mention that there is no generally accepted database for printed Arabic text recog-
nition that is freely available for researchers. Hence, different researchers of printed
Arabic text recognition have used different data, and hence the recognition rates of
the different techniques may not be comparable.

The ERIM database was developed in early 1995 by the Institute of Envi-
ronmental Research, Michigan [80]. This database consists of over 750 pages of
printed Arabic texts containing 1,000,000 characters and 200 ligatures. However,
this database is no longer available.

The DARPA Arabic Machine Print (DAMP) document corpus was collected by
SAIC [29]. The corpus consists of 297 images scanned from newspapers, books,
magazines, etc. The corpus was partitioned into three sets: 60 images for develop-
ment, 60 images for testing, and 177 images for training the OCR system.

The Arabic Gigaword database is collected by Linguistic Data Consortium
(LDC) at the University of Pennsylvania [46]. This database contains 1,500 mil-
lion Arabic words, collected from different news agencies over several years.

Abdelraouf et al. [4] presented a database containing 6 million Arabic words.
This database is collected from a wide variety of selected sources covering old Ara-
bic, religious texts, traditional language, modern language, different specializations,
and very modern material from chat rooms.

The Arabic Printed Text Images (APTI) database was presented by Slimane et
al. [83]. The database is synthetically generated using a lexicon of 113,284 words,
10 Arabic fonts, 10 font sizes, and 4 font styles. The database contains 45,313,600
single word images totaling to more than 250 million characters. Ground truth an-
notation is provided for each image.

Several other printed Arabic text databases are reported in different works. Ben
Amor et al. [23] used a database of 85,000 sample Arabic words in five different
fonts: Arabic transparent, Badr, Alhada, Diwani, and Koufi. Slimane et al. [82] used
a synthetic database of word images composed of 20,630 Arabic word images. They
generated the images by a Java procedure using the font Times, 24 points. Prasad
et al. [75] used the DARPA database along with 380 synthetically generated images
of printed Arabic text. These 380 pages were created by printing 100 newswire text
passages in multiple font types and font sizes.

Khorsheed used a data corpus that includes Arabic text of more than 100 A4-size
sheets typewritten in Tahoma font to assess the performance of the reported mono-
font system [58]. In [59], Khorsheed used a database of more than 600 A4-size pages
of Arabic text typewritten in six different computer-generated fonts: Tahoma, Sim-
plified Arabic, Traditional Arabic, Andalus, Naskh, and Thuluth. The data corpus
consists of 116,743 words and 596,931 letters, not including spaces.

Al-Muhtaseb et al. [9] used a database of 2766 lines of Arabic text, consisting
of 46,062 words totaling 224,109 characters, including spaces. They have gener-
ated the database for eight fonts: Arial, Tahoma, Akhbar, Thuluth, Naskh, Simpli-
fied Arabic, Andalus, and Traditional Arabic. Al-Hashim and Mahmoud reported a
printed Arabic text database of 6954 pages [8]. The pages were scanned from differ-
ent sources like book chapters, advertisements, magazines, newspapers, and reports,
scanned with 200, 300, and 600 dpi resolutions.
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Fig. 7.3 Block diagram for an Arabic optical text recognition system

7.4 Optical Arabic Text Recognition

In this section, we present a general model for a printed Arabic text recognition
system. We also discuss the different stages of the system, and we present different
techniques used by researchers for each of the phases in the printed Arabic text
recognition system.

7.4.1 General Model for an Arabic Optical Text Recognition
System

The process of recognizing Arabic text can be broadly broken down into five stages:
(1) pre-processing, (2) segmentation, (3) feature extraction, (4) classification, and
(5) post-processing. Figure 7.3 shows the different stages of an Arabic optical text
recognition system. In the following subsections, we discuss stages (1) to (4) in
detail.

7.4.2 Pre-processing

Pre-processing focuses on enhancing the acquired image to increase the ease of
feature extraction. It also aims to compensate for the eventual poor quality of the
scanned documents [77]. Scanned pages differ in, e.g., quality, resolution, and
source. Text images can acquire noise and/or be skewed when printed, handwrit-
ten, and/or scanned. The recognition accuracy of OCR systems greatly depends on
the quality of the input text and noise, even more so than with humans. Baird [20]
reports that even OCR methods that perform well on some images perform much
worse on images that are only slightly harder for human readers.
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When text is scanned and digitized, the raw data may carry a certain amount of
noise. If the acquired image contains noise, it is subjected to a stage where “denois-
ing” of the image takes place. Furthermore, when a document is fed to the scanner
either mechanically or by a human operator, a few degrees of skew (tilt) is unavoid-
able. Skew correction aims at detecting the deviation of the document orientation
angle from the horizontal or vertical direction. Moreover, text aligned along dif-
ferent directions is not uncommon. The subsequent stages of OCR systems mainly
depend upon the accuracy of the pre-processing stage. For instance, if an OCR sys-
tem underestimates or overestimates the skew angle, then the OCR system, which
is utilizing projection-based techniques, will fail miserably.

In the pre-processing phase, we address image smoothing and skew correction.
In the following sections, we discuss both of these issues in more detail.

Smoothing

The goal of smoothing is to remove or reduce the noise present in the scanned
text image. An example of a noise removal algorithm is the statistical smoothing
algorithm presented in [62]. The algorithm tries to eliminate small areas and to fill
little holes that occur due to the regularization of the character contour [26]. This
simple and efficient technique is based on a statistical decision criterion. Given a
binary image of an Arabic text, the algorithm modifies each pixel based on its initial
value and the values of its neighboring pixels (see Fig. 7.4). The rules are as follows:

if P0 = 0

then P ′
0 =

⎧
⎪⎪⎨

⎪⎪⎩

0, if
8∑

i=1

Pi < T

1, otherwise

else P ′
0 =

{
1, if (Pi + Pi+1) = 2 for at least one i = 1, . . . ,8

0, otherwise

Here, P0 is the current pixel, P ′
0 is the new pixel value, and T is the thresh-

old. Experimentally, a threshold of 5 was found to yield acceptable results. Lower
thresholds result in filling character holes and concave boundaries, consequently
changing the topology of the characters. Higher thresholds result in very little or no
smoothing.

Skew Estimation and Correction of Text

Various techniques have been proposed in the literature to estimate and correct the
skew of document images. Comprehensive surveys can be found in [53, 54]. Most
of the skew estimation techniques can be divided into classes according to the basic
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Fig. 7.4 Pixel labeling
scheme for statistical
average-based smoothing

approach they adopt [53, 54]. These approaches include projection profiles [5, 24,
25, 50, 60, 74], principal component analysis [84, 86], and Hough transforms.

The traditional projection profile approach was proposed by Postl [74]. In this
approach, the input document is rotated through a range of angles, and a projection
profile is calculated at each angle. Features are then extracted from each projec-
tion profile to determine the skew angle. This is computationally expensive, as it is
performed directly on the original document images. Moreover, it is sensitive to the
layout of the document image. Another projection profile approach was proposed by
Bloomberg and Kopec [24], in which the original document image is downsampled
before the projection profile is computed. Therefore, the image data to be processed
is reduced, and the computational cost is reduced significantly. However, a major
weakness is that its detection accuracy is influenced by the document image layout.
It often fails on document images with multiple font styles and sizes or on those that
contain a large amount of non-text regions.

The second class of skew correction is based on principal component analysis, in
which the most significant eigenvector is calculated which leads to the skew angle
of distribution. The problem with this method is that each eigenvector is constructed
with support from projections of every point, which is expensive in terms of time.
In addition, they are least squared estimation techniques and hence fail to account
for outliers, which are common in images.

We now discuss an algorithm for skew correction that is based on finding the
peaks and valleys to estimate the skew angle [79]. The baseline is the part of the
script having the majority of black pixels. This property is used to allocate the base-
line of the script. Then the tilt angle is found using the projection profile technique.
The algorithm is summarized as follows.

1. The input image is divided into two vertical parts. Dividing the image into halves
makes the lines more efficiently readable. Images having long lines may be di-
vided into more than two parts. This enables the detection and correction of large
skew angles.

2. The right half of the bisected input image is projected horizontally to get the sum
of the black pixels in each row. The same procedure is repeated for the left half
of the image.

3. Peaks and valleys are analyzed for each portion of the image.
4. The first valley of the right portion histogram shows the starting point of the first

line. Similarly, the second valley of the left portion histogram shows the ending
point of the first line.
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Fig. 7.5 Illustration of the skew correction algorithm. (a) The top left and right figures give the
left and right halves of the image, respectively. The lower left and right figures give the projection
profile histograms of the image for the left and right halves, respectively. (b) The peaks and valleys
of the left and right halves of the images in (a)

5. The lines are projected from these points until they intersect at a point and then
the perpendicular distance between these points is found.

6. Steps 4 and 5 are repeated for the remaining lines and the distance between the
left and right projections of the line is calculated.

7. The skewed angles are calculated using trigonometric ratios.
8. The average of all the angles is taken.

Figure 7.5 illustrates the steps of the skew correction algorithm. Figure 7.5(a)
exhibits Steps 1 and 2 of the algorithm. Step 3 of the algorithm is illustrated in
Fig. 7.5(b). It is clear from the histogram in Fig. 7.5(b) that the peaks are well
defined and prominent. We can easily find the orientation of the lines and thus the
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Fig. 7.6 Illustration of a skew corrected image of text. (Left) Before skew correction. (Right) After
skew correction

skewed angle. The estimated angle is found to be 10.1 degrees. Figure 7.6 illustrates
a skew corrected text image after applying the algorithm.

7.4.3 Segmentation Algorithms

After the pre-processing stage, most OCR systems for cursive text segment the page
into lines. Then, depending on the technique used in the recognition, the lines are
segmented to words and characters. Line segmentation problems can be formulated
as follows: given an image of some text, line segmentation is the assignment of
each component of the text to a particular group (line) that is intended to be read in
sequence. The line segmentation helps in revealing the order of lines on a page, the
order of words within a line, and the order of characters within words.

We now discuss an adaptive line segmentation algorithm designed for printed
Arabic text pages, based on the algorithm in [40]. The algorithm uses horizontal
projection (HP) to find possible cut points (PCPs) between lines. Horizontal pro-
jection is the number of foreground pixels per row. These projections have small
counts between lines, which under some conditions, are judged as PCPs. PCPs are
later refined to final cut points (FCPs). Every connected component (called a blob)
in the page is then examined and associated with one line.

The main phases of the algorithm are as follows. Gray level images are binarized
and then noise is removed by using median filtering. The horizontal projection is
typically computed through one pass of the image, in which each row is examined
and the number of foreground pixels is recorded. Lower values in the horizontal
projection profile indicate possible locations of gaps (called valleys) between lines.
However, a low value in the projection profile may be due to a small line or due to
the large number of dots and diacritics. Therefore, to detect the valleys robustly, the
following novel approach is used.

The horizontal projection profile of a binarized text image is considered as a two-
dimensional curve C. In this curve, each point (x, y) corresponds to the row number
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x with y being the number of the foreground pixels in that row. Note that curve C

is an open curve. In curve C, points with low y values may indicate the locations of
valleys. To avoid possible false valleys, the curve C goes through a process called
collinear-points suppression [71]. Collinear-points suppression removes redundant
points from a curve. A point P on the curve C is considered redundant if the dis-
tance from P to the line joining the two neighboring points of P on C is greater than
some threshold d . We start with a small value of d (say 0.5). Then collinear-points
suppression is applied iteratively on C, with increasing values of d at each iteration.
The process is stopped when the length of the curve C reduces below some thresh-
old. The y coordinates of the remaining points on C are taken as the new horizontal
projection of the original image. This profile has fewer false valleys. Therefore, the
detection of valleys can be done more reliably.

Now, we adaptively estimate a threshold to decide on the rows that are valleys.
A local minimum is defined as a row containing less foreground pixels than both of
its neighbors. An adaptive local threshold (LT) is then computed as the average pixel
count of all local minima. We then tune the adaptive threshold by an estimation-
maximization (EM) approach. The LT computation is repeated several times until
convergence. Only a subset of the rows participates in calculating the LT at each iter-
ation. The subset is recursively defined based on the current LT. Valleys are defined
as the contiguous sequence of rows having an HP less than the LT. Within a valley,
the row with the minimum HP is declared as a PCP. In the case of a tie, the center
of the longest run of contiguous PCPs is taken as the PCP. The final cut points are
marked using the statistical information of all the valleys. The average valley width
(AVW) is computed from the located valleys. A global adaptive threshold (GT) is
taken as half of the AVW. The GT is used to mark FCPs. Valleys narrower than the
GT are merged with their nearest valleys.

Now, each blob in the image is associated to a line based on the y coordinate of
its center of gravity (COG). All blobs having this coordinate value falling between
two FCPs are assigned to the same line. This blob-wise approach sometimes results
in associating different blobs intersecting an FCP to different lines.

The dashed bi-headed arrow in Fig. 7.7(a) demonstrates a valley. The vertical
line crossing the projections is the LT. The thin solid arrow pointing toward the
horizontal line that runs until mid-page represents a PCP. The thick solid arrow
pointing toward the horizontal line that spans the whole width of the page shows an
FCP. Figure 7.7(b) shows local maxima and local minima by enclosing them with
solid and dashed circles, respectively.

7.4.4 Feature Extraction

In this section, we discuss different types of features used for printed Arabic text
recognition. Many researchers have also used these features for Arabic character
recognition.

Statistical features describe a pattern in terms of a set of characteristic measure-
ments extracted from the pattern. Here, the pattern is represented as a fixed-length
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Fig. 7.7 Illustration of the line segmentation algorithm. (a) Example of PCP and FCP. (b) Enlarged
part of (a) illustrating local minima and local maxima [40]

vector of ordered values and is interpreted as a point in a multidimensional space.
Statistical features include zoning of the character array (i.e., dividing it into over-
lapping or non-overlapping regions) where the densities of pixels in these regions
form the features, computing the moments of the black pixels of the character, the
n-tuples of black or white or joint occurrence, the characteristic loci, and crossing
distances. The set of features of all patterns defines the feature space of the recog-
nition system. In an appropriately designed feature space, all patterns of the same
class map to a unique partition of the space [33, 76].

Researchers of printed Arabic text recognition have used different statistical
features. The work [13] used zoning of pixels as features. The characteristic loci
method counts the number of zero/one segments a vertical line crosses in the pattern
and the length of each segment [3, 43]. The crossing method counts the number of
times a set of radial lines at different angles (e.g., 16 lines at 0, 22.5, 45, . . . degrees)
crosses the pattern [11]. This method tolerates distortions and small variations, and
is fast to calculate [49]. The moment method is one of the most popular statistical
approaches used for pattern recognition. The moments of a pattern about its cen-
ter of gravity are invariant to translation and can be normalized to be invariant to
rotation and scale [12, 33, 34, 76].

One of the simplest transformations is representing the skeleton or contour of a
pattern as a chain of direction codes. Direction codes can correspond to the eight
major directions as in Freeman codes [17, 19, 39, 62, 77], to six major directions in
the case of hexagonal sampling [56, 57], or to unequal angle increments [44].

Fakir and Sodeyama use the Hough transform to represent the skeleton of a
character as a set of line segments, and then use the length, location, and slope
of the line segments as features [41]. Several researchers used Fourier descriptors,
which are invariant to translation, rotation, and scaling and can tolerate moder-
ate boundary variations, derived from the contour points of a segmented character
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[10, 37, 38, 56, 57, 62]. In general, transformation schemes can be easily applied
and tolerate noise and variation. However, they sometimes require the use of ad-
ditional features in conjunction with Fourier descriptors to obtain high recognition
rates [37, 56, 57, 62].

El-Wakil and Shoukry used a three-level classification scheme. While the first
level is a dictionary lookup, the second is a 1-nearest neighbor classifier, and the
third is a k-nearest neighbor [39]. One of the most critical issues in those methods
is choosing an efficient and accurate distance or similarity measure.

Another common statistical method is to use Bayesian classification. A Bayesian
classifier computes the a posteriori probability of each pattern class based on the
detected features, the conditional probability of the features given a class, and the a
priori probability of the class [1–3, 10, 12, 32].

Instead of examining all the features at once, decision tree classifiers arrange
tests in a tree structure fashion. Each node of the tree is a test on a feature, and
each outcome of the test leads to another node in the tree. The leaves of the tree are
labeled with class identities. When a series of tests on a pattern leads to a leaf, the
pattern is labeled with the label of the leaf [7, 14]. To improve accuracy, some sys-
tems use four decision trees, one for each connectivity form of a character (isolated,
right-connected, etc.) [15, 16, 18].

The main advantage of statistical classifiers is that they can be automatically
trained. The literature includes some simpler methods that do not fall under either
paradigm, like dictionary lookup [33, 77], rule-based classification [70], and hand-
crafted tree classifiers [35, 36].

HMM-Based Features

The general trend for cursive text recognition is to use the hidden Markov model
(HMM). The use of other classifiers requires the segmentation of cursive text into
characters, which is implicitly done by the HMM. In the following paragraphs, we
discuss the use of HMMs in the recognition of printed Arabic text recognition.

Due to the advantages of HMMs, researchers have used them for speech and text
recognition. HMMs offer several advantages. There is no need for segmenting the
cursive text, HMMs are resistant to noise, they can tolerate variations in writing,
and the HMM tools are freely available. Some researchers have used HMMs for
handwritten word recognition [66, 72, 78], and others have used it for text recog-
nition [9, 22, 28, 48]. HMMs have been used for off-line Arabic handwritten digit
recognition [63] and for character recognition [31, 47].

The techniques used in [48] are based on extracting different types of features of
each digit as a whole, not on the sliding window principles used by the majority of
researchers using HMM. For their technique to be applicable to Arabic text recog-
nition, it has to be preceded by a segmentation step which is error-prone. Bazzi et
al. presented a system for bilingual text recognition (English/Arabic) [21, 22] using
the sliding window principles and different types of features. Dehghani et al. used
it for on-line handwritten Persian characters [31] and for handwritten Farsi (Arabic)
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Fig. 7.8 Illustration of a
seven-state, left-to-right
HMM

Fig. 7.9 Arabic writing line with line regions, sliding window, and feature segments

word recognition [30]. A variation of sliding window features based on hierarchical
windows was used in [9].

In order to use HMMs, several researchers computed the feature vectors as a
function of an independent variable [21, 22]. This simulates the use of HMMs in
speech recognition where sliding frames/windows are used (see Fig. 7.9). The slid-
ing window technique bypasses the need for segmenting Arabic text. The same tech-
nique is applicable to other languages. In this work, we utilize the HMM classifier
as implemented in [42, 92]. However, we have defined our own HMM parame-
ters and allowed transitions to the current, the next, and the following states only.
This structure allows nonlinear variations in the horizontal position. We have used
the Baum–Welch algorithm for training and the Viterbi algorithm for recognition,
which searches for the most likely sequence of characters given the input feature
vector.

We have used a left-to-right HMM for printed Arabic text recognition. Figure 7.8
illustrates a seven-state HMM, showing the allowed transition to the current, the
next, and the following states only. This model allows relatively large variations in
the horizontal position of the Arabic text. The sequence of state transition in the
training and testing of the model is related to each text segment feature observation.
In our work, we have experimented with using different numbers of states and dic-
tionary sizes and have selected the best performing ones. Although each character
model could have a different number of states, we have adopted the same number of
states for all characters in a font. However, the numbers of states and dictionary sizes
for each font, in relation to the best recognition rates for each font, are different.

To extract features from Arabic text, we have used the sliding window principle.
A window with variable width and height has been used. We have experimented with
horizontal and vertical overlapping windows, trying different values for the window
width and height, and vertical and horizontal overlapping. Then different types of
windows are utilized to obtain more features of each vertical segment and to decide
on the most proper window size and the number of overlapping cells vertically and
horizontally. The direction of the text line is considered as the feature extraction
axis. In addition, different types of features are tested.

Starting from the first pixel of the text line image, a vertical segment of 3 pixels
width and the height of the text line is taken. Note that the window size and vertical
and horizontal overlapping are made settable, and hence different features may be
extracted using different window sizes and vertical and horizontal overlapping.
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A Markov model is a finite state machine that changes its state at each time
(frame) unit (w). With each change of state (moving from state i to state j ), a
character vector Ow is generated from the probability density bj (of ). Moreover,
the transition from state i to state j is governed by the discrete probability aij .
The start state and the final state of this model are non-emitting states to allow the
building of composed models.

An HMM assumes that the sequence of observed text vectors, O = o1, o2, . . . ,

ow , where ow is the vector observation at frame w, representing each text line is
generated by a Markov model. The probability of generating the text observation
vector, O , by the model λ through the state sequence S is the product of the proba-
bilities of the outputs and the probabilities of the transitions:

P(O,Q|λ) = π1b1(o1)a12b2(o2)a23b3(o3) . . . (7.1)

where Q is the state sequence; λ = (A,B,π); π1 is the initial state transition; aij is
the transition probability from state i to state j ; bi is the output probability at state i.
Both states i and j are between the model’s first and last state, T .

As the state sequence is unknown, the probability is computed by summing over-
all possible state sequences. Since this is a time-consuming step, it is approximated
by the following equation:

P(O|λ) = max
Q

T∏

i=1

aqi−1qi
bqi(Oi) (7.2)

where Q = q1, q2, q3, . . . is the state sequence of the model. This equation is usually
computed through recursion with the assumption that the parameters aij and bij are
known for each model λi . The model parameters are estimated in the training phase
using the Baum–Welch algorithm. The sequence of states S that gives the highest
probability is determined by the Viterbi algorithm.

Each text line image is represented by a sequence of text line vectors or observa-
tions. The recognition problem can be regarded as that of computing

argmax
i

{
P(Ci |O)

}
(7.3)

where Ci is the ith character in the text line. This probability is computed using
Bayes’s rule:

P(Ci |O) = P(O|Ci)P (Ci)

P (O)
(7.4)

Thus, for a given prior probability P(Ci) of each character, the most probable
character depends only on the likelihood P(O|Ci). The joint conditional probability
P(o1, o2, . . . |Ci) could be estimated by using a parametric model such as a Markov
model. Hence, the problem of computing P(O|Ci) is replaced by the problem of
estimating Markov model parameters, which is a much simpler problem.
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The probability of generating O by the model M through the state sequence S,
P(O,S|M) = P(O|Ci) is the product of the probabilities of the outputs and the
probabilities of the transitions: (O|Ci) = a12b2(o1)a22b2(o2)a23b3(o3) . . . . How-
ever, the state sequence S is unknown, and this is why the model is called the hid-
den Markov model. P(O|Ci), now represented by P(O|M), can be calculated as
follows.

As the state sequence is unknown, the probability is computed by summing over-
all possible state sequences S = s(1), s(2), s(3), . . . , s(F ):

P(O|M) =
⎧
⎨

⎩

∑

S

as(0)as(1)

F∏

f =1

bs(f )(of )as(f )as(f +1)

⎫
⎬

⎭
(7.5)

where s(0) is the entry state and s(f + 1) is the exit state. The last equation can be
approximated as

P̂ (O|M) = max
S

⎧
⎨

⎩
as(0)as(1)

F∏

f =1

bs(f )(of )as(f )as(f +1)

⎫
⎬

⎭
(7.6)

This equation is usually computed by recursion with the assumption that the
parameters aij and bj (of ) are known for each model Mi .

The power of HMM appears here. Given a sufficient number of representative
training examples of each character, the parameters of the model could be de-
termined by a re-estimation procedure. The model represents implicitly different
sources of variations inherited in character vectors.

7.5 Classification

In the classification stage, new printed Arabic text pages are scanned. These images
pass through denoising in the pre-processing phase. Then, the line segmentation
algorithm extracts the lines. From these lines, different features are extracted and
sent to the classification phase. In the classification phase, the corresponding Arabic
textual text is generated. This is the output of the system which corresponds to the
scanned input data.

In the following subsections, we present some experimental results for the recog-
nition of printed Arabic text.

7.5.1 Dataset

As mentioned before, there exists no general adequate database for printed Arabic
text recognition that is freely available. The selected Arabic text is printed with dif-
ferent fonts and then scanned with 300 dots per inch resolution. These scanned text
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Table 7.2 Important statistics on the training and testing dataset

Number of Pages Number of Lines Number of Words Number of Characters

Training 32 1000 12650 55529 (67145 with spaces)

Testing 8 258 3252 14723 (17717 with spaces)

Total 40 1258 15902 70252 (84862 with spaces)

images have been used to train and test the presented technique. We have scanned
images of 40 printed Arabic text pages. These pages are segmented into lines, and
this has resulted in 1258 lines. Out of these lines, 1000 have been used for train-
ing, and the remaining 258 have been used for testing. A summary of the important
characteristics related to the dataset is provided in Table 7.2.

Experiments

We have conducted several experiments using different features extracted from these
line images of Arabic text.

We have experimented with different types of features. All the features are based
on the sliding window concept where a window frame of a given column height and
width is used to extract features from the line image (the best result was obtained
with 8 pixels height and 3 pixels width). This window frame is moved from the
top of the image to the bottom and from the beginning of the text line to the end,
with optional overlaps both horizontally and vertically. For every frame, the average
number of ink pixels is calculated and saved as a feature.

A modification to the above features is the use of the derivations of horizontal and
vertical edge of the text line image. The Sobel operator is used for edge detection
of the text line images. Thus, we have extracted features from the original image as
well as from the horizontal and vertical edge derivatives of the image.

In addition, a hierarchal sliding window feature as presented in [9] has also been
used. Once the features are extracted, they are quantized into different numbers of
clusters and experimented with using the HMM classifier. Moreover, HMM models
with different numbers of states have also been tested.

We have obtained a correctness rate of 73.78 % and an accuracy rate of 71.74 %
for window features using horizontal and vertical edge derivatives of the image. Cor-
rectness accounts for errors due to substitution and deletions but does not consider
insertion errors, whereas accuracy does consider insertion errors along with sub-
stitution and deletion errors. Using the hierarchal window features, the best results
obtained are a correctness rate of 81.05 % and an accuracy rate of 78.04 %.

Some of the reasons for the low recognition rates are the presence of skew in the
segmented lines and the poor quality of the images. In addition some words in the
text line have different writing baselines.

To improve the low recognition rate, a new feature extraction algorithm which is
adaptive in nature and has a variable window size is devised. The line level skew is
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corrected using the writing line as a reference. The new algorithm takes care of even
minor skews at the line level. Additionally, the window size and positions are made
adaptive to the writing line of the Arabic text. The windows are of variable size to
account for differences in importance for different regions of the Arabic text line.
Using this new feature extraction algorithm we have obtained a correctness of close
to 98 %, a significant improvement compared to the best result of 81.45 % using the
hierarchical features.

7.6 Conclusions

A robust printed Arabic text recognition system can be very useful for improving
the man-machine interface. It can enable the conversion of huge amounts of scanned
printed Arabic documents into editable form. In this chapter, we have discussed a
general framework for the recognition of printed Arabic text. The different phases
of a printed Arabic text recognition system are presented as well as examples of the
techniques used in each phase. We have discussed pre-processing, feature extraction,
and classification techniques. In addition, we have presented a concise theory behind
the hidden Markov model (HMM) and some experimental results for HMM-based
printed Arabic text recognition. The experimental results are encouraging. However,
still more effort is needed to improve the method and make it practical.
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Chapter 8
Handwritten Arabic Word Recognition Using
the IFN/ENIT-database

Mario Pechwitz, Haikal El Abed, and Volker Märgner

Abstract A well-structured and comprehensive dataset is the most important part
in the development of a handwritten word recognizer. The IFN/ENIT-database, a
well-organized set of images of Arabic handwritten town names, is widely used as a
basis to develop handwritten Arabic word recognition systems. We describe in detail
the IFN/ENIT-database, the form used to collect the data, the ground truth informa-
tion, and the statistics of the data. The recognizer developed using this database is
presented in the main part of this contribution. The pre-processing of the name im-
ages, e.g., baseline estimation, normalization, and feature extraction as well as the
hidden Markov model (HMM)-based recognizer together with the results achieved
are presented and discussed in detail in this chapter.

8.1 Introduction

Automatic recognition of handwritten words still remains a challenging task. Espe-
cially concerning the automatic recognition of Arabic handwritten text, a lot of work
still has to be done. In the case of recognizing scanned images of written words we
talk of an offline recognition system, as opposed to writing with a stylus on a device
like a tablet and recognizing the stream of coordinates, which is called an online
recognition system. The topic of our research is offline word recognition. The most
important requirement for the development and comparison of recognition systems
is a large database combined with ground truth (GT) information. The IFN/ENIT-
database, published at the CIFED 02 conference [25], was the first dataset of Ara-
bic handwritten name images that was freely available for university research pur-
poses, and it is used today by approximately all groups working on Arabic word
recognition. Additionally these data were used to compare recognition systems in
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competitions organized during the International Conference on Document Analysis
and Recognition (ICDAR) starting in the year 2005 until 2011. During that time a
continual improvement of the recognition results could be observed (see Chap. 17:
Arabic Handwriting Recognition Competition).

Usually in the case of cursive handwriting the characters of words are connected,
and this is exactly what makes it impossible to easily adapt recognition methods
for printed words to handwritten words. A solution to the problem of connected
characters is the methods based on hidden Markov models (HMMs), which have
been very successfully used for recognizing spoken words and have recently also
been adapted to handwritten words. A knowledge of the character set used and the
writing style variation of different writers is very important for the development not
only of the recognition system but also of the pre-processing and feature extraction.
The different shapes of the Arabic characters compared to Latin characters makes
character- and language-specific processing modules very important. Not only pre-
processing and normalization but also the HMM recognizer must be adopted to the
Arabic handwriting style, along with post-processing that uses language-dependent
syntax and semantics.

8.1.1 Characteristics of the Arabic Script

For the reader who is not familiar with Arabic writing a short overview of the most
important characteristics of Arabic is given. Arabic is written from right to left, and
the characters within a word in the printed and handwritten versions are connected
on a baseline, but six characters are an exception. If one of these characters appears
in a word, the word is split into two parts (we call it PAW: part of Arabic word).
If more than one of these characters appear in a word, it breaks into more than two
parts. Arabic uses 28 characters which are not case sensitive; upper and lower cases
are not known. The shape of an Arabic character depends on the position of the
character. The shape of an isolated character may differ from the same character
written in the beginning, the middle, or the end of a word. Additionally, to the basic
shape of a character one to three dots may appear below, above, or in the middle of
the character, and diacritical signs like Hamza or Madda are also used. Tables 8.1
and 8.2 show examples of character shapes and some characters with diacritical
signs in printed Arabic. As an example of written words, Fig. 8.1 shows a name
from the IFN/ENIT-database printed and written by two different writers.

8.1.2 Overview of the Recognition System

The general concept of the online part of a word recognition system is shown in
Fig. 8.2. The system starts with the conversion of the paper document into a digital
form, usually grayscale or color image data. In the next step pre-processing tasks
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Table 8.1 The Arabic alphabet: 28 characters and up to four different forms; six letters exist only
in the insulated form and in the end form (appropriate fields are left empty)

Character Isolated End Middle Begin Character Isolated End Middle Begin

Alif
"
 "# Dhad �$ �%& ' ��& ' �(

Ba �� �� & '	� & ')� Taa * +& ',& '-
Ta �� ��& '�	& '�) Dha �* �+& ' �,& ' �-
Tha �� ��& '�	& '�) Ayn . /& '�& '0
Jim 1� 2� & '3� & '4� Ghayn

�. �/& ' ��& ' �0
Ha 1 2& '3& '4 Fa

�� ��& ' ��& ' ��
Kha 5 6& ' �3& ' �4 Qaf

�� ��& '��& '��
Dal � 7& Kaf 8 9& ':& ';
The

�� �7& Lam < �& '=& '�
Ra ! �& Mim > ?& '@& 'A
Zai �! ��& Nun �B ��& ' �	& ' �)
Sin C �& '�& '� He D E& 'F& 'G
Chin �C ��& ' ��& ' �� Waw

H
 H#

Sad $ %& '�& '( Ya I
 J
 & '	
& ')


Table 8.2 Selection of special Arabic characters, together with the supplements “Hamza” and
“Madda.” Additionally the common ligature LamAlif and the “Ta’marbuta” are presented

Character Isolated End Middle Begin Character Isolated End

Alif + K K


K
�& LamAlif � L&

Alif + M M �M& LamAlif + K K
�

K
L&

Alif + M M


M
�& LamAlif + M M

�
M
L&

Waw + M M� M & LamAlif + M �M LM &
Ya + M MI MJ& 'M	& 'M) Tamabutra

�D �E&

like noise reduction, segmentation, and binarization (conversion of the input image
into a bilevel image) are performed. As the system should deal with a large number
of different unknown writers, the next two blocks normalize the writing style with
the goal to make it more robust against size, slant, skew, and line width variations
of a word. The next block extracts a number of features from the normalized word
image. An important precondition for this step is the estimation of baselines of each
word to make the feature extraction more effective. Based on models and their pa-
rameters, which were fixed during an offline training process, and a word lexicon,
the recognition process is performed by searching for models that fit best with a
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Fig. 8.1 Tunisian
town/village

(
�EN	
=(

"M
� �E �(�"	� ���  ��O �)) in

three styles: printed Arabic
using the Naskh style (a);
handwritten by two different
writers (examples from the
IFN/ENIT-database) (b), (c)

given feature vector sequence. The output of the recognizer is one or more word
hypotheses.

8.1.3 Pre-processing and Normalization

A very important part of the recognition system is obviously the pre-processing
and normalization. Any error occurring in this part of the system may result in an
unrecoverable recognition error. The first step is the noise reduction and the segmen-
tation and binarization. These system parts are not discussed in this chapter. Here
we start with the binary image of a name. Figure 8.3 shows exemplarily the normal-
ization steps for one handwritten name. Based on a connected component analysis,
the skew, slant, and baselines are estimated on the basis of the respective name. Us-
ing these parameters the name is normalized and finally converted to a grayscale
image which is used to calculate the corresponding feature vector sequence. In
the following we present the details of our recognition system focusing on the data
(Sect. 8.2.1), the baseline and topline estimation (Sect. 8.3), normalization and fea-
ture extraction (Sect. 8.4), and the recognizer (Sect. 8.5). We end by presenting and
discussing the results achieved (Sect. 8.6).

8.2 IFN/ENIT-database: Database of Arabic Handwritten Words

8.2.1 Overview of the Database Conception

Most recognition systems for handwritten words which are in use today are devel-
oped for applications with a restricted lexicon of words. These systems are focused
on certain applications, such as the reading of check amounts or postal addresses,
which are proven to be realistic and profitable. The further development of recogni-
tion systems, however, requires a large amount of data to train and test the system,
especially if statistical methods like HMM are used. The implementation of a sys-
tem requires real-world data, but data from the bank or the postal system are often
confidential and inaccessible for non-commercial research. As the amount of data
is crucial for a reliable training of recognition systems, we decided to use similar
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Fig. 8.2 Block diagram of the HMM-based recognition system

artificial data collected on special forms instead of scarce real-world data. Despite
the disadvantage of using artificial data, the process to produce obligatory ground
truth (GT) from the data is made much simpler due to the fact that the forms can be
adopted to the automatic labeling process.

For a test environment, we chose a scenario related to postal address reader ap-
plications [24, 25]. We decided to collect handwritten data from the 946 Tunisian
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Fig. 8.3 Example of the pre-processing and normalization steps

towns/villages1 together with their postcodes. Most of the people who contributed to
the IFN/ENIT-database were familiar with the vocabulary, because they belong to
the narrower range of the École Nationale d’Ingénieurs de Tunis (ENIT) in Tunisia.

1From the 946 Tunisian town/village names we obtain only 937 really different words (some have
only a different postcode). The classification task has to deal with a middle-sized lexicon.
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In the following we describe in more detail how we collected and processed the
data (Sect. 8.2.2). We also present the available ground truth (Sect. 8.2.3) and show
some statistics for the database (Sect. 8.2.4).

8.2.2 Development and Realization

Our aim was to collect Tunisian handwritten town/village names written in a similar
way as town names of an address on a letter. The form was designed to:

• Encourage writing without strong constraints
• Collect writing similar to writing on a letter
• Be easy to process automatically
• Provide additional information about the person who completed it

Based on these aims we developed a form for collecting handwritten data.

The Form

A completed example of this form is shown in Fig. 8.4. The form consists of three
columns and a text block at the bottom. Embodied in the column on the right-hand
side of the form are 12 lines with printed Tunisian town/village names and their re-
spective postcodes, which are automatically selected2 from the possible 937 names.
The sample writers were expected to write the postcode in the left column and the
town/village name in the middle column in their individual writing style. We did not
print a line to write on or a box to write in, since we wanted to make the process-
ing of the scanned data as simple as possible. To provide a light writing guidance
we printed dark black rectangles on the backside of each page, which are shining
through to the front side and thus mark roughly where to write. In the scanning pro-
cess these rectangles can be removed using a simple threshold. Further segmentation
operations are not necessary. A page number is used as a form identifier for the sub-
sequent processing. In the block at the bottom additional information about age,
profession, and identity of the writer is given. Each writer was asked to complete 5
forms, so one had to write up to 60 names.

Form Processing

All form pages were scanned with 300 dpi and converted to black and white (binary)
images. Due to the fact that the paper was white and the words were written with a

2The criteria for the selection are explained in Sect. 8.2.4.
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Fig. 8.4 An example of a completed form for collecting handwritten Tunisian town/village names
for the IFN/ENIT-database



8 Handwritten Arabic Word Recognition Using the IFN/ENIT-database 177

Table 8.3 Examples from the IFN/ENIT-database: a Tunisian village name ( �! N�� "4 ��
N
�
"
) writ-

ten by 12 different writers

black or dark blue pen, the binarization was not a problem. While scanning a page
the page number and the additional information3 were keyed in manually.

A page slope correction was performed automatically using the extra bold black
line at the bottom of the page as a horizontal reference. An advanced projection
method was performed to extract the word and the postcode images on the page
automatically.

Examples of extracted words are shown in Table 8.3. Additionally, the example
gives an idea about the variety of the collected data, because the displayed Tunisian
village name is written by 12 different writers.

8.2.3 Database Ground Truth

A database for training and testing recognitions systems requires not only the images
with the script; it also needs to know with as much detail and accuracy as possible
what is on these images. That information is called ground truth (GT). Probably the
most important information of the GT is the sequence of the characters of the word.
Due to the Arabic writing style (cf. Sect. 8.1.1), where the shape of the character
changes depending on the neighboring characters, the concrete used shape must also
be labeled. Clearly, to gather this detailed information is a very time-consuming and
error-prone process. In the following we present the GT of the IFN/ENIT-database
and we also provide insight into how we managed to get the required information.

3The additional information like name, residence, age, and profession were vital to keep track
of who filled out which form. This information is needed to build writer disjunct sets from the
collected data. Otherwise, the same writer could probably contribute to the learn and to the test set;
this would contort the tests and had to be avoided. To gather statistical parameters about the writers
who contributed to the database, the additional information from the form was also very helpful.
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Table 8.4 Two examples for dataset entries of the IFN/ENIT-database. The sym-
bols M, B, A, E, L stand for the used character shape (middle, begin, alone, end,
ligature)

IFN/ENIT-database Ground Truth in Detail

Each handwritten town name comes with image and GT information. The following
GT information is available for each name image:

• Postcode (automatically generated)
• Arabic word in ISO 8859-6 code set (automatically generated)
• Arabic word as character sequence with shape index (automatically generated and

manually verified)
• Number of words, PAWs, and characters in the town/village name (automatically

generated and manually verified)
• Baseline (automatically generated and manually verified)
• Baseline quality (manually labeled)
• Writer identifier, age, profession, and writing quality (manually labeled, indi-

rectly part of the GT).4

Table 8.4 gives two examples of dataset entries of the IFN/ENIT-database. Because
we were aware of promising research topics, we added some “special” features,
which are not as common in other databases; e.g., the information about the writ-
ing line (baseline) position and some quality flags are included in the GT of the
IFN/ENIT-database.

Pre-label and Pre-baseline

With the knowledge of the form page number each word is automatically assigned
a pre-label. The pre-label of the word consists of the postcode, the word in Arabic

4For example, the writer is coded in the image file name, and the age, profession, and writing qual-
ity were used to arrange writers into groups and divide them uniformly over the sets (Sect. 8.2.4).
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Fig. 8.5 Interface of label verification tool of the database IFN/ENIT-database. Top: On the left
you see the image of the handwritten word with the pre-baseline, on the right we have the pre-label,
and in the last row some quality and additional marks are shown. Bottom: Correct label after the
verification step (ligature of the Arabic character Lam (<_B) and Jim (1� _M) was well noted); the

baseline position was slightly adjusted

code set ISO 8859-6, and a code that describes the sequence of the Arabic character
shapes. This character shape code is generated automatically using a simple glyph-
shaping algorithm. This is an important step for the labeling of character shapes,
because the Arabic code set ISO 8859-6 does not provide shape occurrence in-
formation. To make the code unambiguous we added additional Latin characters
as indexes. “B” stands for beginning, “M” for middle, “E” for end and “A” for
alone/isolated character shapes. An “L” marks the “Chadda.” These descriptors are
linked to the Arabic code with the “_” (cf. Table 8.4). The codes for each character
are separated by “|”. Additionally, a pre-baseline estimation was performed on each
name image automatically. This straight line should give a good estimation of the
baseline (writing line) of the name.

Verification

Due to the variability of handwriting or simply due to writing errors, the pre-labels
do not always match the handwritten word. Therefore, manual verification is needed
to obtain a label that matches the handwritten word character sequence. For exam-
ple, when ligatures were used and “Chadda” were not copied, the label had to be
corrected. Words with writing errors or written with special ligatures, which appear
only sporadically, were not included in the IFN/ENIT-database. During this verifi-
cation procedure the automatically generated pre-baseline was also corrected.5 The
interface for this verification procedure is shown in Fig. 8.5. The corrected label and
baseline of the image are also presented in Fig. 8.5.

5If it was not possible for whatever reason to give an “acceptable” baseline during the verification
task, the quality flag for the baseline was set to “bad.” Also, the writing quality could be marked as
“bad.”
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Table 8.5 Distribution of the words with respect to the quantity of characters that they consist of

Quantity of characters Frequency in % Quantity of characters Frequency in %

3 2.24 4 12.21

5 10.24 6 10.03

7 11.92 8 14.85

9 10.45 10 9.00

11 5.26 12 4.47

13 3.54 14 1.37

15 1.50 16 0.07

17 2.85 ≥18 ÷

8.2.4 Details and Statistics of the Database

The vocabulary of the IFN/ENIT-database6 consists of the 937 Tunisian town/vil-
lage names. The names printed on each form were selected randomly with the con-
dition that each character shape should occur at a minimum more than 300 times.7

Therefore, those names with rare character shapes occur more often than names with
frequent ones. That leads to a quite unequal distribution of the town village/names;
e.g., 22 names appear more than 300 times, whereas 2 occur only 3 times. In the end
we obtained 2273 forms filled out by 411 writers with 26459 handwritten Tunisian
town/village names, made up of about 115000 parts of Arabic words (PAWs) and
about 212000 characters.

In the following we present some statistics summarized in tables.

Distribution of Words and PAWs

Table 8.5 shows the distribution of the words in relation to the quantity of the char-
acters; Table 8.6 shows it in relation to the quantity of PAWs.

More than three-quarters of the words consist of four to ten characters. The short-
est word in the data collection consists of three characters, and the longest of 17
characters. A quarter of the words are composed of four PAWs.

The majority (70 %) of the PAWs consist on average of two characters. With
about 15 % follow PAWs which consist of one or three characters.

6All information refers to IFN/ENIT-database version 1.0p2 (www.ifnenit.com). The database is
in ongoing development.
7To optimize the database in relation to equally distributed town/village names was not an op-
tion, because the effort would be too huge. For example, if we only assume 100 times for each
town/village name, we would need about 1600 writers!

http://www.ifnenit.com
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Table 8.6 Distribution of the words with respect to the quantity of PAWs that they consist of

Quantity of PAWs Frequency in % Quantity of PAWs Frequency in %

1 2.99 2 15.35

3 17.60 4 24.84

5 14.67 6 8.24

7 7.32 8 6.04

9 1.55 10 1.40

Table 8.7 Age and profession of writers who contributed to the IFN/ENIT-database

Student Academic staff Technician Others
∑

≤20 29.0 0 0 0 29.0

21 to 30 35.6 4.2 3.9 3.9 47.6

31 to 40 0.2 3.4 4.9 2.0 10.5

>40 0 4.1 5.4 3.4 12.9

∑
64.8 11.7 14.2 9.3 100

Distribution of the Writers

Table 8.7 gives an overview of the age and profession of the writers who have
contributed to the database. Actually, about three-quarters of the 411 writers were
younger than 31 years, and about two-thirds were students.

Since the collection of the writing took place predominantly in the surroundings
of the university, this result is not surprising.

Distribution of the Four Sets

The collected data was split into four sets (a, b, c, d). The characteristics of these
sets are shown in Table 8.8.

Miscellaneous Details

Table 8.9 gives examples which indicate the large variety within the IFN/ENIT-
database. Shown are the two most frequently occurring names (about 380 times)
with their longest and their shortest representatives. The mean height of the script
all over the IFN/ENIT-database calculates to 96.6 ± 19.2 pixels (8.2 ± 1.6 mm:
300 dpi), where the mean stroke width is 6.2 ± 2.5 pixels (0.5 ± 0.2 mm:300 dpi).
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Table 8.8 Distribution of the four sets of the IFN/ENIT-database

Set Quantity of words Quantity of writers (of this, quant. of “bad”a writers)

a 6537 102 (14)

b 6710 102 (13)

c 6477 103 (15)

d 6735 104 (14)

∑
26459 411 (56)

aWhile verifying the GT, there was the possibility to mark a writer as “bad” if the word was hardly
readable even for a native speaker

Table 8.9 Variance of the length of words within the IFN/ENIT-database; shows for two exam-
ples the longest and the shortest representatives (all numbers in pixels)

Fig. 8.6 Arabic printed words with horizontal profile and marked baseline and topline. The max-
imum peak in the horizontal profile defines the position of the baseline; the topline position is
determined by the maximum gradient of the horizontal profile above the baseline

8.3 Baseline and Topline Estimation

The most important parameter for a script normalization procedure is the position
of the writing lines or references lines within a word. We will call these lines the
baseline and topline. Figure 8.6 gives two examples of printed Arabic words with
their corresponding baseline and topline defined by the widely used horizontal pro-
jection approach. A prime example of the statement that some characters cannot be
recognized without information about their relative vertical position within a word
is the “g/9”-problem in relation to Latin handwritten character recognition. For Ara-
bic characters we find similar issues, e.g., the characters “� (Dal)” and “! (Ra)” or
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Fig. 8.7 Examples (taken from the IFN/ENIT-database) of handwritten words where the estima-
tion of the baseline seems to be very challenging. The optimal position of the baseline is given for
each word by a solid line (for further explanation see the text)

“�� (Ba)” and “ �B (Nun)” (disregarding the punctuation). It becomes obvious that

the baseline of a word contains essential information for an automatic recognition
system. If the lines are detected, a reasonable normalization of the skew angle and
the height of the word can be applied.

Challenges of the Baseline Estimation Task for Handwritten Arabic Words
Due to the fact that the writing and thus the writing line varies strongly between
different writers, the estimation of the baseline8 is considered a very challenging
task. We discovered four main issues regarding the baseline estimation procedure,
as illustrated in Fig. 8.7:

(1) Very short words, which consists of many PAWs (Fig. 8.7a)
(2) Long words (or groups of words) with a “jumping” baseline resulting from non-

compliance with rules of writing (Fig. 8.7b)
(3) Words which consist of characters with long bottom curves (Fig. 8.7c)
(4) Other unfavorable constellations (Fig. 8.7d)

8The topline estimation is discussed separately in Sect. 8.3.4.
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Figure 8.7a shows two typical representatives for issue (1). The words are very short
(e.g., four characters), whereby frequently characters arise which are, owing to the
Arabic writing, written in an isolated manner from each other. Both characteristics
are very unfavorable to a successful baseline estimation. Writing isolated characters
often leads to a less consistently distinct baseline.

Examples related to issue (2) are given in Fig. 8.7b. Similar to issue (1) we have
to deal with non-consistent baselines; however, the cause is entirely different. The
words consist of several, partially longer PAWs (or words)9 which are compounded
from many characters and thus become long. This circumstance means that there
is a higher risk that each part of the word will be situated on a different horizontal
position. Thus one observes that, e.g., often for the beginning and for the end of
the word physically separate baselines exist.10 There is no doubt that the correct
way to deal with that issue would be to determine each baseline separately. By the
way, even the assumption that the baseline is a straight line can be questioned.11 On
the other hand, it is a bit dissatisfying, but there is no plan to implement a robust
estimation of, e.g., a polygonal line as a baseline position, and there is currently no
corresponding GT which it would made it possible to evaluate such an approach.

With certain character combinations one habit of writers is observed frequently
which disturbs the estimation of the baseline substantially, as described in issue (3).
Figure 8.7c shows two examples. The habit consists of writing the last character
of a word or PAW with great momentum. If there are many PAWs within a word
consisting of characters that have descenders (see Table 8.1), the descenders become
very significant and can negatively affect the baseline estimation process.

Issue (4) includes different artifacts which do not belong to one of the other issue
categories. Figure 8.7d gives two examples. First, due to the carelessness of the
writer, two PAWs are linked together in a very unfavorable way and, second, the
writer has written even a very short word with the use of ligatures. Actually, there
is nothing wrong with that writing, it is simply a matter of handwriting. But these
examples raise the question of how much an effect such artifacts may have on the
assumptions of baseline estimation approaches in general.

Intensive meaningful tests are desirable and, due to the GT of the IFN/ENIT-
database, feasible. We next introduce our baseline error measurement criteria
(Sect. 8.3.1). In Sect. 8.3.2 we evaluate a widely used approach for baseline esti-
mation. This approach is based on analyses of the horizontal projection histogram.
A different approach, completely based on polygonally approximated skeleton pro-
cessing of a word, is described in Sect. 8.3.3. Section 8.3.4 gives a short overview
on methods to estimate the topline in Arabic handwriting. We will end with a short
summary in Sect. 8.3.5.

9Some town/village names consist of several isolated words which differentiate themselves only
slightly from “normal” PAWs.
10Figure 8.7b shows examples where the baseline is marked.
11If the baseline quality mark within the GT is set to “bad,” it signals that there was a problem in
defining a sufficient baseline position, at least with a straight line.
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Fig. 8.8 Example of the baseline measurement definition. The error measurement is defined by
the area between the optimal and the estimated baseline, divided by the length of the word (Xmax)

Table 8.10 Experimentally
found thresholds of the
baseline error measurement

Error threshold in pixels Mark

0–5 excellent

5–7 acceptable

>7 insufficient

8.3.1 Definition of the Baseline Error Measurement

As mentioned before, the GT of the IFN/ENIT-database contains the baseline po-
sition. This baseline GT is very useful, because it puts us in a position to evalu-
ate a baseline detection algorithm on the basis of a quite large dataset (IFN/ENIT-
database) automatically. As an error measurement we have calculated the averaged
distance between the estimated baseline and the baseline GT for each word. An ex-
ample is given in Fig. 8.8. This distance value is used as a quality indicator for an
objective performance evaluation. It is obvious that if the estimated baseline posi-
tion is congruent to the baseline GT, the error value gives 0 pixel and that value
becomes the objective of all optimizations. But up to what degree can the diver-
gence between the estimated baseline and baseline from GT be rated as acceptable
or as insufficient? To answer that question, we prepared sheets of papers with some
hundred Arabic words (taken from the IFN/ENIT-database) together with a marked
previously estimated baseline. Then we asked a group of Arabic native speakers to
look quickly through the sheets with words and to tag all those words that did not
agree with the marked baseline position. The result of this little visual experiment is
summarized in Table 8.10. We knew that the baseline for the same word determined
by three different individuals will result in three different baseline positions. As a
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Fig. 8.9 Examples of baseline errors. The optimal baseline taken from the ground truth of the
database (solid line) and the estimated baseline (dot-dash line) are marked for each word

consilient result, we observed that for up to a 5 pixel12 vertical position error the
baseline was evaluated as excellent, for up to a 7 pixel vertical position error every-
body could still agree with the baseline position, and for an error of more than 7
pixels the baseline estimation was considered as insufficient. Figure 8.9 exemplifies
the baseline error criteria. Of course, for a final evaluation the baseline error mea-
surement has to be tested in a complete recognition system. However, optimizing
one parameter in a baseline finding algorithm while running the whole recogni-
tion environment (normalization, feature extraction, HMM training and testing (cf.
Sect. 8.5)) or asking a human reviewer again and again for thousands of words about
the baseline quality is even less practical. For this purpose our quality measurement
can be a helpful tool.

8.3.2 Baseline Estimation: Horizontal Projection Method

The horizontal projection method is a widely used method to estimate the baseline.
Line by line the black pixels are counted; the maximum number of pixels indicates
the position of the baseline (cf. Fig. 8.6). The projection method is robust and easy
to implement, but it requires straight lines and long words, which is often not the

12Average word image height was approximately 100 pixels, 8.5 mm; for details see Sect. 8.2.4.
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Fig. 8.10 Definition of the modified Hough parameter space

Fig. 8.11 Arabic words with correspondent Hough space; the position of the optimal baseline
is marked. (a) A very distinct maximum in the Hough space marks the position of the baseline.
(b) Hough space with several ranges with high entries, which represents different baseline positions

case for single handwritten words. We enhanced this approach by transforming the
binary word image into a Hough parameter space, where the dark regions indicate
line directions with many black pixels on a straight line in the word image. Fig-
ure 8.10 gives an example. In the simplest case only one range with high entries
appears in the Hough space, and its maximum is easy to determine. In accordance
with the idea of the horizontal projection method, the maximum in Hough space
represents the baseline position. Figure 8.11a shows an example of a problem-free
application of this procedure. In the Hough space only a distinct range is formed.
The maximum value corresponds to the position of the desired baseline. By contrast,
Fig. 8.11b shows an example of a more problematic case which can frequently be
found. Several ranges with distinct local maxima result in the Hough space. Never-
theless, only the position of the straight lines resulting from the global maximum of
the Hough space is taken for a first detailed investigation. In the following the base-
line error measurement introduced in Sect. 8.3.1 is used for evaluation. The results
of this first test are arranged in Table 8.11. The complete IFN/ENIT-database was
used for this test. In 78.1 % of all words within the dataset an acceptable baseline
(error ≤7) was found with the initial settings (cf. Table 8.11).

An improvement of the results was found by smoothing the Hough space with
a simple median filter. Applying a median filter of size 3 × 3 results in a shift of
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Table 8.11 Baseline estimation error determined with the basic method of horizontal projec-
tion; i.e., only the global maximum in the Hough space is evaluated. The entire data collection
IFN/ENIT-database was used

Baseline error [pixels] Part of the dataset [%] Part of the dataset [words]

≤1 8.1 2275

≤5 65.3 17233

≤7 78.1 20672

≤10 87.9 23257

≤15 95.2 25178

≤50 100.0 26459

Table 8.12 Baseline estimation error determined with the basic method of horizontal projection
after median filtering with filters of different window sizes; i.e., only the global maximum in the
Hough space is evaluated. The whole IFN/ENIT-database was used

Baseline error
in pixels

Part of the dataset [%]

Window
3 × 3

Window
5 × 5

Window
7 × 7

Window
9 × 9

≤1 7.6 6.5 5.3 3.0

≤5 71.2 71.6 70.7 58.8

≤7 81.4 82.7 82.8 77.5

≤10 89.6 90.7 91.2 89.8

≤15 95.7 96.4 96.2 96.9

≤50 100.0 100.0 100.0 100.0

the position of the global maximum in the Hough space in such a way that we could
measure an improvement of 3 % for the reference value baseline is acceptable. For a
filter size 5×5 and 7×7 this result could still be improved, whereby after a filtering
with a filter of size 9 × 9 a degradation was found. The best result (82.8 %) was
reached with the filter of size 7×7. That corresponds quite well with the estimated
averaged line thickness of IFN/ENIT-database (see Sect. 8.2.4). Table 8.12 shows
the results in more detail.

Discussion on the Validity of the Assumption The findings are very remarkable:
Within approximately a fifth of all words of the IFN/ENIT-database the assumption
fails that the global maximum in the Hough space corresponds to the position of the
baseline in the word.

Therefore, a further investigation seems to be very interesting, which is described
in the opposite way: To what extent does the assumption apply at all, that the base-
line is found where there is a significant cluster of word image pixels on a straight
line, which corresponds to high values in the Hough space? Using the baseline GT
of the IFN/ENIT-database, the corresponding position in the Hough space can be
computed. Now it remains to examine if there is at least a “local” maximum in the
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Fig. 8.12 Thresholding the Hough space using the p-tile thresholding method

Fig. 8.13 Hough space: splitting larger clusters into equally large parts

periphery (≤7 pixel criteria) of the optimal baseline position in the Hough space. If
that is not the case, then the basic assumption fails in principle for these words. For
these tests first all local maxima in the Hough space must be determined. For this
purpose a simple threshold value setting is used to cluster the region of interest of
the Hough space. Afterwards these clusters are labeled using a connected component
labeling method [28, 29]. The threshold value is determined by the p-tile threshold-
ing method. The threshold value is specified in such a way that the extracted cluster
area is a pth of the total area of the whole Hough space. Figure 8.12 shows some ex-
amples of a clustered Hough space using the p-tile thresholding method. Setting the
parameter p = 33 leads to the best result. Thus the threshold is set in such a way that
about 3 % of the background pixels remain standing. Figure 8.12 shows an example
of a thresholded Hough space (p = 33), which results in three clusters. Often only
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Table 8.13 Results of the baseline estimation using the “extended” (cf. text) horizontal projection
method in relation to parameter p. The whole dataset of the IFN/ENIT-database was used

Baseline error
in [pixels]

Part of the dataset [%]

p = 100 p = 33 p = 10

≤1 8.8 10.6 11.8

≤5 72.8 79.0 81.5

≤7 86.5 91.5 93.2

≤10 94.7 97.6 98.4

≤15 98.7 99.5 99.7

≤50 100.00 100.00 100.00

an expanded cluster is found, which is divided into several equally large parts. For
clarification Fig. 8.13 gives an example, where the position of the reference baseline
and the positions of the “local” maxima are marked. Every “local” maximum stands
for a baseline position candidate and can be compared with the reference baseline
position. We used the baseline measurement criteria (cf. Sect. 8.3.1) to evaluate
these baseline candidates. It was found that at best13 93.2 % of all words from the
IFN/ENIT-database belong14 to a detected “local” maximum15 in the Hough space.
To put it the other way around, in 7 % of the words even the extended16 horizontal
projection method fails, and no acceptable baseline can be found. Table 8.13 gives
the results in detail.

Discussion on the Results in Relation to the Impact of the Dataset This re-
sult is remarkable, even though it is only valid in regard to the IFN/ENIT-database.
To get an idea of to what extent the result belongs to the dataset, we performed the
following test. Using ArabTEX we generated a “printed version”17 of the IFN/ENIT-
database. We ran the baseline estimation algorithm18 as described. Table 8.14 shows
the results, including the results for the topline estimation (the underlying approach
will be discussed in Sect. 8.3.4). For about 95 % of the dataset an acceptable baseline
position was found and for the topline about 89 %, which leads to the conclusion
that the assumptions made by the approaches are quite adequate, at least in relation
to Arabic printed words. On the other hand, it makes it clear that the lower accurate
rate of the baseline position finding for the IFN/ENIT-database is not due to the

13The results depend on some parameters (see Fig. 8.12 and Fig. 8.13).
14Baseline error ≤7 pixels.
15The parameter for thresholding and the clustering were set to values that result in not more than
ten “local” maxima (baseline position candidates) in the Hough space.
16Considering “local” maximum in the Hough space.
17With regard to the vocabulary and considering the frequency and the approximate font size of
the words; using the common Naskh style.
18Based on global maximum detection within the filtered Hough space.
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Table 8.14 Baseline
estimation error for Arabic
printed words (for details cf.
text)

Baseline error
in [pixels]

Part of the printed dataset [%]

Baseline Topline

≤1 34.3 1.7

≤5 90.2 80.3

≤7 95.2 88.7

≤10 96.4 92.7

≤15 99.6 94.7

≤50 100.00 100.00

vocabulary of the dataset. It seems to be the more general influence of handwrit-
ing, and so it can be supposed that the results are valid for Arabic handwriting in
general.

Back to the approach which uses the local maxima in the Hough space: If an algo-
rithm could always select the right baseline candidate (1 out of 10), an improvement
of about 11 % in comparison to the median filtered Hough space method (see Ta-
ble 8.12) would be possible. One approach was tested [24] based on the assumption
that according to the Arabic script each PAW of a word has to intersect the base-
line. It turns out that this assumption is, in practice, not the case, particularly for the
“problematic” words.

In the following section we discuss another baseline estimation approach which
tries to benefit from a deeper understanding of the characteristics of Arabic hand-
writing.

8.3.3 Baseline Estimation: Skeleton-Based Method

The method we are presenting here is not directly based on the pixels of the word
image but on the skeleton of the lines [4, 14]. The advantage of this method is not
only more flexibility in the line estimation but also a more flexible and easily ac-
cessible data structure of the polygonal approximated skeleton lines. Moreover, the
pen-dependent line width is removed, and the connected components are obtained
(Fig. 8.14).

Overview of the Skeleton Baseline Estimation Approach

The concept of our baseline detection algorithm is shown in Fig. 8.15. At first
baseline-relevant features, e.g., diacritical points, are extracted from the polygo-
nally approximated skeleton. In the next step the connected components that are
not relevant for the baseline detection are deleted. Subsequently, a first estimation
of the baseline is calculated. The final step is a regression analysis of the relevant
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Fig. 8.14 (a) Binary scanned image; (b) contour; (c) skeleton; (d) polygonally approximated
skeleton word

Fig. 8.15 Block diagram:
overview of the realized
approach

points in the neighborhood of this first estimation to find the final baseline posi-
tion. In the following sections we give a detailed description of the proposed algo-
rithm.

Baseline Feature Extraction

The feature extraction is based on the polygonal skeleton data of each word image
(see Fig. 8.14d). This is a fast and effective way to extract baseline-relevant features.
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As most parameters of handwriting vary in a wide range, we are collecting many
different features of each skeleton graph (connected component) and its bounding
box within a word image.

• The following features are calculated for each skeleton graph:
– Width and height of bounding box
– Area of bounding box
– Aspect ratio of bounding box
– Sum of edge lengths of skeleton graph (skeleton length)
– Number of vertices of the graph
– Number of edges of the graph
– Degree of each vertex
– Length of each edge
– Distance and angle of vertices connected by an edge

• The following features are calculated for all skeleton graphs of each word:
– Average bounding box area
– Deviation of bounding box area
– Average skeleton length
– Deviation of skeleton length

Selection of the Baseline-Relevant Features

In the second step of our baseline estimation approach a reduction of the whole fea-
ture set of the word image is done by selecting only features of baseline-relevant
connected components. This selection is done on the basis of the knowledge of Ara-
bic writing style. Diacritical marks, e.g., points or “chadda,” are not baseline rele-
vant. Furthermore, the features of isolated written Arabic characters with a simple
graph structure, as for example the characters “Ra” or “Zai” (see Table 8.1), and the
features of long bottom curves are also irrelevant and not used. In the following the
features that are indicators for the presence of such baseline-irrelevant connected
components (object graphs) are itemized:

• Features of erasable points are:
– Object graphs with sum of all edge lengths less than 20 % of average length of

all object graphs in the word image
– Object graphs with bounding box area less than 20 % of average bounding box

area
• Features of erasable “chadda” marks:

– Object is not a point
– Object graph with bounding box positioned in the top third of the word box
– Object graph with an aspect ratio of the bounding box more than 1.4
– Object graph has more than 2 vertices

• Features of a “simple structure” are:
– Object is not a point
– Object graph has exactly 2 vertices
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Fig. 8.16 Examples of the detection of baseline-irrelevant objects. (a) Detecting a loop and defin-
ing the lowest loop point; (b) detecting “chadda”; (c) detecting bottom curve

• Features of a “long bottom curve” are:
– Object graph is not a point
– Object graph has more than 3 vertices
– Vertex A is the lowest and leftmost point of the object graph
– Vertex A is of degree 1 and connects vertex B
– Vertex B is of degree ≥ 2
– The distance between A and B is d with (d1 ≤ d ≤ d2; d1 = 20; d2 = 150)
– The angle of the straight line connecting A and B is α (α1 ≤ α ≤ α2; α1 = 15◦;

α2 = 50◦)

Figure 8.16 gives some examples of the described features.

Pre-baseline Estimation

Based on these features a first rough estimation of the baseline is calculated. This
first estimation of the baseline is called the pre-baseline, and it is a horizontal line.
Based on the features described in Sect. 8.3.3 we use only object graphs that are
not part of lines that were detected as irrelevant for the baseline estimation. From
these graphs the more or less horizontal edge segments are considered. For each
edge segment the length and the position of its center point are calculated. The
y-coordinate of the center point of each edge is weighted by the product of the
following values:

1. Length of the considered edge segment
2. Sum of the length of all edges connected with this edge segment
3. Aspect ratio of the bounding box of all these edges
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Fig. 8.17 (a) Fields with horizontal lines: marked light gray; pre-baseline: dash-dot line; range
of interest: between dash-dot-dot lines. (b) Considered points for the linear regression analysis:
marked with crosses; final baseline: dash-dot line

The sum of all the considered weighted edge segments gives us the y-coordinate of
the horizontal pre-baseline. An example of a pre-baseline together with a range of
interest is shown in Fig. 8.17a.

Final Baseline Estimation

In the final baseline estimation step we have another optimization step. But now we
use only edge segments that are more or less horizontal with a center point inside the
range near the pre-baseline. In addition to these points two further baseline-relevant
robust feature points are selected:

1. If a closed loop partially overlaps the range, the lowest point of a closed loop is
selected

2. If the upper end point of a long button curve is inside the range, it is selected

Based on all these points a linear regression determines the parameters of the linear
equation y = m · x + b. Figure 8.17b gives an example of the resulting baseline
together with the considered points. The height of the range was set to a third of the
word image height.

8.3.4 Topline Estimation

The horizontal projection histogram is often used to estimate the topline too. We
again use the Hough space, but now we calculate the vertical gradient of the Hough
space to determine the topline by selecting the maximal gradient value within a
search area above the position of the baseline. Figure 8.18 gives an example of the
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Fig. 8.18 Topline estimation
approach using the vertical
gradient of the Hough
parameter space

Table 8.15 Evaluation of topline finding methods

Topline error in pixels Hough space method Simple method

≤5 46.3 % 56.8 %

≤7 59.6 % 74.3 %

topline estimation approach. Due to the fact that the topline is part of the IFN/ENIT-
database (set a), an evaluation of the topline detecting algorithm was performed.
The result is disappointing (see Table 8.15). Only for about 60 % of the handwritten
Arabic words was an acceptable topline determined.

It is interesting that even a straightforward method provides better results. In this
approach the topline was set parallel to the baseline at a distance of 36 %19 of the
distance between the writing line (baseline) and the top of the word.

These experiments have shown that the topline estimation should not be used
within an Arabic handwritten word recognition process. Therefore, two different
word normalization methods and two different feature sets used by the HMM-based
recognition system are presented (cf. Sect. 8.4) with low and with no dependency of
the estimated topline position.

8.3.5 Conclusive Remarks on Baseline Estimation

The baseline GT of the IFN/ENIT-database made it possible to evaluate intensively
two different baseline estimation approaches. The approach based on the usage of

19It is strongly dependent on the dataset.
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Table 8.16 Baseline estimation error, using the skeleton-based method (explanation in text). The
whole IFN/ENIT-database was used

Baseline error
in [pixels]

Part of the dataset [%]

Skeleton-based approach Horiz. projection approach

≤1 11.7 5.3

≤5 76.7 70.7

≤7 87.5 82.8

≤10 94.1 91.2

≤15 97.5 96.2

≤50 100.0 100.0

the horizontal projection histogram including some extensions enables us to find an
acceptable baseline in 82.8 % of the dataset. The skeleton-based approach, which
takes more account of the characteristics of Arabic handwriting, performs better
with 87.5 % acceptable baselines (cf. Table 8.16). The assumptions for both baseline
estimation approaches are proved to be appropriate for Arabic script, especially for
printed Arabic script (cf. Table 8.14). Although there is no structural difference
between handwritten Arabic and printed Arabic words, at least the variety which
comes with a large dataset makes the difference. Two things become clear: If there
is “bad” handwriting, the baseline estimation errors increase. Also the combinations
of characters within the words do have strong effects on the baseline estimation
errors. These are criteria which are part of characteristics of a dataset.

Regarding the topline estimation, our experience was that, at least within Arabic
handwriting, the standard approach fails in many cases. The main reason seems to
be the lack of Arabic characters that give a significant and robust detectable clue
for the position of the topline. Nine out of 28 Arabic characters do not even touch
the topline position. Combined with the variety due to the handwriting, there is less
chance for a robust topline estimation.This results in the recommendation to avoid
using the topline position for normalization or feature extraction methods.

8.4 Normalization and Feature Extraction

The extraction of the features which are used for the recognition process is a very
difficult task [22, 26]. In the following we will present two different feature sets20

which we used within our HMM-based recognition system. Because the feature
extraction, image pre-processing, and normalization tasks strongly depend on each
other, we describe these tasks accordingly in combination.

20We will call the feature sets A and B.
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Fig. 8.19 Extraction of pixel
features using a sliding
window with three columns
(method A)

8.4.1 Normalization and Feature Extraction Method A

The first normalization step is a rotation of the word resulting in a horizontal base-
line. Subsequently a vertical height normalization is done using a linear character-
istic between topline and baseline and a nonlinear characteristic elsewhere. This
results in constant heights for ascender and descender regions and thus in a fixed
total height of the resulting skeleton graph. Next a horizontal width normalization
with a linear characteristic is performed, yielding a word with constant average char-
acter width. The line thickness is normalized during the generation of the skeleton.
Finally a rethickening is done by a Gaussian filtering of the normalized skeleton
image, resulting in a gray level image. Figure 8.3 shows an example of the normal-
ization process and the normalized word image.

Feature extraction method A is directly based on an image representation of the
script using pixel values as basic features. A rectangular window is shifted with
respect to the Arabic writing direction from right to left across the normalized
gray level script image and generates a feature vector (frame). This results in a
vast amount of features for each frame. In order to reduce the number of features,
a Karhunen–Loeve transformation (KLT) is performed on the gray values of each
frame. KLT is a standard statistical method to reduce a feature set to only the most
relevant features. The transformation matrices are computed from the training data.

Figure 8.19 gives an example of the sliding window feature extraction method.
The three columns of the sliding window are concatenated to one feature vector.
The sequence of these KLT transformed feature vectors are the input for the HMM
recognizer.

8.4.2 Normalization and Feature Extraction Method B

The normalization steps in methods A and B are almost identical. Instead of the
vertical height normalization used in A, we now enlarge virtually the word skeleton
graph image with some blank lines to bring the baseline of the word into the middle
of the image. A topline estimation is not needed. The normalized word skeleton
graph is now used for the feature extraction process.

The feature extraction process starts by splitting the word image into a set of
frames with fixed width in the vertical direction. Each frame has an overlap of 50 %
with its neighbors. Each frame is split horizontally into five zones with equal height
(see Fig. 8.20). The choice of five zones is intuitive; it has yielded the best recogni-
tion results and corresponds with the work in [6]. As features the length of all lines
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Fig. 8.20 Extraction of skeleton direction features in five zones using overlapping frames
(method B)

contained in a zone calculated in the four directions north, east, south, west are used.
A normalization of these values with the height of the zone ensures the invariance
of the height of the word without the need of a topline estimation. Each frame is
represented by a 20-dimensional feature vector. To overcome the problem of very
different value ranges of each feature i, a normalization is performed (see Eqs. (8.1)
to (8.6)), where i is the number of the feature in the feature vector j (i.e., in this
case north, east, south, west) and x(i)j is the value of the feature vector of frame j .
wmin is the minimum cutoff value, and wmax is the maximum cutoff value. Vσ is a
parameter initially set to a value of 0.5. x̄(i) and s(i) are previously calculated using
N feature vectors from the training set. Finally the value x̌(i)j gives the normalized
value of x(i)j .

x̄(i) = 1

N
·

N∑

j=1

x(i)j (8.1)

s(i) =

√
√
√
√
√

1

N − 1
·

N∑

j=1

(
x(i)j − x̄(i)

)2 (8.2)

wmin(i) =
{

x̄(i) − Vσ · s(i) if z1

min(x(i)j ) ∀1 ≤ j ≤ N else z1 := min(x(i)j ) < x̄(i) − Vσ · s(i)
(8.3)

wmax(i) =
{

x̄(i) + Vσ · s(i) if z2

max(x(i)j ) ∀1 ≤ j ≤ N else z2 := max(x(i)j ) > x̄(i) + Vσ · s(i)
(8.4)
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x̂(i)j =

⎧
⎪⎨

⎪⎩

wmin(i) if x(i)j < wmin(i)

x(i)j else ∀1 ≤ j ≤ N

wmax(i) if x(i)j > wmax(i)

(8.5)

x̌(i)j = x̂(i)j − wmin

wmax − wmin
· 28 ∀1 ≤ j ≤ N (8.6)

8.5 HMM Recognizer

The problem of recognizing a handwritten word as a whole can now be considered
as a sequence of decisions in which feature vectors are grouped into smaller “de-
cision units” and sequentially recognized. The sequence of these “decision units”
represents the unknown word. To solve such a recognition problem, hidden Markov
models (HMMs) are widely used, in the beginning to recognize speech and later to
recognize cursive written words.

Details of HMMs will not be discussed further in this paper. For more informa-
tion about HMMs, refer to, e.g., [27] and [21]. In the following section the special
solutions used in this system will be discussed. The first step is to define the HMM
model that will be employed.

8.5.1 General Definition

HMMs can be described with the parameter set λ = (A,B,Π):

• Matrix A: Transitions probabilities from one state to another, with A = {aij } and
aij = p(Xt = j |Xt−1 = i)

• Matrix B: Distributes probabilities of observations, with B = {bj (o)}
• Matrix Π : For probabilities to reach a state from the initial state, with Π = {πi}
The goal is to determine the probability of an unknown sequence of observations
P(o1, . . . , oT |λ) and maximize the likelihood ω̂i = arg max p(o|λj ).

8.5.2 Principal Structure

The following tasks must be completed to develop a cursive word recognizer:

1. Choose the states and the corresponding observations
2. Choose a topology of the states
3. Choose a strategy to segment the word into observations (manually–automati-

cally)
4. Select training and testing data
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5. Run the training of the HMM parameters
6. Test the system on the test data

In the following section, the solutions of tasks 1–6 will be briefly described as
they were realized in our HMM recognizer.

8.5.3 Initialization and Preconfiguration of the Recognizer

Observations

Handwritten words are interpreted as a sequence of character shapes, which are con-
catenated to build the appearance of an individual handwritten word. Each character
shape is interpreted as the observation output of a state of the HMM. Especially in
the case of Arabic handwriting, a character’s shapes differ depending on its position
in a word. It follows then that the number of states is more than triple the number of
characters in the Arabic alphabet.

HMM Topology

Many different model topologies have been discussed using HMM systems. The
simplest and most used topology is the left-right Bakis topology (Fig. 8.21). Each
state has three different paths, a recursive self-transition, a transition to the next
state, and a transition that skips the next state. For the topology shown in Fig. 8.21
we have the following transition matrix:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 π0 π1 0 0 0 0
0 a00 a01 a02 0 0 0
0 0 a11 a12 a13 0 0
0 0 0 a22 a23 a24 0
0 0 0 0 a33 a34 a3e

0 0 0 0 0 a44 a4e

0 0 0 0 0 0 aee

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.7)

Using this simple model for the observation of a character we chose a model with
seven states for each character. This number, of course, is a parameter to optimize,
which depends on the size and the quality of the data used.

Initialization

Using character models requires training data that are segmented into character
shapes. As this is a very time-consuming, difficult, and error-prone job, we im-
plemented an algorithm to segment a word into characters automatically. The ini-
tialization of a segmentation into n × 7 segments of a word with n characters is
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Fig. 8.21 The Bakis model:
a simple left–right model
with start and end states. (The
Bakis model allows
transitions to the same state,
the next, and the one after the
next)

done by a dynamic programming clustering procedure. This procedure minimizes
an appropriate cost function, which ensures a maximum uniformity of feature vec-
tors belonging to one state of a model. The minimization of the mean square error
of the feature vectors belonging to the same segment with respect to its mean value
is obtained recursively. Finally the initial segments are obtained by applying the
backpropagation method.

As a second step the states of the multimodal distributions have to be initialized,
which is called initialization of the codebook estimation. This initialization is done
in two steps. The first step is the LBG-algorithm [17], which uses the Euclidian
distances only. In a second step the EM-algorithm is used to optimize the codebook
initialization [21].

These initialization steps are the basis of the subsequent training of the HMM
parameters.

Data

The selection of training and testing data is also a very important task. The data
must be relevant to the task and sufficient to train all parameters of the HMM and
also—with another set—test the quality of the realized system. For this case the
IFN/ENIT-database was used for training and testing our system. Each word in this
database is labeled not only with the Arabic word but also with a string, which
describes the sequence of character shapes of this word (see Table 8.4). This enables
the automatic initialization of the segmentation as described earlier in Sect. 8.5.3.
The words in the database are not equally distributed, but the words are chosen
so that each character shape appears more than 30 times in the training dataset.
This ensures a minimum amount of data to make training on character shape level
possible.

8.5.4 Training of the HMM

The training of the HMM parameters is done by means of the Viterbi algorithm
using a segmental k-means algorithm. The initial codebook is incorporated into
the training procedure; that is, in each iteration only the state vector assignment
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Fig. 8.23 (a) An HMM is
trained for each “mode” using
a number of examples of that
“mode” from the training set,
and (b) is trained to recognize
some unknown sequence of
“modes.” The likelihood of
each model generating that
sequence is calculated, and
the most likely (maximum)
model identifies the sequence

resulting from best path obtained from applying the Viterbi algorithm is used to re-
estimate model parameters. As mentioned before, the character shapes are modeled
with HMM and for the recognition process concatenated to valid words of the lexi-
con used. Figure 8.22 shows an example of the concatenation of character models to
build a word model. It can be seen that one character model is used twice in the word
model. Figure 8.23a gives an example of the training, showing that each character
shape of the same type, independent of the word where it was written, contributes
to the statistical character shape model. This enables a statistical training with less
training data than in the case of word-based models.

8.5.5 Recognition

For recognition, again basically a standard Viterbi algorithm is used. The recogni-
tion process has to perform the task to assign to an unknown feature sequence a
valid word from the lexicon. The basic way to do this is to calculate the probability
that the observation was produced by a state sequence for each word of the lexicon.
The sequence with the highest probability gives the correct word. As this procedure
is too time consuming, two actions were implemented:
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1. A tree-structured lexicon representing valid words is built. This leads to a sig-
nificant search space reduction and unambiguous assignment of a word to each
leaf

2. A beam search strategy is used to reduce the search space. The number of hy-
potheses generated at each step is controlled by a constant score threshold rela-
tive to the currently best score and a maximum number of allowed hypotheses to
be active at the same time

Both procedures cause an acceleration of the recognition process but may also lead
to a suboptimal solution only. If the parameters of these procedures are selected
carefully a good result can be achieved.

8.5.6 Parameter for the HMM-Based Classifier

In the following we summarize the main parameter for our HMM-based classifier.
We implemented a semi-continuous hidden Markov model (SCHMM). The code-
book size is set to 128. The topology we use is a simple left–right model with start
and end states (Bakis model, Fig. 8.21). It allows transitions to the same state, the
next, and the one after the next. For example, the number of states and the feature
vector dimension depend on the used feature set (cf. Sect. 8.4). We provide these
settings here:

Feature set A Feature set B

Height of the word after normalization 45 ÷a

Observation window height × width, shift 45 × 5, 2 ÷ × 6, 3

Dimension of the feature vector 25 20

Number of states HMM per character 6 4

Entries of the classifier dictionary 937b 937

Feature scale parameter Vσ ÷ 0.9

aIt does not take place at any explicit height normalization
bMany Tunisian town/village names are due to different ways of writing several times in the dictio-
nary, which results in 2023 entries. The output of the classifier differentiates only 937 place names
(on the basis of postcode)

8.6 Results and Discussion

By using the IFN/ENIT-database many series of tests are feasible, and some have
already been partially made [24]. We focus on and summarize only some of these
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Table 8.17 Recognition results: the baseline from GT was used for the normalization procedure
(“GT-BLN-FEATURE-A”)

TEST Training sets Test set 1-best 2-best 10-best

1 a, b, c d 91.8 95.2 98.4

2 b, c, d a 92.2 95.3 98.4

3 c, d, a b 92.2 95.1 98.6

4 d, a, b c 92.4 95.3 98.2

– ∅ 92.1 95.2 98.4

results in the following sections. In Sect. 8.6.1 we point out which part of the recog-
nition error is caused by a position error of the baseline and which part is caused
by an error of the recognizer or something else. Section 8.6.2 discusses the two dif-
ferent normalization and feature extraction methods, while Sect. 8.6.3 deals with
the dataset characteristics. Section 8.6.4 takes a closer look at common recognition
problems.

8.6.1 Results in Relation to the Estimated Baseline

In this section we focus on the recognition results in relation to the estimated base-
line. The idea is to discover to which extent the baseline estimation affects the recog-
nition. Therefore, we generated from the IFN/ENIT-database tree datasets. The
dataset “GT-BLN-FEATURE-A” was made using the baseline from the database
GT for normalization and using feature extraction method A (cf. Sect. 8.4.1). Set
“HPROJ-BLN-FEATURE-A” is a set normalized using the horizontal projection
histogram baseline estimation approach, while the set “SKL-BLN-FEATURE-A”
uses the baseline estimated with the skeleton-based approach. Both sets uses nor-
malization and feature extraction method A.

The results are given in Tables 8.17, 8.18, 8.19, where also the 1-best, 2-best, and
10-best are shown as well as the average recognition rate over all test and training
set combinations.

