
Chapter 6 Pricing of Exotic Options

In Chapter 4 we discussed the pricing of vanilla options (standard options)

by means of finite differences. The methods were based on the simple partial

differential equation (4.2),

∂y

∂τ
=

∂2y

∂x2
,

which was obtained from the Black–Scholes equation (4.1) for V (S, t) via the

transformations (4.3). These transformations have exploited the simple struc-

ture of the Black–Scholes operator and relied on the assumption of constant

coefficients.

Exotic options lead to partial differential equations that are not of the

simple structure of the basic Black–Scholes equation (4.1). In the general case,

the transformations (4.3) are no longer useful and the PDEs must be solved

directly. Thereby numerical instabilities or spurious solutions may occur that

do not play any role for the methods of Chapter 4. To cope with the “new”

difficulties, Chapter 6 introduces ideas and tools not needed in Chapter 4.

Exotic options often involve higher-dimensional problems. This significantly

adds to the complexity. An exhaustive discussion of the wide field of exotic

options is beyond the scope of this book. The aim of this chapter will not be

to formulate algorithms, but to give an outlook on several relevant aspects

of computation, and on phenomena of stability. In this chapter, we still stick

to the GBM model and move in the Black–Scholes world; for more general

models see Chapter 7.

Sections 6.1 and 6.2 give a brief overview on important types of exotic

options. Section 6.3 introduces approaches for path-dependent options, with

the focus on Asian options. Then numerical aspects of convection-diffusion

problems are discussed (in Section 6.4), and upwind schemes are analyzed

(in Section 6.5). After these preparations, the Section 6.6 arrives at a state

of the art high-resolution method. Finally, Section 6.7 will address penalty

methods, with application to two-asset options.
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Chapter 6 Pricing of Exotic Options

6.1 Exotic Options

So far, this book has mainly concentrated on standard options. These are

the American or European call or put options with vanilla payoff functions

(1.1C) or (1.1P) as discussed in Section 1.1, based on a single underlying

asset. The options traded on official exchanges are mainly standard options;

there are market prices quoted in relevant newspapers.

All nonstandard options are called exotic options. That is, at least one

of the features of a standard option is violated. One of the main possible

differences between standard and exotic options lies in the payoff; examples

are given in this section. Another extension from standard to exotic is an in-

crease in the dimension, from single-factor to multifactor options; this will be

discussed in Section 6.2. The distinctions between put and call, and between

European and American options remain valid for exotic options.

Financial institutions have been imaginative in designing exotic options

to meet the needs of clients. Many of the products have a highly complex

structure. Exotic options are traded outside the exchanges (OTC), and often

they are illiquid and no market prices are available. Then exotic options must

be priced based on models. In general, their parameters are taken from the

results obtained when standard options with comparable terms are calibrated

to market prices. The simplest models extend the Black–Scholes model, which

was summarized by Assumption 1.2.

Next we list some important types of exotic options. For more explanation

we refer to [Hull00], [Wil98].

Binary Option: Binary options (or digital options) have a discontinuous

payoff. For example, a binary put has the payoff

Ψ(S) := c ·

{
1 if S < K

0 if S ≥ K

for a fixed amount c. See Figure 4.21 for an illustration of a binary call, and

Section 3.5.5 for a two-dimensional example.

Chooser Option: After a specified period of time the holder of a chooser option

can choose whether the option is a call or a put. The value of a chooser option

at this time is

max{VC, VP}

Compound Option: Compound options are options on options. Depending on

whether the options are put or call, there are four main types of compound

options. For example, the option may be a call on a call.

Path-Dependent Options

Options with payoff depending not only on the current value ST but also on

the path of St for previous times t < T are called path dependent. Important
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6.1 Exotic Options

path-dependent options are the barrier option, the lookback option, and the

Asian option.

Barrier Option: For a barrier option the payoff is contingent on the underlying

asset’s price St reaching a certain threshold value B, which is called barrier.

Barrier options can be classified depending on whether St reaches B from

above (down) or from below (up). Another feature of a barrier option is

whether it ceases to exist when B is reached (knock out), or conversely comes

into existence (knock in). Obviously, for a down option, S0 > B and for an up

option S0 < B. Depending on whether the barrier option is a put or a call,

several different types are possible. For example, the payoff of a European

down-and-out call is

VT =

{
(ST − K)+ in case St > B for all t

0 in case St ≤ B for some t

In the Black–Merton–Scholes framework, the value of the option before the

barrier has been triggered still satisfies the Black–Scholes equation. The de-

tails of the barrier feature come in through the specification of boundary

conditions [Wil98]. An example of an up-and-out call is illustrated in Figure

7.3, and a two-asset double barrier is discussed in Example 5.5.

Lookback Option: The payoff of a lookback option depends on the maximum

or minimum value the asset price St reaches during the life of the option. For

example, the payoff of a lookback option is

max
t

St − ST .

Average Option / Asian Option: The payoff from an Asian option depends

on the average price of the underlying asset. This will be discussed in more

detail in Section 6.3.

The exotic options of the above short list gain in complexity when they

are multifactor options.

Pricing of Exotic Options

Several types of exotic options can be reduced to the Black–Scholes equation.

In these cases the methods of Chapter 4 or Chapter 5 are adequate. In par-

ticular, barrier options under GBM are close to the standard options. For a

knock-out option with barrier B, a boundary condition will be V (B, t) = 0,

which is part of (4.19). Since their numerical treatment is widely analogous,

we will not touch barrier options specifically.

For a number of options of the European type the Black–Scholes evalua-

tion formula (A4.10) can be applied. For related reductions of exotic options

we refer to [Hull00], [WiDH96], [Kwok98]. Approximations are possible with

binomial methods or with Monte Carlo simulation. The Algorithm 3.6 app-

lies, only the calculation of the payoff (step 2) must be adapted to the exotic

option.
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Fig. 6.1. Rainbow option of a put on the minimum of two assets; top: payoff

Ψ(S1, S2) = (1 −min(S1, S2))
+
; bottom: V (S1, S2, 0) approximated by a binomial

method, level curves for slices with constant values of S1, S2, V

6.2 Options Depending on Several Assets

The options listed in Section 6.1 depend on one underlying asset. Options

depending on several assets are discussed next. Two large groups of mul-

tifactor options are the rainbow options and the baskets. The subdivision

into the groups is by their payoff. Assume n underlying assets with prices

S1, . . . , Sn. Different from the notation in previous chapters, the index refers

to the number of the asset. Recall that two examples of exotic options with
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6.2 Options Depending on Several Assets

two underlyings occurred earlier in this text: Example 3.8 of a binary put,

and Section 5.4 with a basket-barrier call.

Rainbow options compare the value of individual assets [Smi97]. Examples

of payoffs include

max (S1, . . . , Sn) “n-color better-of option”

min (S1, S2) “two-color worse-of option”

(S2 − S1)
+ “outperformance option”

(min (S1 − K, . . . , Sn − K))+ “min call option”

(S2 − S1 − K)+ “spread call.”

Weights are possible too, for instance, (c1S2 − c2S1)
+. The outperformance

option is also called spread option. Figure 6.1 (top) illustrates the payoff of

a min put, and Figure 6.2 (bottom) the payoff of a max call. A basket is

an option with payoff depending on a portfolio of assets. An example is the

payoff of a basket call, (
n∑

i=1

ciSi − K

)+

,

where the weights ci are given by the portfolio. To gain a better feeling for

such kind of options, it is recommendable to sketch the above payoffs for

n = 2.

For the pricing of multifactor options the instruments introduced in the

previous chapters apply. This holds for the four large classes of methods dis-

cussed before, namely, the PDE methods, the tree methods, the evaluation of

integrals by quadrature, and the Monte Carlo methods. Each class subdivides

into further methods.

For the choice of an appropriate method, the dimension n is crucial. For

large values of n, in particular PDE methods suffer from the curse of dimen-

sion (−→ Exercise 4.18). At present state it is not possible to decide, above

which threshold level of n standard discretizations are too expensive.

PDE methods require relevant PDEs and boundary conditions. Often a

Black–Merton–Scholes scenario is assumed. To extend the one-factor model,

an appropriate generalization of geometric Brownian motion is needed. We

begin with the two-factor model, with the prices of the two assets S1 and S2.

The assumption of a constant-coefficient GBM is then expressed as

dS1 = μ1S1 dt + σ1S1 dW
(1)

dS2 = μ2S2 dt + σ2S2 dW
(2)

E( dW
(1) dW

(2)) = ρ dt ,

(6.1a)

where ρ is the correlation between the two assets, −1 ≤ ρ ≤ 1. Note that the

third equation in (6.1a) is equivalent to Cov( dW (1), dW (2)) = ρ dt, because

E( dW (1)) = E( dW (2)) = 0. The correlation ρ is given by the covariance of

the returns dS

S
, since
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Fig. 6.2. Max call, with payoff Ψ(S1, S2) = (max(S1, S2) − K)
+

; numbers from

Exercise 6.7; top: (S1, S2)-plane with the grid of the tree for the payoff, t = T , with

M = 20; bottom: the payoff

Cov

(
dS1

S1

,
dS2

S2

)
= E(σ1 dW

(1)
σ2 dW

(2)) = ρσ1σ2 dt . (6.1b)

Compared to the more general system (1.41), the version (6.1a) with corre-

lated Wiener processes has pulled out the scaling by the volatilities σ1, σ2.

Then, following Section 2.3.3 and Exercise 2.9, the correlated Wiener proces-

ses can be decoupled by Cholesky decomposition of the correlation matrix
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6.2 Options Depending on Several Assets(
1 ρ

ρ 1

)
.

