
Chapter 5 Finite-Element Methods

The finite-difference approach with equidistant grids is easy to understand

and straightforward to implement. Resulting uniform rectangular grids are

comfortable, but in many applications not flexible enough. Steep gradients

of the solution require locally a finer grid such that the difference quotients

provide good approximations of the differentials. On the other hand, a flat

gradient may be well modeled on a coarse grid. Arranging such a flexibility

of the grid with finite-difference methods is possible but cumbersome.

An alternative type of methods for solving PDEs that does provide high

flexibility is the class of finite-element methods (FEM). A “finite element”

designates a mathematical topic such as an interval and defined thereupon

a piece of function. There are alternative names as variational methods, or

weighted residuals, or Galerkin methods. These names hint at underlying prin-

ciples that serve to derive suitable equations. As these different names sug-

gest, there are several different approaches leading to finite elements. The

methods are closely related.

The flexibility of finite-element methods is not only favorable to approxi-

mate functions, but also to approximate domains of computation that are

not rectangular. This is important for multifactor options. For the one-

dimensional situation of standard options, the possible improvement of a

finite-element method over the standard methods of the previous chapter

is not significant. With the focus on standard options, Chapter 5 may be

skipped on first reading. But options with several underlyings may lead to

domains of computation that are more “fancy.”

For example, a two-asset basket with portfolio value α1S1 + α2S2 in the

case of a call option leads to a payoff of type Ψ(S1, S2) = (α1S1+α2S2−K)+.

If such an option is endowed with barriers, then it is reasonable to set up

barriers such that the payoff takes a constant value. For the two-asset basket,

this amounts to barrier lines α1S1 + α2S2 =constant. This naturally leads to

trapezoidal shapes of domains. For a special case with two knock-out barriers

the payoff and the domain are illustrated by Figure 5.1. This example will be

considered in Section 5.4, see the domain in Figure 5.8. In more complicated

examples, the domain may be elliptic (−→ Exercise 5.4). In such situations

of non-rectangle domains, finite elements are ideally applicable and highly

recommendable.

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_5, © Springer-Verlag London Limited 2012

229

http://dx.doi.org/10.1007/978-1-4471-2993-6_5

Chapter 5 Finite-Element Methods

 0
 0.5

 1
 1.5

 2 0

 0.5

 1

 1.5

 2

 0

 0.5

 1

 1.5

 2

S1

S2

Fig. 5.1. Payoff of a call on a two-asset basket, with knock-out barrier (Example

5.5)

Faced with the huge field of finite-element methods, in this chapter we

confine ourselves to a step-by-step exposition towards the solution of two-

asset options. We start with an overview on basic approaches and ideas (in

Section 5.1). Then in Section 5.2, we describe the approximation with the

simplest finite elements, namely, piecewise straight-line segments, and apply

this to a stationary model problem. These approaches will be applied to the

time-dependent situation of pricing standard options, in Section 5.3. This

sets the stage to the main application of FEM in financial engineering, op-

tions on two or more assets. Section 5.4 will present an application to an

exotic option with two underlyings. Here we derive a weak form of the PDE,

and discuss boundary conditions. Finally, in Section 5.5, we will introduce to

error estimates. Methods more subtle than just the Taylor expansion of the

discretization error are required to show that quadratic convergence is possi-

ble with unstructured grids and nonsmooth solutions. To keep the exposition

of an error analysis short, we concentrate on the one-dimensional situation.

But the ideas extend to multidimensional scenarios.

x

Fig. 5.2. Discretization of a continuum

230

5.1 Weighted Residuals

5.1 Weighted Residuals

Many of the principles on which finite-element methods are based, can be

interpreted as weighted residuals. What does this mean? This heading points

at ways in which a discretization can be set up, and how an approximation

can be defined. There lies a duality in a discretization. This is illustrated by

means of Figure 5.2, which shows a partition of an x-axis. This discretization

is either represented by

(a) discrete grid points xi, or by

(b) a set of subintervals.

The two ways to see a discretization lead to different approaches of construc-

ting an approximation w. Let us illustrate this with the one-dimensional

situation of Figure 5.3. An approximation w based on finite differences is

built on the grid points and primarily consists of discrete points (Figure

5.3a). Finite elements are founded on subdomains (intervals in Figure 5.3b)

with piecewise functions, which are defined by suitable criteria and consti-

tute a global approximation w. In a narrower sense, a finite element is a pair

consisting of one piece of subdomain and the corresponding function defi-

ned thereupon, mostly a polynomial. Figure 5.3 reflects the respective basic

approaches; in a second step the isolated points of a finite-difference calcu-

lation can well be extended to continuous piecewise functions by means of

interpolation (−→ Appendix C1).

x

(a)
w

background of finite differences:

skeleton of points

x

(b)w

finite elements:

piecewise defined functions

Fig. 5.3. Two kinds of approximations (one-dimensional situation)

A two-dimensional domain can be partitioned into triangles, for example,

where w is again represented by piecewise polynomials. Figure 5.4 depicts the

simplest such situation, namely, a triangle in an (x, y)-plane, and a piece of a

linear function defined thereupon. Figure 5.8 below will provide an example

how triangles easily fill a seemingly “irregular” domain.

As will be shown next, the approaches of finite-element methods use inte-

grals. If done properly, integrals require less smoothness. This often matches

231

Chapter 5 Finite-Element Methods

applications better and adds to the flexibility of finite-element methods. The

integrals can be derived in a natural way from minimum principles, or are

constructed artificially. Finite elements based on polynomials make the cal-

culation of the integrals easy.

y

x

w

Fig. 5.4. A simple finite element in two dimensions, based on a triangle

5.1.1 The Principle of Weighted Residuals

To explain the principle of weighted residuals we discuss the formally simple

case of the differential equation

Lu = f . (5.1)

Here L symbolizes a linear differential operator. Important examples are

Lu : = −u
′′ for u(x), or (5.2a)

Lu : = −uxx − uyy for u(x, y) . (5.2b)

Solutions u of the differential equation are studied on a domain D ⊆ IRn,

with n = 1 in (5.2a) and n = 2 in (5.2b). The piecewise approach starts with

a partition of the domain into a finite number m of subdomains Dk,

D =

m⋃
k=1

Dk . (5.3)

All boundaries of D should be included, and approximations to u are calcula-

ted on the closure D̄. The partition is assumed disjoint up to the boundaries

of Dk, so D◦
j
∩D◦

k
= ∅ for j �= k. In the one-dimensional case (n = 1), for ex-

ample, the Dk are subintervals of a whole interval D. In the two-dimensional

case, (5.3) may describe a partition into triangles, as illustrated in Figure 5.8.

The ansatz for approximations w to a solution u is a basis representation,

w :=

N∑
i=1

ci ϕi . (5.4)

232

5.1 Weighted Residuals

The ϕi are functions called basis functions, or trial functions. In the case

of one independent variable x the ci ∈ IR are constant coefficients, and the

ϕi are functions of x. Typically, N is chosen and ϕ1, ..., ϕN are prescribed.

Depending on this choice, the free parameters c1, ..., cN are to be determined

such that w ≈ u.

We have m subdomains and N basis functions. In the one-dimensional

situation (n = 1), nodes and subintervals interlace, and m and N essentially

can be identified. For n = 1 these two numbers differ by at most one, depen-

ding on whether the solution is known or unknown at the end points of the

interval D. In the latter case is convenient to have the summation index in

(5.4) run as i = 0, . . . , m. For dimensions n > 1 the number m of subdomains

(e.g. triangles in case n = 2) in general is very different from the number N

of basis functions (nodes). For example, in Figure 5.8 we have 75 triangles

and 51 nodes; 26 of the nodes are interior nodes and 25 are placed along the

boundary. That is, 1 ≤ k ≤ 75. The number N refers to the number of nodes

for which a value of u is to be approximated.

One strategy to determine the coefficients ci is based on the residual

function

R := Lw − f . (5.5)

We look for a w such that the residual R becomes “small.” Since the ϕi are

considered prescribed, in view of (5.4) N conditions or equations must be

established to define and calculate the unknown c1, ..., cN . To this end we

weight the residual R by introducing N weighting functions (test functions)

ψ1, ..., ψN and require

∫
D

R ψj dD = 0 for j = 1, ..., N (5.6)

This amounts to the requirement that the residual be orthogonal to the set

of weighting functions ψj . The “dD” in (5.6) symbolizes the integration that

matches D ⊆ IRn, as dx for n = 1. For ease of notation, we frequently drop

dx as well as the D at the n-dimensional integral. The system of equations

(5.6) for the model problem (5.1) consists of the N equations∫
D

Lw ψj =

∫
D

f ψj (j = 1, ..., N) (5.7)

for the N unknowns c1, ..., cN , which define w. Often the equations in (5.7)

are written using a formulation with inner products,

(Lw, ψj) = (f, ψj) ,

defined as the corresponding integrals in (5.7). For linear L the ansatz (5.4)

implies

233

Chapter 5 Finite-Element Methods∫
Lwψj =

∫ (∑
i

ciLϕi

)
ψj =

∑
i

ci

∫
Lϕiψj︸ ︷︷ ︸
=:aij

.

The integrals aij constitute a matrix A. The rj :=
∫

fψj set up a vector r

and the coefficients cj a vector c = (c1, ..., cN)tr. Now the system of equations

in vector notation is rewritten as

Ac = r . (5.8)

This outlines the general principle, but leaves open the questions how

to handle boundary conditions and how to select the basis functions ϕi and

the weighting functions ψj . The freedom to choose trial functions ϕi and test

functions ψj allows to construct several different methods. For the time being

suppose that these functions have sufficient potential to be differentiated or

integrated. We will enter a discussion of relevant function spaces in Section

5.5.

5.1.2 Examples of Weighting Functions

We postpone the choice of basis functions ϕi and begin with listing important

examples of how to select weighting functions ψ:

1.) Galerkin method, also called Bubnov–Galerkin method:

Choose ψj := ϕj . Then ai,j =
∫

Lϕiϕj .

2.) collocation:

Choose ψj := δ(x − xj). Here δ denotes Dirac’s delta function, which in

IR1 satisfies
∫

fδ(x− xj) dx = f(xj). As a consequence,∫
Lwψj = Lw(xj) ,∫

fψj = f(xj) .

That is, a system of equations Lw(xj) = f(xj) results, which amounts to

evaluating the differential equation at selected points xj .

3.) least squares:

Choose

ψj :=
∂R

∂cj

This choice of test functions deserves its name least-squares, because to

minimize
∫
(R(c1, ..., cN))2 the necessary criterion is the vanishing of the

gradient, so ∫
D

R
∂R

∂cj

= 0 for all j .