The recognition rate reached with the set “GT-BLN-FEATURE-A” gives the
maximal possible recognition rate (92.1 %) in relation to the described system. For
set “HPROJ-BLN-FEATURE-A” and set “SKL-BLN-FEATURE-A” a loss in the
recognition rate of about 5 % and 4 % respectively can be detected. The loss is
significant, and the result correlates with the result for the baseline estimation error
rates, where the skeleton-based approach performs slightly better. However, notice
that the loss in recognition rate is significant smaller than the loss we have measured
in relation to the baseline estimation quality (cf. Sect. 8.3.1). As a result we realize
that not each word with an “insufficiently” estimated baseline leads automatically
to a wrong word recognition. In Sect. 8.6.4 we will have a closer look at the reasons
for word recognition errors.
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Table 8.18 Recognition results: the baseline estimated using the horizontal projection approach
was used for normalization (“HPROJ-BLN-FEATURE-A”)

TEST Training sets Test set 1-best 2-best 10-best

1 a, b, c d 86.9 90.5 95.2

2 b, c, d a 87.1 91.1 95.5

3 c, d, a b 87.1 90.8 95.2

4 d, a, b c 87.3 90.9 94.9

– ∅ 87.3 90.8 95.2

Table 8.19 Recognition results: the baseline estimated using the skeleton-based approach was
used for normalization (“SKL-BLN-FEATURE-A”)

TEST Training sets Test set 1-best 2-best 10-best

1 a, b, c d 87.9 91.4 95.6

2 b, c, d a 88.0 91.5 95.8

3 c, d, a b 88.0 91.5 95.9

4 d, a, b c 88.8 91.8 95.5

– ∅ 88.2 91.5 95.7

Table 8.20 Recognition results: Tests 1 and 3 give the results obtained using feature set B; Tests
2 and 4 show the corresponding results using feature set A

TEST Datasets 1-best 2-best 10-best

1 “GT-BLN-FEATURE-B” 90.1 94.2 97.7

2 “GT-BLN-FEATURE-A” 92.1 95.2 98.4

3 “SKL-BLN-FEATURE-B” 87.9 91.0 95.1

4 “SKL-BLN-FEATURE-A” 88.2 91.5 95.7

8.6.2 Results in Relation to the Feature Sets

To determine to which extent the feature extraction method may influence the recog-
nition result, we generated two new datasets from the IFN/ENIT-database: dataset
“GT-BLN-FEATURE-B”, using the baseline based on the GT together with feature
extraction method B, and “SKL-BLN-FEATURE-B”, which uses the baseline esti-
mated by the skeleton-based method. With the dataset “GT-BLN-FEATURE-A” we
achieved slightly better results in comparison to dataset “GT-BLN-FEATURE-B”. If
we compare “SKL-BLN-FEATURE-B” and “SKL-BLN-FEATURE-A” we cannot
found any significant difference (cf. Table 8.20).

We figure out that the features extracted by the different methods (cf. Sect. 8.4)
perform more or less the same. Using the baseline from GT for normalization, the
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Table 8.21 Recognition results in relation to the used quantity and quality of the training set
(“REF-BLN-FEATURE-A”)

TEST Training sets Test set 1-best 2-best 10-best

1 a, b, c d 91.8 95.2 98.4

2 a d 89.0 93.2 97.7

3 b d 89.3 94.2 98.1

4 c d 90.6 94.2 98.1

5 a, b d 91.5 94.7 98.3

6 a, c d 91.1 94.7 98.6

7 b, c d 91.6 95.3 98.2

8 a/2 d 85.7 90.6 96.8

difference is about 2 %; using the estimated baseline, the difference is even less. The
last we expected due to the independence of the used normalization method from
the topline, which we are not able to estimate reliably.

8.6.3 Results in Relation to the Datasets

The following tests were made to determine to what degree the recognition result de-
pends on the set used for training the HMM-based classifier. For testing the classifier
we always used the set d from the IFN/ENIT-database normalized and feature ex-
tracted with method A and with baseline position from GT (“GT-BLN-FEATURE-
A”). As shown in Table 8.21, we trained the HMM with different training sets from
the IFN/ENIT-database. If we only use one-third of the available sets for train-
ing21 we notice a loss in recognition rate of about 2 %; using two-thirds of the data
it is only about 0.4 %. These results lead us to conclude that the quantity of the
IFN/ENIT-database is sufficient to train an HMM-based classifier, and the four sets
are quite equally divided, so the recognition rates are more or less independent of
the training set(s) used (cf. Table 8.21). If we use only one-eighth of the available
training set we discover the expected loss in recognition rate.

8.6.4 Discussion of Common Recognition Errors

The best recognition rate was about 92 % using the baseline from database GT
for normalization tasks together with feature extraction method A (“GT-BLN-
FEATURE-A”). In this section we will have a closer look at the words that represent

21The IFN/ENIT-database version consists of four equally sized sets, a, b, c, d (cf. Sect. 8.2.4).
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the leftover 8 % recognition rate and try to figure out why our supposed recogni-
tion system failed for these words. Baseline errors are generally not the main reason
for recognition errors due to the used GT, although there is a strong correlation
between the “bad” marked baselines in the GT (cf. Sect. 8.2.3) and recognition er-
rors. Looking at the words that tend to be false classified, we have tried to put them
into groups. In the following we discuss four main issues which often lead to false
classifications:

(1) Strongly overlapping characters within words or PAWs
(2) Long connecting lines between characters within words or PAWs
(3) Words in which all characters do not have ascenders
(4) Unusual (wrong) ways of writing

Table 8.22 gives some examples of these four main issues.
Vertically overlapping characters often occur in Arabic script. In some cases they

produce “new” characters, which are known as ligatures (cf. Table 8.2). The issues
which we summarized in (1) are extreme cases which strongly involve the writer
(cf. Table 8.22, Nos. 1–8). There are examples where one character overlaps up to
five neighboring characters. Due to the fact that features are collected column by
column, it becomes obvious that this issue leads to recognition errors.

Long connecting lines between characters are common in Arabic script, where
most of the time the characters are combined on their baseline. Issue (2) represents
the more extreme examples of this widely used habit (cf. Table 8.22, Nos. 9–14).
The main problem seems to be that this writing characteristic occurs too seldom in
the IFN/ENIT-database, so that the HMM-based recognizer does not have enough
relevant training data to adjust the models accordingly.

Issue (3) is a self-made problem and belongs directly to not applying an assump-
tion for the topline estimation, which is used for the height normalization procedure.
As discussed in Sect. 8.3.4, we assume the position of the topline in a fixed percent-
age above the baseline and the top of the word. In these cases, where all characters
do not have ascenders, the topline is equivalent with the top of the word (cf. Ta-
ble 8.22, Nos. 15–18). Normalization and feature extraction method B shows in this
case better results, due to the independence from the topline.

Finally issue (4) stands for unusual or simply wrong ways of writing. Even for
humans the reading of these words (cf. Table 8.22, Nos. 19–26) turns out to be
a difficult task, and some background information about the expected vocabulary
(Tunisian town/village names) is needed. Occasionally there are real writing mis-
takes, like missing characters or a wrong order of characters.

Accidentally disconnected or connected characters within words or PAWs, dia-
critical marks which are slightly displaced, and similar issues are quite common in
Arabic handwriting. Fortunately, these issues seems to be well mapped within the
recognition system and do not have any priority in relation to recognition errors.

In the following we focus on the recognition errors more globally. A total of
411 writers have contributed to the IFN/ENIT-database. Only 18 of them cause no
recognition errors. Also, the error rates are unequally distributed; e.g., 25 % of the
writers cause about 50 % of the recognition errors and 50 % of the writers cause
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Table 8.22 Recognition errors: examples of wrongly recognized words

about 80 % of the errors. That leads to the conclusion that there are some styles of
handwriting which are very different from “standard” handwriting.

After looking at the length of words and comparing this information with the
relative error rate, we noticed that short words are disproportionally responsible for
recognition errors. Words with only one PAW have a relative error rate of about
20 %, words with two PAWs have an error rate of about 15 %, and words with five
PAWs reach a relative error rate of less than 3 %. There are probably two main
reasons for this: first, short words contain indisputably less information than longer
words and, second, there are many quite similar words in the dictionary of the recog-
nition system. Obviously, both reasons complicate the classification task.
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In the final analysis one notices that the vast majority of the recognition errors
belong to a suboptimal adaptation to certain characteristics of Arabic handwriting.
Apart from this the recognition system shows that it is able to cope with many
difficulties quite impressively.

8.7 Conclusion

Handwritten word recognition is still a challenging task. The development of a
recognition system needs to optimize many parts or modules to obtain good or even
acceptable results. A very important role is played by the database that is used.
We have presented the IFN/ENIT-database, a well-organized database with very
detailed information about character shape, ligatures, and baseline position. This in-
formation helps to evaluate the quality of different modules on their output and not
on the recognition result only. The database, normalization, and baseline estima-
tion were described in detail. Using the information in the database together with a
distance metric, two different baseline estimation methods were developed and eval-
uated. We showed that the skeleton-based approach performs much better than the
frequently used projection approach. Two totally different feature sets were tested
using the HMM-based recognizer. It was interesting to see that both approaches
reach more or less the same results and that these results are comparable to those of
state-of-the-art systems (ICDAR 2005 competition [23]).
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Chapter 9
RWTH OCR: A Large Vocabulary Optical
Character Recognition System for Arabic
Scripts

Philippe Dreuw, David Rybach, Georg Heigold, and Hermann Ney

Abstract We present a novel large vocabulary OCR system, which implements a
confidence- and margin-based discriminative training approach for model adapta-
tion of an HMM-based recognition system to handle multiple fonts, different hand-
writing styles, and their variations. Most current HMM approaches are HTK-based
systems which are maximum likelihood (ML) trained and which try to adapt their
models to different writing styles using writer adaptive training, unsupervised clus-
tering, or additional writer-specific data. Here, discriminative training based on the
maximum mutual information (MMI) and minimum phone error (MPE) criteria are
used instead. For model adaptation during decoding, an unsupervised confidence-
based discriminative training within a two-pass decoding process is proposed. Ad-
ditionally, we use neural network-based features extracted by a hierarchical multi-
layer perceptron (MLP) network either in a hybrid MLP/HMM approach or to dis-
criminatively retrain a Gaussian HMM system in a tandem approach. The proposed
framework and methods are evaluated for closed-vocabulary isolated handwritten
word recognition on the IFN/ENIT-database Arabic handwriting database, where
the word error rate is decreased by more than 50 % relative to an ML trained base-
line system. Preliminary results for large vocabulary Arabic machine-printed text
recognition tasks are presented on a novel publicly available newspaper database.
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9.1 Introduction

In this work, we describe our novel large vocabulary optical character recognition
(OCR) system. Our hidden Markov model (HMM)-based RWTH ASR system is
based on a publicly available state-of-the-art large vocabulary continuous speech
recognition (LVCSR) framework which has been designed for the special require-
ments of research applications and support for grid computing.

The aim of this work is to analyze for Arabic handwriting and machine-printed
text recognition tasks the effect of discriminative maximum mutual information
(MMI)/minimum phone error (MPE) training and the incorporation of a margin and
a confidence term into discriminative criteria. Therefore, none of the pre-processing
steps commonly applied in handwriting recognition like binarization, deskewing,
deslanting, or size normalization are used.

The focus of this work shall be on offline handwriting recognition of closed-
vocabulary isolated Arabic words and large open-vocabulary machine-printed Ara-
bic text recognition tasks in combination with n-gram language models. More ex-
plicitly, the novelties of our investigation are as follows:

1. Conversion of a state-of-the-art large vocabulary speech recognition framework
for handwritten and machine-printed OCR.

2. Analysis of offline handwritten and machine-printed Arabic text recognition.
3. Direct evaluation of the utility of the margin term in MMI/MPE-based training.

Ideally, we can turn on/off the margin term in the optimization problem.
4. Direct evaluation of the utility of an additional confidence term. Ideally, we im-

prove over the best trained system by retraining the system with unsupervised
labeled test data.

5. Evaluation on state-of-the-art systems. Ideally, we directly improve over the best
discriminative system, e.g., conventional (i.e., without margin) MMI/MPE for
handwriting recognition.

6. Evaluation of hybrid multi-layer perceptron (MLP)/HMM and discriminatively
retrained MLP-Gaussian HMM (GHMM) tandem approaches.

The remainder of this chapter is structured as follows. First, the background
in described in Sect. 9.2. Next, Sect. 9.3 gives a system overview, and then the
RWTH ASR software framework is presented in Sect. 9.4. The datasets we used
for evaluating the proposed framework are explained in Sect. 9.5; in particular our
ongoing work in creating a publicly available database for Arabic machine-printed
text recognition is presented in Sect. 9.5.2. Experimental results are presented in
Sect. 9.6, and the chapter is concluded in Sect. 9.7.

9.2 Background

From a system point of view, many approaches for Arabic handwriting recognition
[19] in the past were HMM-based systems using the Hidden Markov Model Toolkit
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(HTK) [78]. BBN’s glyph HMM system “Byblos” [44, 50, 67] has been extended
to “PLATO” [49] within the MADCAT [56] project, and is used for handwriting
and machine-printed OCR tasks. SIEMENS [70] showed how to convert a Latin
OCR system to Arabic handwriting. Other projects like OCRopus1 or Tesseract2

currently do not support the recognition of Arabic scripts, and apparently only a few
commercial applications like Readiris3 and NovoDynamics VERUS4 can support
those cursive scripts.

Many commercial machine-printed OCR products or systems described in the
published literature developed their recognition algorithms on isolated characters
[43]. These systems usually assumed that characters can be segmented accurately as
a first step, and made hard decisions at each stage which resulted in an accumulation
of errors; thus broken and touching characters were responsible for the majority of
the errors. Obviously, these assumptions are too strong for degraded or handwritten
documents, or font-free approaches [35].

Such approaches were surpassed by late-decision systems, e.g., tools developed
by the speech recognition community, such as hidden Markov models (HMMs).
In these systems, multiple hypotheses about both segmentations and identities are
maintained, and the final decisions are made at the end of an observation sequence
by tracing back the local decisions which led to the best global hypothesis [32].
Similar to the framework presented in [50, 67] our novel RWTH ASR system is
able to recognize Arabic handwritten and machine-printed text.

State-of-the-art speech recognition systems are based on discriminative Gaussian
HMMs (GHMMs), where major points of criticism of this conventional approach
are the indirect parameterization of the posterior model, the nonconvexity of the
conventional training criteria, and the insufficient flexibility of the HMMs to incor-
porate additional dependencies and knowledge sources [30]. State-of-the-art hand-
written text recognition systems are usually based on HMMs too [5, 21, 70], but
are typically trained using the maximum likelihood (ML) criterion. Hybrid neural
network-based systems like RNN/CTC [25] and MLPs/HMM [20], or tandem-based
approaches like MLP-GHMM [71] were recently very successful in online and of-
fline handwriting recognition. However, most of the tandem-based approaches use
an ML-based training criterion to retrain the GHMMs.

Typical training criteria for string recognition like, for example, minimum phone
error (MPE) and maximum mutual information (MMI) in speech recognition are
based on a (regularized) loss function. In contrast, large margin classifiers—the de
facto standard in machine learning—maximize the separation margin. An additional
loss term penalizes misclassified samples.

The MMI training criterion has been used in [54] to improve the performance
of an HMM-based offline Thai handwriting recognition system for isolated char-
acters. The authors propose a feature extraction based on a block-based principal

1http://code.google.com/p/ocropus/
2http://code.google.com/p/tesseract-ocr/
3http://www.irislink.com/readiris/
4http://www.novodynamics.com/

http://code.google.com/p/ocropus/
http://code.google.com/p/tesseract-ocr/
http://www.irislink.com/readiris/
http://www.novodynamics.com/
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component analysis (PCA) and composite image features, which are reported to be
better at discriminating Thai confusable characters. In [6], the authors apply the
minimum classification error (MCE) criterion to the problem of recognizing on-
line unconstrained-style characters and words, and report large improvements on
a writer-independent character recognition task when compared to an ML trained
baseline system.

Similar to systems presented in [10, 49, 53], we apply the MMI/MPE criterion,
but modified by a margin term. This margin term can be interpreted as an additional
observation-dependent prior weakening the true prior [33], and is identical with the
support vector machine (SVM) optimization problem of log–linear models [27].

The most common method for unsupervised adaptation is the use of the auto-
matic transcription of a previous recognition pass without the application of confi-
dence scores. Many publications in automatic speech recognition (ASR) have shown
that the application of confidence scores for adaptation can improve recognition
results. However, only small improvements are reported for maximum likelihood
linear regression (MLLR) adaptation [23, 59, 62] or confidence-based constrained
MLLR (CMLLR) adaptation [3]. In addition to the margin concept, the MMI/MPE
training criteria are extended in this work by an additional confidence term [14] to
allow for novel unsupervised model adaptation.

9.3 System Overview

In offline handwriting recognition, we are searching for an unknown word sequence
wN

1 := w1, . . . ,wN , for which the sequence of features xT
1 := x1, . . . , xT fits best

to the trained models. We maximize the posterior probability p(wN
1 |xT

1 ) over all
possible word sequences wN

1 with unknown number of words N . This is modeled
by the Bayes decision rule:

xT
1 → ŵN

1

(
xT

1

)= arg max
wN

1
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1
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p
(
xT

1

∣
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1

)}
(9.1)

with κ being a scaling exponent of the language model.
Especially in Arabic handwriting with its position-dependent glyphs [42], large

white spaces can occur between isolated-, beginning-, and end-shaped characters
(see Fig. 9.1(a)). As a specific set of characters is only connectable from the right
side, such words have to be cut into parts (part of Arabic word (PAW)). Due to the
ligatures and diacritics in Arabic handwriting, the same Arabic word can be written
in several writing variants, depending on the writer’s handwriting style.

In this work, we use a writing variant model refinement [15] of our visual model,

p
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1 |wN
1
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1
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1
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(
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1 |vN
1 ,wN

1

)}
(9.2)

with vN
1 a sequence of unknown writing variants, α a scaling exponent of the writing

variant probability depending on a parameter set Λv, and β a scaling exponent of
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Fig. 9.1 Two examples where each column shows the same Tunisian town name: large white
spaces (a) and a large stretching of long drawn-out characters (b) occur often in Arabic handwrit-
ing. Therefore, an adequate modeling of white spaces and state-transition penalties must be part of
an HMM-based Arabic handwriting recognition system

the visual model depending on a parameter set Λe,t for the emission and transition
model.

During training, a corpus and lexicon with supervised writing variants instead
of the commonly used unsupervised writing variants can be used; during decoding,
the writing variants can only be used in an unsupervised manner. Obviously, the
supervised writing variants in training can lead to better trained glyph models only if
the training corpora have a high annotation quality. Usually, the probability p(v|w)

for a variant v of a word w is considered as uniformly distributed [13]. Here we use
the count statistics as probability,

p(v|w) = N(v,w)

N(w)
(9.3)

where the writing variant counts N(v,w) and the word counts N(w) are estimated
from the corresponding training corpora, and represent how often these events were
observed. Note that

∑
v′ N(v′,w)

N(w)
= 1. The scaling exponent α of the writing variant

probability of Eq. (9.2) can be adapted in the same way as is done for the language
model scale κ in (9.1).

9.3.1 Feature Extraction

The images are scaled down to a fixed height while keeping their aspect ratio.
We extract simple appearance-based image slice features x′

t at every time step
t = 1, . . . , T which are augmented by their spatial derivatives in the horizontal di-
rection � = x′

t − x′
t−1. Note that many systems divide the sliding window itself into

several subwindows and extract different features within each of the subwindows
[4, 34, 54, 70].

In order to incorporate temporal and spatial context into the features, we concate-
nate seven consecutive features in a sliding window with maximum overlap, which
are later reduced by a PCA transformation matrix to a feature vector xt of dimension
30 (see Fig. 9.2).

Without any pre-processing of the input images, the simple appearance-based
image slice features xt = [x′

t ,�] together with their corresponding state alignments
can then be processed by a hierarchical MLP framework originally described in
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Fig. 9.2 Right-to-left sliding
PCA window over input
images without any
pre-processing for Arabic
handwriting

Fig. 9.3 Hierarchical MLP network for discriminative feature extraction in OCR

[76]. Depending on the MLP hierarchy, pre-processing, and post-processing oper-
ations, several feature sets can be generated. In order to incorporate temporal and
spatial context into the features, we concatenate consecutive features in a sliding
window, where the MLP outputs are later reduced by a PCA or a linear discriminant
analysis (LDA) transformation (see Fig. 9.3). Two different MLPs are trained, raw
and TRAP-DCT networks; the network details are given in Sect. 9.6.

Instead of using log-PCA/LDA reduced MLP posterior features for retraining
a Gaussian HMM system, log-posterior features can be directly used without any
reduction in a hybrid MLP/HMM framework [7], as briefly described in Sect. 9.3.2.

9.3.2 Visual Modeling

Arabic Handwriting Depending on the position in an Arabic word, most of the 28
characters can have up to four different shapes [42]. Here we use position-dependent
glyph models to model the different presentation forms, and due to ligatures, a to-
tal of 120 glyph models and one white-space model have to be estimated for the
IFN/ENIT-database tasks (see Sect. 9.6). Additionally, a large stretching of long
drawn-out glyphs occurs often in Arabic handwriting (see Fig. 9.1(b)). Therefore,
we use very low loop penalties but higher skip penalties for our HMM state transi-
tions (see Fig. 9.4(a)).

Arabic Machine-Printed Text As for Arabic handwriting, there are no distinct
upper and lower case letter forms in machine-printed texts. Both printed and written
Arabic are cursive. Unlike cursive writing based on the Latin alphabet, the stan-
dard Arabic style has substantially different shapes depending on the glyph context.
Standard Arabic Unicode character encodings typically do not indicate the form
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Fig. 9.4 Different HMM topologies and transition probabilities are used for character models (a)
and white-space models (b) in Arabic and Latin handwriting recognition

each character should take in context, so it is left to the rendering engine to select
the proper glyph to display for each character.

The basic Arabic range encodes mainly the standard letters and diacritics. For
our novel large vocabulary Arabic machine-printed text database described in
Sect. 9.5.2, about 200 position-dependent glyph models have to be trained.

GHMM Our hidden Markov model (HMM)-based OCR system is Viterbi trained
using the maximum likelihood (ML) training criterion and a lexicon with multiple
writing variants as proposed in [13, 15].

Each glyph is modeled by a multi-state left-to-right HMM with skip transitions
and separate Gaussian mixture models (GHMMs) with globally pooled variances.
The parameters of all Gaussian mixture models (GMMs) are estimated with the
ML principle using an expectation maximization (EM) algorithm, and to increase
the number of densities in the mixture densities, successive splitting of the mixture
densities is applied. Different HMM topologies and transition probabilities are used
for glyph models (see Fig. 9.4(a)) and white-space models (Fig. 9.4(b)) in Arabic
text recognition, where the white-space model itself is always modeled by a single
GMM in all systems.

The ML trained GMMs are refined using a discriminative training approach
based on the margin-based M-MMI/M-MPE criteria [28] as briefly presented in
Sect. 9.3.3.

Hybrid MLP/HMM The MLP posterior probabilities p(st |xt ) are divided by the
prior state probabilities p(st ) in order to approximate the observation probabilities
of an HMM, i.e. p(xt |st ) ≈ p(st |xt )

p(st )
as described in [7].

MLP-GHMM The MLP-GHMM system is trained from scratch using the MLP
log-posterior features as described in Sect. 9.3.1 (also known as the tandem ap-
proach [71]). Again, ML/M-MMI/M-MPE training criteria can be used for GMM
training. Note that the MLP network itself can also be trained using different align-
ments generated by the correspondingly trained GHMM systems.
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9.3.3 Discriminative Training: Incorporation of the Margin and
Confidence Term

In this work, we use a discriminative training approach based on the maximum
mutual information (MMI) and minimum phone error (MPE) criteria as presented
in [26, 27, 29]. In addition to the novel confidence-based extension of the margin-
based MMI training presented in [14], the confidence concept has been incorporated
in the margin-based MPE criterion in this work.

The proposed approach takes advantage of the generalization bounds of large
margin classifiers while keeping the efficient framework for conventional discrimi-
native training. This allows us to directly evaluate the utility of the margin term for
OCR. So, our approach combines the advantages of conventional training criteria
and of large margin classifiers.

This section briefly reviews how the MMI/MPE training criteria can be ex-
tended to incorporate the margin concept, and that such modified training criteria are
smooth approximations to support vector machines with the respective loss function
[27].

In OCR, the two-dimensional representation of an image is turned into a string
representation X = x1, . . . , xT where xt is a fixed-length array assigned to each
column in the image (see Sect. 9.3.1 for further details). The word sequence W =
w1, . . . ,wN is represented by a character string.

Assume the joint probability pΛ(X,W) of the features X and the symbol
string W . The model parameters are indicated by Λ. The training set consists of
r = 1, . . . ,R labeled sentences, (Xr,Wr)r=1,...,R . According to the Bayes rule, the
joint probability pΛ(X,W) induces the posterior

pΛ,γ (W |X) = pΛ(X,W)γ
∑

V pΛ(X,V )γ
(9.4)

The likelihoods are scaled with some factor γ > 0, which is a common trick in
speech recognition to scale them to the “real” posteriors [29]. The approximation
level γ is an additional parameter to control the smoothness of the criterion.

Let pΛ(X,W) be the joint probability and L a loss function for each training
sample r :

L
[
pΛ(Xr, ·),Wr

]
(9.5)

with · representing all possible hypotheses W for a given lexicon, and Wr represent-
ing the correct transcription of Xr .

The general optimization problem can be formulated as a minimization of the
total loss function:

Λ̂ = arg min
Λ

{

C‖Λ − Λ0‖2
2 +

R∑

r=1

L
[
pΛ(Xr, ·),Wr

]
}

(9.6)
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and includes an �2 regularization term ‖Λ−Λ0‖2
2 (i.e. a prior over the model param-

eters), where the constant C is used to balance the regularization term and the loss
term including the log-posteriors. Here, the �2 regularization term is replaced by
I-smoothing [65], which is a useful technique to make MMI/MPE training converge
without over-training, and where the parameter prior is centered for initialization at
a reasonable ML trained model Λ0 (see Sect. 9.3.2).

Maximum Mutual Information

In automatic speech recognition (ASR), MMI commonly refers to the maximum
likelihood (ML) for the class posteriors. For MMI, the loss function to be minimized
is described by

L(MMI)[pΛ(Xr, ·),Wr

]= − log
pΛ(Xr,Wr)

γ

∑
V pΛ(Xr,V )γ

(9.7)

This criterion has proven to perform reasonably as long as the error rate on the
training data is not too low, i.e., generalization is not an issue.

Margin-Based Maximum Mutual Information

Conventional MMI is based on the true posteriors in Eq. (9.4). The margin-based
MMI (M-MMI) loss function to be minimized is described by

L(M-MMI)
ρ

[
pΛ(Xr, ·),Wr

]= − log
[pΛ(Xr,Wr) exp(−ρA(Wr,Wr))]γ
∑

V [pΛ(Xr,V ) exp(−ρA(V,Wr))]γ (9.8)

which has an additional margin term including the word accuracy A(·,Wr) based on
the approximate word error [65]. Note that the additional term can be interpreted as
if we had introduced a new posterior distribution. In a simplified view, we interpret
this as a pseudo-posterior probability which is modified by a margin term.

Compared with the true posterior in Eq. (9.4), the M-MMI loss function includes
the margin term exp(−ρA(V,Wr)), which is based on the string accuracy A(V,Wr)

between the two strings V,Wr . The accuracy counts the number of matching sym-
bols of V,Wr and will be approximated for efficiency reasons (see Sect. 9.3.3).

As explained in [29], the accuracy is generally scaled with some ρ > 0, and this
term weighs up the likelihoods of the competing hypotheses compared with the
correct hypothesis [66]. However, this term can be equally interpreted as a margin
term.

Minimum Phone Error

The MPE criterion is defined as the (regularized) posterior risk based on the er-
ror function E(V,W) like, for example, the approximate phone error [64], which
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is probably the training criterion of choice in large vocabulary continuous speech
recognition (LVCSR). For MPE, the loss function to be minimized is described by

L(MPE)
[
pΛ(Xr, ·),Wr

]=
∑

W∈·
E(W,Wr)

pΛ(Xr,Wr)
γ

∑
V pΛ(Xr,V )γ

(9.9)

In OCR, a phoneme unit usually corresponds to a glyph if words are modeled by
glyph sequences.

Margin-Based Minimum Phone Error

Analogously, the margin-based MPE (M-MPE) loss function to be minimized is
described by

L(M-MPE)
ρ

[
pΛ(Xr, ·),Wr

]

=
∑

W∈·
E(W,Wr)

[pΛ(Xr,Wr) exp(−ρA(W,Wr))]γ
∑

V [pΛ(Xr,V ) exp(−ρA(V,Wr))]γ (9.10)

It should be noted that due to the relation E(V,W) = |W | − A(V,W) where |W |
denotes the number of symbols in the reference string, the error E(V,W) and the
accuracy A(V,W) can be equally used in Eqs. (9.9) and (9.10). The accuracy for
MPE and that for the margin term do not need to be the same quantity [26].

Finally, it should be pointed out that other posterior-based training criteria (e.g.
MCE as used in [6]) can be modified in an analogous way to incorporate a margin
term (for more details, cf. [27, 29]).

Optimization

In [27] it is shown that the objective function F (MMI)
γ (Λ) converges pointwise to

the SVM optimization problem using the hinge loss function for γ → ∞, similar
to [79]. In other words, F (M-MMI)

γ (Λ) is a smooth approximation to an SVM with
hinge loss function which can be iteratively optimized with standard gradient-based
optimization techniques like Rprop [27, 79].

In this work, the regularization constant C, the approximation level γ , and the
margin scale ρ are chosen beforehand and then kept fixed during the complete op-
timization. Note that the regularization constant C and the margin scale ρ are not
completely independent of each other. Here, we kept the margin scale ρ fixed and
tuned the regularization constant C. Previous experiments in ASR have suggested
that the performance is rather insensitive to the specific choice of the margin [27],
and the results in [16] furthermore suggest that the choice of the I-smoothing con-
stant C has less impact in an Rprop-based optimization than in an extended Baum–
Welch (EBW) environment [65]. An I-smoothing regularization constant C = 1.0 is
used in all results presented in Sect. 9.6.
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In large vocabulary OCR, word lattices restricting the search space are used
to make the summation over all competing hypotheses (i.e. sums over W ) effi-
cient. The exact accuracy on character or word level cannot be computed effi-
ciently due to the Levenshtein alignments in general, although it is feasible un-
der certain conditions as shown in [26]. Thus, the approximate character/word
accuracy known from MPE/MWE [64] is used for the margin instead. With this
choice of accuracy, the margin term can be represented as an additional layer
in the common word lattices such that efficient training is possible. More de-
tails about the transducer-based implementation used in this work can be found
in [26].

As in ASR, where typically a weak unigram language model is used for dis-
criminative training [72, 73], we use a unigram language model in our proposed
discriminative training criteria.

Confidences for Unsupervised Discriminative Model Adaptation

Sentence or word confidences can be incorporated into the training criterion
by simply weighing the segments with the respective confidence. This is, how-
ever, not possible for state-based confidences. Instead of rejecting an entire
sentence or word, the system can use state confidence scores to select state-
dependent data in an unsupervised manner. State confidence scores are obtained
from computing arc posteriors from the lattice output from a previous decoder
pass.

Rprop is a gradient-based optimization algorithm. The gradient of the training
criterion under consideration can be represented in terms of the state posteriors
prt (s|xTr

1 ). These posteriors are obtained by marginalization and normalization of

the joint probabilities pΛ(x
Tr

1 , sT
1 ,w

Nr

1 ) over all state sequences through state s

at frame t . These quantities can be calculated efficiently by recursion, e.g., for-
ward/backward probabilities. Then, the state-based confidences cr,s,t are incorpo-
rated by multiplying the posteriors with the respective confidence before the accu-
mulation. In summary, each frame t contributes ·prt (s|xTr

1 ) · cr,s,t · xt to the accu-
mulator accs of state s.

Another way to describe the incorporation of the confidence term into the margin
pseudo-posteriors is from a system point of view. The accumulator accs of state s

can be described by

accs =
R∑

r=1

Tr∑

t=1

ωr,s,t · xt ,

where the weight ωr,s,t , which is equal to δ(st , s) in ML training, is replaced
for the proposed M-MMI-conf/M-MPE-conf criteria (with ρ �= 0) by the mar-
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gin modified pseudo-posteriors of the corresponding loss functions. The additional
confidence term for the proposed M-MMI-conf criterion can be described as fol-
lows:

ωr,s,t :=
∑

s
Tr
1 :st=s

[p(x
Tr

1 |sTr

1 )p(s
Tr

1 )p(Wr) · e−ρδ(Wr ,Wr )]γ
∑

V

∑
s
Tr
1 :st=s

[p(x
Tr

1 |sTr

1 )p(s
Tr

1 )p(V )
︸ ︷︷ ︸

posterior

· e−ρδ(V,Wr )
︸ ︷︷ ︸

margin

]γ

· δ(cr,s,t ≥ cthreshold)
︸ ︷︷ ︸

confidence selection

(9.11)

Here, the selector function δ(cr,s,t > cthreshold) with the parameter cthreshold controls
the amount of adaptation data. The M-MPE-conf criterion can be defined in a sim-
ilar manner. Note that due to the quality of the confidence metric, thresholding the
confidence scores after feature selection can often result in an improved accuracy,
as reported in [23]. On the one hand, the experimental results for word confidences
in Fig. 9.9 and state-based confidences in [16] suggest that the confidences are help-
ful, but on the other hand it seems that the threshold itself has little impact due to
the proposed M-MMI-conf/M-MPE-conf approaches, which are inherently robust
against outliers.

Analogously, the weight ωr,s,t would correspond to the true posterior (Eq. (9.4))
in an MMI-conf/MPE-conf criterion. According to [11, 16, 17] these criteria lead
to no robust improvements; i.e. only the combination of margin and confidences
makes the proposed approaches robust against outliers.

9.3.4 Writer Adaptive Training

Writer variations are compensated by writer adaptive training (WAT) [15] us-
ing constrained maximum likelihood linear regression (CMLLR) [22] to train
writer-dependent models. The available writer labels of the IFN/ENIT-database
are used in training to estimate the writer-dependent CMLLR feature transforma-
tions. The parameters of the writer adapted Gaussian mixtures are trained using
the CMLLR transformed features. During decoding, unsupervised writer clustering
with a Bayesian information criterion-based stopping condition for a CMLLR-based
feature adaptation during a two-pass decoding process is used to cluster different
handwriting styles of unknown test writers (see Sect. 9.3.5). It can be seen from the
writer statistics in Table 9.1 that the number of different writers in set e is higher
than in all other subsets; thus the variation of handwriting styles. In machine-printed
text recognition, the same approach could be applied to font labels available in the
RAMP-N corpora (see Sect. 9.5.2).
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9.3.5 Decoding Architecture

The recognition is performed in multiple passes. For model adaptation toward un-
known data or unknown writing styles, the output of the first recognition pass (best
word sequences or word lattices) can be either used for discriminative model adap-
tation or writer adaptation. Although the automatically generated transcript may
contain errors, adaptation using that transcript generally results in accuracy im-
provements [23]. The adaptation techniques used are explained in the following
sections.

Discriminative Model Adaptation

The model adaptation can be carried out by discriminatively training writer-
dependent models using the word sequences obtained by the first recognition pass.
Additionally, the confidence alignments generated during the first-pass decoding
can be used on a sentence, word, or state level to exclude the corresponding
features from the discriminative training process for unsupervised model adapta-
tion.

Out-of-vocabulary (OOV) words are also meant to be harmful for adaptation
[62], but even when a word is wrong, the pronunciation or most of the pronunciation
can still be correct, suggesting that a state-based and confidence-based adaptation
should be favored in such cases.

Word Confidences As we are dealing with isolated word recognition on the
IFN/ENIT-database, the sentence and word confidences are identical. The segments
to be used in the second-pass system are first thresholded on a word level by their
word confidences: only complete word segments aligned with a high confidence
by the first-pass system are used for model adaptation using discriminative train-
ing.

State Confidences Instead of rejecting an entire sentence or word, the system
can use state confidence scores to select state-dependent data (see Sect. 9.3.3). State
confidence scores are obtained from computing arc posteriors from the lattice output
of the decoder. The arc posterior is the fraction of the probability mass of the paths
that contain the arc from the mass that is represented by all paths in the lattice.
The posterior probabilities can be computed efficiently using the forward-backward
algorithm as, for example, described in [37]. Then, the word frames to be used in the
second-pass system are first thresholded on a state level by their state confidences:
only word frames aligned with a high confidence by the first-pass system are used
for model adaptation using discriminative M-MMI-conf/M-MPE-conf training (see
Sect. 9.3.3).

An example for a word graph and the corresponding 1-best state alignment is
given in Fig. 9.5: during the decoding, the ten feature frames (the squares) can be
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Fig. 9.5 Example for a word
graph and the corresponding
1-best state alignment: word
confidence of the 1-best
alignment is c = 0.7. The
corresponding state
confidences are calculated by
accumulating state-wise over
all other word alignments

aligned to different words (long arcs) and their states. In this example, the word con-
fidence of the 1-best alignment is c = 0.7 (upper arc). The corresponding state con-
fidences are calculated by accumulating state-wise over all competing word align-
ments (lower arcs); i.e. the state confidence of the 1-best alignment’s fourth state
would stay 0.7 as this state is skipped in all other competing alignments, and all
other state confidences would sum up to 1.0.

Writer Adaptation

The decoding in the second pass can be carried out using CMLLR transformed
features. The segments to be recognized are first clustered using a generalized like-
lihood ratio clustering with a Bayesian information criterion (BIC)-based stopping
condition [8]. The segment clusters act as writer labels required by the unsupervised
adaptation techniques. The CMLLR matrices are calculated in pass two for every es-
timated writer cluster and are used for a writer-dependent recognition system, which
uses the models from the writer adaptive training of Sect. 9.3.4.

9.4 RWTH OCR Software Framework for Large Vocabulary
OCR

The RWTH ASR software framework5 is based on the RWTH Aachen University
Open Source Speech Recognition System [69], abbreviated as RWTH ASR. RWTH
ASR has been designed for the special requirements of research applications. On the
one hand it should be very flexible, to allow for rapid integration of new methods,
and on the other hand it has to be efficient, so that new methods can be studied on
real-life tasks in reasonable time and so that system tuning is feasible. The flexibility
is achieved by a modular design, where most components are decoupled from each

5http://www.hltpr.rwth-aachen.de/rwth-ocr/

http://www.hltpr.rwth-aachen.de/rwth-ocr/
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other and can be replaced at runtime. The application programming interface (API)
is subdivided into several modules and allows for an integration of (high and low
level) methods in external applications.

The applicability of the toolkit to real-life speech recognition tasks has been
proven by building several large vocabulary systems in recent international re-
search projects, for example TC-STAR [40] (European English and Spanish),
GALE [63, 68] (Arabic and Chinese), and Quaero [55] (English, French, German,
and Spanish).

A good example of the flexibility of the toolkit is the expeditious development
of systems for continuous sign language recognition using video input [12] and for
handwriting recognition [14, 15]. Only the feature extraction had to be replaced to
adapt the system to these tasks. In the following sections, we will focus on the parts
of the framework which are relevant for OCR.

An important aspect for developing a system for a large vocabulary task is the
support for grid computing. Nearly all processing steps for training and decoding
can be distributed in a cluster computer environment. The parallelization scales very
well, because we divide the computations on the segment level, which requires syn-
chronization only at the end of the computation.

The toolkit is published under an open source license, called “RWTH ASR Li-
cense” and is publicly available.6 This RWTH ASR License grants free usage in-
cluding redistribution and modification for non-commercial use.

9.4.1 Feature Extraction

The feature extraction is implemented in a generic framework for data processing,
called Flow. The data flow is modeled by links connecting several nodes to a net-
work. Each node performs some type of data manipulation including loading, stor-
ing, and caching of data.

The networks are created at runtime based on a network definition in XML docu-
ments, which makes it possible to implement or modify data processing tasks with-
out modifying and recompiling the software. The individual nodes can be either
instances of a C++ class or a subnetwork of other nodes.

By using cache nodes, data types sent through the network can be written to disk
at any point in the network. The stored data can be read afterwards without repeating
the computations of the nodes before the cache node.

Flow networks are used to compute feature vectors as well as to generate and pro-
cess data alignments, i.e. mappings from feature vectors to HMM states. Using the
caching nodes, features and alignments can be reused in processing steps requiring
multiple iterations.

6http://www.hltpr.rwth-aachen.de/rwth-asr/

http://www.hltpr.rwth-aachen.de/rwth-asr/
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9.4.2 Visual Modeling

A word is modeled by a sequence of glyph models. The writing variant model gives
for each word in the vocabulary a list of glyph model sequences together with a
probability of the variant’s occurrence. The toolkit supports context-dependent mod-
eling of subunits (glyphs for OCR, phones for ASR) using decision trees for HMM
state model tying. However, context-dependent modeling has not been used so far
for our OCR systems.

The toolkit supports strict left-to-right HMM topologies, each representing a (po-
tentially context-dependent) sub-word unit. All HMMs consist of the same number
of states, except for a dedicated white-space (or silence) model. The transition model
implements loop, forward, and skip transitions with globally shared transition prob-
abilities.

The emission probability of an HMM state is represented by a Gaussian mixture
model (GMM). By default, globally pooled variances are used. However, several
other tying schemes, including density-specific diagonal covariance matrices, are
supported.

For the unsupervised refinement or re-estimation of model parameters the toolkit
supports the generation and processing of confidence-weighted state alignments.
Confidence thresholding on the state level is supported for unsupervised training as
well as for unsupervised adaptation methods. The toolkit supports different types
of state confidence scores; most are described in [23]. The emission model can be
re-estimated based on the automatically annotated observations and their assigned
confidence weights, as presented in [14, 24].

9.4.3 Model Adaptation

The software framework supports maximum likelihood linear regression (MLLR)
and feature space MLLR (fMLLR) (also known as constrained MLLR, CMLLR)
for writer adaptive modeling.

The fMLLR consists of normalizing the feature vectors by the use of a maximum
likelihood estimated affine transform, as described in [22]. As an extension, the es-
timation of dimension reducing affine transforms, as described in [41], is supported.
fMLLR is implemented in the feature extraction front-end, allowing for use in both
recognition and in training, thus supporting writer adaptive training [15].

For MLLR [38] affine transforms are applied to the means of the visual model.
A regression class tree approach [39] is used to adjust the number of regression
classes to the amount of adaptation data available. As a variation, it is possible to do
adaptation using only the offset part (and not the matrix part) of the affine transform.

The adaptation methods can be utilized both for unsupervised and supervised
adaptation. The transformation estimation can make use of weighted observations
allowing for confidence-based unsupervised adaptation.
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9.4.4 Language Modeling

The toolkit does not include tools for the estimation of language models. However,
the decoder supports n-gram language models in the ARPA format, produced e.g.
by the SRI Language Modeling Toolkit [75]. The order of the language model is
not limited by the decoder. Class language models, defined on word classes instead
of words, are supported as well. Alternatively, a weighted finite state automaton
representing a (weighted) grammar can be used.

9.4.5 Decoder

The decoder included in our toolkit is based on a word conditioned tree search [51].
Word conditioned tree search is a one-pass dynamic programming algorithm which
uses a pre-compiled lexical prefix tree as a representation of the writing variants
dictionary. When using a tree lexicon, the word identity is not known until a leaf
node is reached. Therefore, the language model (LM) probability can only be ap-
plied at the word end, although an early incorporation of the LM can be achieved
using LM look-ahead. To make the application of the dynamic programming princi-
ple possible, the search space has to be structured by introducing separate copies of
the lexical tree for each preceding word sequence. The length of this word sequence
depends on the order of the language model used; e.g. for a bigram language model
only the direct predecessor word is required.

The search space would be too large to be constructed as a whole, so instead only
the active portions are constructed dynamically in combination with a beam search.
The beam search strategy retains for every time step only the most promising hy-
potheses. Hypotheses with a too low score compared to the best state hypothesis are
eliminated by state pruning. The beam width, i.e. the number of surviving hypothe-
ses, is defined by a threshold. Language model pruning is applied to the word start
hypotheses after applying the language model, which limits the number of active
tree copies. In addition, histogram pruning restricts the absolute number of active
hypotheses.

The state pruning can be refined by incorporating the language model probabil-
ities as early as possible using a language model look-ahead [57]. The anticipated
language model probability for a certain state in the tree is approximated by the
best word end reachable. This probability is incorporated in the pruning process by
combining it with the probability of the state hypothesis.

The decoder can also generate a word graph (also called a lattice), which is a
compact representation of the set of alternative word sequences with corresponding
word boundaries [58]. This word graph can be used in later processing steps. Our
system produces word graphs as finite state automata with attached word boundaries
or alternatively in the HTK standard lattice format.

The computation of emission probabilities can be optionally accelerated by the
use of SIMD instructions provided by modern processors [36]. The feature vectors
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Table 9.1 Corpus statistics
for the IFN/ENIT-database
Arabic handwriting
subcorpora

Subsets #Observations [k]

Writers Words Characters Frames

a 0.1 6.5 85.2 452

b 0.1 6.7 89.9 459

c 0.1 6.5 88.6 452

d 0.1 6.7 88.4 451

e 0.5 6.0 78.1 404

f n.a. 8.6 64.7 n.a.

s n.a. 1.5 11.9 n.a.

as well as the means of the Gaussian mixture models are then transformed to integers
using a scalar quantization. The following computations on these quantized vectors
are performed using MMX or SSE2 instructions.

9.4.6 Documentation

The documentation is divided into two parts: usage documentation and source code
documentation. While the source code documentation is helpful for extending the
software, the usage documentation is more comprehensive and more relevant for the
normal user.

The usage documentation is organized in a wiki and covers all steps of the model
training, multi-pass recognition, and the common concepts of the software and the
used file formats. Emerging questions can be asked in a support forum.

9.5 Datasets

In the following we describe the corpora we used for closed-vocabulary isolated
handwritten word recognition, and our novel Arabic newspaper corpus for open-
vocabulary machine-printed text recognition tasks.

9.5.1 IFN/ENIT-database Arabic Handwriting Database

The IFN/ENIT-database is divided into four training subsets with an additional
fold for testing [48]. The current database version (v2.0p1e) contains a total of
32492 Arabic words handwritten by about 1000 writers, and has a vocabulary size
of 937 Tunisian town names. Here, we follow the same evaluation protocol as for
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the ICDAR 2005, 2007, 2009, and ICFHR 2010 competitions [46, 47]. The corpus
statistics for the different subsets can be found in Table 9.1.

It should be noted that all experiments with this database in the following sections
were done without any pruning, and thus the improvement of the system accuracy
is due to the proposed refinement methods only.

9.5.2 The RWTH Arabic Machine-Print Newspaper Corpus

In 1995, the DARPA Arabic machine-print (DAMP) corpus was collected by
SAIC[9, 49]. It consists of 345 images from newspapers, books, magazines, etc.,
but is not publicly available.

The synthetic APTI database [74] for Arabic machine-printed documents offers
many synthetically rendered fonts but seems unsuitable for large vocabulary and
domain-specific OCR tasks.

In [1] a Multi-Modal Arabic Corpus (MMAC)7 containing a list of six million
Arabic words is presented, which may be used as a lexical lookup table to check the
existence of a given word. However, no large amounts of image segments with cor-
responding ground-truth annotations to be used in OCR experiments are currently
provided. Recently, the PATDB [2] has been presented, which will be interesting for
future work, but which is not yet available.

The objective of the MADCAT[56] project is to produce a robust, highly accu-
rate transcription engine that ingests documents of multiple types, especially Arabic
scripts, and produces English transcriptions of their content. Some parts of the Ara-
bic handwriting data, which was created by the Linguistic Data Consortium (LDC)
and used in previous MADCAT evaluations [49], has been recently used for the
OpenHaRT 2010 [52] competition. However, no machine-printed documents have
been provided so far.

Therefore, we started in 2010 with the generation of the large vocabulary RWTH
Arabic Machine-Print Newspaper (RAMP-N) corpus8 suitable for OCR research,
by collecting more than 85k PDF pages of newspaper articles from the following
websites:

• http://www.addustour.com (Lebanon)
• http://www.albayrakonline.com (Jordan)

In our current collection (see Table 9.2), the newspaper data in the training corpus
ranges from April to May 2010 and the development corpus from May 2010, and
the evaluation corpora were collected in September 2010.

We automatically generate ground-truth annotations with the freely available
PDFlib Text Extraction Toolkit (TET),9 which reliably extracts Unicode text, im-

7http://www.ashrafraouf.com/mmac
8http://www.hltpr.rwth-aachen.de/~dreuw/arabic.php
9http://www.pdflib.com/products/tet/

http://www.addustour.com
http://www.albayrakonline.com
http://www.ashrafraouf.com/mmac
http://www.hltpr.rwth-aachen.de/~dreuw/arabic.php
http://www.pdflib.com/products/tet/
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Table 9.2 RAMP-N corpora statistics

Train Dev Eval a Eval b Eval c LM Training

Running words 1,483,136 7,775 20,042 17,255 15,290 228,492,763

Running characters 5,970,997 30,884 72,358 64,293 62,065 989,494,230

Text lines 222,421 1,155 3,480 2,439 2,224 22,910,187

Pages 409 2 5 4 4 85,316

Fonts 20 5 12 7 6 –

OOV Rate 1.90 % 2.79% 2.21% 2.90% 2.75% –

Fig. 9.6 Perplexities (PP) for
different n-gram contexts
using modified Kneser–Ney
smoothing and a vocabulary
size of 106k words

ages, and metadata from PDF documents. Additionally, detailed glyph and font in-
formation as well as the position on the page can be extracted.

In addition to the 28 Arabic base forms, and after filtering out texts with
Latin glyphs, the Arabic texts in our current collection include 33 ligatures, 10
Arabic-Indian digits, and 24 punctuation marks. They are modeled by 95 position-
independent or by 197 position-dependent glyph HMMs [13, 67]. The position-
dependent glyph transcriptions have been created by a rule-based approach based
on the six Arabic characters, which have only an isolated or final form [42].

Text Corpora About 228M running words have been collected for domain-
specific language model (LM) estimation. As vocabulary we currently use the 106k
most frequent words of the 228M LM data corpus, resulting in about 126k writing
variants due to ligatures, an average out-of-vocabulary (OOV) rate of 2.5 % (see
Table 9.2), and a 0 % out-of-glyph rate. None of the segments in the development
or evaluation corpora belong to the LM training data. The resulting perplexities,
which are relatively high due to the rich morphology in Arabic, for different n-gram
language models using modified Kneser–Ney smoothing are presented in Fig. 9.6.
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9.6 Experimental Results

The proposed approach is applied to isolated Arabic handwritten and continuous
Arabic machine-printed texts. The experiments for isolated word recognition are
conducted on the IFN/ENIT-database [61] using a closed lexicon; experiments for
continuous line recognition are done on the novel large vocabulary RAMP-N cor-
pus.

9.6.1 First-Pass Decoding

In this section we compare our ML trained baseline systems (see Sect. 9.3.2 for
visual model details) to our discriminatively trained systems using the MMI and
MPE criteria and their margin-based extensions.

Each of the 120 glyph models in our Arabic handwriting recognition base sys-
tem is modeled by a three-state left-to-right HMM with three separate GMMs. The
position-dependent glyph model of our ML trained baseline system includes 361
mixtures with 36k Gaussian densities with globally pooled diagonal variances.

The discriminative training is initialized with the respective ML trained baseline
model and iteratively optimized using the Rprop algorithm (see Sect. 9.3.3). For
isolated Arabic word recognition on the IFN/ENIT-database, we compare our ML
trained baseline system with MMI/M-MMI criteria only.

Discriminative GHMMs

In general, the number of Rprop iterations and the choice of the regularization con-
stant C have to be chosen carefully (see optimization in Sect. 9.3.3), and were em-
pirically optimized in informal experiments to 30 Rprop iterations and C = 1.0 (see
detailed Rprop iteration analysis and convergence without over-training in Fig. 9.8).

The results in Table 9.3 show that the discriminatively trained models clearly
outperform the ML trained baseline models, especially the models trained with the
additional margin term. The strong decrease in word error rate (WER) for exper-
iment setup abd-c might be due to the training data being separable for the given
configurations, whereas the strong improvement for experiment abcde-e was ex-
pected because of the test set e being part of the training data.

In the following experiments, we additionally use glyph-dependent lengths
(GDLs) as described in [13, 15], resulting in an ML trained baseline model with 216
glyph models, 646 mixtures, and up to 55k densities (see Sect. 9.3.2). The necessity
of this glyph-dependent model length estimation is exemplified by visualizing the
state alignment in Fig. 9.7. Different background colors are used for the respective
HMM states.

By estimating glyph-dependent model lengths, the overall mean of glyph length
changed from 7.89 px (i.e. 2.66 px/state) to 6.18 px (i.e. 2.06 px/state) when down-
scaling the images to 16 px height while keeping their aspect ratio. Thus every state
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Table 9.3 Comparison of
ML trained baseline systems
and discriminatively trained
systems using MMI and
M-MMI criteria after
30 Rprop iterations on the
IFN/ENIT-database

Train Test WER [%]

ML MMI M-MMI

abc d 10.88 10.59 8.94

abd c 11.50 10.58 2.66

acd b 10.97 10.43 8.64

bcd a 12.19 11.41 9.59

abcd e 21.86 21.00 19.51

abcde e 11.14 2.32 2.95

Fig. 9.7 Top: More complex characters should be represented by more states. Bottom: Using GDL
glyph models, frames previously aligned to a wrong neighboring glyph model (left, black shaded)
are aligned to the correct glyph model (right)

of a GDL glyph model has to cover less pixels due to the relative reduction of ap-
proximately 20 % pixels.

In Fig. 9.8 detailed WER and character error rate (CER) plots over M-MMI
training iterations are shown. It can be observed that both WER and CER are
smoothly and almost continuously decreasing with every Rprop iteration, and that
about 30 Rprop iterations are optimal for the considered datasets.
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Fig. 9.8 Decreasing word error rates (WER) and character error rates (CER) are shown for all
different training subsets of the IFN/ENIT-database over M-MMI Rprop iterations (baseline with
GDL estimation)

Table 9.4 Results for
margin-based M-MMI
criterion after 30 Rprop
iterations on the
IFN/ENIT-database using
GDLs

Train Test WER [%]

ML GDL +MMI +M-MMI

abc d 10.88 7.83 7.4 6.12

abd c 11.50 8.83 8.2 6.78

acd b 10.97 7.81 7.6 6.08

bcd a 12.19 8.70 8.4 7.02

abcd e 21.86 16.82 16.4 15.35

The final results for discriminative GHMM training with additional GDL estima-
tion are presented in Table 9.4.

Hybrid MLP/HMM vs. Tandem MLP-GHMM

Due to a position and GDL modeling of the 28 base Arabic characters [13], we
finally model the Arabic words in the IFN/ENIT-database by 216 different glyph
models (i.e., 215 glyphs and one white-space model). The system described in [14]
(see also M-MMI column in Table 9.7) is used to generate an initial alignment of
the features to the 216 labels. Our discriminative GHMM baseline system (see Ta-
ble 9.5) uses 3 mixtures per glyph label, resulting in up to 646 mixtures with 55k
densities. The MLP networks have been trained on raw pixel column features from
the sets a, b, and c only.

Raw MLP Features The hierarchical system uses at the first level no windowing
of the input features, a single hidden layer with 2000 nodes, and 216 output nodes,
which are reduced by a log-PCA transformation to 32 components. The second net-
work concatenates these features in addition to the raw features, and uses a window
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Table 9.5 System comparison: MLP-GHMM performs best; both GHMM and MLP-GHMM sys-
tems are M-MMI trained

Train Test GHMM MLP/HMM MLP-GHMM

WER [%] CER [%] WER [%] CER [%] WER [%] CER [%]

abc d 6.12 2.41 4.54 1.70 3.47 1.50

abd c 6.78 2.63 2.64 0.93 1.38 0.75

acd b 6.08 2.19 2.70 0.87 2.52 0.98

bcd a 7.02 3.05 3.11 1.32 2.60 1.09

abcd e 15.35 6.14 11.57 4.54 7.26 3.03

size of 9 consecutive features The 576-dimensional features (i.e. 32×2×9 features)
are forwarded to a single hidden layer with 3000 nodes, and reduced by a log-PCA
transformation to 32 components.

TRAP-DCT MLP Features The system uses a TRAP-DCT [31] pre-processing
of the raw pixel input features. The TRAP-DCT pre-processing for sliding window
image patches can be interpreted as a modular block-based DCT of the patches at
image row level. The hierarchical system uses at the first level a spatio-temporal
TRAP-DCT window to augment the 32-dimensional raw pixel input feature vec-
tors to a 256-dimensional vector. Again, the first level hierarchical network uses
a single hidden layer with 1500 nodes, and 216 output nodes, which are reduced
by a log-LDA transformation to 96 components. The second network concatenates
these features in addition to the raw features, and uses a window size of 5 con-
secutive log-LDA network features, and a window size of 9 consecutive raw input
features to account for different spatio-temporal information. The 768-dimensional
features (i.e. 96 × 5 + 32 × 9 features) are forwarded to a single hidden layer
with 3000 nodes, and finally reduced by a log-LDA transformation to 36 compo-
nents.

We empirically optimized raw, TRAP-DCT, and feature combinations on the
different IFN/ENIT-database training subsets, which showed no significant dif-
ference. The TRAP-DCT log-posterior features are used in Table 9.5 for the hy-
brid MLP/HMM approach, which turned out to perform slightly better than the
raw features in these informal experiments. Furthermore, we observed that a dis-
criminative MLP-GHMM system is about 25 % relative better than a generatively
trained one, especially in combination with the concatenated RAW+TRAP-DCT
features. The comparison in Table 9.5 shows a significant advantage of the retrained
MLP-GHMM system over the hybrid MLP/HMM and the GHMM baseline. The
achieved 7.26 % WER on evaluation set e is about 50 % relatively better than the
M-MMI trained baseline system, and to the best of the authors knowledge, outper-
forms all error rates reported in the literature.
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Fig. 9.9 Results for word
confidence-based
M-MMI-conf training on the
evaluation setup abcd-e of the
IFN/ENIT-database using
different confidence
thresholds and their
corresponding number of
rejected segments (baseline
without GDL estimation)

9.6.2 Second-Pass Decoding and Unsupervised Model Adaptation

In this section we evaluate our discriminative training for unsupervised model or
writer adaptation during a second-pass decoding step.

Confidence-Based Discriminative GHMMs

In a first experiment we used the complete first-pass output of the M-MMI sys-
tem for an unsupervised model adaptation. The results in Table 9.6 show that the
M-MMI based unsupervised adaptation without confidences cannot improve the
system accuracy. With every Rprop iteration, the system is even more biased by
the relatively large amount of wrong transcriptions in the adaptation corpus.

The discriminative M-MMI-conf training is initialized with the respective
M-MMI trained model and iteratively optimized using the Rprop algorithm (see
Sect. 9.3.3). Using the word confidences for the M-MMI-conf based model adap-
tation of our first-pass alignment to reject complete word segments (i.e. feature
sequences XT

1 ) from the unsupervised adaptation corpus, the results in Table 9.6
show a slight improvement only in comparison to the M-MMI trained system. Fig-
ure 9.9 shows the resulting WER for different confidence threshold values and the
corresponding number of rejected segments. For a confidence threshold of c = 0.5,
more than 60 % of the 6033 segments of set e are rejected from the unsupervised
adaptation corpus, resulting in a relatively small amount of adaptation data.

Using the state confidences for the M-MMI-conf-based model adaptation of
our first-pass alignment to decrease the contribution of single frames (i.e. fea-
tures xt ) during the iterative M-MMI-conf optimization process (see optimization
in Sect. 9.3.3), the number of features for model adaptation is reduced by approxi-
mately 5 % for a confidence threshold of cthreshold = 0.5: 375 446 frames of 396 416
frames extracted from the 6033 test segments are considered during the optimiza-
tion, and only 20 970 frames are rejected based on state-confidence thresholding
(see also Fig. 9.5). Note also that the CER is decreased to 6.49 %.
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Table 9.6 Results for
M-MMI-conf model
adaptation on the evaluation
setup abcd-e of the
IFN/ENIT-database after
30 Rprop iterations (baseline
without GDL estimation)

Training/Adaptation WER [%] CER [%]

ML 21.86 8.11

M-MMI 19.51 7.00

+ unsupervised adaptation 20.11 7.34

+ supervised adaptation 2.06 0.77

M-MMI-conf (word confidences) 19.23 7.02

M-MMI-conf (state confidences) 17.75 6.49

Table 9.7 Results for
confidence-based
M-MMI-conf model
adaptation after 15 Rprop
iterations on the
IFN/ENIT-database using
GDL, and margin-based
M-MMI criterion after
30 Rprop iterations

Train Test WER [%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.88 7.83 7.4 6.12 5.95

abd c 11.50 8.83 8.2 6.78 6.38

acd b 10.97 7.81 7.6 6.08 5.84

bcd a 12.19 8.70 8.4 7.02 6.79

abcd e 21.86 16.82 16.4 15.35 14.55

Interestingly, the supervised adaptation on test set e, where only the correct tran-
scriptions of set e are used for an adaptation of the model trained using set abcd, can
again decrease the WER of the system down to 2.06 %, which is even better than an
M-MMI optimization on the full training set abcde (see Table 9.3).

Table 9.7 shows the final results of our Arabic handwriting recognition system
with additional GDLs as described in [15]. Again, the WER of the GDL-based sys-
tem can be decreased by our proposed M-MMI training during both decoding passes
down to 14.55 %.

In Fig. 9.10 a combined WER/CER plot over M-MMI-conf training iterations
on the evaluation setup abcd-e (see initialization plots) is shown. It can be ob-
served that both WER and CER are slightly decreasing with every Rprop itera-
tion, and that between 10 and 15 Rprop iterations are optimal for the considered
small amount of unsupervised labeled test datasets. Due to the robustness of the
confidence- and margin-based M-MMI-conf criterion against outliers, the proposed
unsupervised and text-dependent model adaptation can even be applied in an itera-
tive manner by a reinitialization of the text transcriptions. In Fig. 9.10, we reinitial-
ize two times the model adaptation process after 15 Rprop iterations. The results in
Fig. 9.10 show the robustness of our approach, leading to a slightly improved WER
of 14.39 %.
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Fig. 9.10 Evaluation of
iterative M-MMI-conf model
adaption on the evaluation
setup abcd-e of the
IFN/ENIT-database: text
transcriptions are updated in
an unsupervised manner after
15 Rprop iterations. The
performance remains robust
even after several
reinitializations

Writer Adaptation

The writer adaptive training (WAT) models (see Sect. 9.3.4) can also be used as
a first-pass decoding system. The results in Table 9.8 show that the system per-
formance cannot be improved without any writer clustering and adaptation of the
features during the decoding step.

To show the advantage of using CMLLR-based writer adapted features in combi-
nation with WAT models, we estimate in a first supervised experiment the CMLLR
matrices directly from the available writer labels of the test subsets. The matrices
are calculated for all writers in pass two and are used for a writer-dependent recog-
nition system, which uses the WAT models from Sect. 9.3.4. Note that the decoding
itself is still unsupervised!

In the unsupervised adaptation case, the unknown writer labels of the seg-
ments to be recognized have to be estimated first using BIC clustering. Again, the
CMLLR matrices are calculated in pass two for every estimated cluster label and are
used for a writer-dependent recognition system, which uses the WAT models from
Sect. 9.3.4.

Table 9.8 shows that the system accuracy could be improved by up to 33 % rel-
ative to the supervised-CMLLR adaptation case. In the case of unsupervised writer
clustering, the system accuracy is improved by onefold only.

If we look at the cluster histograms in Fig. 9.11, it becomes clear that the unsu-
pervised clustering is not adequate. Each node in our clustering process as described
in [8] is modeled as a multivariate Gaussian distribution N (μi,Σi), where μi can
be estimated as the sample mean vector and Σi can be estimated as the sample co-
variance matrix. The estimated parameters are used within the criterion as distance
measure, but more sophisticated features than the PCA reduced sliding window fea-
tures seem necessary for a better clustering, which will be interesting for future
work.

As opposed to the supervised estimation of 505 CMLLR transformation matrices
for the evaluation setup with training sets abcd and test set e (see Table 9.1), the
unsupervised writer clustering could estimate only two clusters being completely
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Fig. 9.11 Histograms for
unsupervised clustering over
the different test subsets and
their resulting unbalanced
segment assignments

Table 9.8 Comparison of
GDL, WAT, and CMLLR
based feature adaptation
using unsupervised and
supervised writer clustering

Train Test WER [%]

1st pass 2nd pass

ML +GDL +WAT WAT+CMLLR

Unsup. Sup.

abc d 10.88 7.83 7.54 7.72 5.82

abd c 11.50 8.83 9.09 9.05 5.96

acd b 10.97 7.81 7.94 7.99 6.04

bcd a 12.19 8.70 8.87 8.81 6.49

abcd e 21.86 16.82 17.49 17.12 11.22

unbalanced, which is obviously not enough to represent the different writing styles
of 505 writers. Due to the unbalanced clustering and only a small number of clusters,
all other cases are similar to the usage of the WAT models only (see Table 9.8).

However, the supervised-CMLLR adaptation results show that a good writer
clustering can bring the segments of the same writer together and thus improve
the performance of the writer adapted system.

9.6.3 Visual Inspections

The visualizations in Fig. 9.12 show training alignments of Arabic words to their
corresponding HMM states. The upper rows show the alignment to the ML trained
model, the lower rows to the M-MMI trained models. We use R-G-B background
colors for the 0-1-2 HMM states, respectively, from right to left. The position-
dependent glyph model names (see Sect. 9.3.2) are written in the upper line, where
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Fig. 9.12 Left column: Supervised training alignment comparisons. The upper rows show align-
ments to the maximum-likelihood (ML) trained model, the lower rows to the margin-based max-
imum mutual information (M-MMI) trained models. Right column: Unsupervised test alignment
comparisons. The upper rows show incorrect unsupervised alignments to the ML trained model,
the lower rows correct unsupervised alignments to the M-MMI trained models

the white-space models are annotated by “si” for “silence”; the state numbers are
written in the bottom line. Thus, HMM state loops and state transitions are repre-
sented by no-color-changes and color-changes, respectively.

It can be observed in the left column of Fig. 9.12 that especially the white spaces,
which can occur between compound words and parts of Arabic words (PAWs) [13],
help in discriminating the isolated- (A), beginning- (B), or end-shaped (E) glyphs
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of a word with respect to the middle-shaped (M) glyphs, where usually no white
spaces occur on the left or right side of the character (cf. [42, 61] for more details
about A/B/M/E shaped characters). The frames corresponding to the white-space
part of the words are aligned in a more balanced way in Fig. 9.12(a) and 9.12(b)
using the M-MMI modeling (lower rows) opposed to ML modeling (upper rows):
the proposed M-MMI models learned that white spaces help to discriminate dif-
ferent glyphs. This can even lead to a different writing variant choice without any
white-space models [13] (see Fig. 9.12(c)). Note that we cannot know in advance in
training if a white space is used or not, and if so, how large it is, as it is not tran-
scribed in the corpora and depends on the writer’s handwriting style (e.g. the cursive
style used in Fig. 9.12(a)).

In the right column of Fig. 9.12, unsupervised test alignments are compared.
The upper rows show incorrectly recognized words by unsupervised alignments to
the ML trained model, the lower rows correctly recognized words by unsupervised
alignments to the M-MMI trained models. Due to the discriminatively trained glyph
models, the alignment in Fig. 9.12(d) to the M-MMI model is clearly improved over
the ML model, and the system opts for the correct compound-white-space writing
variant [13]. In Fig. 9.12(e), again the alignment is improved by the discriminatively
trained white-space and glyph models. Figure 9.12(f) shows a similar alignment to
the white-space model, but a clearly improved and correct alignment to the discrim-
inatively trained glyph models.

9.6.4 Comparisons with Other Systems

IFN/ENIT-database Competitions at ICDAR/ICFHR In Table 9.9 we compare
our own evaluation results on the ICDAR 2005 [48] setups (without any tuning
on test data as explained in Sect. 9.6.2) and ICDAR 2007/2009 and ICFHR 2010
[46, 47] setups. It should be noted that the result for the abcd-e condition is the best
known error rate in the literature [18].

The ICDAR 2009 test datasets, which are unknown to all participants, were col-
lected for the tests of the ICDAR 2007 competition. The words are from the same
lexicon as those of the IFN/ENIT-database and written by writers who did not con-
tribute to the datasets before, and are separated into set f and set s. Our results (exter-
nally calculated by TU Braunschweig) in Table 9.9 ranked third at the ICDAR 2009
competition and are among the best purely HMM-based systems, as the A2iA and
MDLSTM systems are hybrid system combinations or full neural network-based
systems, respectively. Also note that our single HMM-based system is better than
the independent A2iA systems (cf. [46] for more details). In particular, our proposed
M-MMI-conf-based approach for unsupervised model adaptation even generalizes
well on the set s, which has been collected in the United Arabic Emirates and rep-
resents significantly different handwriting styles.

Note the 36 % relative improvement shown in Table 9.9 that we achieved in the
recent ICFHR 2010 Arabic handwriting competition [47] with the proposed M-MMI
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Table 9.9 Comparison of ICDAR/ICFHR Arabic handwriting recognition competition results on
the IFN/ENIT-database

Competition Group WER [%]

abc-d abcd-e abcde-f abcde-s

ICDAR 2005
[48]

UOB 15.00 24.07

ARAB-IFN 12.06 25.31 – –

ICRA (Microsoft) 11.05 34.26 – –

ICDAR 2007
[45]

SIEMENS [70] – 18.11 12.78 26.06

MIE (DP) – – 16.66 31.60

UOB-ENST (HMM) – – 18.07 30.07

ICDAR 2009
[46]

MDLSTM – – 6.63 18.94

A2iA (combined) – – 10.58 23.34

(MLP/HMM) – – 14.42 29.56

(HMM) – – 17.79 33.55

RWTH ASR (this work, M-MMI) 6.12 15.35 14.49 28.67

RWTH ASR (this work, M-MMI-conf) 5.95 14.55 14.31 27.46

ICFHR 2010
[47]

UPV PRHLT (HMM) 7.50 12.30 7.80 15.38

RWTH ASR (this work, MLP-GHMM) 3.47 7.26 9.12 18.94

UPV PRHLT (HMM, w/o vert. norm.) – – 12.09 21.55

CUBS-AMA (HMM) – – 19.68 32.10

Other results BBN [50] 10.51 – – –

training framework and an MLP-based feature extraction. Our system ranked second
and used again no system combinations. Interesting is the result of the UPV PRHLT
group, who significantly improved their relatively simple baseline system due to a
vertical centroid normalization of sliding window-based features [47, 60]. Note that
our MLP-GHMM does not perform any pre-processing.

9.6.5 Machine-Printed Arabic Text Recognition

In a first set of experiments we optimized the feature extraction parameters and
compared position-independent and dependent glyph models, using single-density
models only. In both cases we used glyph HMMs with six states with skip tran-
sitions and three separate GMMs with a globally pooled covariance matrix. The
results for the development set of the RAMP-N database (see Sect. 9.5.2) in
Fig. 9.13 show an error rate reduction of about 50 % relative for position-dependent
glyph models compared to a position-independent glyph modeling. Note that we
empirically optimized the PCA reduction to 30 components, and that the fea-
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Fig. 9.13 Comparison of
position-independent and
position-dependent glyph
modeling on the RAMP-N
development corpus, using
single-density models and
PCA reduced
appearance-based sliding
window features

Fig. 9.14 Some examples of
various professional
newspaper fonts used in the
RAMP-N corpora (example
images taken from
http://www.layoutltd.com/)

ture extraction parameters are similar to those used in handwritten text recogni-
tion.

Some examples of the professional ArabicXT fonts10 occurring in the RAMP-N
corpus, which are widely used by newspapers, magazines, or book publishers, are
shown in Fig. 9.14.

Experiments with Gaussian mixture models (GMMs) instead of single densities
(see Fig. 9.15) improve the WER/CER as expected, as they implicitly model the up
to 20 different font appearances in the corpora. Note that glyph-dependent length
(GDL) models as e.g. successfully used for handwriting in [13, 14, 60] (also see
Fig. 9.7) lead only to small improvements so far for machine-printed text recogni-
tion.

The results in Table 9.10 show detailed results for each font appearing in the
RAMP-N subset Eval a. High WER but low CER are due to OOV words, which are

10http://www.layoutltd.com/arabicxt.php

http://www.layoutltd.com/
http://www.layoutltd.com/arabicxt.php
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Fig. 9.15 Results for
position-dependent GMMs on
the RAMP-N subset Eval a

Table 9.10 Font-wise results for ML trained GMMs on the RAMP-N subset Eval a

Font Lines Errors Words OOV WER [%] Errors Glyphs CER [%]

AXtAlFares 2 10 2 2 500.00 0 19 0.00

AXtCalligraph 1 0 8 0 0.00 0 21 0.00

AXtGIHaneBoldItalic 15 19 129 4 14.73 12 591 2.03

AXtHammed 3 0 5 0 0.00 0 31 0.00

AXtKaram 9 2 83 0 2.41 4 300 1.33

AXtManal 1 0 2 0 0.00 0 4 0.00

AXtManalBlack 5 5 27 1 18.52 11 112 9.82

AXtMarwanBold 109 46 385 18 11.95 13 2002 0.65

AXtMarwanLight 3261 828 18963 405 4.37 79 83091 0.10

AXtShareQ 5 10 64 0 15.62 7 299 2.34

AXtShareQXL 68 35 371 13 9.43 10 1973 0.51

AXtThuluthMubassat 1 0 3 0 0.00 0 13 0.00

Total (Eval a) 3480 955 20042 443 4.76 136 88456 0.15

often recognized as a sequence of PAWs instead of a single word, resulting in one
substitution and many insertion errors, but zero edits at the character level. Simply
replacing those word sequences between white-space blocks can further reduce the
WER. Interesting subjects for future work will therefore remain larger lexica or
character and PAW language models to further reduce the effect of OOVs. Due to
unbalanced font frequencies a re-rendering of the training data in other fonts might
further reduce the error rates in future works.

The results in Table 9.11 show the difference between rendered and scanned
results, where we additionally compared supervised layout and unsupervised layout
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Table 9.11 Results for ML
trained GMMs using rendered
and scanned data of the
RAMP-N subset Eval a

Layout Analysis Rendered Scanned

WER CER WER CER

Supervised 4.76 0.15 5.79 0.64

OCRopus – – 17.62 3.79

Fig. 9.16 Results for
M-MPE training on RAMP-N
corpus Eval a

Fig. 9.17 Example of an unsupervised alignment on RAMP-N corpus Eval a

analysis using OCRopus.11 The scans were generated by printing and scanning the
PDFs in their original size, i.e. DIN-A2 at 600 dpi. It can be seen that the main
performance decrease is due to OCRopus’s layout analysis problems and not the
scan quality.

As it is often observed that discriminative GHMM training performs better with
fewer Gaussian mixture densities, we use a split-6 ML trained model to initialize
our M-MPE training (cf. Λ0 in Sect. 9.3.3). The results in Fig. 9.16 show again
a significant reduction in terms of WER and CER. Note that BBN’s Glyph HMM
system PLATO [49] reported similar relative improvements for position-dependent
glyph models and discriminative MMI/MPE training.

In Fig. 9.17 an unsupervised alignment example is shown for a line segment
of RAMP-N subset Eval a, which seems suitable for post-processing steps such as
syntax highlighting or reCAPTCHA-like [77] processes. We used an ML trained
GHMM model resulting in zero word/character errors.

11http://code.google.com/p/ocropus/

http://code.google.com/p/ocropus/
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9.7 Conclusions

We presented our hidden Markov model (HMM)-based RWTH ASR system
which represents a unique framework for large vocabulary optical character
recognition (OCR). The advantages of confidence- and margin-based discrimi-
native training using an MMI/MPE training criterion for model adaptation with
an HMM-based multi-pass decoding system were shown for Arabic handwrit-
ing on the IFN/ENIT-database corpus (isolated word recognition), and prelimi-
nary results were shown for Arabic machine-printed text on the RAMP-N cor-
pus (open-vocabulary, continuous line recognition). More details are presented
in [11].

We discussed an approach on how to modify existing training criteria for hand-
writing recognition like, for example, MMI and MPE, to include a margin term. The
modified training criterion M-MMI was shown to be closely related to existing large
margin classifiers (e.g. SVMs) with the respective loss function. This approach al-
lows for the direct evaluation of the utility of the margin term for handwriting recog-
nition. As expected, the benefit from the additional margin term clearly depends on
the training conditions. The proposed discriminative training approach could out-
perform the ML trained systems on all tasks.

The impact of different writing styles was dealt with by using a novel confidence-
based discriminative training for model adaptation, where the use of state confi-
dences during the iterative optimization process based on the modified M-MMI-conf
criterion could decrease the word error rate on the IFN/ENIT-database by relatively
33 % in comparison to an ML trained system.

Interesting topics for further research remain the hybrid HMM/ANN approaches
[20, 25], combining the advantages of large and nonlinear context modeling via
neural networks while profiting from the Markovian sequence modeling. This is also
supported by the 36 % relative improvement we could achieve in the ICFHR 2010
Arabic handwriting competition [47] by using the proposed discriminative GHMM
framework but with an MLP-based feature extraction.

We proposed an approach to automatically generate large corpora for machine-
printed text recognition. The preliminary results on the novel RAMP-N database
showed that our framework is able to recognize Arabic handwritten and machine-
printed texts. Future work will focus on using more visual training data, larger lex-
ica, higher order n-gram language models, and character- or PAW-based language
models like those successfully used in [49].
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Chapter 10
Arabic Handwriting Recognition Using
Bernoulli HMMs

Ihab Alkhoury, Adrià Giménez, and Alfons Juan

Abstract Hidden Markov models (HMMs) are now widely used for off-line hand-
writing recognition in many languages and, in particular, in Arabic. As in speech
recognition, they are usually built from shared, embedded HMMs at the symbol
level, in which state-conditional probability density functions are modeled with
Gaussian mixtures. In contrast to speech recognition, however, it is unclear which
kinds of features should be used and, indeed, very different feature sets are in use to-
day. Among them, we have recently proposed to simply use columns of raw, binary
image pixels, which are directly fed into embedded Bernoulli (mixture) HMMs, that
is, embedded HMMs in which the emission probabilities are modeled with Bernoulli
mixtures. The idea is to bypass feature extraction and ensure that no discriminative
information is filtered out during feature extraction, which in some sense is inte-
grated into the recognition model. In this chapter, we review this idea along with
some extensions that are currently providing state-of-the-art results on Arabic hand-
written word recognition.

10.1 Introduction

Hidden Markov models (HMMs) are now widely used for off-line handwriting
recognition in many languages and, in particular, in Arabic [7, 8]. Arabic is spo-
ken by 234 million people and important in the culture of many more [6]. Given a
text (line or word) image, it is first transformed into a sequence of fixed-dimension
feature vectors, and then fed into an HMM-based decoder to find its most proba-
ble transcription. Following the conventional approach in speech recognition [11],
HMMs at the global (line or word) level are built from shared, embedded HMMs at
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the character (subword) level, which are usually simple in terms of number of states
and topology. In the common case of real-valued feature vectors, state-conditional
probability (density) functions are modeled as Gaussian mixtures since, as with fi-
nite mixture models in general, their complexity can be easily adjusted to the avail-
able training data by simply varying the number of components.

After decades of research in speech recognition, the use of certain real-valued
speech features and embedded Gaussian (mixture) HMMs is a de facto stan-
dard [11]. However, in the case of handwriting recognition, there is no such standard
and, indeed, very different sets of features are in use today. In [2], we proposed to
bypass feature extraction and to directly feed columns of raw, binary pixels into em-
bedded Bernoulli (mixture) HMMs (BHMMs), that is, embedded HMMs in which
the emission probabilities are modeled with Bernoulli mixtures. The basic idea is
to ensure that no discriminative information is filtered out during feature extraction,
which in some sense is integrated into the recognition model. In this chapter, we
review this idea along with some extensions that are currently providing state-of-
the-art results on Arabic handwritten word recognition.

In what follows, we briefly review Bernoulli mixtures (Sect. 10.2), Bernoulli
HMMs (Sect. 10.3), BHMM-based handwriting recognition (Sect. 10.4), maximum
likelihood parameter estimation (Sect. 10.5), and our basic extension to plain BH-
MMs, which will be referred to as windowed BHMMs (Sect. 10.6). Empirical results
are then reported in Sect. 10.7. To our knowledge, they are the best results published
to date on the well-known IFN/ENIT database of Arabic handwritten Tunisian town
names [10]. Our concluding remarks are given in Sect. 10.8.

10.2 Bernoulli Mixture

Let o be a D-dimensional feature vector. A finite mixture is a probability (density)
function of the form:

P(o | Θ) =
K∑

k=1

πkP
(
o | k,Θ ′), (10.1)

where K is the number of mixture components, πk is the kth component coefficient,
and P(o | k,Θ ′) is the kth component-conditional probability (density) function.
The mixture is controlled by a parameter vector Θ comprising the mixture coeffi-
cients and a parameter vector for the components, Θ ′. It can be seen as a generative
model that first selects the kth component with probability πk and then generates o
in accordance with P(o | k,Θ ′).

A Bernoulli mixture model is a particular case of (10.1) in which each component
k has a D-dimensional Bernoulli probability function governed by its own vector of
parameters or prototype pk = (pk1, . . . , pkD)t ∈ [0,1]D ,

P
(
o | k,Θ ′)=

D∏

d=1

p
od

kd(1 − pkd)1−od , (10.2)
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Fig. 10.1 Three binary
images (a, b and c) are shown
as being generated from a
Bernoulli prototype depicted
as a gray image (black = 1,
white = 0, gray = 0.5)

where pkd is the probability for bit d to be 1. Note that this equation is just the
product of independent, unidimensional Bernoulli probability functions. Therefore,
for a fixed k, it can not capture any kind of dependencies or correlations between
individual bits.