This leads to
dW

(1) = dZ1

dW
(2) = ρ dZ1 +

√
1 − ρ2 dZ2 ,

(6.1c)

where Z1 and Z2 are independent standard normally distributed processes.

This was used already in (3.28). The resulting two-dimensional Black–Scholes

equation was applied in Section 5.4, see equation (5.26). This is derived by

the two-dimensional version of the Itô-Lemma (−→ Appendix B2) and by

a no-arbitrage argument. The resulting PDE (5.26) has independent varia-

bles (S1, S2, t). Usually, the time variable is not counted when the dimension

is discussed. In this sense, the PDE (5.26) is two-dimensional, whereas the

classic Black–Scholes PDE (1.2) is considered as one-dimensional.

The general n-factor model is analogous. The appropriate GBM model is

a straightforward generalization of (6.1a),

dSi = (μi − δi)Si dt + σiSi dW
(i)

, i = 1, . . . , n

E(dW
(i)dW

(j)) = ρij dt , i, j = 1, . . . , n
(6.2a)

where ρij is the correlation between asset i and asset j, and δi denotes a

dividend flow rate paid by the ith asset. For a simulation of such a stochastic

vector process see Section 2.3.3. The Black–Scholes-type PDE of the model

(6.2a) is

∂V

∂t
+

1

2

n∑
i,j=1

ρijσiσjSiSj

∂
2
V

∂Si∂Sj

+

n∑
i=1

(r − δi)Si

∂V

∂Si

− rV = 0 . (6.2b)

The derivation uses the general Itô formula (B2.1) (−→ Exercise 6.5).

Boundary conditions depend on the specific type of option. For example

in the “two-dimensional” situation in (S1, S2, t)-space, one boundary can be

defined by the plane S1 = 0 and the other by the plane S2 = 0. It may be

appropriate to apply the Black–Scholes vanilla formula (A4.10) along these

planes, or to define one-dimensional sub-PDEs only for the purpose to calcu-

late the values of V (S1, 0, t) and V (0, S2, t) along the boundary planes.

After the PDE with boundary conditions is set up, solutions are appro-

ximated by numerical methods. Standard discretizations are straightforward

and work for small n. As a rule of thumb, for n = 2 and n = 3, such elemen-

tary PDE approaches are competitive to Monte Carlo. For large n, sparse-grid

technology or multigrid are better choices, see the references in Section 3.5.1

and at the end of Chapter 4. Generally in a multidimensional situation, fi-

nite elements are recommendable. But FE methods suffer from the curse of

dimension too. Irregular grids have been applied successfully [BeS08].
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Chapter 6 Pricing of Exotic Options

For tree methods, the binomial method can be generalized canonically

[BoEG89]. (−→ Exercise 6.7) But already for n = 2 the recombining stan-

dard tree with M time levels requires 1

3
M3+O(M2) nodes, and for n = 3 the

number of nodes is of the order O(M4). Tree methods also suffer from the

curse of dimension. But obviously not all of the nodes of the canonical bino-

mial approach are needed. The ultimate aim is to approximate the lognormal

distribution, and this can be done with fewer nodes. Nodes in IRn should

be constructed in such a way that the number of nodes grows comparably

slower than the quality of the approximation of the distribution function.

An example of a two-dimensional approach is presented in [Lyuu02]. Gene-

ralizing the trinomial approach to higher dimensions is not recommendable

because of storage requirements, but other geometrical structures as icosahe-

dral volumes can be applied. For different tree approaches, see [McW01]. For a

convergence analysis of tree methods, and for an extension to Lévy processes,

consult [FoVZ02], [MaSS06]. A tree approach that makes use of decoupling

(similar as in Section 2.3.3) has shown to be favorable in multidimensional

cases [KoM09].

An advantage of tree methods and of Monte Carlo methods is that no

boundary conditions are needed. The essential advantage of MC methods is

that they are much less affected by high dimensions, see the notes on Section

3.6. A correlation is achieved by dW = LdZ, where LLtr is the Cholesky

decomposition of the ρ-matrix. An example of a five-dimensional American-

style option is calculated in [BrG04], [LonS01], and one with dimension 30

in [Jon11]. It is most inspiring to perform Monte Carlo experiments on exo-

tic options. For European-style options, this amounts to a straightforward

application of Section 3.5 (−→ Exercise 6.1).

6.3 Asian Options

The price of an Asian option1 depends on the average price of the underlying

and hence on the history of St. We choose this type of option to discuss

some strategies of how to handle path-dependent options. Let us first define

different types of Asian options via their payoff.

6.3.1 The Payoff

There are several ways how an average of past values of St can be formed.

If the price St is observed at discrete time instances ti, say equidistantly

with time interval h := T/n, one obtains a times series St1
, St2

, . . . , Stn
. An

obvious choice of average is the arithmetic mean

1 Again, the name has no geographical relevance.
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6.3 Asian Options

1

n

n∑
i=1

Sti
=

1

T
h

n∑
i=1

Sti
.

If we imagine the observation as continuously sampled in the time period

0 ≤ t ≤ T, the above mean corresponds to the integral

Ŝ :=
1

T

∫
T

0

St dt (6.3)

The arithmetic average is used mostly. Sometimes the geometric average is

applied, which can be expressed as(
n∏

i=1

Sti

)1/n

= exp

(
1

n
log

n∏
i=1

Sti

)
= exp

(
1

n

n∑
i=1

log Sti

)
.

Hence the continuously sampled geometric average of the price St is the

integral

Ŝg := exp

(
1

T

∫
T

0

log St dt

)
.

The averages Ŝ and Ŝg are formulated for the time period 0 ≤ t ≤ T , which

corresponds to a European option. To allow for early exercise at time t < T ,

Ŝ and Ŝg are modified appropriately, for instance to

Ŝ :=
1

t

∫
t

0

Sθ dθ .

With an average value Ŝ like the arithmetic average of (6.3) the payoff of

Asian options can be written conveniently:

Definition 6.1 (Asian option)

With an average Ŝ of the price evolution St the payoff functions of Asian

options are defined as

(Ŝ − K)+ average price call

(K − Ŝ)+ average price put

(ST − Ŝ)+ average strike call

(Ŝ − ST )+ average strike put

The price options are also called rate options, or fixed strike options; the

strike options are also called floating strike options. Compared to the vanilla

payoffs of (1.1P), (1.1C), for an Asian price option the average Ŝ replaces S

whereas for the Asian strike option Ŝ replaces K. The payoffs of Definition

6.1 form surfaces on the quadrant S > 0, Ŝ > 0. The reader may visualize

these payoff surfaces.
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Chapter 6 Pricing of Exotic Options

6.3.2 Modeling in the Black–Scholes Framework

The above averages can be expressed by means of the integral

At :=

∫
t

0

f(Sθ, θ) dθ , (6.4)

where the function f(S, t) depends on the type of chosen average. In particu-

lar f(S, t) = S corresponds to the continuous arithmetic average (6.3), up to

scaling by the length of interval. For Asian options the price V is a function of

S, A and t, which we write V (S, A, t). To derive a partial differential equation

for V using a generalization of Itô’s Lemma we require a differential equation

for A. This is given by (6.4). Compare with (1.31) to see2

dA = aA(t) dt + bA dWt ,

with aA(t) := f(St, t) , bA := 0 .

For St the standard GBM of (1.33) is assumed. By the multidimensional

version (B2.1) of Itô’s Lemma adapted to Yt := V (St, At, t), the two terms

in (1.44) or (1.45) that involve bA as factors to ∂V

∂A
,

∂
2
V

∂A
2 vanish. Accordingly,

dVt =

(
∂V

∂t
+ μS

∂V

∂S
+

1

2
σ

2
S

2
∂2V

∂S2
+ f(S, t)

∂V

∂A

)
dt + σS

∂V

∂S
dWt .

The derivation of the Black–Scholes-type PDE goes analogously as outlined

in Appendix A4 for standard options and results in

∂V

∂t
+

1

2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0 . (6.5)

Compared to the original vanilla version (1.2), only one term in (6.5) is new,

namely,

f(S, t)
∂V

∂A
.

As we will see below, the lack of a second-order derivative with respect to A

may cause numerical difficulties. The transformations (4.3) cannot be applied

advantageously to (6.5). — As an alternative to the definition of At in (6.4),

one can scale by t. This leads to a different “new term” (−→ Exercise 6.2e).

2 The ordinary integral At is random but has zero quadratic variation

[Shr04].
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6.3 Asian Options

6.3.3 Reduction to a One-Dimensional Equation

Solutions to (6.5) are defined on the domain

S > 0 , A > 0 , 0 ≤ t ≤ T

of the (S, A, t)-space. The extra A-dimension leads to significantly higher

costs when (6.5) is solved numerically. This is the general situation. But in

some cases it is possible to reduce the dimension. Let us discuss an example,

concentrating on the case f(S, t) = S of the arithmetic average.

We consider a European arithmetic average strike (floating strike) call

with payoff (
ST −

1

T
AT

)+

= ST

(
1 −

1

TST

∫
T

0

Sθ dθ

)+

.