234

5.1 Weighted Residuals

xi xmxi+1xi−1x2x10x

1

0
x.....

ϕ

.....

i

Fig. 5.5. “Hat function”: simple choice of finite elements

5.1.3 Examples of Basis Functions

For the choice of suitable basis functions ϕi our concern will be to meet two

aims: The resulting methods must be accurate, and their implementation

should become efficient.

The efficiency can be focused on the sparsity of matrices. In particular, if

the matrix A of the linear equations is sparse, then the system can be solved

efficiently even when it is large. In order to achieve sparsity we require that

ϕi ≡ 0 on most of the subdomains Dk. Figure 5.5 illustrates an example

for the one-dimensional case n = 1. This hat function of Figure 5.5 is the

simplest example related to finite elements. It is piecewise linear, and each

function ϕi has a support consisting of only two subintervals, ϕi(x) �= 0 for

x ∈ support. A consequence is∫
D

ϕiϕj = 0 for |i− j| > 1 , (5.9)

as well as an analogous relation for
∫

ϕ′
i
ϕ′

j
. We will discuss hat functions in

the following Section 5.2. Basis functions more advanced than the canonical

hat functions are constructed using piecewise polynomials of higher degree.

In this way, basis functions can be obtained with C1- or C2-smoothness (−→
Exercise 5.1). Recall from interpolation (−→ Appendix C1) that polynomials

of degree three can lead to C2-smooth splines.

5.1.4 Smoothness

The accuracy depends on the smoothness of the basis functions. Depending

on the chosen method, different kinds of smoothness are relevant. Let us

illustrate this matter on the model problem (5.2a),

Lu = −u
′′
, u, ϕ, ψ ∈ { u | u(0) = u(1) = 0 } .

Integration by parts implies formally∫
1

0

ϕ
′′
ψ = −

∫
1

0

ϕ
′
ψ
′ =

∫
1

0

ϕψ
′′

,

235

Chapter 5 Finite-Element Methods

because the boundary conditions u(0) = u(1) = 0 let the nonintegral terms

vanish. These three versions of the integral can be distinguished by the

smoothness requirements on ϕ and ψ, and by the question whether the in-

tegrals exist. One will choose the integral version that corresponds to the

underlying method, and to the smoothness of the solution. For example, for

Galerkin’s approach the elements aij of A consist of the integrals

−

∫
1

0

ϕ
′

i
ϕ
′

j
.

We will return to the topics of accuracy, convergence, and function spaces in

Section 5.5 (with Appendix C3).

5.2 Galerkin Approach with One-Dimensional Hat

Functions

As mentioned before, any required flexibility is provided by finite-element

methods. This holds to a larger extent in higher-dimensional spaces. In this

section, for simplicity, we stick to the one-dimensional situation, x ∈ IR. The

dependence on the time variable t is postponed to Section 5.3.

Assume a partition of the x-domain by a set of increasing mesh points

x0, . . . , xm. A nonuniform spacing is advisable in several instances in order

to improve the accuracy. For example, close to the strike, a denser grid is

appropriate to mollify the lack of smoothness of a payoff. In contrast, to

model infinity, one rarefies the nodes for larger x and shifts the final node xm

to a large value. One strategy is to select a spacing such that locally (up to

additional scaling and shifts) sinh(xi) = ηi, where ηi are chosen equidistantly.

A dense spacing is also advisable for barrier options close to the barrier, where

the gradient of option prices is high.

5.2.1 Hat Functions

The prototype of a finite-element method makes use of the hat functions,

which we define formally (compare Figures 5.5 and 5.6).

Definition 5.1 (hat functions)

For 1 ≤ i ≤ m− 1 set

ϕi(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x− xi−1

xi − xi−1

for xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi

for xi ≤ x < xi+1

0 elsewhere

236

5.2 Galerkin Approach with One-Dimensional Hat Functions

xi xm

1

0
x x x

x.....
1 i+1x

2 i−1x

ϕ

0

0

x0 x1 x2 xm−1 xm

1

0
x

.....

ϕm

Fig. 5.6. Special “hat functions” ϕ0 and ϕm

and for the boundary functions

ϕ0(x) : =

⎧⎨⎩
x1 − x

x1 − x0

for x0 ≤ x < x1

0 elsewhere

ϕm(x) : =

⎧⎪⎨⎪⎩
x− xm−1

xm − xm−1

for xm−1 ≤ x ≤ xm

0 elsewhere.

For each node xi there is one hat function. These m + 1 hat functions satisfy

the following properties.

Properties 5.2 (hat functions)

(a) The ϕ0, ..., ϕm form a basis of the space of polygons

{ g ∈ C0[x0, xm] | g straight line on Dk := [xk, xk+1] ,

for all k = 0, ..., m− 1 } .

That is to say, for each polygon v on the union of D0, ...,Dm−1 there are

unique coefficients c0, ..., cm such that

v =

m∑
i=0

ciϕi .

(b) On any Dk only ϕk and ϕk+1 �= 0 are nonzero. Hence

ϕiϕj = 0 for |i− j| > 1 ,

which explains (5.9).

237

Chapter 5 Finite-Element Methods

(c) A simple approximation of the integral
∫

xm

x0
fϕj dx can be calculated as

follows:

Substitute f by the interpolating polygon

fp :=

m∑
i=0

fiϕi , where fi := f(xi) ,

and obtain for each j the approximating integral

Ij :=

∫
xm

x0

fpϕj dx =

∫
xm

x0

m∑
i=0

fiϕiϕj dx =

m∑
i=0

fi

∫
xm

x0

ϕiϕj dx︸ ︷︷ ︸
=:bij

.

The bij constitute a symmetric matrix B and the fi a vector f̄ . If we

arrange all integrals Ij (0 ≤ j ≤ m) into a vector, then all integrals can

be written in a compact way in vector notation as

Bf̄ .

This will approximate the vector r in (5.8).

(d) The “large” (m + 1)2–matrix B := (bij) can be set up Dk-elementwise by

(2×2)-matrices (discussed below in Section 5.2.2). The (2×2)-matrices are

those integrals that integrate only over a single subdomain Dk. For each

Dk in our one-dimensional setting exactly the four integrals
∫

ϕiϕjdx for

i, j ∈ {k, k + 1} are nonzero. They can be arranged into a (2× 2)-matrix∫
xk+1

xk

(
ϕ2

k
ϕkϕk+1

ϕk+1ϕk ϕ2

k+1

)
dx .

(The integral over a matrix is understood elementwise.) These are the

integrals on Dk, where the integrand is a product of the factors

xk+1 − x

xk+1 − xk

and
x− xk

xk+1 − xk

.

The four numbers

1

(xk+1 − xk)2

∫
xk+1

xk

(
(xk+1 − x)2 (xk+1 − x)(x − xk)

(x− xk)(xk+1 − x) (x− xk)2

)
dx

result. With hk := xk+1 − xk integration yields the element-mass matrix

(−→ Exercise 5.2)
1

6
hk

(
2 1

1 2

)
.

238

5.2 Galerkin Approach with One-Dimensional Hat Functions

k

D

D

j

i

D0

1

2

Fig. 5.7. Assembling in the one-dimensional setting

(e) Analogously, integrating ϕ′
i
ϕ′

j
yields∫

xk+1

xk

(
ϕ′2

k
ϕ′

k
ϕ′

k+1

ϕ
′
k+1

ϕ
′
k

ϕ
′2
k+1

)
dx

=
1

h2

k

∫
xk+1

xk

(
(−1)2 (−1)1

1(−1) 12

)
dx =

1

hk

(
1 −1

−1 1

)
.

These matrices are called element-stiffness matrices. They are used to set

up the matrix A.

5.2.2 Assembling

The next step is to assemble the matrices A and B. It might to be tempting

to organize this task as follows: Run a double loop on all basis indices (node

indices) i, j and check for each (i, j) on which Dk the integral∫
Dk

ϕiϕj

is nonzero. Such a procedure of performing a double loop is cumbersome as

compared to the alternative of running a single loop on the subdomain index

k and benefit from all relevant integrals onDk, which are precalculated above.

239

Chapter 5 Finite-Element Methods

To this end, split the integrals∫
xm

x0

=

m−1∑
k=0

∫
Dk

to construct the (m+1)×(m+1)-matrices A = (aij) and B = (bij) additively

out of the small element matrices. For the case of the one-dimensional hat

functions with subintervals

Dk = { x | xk ≤ x ≤ xk+1 }

the element matrices are (2× 2), see above. In this case only those integrals

of ϕ′
i
ϕ′

j
and ϕiϕj are nonzero, for which i, j ∈ Ik, where

i, j ∈ Ik := {k, k + 1} . (5.10)

Ik is the set of indices of those products of basis functions that are nonzero

on Dk. The assembling algorithm performs a loop over the subdomain index

k = 0, 1, . . . , m − 1 and distributes the (2 × 2)-element matrices additively

to the positions (i, j) ∈ Ik. Before the assembling is started, the matrices A

and B must be initialized with zeros. For k = 0, ..., m− 1 one obtains for A

the (m + 1)2-matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

h0
− 1

h0

− 1

h0

1

h0
+ 1

h1
− 1

h1

− 1

h1

1

h1
+ 1

h2
− 1

h2

− 1

h2

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.11a)

The matrix B is assembled in an analogous way. In the one-dimensional

situation the matrices are tridiagonal. For an equidistant grid with h = hk

the matrix A specializes to

A =
1

h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0

−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.11b)

and B to

B =
h

6

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0

1 4 1

1 4
. . .

. . .
. . .

. . .
. . . 4 1

0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.11c)

240

5.2 Galerkin Approach with One-Dimensional Hat Functions

5.2.3 A Simple Application

In order to demonstrate the procedure, let us consider the simple time-

independent (“stationary”) model boundary-value problem

Lu := −u
′′ = f(x) with u(x0) = u(xm) = 0 . (5.12)

We perform a Galerkin approach and substitute w :=
∑

m

i=0
ciϕi into the

differential equation. In view of (5.7) this leads to

m∑
i=0

ci

∫
xm

x0

Lϕiϕj dx =

∫
xm

x0

fϕj dx .

Next we apply integration by parts on the left-hand side, and invoke Property

5.2(c) on the right-hand side. The resulting system of equations is

m∑
i=0

ci

∫
xm

x0

ϕ
′

i
ϕ
′

j
dx︸ ︷︷ ︸

aij

=

m∑
i=0

fi

∫
xm

x0

ϕiϕj dx︸ ︷︷ ︸
bij

, j = 0, 1, ..., m . (5.13)

This system is preliminary because the homogeneous boundary conditions

u(x0) = u(xm) = 0 are not yet taken into account.

