
7 Beyond Black and Scholes

The Black–Scholes (BS) model for the value V (S, t) of a vanilla option is based

on some assumptions on the market. In particular, the BS model assumes

the price St of the asset on which the option is written to follow a geometric

Brownian motion with a constant volatility σ. Further, transaction costs are

neglected, and trading of the underlying is supposed to have no influence on

the price St. As has been discussed extensively, the value function V (S, t) for

standard options (“plain vanilla”) of the European type, satisfies the Black–

Scholes equation (1.2),
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∂S2
+ rS
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∂S
− rV = 0 . (BSE)

Solutions of this linear equation are subject to the terminal condition

V (S, T ) = Ψ(S), where Ψ defines the payoff.

The BS-model is the core example of a complete market. In these idealized

markets, the risk exposure to variations in the underlying can be hedged away.

The corresponding risk strategy is unique. Hence vanilla options modeled by

Assumption 1.2 have a unique price, given by the costs of the replication

strategy (−→ Appendix A4). Essentially, Chapters 4 through 6 have applied

numerical methods to complete markets.

For the more realistic incomplete markets, there are no perfect hedges, and

a risk remains. Each hedging strategy leads to a specific model with its own

price [ConT04]. The hedger compensates the remaining risk in incomplete

markets by charging an additional risk premium. Hence the value function

or expected value is not the price for which the option is sold. Depending on

the way how the comfortable assumption of completeness of the BS-market

is lost, different models are set up, calling for different numerical approaches.

This Chapter 7 is devoted to computational tools for incomplete markets.

Relaxing several of the assumptions of the Black–Scholes market, nonli-

near extensions of the BS equation can be derived. These “nonlinear Black–

Scholes type equations” are of the form
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− rV = 0 . (7.1)

In this class of models, the volatility σ̂ is a function that may incorporate

several types of nonlinearity. The standard PDE (BSE) is included for σ̂ ≡ σ.
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In Section 7.1 we describe three scenarios leading to three different functi-

ons σ̂ of the volatility. A nonlinear PDE as (7.1) requires special numerical

treatment, which will be the focus of Section 7.2.

Another stream of research beyond Black and Scholes is devoted to jump

processes (Section 7.3). One of the numerical approaches is based on partial

integro-differential equations (PIDE). Some highly efficient methods apply

the Fourier transform; a basic approach is discussed in Section 7.4.

7.1 Nonlinearities in Models for Financial Options

In this section we briefly discuss three sources of nonlinearity in (7.1). We

start with transaction costs based on Leland’s approach [Lel85], and touch

the more sophisticated model of Barles and Soner [BaS98]. Then we turn

to specifying ranges of volatility. Finally we address the feedback by market

illiquidity.

7.1.1 Leland’s Model of Transaction Costs

Basic for the Black–Scholes model is the idea of rebalancing the portfolio

continuously. But in financial reality this continuous trading would cause ar-

bitrarily high trading costs. Keeping transaction costs low forces to abandon

the optimal Black–Scholes hedging. But without the ideal BS hedging, the

model suffers from hedging errors. To compromise, the hedger searches a ba-

lance between keeping both the transaction costs low and the hedging errors

low.

Suppose that instead of rebalancing continuously, trading is only possible

at discrete time instances with time step Δt apart (Δt fixed and finite). We

assume a transaction cost rate proportional to the trading volume νS:

trading ν assets costs the amount c|ν|S

for some cost parameter c.

Here we sketch a heuristic derivation of a model due to [Lel85], [HoWW94].

The discussion of this model parallels that for the Black–Scholes model, now

adapted to the discrete scenario.1 The stochastic changes of the asset with

price S and of a riskless bond with price B are

ΔS = μSΔt + σSΔW

ΔB = rBΔt .

The portfolio with value Π is taken in the form

1 All other BS-assumptions remain untouched [Kwok98]. The following ana-

lysis uses or modifies Appendix A4 with (A4.1), (A4.3), (A4.8). Δ means the

increment, and not the greek ∂V

∂S
.
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7.1 Nonlinearities in Models for Financial Options

Π = αS + βB ,

with α units of the asset and β units of the bond. Suppose the portfolio is self-

financing in the sense SΔα + BΔβ = 0, which is sufficient for ΔΠ = αΔS +

βΔB. Further assume that trading is such that the portfolio Π replicates the

value of the option.

By definition, ν = Δα. After one time interval, ν = Δα assets are traded,

with transaction costs cS|Δα|. The change in the value of the portfolio is

ΔΠ = αΔS + βΔB − cS|Δα|

= (αμS + βrB)Δt + ασSΔW − cS|Δα| .

Let V be the value function of the option. Itô’s lemma adapted to the discrete

scenario gives

ΔV =
∂V

∂S
ΔS +

(
∂V

∂t
+

σ2

2
S

2
∂2V

∂S2

)
Δt .

By the no-arbitrage principle ΔV = ΔΠ holds for the replicating and self-

financing portfolio. And coefficient matching will give further information.

But first let us approximate the Δα-term.

From BS theory we expect α ≈ ∂V

∂S
. So ν = Δα will be approximated by

∂V (S + ΔS, t + Δt)

∂S
−

∂V (S, t)

∂S

=
∂2V (S, t)

∂S2
ΔS +

∂2V (S, t)

∂S ∂t
Δt + t.h.o. ,

invoking Taylor’s expansion. After substituting ΔS we realize that the term

of lowest order is

σS
∂2V (S, t)

∂S2
ΔW .

In summary, the transaction costs in ΔΠ can be approximated by

−cS|Δα| = −cσS
2

∣∣∣∂2V (S, t)

∂S2

∣∣∣ |ΔW |+ t.h.o. ,

which is path-dependent. Leland [Lel85] boldly suggested to approximate

|ΔW | ≈ E(|ΔW |). Exercise 7.1 tells

E(|ΔW |) =
√

Δt

√
2

π
.

In this way, the trading cost term −cS |Δα| is approximated by the determi-

nistic expression

−cσS
2

∣∣∣∂2
V (S, t)

∂S2

∣∣∣ √Δt

√
2

π
. (7.2)
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This may be seen as further assumption, motivated by the above arguing.

The approximation (7.2) of the transaction costs and its artificial parameter√
2/π ≈ 0.8 reflect the lack of a unique price in incomplete markets.

With this somewhat artificial approximation (7.2) of the trading costs

−cS|α|, coefficient matching of ΔV = ΔΠ leads to match the remaining

stochastic terms,

ασSΔW = σS
∂V

∂S
ΔW ,

or α = ∂V

∂S
, which is the famous “delta hedging,” consistent with the modeling

of Δα above. The remaining terms are deterministic. Use βB+S
∂V

∂S
= Π = V

to obtain (
μS

∂V

∂S
+ rV − rS

∂V

∂S

)
Δt− cS|Δα|

=

(
∂V

∂t
+

σ2

2
S

2
∂2V

∂S2
+ μS

∂V

∂S

)
Δt

(7.3)

The μ-terms cancel out. (7.3) with transaction costs replaced by (7.2) lead

to the variant of the Black–Scholes equation. With the coefficient

γ :=

√
2

π

(
2c

σ
√

Δt

)
(7.4)

the resulting equation is

∂V
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+
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∂S2
+
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σ

2
S

2
γ

∣∣∣∂2V

∂S2

∣∣∣ + rS
∂V

∂S
− rV = 0 (7.5)

Formally, this becomes the standard Black–Scholes equation with a modified

volatility

σ̂
2(Γ ) := σ

2[1 + γ sign(Γ )] , (7.6)

with Γ := ∂
2
V

∂S
2 . For convex payoff, this amounts to augment the volatility to

a constant σ̂ > σ (Leland’s scenario). In this case Γ does not change sign,

and the PDE (7.5) is again linear. But note that for instance for barrier

options, Γ does change sign, and the PDE is nonlinear and of the general

type of equation (7.1). For c = 0 (no transaction costs) (7.5) specializes to

the BS-equation. To have a well-posed PDE, Δt must be such that γ < 1. In

particular, Δt → 0 does not make sense.

7.1.2 The Barles and Soner Model of Transaction Costs

Barles and Soner [BaS98] assume a price process dSt = St(μ dt+σ dWt), with

constant volatility σ, 0 ≤ t ≤ T , and model transactions using the following

variables:

αt shares of the asset with price St,

βt shares of the bond,
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7.1 Nonlinearities in Models for Financial Options

Lt cumulative transfer form cash to stock, nondecreasing, L(0) = 0,

Mt cumulative transfer from stock to cash, nondecreasing, M(0) = 0.