An auxiliary variable Rt is defined by

Rt :=
1

St

∫
t

0

Sθ dθ ,

and the payoff is rewritten

ST

(
1 −

1

T
RT

)+

= ST · function(RT , T ) . (6.6)

This motivates trying a separation of the solution in the form

V (S, A, t) = S · H(R, t) (6.7)

for some function H(R, t). In this role, R is an independent variable. From

(6.6) the payoff follows:

H(RT , T ) = (1 − 1

T
RT )+ (6.8a)

Substituting the separation ansatz (6.7) into the PDE (6.5) leads to a PDE

for H ,
∂H

∂t
+

1

2
σ

2
R

2
∂

2
H

∂R2
+ (1 − rR)

∂H

∂R
= 0 (6.8b)

(−→ Exercise 6.2c). To solve this PDE, boundary conditions are required.

Their choice in general is not unique. The following considerations from

[WiDH96] suggest boundary conditions.

A right-hand boundary condition for R → ∞ follows from the payoff

(6.8a), which implies H(RT , T ) = 0 for RT → ∞. The integral At = StRt is

bounded, hence S → 0 for R → ∞. For S → 0 a European call option is not

exercised, which suggests to prescribe the boundary condition

H(R, t) = 0 for R → ∞ and all t . (6.9)

283



Chapter 6 Pricing of Exotic Options

0

50

100

150

200

0

50

100

150

200
0

20

40

60

80

100

SA

t=
0.

2

0

50

100

150

200

0

50

100

150

200
0

20

40

60

80

100

SA

t=
0.

14

Fig. 6.3. Asian European fixed strike put, K = 100, T = 0.2, r = 0.05, σ = 0.25,
payoff (t = 0.2) and three solution surfaces for t = 0.14, t = 0.06, and t = 0. With

kind permission of Sebastian Göbel. (Figure continued on facing page)
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At the left-hand boundary R = 0 we encounter more difficulties. Note

that the integral Rt satisfies the SDE

dRt = (1 + (σ2 − μ)Rt) dt − σRt dWt

(−→ Exercise 6.2d). Even if R0 = 0 holds, this SDE shows that dR0 = dt

and Rt will not stay at 0. So there is no reason to expect RT = 0, and the

value of the payoff cannot be predicted. Another kind of boundary condition

is required.

To this end, we start from the PDE (6.8b), which for R → 0 is equivalent

to
∂H

∂t
+

1

2
σ

2
R

2
∂2H

∂R2
+

∂H

∂R
= 0 .

Assuming that H is bounded, one can prove that the term

R
2
∂2H

∂R2

vanishes for R → 0. The resulting boundary condition is

∂H

∂t
+

∂H

∂R
= 0 for R → 0 . (6.10)

The vanishing of the second-order derivative term is shown by contradiction:

Assuming a nonzero value of R2 ∂
2
H

∂R
2 leads to

∂2H

∂R2
= O

(
1

R2

)
,

which can be integrated twice to

H = O(log R) + c1R + c2 .

This contradicts the boundedness of H for R → 0.

For a numerical realization of the boundary condition (6.10) in the finite-

difference framework of Chapter 4, we may use the second-order formula

∂H

∂R

∣∣∣
0,ν

=
−3H0,ν + 4H1,ν − H2,ν

2ΔR
+ O(ΔR

2) . (6.11)

The indices have the same meaning as in Chapter 4. We summarize the

boundary-value problem of PDEs in (6.12).

∂H

∂t
+

1

2
σ

2
R

2
∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0

H(RT , T ) =
(
1 − RT

T

)+

H = 0 for R → ∞

∂H

∂t
+

∂H

∂R
= 0 for R = 0

(6.12)
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Solving this problem numerically for 0 ≤ t ≤ T , R ≥ 0, gives H(R, t), and

via (6.7) the required values of V .

6.3.4 Discrete Monitoring

Instead of defining a continuous averaging as in (6.3), a realistic scenario is

to assume that the average is monitored only at discrete time instances

t1, t2, . . . , tM .

These time instances are not to be confused with the grid times of the nume-

rical discretization. The discretely sampled arithmetic average at tk is given

by

Atk
:=

1

k

k∑
i=1

Sti
, k = 1, . . . , M . (6.13)

A new average is updated from the previous one by

Atk
= Atk−1

+
1

k
(Stk

− Atk−1
)

or

Atk−1
= Atk

+
1

k − 1
(Atk

− Stk
) .

The latter of these update formulas is relevant to us, because we integrate

backwards in time. The discretely sampled At is constant between consecutive

sampling times, and A jumps at tk with the step

1

k − 1
(Atk

− Stk
) .

For each k this jump can be written

A
−(S) = A

+(S) +
1

k − 1
(A+(S) − S), where S = Stk

. (6.14a)

A− and A+ denote the values of A immediately before and immediately

after sampling at tk. The no-arbitrage principle implies continuity of V at

the sampling instances tk in the sense of continuity of V (St, At, t) for any

realization of a random walk. In our setting, this continuity is written

V (S, A
+

, tk) = V (S, A
−

, tk) . (6.14b)

But for a fixed (S, A) the equations (6.14a/b) define a jump of V at tk.

The numerical application of the jump condition (6.14) is as follows: The

A-axis is discretized into discrete values Aj , j = 1, . . . , J . For each time period

between two consecutive sampling instances, say for tk+1 → tk, the option’s

value is independent of A because in our discretized setting At is piecewise

constant; accordingly ∂V

∂A
= 0 in (6.5). Based on this semi-discretization, J
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one-dimensional Black–Scholes equations are integrated separately and inde-

pendently for the short time interval from tk+1 to tk, one BS-equation for

each j. Each of the one-dimensional Black–Scholes problems has its own “ter-

minal” condition to start from. For each Aj , the “first” terminal condition

for tM = T is taken from the payoff surface. Proceeding backwards in time,

at each sampling time tk the J parallel one-dimensional Black–Scholes pro-

blems are halted because new terminal conditions must be derived from the

jump condition (6.14). The new values for V (S, Aj , tk) that serve as terminal

values (starting values for the backward integration) for the next time period

tk → tk−1, are defined by the jump condition. Since Aj + 1

k−1
(Aj −S) in ge-

neral does not agree with one of the node values Aj , interpolation is applied.

Hence the starting function for the next BS-step for A = Aj can be written

V
interpol(S, A +

1

k − 1
(A − S), tk) .

Only at these sampling times tk the J standard one-dimensional Black–

Scholes problems are coupled; the coupling is provided by the interpola-

tion. In this way, a sequence of surfaces V (S, A, tk) is approximated for

tM = T, . . . , t1 = 0 in a line-wise fashion. Figure 6.3 shows3 the payoff and

three surfaces calculated for an Asian European fixed strike put. As this il-

lustration indicates, there is a kind of rotation of this surface as t varies from

T to 0.

6.4 Numerical Aspects

A direct numerical approach to the PDE (6.5) for functions V (S, A, t) depen-

ding on three independent variables requires more effort than in the V (S, t)-

case. For example, a finite-difference approach uses a three-dimensional grid.

And a separation ansatz as in Section 5.3 applies with two-dimensional basis

functions. Although much of the required technology is widely analogous to

the approaches discussed in Chapters 4 and 5, a thorough numerical treat-

ment of higher-dimensional PDEs is beyond the scope of this book. Here we

confine ourselves to PDEs with two independent variables, as in (6.8b).

6.4.1 Convection-Diffusion Problems

Before entering a discussion on how to solve numerically a PDE like (6.8b)

without using transformations like (4.3), we perform an experiment with

our well-known “classical” Black–Scholes equation (1.2). In contrast to the

procedure of Chapter 4 we directly apply finite-difference quotients to (1.2).

Here we use the second-order differences of Section 4.2.1 for a European call,

3 after interpolation; MATLAB graphics; similar [ZvFV99]
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Fig. 6.4. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Crank–Nicolson

approximation V (S, 0) with Δt = 0.01, ΔS = 0.1 and centered difference scheme

for
∂V
∂S

. Comparison with the exact Black–Scholes values (dashed).

and compare the numerical approximation with the exact solution (A4.10).

Figure 6.4 shows the result for V (S, 0). The lower part of the figure depicts

an oscillating error, which seems to be small. But differentiating magnifies

oscillations. This is clearly visible in Figure 6.5, where the important hedge

variable delta= ∂V

∂S
is depicted. The wiggles are even worse for the second-

order derivative gamma. These oscillations are financially unrealistic and are

not tolerable, and we have to find its causes. The oscillations are spurious

in that they are produced by the numerical scheme and are not solutions

of the differential equation. The spurious oscillations do not exist for the

transformed version yτ = yxx, which is illustrated by Figure 6.6.

In order to understand possible reasons why spurious oscillations may

occur, we invoke elementary fluid dynamics, where so-called convection-

diffusion equations play an important role. For such equations, the second-

order term is responsible for diffusion and the first-order term for convection.

The ratio of convection to diffusion (their coefficients, scaled by a characte-

ristic length) is the Péclet number, a dimensionless parameter characterizing

the convection-diffusion problem. It turns out that the Péclet number is re-

levant for the understanding of underlying phenomena. Let us see what the

Péclet numbers are for several PDEs discussed so far in the text.
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Fig. 6.5. Delta=
∂V
∂S

, otherwise the same data as in Figure 6.4

As a first example we take the original Black–Scholes equation (1.2), with

diffusion term:
1

2
σ

2
S

2
∂2V

∂S2

convection term: rS
∂V

∂S

length scale: ΔS

When the coefficients —not the derivatives— enter the Péclet number, and

ΔS is taken as characteristic length, the number is

rS

1

2
σ2S2

ΔS =
2r

σ2

ΔS

S
.

Since this dimensionless parameter involves the mesh size ΔS it is also called

mesh Péclet number.4 Experimental evidence indicates that the higher the

Péclet number, the higher the danger that the numerical solution exhibits

oscillations.