At this state, the preliminary system of equations (5.13) can be written

as

Ac = Bf̄ . (5.14)

It is easy to see that the matrix A from (5.11b) is singular, because

A(1, 1, ..., 1)tr = 0. This singularity reflects the fact that the system (5.14)

does not have a unique solution. This is consistent with the differential equa-

tion −u′′ = f(x): If u(x) is solution, then also u(x)+α for arbitrary α. Unique

solvability is attained by satisfying the boundary conditions; a solution u of

−u′′ = f must be fixed by at least one essential boundary condition. For

our example (5.12) we know in view of u(x0) = u(xm) = 0 the coefficients

c0 = cm = 0. This information can be inserted into the system of equations

in such a way that the matrix A changes to a nonsingular matrix without

losing symmetry. To this end, cancel the first and the last of the n + 1 equa-

tions in (5.14), and make use of c0 = cm = 0. Now the inner part of size

(m− 1)× (m− 1) of A remains. The matrix B is (m− 1)× (m + 1). Finally,

for the special case of an equidistant grid, the system of equations is

241

Chapter 5 Finite-Element Methods⎛⎜⎜⎜⎜⎜⎜⎝

2 −1 0

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
c1

c2

...

cm−2

cm−1

⎞⎟⎟⎟⎟⎠ =

h2

6

⎛⎜⎜⎜⎜⎝
1 4 1 0

1 4 1
. . .

. . .
. . .

1 4 1

0 1 4 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f̄0

f̄1

...

f̄m−1

f̄m

⎞⎟⎟⎟⎟⎠ .

(5.15)

In (5.15) we have used an equidistant grid for sake of a lucid exposition.

Our main focus is the nonequidistant version, which is also implemented

easily. In case nonhomogeneous boundary conditions are prescribed, appro-

priate values of c0 or cm are predefined. The importance of finite-element

methods in structural engineering has lead to call the global matrix A the

stiffness matrix, and B is called the mass matrix.

5.3 Application to Standard Options

We have emphasized that finite elements are especially advantageous in

higher-dimensional spaces (several underlyings). But it works also for the

one-dimensional case of standard options. This is the theme of this section.

In contrast to the previous section, time must be included.

5.3.1 European Options

We know that the valuation of single-asset European options with vanilla

payoff makes use of the Black–Scholes formula. But for the sake of exposition,

and for non-vanilla payoff, let us briefly sketch a finite-element approach.

Here we apply the FEM approach to the transformed version yτ = yxx of the

Black–Scholes equation. In view of the general basis representation in (5.4)

we may think of starting from w =
∑

wiϕi(x, τ) with constant coefficients wi.

This would require two-dimensional basis functions. (We shall come back to

such functions in Section 5.4.) To make use of one-dimensional hat functions,

apply a separation ansatz in the form
∑

wi(τ)ϕi(x) with functions wi(τ).

As a consequence of this simple approach, the same x-grid is applied for all

τ , which results in a rectangular grid in the (x, τ)-plane. Dirichlet boundary

conditions
y(xmin, τ) = α(τ), y(xmax, τ) = β(τ)

mean that in view of the shape of ϕ0, ϕm (Definition 5.1, Figure 5.6) the

values w0 = α or wm = β would be known. It is practical to separate known

242

5.3 Application to Standard Options

terms and restrict the sum to the terms with unknown weights wi. This can be

managed by introducing a special function ϕb that compensates for Dirichlet

boundary conditions on y. The function ϕb(x, τ) is no basis function, and is

constructed in advance. For example,

ϕb(x, τ) := (β(τ) − α(τ))
x− xmin

xmax − xmin

+ α(τ)

does the job for the above boundary conditions. So ϕb can be considered

to be known, and the sum
∑

wiϕi does not reflect any nonzero Dirichlet

boundary conditions on y. The final ansatz then is∑
i

wi(τ)ϕi(x) + ϕb(x, τ) , (5.16)

and the index i counts those nodes xi for which no boundary conditions of

the above type are prescribed, 1 ≤ i ≤ m− 1 in case two Dirichlet boundary

conditions are given. The basis functions ϕ1, . . . , ϕN are chosen to be the hat

functions, which incorporate the discretization of the x-axis. Hence, N = m−
1, and x0 corresponds to xmin, and xm to xmax. The functions w1, . . . , wm−1

are unknown.

Calculating derivatives of (5.16) and substituting into yτ = yxx leads to

the Galerkin approach

xm∫
x0

[
m−1∑
i=1

ẇiϕi + ϕ̇b

]
ϕj dx =

xm∫
x0

[
m−1∑
i=1

wiϕ
′′

i
+ ϕ

′′

b

]
ϕj dx

for j = 1, . . . , m−1. The overdot represents differentiation with respect to τ ,

and the prime with respect to x. Arranging the terms that involve derivatives

of ϕb into vectors a(τ), b(τ),

a(τ) :=

⎛⎜⎝
∫

ϕ′′
b
(x, τ)ϕ1(x) dx

...∫
ϕ
′′
b
(x, τ)ϕm−1(x) dx

⎞⎟⎠ , b(τ) :=

⎛⎜⎝
∫

ϕ̇b(x, τ)ϕ1(x) dx

...∫
ϕ̇b(x, τ)ϕm−1(x) dx

⎞⎟⎠
and using the matrices A, B as in (5.11), we arrive after integration by parts

at

Bẇ + b = −Aw − a . (5.17)

Note that for the specific ϕb from above ϕ
′′
b

= 0 and a = 0. For vanilla options,

α and β can be drawn from (4.19), and b can be set up analytically. This

completes the semidiscretization. Time τ is still continuous, and (5.17) defines

the unknown vector function w(τ) := (w1(τ), . . . , wm−1(τ))tr as solution of a

system of ordinary differential equations. This is a method of lines approach.

The lines are defined by x = xi for 1 ≤ i ≤ m − 1, and the approximations

along the lines are given by wi(τ).

243

Chapter 5 Finite-Element Methods

Initial conditions for τ = 0 are derived from (5.16). Assume the initial

condition from the payoff as y(x, 0) = γ(x), then

N∑
i=1

wi(0)ϕi(x) + ϕb(x, 0) = γ(x) .

For vanilla payoff, γ is given by (4.4). Specifically for x = xj the sum reduces

to wj(0) · 1, leading to

wj(0) = γ(xj)− ϕb(xj , 0) .

To complete the discretization, time τ must be discretized. Standard soft-

ware for ODEs can be applied to (5.17), in particular, codes for stiff systems.

For discretizing with difference quotients consult Section 4.2.1. For exam-

ple, apply the ODE trapezoidal rule as in (4.12) for the discretization of

ẇ in (5.17). We leave the derivation of the resulting Crank–Nicolson type

discretization as an exercise to the reader. With the usual notation as in

w(ν) := w(τν), the result can be written

(B +
Δτ

2
A)w

(ν+1) =(B −
Δτ

2
A)w

(ν)

−
Δτ

2
(a(ν) + a

(ν+1) + b
(ν) + b

(ν+1))

(5.18)

The structure of (5.18) strongly resembles the finite-difference approach

(4.15). This similarity suggests that the order is the same, because for the

finite-element A’s and B’s we have (compare (5.11))

A = O

(
1

Δx

)
, B = O(Δx) .

The separation of the variables x and τ in (5.16) allows to investigate the or-

ders of the discretizations separately. In Δτ , the order O(Δτ2) of the Crank–

Nicolson type approach (5.18) is clear from the ODE trapezoidal rule. It

remains to derive the order of convergence with respect to the discretization

in x. Because of the separation of variables it is sufficient to derive the con-

vergence for a one-dimensional model problem. This will be done in Section

5.5.

5.3.2 Variational Form of the Obstacle Problem

To warm up for the discussion of the American option case, let us return

to the simple obstacle problem of Section 4.5.5 with the obstacle function

g(x, τ). This problem can be formulated as a variational inequality. The func-

tion u solving the obstacle problem can be characterized by comparing it to

functions v out of a set K of competing functions

244

5.3 Application to Standard Options

K := { v ∈ C0[−1, 1] | v(−1) = v(1) = 0 ,

v(x) ≥ g(x) for − 1 ≤ x ≤ 1, v piecewise ∈ C1 } .

The requirements on u imply u ∈ K. For v ∈ K we have v − g ≥ 0 and in

view of −u′′ ≥ 0 also −u′′(v − g) ≥ 0. Hence for all v ∈ K the inequality∫
1

−1

−u
′′(v − g) dx ≥ 0

must hold. By the LCP formulation (4.26) the integral∫
1

−1

−u
′′(u− g) dx = 0

vanishes. Subtracting yields∫
1

−1

−u
′′(v − u) dx ≥ 0 for any v ∈ K .

The obstacle function g does not occur explicitly in this formulation; the

obstacle is implicitly defined in K. Integration by parts leads to

[−u
′(v − u)︸ ︷︷ ︸
=0

]1−1
+

∫
1

−1

u
′(v − u)′ dx ≥ 0 .

The integral-free term vanishes because of u(−1) = v(−1), u(1) = v(1). In

summary, we have derived the statement:

If u solves the obstacle problem (4.26), then∫
1

−1

u
′(v − u)′ dx ≥ 0 for all v ∈ K .

(5.19)

Since v varies in the set K of competing functions, an inequality such as in

(5.19) is called variational inequality. The characterization of u by (5.19) can

be used to construct an approximation w: Instead of u, find a w ∈ K such

that the inequality (5.19) is satisfied for all v ∈ K,

1∫
−1

w
′(v − w)′ dx ≥ 0 for all v ∈ K

The characterization (5.19) is related to a minimum problem, because the

integral vanishes for v = u.

245

Chapter 5 Finite-Element Methods

5.3.3 Variational Form of an American Option

Analogously as the simple obstacle problem also the problem of calculating

American options can be formulated as variational problem, compare Pro-

blem 4.7. The class of comparison functions must be redefined as

K := { v ∈ C0[xmin, xmax] |
∂v

∂x
piecewise C0

,

v(x, τ) ≥ g(x, τ) for all x, τ , v(x, 0) = g(x, 0) ,

v(xmax, τ) = g(xmax, τ), v(xmin, τ) = g(xmin, τ) } .

(5.20)

For the following, v ∈ K for the K from (5.20). Let y denote the exact

solution of Problem 4.7. As solution of the partial differential inequality, y is

C2-smooth on the continuation region, and y ∈ K. From

v ≥ g,
∂y

∂τ
−

∂
2
y

∂x2
≥ 0

we deduce ∫
xmax

xmin

(
∂y

∂τ
−

∂2y

∂x2

)
(v − g) dx ≥ 0 .