Consequently,

αt = α0 + Lt −Mt

βt = β0 −

∫
t

0

Sτ · (1 + c) dLτ +

∫
t

0

Sτ · (1− c) dMτ +

∫
t

0

rβτ dτ
.

That is, in both cases buying and selling of stocks, transaction costs
∫

Sτ c

are charged to β, where c again denotes proportional transaction costs. The

further derivation of [BaS98] is based on a utility function. The final result is

∂V

∂t
+
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2
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∂S2
·

[
1 + f

(
er(T−t)

a
2
S
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∂S2
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+ rS

∂V

∂S
− rV = 0 (7.7)

where a is a parameter representing proportional transaction costs and risk

aversion. The function f is the unique solution of the ODE

df(x)

dx
=

f(x) + 1

2
√

xf(x) − x
with f(0) = 0 .

The resulting function f is singular at x = 0 (−→ Exercise 7.2). Figure

7.1 shows the difference between the BS-solution and the solution of the

corresponding nonlinear model (7.7).

7.1.3 Specifying a Range of Volatilities

The two above models of transaction costs come up with a nonlinear volatility

function σ̂(Γ ). Usually this function is not known, and is subject to specu-

lation (modeling). It will be easier to specify a range of volatility, assuming

that σ̂ lies within an interval or band

0 < σmin ≤ σ ≤ σmax < 1 .

This is the uncertain-volatility model of [AvP94], [AvLP95], [Lyo95].

The derivation starts as above, leading to (7.3) with c = 0. (Transaction

costs are not considered here.) Formally, the result is the Black–Scholes equa-

tion (BSE), except that σ is no constant, but is considered as a stochastic

variable σ(t):

∂V

∂t
+

1

2
σ(t)2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

This is a PDE with stochastic control parameter σ(t). There is an ambitious

theory for such controlled diffusion processes, see the monograph [Kry80]. To

avoid the use of this methodology, we adopt a simplified arguing, similar as

in [Wil98].
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Fig. 7.1. V (S, T−t): difference between solutions of (BSE) and (7.7); K = 100, r =

0.1, σ = 0.2, a = 0.02, T = 1. With kind permission of Pascal Heider.

Using an argumentation of Black and Scholes, we construct a portfolio of

one option (value V ), and hedge it with −α units of the underlying asset,

Π = V − αS .

Assuming a change in the value of this portfolio in the form ΔΠ = ΔV −αΔS,

we have as above

ΔΠ =
∂V

∂S
ΔS +

(
∂V

∂t
+

σ
2

2
S

2
∂

2
V

∂S2

)
Δt− αΔS .

The choice α = ∂V

∂S
eliminates the risk represented by the ΔW -terms. This

results in

ΔΠ =

(
∂V

∂t
+

σ2

2
S

2
∂2V

∂S2

)
Δt .

Note that the return ΔΠ of the portfolio still depends on the unknown sto-

chastic σ(t).
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7.1 Nonlinearities in Models for Financial Options

We now define artificially two specific functions σ+(t) and σ−(t) chosen

such that the return ΔΠ(σ) increases by the maximum amount, or by the

least amount:

σ+(t) chosen such that ΔΠ(σ+) is a maximum,

σ−(t) chosen such that ΔΠ(σ−) is a minimum.

These returns reflect the best case and the worst case as seen by the holder.

For every function σ(t) the no-arbitrage principle holds. Hence both cases

σ+(t) and σ−(t) result in a return ΔΠ = rΠΔt. This can be summarized as

σ
+ maximizes max

σmin≤σ≤σmax

ΔΠ(σ) = rΠΔt

σ
− minimizes min

σmin≤σ≤σmax

ΔΠ(σ) = rΠΔt

In view of the expression for ΔΠ(σ), the two artificial functions σ+, σ− enter

via the term

σ
2
∂2V

∂S2

For ΔΠ to become a maximum or minimum, σ+ (or σ−) will equal σmin or

σmax, depending on the sign of Γ = ∂
2
V

∂S
2 . To become a maximum, set

σ
+(Γ ) :=

{
σmax if Γ ≥ 0

σmin if Γ < 0 .
(7.8a)

And to become a minimum, set

σ
−(Γ ) :=

{
σmax if Γ < 0

σmin if Γ ≥ 0 .
(7.8b)

This defines two specific control functions σ, which after substitution into

the PDE ΔΠ(σ) = rΠΔt yields two nonlinear PDEs

∂V

∂t
+

1

2
σ̂(Γ )2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (7.9)

with σ̂ = σ+ and σ̂ = σ− from (7.8). Let us denote the corresponding soluti-

ons V + and V −. Since σ+ yields the maximum return, we expect V ≤ V +,

and similarly, V − ≤ V . This provides the range V − ≤ V ≤ V + for the option

price.

In the special case of vanilla options, the convexity of V (S, .) implies

Γ ≥ 0 and hence σ+ = σmax and σ− = σmin; the nonlinearity is not effective

then. The monotonicity of V with respect to σ is clear for vanilla options,

but is not valid, for example, for barrier options. And convexity of V (S, .)

is lost for barrier options, butterfly spreads, digital options, and many other

options [PoFV03]. The great potential of the uncertain-volatility model is

illustrated by Figure 7.2. For the example of a butterfly option, and an un-

certainty interval 0.15 ≤ σ ≤ 0.25 we show the band V − ≤ V ≤ V +, with two
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Black–Scholes curves therein. The payoff of a butterfly spread is illustrated

schematically in Figure 1.24(d), see also Exercise 7.4. The functions V −, V +

were calculated with the methods explained in Section 7.2. For barrier op-

tions, the success of the method is doubtful because of the high sensitivity

w.r.t. σ close to the barrier. Then the bandwidth may be so large that it is

not of practical use. Such an example is shown in Figure 7.3.

7.1.4 Market Illiquidity

As pointed out by [FrS97], [ScW00], [FrP02], the assumption that a big in-

vestor can trade large amounts of an asset without affecting its price, is not

realistic. There will be a feedback, and the assumption of an infinite market

liquidity may fail. [FrS97], [ScW00] introduce a market liquidity parameter

λ, with 0 ≤ λ ≤ 1, and derive the nonlinear PDE

∂V

∂t
+

1

2

σ2S2

(1− λ
∂
2
V

∂S
2 )2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 . (7.10)

Here we do not discuss further details. Note that this model is also of the

form of equation (7.1).

7.2 Numerical Solution of Nonlinear Black–Scholes

Equations

All the nonlinear PDEs of Section 7.1 fall under the general type of equation

∂V

∂t
+

1

2
σ̂

2(S, t,
∂2V

∂S2
)S2

∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0 , (7.11)

which we are going to solve next. In this form, equation (7.11) represents the

value of a European-style option. There is no analytical solution known for

(7.11), so a numerical approach is needed also in the European case.

For an American-style option, a penalization can be applied, and an ad-

ditional nonlinear term appears in (7.11). A classical penalty approach (e.g.,

[ElO82], [FoV02]) is to add the penalty p̂max(Ψ − V, 0), where Ψ denotes

the payoff, and the penalty parameter p̂ is chosen large, say, p̂ = 106. The

resulting PDE is

∂V

∂t
+

1

2
σ̂

2(S, t,
∂2V

∂S2
)S2

∂2V

∂S2
+(r−δ)S

∂V

∂S
−rV +p̂ max(Ψ−V, 0) = 0 . (7.12)

In the continuation region, for V ≥ Ψ , the penalty term is zero, and (7.11)

results. For p̂ →∞, think of dividing the equation by p̂ to be convinced that

V sticks close to Ψ . In Chapter 4, we could conserve the linear equation by

the elegant complementarity approach. In (7.12) the PDE is nonlinear by
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7.2 Numerical Solution of Nonlinear Black–Scholes Equations
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Fig. 7.2. V (S, 0) of a European butterfly spread, uncertain-volatility model of Avel-

laneda at al., Section 7.1.3; with K = 100, K1 = 85, K2 = 115, r = 0.13, σmin =

0.15, σmax = 0.25, δ = 0.03, T = 0.27. Four curves are shown: the bounding func-

tions V +
and V − as heavy lines, and V with dotted curves of the standard Black–

Scholes model with constant volatilities σ = 0.15 (the steeper curve) and σ = 0.25
(the lower profile).

the volatility function σ̂, and thus the nonlinear penalty term does not cause

further harm.