Next we examine other PDEs for their Péclet numbers: The PDE yτ =

yxx has no convection term, hence its Péclet number is zero. Asian options

4 In case of a continuous dividend flow δ, replace r by r − δ.
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Fig. 6.6. European put, K = 10, r = 0.06, σ = 0.30, T = 1. Approximation

delta=
∂V
∂S

(S, 0) based on yτ = yxx with m = 40. Comparison with the exact

Black–Scholes values (dashed).

described by the PDE (6.5) have a cumbersome situation: With respect to A

there is no diffusion term (i.e., no second-order derivative), hence its Péclet

number is ∞! For the original Black–Scholes equation the Péclet number

basically amounts to r/σ2. It may become large when a small volatility σ is

not compensated by a small riskless interest rate r. And for the reduced PDE

(6.8b), the Péclet number is

ΔR(1 − rR)
1

2
σ2R2

,

here a small σ can not be compensated by a small r.

These investigations of the Péclet numbers do not yet explain why spurious

oscillations occur, but should open our eyes to the relation between convection

and diffusion in the different PDEs. Let us discuss causes of the oscillations

by means of a model problem. The model problem is the pure initial-value

problem for a scalar function u defined on t ≥ 0, x ∈ IR,

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, u(x, 0) = u0(x) . (6.15)

We assume b ≥ 0. This sign of b does not contradict the signs in (6.8b) since

there we have a terminal condition for t = T , whereas (6.15) prescribes an
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initial condition for t = 0. The equation (6.15) is meant to be integrated in

forward time with discretization step size Δt > 0. So the equation (6.15) is a

model problem representing a large class of convection-diffusion problems, to

which the equation (6.8b) belongs. For the Black–Scholes equation, the simple

transformation S = Kex, t = T −τ , which works even for variable coefficients

r, σ, produces (6.15) except for a further term −ru on the right-hand side

(compare Exercise 1.2). And for constant r, σ the transformed equation yτ =

yxx is a member of the class (6.15), although it lacks convection. Discussing

the stability properties of the model problem (6.15) will help us understanding

how discretizations of (1.2) or (6.8b) behave. For the analysis assume an

equidistant grid on the x-range, with grid size Δx > 0 and nodes xj = jΔx

for integers j. And for sake of simplicity, assume a and b are constants.

6.4.2 Von Neumann Stability Analysis

First we apply to (6.15) the standard second-order centered space difference

schemes in x-direction together with a forward time step, leading to

wj,ν+1 − wj,ν

Δt
+ a

wj+1,ν − wj−1,ν

2Δx
= bδxxwj,ν (6.16)

with δxxwj,ν defined as in (4.13). This scheme is called Forward Time Cente-

red Space (FTCS). “Forward time” reflects the explicit (forward) Euler step,

and “centered space” refers to our well-established second-order difference

quotients. Instead of performing an eigenvalue-based stability analysis as in

Chapter 4, we now apply the von Neumann stability analysis. This method

expresses the approximations wj,ν of the ν-th time level by a sum of eigen-

modes or Fourier modes,

wj,ν =
∑

k

c
(ν)

k
eikηjΔx

, (6.17)

where i denotes the imaginary unit, and kη are the wave numbers with fun-

damental wave number5 η := 2π/L. A set of coefficients c
(ν)

k
in (6.17) exists

for each time level tν , it is the basis of the discrete Fourier transform (C1.8),

which takes numbers wj into coefficients ck, and back. Substituting the ex-

pression (6.17) into the FTCS-difference scheme (6.16) leads to a correspon-

ding sum for wj,ν+1 with coefficients c
(ν+1)

k
(−→ Exercise 6.3). The linearity

of the scheme (6.16) allows to find a relation

c
(ν+1)

k
= Gkc

(ν)

k
,

5 L stands for the wave length or the length of the interval. In case of a

partition into n steps of size Δx, ηΔx = 2π/n. Since η will drop out below,

we may set η = 1 for the following analysis. It will be sufficient to study the

propagation of eikx.
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where Gk is the growth factor of the mode with wave number k. In case

|Gk| ≤ 1 holds, it is guaranteed that the modes eikx in (6.17) are not ampli-

fied, which means the method is stable. This parallels Lemma 4.2 without

the need of calculating eigenvalues.

Applying the von Neumann stability analysis to (6.16) leads to

Gk = 1 − 2λ +
(

γ

2
+ λ

)
e−ikηΔx +

(
λ − γ

2

)
eikηΔx ,

where we use the abbreviations

γ :=
aΔt

Δx
, λ :=

bΔt

Δx2
, β :=

aΔx

b
. (6.18)

Here γ = βλ is the famous Courant number, and β is the mesh Péclet number.

For a finite value of the latter, assume b > 0. Using eiα = cosα + i sin α and

s := sin
kηΔx

2
, cos kηΔx = 1 − 2s

2
, sin kηΔx = 2s

√
1 − s2 ,

we arrive at

Gk = 1 − 2λ + 2λ cos kηΔx − iβλ sin kηΔx (6.19)

and

|Gk|
2 = (1 − 4λs

2)2 + 4β
2
λ

2
s
2(1 − s

2) .

A straightforward discussion of this polynomial on 0 ≤ s
2 ≤ 1 reveals that

|Gk| ≤ 1 for

0 ≤ λ ≤ 1

2
, λβ

2 ≤ 2 . (6.20)

The inequality 0 ≤ λ ≤ 1

2
brings back the stability criterion of Section 4.2.4.

The inequality λβ2 ≤ 2 is an additional restriction to the parameters λ and

β. Because of

λβ
2 =

a2Δt

b

this restriction depends on the discretization steps Δt, Δx, and on the con-

vection parameter a and the diffusion parameter b as defined in (6.18). The

restriction due to the convection becomes apparent when we, for example,

choose λ = 1

2
for a maximal time step Δt. Then |β| ≤ 2 is a bound imposed

on the mesh Péclet number, which restricts Δx to Δx ≤ 2b/|a|. A violation

of this bound might be an explanation why the difference schemes of (6.16)

applied to the Black–Scholes equation (1.2) exhibit faulty oscillations.6 The

bounds on |β| and Δx are not active for problems without convection (a = 0).

Note that the bounds give a severe restriction on problems with small values

of the diffusion constant b. For b → 0 (no diffusion) and a �= 0 we encoun-

ter the consequence Δt → 0, and the scheme (6.16) can not be applied at

all. Although the constant-coefficient model problem (6.15) is not the same

6 In fact, the situation is more subtle. We postpone an outline of how di-

spersion is responsible for the oscillations to Section 6.5.2.
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as the Black–Scholes equation (1.2) or the equation (6.8b), the above ana-

lysis reflects the core of the difficulties. We emphasize that small values of

the volatility represent small diffusion. So other methods than the standard

finite-difference approach (6.16) are needed.

6.5 Upwind Schemes and Other Methods

The instability analyzed for the model combination (6.15)/(6.16) occurs when

the mesh Péclet number is high and because the symmetric and centered

difference quotient is applied to the first-order derivative. Next we discuss

the extreme case of an infinite Péclet number of the model problem, namely,

b = 0. The resulting PDE is the prototypical equation

∂u

∂t
+ a

∂u

∂x
= 0 . (6.21)

6.5.1 Upwind Scheme

The standard FTCS approach for (6.21) does not lead to a stable scheme.

The PDE (6.21) has solutions in the form of traveling waves,

u(x, t) = F (x − at) ,

where F (ξ) = u0(ξ) in case initial conditions u(x, 0) = u0(x) are incorpora-

ted. For a > 0, the profile F (ξ) drifts in positive x-direction: the “wind blows

to the right.” Seen from a grid point (j, ν), the neighboring node (j − 1, ν)

lies upwind and (j + 1, ν) lies downwind. Here the j indicates the node xj

and ν the time instant tν . Information flows from upstream to downstream

nodes. Accordingly, the first-order difference scheme

wj,ν+1 − wj,ν

Δt
+ a

wj,ν − wj−1,ν

Δx
= 0 (6.22)

is called upwind discretization (a > 0). The scheme (6.22) is also called For-

ward Time Backward Space (FTBS) scheme.

Applying the von Neumann stability analysis to the scheme (6.22) leads

to growth factors given by

Gk := 1 − γ + γe−ikηΔx

. (6.23)

Here γ = aΔt

Δx
is the Courant number from (6.18). As in Subsection 6.4.2,

the stability requirement |Gk| ≤ 1 should hold such that the coefficients c
(ν)

k

remain bounded for all k and ν → ∞. It is easy to see that

γ ≤ 1 ⇒ |Gk| ≤ 1 .
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(The reader may sketch the complex G-plane to realize the situation.) The

condition |γ| ≤ 1 is called the Courant–Friedrichs–Lewy (CFL) con-

dition. The above analysis shows that this condition is sufficient to ensure

stability of the upwind-scheme (6.22) applied to the PDE (6.21) with pres-

cribed initial conditions.

In case a < 0, the scheme in (6.22) is no longer an upwind scheme. The

upwind scheme for a < 0 is

wj,ν+1 − wj,ν

Δt
+ a

wj+1,ν − wj,ν

Δx
= 0 (6.24)

The von Neumann stability analysis leads to the restriction |γ| ≤ 1, or

λ|β| ≤ 1 if expressed in terms of the mesh Péclet number, see (6.18). This

again emphasizes the importance of small Péclet numbers.

We note in passing that the FTCS scheme for ut + aux = 0, which is

unstable, can be cured by replacing wj,ν by the average of its two neighbors.