Invoking the complementarity∫
xmax

xmin

(
∂y

∂τ
−

∂
2
y

∂x2

)
(y − g) dx = 0

and subtraction gives∫
xmax

xmin

(
∂y

∂τ
−

∂2y

∂x2

)
(v − y) dx ≥ 0 .

Integration by parts leads to the inequality∫
xmax

xmin

(
∂y

∂τ
(v − y) +

∂y

∂x

(
∂v

∂x
−

∂y

∂x

))
dx−

∂y

∂x
(v − y)

∣∣∣∣∣
xmax

xmin

≥ 0 .

The nonintegral term vanishes, because at the boundary for xmin, xmax, in

view of v = g, y = g, the equality v = y holds. The final result is

I(y; v) :=

∫
xmax

xmin

(
∂y

∂τ
· (v − y) +

∂y

∂x

(
∂v

∂x
−

∂y

∂x

))
dx ≥ 0 for all v ∈ K .

(5.21)

The exact y is characterized by the fact that the inequality (5.21) holds for

all comparison functions v ∈ K. For the special choice v = y the integral

takes its minimal value,

min
v∈K

I(y; v) = I(y; y) = 0 .

246

5.3 Application to Standard Options

A more general question is, whether the inequality (5.21) holds for a ŷ ∈ K
that is not C2-smooth on the continuation region.1 The aim is to construct a

ŷ ∈ K such that I(ŷ; v) ≥ 0 for all v ∈ K, and

inf
v∈K

I(ŷ; v) = 0 .

This formulation of our problem is called weak version, because it does not

use ŷ ∈ C2. Solutions ŷ of this minimization problem, which are globally

continuous but only piecewise ∈ C1 are called weak solutions. The original

partial differential equation requires y ∈ C2 and hence more smoothness. Such

C2-solutions are called strong solutions or classical solutions (−→ Section 5.5).

5.3.4 Implementation of Finite Elements

Now we approach the inequality (5.21) with finite-element methods. As a

first step to approximately solve the minimum problem, assume as in Section

5.3.1 separation approximations for ŷ and v in the similar forms∑
i

wi(τ)ϕi(x) for ŷ ,∑
i

vi(τ)ϕi(x) for v .

(5.22)

The reduced smoothness of these expressions match the requirements of K
from (5.20); time dependence is incorporated in the coefficient functions wi

and vi. Since the basis functions ϕi represent the xi-grid, we again perform

a semidiscretization. Plugging the ansatz (5.22) into (5.21) gives

∫ ⎧⎨⎩
(∑

i

dwi

dτ
ϕi

)⎛⎝∑
j

(vj − wj)ϕj

⎞⎠+

(∑
i

wiϕ
′
i

)⎛⎝∑
j

(vj − wj)ϕ
′
j

⎞⎠⎫⎬⎭ dx

=
∑

i

∑
j

dwi

dτ
(vj − wj)

∫
ϕiϕj dx +

∑
i

∑
j

wi(vj − wj)

∫
ϕ
′

i
ϕ
′

j
dx ≥ 0.

Translated into vector notation this is equivalent to(
dw

dτ

)
tr

B(v − w) + wtrA(v − w) ≥ 0

1 For the Black–Scholes y(x, τ) or V (S, t) the weaker y ∈ C2,1 suffices.

Recall that the American option is widely C2-smooth, except across the early-

exercise curve.

247

Chapter 5 Finite-Element Methods

or

(v − w)tr

(
B

dw

dτ
+ Aw

)
≥ 0 .

The matrices A and B are defined via the assembling described above; for

equidistant steps the special versions in (5.11b), (5.11c) arise.

As a second step, the time is discretized. To this end let us define the

vectors

w
(ν) := w(τν), v

(ν) := v(τν) .

Upon substituting, and θ-averaging the Aw term as in Section 4.6.1, we arrive

at the inequalities(
v
(ν+1) − w

(ν+1)

)
tr

(
B

1

Δτ
(w(ν+1) − w

(ν)) + θAw
(ν+1) + (1− θ)Aw

(ν)

)
≥ 0

(5.23a)

for all ν. For θ = 1/2 this is a Crank–Nicolson-type method. Rearranging

(5.23a) leads to(
v
(ν+1) − w

(ν+1)

)
tr
(
(B + Δτ θA)w

(ν+1) + (Δτ(1 − θ)A−B) w
(ν)

)
≥ 0 .

With the abbreviations

r : = (B −Δτ(1 − θ)A)w
(ν)

C : = B + Δτ θA
(5.23b)

the inequality can be rewritten as(
v
(ν+1) − w

(ν+1)

)
tr
(
Cw

(ν+1) − r

)
≥ 0 . (5.23c)

This is the fully discretized version of I(ŷ; v) ≥ 0.

Side Conditions

ŷ(x, τ) ≥ g(x, τ) amounts to∑
wi(τ)ϕi(x) ≥ g(x, τ) .

For hat functions ϕi (with ϕi(xi) = 1 and ϕi(xj) = 0 for j �= i) and x = xj

this implies wj(τ) ≥ g(xj , τ). With τ = τν we have

w
(ν) ≥ g

(ν); analogously v
(ν) ≥ g

(ν)
.

For each time level ν we must find a solution that satisfies both the inequality

(5.23) and the side condition

w
(ν+1) ≥ g

(ν+1) for all v
(ν+1) ≥ g

(ν+1)
.

In summary, the algorithm is

248

5.3 Application to Standard Options

Algorithm 5.3 (finite elements for American standard options)

Choose θ (θ = 1/2). Calculate w
(0)

, and C from (5.23b).

For ν = 1, ..., νmax :

Calculate r = (B −Δτ(1 − θ)A)w(ν−1) and g = g
(ν)

Construct a w such that for all v ≥ g

(v − w)tr(Cw − r) ≥ 0, w ≥ g.

Set w
(ν) := w

Let us emphasize again the main step, which is the kernel of this algorithm

and the main labor: Construct w such that

(FE)
for all v ≥ g

(v − w)tr(Cw − r) ≥ 0 , w ≥ g .
(5.24)

This task (FE) can be reformulated into a task we already solved in Section

4.6. To this end recall the finite-difference equation (4.31), replacing A by C,

and b by r. There the following holds for w:

(FD)
Cw − r ≥ 0 , w ≥ g

(Cw − r)tr(w − g) = 0
(5.25)

Theorem 5.4 (equivalence)

The solution of the problem (FE) is equivalent to the solution of problem

(FD).

Proof:

a) (FD) =⇒ (FE):

Let w solve (FD), so w ≥ g, and

(v − w)tr(Cw − r) = (v − g)tr (Cw − r)︸ ︷︷ ︸
≥0

− (w − g)tr(Cw − r)︸ ︷︷ ︸
=0

hence (v − w)tr(Cw − r) ≥ 0 for all v ≥ g

b) (FE) =⇒ (FD):

Let w solve (FE), so w ≥ g, and

vtr(Cw − r) ≥ wtr(Cw − r) for all v ≥ g

249

Chapter 5 Finite-Element Methods

Suppose the kth component of Cw − r is negative, and make vk arbi-

trarily large. Then the left-hand side becomes arbitrarily small, which

is a contradiction. So Cw − r ≥ 0. Now

w ≥ g =⇒ (w − g)tr(Cw − r) ≥ 0

Set in (FE) v = g, then (w − g)tr(Cw − r) ≤ 0.

Therefore (w − g)tr(Cw − r) = 0.

Implementation

As a consequence of this equivalence, the solution of the finite-element pro-

blem (FE) can be calculated with the methods we applied to solve problem

(FD) in Section 4.6. Following the exposition in Section 4.6.2, the kernel of

the finite-element Algorithm 5.3 can be written as follows

(FE′)
Solve Cw = r componentwise such that

the side condition w ≥ g is obeyed.

The vector v is not calculated. The boundary conditions on w are set up in

the same way as discussed in Section 4.4 and summarized in Algorithm 4.13.

Consequently, the finite-element algorithm parallels Algorithm 4.13 closely

in the special case of an equidistant x-grid; there is no need to repeat this

algorithm (−→ Exercise 5.3). In the general nonequidistant case, the off-

diagonal and the diagonal elements of the tridiagonal matrix C vary with i,

and the formulation of the SOR-loop gets more involved. The details of the

implementation are technical and omitted. The Algorithm 4.14 is the same

in the finite-element case.

The computational results match those of Chapter 4 and need not be re-

peated. The costs of the presented simple version of a finite-element approach

are slightly lower than that of the finite-difference approach, because we can

take advantage of an optimal spacing of the mesh points xi.

5.4 Two-Asset Options

In Section 3.5.5 we discussed an option based on two assets with prices S1, S2.

There we applied Monte Carlo to simulate the GBM model, see Example 3.8.

For the mathematical model we have chosen the Black–Scholes market. The

corresponding PDE for the value function V (S1, S2, t) is

∂V

∂t
+

1

2
σ

2

1
S

2

1

∂2V

∂S2

1

+ (r − δ1)S1

∂V

∂S1

− rV

+
1

2
σ

2

2
S

2

2

∂
2
V

∂S2

2

+ (r − δ2)S2

∂V

∂S2

+ ρσ1σ2S1S2

∂
2
V

∂S1∂S2

= 0 ,

(5.26)

250

5.4 Two-Asset Options

1 2
S

1

S =y

=x

2

1

2

Fig. 5.8. A simple regular finite-element discretization of a domain D into triangles

Dk (see Example 5.5)

with dividend rates δ1, δ2. (For the general case see Section 6.2.) Note that

for S2 = 0 the familiar one-dimensional Black–Scholes equation results. The

model is completed by a payoff function Ψ(S1, S2) and the terminal condition

V (S1, S2, T) = Ψ(S1, S2). The computational domain D is two-dimensional,

D ⊂ IR2 (disregarding time t).

Example 5.5 (European call on a basket with double barrier)

We consider a call on a two-asset basket with two knock-out barriers. The

payoff of this exotic European-style option is

Ψ(S1, S2) = (S1 + S2 −K)+ ,

up to the barriers (see Figure 5.1). In the underlying basket the two assets

are of equal weight. The two knock-out barriers are given by B1 and B2,

down-and-out at B1, and up-and-out at B2. That is, the option ceases to

exist when S1 + S2 < B1, or when S1 + S2 > B2; in both cases V = 0. In

this example, the computational domain D is easy to define: The value

function is zero outside the barriers. Hence the domain is bounded by the

two lines S1 + S2 = B1 and S1 + S2 = B2. This shape of D naturally

suggests to tile the domain into a grid of triangular elements Dk. One

possible triangulation is shown in Figure 5.8, where a structured regular

subdivision is applied. For this example we choose the parameters

251

Chapter 5 Finite-Element Methods

K = 1 , T = 1 , σ1 = σ2 = 0.25 , ρ = 0.7 , r = 0.05 ,

δ1 = δ2 = 0 , B1 = 1 , B2 = 2 .