7.2.1 Transformation

The transformation (4.3) of Chapter 4 is not valid here, because the volatility

σ̂ is no longer constant. But assuming constant r, δ, the independent variables

S, t can be transformed similarly. The transformation from variables S, t, V

to x, τ, u is

x := log
S

K
, τ :=

1

2
σ

2

0
· (T − t) , u(x, τ) := e−x

V (S, t)

K
. (7.13)

σ0 is a scaling parameter. As a result of the transformation, VS = u+ux and

SVSS = ux + uxx. Here we use the notations VS , VSS , uτ , ux, uxx for partial

derivatives. And (7.11) becomes
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− uτ + σ̃
2(x, τ, ux, uxx)(ux + uxx) +

2(r − δ)

σ2

0

ux −
2δ

σ2

0

u = 0

with σ̃ :=
1

σ0

σ̂

(
S, t,

∂2V

∂S2

)
=

1

σ0

σ̂

(
Kex

, T −
2τ

σ2

0

,
e−x

K
(ux + uxx)

)
.

(7.14)

(Transform (7.12) in Exercise 7.3.) For example, for Leland’s model,

σ̃
2 = 1 + γ sign(ux + uxx) .

For all of the models of Section 7.1 the nonlinearity is of the type

σ̃
2(x, τ, s) · s with s := ux + uxx , (7.15)

with σ̃ from (7.14).

The payoffs Ψ of the options are transformed as well. Let u∗ denote the

transformed payoff. For the payoff of a vanilla put,

V (S, T ) = Ke
x

u(x, 0) = (K − S)+ = K(1− ex)+

and hence
u(x, 0) = u

∗(x) := (e−x − 1)+ .

Similarly, for a vanilla call,

u(x, 0) = u
∗(x) := (1− e−x)+ .

This is similar for exotic options (−→ Exercise 7.4).

Finally, boundary conditions are chosen (as in Section 4.4) and transfor-

med. For example, applying (4.18) for a vanilla call of the European type,

u(xmax, τ) =
e−xmax

K
V (Smax, t)

=
e−xmax

K
(Smaxe

−δ(T−t) −Ke−r(T−t))

= e−δ(T−t) − exp(−r(T − t)− xmax)

= exp(−τ
2δ

σ2

0

)− exp(−τ
2r

σ2

0

− xmax)

u(xmin, τ) = 0 .

For a vanilla put and Smin ≈ 0 one may choose

u(xmin, τ) =
1

K
e−xminKe−r(T−t) = exp(−τ

2r

σ2

0

− xmin)

u(xmax, τ) = 0 .

For vanilla American-style options with penalty formulation (7.12), the non-

zero boundary conditions are just that u is in contact with the payoff,

u(xmin) = u
∗(xmin) = e−xmin − 1 for a put, and

u(xmax) = u
∗(xmax) = 1− e−xmax for a call.
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7.2 Numerical Solution of Nonlinear Black–Scholes Equations

7.2.2 Discretization

Finite differences in a standard fashion as in Chapter 4, with the same grid,

lead to nonlinear equations for the vector w(ν) of approximate values at time

level τν = τν−1 + Δτ . The equidistant x-spacing with mesh size Δx consists

of m subintervals, see Section 4.2.2. The components w0 and wm are defined

by boundary conditions. The finite differences include

δxwi,ν :=
wi+1,ν − wi−1,ν

2Δx

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

where Δx2 is understood as (Δx)2. For the discretization replace s by s̄ with

s̄i,ν := (δx + δxx)wi,ν =
wi+1,ν − wi−1,ν

2Δx
+

wi+1,ν − 2wi,ν + wi−1,ν

Δx2

Substituting into the PDEs is the next step. Here we confine ourselves to the

European case (7.11); the discretization of (7.12) is analogous and left to the

reader. Define

Li,ν :=σ̃
2(xi, τν , δxwi,ν , δxxwi,ν)(δxwi,ν + δxxwi,ν)

+
2(r − δ)

σ2

0

δxwi,ν −
2δ

σ2

0

wi,ν

to arrive at the θ-approach

−wi,ν+1 + wi,ν

Δτ
+ θLi,ν+1 + (1− θ)Li,ν = 0 . (7.16)

Recall that this includes Crank–Nicolson for θ = 1

2
, and for θ = 1 the fully

implicit Euler (BDF). The σ̃ of the above examples is represented by the

discretization σ̃(xi, τν , s̄i,ν) with

s̄i,ν = wi−1,ν

(
−

1

2Δx
+

1

Δx2

)
−

2

Δx2
wi,ν + wi+1,ν

(
1

2Δx
+

1

Δx2

)

= α wi−1,ν −
2

Δx2
wi,ν + β wi+1,ν

(7.17a)

where we denote

α := −
1

2Δx
+

1

Δx2
, β :=

1

2Δx
+

1

Δx2
(7.17b)

and reuse the notation σ̃ for the three-argument version. The discretized

version of the operator Li,ν is now

Li,ν = σ̃
2(xi, τν , s̄i,ν)s̄i,ν +

r − δ

σ2

0
Δx

(wi+1,ν − wi−1,ν)−
2δ

σ2

0

wi,ν (7.18)
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and the θ-method reads

−wi,ν+1 + wi,ν + θΔτLi,ν+1 + (1− θ)ΔτLi,ν = 0 . (7.19)

With the vector notation w(ν) as in Chapter 4 this is written

F (w(ν+1)
, w

(ν)) = 0 .

For the fully implicit BDF method (θ = 1), the ith equation of the vector

equation F = 0 reads

Fi =− w
(ν+1)

i
+ w

(ν)

i

+ Δτ

[
σ̃

2(xi, τν+1, αw
(ν+1)

i−1
−

2

Δx2
w

(ν+1)

i
+ βw

(ν+1)

i+1
)·

(αw
(ν+1)

i−1
−

2

Δx2
w

(ν+1)

i
+ βw

(ν+1)

i+1
)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ

σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1

]
= 0

(7.20a)

For i = 0 and i = m, boundary conditions enter. Their basic structure is

F
(ν)

0
:= u(xmin, τν)− w

(ν)

0

F
(ν)

m
:= u(xmax, τν)− w

(ν)

m
.

(7.20b)

For the θ-method (7.19) they enter in the form θF (ν+1) + (1 − θ)F (ν). The

nonlinear equation F (w(ν+1), w(ν)) = 0 with components defined by (7.20)

represents a discretization of (7.11). It is solved iteratively by Newton’s me-

thod.

7.2.3 Convergence of the Discrete Equations

The above numerical scheme is of the form

F (Δτ, Δx, ν, i, wi,ν , w̃) = 0

where w̃ stands for the vector of all wk,l. For such a scheme convergence to

the unique viscosity solution (−→ Appendix C5) can be proved, provided F

satisfies three conditions [BaDR95], namely,

∗ stability,

∗ consistency, and

∗ monotonicity.

Not for the numerical scheme but for the equation an additional property

must be assumed, namely, the strong uniqueness. For the uniqueness we refer

to the special literature [CrIL92].

The proof that for a particular scheme all of these three criteria are sa-

tisfied, can be quite involved [PoFV03], [Hei10], [HeS10]. Checking stability
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and consistency is rather standard. Here we concentrate on the monotonicity

of the scheme, which is a new aspect as compared to the investigations for

the linear equation in Chapter 4.

Definition 7.1 (monotone scheme)

A discretization F (w(ν+1), w(ν)) is monotone if for all i = 0, . . . , m

(a) Fi(w
(ν+1) + ε

(ν+1)
, w

(ν) + ε
(ν)) ≥ Fi(w

(ν+1)
, w

(ν))

for all

ε
(ν+1) = (0, . . . , 0, ε

(ν+1)

i−1
, 0, ε

(ν+1)

i+1
, 0, . . . , 0) ≥ 0

ε
(ν) = (0, . . . , 0, ε

(ν)

i−1
, ε

(ν)

i
, ε

(ν)

i+1
, 0, . . . , 0) ≥ 0 ,

and

(b) Fi(w
(ν+1) + ε

(ν+1)
, w

(ν)) ≤ Fi(w
(ν+1)

, w
(ν))

for all

ε
(ν+1) = (0, . . . , 0, ε

(ν+1)

i
, 0, . . . , 0) ≥ 0 .