Consider the example given in Fig. 10.1. Three binary images (a, b and c) are
shown as being generated from a Bernoulli prototype depicted as a gray image
(black = 1, white = 0, gray = 0.5). The prototype has been obtained by averag-
ing images a and c, and it is the best approximate solution to assign a high, equal
probability to these images. However, as individual pixel probabilities are not con-
ditioned to other pixel values, there are 26 = 64 different binary images (including
a, b and c) into which the whole probability mass is uniformly distributed. It is then
not possible, using a single Bernoulli prototype, to assign a probability of 0.5 to a
and c, and null probability to any other image such as b. Nevertheless, this limita-
tion can be easily overcome by using a Bernoulli mixture and allowing a different
prototype to each different image shape. That is, in our example, a two-component
mixture of equal coefficients, and prototypes a and b, does the job.

10.3 Bernoulli HMM

Let O = (o1, . . . ,oT ) be a sequence of feature vectors. An HMM is a probability
(density) function of the form:

P(O | Θ) =
∑

q0,...,qT +1

T∏

t=0

aqt qt+1

T∏

t=1

bqt (ot ), (10.3)
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where the sum is over all possible paths (state sequences) q0, . . . , qT +1, such that
q0 = I (special initial or start state), qT +1 = F (special final or stop state), and
q1, . . . , qT ∈ {1, . . . ,M}, M being the number of regular (non-special) states of the
HMM. On the other hand, for any regular states i and j , aij denotes the transition
probability from i to j , while bj is the observation probability (density) function
at j .

A Bernoulli (mixture) HMM (BHMM) is an HMM in which the probability of
observing ot , when qt = j , is given by a Bernoulli mixture probability function for
the state j :

bj (ot ) =
K∑

k=1

πjk

D∏

d=1

p
otd

jkd(1 − pjkd)1−otd , (10.4)

where πjk and pjk are, respectively, the prior and prototype of the kth mixture
component in state j .

Consider the upper part of Fig. 10.2, where a BHMM example for the number 3 is
shown, together with a binary image generated from it. It is a three-state model with
single prototypes attached to states 1 and 2, and a two-component mixture assigned
to state 3. In contrast to the example in Fig. 10.1, prototypes do not account for the
whole digit realizations, but only for single columns. This column-by-column emis-
sion of feature vectors attempts to better model horizontal distortions at character
level and, indeed, it is the usual approach in both speech and handwriting recogni-
tion when continuous-density (Gaussian mixture) HMMs are used. The reader can
check that, by direct application of Eq. (10.3) and taking into account the existence
of two different state sequences, the probability of generating the binary image gen-
erated from this BHMM example is 0.063.

As discussed in the introduction, BHMMs at global (line or word) level are built
from shared, embedded BHMMs at character level. More precisely, let C be the
number of different characters (symbols) from which global BHMMs are built, and
assume that each character c is modeled with a different BHMM of parameter vec-
tor Θc. Let Θ = {Θ1, . . . ,ΘC}, and let O = (o1, . . . ,oT ) be a sequence of feature
vectors generated from a sequence of symbols S = (s1, . . . , sL), with L ≤ T . The
probability of O can be calculated, using embedded HMMs for its symbols, as:

P(O | S,Θ) =
∑

i1,...,iL+1

L∏

l=1

P(oil , . . . ,oil+1−1 | Θsl ), (10.5)

where the sum is carried out over all possible segmentations of O into L segments,
that is, all sequences of indices i1, . . . , iL+1 such that

1 = i1 < · · · < iL < iL+1 = T + 1;
and P(oil , . . . ,oil+1−1 | Θsl ) refers to the probability (density) of the lth segment,
as given by (10.3) using the HMM associated with symbol sl .

Consider now the lower part of Fig. 10.2. An embedded BHMM for the num-
ber 31 is shown, which is the result of concatenating BHMMs for the digit 3, blank
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Fig. 10.2 BHMM examples for the numbers 3 (top) and 31 (bottom), together with binary images
generated from them. Note that the BHMM example for the number 3 is also embedded into that for
the number 31. Bernoulli prototype probabilities are represented using the following color scheme:
black = 1, white = 0, gray = 0.5, and light gray = 0.1.

space, and digit 1, in that order. Note that the BHMMs for blank space and digit 1
are simpler than that for digit 3. Also note that the BHMM for digit 3 is shared
between the two embedded BHMMs shown in the figure. The binary image of the
number 31 shown above can only be generated from two paths, as indicated by
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the arrows connecting prototypes to image columns, which only differ in the state
generating the second image column (either state 1 or 2 of the BHMM for the first
symbol). It is straightforward to check that, according to (10.5), the probability of
generating this image is 0.0004.

10.4 BHMM-Based Handwriting Recognition

Given an observation sequence O = (o1, . . . ,oT ), its most probable transcription is
obtained by application of the conventional Bayes decision rule:

w∗ = arg max
w∈W

p(w | O) (10.6)

= arg max
w∈W

p(w)p(O | w), (10.7)

where W is the set of possible transcriptions; p(w) is usually approximated by an n-
gram language model [4]; and p(O | w) is a text image model which, in this work, is
modeled as a BHMM (built from shared, embedded BHMMs at character level), as
defined in Eq. (10.5). A particularly interesting case arises when the set of possible
transcriptions reduces to a (small) finite set of words (class labels). In this case,
p(w) is simply the prior probability of word w, while p(O | w) is the probability
of observing O given that it corresponds to a handwritten version of word w.

10.4.1 The Forward Algorithm

In order to efficiently compute p(O | w) as a BHMM probability of the form given
in Eq. (10.5), we use a dynamic programming method known as the forward algo-
rithm [11, 12]. For each time t , symbol sl and state j from the HMM for symbol sl ,
we define the forward probability αlt (j) as:

αlt (j) = P
(
Ot

1, qt = (l, j) | S,Θ
)
, (10.8)

that is, the probability of generating O up to its t th element and ending at state j

from the HMM for symbol sl . This definition includes (10.5) as the particular case
in which t = T , l = L and j = FsL ; that is,

P(O | S,Θ) = αLT (FsL
). (10.9)

To compute αLT (FsL
), we must first take into account that, for each position l in S

except for the first, the initial state of the HMM for sl is joined with the final state
of its preceding HMM, i.e.,

αlt (Isl ) = αl−1t (Fsl−1)
1 < l ≤ L,

1 ≤ t ≤ T .
(10.10)
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Keeping (10.10) in mind, we can proceed at symbol level as with conventional
HMMs. For the final states, we have:

αlt (Fsl ) =
Msl∑

j=1

αlt (j)asljFsl

1 ≤ l ≤ L,

1 ≤ t ≤ T ,
(10.11)

while, for regular states, 1 ≤ j ≤ Msl , we have:

αlt (j) =
[ ∑

i∈{Isl
,1,...,Msl

}
αlt−1(i)asl ij

]

bslj (ot ), (10.12)

with 1 ≤ l ≤ L and 1 < t ≤ T . The base case is for t = 1:

αl1(i) =
{

as1Is1 ibs1i (o1), l = 1,1 ≤ i ≤ Ms1,

0 otherwise.
(10.13)

The forward algorithm uses a dynamic programming table for αlt (·) which is com-
puted forward in time to avoid repeated computations.

Figure 10.3 shows an application example of the forward algorithm to the
BHMM and observation of Fig. 10.2 (bottom). Non-null (and a few null) entries
of the dynamic programming table are represented by graph nodes aligned with
states (vertically) and time (horizontally). Node borders are drawn in black or gray,
depending on whether they are in valid paths (i.e., those from which the observa-
tion sequence can be generated) or not. Also, those associated with special states are
drawn with dotted lines. Numbers at the top of each node refer to αlt (·) and thus, for
instance, the probability of generating O up to the third image column and ending
at state 2 of the BHMM for the first symbol is α13(2) = 10

450 . Computation depen-
dencies between nodes are represented by arrows, which are labeled above by, first,
the transition probability, and then the observation probability at the target state (see
Eq. (10.4)). For instance, the numbers above the arrow pointing to node α13(4) are:
as123 · bs13(o4) = 7

10 · ( 1
2 · 0 + 1

2 · 15) = 7
10 · 1

2 .
From Fig. 10.3, we can clearly see that, as indicated at the end of Sect. 10.3,

there are only two paths from which the observation can be generated. They share
all nodes drawn with black borders except the two nodes aligned with the second
observation vector. In accordance with Eq. (10.9), the probability of the observation
sequence is α37(F ) = 0.0004.

10.4.2 The Backward Algorithm

The backward algorithm is similar to the forward algorithm but, as its name in-
dicates, it uses a dynamic programming table which is computed backward in
time [11, 12]. The basic definition in this case is the backward probability:

βlt (j) = P
(
OT

t+1 | qt = (l, j), S,Θ
)
, (10.14)
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Fig. 10.3 Application example of the forward and Viterbi algorithms to the BHMM and obser-
vation of Fig. 10.2 (bottom). Numbers at the top of the nodes denote forward probabilities, while
those at the bottom refer to Viterbi scores
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which measures the probability (density) of generating OT
t+1 given that the t th vec-

tor was generated in state j of the BHMM for the symbol sl . Using this definition,
Eq. (10.5) can be rewritten as:

P(O | S,Θ) =
Ms1∑

j=1

as1Is1 j bs1j (o1)β11(j). (10.15)

Taking into account that:

βlt (Fsl ) = βl+1t (Isl+1)
1 ≤ l < L,

1 ≤ t < T ,
(10.16)

the backward probability for the initial and regular states, i ∈ {Isl ,1, . . . ,Msl }, can
be efficiently computed as:

βlt (i) = asnl iFsl
βlt (Fsl ) +

Msl∑

j=1

asl ij bslj (ot+1)βlt+1(j)
1 ≤ l ≤ L,

1 ≤ t < T ,
(10.17)

where the base case is defined for t = T as:

βlT (i) =
{

asLiFsL
l = L,1 ≤ i ≤ MsL,

0 otherwise.
(10.18)

10.4.3 The Viterbi Algorithm

Although the forward and backward algorithms efficiently compute the exact value
of P(O | S,Θ), it is common practice to approximate it by the Viterbi or maximum
approximation, in which the sums in Eqs. (10.3) and (10.5) are replaced by the max
operator, i.e.,

P(O | S,Θ) ≈ max
i1, . . . , iL+1
q1, . . . , qT

L∏

l=1

P̂
(
o

il+1−1
il

| Θsl

)
, (10.19)

where P̂ is defined as:

P̂
(
o

il+1−1
il

| Θsl

)= aslIsl
qil

·
il+1−2∏

t=il

aslqt qt+1 · aslqil+1−1Fsl
·
il+1−1∏

t=il

bslqt (ot ). (10.20)

In contrast to the exact definition, this approximation allows us to identify a sin-
gle, best state sequence or path associated with the given observation sequence.
The well-known Viterbi algorithm efficiently computes this approximation, using
dynamic programming recurrences similar to those used by the forward algorithm.
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Formally, we need to compute the probability Q(l, t, j) of the most likely path up
to time t that ends with the state j from the BHMM for symbol sl . For the special
states, it can be computed as:

Q(l, t, Isl ) = Q(l − 1, t,Fsl−1)
1 < l ≤ L,

1 ≤ t ≤ T ,
(10.21)

Q(l, t,Fsl ) = max
1≤j≤Msl

Q(l, t, j)asljFsl

1 ≤ l ≤ L,

1 ≤ t ≤ T ,
(10.22)

while, for the regular states with 1 ≤ l ≤ L and 1 < t ≤ T , we have:

Q(l, t, j) =
[

max
i∈{Isl

,1,...,Msl
}
Q(l, t − 1, i)asl ij

]
bslj (ot ). (10.23)

The base case is for t = 1:

Q(l,1, i) =
{

as1Is1 ibs1i (o1) l = 1,1 ≤ i ≤ Ms1,

0 otherwise.
(10.24)

Clearly, the Viterbi algorithm can be seen as a minor modification of the forward
algorithm in which only the most probable is considered in each node computation.
Indeed, the application example shown in Fig. 10.3 is used for both the forward
and Viterbi algorithms. Now, however, the relevant numbers are those included at
the bottom of each node, which denote Q(l, t, j); i.e., at row 2 and column 3, we
have Q(1,3,2) = 9

450 . Consider the generation of the third observation vector at the
second state (for the first symbol). It occurs after the generation of the second ob-
servation vector, either at the first or the second state, but we only take into account
the most likely case. Formally, the corresponding Viterbi score is computed as:

Q(1,3,2) = max

{
1

15
· 3

10
· 1,

1

300
· 2

3
· 1

}

= max

{
9

450
,

1

450

}

= 9

450
.

Note that forward probabilities do not differ from Viterbi scores up to Q(1,3,2),
since it corresponds to the first (and only) node with two incoming paths. The Viterbi
approximation to the exact probability of generating the observation sequence is
obtained at the final node: Q(3,7,F ) = 0.00036. The most likely path, drawn with
thick lines, is retrieved by starting at this node and moving backwards in time in
accordance with the computation of Viterbi scores. As usual in practice, the final
Viterbi score in this example (0.00036) is a tight lower bound of the exact probabil-
ity (0.00040).

10.5 Maximum Likelihood Parameter Estimation

Maximum likelihood estimation of the parameters governing an embedded BHMM
does not differ significantly from the conventional Gaussian case, and it can be
carried out using the well-known expectation maximization (EM, Baum–Welch)
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re-estimation formulae [11, 12]. Let (O1, S1), . . . , (ON,SN), be a collection of N

training samples in which the nth observation has length Tn, On = (on1, . . . ,onTn),
and was generated from a sequence of Ln symbols (Ln ≤ Tn), Sn = (sn1, . . . , snLn).
At iteration r , the E step requires the computation, for each training sample n, of
their corresponding forward and backward probabilities (see (10.8) and (10.14)), as
well as the expected value for its t th feature vector to be generated from the kth
component of the state j in the HMM for symbol sl ,

z
(r)
nltk(j) = π

(r)
snljk

∏D
d=1 p

(r)
snljkd

ontd
(1 − p

(r)
snljkd)

1−ontd

b
(r)
snlj

(ont )
,

for each t , k, j and l.
In the M step, the Bernoulli prototype corresponding to the kth component of the

state j in the HMM for character c has to be updated as:

p
(r+1)
cjk = 1

γck(j)

∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)ont

P (On | Sn,Θ
(r))

, (10.25)

where γck(j) is a normalization factor,

γck(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ
(r))

, (10.26)

and ξ
(r)
nltk(j) is the probability for the t th feature vector of the nth sample to be

generated from the kth component of the state j in the HMM for symbol sl ,

ξ
(r)
nltk(j) = α

(r)
nlt (j)z

(r)
nltk(j)β

(r)
nlt (j). (10.27)

Similarly, the kth component coefficient of the state j in the HMM for character c

has to be updated as:

π
(r+1)
cjk = 1

γc(j)

∑

n

∑
l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ
(r))

, (10.28)

where γc(j) is a normalization factor,

γc(j) =
∑

n

∑
l:snl=c

∑Tn

t=1 α
(r)
nlt (j)β

(r)
nlt (j)

P (On | Sn,Θ
(r))

. (10.29)

To avoid null probabilities in Bernoulli prototypes, they can be smoothed by
linear interpolation with a flat (uniform) prototype, 0.5,

p̃ = (1 − δ)p + δ0.5, (10.30)

where, for instance, δ = 10−6.
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Fig. 10.4 Example of
transformation of a 4 × 5
binary image (bottom) into a
sequence of four
15-dimensional binary feature
vectors O = (o1,o2,o3,o4)

using a window of width 3.
The standard method (no
repositioning) is compared
with the three repositioning
methods considered: vertical,
horizontal, and both
directions

10.6 Windowed BHMMs

Given a binary image normalized in height to H pixels, we may think of a fea-
ture vector ot as its column at position t or, more generally, as a concatenation of
columns in a window of W columns in width, centered at position t . This general-
ization has no effect on the definition of BHMM nor on its maximum likelihood es-
timation, though it might be very helpful to better capture the image context at each
horizontal position of the image. As an example, Fig. 10.4 shows a binary image of
4 columns and 5 rows, which is transformed into a sequence of four 15-dimensional
feature vectors (first row) by application of a sliding window of width 3. For clarity,
feature vectors are depicted as 3 × 5 subimages instead of 15-dimensional column
vectors. Note that feature vectors at positions 2 and 3 would be indistinguishable if,
as in our previous approach, they were extracted with no context (W = 1).

Although one-dimensional, “horizontal” HMMs for image modeling can prop-
erly capture nonlinear horizontal image distortions, they are somewhat limited when
dealing with vertical image distortions, and this limitation might be particularly
strong in the case of feature vectors extracted with significant context. To overcome
this limitation, we have considered three methods of window repositioning after
window extraction: vertical, horizontal, and both. The basic idea is to first compute



10 Arabic Handwriting Recognition Using Bernoulli HMMs 267

Fig. 10.5 Original sample pf069_011 from IFN/ENIT database (top) and its sequence of feature
vectors produced with and without (both) repositioning (center and bottom, respectively)

the center of mass of the extracted window, which is then repositioned (translated)
to align its center to the center of mass. This is done in accordance with the chosen
method, that is, horizontally, vertically, or in both directions. Obviously, the feature
vector actually extracted is that obtained after repositioning. An example of feature
extraction is shown in Fig. 10.4, in which the standard method (no repositioning) is
compared with the three repositioning methods considered.

To illustrate the effect of repositioning with real data, Fig. 10.5 shows the se-
quence of feature vectors extracted from a real sample of the IFN/ENIT database,
with and without (both) repositioning. As intended, (vertical or both) repositioning
has the effect of normalizing vertical image distortions, especially translations.

10.7 Experiments

Experiments were carried out on the very popular IFN/ENIT database of Arabic
handwritten Tunisian town names [10]. More precisely, we used the IFN/ENIT
database in version 2.0, patch level 1e (v2.0p1e), which is exactly the version used
as training data in the Arabic handwriting recognition competition held at ICDAR
(International Conference on Document Analysis and Recognition) in 2007 [7]. It
comprises 32492 Arabic word images written by more than 1000 different writers,
from a lexicon of 937 Tunisian town/village names. For the experiments reported
below, each image was first rescaled in height to D = 30 rows, while keeping the
original aspect ratio, and then binarized using Otsu binarization. The resulting set
of binary images was partitioned into five folds labeled as a, b, c, d and e, as defined
in [7].

10.7.1 Effect of the Window Width

In [3], we have recently found that the sliding window width has a very positive
effect on the accuracy of our BHMM-based word recognizer, though, as usual, it has
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Fig. 10.6 WER (%) as a
function of the number of
mixture components (K) for
varying sliding window
widths (W )

to be combined with an adequate number of components for the state-conditional
finite mixture models. This is clearly shown in Fig. 10.6, where the word error rate
(WER %) of our BHMM-based recognizer is plotted as a function of the number
of mixture components (K), for varying sliding window widths (W ). Each WER
estimate (plotted point) was obtained by cross-validation with the first four standard
folds (abcd), using BHMMs of 6 states. For K = 1, BHMMs were trained by first
segmenting the training set with a “neutral” model, and then using the resulting
segments to perform a Viterbi initialization followed by four EM iterations. For
K > 1, they were trained by first splitting the components of the models trained with
K/2 components and then, as before, applying four EM iterations. The conventional
Viterbi algorithm was used to compute the most probable word for each test word
image.

From Fig. 10.6 it becomes clear that the use of a sliding window improves the
results to a large extent. In particular, the best result, 7.4 %, is obtained for W = 9
and I = 32, though very similar results are also obtained for W = 7 and W = 11.
It is worth noting that the best result achieved with no sliding windows (W = 1) is
17.7 %.

To get some insight into the behavior of our BHMMs, the model for character 5,
trained from folds abc with W = 9 and K = 32, is (partially) shown in Fig. 10.7
(bottom) together with its Viterbi alignment with a real image of the character 5,
extracted from sample de05_007 (top). As in Fig. 10.2 (bottom), Bernoulli proto-
types are represented as gray images, where the gray level of each pixel measures
the probability of its corresponding pixel to be black (white = 0 and black = 1).
From these prototypes, it can be seen that the model works as expected; i.e., each

state from right to left accounts for a different local part of 5 , as if the sliding
window was moving smoothly from right to left. Also, note that the main stroke of



10 Arabic Handwriting Recognition Using Bernoulli HMMs 269

Fig. 10.7 BHMM for
character 5, trained from

folds abc with W = 9 and
K = 32 (bottom), together
with its Viterbi alignment
with a real image of the
character 5, extracted from

sample de05_007 (top)

the character 5 appears almost neatly drawn in most prototypes, whereas its upper

dot appears blurred, probably due to a comparatively higher variability in window
position.

10.7.2 Effect of the Number of States

In accordance with the empirical results reported in [5], we have only tried BHMMs
of 6 states in the experiment described above. However, as discussed in [1], letters
in Arabic script differ significantly in length, and thus it might not be appropriate to
model all of them using BHMMs of identical numbers of states. With this idea in
mind, a new experiment was carried out, similar to that described above, but with
a fixed sliding window of W = 9 and a variable number of states per character. To
decide the number of states for each character, we first Viterbi-segmented all train-
ing data using BHMMs of 4 states, and then computed the average length of the
segments associated with each character. Given an average segment length for char-
acter c, T̄c , its number of states was set to F · T̄c, where F is a factor measuring the
average number of states that is required to emit a feature vector. Thus, its inverse,
1
F

, can be interpreted as a state load, that is, the average number of feature vectors
that are emitted in each state. For instance, F = 0.2 means that only a fraction of 0.2
state is required to emit a feature vector or, alternatively, that 1

0.2 = 5 feature vec-
tors are emitted on average in each state. Figure 10.8 shows the WER obtained as a
function of F , F ∈ {0.2,0.3,0.4,0.5}, for varying values of the number of mixture
components.
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Fig. 10.8 WER (%) as a
function of the factor F for
varying values of the number
of mixture components (K)

Fig. 10.9 Sample dm33_037
incorrectly recognized with
BHMMs of 6 states (top), but
correctly recognized with
BHMMs of variable number
of states (bottom). In both
cases, the recognized word
has been Viterbi-aligned at
the character level
(background color) and state
level (bottom and upper ticks)

The best result plotted in Fig. 10.8 is a WER of 7.3 %, using F = 0.4 and K = 32.
This result is slightly better than the 7.4 % obtained with 6 states per character.

In Fig. 10.9, the sample dm33_037 has been recognized using BHMMs with
W = 9, K = 32, and both 6 states (top) and a variable number of states, with
F = 0.4 (bottom). In both cases, the recognized word has been Viterbi-aligned at
the character level (background color) and state level (bottom and upper ticks). Al-
though the BHMMs of 6 states produce a recognition error,

�E	
�)�
"�� �	�  (top), the BH-

MMs of the variable number of states are able to recognize the correct word,
�E	
 �) �

N�P7�
(bottom). Note that there are two letters, “�” and “�”, that are written at the same ver-

tical position or, more specifically, at a specific column, and thus it is very difficult
for our BHMMs to recognize them as two different letters. On the other hand, the
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Table 10.1 Word error rate
(WER %) of the
BHMM-based recognizer
(with W = 9, K = 32, and
F = 0.4) in different
training-test combinations of
the abcde folds, for four
repositioning methods: none,
vertical, horizontal, and both
directions

WER %

Training Test None Vertical Horizontal Both

abc d 7.5 4.7 8.4 4.8

abd c 6.9 3.6 7.7 3.8

acd b 7.7 4.5 8.1 4.4

bcd a 7.6 4.4 8.2 4.6

abcd e 12.3 6.1 12.4 6.1

abcde e 4.0 2.2 3.9 2.0

incorrectly recognized word (top) is not very different in shape from the correct one;
e.g. the characters “ �)” and “�)” are very similar (type B [9]).

10.7.3 Effect of Repositioning and Final Results

In the experiments described above, we have not tried window repositioning after
window extraction but, as discussed in Sect. 10.6, many recognition errors of our
BHMM-based classifier might be due to its limited capability to properly model
vertical image distortions. In order to study the effect of repositioning on the clas-
sification accuracy, the standard method (no repositioning) was compared with the
three repositioning methods described in Sect. 10.6: vertical, horizontal, and both
directions. This was done with W = 9, K = 32, and F = 0.4, for the four partitions
considered in the previous experiments (abc-d, abd-c, acd-b, and bcd-a), and also for
the partitions abcd-e and abcde-e, which are commonly used to compare classifiers
in the IFN/ENIT task, especially abcd-e. The results are included in Table 10.1.

As expected, from the results in Table 10.1 it becomes clear that vertical (or
both) window repositioning greatly improves the results obtained with the standard
method or horizontal repositioning alone. To our knowledge, the result obtained
for the abcd-e partition with vertical (or both) repositioning, 6.1 %, is the best result
reported on this partition to date. Indeed, it represents a 50 % relative error reduction
with respect to the 12.3 % of WER obtained without repositioning which, to our
knowledge, was the best result published until now [3].

10.8 Concluding Remarks

Embedded Bernoulli HMMs (BHMMs) have been described and tested for Ara-
bic handwriting recognition on the well-known IFN/ENIT database of handwritten
Tunisian town names. Apart from our previous basic approach, in which narrow,
one-column slices of binary pixels are fed into BHMMs, we have used a sliding
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window of adequate width to better capture the image context at each horizontal po-
sition of the word image. Also, we have considered three methods of window repo-
sitioning after window extraction to help our BHMM-based recognizer in dealing
with vertical image distortions. The experiments reported have carefully studied the
effects of the window width, the number of states, and repositioning. As expected,
the best results have been obtained with an adequate adjustment of the window
width, number of states, number of mixture components, and—which seems even
more important—(vertical) window repositioning after window extraction. A WER
of 6.1 % has been achieved on the standard abcd-e partition, which, to our knowl-
edge, outperforms the best result known to date.
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Chapter 11
Handwritten Farsi Word Recognition Using
Hidden Markov Models

Puntis Jifroodian Haghighi and Ching Y. Suen

Abstract One of the most important script groups, which is based on Arabic al-
phabet, is the Persian/Farsi script. This script is the basis of different languages
used in Middle East and Central Asian regions. For the development of Farsi hand-
written word recognition systems, the CENPARMI group designed and collected a
database. Based on statistical features, a Hidden Markov Model based recognizer is
developed. First evaluation of the performance of this recognizer shows promising
results.

11.1 An Overview of the Indo-Iranian Languages

The Indo-Iranian languages are a branch of the Indo-European languages. This lan-
guage family is widely used in central and southern Asia, in Iran, Afghanistan, Iraq,
Pakistan, Turkey, India, and Bangladesh. This language family is divided into two
subfamilies, known as Indic and Iranian. Table 11.1 shows the Iranian and Indic
subfamilies of Indo-Iranian languages and some instances of their member lan-
guages [1].

In this section, we will describe more about the Farsi language and the charac-
teristics of its scripts.

11.1.1 Farsi Language

Farsi (Persian) is widely used in Iran, Afghanistan, Tajikistan, Uzbekistan, Bahrain,
and the surrounding areas, as shown in Fig. 11.1. Farsi has been a medium for lit-
erary and scientific contributions to the Islamic world for five centuries. Prior to
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Table 11.1 Iranian and Indic
subfamilies of Indo-Iranian
languages and some instances
of their member languages

INDIC IRANIAN

Sanskrit Avestan Old Persian Scythian

Prakrit Pashto Persian (Farsi)

Pali Arabic

Gujarati Kurdish

Marathi Ossetic

Hindustani Baluchi

Hindi

Urdu

Benagli

Bihari

Sindhi

Bhili

Rajasthani

Panjabi

Pahari

Fig. 11.1 Areas shown in red are Farsi-speaking areas in Asia

British colonization, Farsi was widely used as a second language in the southwest-
ern region of the Asian continent. It took prominence as the language of culture
and education in several Muslim courts in southern Asia and became the “official
language” under the Mughal emperors [2].
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Fig. 11.2 Four variants of
the word Payment in Farsi

Fig. 11.3 Four variants of the word Money Order which is equivalent to ��� " 4 (Havaleh) in Farsi

In Farsi, the same words can be written in different shapes. Some variants are
depicted in Fig. 11.2 and Fig. 11.3. These variants have been written by different
writers and have been collected in our dataset.

Concentrating on these shape differences can help us to design a more accurate
recognition system with better results.

11.2 Design Cycle

To design a handwriting recognition system with a high performance, we have to
train it with various handwriting styles. Therefore, as the first step, we gathered a
Farsi dataset which could be used as a reference point to evaluate the performance
of not only a handwriting recognition system, but also of a word spotting system [3].

The next step was to design and implement the handwriting recognition system.
The design cycle is shown in Fig. 11.4.

11.3 Dataset

To evaluate our recognition system, we collected a Farsi dataset which includes all
types of Farsi scripts such as isolated characters, digits, numeral strings, special
symbols, words, and texts [3]. The main purpose has been to design a dataset which
not only facilitates the development and evaluation of the Farsi recognition systems
but can also be used to compare the performance of different recognition systems.
Figure 11.5 provides an overview of the whole dataset.

The Farsi words dataset consists of about 70 word classes which are officially
used for measurement and counting purposes. These words include the measure-
ment units of distance, volume, weight, currency and words which are usually used
in documents and daily business activities. The categorized Farsi words are shown
in Tables 11.2 and 11.3.

Each word class consists of approximately 516 images. In the verification and
post-processing stages some images were deleted because of remaining noise that
could mislead the classifier. Some Farsi handwritten words and their equivalents are
shown in Table 11.4.
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Fig. 11.4 Block diagram of
the recognition system

11.4 Pre-processing

After data collection, we had to process the images to make them ready for the
recognition stage. Therefore, this stage was called the word pre-processing stage. If
the pre-processing stage was not completed successfully, then the raw data would
not have a good quality. It could then mislead the classifiers, and the recognition sys-
tem would fail. The other reason to consider this stage as one of the most important
steps in the word recognition procedure is that it forms the foundation in designing
real applications for the real world. To train our recognition system, we collected
specific kinds of data to fulfill this purpose, in a controlled environment. In other
words, the data was not gathered from real-world texts such as bank checks, en-
velopes, etc. Real-world texts are not as clean and neat as artificial ones. They may
be written on folded and dirty pieces of paper, scripts can be broken, people may be
careless in writing the scripts, etc. Therefore, a good recognition result comes from a
good pre-processing which delivers clean data. Prior to the pre-processing stage we
save the smallest rectangle containing the word image and remove the extra pixels
around the box.
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Fig. 11.5 CENPARMI Farsi dataset structure. Grouped data include training, validation, and test-
ing subsets

This following sections will describe the pre-processing steps taken through our
recognition path, i.e., image binarization, skeletonization, and dilation.

11.4.1 Image Binarization

Image binarization converts an image of 256 gray levels to a binary level, black and
white image. The reasons we use a binary image instead of a gray image for word
recognition processes are as follows:

1. Image binarization segments an image into foreground and background pixels.
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Table 11.2 Categorized,
selected Farsi words (Part 1)

2. Each pixel value in a binary image is saved in a single bit instead of 8 bits for
256 gray levels, so the image will have a smaller size. The smaller size of the
image will lead to less usage of the memory and processor.

3. To preprocess our image by removing the noise, and skeletonizing and dilating
the image, it is much easier to deal with two values instead of 256.
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Table 11.3 Categorized,
selected Farsi words (Part 2)

Table 11.4 Selected Farsi handwritten words and their equivalents

4. The computer is a binary system; therefore, designing a system based on this fact
makes the system more compatible with the computer.

The bit value of zero is interpreted as black, while the bit value of one is inter-
preted as white.

To binarize an image, we consider either a single parameter known as the inten-
sity threshold or multiple thresholds known as a band of intensity values. Then, each
pixel in the image is compared with the threshold. If the pixel’s intensity is higher
than the threshold, the pixel is set to one; otherwise it is set to zero. To define the
intensity threshold we have used Otsu’s algorithm [4].

After we have binarized the images, we can start making them ready for the
recognition process.
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Fig. 11.6 Black background image at the left shows the skeleton of the white background image
at the right. They both show the word Account in Farsi

11.4.2 Skeletonization

The main purpose of skeletonization is to extract a region-based shape feature of the
general form of an object without having to change the structure of the object. To
process the word images we used the skeleton of the words to avoid dealing with
the unequal stroke widths.

The Zhang–Suen thinning algorithm was used to extract the skeleton of the im-
ages [5]. Figure 11.6 shows a word image and its skeleton.

11.4.3 Dilation

Dilation is one of the basic operations used in mathematical morphology. Suppose
that X is the set of Euclidian coordinates corresponding to an input binary image,
and that K is the set of coordinates for the structuring elements. Let Kx denote the
translation of K so that its origin is at x. Then, the dilation of X by K is simply
the set of all points x such that the intersection of Kx with X is not empty [7]. The
dilation operation usually uses a structuring element for probing and expanding the
boundary pixels of an image [6]. We dilate the skeletonized word image to make
our system independent of stroke width. The dilation operation takes two pieces of
data as inputs. The first is the image which is to be dilated. The second is a set of
coordinate points known as a structuring element (kernel). This kernel determines
the precise effect of the dilation of the input image. The following K matrix shows
the structuring element, which is a 4 × 4 square:

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦ (11.1)

Figure 11.7 shows a written word image from the Farsi dataset and its dilated
image.

After gathering the dataset and pre-processing the data to enhance their qualities
and make them ready for the recognition processes, we can start the recognition
procedure. In the next section, we will describe feature extraction, which is the first
step in the recognition procedure.
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Fig. 11.7 Black background image at left shows the dilated image of the white background image
at right. They both show the word Account in Farsi

11.5 Feature Selection and Extraction

For feature extraction, we first need to define the features. In the real world, we
recognize everything by extracting its identifying features, and these can be different
from one object to the other. In pattern recognition, choosing the features depends
on the classifier which will be used to recognize them and the characteristics of the
pattern. Selected features should be able to model the characteristics of the pattern.

Features can be extracted globally or locally from an image. In extracting the
global features, we usually consider the word as a whole image, which is called
the holistic approach. In the holistic approach, word segmentation is not neces-
sary, whereas in analytical approaches, the word is segmented into smaller units.
Therefore, the features are extracted locally from each small unit. Examples of lo-
cal features include: percentage of foreground pixels within a window, foreground-
background transition statistics, percentage of the foreground pixels in the core, and
regions of ascenders and descenders. Global features can be structural or statistical
features. Coefficients of the Fourier transform and invariant moments are considered
as global statistical features [8].

As described earlier, Farsi has a cursive script (connected sequence of characters
in a word), making the whole word a complex stroke, and it has numerous vari-
eties in shape. Therefore, structural features identify the script characteristics better
than statistical features. Statistical features (such as number of connected compo-
nents, holes, ascenders and descenders) cannot tolerate a large degree of variabil-
ity.

11.5.1 Feature Selection

The classifier’s accuracy strongly depends on the type of features we choose to rec-
ognize a word. To select the features, we had to consider the hidden Markov model
(HMM) capabilities and the Farsi script characteristics. Experience has shown that
HMM can make more accurate recognitions using the structural features.

In our recognition system, we used baseline dependent features to identify the
words. Baseline dependent features emphasize the existence of descenders and as-
cenders. We used a sliding window to extract the image features locally. The region
which is restricted in the sliding window is called the frame. The frame’s height
is equal to the word’s height, and the width is twice the stroke width of the word.
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Fig. 11.8 The word “Account” is shown in the figure. Red and green windows are consecutive and
the 50 % overlap is shown

Fig. 11.9 Baselines are
shown for the Amount word
image

Before feature extraction, one of the fundamental morphological operations, dila-
tion, is applied to the skeleton of the word image to make the word’s stroke widths
equally four pixels wide to ensure proper contour generation. Therefore, the sliding
window’s width was considered to be eight pixels to get a clearer shape of the im-
age. In other words, each two consecutive windows have 50 % of overlap, as shown
in Fig. 11.8.

The more identifying features we give to the classifier, the better recognition
result we can obtain, unless we mislead the classifier by overtraining it. Therefore,
to extract more features, we divided each window horizontally into 15 equal blocks.
Finally, the local features were extracted.

Our selected features were language independent, and some of them were calcu-
lated with reference to the baselines (main baseline, upper and lower baselines) of
the word. These baselines will be described in the next section.

11.5.2 Baseline Detection

Finding the baselines is a necessary step prior to doing some script processing tasks,
such as skew corrections, segmentation, and feature extractions. We avoided skew
correction in our pre-processing module because there was no or little skew de-
tected in our word images. The correction caused distortion in our images, so we
considered the skew as the variations in handwriting.

For each word, the baseline, upper baseline, and lower baseline were detected.
The upper and lower baselines divided the word image into three zones. The re-
stricted zone between the upper and lower baselines was called the core zone. The
baselines for an image are shown in Fig. 11.9.

To extract the baselines we first scan the image from top to bottom, considering
the image as a matrix of zeros and ones. The row with the most number of black
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pixels is considered as the baseline. Scanning upward from the baseline to the top of
the image, the row with the most number of black pixels is considered as the upper
baseline. Scanning downward from the baseline, the row with the most number of
black pixels is called the lower baseline.

The features we used to identify our words were baseline dependent, and they
could be divided into distribution features and concavity features, which are de-
scribed in the following sections. Twenty-five features were extracted for each
frame.

11.5.3 Distribution Features

In our system, distribution features are calculated based on the foreground (white)
pixel densities. It is easier to detect the distribution features than topological fea-
tures, but they are less resistant to noise and local distortion. Since we removed
noises in the pre-processing stage and we avoided some pre-processing which may
have caused distortion such as skew correction, we mostly used the distribution
features to recognize the word images. Our approach is based on the algorithm de-
scribed in [9] with few alterations.

Our feature vector includes 17 distribution features per frame, which are de-
scribed below:

F1 Density level of the block. Let b be the density level of the block. Then b = 0
if the number of foreground pixels in the current cell is zero, else b = 1.

F2 Density of foreground pixels, in other words, the sum of foreground pixels for
each row of the block.

F3 Number of transitions between two consecutive blocks of different density lev-
els.

F4 Derivative feature between the current frame and the previous one which shows
the difference between the y position of gravity centers of the current frame
and the previous one.

F5–F12 Eight features that represent the number of white pixels in each column of
the current frame.

F13 Normalized position of the center of gravity of the foreground pixels in the
current frame with respect to the lower baseline. F13 is calculated as follows:
F13 = g−1

h
.

F14 Density of foreground pixels over the baseline in the current frame.
F15 Density of foreground pixels under the baseline in the current frame.
F16 Number of transitions between two consecutive blocks of different density lev-

els above the lower baseline.
F17 This feature represents the zone that includes the center of gravity. If the center

of gravity is above the upper baseline F17 = 1, if it is between the upper and
lower baselines F17 = 2, and if it is under the lower baseline F17 = 3.
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Fig. 11.10 Four templates to
show the concavity of a
background pixel

11.5.4 Concavity Features

To gather some information about the local concavity and to identify the stroke
direction in each frame, we calculated the local concavity features. They were ex-
tracted by using a 3 × 3 window. Our approach is based on the algorithm described
in [9]. We considered each 3 × 3 subset of pixels by centering each subset with a
background pixel (which is a black pixel in our images), and tried to match the sub-
set with one of the four templates shown in Fig. 11.10. These four templates are the
four possible types of concavity configurations for a background pixel.

Then we kept track of the number of background pixels which matched one of
the above templates. Since we had different heights for each image, we normalized
the heights by dividing them by the height of the image.

Therefore, F18–F21 were calculated as follows: Nlu stands for the number of
background pixels which are surrounded by a white pixel at the left and up positions.
Nur stands for the number of background pixels which are surrounded by a white
pixel at the up and right positions, Nrd stands for the number of background pixels
which are surrounded by a white pixel at the right and down positions, and Ndl

stands for the number of background pixels which are surrounded by a white pixel
at the down and left positions.

F18 = Nlu

H
; F19 = Nur

H
; F20 = Nrd

H
; F21 = Ndl

H
(11.2)

We also calculated these features for the core zone of the image. To normalize
these values, we divided them by the height d of the core zone as follows:

d = UpperBaseline_YCoordinate − LowerBaseline _YCoordinate (11.3)

F22 = CNdl

d
; F23 = CNrd

d
; F24 = CNlu

d
; F25 = CNur

d
(11.4)

Because of the connected nature of the Farsi script, HMM is an acceptable classi-
fier to recognize the Farsi words. HMM systems can stochastically model sequences
of variable lengths which occur very frequently in Farsi handwritten words. HMM
can also cope with nonlinear distortions along one direction [8]. We chose a discrete
HMM to limit the number of observation symbols. Therefore, the features should be
quantized to a codebook vector. To quantize the feature vector to a codebook vec-
tor, we used the K-means clustering algorithm, which is described in the following
section.
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11.6 Clustering

Clustering is used to group data which have similar characteristics. The purpose is
to retrieve the relevant information more quickly. The difference between clustering
and classification is that, in classification, we assign data to predefined classes, while
in clustering, clusters are created during the assignment [10]. In this study the K-
means algorithm is used.

11.6.1 K-means Clustering Algorithm

The K-means clustering algorithm can cluster n observations into k mutually ex-
clusive clusters. Each cluster is represented by a vector which is the mean of the
existing data in the cluster. Therefore, the data will finally be assigned to the cluster
with the nearest mean. The purpose of the K-means algorithm is to minimize the
squared Euclidean distances between the data in each cluster [11]. The K-means is
calculated as follows:

k∑

i=1

∑

dj ∈Si

‖dj − μi‖2 (11.5)

where {d1, d2, . . . , dn} is the set of data to be clustered, k is the number of clusters,
and μi is the mean of data in each set Si .

The K-means algorithm is a heuristic algorithm. Therefore, the result depends
strongly on the initial clusters, and there is no guarantee of achieving the global
optimum. The algorithm can be simply described as follows:

1. k initial means are randomly selected from the data.
2. The data with the nearest mean to the initial k randomly selected data will be

assigned to the k-th cluster.
3. The centroid of each cluster becomes the new mean.
4. Steps 2 and 3 are repeated until the sum of distances from each object to its

cluster centroid cannot be decreased further [13].

11.6.2 Optimum Number of Clusters (k)

In the K-means algorithm, k is the number of clusters that is predefined to the algo-
rithm and is considered as an input argument. Choosing an inappropriate value for
k may lead to a bad recognition result. The proper choice of k is difficult and de-
pends on the shape and scale of the distribution of points in a dataset and the desired
clustering resolution [14].
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Choosing k Using Silhouette Plot

As described, a way to find the proper value of k is to analyze the existing clusters.
You can use a silhouette plot function to see how well the data is separated into
different clusters. There is a measure which ranges from −1 to +1 and indicates if a
data point is very distant from the cluster that it does not belong to or is very close to
it. Positive 1 shows a data point that is very close to another cluster and is probably
wrongly clustered. The larger the quantity of data, the more time consuming and
complex the calculation will be when plotting the K-means silhouette. Therefore,
the silhouette plot is not a practical way of optimizing the number of clusters.

Rule of Thumb to Find k

Another way to calculate the optimum number of clusters is through the following
formula [15]:

k ≈
(

n

2

) 1
2

(11.6)

where n is the number of data points. For instance, our feature vector’s size is
716,596×25 (the total number of blocks times the total number of features). There-
fore, the number of data points is 1,791,490,012 and k is approximately 2993.

The recognition process starts with model selection, which will be described in
the following sections.

11.7 Model Selection and Hidden Markov Models

The model selection depends on the characteristics of the problem. A model is se-
lected to predict output from input, which can be parametric or nonparametric. There
are different types of models which can perform the recognition, such as linear mod-
els, classification and regression trees, neural networks, kernels, and hybrid meth-
ods. The selection of the optimal model is difficult. The selected method should
perform best on unseen (test) data.

Among all of the classification models, hidden Markov models (HMMs) were
chosen because of the connected nature of the Farsi script. HMM systems stochasti-
cally model sequences of variable lengths and cope with nonlinear distortions along
one direction. As described previously, the discrete HMM was selected to limit the
number of observation symbols [8]. The HMM has particular advantages when com-
pared to the other models, such as embedded training, i.e., automatic training of
character models on non-segmented words [16].

In this section, we will describe HMM concepts, as well as our HMM and its
initial estimation. We will also discuss the practical issues related to the implemen-
tation and optimization of HMMs.
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11.7.1 Markov Systems

A Markov system is a chain that has different states with stochastic identities. In this
chain, we have states at time t that are influenced by the states at time t − 1. HMMs
are the best solution to these kinds of problems in speech recognition, handwrit-
ing recognition, gesture recognition, bioinformatics, and financial analysis, etc. In a
Markov model, all the states are visible; therefore, the state transition probabilities
are the only parameters [17].

11.7.2 Hidden States

In HMMs, the states are hidden to the observer, but the outputs are clear. We call this
kind of Markov model a hidden one because the sequence which leads to a specific
output is hidden, even if the parameters are all precisely identified.

11.7.3 HMM Notation

An HMM has three parameters, which are shown as follows:

λ = (π,A,B) (11.7)

where λ is an HMM which is defined by π , A and B . π is the initial distribution of
the states. A is the state transition matrix, and B is the confusion matrix.

We consider N as the number of states in a model and M as the number of
distinct observation symbols per state, which in a discrete HMM is the number of
clusters. In other words, M is the number of alphabets. We also have to determine
the topology of our model.

We calculate the state transition matrix as follows:

A = {aij } (11.8)

aij = P
⌈
q(t + 1) = Sj | qt = Si

⌉; 1 ≤ i, j ≤ N (11.9)

We denote S = {S1, S2, S3, . . . , Sn} which represents the states, and the state at
time t is qt . The topology of the HMM shows the states which can be reached
through each state. For instance, in our model we considered that each state has a
self-transition or a transition to the next state or the next two states, which is shown
in Fig. 11.11. If any state can reach all the other states, then we have aij > 0 for all
states [17].

The observation for a symbol probability distribution is called the confusion ma-
trix, which is shown by B . It is calculated as follows:

B = {bj (k)
}

(11.10)
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Fig. 11.11 A hidden Markov model with four states. Each state has a self-transition, a transition
to the next state, and another transition to the next two states

bj (k) = P [Vk at t | qt = Sj ]; 1 ≤ j ≤ N and 1 ≤ k ≤ N (11.11)

The confusion matrix shows the probability of emission for symbol k at state j .
Another parameter which should be defined to complete the model is the vector

of the initial state probabilities. It is calculated as follows:

π = {πi} (11.12)

πi = P [q1 = Si]; 1 ≤ i ≤ N (11.13)

where π is a vector which shows the probability of being in each state at time
t = 1.

11.7.4 Discrete or Continuous HMM

In speech recognition, a continuous HMM is more acceptable, while in handwrit-
ing recognition, it has always been a challenge to select between the continuous
and discrete HMMs. In 1996, a study was conducted to show a comparison be-
tween the continuous and discrete HMM for cursive handwriting recognition [18].
The research showed that the discrete HMM leads to a better result in handwriting
recognition.

In a discrete hidden Markov model (DHMM), the output of the process is ob-
served as a sequence of observations which belong to a finite alphabet. These obser-
vations represent the indices of a codebook. The codebook is calculated by a vector
quantization method as per our description in the previous section. While calculat-
ing the quantized vector, some data will be lost due to the quantization error; this is
called distortion. In other words, DHMM quantizes the data to a limited alphabet,
which causes a loss of information.

By using a continuous HMM (CHMM) we can eliminate the distortion problem,
but CHMM has more parameters and requires more memory [8].

Therefore, we chose DHMM to design and implement our handwriting word
recognition system.
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11.7.5 Three Main Problems in HMM: Evaluation, Decoding, and
Learning

For the HMM to be useful in real applications, three main problems should be
solved.

Evaluation Suppose we have different HMMs, each with a set of triple λ =
(π,A,B) and data as a sequence of observations. The problem is to find the best
model which can generate the data. The forward algorithm can solve this problem
by calculating the probability of an observation sequence given an HMM model.
This problem usually needs to be solved in script recognition or speech recognition
processes, when we have different models and we want to match a testing script or
spoken word with the existing models.

Decoding The problem is to find the hidden states that lead to the sequence of
observations. The Viterbi algorithm is usually used to solve this problem. There is
no correct sequence to be decoded. Therefore, we use the optimal criteria to solve
the problem [17]. This problem needs to be solved widely in natural language pro-
cessing (NLP), where we need to tag words with their syntactic classes as nouns,
verbs, etc. Thus we consider the words in a sentence as observations and the syn-
tactic classes as hidden states. The purpose is to find the best syntactic class for a
word, given the context [19].

Learning In this problem, we have the observation sequence, we know the hidden
states that have led to the observations, and we try to find the best (most probable)
HMM (π,A,B) that describes the observed sequence. The forward-backward algo-
rithm is usually used to solve this problem.

In script recognition, we use the solution to problem 3 (learning) to model the
script, the solution to problem 2 (decoding) to improve the model, and the solution
to problem 1 (evaluation) to find the best matched script for the given test data.

11.7.6 Our Hidden Markov Model and Initial Estimation

It is very important to keep the original size of the image when we model and design
our recognition system with a hidden Markov chain, because the number of sliding
windows which should cover the whole image is an identifying feature which can
be used to differentiate some of the words.

One of the most important parameters which should be defined for an HMM is
the number of states. As described in [20], to calculate the number of states for our
model, we first calculated the least number of sliding windows per class. Then, we
chose the smallest value as the number of states for the classifier.

For the topology of our model, we considered a right-to-left HMM (RTL HMM)
to fit the Farsi scripts characteristic, and each state could have a self-transition, or a
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transition to the next or two next states, as was shown in Fig. 11.11 for a four-state
model.

To start working with the HMM, we also had to define some initial values for A,
B and π .

We initially considered equal transition probabilities for the states. The following
image shows a transition matrix for the model that is illustrated in Fig. 11.11.

S1 S2 S3 S4

S1
1
3

1
3

1
3 0

S2 0 1
3

1
3

1
3

S3
1
3 0 1

3
1
3

S4
1
3

1
3 0 1

3

This transition matrix is an (N ×N) size matrix, where N is the number of states.
To calculate the initial values for the confusion matrix, we considered an equal

emission probability for all symbols. Therefore, if M shows the number of symbols,
the probability to emit each symbol at each state is 1

M
. For instance, for an HMM

model with four states and three symbols we get the following confusion matrix:

O1 O2 O3

S1
1
3

1
3

1
3

S2
1
3

1
3

1
3

S3
1
3

1
3

1
3

S4
1
3

1
3

1
3

where O shows the observation or symbol.
Finally, to calculate π , the random values are chosen for the probability of the

initial states. Then, we normalize the values to make the entries of the array add up
to 1.

11.7.7 Training the HMM Word Recognition System

There are different ways to train an HMM. A detailed description can be found
in [21]. We chose the maximum likelihood (ML) criterion to train the models. In
this criterion, during the training stage the HMM parameters are first initialized and
then iteratively re-estimated such that the likelihood of the model produced by the
training sequences increases. In our recognition system, we first defined the initial
estimation as per our description in Sect. 11.7.6. The training process stops when
the likelihood reaches a maximum value. Maximum mutual information (MMI) and
minimum discrimination information (MDI) are alternative HMM training crite-
ria [21].
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We used the Baum–Welch (BW) algorithm to train word class models. The first
step is to calculate P(O|λ), which is the probability of the observation sequence O ,
given the model λ.

We used the forward algorithm to calculate P(O|λ). The forward variable, αt (i),
is defined as follows:

αt (i) = P(O1,O2,O3, . . . ,Ot , qt = Si |λ) (11.14)

which is the probability of the partial observation sequence O1,O2,O3, . . . ,Ot , and
state Si at time t , given the model λ. The algorithm for inducting αt (i) is described
below.

Initialization:

αt (i) = πibi(Oi), 1 ≤ i ≤ N (11.15)

Induction:

αt+1(j) =
[

N∑

i=1

αt (i)aij

]

bi(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (11.16)

Termination:

P(O|λ) =
N∑

i=1

αT (i) (11.17)

The purpose of the BW algorithm is to adjust the model parameters λ =
(A,B,π) to maximize P(O|λ). This is the most difficult problem in the HMM
domain. The BW is an iterative algorithm based on the forward and backward algo-
rithms. The backward variable βt (i) is defined as:

βt (i) = P(Ot+1,Ot+2,Ot+3, . . . ,OT , qt = Si, λ) (11.18)

which is the probability of the observation sequence from t + 1 to the end, at state
Si at time t given the model λ. The algorithm for inducting αt (i) is described below.

Initialization:

βT (i) = 1, 1 ≤ i ≤ N (11.19)

Induction:

βt (i) =
N∑

j=1

aij bj (Ot+1)βt+1(j), t = T − 1, T − 2, . . . ,1, 1 ≤ i ≤ N (11.20)

Now we can define the probability of being in state Si at time t , and state Sj at
time t + 1, given the model and the observation sequence as follows:

ξ(i, j) = P(qt = Si, qt+1 = Sj |O,λ) (11.21)
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ξ(i, j) = αt (i)aij bj (Ot+1)βt+1(j)

P (O|λ)
(11.22)

γt (i), the probability of being in state Si at time t given the observation sequence
O and model λ, is calculated as follows.

γt (i) = P(qt = Si |O,λ) (11.23)

or it can be calculated, using the forward and backward variables, as:

γt (i) = αt (i)βt (i)

P (O|λ)
(11.24)

The expected number of transitions from Si is denoted by

T −1∑

t=1

γt (i) (11.25)

and the expected number of transitions from Si to Sj is denoted by

T −1∑

t=1

ξt (i, j) (11.26)

To re-estimate the parameters π , A and B of an HMM, we can use the following
formulas:

1. Expected frequency in state Si at time t = 1.

πt = γ1(i)

2. Transition coefficient = expected number of transitions from state Si to Sj , di-
vided by the expected number of transitions from state Si .

aij =
∑T −1

t=1 ξt (i, j)
∑T −1

t=1 γt (i)

3. Observation symbol probability = expected number of times in state j , while
observing symbol vk , divided by the expected number of times in state j .

bj (k) =
∑T

t=1,S.t.Ot=vk
γt (i)

∑T
t=1 γt (j)

11.7.8 Testing the HMM Word Recognition System

In the testing stage our problem is to find the best model that can generate the data.
Viterbi’s algorithm is able to match a single model to an observed sequence of sym-
bols.
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Consider the following variables:

• δt (i): Scores the likelihood of the observation sequence O1,O2,O3, . . . ,Ot hav-
ing been produced by the most likely sequence of model states, which ends at
state i at time t .

• ψt(i): The array used to trace the ML path which keeps a record of the states
which maximized the likelihood from time 1 to t .

Viterbi’s algorithm is described as follows [21].
Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (11.27)

ψ1(i) = 0 (11.28)

Recursion:

δt (i) = max
1≤i≤N

[
δt−1(i)aij

]
bj (Ot ), 2 ≤ t ≤ T , 1 ≤ j ≤ N (11.29)

ψt(i) = arg max
1≤i≤N

[
δt−1(i)aij

]
, 2 ≤ t ≤ T , 1 ≤ j ≤ N (11.30)

Termination:

P ∗ = max
1<i<N

[
δT (i)

]
(11.31)

q∗
T = arg max

1<i<N

[
δT (i)

]
(11.32)

Backtracking for state sequence:

q∗
T = ψt+1

(
q∗
t+1

)
, t = T − 1, T − 2, . . . ,1 (11.33)

Here P ∗ is the probability of the sequence being produced by each model. The
model that has the greatest likelihood of producing this observation sequence defines
the word class.

11.8 Results

As we have described in detail, our experiments were conducted on the CENPARMI
Farsi dataset with a lexicon size of about 70 frequently used words in Farsi docu-
ments. A holistic approach was chosen to model each word as a hidden Markov
model (HMM). In the literature, words in small size lexicons were modeled sepa-
rately, while for the large size lexicons the path discriminant method could be used
to reduce the memory usage and process time. A right-to-left HMM was designed
to consider the nature of the Farsi script. The numbers of states were chosen based
on the least number of sliding windows per class.
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The number of iterations to train each model was ten, and the training results im-
proved steadily using the Baum–Welch algorithm. In our research we tried to show
the importance of the baseline-related features. Successful experiments with high
recognition rates showed that the distribution and concavity features could improve
the system performance.

Finally, encouraging recognition rates of 98.76 % and 96.02 % have been ob-
tained for the training and testing sets, respectively. Our designed system is reliable,
robust to noise, and reasonably fast.
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Chapter 12
Offline Arabic Handwriting Recognition
with Multidimensional Recurrent Neural
Networks

Alex Graves

Abstract Offline handwriting recognition requires a combination of computer vi-
sion and sequence learning. In most systems the two elements are handled sepa-
rately, with sophisticated pre-processing techniques used to extract the image fea-
tures and sequential models such as HMMs used to provide the transcriptions. This
chapter considers an alternative system, based on multidimensional recurrent neural
networks, that learns directly from pixel data, and describes its winning entry to a
major Arabic offline handwriting recognition competition.

12.1 Introduction

Offline handwriting recognition is usually performed by first extracting a sequence
of features from the image, then using either a hidden Markov model (HMM) [9] or
an HMM/neural network hybrid [10] to transcribe the features.

However, a system trained directly on pixel data has several potential advantages.
One is that defining input features suitable for an HMM requires considerable time
and expertise. Furthermore, the features must be redesigned for every different al-
phabet. In contrast, a system trained on raw images can be applied with equal ease
to, for example, Arabic and English. Another potential benefit is that using raw data
allows the visual and sequential aspects of handwriting recognition to be learned
together, rather than treated as two separate problems. This kind of ‘end-to-end’
training is often beneficial for machine learning algorithms, since it allows them
more freedom to adapt to the task [13].

Furthermore, recent results suggest that recurrent neural networks (RNNs) may
be preferable to HMMs for sequence labelling tasks such as speech [5] and online
handwriting recognition [6]. One possible reason for this is that RNNs are trained
discriminatively, whereas HMMs are generative. Although generative approaches
offer more insight into the data, discriminative methods tend to perform better at
tasks such as classification and labelling, at least when large amounts of data are
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available [15]. Indeed, much work has been done in recent years to introduce dis-
criminative training to HMMs [11]. Another important difference is that RNNs, un-
like HMMs, do not assume successive data points to be conditionally independent
given some discrete internal state, which is often unrealistic for cursive handwriting.

This chapter will describe an offline handwriting recognition system based on
recurrent neural networks. The system is trained directly on raw images, with no
manual feature extraction. It won several prizes at the 2009 International Conference
on Document Analysis and Recognition, including first place in the offline Arabic
handwriting recognition competition [14].

The system was an extended version of a method used for online handwriting
recognition from raw pen trajectories [6]. The long short-term memory (LSTM)
network architecture [3, 8] was chosen for its ability to access long-range context,
and the connectionist temporal classification [5] output layer allowed the network
to transcribe the data with no prior segmentation.

Applying RNNs to offline handwriting is more challenging, since the input is no
longer one dimensional. A naive approach would be to present the images to the
network one vertical line at a time, thereby transforming them into 1D sequences.
However, such a system would be unable to handle distortions along the vertical
axis; for example, the same image shifted up by one pixel would appear completely
different. A more robust method is offered by multidimensional recurrent neural
networks (MDRNNs) [7]. MDRNNs, which are a special case of directed acyclic
graph networks [1], generalise standard RNNs by providing recurrent connections
along all spatio-temporal dimensions present in the data. These connections make
MDRNNs robust to local distortions along any combination of input dimensions
(e.g. image rotations and shears, which mix vertical and horizontal displacements)
and allow them to model multidimensional context in a flexible way. We use mul-
tidimensional LSTM [7] because it is able to access long-range context along both
input directions.

The problem remains, however, of how to transform 2D images into 1D label
sequences. The solution presented here is to pass the data through a hierarchy of
MDRNN layers, with subsampling windows applied after each level. The heights
of the windows are chosen to incrementally collapse the 2D images onto 1D se-
quences, which can then be labelled by the output layer. Hierarchical structures are
common in computer vision [17], because they allow complex features to be built
up in stages. In particular our multilayered structure is similar to that used by con-
volutional networks [12], although it should be noted that because convolutional
networks are not recurrent, they are difficult to apply to unsegmented cursive hand-
writing recognition.

The system is described in Sect. 12.2, experimental results are given in Sect. 12.3,
and conclusions and directions for future work are given in Sect. 12.4.

12.2 Method

The three components of the recognition system are: (1) multidimensional recurrent
neural networks, and multidimensional LSTM in particular; (2) the connectionist
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Fig. 12.1 Two-dimensional
RNN. The thick lines show
connections to the current
point (i, j). The connections
within the hidden layer plane
are recurrent. The dashed
lines show the scanning strips
along which previous points
were visited, starting at the
top left corner

temporal classification output layer; and (3) the hierarchical structure. In what fol-
lows we describe each component in turn, then show how they fit together to form a
complete system. For a more detailed description of (1) and (2) we refer the reader
to [4].

12.2.1 Multidimensional Recurrent Neural Networks

The basic idea of multidimensional recurrent neural networks (MDRNNs) [7] is to
replace the single recurrent connection found in standard recurrent networks with as
many connections as there are spatio-temporal dimensions in the data. These con-
nections allow the network to create a flexible internal representation of surrounding
context, which is robust to localised distortions.

An MDRNN hidden layer scans through the input in 1D strips, storing its ac-
tivations in a buffer. The strips are ordered in such a way that at every point the
layer has already visited the points one step back along every dimension. The hid-
den activations at these previous points are fed to the current point through recurrent
connections, along with the input. The 2D case is illustrated in Fig. 12.1.

One such layer is sufficient to give the network access to all context against
the direction of scanning from the current point (e.g. to the top and left of (i, j)

in Fig. 12.1). However we usually want surrounding context in all directions. The
same problem exists in 1D networks, where it is often useful to have information
about the future as well as the past. The canonical 1D solution is to use bidirectional
recurrent neural networks [18], where two separate hidden layers scan through the
input forwards and backwards. The generalisation of bidirectional networks to n

dimensions (multidirectional networks) requires 2n hidden layers, starting in every
corner of the n-dimensional hypercube and scanning in opposite directions. The 2D
case is shown in Fig. 12.2. All the hidden layers are connected to a single output
layer, which therefore receives context information from all directions.

The error gradient of an MDRNN can be calculated with an n-dimensional ex-
tension of backpropagation through time. As in the 1D case, the data is processed
in the reverse order of the forward pass, with each hidden layer receiving both the
output derivatives and its own n ‘future’ derivatives at every timestep.

Let a
p
j and b

p
j be respectively the input and activation of unit j at point p =

(p1, . . . , pn) in an n-dimensional input sequence x with dimensions (D1, . . . ,Dn).
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Fig. 12.2 Axes used by the
four hidden layers in a
multidirectional 2D RNN.
The arrows inside the
rectangle indicate the
direction of propagation
during the forward pass

Let p−
d = (p1, . . . , pd − 1, . . . , pn) and p+

d = (p1, . . . , pd + 1, . . . , pn). Let wij and
wd

ij be respectively the weight of the feedforward connection from unit i to unit
j and the recurrent connection from i to j along dimension d . Let θh be the acti-
vation function of hidden unit h, and for some unit j and some differentiable ob-
jective function O let δ

p
j = ∂O

∂a
p
j

. Then the forward and backward equations for an

n-dimensional MDRNN with I input units, K output units, and H hidden summa-
tion units are as follows:

Forward Pass

a
p
h =

I∑

i=1

x
p
i wih +

n∑

d=1:
pd>0

H∑

ĥ=1

b
p−

d

ĥ
wd

ĥh

b
p
h = θh

(
a

p
h

)

Backward Pass

δ
p
h = θ ′

h

(
a

p
h

)
(

K∑

k=1

δ
p
k whk +

n∑

d=1:
pd<Dd−1

H∑

ĥ=1

δ
p+

d

ĥ
wd

hĥ

)

Multidimensional LSTM

Long short-term memory (LSTM) [3, 8] is an RNN architecture designed for data
with long-range interdependencies. An LSTM layer consists of recurrently con-
nected ‘memory cells’, whose activations are controlled by three multiplicative gate
units: the input gate, forget gate and output gate. The gates allows the cells to store
and retrieve information over time, giving them access to long-range context. An
illustration of an LSTM memory cell is shown in Fig. 12.3.

The standard formulation of LSTM is explicitly one dimensional, since each cell
contains a single recurrent connection, whose activation is controlled by a single
forget gate. However, we can extend this to n dimensions by using instead n recur-
rent connections (one for each of the cell’s previous states along every dimension)
with n forget gates.
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Fig. 12.3 LSTM memory
cell. The internal state of the
cell is maintained with a
recurrent connection of fixed
weight 1.0. The three gates
collect activations from inside
and outside the block, and
control the cell via
multiplicative units (small
circles). The input and output
gates scale the input and
output of the cell, while the
forget gate scales the internal
state

Consider a multidimensional LSTM (MDLSTM) memory cell in a hidden layer
of H cells, connected to I input units and K output units. The subscripts c, ι, φ

and ω refer to the cell, input gate, forget gate and output gate respectively. b
p
h is the

output of cell h in the hidden layer at point p in the input sequence, and s
p
c is the state

of cell c at p. f1 is the activation function of the gates, and f2 and f3 are respectively
the cell input and output activation functions. The suffix φ,d denotes the forget gate
corresponding to recurrent connection d . The input gate ι is connected to previous
cell c along all dimensions with the same weight (wcι), whereas the forget gates are
connected to cell c with a separate weight wc(φ,d) for each dimension d . Then the
forward and backward pass are as follows:

Forward Pass

Input Gate:

bp
ι = f1

(
I∑

i=1

x
p
i wiι +

n∑

d=1:
pd>0

(

wcιs
p−

d
c +

H∑

h=1

b
p−

d

h wd
hι

))

Forget Gate:

b
p
φ,d = f1

(
I∑

i=1

x
p
i wi(φ,d) +

n∑

d ′=1:
pd′>0

H∑

h=1

b
p−

d′
h wd ′

h(φ,d) +
{

wc(φ,d)s
p−

d
c if pd > 0

0 otherwise

)
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Cell:

a
p
c =

I∑

i=1

x
p
i wic +

n∑

d=1:
pd>0

H∑

h=1

b
p−

d

h wd
hc

State:

s
p
c = bp

ι f2
(
a

p
c

)+
n∑

d=1:
pd>0

s
p−

d
c b

p
φ,d

Output Gate:

bp
ω = f1

(
I∑

i=1

x
p
i wiω +

n∑

d=1:
pd>0

H∑

h=1

b
p−

d

h wd
hω + wcωs

p
c

)

Cell Output:

b
p
c = bp

ωf3
(
s

p
c

)

Backward Pass

Cell Output:

ε
p
c

def= ∂O

∂b
p
c

=
K∑

k=1

δ
p
k wck +

n∑

d=1:
pd<Dd−1

H∑

h=1

δ
p+

d

h wd
ch

Output Gate:

δp
ω = f ′

1

(
ap
ω

)
ε

p
c f3
(
s

p
c

)

State:

ε
p
s

def= ∂O

∂s
p
c

= bp
ωf ′

3

(
s

p
c

)
ε

p
c + δp

ωwcω +
n∑

d=1:
pd<Dd−1

(
ε

p+
d

s b
p+

d

φ,d + δ
p+

d
ι wcι + δ

p+
d

φ,dwc(φ,d)

)

Cell:

δ
p
c = bp

ι f ′
2

(
a

p
c

)
ε

p
s

Forget Gate:

δ
p
φ,d =

{
f ′

1(a
p
φ,d)s

p−
d

c ε
p
s if pd > 0

0 otherwise
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Input Gate:

δp
ι = f ′

1

(
ap
ι

)
f2
(
a

p
c

)
ε

p
s

12.2.2 Connectionist Temporal Classification

Connectionist temporal classification (CTC) [5] is an output layer designed for se-
quence labelling with RNNs. It does not require pre-segmented training data, or
post-processing to transform its outputs into transcriptions. It trains the network
to predict a conditional probability distribution over all possible output label se-
quences, or labellings, given the complete input sequence.

A CTC output layer contains one more unit than there are elements in the alpha-
bet L of labels for the task. The output activations are normalised at each timestep
with the softmax activation function [2]. The first |L| outputs estimate the probabili-
ties of observing the corresponding labels at that time, and the extra output estimates
the probability of observing a ‘blank’, or no label. For a length T input sequence x,
the complete sequence of CTC outputs therefore defines a probability distribution
over the set L′T of length T sequences over the alphabet L′ = L∪ {blank}. We refer
to the elements of L′T as paths. Since the probabilities of the labels at each timestep
are conditionally independent given x, the conditional probability of a path π ∈ L′T
is given by

p(π |x) =
T∏

t=1

yt
π(t), (12.1)

where yt
k is the activation of output unit k at time t .

Paths are mapped onto labellings l ∈ L≤T by an operator B that removes first
the repeated labels, then the blanks. So for example, both B(a,−, a, b,−) and
B(−, a, a,−,−, a, b, b) yield the labelling (a, a, b). Since the paths are mutually
exclusive, the conditional probability of some labelling l ∈ L≤T is the sum of the
probabilities of all paths corresponding to it:

p(l|x) =
∑

π∈B−1(l)

p(π |x). (12.2)

This ‘collapsing together’ of different paths onto the same labelling is what allows
CTC to use unsegmented data, because it means that the network only has to learn
the order of the labels, and not their alignment with the input sequence.

Although a naive calculation of Eq. (12.2) is unfeasible, it can be efficiently
evaluated with a dynamic programming algorithm, similar to the forward-backward
algorithm for HMMs.

To allow for blanks in the output paths, for each labelling l ∈ L≤T consider a
modified labelling l′ ∈ L′≤T , with blanks added to the beginning and the end and
inserted between every pair of labels. The length |l′| of l′ is therefore 2|l| + 1.
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For a labelling l, define the forward variable α(s, t) as the summed probability
of all path beginnings reaching index s of l′ at time t , and the backward variables
β(s, t) as the summed probability of all path endings that would complete the la-
belling l if the path beginning had reached s at time t . Both the forward and back-
ward variables are calculated recursively [5]. The label sequence probability is given
by the sum of the products of the forward and backward variables at any timestep,
i.e.

p(l|x) =
|l′|∑

s=1

α(s, t)β(s, t). (12.3)

Objective Function

Let S be a training set, consisting of pairs of input and target sequences (x, z), where
|z| ≤ |x|. Then the objective function O for CTC is the negative log probability of
the network correctly labelling all of S:

O = −
∑

(x,z)∈S

lnp(z|x). (12.4)

The network can be trained with gradient descent by first differentiating O with re-
spect to the outputs, then using backpropagation through time to find the derivatives
with respect to the weights.

Note that the same label (or blank) may be repeated several times for a single
labelling l. We define the set of positions where label k occurs as

lab(l, k) = {s : l′s = k
}
, (12.5)

which may be empty. Setting l = z and differentiating O with respect to the network
outputs for a particular element (x, z) in the training set, we obtain:

∂O
∂at

k

= −∂ lnp(z|x)

∂at
k

= yt
k − 1

p(z|x)

∑

s∈lab(z,k)

α(s, t)β(s, t), (12.6)

where at
k and yt

k are respectively the input and output of CTC unit k at time t for
some (x, z) ∈ S.

Decoding

Once the network is trained, we can label some unknown input sequence x by choos-
ing the labelling l∗ with the highest conditional probability, i.e.

l∗ = arg max
l

p(l|x). (12.7)
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In cases where a dictionary is used, the labelling can be constrained to yield only
sequences of complete words using the CTC token passing algorithm [6]. For the
experiments in this paper, the labellings were further constrained to give single word
sequences only, and the n most probable words were recorded. For words with vari-
ant spellings, the summed probability of all variants was used as the probability.

Let D be a dictionary of words. All words in a subset U of D are unique, and
all other words in D are variants of some word in U . For each word u ∈ U , define
v(u) as the set of variants of u, which includes u itself. For each word w, define the
modified word w′ as w with blanks added at the beginning and end and between
each pair of labels. Therefore |w′| = 2|w|+1. For segment s of word w′ at timestep
t in the output sequence, the value of tok(w, s, t) is defined as the probability of the
most probable partial output path π(1 : t) such that π(t) = w′(s) and B(π(1 : t)) =
w(1 : s/2), where A(b : c) denotes the subsequence of sequence A from index b to
index c.

At every timestep t of the length T output sequence, each segment s of each
modified word w′ holds a single token tok(w, s, t). This is the highest token reach-
ing that segment at that time. The output token tok(w,−1, t) is the highest token
leaving word w at time t .

Pseudocode is provided in Algorithm 1. Note that in cases where decoding speed
is important, the algorithm could be optimised by storing the words in a tree struc-
ture.

12.2.3 Network Hierarchy

Many computer vision systems use a hierarchical approach to feature extraction,
with the features at each level used as input to the next level [17]. This allows com-
plex visual properties to be built up in stages. Typically, such systems use subsam-
pling, with the feature resolution decreased at each stage. They also generally have
more features at the higher levels. The basic idea is to progress from a small number
of simple local features to a large number of complex global features.

We created a hierarchical structure by repeatedly composing MDLSTM layers
with feedforward layers. The basic procedure is as follows. (1) The image is divided
into pixel windows, each of which is presented as a single input to the first set
of MDLSTM layers (e.g. a 4 × 3 window is collapsed to a length 12 vector). If
the image does not divide exactly into windows, it is padded with zeros. (2) The
four MDLSTM layers scan through the window vectors in all directions. (3) The
activations of the MDLSTM layers are collected into windows. (4) These windows
are given as input to a feedforward layer. Note that all the layers have a 2D array
of activations: e.g. a 10 unit feedforward layer with input from a 5 × 5 array of
MDLSTM windows has a total of 250 activations.

The above process is repeated as many times as required, with the activations
of the feedforward layer taking the place of the original image. The purpose of the
windows is twofold: to collect local contextual information, and to reduce the area
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1: Initialisation:
2: for all words w ∈ D do
3: tok(w,1,1) = lny1

b

4: tok(w,2,1) = lny1
w1

5: if |w| = 1 then
6: tok(w,−1,1) = tok(w,2,1)

7: else
8: tok(w,−1,1) = −∞
9: end if

10: tok(w, s,1) = −∞ for all other s

11: end for
12:

13: Algorithm:
14: for t = 2 to T do
15: sort output tokens tok(w,−1, t − 1) by ascending value
16: for all words w ∈ D do
17: for segment s = 1 to |w′| do
18: P = {tok(w, s, t − 1), tok(w, s − 1, t − 1)}
19: if w′(s) �= blank and s > 2 and w′(s − 2) �= w′(s) then
20: add tok(w, s − 2, t − 1) to P

21: end if
22: tok(w, s, t) = max(P ) + lnyt

w′(s)
23: end for
24: tok(w,−1, t) = max(tok(w, |w′|, t), tok(w, |w′| − 1, t))

25: end for
26: end for
27:

28: Termination:
29: for all unique words u ∈ U do
30: tok(u,−1, T ) =∑w∈v(u) tok(w,−1, T )

31: end for
32: output n best tok(u,−1, T )

Algorithm 1: CTC token passing algorithm for single words

of the activation arrays. In particular, we want to reduce the vertical dimension,
since the CTC output layer requires a 1D sequence as input. Note that the windows
themselves do not reduce the overall amount of data; that is done by the layers that
process them, which are therefore analogous to the subsampling steps in other ap-
proaches (although with trainable weights rather than a fixed subsampling function).

For most tasks we find that a hierarchy of three MDLSTM/feedforward stages
gives the best results. We use the standard ‘inverted pyramid’ structure, with small
layers at the bottom and large layers at the top. As well as allowing for more fea-
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tures at higher levels, this leads to efficient networks, since most of the weights are
concentrated in the upper layers, which have a smaller input area.

Unless we know that the input images are of fixed height, it is difficult to choose
window heights that ensure that the final feature map will always be one dimen-
sional, as required by CTC. A simple solution is to collapse the final array by sum-
ming over all the inputs in each vertical line; i.e. the input at time t to CTC unit k is
given by

at
k =

∑

x

a
(x,t)
k (12.8)

where a
(x,y)
k is the uncollapsed input to unit k at point (x, y) in the final array.

Furthermore, the widths of the windows must be chosen to prevent the final fea-
ture map from being shorter (horizontally) than the number of labels for a particular
sequence, since CTC assumes that the input sequence is at least as long as the label
sequence. If the trained system is to be applied to images of unknown dimensions,
it is therefore a good idea to ensure that the final feature map is considerably longer
than the target label sequence for every element of the training set.

12.2.4 Combined System

Figure 12.4 shows how MDLSTM, CTC, and the layer hierarchy combine to form
a complete recognizer.

12.3 Experiments

Variants of the above system won several competitions at the 2009 International
Conference on Document Analysis and Recognition (ICDAR 2009). In this section
we describe the winning entry to the offline Arabic handwriting recognition compe-
tition.

12.3.1 Data

The competition was based on the publicly available IFN/ENIT database of hand-
written Arabic words [16]. The data consists of 32,492 images of individual hand-
written Tunisian town and village names, of which we used 30,000 for training, and
2,492 for validation. The images were extracted from artificial forms filled in by
over 400 Tunisian people. The forms were designed to simulate writing on a letter,
and contained no lines or boxes to constrain the writing style.

Each image was supplied with a ground truth transcription for the individual
characters, and the postcode of the corresponding town. There were 120 distinct
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Fig. 12.4 A complete handwriting recognition system. First the input image is collected into win-
dows 3 pixels wide and 4 pixels high which are then scanned by four MDLSTM layers. The ac-
tivations of the cells in each layer are displayed separately, and the arrows in the corners indicate
the scanning direction. Next the MDLSTM activations are gathered into 4 × 3 windows and fed to
a feedforward layer of tanh summation units. Again the activations are displayed separately. This
process is repeated two more times, until the final MDLSTM activations are collapsed to a 1D
sequence and transcribed by the CTC layer. In this case all characters are correctly labelled except
the second to last one

characters in total, including variant forms for initial, medial, final and isolated char-
acters. The goal of the competition was to identify the postcode, from a list of 937
town names and corresponding postcodes. Many of the town names had transcrip-
tion variants, giving a total of 1,518 entries in the complete dictionary.

The test data (which is not published) was divided into sets ‘f’ and ‘s’. The main
competition results were based on set ‘f’. Set ‘s’ contains data collected in the
United Arab Emirates using the same forms; its purpose was to test the robust-
ness of the recognizers to regional writing variations. The systems were allowed
to choose up to 10 postcodes for each image, in order of preference. The test set
performance using the top 1, top 5, and top 10 answers was recorded by the organ-
isers.
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12.3.2 Network Parameters

Three versions of the MDLSTM handwriting recognition system were entered for
the competition, with slightly different parameters. Within the competition, they
were given the collective group ID ‘MDLSTM’. For the first two networks (assigned
system IDs 9 and 10 in the competition) the topology shown in Fig. 12.4 was used,
with each layer fully connected to the next layer in the hierarchy, all MDLSTM
layers connected to themselves, and all units connected to a bias weight. These
networks had 159,369 weights in total. The third network (system ID 11) had twice
as many units in each of the hidden layers. That is, the four MDLSTM layers in the
first level had four cells each, the first feedforward layer had 12 units, the MDLSTM
layers in the second level had 20 cells each, the second feedforward layer had 40
units and the MDLSTM layers in the third level had 100 cells each. This gave a total
of 583,289 weights.

For all networks the activation function used for the LSTM gates was the logistic
sigmoid f1(x) = 1/(1 + e−x), while tanh was used for f2 and f3 (cf. Sect. 12.2.1).

The networks were trained with online gradient descent, using a learning rate of
10−4 and a momentum of 0.9. Both the CTC objective function O (Sect. 12.2.2)
and the character error rate (total number of insertions, deletions and substitutions
needed to transform the network outputs into the target sequences, divided by the
total length of the target sequences) were evaluated on the validation set after every
pass through the training set. For networks 9 and 11 the error measure was the
character error rate, while for network 10 the error measure was the CTC objective
function. Networks 9 and 10 were created during the same training run, with the two
different error measures used as a stopping criterion. For all networks training was
stopped after 30 evaluations with no reduction in the error measure on the validation
set. The weights giving the lowest error on the validation set were passed to the
competition organisers for assessment on the test sets.

Figure 12.5 shows the error curves for networks 9 and 10 during training. Note
that, by the time the character error is minimised, the CTC error is already well past
its minimum and has risen substantially. This is typical for networks trained with
CTC output layers.

Network ID 9 took 86 passes through the training set to complete training, net-
work ID 10 took 49 passes, and network ID 11 took 153 passes. The time per pass,
which grows with the number of network weights, was around 62 minutes for net-
works one and two, and around 180 minutes for network three. The fact that network
three required more training passes than network two is untypical, since usually the
more weights a network has the fewer passes it takes to minimise a particular error
measure. However, the same network minimised the CTC error on the validation set
after only 22 passes, and the decrease in validation character error rate between 22
and 152 passes was only 0.2.

Table 12.1 summarises the differences between the three networks.
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Fig. 12.5 Error curves during training of networks 9 and 10. The CTC error is shown on the
left, and the character error is shown on the right. In both plots the solid line shows the error on
the validation set, the dashed line shows the error on the training set, and the vertical dotted line
indicates the point of lowest error on the validation set

Table 12.1 The three
MDLSTM networks entered
for the Arabic handwriting
competition

ID Weights Error measure Passes Approx. pass time (mins)

9 159,369 Character 86 62

10 159,369 CTC 49 62

11 583,289 Character 153 180

12.3.3 Results

Table 12.2 [14] shows that all three MDLSTM networks (group ID MDLSTM, sys-
tem ID 9–11) outperformed all other entries in the 2009 International Conference on
Document Analysis and Recognition (ICDAR 2009), in terms of both recognition
rate and speed. The recognition rates were also better than any of the entries in the
ICDAR 2007 competition, which used the same training and test data, although the
Siemens and MIE systems were faster.

The overall difference in performance between networks 9 and 10 is negligible,
suggesting that it isn’t that important which error measure is used for early stopping.
This is significant, since, as discussed above, using the CTC error for early stopping
can lead to much shorter training times. Of particular interest is that the performance
on set s (with handwriting from the United Arab Emirates) is about the same for
both error measures. One hypothesis was that, because using the CTC error leads
to fewer training passes, network 10 would overfit less on the training data and
therefore generalise better to test data drawn from a different distribution.