The values V for S1 → 0 and S2 → 0 are known by the one-dimensional

Black–Scholes equation; just set either S1 = 0 or S2 = 0 in (5.26). These

values of single-asset double-barrier options can be evaluated by a closed-

form formula, see [Haug07]. We shall come back to this example below.

5.4.1 Analytical Preparations

It is convenient to solve the Black–Scholes equation in a “divergence-free”

version. To this end, use standard PDE variables x := S1, y := S2, τ := T − t

for the independent variables, and u(x, y, τ) for the dependent variable, and

derive the vector PDE for u

−∇ · (D(x, y)∇u) + b(x, y)tr∇u + ru = ut = −
∂

∂τ
u , (5.27)

This makes use of the formal “nabla” vector ∇ := (∂

∂x
,

∂

∂y
)tr, and

D(x, y) :=
1

2

(
σ2

1
x2 ρσ1σ2xy

ρσ1σ2xy σ2

2
y2

)
,

b(x, y) := −

(
(r − δ1 − σ

2

1
− ρσ1σ2/2)x

(r − δ2 − σ
2

2
− ρσ1σ2/2) y

)
.

(5.28)

∇u is the gradient of u, and the dot-product notation ∇ · U for a vector

function U denotes the divergence ∂U

∂x
+ ∂U

∂y
; the · corresponds to the scalar

product, similar as tr for vectors. The reader is invited to check the equivalence

with (5.26). (−→ Exercise 5.5) The advantage of version (5.27) over (5.26) lies

in a simple treatment of the second-order derivatives; they can be removed,

and a weak version can be derived. This will become apparent below.

5.4.2 Galerkin Ansatz

The partial differential equation (5.27) can represented by R(u, x, y, t) = 0,

where

R(u, x, y, t) :=−∇ · (D(x, y)∇u(x, y, t)) + b(x, y)tr∇u(x, y, t)

+ ru(x, y, t) +
∂u(x, y, t)

∂t

denotes the residual. As in Section 5.1, the residual is used to set up an

integral equation. To this end, introduce weighting functions v, multiply the

residual of the PDE with v(x, y, t) and request∫
D

R(u, x, y, t) v dxdy = 0 . (5.29)

252

5.4 Two-Asset Options

This integral over the computational domain D ⊂ IR2 is a double integral.

It depends on t, and should vanish for all 0 ≤ t ≤ T and arbitrary v. We

consider u to be a solution in case (5.29) holds for “all” v. This is the core

of Galerkin-type approaches. It is a weak version of the PDE and requires

less regularity of its “weak” solutions u. Aspects of accuracy are postponed

to Section 5.5.

To exploit the potentiality of the integral version (5.29), we transform the

second-order derivatives to first order, comparable to integration by parts.

The leading integral over the second-order term is∫
D

−∇ · (D∇u) v dxdy .

The reader may check for the vector U := vD∇u the formula for the diver-

gence ∇ · U , namely,

∇ · (vD∇u) = (∇v)tr

D∇u + v∇ ·D∇u ,

and hence

−

∫
D

v∇ · (D∇u) dxdy =

∫
D

(∇v)tr

D∇u dxdy −

∫
D

∇ · (vD∇u) dxdy .

Next we quote the divergence theorem, here for the two-dimensional situation:∫
D

∇ · U dxdy =

∫
∂D

U trn ds , (5.30)

where ∂D denotes the boundary of D, and n is the outward unit normal

vector on ∂D. (n is perpendicular to the curve ∂D and points away from D.)

The parameter s measures the arclength along the boundary ∂D.2 We apply

the divergence theorem to the specific vector U := vD∇u, and arrive at the

result for the second-order term

−

∫
D

v∇ · (D∇u) dxdy =

∫
D

(∇v)tr

D∇u dxdy −

∫
∂D

(vD∇u)tr

n ds .

In (5.27)/(5.28) the matrix D is symmetric, D = Dtr. For symmetric D the

integrand in the boundary integral is v(∇u)trDn. After the above transfor-

mations of the leading integral, we rewrite (5.29) into∫
D

[
(∇v)tr

D∇u + vbtr∇u + ruv +
∂u

∂t
v

]
dxdy −

∫
∂D

v(∇u)tr

Dn ds = 0

(5.31)

2 Recall from calculus the definition
∫

C
f(x, y)ds =

∫
b

a
f(g(ξ), h(ξ))ds

dξ
dξ

where (g(ξ), h(ξ)) for a ≤ ξ ≤ b is a parameterization of a planar curve C;

ξ is the curve parameter. The value of this “line integral” is independent of

the orientation of the curve C and independent of the particular paramete-

rization.

253

Chapter 5 Finite-Element Methods

Recall that both u and v as well as ∇u and ∇v depend on x, y, t, and the

integrals on t. This is the weak version of the PDE (5.27).

Next discretize the time 0 ≤ t ≤ T as in Chapter 4, say, with equidistant

steps Δt. For the simplest implicit approach, the derivative with respect to

time t is resolved by the first-order difference quotient,

∂u(x, y, t)

∂t
≈

u(x, y, t + Δt)− u(x, y, t)

Δt
.

For backward running time t,

upre := u(x, y, t + Δt)

is known at time t from the calculation of the previous time level. The ana-

logue of the fully implicit time-stepping method is then to solve (5.31) at

time level t for ∂u

∂t
replaced by

1

Δt
(upre − u) ,

starting at t = T −Δt with the payoff, upre = Ψ . With this approximation,

the function u in (5.31) then approximates the value function V at time level

t. Alternatively, a second-order time-discretization can be applied, similar as

in Section 4.3. For the required regularity of the functions u and v, consult

Section 5.5.

5.4.3 The Boundary

Boundary conditions enter via the boundary integral around the boundary

∂D. In practice, the computational domain D is defined by specifying ∂D.

To this end, we express the curve ∂D as the union of a finite number of

non-overlapping smooth boundary curves ∂D1, ∂D2, Each of these curves

must be parameterized as in

∂D1 := { (g1(ξ), h1(ξ)) | a1 ≤ ξ ≤ b1 } .

In this way, an orientation is given by starting the curve at the parameter

value ξ = a1 and ending at ξ = b1. By specifying parameter intervals as

a1 ≤ ξ ≤ b1 and parametric functions as g1, h1, the entire boundary is

defined. The convention is that the orientation is done such that the domainD
is on the left-hand side, as we run through the parameterizations for increasing

parameter values ξ.

Now the curve ∂D is defined and we address the boundary integral along

that curve. It is split into a sum of integrals according to the piecewise smooth

curves ∂D1, ∂D2, For example, the boundary of the domain in Figure 5.8

consists of four such parts. (−→ Exercise 5.6)

254

5.4 Two-Asset Options

The product-type integrand f(x, y) := v(∇u)trDn suggests to place em-

phasis on two specific kinds of boundary condition, namely,

• v is prescribed (Dirichlet boundary conditions),

• (∇u)trDn is prescribed (Neumann boundary conditions).

The boundary differential operator (∇u)trDn = ntrD∇u can be considered

as a generalized directional derivative since ∂u

∂n
= ntr∇u. Mixed boundary

conditions are possible as well. If we cast the components of the vector ntrD

into a vector (α1, α2), then all type of boundary conditions can be written in

the form

α1(x, y)
∂u

∂x
+ α2(x, y)

∂u

∂y
= α0(x, y)u + β(x, y)

with proper functions α0 and β. Then v(α0(x, y)u + β(x, y)) is substituted

into the boundary integral, which is approximated numerically using the ed-

ges of the triangulation of D.

Fortunately, the boundary conditions are frequently of simple form. In

particular one encounters the two types

• u = 0 (or v = 0), which is of Dirichlet type with α1 = α2 = β = 0 and

α0 �= 0.

• (∇u)trDn = 0, which is of Neumann type with α0 = β = 0 and

nonzero vector (α1, α2).

The boundary ∂D may consist, for example, of two parts ∂DD and ∂DN

with ∂D = ∂DD ∪ ∂DN, ∂DD ∩ ∂DN = ∅, and Dirichlet conditions on ∂DD

and Neumann conditions on ∂DN. Clearly, boundary integrals vanish for the

special cases v = 0 or (∇u)trDn = 0. Neumann conditions are advantageous

in that they need not be specified for weak formulations. This entails an

advantage of FEM over discretizing the PDEs by finite differences. In the

latter case, all boundary conditions must be implemented. For FEM it suffices

to implement Dirichlet conditions. Defining the right boundary conditions

can be demanding. Aside to be financially meaningful, another aim is the

problem to be well-posed —that is, it defines a unique solution. To some

extent, defining proper boundary conditions is an art.

Example 5.6 (European binary put as in Example 3.8)

In Chapter 3 this example was simulated with Monte Carlo, and no boun-

dary or boundary conditions were needed. Here we prepare the example

to be solved by FEM. Again, x := S1, y := S2. As in Chapter 4, the

domain 0 < x < ∞, 0 < y < ∞ must be truncated to finite size. A simple

choice of a computational domain is a rectangle

D = { (x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax }

with xmax, ymax large enough such that zero boundary conditions can be

chosen as approximation for x = xmax or y = ymax. The rectangle is

255

Chapter 5 Finite-Element Methods

bounded by four straight lines, which can be parameterized, for example,

by
∂D1 := { x = ξ, y = 0 | 0 ≤ ξ ≤ xmax }

∂D2 := { x = xmax, y = ξ | 0 ≤ ξ ≤ ymax }

∂D3 := { x = xmax − ξ, y = ymax | 0 ≤ ξ ≤ xmax }

∂D4 := { x = 0, y = ymax − ξ | 0 ≤ ξ ≤ ymax } .

Now ∂D = ∂D1 ∪ ∂D2 ∪ ∂D3 ∪ ∂D4, and the parameterized curve has the

domain on the left.

Dirichlet conditions are imposed for ∂D2 and ∂D3, where we have chosen

to approximate boundary values by requesting u = 0. For y = 0 the

boundary conditions can be chosen as the values of the one-dimensional

European binary put. An analytic formula for the one-dimensional case

of a European binary put is

V
Eur

binP
(S, t) := c e−r(T−t)

F

(
−

log(S/K) + (r − σ2/2)(T − t)

σ
√

T − t

)
,

for a face value c, with standard normal distribution F [Haug07]. For y = 0

we set S = x. The same formula can be applied for the boundary with x =

0; then S = y. In this way, on ∂D1 and ∂D4 the boundary conditions are

of Dirichlet type with u = V
Eur

binP
. With this choice of boundary conditions,

∂DD = ∂D and ∂DN = ∅. But there is a simpler choice: As [PiH00] point

out, this Dirichlet condition is implicitly defined by the PDE, because the

one-dimensional PDE is embedded in (5.26) for S1 = 0 or S2 = 0. So

no boundary condition needs to be specified along ∂D1 and ∂D4. This

amounts to zero Neumann conditions. Both the Dirichlet version and the

Neumann version work. The latter has the advantage of avoiding the effort

of evaluating V Eur

binP
.