The resulting scheme

wj,ν+1 = 1

2
(wj+1,ν + wj−1,ν) − 1

2
γ(wj+1,ν − wj−1,ν) (6.25)

is called Lax–Friedrichs scheme. It is stable if and only if the CFL condition

is satisfied. A simple calculation shows that the Lax–Friedrichs scheme (6.25)

can be rewritten in the form

wj,ν+1 − wj,ν

Δt
= −a

wj+1,ν − wj−1,ν

2Δx
+

1

2Δt
(wj+1,ν − 2wj,ν + wj−1,ν) .

(6.26)

This is a FTCS scheme with the additional term

(Δx)2

2Δt
δxxwj,ν ,

representing the PDE

ut + aux = ζuxx with ζ = Δx
2
/2Δt .

That is, the stabilization is accomplished by adding artificial diffusion ζuxx.

The scheme (6.26) is said to have numerical dissipation.

We return to the model problem (6.15) with b > 0. For the discretization

of the a
∂u

∂x
term we now apply the appropriate upwind scheme from (6.22) or

(6.24), depending on the sign of the convection constant a. This noncentered

first-order difference scheme can be written

wj,ν+1 = wj,ν − γ
1−sign(a)

2
(wj+1,ν − wj,ν)

− γ
1+sign(a)

2
(wj,ν − wj−1,ν)

+ λ(wj+1,ν − 2wj,ν + wj−1,ν)

(6.27)

with parameters γ, λ as defined in (6.18). For a > 0 the growth factors are
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Fig. 6.7. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Approximation V (S, 0),
calculated with upwind scheme for

∂V
∂S

and Δt = 0.01, ΔS = 0.1. Comparison with

the exact Black–Scholes values (dashed)

Gk = 1 − λ(2 + β)(1 − cos kηΔx) − iλβ sin kηΔx .

The analysis follows the lines of Section 6.4 and leads to the single stability

criterion

λ ≤
1

2 + |β|
. (6.28)

This inequality is valid for both signs of a (−→ Exercise 6.4). For λ 	 β the

inequality (6.28) is less restrictive than (6.20). For example, a hypothetical

value of λ = 1

50
leads to the bound |β| ≤ 10 for the FTCS scheme (6.16) and

to the bound |β| ≤ 48 for the upwind scheme (6.27).

The Figures 6.7 and 6.8 show the Black–Scholes solution (dashed curve)

and an approximation obtained by using the upwind scheme as in (6.27). No

oscillations are visible, but the low order of the approximation can be seen

from the moderate gradient, which does not reflect the steep gradient of the

reality. The spurious wiggles have disappeared but the steep profile is heavily

smeared. So the upwind scheme discussed above is a motivation to look for

better methods (in Section 6.6).
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Fig. 6.8. Delta=
∂V
∂S

(S, 0), same data as in Figure 6.7

6.5.2 Dispersion

The spurious wiggles are attributed to dispersion. Dispersion is the pheno-

menon of different modes traveling at different speeds. We explain dispersion

for the simple PDE ut + aux = 0. Consider for t = 0 an initial profile u

represented by a sum of Fourier modes, as in (6.17). Because of the linearity

it is sufficient to study how the kth mode eikx is conveyed for t > 0. The

differential equation ut +aux = 0 conveys the mode without change, because

eik[x−at] is a solution. For an observer who travels with speed a along the

x-axis, the mode appears “frozen.”

This does not hold for the numerical scheme. Here the amplitude and the

phase of the kth mode may change. That is, the special initial profile of the

Fourier mode

eikx = 1 · eik[x−0]

changes to

c(t) · eik[x−d(t)]
,

where c(t) is the amplitude and d(t) the phase (up to the traveler distance

at). Their values must be compared to those of the exact solution.

To be specific, we study the upwind scheme for ut + aux = 0 (a > 0),
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w(x, t + Δt) − w(x, t)

Δt
+ a

w(x, t) − w(x − Δx, t)

Δx
= 0 .

Let w(x, t) denote the exact solution for specified values of Δx, Δt. Apply

Taylor’s expansion to derive the equivalent differential equation

wt + awx = ζwxx + ξwxxx + O(Δ2) ,

with the coefficients

ζ :=
a

2
(Δx − aΔt) =

a

2
Δx(1 − γ) ,

ξ :=
a

6
(−Δx

2 + 3aΔtΔx − 2a
2
Δt

2) =
a

6
Δx

2(1 − γ)(2γ − 1)

depending on Δx, Δt. A solution can be obtained for the truncated PDE

wt + awx = ζwxx + ξxxx. Substituting w = ei(ωt+kx) with undetermined

frequency ω gives ω and

w = exp{−ζk
2
t} · exp{ik[x − t(ξk2 + a)]}

as solution of the truncated PDE. This defines amplitudes c(t) and phase

shifts d(t),

ck(t) = exp{−ζk
2
t}

dk(t) = ξk
2
t .

The w = ck(t)eik[x−at−dk(t)] represents the solution of the applied upwind

scheme. It is compared to the exact solution u = eik[x−at] of the model pro-

blem, for which all modes propagate with the same speed a and without

decay of the amplitude. The phase shift dk in w due to a nonzero ξ becomes

more relevant if the wave number k gets larger. That is, modes with different

wave numbers drift across the finite-difference grid at different rates. Conse-

quently, an initial signal represented by a sum of modes, changes its shape

as it travels. The different propagation speeds of different modes eikx give

rise to oscillations. This phenomenon is called dispersion. (Note that in our

scenario of the simple model problem with upwind scheme, for γ = 1 and

γ = 1

2
we have ξ = 0 and dispersion vanishes.)

A value of |c(t)| < 1 amounts to dissipation. If a high phase shift is

compensated by heavy dissipation (c ≈ 0), then the dispersion is damped

and may be hardly noticeable.

For several numerical schemes, related values of ζ and ξ have been in-

vestigated. For the influence of dispersion or dissipation see, for example,

[Tho95], [QuSS00], [TaR00], [Str07]. Dispersion is to be expected for nume-

rical schemes that operate on those versions of the Black–Scholes equation

that have a convection term. This holds in particular for the θ-methods as

described in Section 4.6.1, and for the upwind scheme. Numerical schemes

for the convection-free version yτ = yxx do not suffer from dispersion since

a = 0.

298



6.6 High-Resolution Methods

6.6 High-Resolution Methods

The naive FTCS approach of the scheme (6.16) is only first-order in t-

direction and suffers from severe stability restrictions. There are second-order

approaches with better properties. A large class of schemes has been deve-

loped for so-called conservation laws, which in the one-dimensional situation

are written
∂u

∂t
+

∂

∂x
f(u) = 0 . (6.29)

The function f(u) represents the flux in the equation (6.29), which originally

was tailored to applications in fluid dynamics. We introduce the method of

Lax and Wendroff for the flux-conservative equation (6.29). Then we present

basic ideas of high-resolution methods.

6.6.1 Lax–Wendroff Method

The Lax–Wendroff scheme is based on

uj,ν+1 = uj,ν + Δt
∂uj,ν

∂t
+ O(Δt

2) = uj,ν − Δt
∂f(uj,ν)

∂x
+ O(Δt

2) .

This expression makes use of (6.29) and replaces time derivatives by space

derivatives. For suitably adapted indices the basic scheme is applied three

times on a staggered grid. The staggered grid (see Figure 6.9) uses half steps

of lengths 1

2
Δx and 1

2
Δt and intermediate mode numbers j − 1

2
, j + 1

2
, ν + 1

2
.

The main step is the second-order centered step (CTCS) with the center in

the node (j, ν + 1

2
) (square in Figure 6.9). This main step needs the flux

function f evaluated at approximations w obtained for the two intermediate

nodes
(
j ± 1

2
, ν + 1

2

)
, which are marked by crosses in Figure 6.9. These two

intermediate values are provided by the Lax–Friedrich steps (6.25).

ν +1 Δx

t

ν

j-1 j j+1

Δ  

Fig. 6.9. Staggered grid for the Lax–Wendroff scheme.
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Algorithm 6.2 (Lax–Wendroff)

w
j+

1
2
,ν+

1
2

:= 1

2
(wj,ν + wj+1,ν ) − Δt

2Δx
(f(wj+1,ν) − f(wj,ν))

w
j−

1
2
,ν+

1
2

:= 1

2
(wj−1,ν + wj,ν) − Δt

2Δx
(f(wj,ν) − f(wj−1,ν))

wj,ν+1 := wj,ν − Δt

Δx

(
f(w

j+
1
2
,ν+

1
2
) − f(w

j−
1
2
,ν+

1
2
)
) (6.30)

The half-step values w
j+

1
2
,ν+

1
2

and w
j−

1
2
,ν+

1
2

are provisional and discarded

after wj,ν+1 is calculated. A stability analysis for the special case f(u) = au

in equation (6.29) (that is, of equation (6.21)) leads to the CFL condition

as before. The Lax–Wendroff step is centered and of second order in both

x and t. This explicit method fits well discontinuities and steep fronts as

the Black–Scholes delta-profile in Figures 6.5 and 6.8. But there are still

spurious wiggles in the vicinity of steep gradients. The Lax–Wendroff scheme

produces oscillations near sharp fronts. We need to find a way to damp out

the oscillations.

6.6.2 Total Variation Diminishing

Since ut +aux convects an initial profile F (x) with velocity a, a monotonicity

of F will be preserved for all t > 0. So it makes sense to require also a

numerical scheme to be monotonicity preserving. That is,

wj,0 ≤ wj+1,0 for all j ⇒ wj,ν ≤ wj+1,ν for all j, ν ≥ 1

wj,0 ≥ wj+1,0 for all j ⇒ wj,ν ≥ wj+1,ν for all j, ν ≥ 1 .