Network 11 gave about a 2 % improvement over networks 9 And 10 in word
recognition for both test sets, if only the best word was used. Although significant,
this improvement comes at a cost of a more than threefold increase in word recogni-
tion time. For applications where time must be traded against accuracy, the number
of units in the network layers (and hence the number of network weights) should be
tuned accordingly.
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12.4 Conclusion

This chapter introduced a general offline handwriting recognition system based on
MDLSTM recurrent neural networks. The system works directly on raw pixel data,
and therefore requires minimal changes to be used for languages with different al-
phabets. It won several competitions at the ICDAR 2009 conference, including the
Arabic offline handwriting recognition competition.

Various extensions to the system are currently being explored, including more
efficient decoding, complete page transcription, and weight pruning for increased
speed.
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Chapter 13
Application of Fractal Theory in Farsi/Arabic
Document Analysis

Saeed Mozaffari

Abstract In the past, fractal theory has been used mostly in computer-generated
graphics, and image compression fields. But recent researches show that fractal the-
ory has been successfully adopted in document analysis realm, such as: online and
offline character recognition, font identification, and watermarking in document im-
ages. After a short review on fractal dimension, fractal coding and decoding, this
chapter will present the results of fractal theory in Farsi/Arabic document analysis.

13.1 Introduction

The term “fractal” was first proposed by Mandelbrot in 1975 [10]. It originated from
the French word fractus, which means to break a stone in an amorphous way. The
word properly indicates both the chaotic and fragmentary properties of the fractal
theory. Although a comprehensive definition of fractals seems to be elusive, the
general consensus defines a set as fractals if it has the following properties [5].
(1) The set must have details at every scale. (2) It should be self-similar. (3) There
must be a simple algorithmic approach to describe it. Figure 13.1 shows some fractal
images.

With the advent of powerful computers, fractal theory has been used frequently
in different fields, such as computer-generated graphics, image compression, and
pattern description and recognition.

In the graphic modeling area, fractals are used to ease the difficulty of creat-
ing complex scenes and objects such as mountains, trees, and coastlines with fairly
small pieces of code.

Fractal image compression methods are based on the fact that our natural envi-
ronment generally shows self-similarity on different scales. Therefore, a consider-
able amount of redundancy is implied in the images according to this self-similarity
property. By means of the iterated function system (IFS) [5], there would be a con-
tractive transformation for each image that has a fixed point resembling the original
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Fig. 13.1 Some examples of
fractal images

image. In other words, applying that transform iteratively on an arbitrary starting
image, the result will converge to the original image [7].

Fractal theory was originally used for texture description and segmentation. It is
called the Lindenmayer system (L-system) in texture analysis and is mostly based
on a recursive, context-free, deterministic grammar [17]. At each iteration, all ap-
plicable rules are applied simultaneously, and the expansion is stopped after a pre-
determined number of iterations. In addition to texture, several fractal features and
fractal-based recognition algorithms have been proposed to classify other patterns
like faces [1, 3].

Fractal theory has been used frequently in the field of document analysis. To
detect a document’s skew, it is segmented into blocks by a fractal approach [22].
Wang et al. have done some mathematical description and verification to a cluster
of IP addresses and a computer directory/file tree based on fractal theory [21]. Tao
and Tang presented a new approach based on modified fractal signatures (MFSs)
and modified fractal features (MFFs) for the discrimination of Oriental and Eu-
ramerican scripts [20]. Bangla, English, and Devnagari scripts were separated with
fractal-based features in a trilingual script postal automation system [15]. Eiterer
et al. proposed an address block segmentation approach based on fractal dimen-
sion [4]. Fractal image encoding is exploited to obtain image indexing systems that
are able to deal with the images in compressed form, which makes them suitable for
use with large databases [2]. Fractal descriptors can categorize similar documents
based on font matching [8]. The fractal dimension of a text document is utilized
to achieve a better diversification of the extracted sentences for summarizing struc-
tured documents [16]. The recognition accuracy of an optical character recognition
(OCR) system was improved by the use of a pre-clustering of the writings accord-
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ing to fractal analysis of the writing styles [6]. A writer identification technique was
proposed in [24] by combining Gabor wavelet and mesh fractal dimensions.

The aim of this chapter is to address some recent applications of fractal theory
in Farsi/Arabic document analysis and recognition. In the following sections, after
a short review of basic concepts in fractal theory, on-line and off-line character
recognition, font recognition, and watermarking applications will be discussed in
more detail.

13.2 Fractal Dimension

Fractal dimension is a basic concept in fractal theory which is used in some ap-
plications like font recognition. According to the definitions presented in [5], the
topological dimension of a totally disconnected set is always zero. The topological
dimension of a set F is n if arbitrary small neighborhoods of every point of F have
a boundary with topological dimension of n − 1. The topological dimension is al-
ways an integer. For example, an interval has topological dimension 1 because at
each point we can find a neighborhood, which is also an interval, whose boundary
is a disconnected set and hence has topological dimension zero.

There are many definitions for non-integral dimensions. The most famous one is
the box dimension, which is defined as follows.

For F ∈ Rn let Nε(F ) denote the smallest number of sets with diameter no larger
than ε that can cover F . The box dimension of F is:

lim
ε→0

logNε(F )

− log ε
(13.1)

The fractal dimension can be considered as a scaling relationship. Figure 13.2
shows four examples of sets and their scaling relationship which is determined by
the number of boxes it takes to cover the set. For each example, the scaling relation-
ship is described as follows:

a. A curve of length l can be covered by l
ε

boxes of size ε and 2 l
ε

boxes of size ε
2 .

b. A region of area A can be covered by A

ε2 boxes of size ε and 22 A

ε2 boxes of size ε
2 .

c. A set with volume V can be covered by V

ε3 boxes of size ε and 23 V

ε3 boxes of
size ε

2 .
d. If the Sierpinski triangle is covered with N boxes of size ε, then it takes 3N

boxes of size ε
2 to cover it. This is shown for ε equal to half the width of the set

in the figure.

Figures 13.2(a), (b), and (c) whose dimensions are 1, 2, and 3, have box sizes
corresponding to increasing the number of boxes required to cover the set by a
factor of 21, 22, and 23. However, for the Sierpinski triangle the number of boxes
increases by 2d where d = log(3)

log(2)
. So in this case, the fractal dimension is a number

between 1 and 2. An avid reader may refer to [5] for more information.
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Fig. 13.2 Four sets and the
number of ε boxes required to
cover them

13.3 Iterated Function System

Fractal image compression is based on the concepts and mathematical results of
an iterated function system (IFS) [7]. The fundamental principle of fractal coding
consists of the representation of any image I by a contractive transformation T

in which the fixed point is too close to the original image. In other words, when
we apply that transform iteratively on an arbitrary starting image, the result will
converge to the original image:

In+1 = T (I) (13.2)

I = lim
n→∞T (I) (13.3)

An IFS is a set of geometrical elementary linear or affine contractive transformers
that allows us to generate a fractal image. These n transforms make possible the
definition of a function T defined by:

T (I) =
n⋃

i=1

Ti(I ) (13.4)

Banach’s fixed point theorem guarantees that, within a complete metric space,
the fixed point of such a transformation may be recovered by an iterated application
to an arbitrary initial element of that space. The fixed point (image) that is obtained
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Fig. 13.3 Generation of a
fractal image by IFS

has some specific properties. In particular, it is made of copies of itself but modified
by the elementary transforms. In Fig. 13.3, the IFS is made of three transforms, a
reduction, followed by a translation, and repositioning in a triangle shape. The fixed
point is the Sierpinski triangle, which is independent of the initial image (circle or
square).

Fractal compression became a practical reality with the introduction of the parti-
tioned IFS (PIFS) by Jacquin [7]. It differs from the IFS in the way that each of the
individual mappings operates on a subset of the image, rather than on the entire im-
age. A PIFS defines a transform T that is the union of affine contractive transforms
defined on domains included in the image:

T (I) = T1(I1) ∪ T2(I2) ∪ · · · ∪ Tn(In) (13.5)

The set of all images obtained from all the transformations of sub-images Ii

enables us to partition the spatial domain of I . So, if the right PIFS is built, the
initial image would be the attractor of the IFS and could be derived from any im-
age.

13.4 Two-Dimensional Fractal Coding and Decoding

Two-dimensional (2D) fractal coding and decoding algorithms are used for fractal
image compression and coding. They are fundamental issues needed in the follow-
ing sections, so they are described in more detail. Other related subjects like fractal
coding speed enhancement and image quality augmentation are not addressed in this
chapter.

13.4.1 Fractal Image Coding

An image to be encoded is partitioned into non-overlapping range blocks, R, with
size N × N and overlapping domain blocks, D, with size 2N × 2N as depicted in
Fig. 13.4.
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Fig. 13.4 One of the block
mappings in PIFS
representation

Suppose we are dealing with an M × M grayscale image, I (x, y), in which each
pixel can have one of 256 levels (ranging from black to white). In this case, the
number of R blocks would be nr = [M

N
] × [M

N
].

I (x, y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(x0, y0) (x0, y0) . . . . . . (x0, yM−1)

(x1, y0) (x1, y1) . . . . . . (x1, yM−1)
...

...
...

...
...

...

(xM−1, y0) (xM−1, y1) . . . . . . (xM−1, yM−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13.6)

The input image I (x, y) is further grouped into n range blocks I (x, y) = r1 +
r2 + · · · + rnr .

Each range block is characterized by the number of its pixels, N × N , and its
starting point, rs, which always points to the top left pixel in the corresponding
block.

rk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(xi, yj ) (xi+1, yj ) . . . . . . (xi+N−1, yj )

(xi, yj+1) (xi+1, yj+1) . . . . . . (xi+N−1, yj+1)
...

...
...

...
...

...

(xi, yj+N−1) (xi+1, yj+N−1) . . . . . . (xi+N−1, yj+N−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

| i = rsxk, j = rsyk

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(13.7)

Since the size of D blocks is assumed to be 2N × 2N , the collection D contains
nd = [M −2N +1]×[M −2N +1] overlapped squares. Similar to the range blocks,
each of the domain blocks is characterized by the number of its pixels, 2N × 2N ,
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and its starting point, ds.

dk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(xi, yj ) (xi+1, yj ) . . . . . . (xi+2N−1, yj )

(xi, yj+1) (xi+1, yj+1) . . . . . . (xi+2N−1, yj+1)
...

...
...

...
...

...

(xi, yj+2N−1) (xi+1, yj+2N−1) . . . . . . (xi+2N−1, yj+2N−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

| i = dsxk, j = dsyk

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(13.8)

The task of a fractal coder is to find a D block in the same image for each R

block such that transformation of this domain block, W(D), minimizes the collage
error in Eq. (13.9):

CollageError = min
∥
∥R − W(D)

∥
∥2 (13.9)

The transformation W , in Eq. (13.9), which maps each D block into its corre-
sponding R block is assumed to be an affine transformation. An affine transforma-
tion preserves colinearity and ratios of distances. It does not necessarily preserve
angles or lengths. In other words, an affine transformation can transform a rectan-
gle into a parallelogram. Usually the affine transformation set is limited to scaling,
stretching, skewing, and rotating.

Since range-to-domain block matching under several transformations is very
time consuming, it is usually desirable to restrict the transformation set into isomet-
ric affine transformations. In this manner, one can speed up the encoding process at
the expense of image quality reduction, which is not very crucial in pattern recog-
nition applications. A transformation f is called isometric if it keeps the distance
function, d , invariant:

d(x, y) = d
(
f (x), f (y)

)
(13.10)

The only isometric affine transformation is the rotation, possibly composed with
the flip. Among all rotations, four preserve the orientation of a square, namely, the
identity, the 90◦ rotation, the 180◦ rotation, and the 270◦ rotation. Composing them
with the flip operator, eight deformation matrices are obtained (Table 13.1).

As mentioned before, a D block has four times as many pixels as an R block.
So, we must average the 2 × 2 sub-squares corresponding to each pixel of the R

block when minimizing Eq. (13.9), and this averaging process must be performed
repeatedly. The simplest way to reduce this computational burden is with the use of
a lock-up table containing intensity means.

The transformation W in Eq. (13.9) is a combination of geometrical and lumi-
nance transformations. According to Eq. (13.11) a point at coordinate (x, y) with
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Table 13.1 Eight isometric
affine transforms Index Isometry Matrix

1 identity
[ 1 0

0 1

]

2 x flip
[−1 0

0 1

]

3 y flip
[ 1 0

0 −1

]

4 180◦ rotation
[−1 0

0 −1

]

5 x = y flip
[ 0 1

1 0

]

6 270◦ rotation
[ 0 −1

1 0

]

7 90◦ rotation
[ 0 1

−1 0

]

8 x = −y flip
[ 0 −1

−1 0

]

gray level z is rotated and scaled by the geometrical parameters a, b, c, and d and
is offset by parameters e and f . Its gray level is scaled by S (contrast operator) and
offset by O (brightness operator).

Minimizing Eq. (13.9) means two things. First, it means finding a good choice
for Di , and second, it means finding a good contrast and brightness setting for Wi

in Eq. (13.11). A choice of Di , along with a corresponding Si and Oi , determines a
map Wi .

Wi

⎡

⎣
x

y

z

⎤

⎦=
⎡

⎣
ai bi 0
ci di 0
0 0 si

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦+
⎡

⎣
ei

fi

oi

⎤

⎦ (13.11)

In some applications, like optical character recognition (OCR), the shape and
style of lines and patterns are more important than the gray level distribution of
pixels. The gray level distribution represents pressure and writing speed; therefore,
considering the geometrical relationship between range and domain blocks rather
than the distribution of the pixel gray levels is more practical. Instead of finding the
scaling and offset parameters (S and O), usually the average of gray levels in the R

block is utilized.
The fractal code is defined as the set of all nr range-to-domain affine transforma-

tions. Each transformation f (k) consists of six real numbers:

• Starting point of the R block, rsk = (rsxk, rsyk).
• Starting point of the corresponding D block, dsk = (dsxk,dsyk).
• The index of the dk to Rk transformation, Tk . The index is a number between 1

and 8 (Table 13.1).
• The average intensity of the range block, which is a number between 0 and

255.

The encoding algorithm can be summarized as follows:

1. Input the original gray level image.
2. Partition the input image into R blocks.
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3. Create a list of D blocks.
4. Scan the image from top to bottom and from left to right.
5. Search for a fractal match. Given a region, loop over all possible D blocks to find

the best match using a given metric (Eq. (13.9)).
6. After finding the best match, set the fractal codes.

13.4.2 Fractal Image Decoding

The reverse process of generating an image from a fractal model is called decoding.
The decoding process starts with an arbitrary M × M initial image. For each fractal
transformation f (k), the 2N × 2N domain block dk is constructed from the initial
image, given its start point dsk stored in the fractal code. Then its corresponding
stored affine transformation Tk is applied on constructed D block dk . After down-
sampling according to the averaging transformation in the encoding process, the
N × N obtained block is translated to the corresponding R block at rsk . This com-
pletes one iteration.

The decoding algorithm is iterated about 6 to 16 times until the fixed point image
is obtained. The final image is assumed to be created when the difference between
two successive images of the sequence is small enough. To measure the quality of
the fractal compression of an image, besides the compression ratio, the peak signal-
to-noise ratio is generally used.

The simplified 2D fractal coding/decoding method mainly concerns the geomet-
rical characteristics of grayscale images for pattern recognition rather than image
compression. Therefore, high image quality is not expected to be obtained. Fig-
ure 13.5 shows the results of the decoding algorithm with different numbers of it-
erations. It is obvious that the fixed point image is obtained approximately after 5
iterations.

13.5 One-Dimensional Fractal Coding and Decoding

In the previous section, 2D fractal image coding and decoding algorithms are ex-
plained for off-line character recognition. However, these algorithms can be sim-
plified into a one-dimensional (1D) version which is suitable for on-line character
recognition.

In an on-line character recognition system, the most common writing tool is
a digitizing tablet and a special pen that records the coordinates of the plotted
points at a constant frequency. In on-line recognition, the writing order is avail-
able and the writing line has no width. Moreover, temporal information, like writ-
ing velocity and pen lifts, are available and can be used for the recognition pro-
cess.
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Fig. 13.5 Results of decoding algorithm. (a) Original image. (b) Decoded image after 1st iteration.
(c) Decoded image after 2nd iteration. (d) Decoded image after 5th iteration. (e) Decoded image
after 10th iteration

13.5.1 One-Dimensional Fractal Coder

In on-line recognition, the process is performed on 1D data rather than 2D images
as in the case of off-line recognition. In this case, we are dealing with a time ordered
sequence of points based on the pen positions. Therefore, gray level, contrast, and
luminosity information are meaningless in on-line data. Since on-line data is mod-
eled as a set of (x, y) coordinates, we can simplify Eq. (13.11) by omitting the third
row which includes parameters of luminance transformation to obtain Eq. (13.12):

vi

[
x

y

]

=
[
ai bi

ci di

][
x

y

]

+
[
ei

fi

]

(13.12)

Then vi determines how the partitioned ranges of a signature are mapped to
their domains. The 1D encoding process is similar to the 2D fractal coding pre-
sented before. The digit locus is divided into non-overlapping range segments
with the length of N . For each range segment, a two times larger correspond-
ing domain segment with the length of 2N is searched within the digit locus,
such that under appropriate affine transformations (Table 13.1), the identified do-
main segment can best approximate the range segment. Assume that, after pre-
processing, we are dealing with a uniform resampled input locus with M sample
points I (x, y) = {(x1, y1), (x2, y2), . . . , (xM,yM)}. The input locus can be grouped
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into nr = [M
N

] range segments and nd = [M − 2N + 1] domain segments.

rk = {(xi, yi), . . . , (xi+N−1, yi+N−1)|i = rsk

}

dk = {(xj , yj ), . . . , (xj+2N−1, yj+2N−1)|i = dsk

} (13.13)

Each of the R and D segments is characterized by the number of their points (N
and 2N ) and their centroid and according to Eq. (13.14):

rck = (rcxk, rcyk) = 1

N

(rsk+N−1∑

t=rsk

xt ,

rsk+N−1∑

t=rsk

yt

)

dck = (dcxk,dcyk) = 1

2N

(dsk+2N−1∑

t=dsk

xt ,

dsk+2N−1∑

t=dsk

yt

) (13.14)

Similar to fractal image coding, the range-to-domain segment transformations
are limited to isometric affine transformations according to Table 13.1. During the
search for the best D segment k, each of (xi, yi) points in the candidate domain
segment dk is downsampled as N

2N
(xi, yi).

Each fractal code f (k) consists of five real numbers that indicate an affine trans-
formation:

• The range segment centroid rck = (rcxk, rcyk).
• The domain segment centroid dck = (dcxk,dcyk).
• The index of dk to Rk transformation, Tk .

13.5.2 One-Dimensional Fractal Decoder

For the decoding process, first an arbitrary initial locus S with M points is created.
For each fractal code f (k), the D segment is constructed, given the domain segment
centroid dck stored in the fractal code and the number of its points 2N . Then the
stored affine transformation Tk is performed on it. After downsampling to N points,
its centroid is shifted to the stored R segment centroid rck . This procedure will be
repeated for all nrR segment-to-D segment transformations.

13.6 Applications

In the previous sections, some major issues in fractal theory were presented. In the
following, several applications of fractal theory, related to Farsi/Arabic document
analysis, are described. On-line and off-line character recognition, font recognition,
and watermarking applications will be addressed in this section.
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13.6.1 On-Line and Off-Line Character Recognition

The recognition of handwritten alphanumeric characters is a challenging problem in
pattern recognition. This is due to the large diversity of writing styles and the low
image quality, especially in practical applications. Previous efforts to use fractals
for Farsi/Arabic character recognition have mainly focused on feature extraction
methods [12, 13].

The fractal codes extracted directly from the fractal coder can be used as a feature
vector. Since the input image is scanned from top to bottom and from left to right,
the starting point coordinate of the R block/segment (rsxk, rsyk) can be deduced by
this systematic tracing procedure. Omitting the starting point, a feature vector with
the length of 4 ×n, is obtained for each input pattern [12]. Some of the Farsi/Arabic
numerals and characters are only different in small regions. Quad-tree partitioning
is a method of diving an image block according to its complexity. This partition-
ing method outperforms simple partitioning approaches in the field of Farsi/Arabic
character recognition [13].

The Mapping Vector Accumulator (MVA) feature introduced by Linnell and De-
ravi [9] records the angle and magnitude of the domain-range mapping vector. The
matrix itself is an accumulator, where the angle and magnitude are first quantized
and then the appropriate element of the accumulator is incremented.

The Domain-Range Co-Location Matrix (DRCLM) [9] is another fractal-based
feature which measures levels of self-similarity in different parts of the image. It
encapsulates information from the relative location of the domain block and its cor-
responding range block. In this method the image is divided into four equal-sized
non-overlapping segments. When a mapping occurs from one segment to the other,
then the entry at the corresponding cell in the matrix will be incremented. This is
then repeated for all range blocks in the image.

After the fractal features are extracted as described above, they can be fed into
traditional classifiers like neural networks or support vector machines. Mozaffari et
al. explored the use of described fractal features for Farsi digits recognition [11].
Although fractal theory is used for feature extraction, it can also be utilized as the
classifier. The inherent property of fractal theory based on the fixed point theorem of
IFSs has also been exploited by some researchers; this is called fractal transforma-
tion. In this approach, the distortion between an input pattern and the pattern after
one decoding iteration was used for classification [19]. According to the compari-
son made by Tan and Yan, this classifier outperformed others (HMM, PDBNN) in
terms of error rate and training time for face recognition [18]. One drawback of this
method is that its complexity is linear to the size of the database, which is not as
much the case for neural networks.

This classifier also obviates the need for retraining of the whole database when
addition or removal of a sample from the database occurs. The distortion between
the input and decoded images after one iteration is highly affected by the size of the
range blocks. Figure 13.6 shows the effect of range block size (N ) on the fractal
transformation. According to Fig. 13.6, when an input image with a size of 64 ×
64 is coded with N = 4 or N = 8, the decoded images are almost the same for all
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Fig. 13.6 Results of fractal transformation classifier for digit recognition. First row: Input image.
Second row: Nine reference samples. Third row: Results of applying fractal codes of input image
with N = 4 on second row images after one iteration. Fourth row: Results of applying fractal codes
of input image with N = 8 on second row images after one iteration. Fifth row: Results of applying
fractal codes of input image with N = 16 on second row images after one iteration

reference images after one decoding iteration. So the best choice for range block
size is N = 16 using the fractal transformation classifier.

It is worth mentioning that the above methods for fractal feature extraction and
classification can be easily utilized for on-line character recognition.

Comparing fractal-based features and classifiers with well-established character
recognition algorithms is a difficult task. Drawing a comprehensive conclusion on
benchmarking these methods requires large datasets and specific performance eval-
uation strategies, and these topics are beyond the scope of this chapter.

13.6.2 Font Recognition

A font is defined as a set of alphabets in the same family whose topological char-
acteristics are standard in the printing industry. Font recognition is one of the asso-
ciated topics in optical character recognition (OCR) and document image retrieval
(DIR) systems. The performance of an OCR system degrades in the case of multi-
font documents. Font identification can be used as a criterion for document filtering
in DIR systems.

Ben Moussa et al. proposed a system based on fractal geometry features for Ara-
bic font recognition [23]. They considered a document as a texture and regarded
font recognition as a texture identification problem. They combined two fractal di-
mension features (box counting dimension (BCD) and dilation counting dimension
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Fig. 13.7 General aspect of curve in BCD process [23]. (left) Recovery process of von Koch curve.
(middle) Von Koch curve covered with r size. (right) Von Koch curve covered with n × r size

Fig. 13.8 Text image recovery by boxes [23]. (a) Recovery process of Von Koch curve. (b) Text
image covered with r size. (c) Text image covered with n × r size

(DCD)) to obtain the main feature. With the use of this feature and a radial basis
function (RBF) classifier, an average recognition rate of 98 % was reported.

The values of fractal dimension depend on the number of N(r) intervals of length
r for covering an object E, which is defined as:

FD(E) = log(N(r))

log( 1
r
)

(13.15)

The BCD feature is calculated as follows:

BCD(r) = lim
r→0

log(N(r))

log( 1
r
)

(13.16)

Figure 13.7 shows the general aspect of curve in the BCD process. Figure 13.8
shows how the BCD process is applied on documents. The DCD feature is defined
as:

DCD(d) = lim
d→0

(

n − log(V (r))

log(d)

)

(13.17)

where d is the maximum dilation radius, n is the dimension of the space, and V is
the dilation body. Figure 13.9 shows the general aspect of curve in the DCD process.
Figure 13.10 shows a document under the DCD process.

13.6.3 Watermarking

With the advent of the Internet, multimedia data like text, image, video, and audio
files are distributed on a large scale over the net. Digital watermarking, the process
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Fig. 13.9 General aspect of curve in DCD process [23]. (left) Original image. (middle) Von Koch
curve after dilation with r level. (right) Von Koch curve after dilation with 2 × r level

Fig. 13.10 Various dilation levels of text image [23]. (a) Original text image. (b) Text image after
dilation with r level. (c) Text image after dilation with 2 × r level

Fig. 13.11 Effect of disturbance on document. (left) Original text image. (middle) Imposing of
some disturbance to the original image. (right) Imposing of the same amount of disturbance as
(middle)

of hiding a watermark in a multimedia object without perceptual degradation, is a
technique for copyright and ownership purposes.

Among the different multimedia data, documents need serious attention for dig-
ital watermarking. Due to both the low capacity and high sensitivity of the human
visual system to small disturbances, document watermarking has become a chal-
lenging topic in document analysis. Figure 13.11 shows the sensitivity of documents
to disturbances. Figures 13.11 (middle) and 13.11 (right) have the same number of
pixels changed from black to white or vice versa. However, the disturbance is much
more noticeable in Fig. 13.11 (middle). (In Fig. 13.11 (right), the upper horizontal
line was enlarged while the lower horizontal line was shrunk.)

Pi et al. modified the classical fractal coding method in which the fractal affine
transform is determined by the range block mean and contrast scaling [14]. They
proposed a fractal watermarking approach in which the watermark is embedded in
the range block means. Since the new fractal coding approach is mean-invariant, the
range block mean is a suitable and secure place to hide a watermark. Figure 13.12
shows the fractal watermarking results.

To show the robustness of the fractal watermarking approach, some attacks have
been imposed to the host image. Figures 13.13, 13.14, 13.15, 13.16 show the results.
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Fig. 13.12 Results of fractal
watermarking. (a) Host
document image.
(b) Watermark. (c) Document
containing the watermark.
(d) Decoded watermark

Fig. 13.13 Results of fractal
watermarking. (a) Document
containing the watermark.
(b) Decoded watermark

Fig. 13.14 Effect of noise on
the fractal watermarking.
(a) Document with pepper
and salt noise with σ = 0.01.
(b) Decoded watermark.
(c) Document with pepper
and salt noise with σ = 0.1.
(d) Decoded watermark
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Fig. 13.15 Effect of
occlusion on the fractal
watermarking. (a) Document
with 25 % occlusion.
(b) Decoded watermark.
(c) Document with 50 %
occlusion. (d) Decoded
watermark

Fig. 13.16 Effect of JPG
compression on the fractal
watermarking.
(a) Compressed document
with quality factor Q = 70.
(b) Decoded watermark.
(c) Compressed document
with quality factor Q = 40.
(d) Decoded watermark

Most of the previous efforts on data hiding were focused on gray level document
images, in which the host document is regarded as an ordinary gray level image and
conventional watermarking algorithms are utilized. Although this scheme has a high
data hiding capacity, it suffers from a lengthy fractal coding process.

As an alternative point of view, a document can be regarded as a binary image,
which is the most common type in the archives. In this manner, the number of fractal
parameters that must be computed and stored can be reduced. Furthermore, since the
numbers of possibilities for the pixel values in range/domain blocks are restricted,
a lookup table containing predefined parameters can reduce the computational bur-
den. As a result, the fractal coding time, especially for large documents, will be
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Fig. 13.17 Texts including incorrect words in which only the first and the last letters are in the
right place. But humans can still read them without a problem. (a) English text. (b) Farsi text

considerably diminished. Note that the proposed binary image fractal coding meth-
ods for non-text images cannot be employed directly for document images. Data
hiding in documents seems to be a paradox. As Fig. 13.11 shows, binary document
images are very delicate and sensitive to modifications. On the other hand, humans,
especially experienced readers, do not read words letter by letter. The MRC Cog-
nition and Brain Sciences Unit at Cambridge University presented some interesting
issues relating to the human mind. Figure 13.17 shows these results.

The preceding challenges on methods of watermarking using document images
are some of the fascinating topics on which our research group in the Electrical
and Computer Department at Semnan University are working. The results will be
published in the future.

13.7 Conclusions

In this chapter some basic issues of fractal theory such as fractal dimension and frac-
tal coding and decoding were presented. Then, several applications of fractal theory
in Farsi/Arabic character recognition, font recognition, and digital watermarking
were studied.
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Chapter 14
Multi-stream Markov Models for Arabic
Handwriting Recognition

Yousri Kessentini, Thierry Paquet, and AbdelMajid Ben Hamadou

Abstract In this chapter, we describe an off-line unconstrained Arabic handwritten
word recognition system based on a multi-stream segmentation-free HMM. The pro-
posed system proceeds without explicit segmentation of handwriting into graphemes
and makes use of low level feature sets. Features are combined according to the
multi-stream paradigm, providing a convenient formalism to asynchronously com-
bine several information sources, using cooperative Markov models. A two-level de-
coding algorithm is proposed to reduce the complexity. The system has been tested
on the IFN/ENIT database, and the results show significant improvement for the
multi-stream approach compared to the performances reported recently on the same
database.

14.1 Introduction

Arabic is the second most widely used alphabet around the world, after the Latin
script. However, Arabic handwriting recognition systems have not been studied in
the same proportion by the research community. During recent years, Arabic hand-
writing recognition has received much more attention due to the development of
new databases [16] and the organization of international competitions [13, 14] al-
lowing one to compare the performances of the systems and to promote research
development. Arabic script is based on an alphabet and rules different from those
of Latin. In fact, Arabic script is written from right to left, and includes 28 basic

Y. Kessentini (�) · T. Paquet
Laboratoire LITIS EA 4108, Université de Rouen France, Site du Madrillet, 76800 Saint-Etienne
du Rouvray, France
e-mail: yousri.kessentini@univ-rouen.fr

T. Paquet
e-mail: thierry.paquet@univ-rouen.fr

A. Ben Hamadou
Laboratoire MIRACL, Université de Sfax Tunisie, Route de Tunis km10, B.P. n 242, 3021 Sfax,
Tunisia
e-mail: abdelmajid.benhamadou@isimsf.rnu.tn

V. Märgner, H. El Abed (eds.), Guide to OCR for Arabic Scripts,
DOI 10.1007/978-1-4471-4072-6_14, © Springer-Verlag London 2012

335

mailto:yousri.kessentini@univ-rouen.fr
mailto:thierry.paquet@univ-rouen.fr
mailto:abdelmajid.benhamadou@isimsf.rnu.tn
http://dx.doi.org/10.1007/978-1-4471-4072-6_14


336 Y. Kessentini et al.

letters. There is no difference between upper and lower case characters. The char-
acter shape is context sensitive; i.e., it depends on its position within a word. The
shapes are dependent on the four positions: beginning of a (sub)word, middle of a
(sub)word, end of a (sub)word, and in isolation. Additional small markings called
“diacritics” (e.g., dots, Hamza, and chadda) compose the Arabic alphabet. Some
characters may have exactly the same main shape, and are distinguished from each
other only by the presence or the absence of these diacritics, their number, or their
position with respect to the main shape. Some combinations of two or three letters
have special shapes called “ligatures,” which work exactly like Latin ligatures such
as œ and æ. These multiple configurations give a total of 170 different character
shapes, as compared to the 52 different character shapes of Latin script. Moreover,
Arabic words are segmented into parts of Arabic words (PAWs), each consisting
of a group of letters. A word is composed of one or more PAWs. A more detailed
description of the characteristics of Arabic script is given in [12, 25].

Despite the differences between Arabic and Latin scripts, they are both alpha-
betic. This main property allows one to build recognition systems based on character
models that are further concatenated to build word models. Stochastic models, es-
pecially hidden Markov models (HMMs) [18], have been widely applied to Arabic
handwriting recognition in recent years [1, 9, 21]. In fact, HMMs have a huge ca-
pacity to integrate contextual information and to absorb the variability. A particular
approach known as multi-stream HMMs has been proposed in our previous works
[7, 8]; it consists of the asynchronous combination of several information sources,
using cooperative Markov models. In this paper, we describe the architecture of our
multi-stream recognition system and we present its optimized implementation using
a two-level decoding scheme.

This paper is organized as follows. Section 14.2 presents the different informa-
tion combination strategies. Section 14.3 defines the multi-stream framework and
the new decoding algorithm. It also includes a discussion about its complexity.
Section 14.4 presents the pre-processing and the feature extraction steps. Finally,
Sect. 14.5 provides experimental results, followed by a conclusion.

14.2 Information Combination Strategies

Information combination is a widely used technique in handwriting recognition to
improve the classification rates, or to preserve them when dealing with more diffi-
cult vocabularies or scripts. This is why various combination strategies have been
proposed in the literature [5, 11, 24]. They can be grouped into two broad categories:
feature fusion methods and decision fusion techniques.

The first category, commonly known as early integration [15], consists in the
concatenation of the input feature sets (or feature streams) into a unique large feature
space, and subsequently uses a traditional HMM classifier to model the combined
observations in the unique feature space (see Fig. 14.1).

In contrast, decision fusion, known as late integration [17], consists in combin-
ing multiple classifier outputs (decisions). Different feature representations obtained



14 Multi-stream Markov Models for Arabic Handwriting Recognition 337

Fig. 14.1 Feature combination approach

Fig. 14.2 Decision combination approach

Fig. 14.3 Multi-stream combination approach

from the word image are modeled and decoded separately by individual HMM clas-
sifiers. The decoded outputs are then combined to get the final text output (see
Fig. 14.2).

In [2], the authors compare these two combination methods in the case of off-line
handwritten text line recognition and show that both combination methods improve
recognition performances compared to any recognizers built from the individual fea-
ture streams. Furthermore, in their case, the early integration approach outperforms
the decision level combination.

A particular method within the decision fusion framework of sequence models
falls into the multi-stream hidden Markov model paradigm (see Fig. 14.3). This ap-
proach has been particularly studied in the domain of automatic speech recognition
(ASR) [3, 23]. It offers a means to merge different independent sources of informa-
tion at subunit levels, allowing an asynchronous modeling of streams.
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Fig. 14.4 General form of
K-stream model with anchor
points between subunit
models

14.3 Multi-stream Formalism

The multi-stream formalism is an adaptive method to combine several individual
feature streams using cooperative Markov models. This problem can be formu-
lated as follows. Assume an observation sequence X composed of K input streams
Xk (k = 1, . . . ,K) representing the utterance to be recognized, and assume that
the hypothesized model M for an utterance is composed of J subunit models Mj

(j = 1, . . . , J ) associated with the subunit level at which we want to perform the
recombination of the input streams (e.g., characters). To process each stream inde-
pendently of each other up to the defined subunit level, each subunit model Mj is
composed of K models Mk

j (possibly with different topologies). Recombination of

the K stream models Mk
j is forced at some temporal anchor states (⊗ in Fig. 14.4).

The resulting statistical model is illustrated in Fig. 14.4. A detailed discussion of the
mathematical formalism is given in our previous work [8].

The recognition problem can be formulated as one of finding the word model M∗
that maximizes the posterior probability given a sequence of observations X:

M∗ = argmaxM∈ΘP (M|X) (14.1)

where Θ is the set of all possible word hypotheses.
The Bayes formula gives:

M∗ = argmaxM∈Θ

P (X|M)P(M)

P (X)
(14.2)

P(X) being independent of the model M , it can therefore be ignored for the com-
putation of M∗. When we assume equal prior probabilities P(M) for all possible
word hypotheses, then the recognition problem consists in determining the model
M∗ that maximizes the likelihood P(X|M).

Using subunit decomposition gives:

P(X|M) =
J∏

j=1

P(Xj |Mj) (14.3)

Assuming that each stream is independent, each submodel likelihood can be com-
puted as a combination of the K-stream likelihood using a combination function f

and a set of weighting parameters W , as depicted in Eq. (14.4):

P(X|M) =
J∏

j=1

f
(
W,P

(
Xk

j |Mk
j

))
(14.4)
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Most of the approaches use a linear weighted combination function of log likelihood
as follows:

logP(X|M) =
J∑

j=1

K∑

k=1

Wk
j P
(
Xk

j |Mk
j

)
(14.5)

In practice, different combination rules have been proposed for multi-stream sys-
tems, including linear (sum, product), nonlinear (MLP), or other (maximum, mini-
mum, median. . . ) rules. More details are presented in [6]. A linear combination of
rules requires the estimation of the stream weights according to their relative re-
liability. Many weighting strategies are proposed in the literature, including fixed
weights, which have to be trained prior to application, and adaptive weights, which
are estimated during recognition [6].

Having described the general multi-stream formalism, in the following sections
we present how to decode and train these models.

14.3.1 Multi-stream Decoding

Decoding multi-stream models requires a more sophisticated procedure than the
Viterbi search. Two different algorithms have been proposed to solve the problem
of decoding.

HMM-Recombination Algorithm

Here, a composite (or product) HMM is built by merging an n-tuple of states from
the n-stream HMMs [3]. The topology of this composite model is defined so as
to represent all possible state paths given the initial HMM topologies. Figure 14.5
shows a multi-stream HMM with 2 streams and its corresponding product HMM.
The product HMM parameters are determined as follows. The transition probabili-
ties of the product HMM are derived from the transition probabilities of the 2 single-
stream HMMs assuming independence of the models between two recombination
states. For example:

P(a − B|a − A) = P(a|a) × P(B|A)

The conditional observation likelihood of the composite HMM is obtained using
a combination of the observation likelihoods of the single-stream components, for
example:

P
(
X1(t),X2(t)|a − A

)= P
(
X1(t)|a)WP

(
X2(t)|A)(1−W)

where X1(t) (similarly, X2(t)) is the observation vector corresponding to stream 1
(similarly, stream 2) and W is the reliability of stream 1 (0 ≤ W ≤ 1). Decoding
under such a model requires computing a single best path using the well-known
Viterbi decoding algorithm. We have demonstrated in [8] that this algorithm has
a large complexity, especially when dealing with a large number of streams. An
alternative consists in using the two-level decoding algorithm.
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Fig. 14.5 Example of a multi-stream HMM with 2 streams and its corresponding product (com-
posite) HMM

Two-Level Dynamic Programming

This decoding strategy was initially proposed in [20] to optimize the Viterbi al-
gorithm in the case of large vocabulary recognition problems. The decoding takes
place in two steps. First, a dynamic programming process is applied at the subunit
level (phoneme or character models), and each submodel is scored on arbitrary por-
tions of the frame data. Second, submodels are merged together in order to find the
best overall score, during a second dynamic programming stage at word level.

In the case of multi-stream HMMs, the first level of this algorithm is slightly
modified, and each stream HMM is independently decoded for each possible portion
of the frame data; the individual stream scores are then combined for further use at
the second level. In the second level, only the character boundaries are decoded
without the necessity of going through the HMM states. The details of the first level
are presented in Algorithm 1.

The first decoding level can be viewed as a standard Viterbi algorithm which is
used to decode the best character alignment for all possible positions of the character
within the observation stream. The last step of the first level consists in combining
the different stream scores using a combination function as a weighted sum of log-
likelihoods. Once the scores are computed for all character stream models, they can
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1: For each stream Sk and each observation stream Xk
t (k = 1, . . . ,K)

2: For each character model Mk
j (j = 1, . . . ,C)

3: For each beginning frame b, (b = 1, . . . , T − 1)

4: For each end frame e, (e = b + 1, . . . , T ) compute the best score corresponding to the
best state sequence.

5: Store the obtained likelihood in Ψ (Mk
j , b, e)

6: Combine the stream likelihoods using a combination function f ,

Ψ (Mj ,b, e) = f (Ψ (M1
j , b, e), . . . ,Ψ (MK

j , b, e))

Algorithm 1: Two-level dynamic programming: First level

be reused to decode any lexicon; hence we avoid repeating character decoding for
each hypothesized occurrence of the character at the some position while decoding
each word of the lexicon. Given these scores, the second level of the computation
pieces together the individual character scores to maximize the overall accumulated
score over the entire word. This can be accomplished using dynamic programming
as follows:

L(c1, . . . , cl, e) = max
1≤b≤e

[
L(c1, . . . , cl−1, b − 1) × Ψ (cl, b, e)

]

where L(c1, . . . , cl, e) is the score of the best path ending at frame e using the char-
acter sequence c1, c2, . . . , cl . The best path ending at frame e using exactly l char-
acter models is the one with maximum score over all possible beginning frames,
b, of the concatenation of the best path ending at frame b − 1 using exactly l − 1
character models fold the best score of the character model cl from frame b to frame
e (calculated at the first level). Therefore, the second level consists of the procedure
in Algorithm 2.

1: For each word in the lexicon
2: For each character composing the word
3: For each end frame e (2 ≤ e ≤ T )

4: Compute the score of the best concatenation of character until frame e:

L(c1, c2, . . . , cl , e) = max1≤b≤e[L(c1, c2, . . . , cl−1, b − 1) × Ψ (cl, b, e)]
Algorithm 2: Two-level dynamic programming: Second level

14.3.2 Computational Complexity

We compare the computational complexity of the two decoding algorithms. In the
case of the two-level decoding algorithm, the first level is independent of the lexicon
size, and its computational complexity is given by O(T 2N2KC), where T is the
length of a sequence of observations, N the number of states per character model,
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Table 14.1 Variation of the
operations number (×104)
with respect to the number of
streams K , T = 100, L = 5,
N = 4, V = 100, C = 26

Two-level HMM-recombination

K = 2 1332 6400

K = 3 1748 102400

K = 4 2164 1638400

K = 5 2580 26214400

Table 14.2 Variation of the
operations number (×104)
with respect to the lexicon
size V , T = 100, L = 5,
N = 4, K = 3, C = 26

Two-level HMM-recombination

V = 100 1748 102400

V = 1000 6248 1024000

V = 2000 11248 2048000

V = 5000 26248 5120000

C the number of character models, and K the number of streams. In the second
level, the computation depends on the word in the lexicon, and the complexity is
O(T 2LV ), where L is the average length of the words in the lexicon and V is the
number of words in the lexicon. The approximate computational complexity for the
two-level decoding algorithm is then O(T 2N2KC + T 2LV ).

In the case of the HMM-recombination algorithm, the Viterbi algorithm is ap-
plied to decode the product HMM. The complexity of the Viterbi algorithm is
O(T (LN)2V ). In the product HMM, the number of states increases to LNK .
Therefore, the complexity of the HMM-recombination algorithm becomes
O(T (LNK)2V ) = O(T L2N2KV ).

Note that by just looking at the complexity expressions of the two algorithms,
it is hard to see which strategy is better. To get a feeling for the computational
complexity of each decoding strategy, typical values of T = 100, L = 5, N = 4,
K = 4, V = 100, C = 26 result in O(16384 × 107) for the HMM-recombination al-
gorithm, and O(2.164 × 107) for two-level algorithm. Tables 14.1 and 14.2 present,
respectively, the variation of the approximate computational complexity of the two
algorithms with respect to the number of streams K and the lexicon size V . By
analyzing the values in these tables, it is possible to have a better idea of the compu-
tational complexity of each decoding strategy. It is clear that the two-level algorithm
is more advantageous when dealing with a large lexicon size and a great number of
streams.

Note that we can reduce the complexity of the two-level algorithm. In fact, T 2

can be reduced to T (T − D), where D is an estimation of the duration of the char-
acter models, without loss of accuracy. The complexity of the first level can also be
reduced assuming that the same HMM topology is used for all streams. In this case,
all stream character HMMs are simultaneously decoded, and the complexity is re-
duced to T 2N2C. The overall complexity then becomes O(T (T −D)(N2C+LV )).
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Fig. 14.6 Baseline detection

14.3.3 Multi-stream Training

Training the multi-stream HMM consists of two tasks: the first task is the estimation
of its HMM stream component parameters (mixture weights, means, variances, and
state transition probabilities), and the second task is the estimation of appropriate
stream exponents. Maximum likelihood parameter estimation by means of the ex-
pectation maximization (EM) algorithm can be used in a straightforward manner to
train the first set of parameters. This can be done in two ways: either by training each
stream component parameter set separately, based on single-stream observations,
and subsequently combine the resulting single-stream HMMs, or by training the
entire parameter set (excluding the exponents) at once using the multi-modal obser-
vations. The second training step concerns the optimization of the stream weights.
Two different strategies have been investigated in [8], and it was shown that both of
the weighting strategies perform similarly.

14.4 Recognition System Architecture

The proposed system is based on multi-stream models for the recognition of Arabic
handwritten words. In the following subsection, we describe the different stages
of our approach. In the first step, pre-processing is applied to the word image.
Two types of features are considered in this work: (i) contour-based features and
(ii) density-based features. Contour-based features are extracted from the lower and
the upper contours, and density-based features are computed on two different sliding
windows with different widths.

14.4.1 Pre-processing

Pre-processing is applied to word images in order to eliminate noise and to simplify
the procedure of feature extraction.

• Normalization: In an ideal model of handwriting, a word is supposed to be written
horizontally, with ascenders and descenders aligned along the vertical direction.
In real data, such conditions are rarely respected. We use slant and slope correc-
tion so as to normalize the word image [10].

• Contour smoothing: Smoothing eliminates small blobs on the contour.
• Baseline detection: Our approach uses the algorithm described in [22] based on

the horizontal projection curve that is computed with respect to the horizontal
pixel density (see Fig. 14.6). The baseline position is used to extract baseline-
dependent features that emphasize the presence of descenders and ascenders.
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Fig. 14.7 Word image
divided into vertical frames
and cells

14.4.2 Feature Extraction

An important task in multi-stream combination is to identify features that carry com-
plementary information. In order to build the feature vector sequence, the image is
divided into vertical overlapping windows or frames. The sliding window is shifted
along the word image from right to left, and a feature vector is computed for each
frame.

Two feature sets are proposed in this work. The first one is based on directional
density features. These kinds of features, initially proposed for Latin script [10],
have proved to be discriminative for Arabic script [8]. The second feature set is
based on foreground (black) pixel densities [4].

14.4.3 Density Features

Here we recall the definition proposed in [4]. From each frame 26 features are ex-
tracted for a window of 8-pixel width (and 32 features for a window of 14-pixel
width). There are two types of features: features based on foreground (black) pixel
densities, and features based on concavity. In order to compute some of these fea-
tures (for example, f2 and f15 as described next) the window is divided into cells
where the cell height is fixed (4 pixels in our experiments) as presented in Fig. 14.7.
For each frame t , the features are the following:

• f1: density of foreground (black) pixels.
• f2: number of transitions between two consecutive cells of different density lev-

els.
• f3: difference in y position of gravity centers of foreground pixels in the current

frame and in the previous one.
• f4–f11: densities of black pixels for each vertical column of pixels in each frame

(note that the frames here are of 8-pixel width).

The next features depend on the baseline position:

• f12: vertical position of the center of gravity of the foreground pixels in the whole
frame with respect to the lower baseline.
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Fig. 14.8 Five types of
concavity configurations for a
background pixel P

Fig. 14.9 Word image
contours

• f13–f14: density of foreground pixels over and under the lower baselines for each
frame.

• f15: number of transitions between two consecutive cells of different density lev-
els above the lower baseline.

• f16: zone to which the gravity center of black pixels belongs with respect to the
upper and lower baselines (above upper baseline, a middle zone, and below lower
baseline).

• f17–f26: five concavity features in each frame and another five concavity features
in the core zone of a word, that is, the zone bounded by the upper and lower
baselines. They are extracted by using a 3 × 3 grid as shown in Fig. 14.8.

14.4.4 Contour Features

These features are extracted from the word contour representation. Each word im-
age is represented by its lower and upper contours (see Fig. 14.9). A sliding window
is shifted along the word image. Two parameters characterize a window: window
width (8 pixels) and window overlap between two successive positions (5 pixels).
For each position of a window, we extract the upper contour points (similarly, the
lower contour points). For every point in this window, we determine the correspond-
ing Freeman direction, and the direction points are accumulated in the directional
histogram (8 features).

In addition to the directional density features, a second feature set is computed
at every point of the upper contour (similarly, it is done for every point on the lower
contour). The last (black) point (say, p∗) in the vertical black run started at an upper
contour point (say, p) is considered and, depending on the location of p∗, one of
four situations may arise. The point (p∗) can belong to a:

• Lower contour (see corresponding p points marked red in Fig. 14.10).
• Interior contour on closure (see blue points in Fig. 14.10).
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Fig. 14.10 Contour feature
extraction

• Upper contour (see yellow points in Fig. 14.10).
• No point found (see green points in Fig. 14.10).

The black points in Fig. 14.10 represent the lower contour.
The histogram of the four kinds of points is computed in each window. This

second feature set provides additional information about the structure of the contour
like the loops, the turning points, the simple lines, and the end points on the word
image (altogether, four different features).

The third feature set indicates the position of the upper contour (similarly, lower
contour) points in the window. For this purpose, we localize the core zone of the
word image. More precisely, we extract the lower and upper baselines of word im-
ages. These baselines divide the image into three zones: (1) a middle zone, (2) the
lower zone, (3) the upper zone. This feature set (3 features) provides additional
information about the ascending and the descending characters, which are salient
characteristics for recognition of Arabic script. Hence, in each window we generate
a 15-dimensional (8 features from chain code, 4 features from the structure of the
contour, and 3 features from the position of the contour) contour (for upper or lower
contour) based feature vector.

14.4.5 Character Models

In order to model the Arabic characters, we built up to 159 character HMMs. An
Arabic character may actually have different shapes according to its position within
the word (beginning, middle, end word position). Other models are specified with
additional marks such as “shadda.” Each character HMM is composed of four emit-
ting states. The observation probabilities are modeled with Gaussian mixtures (three
per state). Embedded training [19] is used where all character models are trained in
parallel using the Baum–Welch algorithm applied on word examples. The system
builds a word HMM by concatenation of the character HMM corresponding to the
word transcription of the training sample.

14.5 Experiments and Results

To evaluate the performance of our recognition system, experiments have been con-
ducted on the IFN/ENIT benchmark database [16]. This database contains a to-
tal of 32492 Arabic handwritten words of 937 Tunisian town/villages names writ-
ten by more than 1000 writers. Some town/village names occur in the database
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Table 14.3 Recognition
performance using
single-stream features

Models Top 1 Top 2 Top 5 Top 10

(1) Upper contour 70.5 78.6 86.3 90.4

(2) Lower contour 63.5 73.1 82.6 86.4

(3) Density1 65.1 73 80.6 83.2

(4) Density2 68.7 78.1 83.3 86.9

Table 14.4 2-stream HMM
recognition performances Models Top 1 Top 2 Top 5 Top 10

2-stream 1-2 75.3 83 89.1 92

2-stream 1-3 76.3 84.3 90.5 93.3

2-stream 1-4 79.6 85.7 91.6 94.5

2-stream 2-3 75.5 82.9 89 92

2-stream 2-4 77.2 84.8 90.8 93.6

2-stream 3-4 73.8 81.9 88.3 91.1

with slightly different writing styles according to, e.g., the presence or absence of
“shadda.” It follows that our lexicon is made of about 2100 valid entries. Four dif-
ferent sets (a, b, c, d) are predefined in the database for training and one set (e) for
testing.

Table 14.3 shows the experimental results of the performance of our recognition
system using four different single streams (upper contour, lower contour, and density
with two windows varying in their widths; Density1 and Density2 correspond to the
windows of 8-pixel and 14-pixel widths, respectively) as a function of the size of the
list of word hypothesis. The best recognition rate is 70.5 % obtained using the upper
contour feature. From these results it appears that the upper contour is significantly
better than the three other feature streams for the recognition of Arabic script.

To improve the performance given in Table 14.3, we try to combine the 4 single
streams according to the multi-stream formalism. Six possible pairs of streams can
be formed. Here the multi-stream two-level decoding algorithm is used. The recog-
nition results of the 2-stream HMM are presented in Table 14.4. We obtain exactly
the same performances presented in [8] when using the HMM-recombination algo-
rithm. The main advantage of the two-level algorithm is to reduce the computational
complexity, as explained in Sect. 14.3.2.

In all these experiments, we notice that the multi-stream approach improves
the performance obtained with any of the single-stream HMMs. The best 2-stream
recognition rate is 79.6 % in Top 1 and is obtained by combining upper contour and
Density2 features. The gain is 9.1 % compared to the best single-stream recognition
rate. Also combining density and contour feature streams gives a better performance
than combining two contour streams or two density streams.

To compare the multi-stream approach to the standard combination strategies,
namely fusion of features and fusion of decisions, we report the best 2-stream result
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Table 14.5 Multi-stream
results vs. decision and
feature fusion approaches

Models Top 1 Top 2 Top 5 Top 10

2-stream 79.6 85.7 91.6 94.5

Decision fusion 75.4 83.2 89.5 92.2

Feature fusion 74.1 82.6 88.4 90.8

obtained by combining the features corresponding to the upper contour and Den-
sity2. As shown in Table 14.5, the multi-stream approach performs better than the
two other standard combination strategies of each individual stream model.

In order to compare our results to the most recent works presented in the liter-
ature, we have participated in the international competition in Arabic handwriting
recognition systems at ICDAR 2009 [14]. 17 different Arabic handwriting recog-
nition systems have been tested using datasets f and s, which are unknown to all
participants. During this competition, our recognition system achieved a recogni-
tion rate of 82.09 % on set f and 74.51 % on set s. These performances on set s
correspond to the third best system among 17 participating systems. The most im-
portant results of this competition are given in [14]. Note that set s was collected in
the United Arab Emirates while all training data comes from Tunisia, which shows
that the generalization ability of our recognition system is interesting.

14.5.1 Recognition Time

The recognition time is defined as the time in seconds required to recognize one
word. It is measured in CPU-seconds, which is the time for which the recognition
process has exclusive use of the central processing unit of a computer with a mul-
titasking operating system. In this part, the recognition time covers only the recog-
nition process, excluding the pre-processing, segmentation, and feature extraction
steps. The machine used for these tests is an Intel E7340, 2.4 GHz processor, with
2 GB of RAM memory. Table 14.6 compares the word recognition time of the two
decoding strategies with respect to the number of streams. The performance of the
HMM-recombination algorithm is completely flawed on large vocabulary tasks, es-
pecially when dealing with a large number of streams. In contrast, the two-level
algorithm presents a significant improvement in recognition time and appears less
sensitive to the variation in the number of streams and the lexicon size. Despite
these improvements, the recognition time of the two-level decoding algorithm is
still high, and many investigations are still needed to improve its performance. This
can be performed by using a lexicon tree instead of a flat lexicon, or by introducing
an estimation of the character duration on the decoding step. The simultaneous de-
coding of all stream character HMMs in the first step of the two-level algorithm can
also reduce the computational cost.
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Table 14.6 Word recognition
time (in seconds) with respect
to the number of streams K

and the lexicon size V

Two-level HMM-recombination

V = 100 1000 1600 100 1000 1600

K = 2 4.2 5 7.5 1.2 13.2 23.8

K = 3 9.4 10.1 13.4 15.2 162.8 298.6

K = 4 10.9 12 17.5 182.4 1836 3283.2

14.6 Conclusion

This paper presents a multi-stream recognition system for off-line Arabic hand-
written words. The proposed approach combines low level feature streams, namely,
density-based features extracted from two different sliding windows with differ-
ent widths, and contour-based features extracted from upper and lower contours.
The multi-stream paradigm provides an interesting framework for the integration of
multiple sources of information. A two-level decoding algorithm is proposed to re-
duce the complexity of the decoding step and significantly speed up the recognition
process while maintaining the recognition accuracy. The system has been tested
on the IFN/ENIT database, and the results show significant improvement for the
multi-stream approach compared to the performances reported recently on the same
database.
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Chapter 15
Toward Distributed Cursive Writing OCR
Systems Based on a Combination
of Complementary Approaches

Maher Khemakhem and Abdelfettah Belghith

Abstract Large amounts of cursive writing documents are still waiting to be com-
puterized for several and different purposes. These documents are in general of
medium to low quality; hence they require a sophisticated recognition algorithm
capable of properly extracting the correct text from low quality cursive documents.
The Dynamic Time Warp (DTW) algorithm is among the most effective algorithms
for cursive writing optical character recognition (OCR). However, the DTW is
a rather complex task requiring extensive computational capabilities, which hin-
ders its commercial deployment on nonspecialized stand alone machines. Volun-
teer grids, such as XtremWeb and BOINC, provide viable infrastructures to speed
up the DTW execution time. Recent experiments conducted on the Scientific Re-
search Tunisian Grid (SRTG), an XtremWeb volunteer grid, confirmed this claim
and showed a very tangible speedup along very high recognition rates. Such in-
frastructures present several practical advantages, such as the possibility of noncon-
demnation of the involved computers and the possibility of their simultaneous use
by different users and/or applications. Unfortunately, volunteer grid infrastructures
are inherently unable to guarantee the continuous availability of the stored data and,
more importantly, the engaged processing capacities. Any involved computer may
renegade and depart from the system at will, which consequently affects the applica-
tion performance. Agent technology can be exploited here to solve the problem. In
this chapter, we propose a service-oriented grid architecture (SOGA) based on the
integration of both grid and agent technologies. An analytical study is conducted to
ascertain and evaluate the key performance parameters of our proposed SOGA. The
results confirm that our proposal provides a solid and viable solution for the large
scale recognition of printed cursive writing based on the DTW algorithm.
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15.1 Introduction

Large amounts of printed cursive writing documents in several different languages,
such as the Arabic language, are in urgent need of computerization. These docu-
ments are usually of poor quality, necessitating adequate and efficient optical char-
acter recognition (OCR) systems. The existing OCR systems are, however, very
sensitive to the input document quality. The medium or low quality of any input
document decreases dramatically the corresponding recognition rates. Conducted
experiments and evaluations on several cursive writing OCR approaches show and
confirm that the Dynamic Time Warp (DTW) algorithm is among the best tech-
niques for such a mission [38, 39].

The DTW algorithm is the result of the adaptation of dynamic programming to
the field of pattern recognition [17, 20, 21, 37, 40, 41, 46] and provides very inter-
esting recognition rates for cursive printed texts such as Eastern and Middle Eastern
languages (e.g., Arabic) and even Latin connected characters [37, 38, 40, 41]. The
ability of this algorithm to properly recognize any medium or low quality printed
cursive writing without prior character segmentation from within a reference library
composed of isolated characters makes it very attractive. However, the required
enormous amount of computing constitutes DTW’s main pitfall and hence restricts
its widespread use.

Many works and approaches have been proposed to solve this problem [5, 16,
20, 21, 38, 43, 46]. In a previous work [39], we showed that grid computing, and
more specifically volunteer grids, can instantiate an adequate solution based on the
large amount of computing and storage capacities they can provide. Volunteer grid
computing presents several advantages, yet it also yields some problems. Avoiding
the sole condemnation of participating computers to distributed missions or applica-
tions may be considered among the most important advantages. This advantage will
lead surely to flexible grids where participating computers can be used simultane-
ously and seamlessly by their owners and by distributed missions and applications.
Moreover, any participating computer in a volunteer grid may choose to depart or
disassociate at any time. However, this very great flexibility causes serious problems
of both data availability and processing loss [25], and may even disrupt the proper
functioning of running applications unless some defined measures are undertaken.

Agent technology, especially the use of intelligent agents, can play a vital lever-
age to achieve the grid vision [28, 35, 48]. This technology provides autonomy,
intelligence, and mobility which can be exploited to solve both of these problems.
We propose in this chapter a service-oriented grid architecture (SOGA) integrating
volunteer grid computing and agent technology in an attempt to provide an effective
viable solution for a large scale cursive writing OCR based on the DTW algorithm.

The chapter is organized as follows. Section 15.2 gives an overview on dis-
tributed OCR systems. Section 15.3 provides a formulation of the DTW basics,
and Sect. 15.4 describes the DTW algorithm for printed cursive writing recognition.
Section 15.5 provides a brief overview of grid computing and agent technology.
Our proposed SOGA and the correspondent performance evaluation are presented
in Sect. 15.6. Finally, we conclude and present some perspectives and further inves-
tigations.
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15.2 Existing Distributed OCR Systems

A few solutions for large scale OCR are provided by computer scientists. Repre-
sentative examples including The Australian Newspaper Digitization Project [7],
OCRGrid [8], Kirtas [9], and OCRopus [10].

The national library of Australia has used OCR software to establish a large
scale Historic Digitization Project. The Australian Newspaper Digitization Program
(ANDP) claimed that an “acceptable” OCR still has some distance to go, and needs
further improvements. Besides, the poor quality of the original source documents
urged the National Library of Australia to go ahead and work with what was avail-
able but using further indirect refinements. In order to improve the quality of OCR
accuracy, the committee of the Library adopted from the thirteen methods they came
out with only five new ones, which are going to be tested and investigated. These
methods are used mostly to compare image optimization software, to experiment
using grayscale files, to use Australian dictionaries, to clean/correct OCR text man-
ually, and to use confusion matrix and language modeling post/during OCR pro-
cessing. They looked for improving OCR accuracy by using both a combination of
methods and also manual methods of humans correcting the mistakes of machines.
The Australian Library was considered the first worldwide party to involve public
users in the correction of texts instead of the contractor. Such a solution was consid-
ered labor intensive for the Library before the emergence of web 2.0 technologies.
Although the public was not informed that they could introduce corrections to the
texts, they embarked on this correction immediately. There were measures under-
taken to check the accuracy of the OCR-corrected text by counting the number of
corrected lines and the number of different corrected articles. However, the inter-
vention of public users may badly affect the content of the articles, so they have to
make sure that no data has been added to the original text.

OCRGrid is a platform for distributed and cooperative OCR systems. The main
idea of OCRGrid is to deploy a lot of OCR servers on a network to allow end users
to search for and use an adequate server. As servers can cooperate with each other,
clients can benefit from a distributed parallel environment and consequently acceler-
ate OCR tasks. Applications searching for enhancing accuracy can also benefit from
OCRGrid due to the use of a majority logic technique which requires the running
of many OCR engines. A multilingual processing environment can also be realized
by combining many community-supported OCR servers for various languages with
localized dictionaries.

The Kirtas technology is an automatic book scanner which can do batch OCR
for large volumes of books and other documents. By using innovative “automatic
page-turning scanner” technology and a high-resolution Canon digital camera, Kir-
tas ensures image processing, quality control, OCR, and metadata. It can handle
15 left-to-right languages including English and French, 5 right-to-left languages
including Arabic, and 3 bilingual languages including Arabic/English. Kirtas OCR
processing rates are very fast (about one page per second). Many public and uni-
versity libraries decided to exploit the Kirtas technology to digitize their old books.
However, the downside of using such a technology lies in its very high price, which
consequently limit its adoption on a large scale.
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OCRopus is an open source OCR system sponsored by Google. It targets the re-
search community by improving the state of the art of optical character recognition
and has also sought to serve on large scale commercial document conversions. The
system applications include a modern digital library and the recognition of classi-
cal literature. Its main perspective consists of familiarizing the system with more
languages so as to become omni-lingual and omni-script by contributing in an open
source community. Although the system has been evolving, it has not yet incorpo-
rated the Arabic language into its framework.

15.3 Preliminaries

An OCR system is generally decomposed into four stages. The first one concerns the
acquisition of the text scanned image to be provided in the form of raw bitmaps of
pixels (or binary data). The second stage deals with the pre-processing of this raw
data and mainly concerns filtering the scanned images, and framing, positioning,
and segmenting the text into connected components (i.e., groups of connected char-
acters). The third stage concerns the description and the feature extraction, and con-
sequently the determination of the characteristic fragments (i.e., the feature vectors)
of the group of connected (cursive) characters to be recognized. As such, a certain
combination of characteristic fragments can be assigned with adequate confidence
by the decision process to a recognized class. The final stage forms the culminat-
ing point of the recognition process: the decision on the correct classification of the
unknown.

What makes DTW an attractive and efficient procedure to use in the recogni-
tion process is its ability to eliminate time differences between the characters to be
recognized. Based on dynamic programming path finding, DTW presents a com-
putationally efficient procedure to find the optimal time alignment between two
occurrences of the same character and, more generally, between any two given
forms.

Consider two symbols A and B , each represented by a sequence of feature vec-
tors as provided by stage three of the recognition system, namely:

A = a1, a2, . . . , ai, . . . , am (15.1)

B = b1, b2, . . . , bj , . . . , bn (15.2)

where m and n represent the number of feature vectors composing respectively A

and B . As a measure of the difference between two feature vectors ai in A and
bj in B , a distance D(i, j) is employed. Consequently, a matrix D of distances is
formed. The optimal time alignment between the two symbols is represented by
the optimal path lying between point (1,1) and point (m,n) in the D matrix and
warping through the matrix in such a way that at any point (i, j), the cumulative
distance S(i, j) is minimum. A key operation for DTW is the computation of the
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summation distance S representing the cumulative distance S(m,n) at end point
(m,n) and defined by:

S = min
m∑

i=1

D
(
i,W(i)

)
(15.3)

where W(i) represents the warping function that governs the way to find a signifi-
cant optimal path in matrix D with W(1) = 1 and W(m) = n. The warping function
is in fact a model of time axis (i.e., the axis of the symbol A to be recognized) fluctu-
ation in a character pattern. By using the continuity conditions defined in [37, 40, 41]
by
W(i + 1) − W(i) = 0,1,2, for each 1 ≤ i ≤ m we obtain the following functional
equations on the cumulative distances:

S(i, j) = D(i, j) + min
1≤i≤m
1≤j≤n

⎧
⎨

⎩

S(i − 1, j),

S(i − 1, j − 1),

S(i − 1, j − 2)

⎫
⎬

⎭
(15.4)

with the initial condition

S(1,1) = D(1,1) (15.5)

We then have S = S(m,n). The warping function and the optimal alignment can
be found by a backtracking technique.

15.4 DTW for Cursive Writing Character Recognition

15.4.1 Isolated Character Recognition

We consider a reference library of R trained characters forming the alphabet in some
given fonts for a given language, and denoted by Ci , i = 1,2, . . . ,R. The technique
consists in using the DTW pattern method to match an input character against the
reference library. The input character is thus recognized as the reference character
that provides the best time alignment S among all R characters; namely, character
A is recognized to be Ck if the time alignment it provides is, e.g.,

Sk = min
1≤r≤R

{Sr} (15.6)

That is, Sk is the summation distance corresponding to the matching of A with the
reference character Ck .

15.4.2 Recognition of Connected or Cursive Characters

Words in cursive writing (such as Arabic writing) are inherently written in blocks of
connected characters. Many researchers have considered the segmentation of these
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blocks into separated characters before performing the recognition phase based on
isolated characters [4, 6, 23, 36, 49]. We may, therefore, simply employ the iso-
lated character recognition procedure described in the preceding section. The via-
bility and robustness of the DTW technique, however, is its ability and efficiency
to perform the recognition without the need for a prior segmentation into isolated
characters.

Let T constitute a given connected sequence (a block) of characters to be recog-
nized. T is then composed of a sequence of N feature vectors that actually represent
the concatenation of some subsequences of feature vectors, each representing an un-
known character to be recognized. As portrayed on Fig. 15.1, the text T lies on the
time axis (the X-axis) in such a manner that feature vector ti is at time i on this axis.
The reference library is portrayed on the Y -axis, where reference character Cr is of
length lr , 1 ≤ r ≤ R (that is, composed of lr feature vectors).

By extension of our earlier notation, we use S(i, j, r) to represent the cumulative
distance at point (i, j) relative to reference character Cr . The objective is to detect
simultaneously and dynamically the number of characters composing T and to rec-
ognize these characters. There surely exist a number k and indices (m1,m2, . . . ,mk)

such that Cm1 ⊕ Cm2 ⊕ · · · ⊕ Cmk
represents the optimal alignment to text T where

⊕ denotes the concatenation operation. The path warping from point (1,1,m1) to
point (N, lmk

,mk) and representing the optimal alignment is therefore of minimum
cumulative distance, that is:

S(N, lmk
,mk) = min

1≤r≤R

{
S(N, lr , r)

}
(15.7)

This path, however, is not continuous, since it spans many different characters in the
distance matrix. We therefore must allow at any time the transition from the end of
one reference character to the beginning of a new character. The end of reference
character Cr is first reached at time i = � lr+1

2 �, and the warping function reaches
point (i, lr , r). As we can see on Fig. 15.1, the end of reference characters C1,C2,C3

are first reached respectively at times 3,4,3. The end points of reference characters
are shown on Fig. 15.1 inside diamonds, and points at which transitions occur are
within circles. From these times on and up until time N , the warping function always
reaches the ends of the reference characters. At each time i, we allow the start of
the warping function at the beginning of each reference character along with the
addition of the smallest cumulative distance of the end points found at time (i − 1).
The resulting functional equations are then:

S(i, j, r) = D(i, j, r) + min
1≤i≤N
1≤j≤lr
1≤r≤R

⎧
⎨

⎩

S(i − 1, j, r),

S(i − 1, j − 1, r),

S(i − 1, j − 2, r)

⎫
⎬

⎭
(15.8)

with the boundary conditions

S(i,1, r) = D(i,1, r) + min{1+β≤i≤N}
1≤k≤R
1≤r≤R

S(i − 1, lk, k) (15.9)
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Fig. 15.1 The DTW
mechanism

where β = � 1+min1≤r≤R{lr }
2 �.

To trace back the warping function and the optimal alignment path, we have to
maintain the transition time (to be memorized) from one reference character to the
others. This can easily be accomplished by the following backtracking procedure:

b(i, j, r) = trace min
1≤i≤N
1≤j≤lr
1≤r≤R

⎧
⎨

⎩

b(i − 1, j, r),

b(i − 1, j − 1, r),

b(i − 1, j − 2, r)

⎫
⎬

⎭
(15.10)

where the trace min function returns the element corresponding to the term that
minimizes the functional equations. The functioning of this procedure is portrayed
on Fig. 15.1 through the two vectors VecA and VecB, where VecB(i) represents the
reference character yielding the least cumulative distance at time i, and VecA(i)

provides the link to the start of this reference character in the text T . The heavy
marked path through the distance matrix represents the optimal alignment of text T

to the reference library. We observe that text T is recognized as C1 ⊕ C3.
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The amount of computing to be achieved is enormous, which makes the DTW
algorithm very slow if adopted for any large scale document recognition. Many re-
searchers attempted to solve this problem. The proposed solutions can be classified
into the following two categories:

• The first one is mainly based on the design of dedicated architectures and proces-
sors (VLSI) that can speed up the DTW algorithm [22, 46]. Unfortunately, these
proposed solutions did not find the expected success because of the high cost of
the architectures or processors.

• The second one is based on the distribution of the DTW algorithm itself [5, 16,
42, 43]. All these proposed solutions take advantage of the DTW algorithm’s
inherent parallelism, yet they differ in the accomplishment of this task. Different
proposals of tightly coupled and loosely coupled architectures were investigated
[42, 43] and showed that important speedups with varying efficiency factors are
attainable.

In this chapter, we attempt to take advantage of some emerging technologies to
speed up the DTW algorithm. We propose an approach integrating both grid com-
puting and agent technology. The essence of our approach consists in appropriately
splitting the bitmap image (binary image) of the entire text to be recognized into
sub-bitmap images (binary matrices) and then distributing them, dynamically and
according to the current state of the grid and the multi-agent system, among several
OCR service agents. Thus, every binary matrix will be processed by a given OCR
service agent on a given participating machine within the volunteer grid.

15.5 Grid Computing and Agent Paradigm: A Brief Overview

15.5.1 Grid Computing

A grid is a collection of machines, sometimes referred to as “nodes,” “resources,”
“members,” “donors,” “clients,” “hosts,” “engines,” and many other such terms.
These nodes contribute to the grid by providing access to and use of their resources.
Some resources may be used by all users of the grid; others may have specific re-
strictions [19, 32, 33].

In most organizations, there are large amounts of underutilized computing re-
sources. Most desktop machines, for example, are busy less than 5 percent of the
time. In some organizations, even server machines can often be relatively idle. Grid
computing provides a framework for exploiting these underutilized resources and
thus has the possibility of substantially increasing the efficiency of resource us-
age [33]. Furthermore, machines may have enormous unused disk drive capacity.
Grid computing, and more specifically “data grids,” can be used to aggregate this
unused storage into a much larger virtual data store, possibly configured to achieve
improved performance and reliability over that provided by any single machine [33].
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A grid computing environment is an infrastructure that allows many institutions,
regardless of their geographical locations, to pool a large collection of their hetero-
geneous networked computers and systems to share a set of software and hardware
resources, services, and licenses, etc. [18, 27, 33]. This remarkable ability of re-
source sharing in various combinations yields many advantages, such as:

• Increasing the efficiency of resource usage.
• Facilitating remote collaboration between institutions. researchers, etc.
• Providing users with a huge computing power.
• Providing users with a huge storage capacity.

The design and implementation of grid infrastructures and distributed grid
computing applications has been a very active subject for the last few years
[14, 18, 19, 27, 33, 48]. Two main categories of grids can be distinguished based
on whether participating nodes are solely and completely advocated or voluntar-
ily connected. A dedicated grid is the result of the federation of a number, usu-
ally very large, of geographically dispersed computers completely dedicated to the
grid mission [19]. As such, these gridded computers can be used only by an au-
thorized community for some well-defined specific purposes. A volunteer grid,
however, is composed of many volunteer federated computers which can be used
by several communities and hence are not akin to specific missions [1–3]. In this
type of grid computing environment, any computer can be voluntarily and dy-
namically connected or disconnected by its own owner. In the remainder of this
paper, we shall focus solely on this type of volunteer grid, such as XtremWeb
[11, 12] and BOINC [13, 15] (Berkeley Open Infrastructure for Network Comput-
ing).

XtremWeb [11, 12] is a P2P system developed by the University of Paris-Sud,
France [12] for intensive calculation and computing purposes. BOINC provides a
special large scale computing environment as a volunteer grid, though occasionally
it may be dedicated to specific users for specific applications [13].

Both of these grid infrastructures, being volunteer grids, cannot guarantee both
the continuous availability of stored data and the continuous seizure of computing
resources, as any participating computer may at will and at any time choose to depart
from the system. Some approaches have been proposed to deal with these problems
[25]. It is our aim in this chapter to propose a viable framework to solve both of
these issues based on agent technology.

15.5.2 Agent Paradigm

The agent paradigm is very attractive, for it mimics human and animal societies or
communities in terms of interaction and coordination to jointly achieve a global goal
or to solve a complex problem [28].

An agent can be a physical or a logical entity that owns certain characteristics,
skills, and goals. An agent is able to achieve some tasks or goals without a cen-
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tral control and sometimes has its own prior defined planning. It can interact and
cooperate with others to achieve complex tasks. It is able sometimes to dynami-
cally adapt its processes and skills to meet certain situations. An agent can be in-
telligent (cognitive) or reactive (not intelligent), mobile or stationary (not mobile)
[24, 26, 30, 31, 34, 44, 45, 47, 48, 50–54].

Cognitive Agent

An intelligent agent, also called a cognitive agent, acts autonomously. It is able
to achieve complex tasks without any exogenous help. It owns an internal knowl-
edge base that can be used to manage all of its processes including its skills and
its interactions with other agents. It owns specific goals and it is capable of mak-
ing local decisions such as optimizing the achievement of some tasks. A cogni-
tive agent usually performs very specific and selected tasks. The great advantage
of this type of agent is the simplicity with which it can be reused in many ap-
plications and within different societies because of its inherent modularity. How-
ever, it is usually very difficult to design, implement, and integrate into agent soci-
eties.

Reactive Agent

A reactive agent is not intelligent and may act only upon receiving a stimulus from
within its environment. It is considered as an integral part of its own community.
Unlike a cognitive agent, it does not own a specific goal and is not able to make
internal decisions. It cannot solve tasks or achieve goals without the help of and
the coordination with other agents. The great advantage of this type of agent is the
relatively low complexity of its design, implementation, and integration within an
agent society or community.

An agent can be stationary (usually located at the same location, for example,
on the same networked PC) or mobile (capable of moving from one node to an-
other within the system). A multi-agent system is simply a society or a commu-
nity of agents that can interact to solve complex problems in a distributed man-
ner.

A multi-agent system can have several advantages [44]: speedup due to concur-
rent processing, less communication bandwidth requirements because processing is
located nearer the source of information, more reliability because of the lack of a
single point of failure, improved responsiveness due to the great amount of available
processing, and an easier system development based on the modularity inherent to
and provided by the decomposition into agents. Agent interaction and cooperation
are considered among the major issues in multi-agent system design and develop-
ment. Interaction among agents is what makes a population or a society of agents
capable of solving a complex problem.
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15.6 The Proposed Architectural Model

Our proposed service-oriented grid architecture (SOGA) is based on a volunteer
grid computing that interconnects several volunteer institutions’ local area networks
(LANs), hence providing a myriad of participating desktop heterogeneous comput-
ers. We integrate into every computer system an intelligent stationary agent that can
participate to any given OCR process. This agent, called an OCR service agent, is
able to provide the OCR service to the users.

Within each LAN a specific cognitive agent, called the home forecast agent, is
responsible for tracking the local agents’ activities, and for negotiating and cooper-
ating with the other distant forecast agents in other LANs (called the foreign forecast
agents) in order to decide which stationary agents (OCR service agents) can partic-
ipate in the proposed work. The forecast state of the entire grid represents the set of
current nodes that can provide a volunteer service along with their loads, specifica-
tions, and capabilities. We assume that the multi-agent system (MAS) forecast state
is updated periodically to track node departures and joins and to ascertain the load
characteristics, communication latencies and requirements, and current capabilities
of the different nodes in the grid. It is interesting to note that these specific cogni-
tive agents may either be stationary or mobile or both. If they are stationary, it is
up to every volunteer LAN to decide on the location of its local forecast agent, for
example, within one of its continuously running proxies. A LAN participates in the
grid and the MAS whenever its forecast agent is up and running. On the other hand,
a forecast agent may be mobile. In such a case, we assume that the mobile agent
has a prior knowledge of all LAN members of the grid along with the structure of
the overlay network connecting them. In the rest of the paper, we consider that all
specific forecast agents are stationary.

Every intelligent stationary service agent has, in addition to communication ca-
pabilities, the following minimal set of skills:

1. A method to interface the user to start up, control, and follow its own launched
cursive writing recognition process.

2. A method to interact with its home (local) forecast agent. This method is in par-
ticular responsible for notifying the home forecast agent of the node’s joins and
departures; to acquire the forecast state just before launching an OCR applica-
tion; and to acquire from the home forecast agent updates on any departure of
currently participating nodes during the execution and, more importantly, on the
identity of the nodes appointed (by foreign forecast agents as described next) to
continue and finish the required task.

3. A method to make decisions about the number and selection of the target OCR
service agents of the grid that will participate in the work. Such decisions can be
adequately made based on the size of the text to be recognized and the detailed
forecast state of the grid obtained from its home forecast agent.

4. A method for pre-processing the text binary data: noise reduction, segmentation
of the text into connected components, and feature extraction.

5. A method to appropriately fragment the binary image of the text to be recognized
into parts (binary matrices). The fragmentation process may take into account
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diverse criteria including but not limited to the forecast state of the grid, the
characteristics and capabilities of each participating node, the heterogeneity of
participating nodes, and the targeted speedup or character recognition rate.

6. A method to implement the DTW algorithm.
7. A method to launch and monitor the execution on the different involved nodes.

This method is in particular responsible for gathering execution results and pro-
viding them in an appropriate manner to the local (initiator) user.

Every forecast agent in our SOGA includes, in addition to its communication
capabilities, the following minimal set of skills:

1. A method to monitor local nodes’ memberships (involvement to running dis-
tributed applications), their characteristics, and their current capabilities.

2. A method to accommodate newcomers within its local LAN based on a sniffing
technique.

3. A method to track node renegation and departure throughout the grid, and to
notify accordingly local stationary nodes that have launched the current OCR
applications.

4. A method to cooperate with other foreign forecast agents to build a complete
global forecast state of SOGA.

5. A method to recover an unfinished process from a locally participating computer
that prepares to renegade or depart from the system. This method is in particular
responsible for designating another member to finish the assigned work and for
notifying the local or distant stationary agent that launched the application. The
distant agent is notified through its home forecast agent. As such, it is this method
that solves the issue of processing power loss, and maintains whenever possible
the same service level.

Thus, if a user would like to launch a cursive writing OCR process, he just needs
to use any one of the local idle stationary agents. Consequently, this chosen agent
will be considered as the main (the launcher or the initiator) agent. The remaining
intelligent stationary agents that will participate in the work will be considered as
collaborators. We note that the main agent will be responsible only for the user in-
terface and the management of the distributed OCR process. It will not participate
in this recognition process, though it may participate in other applications. Conse-
quently, our proposed architectural model gives the possibility of launching several
cursive writing OCR applications at the same time and throughout the grid.

One of the advantages of our model compared to the one proposed by Zhongzhi
et al. [48] is the complete lack of the interoperability issue, as the data exchanged
between agents is either binary data bytes or ASCII code bytes.

15.6.1 The Analytical Model

To conduct a performance evaluation of the proposed SOGA, we need to define the
different system parameters. We denote by:
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P : the total number of connected volunteer computers of the grid that will partici-
pate in a cursive writing OCR process. P denotes then the number of participating
intelligent stationary agents, which is dynamically varying as nodes join and depart
from the system.

Ui : the CPU utilization percentage of participating computer i, 1 ≤ i ≤ P .
Xi : the total number of machine instructions needed to compute and recognize the
part of the input text assigned to agent i. Given P , Xi is obtained by a pseudo-
optimal sequential assignment algorithm through the concatenation of some con-
tiguous binary matrices. Therefore,

∑P−1
i=1 Xi represents the total number of ma-

chine instructions needed to compute and recognize the entire cursive writing text
at hand. We will neglect the time needed for the pretreatment process, as it is only
done once and represents a very small fraction of the total time achieved by the
DTW algorithm.

σi : denotes the computing power of stationary agent i where i = 1,2, . . . ,P . This
value is expressed in millions of machine instructions per second (Mips).

Cmi : the total time needed to communicate one data packet from the launcher
(main) stationary agent to collaborator agent i. This communication time is sup-
posed to include all required details of the communication process such as the
propagation delay, the queueing delays, the network capacity and current load, etc.