Translated into the fully implicit scheme (7.20), the condition (a) of mo-

notonicity reads

Fi(w
(ν+1)

i
, w

(ν+1)

i−1
+ ε1, w

(ν+1)

i+1
+ ε2, w

(ν)

i
+ ε3) ≥

Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

for scalar ε1, ε2, ε3, ε. Because of transitivity, it suffices to show separately

(a1) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
+ ε, w

(ν+1)

i+1
, w

(ν)

i
) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

(a2) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
+ ε, w

(ν)

i
) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

(a3) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
+ ε) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

for (a) to hold, and for (b)

Fi(w
(ν+1)

i
+ ε, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
) ≤ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
) .

Next we check under which conditions the scheme (7.20) is monotone.

[Hei10] has shown that the scheme converges whenever the nonlinear term

σ̃2(x, τ, s)s satisfies conditions (i)–(iii):

Theorem 7.2

Assume σ̃2(x, τ, ux, uxx) in the form σ̃2(x, τ, s), with s from (7.15), and

(i) σ̃2(x, τ, s)s is continuous and monotone increasing in s,

(ii) there exists a constant c+ > 0 such that for all s and ε > 0

σ̃
2(x, τ, s + ε) · (s + ε) ≥ σ̃

2(x, τ, s) · s + c+ε

(iii) Δx is small enough such that
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c+

2−Δx

Δx
−

2(r − δ)

σ2

0

≥ 0 and c+

2 + Δx

Δx
+

2(r − δ)

σ2

0

≥ 0

Then the fully implicit BDF scheme (7.20) converges to the viscosity

solution of (7.11).

Proof: Here we confine ourselves to the proof of monotonicity. As noted above,

we can proceed componentwise and check (a1), (a2), (a3), and (b) separately.

We begin with 0 < i < m.

To show (a1), perturb w
(ν+1)

i−1
→ w

(ν+1)

i−1
+ ε for ε > 0. Then s̄i,ν → s̄i,ν + αε,

and

Fi(w
(ν+1)

i
, w

(ν+1)

i−1
+ ε, w

(ν+1)

i+1
, w

(ν)

i
) =

− w
(ν+1)

i
+ w

(ν)

i
+ Δτ

[
σ̃

2(xi, τν+1, s̄i,ν + αε)(s̄i,ν + αε)

−
r − δ

σ2

0
Δx

(w
(ν+1)

i−1
+ ε)−

2δ

σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1

]

≥ −w
(ν+1)

i
+ w

(ν)

i
+ Δτ

[
σ̃

2(xi, τν+1, s̄i,ν)s̄i,ν + c+εα

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ

σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1
−

r − δ

σ2

0
Δx

ε

]

where the inequality is due to (ii). Compare with Fi in (7.20) and realize two

extra terms. By (iii), with α from (7.17b), they are

c+εα−
r − δ

σ2

0
Δx

ε =
ε

2Δx

[
c+

2−Δx

Δx
−

2(r − δ)

σ2

0

]
≥ 0 .

So we have shown (a1), the first of the four criteria of monotonicity.

To show (a2), perturb w
(ν+1)

i+1
→ w

(ν+1)

i+1
+ ε. Then s̄i,ν → s̄i,ν + εβ and the

perturbed Fi is

− w
(ν+1)

i
+ w

(ν)

i
+ Δτ

[
σ̃

2(xi, τν+1, s̄i,ν + βε)(s̄i,ν + βε)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ

σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1
+ ε

r − δ

σ2

0
Δx

]
.

Again we obtain a lower bound by (ii), and arrive at the sum of two extra

terms

c+εβ + ε
r − δ

σ2

0
Δx

,

which is ≥ 0 by (iii). So the perturbed Fi is larger or equal the unperturbed

Fi, and (a2) is satisfied.
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The assertion (a3) is clearly satisfied since the perturbation w
(ν)

i
→ w

(ν)

i
+ ε

only affects the term outside the brackets.

To show (b), perturb w
(ν+1)

i
→ w

(ν+1)

i
+ ε. Then s̄i,ν → s̄i,ν −

2ε

Δx
2 , and Fi is

perturbed to

− w
(ν+1)

i
− ε + w

(ν)

i
+ Δτ

[
σ̃

2(xi, τν+1, s̄i,ν − ε
2

Δx2
)(s̄i,ν − ε

2

Δx2
)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ

σ2

0

w
(ν+1)

i
−

2δ

σ2

0

ε +
r − δ

σ2

0
Δx

w
(ν+1)

i+1

]
.

By the monotonicity (i) and by ε > 0, δ ≥ 0, the above is smaller or equal to

the unperturbed Fi —that is, (b) holds true.

Finally, monotonicity must be checked for F0 and Fm. For θ = 1, F0 depends

on w
(ν+1)

0
and Fm depends on w

(ν+1)

m . Hence only (b) needs to be checked,

which is clearly satisfied.

This ends the proof that the conditions (i), (ii), (iii) imply monotonicity of

the fully implicit scheme.

Example 7.3 (Leland’s model)

Let us inspect whether the criteria (i), (ii), (iii) of Theorem 7.2 are satisfied

for Leland’s model of transaction costs. For (i) we require |γ| < 1. With some

simple manipulations, one shows that (ii) is satisfied with c+ = 1 − γ. And

for (iii) to hold, the grid size Δx must be small enough. (−→ Exercise 7.5).

Specifically, for zero dividend rate δ = 0 the θ-method is

− w
(ν+1)

i
+ w

(ν)

i
+ Δτ · θ [σ̃2(s̄

(ν+1)

i
)s̄

(ν+1)

i
+

2r

σ2

0

δxw
(ν+1)

i
]

+ Δτ(1 − θ) [σ̃2(s̄
(ν)

i
)s̄

(ν)

i
+

2r

σ2

0

δxw
(ν)

i
] = 0 .

�

Sufficient conditions for the Crank–Nicolson scheme (θ = 1/2) to converge

include (i), (ii), (iii), and in addition (iv) and (v):

(iv) There exists a constant c− > 0 such that for all ε > 0 and s

σ̃
2(x, τ, s− ε)(s− ε) ≥ σ̃

2(x, τ, s)s− c−ε

(v)
Δτ ≤

Δx
2

c−

σ
2

0

σ2

0
+ Δxδ

,

see [Hei10], [HeS10]. Condition (iv) holds for Leland’s model with c− = 1+γ,

and for the uncertain volatility model with c− = σ2

max
. Conditions (iii) and

(iv) amount to stability bounds. We emphasize that in the case of nonlinear

models, unconditional stability does not hold!
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Fig. 7.3. V (S, 0) of a European up-and-out barrier call, uncertain-volatility model

of Avellaneda at al., Section 7.1.3; with barrier B = 115, and K = 100, r =

0.1, σmin = 0.1, σmax = 0.3, δ = 0, T = 0.2. In addition to the two curves V +
and

V − (solid lines) three V curves are shown (with dotted lines) of the standard Black–

Scholes model with constant volatilities σ = 0.1 (the steepest) and σ = 0.2, 0.3.

The above has discussed convergence towards the viscosity solution. An

application of the uncertain-volatility model to a butterfly is shown in Figure

7.2. Another illustration is the barrier option in Figure 7.3. — When in case of

an American-style option a penalty approach is applied, further assumptions

are needed to assert convergence to the solution for p̂→∞, even though one

keeps p̂ fixed.

7.3 Option Valuation Under Jump Processes

In this section, we sketch some instruments of Lévy processes as background

to the application of partial integro-differential equations. The focus is on one

important example, namely Merton’s jump diffusion, and on strategies for a

numerical valuation of options under such processes. This is no introduction

to Lévy processes; for expositions on Lévy processes consult, for instance,

[Sato99], [Shi99], [ConT94].
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For a Lévy process Xt, all increments Xt+Δt−Xt are stochastically inde-

pendent. Further, they are stationary, which means that all increments have

the distribution of Xt. Instead of requiring continuity, Lévy processes must

be “càdlàg” (French for “continu à droite avec limites à gauche”): For all t,

the process Xt is right-continuous (Xt = X
t
+), and the left limit X

t
− exists.

Important examples of Lévy processes are the Wiener process (Section 1.6.1),

and the Poisson process (Section 1.9).

7.3.1 Characteristic Functions

A classification of Lévy processes Xt is based on the Fourier transformation2

φXt
(ζ) := E(exp(iζXt)) . (7.21)

The function φXt
singles out characteristic properties of a random variable

Xt. φXt
is called characteristic function of Xt, and ψXt

(ζ) [shorter: ψ(ζ)]

defined by exp(tψ(ζ)) = φXt
(ζ) is the characteristic exponent. It suffices

to take t = 1, since the distribution of X1 characterizes the process. The

characteristic exponent ψ(ζ) satisfies the Lévy-Khinchin representation

ψ(ζ) = iγζ −
1

2
σ

2
ζ
2 +

∞∫
−∞

(
exp(iζx) − 1− iζx1{|x|≤1}

)
ν(dx) . (7.22)

The three terms in this representation characterize different aspects of Xt.