The implementation of the weak form in (5.31) is straightforward when,

for example, the package FreeFem++ is applied. Thereby a figure similar

as Figure 3.8 is produced easily.

5.4.4 Involved Matrices

The accuracy of FEM depends on how the grid is chosen. Algorithms for

mesh generation and mesh adaption are needed, but these are demanding

topics. It is cumbersome to implement a two-dimensional FEM yourself. For

first results, one may work with a fixed structured grid. But in general it

is advisable and comfortable to apply a FEM package to solve (5.31). Here

we merely focus on how the two-dimensional analogue of the hat functions

enters.

For the Galerkin ansatz we apply the basis representation

w(x, y, t) =
∑

i

wi(t)ϕi(x, y) (5.32)

256

5.4 Two-Asset Options

1

y

ϕ

l

x

i

l

jk

Fig. 5.9. Two-dimensional hat function ϕl(x, y) (zero outside the shaded area)

as approximation for u, and set v = ϕj . This ansatz separates time τ and

“space” (x, y). The functions ϕi are defined on D.

For basis functions, we choose the two-dimensional hat functions, which

perfectly match triangular elements. The situation is shown schematically in

Figure 5.9. There the central node l is node of several adjacent triangles,

which are the support (shaded) on which ϕl is built by planar pieces. This

approach defines a tent-like hat function ϕl, which is zero “outside.” By

linear combination of such basis functions, piecewise planar surfaces above

the computational domain are constructed. Locally, for one triangle, this may

look like the element in Figure 5.4.

Note that ∇w =
∑

wi∇ϕi. The weak form of (5.31) leads to∫
D

(∇ϕj)
tr

D

∑
wi∇ϕi + ϕj

[
btr(

∑
wi∇ϕi) + r

∑
wiϕi +

∑ ∂wi

∂t
ϕi

]
dxdy

−

∫
∂D

ϕj(
∑

wi∇ϕi)
tr

Dn ds = 0 ,

for all j. This is a system of ODEs∑
i

wi

∫
D

[
(∇ϕj)

tr

D∇ϕi + ϕjb
tr∇ϕi + ϕjrϕi

]
dxdy

+
∑

i

∂wi

∂t

∫
D

ϕiϕj dxdy −
∑

i

wi

∫
∂D

ϕj(∇ϕi)
tr

Dn ds = 0 .

(5.33)

As an exercise, the reader should rewrite this ODE system in matrix-vector

notation. In summary, FEM needs the integrals over the domain D

257

Chapter 5 Finite-Element Methods

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

S
2

S
1

V

Fig. 5.10. Rough approximation of the value function V (S1, S2, 0) of a basket

double-barrier call option, Example 5.5. With kind permission of Anna Kvetnaia.

∫
(∇ϕj)

tr

D∇ϕi (“diffusion terms”)∫
ϕjb

tr∇ϕi (“convection terms”)∫
γϕjϕi (“reaction terms”)

where γ is chosen appropriately, in addition to boundary integrals along ∂D.

For each number k of a triangle, there are three nodes of the triangle, i, j, l

in Figure 5.9. Hence the table I of index sets that assigns nodes to triangles

includes the entry

Ik := {i, j, l} .

Only for the three node numbers i, j, l ∈ Ik the local integrals on Dk are

nonzero. They can be arranged into 3×3 element matrices. For the derivation

of the integrals, it makes sense to use a local numbering 1k, 2k, 3k for the nodes

of Dk. For each global matrix, the assembling loop over k distributes up to

27 local integrals calculated on Dk, nine integrals of each of the above three

types.3

Back to Example 5.5, we solve (5.31) with FEM. The Figure 5.10 shows a

FEM solution with 192 triangles, and Figure 5.11 illustrates a mesh structure

3 Basic ingredients for the calculation of the local integrals on an arbitrary

triangle Dk are the relations in Exercise 5.7. See also Exercises 5.8 and 5.11.

258

5.4 Two-Asset Options

for higher resolution obtained with FreeFem++. In the two-dimensional case,

because of the higher costs, we typically confine ourselves to an accuracy

lower than in the one-dimensional situation. Based on our results we state

V (1.25, 0.25, 0) ≈ 0.2949 .

 0 0.5 1 1.5 2 0

 0.5
 1

 1.5
 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Fig. 5.11. Finer approximation of the value function V (S1, S2, 0) of a basket

double-barrier call option, Example 5.5

Example 5.7 (Heston’s PDE)

In Example 1.16 Heston’s model was introduced, where v denotes a sto-

chastic volatility. The corresponding PDE from [Hes93] is

∂V

∂t
+

1

2
vS

2
∂2V

∂S2
+

1

2
σ

2

v
v
∂2V

∂v2
+ ρσvvS

∂2V

∂S∂v

+ rS
∂V

∂S
+ [κ(θ − v)− λv]

∂V

∂v
− rV = 0 ,

(5.34)

with parameters as in (1.43), and λ standing for the market price of vo-

latility risk. Here we are interested in solutions V (S, v, t) on part of a

two-dimensional (S, v)-plane. The PDE (5.34) can be cast into version

(5.27). As exercise, the reader is encouraged to derive D and b, and with

the payoff of a call and an own choice of parameters, to think about suita-

ble boundary conditions, and to do experiments with (5.34). Note that for

a call a reasonable requirement for maximum values of the volatility v is

V = S. — When in addition the interest rate r is replaced by a stochastic

variable, the PDE is based on a three-dimensional domain [HaH10].

259

Chapter 5 Finite-Element Methods

5.5 Error Estimates

The similarity of the finite-element equation (5.18) with the finite-difference

equation (4.15) suggests that the errors may be of the same order. In fact, nu-

merical experiments confirm that the finite-element approach with the linear

basis functions from Definition 5.1 produces errors decaying quadratically

with the mesh size. Applying the finite-element Algorithm 5.3 and entering

the calculated data into a diagram as Figure 4.14, confirms the quadratic

order experimentally. The proof of this order of the error is more difficult for

finite-element methods because weak solutions assume less smoothness. For

standard options, the separation of variables in (5.16) also separates the dis-

cussion of the order, and an analysis of the one-dimensional situation suffices.

This section explains some basic ideas of how to derive error estimates. We

begin with reconsidering some of the related topics that have been introduced

in previous sections.

5.5.1 Strong and Weak Solutions

Our exposition will be based on the model problem (5.12). That is, the simple

second-order differential equation

−u
′′ = f(x) for α < x < β (5.35a)

with homogeneous Dirichlet-boundary conditions

u(α) = u(β) = 0 (5.35b)

will serve as illustration. The differential equation is of the form Lu = f , com-

pare (5.2). The domain D ⊆ IRn on which functions u are defined specializes

for n = 1 to the open and bounded interval D = { x ∈ IR1 | α < x < β }. For

continuous f , solutions of the differential equation (5.35a) satisfy u ∈ C2(D).

In order to have operative boundary conditions, solutions u must be con-

tinuous on D including its boundary, which is denoted ∂D. Therefore we

require u ∈ C0(D̄) where D̄ := D ∪ ∂D. In summary, classical solutions of

second-order differential equations require

u ∈ C2(D) ∩ C0(D̄) . (5.36)

The function space C2(D) ∩ C0(D̄) must be reduced further to comply with

the boundary conditions.

For weak solutions the function space is larger (−→ Appendix C3). For

functions u and v we define the inner product

(u, v) :=

∫
D

uv dx . (5.37)

Classical solutions u of Lu = f satisfy

260

5.5 Error Estimates

(Lu, v) = (f, v) for all v . (5.38)

Specifically for the model problem (5.35) integration by parts leads to

(Lu, v) = −

∫
β

α

u
′′
v dx = −u

′
v

∣∣∣β
α

+

∫
β

α

u
′
v
′ dx .

The nonintegral term on the right-hand side of the equation vanishes in case

also v satisfies the homogeneous boundary conditions (5.35b). The remaining

integral is a bilinear form, which we abbreviate

b(u, v) :=

∫
β

α

u
′
v
′ dx . (5.39)

Bilinear forms as b(u, v) from (5.39) are linear in each of the two arguments

u and v. For example, b(u1 + u2, v) = b(u1, v) + b(u2, v) holds. The bilinear

form (5.39) is symmetric, b(u, v) = b(v, u). For several classes of more general

differential equations analogous bilinear forms are obtained. Formally, (5.38)

can be rewritten as

b(u, v) = (f, v) , (5.40)

where we assume that v satisfies the homogeneous boundary conditions

(5.35b).

The equation (5.40) has been derived out of the differential equation, for

the solutions of which we have assumed smoothness in the sense of (5.36).

Many “solutions” of practical importance do not satisfy (5.36) and, accor-

dingly, are not classical. In several applications, u or derivatives of u have

discontinuities. For instance consider the obstacle problem of Section 4.5.5:

The second derivative u′′ of the solution fails to be continuous at α and β.

Therefore u /∈ C2(−1, 1) no matter how smooth the data function is, compare

Figure 4.10. As mentioned earlier, integral relations require less smoothness.

In the derivation of (5.40) the integral version resulted as a consequence

of the primary differential equation. This is contrary to wide areas of applied

mathematics, where an integral relation is based on first principles, and the

differential equation is derived in a second step. For example, in the calculus

of variations a minimization problem may be described by an integral perfor-

mance measure, and the differential equation is a necessary criterion [Str07].

This situation suggests considering the integral relation as an equation of

its own right rather than as offspring of a differential equation. This leads

to the question, what is the maximal function space such that (5.40) with

(5.37), (5.39) is meaningful? That means to ask, for which functions u and v

do the integrals exist? For a more detailed background we refer to Appendix

C3. For the introductory exposition of this section it may suffice to sketch

the maximum function space briefly. The suitable function space is denoted

H1, the version equipped with the boundary conditions is denoted H1

0
. This

Sobolev space consists of those functions that are continuous on D and that

are piecewise differentiable and satisfy the boundary conditions (5.35b). This

261

Chapter 5 Finite-Element Methods

function space corresponds to the class of functions K in (5.20). By means

of the Sobolev space H1

0
a weak solution of Lu = f is defined, where L is a

second-order differential operator and b the corresponding bilinear form.

Definition 5.8 (weak solution)

u ∈ H1

0
is called weak solution [of Lu = f], if b(u, v) = (f, v) holds for all

v ∈ H1

0
.