Cim: the total time needed to communicate one data packet from collaborator agent
i to the main agent. We shall assume that Cmi = Cim.

NTPacki : denotes the total number of data packets to be transmitted from the main
stationary agent to collaborator agent i. We consider here that an IP packet contains
536 bytes of payload.

NRPacki : denotes the total number of packets received at the main stationary agent
from collaborator agent i. NRPacki represents the recognition results achieved by
collaborator agent i.

CT(P ): The completion time, it expresses the total time needed by the P partici-
pating computers (agents) to compute and recognize the whole text at hand.

We will suppose next that:

• The time needed to get the detailed forecast state of the grid from the home fore-
cast agent is constant and negligible.

• The time needed to select the target collaborator agents and then to split pseudo-
optimally the binary image of the entire text to be recognized is also constant and
negligible.

Otherwise these two constants should be added to the expression of the CT(P ),
which is given here by the following equation:

CT(P ) = max
1≤i≤P−1

[
(
Cim × (NTPacki + NRPacki )

)+
(

Xi

σi × (1 − Ui)

)]

(15.11)
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CT(1) denotes the total time required by a sequential architecture (or a single com-
puter) to compute and recognize the same text at hand. Its expression is given by the
following equation:

CT(1) =
∑P−1

i=1 Xi

σ
(15.12)

where σ denotes the computing power of the computer used in the sequential OCR
process.

Let S(P ) denote the recognition process speedup factor. Speedup here is in fact
a measure of how much faster a computation finishes under the SOGA proposed
approach than under a sequential mode. Its expression is given by the following
equation:

S(P ) = CT(1)

CT(P )
(15.13)

15.6.2 Numerical Results

In this section, we shall concentrate on Arabic writing as an instance of cursive
writing. To further proceed with the numerical study of our proposed analytical
model, we need to evaluate some statistical characteristic of cursive Arabic writing.
As such, we considered an Arabic legal text corpus composed of 30 pages selected
from Volume I, Part I of the United Nations Publications (ISSN 1014-5559). This
text corpus (samples of which are portrayed on Fig. 15.2 and Fig. 15.3) was scanned
by an HP scanner with a resolution of 300 dpi (dots per inch). The corpus selection
of this legal text presents, generally, a very rich terminology, yet it corresponds to
point sizes and fonts widely used in virtually all legal documents potentially subject
to large scale OCR operations.

The feature extraction procedure used is based on Hadamard’s transformation
of dimension 30 [29]. Consequently, all feature vectors are of dimension 30. The
conducted statistical study on the processed 30 pages of Arabic text emphasizes the
following quantities:

• The average number of characters per page is approximately 900 characters.
• the total number of obtained connected (cursive) components (fragments or bi-

nary matrices) within the entire text corpus is 11917.
• The total number of pixel vectors composing the 11917 fragments is 427102.
• The average length of a component is approximately 36 pixel vectors, and
• The average width of an Arabic character of the studied corpus is approximately

15 pixel vectors.

Figure 15.4 portrays the number of components (dot matrices representing con-
nected sub-words) as a function of the number of pixel vectors they contain (i.e., the
matrix width in pixel vectors). We observe that connected components tend rather to
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Fig. 15.2 A corpus text sample

Fig. 15.3 The biggest sub-word

Fig. 15.4 Text corpus
statistics

have a small to moderate number of pixel vectors, indeed 36 vectors on the average
representing around 2.4 connected characters on the average per sub-word.

However, for the sake of our experiments of the DTW OCR and the proposed
SOGA system on huge documents, we require a significantly larger amount of in-
put text. As such, we shall rather consider a text input of 30000 pages of similar
texts obtained by replicating the 30 considered pages 1000 times. Consequently, this
amounts to 11917000 connected fragments or components to be assigned among the
P − 1 agents, that is, 427102000 pixel vectors in total.

The assignment process of these connected components among the P − 1 col-
laborator agents is achieved by the following algorithm:

1. Fix P the number of agents that will participate in the work, a main agent and
P − 1 collaborator agents.

2. Divide the total number of pixel vectors by P − 1, under the used hypothesis
that agents are homogeneous in computing power and that the communication
latency to any one of these agents is approximately the same. Let aopt be the
result of this division; it represents the ultimate optimal number of pixel vectors
to be assigned to each agent.

3. The sequence of fragments composing the entire text is now assigned to collabo-
rator agents in a sequential consecutive manner. The first collaborator agent will
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be assigned a number of consecutive components such that the sum of their com-
posing pixel vectors is the least value equal to or larger than aopt. Let Fr1 be such
a value. Collaborator agent i, i = 1, . . . ,P − 2 will then be assigned a number of
consecutive components Fri such that (

∑i
j=1 Frj ) is the least value equal to or

larger than iaopt. The remaining components are assigned to collaborator agent
P − 1.

Consequently, the expression of Xi ∀i = 1,2, . . . ,P − 1, representing the total
number of machine instructions to be accomplished by collaborator agent i, is given
by

Xi = α

Fri∑

j=1

{
R∑

r=1

{ Nj∑

t=1

Lr(t)

}}

(15.14)

where:
α denotes the total number of machine instructions needed to execute the cumu-

lative distance at any given warping point (see Eqs. (15.8) and (15.9) and Fig. 15.1).
Conducted experiments revealed that α can be approximated by 250; recall that each
feature vector is of dimension 30.

R is the total number of reference characters composing the reference library V .
Recall that Arabic characters have some specific characteristics where some char-
acters may have four different shapes according to their positions within the word
[6]. Consequently, the total number of Arabic characters (including shape variation)
is around 100. Furthermore, we suppose that each reference character within library
V is represented by three different occurrences; hence the value of R will be around
300.

t denotes the time axis as adopted on Fig. 15.1.
Nj is the total number of feature vectors composing component j within the

sequence of components Fri assigned to collaborator agent i. Recall that feature
vectors are of dimension 30 and that the feature extraction procedure based on
Hadamard’s transformation conserves the size of the image [37, 40, 41, 43].

Lr(t) denotes the total number of warping points to be executed at time t within
reference character r . It can be expressed as follows:

Lr(t) =
2t−1∑

i=1

δ(lr − i) (15.15)

where δ(i) denotes the integer function that equals one for i ≥ 0 and equals 0 oth-
erwise.

lr denotes the width or the number of feature vectors composing the reference
character Cr ∀r = 1, . . . ,R which is approximated to 15 (we recall that this value
represents the average width of an Arabic character of the studied corpus).

We will suppose next that:

• The communication delay of a data packet is the same from any collaborator
agent to the main agent and vice versa. While this keeps our numerical analysis
simple and clearer, it needs undoubtedly a further refinement that is beyond the
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Fig. 15.5 Case where the
number of OCR service
agents = 20

scope of the current paper. Consequently, we are assuming that Cmi = Cim = Cm

∀i = 1,2, . . . ,P − 1. Indeed, for an extremely fast underlying network, that is,
for a zero communication delay, we have Cm = 0 second. For a point-to-point
communication capacity of 4.6 kbps, we get Cm = 1 second as the packet size is
576 bytes including 40 bytes of TCP-IP header (a total of 4608 bits). We shall then
let Cm vary between 0 and 1 second to accommodate an array of communication
latencies and study their impacts on the completion time and speedup.

• All participating computers are homogeneous in execution power and capabili-
ties. Consequently, we shall assume that σi ∀i = 1,2, . . . ,P − 1 and σ are con-
stant and equal to 1000 Mips. This value corresponds approximately to the aver-
age of the computing power of our lab computers.

• The assumed value for Ui is 50 % for all i = 1, . . . ,P .

Figure 15.5 portrays the completion time and the speedup as a function of the
parameter Cm when 20 service agents are used; that is, P = 21. When an extremely
fast network is used, that is, for Cm = 0, CT equals to 77845 seconds (around
21.6 hours). Recall that we are treating a rather huge corpus of 30000 pages. We
observe that CT increases as the underlying network gets slower. For Cm = 1, that
is, in the case of point-to-point communication capacities of 4.6 kbps, CT amounts
to 236862 seconds (just over 65 hours). The speedup equals 10 for Cm = 0, as Ui

is 50 % for all i = 1, . . . ,P . The speedup becomes lower as the underlying network
becomes slower; for Cm = 1 we get a speedup of just 3.286.

Figure 15.6 portrays the completion time and the speedup as a function of Cm but
for 100 service agents. As expected, we get the exact same behavior as for Fig. 15.5;
however, more efficiency is obtained. When an extremely fast network is used, that
is, for Cm = 0, CT is only equal to 15569 seconds (around 4.32 hours); however, for



368 M. Khemakhem and A. Belghith

Fig. 15.6 Case where the
number of OCR service
agents = 100

Cm = 1 CT amounts to 47374 seconds (around 13.2 hours). The speedup equals 50
for Cm = 0 and equals 16.432 for Cm = 1.

Figure 15.7 portrays the completion time and the speedup when 1000 service
agents are used. Here, we get large speedups of 500 for Cm = 0 and 164.234 for
Cm = 1. These large speedups allow us to reach very fast completion times of
1556.916 seconds (around 0.43 hour) for Cm = 0 and 4739.916 seconds (around
1.3 hours) for Cm = 1.

These obtained results confirm that our proposed model yields a very interest-
ing framework for large scale cursive writing OCR under the DTW algorithm. In
the quest of an improved recognition rate, our proposed framework combined com-
plementary approaches, yet it permits us easily to integrate others. Each of these
complementary approaches and techniques would be implemented as a new service
agent.

15.7 Conclusion and Perspective

In this chapter, we proposed a service-oriented grid architecture (SOGA) based on
the integration of agent technology within a volunteer grid in an attempt to solve the
problem of large scale printed cursive document OCR using the DTW algorithm.

The performance evaluation analysis and numerical experiments showed that our
proposed SOGA architecture provides a viable framework to speed up the recogni-
tion of very large printed cursive writing documents based on the DTW algorithm.
Moreover, this SOGA eases the way to improve, at will, the recognition rate of the
DTW algorithm by making it possible to combine it with some other complementary
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Fig. 15.7 Case where the number of OCR service agents = 1000

approaches or techniques. The number of service agents to be involved to reach an
adequate completion time depends on both the underlying network and the current
utilization of each of these agents.
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Chapter 16
Data Collection and Annotation for Arabic
Document Analysis

Ilya Zavorin and Eugene Borovikov

Abstract The creation of good quality document corpora is not a trivial task, but
such corpora are essential for advancing OCR technology. Documents in Arabic
certainly present their own challenges to this process, and here we describe our data
creation and annotation efforts for Arabic document analysis. The resulting corpora
include both on-line and off-line handwritten data as well as logos, signatures, and
mixed-script machine-printed text. All these are described in detail, and some typi-
cal examples of documents are given.

16.1 Introduction

Access to good quality corpora is fundamental for estimating and improving the ac-
curacy of document analysis algorithms. A quality document corpus typically con-
sists of a set of document images, each accompanied by its ground truth. The ground
truth typically includes the document’s source text (preferably line-aligned with the
image) and may also include information about fonts, scripts, languages being used,
text and non-text block boundaries, document reading order, etc. Corpora with a rich
ground truth are difficult to find or collect, but their benefits for the development of
document analysis technology are hard to overestimate. Fortunately, sophisticated
corpus generation [16] and creation [5] tools are becoming more accessible, making
the creation of an elaborate ground truth much easier and more effective.

One of the main purposes for creating publicly available document corpora is uni-
form benchmarking and comparison of various document analysis systems. When
such corpora are developed for a particular document analysis task to be evalu-
ated (such as off-line handwriting recognition or document layout analysis), there
is often a bias as to what type of data and/or annotation is actually generated. The
reasons for the bias are, first, limited access to raw data and, second, the difficulty of
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defining what a “typical” test document of a particular type is in terms of its textual
content, layout, etc.

In addition, since these corpora are usually used to evaluate technologies that are
still maturing, the test data often must be simplified to provide a reasonable level of
complexity for systems to be evaluated. As a result, such corpora may not represent
well the type of documents that a specific potential user of these document analysis
technologies might actually encounter.

Compared to Latin-script languages such as English and Spanish, there are rela-
tively few large-scale publicly available test corpora available for Arabic document
analysis. One such corpus is the University of Maryland Arabic database, which
includes, among document sets in several European, Asian, and Middle Eastern lan-
guages, 166071 Arabic handwritten business documents with signatures [9]. A col-
lection of 350 documents signed by 70 different persons with both Persian or Arabic
cursive signatures was used to evaluate a methodology for signature extraction and
verification [3]. The images included mixed alphanumeric content in Arabic, Per-
sian, and English using different fonts and sizes as well as logos and lines. Two
other corpora designed to evaluate bank check processing are briefly described by
Lorigo et al. [10].

In the context of Arabic handwriting recognition (HWR), one of the impor-
tant publicly available corpora is the IFN/ENIT database of handwritten Ara-
bic words [6, 15], which includes 26459 segmented words containing Tunisian
town/village names (with ground truth) written with a great variations in handwrit-
ing styles by 411 writers. This database is free for academic researchers and can
be licensed for corporate research as well. The existence of this data set allowed
its creators to conduct several Arabic HWR competitions, where their HWR system
competed with others [1, 11–14]. They also showed [4] how to optimally combine
several Arabic HWR systems to attain impressive recognition accuracy rates beyond
95 %.

In what follows, we present results of data creation and annotation efforts for
Arabic document analysis that we undertook driven by the needs of specific govern-
ment clients. The resulting corpora can be separated into the following groups based
on the document analysis tasks they were developed for: optical character recogni-
tion (OCR, Arabic News and Anfal corpora), and intelligent character recognition
(ICR, AMA and OnAR corpora).

16.2 OCR Data

Here we describe our OCR corpus collection and annotation efforts. For each cor-
pus, we present a motivation for creating it, discuss why it is unique, and reveal
some details of our collection and annotation process.
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Fig. 16.1 A sample Arabic News corpus document

16.2.1 Arabic News Corpus

The Arabic News corpus was created primarily to develop and test the capabilities
of pre-OCR image processing, including adaptive noise removal, page de-skewing,
border detection, and reading order determination. It presents a good testing plat-
form for Arabic OCR robustness to variations in fonts and text layout.

The corpus was collected by scanning newspaper articles and saving the results in
both grayscale and bitonal single page Tagged Image File Format (TIFF) images—
one article per image. The rest of the newspaper page was masked by blank paper.
The ground truth was prepared and line-aligned with the source images by a native
Arabic speaker and stored into plain Unicode text files—one text file per source
image.

The News corpus contains a total of 100 pages with various news articles. A sam-
ple of the Arabic News document is shown in Fig. 16.1. As we can observe, the
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image captures a nonrectangular region of the news article, exhibiting a variety of
fonts and various kinds of noise. It was successfully utilized in our pre-OCR adap-
tive image enhancement system called ImageRefiner [2].

16.2.2 The Anfal Corpus Collection

We developed this corpus as part of a larger project for a government client. The
ultimate goal of the project was to assess how document image processing could
be improved to yield more relevant content within a large document exploitation
system that we had previously developed for the client. To this end, a thorough
evaluation had to be performed of a number of commercial and academic software
tools developed for the following document image processing tasks:

• Logo recognition
• Signature recognition
• Writing system (script) and language identification
• Edge and border detection/recognition

While experiments involved data in various languages, Arabic documents were
the primary focus of the effort. For each of the image processing tasks listed above,
a corpus of realistic data had to be created that reflected as much as possible the type
of data that actually occurred within the exploitation system. The approach we took
was to start with a single set of document images and create multiple derived corpora
by adding ground truth metadata corresponding to each image processing task. As
the name of the corpus suggests, the initial data set, which was provided to us by the
client, consisted of various documents related to the Al-Anfal Campaign [7]. These
documents had been initially indexed with Zyindex [8], so the data set included at
least some limited ground truth information.

Logo Recognition

We assembled a set of 1058 document images composed of bitonal TIFF images
selected from the initial Anfal collection. When making selections, we attempted to
create a heterogeneous set of test images with varying

• Logo shapes and sizes
• Logo locations in a document
• Degrees of overlap with other structures, such as handwritten notes
• Logo counts in a single document, i.e. documents with no logos, documents with

a single logo, documents with multiple logos

Among the documents chosen, approximately 18 percent contained one or more
logos on the page. We also note that some documents with logos also contained other
graphics such as photos (see Fig. 16.2) or borders (see Fig. 16.3). Approximately
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Fig. 16.2 A sample Anfal image with a logo also containing a photo

17 percent of the documents with logos featured an official Iraqi government agency
stamp (see Fig. 16.4). Information about the presence or absence of a logo in a given
image was simply recorded in a spreadsheet; no location information or any other
additional metadata was recorded about the image. In addition, for a more detailed
logo matching evaluation, we extracted two logos: the Iraqi Republic logo and the
Iraqi logo featuring the head of a bird inside a ring (see Fig. 16.5). These logos were
chosen primarily for their prevalence throughout the collection, the republic logo
appearing 106 times, and the “bird circle” logo appearing 123 times.

Signature Recognition

We collected 399 Arabic images with signatures from the Anfal collection, each of
which contained between one and seven signatures. In general, it should be noted
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Fig. 16.3 A sample Anfal image with a logo also containing a border

that collection of a corpus containing signature samples is a very laborious task. The
decision of whether or not a particular signature is present in an image is sometimes
subjective due to high variability in handwriting, poor image quality, signatures of-
ten being obstructed by stamps and/or noise, and a lack of other identification clues,
such as the printed name of the signer (see examples in Figs. 16.6 and 16.7). This
often forces extraction of signature image data from document images that are rela-
tively clean and noise-free.

Script and Language Identification

In addition to 276 Arabic script mixed-language documents picked from the Anfal
collection, we collected two additional sets of Arabic script documents. One was
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Fig. 16.4 A sample Anfal image with a logo also containing a stamp

very small, containing only five documents with mixed Arabic and English text (see
Fig. 16.8), while the other one contained 396 documents written in Urdu with var-
ious levels of noise and distortion in the images (see Figs. 16.9 and 16.10). The
specific script and language of each document were recorded in a single spread-
sheet.

Edge and Border Detection/Recognition

The assembled experimental corpora included two sets of 200 images each from the
Anfal collection and 8 miscellaneous images from various sources. The images of
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Fig. 16.5 Sample Republic of Iraq (left) and “bird in circle” (right) logos

Fig. 16.6 A sample Anfal signature image containing significant noise

the Anfal collection are mixed, including clean backgrounds and noisy (speckled
or salt-and-pepper) backgrounds (see Figs. 16.11 and 16.12). The borders of the
images are solid black. Each image contains one to four borders. The 8 extra im-
ages contain different types of borders and were used to test the reliability of border
removal.

16.3 Arabic Handwritten Data

Our Arabic handwritten data collection effort was limited to the scope of the Arabic
handwriting recognition project. Hence the resulting corpora are by no means com-
prehensive, but they may provide a good test platform for various off- and on-line
Arabic recognition endeavors.
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Fig. 16.7 A sample Anfal signature image containing a significant amount of other handwritten
text

16.3.1 AMA Data Set

Many Arabic handwriting recognition and evaluation efforts use the popular
IFN/ENIT corpus, available freely in the academia. Although this corpus is rela-
tively large and displays a fair amount of variability, thus serving as a great test
bench for many projects, it still has the disadvantage of not reflecting accurately the
types of writing likely to be encountered in real-world applications other than postal
processing.

To support more general Arabic handwriting recognition research, we created
an annotated test corpus to exhibit a large variety of documents (including notes,
personal letters, business correspondence, item lists, etc.) typically encountered by
our clients. Due to the sensitivity of client data, we could not use samples of real
documents to populate the corpus or even as a starting point for synthetic data gen-
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Fig. 16.8 A sample Anfal image for script/language identification: a mixed Arabic–English doc-
ument

eration. Therefore, we adopted the following approach. We reviewed small samples
of real-world data to identify sources of variability in terms of visual characteris-
tics likely to affect handwriting recognition: writing implements, the presence of
lines and borders on the paper, styles of writing, etc. To the extent possible, we also
considered writer demographics, such as origin, age, and gender.

We then developed a target distribution of synthetically generated data for the
resulting corpus that would reflect the variety of the samples and pose appropri-
ately realistic challenges for the Arabic off-line handwriting recognition systems
that would be evaluated on the data. Clearly, since the amount of real data reviewed
was very small, no claims could be made regarding the extent to which the test cor-
pus would be representative of the entire collection of client data. However, given
the circumstances of the project, our approach serves as a valid second-best method-
ology of generating verisimilitudinous test data.
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Fig. 16.9 A sample Anfal image for script/language identification: a noisy Urdu document

Table 16.1 contains target specifications for synthetic documents to be created,1

while Table 16.2 shows the target distributions used when recruiting native Arabic
writers to create these documents.

As a result, we have collected a corpus of 5000 distinct page images of handwrit-
ten notes, lists, and tables. The ground truth was provided in an XML format and
specified the writer and document characteristics applicable to the image, as well
as the location (bounding box) and contents of each word and PAW (part of Arabic
word). The relevant elements are listed below. Table 16.3 describes the significant

1The “multipage” designator in Table 16.1 indicates that a page participates in a multi-page logical
document, not that we represent the multiple pages as a single unit. Within this collection, each
page image is treated separately.
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Fig. 16.10 Another sample Anfal image for script/language identification: a noisy Urdu document

attributes of these elements, and Fig. 16.13 shows a sample fragment of a ground
truth file.

DL_DOCUMENT occurs once per document.
DL_PAGE occurs once per page image, which in this collection means once per

document. It is contained within DL_DOCUMENT, and it includes attributes
specifying writer information.

DL_ZONE occurs once per word. These elements are contained within the
DL_PAGE element. Each DL_ZONE element specifies the bounding box of its
word, the contents of that word, and the positions that separate the word into
PAWs, as well as implicitly specifying the contents of the PAWs.

To aid in distinguishing a system’s success and failure on particular writing styles
from success and failure on particular content, the collection includes multiple writ-
ers’ variants of the same content. The corpus comprises 200 distinct source docu-
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Fig. 16.11 A sample Anfal border image

ments, each written separately by 25 different writers. Each written document pro-
duces a single page image. For this purpose “document” and “page” are interchange-
able, although the content of a page may be written as though it logically forms part
of a longer, multi-page document.

Each writer received a packet including the text to produce and instructions for
how to produce it, as a result of a random assignment of document characteristics,
and each writer also filled out a log reflecting the creation of the documents and the
characteristics used. The ordering of the documents varied in the writers’ packets,
to account for the effects of fatigue. All paper originals were scanned at 300 dpi.

The XML-formatted ground truth was produced by human interaction with a tool
developed by Applied Media Analysis, Inc. (AMA); see Fig. 16.14. Provided with
the image and the source text, with the same line breaks in each, the tool allows
the user to draw boxes to indicate the image regions that correspond to provided
lines in the text, and then to draw boxes around PAW elements, identify the ones
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Fig. 16.12 Another sample Anfal border image

they correspond to, and group them into words. The system can also suggest these
correspondences, which the user can accept or correct. The tool requires the user to
check correctness before releasing a document.

16.3.2 OnAR Data Set for On-Line Recognition

Although the main objective of our research project at the time was to develop a
robust recognizer for scanned, i.e., off-line, Arabic handwriting, we still saw some
value in gathering a small collection of on-line Arabic handwriting samples that
would help us to improve our glyph tracer module by observing how natural Arabic
handwriting is done. We captured a small corpus of on-line data using the following
methods:
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Table 16.1 Off-line
document characteristics Characteristic Value Percentage

Text Quantity Half Page ≥20 %

Multipage ≥10 %

Paper Type Lined Paper ≥60 %

White Paper ≥30 %

Background Logos/Borders ≥5 %

Writing Style Normal ≈50 %

Hurried ≈40 %

Neat ≈10 %

Device Pencil ≥10 %

Marker ≥5 %Format

Formal memo ≥20 %

Informal memo ≥20 %

Lists: Names ≥20 %

Lists: Numbers ≥15 %

Forms ≥5 %

Poems ≥3 %

Diagrams ≥2 %

Table 16.2 Off-line writer
characteristics Characteristic Value Percentage

Gender Female ≥20 %

Male ≥20 %

Origin North Africa ≈15 %

Egypt/Levant ≈25 %

Iraq ≈15 %

Gulf ≈15 %

Age Under 35 ≥20 %

Over 50 ≥20 %

Education Advanced ≥4 %

Toshiba a Tablet PC with Windows XP Tablet PC Edition provided a convenient
way of capturing natural handwriting from motions of the electronic pen on the
tablet PC screen. Advantages of this approach include: quality of captured digital
ink (600 dpi spatial resolution and pressure info), rich support for ink handling
and rendering, and not having to upload the captured ink to a PC for processing.
However, writing on a tablet PC is far from being natural and requires some
training.

Pegasus NoteTaker is a small device that captures handwriting that occurs on a
sheet of regular paper. The device consists of two pieces: the base (handwrit-



390 I. Zavorin and E. Borovikov

Table 16.3 Ground truth XML elements and attributes

Element Attribute Meaning

DL_DOCUMENT src Corresponding image file name

DL_PAGE src Corresponding image file name

Origin Writer regional origin, drawn from the list in Table 16.2, or
“Other”

Age Writer age

Gender Writer gender

Education Writer level of education

Training Distinguishes native speakers from non-native speakers with
native-like abilities. A total of four writers belong to the latter
category

DL_ZONE col X-coordinate of upper left corner of bounding box of word

row Y-coordinate of upper left corner of bounding box of word

width Width of bounding box of word

height Height of bounding box of word

offsets Offsets of boundaries between PAWs within the word, relative to
the edge of the word

contents Text of the word, with PAWs separated by spaces. To retrieve the
content of the word’s PAWs, split this content on spaces; to
retrieve the content of the original word, concatenate those
elements, or simply remove the spaces

Fig. 16.13 Sample fragment of AMA ground truth file

ing collector) and the digital pen (handwriting transmitter). To capture the user’s
handwriting or drawing, the base is turned on and positioned in front of the paper
sheet. The user takes the digital pen and starts writing or drawing on the piece
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Fig. 16.14 GUI for Arabic handwriting ground truth tool by AMA

of paper. The digital pen acts to the user as a normal pen, yet it transmits all the
strokes the user makes to the base. When one page is done, the user touches a spe-
cial button on the base, the note gets saved, and the base is ready to take the next
one. Upon the completion of the data entry session, the base can be connected to
a PC to upload all notes it captured for further processing. The major advantage
of this device is its natural and noninvasive handwriting capture. There are also
some disadvantages, such as fairly low quality of the captured ink (e.g., 100 dpi,
no pressure information) and the need for some extra steps, such as uploading
ink to a PC, and transforming it to some standard digital ink format.

We have observed natural Arabic handwriting and used our observations to make
our off-line glyph tracer more consistent with human writing behavior. As a helping
tool, we have implemented a graphical user interface (GUI) on-line handwriting
capture and recognition application for a tablet PC; its main window is shown in
Fig. 16.15.

The user is shown a printed Arabic word or a phrase that needs to be handwritten,
and is prompted to use the tablet PC stylus to write a sample or two of that template
phrase. The results containing motion and pressure information are saved into an
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Fig. 16.15 GUI for Arabic handwriting on-line capturing

XML file. We have used IFN set A as templates for our Arabic writer and collected
about 600 on-line handwritten samples by a Tunisian-native writer.

16.4 Conclusion

Developing all-purpose OCR/ICR corpora is a challenging task, especially when
rich ground truth is desired. The rewards of creating such corpora should be obvious,
but surprisingly few data sets are publicly available. Here, we presented several data
sets that we helped create and annotate during our Arabic document analysis efforts.
Most of them were driven by the needs of specific government clients:

OCR Arabic printed text

News Collection of Arabic newspaper articles with a variety of fonts, image
noise, and page skews, described in Sect. 16.2.1.

Anfal Predominantly machine-printed documents used for analysis of auxiliary
to OCR tasks including language/script identification, border detection, and
signature and logo detection as described in Sect. 16.2.2.

ICR Arabic handwriting

AMA Handwritten documents for off-line handwriting recognition, with ground
truth granularity of PAW, described in Sect. 16.3.1.

OnAR Handwritten phrases (replicating IFN-A data set) with the movement
and pressure information for on-line handwriting recognition as described in
Sect. 16.3.2.
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The News corpus presents a line of challenges to an Arabic OCR engine and its
pre- and post-processing stages, e.g., adaptive image cleanup, segmentation, reading
order detection, and font adaptation. The text layout and contents also vary quite
significantly.

The Anfal corpus is rich in content and can serve various purposes besides Ara-
bic OCR, e.g., signature, stamp and logo detection, handwriting recognition, and
document image noise removal. However, that kind of ground truth requires the
development of specialized annotation tools.

In the case of the AMA corpus, we faced the problem of restricted access to the
real target documents, and had to resort to detailed descriptions of handwriting in
those documents, types of paper, and special marks in order to mimic real-life data.
While such data might exist in abundance for a particular document analysis task,
access to this data by those who would be in charge of developing the test corpora is
often severely restricted due to its personal, proprietary, classified, or other sensitive
nature. We described our approach to overcoming this problem and producing a
good quality corpus with rich ground truth.

The on-line Arabic recognition set was relatively easy to create with access to a
native speaker (capable of operating a tablet PC) and the IFN data set (accompanied
by the ground truth). The obvious benefits include access to the motion and pressure
information to study handwriting dynamics. Having it based on a well-known data
set allows for yet another benchmark test.

All of the described data sets can be available for research purposes via their
respective U.S. government agencies, but some restrictions to the foreign parties
may certainly apply.
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Chapter 17
Arabic Handwriting Recognition Competitions

Volker Märgner and Haikal El Abed

Abstract Competitions are a general practice to support the development of new
systems. Due to the availability of a database of handwritten words Arabic hand-
writing recognition systems made a considerable improvement. At first this chapter
presents the IFN/ENIT-database which is a standard for Arabic handwritten word
recognizer development. The second part includes a presentation of the participat-
ing systems and the results achieved at five international competitions from the first
one at the International Conference on Document Analysis and Recognition ICDAR
2005 to the competition at the ICDAR 2011. The competitions show a remarkable
progress of Arabic handwriting recognition system quality during the seven years.
Even though most systems used Hidden Markov Model (HMM) based methods
and most times HMM based systems were the winners the overall best result was
reached by a Neural Net based technique.

17.1 Introduction

The development of new methods is considerably affected by the measuring tech-
niques used to assess the system quality. Pattern recognition systems in general
and Arabic handwriting recognition systems in particular need adapted assessment
methods. The two essential parts of the assessment of recognition systems are the
used data and the evaluation metrics. Usually commercially initiated system de-
velopment or system comparisons are the starting point for data collections and
system assessment. This was the case for the annual tests of optical character recog-
nition (OCR) accuracy from 1992 to 1996 organized by the Information Science
Research Institute (ISRI) at the University of Nevada, Las Vegas, funded by the
U.S. Department of Energy with the mission to foster the improvement of auto-
mated technologies for understanding machine printed documents. To pursue this
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goal, ISRI conducted research on developing new metrics of recognition perfor-
mance, the combined use of recognition and retrieval technologies, and an annual
OCR technology assessment program where an independent comparison of perfor-
mance characteristics of all available technologies for character recognition from
machine printed documents was performed. This project brought together research
groups and companies from all over the world and showed that data, metrics, and
technology assessment is a basic requirement to accelerate the development of OCR
technology, which made a great leap forward for printed Latin characters.

The situation for Arabic character recognition and especially Arabic handwriting
recognition is quite different. While in recent years an increasing interest in Arabic
handwriting recognition can be noticed, there is only a minor commercial interest.
Commercial system development is funded by governments using a great amount
of confidential handwritten documents not available for non-commercial research.
For many years researchers at universities used for their experiments only a small
amount of data, and the results were not comparable with the results of other groups.

A fundamental change occurred with the publication of the IFN/ENIT-database
of handwritten Tunisian town names in 2002 [45]. From that time on, more and
more research groups used this freely available data for their research, and as a log-
ical consequence three years later a first competition for Arabic handwritten word
recognizer was organized during the International Conference on Document Anal-
ysis and Recognition (ICDAR) in 2005 [40]. Since this first competition up until
2011 five competitions were held, and a considerable improvement of the system
performance could be observed.

This chapter is organized as follows. In Sect. 17.2 the database, the training, and
the test sets are presented in detail. Section 17.3 presents the participating groups
and gives a short description of the submitted systems. Section 17.4 describes the
tests and the results achieved by the different systems. Finally the chapter ends with
concluding remarks and an outlook.

17.2 The IFN/ENIT-Database

The development of recognition systems requires a large amount of data to train and
test a system. Real-world data, especially from a bank or a post area, often are con-
fidential and inaccessible for non-commercial research. An alternative is to use arti-
ficial data instead of scarce real-world data. For the IFN/ENIT-database a form was
developed which allowed a writer to write a city name and a postcode without con-
straints, which means in a similar quality as town names of an address are written on
a letter. This also made the usually time-consuming generation of ground truth (GT)
as fast and easy as possible. The names of 937 Tunisian town/villages were written
together with the postcode. An example of a filled form is shown in Fig. 17.1. Town
names and numbers were extracted automatically, and GT and baseline information
were added automatically as well. Finally, the GT and baseline information were
verified manually several times by different persons.
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Fig. 17.1 An example of a filled form

The form pages are scanned with 300 dpi and converted to black and white (bi-
nary) images. The cropped images of the names and the postcode are extracted,
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Table 17.1 A dataset entry
of the IFN/ENIT-database.
The symbols M, B, A, E
represent the used character
shapes (middle, begin, alone,
end position in a word)

and for each name a label is assigned. To support the training and testing process
of a recognition system, optimally the label of the name consists of the postcode,
the name in Arabic code set ISO 8859-6, and additionally a code that describes the
Arabic character shapes. This code uses Latin characters as indexes. “B” stands for
beginning, “M” for middle, “E” for end, and “A” for alone/isolated character shapes.
An “L” marks the “Chadda”. These descriptors are linked to the Arabic character
code with the “_”. The codes for each character are separated by “|”. Additionally,
a straight line as baseline estimation is given by left and right y-coordinates where
the line cuts the boundary of the name image box. Table 17.1 shows an example of
a dataset entry of the IFN/ENIT-database.

The database in version 2.0 patch level 1e (v2.0p1e) consists of 32492 Arabic
words handwritten by more than 1000 writers. The words written are 937 Tunisian
town/village names [40]. Each writer filled out one to five forms.

17.2.1 The Training Sets

The whole database is divided into different sets a to e. These sets can be used for
the development of recognition systems. Table 17.2 shows some statistical details
of the training sets of the IFN/ENIT-database.

17.2.2 The Test Sets

The test dataset for the first competition in 2005 was set e; at that time this set
was unknown to the competition participants. For the following competitions new
datasets, again unknown to all participants, were collected. The words are from the
same lexicon as those of IFN/ENIT-database and written by writers who did not
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Table 17.2 Number of
names, characters, and PAWs
appearing in the
IFN/ENIT-database v2.0p1e

Set Names Characters PAWs

a 6537 51984 28298

b 6710 53862 29220

c 6477 52155 28391

d 6735 54166 29511

e 6033 45169 22640

Total 32492 257336 138060

Table 17.3 Features of
datasets f , s, t and t1

Set Names Characters PAWs

f 8671 64781 32918

s 1573 11922 6109

t 1000 7921 4252

t1 100 821 412

Table 17.4 Frequency of
number of PAWs PAWs Frequency in % PAWs Frequency in %

Set f Set s Set f Set s

1 4.69 4.32 6 9.11 8.96

2 16.58 15.13 7 3.16 3.50

3 25.82 25.30 8 2.24 2.67

4 23.11 23.67 >8 0.21 0.38

5 15.11 15.77

contribute to the datasets before. For the test purposes, these data are separated into
datasets f , s, t , and t1. Table 17.3 shows some statistics of these sets.

Set f was collected in Tunisia, while set s was collected in the United Arab
Emirates (UAE) at the University of Sharjah. Table 17.4 shows the frequency of
PAWs (parts of Arabic words) within each name of the new datasets f and s. The
sets t and t1 are subsets of sets a to f used to measure the processing time of the
systems in the competition environment.

17.3 Participating Systems

The following sections give a brief description of the systems submitted to the com-
petitions organized from 2005 to 2011. Each system description was provided by
the system’s authors and edited (summarized) by the competition organizers. The
descriptions vary in length according to the level of detail in the provided source
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information. The participants of each competition are presented separately. Some of
the groups participated with more or less similar systems in more than one compe-
tition; the participating systems are described for each competition separately.

17.3.1 ICDAR 2005

The results of the first competition of Arabic handwriting based on the IFN/ENIT-
database were presented at the International Conference on Document Analysis and
Recognition ICDAR 2005.

ICRA

The system with the name ICRA (Intelligent Character Recognition for Arabic),
which also means read in Arabic, was sent by Ahmad Abdul Kader, employed as
a software architect by Microsoft within the handwriting recognition group. His
participation in this competition is as a freelancer and not as a Microsoft employee.
A short description of the system follows:

• The system uses a novel idea that is inspired by the nature of Arabic writing. It is
based on the concept of what is known as PAW (part of Arabic word).

• ICRA is a two-tier recognizer.
• The first tier is a neural net-based PAW recognizer that is aided by a PAW lexicon.

The PAW lexicon is extracted from the master village names lexicon.
• The second tier is a neural net-based word recognizer that is aided by another

lexicon. The literals (alphabet) of this lexicon are actually the PAWs and not the
characters.

• ICRA was trained on sets a, b, and c and tested on set d of the IFN/ENIT-database.

Details of the system are published in [3].

SHOCRAN

The system with the name SHOCRAN (System for Handwritten Optical Character
Recognition for Arabic Names) comes from a group of researchers in Egypt. It is
declared as a confidential project. The system is trained on all four datasets of the
IFN/ENIT-database.

TH-OCR

The system with the name TH-OCR was developed at the State Key Laboratory
of Intelligent Technology and Systems, Department of Electronic Engineering, Ts-
inghua University, Beijing, China, by Pingping Xiu, Hua Wang, Jianming Jin, Yan
Jiang, Liangrui Peng, and Xiaoqing Ding.



17 Arabic Handwriting Recognition Competitions 401

Based on previous research work on a multilingual document recognition sys-
tem for Chinese, Japanese, Korean, English, Tibetan, and Uyghur languages, this
research work was extended to Arabic OCR. A first step was the development of
a printed Arabic document recognition system in the year 2004 [25]. The system
structure of the handwritten Arabic OCR system is similar to that of the printed
Arabic OCR system, but the key technologies of handwritten character segmenta-
tion and recognition are more complex and sophisticated. The system consists of text
line, word, and character segmentation, character recognition, and post-processing
based on a language model.

As the ICDAR 2005 Arabic Handwriting Recognition Competition is running
on a closed dictionary set, recognition results are compared with candidate address
items to find the best match. A candidate address is seen as a template, and all char-
acters are checked to find their possible correspondences in the recognition results.
Two types of cost are taken into account; one is recognition cost and the other is
matching cost.

The research work on handwritten Arabic OCR aims at developing a practical
system to digitize handwritten Arabic documents.

UOB

The system with the name UOB was developed at the University of Balamand,
Lebanon, by Chafic Mokbel.

The UOB system is a pure hidden Markov model (HMM) system developed for
speech recognition at the origin. It uses a complete toolkit like HTK,1 called HCM.
HCM permits the development of large HMM networks and it integrates language
modeling. The properties of HCM are published in papers in the speech recognition
area, e.g., [43].

The work on handwritten word recognition was started using HCM with a Ph.D.
project by Mr. Ramy El-Hajj, who developed the feature extraction module. All the
work on handwritten word recognition is being done in tight collaboration with Lau-
rence Likforman-Sulem from ENST-Paris. A paper describing the feature extraction
module was presented at ICDAR 2005 [4].

For the UOB system all four datasets are used for training. No confidence mea-
sure is implemented.

REAM

The system with the name REAM (Reconnaissance de l’Ecriture Arabe Manuscrite)
comes from a group at the Laboratoire des Systèmes et de Traitement du Signal—
ENIT, Tunisia. The authors of the system are Sameh Masmoudi Touj, Najoua Es-
soukri Ben Amara, Hamid Amiri, and Noureddine Ellouze.

1http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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The system uses a hybrid planar Markov model to adapt to horizontal and vertical
variations of the handwritten word. The approach is presented in a journal paper
[49].

The principal idea of this approach is the partitioning of handwritten words into
five logical horizontal bands which correspond to typical Arabic parts of words like
upper and lower diacritics, ascenders, descenders, and median zone. This segmen-
tation is done in a sophisticated way using knowledge about the typical Arabic writ-
ing style. Additionally, based on features of the median zone, vertical segmentation
points are detected. In the next step for each type of segment a specific technique of
feature extraction is adopted. Finally the recognition is realized using the concept of
a planar HMM (PHMM). In the paper [49] the first results of the system on parts of
the IFN/ENIT-database are reported.

17.3.2 ICDAR 2007

The results of the second competition of Arabic handwriting based on the
IFN/ENIT-database were presented at the International Conference on Document
Analysis and Recognition ICDAR 2007.

MITRE

Tom Hines and Amlan Kundu from MITRE Corporation, USA, presented a sys-
tem which implements automatic recognition of off-line unconstrained handwritten
Arabic words using over-segmentation of characters and variable duration HMM
(VDHMM). First, a segmentation algorithm based on morphology and linguistic
information is used to translate the 2D image into a 1D sequence of subcharacter
symbols. This sequence of symbols is modeled by one single contextual VDHMM.
The output of the VDHMM module is a string of likely characters which are pro-
cessed by a post-processing module. This module maps the string of characters to
a set of hypothesized words from the given lexicon. For hypothesis generation, the
Levenshtein string–distance function is used along with a custom substitution cost
table computed during the training procedure to reflect character confusion proba-
bility.

UOB-ENST

This system was submitted by Chafic Mokbel and Ramy Al-Hajj of the University
of Balamand (UOB), Lebanon, and Laurence Likforman-Sulem of École Nationale
Supérieure des Télécommunications ENST-Paris, France. The realized handwritten
word recognition system is an HMM-based system without pre-segmentation.
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The system, called UOB-ENST, was a participant of the ICDAR 2005 competi-
tion on Arabic Handwriting Recognition. This year three variants of the UOB-ENST
system were presented: a basic variant very similar to what was presented in ICDAR
2005 [4] and two advanced systems that better handle the slanted handwriting [5].

Mie University

Fumitaka Kimura, A. Al-Marakeby, W. Ohyama, and T. Wakabayashi from Mie
University, Japan, developed a system with essentially the same recognition algo-
rithm as the lexicon directed word recognition algorithm for English postal words
described in [30, 31]. This algorithm was recently applied to Bangla city name
recognition [44]. Several modifications for Arabic word recognition were made,
such as:

1. Connected components of pre-segmentation result are sorted from right to left in
decreasing order of x-coordinates.

2. Parameters for word length estimation are optimized for handwritten Arabic
words.

3. Character classifier was retrained using character samples extracted from Arabic
words in sets a to e.

ICRA

The ICRA system, developed by Ahmad Abdul Kader, also participated in the IC-
DAR 2005 competition. It is an Arabic handwriting recognition engine that is in-
spired by properties specific to the Arabic writing script. The approach is primarily
motivated by the Arabic letters’ conditional joining rules. A lexicon of Arabic words
can be expressed in terms of a new alphabet of PAWs. PAWs can be expressed in
terms of letters. The recognition problem is decomposed into two problems that
are solved simultaneously. To find the best matching word for an input image, a
two-tier beam search is performed. In tier one the search is constrained by a letter-
to-PAW lexicon. In tier two, the search is constrained by a PAW-to-word lexicon.
The searches are driven by a PAW recognizer [3].

CACI

This recognition system was developed by Ilya Zavorin, Eugene Borovikov, Ericson
Davis, and Anna Borovikov of CACI, Knowledge and Information Management
Division, Lanham, USA. It is designed to be highly configurable and to allow the
user to combine several classifiers making recognition a multi-tier process, in which
lexicon reduction is performed at initial stages of the process in order to boost both
the accuracy and efficiency of the later stages.
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The HMM-based recognizer consists of two major components: a tracer, which
in many ways simulates natural handwriting, and a classifier. The tracer is applied
to a word image and performs feature extraction in several steps.

For the classifier a word lexicon was built that consists of discrete HMMs corre-
sponding to unique words that appear in training data. A word HMM model has a
left-to-right topology and is a connection of individual character models. Each char-
acter model also has a left-to-right topology, and the number of its states depends
on the complexity of the corresponding character.

Three different configured systems were prepared for the competition: one sys-
tem with good generalization, one system with improved top 10 results, and one
system with further improved performance.

CEDAR

At the University at Buffalo, Center of Excellence for Document Analysis and
Recognition, CEDAR, USA, Sargur N. Srihari, Gregory R. Ball, Harish Srinivasan,
and Chen Huang developed the system CEDARABIC. It views each word as a
stream of information. Words are encoded and segmented based on ligature and
separation points. An HMM engine finds the best match for the image against the
lexicon by assigning the (oversegmented) segments to the characters. Each character
for the word is scored, and the algorithm minimizes the distance each character is
from its ideal, minimizing the distance of the word overall. Character combinations
are used for characters not easily horizontally segmented. The dots are stripped off
and viewed as an error correction mechanism for the overall word.

Paris V

The system, submitted by Fares Menasri, Nicole Vincent, Emmanuel Augustin, and
Mohamed Cheriet, was developed at SIP/CRIP5 University of Paris 5, in collab-
oration with A2iA SA, France. The system is a hybrid HMM/NN system with
grapheme segmentation adapted for Arabic [41].

The main idea is the introduction of a heuristically defined 34 shape alphabet
which is intended to take advantage of the shape redundancy of letters in Arabic
writing. In this approach, one shape in our alphabet can be shared by several letters
in the Arabic alphabet, and the same Arabic letter can be modeled by multiple letters
in our shape alphabet, depending on the importance of the variation of the Arabic
letter with regard to its position in the word.

Instead of recognizing a sequence of letters, we recognize a sequence of shapes.
A dictionary allows us to map a sequence of shapes with its corresponding sequence
of letters. This shape alphabet avoids the training of different HMMs to model the
same information, and it also allows each model to be trained on more data (as
a result of the same model being trained on similar shapes coming from different
letters).
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Siemens

The Hidden-Markov Recognizer for Arabic script (HMR-A) was submitted by
Theophile Alary, Jörg Rottland, and Marc-Peter Schambach from Siemens AG In-
dustrial Solutions and Services, Konstanz, Germany.

The script word recognizer (HMR-A) is the result of experiments with the stan-
dard HMM-based script word recognizer (HMR) for Latin script that is widely in
use within Siemens AG for postal automation projects.

The system is based on techniques developed in 1993 presented, e.g., in [8, 26].
A feature vector sequence is created by a sliding window, followed by an HMM
Viterbi decoding. The letter HMMs are multiple left-to-right models for different
writing variants. A series of improvements has been applied to the system, e.g. [46].
During development of the system, the focus has been placed on computational effi-
ciency to make it applicable to large postal applications (up to 40000 mail pieces per
hour). Two systems are realized for this competition. The first system is configured
as it would run in postal applications; the second system uses a combination of three
different feature extraction algorithms.

17.3.3 ICDAR 2009

The results of the third competition of Arabic handwriting based on the IFN/ENIT-
database were presented at the International Conference on Document Analysis and
Recognition ICDAR 2009.

UOB-ENST

This system was submitted by Chafic Mokbel and Ramy Al-Hajj from the Univer-
sity of Balamand (UOB), Lebanon, and Laurence Likforman-Sulem from Telecom
ParisTech, France. The realization of the handwritten word recognition system is a
HMM-based system without pre-segmentation.

This system participated as well in ICDAR 2005 and 2007 competitions. In this
year four variants of the UOB-ENST system were presented: a basic variant simi-
lar to that presented at ICDAR 2005 [4] and two advanced systems developed for
better handling of slanted handwriting [5]. The system is an HMM-based system,
of analytic type without pre-segmentation. It uses the general-purpose HMM toolkit
called HCM [43]. The development of the handwriting systems was carried out
within the Ph.D. thesis of Ramy El-Hajj in tight collaboration with ENST-Paris.
The advanced version was developed to reduce the recognition errors resulting from
slanted handwriting and the erroneous positions of diacritical points and marks. The
proposed system comprises two stages: the first stage is for recognition and classifi-
cation based on the technique of slanted windows (with different angles) to extract
the features, and the second stage comprises a combined post-processing step. Dif-
ferent combination methods were used and examined, such as majority vote rules
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and Borda count combination operator. In addition, a combination method based on
an artificial neural network (ANN) with a multi-layer perceptron was used [6].

REGIM

The Research Group on Intelligent Machines (REGIM) at Ecole Nationale
d’Ingénieurs de Sfax (ENIS), University of Sfax, Tunisia, participated with one
system, submitted by Abdelkarim ElBaati, Monji Kherallah, Houcine Boubaker,
Mahdi Hamdani, Adel M. Alimi, and Abdellatif Ennaji from LITIS, University of
Rouen, France. This system is based on the restoration of the temporal order of the
off-line trajectory of a word [15]. To benefit from dynamic information, a sampling
operation by the consideration of trajectory curvatures is calculated. Studies showed
that there is a correlation between the angular velocity Vσ (t) and the curve C(t).
The curvilinear velocity signal uses beta-elliptical modeling, which was developed
for on-line systems [28] to calculate features, for feature extraction. For recognition
an HMM-based system using HTK is used [21].

MDLSTM

These systems were submitted by Alex Graves from Techische Universität
München, München, Germany. This multilingual handwriting recognition system
is based on a hierarchy of multidimensional recurrent neural networks [19]. It can
accept either on-line or off-line handwriting data, and in both cases works directly
on the raw input without any pre-processing or feature extraction. It uses the mul-
tidimensional long short-term memory network architecture [19], an extension of
long short-term memory to data with more than one spatio-temporal dimension.
The basic structure of the system, including the hidden layer architecture and the
hierarchical subsampling method is described in [20].

LSTS

This system was submitted by Samia Snoussi-Maddouri from LSTS group at the
Ecole Nationale d’Ingénieurs de Tunis (ENIT), Tunis, Tunisia. This system is called
Transparent Neural Network (TNN), combining global and local vision modeling
(GVM-LVM) of words [35]. In the forward propagation movement, the GVM pro-
poses a list of words containing structural features characterizing the presence of
some letters in the word. Then, in the backpropagation movement, these letters are
confirmed or not according to their proximity to corresponding printed letters. The
correspondence between the letter shapes and the corresponding printed letters is
performed by LVM using the correspondence of their normalized Fourier descrip-
tors [34]. The particularities of the TNN are that it does not use any training steps. It
can be used for different languages or different lexicons by a simple change of the
content of each layer.



17 Arabic Handwriting Recognition Competitions 407

A2iA

The A2iA Arab-Reader system was submitted by Fares Menasri and Christopher
Kermorvant (A2iA SA, France), Anne-Laure Bianne (A2iA SA and Telecom Paris-
Tech, France), and Laurence Likforman-Sulem (Telecom ParisTech, France). This
system is a combination of two different word recognizers, both based on HMM.
The first one is a hybrid HMM/NN with grapheme segmentation [32]. It is mainly
based on the standard A2iA word recognizer for Latin script, with several adap-
tations for Arabic script [42]. The second one is a Gaussian mixture HMM based
on HTK, with sliding windows (no explicit pre-segmentation). The computation of
features was greatly inspired by Al-Hajj’s work on geometric features for Arabic
recognition [6]. The results of the two word recognition systems are combined to
compute the final answer [6].

LITIS-MIRACL

This system was submitted by Yousri Kessentini (LITIS and MIRACL), Thierry Pa-
quet (LITIS, University of Rouen, France), and AbdelMajid Benhamadou (MIR-
ACL, University of Sfax, Tunisia). This word recognition system is based on a
multi-stream segmentation-free HMM. Two feature vector sequences are created us-
ing a sliding window, and they are simultaneously decoded according to the multi-
stream formalism. One stream is composed of density features, while the other is
made of contour features [27].

RWTH-OCR

These systems were submitted by Philippe Dreuw, Stephan Jonas, Georg Heigold,
David Rybach, and Hermann Ney from RWTH Aachen University, Human Lan-
guage Technology and Pattern Recognition, Aachen, Germany. Without any pre-
processing of the input images, simple appearance-based image slice features Xt

at every time step t = 1, . . . , T which are augmented by their spatial derivatives in
horizontal direction � = Xt − Xt−1, are extracted. In order to incorporate tempo-
ral and spatial context into the features, 7 consecutive features in a sliding window,
which are later reduced by a PCA transformation matrix, are concatenated. System-
1 is a multi-pass system. The first-pass system is built using a modified maximum
mutual information training criterion. The second-pass is automatically built using a
novel unsupervised confidence-based discriminative training criterion on the output
of the first-pass system to automatically adapt the model to the unknown testing data
[11]. System-2 is an HMM-based handwriting recognition system, in which Viterbi
is trained using the maximum-likelihood training criterion. A lexicon with multiple
writing variants, where the white spaces between the pieces of Arabic words are
explicitly modeled as proposed in [10], is used.
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17.3.4 ICFHR 2010

The results of the fourth competition of Arabic handwriting based on the IFN/ENIT-
database were presented at the International Conference on Frontiers in Handwriting
Recognition ICFHR 2010.

UPV-PRHLT

These systems were submitted by Adrià Giménez Pastor, Ihab Khoury, and Alfons
Juan Císcar, from the Universitat Politècnia de València (UPV), València, Spain.
They are based on Bernoulli HMMs (BHMMs), that is, HMMs in which conven-
tional Gaussian mixture density functions are replaced with Bernoulli mixture prob-
ability functions [17]. Also, in contrast to the basic approach followed in [17], in
which narrow, one-column slices of binary pixels are fed into BHMMs, the UPV-
BHMM systems are based on a sliding window of adequate width to better capture
the image context at each horizontal position of the word image. This new, win-
dowed version of the basic approach is described in [18]. The UPV-BHMM systems
were trained from input images scaled in height to 30 pixels (while keeping the as-
pect ratio), and then binarized by means of the Otsu algorithm. A sliding window
of width 9 was applied, and thus the resulting input (binary) feature vectors for the
BHMMs had 270 bits [29].

Two systems were submitted: UPV-BHMM (S-ID 1) and UPV-BHMM2
(S-ID 2). They only differ in the way the sliding window is applied. In the UPV-
BHMM system, the sliding window is applied at each column of the input image. In
the UPV-BHMM2 system, however, the sliding window is repositioned after each
application, so as to align its center to the image mass center within the window.

REGIM

The Research Group on Intelligent Machines (REGIM) at the Ecole Nationale
d’Ingénieurs de Sfax (ENIS), University of Sfax, Tunisia, participated with a system
submitted by Mahdi Hamdani and Adel M. Alimi.

This system is based on HMMs [22], and it is an improved version of the work
presented in [21]. The improvement consists of the optimization of the HMM archi-
tectures (number of states) using particle swarm optimization (PSO). The maximum
likelihood is used as a fitness function by the PSO. The features used are based on
the transformation of the pixel values extracted from normalized images using the
Karhunen–Loéve transform. More details about the features are presented in [12].
The results of single PSO-HMMs are improved using the combination methods de-
scribed in [13].
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CUBS-AMA

The CUBS-AMA system was submitted by Safwan Weshah and Venu Govindaraju
from the Center for Unified Biometrics and Sensors (CUBS), University at Buffalo,
The State University of New York, USA, and Huiping Li and David Doermann from
Applied Media Analysis, Inc. (AMA), Maryland, USA.

This system is a Gaussian mixture HMM based on the Hidden Markov Model
Toolkit (HTK), gradient, structure, and concavity [16]. The feature vector sequences
are created using a sliding window. The system achieves better results after feature
reduction and applying different states for each model.

RWTH-OCR

Philippe Dreuw, Christian Plahl, Patrick Doetsch, and Hermann Ney from the
RWTH Aachen University, Human Language Technology and Pattern Recognition,
Aachen, Germany, have submitted the RWTH-OCR systems.

The submitted System-1 is a discriminatively trained system using a modified
maximum mutual information training criterion.

First, the hidden Markov model (HMM)-based handwriting recognition system
is Viterbi trained using the maximum likelihood training criterion. For Gaussian
mixture training in our base system, the authors perform supervised model train-
ing by iteratively re-estimating the emission model parameters and splitting of the
mixtures. For the discriminatively trained model, the authors use 7 splits with up
to 128 densities per mixture and 3 mixtures per character label, resulting in 55,807
densities.

This model is retrained using a discriminative training approach based on the
modified maximum mutual information (M-MMI) criterion as presented in [11]. In
[23] it is shown that the objective function used in M-MMI training is a smooth ap-
proximation to an SVM with hinge loss function which can be iteratively optimized
with standard gradient-based optimization techniques like Rprop. In this work, the
approximation level and the margin are chosen beforehand and then kept fixed dur-
ing the complete optimization using the Rprop algorithm.

The authors use a lexicon with multiple writing variants where the white spaces
between the pieces of Arabic words are explicitly modeled as writing variants as
proposed in [10]. System-1 performs a single recognition pass using the discrimina-
tively trained model without any pruning.

System-2 is an HMM-based handwriting recognition system which is Viterbi
trained using the maximum likelihood training criterion as described in [10]. The
authors use a lexicon with multiple writing variants where the white spaces between
the pieces of Arabic words are explicitly modeled as proposed in [10].

For Gaussian mixture training in our base system, the authors perform supervised
model training by iteratively re-estimating the emission model parameters and split-
ting of the mixtures. For the generatively trained model, the authors use 8 splits
with up to 256 densities per mixture and 3 mixtures per character label, resulting in
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81,779 densities. System-2 performs a single recognition pass using the maximum
likelihood trained model without any pruning.

17.3.5 ICDAR 2011

The results of the fifth competition of Arabic handwriting based on the IFN/ENIT-
database were presented at the International Conference on Document Analysis and
Recognition ICDAR 2011.

JU-OCR

The JU-OCR system is submitted by Gheith Abandah and Fuad Jamour, from the
University of Jordan, Jordan.

JU-OCR is a recognition system for handwritten Arabic text. This system is in-
tended to recognize unlimited vocabulary and is based on explicit grapheme seg-
mentation. It segments a cursive word into the set of graphemes that forms it, then
it recognizes each of the graphemes, and it maps a recognized grapheme into the
letters that form a word.

JU-OCR uses the segmentation algorithm described in [1]. This algorithm is a
rule-based algorithm that utilizes features extracted from the skeleton of Arabic sub-
words to segment them into a set of graphemes. Most graphemes are forms of the
Arabic letters. However, some graphemes are parts of letters (over-segmentation),
and some graphemes are vertical ligatures (under-segmentation). Each grapheme
has a main body, and some graphemes have secondary bodies. A body is a connected
component that forms a blob recognizable by humans. Statistical and morphological
features [2] are extracted from each body of the graphemes and passed to a Random
Forest (RF) classifier [7] to recognize the body. We use the OpenCV implementation
of the RF classifier. After each body is recognized, the bodies are combined to form
graphemes. This combination is carried out through rules for what bodies combine
to form graphemes. Finally, another set of rules is used to map graphemes into
letters. These rules map some graphemes to one letter each, multiple graphemes to
one letter, or one grapheme to multiple letters.

As this competition uses a limited vocabulary of 937 words, the authors have
developed a string matching algorithm that finds the closest word match of a recog-
nized grapheme sequence without mapping the graphemes to letters. The matching
algorithm finds a weighted edit distance between the predicted grapheme sequence
and the most probable grapheme sequence of each word in the dictionary. The word
that has the minimum distance is the recognition result.

CENPARMI

The CENPARMI-OCR system is submitted from Muna Khayyat, Louisa Lam, and
Ching Y. Suen, from the Computer Science and Software Engineering Department,
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Concordia University, Center for Pattern Recognition and Machine Intelligence
(CENPARMI), Montreal, Quebec, Canada.

The CENPARMI-OCR uses three sets of features appropriate for Arabic hand-
writing, with each set of features passed to one classifier. The confidence levels and
classification results of the classifiers were used for the final classification result.
The three sets of features are: gradient features [48], Gabor features [9] and Fourier
features [33].

The authors used three different SVMs [47], each of which was trained on a
different feature set. The three classifiers are divided into two groups: primary and
secondary. The former group consists of the classifier on which the gradient features
were trained, while the latter group consists of the two classifiers on which Gabor
and Fourier features were trained.

The testing samples are tested on the three classifiers. The system verifies the
result of the primary classifier. If the confidence value (posterior probability) of
the primary classifier for a sample is below a predetermined threshold, the system
verifies the classification results of the two secondary classifiers. If they agree on
the class, then the sample would be assigned to this (common) class together with
the higher confidence value from these two secondary classifiers.

RWTH-OCR

The RWTH-OCR Arabic Handwriting Recognition System for ICDAR 2011 com-
petition is submitted by Patrick Doetsch, Philippe Dreuw, Mahdi Hamdani, Chris-
tian Plahl, and Hermann Ney from RWTH Aachen University, Human Language
Technology and Pattern Recognition, Aachen, Germany.

Without any pre-processing of the input images, the authors extract simple
appearance-based image slice features Xt at every time step t = 1, . . . , T which are
augmented by their spatial derivatives in the horizontal direction � = Xt − Xt−1.

Due to a character and position dependent length modeling of the 28 base Arabic
characters [10], the authors finally model the Arabic words by 121 different char-
acter labels. The system described in [11] is used to generate an alignment of the
features to the 121 labels.

The raw slice features Xt together with their corresponding state alignments are
then processed by a hierarchical MLP framework originally described in [50].

A TRAP-DCT MLP network is based on the MLP framework originally de-
scribed in [50]. The system uses a TRAP-DCT [24] pre-processing of the raw pixel
input features. In order to incorporate temporal and spatial context into the features,
the authors concatenate consecutive features in a sliding window, where the MLP
outputs are later reduced by a linear discriminant analysis (LDA) transformation.

The hierarchical system uses at the first level a spatio-temporal TRAP-DCT
window to augment the 30-dimensional raw pixel input feature vectors to a 240-
dimensional vector. The first level hierarchical network uses a single hidden layer
with 750 nodes, and 121 output nodes, which are reduced by a log-LDA transforma-
tion to 96 components. The second network concatenates these features in addition
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to the raw features, and uses a window size of 5 consecutive log-LDA network fea-
tures, and a window size of 9 consecutive raw input features to account for different
spatio-temporal information. The 750-dimensional features (i.e., 96 × 5 + 30 × 9
features) are forwarded to a single hidden layer with 1500 nodes, and finally reduced
again by a log-LDA transformation to 36 components.

The HMM-based handwriting recognition system is Viterbi trained using the
maximum likelihood training criterion. For Gaussian mixture training in our base
system, the authors perform supervised model training by iteratively re-estimating
the emission model parameters and splitting of the mixtures. For the discrimina-
tively trained model, the authors use 7 splits with up to 128 densities per mixture
and 3 mixtures per character label, resulting in 70745 densities.

REGIM

The Research Group on Intelligent Machines (REGIM) at the Ecole Nationale
d’Ingénieurs de Sfax (ENIS), University of Sfax, Tunisia, participated with a system
submitted by Mahdi Hamdani, Tarek M. Hamdani, and Adel M. Alimi.

This system is based on HMMs [22], and it is an improved version of the work
presented in [21]. The improvement consists of the optimization of the HMM ar-
chitectures (number of states) using PSO. The maximum likelihood is used as a fit-
ness function by the PSO. The used features are based on the transformation of the
pixel values extracted from normalized images using the Karhunen–Loéve trans-
form. More details about the features are presented in [12]. The results of single
PSO-HMMs are improved using the combination methods described in [13].

17.4 Tests and Results

Before the results of the competitions are discussed, some organizational details and
statistics should be mentioned. All five competitions were organized as closed com-
petitions. Running versions of the recognizers were sent to the competition organiz-
ers and tested on a collection of new datasets unknown to the participants. The first
competition from 2005 differs slightly from the others, as only datasets a to d were
used for training and e for testing. For the following competitions dataset e was also
made available to the participants, and the new datasets f and s were collected and
from then on used for system performance testing. To test the speed performance
of the systems the two subsets t and t1 were used. Before we study the competition
results in detail, it is interesting to take a look at the number of groups using the
IFN/ENIT database. Figure 17.2 shows the number of registered users from the be-
ginning in 2002 until 2011. A steady rise of users can be seen with about ten new
users each year. This increasing interest in the IFN/ENIT database is a good basis
for a system performance comparison. In Fig. 17.3 the participating groups and the
number of systems sent to the competitions are shown. Starting with 6 groups and
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Fig. 17.2 Number of
registered IFN/ENIT users
from the beginning in 2002
until 2011

Fig. 17.3 Participating
groups and the number of
systems sent to the
competitions

Table 17.5 ICDAR 2005: Recognition results in % of correct recognized images on reference
dataset d and new dataset e and s. (G-ID: Group ID, S-ID: System ID)

G-ID S-ID Set d Set e

Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

ICRA 1 88.95 94.22 95.01 65.74 83.95 87.75

SHOCRAN 2 100 100 100 35.70 51.62 51.62

TH-OCR 3 30.13 41.95 46.59 29.62 43.96 50.14

UOB 4 85.00 91.88 93.56 75.93 87.99 90.88

REAM* 5 89.06 99.15 99.62 15.36 18.52 19.86

ARAB-IFN 6 87.94 91.42 95.62 74.69 87.07 89.77

6 systems in 2005 a maximum of 17 systems from 7 groups were tested in 2009. In
2011 finally 4 systems from 4 groups were tested. Most participating groups came
from universities or independent research teams, and some of them participated in
three competitions. But the participation of four groups from companies also shows
that there is a commercial interest in Arabic handwriting recognition.

The results of the competitions in detail are shown in Tables 17.5, 17.6, 17.7,
17.8, and 17.9. In the conference proceedings [14, 36–40] the results are also dis-
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Table 17.8 ICFHR 2010: Recognition results in % of correct recognized images on reference
datasets d and e, new datasets f and s. (G-ID: Group ID, S-ID: System ID)

G-ID S-ID Approach Set d Set e Set f Set s

Top 1 Top 1 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

UPV PRHLT 1 HMM 98.90 96.04 87.91 93.71 94.72 78.45 87.35 90.40

2 99.38 98.03 92.20 95.72 96.29 84.62 91.42 93.32

REGIM 3 HMM 94.12 86.62 79.03 89.35 91.34 68.44 81.99 84.98

CUBS-AMA 4 HMM 89.97 80.80 80.32 88.26 88.96 67.90 78.58 79.87

RWTH-OCR 5 HMM 99.99 99.77 90.88 95.35 96.04 81.06 90.08 92.63

6 99.66 98.84 90.94 95.31 96.00 80.29 89.83 91.80

Table 17.9 ICDAR 2011: Recognition results in % of correct recognized images on reference
datasets d and e, new datasets f and s. (G-ID: Group ID, S-ID: System ID)

G-ID S-ID Approach Set d Set e Set f Set s

Top 1 Top 1 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

JU-OCR 1 RF 75.49 63.75 63.86 80.18 84.65 49.75 66.86 72.46

CENPARMI-OCR 2 SVM 99.90 99.91 40.00 69.33 74.00 35.52 54.56 63.84

RWTH-OCR 3 HMM 99.67 98.61 92.20 95.73 96.15 84.55 91.99 93.52

REGIM 4 HMM 94.12 86.62 79.03 89.35 91.34 68.44 81.99 84.98

cussed in detail. In the following sections some general aspects of the results are
discussed.

17.4.1 The First Competition 2005

The first competition on Arabic handwritten word recognition was presented at IC-
DAR 2005 [40]. Five systems participated in this competition, and the organizers
added their system results for comparison. It is interesting to see that four systems
work with comparable good results on the dataset d from training data (Table 17.5).
Two systems are different: one system seems to be overtrained, showing 100 % cor-
rect recognition, and a second system shows only 30 % correctly recognized names.
On the unknown dataset e (see Table 17.5) only two systems show comparable good
results with more than 70 % correctly recognized names. The third best result is
65 % followed by 35 %. The results vary very strongly, and even the best are not
very good. An analysis of the testset e showed that this set differs in its statistical
attributes from the training sets. Hence, for the following competitions set e was
added to the training data, and further data were collected for testing.
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Fig. 17.4 Tests with dataset
d at the competitions
2007–2011

Fig. 17.5 Tests with dataset
e at the competitions
2007–2011

17.4.2 Tests with Known Data at the Competitions 2007–2011

The comparison of the system performance based on the recognition results of sets
d and e, which are part of the training sets, shows high recognition rates with better
results over the years (refer to Tables 17.6, 17.7, 17.8, and 17.9). The results on set
d are better than on set e, but in the competitions 2010 and 2011 the results are
very similar and close to a 100 % recognition rate. Figures 17.4 and 17.5 show the
maximum, minimum, and mean results of each competition.

17.4.3 Main Tests with Set f

The most important test to compare the performance of different systems is, of
course, the test using the unknown set f . The features of this set are similar to
those of sets a to e. Set f was also collected in Tunisia, the same country where the
training sets were collected. The statistical recognizer works best if the data used for
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Fig. 17.6 Tests with dataset
f at the competitions
2007–2011

Fig. 17.7 Tests with dataset
s at the competitions
2007–2011

the training of the system parameters are statistically the same as the data used for
the tests. The graphic in Fig. 17.6 shows again the maximum, mean, and minimum
results of the systems. A constant increase of the mean value from the 2007 to 2010
competitions can be seen, but the best system result was in 2009, and this result was
not reached by the winning systems in 2010 and 2011. It is worth mentioning that
the three winning systems from 2009 to 2011 all are from different groups.

17.4.4 Robustness Tests with Set s

The test with data collected in the UAE is very interesting. Although all training data
were collected in Tunisia, the recognition rate on this set is still high. Figure 17.7
shows a graphic of the system results from 2007 to 2011. The loss of about 12 % of
the best system in 2009 compared to the recognition rate on set f is higher than the
loss of the two winning systems 2010 and 2011, which is less than 8 %. This shows
a better generalization ability of these systems compared to that system.
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Fig. 17.8 The three best
participating systems at the
competitions of 2007–2011

17.4.5 Speed Tests with Sets t and t1

The processing speed was measured at two competitions using the two test sets t

(1000 images) and t1 (100 images) respectively. The average processing time per
name image is shown in the last two columns of Tables 17.6 and 17.7. A substantial
difference in speed can be observed. The slowest system is more than 1000 times
slower than the fastest one. An average processing time of 34 ms per image is the
best result, which is unfortunately combined with a low recognition rate. But the
second fastest system with 39 ms per image is combined with a good recognition
result on set f . The winning system of the 2009 competition is about ten times
slower, but the second best system is only three times slower. As most systems are
not speed optimized, these results show a very good performance of the recognition
systems and the closeness to commercial systems.

17.5 Conclusions

The competition results show that Arabic handwriting recognition systems have
made remarkable progress during the last eight years. Most of the systems par-
ticipating in the competitions show a very high increasing accuracy, some also in
combination with a very high processing speed. Systems are now ready for prac-
tical application under the conditions known lexicon of small or medium size and
training data with the same statistical appearance as the test data.

Looking at the recognizers, it is notable that most systems used hidden Markov
model (HMM)-based methods. These methods are widely used in speech and hand-
writing recognition. But it is very interesting that the winning system in 2009, with
a result which was not reached by the systems in the 2010 and 2011 competitions,
used a neural net technology.

Obviously, Fig. 17.8 shows that since 2009 no further improvement of the recog-
nition quality could be achieved. The results of 2011 show new groups trying to
get better results with new approaches, but generally a minor interest of the leading
groups is seen.

The next steps are now to test the systems with real-world data, with an open
lexicon, and with pages of text. But that is another story.
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Chapter 18
Benchmarking Strategy for Arabic
Screen-Rendered Word Recognition

Fouad Slimane, Slim Kanoun, Jean Hennebert, Rolf Ingold,
and Adel M. Alimi

Abstract This chapter presents a new benchmarking strategy for Arabic screen-
based word recognition. Firstly, we report on the creation of the new APTI (Ara-
bic Printed Text Image) database. This database is a large-scale benchmarking
of open-vocabulary, multi-font, multi-size and multi-style word recognition sys-
tems in Arabic. Such systems take as input a text image and compute as out-
put a character string corresponding to the text included in the image. The chal-
lenges that are addressed by the database are in the variability of the sizes, fonts
and styles used to generate the images. A focus is also given on low resolu-
tion images where anti-aliasing is generating noise on the characters being recog-
nized. The database contains 45,313,600 single word images totalling more than
250 million characters. Ground truth annotation is provided for each image from
an XML file. The annotation includes the number of characters, the number of
pieces of Arabic words (PAWs), the sequence of characters, the size, the style, the
font used to generate each image, etc. Secondly, we describe the Arabic Recog-
nition Competition: Multi-Font Multi-Size Digitally Represented Text held in the
context of the 11th International Conference on Document Analysis and Recog-
nition (ICDAR’2011), during September 18–21, 2011, Beijing, China. This first
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edition of the competition used the freely available APTI database. Two groups
with three systems participated in the competition. The systems were compared
using the recognition rates at the character and word levels. The systems were
tested on one test dataset which is unknown to all participants (set 6 of APTI
database). The systems were compared on the ground of the most important charac-
teristic of classification systems: the recognition rate. A short description of the
participating groups, their systems, the experimental setup and the observed re-
sults are presented. Thirdly, we present our DIVA-REGIM system (out of competi-
tion at ICDAR’2011) with all results of the Arabic recognition competition proto-
cols.

18.1 Introduction

It is universally acknowledged that more than 500 million people around the world
speak and use Arabic as their liturgical language. Arabic is important in the culture
of many people. In the last twenty years, most of the efforts in Arabic text recog-
nition have been toward the recognition of scanned printed documents [4, 17, 25].
Most of these works have been evaluated on private databases; therefore, the com-
parison of systems is rather difficult. To our knowledge, there are currently few
large-scale image databases of Arabic printed text available for the scientific com-
munity. One of the only references we have found is on the ERIM [24] database
containing 750 scanned pages collected from Arabic books and magazines. How-
ever, it seems difficult to have access to this database. In the Arabic handwriting
recognition field, public databases exist such as the freely available IFN/ENIT-
database [22]. Open competitions are even regularly organized using this database
[19–21].

On the other hand, a corpus is a large structured set of text, electronically stored
and processed. A text corpus or lexical database in Arabic is available from different
associations or institutes [1, 2, 12]. However, such text corpora are not directly us-
able for the benchmarking of recognition systems that take images as input. Access
to a corpus of both language and images is essential during optical character recog-
nition (OCR) development, particularly while training and testing a recognition ap-
plication [3]. Excellent corpora have been developed for Latin-based languages, but
only a few relate to the Arabic language. This limits the penetration of both corpus
linguistics and OCR in Arabic-speaking countries. In [3], the authors describe the
construction and provide a comprehensive study and analysis of a multi-modal Ara-
bic corpus (MMAC) that is suitable for use in both OCR development and linguis-
tics. MMAC contains six million Arabic words and includes connected segments
as well as naked pieces of Arabic words (NPAWs) and naked words (NWords); a
ground truth annotation is offered for each image. MMAC is publicly and freely
available.

To bring into account the above information, we initiated the development of a
large database of images of printed Arabic words in 2009. This database is used
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for our own research and is made available for the scientific community to evaluate
their recognition systems. The database has been named Arabic Printed Text Image
(APTI).

The purpose of the APTI database is a large-scale benchmarking of open-
vocabulary, multi-font, multi-size and multi-style text recognition systems in Ara-
bic. The images in the database are synthetically generated from a large corpus using
automated procedures. The challenges that are addressed by the database are in the
variability of the sizes, fonts and styles used to generate the images. Special atten-
tion is also paid to low resolution images where anti-aliasing is generating noise
on the characters to recognize. Naturally, APTI is well suited for the evaluation of
screen-based OCR systems that take as input images extracted from screen cap-
tures or pdf documents. Performances of classical scanned-based OCR or camera-
based OCR systems could also be measured using APTI. However, such evaluations
should take into account the absence of typical artefacts present in scanned or cam-
era documents.

Being synthetically generated, the challenges of the database remain multi-
ple:

• Large-scale evaluation with a realistic sampling of most of the Arabic char-
acter shapes and their accompanying variations due to ligatures and over-
laps.

• Availability of multiple fonts, styles and sizes that must nowadays be treated by
recognition systems.

• Emphasis on the low resolution images that are nowadays frequently present on
computer screens.

• Isolated word images where inter-word language models cannot be used.
• Semi-blind evaluation protocols with decoupled development/evaluation sets.

Research work on Arabic optical text recognition has increased considerably
since the 1980s. Scanner-based OCR has made considerable advances over the two
past decades, thanks to the combined progress of the acquisition devices, recogni-
tion algorithms and computer capacities. OCR is nowadays practically considered
as a solved problem in the case of Latin-based character inputs acquired in high
resolution from flat bed scanners. First Arabic OCR systems were made available
in the market in the 1990s. Currently, a few commercial systems are available, but
the only independent system of comparison was made 15 years ago. Compared to
the high quality and widespread usage of OCR systems for Latin characters, Ara-
bic OCR still has to be developed, especially for the case of low resolution printed
words.

More challenging tasks are now appearing where the conditions are more ad-
verse, showing a significant drop of the performance in comparison with more clas-
sical applications. This is the case for screen-based OCR where inputs are typically
at a lower resolution, showing multiple fonts and sizes and including potentially
single words with very short sequences of characters. Recognition of low resolution
text is quite interesting due to the wide range of applications and occurrence of low
resolution text in screen shots, images and videos.
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Fig. 18.1 An image of word
‘School’ at ultra low
resolution and anti-aliased

This work is in the field of screen-rendered text OCR applied to the Arabic lan-
guage. Recognition of screen-rendered text can be used to:

• Recognize low resolution text in videos.
• Provide meanings or translation of text from screen-shots of documents.
• Correct web page errors due to bad background and foreground combina-

tion [26].
• Enable web indexing tools to capture semantic important information from web

images.
• Develop tools which read screen text for blind or visually impaired peo-

ple.

The remainder of this chapter is organized as follows. In Sect. 18.2, we il-
lustrate some of the major challenges in the recognition of low resolution text
images. The first free APTI database on low resolution will be presented in
Sect. 18.3. The first edition of the ICDAR’2011 Arabic recognition competition
will be described in Sect. 18.4. In Sect. 18.5, we present the DIVA-REGIM system
with results of the competition protocols followed immediately by some conclu-
sions.

18.2 OCR Challenges for Low Resolution Text Images

Recognizing a low resolution text by OCR is a challenging task and involves sev-
eral difficulties. Screen-rendered text can be on ultra low resolution (see Fig. 18.1)
and is generally smoothed to make it look better to the human eye. Smoothed
characters are difficult to segment because they are too close to other characters.
This, for example, makes contour- and projection-based segmentation inapplica-
ble. Also, the same character of the same logical description (font, size, etc.) is
often rendered differently within the same document depending on its position. Fur-
thermore, screen text can be displayed at any screen position. This means that the
text can occur at an inhomogeneous background or that single words can be ren-
dered isolated. Baseline detection for isolated words is difficult since commonly
used horizontal projections of single words are not sufficient. Generally, the appear-
ance of screen-rendered text depends on the font type, magnification, size, back-
ground, position, operating system or application, context and used smoothing al-
gorithm [31].
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18.3 APTI Database

Available since July 2009, APTI has been freely distributed to the scientific commu-
nity for benchmarking purposes.1 At the time of this writing, more than 20 research
groups from universities, research centres, and industries worldwide are working
with the APTI database. The APTI database is synthetic, and images are gener-
ated using automated procedures. In this section, we present the specificities of this
database.

18.3.1 Corpus

APTI is created using a mix of non-decomposable and decomposable Ara-
bic words [5, 7, 9, 13, 16]. Non-decomposable words are formed by coun-
try/town/village names, Arabic proper names, general names, Arabic prepositions,
etc., whereas decomposable words are generated from root Arabic verbs using
Arabic schemes [15]. To generate the lexicon, different Arabic books such as Al-
bukhala of Gahiz2 and The Muqaddimah—An introduction to the history of Ibn
Khaldun3 were parsed. A collection of Arabic newspaper articles were also taken
from the Internet as well as a large lexicon file produced by [15]. This parsing
procedure totalled 113,284 single different Arabic words, leading to a pretty good
coverage of the Arabic words from different disciplines, e.g. literature, culture, art,
medicine, and law.

18.3.2 Fonts, Styles and Sizes

Taking as input the Arabic words, the APTI images are generated using 10 different
sizes (6, 7, 8, 9, 10, 12, 14, 16, 18 and 24 points) and 10 different fonts as presented
in Fig. 18.2. These fonts have been selected to cover different complexities of Ara-
bic printed character shapes, going from simple fonts with no or few overlaps and
ligatures like Andalus to more complex fonts rich in overlaps, ligatures and flour-
ishes like Diwani Letter. All word images are generated also using four different
styles: plain, italic, bold and a combination of italic and bold. These sizes, fonts
and styles are widely used on computer screens, Arabic newspapers and many other

1http://diuf.unifr.ch/diva/APTI/
2Al-Jahiz (born in Basra, c. 781–December 868 or January 869) was a famous Arab scholar, be-
lieved to have been an Afro-Arab of East African descent (http://en.wikipedia.org/wiki/Al-Jahiz).
3Ibn Khaldoun (May 27, 1332–March 19, 1406) was a famous historian, scholar, theologian,
and statesman born in North Africa in present-day Tunisia (http://en.wikipedia.org/wiki/Ibn_
Khaldoun).

http://diuf.unifr.ch/diva/APTI/
http://en.wikipedia.org/wiki/Al-Jahiz
http://en.wikipedia.org/wiki/Ibn_Khaldoun
http://en.wikipedia.org/wiki/Ibn_Khaldoun
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Fig. 18.2 Fonts used to generate the APTI database: (A) Andalus, (B) Arabic Transparent, (C) Ad-
vertisingBold, (D) Diwani Letter, (E) DecoType Thuluth, (F) Simplified Arabic, (G) Tahoma,
(H) Traditional Arabic, (I) DecoType Naskh, (J) M Unicode Sara

documents. The combination of fonts, styles and sizes guarantees a wide variability
in APTI images.