γ ∈ IR corresponds to a deterministic trend, σ2 to the variance of a diffusion

(Brownian-motion) part of Xt, and ν is a measure on IR characterizing the

activity of jumps ΔXt := Xt −X
t
− ,

ν(A) := E [#{t ∈ [0, 1] | ΔXt �= 0, ΔXt ∈ A}] .

The Lévy measure ν(A) counts the (expected) number of jumps of “size”

within A per unit time [ConT04]. ν(A) is not a probability measure. For

the Lévy measure ν, require
∫
IR

min(x2
, 1) ν(dx) < ∞ and ν({0}) = 0. In

the integrand of (7.22), the subtracted term iζx1{|x|≤1} causes the integrand

to be of the order O(|x|2) for x → 0. This compensation along with the

constraints on ν implies existence of the integral. For many important Lévy

processes, ν(dx) has a convenient representation

ν(dx) = fL(x) dx (7.23)

with a Lévy density fL. The three items γ, σ2, ν (“characteristic triplet”)

characterize a Lévy process in a unique way.

2 For the Fourier transform, see Section 7.4.
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Example 7.4 (compound Poisson process)

For a Poisson process Jt with jump intensity λ, a compound Poisson process

is

Xt :=

Jt∑
j=1

ΔXτj
,

where the jump sizes ΔXτj
are assumed i.i.d. with distribution density f , and

independent of the Poisson process J . The characteristic function φXt
(ζ) of

the compound Poisson process is

E(exp[iζXt)) = exp[λt (φΔX(ζ) − 1)]

= exp

[
t

∫
IR

(eiζx − 1)ν(dx)

]
(7.24)

with Lévy measure ν(dx) = λf(x) dx. The first of the equations in (7.24) uses

rules of the conditional expectation [ConT04], whereas the second just applies

(7.21) with the definition (B1.4) of the expectation, including
∫
IR

ν(dx) = λ.

The characteristic exponent ψcP is the integral in (7.24), γ = σ = 0. �

As in (1.49), financial models typically arise in exponential form. For

such exponential Lévy processes there is a useful criterion for the martingale

property, and hence for risk-neutral valuation:

Lemma 7.5 (martingale criterion)

Let Xt be a Lévy process. eXt is a martingale if and only if ψX(−i) = 0 and

E(eXt) < ∞.

Proof: We extend ζ to complex numbers, and note that

E(eXt) = E(e−iiXt) = φXt
(−i) = etψ(−i)

.

Then by independence and stationarity,

E(eXt | Fs)− eXs = E(eXt−s)− eX0 = e(t−s)ψ(−i) − 1 .

(−→ Exercise 7.6)

In finance applications, with an asset price St for t ≥ 0, the absence of

arbitrage implies that the discounted e−rtSt is a martingale with respect

to a risk-neutral measure. This suggests to represent St in the form St =

S0 exp(rt+Xt). Then the discounted St is the situation to which the Lemma

7.5 applies.

Example 7.6 (Brownian motion with drift)

A Lévy process Xt is Brownian motion if and only if ν ≡ 0 (no jump). For

ease of comparison with (1.54) and (1.59) we take the drift γ in the form

γ = μ− 1

2
σ2. For the Brownian motion with drift (Bwd) Xt := γt + σWt we

use a result from probability3 and conclude for the characteristic exponent

3 E(eiζX) = exp(iζγ − ζ2σ2/2) holds for X ∼ N (γ, σ2), see [JaP03] p. 108.
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ψBwd(ζ) = i(μ−
1

2
σ

2)ζ −
1

2
σ

2
ζ
2
.

Clearly, ψBwd(−i) = μ. Hence by Lemma 7.5 eX

t
is martingale for μ = 0.

Hence the discounted

S0e
−rt exp(rt + Xt) = S0e

−rt exp[(r − 1

2
σ2)t + σWt]

is martingale. This recovers the well-known riskless drift rate r for a numerical

simulation of GBM in the Black-Scholes model.

Example 7.7 (Merton’ s jump diffusion)

We now combine Examples 7.4 and 7.6. As a special case of Example 7.4 we

choose as in Section 1.9 the jump sizes ΔY in the log process Yt := log St to

be normally distributed, ΔY ∼ N (μJ, σ
2

J
). (log q in Section 1.9) Furnished

with a drifted Brownian motion, this is Merton’s jump-diffusion model (1.57)

with jump intensity λ and γ = μ− 1

2
σ2. The Lévy density of the compound

Poisson process (cP) is λ times the density of the normal distribution,

fL(x) = fcP(x) := λ
1

σJ

√
2π

exp

[
−

(x− μJ)
2

2σ2

J

]
. (7.25)

Since the two processes are independent, and by the exponential structure in

(7.21), the two characteristic exponents add:

ψ(ζ) = ψBwd(ζ) + ψcP(ζ)

= iγζ −
1

2
σ

2
ζ
2 +

∫
IR

(eiζx − 1)ν(dx)

and

ψ(−i) = γ +
1

2
σ

2 +

∫
IR

(ex − 1)ν(dx) .

Similar as in Exercise 1.12 we calculate the integral∫ ∞

−∞

(ex − 1)fcP(x) dx = λ

(
exp

[
iμJζ −

1

2
σ

2

J
ζ
2

]
− 1

)
.

Hence to see whether St = exp(Yt) is a martingale, we check ψ(−i) = γ +
1

2
σ2 + λ(exp[μJ + 1

2
σ2

J
]− 1). By Lemma 7.5, a martingale can be obtained by

choosing a drift with

γ = −
σ2

2
− λ

(
exp

[
μJ +

1

2
σ

2

J

]
− 1

)
.

This makes S0e
−rt exp(rt + γt + σWt +

∑
Jt

j=1
log qj) a martingale. When ap-

plied to simulation of SDEs under the risk-neutral measure for Monte Carlo,

this risk-neutral valuation amounts to the drift rate in Example 1.21. That

is, the SDE is
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dS

S
= (r − λ(exp[μJ + 1

2
σ2

J
]− 1)) dt + σ dWt .

In case of a dividend yield with rate δ, the term δdt is subtracted on the

right-hand side, similar as in Section 3.5. �

For other models, a risk-neutral growth rate can be obtained in an ana-

logous way. A table of risk-neutral drift rates is given in [Sch03], p.80. For a

jump diffusion, jumps are comparably “rare,” there is only a finite number of

them in any time interval. Apart from Merton’s model another jump-diffusion

model is Kou’s model, which works with an asymmetric double exponential

distribution of jump sizes [Kou02].

There are Lévy processes of infinite activity: Then in every time interval

an infinite number of jumps occurs. Examples include the VG-process (Va-

riance Gamma) [MaS90], the NIG-process (Normal Inverse Gaussian), the

hyperbolic process [EbK95] and the CGMY process [CaGMY03]. Specifically

for VG and NIG, see also [Gla04]. Time deformation plays an important role

for constructing Lévy processes. For example, with a Wiener process Wt and

a Gamma process Gt as subordinator replacing time, VG can be represented

as

St = S0e
rt+Xt with Xt = θGt + σWGt

.

This includes GBM with the standard time Gt = t and parameter θ = −σ2/2.

Such a subordinating process Gt can be regarded as “business time,” which

runs faster than the calendar time when the trading volume is high, and

slower otherwise. Then, for a Wiener process Wt, a class of Lévy processes is

defined by WGt
. With a t-grid as in Algorithm 1.8, a time-changed process

can be generated as Wj = Wj−1 + Z
√

GjΔt −G(j−1)Δt
(−→ Exercise 2.17).

7.3.2 Option Valuation with PIDEs

Assume European options based on a price process St = S0 exp(rt + Xt),

where Xt is a Lévy process such that eXt is a martingale, with Lévy measure

ν, and the integral
∫
|y|≥1

e2yν(dy) exists. Then the value function V (S, t)

satisfies

∂V (S, t)

∂t
+ rS

∂V

∂S
+

1

2
σ

2
S

2
∂2V

∂S2
− rV

+

∫
IR

[
V (Sey

, t)− V (S, t)− (ey − 1)S
∂V (S, t)

∂S

]
ν(dy) = 0

(7.26)

A proof can be found in [ConT04]p. 385-387.