A stronger requirement is that oscillations be diminished. To this end we

define the total variation of the approximation vector w
(ν) at the ν-th time

level as

TV(w(ν)) :=
∑

j

|wj+1,ν − wj,ν | . (6.31)

The aim is to construct a method that is total variation diminishing (TVD),

TV(w(ν+1)) ≤ TV(w(ν)) for all ν .

Before we come to a criterion for TVD, note that the schemes discussed in

this section are explicit and of the form

wj,ν+1 =
∑

l

dl wj+l,ν . (6.32)

For example, the upwind scheme (6.22) for a > 0

wj,ν+1 = (1 − γ)wj,ν + γwj−1,ν
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has two coefficients in (6.32), d−1 = γ and d0 = 1 − γ. The coefficients dl

decide whether the scheme (6.32) is monotonicity preserving or TVD.

Lemma 6.3 (monotonicity and TVD)

(a) The scheme (6.32) is monotonicity preserving if and only if dl ≥ 0 for

all dl.

(b) The scheme (6.32) is total variation diminishing (TVD) if and only if

dl ≥ 0 for all dl , and
∑

l

dl ≤ 1 .

The proof of (a) is left to the reader; for proving (b) the reader may find help

in [Wes01], see also [Krö97]. As a consequence of Lemma 6.3 note that TVD

implies monotonicity preservation.

The criterion of Lemma 6.3 is straightforward to check. For example, we

can be certain now about the upwind scheme’s monotonicity preservation

shown in Figures 6.7, 6.8. The Lax–Wendroff scheme satisfies dl ≥ 0 for

all l only in the exceptional case γ = 1. For practical purposes, in view

of nonconstant coefficients a, the Lax–Wendroff scheme is not TVD. For

f(u) = au, the upwind scheme (6.22) and the Lax–Friedrichs scheme (6.25)

are TVD for |γ| ≤ 1 (−→ Exercise 6.6).

6.6.3 Numerical Dissipation

For clarity we continue to discuss the matters for the linear scalar equation

(6.21),

ut + aux = 0 , for a > 0 .

For this equation it is easy to substitute the two provisional half-step values

of the Lax–Wendroff algorithm into the equation for wj,ν+1. Then a straight-

forward calculation shows that the Lax–Wendroff scheme can be obtained by

adding a diffusion term to the upwind scheme (6.22). To show this, make use

of the difference operator

δ
−

x
wj,ν := wj,ν − wj−1,ν (6.33)

and rewrite the upwind scheme as

wj,ν+1 = wj,ν − γδ
−

x
wj,ν , γ =

a Δt

Δx
.

The reader may check that the Lax–Wendroff scheme is obtained by adding

the term

−δ
−

x
{ 1

2
γ(1 − γ)(wj+1,ν − wj,ν)} (6.34)

to the upwind scheme. So the Lax–Wendroff scheme is rewritten

wj,ν+1 = wj,ν − γδ
−

x
wj,ν − δ

−

x
{ 1

2
γ(1 − γ)(wj+1,ν − wj,ν)} .
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That is, the Lax–Wendroff scheme is the first-order upwind scheme plus the

term (6.34), which is

− 1

2
γ(1 − γ)(wj+1,ν − 2wj,ν + wj−1,ν ) .

Hence the added term is —similar as for the Lax–Friedrichs scheme (6.26)—

the discretized analogue of the artificial diffusion

− 1

2
aΔt(Δx − aΔt)uxx .

Adding this artificial dissipation term (6.34) to the upwind scheme makes the

scheme a second-order method.

The aim is to find a scheme that will give us neither the wiggles of the Lax–

Wendroff scheme nor the smearing and low accuracy of the upwind scheme.

On the other hand, we wish to benefit both from the second-order accuracy of

the Lax–Wendroff scheme and from the smoothing capabilities of the upwind

scheme. A core idea is not to add the same amount of dissipation everywhere

along the x-axis, but to add artificial dissipation in the right amount where

it is needed. This flexibility is achieved by a proper factor on the diffusion

(6.34). The resulting hybrid scheme will be of Lax–Wendroff type when the

gradient is flat, and will be upwind-like at strong gradients of the solution.

The decision on how much dissipation to add will be based on the solution.

In order to meet the goals, high-resolution methods control the artificial

dissipation by introducing a limiter �j,ν such that

wj,ν+1 = wj,ν − γδ
−
x

wj,ν − δ
−
x
{ �j,ν

1

2
γ(1 − γ)(wj+1,ν − wj,ν)} . (6.35)

Obviously this hybrid scheme specializes to the upwind scheme for �j,ν = 0

and is identical to the Lax–Wendroff scheme for �j,ν = 1. Accordingly, �j,ν = 0

should be chosen for strong gradients in the solution profile and �j,ν = 1 for

smooth sections. To check the smoothness of the solution one defines the

smoothness parameter

qj,ν :=
wj,ν − wj−1,ν

wj+1,ν − wj,ν

. (6.36)

The limiter �j,ν will be a function of qj,ν . We now drop the indices j, ν. For

q ≈ 1 the solution will be considered smooth, so we require the function

� = �(q) to satisfy �(1) = 1 to reproduce the Lax–Wendroff scheme. Several

strategies have been suggested to choose the limiter function �(q) such that

the scheme (6.35) is total variation diminishing. For a thorough discussion of

this matter we refer to [Swe84], [Krö97], [Tho99]. One example of a limiter

function is the van Leer limiter, which is defined by

�(q) =

{
0 , q ≤ 0
2q

1+q
, q > 0 (6.37)

The above principles of high-resolution methods have been applied suc-

cessfully to financial engineering. The transfer of ideas from the simple pro-

blem (6.21) to the Black–Scholes world is quite involved. The methods are
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TVD for the Black–Scholes equation, which is in nonconservative form. Fur-

ther the methods can be applied to nonuniform grids, and to implicit me-

thods. The application of the Crank-Nicolson approach can be recommended.

The equations (6.36), (6.37) introduce a nonlinearity in w(ν+1). Hence non-

linear equations are solved for each time step ν; Newton’s method is applied

to calculate the approximation w(ν+1) [ZvFV98].

6.7 Penalty Method for American Options

As we have seen in Chapter 4, the PDE description of an American-style

option leads to a linear complementarity problem (LCP), which was restated

in Problem 4.12 as an equation under an inequality as side condition. Such

problems can be solved numerically by imposing a penalty in case the in-

equality is violated. For motivation see Section 4.5.4, and study the simple

setting of Exercise 6.8. Penalty methods have been applied repeatedly for the

pricing of American options, see for instance [FoV02], [NiST02], [KoLM07].

Here we describe the approach of [NiST08].

6.7.1 LCP Formulation

Similar as in Section 4.5.3 we denote the n-dimensional Black–Scholes ope-

rator of (6.2b)

LBS(V ) :=
1

2

n∑
i,j=1

ρij σiσjSiSj

∂2V

∂Si∂Sj

+

n∑
i=1

(r − δi)Si

∂V

∂Si

− rV (6.38)

and the payoff by Ψ(S1, . . . , Sn). For example, for a basket put,

Ψ(S1, . . . , Sn) =

(
K −

n∑
i=1

ciSi

)+

.

With the vector S := (S1, . . . , Sn) the LCP is

(V − Ψ)

(
∂V

∂t
+ LBS(V )

)
= 0

∂V

∂t
+ LBS(V ) ≤ 0

V ≥ Ψ

(6.39)

In addition, the terminal condition V (S, T ) = Ψ(S) must hold, and boundary

conditions. Since the domain is S > 0, there are n bounding planes given by

Si = 0, i = 1, . . . , n. For each i let

Di := { (S1, . . . , Si−1, 0, Si+1, . . . , Sn) | Sj > 0 for j �= i }
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denote the domain of the associated (n − 1)-dimensional American option

problem with the same terms, and Gi(S, t) for S ∈ Di be its solution. Then

the boundary conditions for the bounding planes Si = 0 are defined by

V (S, t) = Gi(S, t) for S ∈ Di (6.40)

for all i = 1, . . . , n. Note that these boundary conditions amount to the

recursive solution of all lower-dimensional American option problems. This is

an enormous amount of work for larger n, and limits the approach to small

values of the dimension. The final item to be specified are the boundary

conditions for Si → ∞. For the case of a put,

lim
Si→∞

V (S, t) = 0 for all i .

The above equations define the LCP for an n-asset American option under

the Black–Scholes model.

6.7.2 Penalty Formulation

In the following, we stay with the American put with a basket payoff. For a

penalty approach, replace the LCP formulation (6.39) by

∂V ε,C

∂t
+ LBS(V ε,C) +

ε C

V ε,C + ε − q
= 0

with q := K −
n∑

i=1

ciSi .

(6.41)

q is the basic part of the basket’s payoff. We call the solution of the penalty

formulation (6.41) V ε,C ; it is supposed to approximate V . Clearly, the va-

lue function V and its approximation V ε,C should both satisfy V ≥ q. The

parameter ε in the penalty term

p :=
ε C

V ε,C + ε − q
(6.42)

must be chosen small with 0 < ε 	 1. The parameter C > 0 is a tune factor

to be fixed later. For V ε,C � q, the penalty term is of the order ε, and (6.41)

approximates the Black–Scholes equation. As V ε,C approaches the payoff,

V ε,C ≈ q, the penalty term p approaches the value C > 0, and

∂V ε,C

∂t
+ LBS(V ε,C) ≈ −C < 0 .