18.3.3 Procedure for Creating Images

The word images are generated using a developed program. As a consequence,
the artefacts or noise usually present on scanned or camera-based documents
are not present in the images. Such degradations could actually be artificially
added, if needed [6], but it is currently out of the scope of APTI. The text im-
age generation, for example on a screen, can be done in many different ways.
They all usually lead to slight variations of the target image. We have opted for
a rendering procedure that allows us to include effects of down-sampling and
anti-aliasing. These effects are interesting in terms of the variability of the im-
ages, especially at low resolution. The procedure involves the down-sampling of
a high resolution source image into a low resolution image using anti-aliasing
filtering. We also use different grid alignments to introduce variability in the
application of the anti-aliasing filter. The details of the procedure are as fol-
lows:

1. A grey-scale source image is generated in high resolution (360 pixels/inch) from
the current word in the lexicon, using the selected font, size and style.

2. Columns and rows of white pixels are added to the right-hand side and to the
top of the image. The number of columns and rows is chosen to have a height
and width multiple of the down-sampling factor [28]. This effect allows us to



18 Benchmarking Strategy for Arabic Screen-Rendered Word Recognition 429

Fig. 18.3 Example of XML file including ground truth information about a given word image

have the same deformation in all images and artificially move the down-sampling
grid.

3. Down-sampling and anti-aliasing filtering are applied to obtain the target image
in low resolution (72 pixels/inch). The target image is in grey level.

18.3.4 Sources of Variability

APTI presents many sources of variability related to the generation procedure of
images. The following list describes some of them:

1. 10 different fonts; 10 different sizes and 4 different styles.
2. Very large vocabulary that allows to test systems on unseen data.
3. Various artefacts of the down-sampling and anti-aliasing filters due to the in-

sertion of columns of white pixels at the beginning and the top of word im-
ages.

4. Various forms of ligatures and overlaps of characters due to the large combina-
tion of characters in the lexicon and due to the used fonts.

5. Variability of the height of each word image. The height of each word image is
related to the sequence of characters appearing in the word.

18.3.5 Ground Truth

In document image analysis and pattern recognition, ground truth refers to the vari-
ous attributes associated with the text on the image such as the size of tokens, char-
acters, used font, size, etc. Ground truth data is crucial for the training and testing
of document image analysis applications [18]. However, each token word image in
the APTI database contains ground truth information. Figure 18.3 shows the ground
truth XML file containing information about the sequence of characters as well as
the generation procedure.

The XML file includes the four following attributes:
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Table 18.1 Quantity of
words, PAWs and characters
in APTI

Words PAWs Characters

113,284 274,833 648,280

∗ 10 Fonts ∗ 10 Font Sizes ∗ 4 Font Styles

Total 45,313,600 109,933,200 259,312,000

1. Content: this contains the transcription of Arabic words, the number of pieces
of Arabic words (nPaws) and sub-elements for each PAW with the sequence of
characters. In our representation, characters are identified using plain English
labels as described below.

2. Font: this contains the font name, font style and size used to generate the word
image.

3. Specs: this presents the encoding of image, width, height and eventual additional
effect.

4. Generation: this indicates the type of generation, the tool used for generation and
the used filters in the generation procedure. In the current version of APTI, this
element is constant as the same generation procedure has been applied. The type
‘downsampling5’ is used, indicating that the generation procedure corresponds
to a down-sampling, using factor 5, from high resolution source images.

The different character labels can be observed in Table 18.5 showing their statis-
tics through the sets of APTI. As the Arabic character shapes vary according to their
position in a word, the character labels also include a suffix to specify the position
of the character in the word: B standing for beginning, M for middle, E for end and
I for isolated. The character ‘Hamza’ is always isolated, so we don’t use the suf-
fix position for this character. We also artificially inserted characters labels such as

‘NuunChadda
N�B’ or ‘YaaChadda NI
 ’ to represent the character shape issued from

the combination of ‘Nuun �B’ and ‘Chadda’ or ‘Yaa I
 ’ and ‘Chadda’.

18.3.6 Database Statistics

The APTI database includes 113,284 different single words. Table 18.1 shows the
total quantity of word images, PAWs and characters in APTI.

APTI is divided into six equilibrated sets to allow for flexibility in the com-
position of development and evaluation partitions. Five sets are available for the
scientific community, and the sixth one is kept internal for potential evaluation of
systems in blind mode (the set 6 was used at the ICDAR’2011 Arabic Recogni-
tion Competition presented in Sect. 18.4). The words in each set are different, but
the distribution of all used letters is nearly the same in the various sets (see Ta-
ble 18.5).
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Table 18.2 Distribution of letters in set 1 (left) and set 2 (right)

18.3.7 Division into Sets

The algorithm for the distribution of words in the different sets has been designed
to have similar allocations of letters and words in all sets. This procedure is simply
stressing a fair distribution of words that include characters with few occurrences.
This type of distribution is important to avoid under-representation of a given char-
acter in a given set and therefore to avoid potential problems while training or testing
time. Tables 18.2, 18.3, 18.4 present the distribution of each shape of Arabic char-
acters in their respective six sets.



432 F. Slimane et al.

Table 18.3 Distribution of letters in sets 3 and 4 respectively

18.3.8 APTI Evaluation Protocols

In this section, we propose the definition of a set of robust benchmarking protocols
on top of the APTI database. Preliminary experiments with a baseline recognition
system have helped in calibrating and validating these protocols. From the obtained
results, we believe that the large amount of data available in APTI and the differ-
ent sources of variability (cf. Sect. 18.3.4) make it well suited for significant and
challenging system evaluation.
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Table 18.4 Distribution of letters in sets 5 and 6 respectively

Error Estimation

The objective of any benchmarking of recognition systems is to estimate, as reli-
ably as possible, the classification error rate P̂e. It is important to remember that,
whatever the task and data used, P̂e is a function of the split of the data into training
and test sets. Different splits will result in different error estimates. APTI is com-
posed of quite large sets of data, which helps in reaching stable estimates of P̂e . Our
objective is then to obtain a reliable estimate of P̂e while keeping the computation
load tractable. Therefore, we have opted for a rotation method, as described in [14,
Sect. 7]. The idea is to reach a trade-off between the holdout method, which leads to
pessimistic and biased values of the error rate, and the leave-one-out method, which
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Fig. 18.4 Illustration of the
rotation method. For a given
partition, the training sets are
depicted in dark grey and the
testing sets in light grey

gives a better estimate but at the cost of larger computational requirements. The rota-
tion method we are proposing is illustrated in Fig. 18.4. The procedure is to perform
independent runs on five different partitions between training and testing data.

The final error estimate is taken as the average of the error rates obtained on the
different partitions:

P̂e = 1

5

5∑

i=1

P̂e,i (18.1)

In the previous equation, P̂e,i is the error rate obtained independently on a trained
and tested system using the sets defined in partition i. The procedure actually cor-
responds to computing the average performance of five independent systems.

Training and Testing Conditions

Using the procedure described in Sect. 18.3.8, we can define different combinations
of training and testing conditions. The objectives are to measure the impact of some
of the variability of the data. We therefore propose 20 protocols as summarized
in [28].

18.4 ICDAR’2011 Arabic Recognition Competition

This competition was organized by the Document, Image and Voice Analysis
(DIVA) research group from the University of Fribourg, Switzerland in collabo-
ration with the REsearch Group on Intelligent Machines (REGIM) group at Ecole
Nationale d’Ingénieurs de Sfax (ENIS), from the University of Sfax, Tunisia and
the group at the Institute of Communications Technology (IFN) of the Technical
University of Braunschweig, Germany. The competition was organized in a ‘blind’
manner. The testing data for the evaluation is composed of an unpublished set (set 6
of APTI) which is kept secret for evaluation purposes. The participants were asked
to send an executable version of their recognizer to the organizers who, in turn, ar-
range to run the systems against an unseen set of data. We invited groups working
on Arabic word recognition to adapt their system to the APTI database and send
us executables of their systems. The scientific objectives of this first edition are to
measure the impact of font size on the recognition performances. This is evaluated
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Table 18.5 Distribution of characters in the different sets

Char label (Char) Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Alif ( ) 15,078 14,925 15,165 15,120 15,046 15,019

Baa (�� ) 4513 4763 4692 4704 4730 4717

Taaa ( ��) 9926 9884 9897 9797 9942 9897

Thaa ( ��) 634 633 631 634 643 628

Jiim (1� ) 1893 1897 1887 1924 1915 1939

Haaa (1) 2953 2963 3017 2933 3000 3000

Xaa (5) 1407 1435 1439 1401 1403 1407

Daal (�) 3187 3033 3075 2990 3028 3086

Thaal (
��) 514 520 528 504 516 518

Raa (!) 6304 6243 6169 6335 6253 6267

Zaay ( �!) 1064 1054 1054 1066 1042 1045

Siin (C) 3674 3556 3674 3512 3629 3603

Shiin ( �C) 1457 1446 1418 1434 1455 1458

Saad ($) 1374 1377 1388 1411 1371 1389

Daad ( �$) 922 943 936 906 921 920

Thaaa (*) 1419 1426 1431 1426 1446 1462

Taa ( �*) 242 238 240 238 239 241

Ayn (.) 2764 2823 2769 2718 2755 2723

Ghayn (
�.) 981 970 983 984 990 1004

Faa (
��) 2305 2256 2221 2313 2339 2315

Gaaf (
��) 2784 2734 2853 2883 2762 2803

Kaaf (8) 2101 2090 2099 2145 2136 2140

Laam (<) 6745 6926 6972 7002 6790 6724

Miim (>) 7871 7836 7957 7806 7797 7817

Nuun ( �B) 7484 7433 7289 7316 7400 7264

Haa ( D) 2670 2687 2590 2718 2705 2724

Waaw (�) 4421 4313 4325 4333 4264 4352

Yaa (I
 ) 6641 6630 6876 6685 6648 6735

NuunChadda (
N�B) 225 224 224 223 224 223

YaaChadda ( NI
 ) 725 727 709 719 735 733

Hamza (QR) 192 187 190 193 192 188

HamzaAboveAlif (
"M
) 1437 1483 1455 1512 1456 1427

HamzaUnderAlif ( M") 253 250 256 247 248 247
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Table 18.5 (Continued)

Char label (Char) Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

TildAboveAlif (
K
) 84 84 83 83 83 83

TaaaClosed (
�D) 1417 1407 1394 1364 1409 1385

AlifBroken (I) 162 161 164 163 161 161

HamzaAboveAlifBroken (QI) 210 208 208 209 208 210

HamzaAboveWaaw (Q�) 89 90 89 91 89 90

Quantity of characters 108,122 107,855 108,347 108,042 107,970 107,944

Quantity of PAWs 45,982 45,740 45,792 45,884 45,630 45,805

Quantity of words 18,897 18,892 18,886 18,875 18,868 18,866

in mono-font and multi-font contexts. The protocols are defined to evaluate the ca-
pacity of the recognition systems to handle different sizes and fonts using digitally
low resolution images in order find a robust approach to screen-based OCR.

The evaluation was reported as word and character recognition rates. In this first
edition of the competition, we have proposed two protocols, as described below.

18.4.1 Mono-font Competition Protocol—First APTI Protocol
for Competition: APTIPC1

In this protocol, we test Arabic mono-font and multi-size systems trained on the
Arabic Transparent font and sizes from 6 to 24.

• Tested Fonts: Arabic Transparent.
• Tested Style: Plain.
• Tested Sizes: 6, 8, 10, 12, 18, 24.
• Set 6 word images: 18,866 for each size/font.
• Number of tests in APTIPC1: 6.

18.4.2 Multi-font Competition Protocol—Second APTI Protocol
for Competition: APTIPC2

In this protocol, we test Arabic multi-font and multi-size systems trained on five
fonts and sizes from 6 to 24.

• Tested Fonts: Diwani Letter, Andalus, Arabic Transparent, Simplified Arabic and
Traditional Arabic.

• Tested Style: Plain.
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• Tested Sizes: 6, 8, 10, 12, 18, 24.
• Set 6 word images: 18,866 for each size/font.
• Number of tests in APTIPC2: 30.

18.4.3 Participating Systems

The following section gives a short description of the systems submitted to the
ICDAR’2011 Arabic Recognition Competition: Multi-Font Multi-Size Digitally
Represented Text. The system descriptions vary in length according to the level
of detail provided by the participants.

IPSAR System

The IPSAR system was submitted by Samir Ouis, Mohammad S. Khorsheed and
Khalid Alfaifi, members of the Image Processing and Signal Analysis & Recogni-
tion (IPSAR) Group. This group is part of the Computer Research Institute (CRI)
at King Abdulaziz City for Science & Technology (KACST) from the kingdom of
Saudi Arabia.

IPSARec is a cursive Arabic script recognition system where ligatures, overlaps
and style variation pose challenges to the recognition system. It is based on the Hid-
den Markov Model Toolkit (HTK), a portable toolkit for speech recognition systems
which is customized here to recognize characters. IPSARec is an omnifont, unlim-
ited vocabulary recognition system. It does not require segmentation. The proposed
system proceeds with three main stages: extracting a set of features from the input
images, clustering the feature set according to a pre-defined codebook and finally,
recognizing the characters.

Each word/line image is transferred into a sequence of feature vectors. Those
features are extracted from overlapping vertical windows, divided into cells where
each cell includes a predefined number of pixels, along the word/line image, then
clustered into discrete symbols.

Stage two is performed within HTK. It couples the feature vectors with the cor-
responding ground truth to estimate the character model parameters. The final out-
put of this stage is a lexicon-free system to recognize cursive Arabic text. During
recognition, an input pattern of discrete symbols representing the word/line image
is injected to the global model which outputs a stream of characters matching the
text line.

For more details about this system, we refer to [17].

UPV-BHMM Systems

These systems were submitted by Ihab Alkhoury, Adria Gimenez and Alfons
Juan, from the Universitat Politecnica de Valencia (UPV), Spain. They are based
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Fig. 18.5 Generation of a 7 × 5 word image of the number 31 from a sequence of 3 windowed
(W = 3) BHMMs for the characters 3, ‘space’ and 1

on Bernoulli HMMs (BHMMs), that is, HMMs in which conventional Gaussian
mixture density functions are replaced with Bernoulli mixture probability func-
tions [10]. Also, in contrast to the basic approach followed in [10], in which narrow,
one-column slices of binary pixels are fed into BHMMs, the UPV-BHMM systems
are based on a sliding window of adequate width to better capture image context
at each horizontal position of the word image. This new, windowed version of the
basic approach is described in [11]. As an example, Fig. 18.5 shows the generation
of a 7 × 5 word image of the number 31 from a sequence of 3 windowed (W = 3)
BHMMs for the characters 3, ‘space’ and 1.

The UPV-PRHLT systems were trained from input images scaled in height to
40 pixels (while keeping the aspect ratio) after adding a certain number of white
pixel rows to both top and bottom sides of each image, and then binarized with the
Otsu algorithm. A sliding window of width 9 was applied, and thus the resulting
input (binary) feature vectors for the BHMMs had 360 bits. The number of states
per character was adjusted to 5 states for images with font size of 6, and 6 states
for other font sizes. Similarly, the number of mixture components per state was
empirically adjusted to 64. The estimation and recognition parameters were carried
out using the expectation maximization (EM) algorithm.

Two systems were submitted: UPV-PRHLT-REC1 and UPV-PRHLT-REC2. They
are used for both tasks/protocols. In the first task (one style), there are no differences
between systems; one model for each font size is trained and used later to recognize
the test corpus. For the second task, in the first system, for each font size, a different
model for each font style is trained. The test corpus is recognized on all models, and
the recognized text word of the highest probability is selected. For the second task
in the other system, a different character is considered for each style. A model for
all styles together is trained and used to recognize the test corpus.
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Table 18.6 APTIPC1—ICDAR’2011 competition results for participant systems

System Size Mean RR

6 8 10 12 18 24

IPSAR System WRR 5.7 73.3 75.0 83.1 77.1 77.5 65.3

CRR 59.4 94.2 95.1 96.9 95.7 96.8 89.7

UPV-PRHLT-REC1 WRR 94.5 97.4 96.7 92.5 84.6 84.4 91.7

CRR 99.0 99.6 99.4 98.7 96.9 96.0 98.3

UPV-PRHLT-REC2 WRR 94.5 97.4 96.7 92.5 84.6 84.4 91.7

CRR 99.0 99.6 99.4 98.7 96.9 96.0 98.3

18.4.4 Competition Results

All systems have been tested using the set 6 (18,866 single word images) of the
APTI database in different sizes and fonts. All participants sent us a running ver-
sion of their recognition systems. The systems can be classified into two classes
depending on the operating system: two systems are developed under Linux (UPV-
PRHLT-REC1 and UPV-PRHLT-REC2) and one system under the Microsoft Win-
dows environment.

Table 18.6 presents all system results of the first APTI protocol (APTIPC1). For
each test the best result is marked in bold.

This first test is mono-font and mono-size. The test images presented to the sys-
tems are those using the font Arabic Transparent, plain and sizes 6, 8, 10, 12, 18
and 24. For most of the systems, we observed good results in character recognition
and slightly worse results for word recognition. Both UPV-BHMM systems have the
same behaviour and show the best results with an average of 91.7 % for the word
recognition rate and 98.3 % for the character recognition rate. Compared to other
competition systems, the IPSAR system has the best character recognition rate on
size 24.

Tables 18.7, 18.8 and 18.9 present system results of the second APTI protocol
(APTIPC2) for competition. This second test is multi-font and mono-size. The test
images presented to the systems are those using the fonts (Arabic Transparent, An-
dalus, Simplified Arabic, Traditional Arabic and Diwani Letter), plain and sizes 6,
8, 10, 12, 18 and 24.

In APTIPC2, the recognition rate is not as good as in APTIPC1 for the Ara-
bic Transparent font. The best system is UPV-PRHLT-REC1 with an average of
83.4 % for the word recognition rate and 96.4 % for the character recognition
rate.

The UPV-PRHLT-REC1 system shares good results for most fonts and sizes in
this APTIPC2. The IPSAR system gives good results for the Traditional Arabic and
Diwani Letter fonts in font size 10, 12 and 24.
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Table 18.7 APTIPC2—IPSAR system results

Font Size Mean RR

6 8 10 12 18 24

Andalus WRR 13.9 35.7 65.6 73.8 69.5 64.5 53.8

CRR 67.4 82.4 92.4 94.4 93.0 92.5 87.0

Arabic Transparent WRR 29.9 40.0 73.2 74.9 65.9 69.1 58.8

CRR 78.2 84.4 94.1 95.1 93.9 95.5 90.2

Simplified Arabic WRR 30.8 39.8 73.2 75.5 66.2 68.6 59.0

CRR 77.6 84.3 94.2 94.9 93.1 94.4 89.8

Traditional Arabic WRR 4.6 3.4 46.7 55.1 52.9 50.4 35.5

CRR 49.8 49.2 85.9 88.5 87.5 88.3 74.9

Diwani Letter WRR 9.7 3.3 39.9 55.8 49.5 64.0 37.0

CRR 60.1 48.3 83.4 89.1 91.7 92.6 77.5

Mean RR of the system WRR 48.8

CRR 83.9

Table 18.8 APTIPC2—UPV-PRHLT-REC1 system results

Font Size Mean RR

6 8 10 12 18 24

Andalus WRR 94.1 75.5 81.1 83.6 83.9 85.0 83.8

CRR 98.9 94.8 96.1 96.7 96.7 97.0 96.7

Arabic Transparent WRR 94.7 78.2 78.9 81.8 83.1 83.8 83.4

CRR 99.0 95.2 95.5 96.1 96.2 96.1 96.4

Simplified Arabic WRR 95.8 82.4 84.2 85.3 85.6 88.0 86.9

CRR 99.2 96.2 96.7 96.9 97.0 97.4 97.2

Traditional Arabic WRR 57.6 38.3 43.6 43.5 42.9 46.2 45.4

CRR 89.3 81.9 84.3 83.6 83.5 85.0 84.6

Diwani Letter WRR 61.7 27.7 30.9 31.6 76.4 35.1 43.9

CRR 90.9 75.8 77.8 78.1 94.9 79.6 82.8

Mean RR of the system WRR 68.7

CRR 91.5

18.5 DIVA-REGIM System

The DIVA-REGIM system is part of a joint collaboration between the DIVA (Doc-
ument, Image and Voice Analysis) group from the University of Fribourg, Switzer-
land and the REGIM (REsearch Group on Intelligent Machines) group from the Uni-
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Table 18.9 APTIPC2—UPV-PRHLT-REC2 system results

Font Size Mean RR

6 8 10 12 18 24

Andalus WRR 83.1 73.6 79.5 77.7 71.1 71.7 76.1

CRR 96.0 94.1 95.1 94.9 93.6 93.5 94.5

Arabic Transparent WRR 86.1 84.3 84.1 81.1 75.5 75.6 81.1

CRR 97.1 96.5 96.6 96.1 94.9 94.8 96.0

Simplified Arabic WRR 87.6 82.6 83.5 81.2 74.2 76.2 80.9

CRR 97.4 96.1 96.5 96.1 94.7 95.0 96.0

Traditional Arabic WRR 43.7 36.9 42.3 40.9 37.6 40.2 40.2

CRR 83.6 80.5 83.2 82.1 80.8 82.2 82.1

Diwani Letter WRR 41.9 26.4 29.7 29.2 68.4 29.9 37.6

CRR 83.2 74.5 76.8 76.5 93.4 76.7 80.2

Mean RR of the system WRR 63.2

CRR 89.7

versity of Sfax, Tunisia. This system is a cascading system working in three steps:
feature extraction, font recognition and word recognition using font-dependent mod-
els.

18.5.1 Pre-processing

The pre-processing phase aims at the reduction of the variability between char-
acter shapes due to misalignment on the Y -axis. Classically, this pre-processing
phase normalizes all inputs by shifting the images so that the characters of a
word or sequence of words are aligned vertically according to a common base-
line.

A data-driven baseline detection system is proposed in this work. The idea is to
detect a probable baseline region using data-driven methods trained on local charac-
ter features. Once a probable baseline region is recognized by the Gaussian mixture
models (GMMs)-based system, the final position of the baseline is fine-tuned using
the classical horizontal projection histogram, but limited to this region. The base-
line recognition system is actually similar to the system presented in [30] for Arabic
font recognition. Each word image is normalized in grey level into a rectangle with
fixed height and then transformed into a sequence of feature vectors computed from
a narrow analysis window, sliding from right to left on the word image. Again, the
features used here for the baseline detection are actually the same as for the font
recognition system and are presented in [30]. In our settings, the analysis window is
shifted by 1 pixel for each feature vector. We performed several tests to determine
the optimal size of the window and we converged to a 4 pixel width and 30 pixel
height.
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Fig. 18.6 Example of three baseline positions considering the bounding box of single word images

GMMs are used to estimate the likelihoods of three baseline positions (called
here below, middle and above positions) as illustrated in Fig. 18.6. Each position is
represented by a single GMM, which can actually be seen as a single-state HMM.
Assuming the independence of the feature vectors, the GMMs are able to compute a
global likelihood of a baseline position simply by multiplying the local likelihoods
of each feature vectors computed separately. Each model is trained using an expec-
tation maximization procedure by pooling a large quantity of feature vectors from
words in known baseline positions [8]. Being state-less, the obtained models are
currently independent of any character but become conditioned to the three baseline
positions. Thanks to the large quantity of data, models can typically scale up to a
large number of Gaussians (in our settings 8192 Gaussians). At testing time, the
GMM showing the largest likelihood is selected, indicating a probable baseline re-
gion. Finally, the baseline position is fine-tuned by computing horizontal projection
histograms limited to the recognized region.

18.5.2 Feature Extraction

The proposed feature extraction works on binary and grey level images. It depends
on horizontal sliding window and vertical frames for a word with specific Arabic
fonts (each horizontal window divided into vertical frames without overlap). The
width of the horizontal sliding window could be w pixels, where w is an integer
number that is determined empirically depending on the developed system for each
Arabic font. The height of this window is equal to h pixels, where h represents a
fixed integer number. The narrow analysis window slides horizontally from right
to left on the word image with a shift of s pixels, where s is an integer window
equal to 1. This allows us to take enough samples to be able to reliably estimate
character models. For complex Arabic fonts, each horizontal frame is divided into
cells where the cell height (Ch) is fixed. This yields a fixed number of cells in each
frame according to the normalized word image height. Figure 18.7 illustrates the
basic definitions used above.

In our case, the analysis window has a uniform size and moves one pixel from
right to left. We conducted several tests to determine the optimal size of the sliding
window according to the Arabic font used. As a result, no segmentation into letters is
made, and the word image is transformed into a matrix of values where the number
of lines corresponds to the number of analysis windows, and the number of columns
is equal to the number of coefficients in each feature vector. The feature extraction
is divided into two parts. The first part extracts, for each window:
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Fig. 18.7 Basic definition
used in sliding window
feature extraction

• Number N1 of black connected components.
• Number N2 of white connected components.
• Ratio N1/N2.
• Position of the smallest black connected component divided by the height of the

window.
• Sum of the perimeter P of all components in window/perimeter of window Pw .
• Compactness (4πA)p2 where P is the shape perimeter in window and A is the

area.
• Gravity centre of the window, of the right and left half and of the first third, the

second and the last part of the window:
∑n

i=1
xi

nW
;
∑n

i=1
yi

nH
where W is the

width and H is the height of the window.
• Position of baseline/height image.
• Number of extremum in vertical projection.
• Number of extremum in horizontal projection.
• Size of the smallest connected component.
• Density of black pixels in the window.
• Density of black pixels below the low baseline.
• Density of black pixels above the low baseline.
• Densities of black pixels in each column of the window. As the width of the

window is w pixels, it has w columns in each window.
When n(i) is the number of black pixels in the cell i, and b(i) is the intensity of
the cell i:

{
b(i) = 0 if n(i) = 0
b(i) = 1 else
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Fig. 18.8 Five types of
concavity configurations for a
background pixel P

• Number of black/white transitions between cells: f = ∑nc

i=2 |b(i) − b(i − 1)|
where nc is the number of cells in the window.

• Number of black/white transitions between cells located above the low baseline.
• Position difference between the gravity centres g of writing pixels in two consec-

utive windows: f = g(t) − g(t − 1).
• Area belonging to the text gravity centre in the window (up area f = 1, medium

area f = 2, below area f = 3).
• Number of white pixels that belong to one of the five configurations shown in

Fig. 18.8. The number of pixels in each configuration is then normalized by the
number of pixels in the window.

• Number of background pixels in the five configurations mentioned above but only
for pixels located in the middle area of writing, between the two baselines (see
Fig. 18.9).

• Number of background pixels in the five configurations mentioned above but only
for pixels located in the lower area of writing, below the lower baseline.

• Number of background pixels in the five configurations mentioned above but only
for pixels located in the upper area of writing, over the upper baseline.

• The moment invariants (7 moments).
• The affine moment invariants (6 moments).
• The Zernike moments (12 moments).
• The Fourier descriptors (9 descriptors).
• The histogram of the Freeman directions (8 directions).
• The sum of the gradient norms.

The different recognition systems that depend on the font do not use the same
feature. For all systems, however, each feature vector xn has M components in-
cluding M/2 basis features concatenated with M/2 delta coefficients computed as a
linear difference of the basis features in adjacent windows. The deltas are computed
in a similar way as in speech recognition, to include larger contextual information
in an analysis window using the following formula:

{
�x

j
n = x

j

n+1 − x
j

n−1, ∀1 < j < M/2

�x
j
n = xn where n = 0 or n = N

18.5.3 Character Models Training

First, starting from all Arabic character shapes (more than 120), we grouped similar
character shapes into 65 models according to the following rules: (1) beginning and
middle shapes share the same model; (2) end and isolated shapes share the same
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Fig. 18.9 Upper and lower
baselines on sample data

Fig. 18.10 Additional
sub-model examples for
Diwani Letter font

model. These rules apply for all characters with the exception of the characters Ayn
‘.’ and ghayn ‘

�.’ where the beginning, middle, end and isolated shapes are very

different. This strategy of grouping is natural as beginning-middle and end-isolated
character shapes are visually similar. The selection procedure of the different sub-
models has been driven by grouping shapes of letters presenting few variations. The
grouping strategy is explained in more detail in [27, 29]. Our hypothesis here is that
the emission probability estimators based on Gaussian mixtures will offer enough
flexibility to model the common parts and the variations within each letter category.
Using the terminology introduced for speech recognition [23], our models are said
to be context independent; i.e., each sub-model is considered independent from the
next.

Second, for the used fonts presenting many ligatures between letters, we have
added a new character sub-model: a selected set of their corresponding variations.
Figure 18.10 presents some examples.

18.5.4 Ergodic Topology

In this topology every sub-model can be reached from every other sub-model. All
transitions from one sub-model to another are allowed. Using ergodic topology of-
fers the advantage of relatively lightweight memory and CPU footprint, when com-
pared to more heavyweight approaches based on finite-state or stochastic gram-
mars.
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Fig. 18.11 HMM-based word recognition system

18.5.5 Training and Recognition

Our word recognition system is based on hidden Markov models (HMMs). The
DIVA-REGIM system has a similar architecture to the one presented in [27]. One
of its main characteristics is that it is open vocabulary, i.e. able to recognize any
Arabic printed word on ultra low resolution. The training-testing system architecture
is illustrated in Fig. 18.11. Note that the baseline detection system shares a similar
training-testing architecture; the only difference is the fact that HMMs are here used
instead of GMMs.

We used the Hidden Markov Model Toolkit (HTK) to realize our evaluation [32].
HTK was originally developed at the Speech Vision and Robotics Group of the
Cambridge University Engineering Department (CUED). This toolbox has been
built to experiment with HMMs and has been extensively used in speech recognition
research. HTK is a set of command line executables used for initializing, modify-
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Table 18.10 APTIPC1—DIVA-REGIM system results

System Size Mean RR

6 8 10 12 18 24

DIVA-REGIM WRR 97.47 98.67 99.02 99.32 99.44 99.76 98.95

CRR 99.74 99.82 99.86 99.92 99.94 99.97 99.88

ing, training and testing HMMs. The use of HTK typically goes through four phases:
preparation of data, training, recognition and recognition performance evaluation.

In the learning phase, all training files are first used for the initialization of HMM
models for each letter, using HTK HCompV. For each training word image, the
corresponding sub-models are connected to form a right-left HMM. An embed-
ded training using the Baum–Welch iterative estimation procedure is used with the
HTK tool HERest. Using a training set, all the observation sequences are used to
estimate the emission probability functions of each sub-model. The training proce-
dure actually involves two steps that are iteratively applied to increase the number
of Gaussian mixtures to a given M value. In the first step, a binary split procedure,
along the iteration process, is applied to the Gaussians to increase their number. In
the second step, the Baum–Welch re-estimation procedure is launched to estimate
the parameters of the Gaussians. However, the expectation maximization (EM) al-
gorithm is used to iteratively refine the component weights, means and variances to
monotonically increase the likelihood of the training feature vectors

At recognition time, an ergodic HMM is formed using all sub-models. The recog-
nition is done by selecting the best state sequence in the HMM using a Viterbi pro-
cedure implemented with the HTK tool HVite. Performances are evaluated in terms
of word recognition rates using an unseen set of word images. The evaluation is
obtained using the HTK tool HResult.

18.5.6 Experimental Results

Table 18.10 presents the DIVA-REGIM system results for the first APTI protocol
(APTIPC1) for competition. The results are good for the majority of font sizes with
an average of 98.95 % for word recognition rate and 99.88 % for character recogni-
tion rate. These results are better than those of the other participating systems in the
ICDAR’2011 competition.

Table 18.11 presents the DIVA-REGIM system results for the second APTI pro-
tocol (APTIPC2) for competition. In term of results, DIVA-REGIM seems to be the
best system compared to the other participating systems in the ICDAR’2011 com-
petition with an average of 91.92 % and 97.72 % respectively for word recognition
rate and character recognition rate.



448 F. Slimane et al.

Table 18.11 APTIPC2—DIVA-REGIM system results

Font Size Mean RR

6 8 10 12 18 24

Andalus WRR 94.34 97.61 97.58 99.27 98.50 99.47 97.80

CRR 97.94 99.26 99.45 99.70 99.49 99.82 99.28

Arabic Transparent WRR 86.52 95.67 96.65 96.45 97.49 97.78 95.09

CRR 93.87 98.51 99.13 99.10 99.40 99.25 98.21

Simplified Arabic WRR 83.29 92.73 96.82 96.43 96.50 96.97 93.79

CRR 92.16 97.37 98.99 98.82 99.13 98.71 97.53

Traditional Arabic WRR 77.56 92.72 94.56 95.44 94.55 95.11 91.66

CRR 96.03 98.87 98.92 98.94 99.00 98.79 98.43

Diwani Letter WRR 57.47 80.50 84.18 89.88 90.08 85.46 81.26

CRR 89.33 95.06 96.04 97.16 96.99 96.25 95.14

Mean RR of the system WRR 91.92

CRR 97.72

18.6 Conclusion

APTI is challenging, especially when we consider the recognition rate at the word
level. APTI aims at a large-scale benchmarking of open-vocabulary text recognition
systems. While it can be used for the evaluation of any OCR system, APTI is nat-
urally well suited for the evaluation of screen-based OCR systems. The challenges
addressed by the database are the variability of the sizes, fonts and styles, and the
protocols that are defined are efficient enough to evidence the impact of such vari-
ability. The objective of the first competition, organized at the 11th International
Conference on Document Analysis and Recognition (ICDAR’2011), in September
18–21, 2011, Beijing, China, for the recognition of multi-font and multi-size Ara-
bic text, was to evaluate and compare different systems and approaches. We have
presented in this chapter the results of four different systems on the ICDAR’2011
competition protocols with benchmarking strategy for Arabic low resolution word
recognition.
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Chapter 19
A Robust Word Spotting System for Historical
Arabic Manuscripts

Mohamed Cheriet and Reza Farrahi Moghaddam

Abstract A novel system for word spotting in old Arabic manuscripts is devel-
oped. The system has a complete chain of operations and consists of three major
steps: pre-processing, data preparation, and word spotting. In the pre-processing
step, using multi-level classifiers, clean binarization is obtained from the input de-
graded document images. In the second step, the smallest units of data, i.e., the
connected components, are processed and clustered in a robust way in a library,
based on features which have been extracted from their skeletons. The preprocessed
data are ready to be used in the final and third step, in which occurrences of queries
are located within the manuscript. Various techniques are used to improve the per-
formance and to cope with possible inaccuracies in data and representation. The
latter techniques have been developed in an integrated collaboration with scholars,
especially for relaxing the system to absorb various scripts. The system is tested on
an old manuscript with promising results.

19.1 Introduction

Word spotting (WS) is one of the basic tools used in the retrieval and understand-
ing of historical documents [33]. This fast approach has shown a good performance
where the conventional recognition-based approaches fail. This is of great impor-
tance, considering the large number of national and international programs dedi-
cated to preserving and understanding vast numbers of old and degraded historical
manuscripts [2, 11, 16, 26]. However, there are some barriers to the application of
WS, as historical documents have usually suffered different types of degradation;
for example, faded ink, the presence of interfering patterns (bleed-through, etc.),
and deterioration of the cellulose structure [19]. Moreover, the writing styles in his-
torical documents are very complex, as the lines are very close together and words
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may overlap [1]. Therefore, WS techniques for historical documents must be robust
and adaptive.

Pattern recognition and document understanding [4, 35] are actually equiva-
lent to a process in which humans (authors, writers, and copiers of documents
and manuscripts) are modeled as a kind of machine. These people usually differ
in the writing they produce mainly because of their philological and psycholog-
ical differences and limitations. In other words, some aspects of these variations
are rooted in the inability of such a “machine” to reproduce a well-standardized
set of patterns. Performance [5] is a term used to measure the level of this im-
perfection, and is a concept that has been used widely in many fields, from lin-
guistics to engineering. In contrast, a major part of the difference between the
writing styles of two manuscripts arises from differences in the thinking of the
writers, rather than their inability to replicate a standard style. This brings us to
competence [5], a concept which has been somewhat ignored in document analy-
sis and understanding. In contrast to performance, competence actually depends on
the knowledge of the writer. We believe that a successful approach to the analysis
and understanding of historical-manuscript images should be based on accepting
differences in competence and allowing enough room for variations. A discussion
on performance and competence is provided in the Appendix A. In Fig. 19.1, an
Arabic verse is shown in three different scripts. The high level of variation is ev-
ident from the figure. Worse still, even within a single script, there can be vari-
ous styles [7]. For example, in Fig. 19.2, two samples in Persian Nastaliq script
are shown. From a visual point of view, there is no similarity between these two
patterns. However, from a paleographical point of view, there are common rules
that are hidden or are inaccessible directly from the images. The key factor in
understanding this is a strong and intense collaboration between pattern recogni-
tion researchers and scholars, who can infer the fundamental way of thinking of
the writer behind the manuscript. In this work, our objective is to create an inte-
grated collaboration with scholars. The next step is to meld the data from several
manuscripts from the same era in order to move beyond standard word spotting.
In this way, we are able to build a database of prototypes of queries. Also, close
collaboration with paleographers enables us to understand and generate prototypes
automatically. This also helps in adapting the model and the method effectively
to the specific script of each manuscript. Our long-term goal is to build a basis
for understanding historical documents capable of eventually providing translitera-
tions.

WS is usually based on matching a graphical query to the possible candidates
from the target document. The direct matching approaches [14], which are based on
a two-dimensional (2D) comparison of the regions of interest (ROIs) of the query
and the candidate, have been improved by using several mapping techniques, such
as dynamic time warping [18] and the Euclidean distance transform [12]. The main
drawback of 2D full-comparison approaches is their high computational cost [25].
Moreover, variations in both stroke width and style can reduce the performance of
this type of WS. In [15], a WS method has been presented which is based on zones
of interest, in order to reduce the computational cost associated with 2D methods.
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Fig. 19.1 An Arabic verse produced in several different typefaces: (a) Nastaliq, (b) Sols, (c) Urdu

Fig. 19.2 Two samples of
Nastaliq script: (a) Chalipa,
(b) Siah-mashq

The matching was performed using gradient-based features, and is limited to pos-
sible starting points of words estimated by some guiding measures. The robustness
of the method has been improved by generating different possible writing forms of
a query word. However, as the method relies on the guides to catch a word, it may
be very sensitive to spatial shifts. Also, its dependency on the gradient may result in
errors because of the degradation on old manuscripts that leads to difficulties in find-
ing a single threshold value for a whole document page. In [37], a complete word
recognition method has been proposed which is inspired from biological problems;
it identifies rarely occurring words as possible candidates for special names (peo-
ple, cities, etc.) and then asks for their labels using an appropriate interface. The
corresponding feature vector is very large (around 6,000 features), and the method
requires word segmentation data.

In other work, several feature-based approaches have been developed [25, 28].
For example, in a corner-points-based method [28], the shapes have been described
and compared by their corresponding corner points. In [25], words are described
based on several profiles, such as an upper word profile. The latter is a high-
performance method, basically because of its robustness with respect to writing
variations as a result of using dynamic time warping [17]. Another method based
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on dynamic time warping is presented in [27], in which the semicontinuous hidden
Markov model was also used. A set of samples for each word has been selected
as the prototype for each query, in order to cope with variations in writing styles.
Features are extracted on a sliding patch, which may, however, lead to high compu-
tational cost.

Using connected components (CCs) or subwords as the lowest unit has been
used previously in the literature [29]. However, in that work, deletion of symbols
has been used, which breaks the assumption that CCs are the lowest unit, and brings
that method to the “character” level.

In [40], a character-level recognition system is introduced in which various fea-
tures such as spatial features, histograms, and skeleton-based graphs are used. How-
ever, as mentioned, the system is based on character segmentation and is completely
different from our approach.

Good segmentation of lines and words is required in many of these methods. The
availability of the baseline and the requirement of skew-free word images are some
other limitations of these approaches.

The skeleton has also been used in document understanding [24, 34, 39, 41].
However, because of the poor quality of the input images, the skeleton-based meth-
ods have not been considered extensively for use with old and historical documents.
With new and robust enhancement methods [20], however, weak connections are
preserved, and smoothness of the strokes on the historical documents is ensured.
This is our main motivation for developing a skeleton-based WS technique.

Although skeletons are actually 2D images, they can be described using features.
In this way, the complexity of the skeleton-based approaches is reduced signifi-
cantly. Usually, topological features have been used in skeleton-based recognition
techniques [42]. While topological features are very valuable sources of informa-
tion, other types of information, such as geometrical data, are also needed, in order
to arrive at a complete description of skeletons in the document processing applica-
tions.

In this work, we develop a WS system based on comparison of the topological
and geometrical skeleton descriptors. The skeletons are obtained from the enhanced
document images after the pre-processing step. Also, in order to make the method
insensitive to variations in writing style, the lowest-level units, the connected com-
ponents (CCs, also called subwords), are used for matching. Like the document text,
the user query is decomposed into its CCs, and then that sequence of CCs is com-
pared to the document CCs. To reduce the number of comparison operations, the
document CCs are first compared to one another, and a library of main or basis CCs
(BCCs) is created.

The chapter is organized as follows. The problem statement is presented
in Sect. 19.2. In Sects. 19.3 and 19.4, our proposed approach is introduced,
and many steps such as the process of extraction of descriptors using variable-
space transformation are discussed. Then, in Sect. 19.5, the actual word spotting
process is described. The experimental results and discussions are provided in
Sect. 19.6. Finally, our conclusions and some prospects for future work are pre-
sented.
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19.2 Problem Statement

The document images of a handwritten Arabic manuscript are available. We assume
the document has just one writer. Also, because of the writing style, it is assumed
that line and word segmentations are difficult if not impossible. The goal is to search
and index a set of few words in the document images without transliterating its text.
We propose a novel word spotting technique to solve this problem, of which a brief
description is presented in the following section.

19.3 A Skeleton-Based Segmentation-Free Word Spotting
Approach

To solve the problem, a shape-based analysis is performed on the set of subwords
or CCs of the input document image. Then, the query words will be spotted just
by comparing their shapes to those of the document CCs in a fast and real-time
way. These two steps are discussed in detail in the following two sections. The first
step, which we call data preparation, uses a complexity-based distance on variable-
dimension feature spaces to identify similar shapes in the document. The second
step, the spotting process, uses this information to retrieve candidates on the docu-
ment image for the end-user query words.

19.4 Data Preparation

19.4.1 Pre-processing and a Priori Information

Enhancement of historical documents is a key step in their analysis and understand-
ing. Following [20], multi-level classifiers are used to remove the background, re-
store the interfering patterns, and preserve weak strokes and connections. Depend-
ing on the degree of degradation of the input documents, different scenarios can be
designed for the pre-processing stage [18].

In this work, a simple pre-processing step is considered, which is shown in
Fig. 19.3. As the first step, several parameters are estimated from some selected
pages of the input manuscript. These parameters are considered a priori informa-
tion. The most important parameters are the average stroke width ws and the average
line height hl (to be discussed in the next subsection). Based on these parameters,
a rough binarization of the input images is created. We use a fast grid-based imple-
mentation of Sauvola’s method [21], the selected scale of which is hl . Then, using
a new kernel-based implementation, based on ws , the stroke map (SM) [20] of the
input images is computed. To improve computation performance, integral image
representation [3, 30] is used. Although the SM provides clear binarized views of
the images, a few corrections are also considered. It is well known that loops play a
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Fig. 19.3 Schematic representation of the pre-processing stage

critical role in recognition and understanding [23]. Usually, some loops are missed
because of degradation, or even because of the casual writing style of the manuscript
writer. Thanks to ws and the use of morphological operators, many of the missed
loops are recovered. The erosion operator is applied [2ws/3] times considering the
BW10 representation [21]. Then, the remaining regions, which are candidate loops,
are analyzed based on their size and added to the shape. Another correction in-
volves the removal of small spots, again based on ws . All spots smaller than ws are
deleted. The final output images are now clean and corrected, and ready to be used
in the subsequent stages. In this way, pixels of interest (POIs), which are actually
the binarized regions of the text, have been recognized. After pre-processing, the
strokes obtained on the document images are smooth and continuous, and accurate
and correct skeletonization can be performed. Descriptions of a priori information
are presented in the Appendix B.

Figure 19.4 shows a sample page of the input document and its preprocessed and
clean output image. Having the clean images at hand, the next step is to prepare
and extract shape data from them. As mentioned before, the CCs are the lowest unit
in our approach. In the preparation stage, a library of CCs is created in which the
CCs are clustered. This approach is effective in reducing the computational time of
the spotting step. The substeps of the preparation stage are: (i) extraction of CCs,
(ii) clustering of CCs into metaclasses, (iii) generating skeletons of CCs and extract-
ing their features, (iv) selecting BCCs, and (v) creating a database of pseudo-words.
A sample CC and its skeleton image are shown in Fig. 19.5. There are many ap-
proaches for extracting the skeleton of a shape: distance transform-based methods
[32], the Voronoi diagram [31], and thinning [10, 42]. On document images, strokes
and CCs are actually networks of lines with almost constant width, which means
that a thinning method should provide better results in document image processing.
We follow the thinning method described in [10].

In the sections below, the details of these steps are discussed.
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Fig. 19.4 (a) A sample page from one of the manuscripts. (b) The output of the pre-processing
stage

Fig. 19.5 An example of a
CC (a) and its skeleton
image (b)

19.4.2 Extraction of CCs

We use the standard procedure available via the bwlabeln function of Matlab
[9, 36] to isolate the connected components. The main problem after extraction of
the CCs is the detection of dots and diacritics. Based on ws , all CCs smaller than
a factor of ws are declared to be dots. Each dot is assigned to a neighboring CC.
In order to find the corresponding CC, the minimum weighted vertical distance is
used. The weighted vertical distance between a candidate dot CCi and another CCj

is defined as follows:

dwv(CCi ,CCj ) = min
k∈CCj

(
α|xCMi

− xk| + ‖rCMi
− rk‖

)

where rCMi
= (xCMi

, yCMi
) is the center of mass of CCi and rk = (xk, yk) is the po-

sition of a black pixel k on CCj . The parameter α is a large number which weights
the distances vertically. We use α = 10. The dot CCi is attached to CCj̄ with mini-
mum dwv :

j̄ = arg min
j

dwv(CCi ,CCj )
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Any dot which is further from the corresponding CC than hl/2 is discarded.
In subsequent steps, we need to generate sequences of CCs. To achieve this,

the left and right CCs of any CC are determined locally. Because only one CC
is searched at this step, this process is very local. Therefore, the accuracy is very
high, and the process is robust with respect to baseline variations and the vertical
displacement of CCs. The average line height hl is used as a measure to find the
isolated CCs.

19.4.3 Clustering into Metaclasses

Although shape matching could be performed on the whole set of CCs, the presence
of a large number of CCs makes this direct matching very time consuming and
costly. On average, there are around 500 CCs on each page of the input document.
Therefore, the total number of document CCs is very high. Moreover, matching all
the shapes against one another may reduce the performance and accuracy of the
spotting technique. Therefore, before starting the matching process (which will be
discussed in the following sections), the CCs are clustered into a few metaclasses.
In this classic solution, distribution of the CCs into a few metaclasses (about 10) is
considered. In this way, not only is the accuracy of the method increased, but the
number of required comparisons of the user input query to the document CCs is
reduced. The exact number of metaclasses depends on the input document and will
be determined automatically.

The main matching technique used in this work is skeleton-based, and will be
discussed in the next section. In order to enhance the performance of the system,
an attempt is made to use skeleton-independent features at the metaclass cluster-
ing stage. We use a selected page of the input manuscript instead of all pages, be-
cause these metaclasses are just intended to represent roughly the complexity of the
CCs. On this page, using a set of features, and by applying the self-organizing map
(SOM) technique [13], an unsupervised clustering map for CCs is obtained. This
map will be used for all other pages to partition the CCs based on their complexity.
The features used at this stage mainly represent the complexity of the CC shape
from various points of view. In this work, eight features are used at the metaclass
clustering stage. Below, these eight features used for SOM clustering are listed:

1. Vertical center of mass (CM). It is well known that the position of a word with
respect to the baseline is an important feature in understanding and recognition
processes. However, as was discussed in the introduction, a smooth baseline has
not been followed by the writers of historical documents, and usually baselines
suffer from very sharp changes in both direction and position. Even within a
single word, subwords can appear far from the average baseline of the word.
Therefore, computed and estimated baselines are not very accurate and may lead
to major error. This is one of the chief reasons why we adapt a segmentation-free
WS technique in this work. Nonetheless, to incorporate and utilize the baseline
information in an implicit and robust way, we use a feature which is computed
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based on the vertical position of the center of mass (CM) of each CC. In order
to reduce the effect of off-the-baseline pixels, a power-law transform is used in
the computations. First, a normalized vertical distribution of the CC pixels, Hv ,
is generated:

Hv =
∑

x

uCC(x, y)/max
y

(∑

x

uCC(x, y)

)

where uCC represents the image of a CC. Then, Hv is modified using the follow-
ing power-law transform:

H ′
v = Hn

v , n > 1

This power-law transform adjusts Hv toward its maximum point. We use n = 5.
Finally, the CC’s CM is recalculated after applying the power-law transform us-
ing the new H ′

v as a vertical weight: u′
CC(x, y) = uCC(x, y)H ′

v(y). To arrive at
a common range of variation for all features, the vertical CM is renormalized to
between −3 and 3.

2. Aspect ratio. The aspect ratio of the bounding box of a CC is another rich feature
which helps to differentiate among special shapes (such as the Aleph in Arabic
scripts), and is also helpful for identifying very complex shapes which are sus-
pected to be combinations of two or more touching shapes. The bounding box
of a CC includes the CC’s shape in such a way that the shape does not touch the
boundaries of the bounding box.

3. Height ratio. The next feature is the height ratio, which is based on one of the
a priori parameters, the average vertical extent of text line he . The height ratio
of a CC is defined as the ratio of the vertical size of its bounding box to he. This
feature provides a global measure of the size of a CC.

The remaining four features mostly represent the topological complexity of a
CC.

4. Number of branch points. The number of branch points and the number of end
points (feature number 5) are actually related to the skeleton of the CC. Branch
points and end points are defined in the next section.

5. Number of end points. (See 4.)
6. Loop feature. The next feature, the loop feature, is a logical flag which is set to 1

if there is at least one loop (hole) in the CC’s shape.
7. Horizontal frequency. The horizontal frequency is used as a discriminative mea-

sure of the complexity of the shape. For computing horizontal frequency, the
number of horizontal maxima of the smoothed horizontal distribution, Hh, of the
CC’s shape is used:

Hh =
∑

y

uCC(x, y)/max
x

(∑

y

uCC(x, y)

)

8. Dot feature. The dot feature is set to one if the CC has a least 1 attached dot and
is 0 otherwise. This feature is as effective as the loop feature.
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Fig. 19.6 An example of cross distribution of different features used for metaclass clustering. The
independence of features can be seen from the distributions. The data are obtained from one page
of one of the manuscripts

Figure 19.6 shows a sample of cross distribution of the features against one an-
other computed on a training page. As can be seen from the figure, the features are
highly independent. Although some of these features may be correlated lightly to
each other, the diversity of the CCs avoids us from selecting a fewer number of
features from this small set of features. It is worth noting that these features are not
used in calculating the distances in the matching stage (Sect. 19.4.5). It is worth not-
ing that, for better visualization, the data have been shaken in the figures by adding
small random values.

Figure 19.7 shows an actual SOM of one of the manuscripts. The labels of the
metaclasses are selected automatically, and do not have any influence on the suc-
ceeding steps. It is obvious that the complexity increases from top to bottom on the
map. Because of the special nature of the Aleph letter, one of the metaclasses is
dedicated to it. Although this map is obtained just from one page of the manuscript,
it will be used for all other pages after calculating the features of their CCs and
mapping them on the SOM. It is worth noting that, although metaclasses are very
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Fig. 19.7 (a) The SOM of
one of the manuscripts
obtained from its training
page. Sample CCs from the
metaclass are shown on the
map. The complexity of the
CCs increases from top to
bottom. (b) The same SOM
with labels of the metaclasses
shown on the cells

discriminative, some similar CCs can be placed in two different metaclasses. There-
fore, later at the spotting stage, more than one metaclass will be considered.

19.4.4 Generating Skeletons of CCs, and Feature Extraction

The main matching technique in this work is based on comparison of skeletons of
the CCs. Here, the process of compilation of the skeleton images into sets of one-
dimensional features is described. In this work, a descriptor-based representation is
used for each skeleton. The descriptors can be divided into two major categories:
topological and geometrical. The details of these two categories in the proposed
method are provided in the following sections. Before that, however, we define some
skeleton concepts:

• A singularity point (SP): A connection point on the skeleton whose maximum
distance to its connected points is less than the minimum dot size.

• An end point (EP): A pixel on the skeleton which has only one connection on the
skeleton and is not connected to an SP.

• A branch point (BP): A pixel on the skeleton which has three connections on the
skeleton.

• A branch to an EP: All pixels on the skeleton between that EP and another EP/BP.

Based on the definition of EP and BP, the possible EPs and BPs of each skeleton
are determined and added to the skeleton information.

Before using the skeleton information of a CC, some corrections should be made.
The most important of these is recovery of coincident BPs. By definition, a BP has
three connections. However, it is possible that the thinning process will lead to a
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BP with four connections. These BPs are actually equivalent to two correct, adjunct
BPs. The error is corrected by shifting two of the connections and creating two BPs.
Also, some of the faded BPs are recovered by comparing the length of the branch to
any EP. If the branch is longer by more than a factor of he , then a BP is inserted on
that branch.

Once the skeletons are available, the next step is to extract their features. As
discussed before, we consider two types of features: topological and geometrical.

19.4.5 Feature Extraction: A Transformation from the Skeleton
Domain to the Feature Space

Although the skeleton image of a CC contains all the information to represent it (ig-
noring possible errors in the skeletonization step), its complexity is still high. The
skeleton is still an image by itself, which requires time-consuming 2D matching
methods. Moreover, the matching methods should be robust with respect to the pos-
sible variations in the skeletons’ form. Ignoring the 2D scale transforms [18], the
other solution is to transform the useful skeleton information to other spaces. For
this purpose, transformations, such as the topological graph matrix [34] among oth-
ers, can be considered. However, as discussed before, a CC’s information consists
of more than just topological data. Here, as a general approach, we consider several
transformations on the skeleton image to several spaces representing different as-
pects of the shape under study. The details of each transformation will be provided
below in their corresponding subsections. Let us consider uskel to be the skeleton
image of a typical CC, where uskel : Ωskel → {0,1}, and Ωskel = Ωu ⊂ Ω ⊂ R

2.
The domain Ω is the domain of the whole page that hosts the CC under study.
Let us call T the set of transformations that maps uskel to the proper spaces:
T = {Ti |Ti : Ωskel → (Rmi )ni,uskel i = 1, . . . , nT }, where nT is the number of trans-
forms, and, for each transform Ti the target space has mi ni,uskel dimensions. mi

depends only on the transformation Ti , while ni,uskel also depends on the complex-
ity of uskel. It is assumed that each transform produces features that are expandable
depending on the complexity of the input skeleton image. This expandability is for-
mulated as the variable ni,uskel parameter. In other words, the transformation T is
a variable transform for each CC. In particular, the dimension of the target spaces
is variable. This characteristic is very important in defining distance, which will be
discussed in the next subsection. In summary, T provides a 1D representation for
the skeleton images:

uskel
T→ v = {fi}nT

i=1,
(
R

mi
)ni,uskel � fi = Ti(uskel) (19.1)

Figure 19.8 shows a typical example of how the target space of a transformation
depends on the complexity of the input skeleton image. The second shape is more
complex, and therefore its feature space is bigger. Details of the transformations are
provided in the following section.
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Fig. 19.8 A typical example
of how a transformation
target space depends on the
complexity of the input
skeleton image

In summary, after applying T , each CC will be represented by a corresponding
set of features, such as {fi}nT

i=1. This approach keeps open the possibility of extend-
ing the description of the CC if needed. At the same time, the descriptor is very
concentrated, and therefore computational time is short compared to that of full 2D
matching techniques. It is worth noting that the computational cost of the spotting
step is much less, because the preparation step is separated and is carried out offline.
In the next subsection, the distance suitable for this representation is defined.

Distance in the Feature Space

Let us consider a set of CCs represented by {vψ }nCC

ψ=1 features, where nCC is the

number of CCs and vψ = {fi,ψ }nT

i=1, fi,ψ ∈ (Rmi )ni,ψ . Here, ni,ψ is equivalent to
ni,uskel in (19.1), where uskel is replaced with the skeleton image of CCψ . The goal
is to define a distance which provides a robust and effective discrimination between
CCs, despite their variable representation. We call the distance between two CCs,
say CCψ and CC′

ψ , dψ,ψ ′ :

dψ,ψ ′ =
nT∑

i=1

widi,ψ,ψ ′
/ nT∑

i=1

wi (19.2)

where di,ψ,ψ ′ is the distance between fi,ψ and fi,ψ ′ , and wi is the associated weight.
Their assigned weights correspond to the complexity of the fi,ψ and fi,ψ ′ spaces,
and act as normalization factors.

Because of the difference between the dimensions of the fi,ψ and fi,ψ ′ spaces,
di is defined as follows:

di,ψ,ψ ′ = ηi,ψ,ψ ′(di,c + di,s) (19.3)

where di,c is the minimum distance between fi,ψ and fi,ψ ′ on a common intersec-
tion subspace of their spaces, di,s stands for the difference between the space dimen-
sions, and ηi,ψ,ψ ′ is a normalization factor that takes into account the complexity of
the shapes and will be discussed later. di,c searches for the best overlapping of V i,ψ
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and V i,ψ ′
. Let us assume, without loss of generality, that ni,ψ ≥ ni,ψ ′ . Then, in

mathematical notation, we have

di,c = min
V̂ i,ψ

di

(
f̂i,ψ , fi,ψ ′

)
(19.4)

where f̂i,ψ ∈ V̂ i,ψ ≡ (Rmi )
ni,ψ ′ ⊂ (Rmi )ni,ψ ≡ V i,ψ is a subselection of fi,ψ on

V̂ i,ψ as a subset of V i,ψ . For the definitions of mi and ni,ψ , see Sect. 19.4.5.
In Eq. (19.4), di(f̂i,ψ , fi,ψ ′) is fixed and does not search for the best dimen-
sion. Here, the details of di(f̂i,ψ , fi,ψ ′) are presented. Assuming that fi,ψ =
{φi,ψ,1, . . . , φi,ψ,ni,ψ

} where φi,ψ,k = (φi,ψ,k,l)
mi

l=1 ∈ R
mi , we then define

di

(
f̂i,ψ , fi,ψ ′

)=
ni,ψ∑

k=1

‖φi,ψ,k − φi,ψ ′,k‖1

where ‖ · ‖1 is the L1 norm. This norm is selected because of the heterogeneous
nature of the φi,ψ elements.

The second term in definition (19.3), di,s , represents the distance resulting from
the difference in complexity of the two shapes:

di,s = 1

ni,ψ

(ni,ψ − ni,ψ ′)

(

1 − 1

2mi

)

The first factor, ni,ψ − ni,ψ ′ , is the distance between the dimensions of two spaces
V i,ψ and V i,ψ ′

, while the second factor, 1 − 1/2mi , stands for the correction of
the randomly generated extra dimensions. If CCψ ′ has extra complexity because of
computational error (i.e., if ni,ψ ′ is, for example, its true value plus one), then that
extra dimension results in a change in di,c. If we assume that the element values
of that extra dimension are independent of the other dimensions and are random,
considering binary values for the elements, the amount of change in the distance
is, on average, 1 − (1/2)mi . Therefore, we use the same amount for the unmatched
dimensions in di,s .

In definition (19.3), ηi,ψ,ψ ′ stands for a transformation of the distances based on
the complexity of the CCs. Although in partitioning the CCs into metaclasses, CCs
with different complexities are placed in proper metaclasses, as will be discussed in
the section on word spotting, the distance between CCs from different metaclasses
is needed to capture misclassified CCs which may have been mapped to other meta-
classes. Also, in order to make the clustering process coherent over all metaclasses,
the distance di should be normalized in some way with respect to complexity. Al-
though di in (19.3) is sensitive to the complexity of its inputs, the effect of com-
plexity on the distance in metaclasses with shapes of low complexity is different,
and can be explained as follows. In shapes of low complexity, the resolution of the
description is very rough. In other words, very fine discrimination between shapes is
impossible. This means that many features between two shapes of low complexity
may be the same, while the shapes themselves are completely different. This effect
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scales down the distance value in these metaclasses. In order to compensate for this
effect, the distance in metaclasses of low complexity should be corrected accord-
ing to their complexity. This can be performed by adjusting η. For shapes of low
complexity, η is shifted to a minimum average value, which represents the average
complexity of all shapes:

ηi,ψ,ψ ′ = max(ηi,0, η̂i,ψ,ψ ′)

where ηi,0 is the minimum average value, and η̂i,ψ,ψ ′ = max(η̂i,ψ , η̂i,ψ ′) where η̂i,ψ

stands for the complexity of the shape CCψ with respect to Ti . In this work, η̂i,ψ is
set to ni,ψ .

In the next subsections, based on the collaboration with scholars, we select a
number of topological and geometrical features for relaxing the method to absorb
various scripts.

Topological Features

In this and the following subsections, a set of transformations compatible with
the aforementioned transformations formulation, introduced in Sect. 19.4.5, is pre-
sented. nT = 6, in our case. The topological features of skeletons have been used
extensively in object recognition. In this work, we use a set of topological features
adapted to document images. The first transformation, T1, assigns a set of features
to each BP of a CC:

1. φ1,ψ,k,1: Is BP connected to a loop?
2. φ1,ψ,k,2: Is BP connected to an EP?
3. φ1,ψ,k,3: Is BP connected to another BP?

where ψ is the CC index, and k counts on all BPs of CCψ . Therefore, m1 = 3,
and n1,ψ is equal to the number of BPs of CCψ . The second transformation, T2,
generates topological features associated with EPs:

1. φ2,ψ,k,1: Is EP connected to a BP?
2. φ2,ψ,k,2: Is EP connected to another EP?
3. φ2,ψ,k,3: Vertical state of EP with respect to vertical CM.

Now, we have m2 = 3, and n2,ψ is equal to the number of EPs of CCψ .
Also, the states of the EPs and BPs with respect to the dots (SPs) are converted

into two additional feature sets. For BPs the state takes into account the vertical
location of the dot (whether it is above or below the BP) and is compiled as T3. It
has two features:

1. φ3,ψ,k,1: Is there any dot above BP?
2. φ3,ψ,k,2: Is there any dot below BP?

Therefore, m3 = 2, and n2,ψ is equal to the number of BPs of CCψ . The next trans-
formation, T4, does the same job for EPs. However, because of the high degree of
variation in the position of dots with respect to EPs, we just consider the existence
of a dot near the EPs (m4 = 1):
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1. φ4,ψ,k,1: Is there any dot near EP?

In both T3 and T4, the nearest state is calculated implicitly, and each dot is being
assigned to the two closest BPs (and EPs); to tolerance the writing variations, a dot
is assigned to its two nearest BPs (and EPs). The last topological transformation,
T5, describes the state of dots:

1. φ5,ψ,k,1: Is the dot above the vertical center of mass?

Therefore, m5 = 1, and n5,ψ is equal to the number of dots of CCψ . In summary,
there are 5 topological descriptor sequences for each skeleton. It is worth noting that,
although we call Ti, i = 1, . . . ,5 topological transformations, geometrical features
are presented implicitly within them. For example, φ2,ψ,k,3 is essentially geometri-
cal. However, as the transformation in the following subsection considers the actual
shape of branches between EPs and BPs, we prefer to call it solely a geometrical
transformation.

Geometrical Features

Although topological descriptors contain a large amount of skeleton information,
they are not sufficient for complete description of a stroke skeleton. Here, an ad-
ditional transformation, T6, is introduced and is assigned to each EP based on the
geometrical attributes of the skeleton branches:

1. φ6,ψ,k,1: Is the branch associated with the EP clockwise?
2. φ6,ψ,k,2: Is the branch S-shaped?
3. φ6,ψ,k,3: Vertical location of EP with respect to its corresponding BP.

Therefore, m6 = 3, and n2,ψ is equal to the number of EPs of CCψ . The S-shaped
state and direction of a branch are determined using numerical fitting of a Bézier
curve on the branch [6].

It is worth noting that the variable-dimension descriptors introduced here could
be converted to fixed length feature vectors if needed. For an example, see [22].

19.4.6 Creating the Library

Here, a review of the process of building the library is presented. In order to have a
line-segmentation- and word-segmentation-free system, the CCs of each page of the
document are extracted directly. The position (the center of mass) and the bounding
box of each CC are generated and added to the page information. Based on the
minimum and maximum dot sizes, as well as the average line height, small CCs are
discarded or attached to other CCs (as dots). Then, the skeleton information of the
CCs is generated, as discussed in the previous section. Based on this information,
the CCs can be compared to one another or to possible user queries.
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Fig. 19.9 Distribution of
distances between the CCs of
a training page. The threshold
distance obtained using
Otsu’s method is also shown
on the distribution

As discussed above, in order to reduce the number of comparisons, the document
CCs are first grouped into a library, which consists of a set of metaclasses. Each
cluster is a set of similar BCCs. In each metaclass, the CCs are clustered together.
The prototype or representer of each cluster is called a basis CC (BCC). All new
CCs, are compared against the existing BCCs. Based on the distance of a CC to the
BCCs in a metaclass, that CC is assigned to one of the BCCs or appears as a new
BCC. This process is performed in two rounds. First, all the CCs of a new page
are compared to the existing BCCs in the library in the corresponding metaclasses.
Then, CCs which should appear as new BCCs are added to the metaclasses. In the
second round, the remaining CCs are compared again to the updated metaclasses
and are distributed on the clusters.

Using the six descriptor sequences, consisting of five topological descriptors and
one geometrical descriptor, the features of each CC are available. According to the
complexity of the CC, the length of the sequences will be variable. The distance
between two skeletons is computed based on definition (19.2).

A threshold distance is used as a measure in clustering. Figure 19.9 shows a
sample distribution of the distances between all CCs obtained from the training
page. As can be seen, the distribution consists of two distributions. The distribu-
tion on the left corresponds to similar CCs. Using Otsu’s method, the threshold
distance, dthr, between two distributions is obtained. In our experiments, the value
has been between 0.08 and 0.1 for different manuscripts. This can also be inter-
preted as the uncertainty in the skeleton descriptors. For example, a missing BP
in the descriptors of a skeleton with 6 BPs will introduce a distance of around
0.08.

As the process of extracting skeleton information and generating descriptors is
independent of the comparison process, it is performed before that process. This
makes the computational complexity of the system very low.
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19.4.7 Generating Pseudo-words

After generating the BCC library of a document, the user queries can simply be
compared to the BCCs in the relevant clusters, and corresponding BCCs can be ob-
tained. Also, all the CCs that are clustered around each BCC are known. Therefore,
possible CCs of the user query are easily available. However, the user query is a se-
quence of CCs (a word). Therefore, a correct combination of the CCs spotted must
be found. To enhance the performance of the system, an extra step is added before
the user is allowed to search the document. In this step, a database of all possible CC
sequences in the document, which we call pseudo-words, is created. A schematic di-
agram of this process is shown in Fig. 19.10. Each pseudo-word, which is a set of a
few CCs which are close together in the horizontal direction, is labeled by its BCC
sequence and assigned to the first CC in the corresponding CC sequence. To gener-
ate the pseudo-words, the neighboring CC information that was created in the CC
extraction step (see Sect. 19.4.2) is used. As an example, in Fig. 19.11, the BCC la-
bels of sequences started from a typical CC, CCi , are shown. The sequences are sent
to the appropriate databases within the pseudo-word database. When the sequence
of BCCs of the user query is obtained, the possible pseudo-words are extracted from
the database, and the position of the spotted sequence is determined using their cor-
responding first CC. To speed up the searching process in the spotting process, the
pseudo-word database is sorted. As the BCC labels are integer, sorting is fast and ef-
fective. It is worth noting that the third sequence, BCCnBCCmBCCl , is not actually
a word, but is considered to be a possible sequence in the database.

19.4.8 Application of Markov Clustering (MCL) in Correcting the
Library and BCCs

Because of the large number of CCs and the incremental processing they require,
the library is built up gradually and new BCCs are generated when needed. One
drawback of this progressive approach is that the BCCs generated, which are usu-
ally from the beginning of the document, may not best represent the clusters in the
library, and, at the same time, break down clusters among false clusters centered on
the outliers of the true clusters are possible. In order to address this problem, while
trying to maintain the progressive nature of the library construction, correction of
BCCs, which represent the kernel of clusters, is considered. This correction is per-
formed in a periodic way in alignment with the main library growth process. The
details of the correction procedure are presented below. In brief, in each cluster in
the library, the CCs are compared to one another to select a new representer for that
cluster, as its new BCC. In order to increase the robustness of the selection pro-
cess, the Markov clustering (MCL) [38] technique is used. This technique has been
proved to perform well without any need for extra effort in terms of parameter ad-
justment. In other words, although parameter adjustment can be performed in MCL
to improve its execution time performance, its clustering performance is insensitive
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Fig. 19.10 A schematic view of the process of generating pseudo-words

Fig. 19.11 An example of how pseudo-word sequences are generated

to its parameters on a wide range of values. Algorithm 1 provides the steps for cor-
recting a cluster. Consider, for example, a cluster which corresponds to BCCk . Let
us call this cluster CLBCCk

. First, the distance matrix, D, is calculated:

Dij = dCCi ,CCj
, CCi ,CCj ∈ CLBCCk

This matrix is symmetrical, and so only the distances between the CCs inside the
cluster under process are required. This feature helps keep the computational cost
low. Then, the similarity matrix, W , is computed:

Wij = exp
(−d2

ij /h2
MCL

)
(19.5)

where hMCL is set equal to the distance threshold, dthr. It is obvious that the diagonal
elements of W are all 1. Therefore, W can be directly used as the stochastic matrix
in MCL [38]. The MCL technique, which is described briefly in the Appendix C,
provides a binary matrix in which similar objects have a value of 1, and other values
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are zero. Therefore, an object with the highest number of 1s on its corresponding
row in the output matrix of MCL is a good choice for the new representer or BCC
of the cluster. In other words, the new BCC is CC

j̃
, where

j̃ = arg max
j

∑

i

Wij (19.6)

In the correction step, the technique described above is applied to all clusters in the
library. In this work, the correction step is applied at the end of the processing of
each page. This is reasonable, as the probability of there being similar shapes on a
page is high. In Fig. 19.12, the process of selecting a new BCC for a typical cluster
is shown. Figure 19.12(a) shows a graph of a cluster, with the edges weighted based
on Wij . An initial BCC of the cluster is also shown. As can be seen from the figure,
that BCC is not the best representer of the cluster. In Fig. 19.12(b), the state after
application of MCL is shown. A subcluster survives this process, and the center of
this subcluster is chosen as the new BCC and the representer of the cluster under
study.

Set parameters p and r : p = . . . and r = . . .;
Get the similarity matrix, W , according to Eq. (19.5);
Apply the MCL algorithm as described in Appendix C;
Find the row with maximum summation in W ;
Select the corresponding CC of that row as new BCC of the cluster;

Algorithm 1: Application of MCL to select a new BCC for a cluster

19.5 Spotting Process

After the preparation stage, a library of BCCs and the database of pseudo-words
of the manuscript under study are available. In the library, the CCs are distributed
among several metaclasses. In each metaclass, the CCs are clustered around BCCs.
In the pseudo-word database, all observed sequences of CCs of different lengths
(from 1 to 7) are collected. Each sequence is labeled by the sequences of the cor-
responding BCCs of the CC sequence. The address of the first CC of the sequence
is also stored in the database. With these data, the spotting stage can be performed
anytime. The details of the spotting process are presented below.

In the spotting process, a search is made for a graphical query from the user
in the manuscript. It is assumed that the user provides the graphical query, which
is the image of the word in question. Also, it is assumed that the query is written
in a very similar style to the writing style of the manuscript. First, the query im-
age is analyzed in a similar way to the document images. The steps of the spotting
stage are listed in Algorithm 2. The first step is to process the query. This is done
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Fig. 19.12 Application of
MCL to correct BCCs.
(a) A typical cluster graph.
(b) The graph after applying
MCL

in the same way as the manuscript images themselves are processed: the query is
preprocessed, and CC extraction and corrections are performed. In this step, the
a priori information of the manuscript is used. With clean and processed CCs and
their skeletons, each CC from the query is mapped to a the metaclass. Although
metaclasses provide a good distribution of CCs, it is possible that a CC from the
query will be mapped to the wrong metaclass. This is more likely to occur on the
borders of the metaclasses. Therefore, in order to enhance the performance of the
system, for cells on the borders of the metaclasses, the neighboring metaclasses are
also considered as candidate metaclasses. For example, in Fig. 19.13(a), the border
cells of metaclass 8 of a manuscript SOM are shown in yellow. The interior cells are
in white for that metaclass. If a query CC is mapped in an interior cell of that meta-
class, just one metaclass is considered. In contrast, if a CC is mapped in a border
cell (yellow), the neighboring metaclasses are also considered for searching. For ex-
ample, in Fig. 19.13(b), the searchable metaclasses are shown in gray for one of the
border cells from metaclass 8. Another example for a border cell of metaclass 10 is
shown in Fig. 19.13(c). Having the corresponding metaclasses of each query CC, the
closest BCCs from each metaclass are determined. More than one BCC from each
metaclass is considered in order to compensate for the possible variations in writ-
ing style and touching strokes, and also errors in feature extraction. Although this
can also introduce incorrect BCCs, as will be discussed below, the impact of these
wrong BCCs is small, because of the limited number of possible combinations of the
database sequences. We consider at most 4 candidate BCCs from each metaclass.
For example, if a CC is mapped in a cell which has two neighboring metaclasses, 12
candidate BCCs will be assigned to the CC. Using these data, all possible sequences
of BCCs are created. For a query of length 3 CCs, 123 sequences could be obtained.
The final step is to search for these sequences in the pseudo-word database. Be-
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cause the labels of BCCs are integers and the database of pseudo-words is sorted,
the candidate sequences can be easily found in the database. The main challenge
in the spotting step is generating the graphical queries or prototypes, which will be
discussed in the next subsection.

Get the user graphical query;
Process the query to extract its CCs;
Map the CCs on the metaclasses;
Find the corresponding BCCs of each CC from metaclasses;
Generate candidate sequence of BCCs;
Search the candidate sequence in the pseudo-word database;
Present the matched sequence to the user as the spotting result;

Algorithm 2: Spotting process

19.5.1 Prototype Preparation

The main challenge for the WS system is the selection of an appropriate set of
graphical queries to be spotted. Because of drastic variations in writing style, a sin-
gle query cannot be used on all manuscripts. One approach is to ask the user to write
a graphical query in a style that is as close as possible to the style of the document
under study [18]. In this work, another approach is used to reduce the effort of the
end-user, which is to ask that individual to manually spot a few occurrences of the
query on the document images. Then, the selected words are used as the graphical
queries. The benefit of this method is that the prototypes obtained in this way are ex-
actly in the style of the writer of the manuscript (who may have written many other
manuscripts). Moreover, many features of the personal style of the writer, such as
overlapping and touching of specific parts of words, are reflected in the prototypes.
This enhances the performance of the system. The long-term idea behind this ap-
proach is to build a collection of prototypes for each keyword. The collection is
partitioned into different sets, each representing a writer, a writing style of a certain
period, or a script in general.

As an enhancement to the system, each approved spotted occurrence of a query
is used as a new prototype to be searched. We call this enhancement the extended
prototype set.

19.6 Experiments and Results

The performance of the spotting method has been evaluated against manuscripts
provided by the Institute of Islamic Studies (IIS), at McGill University, Montreal.
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Fig. 19.13 (a) Border cells and interior cells of a metaclass. (b) The participating metaclasses and
cells of the cell shown in yellow if a CC is mapped in that cell. (c) Another example for a border
cell from another metaclass

The IIS is home to the Rational Sciences in Islam1 (RaSI) project, which is in
the process of creating a large-scale, unique database of Islamic philosophical and
scientific manuscripts, most written in Arabic, but some in Persian and Turkish.
One of RaSI’s component initiatives is the Post-classical Islamic Philosophical
Database Initiative (PIPDI), directed by Dr. Robert Wisnovsky. The PIPDI is re-
sponsible for the indexing of metadata pertaining to, and data contained in, approx-
imately 600 works of philosophy produced during the post-classical period of Is-
lamic intellectual history (1050–1850). Its dataset is stored in 30 terabytes of storage
space.

The first experiment is performed on a work by Abu al-Hasan Ali ibn Abi Ali ibn
Muhammad al-Amidi (1243 A.D. or 1233 A.D.). The title of the manuscript is Kitab
Kashf al-tamwihat fi sharh al-Tanbihat (commentary on Ibn Sina’s al-Isharat wa-
al-tanbihat). Among the works of Avicenna, this one received the attention of later
scholars more than the others. It was particularly well received in the period between
the late twelfth century and the first half of the fourteenth century, when more than
a dozen comprehensive commentaries were written on the work. These commen-
taries seem to have been one of the main avenues to understanding and developing
Avicenna’s philosophy, and therefore any study of the post-Avicenna philosophy
needs to pay specific attention to these commentaries. Kashf al-tamwihat fi sharh
al-Tanbihat, one of the early commentaries written on al-Isharat wa-al-tanbihat, is

1http://islamsci.mcgill.ca/RASI/; http://islamsci.mcgill.ca/RASI/pipdi.html

http://islamsci.mcgill.ca/RASI/
http://islamsci.mcgill.ca/RASI/pipdi.html
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an as-yet-unpublished commentary, and awaits the attention of scholars. The docu-
ment images have been obtained using camera imaging (21 megapixels, full-frame
CMOS sensor, 1/4 sec shutter speed) at 300 DPI resolution. Each full color image
is around 800 KB in size. The dataset consists of 51 folios, corresponding to 24,883
CCs (almost 500 CC on each folio). Folio 4a is used as the training page (shown
in Fig. 19.4(a)). The following parameters were extracted from the training page:
ws = 7, hl = 130, and hs = 70. The value of the distance threshold is obtained from
the histogram of distances on the training page: dthr = 0.0823. All shapes smaller
than a minimum dot size (which is selected as a fraction of ws , 5 pixels) are dis-
carded. The maximum dot size is assumed to be 12, and two different factors for
the horizontal and vertical directions considered for the dots. In the horizontal di-
rection, the dot size is multiplied by 3, but for the vertical direction the factor is 2.
Also, to increase the speed, if the difference between space dimensions is more than
a maximum value, a distance of 1 is assigned to the corresponding di . We used 6
as that maximum value. Also, because of the irregular behavior of dots, a lower
weight is assigned to dot-based features (T3 to T5). For this purpose, a down factor
of 0.2 is used. In this way, while the method benefits from the presence of dots to
provide more accurate differentiation, it has a high tolerance for dot position (see
Sect. 19.4.5) and missing or extra dots. Also, SOM clustering, which consists of 11
metaclasses, is learned from the training page (shown in Fig. 19.7). With the clean
document images, the BCC library is created. The library contains 3420 BCCs. The
library is prepared using two approaches, one without correction of BCCs, and an-
other with correction (Sect. 19.4.8). In order to limit the computational load of the
correction step, it is only applied to clusters with a few CCs (between 3 and 15).
The computational overhead for the correction of the library is 10 %. It is worth
noting that the pre-processing and preparation stages are completely independent of
the spotting stage. Therefore, they can be scheduled to be performed beforehand.
When the library and pseudo-word database are ready, the user can be exposed to
the manuscript. The computational time needed for pre-processing a single image
is approximately 40 seconds. Also, the preparation steps (extraction of CCs and
generation of their skeleton features) take 460 seconds for each document image.
This preparation time is hidden from the end-user. The end-user faces only the com-
putational time of the spotting step, which is less than one second for the current
database. The next step, generation of the pseudo-words, is performed, and seven
databases of pseudo-words of up to seven CCs in length are built. The total number
of pseudo-words is 138,688.

Once all the data have been prepared, the next step is the actual spotting of any
keyword in the manuscript, which can be done anytime the end-user wants to do it in
real time. The main challenge is providing the graphical queries. In this work, sam-
ples from the manuscript are used. The end-user is asked to select a few samples
from the document images. More than one sample is used, in order to compen-
sate for possible topological variations in the writing style such as the touching of
strokes. The spotting step is performed on a set of 20 keywords provided by the
scholars from the IIS. The graphical queries are processed in the same way as the
manuscript images. Once the CCs of a query are available, they are mapped against
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Table 19.1 Performance of the system in terms of precision, recall, and F-measure. The best
performance is obtained when both library correction and expansion of query set are used. In this
case, the average hit rate per query is also higher

Without expansion of queries With expansion of queries Avg hit
rate

Max hit
ratePrecision Recall F-measure

(%)
Precision Recall F-measure

(%)

Without library
correction

0.6528 0.4429 51.21 0.7266 0.5502 61.87 0.3017 0.7144

With library
correction

0.7126 0.5429 60.85 0.7721 0.6989 73.20 0.4513 0.8094

the library to find their possible BCC matches. To compensate for misclassified CCs,
more than one metaclass is used to search for possible matches when a query CC
is on a border cell of a metaclass. We use all the neighboring metaclasses in this
case. Also, more than one BCC is sought in each metaclass in order to cover small
variations and to capture mistakes in skeletonization. In the end, for each query CC,
at most 12 candidate BCCs are selected. Using these matches, all possible pseudo-
words are constructed and searched in the pseudo-word database, resulting in words
spotted on the manuscript. The first column of Table 19.1 shows the performance
of the system with and without library correction. As seen from the measures, a
high boost is obtained after the correction. The last column of the table, which pro-
vides the hit rates, also proves the effectiveness of the correction step. The hit rate
is defined as the ratio of the number of spotted words, starting with a single query,
to the total number of occurrences of that word. The table provides the average hit
rate of all 20 keywords and the maximum hit rate obtained within these keywords.
Figure 19.14 shows a set of spotted words. The variations in the topology and style
can be seen in the figure.