Definition 7.8 (PIDE)

An equation of the above type (7.26) is called partial integro-differential equa-

tion (PIDE).
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The integral term in (7.26) complicates the numerical solution since it is a

nonlocal term accumulating information on all −∞ < y < ∞, in contrast to

the local character of the partial derivatives. For general Lévy processes, the

three terms under the integral can not be separated, otherwise the integral

may fail to converge. It can be separated in the case of Merton’s jump-

diffusion model, because this process is of finite activity, λ = ν(IR) < ∞.

In what follows, we discuss Merton’s jump-diffusion process, with lognor-

mal distribution for q = ey. The integral in (7.26) can be split into three

terms with three integrals∫
IR

V (Sey

, t)ν(dy)− V (S, t)

∫
IR

ν(dy)− S
∂V (S, t)

∂S

∫
IR

(ey − 1)ν(dy) .

In view of ν(dy) = λf(y)dy, factors λ show up. f is the standard normal

density, and the integrals become expectations. Then the first integral can be

written λE(V (Sey, t)), and the second integral is λ. The integral c := E(ey−1)

does not depend on V and can be calculated beforehand since the distribution

for q = ey is stipulated.4 The lognormal density for q is

fq(x) =
1

√
2πσJ · x

exp

{
−

(log x− μJ)
2

2σ2

J

}
1{x>0}

and we recover the constant of Example 7.7:

c : =

∫ ∞

0

(x − 1)fq(x) dx

=

∫ ∞

−∞

(ey − 1)f(y) dy = exp[μJ +
1

2
σ

2

J
]− 1 .

With the precalculated number c, the resulting equation can be ordered into

∂V

∂t
+

1

2
σ

2
S

2
∂2V

∂S2
+ (r − λc)S

∂V

∂S
− (λ + r)V + λE(V (qS, t)) = 0 . (7.27)

The last term is an integral taken over the unknown solution function V (S, t).

So the resulting equation is a PIDE, a special case of (7.26). Note that the

product λc is the drift compensation in Example 7.7. The standard Black–

Scholes PDE is included for λ = 0. A simplified derivation of (7.27) can

be found in Appendix A4. For further discussions, see for example [Mer76],

[Wil98], [Tsay02], [ConT04].

4 The parameters are not the same as those in (1.48).
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7.3.3 Transformation of the PIDE

We approach the PIDE (7.27) with the transformation

τ := T − t , x := log S , u(x, τ) := V (ex

, T − τ) , (7.28)

which appears moderate as compared to (4.3). Substituting accordingly

ux =
∂V

∂S
S , uxx = ux + S

2
∂2V

∂S2

into (7.27) leads to

−uτ + 1

2
σ2(uxx − ux) + (r − λc)ux − (λ + r)u + λE(V (qex, T − τ)) = 0 ,

which is organized into

uτ −
1

2
σ2uxx − (r − λc− 1

2
σ2)ux + (λ + τ)u − λE(V (qex, T − τ)) = 0 .

After the above transformation S = ex we next transform the jump-size

variable q = ey. Ignoring the factor λ, the integral term changes to

E(V (qex

, T − τ)) = E(V (ex+y

, T − τ)) = E(u(x + y, τ))

=

∫
IR

u(x + y, τ)f(y) dy =

∫
IR

u(z, τ)f(z − x) dz ,
(7.29)

where we have applied the substitution z := x+y. The function f for Merton’s

jump-diffusion model is the density of y = log q ∼ N (μJ, σ
2

J
). In summary,

the PIDE of Merton’s jump-diffusion model is

Problem 7.9 (Merton’s jump-diffusion PIDE)

uτ −
1

2
σ2uxx − (r − λc− 1

2
σ2)ux + (λ + r)u

− λ

∫
IR

u(z, τ)f(z − x) dz = 0 ,

with f(y) =
1

√
2πσJ

exp

[
−

(y − μJ)
2

2σ2

J

]
and c = exp[μJ + 1

2
σ

2

J
]− 1 .

(7.30)

This is the problem to be solved numerically.
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7.3 Option Valuation Under Jump Processes

7.3.4 Numerical Approximation

For an approximation of the integral (7.29) we truncate the domain to a

finite interval xmin ≤ x ≤ xmax. In view of the meaning of the integral,

this truncation amounts to disregard large jumps. This might be seen as a

weakness of the approach, but jumps that large are highly improbable. The

simplest discretization approach is to use an equidistant x-grid with

Δx :=
xmax − xmin

m
, xi := xmin + iΔx , i = 0, . . . , m ,

for a suitable integer m. As in Chapter 4, the time-stepping nodes are τν , and

the approximations of u(xi, τν) are denoted by wi,ν . The integral in (7.30) is

evaluated at each node (x, τ) = (xi, τν). That is, for each i, ν, the numbers∫
IR

u(z, τν)f(z − xi) dz ≈

∫
xmax

xmin

u(z, τν)f(z − xi) dz

are to be approximated. Applying the composite trapezoidal rule (C1.2) with

fi,l := f(xl − xi) = f((l − i)Δx) ,

the approximation of the integral for each i, ν is

Δx

[
w0,νfi,0

2
+

m−1∑
l=1

wl,νfi,l +
wm,νfi,m

2

]
. (7.31)

The numbers fi,l are elements of a Toeplitz matrix.5 That is, the entries take

only 2m + 1 different numbers. Due to the exponential structure of f , the

elements in the northeast and southwest corners of the fi,l-matrix go to zero.

In this sense, this Toeplitz matrix has a “banded” structure. In summary, for

each i, ν the integral is approximated by a scalar product of the row vector

Δx

(
fi,0

2
, fi,1 , . . . , fi,m−1 ,

fi,m

2

)

times the vector w(ν). In (7.31) the first term w0,ν and the last term wm,ν

(where boundary conditions enter) must be treated separately in case we deal

with the short vector (w1, . . . , wm−1) as in Section 4.2.3. Now assemble all

the rows into an (m + 1)2-matrix C. Then for all i within time level ν, the

integrals are represented by the product

Cw
(ν)

.

Neglecting the fact that many of its elements are close to zero, the matrix C

is dense, which reflects the nonlocal character of the integral. This is in con-

trast to the local character of standard finite differences with its tridiagonal

5 The entries of a Toeplitz matrix are constant along each diagonal.
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matrices. The transformation (7.28) is different from (4.3), but tridiagonal

matrices can be derived from (7.30) in a similar way as done in Chapter 4.

The dense matrix C adds to the tridiagonal matrices, which makes the solu-

tion of linear systems with full matrices in each time step ν → ν + 1 more

expensive. In an attempt to save costs, splitting has been suggested. This

means to evaluate the integral at the previous line (ν). In this way, the mul-

tiplication Cw only shows up in the right-hand side of the known terms. The

tridiagonality of the left-hand side matrices is maintained, and the method

still converges. Up to boundary conditions, this splitting can be represented

by an Euler-type implicit scheme

w(ν+1) − w(ν)

Δτ
= Gw

(ν+1) + λCw
(ν)

,

where the matrix G represents the local information of the differentials. Neit-

her G nor C are symmetric. We leave it to the reader to set up the system of

equations (−→ Exercise 7.7). The matrices G and C are used for the analy-

sis, no matrix is needed for the algorithm. — For an illustration how a larger

intensity λ increases the value of an option see Figure 7.4.

 0
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 1.5

 2

 2.5

 3

 3.5

 4

 6  8  10  12  14  16  18  20

Fig. 7.4. V (S, 0) of a European put option, solution of Problem 7.9; parameters as

in Example 1.21: K = 10, r = 0.06, σ = 0.3, T = 1, with Merton’s jump diffusion,

μJ = −0.3, σJ = 0.4, and three values of jump intensity λ: 0 (lower curve, no jump),

0.1, and 0.2 (top curve); xmin = −3, xmax = log(K) + 1.6 = 3.9. The chosen value

of μJ = −0.3 corresponds to q = exp(μJ) = 0.74, or a 26% fall in the asset price.
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7.4 Application of the Fourier Transform

Since the splitting can deteriorate the accuracy, a fixed point iteration

has been suggested [dHaFV05]. The integral term E(V ) with its truncation

and discretization challenges the control of the involved errors. For example,

[CoV05] give an estimate of the error induced by truncating the integral,

as well as a convergence proof for finite differences applied to general Lévy

models. Codes for American options based on a penalty formulation or on an

LCP formulation can be easily modified and extended by an integral term.