This reflects the complementarity of American options. Note that the equa-

tion (6.41) is nonlinear in V .7

7 Actually, the LCP (6.39) is nonlinear as well, which is not correctly re-

flected by the name “LCP”.
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6.7.3 Discretization of the Two-Factor Model

For the discretization of the American-style basket put we restrict ourselves

to the case n = 2. Then the lower-dimensional American put problems are

the plain-vanilla cases discussed in Chapter 4, and the corresponding stan-

dard value functions G1(S2, t) for S1 = 0 and G2(S1, t) for S2 = 0 can be

considered “known” or delegated to a subalgorithm. The functions G1 and

G2 are defined by the Black–Scholes equation/inequality, and by their payoff

and volatility:

G1(S2, t) with payoff (K − c2S2)
+

, volatility σ2 ,

G2(S1, t) with payoff (K − c1S1)
+

, volatility σ1 .

Here we apply a standard finite-difference scheme, widely analogous as

in Chapter 4. The nonlinearity of the PDE (6.41) prevents a transformation

such as (4.3). Hence the discretization is applied to (6.41) directly. For ease

of notation, we use the variables

x := S1, y := S2 ,

and ρ for ρ12. Then the penalty problem (6.41) for V ε,C(x, y, t) is restated as

(the superscript ε, C of V ε,C is dropped)

∂V

∂t
+

1

2
σ

2

1
x

2
∂2V

∂x2
+

1

2
σ

2

2
y
2
∂2V

∂y2
+ ρσ1σ2xy

∂2V

∂x∂y

+ (r − δ1)x
∂V

∂x
+ (r − δ2)y

∂V

∂y
− rV +

ε C

V + ε − q
= 0

(6.43)

with terminal and boundary conditions. For a put with basket payoff these

are:
q(x, y) := K − c1x − c2y

Ψ(x, y) := (q(x, y))+

V
ε,C(x, y, T ) = Ψ(x, y)

V
ε,C(x, 0, t) = G2(x, t)

V
ε,C(0, y, t) = G1(y, t)

lim
x→∞

V
ε,C(x, y, t) = lim

y→∞
V

ε,C(x, y, t) = 0 ,

for 0 ≤ t ≤ T, x ≥ 0, y ≥ 0. An equidistant grid on the truncated domain

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤ t ≤ T

is defined by imax, jmax and νmax subintervals,
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Δx :=
xmax

imax

, xi := iΔx, i = 0, . . . , imax

Δy :=
ymax

jmax

, yj := jΔy, j = 0, . . . , jmax

Δt :=
T

νmax

, tν := νΔt, ν = νmax, . . . , 0 .

Furthermore, we use the notations

qi,j := q(xi, yj) ,

w
ν

i,j
approximation to V

ε,C(xi, yj, tν) .

To simplify the exposition, we choose imax = jmax, xmax = ymax and use the

notation h := Δx = Δy. The difference quotients are defined in Chapter

4, except for the mixed second-order derivative, which is discretized by the

second-order term

δxyw
ν

i,j
:=

1

2h2
(wν

i+1,j+1
−w

ν

i+1,j
−w

ν

i,j+1
+2w

ν

i,j
−w

ν

i−1,j
−w

ν

i,j−1
+w

ν

i−1,j−1
)

By stability reasons (−→ Section 6.4, 6.5) the first-order derivatives with

respect to x and y are discretized by upwind schemes. For δ1 ≤ r, δ2 ≤ r, the

upwind schemes are

δxw
ν

i,j
:=

w
ν

i+1,j
− w

ν

i,j

h
,

δyw
ν

i,j
:=

wν

i,j+1
− wν

i,j

h
,

since the integration is backward in time. Substituting all difference quotients

into (6.43) is routine.

As in Chapter 4, we may choose among explicit or implicit schemes. The

difference quotient

δtw
ν

i,j
:=

w
ν+1

i,j
− wν

i,j

Δt

for the time derivative ∂V

∂t
leads to an explicit scheme when the difference

quotients with respect to x, y are evaluated at level ν + 1, and leads to an

implicit scheme when the evaluation is at level ν. In the latter case, since we

integrate backward in time, wν+1 is considered as calculated and the wν are

to be calculated next. For the explicit scheme, stability requirements lead to

severe restrictions on the step size Δt, and to a slow algorithm; it will not be

discussed further.

But for the implicit scheme, the nonlinear penalty term (6.42) makes a

difference. In case we plug in wν

i,j
for V ε,C , the equation to be solved at time

level tν is nonlinear and requires an iterative solution. To speed up a Newton

iteration, good initial guesses must be made available. These are given by the

previous time level, provided the time steps Δt are small. Such a restriction

on Δt due to the nonlinearity may make the method expensive. But there
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is an alternative. When w
ν+1

i,j
is used for V ε,C in the penalty term, then the

nonlinearity at time level tν is known, and for each ν only a linear system

needs to be solved. This procedure is called semi-implicit or linear-implicit.

The alternative of a fully nonlinear equation [with wν

i,j
in (6.42)] is referred

to as fully implicit.

The semi-implicit scheme now reads

w
ν+1

i,j
− wν

i,j

Δt
+

1

2
σ

2

1
x

2

i
δxxw

ν

i,j
+

1

2
σ

2

2
y
2

j
δyyw

ν

i,j
+ ρσ1σ2xiyj δxyw

ν

i,j

+ (r − δ1)xi δxw
ν

i,j
+ (r − δ2)yj δyw

ν

i,j
− rw

ν

i,j
+

ε C

w
ν+1

i,j
+ ε − qi,j

= 0

for ν = νmax − 1, . . . , 0, and w
νmax

i,j
= Ψ(xi, yj). We leave it to the reader to

plug in the difference quotients, to organize the equation, and to introduce a

matrix-vector notation for the equation to be solved at time level tν .

In [NiST08] the explicit, the semi-implicit, and the fully implicit schemes

were analyzed for the uncorrelated case δ = 0. In these numerical experiments

it turned out that the semi-implicit variant is recommendable in terms of

accuracy and costs. In case

C ≥ rK , Δt ≤
ε

rK
(6.44)

holds, the semi-implicit method satisfies the required inequality

w
ν

i,j
≥ Ψ(xi, yj)

for all ν, see [NiST08]. This restricts the step size Δt to a small value. Hence,

one will not choose a too small value of ε and do without high demands on

the accuracy of V ε,C . For example, one chooses ε = 0.01 or ε = 0.001. But

for the fully implicit method the step size Δt must be restricted too in order

to maintain the convergence of the Newton method. And the mild bound on

Δt in (6.44) does not depend on h (as would do the bound of the explicit

method). Our experiments indicate an O(ε) error of V
ε,C

.

Notes and Comments

on Section 6.1:

For barrier options we refer, for example, to [ZvFV99], [StWH99], [Ave00],

[PoFVS00], [ZvVF00]. [DaL10] suggest a tree method with an initial trinomial

step tuned so that the following tree has layers coinciding with the barrier.

For lookback options we mention [Kat95], [FoVZ99], [Dai00]. [Haug98] is a

rich source of analytical formula for option pricing.
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on Section 6.2:

To see how the multidimensional volatilities of the model enter into a lumped

volatility, consult [Shr04]. Other multidimensional PDEs arise when stocha-

stic volatilities are modeled with SDEs, see [BaR94], [ZvFV98a], [Oos03],

[HiMS05], [HaH10], or Example 5.7. A list of exotic options with various

payoffs is presented in Section 19.2 of [Deu01]. Also the n-dimensional PDEs

can be transformed to simpler forms. This is shown for n = 2 and n = 3 in

[Int07]. For the n-dimensional Black–Scholes problem, see [Kwok98], [AcP05],

[CaD05]. An ADI method is applied to American options on two stocks in

[ViZ02]. Refined ADI methods work with non-equidistant grids [HaH10]. Con-

sult also the efficient operator splitting method [IkT09], which decouples the

treatment of the early-exercise constraint and the solution of the linear sys-

tem. Further higher-dimensional PDEs related to finance can be found in

[TaR00].

on Section 6.3:

PDEs in the context of Asian options were introduced in [KeV90], [RoS95]. A

reduction as in (6.8b) from V (S, A, t) to H(R, t) is called similarity reduction.

The derivation of the boundary-value problem (6.12) follows [WiDH96]. For

the discrete sampling discussed in Section 6.3.4 see [WiDH96], [ZvFV99].

The strategies introduced for Asian options work similarly for other path-

dependent options. An overview on methods for Asian options, and a semi-

analytical method are found in [Zha01].

on Section 6.4:

The von Neumann stability analysis is tailored to linear schemes and pure

initial-value problems. It does not rigorously treat effects caused by boun-

dary conditions. In this sense it provides a necessary stability condition for

boundary-value problems. For a rigorous treatment of stability see [Tho95],

[Tho99]. The stability analysis based on eigenvalues of iteration matrices as

used in Chapter 4 is an alternative to the von Neumann analysis.

Spurious oscillations are special solutions of the difference equations and

do not correspond to solutions of the differential equation. The spurious os-

cillations are not related to rounding errors. This may be studied analytically

for the simple ODE model boundary-value problem au′ = bu′′, which is the

steady state of (6.15), along with boundary conditions u(0) = 0, u(1) = 1.