This definition implicitly expresses the task: find a u ∈ H1

0
such that

b(u, v) = (f, v) for all v ∈ H1

0
. This problem is called variational problem.

The model problem (5.35) serves as example for Lu = f ; the corresponding

bilinear form b(u, v) is defined in (5.39) and (f, v) in (5.37). For the integrals

(5.37) to exist, we in addition require f to be square integrable (f ∈ L2,

compare Appendix C3). Then (f, v) exists because of the Schwarzian inequa-

lity (C3.7). In a similar way, weak solutions are introduced for more general

problems; the formulation of Definition 5.8 applies.

h

1
2

S

H

w

u

C

Fig. 5.12. Approximation spaces

5.5.2 Approximation on Finite-Dimensional Subspaces

For a practical computation of a weak solution the infinite-dimensional space

H1

0
is replaced by a finite-dimensional subspace. Such finite-dimensional sub-

spaces are spanned by basis functions ϕi. Simple examples are the hat functi-

ons of Section 5.2. Reminding of the important role splines play as basis func-

tions, the finite-dimensional subspaces are denoted S, and are called finite-

element spaces. As stated in Property 5.2(a), the hat functions ϕ0, ..., ϕm span

the space of polygons. Recall that each such polygon v can be represented as

linear combination

262

5.5 Error Estimates

v =

m∑
i=0

ciϕi .

The coefficients ci are uniquely determined by the values of v at the nodes,

ci = v(xi). We call hat functions “linear elements” because they consist of

piecewise straight lines. Apart from linear elements, for example, also qua-

dratic or cubic elements are used, which are piecewise polynomials of second

or third degree [Zie77], [Cia91], [Sch91]. The attainable accuracy is different

for basis functions consisting of higher-degree polynomials.

Since by definition the functions of the Sobolev space H1

0
fulfill the homo-

geneous boundary conditions, each subspace does so as well. The subscript 0

indicates the realization of the homogeneous boundary conditions (5.35b)4.

A finite-dimensional subspace of H1

0
is defined by

S0 := { v =

m∑
i=0

ciϕi | ϕi ∈ H
1

0
} . (5.41)

Properties of S0 are determined by the basis functions ϕi. As mentioned

earlier, basis functions with small supports give rise to sparse matrices. The

partition (5.3) is implicitly included in the definition S0 because this infor-

mation is contained in the definition of the ϕi. For our purposes the hat

functions suffice. The larger m is, the better S0 approximates the space H1

0
,

since a finer discretization (smaller Dk) allows to approximate the functions

from H1

0
better by polygons. We denote the largest diameter of the Dk by

h, and ask for convergence. That is, we study the behavior of the error for

h → 0 (basically m →∞).

In analogy to the variational problem expressed in connection with Defi-

nition 5.8, a discrete weak solution w is defined by replacing the space H1

0
by

a finite-dimensional subspace S0:

Problem 5.9 (discrete weak solution)

Find a w ∈ S0 such that b(w, v) = (f, v) for all v ∈ S0.

The quality of the approximation relies on the discretization fineness h of

S0, which is occasionally emphasized by writing wh. The transition from

the continuous variational problem following Definition 5.8 to the discrete

Problem 5.9 is sometimes called the principle of Rayleigh–Ritz.

4 In this subsection the meaning of the index 0 is twofold: It is the index of

the “first” hat function, and serves as symbol of the homogeneous boundary

conditions (5.35b).

263

Chapter 5 Finite-Element Methods

5.5.3 Quadratic Convergence

Having defined a weak solution u and a discrete approximation w, we turn

to the error u−w. To measure the distance between functions in H1

0
we use

the norm ‖ ‖1 (−→ Appendix C3). That is, our first aim is to construct a

bound on ‖u−w‖1. Let us suppose that the bilinear form is continuous and

H1-elliptic:

Assumptions 5.10 (continuous H1-elliptic bilinear form)

(a) There is a γ1 > 0 such that

|b(u, v)| ≤ γ1‖u‖1‖v‖1 for all u, v ∈ H1

(b)There is a γ2 > 0 such that

b(v, v) ≥ γ2‖v‖21 for all v ∈ H1

The assumption (a) is the continuity, and the property in (b) is called H1-

ellipticity. Under the Assumptions 5.10, the problem to find a weak solution

following Definition 5.8, possesses exactly one solution u ∈ H1

0
; the same holds

true for Problem 5.9. This is guaranteed by the Theorem of Lax–Milgram

[Cia91], [BrS02]. In view of S0 ⊆ H1

0
,

b(u, v) = (f, v) for all v ∈ S0 .

Subtracting b(w, v) = (f, v) and invoking the bilinearity implies

b(w − u, v) = 0 for all v ∈ S0 . (5.42)

The property of (5.42) is called error projection property. The Assumptions

5.10 and the error projection are the basic ingredients to obtain a bound on

the error ‖u− w‖1:

Lemma 5.11 (Céa)

Suppose the Assumptions 5.10 are satisfied. Then

‖u− w‖1 ≤
γ1

γ2

inf
v∈S0

‖u− v‖1 . (5.43)

Proof: v ∈ S0 implies ṽ := w − v ∈ S0. Applying (5.42) for ṽ yields

b(w − u, w − v) = 0 for all v ∈ S0 .

Therefore

b(w − u, w − u) = b(w − u, w − u)− b(w − u, w − v)

= b(w − u, v − u) .

Applying the assumptions shows

γ2‖w − u‖2
1
≤ |b(w − u, w − u)| = |b(w − u, v − u)|

≤ γ1‖w − u‖1‖v − u‖1 ,

264

5.5 Error Estimates

from which

‖w − u‖1 ≤
γ1

γ2

‖v − u‖1

follows. Since this holds for all v ∈ S0, the assertion of the lemma is

proven.

Let us check whether the Assumptions 5.10 are fulfilled by the model problem

(5.35). For (a) this follows from the Schwarzian inequality (C3.7) with the

norms

‖u‖1 =

(∫
β

α

(u2 + u
′2) dx

)1/2

, ‖u‖0 =

(∫
β

α

u
2 dx

)1/2

,

because (∫
β

α

u
′
v
′ dx

)2

≤

(∫
β

α

u
′2 dx

)(∫
β

α

v
′2 dx

)
≤ ‖u‖2

1
‖v‖2

1
.

The Assumption 5.10(b) can be derived from the inequality of the Poincaré-

type ∫
β

α

v
2 dx ≤ (β − α)2

∫
β

α

v
′2 dx ,

which in turn is proven with the Schwarzian inequality (−→ Exercise 5.9).

Adding
∫

v′2 dx on both sides leads to

‖v‖2
1
≤ [(β − α)2 + 1] b(v, v) ,

from which the constant γ2 of Assumption 5.10(b) results. So Céa’s lemma

applies to the model problem.

The next question is, how small the infimum in (5.43) may be. This is

equivalent to the question, how close the subspace S0 can approximate the

space H1

0
. (−→ Figure 5.12) We will show that for hat functions and S0 from

(5.41) the infimum is of the order O(h). Again h denotes the maximum mesh

size, and the notation wh reminds us that the discrete solution depends on

the grid with a spacing symbolized by h. To apply Céa’s lemma, we need an

upper bound for the infimum of ‖u− v‖1. Such a bound is found easily by a

specific choice of v, which is taken as an arbitrary interpolating polygon uI.

Then by (5.43)

‖u− wh‖1 ≤
γ1

γ2

inf
v∈S0

‖u− v‖1 ≤
γ1

γ2

‖u− uI‖1 . (5.44)

It remains to bound the error of interpolating polygons. This bound is pro-

vided by the following lemma, which is formulated for C2-smooth functions

u:

265

Chapter 5 Finite-Element Methods

Lemma 5.12 (error of an interpolating polygon)

For u ∈ C2 let uI be an arbitrary interpolating polygon and h the maximal

distance between two consecutive nodes. Then

(a) max
x

|u(x)− uI(x)| ≤ h
2

8
max |u′′(x)|

(b) max
x

|u′(x)− u′
I
(x)| ≤ h max |u′′(x)|

We leave the proof to the reader (−→ Exercise 5.10). Lemma 5.12 asserts

‖u− uI‖1 = O(h) ,

which together with (5.44) implies the claimed error statement

‖u− wh‖1 = O(h) . (5.45)

Recall that this assertion is based on a continuous and H1-elliptic bilinear

form and on hat functions ϕi. The O(h)-order in (5.45) is dominated by the

unfavorable O(h)-order of the first-order derivative in Lemma 5.12(b). This

low order is at variance with the actually observed O(h2)-order attained by

the approximation wh itself (not its derivative). In fact, the square order

holds. The final result is

‖u− wh‖0 ≤ Ch
2‖u‖2 (5.46)

for a constant C. This result is proven with the following lemma, which is

based on a tricky idea due to Nitsche.

Lemma 5.13

Assume b is a symmetric bilinear form satisfying Assumption 5.10, and u

and w are defined as above. Then

‖u− w‖1 ≤ Kh
1‖f‖0 implies ‖u− w‖0 ≤ Ch

2‖f‖0 .

Proof: Consider the auxiliary problem Lz = f̃ := u−w, with weak version

b(z, ṽ) = (f̃ , ṽ)0 for all ṽ ∈ H1

0
,

which defines z. Choose specifically ṽ = u− w = f̃ . Then

b(z, u− w) = (u− w, u − w)0 = ‖u− w‖2
0

Invoking the error-projection property we note

0 = b(u− w, v) = b(v, u− w) for all v ∈ S0 .

Subtracting this, yields

b(z − v, u− w) = ‖u− w‖2
0

for all v ∈ S0 .

We apply the continuity of b,

‖u− w‖2
0
≤ γ1‖z − v‖1 ‖u− w‖1 for all v ∈ S0 ,

266

Notes and Comments

and choose specifically v as the finite-element approximation of z. Then

‖u− w‖2
0
≤ γ1K1h

1‖f̃‖0 ·K2h
1‖f‖0 = Ch

2‖u− w‖0 ‖f‖0 ,

from which the assertion follows.

This error of the order h
2 can be observed for the examples of Section 5.4,

but not easily. The error is somewhat hidden among the other errors, namely,

localization error, interpolation error, and the error of the time discretization.