The techniques of Chapter 4 or Chapter 5 can be applied. Application of

FFT increases the efficiency [dHaFV05]. Typically, each Lévy process calls

for a separate algorithm. A Monte Carlo approach is [MeA02]. For Merton’s

model and European options, an analytic solution is given [Mer76], which

allows to test corresponding algorithms.

7.4 Application of the Fourier Transform

The Fourier transform F of a real function f is defined by6

F [f(u)] :=

∫ ∞

y=−∞

eiuy

f(y) dy . (7.32)

This requires integrability of f . The inverse Fourier transformation is

F−1[g(x)] =
1

2π

∫ ∞

u=−∞

e−ixu

g(u) du , (7.33)

A sufficiently well-behaved f is recovered by the inversion,

f = F−1Ff .

We perform this process of transform and inverse transform for a function c(k)

to be defined below. The application of the Fourier transform in our context

and the outline of three steps of the subsequent analysis is symbolized as

follows:
(1)

c(k) ◦ −→ • g(u) = integral

↓ (2)

c(k) ◦ ←− • g(u) = formula

(3)

Step (1) is the forward Fourier transform (7.32) of a function c(k). The re-

sult is an integral expression g(u). In our context this integral can be solved

6 There are different conventions for the Fourier transform; for background,

see special literature, for example [Vre03]. To get used to it try Exercise 7.8.
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analytically (step (2)), which produces a formula for g(u). The inverse trans-

formation (7.33) in step (3) is approximated numerically by the Fast Fourier

Transformation (FFT), based on (C1.8). The detour (1)–(3) is worth the ef-

fort, because the FFT calculation of c(k) is faster to evaluate than the original

c(k).

Recall the characteristic function (7.21) φ of a Lévy process Xt. These

functions are the Fourier transform of the density function of X ,

φXt
(u) := E(exp(iuXt)) =

∫ ∞

−∞

eiuX

fdensityX dx = F [fdensityX ] . (7.34)

The characteristic functions φ of many processes X are known and available

as analytical expressions, for example, in [Sch03], [ConT04], [KwLW12].

In the following, we investigate a European call with vanilla payoff

Ψ(S) = (S − K)+ with an arbitrary underlying Lévy process St. The in-

tegral representation of the call’s value under the risk-neutral measure Q

is
V (St, t; K) = e−r(T−t)

EQ[Ψ(ST ) |St]

= e−r(T−t)

∫ ∞

ST =K

(ST −K) fdensity(ST ) dST

where f is the density of ST of the Lévy process starting at t with the value

St. Transform

ST = es

, K = ek

, dST = esds ; (7.35)

note that k ∈ IR. Then

V (St, t; K) = e−r(T−t)

∫ ∞

k

(es − ek)f̂(s) ds

where f̂(s) = esf(es) is the density of logS, similar as in Section 1.8.2.

Following [CaM99], in order to make the function integrable, we scale the

integral with a factor exp(αk) (a constant):

c(k) := eαke−r(T−t)

∫ ∞

k

(es − ek)f̂(s) ds = eαk

V (St, t; K) (7.36)

and denote F [c(u)] its Fourier transform. We leave the choice of α open until

later.

As outlined above, when F [c] is calculated, then the call’s value V (S, t)

is recovered from the inverse Fourier transformation,

V (St, t; e
k) =

(
1

2π

∫ ∞

−∞

e−iuxF [c(u)] du

)
·e−αk

,

which can approximated efficiently by the Fast Fourier Transform (FFT).

This outlines the program of the three steps (1),(2),(3), and now we turn to

its realization.
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7.4 Application of the Fourier Transform

The Fourier transform of c(k) is

F [c(u)] =

∫ ∞

k=−∞

eiuk

c(k) dk

=

∫ ∞

−∞

eiukeαke−r(T−t)

∫ ∞

s=k

(es − ek)f̂(s) ds dk

= e−r(T−t)

∫ ∞

k=−∞

∫ ∞

s=k

e(iu+α)k(es − ek)f̂(s) ds dk

= e−r(T−t)

∫ ∞

s=−∞

∫
s

k=−∞

e(iu+α)k(es − ek)f̂(s) dk ds

where the last equation holds since

{k ≤ s < ∞| −∞ < k < ∞} = {−∞ < k ≤ s | −∞ < s < ∞} .

This leads to

F [c(u)] = e−r(T−t)

∫ ∞

−∞

f̂(s)

∫
s

−∞

[e(iu+α)k+s − e(iu+α+1)k] dk ds

= e−r(T−t)

∫ ∞

−∞

f̂(s)

[
ese(iu+α)k

iu + α
−

e(iu+α+1)k

iu + α + 1

]
s

k=−∞

ds .

(7.37)

To have the integral exist, we require the factor eαk to vanish for k → −∞,

which leads to choose α > 0. That is, the factor exp(αk) amounts to a

damping of the integral. The bracketed term in (7.37) is

(iu + α + 1)es(iu+α+1) − (iu + α)es(iu+α+1)

iu(2α + 1) + α(α + 1)− u2
,

and we come up with

F [c(u)] =
e−r(T−t)

iu(2α + 1) + α(α + 1)− u2

∫ ∞

−∞

f̂(s)eis(u−(α+1)i) ds .

We denote the integral therein φ(u− (α+1)i), because it is the characteristic

function of the density f̂ . For φ an analytic expression is known. Hence

F [c(u)] =
e−r(T−t) φ(u− (α + 1)i)

α2 + α− u2 + iu(2α + 1)
=: g(u) (7.38)

can be considered to be a known function g, and step (2) is completed. For

the final choice of the parameter α > 0 we further request g(u) = F [c(u)] to

be integrable as well. Since the integration is along real values of u one has

to take care that the denominator has only imaginary roots in u. The choice

of α is discussed in the literature [CaM99], [KwLW12]. Usually α = 3 works

well.
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The inverse Fourier transformation evaluates

e−αk
1

2π

∫ ∞

−∞

e−iku

g(u) du .

The integral is real, and hence its integrand is real too. Think of g from (7.38)

being split into real part and imaginary part, g(u) = g1(u) + ig2(u). Then

i(cos(ku)g2(u) − sin(ku)g1(u)) = 0, and we conclude that g1(u) is an even

function, and g2(u) is an odd function. Hence the integrand

cos(ku)g1(u) + sin(ku)g2(u)

is even, and the value of the call is

V (St, t; e
k) =

e−αk

π

∫ ∞

0

e−iku

g(u) du . (7.39)

Next, the semi-infinite integration interval is truncated to finite length A.

Thereby, for most Lévy models the truncation error can be made arbitrarily

small because the characteristic function φ decays exponentially fast at infi-

nity.7 With the restriction to the integration interval 0 ≤ u ≤ A and M − 1

subintervals with equal length Δu, the discrete grid points are

uj := jΔu = j
A

M − 1
, j = 0, . . . , M − 1 .

Choosing the trapezoidal sum (C1.2) for the quadrature, the approximation

is ∫ ∞

0

e−iku

g(u) du ≈
A

M − 1

M−1∑
j=0

βj g(uj) e−ikuj (7.40)

with weights β0 = βM−1 = 1

2
and βj = 1 for 1 ≤ j ≤M − 2. The trapezoidal

sum goes along with a sampling error of the order O(Δu
2).

So far, the log-strike k = log K is not specified. The aim is to exploit the

potential of FFT, which calculates sums of the type

M−1∑
j=0

aj e−iνj
2π

M (7.41)

for complex numbers a0, . . . , aM−1, one sum for each ν. This amounts to

calculate a vector of M such sums, for ν = 0, . . . , M − 1. Applying FFT we

gain the possibility to calculate for M strikes simultaneously. Let us calculate

the call values for the log-strike values

kν := −b + Δk · ν , ν = 0, . . . , M − 1 , (7.42)

7 This does not hold for the VG process, see [ConT04], [KwLW12].
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7.4 Application of the Fourier Transform

for suitable values of b and Δk, which define the k-range and the strike spacing

of interest. Substituting these values kν into the above sum (7.40) produces

A

M − 1

M−1∑
j=0

βj g(uj) exp[−i(−b + Δk ν)j
A

M − 1
] .

The argument of the exponential function is

ibj
A

M − 1
− iνjΔk

A

M − 1
.