To reduce the labor load on the end-user for the selection of the prototypes of
the queries, as an expansion, the words spotted in the first run obtained starting
from the selected graphical queries, are used as a new set of queries in a second
run. The second column of Table 19.1 shows the performance after this extension.
The main limits on the performance of the system are mistakes in skeletonization
(such as missed loops and holes, cuts in strokes, and undetected small branches),
errors in description of skeletons (especially in geometrical features that describe
the behavior of a branch), and sensitivity of the distance function to the large vari-
ations in the complexity of CCs. Also, there are many challenges from the per-
spective of writing style: a word can have various forms, which are totally differ-
ent in topology and geometry, even within a single manuscript, including touching
strokes and CCs. Our approach of having more than one query for each word ex-
tracted from the manuscript seems to be effective, and we hope it will lead to labeled
databases of graphical queries organized based on the script and writer’s century. In
this way, the end-user will simply select the proper set of queries by entering a query
string.



478 M. Cheriet and R.F. Moghaddam

Fig. 19.14 A graphical query is shown (in a box), along with a few of its spotted instances. The
ability of the system to tolerate writing variations and the presence of dots can be seen from the
spotting results

The computational complexity of the system is very low. The descriptors are
generated before the spotting process, which reduces the complexity of the method.
The computational cost of the system is one order of magnitude lower than 2D
matching methods (Euclidean distance transform, for example).

19.7 Conclusions and Future Prospects

A complete system for word spotting in historical documents is developed. The sys-
tem is based on the skeletons of the connected components. The skeletons are de-
scribed using six descriptors based on topological and geometrical features which
can be seen as a set of transformations to variable-dimension feature spaces. The
features are associated with the branch points and end points on the skeletons.
The distance between shapes is computed using a robust and nonsensitive distance,
which considers the possible difference in the space dimensions. The matching tech-
nique, which is built using this distance, does not require line or word segmentation,
and therefore is very robust and insensitive to writing style. The performance of
spotting is promising, because of the continuous and smooth strokes that are pro-
vided by the pre-processing step. This step is performed automatically using multi-
level classifiers. First, the manuscript data are prepared in a library of CCs, which
contains all the CC clusters, and the pseudo-word database. The system has been
tested on a manuscript from the Institute of Islamic Studies (IIS) with promising
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results. Note that the system can be easily adapted to a dotless strategy, simply by
dropping the SP-based descriptors from the distance definition (19.2).

Integration of the WS techniques with the PIPDI will be our main goal in the
future. This will provide more complete indexing and also easier access for scholars
to the content of the dataset.

A few ideas for the future are as follows. A possible improvement to the system is
the recovery of faded BPs. We are working on recovering the possible BPs based on
the local geometrical variations on branches. Also, as the number of topological de-
scriptors is very much higher than the geometrical ones, using different weights for
topological and geometrical distances may be considered. In fact, one of our future
directions will be to increase the number of geometrical features and descriptors for
better representation of CCs, without destroying the size-independent nature of the
skeletons. As discussed, the casual writing style or unique style of some scripts can
result in CCs touching. These can be detected by a pre-processing step, based on the
CCs’ complexity and bounding box.

In another direction, although, because of the very local nature of the features
used, the method is robust with respect to mild skew on the input document images
(as seen in Fig. 19.4), skew correction will be added to the pre-processing step in
the future.

Acknowledgements The authors would like to thank the NSERC of Canada for their financial
support. Also, we would like to acknowledge Dr. Robert Wisnovsky and his team, from IIS, McGill
University, for their collaboration and fruitful comments and discussions.

Appendix A: Competence vs. Performance

Pattern recognition and document understanding [4, 35] are actually equivalent
to a process in which humans (authors, writers, and copiers of documents and
manuscripts) are modeled as a kind of machine. These people usually differ in the
writing they produce mainly because of their philological and psychological differ-
ences and limitations. In other words, some aspects of these variations are rooted
in the inability of such a “machine” to reproduce a well-standardized set of pat-
terns. This inability can be related to motor limitations of hand, mind, or memory,
for example. In modern societies, and for short time scales, where a high level of
education based on a single “school” can be assumed, this is close to the reality.
Performance [5] is a term used to measure the level of this imperfection, and is a
concept that has been used widely in many fields, from linguistics to engineering.
Performance is a measure of the output of a writing process. It not only reflects
the personality of the writer, but also, and mainly, the errors and inabilities of the
writer. Most approaches to document understanding, which usually originated from
the engineering point of view, overestimate performance. This tradition has resulted
in attempts to filter out, “average,” or ignore variations. In earlier times, there was
more diversity still, although even in modern societies there are variations in the way
individuals think. Every author, writer, and copier has a unique and well-developed
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ability to think for himself. Perhaps it would be difficult to gauge the value of the
large number of manuscripts produced over a period of a thousand years or so, but,
if we look at them on a scale of a few years, they appear as individual gems. The
deep philosophical thinking of their authors is reflected in their lives through many
stories told about them. It is obvious that their thinking would be reflected in their
writing style as well. Moreover, their writing styles should also be as unique as the
philosophical schools to which they belong. In other words, a major part of the dif-
ference between the writing styles of two manuscripts arises from differences in the
thinking of the writers, rather than their inability to replicate a standard style. This
brings us to competence [5], a concept which has been somewhat ignored in docu-
ment analysis and understanding. In contrast to performance, competence actually
depends on the knowledge of the writer. We believe that a successful approach to
analysis and understanding of historical-manuscript images should be based on ac-
cepting differences in competence and allowing enough room for variations. This
is why our approach is adaptable to any manuscript under study, as it “learns” and
organizes the information in the manuscript, and can therefore capture a large pro-
portion of the possible variations. This may, of course, lead to a sharp rise in the
resources needed to understand the documents, as well as in the complexity of the
models. But, at the same time, if the approach attempts to understand the underly-
ing philosophy behind the writing style, it can easily isolate and locate sources of
variations in competence, and can therefore control the complexity of the model.

Appendix B: A Priori Information

In order to use the document properties directly in processing, some parameters,
considered as a priori information, are defined and included in the models. The first
and most important parameter is the average stroke width, which depends on the
writing style and the acquisition setup. The average line height and the minimum
and maximum dot sizes are a few other parameters.

As discussed in the previous sections, the key concepts in the proposed frame-
work are characteristic lengths, which are defined based on the range of interactions.
These parameters can be extracted using various tools, such as wavelet transform or
kernel-based analysis. Although these parameters may vary drastically, even on a
single image from one site (paragraph) to another, their behavior is usually very ro-
bust and almost constant over a whole dataset. Therefore, many learning and data
mining methods can be used to obtain robust values for the characteristic lengths. In
this work, we assume that the values of these parameters are known a priori and are
constant for each manuscript. Below, a few characteristic lengths are defined.

1. Stroke width
The most important characteristic length on a document image is the stroke
width. In this work, we use the average stroke width, ws , as a priori informa-
tion in the form of a constant parameter. It is estimated using a kernel-based
algorithm (see Appendix C).
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2. Line height
The second most important characteristic length on document images is the
shortest distance between text sites, which are usually text lines. We call this
parameter the line height. By definition, line height is the distance between two
adjoining baselines. Again, in this work, only the average line height, hl , is used.

3. Vertical extent of text line
The average vertical extent of text line he is defined as the average distance to
which the text pixels extend from a text line. It is different from the line height
hl , which is the average distance between two successive baselines.

Appendix C: Markov Clustering

Robust and parameterless clustering of objects is an interesting and at the same time
difficult problem. Usually, the similarity measure between objects is not normalized,
and therefore threshold-based methods, or the methods that assume that the number
of clusters is known a priori, are very sensitive to parameters. There are many ap-
proaches to parameterless clustering techniques, such as Markov clustering [38] and
improved incremental growing neural gas [8]. Markov clustering (MCL) is a robust
technique in which the similarity values between like objects is increased, gradually
and through a few interactions, while the value for nonsimilar objects decreases.
This process eventually leads to zero plus one values in the similarity matrix. Al-
though there are two parameters in this technique, which will be discussed later,
their effects on the performance of the clustering are mainly limited to the number
of iterations, and the convergence of the process is usually independent of them. It
is worth noting that the translation of distances to similarities (for example, relation
(19.5)), which is independent of MCL and a common step in all clustering tech-
niques, depends strongly on the nature of the problem under study. This is why the
parameters hMCL are selected equal to dthr.

Algorithm 3 provides the details of the MCL process. In each MCL iteration,
there are two main operations. The parameter p specifies the intensity of the ex-
pansion operation, which is represented by the power operation in the algorithm.
The parameter r controls the inflation operation implemented as entry-wise power
operations and column renormalization. In this work, p = 2 and r = 1.2 are used. If
we imagine the similarity value between different objects as the capacity of imag-
inary pipes that connect the objects, the expansion operation actually increases the
capacity of high-flow pipes, and reduces the capacity of pipes with little flow, in a
gradual and smooth way. The inflation operator preserves the stochastic nature of
the process. In the end, there will only be two types of pipes: open pipes with the
highest capacity (Wij = 1) and blocked pipes (Wij = 0). The objects that are con-
nected with open pipes represent a cluster, and the objects with the highest number
of connections can be considered as the representer of that set of objects.
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Set parameters p and r ;
Get the stochastic Markov matrix, W ;
repeat

Apply expansion operation: W = Wp;
Apply inflation operation: (a) Wij = Wr

ij , (b) Wij = Wij/Wjj ;

until steady state is obtained;
Algorithm 3: Operation cycle of MCL technique
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Chapter 20
Arabic Text Recognition Using
a Script-Independent Methodology:
A Unified HMM-Based Approach
for Machine-Printed and Handwritten Text

Premkumar Natarajan, Rohit Prasad, Huaigu Cao, Krishna Subramanian,
Shirin Saleem, David Belanger, Shiv Vitaladevuni, Matin Kamali,
and Ehry MacRostie

Abstract We describe BBN’s script-independent methodology for multilingual
machine-print OCR and offline handwriting recognition (HWR) based on the use
of hidden Markov models (HMM). The feature extraction, training, and recogni-
tion components of the system are all designed to be script-independent. The HMM
training and recognition components are based on BBN’s Byblos hidden Markov
modeling software. The HMM parameters are estimated automatically from the
training data, without the need for laborious manually created rules. The system
does not require any pre-segmentation of the data, either at the word level or at
the character level. Thus, the system can handle languages with cursive handwrit-
ten scripts in a straightforward manner. The script independence of the system is
demonstrated with experimental results in three scripts that exhibit significant dif-
ferences in glyph characteristics: Arabic, Chinese, and English. Experimental re-
sults demonstrating the viability of the proposed methodology are presented. Offline
HWR of free-flowing Arabic text is a challenging task due to the plethora of factors
that contribute to the variability in the data. In light of this book’s focus on Arabic
scripts, we address some of these sources of variability, and present experimental
results on a large corpus of handwritten documents. Experimental results are pro-
vided for specific techniques such as the application of context-dependent HMMs
for the cursive Arabic script and unsupervised adaptation to account for the stylistic
variations across scribes/writers. We also present an innovative integration of struc-
tural features in the HMM framework which results in a 10 % relative improvement
in performance. We conclude with a new technique for dealing with noise related to
the dots that are an integral yet disconnected part of many Arabic characters.

P. Natarajan (�) · R. Prasad · H. Cao · K. Subramanian · S. Saleem · D. Belanger ·
S. Vitaladevuni · M. Kamali · E. MacRostie
BBN, Cambridge, MA, USA
e-mail: pnataraj@bbn.com

V. Märgner, H. El Abed (eds.), Guide to OCR for Arabic Scripts,
DOI 10.1007/978-1-4471-4072-6_20, © Springer-Verlag London 2012

485

mailto:pnataraj@bbn.com
http://dx.doi.org/10.1007/978-1-4471-4072-6_20


486 P. Natarajan et al.

20.1 Introduction

Commercial off-the-shelf (COTS) optical character recognition (OCR) software can
accurately recognize clean machine-printed text with simple layouts. However, the
recognition of handwritten text continues to be a challenging research problem due
to the various sources of variability in handwritten data. Furthermore, most OCR and
offline handwriting recognition (HWR) systems are designed for a particular script
or language. Here, we describe a unified approach to OCR and offline HWR that,
in principle and by design, is script-independent and can be used for the majority
of the world’s scripts and languages. The basic modeling paradigm we employ is
that of hidden Markov models (HMMs) [1]. The core feature extraction, training,
and recognition components are the same for all languages; only the data-specific
components, such as the glyph/character set, the optional word lexicon, and the
language model, depend on the specific language. Except for the pre-processing
and feature extraction components, which are specific to OCR and offline HWR, the
training and recognition components are taken without significant modification from
our Byblos HMM system [2, 3] which has been applied to the speech recognition
task for more than two decades. Hence, we call our text recognition system the BBN
Byblos OCR (offline HWR) system.

HMMs are capable of modeling the variability of a feature vector as a function of
one independent variable. In speech [2], there is one natural independent variable:
time. In text recognition, there are two independent variables since text images are
two-dimensional (2D), so 1D HMMs cannot be used directly. We structure the text
recognition problem as a combination of two 1D pattern recognition tasks. The first
task, also called line finding, is to locate the individual lines of text on a page, and
the second task is to recognize the text content of each line.

Even the offline HWR problem at the level of a single line is in truth 2D as
well; however, we make it into a 1D problem by extracting a feature vector that is
a function of only one dimension (usually horizontal position). The feature vector
is extracted from narrow vertical strips along each line of text [4]. The fact that
the feature vector we extract does not depend on the script being recognized is one
reason that our approach is script-independent. The other reason is that the HMM
modeling approach itself does not change with the script being recognized. In par-
ticular, the fact that there is no separate character segmentation component, neither
in training nor in recognition, allows the same system to recognize scripts where
the characters are separate or connected. To demonstrate the script independence
of our approach, we present offline HWR results in three different scripts: Arabic,
Chinese, and English. Arabic and English present the challenge of dealing with a
cursive script, and Chinese presents the challenge of dealing with a large number of
characters. There have been a number of research efforts that use HMMs in offline
printed and handwriting recognition [5–29]. In all these efforts, the recognition of
only a single language or script is attempted. From a methodological perspective,
our approach differs from other approaches principally in the emphasis we place on
script independence.
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In the following, we first briefly review the theoretical framework of the HMM
paradigm. Next, we provide a description of the BBN Byblos system. The descrip-
tion here closely follows the related sections in [4] and is summarized here for
the convenience of the reader. The reader is referred to [4] for more details. We
then present experimental recognition results for Arabic on the IFN/ENIT and the
DARPA MADCAT corpus, followed by a description of two enhancements that are
targeted at improving the performance of the system on Arabic. We conclude the
chapter by highlighting two real-world applications of the text recognition technol-
ogy.

20.2 Theoretical Framework

20.2.1 Problem Formulation

We represent a line of text within a scanned image as a sequence of feature vec-
tors, X. The aim is to find the character sequence that maximizes P(C|X), the
probability of a sequence of characters C given the feature vector sequence X. Us-
ing the Bayes rule, P(C|X) may be written as:

P(C|X) = P(X|C)P (C)/P (X) (20.1)

We call P(XC) the feature model and P(C) the language model (or grammar).
P(X|C) is a model of the feature vector sequence X, given a sequence of characters
C, and is approximated as the product of the component probabilities, P(Xi |ci),
where Xi is the sequence of feature vectors that corresponds to character ci . The
feature model for each character is given by a specific HMM.

P(C), the language model, is the prior probability of a sequence of characters,
C, and it provides a soft constraint on allowable character sequences. The language
model used in the Byblos OCR system is an n-gram Markov model which com-
putes P(C) by multiplying the probabilities of consecutive groups of n characters
or words.

P(X) in (20.1) is the a priori probability of the data and does not depend on C;
therefore, we can maximize P(C|X) by maximizing the product P(X|C)P (C).

20.2.2 BBN Byblos System

As mentioned earlier, the Byblos text recognition system is a statistical, HMM-
based recognition system that uses the Byblos HMM engine, which was originally
developed for speech recognition at BBN. Figure 20.1 shows a block diagram of the
system. As indicated in the diagram, the OCR system can be subdivided into two
basic functional components: training and recognition. Both training and recogni-
tion share a common pre-processing and feature extraction stage. In the rest of this
section we describe the training and recognition components in detail, starting with
the pre-processing step.
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Fig. 20.1 Block diagram of BBN Byblos text recognition system

Pre-processing

Document images typically contain noninformation-bearing variability (often re-
ferred to as noise) that is introduced by one or more physical processes, such as
scanning, faxing, writing style, presence or absence of ruled lines, crumpling, fold-
ing, etc. The goal of pre-processing is to minimize noise before the image is further
processed. We note that any particular type of variability could be undesirable in
one context, whereas that same variability might provide useful information in an-
other. For example, variations in writing style (slant, overhanging strokes, flourishes,
etc.) are undesirable from the perspective of recognizing the content of handwritten
pages, whereas those very variations are the target of feature extraction when the
task is that of identifying the writer of a particular document.

The pre-processing stage in the Byblos OCR system is designed to minimize
variations that are undesirable from the perspective of recognizing the text. To that
end, we first apply a set of simple filters, such as median filters, that minimize arti-
facts such as salt-and-pepper noise and stains. Next, we deskew the image using the
approach described in [4]. We then apply techniques that detect and remove ruled
lines while minimizing any distortions in the shapes of the character glyphs [30, 31].

The final pre-processing operation that we apply is a slant normalization tech-
nique to make the vertical strokes within character glyphs perpendicular to the base-
line. To normalize the slant, we estimate and then apply a nonlinear, 2D transform
to each connected component (CC) within an input (black-white) text image. The
estimation of the nonlinear transform is based upon the approach presented in [32].
We apply the slant correction procedure iteratively until the estimated slant is below
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Table 20.1 Slant correction
example (English)

Table 20.2 Jagged perimeter
caused by slant correction
step

a certain threshold. Slant correction is only applied to handwritten text. Table 20.1
shows an English handwritten word that is slanted to the right and the slant-corrected
versions of the word for each of four successive iterations of the correction proce-
dure. While repeated application of the transform progressively reduces the slant of
text, a closer inspection of the image indicates that the transform makes the perime-
ter of the text more jagged. A section of the original word image and the corre-
sponding slant-corrected section after four applications of the nonlinear transform
are shown in Table 20.2. Clearly, one area of future work is to improve the slant
correction procedure to reduce the manifestation of such jagged perimeters.

Line Finding

After pre-processing, the image is segmented into lines of text. For machine-printed
text, the Byblos OCR system uses an HMM-based line finding technique that takes
advantage of certain regularities that are characteristic of machine-printed text lines.
The HMM-based technique is not well suited to handle the irregular nature of un-
constrained handwritten text. More generally, as can be seen from a review of the
proceedings of the recently concluded International Conference on Document Anal-
ysis and Recognition (ICDAR) 2011, finding text lines in handwritten documents
remains a challenging task that continues to attract significant research attention.
Under the DARPA MADCAT program, members of the BBN research team have
developed several different line finding techniques [33, 34]. Furthermore, in [35],
BBN presented a novel graph clustering based ensemble framework for combining
the output of several different line finding techniques to significantly improve the ac-
curacy of finding handwritten text lines. The ensemble combination approach uses
a weighted undirected graph in which nodes correspond to connected components
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Fig. 20.2 Example of line finding output using the ensemble framework

and an edge between two nodes denotes that one of the line finding algorithms in
the ensemble put the associated pair of connected components within a single text
line. Text line segmentation is then posed as the problem of minimum cost parti-
tioning of the nodes in the graph such that each cluster corresponds to a unique line
in the document image. Experimental results on a challenging Arabic dataset (see
Fig. 20.2) using the ensemble method shows a relative gain of 18 % in the F1 score
over the best individual method within the ensemble.

Both the individual techniques and the combination framework are used in the
Byblos offline HWR system. Figure 20.2 shows an example of the text lines pro-
duced by the ensemble algorithm. All the text components within a single line are
colored with the same color (red, blue, etc.). Despite the presence of some errors
(the blue-colored component in the first line should have clearly been colored red),
the ensemble technique clearly works well, even on challenging data. While system
combination approaches have been used for a long time in speech recognition and in
OCR, the work in [35] represents, to the best of our knowledge, the first published
attempt at combining the output of multiple line finding algorithms with the goal of
producing a single best line finding result.

Script-Independent Feature Extraction

For each line of text, the features are computed from a sequence of overlapped
windows. For each window, also called a frame, several features are computed. Fig-
ure 20.3 illustrates the process of extracting frames from the sequence of overlap-
ping windows.

The most important features are the percentile features [4] computed from the
binary pixels in the window. Blackness is integrated from top to bottom. After di-
viding by overall blackness, we get a normalized function that rises monotonically
from 0 at the top of the window to 1.0 at the bottom. For example, if the feature value
corresponding to the 30th percentile is 0.22, it means that 30 % of the blackness in
the window occurs at 0.22 of the height of the window, measuring from the top and
going down. The percentile features tend to be relatively insensitive to various types
of noise.

Once the percentile features are computed, two additional sets of features are
computed from the percentile values: the vertical derivatives of percentile features
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Fig. 20.3 Extracted frames corresponding to overlapping windows within a text line

of a single frame and the horizontal derivatives of percentile features of adjacent
frames.

Finally, angle and correlation features are computed from the pixel values. The
frame is divided from top to bottom into overlapping blocks, and each block is made
square by including material that falls outside the window on both sides. Within a
square block, angle and correlation values are computed from a scatter plot of the
text pixels, using standard linear regression to find the best linear fit that minimizes
the mean-squared error. Basically, the angle feature measures the local slope of the
text stroke within the square block, while the correlation feature measures how the
text pixels are distributed around the best linear fit.

The feature extraction module thus computes a total of 80 features per frame:
20 percentiles, 20 vertical derivatives, 20 horizontal derivatives, 10 angle features,
10 correlation features, and a single energy feature which is simply the percentage
of pixels within the frame that are black. Linear discriminant analysis (LDA) [36]
is then used to reduce the number of features per frame. The exact number of LDA
features to be used is best selected empirically after running a set of experiments
and choosing the number of features that result in the minimum character error rate.
The resulting vector of LDA features is a compact numerical representation of the
data in the frame, and is the feature vector used in our recognition experiments.

Training

The Byblos system models each character with a multi-state, left-to-right HMM;
the model for a word is the concatenation of the models for the characters in the
word. Each state has an associated output probability distribution over the features.
Each output probability distribution is modeled as a weighted sum of Gaussians, or
what is called a Gaussian mixture. A Gaussian mixture is completely parameterized
by the means and variances of the component Gaussians, along with the weight of
each Gaussian in the mixture. The number of states and the allowable transitions
are system parameters that can be set. For our experiments we have used 14-state,
left-to-right HMMs.

Training the process of estimating the parameters (transition probabilities and
feature probability distributions) of each of the character HMMs is performed us-
ing what has been known alternately as the Baum–Welch [37], forward-backward,
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or expectation-maximization (EM) algorithm [38, 39], which iteratively aligns the
feature vectors with the character models to obtain maximum likelihood estimates
of HMM parameters. The algorithm is guaranteed to converge to a local maximum
of the likelihood function. The feature probability distributions in our system are
characterized by the means, variances, and weights of the Gaussian mixtures.

Depending on the amount of available training data, it may not be possible to get
robust estimates of all the HMM parameters for all the characters. That is one reason
why we use LDA to reduce the size of our feature vector. Another method that is
used to reduce the total number of parameters in the system is to share some of the
Gaussians across different character models. We have used three such methods in
our Byblos system: the tied mixture (TM) mode [40, 41], the character tied mixture
(CTM) mode [42], and the state tied mixture (STM) mode (described later in this
chapter). In the TM mode we train only one set of Gaussians (referred to as a code-
book of Gaussians or just a codebook) and the codebook is shared between all the
states of all character models; in the TM configuration. In the TM configuration, the
individuality of each state output probability distribution is characterized solely by
the specific component mixture weights. In the CTM mode we train one codebook
of Gaussians for each character model; the Gaussians in a character codebook are
thus shared among the states of the model for that character, but there is no shar-
ing across characters. The CTM mode offers a greater number of free parameters
than the TM mode and with it the possibility of better performance, subject to the
availability of sufficient data for appropriately training all the parameters. Our dis-
cussion thus far has implicitly assumed that the glyph shape associated with each
character is modeled by a single HMM. But in the case of cursive scripts such as
Arabic as well as in the case of handwritten text in general, the shape of the glyph
associated with a particular character can often change as a function of the context
in which it appears. In such cases, it is often desirable to use a separate HMM to
model the glyph shape associated with each salient context, where context is typi-
cally defined by the characters that precede and follow the character of interest. The
STM configuration uses a shared set of Gaussians for each numbered state of all the
context-dependent HMMs associated with a particular character.

The training process is performed as follows. We assume that for each line of
text we are given the corresponding ground truth, which is simply the sequence of
characters on that line. No information is given about the location of each character
on the line; that is, no pre-segmentation is necessary. The training algorithm auto-
matically and iteratively aligns the sequence of feature vectors along the line of text
with the sequence of character models.

Recognition

After pre-processing a line of text and performing feature extraction, as described
above, the recognition process consists in a search for the sequence of character
models that has the highest probability of having generated the observed sequence
of feature vectors, given the trained character models, a possible word lexicon, and
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a statistical language model (typically an n-gram language model) of the possible
character or word sequences. The recognition search is a two-pass [43, 44] (a for-
ward pass and a backward pass) beam search for the most likely sequence of charac-
ters. The width of the search beam is a system parameter that can be set. Typically,
lowering the beam width increases the speed but degrades the accuracy of recog-
nition. The forward pass is an approximate but efficient procedure for generating
a small list of character sequences that are possible candidates for being the most
likely sequence. The Byblos HMM system uses an approximate bigram language
model, i.e., an n-gram language model, where n = 2, in the forward pass.

The backward pass is a more detailed search for the most likely character se-
quence within this small list. Even though we typically use the same set of character
HMMs in the forward and backward passes, the search program itself does not im-
pose any such constraint; i.e., if needed we can use two different sets of character
HMMs, one in the forward and the other in the backward pass. When required,
larger, more computationally complex HMMs are used in the backward pass for
greater discriminative power. The backward pass can use either a bigram or a tri-
gram (n = 3) language model, but typically a trigram language model is employed.

The use of a word lexicon (vocabulary) during recognition is optional; its use
generally results in a lower error rate when the out-of-vocabulary (OOV) rate is
low or close to zero. The term out-of-vocabulary refers to words that are present in
the test set but are not included in the lexicon. The lexicon itself is estimated from a
suitably large text corpus, and the language model, which provides the probability of
any character or word sequence, is also estimated from the same corpus. Note that
the text corpus used for estimating the language model (and, indeed, the lexicon)
need not be limited to the manual transcriptions associated with the images in the
training set, because only the sequence of words in the text is needed to estimate the
language model probabilities. The only caveat is that the transcriptions associated
with the images in the test set not be used for estimating the lexicon or language
model.

In the next section we present the results of some experiments that exercise the
Byblos offline HWR system on English and Arabic handwritten text datasets.

20.3 Experimental Results

To demonstrate the script independence of our recognition methodology, we report
two sets of experimental results, one for English and one for Arabic. The English
experiments were all performed during 2006–2007 using the IAM database [45].
Arabic HWR experiments were performed using the IFN/ENIT database [46] as
well as the DARPA MADCAT dataset. While the DARPA MADCAT dataset is the
corpus used in ongoing active research at BBN, we present our previous results on
the IFN/ENIT in order to provide the reader with performance results on an openly
available dataset.
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20.3.1 English HWR

As mentioned above, we performed our English HWR experiments using data from
the IAM database. A total of 1539 images from 657 different writers, scanned at a
resolution of 300 dpi, was used in our experiments. We split the IAM corpus into
three sets: a training set, a development set, and a held-out test set. In dividing the
corpus into the three sets, we ensured that no writer appears both in test and in
training (i.e., a writer-independent test condition). Further, in order to ensure that
the language models are fair, all handwritten samples of a form are either assigned
entirely to a single set (training, dev, or test). In other words, a particular passage of
text is either in training or in (dev) test but never in both; a particular writer is also
either in training or in (dev) test but never in both.

Each individual English character is modeled by a 14-state HMM. We exper-
imented with context-dependent as well as context-independent models. For any
given character, context is fully defined by the identities of the characters to its left
and right. For example, in the word cat, the character a is said to be in the context
of c and t, whereas in the word halibut, the same character a is in the context of an
h and an l.

We experimented with both character and word trigram language models (LMs)
which were trained on transcriptions from the IAM training dataset. For our exper-
iments using word-based LMs, we used a 10K word vocabulary derived from the
IAM training transcriptions alone. The OOV rate on the test set for the 10K IAM
vocabulary was 10.01 %.

We ran five separate English HWR experiments. The results of the five exper-
iments are summarized in Table 20.3. In the first experiment we trained a set of
context-independent character HMMs which were tested against the IAM handwrit-
ten test data and yielded a word error rate (WER) of 68.50 %, with an associated
character error rate (CER) of 40.10 %. We then performed a second experiment in
which we replaced the character trigram LM with a word trigram LM. With a word
LM, the WER dropped to 52.80 % and the associated CER dropped to 33.80 %.

Often, in handwritten texts, the appearance context of a character modifies the
shape of an associated glyph. Such modifications can also vary from one writer to
another. Therefore, we ran a third experiment in which we trained context-dependent
character HMMs wherein a separate HMM is used to model each contextually dis-
tinct instance of a character. Contexts that occur infrequently in the training data are
clustered together with other similar contexts. Using context-dependent HMMs and
a word trigram LM, we obtained a WER of 49.30 % and a CER of 31.00 %.

In our fourth experiment, we used a single set of Gaussians for each numbered
state of all the context-dependent HMMs associated with a particular character. For
example, we estimated a set of 128 Gaussians for the first state of all the contextual
variants associated with the character a, and a separate set of 128 Gaussians for the
second state of all HMMs for a, and so forth. This configuration, referred to as the
state tied mixture (STM) configuration, provides a better model for the structural
evolution of a character glyph in the direction of writing. With the STM model, we
obtained a WER of 46.1 % and a CER of 28.1 %.
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Table 20.3 Summary of English offline HWR performance on IAM database

Glyph HMM Configuration Language Model Configuration Word Error Rate
(WER)

Context-independent, CTM Character trigram 68.5 %

Context-independent, CTM Word trigram 52.8 %

Context-dependent, CTM Word trigram 49.3 %

Context-dependent, STM Word trigram 46.1 %

Context-dependent, STM,
Slant Correction

Word trigram 40.1 %

After exercising the various modeling capabilities of the Byblos system, we
ran a final experiment in which we repeated the fourth experiment using slant-
corrected versions of the training and test images instead of the raw versions from
the database. Testing on the slant-corrected test images using context-dependent
HMMs in a 128 Gaussian STM configuration, we obtained a WER of 40.1 % and a
CER of 23.3 %.

In 2004, Vinciarelli [24] reported a WER of approximately 57 % on this database
using an HMM-based approach with statistical LMs. The 40.1 % WER reported
here was obtained with the Byblos system as it existed in 2006–2007 using a 10K
word lexicon and standard maximum likelihood models. More recently, Dreuw [47]
reported a WER of 38.9 % using a 50K word lexicon with maximum likelihood
models and a WER of 29.2 % with discriminatively trained models. It is not possi-
ble to directly compare our results with those in [24] or [47] because of unknown
differences in the training and test set. While several advances have been incor-
porated into the Byblos text recognition system since the English experiments de-
scribed here were performed, we have included these early results here in order to
demonstrate the script independence of the described methodology as well as the
robustness of the basic Byblos text recognition system.

20.3.2 Arabic HWR Experimental Results on IFN/ENIT Dataset

Our initial set of Arabic HWR experiments was performed on the IFN/ENIT
dataset [46] from 2006. We ran multiple recognition experiments on the held-out
(fair) development test set to determine the best configuration with which to decode
the test set, set d.

The first recognition experiment used 14-state context-independent character
HMMs and a character trigram LM, both trained on the IFN/ENIT corpus. For train-
ing the character HMMs, we used a CTM configuration with a separate codebook
of 256 Gaussians for each character in the training set. The recognition accuracy on
the city names in the development set was 40.7 % with this configuration.

In our second experiment we replaced the character trigram LM with a
compound-word LM by stringing the words constituting a city name into a single,
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distinct token. With the compound word LM, we obtained a recognition accuracy
of 88.2 %, almost a factor of 2 better than that obtained using a character trigram
LM.

Next, we performed a third experiment in which we trained context-dependent
character HMMs. Using context-dependent HMMs and the compound-word LM,
we obtained a recognition accuracy of 88.6 %, a 0.4 % absolute improvement over
using context-independent character HMMs. The improvement in recognition ac-
curacy with context-dependent HMMs over context-independent HMMs is signif-
icantly smaller than the improvement obtained on English data. We believe this is
due to the fact that for Arabic both our OCR and HWR systems use the contextual
form of characters to train character HMMs. The contextual form in Arabic encodes
canonical changes in the shape of a character glyph due to the neighboring charac-
ters; therefore, it is not surprising that context-dependent HMMs yield only a small
improvement.

In our fourth Arabic HWR experiment, we applied slant correction to the train-
ing data and retrained the context-dependent character HMMs. Testing on the slant-
corrected test images using context-dependent HMMs and the compound-word LM
resulted in a recognition accuracy of 89.0 % on city names in the development
set.

We then trained context-dependent character HMMs with an STM configuration.
We used a separate set of 128 Gaussians to model the output distribution at each state
for all contexts of a particular character. The recognition accuracy on city names in
the development set improved to 89.4 %.

In our sixth and final experiment, we used the recognition results from the pre-
vious experiment to perform unsupervised adaptation of the character HMMs for
each writer. Maximum likelihood linear regression (MLLR) [48] with a maximum
of 8 transformations was applied to adapt only the means of the Gaussians associated
with each character HMM. The adapted models resulted in a recognition accuracy
of 89.8 %, a 0.4 % absolute improvement over un-adapted recognition.

Having exercised the various modeling capabilities of our system on the devel-
opment set, we tested the best models against the images in test set, set d. The
recognition accuracy on set d with unsupervised writer-adapted context-dependent
STM character HMMs trained on slant-corrected images and compound-word LM
was 89.4 %.

Once again, the Arabic offline HWR experiments reported here were performed
in 2006 using the then current IFN/ENIT dataset. Therefore, we compare the per-
formance of the Byblos HMM system with the performance of other systems in
the ICDAR 2005 evaluation. On set d, the Byblos system outperformed the best
reported result in the ICDAR 2005 Arabic handwriting competition [28, 29]. To as-
sess the performance of the different model configurations on set d, we repeated
all the recognition experiments on set d. The recognition accuracy with all six con-
figurations on development and test sets is summarized in Table 20.4. While our
standard practice is to report WERs, we have reported accuracies on the IFN/ENIT
corpus because that is the metric used in the ICDAR evaluations with this cor-
pus.
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Table 20.4 Accuracy rates on the Arabic IFN/ENIT corpus

Glyph HMM Configuration Language Model Accuracy—%

Dev Set Set d

Context-independent, CTM Character 40.7 41.1

Context-independent, CTM Compound word 88.2 87.1

Context-dependent, CTM Compound word 88.6 88.2

Context-dependent, CTM, Slant correction Compound word 89.0 88.8

Context-dependent, STM, Slant correction Compound word 89.4 89.0

Context-dependent, STM, Slant correction,
unsupervised writer adaptation

Compound word 89.8 89.4

Table 20.5 Division of
MADCAT corpus into
training, development, and
test sets

Set Number of documents

Training 37,608

Development 868

Test 885

Written by writers in training 430

Written by writers not in training 455

20.3.3 Arabic HWR: Experiments with DARPA MADCAT Dataset

The DARPA MADCAT corpus consists of scanned images of handwritten ver-
sions of Arabic newswire articles, web log posts, and newsgroup posts. The
scribes/writers were chosen from different demographic backgrounds. Varied writ-
ing conditions such as the type of writing instrument (pen or pencil), type of paper
(ruled or unruled), and writing speed (careful, normal, and fast) were introduced into
the collection process. The handwritten documents were scanned at a resolution of
600 dpi using a high quality scanner.

The dataset used in our experiments comprises 39.5K Arabic handwritten doc-
uments with an average of 20 lines and 100 words per document. The associated
ground truth annotations include the coordinates of text lines and the corresponding
tokenized transcriptions. We divided the dataset into several subsets for training,
tuning, and testing purposes as described in Table 20.5. The development set is used
to optimize the weights for combining the scores from the glyph models and LM.
Consistent with standard practice in the speech recognition community, the opti-
mized weights are applied unchanged to the fair test set.

Each character glyph is modeled by a 14-state state-tied HMM. Several fea-
tures, including the gradient, concavity, percentile, angle, and correlation features,
are computed and transformed using the LDA transformation technique. The LDA
matrix is itself estimated during the training process. The output probability distri-
bution of each state is modeled using a Gaussian mixture with 1500 Gaussians.
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Table 20.6 Word error rates
on the DARPA MADCAT
dataset

HMM Configuration Word Error Rate
(WER)

WI Models 27.1 %

WA Models 25.9 %

WA Models + Unsupervised Adaptation 25.2 %

We use a trigram LM trained on an Arabic text collection of over 217 million
words based on a vocabulary of 120 thousand words.

Using the configuration described above, we performed writer-independent (WI)
modeling, writer-adapted (WA) modeling, and unsupervised adaptation combined
with writer-clustered modeling. WI modeling implies that a single set of HMMs are
trained on all available training data and applied to all writers in the test data. In
WA modeling, the parameters of the WI HMMs are adapted (i.e., re-estimated) via
the MAP adaptation technique using available supervised writer annotations. WA
modeling produces several sets of HMMs, each one adapted using data from a single
writer in the training set. A modification of the approach would be to cluster several
writers into a single equivalence class. Such a clustering approach is appropriate
when the amount of data from a single writer is inadequate to robustly adapt the WI
model parameters. At runtime, writer classification techniques are applied to select
the best set of WA HMMs to be applied to each document in the test set. The WERs
on the fair test set for the three experiments are shown in Table 20.6.

As shown in Table 20.6, the WA models deliver an improvement of 1.2 % ab-
solute (4.4 % relative) over the WI models. Unsupervised adaptation provides an
additional 0.7 % absolute (2.7 % relative) reduction in the WER.

20.4 Improved Glyph Modeling for Arabic

We now describe two modifications of our Byblos text recognition system that were
designed and incorporated with the goal of improving recognition performance on
Arabic. The first modification extends the feature set by including structural features
that include the Gradient-Structure-Concavity (GSC) features [49, 50]. The use of
these features allows the system to more effectively capture long-term structural
context, thereby improving the discriminative power of the features. The second
modification is focused on mitigating the impact of the dots that are an integral but
disconnected part of Arabic characters.

20.4.1 Structural Features

In Arabic script, many characters share common primary shapes and differ
only in the number and position of the dots and strokes. Therefore, features
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Fig. 20.4 Frame tightening
for robust feature
computation

that capture structural properties such as loops, branch points, endpoints, and
dots can be effective in modeling these variations. One such family of fea-
tures is the GSC set of features. GSC features are symbolic, multi-resolution
features that combine three different attributes of the shape of a character:
the gradient representing the local orientation of strokes; structural features,
which extend the gradient to longer distances and provide information about
stroke trajectories; and concavity, which captures stroke relationships at long dis-
tances.

For computing the GSC features, first a gradient map is constructed from the
normalized image by estimating gradient value and direction at each pixel. Next,
gradient features are obtained by counting the pixels which have a similar gradient.
The structure features enumerate complex patterns of the contour. To compute the
concavity features, pixels which lie in certain special regions such as holes and
strokes are detected. The image is then divided into bins, and the number of such
pixels in each bin is counted.

The width of the sliding window used to compute the GSC features is wider
than that used for the percentile features. Furthermore, since the baseline of a word
image may fluctuate within portions of the same word, we algorithmically tighten
the upper and lower boundaries of the sliding window. Figure 20.4 illustrates the
frame tightening procedure.

We set the width of the frame, f to a desired value, wf . A tightened win-
dow wt is obtained by first expanding frame f to both the left and right sides
(i.e., increasing wf ) and then adjusting the upper and lower boundaries of
the frame, f , by considering the spread of black pixels within the expanded
frame. The GSC features are computed from the adjusted frame window. The
tightened window is divided evenly into overlapping vertical bins, and four
sets of GSC features are computed for each bin. The GSC features computed
for each frame are then projected to a smaller number of dimensions using
LDA in a manner similar to the way it is applied to the percentile features.
Measured on the DARPA MADCAT dataset, the GSC features result in ap-
proximately 10 % relative reduction in WER over the standard percentile fea-
tures.
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Table 20.7 Effect of the
presence and absence of dots
on the meaning of a word

Words with Characters Differing in Dots Meaning of the Word

?� �� / ?�� smell/poison

S
"
T �0 / S

"
T0 boil/on

20.4.2 Dotless Glyph Modeling

For several Arabic characters, the only discriminating information, when in initial
or medial position, is the location and number of dots. These dots are an integral
part of the characters and are NOT considered diacritics. Diacritics, which are often
visually similar to dots, are marks above or below the characters, which are used
to indicate short vowels or consonant doubling, for the most part. Diacritics are
rarely used, whether in print or in handwriting. When they are used, it is usually
for disambiguation. The problem of figuring out where the dots are and how many
there are, is a serious one for Arabic script. For example, there are five Arabic letters
(b, n, y, t, and unvoiced th) where the only difference between them, when in the
initial or medial position, is the location and number of dots! Table 20.7 illustrates
the difference in meaning of the words, when the characters differ only in terms of
dots.

The LM used in our HMM-based recognition system plays a significant role in
disambiguating these cases.

However, disambiguating characters that differ only in position or number of
dots becomes extremely challenging in real-world handwritten data because writers
are often inconsistent in how and where they write dot(s). These inconsistencies not
only lead to poor accuracy in recognizing the characters, but also affect the accuracy
in recognizing the primary shape. Therefore, to improve the accuracy in recognizing
the primary shape of the characters, we trained glyph HMMs with small connected
components removed from the image. Glyphs are mapped to equivalence classes
that differ only in dots, thereby reducing the total number of glyphs. Figure 20.5
compares the dot-stripped image with the original image.

In performing a preliminary assessment of the dotless modeling approach, we
used the glyph HMMs trained with dots removed to compute a line-level score for
each hypothesis in the N-best list that is generated using glyph models trained on
the original images (which include the dots). The additional score from the dotless
models is combined with other scores such as the HMM scores from the original
images and LM scores to re-rank the N-best list. On the DARPA MADCAT Arabic
corpus, N-best rescoring with this additional knowledge source results in a 5 %
relative improvement in WER.
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Fig. 20.5 Comparison of a
text line image with and
without dots

Fig. 20.6 Screenshot of BBN MDATS system for Chinese

20.5 Applications

The BBN Byblos text recognition system has been integrated in several real-world
applications. Here, we describe two such applications that demonstrate the versatil-
ity of the technology.

BBN Multilingual Document Analysis and Translation System (MDATS): The
MDATS system [51] integrates BBN’s text recognition technology along with its
named-entity extraction technology and commercially available machine transla-
tion software in order to transcribe and index large archives of scanned document
images in several different languages. MDATS incorporates a browser-based user
interface; Fig. 20.6 shows a screenshot of the MDATS home page. As shown in
Fig. 20.6, the system links the physical location of the text with its electronic tran-
scription. By clicking on the English button, the user can view the English transla-
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Fig. 20.7 BBN Broadcast Monitoring System with Arabic videotext recognition capability

tion of the source language transcriptions. The system currently supports 10 differ-
ent languages, including Arabic script languages.

Real-time Multimedia Broadcast Monitoring System: BBN’s Broadcast Mon-
itoring System (BMS) is a turnkey system that provides real-time transcription,
translation, and indexing of live, streaming broadcast videos using BBN’s automatic
speech recognition (ASR) technology to recognize the spoken content in the videos.
The BMS also integrates BBN’s text recognition system in order to recognize any
onscreen text in the videos.

Figure 20.7 shows a screenshot of the live BMS system with videotext recog-
nition capability. The left pane of the applications screen shows the real-time tran-
scription of the audio into source language text and its subsequent translation into
English. Highlighted words indicate named entities that were automatically detected
using BBN’s named-entity extraction technology. On the top right portion of the ap-
plications screen, the live streaming video is displayed and detected text boxes are
overlaid on the video itself. On the lower right-hand side, the output of the text
recognition is displayed along with a machine-produced translation into English.

20.6 Summary

BBN’s Byblos text recognition system is a state-of-the-art, HMM-based, script-
independent text recognition methodology which has been applied to text image
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data from several different languages and domains. Ongoing research work at BBN
is focused on improving each step in the processing pipeline, from pre-processing
to glyph modeling to language modeling and recognition.

While the core technology continues to be advanced through ongoing research ef-
forts, the current system is used in several important applications. BBN has coupled
the text recognition technology described here with named-entity extraction and sta-
tistical machine translation technology to develop the BBN Multilingual Document
Analysis and Translation System (BBN MDATS) [51], a turnkey capability for in-
dexing and searching large archives of document images containing text in several
different languages. The Byblos text recognition system has also been successfully
applied to the task of recognizing text in videos, a task that is referred to as videotext
OCR. BBN’s videotext OCR capability is used in combination with its automatic
speech recognition engine to index and search multimedia archives.
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Chapter 21
Arabic Handwriting Recognition Using
VDHMM and Over-segmentation

Amlan Kundu and Tom Hines

Abstract This chapter describes a complete system for the recognition of un-
constrained handwritten Arabic words using over-segmentation of characters and
a variable duration hidden Markov model (VDHMM). First, a segmentation algo-
rithm based on morphology and linguistic information is used to translate the 2D
image into a 1D sequence of subcharacter symbols. This sequence of symbols is
modeled by one single contextual VDHMM. Generally, there are two information
sources associated with the written text: shape information and linguistic informa-
tion. Forty-five features are selected to represent the shape information of character
and subcharacter symbols in the feature space. The shape information of each char-
acter symbol, i.e., a feature vector, is modeled as an independently distributed multi-
variate discrete distribution or a joint continuous distribution. Linguistic knowledge
about character transition is modeled as a Markov chain, where each character in the
alphabet is a state and bigram probabilities are the state transition probabilities. In
this context, the variable duration state is used to take care of the segmentation am-
biguity among the consecutive characters. We outline the substantial effort that has
been expended to create a corpus of handwritten Arabic words and characters ex-
tracted from these handwritten words. Using this corpus and the IFN dataset 2003,
detailed experimental results are described to demonstrate the success of the pro-
posed scheme.

21.1 Introduction

The Arabic script is used not only by Arabic-speaking people, but also by speakers
of other languages: Farsi (Iran), Dari, Pushtu (Afghanistan), Kurdish (Turkey and
Iraq) and Urdu (Pakistan). The Arabic language is written from right to left. It has
28 characters, but each character can take up to four forms: isolated, initial, middle,
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and final. There are short vowels, but they are often omitted in the printed form.
Arabic script presents challenges because all orthography is cursive and letter shape
is context sensitive. Summarizing,

1. Arabic text (printed or handwritten) is cursive and, in general, from right to left.
Arabic letters are normally connected to each other on the baseline.

2. Arabic writing uses letters (which consist of 28 basic letters), ten numerals, punc-
tuation marks, as well as spaces and special symbols.

Arabic is often called an affixal language [14]. A word can often be broken into
four parts: (1) prefix, (2) suffix, (3) root, and (4) infix. One root can give rise to 80
words on average by proper combination of prefix, suffix, and infix, and there are
many rules for prefix, suffix, and infix combination [14]. This linguistic information
is yet to be incorporated into Arabic optical character recognition (OCR) [2, 5, 6, 8],
but the importance is gradually becoming recognized.

Before describing the handwriting recognition (HWR) activities related to Ara-
bic, a brief description of the Arabic alphabet and the HWR problem are in order.
Figure 21.1 presents the letters of the Arabic alphabet.

From Fig. 21.2, one can see that it is not difficult to spot the four forms of each
letter. The detached form and the final form look very similar. The initial and medial
ones have the final portion of a letter left out. As an example, to make a hypothetical
word beginning with “sheen” and ending with “noon”, we take the initial form of
“sheen” and final form of “noon” to make “shn” as shown in Fig. 21.3.

The segmentation problem is very difficult for handwritten Arabic text [5]. The
main additional difficulty associated with handwritten text vis-à-vis printed text is
the tremendous increase in image variability. Earlier systems dealing with off-line
handwritten Arabic text are described in [1, 4, 7, 20]. It is worth noting that most
of these works assume perfect or near-perfect segmentation of handwritten Ara-
bic words into separate characters before recognition. Such assumptions are not
plausible. The difficulty associated with segmentation has led many researchers to
bypass segmentation and character recognition in favor of direct word recognition
[16]. Such approaches, however, are limited to available training words. The most
general handwriting recognition techniques call for handling character segmentation
ambiguity by means of over-segmentation and sophisticated recognition algorithms.

The techniques proposed by Khorsheed and Clocksin [15] have used hidden
Markov models (HMMs) to deal with Arabic handwriting. These systems, how-
ever, have not made any connection of modeling over-segmentation of characters to
variable duration states of HMMs. Instead, they have followed the traditional path of
modeling each character by an HMM, and then concatenating character HMMs into
a word. The system proposed in this chapter provides enormous simplification in
terms of training as described in Sect. 21.4. It is applicable to general Arabic hand-
writing recognition, and is scalable. We note that a variable duration hidden Markov
model (VDHMM)-based system was originally proposed for English handwriting
in [10, 11]. However, the handwriting recognition (HWR) system developed in [10]
cannot be applied to Arabic handwriting in a straightforward manner for three rea-
sons: (1) the segmentation problem in Arabic is different and more challenging,
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Fig. 21.1 Arabic alphabet

(2) representative features are different, and (3) there are up to four forms of the
same letter in Arabic as described above.

The HMM modeling used for HWR by a number of authors follows a more tra-
ditional technique used by continuous speech recognition systems [9]. This type of
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Fig. 21.2 Four forms of two
Arabic letters

Fig. 21.3 Two letters could
join cursively even in printed
Arabic

modeling uses implicit segmentation in which a small vertical overlapping segment
scans the word image in a raster scan fashion. This vertical segment is equivalent
to a frame of speech, and is represented by features. From then on, techniques used
by continuous speech recognition have been adapted [3, 9, 13, 19, 21, 22] for word
recognition. Here, the system is trained with “truthed” words, and no explicit seg-
mentation is needed. Although such techniques have gained currency, there is one
theoretical and practical problem. Handwriting, in general, has overlapping seg-
ments. Thus, preceding and succeeding characters can have strokes belonging to
other characters. Hence, such methods cannot train with proper character morphol-
ogy when handwriting includes a substantial amount of overlapping strokes among
characters. Unfortunately, this is the case with Arabic script. The VDHMM and
stroke over-segmentation system does not suffer from such limitations, although it
needs segmented and truthed characters for training.

This chapter is organized as follows. In the following sections, we provide de-
tailed descriptions of our off-line Arabic handwriting recognition system based
on VDHMM. A description of the overall system is described in Sect. 21.2.
Section 21.3 describes the segmentation algorithm and relabeling of segments.
A brief introduction to VDHMM and VDHMM statistics computation are given
in Sect. 21.4. The details of our implementation, modified Viterbi algorithm, fea-
ture extraction, and word hypothesis generation are presented in Sects. 21.5 through
21.8. The experimental results and data collection efforts are discussed in Sects. 21.9
through 21.12, and the concluding remarks are made in Sect. 21.13.

21.2 System Overview

HWR systems involve a training phase in addition to a recognition phase. The train-
ing phase provides the system with word recognition capability for handwritten
word images in a particular language. All handwritten words are modeled by one
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hidden Markov model (HMM) where each distinct character is a state. By “charac-
ter”, we mean a letter or symbol of an alphabet for a written language, and a “distinct
character”, as used herein, refers to each distinct form of the characters of the alpha-
bet. Thus, for example, the English alphabet has 26 distinct characters, or 52 distinct
characters if upper and lower cases are considered separately. Although Arabic has
28 different characters, in our implementation, it has a total of 123 distinct forms
of these characters (up to four forms, corresponding to the isolated, initial, middle,
and final forms of each character, plus a number of ligatures). Therefore, the HMM
as applied to Arabic has 123 states. Each state has a variable duration so that it can
model a distinct character as made of a number of segments. In this context, the
variable duration state is used to take care of the segmentation ambiguity among the
consecutive characters.

During the recognition phase, a segmentation algorithm segments each word
image so that each character is composed of one or several consecutive elemen-
tary units called segments, which are divided by segmentation points. An over-
segmentation-relabeling algorithm (described below) determines a sequence of
these segments, and the resulting sequence of segments is modeled using a variable
duration hidden Markov model (VDHMM). In the VDHMM, various combinations
of consecutive segments are observations. Thus, a series of segments leads to an
observation sequence, and different combinations lead to different sequences. Each
observation is then scored against trained models of distinct characters developed
from “truthed” characters, or characters extracted from imaged words during the
training phase, in which the identity of each character is known, and each obser-
vation is assigned a probability of belonging to each state. A recognition algorithm
adapted to the VDHMM uses these probabilities in addition to linguistic knowledge
reflected in later-described state probabilities to output an optimal string of one or
more characters as composing the word image.

In the training phase, a corpus of training images of handwritten Arabic word
samples are processed, in which each image T0 is captured and subjected to
pre-processing and segmentation using an over-segmentation-relabeling algorithm.
Moreover, the true segmentation points between characters are identified so that the
system is trained on images of truthed characters. Pre-processing includes modify-
ing the captured image to remove noise and correct skewing or slanting of charac-
ters. Next, the feature information of individual characters (i.e., the truthed charac-
ters) of the imaged word T0 is extracted. The selected features extracted are those
considered to have descriptive characteristics of each distinct character and may be
specifically tailored for a particular written language. Thus, based on the knowledge
of the characteristics of the particular written language, a set of features may be se-
lected or derived as being appropriate for the language. A more detailed description
of the feature selection and representative features of Arabic words will be provided
later. Each feature value is scaled in the range from 0–1, and the scaled data string
of all features extracted for a given character image is compactly represented by a
feature vector. For example, where a given feature is strongly present in a charac-
ter, the feature is assigned a “1”, and where a given feature is absent, the feature is
assigned a “0” in the feature vector for that character image.
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The estimation of symbol probability distribution parameters, which is needed
to compute the symbol probability during recognition, includes calculating one or
more representative feature vectors for each state (i.e., each distinct character) so as
to provide one or more mean feature vectors for that state. For a given state, each of
these representative feature vectors corresponds to a dominant writing style for the
letter assigned as that state. For each state, these representative feature vectors are
calculated based on the collection of individual feature vectors that were extracted
from the corpus of training images. A statistical distribution is derived for each
dominant writing style of a distinct character, thereby providing parameters for a
symbol probability distribution. Symbol probabilities give a statistical measure that
a given feature vector (such as that extracted from test image X0) is indicative of
a distinct character. Thus, during the training phase, mathematical model parame-
ters are constructed for each of the distinct characters of the chosen language. This
allows estimation of the symbol probabilities in the recognition phase in which a
given feature vector of an observation (composed of one or more combined consec-
utive segments) is statistically compared against all feature vectors extracted during
the training phase and, for each distinct character, a probability is estimated that the
observation is an image of that distinct character. Thus, as we have said, symbol
probabilities give a statistical measure that a given feature vector (such as that ex-
tracted from test image X0) is indicative of a distinct character. The symbol is what
is observed. It is matched against all the character models created during training.
The matching likelihood, a probability, is the symbol probability. In essence, the
symbol probability distribution is a distribution modeling of characters represented
by feature vectors. Furthermore, the symbol probability may be modeled using a
continuous, continuous-discrete hybrid, or a discrete distribution, as described later.

For each distinct character (i.e., state), a state duration probability is also esti-
mated. As a result of the segmentation, each individual image of a like distinct char-
acter from the corpus of training images may be divided into one or more segments.
Based on the collection of the segmentation results gathered from these individual
images, the likelihood that an image of a distinct character will be segmented into
a certain number of segments (i.e., segmented to have a certain “duration”) may be
determined. For example, the ratio of the number of individual images of a character
that were divided into two segments against the total number of images of that char-
acter appearing in the corpus of training images provides a probability that another
image of that distinct character will likewise be segmented into two segments.

In the recognition phase, test images X0, or images to be recognized using the
system, are processed similarly to the way that training images T0 are processed.
That is, an image X0 (consisting of one or more characters) is preprocessed and
segmented using an over-segmentation-relabeling algorithm, and feature informa-
tion is extracted for one segment or a combination of several consecutive segments.
More specifically, a feature vector is derived for each observation, i.e., for each
image built of one or several consecutive segments merged together. For each par-
ticular image X0, multiple observations are possible, and one observation for each
possible combination of consecutive segments is evaluated. An upper limit of total
combined segments for an observation may also be defined. The upper limit of com-
bined segments is in a range of 2 to 7 segments. In our experiment, an observation
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consists of at most 4 segments. In general, state probabilities include initial, tran-
sition, and last-state probabilities computed from a given dictionary, reflecting the
likelihood that the imaged word begins with one distinct character, transitions to a
second distinct character, and ends with the second distinct character, respectively.
Thus, a state transition is given by bigram probabilities. Trigram probabilities can
also be used, but the cost of using them is much increased complexity both during
training and recognition. The duration, symbol, and state probabilities are processed
in a recognition algorithm which outputs optimal character strings based on these
probabilities. This determination of optimal strings is not guaranteed to be a true
word, and therefore, a post-processing step is used to further match these character
strings to lexicon words for final word recognition. A post-processing step, in which
a given dictionary is used to provide hypotheses of words based on the output strings
from the recognition algorithm, is also shown in Fig. 21.4, which gives a graphical
overview of our system.

21.3 Segmentation

For our segmentation algorithm, we propose the following criteria:

• Each complete character can be segmented into at most four parts.
• All touching characters must be split.
• No “null” state is allowed [10].

These criteria are quite realistic, and are realized using mathematical morphology
as described next.

21.3.1 Generic Segmentation Algorithm

The mathematical foundation of this algorithm is described in [10], and is not re-
peated here. After a series of pre-processing operations, an individual word image
becomes a collection of black pixels against a white background. The highly dense
areas of black pixels are the main character bodies; areas with very little density
of black pixels are considered for segmentation points. Usually, some heuristics are
also applied at this stage. For instance, if two segmentation points are very close,
one of them is spurious and the segmentation points are merged.

The next step is to locate the first segmentation point. Usually, it is the leftmost
segmentation point for English and the rightmost segmentation point for Arabic.
Next, the sequence of segmentation points is determined. That is, given all the seg-
mentation points, what is the best order to follow? The final step is the verification
of the last segmentation point. This step is usually required to reject any residual
stroke or ligature that may appear at the end. Therefore, a generic word segmenta-
tion algorithm can be written as follows:
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Fig. 21.4 VDHMM-based Arabic HWR system overview

1. Locate the segmentation points.
2. Verify the segmentation points using heuristics.
3. Locate the first segmentation point.
4. Find the correct sequence of segmentation points.
5. Verify the last segmentation point.

The generic algorithm does extremely well in segmenting words into segments
according to the segmentation criteria listed above. But the main problem with this
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generic algorithm, as far as Arabic is concerned, is that it fails to assign dots in
diacritics as consecutive segments of its associated characters. This limitation is
overcome by a segment relabeling algorithm as described next.

21.3.2 Segment Relabeling for Arabic Handwritten Words

This generic segmentation algorithm, as described in [10], locates segmentation
points, but sequences these segmentation points such that diacritics are placed at
the beginning or end of cursively connected characters in their segment sequencing.
For example, starting with an Arabic word image X0 as shown in Fig. 21.5, the
generic algorithm segments X0 as shown in Fig. 21.6, illustrating each segment “S”
in a box. The generic algorithm provides the sequence of segments “S” in the or-
der of 1 to 13, labeled respectively as S1 to S13, from right to left for Arabic. Thus,
segments S7 and S8 are placed in the segment sequence so as to be at the end of cur-
sively connected segments S2 to S6. However, S5 and S8 in fact make up the Arabic
letter, in its medial form, that corresponds to the digraph “noon”, and S4 and S7 in
fact make up the Arabic letter, in its medial form, that corresponds to the digraph
“ba”. Because S8 is not placed in the segment sequence as a segment consecutive
to the main character body (S5) of which it is a part, no observation (combination
of segments) will form the correct character. That is, no observation will consist of
S5 + S8, and likewise, no observation will consist of S4 + S7, although each of
these segment combinations makes up the character. Therefore, it becomes unlikely
that a VDHMM-based HWR system relying on the generic segmentation algorithm
would recognize the correct character, because no combination of segments would
result in the correct boundaries between characters, or the genuine segmentation
points.

Figure 21.7 provides another example of an Arabic word image (shown in
Fig. 21.8) being processed using the generic segmentation algorithm that results in
diacritics and small segments being removed from the segment(s) of their associated
main character bodies. As shown in Fig. 21.7, the generic segmentation algorithm
places segment S14 so as to be after cursively connected segments S10 to S13 in
the segment sequence. However, S14 is in fact associated with S11 (which form the
Arabic letter, in its medial form, that corresponds to the digraph “ya”). Furthermore,
S15 is in fact associated with S13 and S12 (which together form the Arabic letter,
in its final form, that corresponds to the digraph “teh marbuta”), but the displace-
ment of S14 prevents S15 from following segments S12 and S13 in the segment
sequence. A similar displacement occurs with S4 being placed at the beginning of
the cursively connected segments S5 to S9 and not consecutively to S8 (where S4
and S8 together also form “ya” medial). As a result, no observation evaluated in a
VDHMM-based HWR system using the segment sequence illustrated in Fig. 21.7
will have a segment combination which results in the correct characters. That is, no
observation will consist of S11 + S14, consist of S12 + S13 + S15, or consist of
S4 + S8 which respectively make up the correct characters of the imaged word X0
of Fig. 21.8.
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Fig. 21.5 Original Arabic word image (al-lubnani)

Fig. 21.6 Output of generic segmentation algorithm

The over-segmentation-relabeling (OSR) algorithm will now be described with
reference to Figs. 21.9, 21.10, and 21.11 and the example imaged words illustrated
in Figs. 21.12, 21.13, 21.14, and 21.15. In general, the OSR algorithm relabels the
segments displaced by the generic segmentation algorithm so that these segments
immediately precede or follow a segment of the associated main character body. The
resulting segment sequence determined by the OSR algorithm may then be used in
the system of Fig. 21.4 to recognize an imaged word X0 (or T0) as having certain
character(s). In the OSR algorithm presented in Figs. 21.9, 21.10, and 21.11, the
algorithm finds the number of segments in the original image X0 (or T0). This step
further includes finding the first and last segments of the segmented word image.
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Fig. 21.7 Output of generic segmentation algorithm

Fig. 21.8 Original Arabic word image (al-amirkiyya)

Next, an image X1 is created to include only certain diacritics/small segments (re-
ferred to herein as “unsituated segments”) by taking image X0 and eliminating the
first and last segments, big segments, and segments of any special diacritic. The big
segments are segments having an X-coordinate or Y-coordinate coverage that ex-
ceeds a threshold value. The threshold value may vary depending on the language.
For Arabic for example, a threshold value may be between 20 to 60 pixels, and a
typical value of 45 pixels is found to be quite optimal for all images. Moreover, seg-
ments that are not considered “big” in terms of their pixel extent, but are flanked on
both their left and right by segmentation points dividing a main body of cursive writ-
ing (i.e., “small” segments that are cursively connected to a segment on each side)
are also eliminated. These eliminated segments are collectively referred to herein
as “situated segments,” since these segments are not candidates for relabeling. As
noted, image X1 is created to include small diacritics. A special diacritic may be, for
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Fig. 21.9 Segment relabeling
scheme

example, a shadda in Arabic. A shadda may be specially treated as three consecutive
small segments. Other special diacritics may be designated as desired based on the
particular language applied to the system of Fig. 21.4.

Next, an image X2 is created to include only the situated segments. Image X2 is
created, for example, by removing the segments of X1 from original image X0 (i.e.,
computing X0 − X1). In the next two steps of the OSR algorithm, the sequence of
segments is determined. In the first of these two steps, in particular, each unsituated
segment having a situated segment above or below is relabeled so as to either imme-
diately precede or follow the situated segment in the sequence of segments. In the
OSR algorithm presented in Fig. 21.9, the relabeling of these unsituated segments
is performed on the image of X1 based on a projection of image X1 on image X2.
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Fig. 21.10 One of two alternate relabeling schemes of Step 4 of Fig. 21.9 where a small segment
precedes the main segment below

X1 projecting on X2 is illustrated in Fig. 21.13 and Fig. 21.15 for each word image
X0 shown in Fig. 21.5 and Fig. 21.8, respectively. In Fig. 21.13 and Fig. 21.15, for
illustration purposes only, unsituated segments of image X1 are shown as hatched-
filled segments, while the situated segments of image X2 are shown as solid-filled
segments. The relabeling procedures illustrated in Fig. 21.13 and Fig. 21.15 corre-
spond to two alternative scenarios of Step 4 of Fig. 21.9, and are described clearly
in Fig. 21.10 and Fig. 21.11, respectively.

21.4 VDHMM Statistics

The recognition algorithm uses the VDHMM statistics described below and classi-
fies the imaged word as having a string of one or more characters. A hidden Markov
model (HMM) classifier and, in particular, a modified Viterbi algorithm (MVA)
adapted to a VDHMM are used to recover from the whole sequence of observa-
tions the optimal, or most likely, letter sequence (i.e., the “hidden” state sequence),
and thus the set of correct segmentation points from a superset of over-segmentation
points. The recognition algorithm relies on the segment sequence determined by the
OSR algorithm to recognize certain segmentation points as being the most likely
boundaries between characters. For example, from the segment sequence of exam-
ple image X3 illustrated in Fig. 21.12, the true segmentation points are between S1
and S2, S2 and S3, S3 and S4, S5 and S6, S7 and S8, S8 and S9, and S10 and S11
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Fig. 21.11 One of two alternate relabeling schemes of Step 4 of Fig. 21.9 where a small segment
follows the main segment below

Fig. 21.12 Output of segmentation and relabeling algorithm

(the last three segments from S11 to S13 together forming the Arabic letter, in its
final form, that corresponds to the digraph “ya”). In the image X3 of Fig. 21.14,
the true segmentation points are between S1 and S2, S3 and S4, S6 and S7, S8 and
S9, S9 and S10, S10 and S11, and S12 and S13 (the last three segments from S13
to S15 together forming the Arabic letter, in its final form, that corresponds to the
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Fig. 21.13 Projection of small segments to be relabeled on the main body of the word image

Fig. 21.14 Output of segmentation and relabeling algorithm

digraph “teh marbuta”). The recognition algorithm outputs multiple strings of char-
acters as possible classifications for the imaged word. The post-processing step is
then used to hypothesize a set of one or more words from the given dictionary which
are suggested by the optimal string(s).

The discrete state duration probability P(dj |qi) is estimated from the training
samples T0 with d = 1;2;3;4 and i = 1;2; . . . ;123, because the segmentation al-
gorithm segments each handwritten character into at most 4 segments, and there are
123 distinct characters in the Arabic language. In another implementation, more or
fewer segments per character and more or fewer states can be considered. The HMM
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Fig. 21.15 Projection of small segments to be relabeled on the main body of the word image

may be denoted by a compact notation λ = (Π,A,Γ,B,D). Here, Π stands for a
set of initial probabilities, A stands for a set of transition probabilities, B stands
for a set of symbol probabilities, and D stands for a set of duration probabilities.
The last state probability Γ is included in this definition. One could interpret this
probability as a transition probability to an imaginary “final” or “absorbing” state.

Π , A, Γ , B , and D are defined as follows:

Π = {πi}; πi = Pr{i1 = qi}
A = {aij }; aij = Pr{qj at t + 1 | qi at t}
Γ = {γi}; γi = Pr{iT = qi} (21.1)

B = {bj

(
Ot+d

t

)}; Ot+d
t = (otot+1 · · ·ot+d)

D = {P(d | qi)
}

where O = (o1o2 · · ·oT ) is the observation sequence.
In the training phase, the VDHMM model parameter λ = (Π,A,Γ,B,D) is es-

timated. These statistics, which are defined in Eq. (21.1), are computed from two
sources: training images and a given dictionary. As described before with reference
to Fig. 21.4, after the segmentation algorithm is executed on the training images, the
state duration probability P(d|qi) is computed by counting the number of segments
for each character. Extracting the features from each complete character, which is
composed of one or more segments, we are able to estimate the parameters of the
symbol probability distribution. The initial state, last state, and the state transition
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probabilities are estimated by examining the occurrences of the first character, the
last character, and every pair of characters (first-order transitions) for every word
in the given dictionary. The preferred dictionary contains not only the list of legal
words for the specified application domain, but also their associated frequencies,
i.e., the a priori probability for each word. The precision of these estimation proce-
dures depends on the accuracy and the relevance of the available knowledge sources.
If the given dictionary truly reflects the reality of word occurrences in the applica-
tion domain, the language-based probabilities obtained from it are considered to be
optimal. If the training images cover all the basic writing styles, one can get a good
estimate of the state duration and the symbol probabilities based on these images.
In the real world, however, the information gathering mechanism for both these
sources is not perfect. In a VDHMM-based HWR system, on the other hand, the
dependence on one particular source of information is balanced against the other,
since the decision is made after combining these two sources in a sense of adaptive
balance. When the word is written ambiguously, the recognition scheme may take
most of the advantage from dictionary information. When the system is familiar
with the particular writing style, it would like to make the decision relying more on
the shape information.

21.4.1 State Probabilities

The 123 letters (i.e., distinct characters) of the Arabic alphabet are defined as the
states of this exemplary VDHMM. It is therefore straightforward to compute the
initial πi , transition αij , and last-state λj probabilities as:

πi = no. of words beginning with l(qi)

total no. of words in the dictionary
(21.2)

aij = no. of transitions from l(qi) to l(qj )

no. of transitions from l(qi)
(21.3)

γj = no. of words ended with l(qj )

total no. of words in the dictionary
(21.4)

where “l” stands for “letter” and the function l(·) transforms the state to its repre-
sentative member of the alphabet. All of these probabilities are derived from the
dictionary (shown as dictionary in Fig. 21.4). If the dictionary is changed, these
probabilities can be easily recomputed. This capability to adapt to any dictionary
makes the system highly portable and scalable.

To calculate the state duration probability, the segmentation procedure must be
performed over all training images. Inspecting the segmentation results, the state
duration probability P(dj |qi) is estimated as

P(d | qi) = no. of times that letter (qi) is segmented into d segments

no. of times that letter (qi) appears
(21.5)
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Because the segmentation algorithm ensures that the maximum duration for each
of the 123 states is 4, there are 492 discrete probabilities (= 123 × 4) that must
be estimated for state duration. It is possible to estimate these probabilities by in-
spection and counting of segmented training images. This is the discrete form of
modeling the state durations, and it avoids any a priori assumption about duration
distribution.

21.4.2 Symbol Probability Distribution

As noted above, symbol probability may be modeled using a discrete or continuous
distribution, wherein the shape information of each character symbol, i.e., feature
vector, is modeled either as an independently distributed multivariate discrete distri-
bution or as a Gaussian mixture distribution. Continuous and discrete distributions
are described below.

21.4.3 Modeling Characters by Continuous Symbol Probability
Distribution

As stated before, symbol probabilities give a statistical measure that a given feature
vector (such as that extracted from test image X0) is indicative of a distinct charac-
ter. The symbol is what is observed. It is matched against all the character models
created during training. The matching likelihood, a probability, is the symbol prob-
ability. In essence, a symbol probability distribution is a distribution modeling of
characters represented by feature vectors. The most general representation of the
probability density function (PDF) is a finite mixture of the form:

bj (x) =
Mj∑

m=1

cjm ·N [x,μjm,Ujm], 1 ≤ j ≤ N (21.6)

where N represents a Gaussian distribution with mean vector μjm and covariance
matrix Ujm for the mth mixture component in state j , x is the vector being modeled,
Mj is the number of Gaussian component N in state j , and cjm is the mixture
coefficient for the mth Gaussian component in state j [23]. The mixture gains satisfy
the stochastic constraint

Mj∑

m=1

cjm = 1, 1 ≤ j ≤ N

cjm ≥ 0, 1 ≤ j ≤ N, i ≤ m ≤ Mj

(21.7)
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so that the PDF is properly normalized, i.e.,

∫ ∞

−∞
bj (x) dx = 1, i ≤ j ≤ N (21.8)

Here, each Gaussian distribution in the feature space is expected to represent
one among many different writing styles of the characters. So, the first problem
is how to estimate the number of Gaussian distributions for each state, i.e., Mj in
Eq. (21.6). For each state, the K-means clustering algorithm with a fixed signal-
to-noise ratio (SNR) is used to partition the training samples into several groups,
and Mj is equated with the number of groups. The mixture coefficient cjm is then
estimated as

cjm = no. of training samples in Hjm

total no. of training samples for state qj

(21.9)

where Hjm is the set of group m of state qj . Please note that the cjm in Eq. (21.9)
satisfies Eq. (21.7) and can be interpreted as the a priori probability of the mth par-
ticular writing style for distinct character letter (qj ). For each group in state qj , the
associated parameters for Gaussian distribution are estimated as

μjm =
∑

x∈Hjm

1

Njm

x (21.10)

Ujm =
∑

x∈Hjm

1

Njm

(x − μjm)(x − μjm)T (21.11)

where x is the feature vector of the training sample, Njm is the number of samples
in Hjm, and T denotes the matrix transposition. In this implementation, the covari-
ance matrix Ujm is assumed to be diagonal; that is, the features are assumed to be
independent of each other. Further details of parameter computations can be found
in [10, 11]. In the recognition phase, bj (O), the symbol probability density for ob-
servation O can be computed from Eq. (21.6) by substituting x by O . It is relevant
to mention here that the observation O in VDHMM is composed of one or several
consecutive segments. From this viewpoint, the symbol probability is modified as

bj (o1o2 · · ·od) = bj

(
Od

1

)d
(21.12)

where Od
1 is the image built by merging segment images o1;o2; . . . ;od together.

The power of d in Eq. (21.12) is used to balance the symbol probability for different
numbers of segments. This is a necessary normalization procedure when every node
in the Viterbi net is used to represent a segment.
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21.4.4 Modeling Characters by Discrete Symbol Probability
Distribution

First, all N features are assumed to be independent of each other, and each one is
modeled as a discrete distribution [26]. The symbol probability density for observa-
tion O can be computed as

bj (O) =
N∏

i=1

P(si) (21.13)

Here, si is the ith feature of the observation O . Once again, Eq. (21.12) is used,
where Od

1 is the image built by merging segment images o1;o2; . . . ;od together.
For instance, let us take the occurrence of number of loops which is one of the

features in the feature vector. In the letter “alif” there is no loop. Since we model
(or accept) 0 to 3 loops for loop feature, let us assume that the discrete distribution
of loop feature in “alif” is modeled as 1 (no loop), 0 (1 loop), 0 (2 loops), and 0 (3
or more loops). In practical implementation, we assign 0 to a small value (0.001).
Similarly, we can model the probability of each feature for any character, i.e., state.
During recognition, as a feature vector is computed from a segment combination
(combination of 1 to 4 segments), the probability of the feature for each state is
evaluated using the discrete probability distribution model. Then, for each state, the
probabilities of all the features are multiplied as shown in Eq. (21.13) above.

21.4.5 Modeling Characters by Continuous-Discrete Symbol
Probability Distribution

Here, N features are distributed into two groups, N1 and N2. All features belonging
to N1 are distributed using a continuous model given by Eq. (21.6), and all features
belonging to N2 are distributed using a discrete model given by Eq. (21.13). The
two probabilities are multiplied and then normalized by Eq. (21.12) to compute the
symbol probability. Thus,

N = N1 + N2

All features belonging to N1 are distributed using a continuous multivariate
Gaussian model. Then, Eq. (21.6) can be used to compute the probability (or likeli-
hood) of these observed N1 features. Let this probability be bj (ON1).

N2 features are modeled as independent discrete random variables. Then,
Eq. (21.13) can be used to compute the probability (or likelihood) of these observed
N2 features. Let this probability be bj (ON2).

Now, the combined symbol probability is computed as

bj (O) = bj (ON1) × bj (ON2)

This scheme has not been implemented in our system because of complexity and
time constraints.
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21.5 Recognition Using Modified Viterbi Algorithm

Given the aforementioned VDHMM statistics, the objective of the recognition phase
is to find the optimal state sequence I ∗ given a sequence of observations O and
model parameter λ, i.e.,

I ∗ = arg max
I

[
Pr(I | O,λ)

]
(21.14)

where

max
I

Pr(I | O,λ) = max
I

Pr(O, I | λ)

Pr(O)
= max

1≤i≤N

δT (i) × γ (i)

Pr(O)
(21.15)

and the probability

δt (j) = max
1≤i≤N

{
max

1≤d≤D

{
δt−d(i)aijP (d | qj )bj

(
Ot

t−d+1

)d}
}

(21.16)

Equations (21.14), (21.15), and (21.16) suggest the Viterbi algorithm for finding
the best path. Two modified Viterbi algorithms (MVAs), which provide an ordered
list of the best L state sequences and are described in [11], are used in our system.
The first MVA is a parallel version which simply extends the Viterbi net to three-
dimensional storages, where the third dimension represents the choice. On the other
hand, the serial version MVA, which searches the (l + 1)th globally best path based
on the previous l best paths, can be more efficiently programmed. These two MVAs
are adapted to VDHMMs by incorporating the duration probability. The modified
Viterbi algorithm for the serial version is described in detail in [10, 11].

21.6 Feature Selection

The segment images in handwriting are two-dimensional binary signals. To se-
lect good features from these signals, the following criteria are considered useful.
(1) Features should be preferably independent of translation and size. To a limited
extent, the features should be independent of rotation. (2) Features should be eas-
ily computable. (3) Features should be chosen so that they do not replicate each
other. These criteria ensure efficient utilization of information content of the feature
vector. A comprehensive, cross-lingual feature typology may be used as a starting
point, and a set of features for the particular language may be selected from there.
Experimental results may be used as the selection criteria to determine whether a
selected set of features yields accurate results in the classification stage of the HWR
system. In our implementation, a set of 45 features make up a feature vector. The
given image segment from which features are to be extracted is first transformed into
a binary image with pixels on the object defined as “black” (1) and the background
as “white” (0).
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Out of 45 features used in our system, 26 features are described in detail in [11].
These include three moment features that capture the global shape information (i.e.,
“geometrical moments”), as well as 11 geometrical and topological features such as
loops, X-joint feature, horizontal and vertical zero crossing features, T-joint feature,
number of end points in upper, middle, and lower zones of the character image, and
number of segments in upper, middle, and lower zones. Further details regarding
these features are described in [11]. These features have been widely used in one
form or another (and also used under different names) because they are helpful in
capturing both the global and local shape information, and are particularly useful
in handwriting since they are robust with respect to writing style variation. Since
a binary character image can be described by the spatial distribution of its black
pixels, 12 pixel distribution features are computed by counting the pixels in every
neighboring zone, excluding the cross neighbors. To compute the pixel distribution
features, the image segment is first covered by the minimum bounding rectangle.
Then the rectangle is non-uniformly divided into 3 × 3 zones based on the density
of the image segment and the center of gravity. The number of pixels in each coupled
zone is counted, and then scaled by the maximum among them [11].

The set of 45 features also includes 19 new features useful for describing Arabic
handwriting, and is presented below. It should be understood that more or fewer
features may be used to describe Arabic, and that other written languages may be
defined by other feature sets, which may include features and weightings particu-
larly suitable for that language.

Two aspect ratio features, fhv and fvh, are computed by finding the maximum
vertical extent (vd) and maximum horizontal extent (hd) of the image segment. Fea-
ture fhv is based on horizontal-to-vertical aspect ratio, and feature fvh is based on
vertical-to-horizontal aspect ratio. We require both features because their maximum
values are set to unity.

Four features, fdu, fdm, fdl and fda, relating to the number of diacritics or dots
in each zone are computed. Each zone contains diacritics (or dots) that are part of
the characters. The number of disconnected dots in each zone is computed. Feature
fdu is based on dots in the upper zone, and is defined in the following manner:

fdu =

⎧
⎪⎪⎨

⎪⎪⎩

0.0 no dots
0.50 one dot
0.75 two dots
1.0 three or more dots

(21.17)

Features fdm and fdl may be similarly defined for dots in the middle and lower
zones. If any of fdu, fdm or fdl is nonzero, fda is set to 1.0; otherwise it is 0.0.

Eight reference line features relating to the number of diacritics or dots with
respect to the baseline of the word (global baseline) and the local baseline of the
segment (or segment combination) are computed. The baseline is defined as the
horizontal line on which the character sits. One can define fdub, which stands for
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“dot feature above baseline,” as:

fdub =

⎧
⎪⎪⎨

⎪⎪⎩

0.0 no dots above baseline
0.50 one dot above baseline
0.75 two dots above baseline
1.0 three or more dots above baseline

(21.18)

Similarly, one can define fdib, standing for “dot feature below baseline,” as:

fdib =

⎧
⎪⎪⎨

⎪⎪⎩

0.0 no dots below baseline
0.50 one dot below baseline
0.75 two dots below baseline
1.0 three or more dots below baseline

(21.19)

Similarly, small segments-based features fsub and fsib with respect to baseline
are defined as follows:

fsub =

⎧
⎪⎪⎨

⎪⎪⎩

0.0 no small segments above baseline
0.50 one small segment above baseline
0.75 two small segments above baseline
1.0 three or more small segments above baseline

(21.20)

fsib =

⎧
⎪⎪⎨

⎪⎪⎩

0.0 no small segments below baseline
0.50 one small segment below baseline
0.75 two small segments below baseline
1.0 three or more small segments below baseline

(21.21)

The features computed in Eqs. (21.18)–(21.21) use the global baseline of the
word; that is, the baseline of the entire word is used as the baseline of the seg-
ment(s) used to compute the feature. One can replace this global baseline by the lo-
cal baseline of the segment(s) used to compute the feature. Thus, four more features
fduib, fdiib, fsuib, and fsiib are computed using Eqs. (21.18)–(21.21) but replacing
global baseline with local baseline. Other features based on reference lines may be
employed.