Here for mesh Péclet numbers aΔx

b
> 2 the analytical solution of the discrete

centered-space analog is oscillatory, whereas the solution u(x) of the diffe-

rential equation is monotone, see [Mor96]. The model problem is extensively

studied in [PeT83], [Mor96]. The mesh Péclet number is also called “algebraic

Reynold’s number of the mesh.”

on Section 6.5:

It is recommendable to derive the equivalent differential equation in Section

6.5.2.
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on Section 6.6:

The Lax–Wendroff scheme is an example of a finite-volume method. Another

second-order scheme for (6.21) is the leapfrog scheme δ2

t
w + aδ2

x
w = 0, which

involves three time levels. The discussion of monotonicity is based on inves-

tigations of Godunov, see [Krö97], [Wes01]. The Lax–Wendroff scheme for

(6.21) and γ ≥ 0 can also be written

w
ν+1

j
= w

ν

j
− 1

2
γ(wν

j+1
− w

ν

j−1
) + 1

2
γ

2(wν

j+1
− 2w

ν

j
+ w

ν

j−1
) .

(This version adopts the frequent notation wν

j
for our wj,ν .) Here the diffusion

term has a slightly different factor than (6.34). The numerical dissipation

term is also called artificial viscosity. In [Wes01], p. 348, the Lax–Wendroff

scheme is embedded in a family of schemes. A special choice of the family

parameter yields a third-order scheme. The TVD criterion can be extended

to implicit schemes and to schemes that involve more than two time levels.

For the general analysis of numerical schemes for conservation laws (6.29) we

refer to [Krö97].

on Section 6.7:

In [NiST08] the linear systems were solved iteratively with the bi-conjugate

gradient method Bi-CGSTAB [vdV92], [Saad03]. Choosing Δt small provi-

des good initial guesses for the next time level, which accelerates the ite-

ration. Hence the limitation Δt ≤ ε

rK
is not too severe in practice. In our

experiments, the penalty method did not achieve better results than a sim-

ple binomial-tree method. For the convergence of penalty methods consult

[FoV02]. A penalty method with a smooth penalty has been implemented

with finite elements in [KoLM07]. The weak formulation (compare Section

5.4) works with the relatively simple choice of boundary conditions V = Ψ

along the boundary. Exercise 6.8 follows [NiST02].

on other methods:

Computational methods for exotic options are under rapid development. The

universal binomial method can be adapted to exotic options [Kla01], [JiD04].

[TaR00] gives an overview on a class of PDE solvers. For barrier options

see [ZvFV99], [ZvVF00], [FuST02]. For two-factor barrier options and their

finite-element solution, see [PoFVS00]. PDEs for lookback options are gi-

ven in [Bar97]. Using Monte Carlo for path-dependent options, considerable

efficiency gains are possible with bridge techniques [RiW02], [RiW03]. For

Lévy process models, see, for example, [ConT04], [AlO06]. We recommend to

consult, for example, the issues of the Journal of Computational Finance.
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Exercises

Exercise 6.1 Project: Monte Carlo Valuation of Exotic Options

Perform Monte Carlo valuations of barrier options, basket options, and Asian

options, each European style.

Exercise 6.2 PDEs for Arithmetic Asian Options

a) Use the higher-dimensional Itô-formula (→ Appendix B2) to show that

the value function V (S, A, t) of an Asian option satisfies

dV =

(
∂V

∂t
+ S

∂V

∂A
+ μS

∂V

∂S
+

1

2
σ

2
S

2
∂

2
V

∂S2

)
dt + σS

∂V

∂S
dW ,

where S is the price of the asset and A its average.

b) Construct a suitable riskless portfolio and derive the Black–Scholes equa-

tion
∂V

∂t
+ S

∂V

∂A
+

1

2
σ

2
S

2
∂

2
V

∂S2
+ rS

∂V

∂S
− rV = 0 .

c) Use the transformation V (S, A, t) = Ṽ (S, R, t) = SH(R, t), with R = A

S

and transform the Black–Scholes equation (6.5) to

∂H

∂t
+

1

2
σ

2
R

2
∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0 .

d) From

Rt+dt = Rt + dRt , dSt = μSt dt + σSt dWt

derive the SDE

dRt = (1 + (σ2 − μ)Rt) dt − σRt dWt

e) For

At :=
1

t

t∫
0

Sθ dθ

show dA = 1

t
(S − A) dt and derive the PDE

∂V

∂t
+

1

2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
+

1

t
(S − A)

∂V

∂A
− rV = 0 .

Exercise 6.3 Neumann Stability Analysis

Assume a difference scheme in the form (6.32)

w
(ν+1)

j
=

∑
l

dl w
(ν)

j+l

310



Exercises

and make use of the Fourier transform (6.17)

w
(ν)

j
=

n−1∑
k=0

c
(ν)

k
eikηjΔx for η =

2π

nΔx
.

a) What are the coefficients dl for the FTCS method (6.16)?

b) Prove linear independence

n−1∑
k=0

αk exp[i2π

n
kj] = 0 =⇒ αk = 0 for all k

Hint: FFT equivalence (C1.8).

c) Show

c
(ν+1)

k
= c

(ν)

k

∑
l

dl eikηlΔx

.

Exercise 6.4 Upwind Scheme

Apply von Neumann’s stability analysis to

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, a > 0, b > 0

using the upwind scheme for the left-hand side and the centered second-order

difference quotient for the right-hand side.

Exercise 6.5 Towards the Black–Scholes Equation

a) For the model equation (6.2a) set up the vector a and the matrix b for

the general notation (1.41).

b) Let LLtr be the Cholesky decomposition of the ρ-matrix, and b̃ := bL.

Show

trace(b̃b̃trVSS) =

n∑
i,j=1

ρijσiσjSiSj

∂2V

∂Si∂Sj

.

c) Show

dV =

[
∂V

∂t
+

n∑
i=1

(μi − δi)Si

∂V

∂Si

+
1

2

n∑
i,j=1

ρijσiσjSiSj

∂
2
V

∂Si∂Sj

]
dt

+

n∑
i=1

σiSi

∂V

∂Si

dW
(i)

.
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Exercise 6.6 TVD of a Model Problem

Analyze whether the upwind scheme (6.22), the Lax–Friedrichs scheme (6.25)

and the Lax–Wendroff scheme (6.30) applied to the scalar partial differential

equation

ut + aux = 0 , a > 0, t ≥ 0, x ∈ IR

satisfy the TVD property.

Hint: Apply Lemma 6.3.

Exercise 6.7 Binomial Tree for Two Assets

A two-asset binomial tree with (x, y)-coordinates representing the assets, and

time-coordinate t, is assumed to develop as follows: Each node with position

(x, y) may develop for t → t + Δt with equal probabilities 0.25 to the four

positions

(xu, yA), (xu, yB), (xd, yC), (xd, yD) (∗)

for constants u, d, A, B, C, D.

a) Show that the tree is recombining for AD = BC.

Hint: Sketch the possible values in a (x, y)-plane.

Following [Rub94b], a tree is defined for interest rate r, asset parameters

σ1, σ2, correlation ρ, and dividend rates δ1, δ2, by

μi := r − δi − σ
2

i
/2 for i = 1, 2

u := exp(μ1Δt + σ1

√
Δt)

d := exp(μ1Δt − σ1

√
Δt)

A := exp(μ2Δt + σ2

√
Δt[ρ +

√
1 − ρ2])

B := exp(μ2Δt + σ2

√
Δt[ρ −

√
1 − ρ2])

C := exp(μ2Δt − σ2

√
Δt[ρ −

√
1 − ρ2])

D := exp(μ2Δt − σ2

√
Δt[ρ +

√
1 − ρ2])

For initial prices x0 := S0

1
, y0 := S0

2
, and time level tν := νΔt, the S1-

components of the grid according to (∗) distribute in the same way as for the

one-dimensional tree,

x
ν

i
:= S

0

1
u

i

d
ν−i for i = 0, . . . , ν .

b) Show that the second (S2-)components belonging to xν

i
are

y
ν

i,j
:= S

0

2
exp(μ2νΔt) exp

(
σ2

√
Δt

[
ρ(2i − ν) +

√
1 − ρ2(2j − ν)

])
.

for j = 0, . . . , ν.

Hints: For ν → ν + 1, u corresponds to i → i + 1, and d corresponds to

i → i; C exp(2σ2

√
Δt) = B.
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c) Set up a computer program that implements this binomial method. Ana-

logously as in Section 1.4 work in a backward recursion for ν = M, . . . , 0.

For each time level tν set up the (x, y)-grid with the above rules and

Δt = T/M . For tM = T fix V by the payoff Ψ , and use for ν < M

V
cont

i,j
= exp(−rΔt)

1

4
(V ν+1

i,j
+ V

ν+1

i+1,j
+ V

ν+1

i,j+1
+ V

ν+1

i+1,j+1
) .

Test example: max call with Ψ(S1, S2) = (max(S1, S2)−K)+, S0

1
= S0

2
=

K = T = 1, r = 0.1, σ1 = 0.2, σ2 = 0.3, ρ = 0.25, δ1 = δ2 = 0. For

M = 2000 an approximation of the American-style option is 0.0309527,

and for the European style 0.0164554.

Exercise 6.8 Initial-Value Problem with Penalty Term

Consider the ODE initial-value problem

u
′ = −u , u(0) = 2

with the additional constraint

u(t) ≥ 1 .

a) Give an analytical solution.

b) Discuss for a value of ε with 0 < ε 	 1 the initial-value problem

v
′ = −v +

ε

v − 1 − ε
, v(0) = 2 .

Hint: Do some numerical experiments.

c) Show that the solution v(t) of the initial-value problem in b) satisfies

1 ≤ v ≤ 2 , v
′ ≤ 0 , v

′′ ≥ 0 ,

for t ≥ 0.
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