The derivations of this section have been focused on the model problem

(5.35) with a second-order differential equation and one independent variable

x (n = 1), and have been based on linear elements. Most of the assertions can

be generalized to higher-order differential equations, to higher-dimensional

domains (n > 1), and to nonlinear elements. For example, in case the elements

in S are polynomials of degree k, and the differential equation is of order 2l,

S ⊆ Hl, and the corresponding bilinear form on Hl satisfies the Assumptions

5.10 with norm ‖ ‖l, then the inequality

‖u− wh‖l ≤ Ch
k+1−l‖u‖k+1

holds. This general statement includes for k = 1, l = 1 the special case of

equation (5.46) discussed above. For the analysis of the general case, we refer

to [Cia91], [Hac92]. This includes boundary conditions more general than the

homogeneous Dirichlet conditions of (5.35b).

Notes and Comments

on Section 5.1:

As an alternative to piecewise defined finite elements one may use polynomials

ϕj that are defined globally on D, and that are pairwise orthogonal. Then

the orthogonality is the reason for the vanishing of many integrals. Such type

of methods are called spectral methods. Since the ϕi are globally smooth on

D, spectral methods can produce high accuracies. In other context, spectral

methods were applied in [Fru08]. Rayleigh–Ritz approaches choose the ϕi as

eigenfunctions of L. For symmetric L this leads to diagonal matrices A.

Specifically designed basis functions can be generated by some low-

dimensional approximation, comparable to PCA in finite dimensions (−→
Exercise 2.18). Suitable are functions that represent preferred patterns of the

solution. Then the number N of modes ϕi can be small. Such methods are

described under the heading principle orthogonal decomposition (POD), or

Karhunen–Loève expansion.

267

Chapter 5 Finite-Element Methods

on Section 5.2:

In the early stages of their development, finite-element methods have been

applied intensively in structural engineering. In this field, stiffness matrix and

mass matrix have a physical meaning leading to these names [Zie77].

on Section 5.3:

The approximation
∑

wi(τ)ϕi(x) for ŷ is a one-dimensional finite-element

approach. The geometry of the grid and the accuracy resemble the finite-

difference approach. A two-dimensional approach as in∑
wiϕi(x, τ)

with two-dimensional hat functions and constant wi is more involved and

more flexible. Sections 5.3.2 – 5.3.4 widely follow [WiDH96].

on Section 5.4:

For the calculation of the local integrals on an arbitrary triangle Dk consult

the special FEM literature, such as [Sch91]. In general an irregular triangu-

lation better exploits the potential adaptivity of FEM. In particular, close to

the barriers a fine mesh is required for high accuracy [PoFVS00]. Since the

gradient of u varies with time, a dynamic mesh refinement might be advisa-

ble, provided accuracy or stability do not deteriorate. For American options,

boundary conditions V = Ψ along the boundary are recommendable.

on Section 5.5:

The assumption u ∈ C2 in Lemma 5.12 can be weakened to u′′ ∈ L2 [StF73].

For domains D ∈ IR2 the claim of Lemma 5.12 holds analogously; then the

second-order derivative u′′ is replaced by the Hessian matrix of the second-

order derivatives of u. This can be applied to mesh adaption, where one

attempts to place nodes such that the Hessian is equilibrated across the mesh.

The finite-dimensional function space S0 in (5.41) is assumed to be subspace

of H1

0
. Elements with this property are called conforming elements. A more

accurate notation for S0 of (5.41) is S1

0
. In the general case, conforming

elements are characterized by Sl ⊆ Hl. In the representation of v in equation

(5.41) we avoid discussing the technical issue of how to organize different

types of boundary conditions.

There are also smooth basis functions ϕ, for example, cubic Hermite po-

lynomials. For sufficiently smooth solutions, such basis functions produce

higher accuracy than hat functions do. For the accuracy of finite-element

methods consult, for example, [StF73], [Cia91], [Hac92], [BaS01], [BrS02],

[AcP05].

268

Exercises

on other methods:

Finite-element methods are frequently used for approximating exotic options,

in particular in multidimensional situations. For different types of options

special methods have been developed. For applications, computational re-

sults and accuracies see also [Top00], [AcP05], [Top05]. Front-fixing has been

applied with finite elements in [HoY08]. The accuracy aspect is also treated

in [FuST02]. Galerkin methods are used with wavelet functions in [MaPS02],

[HiMS05]; the latter paper is specifically devoted to stochastic volatility.

A penalty approach with FEM is discussed in [KoLM07], where rectangular

subdomains are furnished with basis functions as product of one-dimensional

hat functions of the type ϕ(x, y) = ϕi(x)ϕj(y).

Exercises

Exercise 5.1 Cubic B-Spline

Suppose an equidistant partition of an interval be given with mesh-size

h = xk+1 − xk. Cubic B-splines have a support of four subintervals. In

each subinterval the spline is a piece of polynomial of degree three. Apart

from special boundary splines, the cubic B-splines ϕi are determined by the

requirements

ϕi(xi) = 1

ϕi(x) ≡ 0 for x < xi−2

ϕi(x) ≡ 0 for x > xi+2

ϕ ∈ C2(−∞,∞) .

To construct these ϕi proceed as follows:

a) Construct a spline S(x) that satisfies the above requirements for the spe-

cial nodes

x̃k := −2 + k for k = 0, 1, ..., 4 .

b) Find a transformation Ti(x), such that ϕi = S(Ti(x)) satisfies the requi-

rements for the original nodes.

c) For which i, j does ϕiϕj = 0 hold?

Exercise 5.2 Finite-Element Matrices

For the hat functions ϕ from Section 5.2 calculate for arbitrary subinterval

Dk all nonzero integrals of the form∫
ϕiϕj dx,

∫
ϕ
′
i
ϕj dx,

∫
ϕ
′
i
ϕ
′
j
dx

and represent them as local 2× 2 matrices.

269

Chapter 5 Finite-Element Methods

Exercise 5.3 Calculating Options with Finite Elements

Design an algorithm for the pricing of standard options by means of finite

elements. To this end proceed as outlined in Section 5.3. Start with a simple

version using an equidistant discretization step Δx. If this is working properly

change the algorithm to a version with nonequidistant x-grid. Distribute the

nodes xi closer around x = 0. Always place a node at the strike.

Exercise 5.4

Suppose the situation of two asset prices S1(t) and S2(t) for t > 0 governed

by GBM (3.28), with initial price point (S1(0), S2(0)). Barriers of a barrier

option can be aligned such that the probability of (S1(t), S2(t)) reaching the

barrier has the same constant value.

a) Show that this curve of constant probability has an elliptical shape.

b) Let the covariance matrix be

Σ =

(
σ2

1
ρσ1σ2

ρσ1σ2 σ2

2

)
Calculate its eigenvalues λ1, λ2.

c) Sketch representative ellipses in an (S1, S2)-plane. How do they depend

on ρ?

Exercise 5.5

a) Prove the equivalence of (5.26) and (5.27). Specialize this to the one-

dimensional case of the Black–Scholes equation.

b) Show

btr∇u + ru = ∇ · (bu) + γu

and determine γ.

c) With the transformation

x := log(
S1

K1

), y := log(
S2

K2

)

and writing u(x, y, t) for V leads to the PDE

ut + 1

2
σ

2

1
uxx + (r − δ1 −

1

2
σ

2

1
)ux − ru

+ 1

2
σ

2

2
uyy + (r − δ2 −

1

2
σ

2

2
)uy + ρσ1σ2uxy = 0 .

(5.47)

What are the matrix D and the vector b such that we arrive at (5.27)?

Exercise 5.6

The boundary ∂D of the trapezoidal domain D in Figure 5.8 consists of four

straight lines. What are the four unit outward vectors n orthogonal to ∂D?

Give a parameter representation of the boundary.

270

Exercises

Exercise 5.7

In the three-dimensional (x, y, w)-space let the plane w(x, y) = c1+c2 x+c3 y

interpolate the three points (xi, yi, wi), i = 1, 2, 3. Show⎛⎝ 1 x1 y1

1 x2 y2

1 x3 y3

⎞⎠⎛⎝ c1

c2

c3

⎞⎠ =

⎛⎝w1

w2

w3

⎞⎠ .

By inversion, establish a formula for ∇w = (c2, c3)
tr.

Exercise 5.8

Consider the domain D := {(x, y) | x ≥ 0, y ≥ 0, 1 ≤ x + y ≤ 2} tiled by 12

triangles Dk, where triangles and nodes are numbered as in Figure 5.13.

a) Set up the index set I with entries Ik = {ik, jk, lk}, which assigns node

numbers to the kth triangle for 1 ≤ k ≤ 12.

b) Formulate the assembling algorithm that builds up the global stiffness

matrix out of the element stiffness matrices⎛⎜⎝ s
(k)

11
s
(k)

12
s
(k)

13

s
(k)

21
s
(k)

22
s
(k)

23

s
(k)

31
s
(k)

32
s
(k)

33

⎞⎟⎠
for a general index set I and 1 ≤ k ≤ m.

c) The example of Figure 5.13 leads to a banded stiffness matrix. What is

the bandwidth?

S =y

=x

8

11

124

10

12

S1

2

9

6

7

5

3

12

11

10 8

79

6 4

5 3

2 1

Fig. 5.13. Specific triangulation and numbering, see Exercise 5.8

271

Chapter 5 Finite-Element Methods

Exercise 5.9

Assume a function v(ζ) with α ≤ ζ ≤ β and v(α) = 0.

a) Show

(v(ζ))2 ≤ (ζ − α)

∫
ζ

α

(v′(x))2 dx .

(Hint: Recall v(ζ) =
∫

ζ

α
v′(x) dx, and apply the Schwarzian inequality

(C3.7).)

b) Use a) to show ∫
β

α

(v(ζ))2 dζ ≤
1

2
(β − α)2

∫
β

α

(v′(x))2 dx .

Exercise 5.10

Prove Lemma 5.12, and for u ∈ C2 the assertion ‖u− wh‖1 = O(h).

Exercise 5.11 Variable Volatility (Project)

For variable volatility σ(S, t) and constant K, T, r, δ , PDEs of the type

∂y

∂τ
−

1

2
σ̂

2(x, τ)

(
∂2y

∂x2
−

1

4
y

)
= 0

are to be solved, with τ = T − t and transformations S ↔ x, V ↔ y from

the Black–Scholes model given by (A6.2), (A6.3); consult Appendix A6.

a) For an American put, apply these transformations to derive from V (S, t) ≥
(K − S)+ an inequality y(x, τ) ≥ g(x, τ).

b) Carry out the finite-element formulation for the linear complementarity

problem analogously as in Section 5.3.4.

c) Integrals will include local integrals∫
σ

2(x, τ)ϕiϕj dx,

∫
σ

2(x, τ)ϕ′

i
ϕj dx

Apply Simpson’s quadrature rule∫
b

a

f(x)dx ≈
b− a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
to approximate the above local integrals.

d) Set up a finite-element code, and test it with the artificial function [Fen05]

σ(S) := 0.3−
0.2

log(S/K)2 + 1
.

272