Two stroke connectedness features, fcr and fci, are defined as follows:

fcr =
{

1.0 if image segment naturally connected to segment on right
0.0 otherwise

(21.22)

fci =
{

1.0 if image segment naturally connected to segment on left
0.0 otherwise

(21.23)

Two more zero crossing features known as maximum horizontal zero crossing
feature, fmzh, and maximum vertical zero crossing feature, fmzv, are computed.
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Maximum horizontal zero crossing feature, fmzh, is defined as:

fmzh =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.0 maximum horizontal zero crossing none
0.25 maximum horizontal zero crossing one
0.50 maximum horizontal zero crossing two
0.75 maximum horizontal zero crossing three
1.0 otherwise

(21.24)

In a similar manner, maximum vertical zero crossing feature, fmzv, is computed
by counting the maximum number of vertical zero crossings.

For the given character image, three 8-directional chain code-based features, fch,
frough, and fcon, are computed. At every bifurcation point, a new chain is initiated.
All chains with a length greater than a threshold are considered good chains. Feature
fch is based on chain code, and is defined as:

fch =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.0 no good chain
0.25 one good chain
0.50 two good chains
0.75 three good chains
1.0 4 or more

(21.25)

For the given character image and its 8-directional chain codes, differential chain
codes are computed. In these chain codes, the number of nonzero codes is counted,
and the ratio of the number of nonzero codes to the number of codes is computed.
This ratio is multiplied by a factor (default = 1.25) to give feature frough, chain
code-based roughness measure of the character.

Furthermore, from differential chain codes, the number of entries that represents
a sharp turn (90◦ or more) is computed, and fcon, a feature based on chain code
sharp turn, is defined similarly as fch described above.

Observe that all the features are scaled in the range from 0 to 1. The moment
features, by virtue of their definition, are also scaled in the same range. Such scaling
ensures that no feature gets more or less weight unless otherwise intended.

21.7 Post-processing

The output of the Viterbi algorithm is not guaranteed to be a legal word from a given
dictionary, especially if the corpus of training images is not extensive. Accordingly,
the HWR system is supplemented with a post-processing module, whose objective
is to output hypotheses based on the weighted edit distances of MVA output strings
to all the words of the given dictionary, i.e.,

W ∗
j = arg max

1≤j≤J

{
L∑

l=1

Pr
(
Wj | I lth

)
}

(21.26)
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assuming a J -word dictionary (W1,W2, . . . ,WJ ) and L character strings or best
state sequences (I 1st

, I 2nd
, . . . , ILth

) of a word image as given by the modified
Viterbi algorithm [11]. As the VDHMM gives a rough estimation of the word length,
a word-length filter may be used with ±30 % of the estimated word length as the
filter range to trim the dictionary size. For example, if the estimated word length is
less than 6 characters, it may be desirable to have a filter range of ±2 characters of
the estimated length. To calculate W ∗

j , the error probabilities of insertion, deletion,
and substitution for a certain letter, or a pair of letters for conditional error probabili-
ties, are estimated in advance. We can simplify Eq. (21.26) in the following manner.
For example, Pr(Wj |I lth) in Eq. (21.26) is replaced by

Pr
(
Wj |I lth

)= wlth · min_edit_distance
(
Wj, I

lth
)

(21.27)

where wlth is the weight factor for the lth output of the modified Viterbi algorithm.
The normalized path probability associated with state sequence I lth may be used as
the weight factor wlth . Alternatively, wlth may be determined from linguistic rea-
soning and overall character confusion, since once a string is identified in MVA, its
probability need not be considered going further, as this string is already unmasked
or given. Such mutual character confusion information is derived empirically by
analyzing the output of the HWR system.

The minimum edit distance (min_edit_distance()) between Wj and I lth may be
found using the Levenshtein algorithm[25]. The Levenshtein edit distance function
may be used with a custom cost table to calculate the edit distance. The cost table
gives the costs for insertion or deletion of a character, or substitution of one character
for another. It may be derived from a confusion matrix generated from the symbol
probabilities computed from training, or by running the system in recognition mode
up through the MVA module using character images as input.

It should be noted here that any other edit distance can be used. For example,
the programming approach described in [25] may be used to find the minimum
edit distance as well. If the state sequence I lth exactly matches Wj in the given
dictionary, that is, min_edit_distance = 0, this word is said to be directly recognized
as Wj . Otherwise, the hypotheses based on the weighted edit distances to all the
dictionary words are generated. The simple edit-distance metric could be replaced
by a more complex analysis based on linguistic knowledge, especially when the
observed word involves ambiguous segmentation.

21.8 Data Creation

A training corpus was assembled consisting of 494,901 Arabic character images
for training symbol probabilities and 44,592 Arabic word images for computing
segmentation statistics. The training corpus was created using multiple handwriting
samples of 62 Arabic words in isolation, specifically selected to cover a majority
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of Arabic letter glyphs. These 62 words were selected so as to have a high enough
frequency to be familiar to most native speakers, increasing the likelihood that the
respondents would write naturally. Our selection criteria required that each word
occur at least 500 times in the Arabic Gigaword corpus [12]. Respondents wrote
each word six times on a data collection form so that multiple variations from the
same writer could be captured.

Writing samples were collected from 95 writers of varying education level, gen-
der, and handedness. These word images were further segmented into character
images and associated metadata using JCaptcha, an annotation tool developed at
MITRE.

Data from the IFN/ENIT database, used with permission, provided 26,459 Arabic
word images of Tunisian village names handwritten by 411 writers. From these
word images, 192,420 character images were extracted. A further 302,481 character
images were extracted from the word images collected by MITRE, yielding a total
of 494,901 character images.

From the character images, the parameters of symbol probabilities and state du-
ration probabilities are estimated. A dictionary is used to extract the initial state, last
state, and state transition probabilities. After all these probabilities are obtained, the
VDHMM is trained.

For test data, six writers wrote the 250 most frequent words of Arabic twice to
create the test set. These 250 word types represent 31 % of the Arabic Gigaword
corpus tokens. Thus, we have the basic lexicon of 250 words.

21.9 Experiments

During recognition, an optimal state sequence is obtained for each iteration of the
modified Viterbi algorithm described above. If its corresponding letter sequence
exists in the given dictionary, this word is said to be the result of direct recogni-
tion. After four iterations of the modified Viterbi algorithm, a hypothesis generation
scheme will be applied, as described before. Each optimal state sequence is com-
pared to each dictionary word using the Levenshtein edit-distance function previ-
ously mentioned. The top 1, 5, and 10 matching dictionary words are proposed as
hypotheses.

Both discrete probability modeling and continuous probability modeling for
symbol probability were evaluated using a 250-word lexicon and 45 feature vectors.
For Arabic HWR where feature vectors are modeled with continuous symbol prob-
ability distribution, recognition accuracy is found to be consistently below that with
discrete probability distribution. For this reason, only results with discrete symbol
probability are described below.

Two VDHMM-based systems were built to test against two distinct sets of data:
one is privately developed and the other is the well-known IFN/ENIT data. Hence-
forth, these two systems are called ML system and IFN system, respectively. The
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Table 21.1 Recognition
results in percent correct on
MITRE datasets

Writer Set Lexicon Size Top 1 Top 5 Top 10

A 1 250 65 80 86

12,000 44 56 61

2 250 65 78 84

12,000 46 58 60

B 1 250 55 72 79

12,000 32 45 51

2 250 60 73 82

12,000 39 52 56

C 1 250 49 66 73

12,000 29 42 48

2 250 49 66 75

12,000 26 38 44

Table 21.2 Recognition
results in percent correct on
IFN datasets

Lexicon Size Top 1 Top 5 Top 10

Set d 937 66 85 90

Set e 937 60 75 81

systems differ with respect to the training data used to build the character mod-
els, the cost table used in post-processing, and the lexicons used. The ML sys-
tem is built from approximately 163,000 character training images extracted from
24,912 word images (of 62 unique words that provide maximal character varia-
tion) in the MITRE corpus. This ML system is tested against sets of word images
from three writers not seen in the training data. These sets consist of the 250 most
common words in the Arabic Gigaword corpus, written twice by all writers. Two
lexicons of size 250 and 12,000 are used. Instead of providing an average perfor-
mance score, detailed results from three sets of increasing difficulty are provided
in Table 21.1. Writer C is judged as having handwriting that is the least legible.
The IFN system is trained using 90,000 characters extracted from IFN datasets
A, B, and C. Word recognition experiments are performed on sets D and E (Ta-
ble 21.2).

In addition to these experiments, the system was also submitted to the ICDAR
2007 Arabic handwriting recognition competition. Along with sets d and e from the
IFN database, two new sets of data unseen by the participants were tested. Set f
was collected from new writers from the same region as d and e (Tunisia), and set
s was collected from writers from the United Arab Emirates (UAE). The results are
shown in Table 21.3. As expected, we achieved similar results on sets d and e as in
our own experiments. Likewise, it is no surprise that we achieved a similar result
on set f. We lost about 12 % on set s, but that was about the average loss by all
systems.
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Table 21.3 Recognition results in percent correct at ICDAR 2007 competition

System Set d Set e Set f Set s

Top 1 Top 1 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

VDHMM 63.34 64.89 61.70 81.61 85.69 49.91 70.50 76.48

Best 94.58 87.77 87.22 94.05 95.42 73.94 85.44 88.18

Table 21.4 Recognition
accuracy with and without
segmentation errors

With Errors Without Errors Total

Right 227 66 % 434 84 % 661 77 %

Wrong 117 34 % 80 16 % 197 23 %

Total 344 100 % 514 100 % 858 100 %

Clearly, our system did not perform as well as the best system presented at the
ICDAR 2007 competition. Since then, we have analyzed our system, and our anal-
ysis is given below.

21.10 Analysis of Segmentation Errors

To gauge the effect of segmentation errors on recognition rate, we analyzed 858
images from 104 writers. We defined six types of errors:

0 none
1 order
2 bad segmentation point
3 over-segmentation
4 under-segmentation
5 writer error

Table 21.4 shows a summary of the segmentation error rates for images with
and without errors. It shows that segmentation errors are indeed significant. For
images without errors, we have a recognition rate of 84 %. For those with errors, the
recognition rate drops to 66 %.

Table 21.5 shows a breakdown of error rates by error type. The most common
type of error is type 1. We have a 67 % recognition rate on images having at least
one segment out of order. The worst case is for type 5 errors. It is understandable
that we would only have a 50 % recognition rate when the writer makes a mistake.

Table 21.6 shows the breakdown by number of errors. Most of the images having
errors had only one, but we see that even a single segmentation error drops the
recognition rate down to 68 %.

We also tabulated error rates by writer and error type. We found that there was
not a significant set of writers on which we performed poorly. We conclude that
writer quality or style did not contribute to segmentation error rate.
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Table 21.5 Recognition
accuracy versus segmentation
error type

Error Type Right Wrong Total

0 434 84 % 80 16 % 514 52 %

1 180 67 % 89 33 % 269 27 %

2 9 53 % 8 47 % 17 2 %

3 29 58 % 21 42 % 50 5 %

4 71 59 % 50 41 % 121 12 %

5 5 50 % 5 50 % 10 1 %

Total 728 74 % 253 26 % 981 100 %

Table 21.6 Recognition
accuracy versus segmentation
error count

Error Count Right Wrong Total

0 434 84 % 80 16 % 514 60 %

1 173 68 % 81 32 % 254 30 %

2 43 67 % 21 33 % 64 7 %

3 9 43 % 12 57 % 21 2 %

4 2 67 % 1 33 % 3 1 %

5 0 0 % 2 100 % 2 0 %

Total 661 77 % 197 23 % 858 100 %

Of course, there are other sources of error besides segmentation. But these num-
bers show a strong correlation between segmentation error and recognition failure.
The most common type of error is segment ordering, and the most common error
count is one. Thus, there is room for improvement in our segmentation algorithm
that could possibly fix a majority of these types of errors and significantly improve
our recognition rate.

21.11 Feature Vector Analysis

While it appears that some features of this empirically selected feature set are corre-
lated, it has been shown [17, 24] that feature reduction techniques such as principal
component analysis (PCA) result in a degradation in performance. Our experiments
[17] and analysis showed that we could reduce our feature set from 35 to 28 but at
a cost of a 5 % reduction in performance. Since feature computation is very fast,
we elected to stay with our set of 45 features. The result is not counter-intuitive.
PCA formalism assumes exponential type distributions such as Gaussian distribu-
tions. However, in our case the features are mostly discrete; thus the assumption of
exponential type distribution is not satisfied. Hence, PCA is not used for feature re-
duction. Our features are ad hoc in nature. Similar features are used in handwriting
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Fig. 21.16 Scanning a word
image using an overlapping
vertical segment in a raster
scan fashion

analysis and recognition due to lack of a coherent and compact model for handwrit-
ing creation.

21.12 Character-Based Versus Word-Based Training of HWR
Systems

We implemented a system based on implicit segmentation using the Hidden Markov
Model Toolkit (HTK), now freely available, in order to replicate the best system
reported in the 2007 ICDAR competition. The implicit segmentation is shown in
Fig. 21.16; the vertical segment features scan the image in a raster scan fashion with
some overlap between two successive segments or frames. For this system, features
are computed using the feature computation outlined in [9]. For each character, the
Gaussian sum model is used with the number of Gaussian components set to 7 based
on experimental results. For such systems, no explicit segmentation is needed, and
word images with their “truthed” identities are used to train the system. These sys-
tems can be called word-based HWR systems. We will denote this system as the
HTK system from now on. This system is able to replicate the best results as re-
ported in the 2007 ICDAR competition using the IFN/ENIT training and test words
(see Table 21.3).

We also used the same HTK system trained with the 44,592 images of the MITRE
dataset to recognize the test images of Table 21.1. The results and comparison with
our VDHMM-based system are shown in Table 21.7.

It is clear that the VDHMM system performs better in this case. We provide the
following explanation based on the nature of segmentation and the length of a word.

21.12.1 Implicit Versus Explicit Segmentation

While it is true that implicit segmentation is easier to implement and can perform
better for IFN-like data, the inherent weakness of this segmentation scheme should
also be addressed. In Fig. 21.17, a word image is shown. Here, the stroke of a char-
acter spans over much of the next character. An implicit segmentation-based sys-
tem will not be able to segment the proper character boundary, and training will
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Table 21.7 Comparison of character-based versus word-based training of HWR systems

Writer Set Lexicon Size VDHMM HTK Number
of ImagesTop 1 Top 5 Top 10 Top 1 Top 5 Top 10

A 1 250 65 % 80 % 86 % 46 % 68 % 75 % 250

12,000 44 % 56 % 61 % 14 % 30 % 40 % 250

2 250 65 % 78 % 84 % 46 % 64 % 72 % 250

12,000 46 % 58 % 60 % 15 % 34 % 43 % 250

B 1 250 55 % 72 % 79 % 47 % 64 % 69 % 195

12,000 32 % 45 % 51 % 10 % 30 % 37 % 195

2 250 60 % 73 % 82 % 38 % 61 % 67 % 195

12,000 39 % 52 % 56 % 12 % 26 % 32 % 195

C 1 250 49 % 66 % 73 % 28 % 50 % 62 % 250

12,000 29 % 42 % 48 % 2 % 16 % 26 % 250

2 250 49 % 66 % 75 % 26 % 53 % 59 % 250

12,000 26 % 38 % 44 % 6 % 16 % 23 % 250

Fig. 21.17 Example of
overlapping strokes. Part of
“waw” spans over the next
character “sheen” and
corrupts character training of
implicit segmentation-based
HMM schemes

train with segments that contain parts of the stroke from previous and/or succeeding
characters. Explicit character segmentation and character-based training can over-
come this issue. The word images of the 250 most frequent words collected by
MITRE contain many examples of stroke overflow, which is detrimental for the
HTK system. Additionally, for short words, the explicit segmentation algorithm de-
scribed here tends to have fewer segmentation errors. This explains why VDHMM
and explicit segmentation can outperform the HTK system on some datasets while
underperforming for IFN data.

21.12.2 Long Versus Short Words

The VDHMM system has no built-in normalization against the number of characters
in a word image. The system is based on single contextual HMM (SCHMM), where
only one dictionary is used [18] during recognition for any observation sequence.
The state transition probability is computed from one dictionary. Thus, these proba-
bilities are all less than 1. When many of these probabilities are multiplied, as is the
case for long words, this probability tends to be smaller. However, when a number
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of segments are combined to create one character, there is a built-in normalization
incorporated in the VDHMM system given by Eq. (21.12). The net result is a bias
toward short words in the lexicon. Since the 250 most frequent words are usually
short, the VDHMM system performs better in this situation.

It should be noted here that the VDHMM-based system can also be implemented
using one model per word, as is the case with the HTK system. In this case, the
VDHMM-based system is scored against each word, treating that word as the only
word in the lexicon. Then scores against all the words in the dictionary can be sorted
to find the best score. This is possible because states are explicitly identified with
the underlying characters. A little analysis would reveal that such a system does
not suffer from score reduction based on many multiplications of a number less
than one. Not surprisingly, for IFN data, the one-model-per-word VDHMM sys-
tem performed better than the single contextual VDHMM system based on one big
lexicon, roughly increasing the recognition accuracy by 5 %. Still, for long words,
segmentation errors are more likely, and that explains some of the loss in recognition
accuracy.

21.13 Conclusions

In this chapter, we have presented a complete system for off-line Arabic handwritten
word recognition based on VDHMM and explicit segmentation. A simple training
scheme is proposed to train the VDHMM-based HWR system using handwritten
characters. The evaluation of our system is carried out with numerous real-world
examples. The reason why simple discrete probability modeling for symbol proba-
bility works better than more complex continuous probability modeling is that most
features are discrete in nature. A continuous-discrete hybrid model might be a better
option that we would like to explore in the future.

While it is true that implicit segmentation is easier to implement and can per-
form better for IFN-like data, the inherent weakness of such segmentation schemes,
especially for overlapping strokes of different characters, is also discussed. In this
context, the loss of performance by an explicit segmentation scheme due to seg-
mentation errors, especially for long words, is also discussed. Both paradigms, ex-
plicit segmentation and character-based training vis-à-vis implicit segmentation and
word-based training, have their relative strengths and weaknesses which we have
outlined here. We would also like to explore this issue more in the future.
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Chapter 22
Online Arabic Databases and Applications

Houcine Boubaker, Abdelkarim Elbaati, Najiba Tagougui, Haikal El Abed,
Monji Kherallah, and Adel M. Alimi

Abstract Large databases were developed for handwriting recognition in Latin
script. In contrast, very few databases have been developed for Arabic script, and
fewer have become publicly available. This paper describes a pilot study in which
we present the nature of the Arabic handwritten language and the basic concepts
behind the recognition process. An overview of online Arabic databases and appli-
cations presented in the literature is discussed in detail. We also present some related
works using these databases.

22.1 Introduction

In the last few years, handwriting analysis and recognition has become a paramount
subject of researchers’ interest. The validation of the work done in this area was
successfully established, thank to the databases used. Two sorts of databases are
considered. One type is of interest to online studies (e.g., UNIPEN), and the other is
of interest to offline studies (CEDAR, IRONOFF, NIST, IFN/ENIT, etc.). All these
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databases are important for the research community in order to test new ideas and
algorithms and to perform benchmarks and thereby measure progress and general
tendencies.

Since 1997, Märgner et al. have discussed the general concept of benchmark-
ing the output of each module of interest. Their method describes how to build a
database with specific ground truth for document analysis systems (DASs) where
they focus on the definition and generation of ground truth, especially for the image
processing modules of a DAS. They also presented a method to build a database
for benchmarking more generally with the use of synthetic data [18]. There exist no
freely or commercially available (or Internet accessible) databases of Arabic char-
acters, digits and words in either offline topics or in online topics. An interesting
state of the art of Arabic language was established by [7], indicating the difference
between the handwritten classical Arabic script as the courant and the modern stan-
dard one which represents the majority of use in Arabian countries. The author also
gives a summary of techniques concerning Arabic handwriting recognition research.
In online studies of the handwriting research topic, Alimi [2] presented a review
of online Arabic handwriting recognition systems. He developed an evolutionary
neuro-fuzzy approach to recognize Arabic handwritten characters. His experiment
consists in testing the performance of the system to recognize Arabic handwritten
characters segmented from cursive script. From this task the same writer was asked
to write a text extracted from a newspaper containing about 1000 words. These
words contain more than 3000 characters (almost all the possible combinations of
the 117 Arabic letters were used). The written words were segmented manually
into characters, and only the principal component of each character was kept [1, 2].
Mezghani et al. [19] have elaborated a set of 17 basic Arabic isolated letters with
432 samples of each character written by 18 writers. Their experience deals with
an online recognition system carried out by a Kohonen neural network trained us-
ing an empirical distribution of features such as tangents and tangent differences at
regularly spaced points along the character signal. El-Sana presented a recent work
which deals with an on-line Arabic handwriting recognition field of the disclosed
technique [8]. The method of recognition incorporates delayed strokes and uses a
discrete hidden Markov model (HMM) to represent each of the letter shapes in the
Arabic alphabet [3]. The dataset used contains between 30,000 and 40,000 Arabic
words written without dots.

As a result, until now, there has been no robust standard comprehensive database
online or offline for Arabic handwriting script recognition. However, some attempts
have been realized, and one of the first databases that was publicly available and be-
came the first standard databases for Arabic is the IFN/ENIT [7] which is an off-line
database for Arabic words including 937 Tunisian town/villages names and postal
codes written by 411 people. A Persian version of the IFN/ENIT was recently re-
leased, including city names handwritten in Farsi. The Persian version consists of
7271 binary images of 1080 Iranian province/city names, collected from 600 writ-
ers. For each image in the database, the ground truth information includes its zip
code, and a sequence of characters and numbers.

The need to advance Arabic online handwriting recognition systems drives the
research community to create and collect online Arabic databases. The validation of
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Fig. 22.1 Online/offline
handwriting recognition
process

the work done in this area cannot be successfully established without common inter-
national databases. The objective of this paper is to present standard online Arabic
databases which will be important for the research community working in Arabic
in order to test new ideas and algorithms and to perform benchmarks and thereby
measure progress and general tendencies. This chapter is organized as follows. In
Sect. 22.2, the state of the art of Arabic handwriting recognition will be presented.
Section 22.3 briefly presents the Arabic script. Section 22.4 presents in detail our
LMCA (Lettres, Mots et Chiffres Arabe) database formulation, and to prove the va-
lidity of LMCA’s structure, some related works will be presented in subsections. In
the same way, Sect. 22.5 will be devoted to the ADAB database formulation and to
some related works proving its validity. In Sect. 22.6, a conclusion will be presented.

22.2 State of the Art of Arabic Handwriting Recognition

Two axes of research are available in handwriting recognition; the first one is called
online, and the second offline. According to Fig. 22.1, using a digital tablet and a
special pen offers an interactive dynamic information as a sequence of point coor-
dinates. Using the scanner offers static information as pixels.

The recognition concerns handwritten characters or handwritten words. Three
phases are needed for recognition system approval: pre-processing, feature extrac-
tion, and classification phases. The advantage of the IRONOFF database is that an
offline image and an online trajectory are available. One interest concerns the eval-
uation of skeleton algorithms. Here, the online data could provide a way to compare
the skeleton points (offline image) to an objective trajectory (online coordinates).
One could also study the correlation that could exist between the speed of the pen
and the gray level distribution or the width of the corresponding strokes. If the on-
line data is jointly accessible with the offline images, it can be used to recover the
temporal order of strokes from the offline images and thereby guide and train the
segmentation to provide a relevant frame description.
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Fig. 22.2 Arabic handwriting

In that sense, these approaches bridge the gap between online and offline char-
acter recognition methods [11, 16], which is a very attractive concept since it has
been shown that online handwriting exhibits superior results compared to offline
recognition [20].

22.3 Arabic Script Description

Arabic script has been adopted for use in a wide variety of languages other than Ara-
bic, including Persian, Kurdish, Malay, and Urdu. Arabic handwriting is a conso-
nantal and cursive writing. This property is exhibited in two forms: printed or hand-
written documents. There are no distinct upper and lower case letter forms. Some
Arabic handwritten documents are written with some diacritics (see Fig. 22.2(a)),
whereas in the majority of cases only points are considered in Arabic handwriting
(see Fig. 22.2(b)). The Arabic alphabet is composed of 28 main characters (with
diacritics and in isolated form) and is written from right to left. Most characters
have four different shapes. The difference between these letters lies in their posi-
tions in the word, the number and the position of the diacritic dots, and the presence
of the “Hamza” and vowels (see Table 22.1). In fact, the majority of letters change
slightly in shape according to their position in the word (initial, medium, or final).
This change occurs when letters are either joined to one another or isolated. There is
also a big similarity between some letters [3]. In our work, we reduce the number of
letters to 57 by eliminating all diacritics as points and vowels. If we do not consider
the first letter of Table 22.1, “Hamza,” the number will be reduced to 56 letters.

Table 22.1 represents the 28 letters of the Arabic script in their four different
forms. Among them, six letters exist only in the isolated form and in the end form.
They are marked with empty columns.
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Table 22.1 The Arabic alphabet

22.3.1 Diacritic Symbols Influence

Some Arabic letters have the same form. However, they are distinguished from each
other by the addition of dots in different positions relative to the main stroke. Some
Arabic characters use special marks to modify the character accent. When diacritical
symbols (dots, special marks) are used, they appear above or below the characters
and they are drawn as isolated entities as shown in Fig. 22.2. Diacritical symbols
are positioned at a certain distance from the character, which makes some difficul-
ties in separating the border of a text line. Indeed, diacritical symbols can generate
some redundant separate lines [3]. We count 15 among the 28 letters of the alphabet
which contain dots. Some letters present a zigzag shape called “Hamza.” It takes
the same shape of the letter “Ayn” (see Table 22.1), but it is located above the letter
“Alif.” The letter “Hamza” is considered as an accent “vowel” in the Arabic alpha-
bet [17].

22.3.2 Pre-processing Step

Pre-processing is primarily related to word processing operations such as nor-
malization to remove handwriting irregularities. Most of the current Arabic word
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Fig. 22.3 Errors and
multivariability existing
between writers. (a) Stiction
of pen-down switchers (bad
contact). (b) Disconcerted
and redundant points

recognition systems do not allow noisy data input. Therefore, current research
must deal with the matters of multi-cultural handwriting styles and the adapta-
tion method, which varies from one user to another. In a project on within-writer
and between-writer variability, it was found that the number of stroke-shape in-
terpretations in cursive script kept increasing with each new writer in a training
system, and the existence of an asymptote was not apparent. The major problems
caused by the multivariability are: The input may consist of discrete noise events,
like dots or short lines resulting from inadvertently dropping the pen or tapping
the pen on the writing surface unwillingly (see Figs. 22.3(a) and 22.3(b)). The in-
put may consist of badly formed shapes, illegible to both humans and machines.
Two successive points can be confused by a small segment (see Fig. 22.2(b)).
Consequently, the handwriting input may contain device-generated errors: ran-
dom noise, stiction of pen-down switches, unresponsiveness of switches, pen tilt
errors, etc. These problems are shown in Fig. 22.3. In most cases, Arabic writ-
ing does not use vowels. The sense of the word is often determined by the con-
text of the sentence. Thus vowels are not considered in our work. We corrected
the trajectory by eliminating the majority of noise (diacritics as points and short
segments). For this task we developed a simple filter based on distance mea-
surement between successive points of the trajectory. The elimination of isolated
points and small segments composed of a number of points is based on thresh-
old optimization. In Figs. 22.4(a) and 22.4(b) we demonstrate the filter effective-
ness.

22.4 LMCA Database and Related Works

22.4.1 Database Formulation

A database for character recognition algorithms is of fundamental interest for the
training of recognition methods. We developed our own database which contains
30,000 digits, 100,000 Arabic letters, and 500 Arabic words. This database was de-
veloped in our laboratory, the REsearch Group on Intelligent Machines (REGIM).
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Fig. 22.4 The word “bortoukalaton” (orange) before (a) and after (b) smoothing

Fig. 22.5 (a) Examples of scanned written words. (b) Examples of scanned written digits

Both online/offline handwritten characters and words are considered. The online
procedure is based on a collection of coordinates (x, y) of the handwritten trajec-
tory, whereas the offline procedure is based on a collection of images of the hand-
written trajectory. These two types of information should be available within the
same coordinate system, with the same origin and the same resolution and orienta-
tion.

Fifty-five participants were invited to contribute to the development of the hand-
written LMCA. The dataset of words of each participant is stored in one data file.
When producing the data file, each participant was asked to write some Arabic
words. We collected 500 words written by different writers. The data for each par-
ticipant are stored in one data file. For the digits dataset construction, a participant
was asked to write a set of all digits (1000 to 1500 samples of digits). We imposed
that the writer should just write the same digit ten times, from 0 to 9, on the same
page. One page contains 100 digits. The writer was asked to prepare only one page
per day. We have collected 30,000 digits in total. More than half of them are regu-
larly written. The remaining ones are those that have noise in the data, are poorly
written, or are deliberately written in strange and unusual ways.

Figures 22.5(a) and 22.5(b) present an example of scanned words and digits.
They are presented as an image in JPG format. The same procedure was applied
to prepare 100,000 Arabic letters. About two-thirds of the writers were male, about
90 percent were right handed, the youngest writer was 8 years old, and the oldest was
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Fig. 22.6 The graphical user
interface “Handwriter”

Fig. 22.7 The x and y

coordinates from the digital
tablet

66. In the online domain, the forms were sampled with a spatial resolution of 200 dpi
and a sampling rate of 100 points/s (Wacom UltraPad A4) and were stored using the
UNIPEN format. To collect data, a graphical user interface called “Handwriter”
has been developed on a PC/NT window environment (see Fig. 22.6). The online
information of the handwriting is kept in a text file. The pen position up and down
is detected, respectively, by 0 and 1 values. The trajectory of the handwritten script
is collected as coordinates of x and y from the digital tablet (see Fig. 22.7).

22.4.2 Related Works

Online Digit Handwriting Recognition System Based on Trajectory
and Velocity Modeling

Digit recognition was studied ten years ago, and it was found that the fuzzy approach
enhanced the classification performance. In this study, the feature extraction system
was based on the “beta-elliptical” representation [14]. One of the main classification
problems is the variability of the feature vector size depending on each digit number
of strokes. The recognition process is divided into pre-processing steps and a subse-
quent classification. To face the complex problems of handwriting recognition, the
use of multiple, hybrid and an association of classifier systems has attracted increas-
ing interest during recent years. Based on their complementarities, an association of
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Fig. 22.8 Multiple classifier
system

Table 22.2 Comparative study between UNIPEN digit dataset and LMCA digit dataset

Classifier Modeling system Dataset Recognition rate

MLP Beta-elliptical 30,000 digits LMCA 94.14 %

SVM Beta-elliptical Digit set of UNIPEN 94.78 %

classifiers increases the performance of the recognition system while limiting the er-
ror bound to the use of a unique classifier. The use of the multiple classifier systems
benefits from the strong points of every classifier. In [14], the recognition system
is based on the use of neural networks developed in a fuzzy concept. The desired
outputs of a multilayer perceptron neural network (MLPNN) are formed using a
self-organizing map (SOM) and a fast Kohonen neural network (FKNN) algorithm
(see Fig. 22.8). Therefore, this system involves neuro-fuzzy networks based on a
SOM and FKNN algorithm association used in the learning process [14]. The global
recognition rate obtained is about 95.08 %. When testing our system, the global av-
erage squared error obtained is about 0.065. In this study, our aim is to validate
the use of a digit set extracted from the LMCA dataset. It is known that the MLP
and support vector machine (SVM) techniques give the same performance. The first
experience was based on the use of the LMCA digit dataset, whereas the second
one was based on the use of the UNIPEN digit dataset. The results obtained were
similar, which proves that the developed LMCA digit dataset has a correct format
benchmark (see Table 22.2).

Recognition of a Handwritten Arabic Word Based on Visual Encoding and GA

A handwritten word is represented by a continuation of visual codes of Arabic let-
ters. In this case the order of these letters is considered. We attribute N the number
of basic letters extracted from a cursive word [15]. Therefore, every gene of the
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Table 22.3 Fitness value calculation

population has N chromosomes and every chromosome has one of the 58 possible
values (1 to 57 for the basic Arabian characters and the value 0 for characters with
more than one visual indication) numbered from the right to the left. The extraction
rate obtained is about 72 %. However, in the second stage, which consists in cor-
recting the weaknesses of the previous method, we developed a genetic algorithm
(GA) in order to select the best combination of visual codes extracted from a word
by the heuristic method [13]. The GA approach permits the recognition of cursive
handwriting without the limitation of a lexical dictionary [12]. Therefore, the con-
vergence of the GA is ensured by the technique given in the fitness function which
consists in the use of the visual codes of Arabic words and the comparison method
established between the visual indices strings according to Table 22.3. The number
of generations (500) and the fitness value (0.5) were fixed as a convergence condi-
tion criterion. If the population size was fixed to 100 individuals, the recognition rate
was about 99.85 %. These results are encouraging. In this experiment we used the
500 words and the 57 Arabic letters extracted from the LMCA dataset. 200 words
were used as data prototypes for the selection of the initial population of the GA,
and the others were used for testing our system.

Order Temporal Reconstruction from Arabic Image Word

The word image captured in gray level with a resolution of 300 dpi will be pre-
processed in four stages: binarization, filtering, extraction of the skeleton, and elim-
ination of the diacritical signs (see Fig. 22.9(a)). A suitable algorithm segments the
skeleton in three types of segments: segments of connection, occlusion, and seg-
ments of end of stroke. The starting segment is localized by sweeping the image of
the skeleton from the right to the left, and more tests are applied. Another algorithm
makes it possible to order these segments based on heuristic rules. These rules count
on the fact that Arabic script is written from right to left, and they take into account
the natural order of stroke generation [10]. To validate this approach we tested it on
a whole of the words extracted from the LMCA dataset. The temporal order signal
which is reconstructed will be compared with its original online trajectory signal
(see Fig. 22.9(b)) [9].
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Fig. 22.9 (a) The Arabic word “kassiron” before and after pre-processing. (b) Restoration of the
temporal order of the offline word “kassiron”

22.4.3 Conclusion

The different research works and their results prove that our LMCA database can
be used in both modeling and recognition systems of Arabic handwriting. The re-
lated works presented prove also that LMCA is a standard database and it has the
same format of the common UNIPEN or IRONOFF database. Our perspective is to
increase the number of writers of LMCA to help make it perform for any techniques
of modeling and classification of handwritten Arabic script.

22.5 ADAB Formulation and Related Works

22.5.1 ADAB Formulation

The Arabic DAtaBase (ADAB) was developed to advance the research and devel-
opment of Arabic online handwritten text recognition systems. This database is de-
veloped as a cooperative effort between the Institut fuer Nachrichtentechnik (IfN)
and the National School of Engineers of Sfax (ENIS), Research Group on Intelli-
gent Machines (REGIM) [7]. The database consists of 19,575 Arabic words hand-
written by more than 150 different writers, most of them selected from the nar-
rower range of ENIS. The text that is written is from 937 Tunisian town/village
names. We plan to extend this database with other Arabic writing styles. For this
reason, we have developed special tools for the collection of the data and verifi-
cation of the ground truth, which will be available for other groups for the col-
lection of their own data in the same form of the ADAB. These tools allow one
to record the online written data, to save some writer information, to select the
lexicon for the collection, and to rewrite and correct wrong written text. Ground
truth was added to the text information automatically from the selected lexicon
and verified manually. The ADAB is freely available for noncommercial research
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Table 22.4 ADAB sets
Set Files Words Characters Writers

1 5037 7670 40,500 56

2 5090 7891 41,515 37

3 5031 7730 40,544 39

4 4417 6786 35,832 25

Sum 19,575 30,077 158,420 157

Fig. 22.10 The ADAB’s collection tool

(www.regim.org) [7]. Our aim was to collect a database of handwritten town names
written in a quality similar to that on a mobile phone with a digital input device.
The collection process starts when the writer clicks on start bottom. The collec-
tion tool generates a town name randomly from 937 Tunisian town/village names,
and the writer must write the displayed word (see Fig. 22.10). A pre-label will
be automatically assigned to each file. It consists of the postcode in a sequence
of numeric character references which will be stored in the UPX file format. An
InkML file including trajectory information and a plot image of the word trajectory
is also generated. Additional information about the writer can also be provided (see
Fig. 22.11).

The ADAB is divided into four sets. Details about the number of files, words,
characters, and writers for each set 1 to 4 are shown in Table 22.4.

http://www.regim.org
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Fig. 22.11 Samples of UPX files and their corresponding InkML and image files

Fig. 22.12 Example of
detected baseline correction
(green) obtained from the
consideration of topological
conditions

22.5.2 Related Works

Online Arabic Handwriting Modeling System Based on Grapheme
Segmentation

An online Arabic handwriting modeling system based on grapheme segmenta-
tion is presented. The system consists of three modules: detection of the baseline,
grapheme segmentation, and feature extraction. The method developed in the first
module is distinguished by the consideration of geometrical and topological features
for the baseline detection and correction. In the second module, we use the detected
baseline to check particular points: the back of the valleys and the angular points
for the segmentation of the cursive handwriting trajectory in graphemes. The third
module extracts parameters to model the position, the shape, and the fuzzy affecta-
tion rate of diacritics associated to each segmented grapheme. Figure 22.12 shows
an example of a correct result of baseline detection obtained from the consideration
of the topologic conditions compared with the results of the basic stage [5].

In the evaluation phase, the system is applied on the online database ADAB of
Tunisian town names using the HMM Toolkit (HTK) as the classification module.
The following recognition results for three ameliorated versions of the system were
obtained (Table 22.5):

• Version 1: without diacritics detection (ICDAR 2009 competition) [4].
• Version 2: after adjusting the filters and without diacritics detection.
• Version 3: after adjusting the filters and with the extraction and fuzzy affectation

of diacritics.
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Table 22.5 Recognition rate
obtained on ADAB sets 1
and 2

System version ADAB set 1 ADAB set 2

Top 1 Top 5 Top 1 Top 5

Version 1 57.87 72.89 54.26 66.38

Version 2 86.38 96.43 83.55 94.68

Version 3 82.33 93.47 80.61 91.53

ICDAR Competition

The first international online Arabic handwriting recognition competition was held
in 2009 [7]. The International Conference on Document Analysis and Recognition
(ICDAR) is an international scientific conference in the field of document process-
ing and image analysis. Occurring every two years, it brings together researchers
from universities and businesses from all around the world. To compare the per-
formance of the participants’ systems, the ADAB was used. As part of the competi-
tion, seven systems have been benchmarked by independent leading domain experts.
Among the tested recognition systems, several systems have been developed by spe-
cialized university laboratories such as the REGIM laboratory. Among the industry
players, the Vision Objects MyScript® system proposes natural handwriting recog-
nition technology for Arabic. The systems were tested on known data (sets 1 to 3)
and on one test dataset which was unknown to all participants (set 4). The accu-
racy rate and the recognition speed were measured. With 99 % accuracy rates, the
MyScript® system has the highest recognition rates, almost 4 % higher than the sec-
ond best system participating in the competition. Regarding the recognition speed,
Vision Objects won over its competitors hands down with an average processing
time of 69 ms per word: more than 25 times faster than the second fastest system in
the competition.

The competition results, presented in Table 22.6, show that Arabic handwrit-
ten word recognition systems have further made remarkable progress within recent
years. Most of the participating systems show a very high accuracy, and some also
perform at very high speed [6].

22.5.3 Conclusion

Online recognition of cursive Arabic handwritten words aims to contribute in the
evolution of online Arabic handwriting recognition research. Since 2009 the freely
available database ADAB is used by some research groups all over the world to de-
velop online Arabic handwriting recognition systems. This database was the basis
for the competition ICDAR 2009 for systems that are specialized in online recogni-
tion of cursive Arabic handwritten words, which confirms that it is a database with
reliable matter.
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Table 22.6 Recognition results in % of correct recognized images on reference datasets 1, 2, and
3 and on a subset of dataset 4

System set 1 set 2 set 3 set 4*

top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top10 top 1 top 5 top10

MDLSTM-1 99.36 99.94 99.96 99.42 99.96 100.00 99.52 99.94 99.94 95.70 98.93 100

MDLSTM-2 98.55 99.60 99.66 98.77 99.88 99.92 98.89 99.64 99.70 95.70 98.93 100

VisionObjects-1 99.46 99.70 99.70 99.82 99.94 99.96 99.58 99.76 99.76 98.99 100 100

VisionObjects-2 99.29 99.60 99.60 99.51 99.74 99.74 99.26 99.56 99.56 98.99 100 100

REGIM-HTK 57.87 72.89 77.03 54.26 66.38 71.06 53.75 72.31 76.22 52.67 63.44 64.52

REGIM-CV 100 100 100 94.39 96.06 96.06 96.28 97.14 97.52 13.99 31.18 37.63

REGIM-CV-HTK 28.85 51.92 55.77 35.75 58.30 64.26 30.60 52.80 62.80 38.71 59.07 69.89

22.6 Discussion and Future Work

This work was about creating a good quality database with support for online hand-
written Arabic script recognition. This type of database has many uses, including
training and testing a recognition system. Two databases were created: the first one
is the LMCA database which contains 30,000 digits, 100,000 Arabic letters and 500
Arabic words, and the second one is the ADAB, which contains 19,575 samples
of 937 Tunisian town/village names. These databases were created by collecting
writing contributions from more than 200 Arab persons of different age and sex.
The input information can be digits, characters, or words. Many of the contributors
expressed that it was unnatural to write on a Wacom or a Genius tablet because
during writing the pen’s trace isn’t visible directly on the tablet as it is on a piece
of paper. This could have affected the quality of the collected material and thus the
final database. But it is not a real major limit, since the information collected will
be used by recognition systems devoted to the recognition of handwritten script on
small mobile devices where it is impossible to treat the writing style. To confirm
the efficiency of these databases, many works were evaluated, and we have reported
the results. The use of the ADAB to test and compare the participating systems
in the ICDAR competition proves that it is really a standard database with consis-
tent content. We plan to extend this database with other Arabic writing styles. This
database will be important for the research community in order to test new ideas and
algorithms and to perform benchmarks and thereby measure progress and general
tendencies. We plan to expand these databases so that they became a reference in the
field. Our perspective is also to try to expand this data by considering other writers
of the Eastern countries.
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Chapter 23
On-line Arabic Handwritten Word Recognition
Based on HMM and Combination of On-line
and Off-line Features

Sherif Abdelazeem, Hesham M. Eraqi, and Hany Ahmed

Abstract Unconstrained handwritten text recognition is one of the most difficult
problems in the field of pattern recognition. This paper presents a new on-line Ara-
bic handwriting recognition system based on hidden Markov models (HMMs). Be-
sides the common use of the off-line features for the HMM-based Arabic recogni-
tion systems, we add the use of on-line features and combination of the two ap-
proaches. The delta and acceleration features are used as approximations to the
derivatives of the observation vectors with respect to time, and they have proved
to be very effective in improving the system’s performance. Delayed strokes are a
well-known problem in on-line handwriting recognition due to its varying writing
order among different writers. We solved this problem by removing those delayed
strokes by using a new delayed strokes detection approach that makes use of the
baseline information and the shape of the strokes. The baseline detection method
used in our system is based on horizontal projection. Removing delayed strokes has
also led to the ability to combine some of the Arabic characters that share the same
primary stroke and are only distinguishable by their delayed strokes into one class
(HMM model), which increased the recognition rate. A new algorithm for lexicon
reduction based on the detection of the delayed strokes has been developed. The lex-
icon reduction algorithm is used to improve the system’s performance in terms of
speed and recognition rate. The on-line database ADAB of Tunisian town names is
used for system training and evaluation. We achieved recognition rates up to 97.5 %,
which is very promising compared to the highest recognition rate achieved on this
database and is significantly higher than the recognition rates achieved by the other
HMM-based Arabic handwriting recognition systems.
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Table 23.1 Off-line/on-line approach problems

Approach/Case Illegal Writing Order (Painting) Distorted Writing

On-line × √
Off-line √ ×

23.1 Introduction

In recent years, on-line handwriting recognition systems started to have several ap-
plications; mainly due to the increasing popularity of personal digital assistants
(PDAs), tablet PCs, and smart phones that use a pen as a convenient and portable
input method. There have been significant advancements in the area of handwriting
recognition for Latin-based languages. However, Arabic handwriting recognition
has received less attention from the research community. The cursive nature of Ara-
bic, characters’ overlap “ligatures,” and delayed strokes are some of the key prob-
lems that make Arabic recognition more difficult than other languages such as Latin
or Chinese [10]. More details about Arabic writing characteristics can be found in
[10].

Automatic character or text recognition of handwriting can be classified into two
approaches: off-line and on-line. In the first approach, off-line recognition, the writ-
ten word (or letter) is expressed in terms of pixels. In other words, it is treated as an
image of the word after it has been acquired. The second approach, on-line recog-
nition, uses the trace of a pen for the classification and recognition of the input
information. The difference between the two modes is that the on-line mode pro-
vides us with temporal features that are used to infer the dynamics of the writing
[1, 4]. The on-line data can still be converted into the off-line form (image) by in-
terpolating the point of every stroke and then applying a Gaussian mask that dilates
the writing contour [12].

Each approach (off-line and on-line) has its weak and strong points, whereas the
integration between the two approaches has been proven to give a higher perfor-
mance. This integration tries to make use of the strong points of each approach.
The strong points of each approach have been discussed in [18] and are summa-
rized in Table 23.1. The table shows three of the most common optical character
recognition (OCR) problems which can be solved by either the off-line or on-line
approach while being a big problem for the other approach. The “√” mark in the
table indicates that the approach can tolerate the corresponding problem.

Simultaneous segmentation and recognition has proved to be the key factor in
solving the OCR problem for cursively written languages like Arabic [5]. Although
using hidden Markov models (HMMs) has proven to be a good simultaneous seg-
mentation and recognition method that solves the segmentation difficulties of the
Arabic language, little research progress has been achieved with on-line HMM-
based recognition compared to what has been done with off-line HMM-based recog-
nition. One of the main reasons is that, for on-line recognition, the temporal infor-
mation which is needed by the HMM classifier may be ruined due to the varying
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writing order among different writers, which is mainly caused by delayed strokes.
Hence, delayed strokes detection is considered a crucial step for proper on-line fea-
ture extraction.

The detection of the delayed strokes can be used for lexicon reduction as well.
Lexicon reduction is the process of initially eliminating lexicon entries unlikely to
match the given test word. This process, lexicon reduction, has desirable effects not
only on the recognition time, but also on the recognition accuracy [7]. The lexicon
reduction in our system is based on a new method for modeling the variability in the
delayed strokes as a feature for lexicon pruning.

Our system is trained and evaluated using the Arabic DAtabase (ADAB) on-line
database of Tunisian town names, which is divided into three sets containing 23,251
words (122,559 characters) [4]. A high recognition rate of up to 97.5 % is achieved,
which is very promising compared to the highest recognition rate achieved in this
database and is significantly higher than the recognition rates achieved by the on-
line/off-line HMM-based Arabic handwriting recognition systems [4]. Our system
achieves a recognition rate of 95.97 % on the main test performed in the on-line Ara-
bic handwriting recognition competition 2009 (ICDAR 2009), which comes second
after the recognition rate achieved by the commercially available OCR product Vi-
sionObjects.

This paper is organized as follows. Section 23.2 describes the system architecture
and what happens to the test word data from the moment it enters the system until
the output word is resulted from the system. Section 23.3 details the description
of the pre-processing stage and the delayed strokes detection method. Section 23.4
describes the lexicon reduction algorithm. Section 23.5 is concerned with the off-
line and on-line feature extraction methods. Section 23.6 discusses HMM and the
training procedure, and Sect. 23.7 describes the post-processing stage. Section 23.8
presents the experiments performed to evaluate our system, and we conclude our
work in Sect. 23.9.

23.2 System Architecture

Figure 23.1 shows the architecture of our system and describes how the integration
between the on-line and off-line feature extraction methods is done. The different
blocks of the architecture are explained in detail in the following sections of this
paper. In this section, we present the whole system in a general way and describe
what happens to the test word from the moment it enters the system until the output
word is resulted from the system.

In our system, first the test word goes through a smoothing stage that removes
the jaggedness of the contour resulting from the handwriting irregularity and the
imperfection caused by the acquisition device, and then a resampling stage that
redistributes data points (originally sampled in equal time intervals) to enforce even
spacing (resampling distance) between them. Then these data points go into two
main directions that prepare them for both the off-line and on-line feature extraction
stages.
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Fig. 23.1 System architecture (recognition module)

In the first direction (off-line), the data points are converted into a bitmap image
(as explained in Sect. 23.5.2). Then the off-line feature sequence represented in
frames of length of 63 is extracted from the bitmap image by using a right-to-left
sliding window technique that is based on the gradient components of the image in
8 directions. This off-line feature vector (frame) will be classified by the discrete
HMM, which selects the best 50 candidates out of the reduced lexicon. This small
lexicon that is formed with the output best 50 candidates will be used later by the
continuous HMM (on-line mode).

In the second direction (on-line) the data points go through a delayed strokes
detection stage that detects and removes the delayed strokes from the on-line se-
quence. These detected delayed strokes are passed to the lexicon reduction stage,
which uses them for lexicon pruning by removing the lexicon entries that are not
likely to match this delayed strokes sequence. The primary strokes are used for on-
line feature extraction, and a feature vector of length 9 (local direction, aspect, delta,
and acceleration features) is used for classification by a continuous HMM. The con-
tinuous HMM works within the small lexicon of the 50 candidates that is generated
from the off-line mode. But in the cases when the confidence of the continuous
HMM decision is low, the continuous HMM operation is restarted to work within
the reduced lexicon which, in most cases, is bigger than the 50-candidates lexicon.

In order to demonstrate why we restart the operation when the on-line mode
HMM confidence is low, let’s consider our system’s behavior with the test word
shown in Fig. 23.2 for the words “

�E��
"
” and “

�E-� "@,A”. Both the test words have

not been selected to be one of the off-line mode HMM’s best 50 candidates, which
means that the on-line mode HMMs will definitely give a wrong result, as it works
on that small lexicon of 50 candidates. The off-line mode classifies the test words
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Fig. 23.2 Example test files
from the database ADAB

to be “
�E=	
A!” and “ ��)
�� ",�O” respectively, but with a low confidence for both of them.

So the on-line mode HMM restarts classification to work on the bigger lexicon that
resulted from the lexicon reduction stage, and gives the correct results “

�E��
"
” and

“
�E-� "@,A” respectively. This demonstrates that even though the off-line mode works

as a preliminary stage for the on-line one; off-line errors will not necessarily result
in wrong results on the final on-line mode.

Finally, there is a post-processing stage that is responsible for making use of
the detected delayed strokes sequence and solving the confusion of the continuous
HMM that may result from words that look similar without their delayed strokes
(like the Arabic words “!�"	� �U�)” and “!�"	� U
�)”).

23.3 Pre-processing

23.3.1 Smoothing and Resampling

Smoothing is important to remove the jaggedness of the contour resulting from the
handwriting irregularity and the imperfection caused by the acquisition device. Ev-
ery point Pt (x(t), y(t)) in the trajectory is replaced according to (23.1).

Pt =
n∑

k=−n

αkPt+k,

n∑

k=−n

αk = 1 (23.1)

And for each point’s coordinates to be the mean value of itself and its (2n) neigh-
bors, according to (23.2),

αk = (2n + 1)−1 (23.2)

Besides, a writing speed normalization (resampling) algorithm, based on the
trace segmentation method explained in [14], is used to redistribute the data points
(originally sampled in equal time intervals) to enforce even spacing (resampling dis-
tance) between them. Experiments with our system have showed that the resampling
distance should be inversely proportional to the number of states of every character
HHM and the number of points in each HMM frame (for on-line feature extraction).

Figure 23.3 shows the effect of smoothing and resampling on the data. After
resampling, points of every stroke are equidistant, regardless of how many points
are produced in each stroke. Also, experiments have showed that smoothing has
increased the final recognition rate of the system.
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Fig. 23.3 Effect of smoothing and resampling

23.3.2 Baseline Detection

The following stage in pre-processing (delayed strokes detection) depends on the
global baseline of the test word. The diacritics represented in delayed strokes, word
slope, and words that are constructed from more than one piece of Arabic word
(PAW) are the main problems of detecting the Arabic handwriting baseline [2].

Baseline detection in our system is based on the horizontal projection method,
which is commonly used by the OCR researchers to detect Arabic baselines [15].
The following steps summarize our algorithm:

1. Construct an off-line bounded image by interpolating every stroke of the word.
2. Remove some of the clear delayed strokes that are easy to detect by their small

area and constant writing direction.
3. Search the histogram for a value higher than 80 % of the maximum projection

value within the narrow area under the arbitrary baseline (20 % under it).
4. IF it exists, this vertical position is selected to be the arbitrary baseline instead.

This solves the problem arising from some Arabic letters that have an upper
horizontal segment that may make a peak in the histogram (Fig. 23.5(1)), like
the letters “�” and “3”.

5. Increase the thickness of every pixel vertically to be 5 pixels high, as shown
in Fig. 23.4. This increases the chance that PAWs baselines meet at the same
vertical position.

6. An arbitrary baseline is selected according to the horizontal projection his-
togram maxi-mum value as shown in Fig. 23.5.

7. IF the arbitrary baseline is within the image upper part (upper 20 % of the
image),

8. THEN search the other part of the image for a projection value higher than
60 % of the current baseline projection value. If it exists, this vertical position
is selected to be the baseline.

9. This problem happens with the Arabic letter “9” (Fig. 23.5(2)).

10. ELSE IF the arbitrary baseline is within the image lower part (lowest 40 % of
the image),

11. THEN Search the other part of the image for a projection value higher than
60 % of the current baseline projection value. If it exists, this vertical position
is selected to be the baseline.
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Fig. 23.4 Increasing writing
thickness vertically (zoomed)

Fig. 23.5 Baseline detection problems using horizontal projection histogram for the Arabic word�E	
3 ��� ��;�A

12. This problem happens with some of the Arabic letters like “ ��&” and “�&”
(Fig. 23.5(3)).

13. IF step 6 does not select a new baseline,
14. THEN the arbitrary baseline is selected to be the baseline.

23.3.3 Delayed Strokes Detection

Many of the Arabic characters share the same primary part and are distinguished
from each other by the secondary parts, which we call in this paper “delayed strokes”
(shown in Fig. 23.6, in red). Delayed strokes are a well-known problem in on-line
handwriting recognition. These strokes introduce additional temporal variation to
the on-line sequence, because the writing order of delayed strokes is not fixed and
varies among different writers. Hence, detecting and removing delayed strokes is an
important key step in our system to allow meaningful on-line feature extraction.

A careful study of delayed strokes characteristics shows that all the delayed
strokes of handwritten Arabic can be divided into eight categories. All of these
categories share a set of common global properties, like the stroke’s dimensions,
direction, number of points, trace duration, and the vertical distance from the base-
line. Figure 23.6 shows some examples of all of these categories where each delayed
stroke is labeled with the number of the category to which it belongs.

The main differences between the delayed strokes categories can be summarized
in the following description of each category:
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Fig. 23.6 Delayed strokes
categories

1. Single dot or connected two-dots stroke that is fully contained above or below
a primary stroke and is characterized by its small area, short trace duration, and
not being within the range of the baseline.

2. Single dot or connected two-dots stroke that shares the main characteristics of
(1), but is slightly drifted from its primary stroke.

3. Connected three-dot stroke that is fully contained like (1), but has a larger area
and different aspect ratio (around 1).

4. The “Hamza” stroke, which has similar characteristics as (3), but also has an
explicit zigzag shape that is clearly detected.

5. The “Hamza” stroke associated with the Arabic characters “ ” and “ ”, which is

located above or under a vertically straight primary stroke.
6. The “Maad” stroke associated with the Arabic character “ ”, which comes above

a vertically straight primary stroke and does not have the zigzag shape.
7. The slant straight stroke associated with the Arabic character “8”. It is the only

delayed stroke that may be written before its primary stroke.
8. The vertically straight stroke associated with the Arabic characters “ �*”,“*”, and

the ligature “
"
<”.

Once a stroke is detected to belong to any of the delayed strokes categories, it
is considered a delayed stroke that should be removed from the on-line sequence.
These delayed strokes are rearranged to be used for the lexicon reduction stage
described in the following section.

23.4 Lexicon Reduction

Lexicon reduction is the process of initially eliminating lexicon entries unlikely to
match the given test word. This process, lexicon reduction, has desirable effects not
only on the recognition time, but also on the recognition accuracy [7]. In our system,
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Fig. 23.7 Delayed strokes rearrangement and test word information

lexicon reduction is based on the number of primary strokes and the writing order of
the delayed strokes. The lexicon reduction method used in our system is described
in the following steps.

23.4.1 Test Word Information

First of all, the delayed strokes of the test word that are detected using the method
discussed in Sect. 23.3.3 are used to obtain the following two pieces of information:

1. The number of primary strokes (N). This is obtained by counting the number of
strokes that are not detected to be delayed strokes, i.e. primary strokes.

2. The delayed strokes sequence string (S). First, the writing order of the delayed
strokes is rearranged so that the delayed stokes to the right come first, as shown in
Fig. 23.6. The vertical position of each delayed stroke (up or down) is determined
by making use of the baseline information and the relative position of the delayed
stroke with respect to its primary stroke. The delayed strokes sequence is a string
that consists of downs (D) and ups (U) which represents the vertical positions of
the rearranged delayed strokes, as shown in Fig. 23.7.

Figure 23.7 shows two samples from the ADAB of the Arabic names “
�D��A �MV")�”

and “7)
 �! )� I
 7	
�”, where the detected delayed strokes and primary strokes are

shown in red and blue, respectively. The numbers on Fig. 23.7 describe the modified
writing order of the delayed strokes.

23.4.2 Lexicon Entries Information

In order to know which lexicon entries are unlikely to match the given test word to
be eliminated from the lexicon, we obtain two pieces of information for each lexicon
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entry. The first is the minimum number of strokes (Nmin). The minimum number of
strokes in a word is equal to the number of PAWs in it. For any Arabic word (single
word without spaces) the last character of every PAW (except for the last PAW of
the word) is guaranteed to be one of the following characters:

These characters, end-of-the-PAW letters, are the only Arabic letters that do not
come in the middle or at the beginning of a PAW. All the other Arabic letters do not
come at the end of a PAW unless they are already the last letter of the word. Thus, for
calculating the minimum number of non-diacritic components from a lexicon entry
ground truth, first, the number spaces that is not preceded by an end-of-the-PAW
letter is calculated “s”:

Nmin = Number of PAWs

= Number of End-of-the-PAW Characters of the word + s (23.3)

The second piece of information is the delayed strokes sequence regular ex-
pression (S∗). The number of delayed strokes (DS) associated with some Ara-
bic characters is not fixed, and varies among different writers within fixed lower
and upper bounds. For example, the Arabic character “ �C” delayed strokes may

be written in one triangle stroke, two strokes, or three dot strokes as shown in
Fig. 23.8.

For the lexicon entry, a regular expression (S∗) that describes all the possible
strings that describe the delayed strokes sequence is obtained. Table 23.2 shows all
the Arabic characters that have delayed strokes and their lower and upper bounds as
well as the regular expression part for each character, which is used to construct the
word delayed strokes sequences regular expression (S∗).

By iterating all the characters of the word, the regular expression (S∗) which
describes all the possible delayed strokes sequence strings is obtained, where the
vertical bars denote alternatives and the square brackets denote optional delayed
strokes.

These two pieces of information (Nmin and S∗) are obtained for all the lexicon
entries and stored off-line to increase the speed of the system.

23.4.3 Eliminating Lexicon Entries

For the test word, N and S are obtained, according to the methods explained before,
as well as the stored values of Nmin and S∗ for all the lexicon entries. For each
lexicon entry, if one of the following two conditions is satisfied, this lexicon entry
is eliminated from the lexicon:
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Fig. 23.8 Delayed strokes in
the Arabic character “ �C”

Table 23.2 Arabic characters delayed strokes

1. N < Nmin.
2. S does not match S∗.

In fact, delayed strokes are very sensitive to writer and writing style. A mistake
in the delayed stroke detection process that over-detects some primary stroke to be a
delayed stroke may result in the first condition (N < Nmin) to be satisfied by mistake
and the correct entry to be removed from the reduced output lexicon. Hence, it is
better to modify this condition to be N < Nmin − 2 (a looser condition).

Besides the delayed strokes detection errors, in many cases writers forget to write
some of the delayed strokes or write the same delayed stroke more than one time
(overwriting). In those cases, the second condition (S does not match S∗) may cause
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Table 23.3 Lexicon reduction example

the correct entry to be removed from the reduced output lexicon. Hence, this condi-
tion is modified so that if (S) does not match (S∗) the condition is still not verified
and considers if there is a possible slight edit on (S) that makes it match (S∗) or
not. This comparison is performed using a dynamic programming technique called
“minimum edit distance” [19], which is an algorithm that is used to measure the
amount of difference between two sequences (i.e., the edit distance). From this dis-
cussion, the lexicon entries are eliminated from the output lexicon if either of the
following two conditions is verified for the test word:

1. N < Nmin − 2.
2. The minimum edit distance between S and S∗ ≥ 2.

Table 23.3 shows some examples of the eliminated and kept lexicon entries for
the two test names of Fig. 23.7 (“

�D��A �MV")�” and “7)
 �! )� I
 7	
�”).

23.5 Feature Extraction

Feature extraction is a very important step in every recognition system. In this
phase of the system, the input data represented in the captured sequence of points
Pt (x(t), y(t)) are prepared to be used by the HMM classifier that needs temporal
information of the input data. In our system two types of on-line features are used,
besides a sliding-window-based off-line feature that makes use of the gradient com-
ponents of the image in different directions.
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Fig. 23.9 Writing direction
features

23.5.1 On-line Features

Writing Direction

This feature describes the local writing direction using the cosine and sin of α(t),
where α(t) for every point Pt in the sequence is the angle between the line connect-
ing P(t − 1) and P(t + 1) and the positive direction of the x-axis [8] as shown in
Fig. 23.9.

Vicinity Aspect Feature

Figure 23.10 shows the vicinity of a point Pt , containing Pt and the group of the
succeeding points, where the actual number of points of the vicinity (N ) in our
system is equal to nine points. This feature characterizes the height-to-width ratio
of the bounding box of the vicinity of Pt (Pt and its next N points) as shown in
Fig. 23.10. It is represented with A(t) [17], where:

A(t) = �y(t) − �x(t)

�y(t) + �x(t)
(23.4)

Experiments with the on-line recognition system discussed in this paper showed
that the size of the vicinity of each point (N ) depends on the resampling distance;
i.e., the shorter the resampling distance is, the more points are needed in the vicinity.
We have taken N = 9, and the on-line HMM feature vector (frame) is chosen to
contain the features of each consecutive 3 points.

A way to describe the dynamics of the signal, which has been adopted from
speech recognition, is the use of delta and acceleration features [3] which are ap-
proximations to the derivatives of the observation vector with respect to time. Let
Ot denote a feature vector of the current frame t . There is a delta feature vector �Ot

that describes time difference and an acceleration feature �2Ot that describes the
second time derivative, that is, approximations to the derivatives of the observation
vector with respect to time. The delta and acceleration coefficients are estimated
from equations described in [16]. The combination of Ot , �Ot , and �2Ot yields
a new enlarged feature vector O , so that the on-line feature vector (frame) length
is 9 (3(sinα(t), cosα(t),A(t)) + 3(delta features) + 3(acceleration features)). The
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Fig. 23.10 Aspect feature
(with N = 9)

combination of the feature vector with the delta and the acceleration features yields
a new enlarged on-line feature vector (frame) that has proved to increase the system
final recognition rate.

23.5.2 Off-line Features

The input data represented in the captured sequence of points Pt (x(t), y(t)) are
interpolated such that every on-line stroke represents a continuous writing contour
of black pixels. Then the data points are converted into a bitmap image f . Then
we apply a Gaussian mask that dilates the writing contour [12]. The image is then
resized to keep a fixed height (H ) while preserving the aspect ratio of the test word.
For feature extraction, the gradient operator [12] is applied to the bitmap image to
give two gradient components: strength |g(x, y)| and direction ∠g(x, y) for all the
points (x, y) of the image f . This is done by applying the Sobel operator [6] on the
image to extract the vertical and horizontal gradient components:

gx(x, y) = f (x + 1, y − 1) + 2f (x + 1, y) + f (x + 1, y + 1) − f (x − 1, y − 1)

− 2f (x − 1, y) − f (x − 1, y + 1) (23.5)

gy(x, y) = f (x − 1, y + 1) + 2f (x, y + 1) + f (x + 1, y + 1) − f (x − 1, y − 1)

− 2f (x, y − 1) − f (x + 1, y − 1) (23.6)

Here gx(x, y) and gy(x, y) are the x-direction and y-direction gradient compo-
nents at the location (x, y), respectively. Then the gradient strength and direction
are converted using (23.7) and (23.8).

∣
∣g(x, y)

∣
∣ =
√(

g2
x(x, y) + g2

y(x, y)
)

(23.7)

∠g(x, y) = tan−1
(

((gy(x, y))

(gx(x, y))

)

(23.8)



23 On-line Arabic Handwritten Word Recognition Based on HMM 573

Fig. 23.11 Projecting the
gradient vector g into the two
nearest Freeman directions

The gradient vector g(x, y) (expressed as strength |g(x, y)| and direction
∠g(x, y)) at each point (x, y) of the image is then decomposed into the eight Free-
man directions [6] shown in Fig. 23.11. The gradient vector is decomposed into
the eight Freeman directions by projecting the vector into the nearest two Freeman
directions as shown in Fig. 23.11.

After applying the gradient operator to the bitmap image and getting the pro-
jection of the gradient vectors of the image, eight images are obtained (each corre-
sponding to one of the Freeman directions), where each image is the projection of
the gradient vectors of the image into the corresponding Freeman direction. Then a
Gaussian mask h(x, y) is applied to each image of the eight, where:

h(x, y) = 1

(2πσ 2)
exp

(

− (x2 + y2)

(2σ 2)

)

(23.9)

Our sliding window features are going to be extracted from each image from
the obtained eight images (each corresponding to one of the Freeman directions),
besides the original image. Figure 23.12 shows the original image of an example
file from the on-line database ADAB after it has been converted to the off-line form
and its eight projection images.

Now, for each image of the nine (one original image plus eight projection im-
ages), a rectangular sliding window of a fixed width and without overlap is used
for feature extraction. A window that is too narrow may result in the content to be
improperly analyzed, while a window that is too wide may cause incorrect character
segmentation. The window is divided into seven cells. It is shifted from right to left
(in accordance with the Arabic writing direction) across the normalized gray level
script image to generate a feature vector (frame) at each shift position for all the
nine images as shown in Fig. 23.13.

In the figure H is the fixed height of the images (150 pixels), h is the fixed height
of all the cells (h = H/7), and w is the width of a frame, chosen to be 2 pixels.

Thus a feature vector (frame) of 63 features (9 images ∗ 7 cells per frame) that
represents the temporal input data for the offline HMM is obtained by calculating
Fi for each cell. Fi is the number of black pixels relative to the total area of the cell:

Fi = ni

(w ∗ h)
(23.10)

where ni is the number of black pixels in the cell i.
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Fig. 23.13 Sliding window
for one image

23.6 HMM and Training

23.6.1 HMM

The hidden Markov model (HMM) is a double stochastic process which can effi-
ciently model the generation of sequential data. HMMs have been successfully used
in speech and handwriting recognition. In our system, the same density HMM clas-
sifier without modification as implemented in the HTK Speech Recognition Toolkit
[9] is used for segmentation and recognition. However, we implement our own pa-
rameters of the HMM. HTK models the feature vector with a mixture of Gaussian
distributions and uses the Viterbi algorithm in the recognition phase, which searches
for the most likely sequence of characters given the input feature vector. HTK sup-
ports multiple steps in the recognition process: data preparation, training, recog-
nition and post-processing. The data preparation process supports only the speech
data, so we do not use HTK for this step which also includes lexicon reduction
(implemented using the task grammar), the dictionary, and the feature extraction
process.

There are basically two classes of HMM depending on the type of observation
sequence (feature vector) that HMM is trained to recognize: the discrete HMM,
where the observation is a discrete sequence, and the continuous HMM, where the
observation sequence can take continuous values. We use both types in different
stages of the system. The choice of using a discrete HMM in our system besides the
continuous HMM was to make use of its faster recognition speed.

Figure 23.14 shows the case of a 20-state left-to-right HMM which we chose for
all the continuous models in our system based on some experiments. Transitions
to the current and the next states only have been allowed. The same number of
states is adopted for all models and the same number of Gaussians as well, while
each HMM model represents at least one Arabic character as explained later in the
training section (Sect. 23.6.2).

Eighteen states of these are emitting states and have output probability distribu-
tions associated with them. HTK is principally concerned with continuous density
models in which each observation probability distribution is represented by a mix-
ture Gaussian density. In this case, for state j the probability bi(ot ) of generating
observation ot is given by (23.11):

bi(ot ) =
S∏

s=1

[
Ms∑

m=1

cjsmΨ (ost ;μjsm,Σjsm)

]γs

(23.11)
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Fig. 23.14 A 20-state left-to-right HMM

where Ms is the number of mixture components in state j for stream s, the exponent
γs is a stream weight and its default value is one, cjsm is the weight of the mth
component, and Ψ (o;μ,Σ) is a multivariate Gaussian with mean vector μ and
covariance matrix Σ , that is,

Ψ (o;μ,Σ) = 1√
((2π)n|Σ |)e

− 1
2 (o−μ)T Σ−1(o−μ) (23.12)

where n is the dimensionality of o.
Sixteen mixtures have been chosen after experiments to give a robust model for

all the characters and increase the performance of the continuous HMM. The tran-
sition matrix for this model has 20 rows and 20 columns. Each row will sum to one
except for the final row which is always all zero, since no transitions are allowed out
of the final state.

For the discrete HMM, after feature extraction, each feature vector is quantized
to the nearest codeword in the codebook. The codebook is generated from millions
of feature vectors extracted from the training data using the LBG algorithm [11].
Experiments have been conducted to choose the size of the codebook, and a code-
book of 256 codewords was found to be suitable for a good recognition rate while
maintaining a reasonable recognition time. A ten-state left-to-right HMM is adopted
for all discrete models.

23.6.2 Training

In our system, we use the two approaches of feature extraction: off-line and on-line.
In fact, experiments showed that our on-line feature extraction mode has an obvious
higher performance than the off-line one in terms of recognition rate, which is the
common case in the literature. The highest recognition rate achieved in the ICDAR
2009 off-line Arabic handwriting competition main test is 93.37 % and is achieved
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Table 23.4 Arabic classes based on the primary part of the characters

by the MDLSTM system [13], while the highest recognition rate achieved in the
ICDAR 2009 on-line Arabic handwriting competition main test is 98.99 % and is
achieved by the commercially available OCR product VisionObjects [4]. Hence, we
selected the off-line feature extraction mode to work as a preliminary stage that
selects a large number of candidates (best 50 candidates) from the reduced lexicon
to represent a small lexicon for the on-line mode HMM to work within. Having a
high number of output candidates (50 candidates), the HMM decoding of the off-line
stage takes a significant amount of time. This is why we used a discrete HMM model
for the off-line mode so that it takes a reasonable decoding time, and a continuous
HMM model for the on-line mode in order to make it accurate enough by avoiding
any quantization problems.

The main difference between the on-line HMM (continuous) and the off-line
HMM (discrete) in our system is that the on-line HMM is trained to recognize the
primary part of the words (without the delayed strokes), while the off-line HMM is
trained to recognize each character as a separate class.

For the on-line HMM, the Arabic characters which have a common primary part
and are only different in their delayed strokes, like the Arabic characters “C” and
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Fig. 23.15 (a) Example from the on-line training dictionary (without delayed strokes). (b) Exam-
ple from the off-line training dictionary (with delayed strokes)

“ �C”, should belong to the same class and are given the same label during the HMM

training, thus reducing the number of classes (HMM models) significantly. The on-
line HMM classes are shown in Table 23.4, plus some other symbols encountered
in the ADAB database like digits or the Latin letter “V”.

The word-based training dictionary of the on-line HMM can be generated by
iterating on the full lexicon words as follows, for all the lexicon words:

Convert the word’s characters into the corresponding classes without the delayed
strokes.

IF the produced characters sequence has not been written before in the dictionary,
THEN write it.

On the other hand, for the off-line HMMs, we have a separate class for each
Arabic character. Moreover, there is a special separate classes for each character if
it has a “Shaddah” diacritic; i.e., the Arabic character “en” when it comes with a
“haddah” (“ N�”) is a class apart from the other classes of “�” and “ ��”. The total

number of characters classes is 150, which corresponds to the number of Arabic
letters multiplied by the number of different shapes for each letter (initial, middle,
end, and isolated), plus some other symbols encountered in the ADAB database
like digits or the Latin letter “V”. The word-based training dictionary of the off-line
HMM can be generated by iterating the full lexicon words as follows, for all the
lexicon words:

Convert the word’s characters into the corresponding classes.
IF the produced characters sequence has not been written before in the dictionary,

THEN write it.
Examples from the on-line training dictionary (without delayed strokes) are

shown in Fig. 23.15(a) and from the off-line training dictionary (with delayed
strokes) in Fig. 23.15(b).
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Table 23.5 ADAB entries
that share the same primary
part

In Fig. 23.15(a), the on-line training dictionary, the characters that share the same
primary part (only different in delayed strokes) are given the same class label in
the dictionary. Hence, we can see in the dictionary that there are some different
characters that correspond to the same class, like the two classes marked in red in the
figure. They are of the same class (Beginning Nabra) although they are for different
characters (“Ba’a” and “Nun”). This leads to the fact that there are some different
words that correspond to the same sequence of classes (like the words “

�E �) � "� ��” and

“
�E �)� "�� ��”, for example).

This also means that for the small dictionary that is composed of the best 50
candidates that have resulted from the off-line mode HMM, the entries that share
the same primary part will be grouped together, so that the resulting dictionary size
may be a bit less than 50 candidates.

23.7 Post-processing

As discussed in Sect. 23.6, the HMM models of the on-line feature extraction mode
are based on removing the delayed strokes. Hence, the output of the on-line HMM
classifier will be the same for all the lexicon entries which look similar without
their delayed strokes, i.e., the entries which share the same primary part. We have
searched the database ADAB to find all the entries (Tunisian town names) that share
the same primary part but with different delayed strokes. Those town names are
shown in Table 23.5.

In this stage of the system, the result of on-line mode HMM is either one of two
cases. The first case is when the classification result of the on-line mode HMMs is
unique (corresponds to a candidate with a unique primary part), so there is no longer
a need to use the delayed strokes information to tell which candidate of the lexicon
corresponds to the result, as the primary part is valid for only one candidate.

The second case is when the classification result of the on-line mode HMM is
any of the entries shown in Table 23.5. The delayed strokes information is used to
decide which candidate of the candidates that share the same primary part is most
probable to be the test word. This is done by making use of the delayed strokes se-
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Fig. 23.16 On-line mode
HMMs and the problem of
lexicon entries that share the
same primary part

Table 23.6 System
performance on ADAB

quence minimum edit distance (MED) technique, which is discussed in the lexicon
reduction section (Sect. 23.4).

For example, let’s consider the test word in Fig. 23.16 “
�E �) �"�)� ��”. If the on-line

mode HMM classified it correctly, it will give the output entry. This is not a decisive
result, as the entry “

�E �) �"�)� ��” is one of the Table 23.5 entries that needs a decision that

tells if the correct result is “
�E �) �"�)� ��” or “

�E)
�
"�)� ��”. According to our method, the entry

with a delayed strokes regular expression that is more probable to match the test
word delayed strokes sequence is selected to be the system result. In our example,
the entry “

�E �)�"�)� ��” is found to have the minimum delayed strokes sequence MED, so

it is selected to be the output candidate of the system, which is the right decision.

23.8 Results

We applied our system on the on-line database ADAB of Tunisian town names [4].
Table 23.6 shows the test results in each set of the ADAB, where, for each test, the
data of the other two sets are used for training.

Table 23.7 reports the results of the other HMM-based systems that participated
in the on-line Arabic handwriting recognition competition 2009 (ICDAR 2009) [4].
It shows that the recognition rates obtained by our proposed system clearly outper-
form those obtained by the other HMM-based systems in the competition.

Table 23.8 reports the recognition rates achieved by the participant systems of
the on-line Arabic handwriting recognition competition 2009 (ICDAR 2009) [4],
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Table 23.7 Results of the HMM-based systems in ICDAR 2009 on-line Arabic handwriting
recognition contest

Table 23.8 Results of the
ICDAR 2009 on-line Arabic
handwriting recognition
contest

besides our system. The systems are ordered by the top 1 results on test set 4, where
all the systems (including ours) are trained with sets 1 to 3 of the ADAB. The table
shows that the recognition rate obtained by our proposed system clearly outperforms
those obtained by the other HMM-based systems, ordered by the top 1 results on
test set 4. Also, our system comes at the top of the table only after the commercially
available OCR product VisionObjects.

There are several reasons why our system gives a better performance than most
of the other on-line Arabic handwriting recognition systems in the literature. The
most important reason is the detection and then the removal of the delayed strokes
from the test word before classification by the main (on-line) HMM classifier. The
removal of the delayed strokes improves the performance of our system because
the delayed strokes are very sensitive to the writing styles of the different writers;
thus, their removal reduces the temporal variation of the writing order. Moreover,
the removal of the delayed strokes has significantly reduced the number of the in-
put classes to the on-line HMM classifier, leading to better recognition performance
in terms of both recognition accuracy and recognition time. Problems with delayed
strokes detection such as confusing a primary stroke with a delayed stroke or failing
to detect a delayed stroke may lead to a wrong classification result. The solution to
those problems is the use of the off-line HMM classifier to classify the input word
along with its delayed strokes as an off-line image. Thus, the top 50 candidates pro-
duced by the off-line HMM classifier are free from the delayed strokes misdetection
problems.
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Fig. 23.17 Sample test file
from the ADAB

Fig. 23.18 Example test file
from the ADAB database,
where the detected delayed
strokes are in red

The second main reason for the proposed system’s good performance is the lexi-
con reduction stage. Lexicon reduction improves the system’s performance because
it eliminates lexicon entries that could have been wrongly selected by the classifier.
For example, if we consider the test word “7���

"
” shown in Fig. 23.17 to be tested

in our system while working without a lexicon reduction stage, the correct candi-
date “7���

"
” is not chosen to be one of the best 50 candidates of the off-line mode

HMM classifier, leading the on-line mode HMM to give a wrong classification re-
sult “�WX�	�

"
”. The use of lexicon reduction eliminates many similar and confusing

words from the lexicon, which causes the word “7���
"
” to be selected among the

off-line mode best 50 candidates, and then to be the final result of the system. More-
over, lexicon reduction simplifies the classification phase, by reducing the number
of possible candidates so that it decreases the decoding time of the HMM and, con-
sequently, the whole system. Experiments have showed that the lexicon reduction
stage has reduced the system recognition time by around 40.

The performance of the lexicon reduction stage is further enhanced by relax-
ing the conditions of elimination from the lexicon (as explained in Sect. 23.4.3)
such that they tolerate delayed strokes detection and writing errors. For example, al-
though the test word “+ ��� �E	� U
���” shown in Fig. 23.18 has one extra delayed stroke

that is written by mistake and one missing delayed stroke, the lexicon reduction does
not eliminate the correct entry “+ ��� �E	� U
���” from the lexicon, and the final result

of the system is correct.
The third reason for the success of the proposed system is the careful choice

of both the off-line and the on-line features. Good feature extraction mechanisms
are crucial for the success of any recognition system. The use of gradient features
with the off-line HMM classifier and local direction features with the on-line HMM
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Fig. 23.19 Sample test file
from the ADAB

classifier has been a fundamental reason behind the success of the proposed system.
The delta and acceleration features proved to be very effective in improving the
system’s performance.

Unfortunately, the dependence of the proposed system on the delayed
strokes detection results in errors in some cases. For example, the test word
“�� �,YZR S
T0 I
 7	
�” shown in Fig. 23.19 has some missing delayed strokes caused

by mistakes of the writer and one primary stroke detected as a delayed stroke. This
results in a delayed strokes sequence S = D D U D U, while the delayed strokes reg-
ular expression of the lexicon entry “�� �,YZR S
T0 I
 7	
�” is S∗ = D [D] D [D] D [D]

U U D, which makes a MED with an S of three. So the entry “�� �,YZR S
T0 I
 7	
�”

is initially eliminated from the lexicon, and the system fails to classify the test word
correctly.

23.9 Conclusions

We presented a new HMM-based recognition system for Arabic handwriting that
uses a combination of powerful on-line and off-line feature extraction methods with
continuous and discrete HMMs. The use of gradient features with the off-line HMM
classifier and local direction features with the on-line HMM classifier has been a
fundamental reason behind the success of the proposed system. The delta and ac-
celeration features are used as approximations to the derivatives of the observation
vectors with respect to time, and they have proved to be very effective in improv-
ing the system’s performance. On the other hand, we solved the well-known prob-
lem in on-line handwriting recognition of the varying writing order among different
writers by introducing a new delayed strokes detection and removal mechanism.
Delayed strokes are also used for our newly developed algorithm for lexicon re-
duction, which depends on the formation of the delayed strokes sequence of the
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test word and compares it with the delayed strokes sequence of each lexicon en-
try. Removing the delayed strokes has not only increased the on-line mode HMM
performance by reducing the temporal variation, but it has also increased the perfor-
mance of the on-line mode HMM by significantly reducing the number of classes by
grouping the characters of the same primary part into one class. The lexicon reduc-
tion has increased the performance of the system in terms of recognition speed by
reducing the size of the HMM lexicon, and in terms of recognition rate by initially
eliminating the wrong lexicon entries that would have been chosen by the classi-
fier by mistake. We solved the problem of the delayed strokes being very sensitive
to writer and writing style by relaxing the lexicon reduction pruning conditions to
tolerate the detection and writing errors of the delayed strokes. The off-line mode
HMM is chosen to be a preliminary stage for the on-line mode HMM and to recog-
nize the words with their delayed strokes, so that its results will not be affected by
the delayed strokes detection errors. Also, the careful choice of both the number of
states as well as the number of Gaussians of the off-line and on-line HMM models
is an important step that directly affects the system’s recognition rate. Our system
is evaluated using the database ADAB, and very high recognition rates are achieved
that clearly outperform those obtained by the other Arabic HMM-based systems,
and come second after the highest recognition rate achieved on this database in the
2009 on-line Arabic handwriting recognition competition.
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