To apply FFT aiming at (7.41), steps Δk and Δu = A

M−1
must be chosen

such that

Δk
A

M − 1
= Δk Δu =

2π

M
. (7.43)

Then the sum in (7.40) is

A

M − 1

M−1∑
j=0

βjg(uj) exp[ibj
A

M − 1
] e−iνj

2π

M ,

which is the standard FFT applied to (7.41) for the complex numbers

aj := Aβjg(uj) exp[ibj
A

M − 1
] , i = 0, . . . , M − 1 . (7.44)

This completes the calculation of a bunch of European call values: The inte-

gral in (7.39) is approximated by the FFT sum (7.41) with coefficients (7.44).

For the highly efficient calculation of the FFT sums (7.41) consult standard

literature on numerical analysis (such as [PrTVF92]), and related software

packages.

The above method amounts to a fast algorithm in case option prices are to

be calculated on a grid of many strikes, all options with the same maturity T .

The log-strike grid of the values kν is defined by (7.42) with the parameters

b and Δk, which in turn are based on A, M . By (7.43),

Δk =
2π

A

M − 1

M
.

And to cover log strikes in the at-the-moment range around k = 0, one aims

at

b =
(M − 1)Δk

2
.

Efficiency of FFT is maximal for M a power of 2. The equation (7.43) is a

limitation that requests a careful design of parameters M and A.

In this section, we have explained the classical FFT approach of Carr and

Madan [CaM99]. The Fast Fourier Transform can be applied also for early-

exercise options [LoFBO08]. A novel transform is based on Fourier-cosine
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expansions [FaO08], which is also applied to barrier options [FaO09]. The

resulting algorithms converge exponentially fast. In summary, FFT-based

methods have shown a rich potential, in particular for option pricing under

Lévy models.

Notes and Comments

on Section 7.1:

For a critical account of Leland’s approach see [ZhZ07]. The nonlinear version

(7.4) – (7.6) is due to [HoWW94]. A piecewise linear treatment is suggested

in [ChHK04]. The paper [AvP96] discusses equation (7.5), suggesting a mo-

dification for the case γ ≥ 1, where σ̂2 would be negative for Γ < 0. For

bounds on V in case of “misspecified” volatility, see [ElKJS98]. For related

work, consult also [Gra01], [Ehr08], [GlDN10].

Apart from the one-factor case, ranges for parameters play a role also

in multiasset cases. For example, consider two assets with prices S1, S2, and

assume a correlation in the range −1 ≤ ρmin ≤ ρ ≤ ρmax ≤ 1. In the Black–

Scholes equation (6.2), the term

ρσ1σ2S1S2

∂2V

∂S1∂S2

occurs. Depending on the sign of the cross derivative ∂
2
V

∂S1∂S2
, ρ is chosen either

as ρmin or ρmax in order to characterize a “worst-case,” see [Top05].

To complete the introduction into more general models we have outlined

the Dupire equation in Appendix A6.

on Section 7.2:

For reference and examples consult [Hei10], [HeS10], [FoV12]. The assumption

of a constant c+ in Theorem 7.2 is not always easily satisfied. For example,

in the Barles and Soner model of Section 7.1.2 and a payoff with jump dis-

continuity (as digital option), c+ = c+(Δx) = O(Δx2), which affects the

assumptions of Theorem 7.2, and has strong implications on stability. Apart

from nonsmooth payoffs, also the PDE itself is typically not smooth. For

American options, the penalty term in (7.12) causes a lack of smoothness.

Also the volatility function σ̃ may be nonsmooth. This happens, for example,

in Leland’s model when VSS changes sign. Newton method then works with a

generalized derivative. The higher the degree of “non-smoothness,” the worse

the convergence rate of CN. The BDF method (7.20) is highly recommended.

An a priori check of convergence criteria is advisable.
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Exercises

on Section 7.3:

The definition of Lévy processes includes stochastic continuity. A table of

Lévy densities fL is in [Sch03] p.154. The Lévy-Khinchin representation (7.22)

is a scalar setting; [CaW04] develops analytic expressions for the characte-

ristic function of time-changed Lévy process in a general vector setting. In

this framework, Heston’s stochastic-volatility model can be represented as

time-changed Brownian motion.

For time-changed Lévy processes, consult [AnéG00], [CaGMY03], [ConT04],

[CaW04]. Time-changed Lévy processes have been successfully applied to

match empirical data. For processes with density function (Merton, VG,

NIG), Algorithm 1.18 can be applied [Que07]. Lévy-process models have been

extended by incorporating stochastic volatilities [CaGMY03], [Kal06]. A sub-

ordinator τ(t) can be constructed as integral of a square-root process.

[Pha97] investigates properties of American options. Heston presents the

characteristic function for his model in [Hes93]. His model extended by jump

diffusion [Bat96] can be cast into the above framework: in this case a two-

dimensional PDE is considered. For computational approaches see [AnA00],

[MaPS02], [BrLN04], [AlO05], [dHaFV05], [dHaFL05], [CoV05], [AlO06].

on Section 7.4:

Choosing the weights wj of Simpson’s sums instead of trapezoidal sums, the

integrations get more accurate. An application to VG is found in [CaM99].

Modifications and extensions of the above basic approach are described and

reviewed in [KwLW12]. For references on transform methods in option pri-

cing, see [FaO09].

Exercises

Exercise 7.1

Let ΔW be the increment of a Wiener process, see Section 1.6.1. Show

E(|ΔW |) =
√

Δt

√
2

π
.

Exercise 7.2 Barles–Soner Model

The differential equation of Barles and Soner is:

df(x)

dx
=

f(x) + 1

2
√

xf(x)− x
with f(0) = 0 .

a) By numerical computations, analyze the solution for −2 ≤ x ≤ 2.

b) Construct an approximating function f̂(x) in a piecewise fashion.
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Exercise 7.3 Transformation of Nonlinear Black–Scholes Models

According Section 7.2, consider the following nonlinear PDE

Vt +
1

2
σ

2(t, S, VSS)S2
VSS + (r − δ)SVS − rV + p̂max(Ψ − V, 0) = 0 ,

where σ2(t, S, VSS) depends on the particular model; r is the risk-free interest

rate and δ is the continuous dividend yield. Apply the transformation (7.13)

x = log(S/K), τ = σ
2

0
(T − t)/2, u(x, τ) = e−x

V (S, t)/K,

with K > 0 and a model-dependent parameter σ0, and derive a PDE for u.

Exercise 7.4 Payoffs of Spreads

We consider portfolios of two or more options of the same type with the same

underlying stock. K1, K2, K are strikes with K1 < K2.

a) A butterfly spread is a portfolio with

• one long call with strike K1,

• one long call with strike K2,

• two short calls with strike K = K2−K1

2
.

The payoff is

Ψ(S) =

⎧⎪⎨
⎪⎩

0 for S ≤ K1

S −K1 for K1 < S ≤ K

K2 − S for K < S ≤ K2

0 for K2 ≤ S

b) A bull spread is a portfolio with

• one long call with strike K1,

• one short call with strike K2,

The payoff is

Ψ(S) =

{
0 for S ≤ K1

S −K1 K1 < S ≤ K2

K2 −K1 K2 < S

For both spreads explain and sketch the payoff. Apply the transformation

(7.13) (Exercise 7.3) to derive the transformed payoff u∗(x). For b), apply

the transformation with K2.

Exercise 7.5 Convergence of the Fully Implicit Method

Two out of the three criteria for monotony in Theorem 7.2 are (i) and (ii).

For

a) Leland’s model of transaction costs, with parameter γ, and

b) the model of uncertain volatility with σmin ≤ σ ≤ σmax,

show that (i) and (ii) are satisfied. What are the constants c+? For b), σ− of

(7.8b) suffices.
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Exercises

Exercise 7.6

For a Lévy process Xt adapted to a filtration Ft show

E(eXt | Fs)− eXs = E(eXt−s)− eX0 .

Exercise 7.7 Project: Implementing a PIDE

Set up a computer program to solve Merton’s jump diffusion (7.30) nume-

rically. To this end, concentrate on European-style vanilla options. Set up

boundary conditions using (4.18), and use a BDF implicit scheme. Think of

how to choose xmin, xmax in relation to the strike K.

Hint: For testing the core part of the program, set the jump intensity λ = 0

and compare to the Black–Scholes value.

Exercise 7.8 Fourier Transform

Consider the Fourier transform

F [f(u)] :=

∫ ∞

−∞

e
iuy

f(y) dy .

For the example f(y) := e−a|y| and complex a show that∫
A

−A

e
iuy

f(y) dy

converges for A→∞ and Re(a) > 0.
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