
Chapter 4 Standard Methods for

Standard Options

We now enter the part of the book that is devoted to the numerical solution of

equations of the Black–Scholes type. In this chapter, we discuss “standard”

options in the sense as introduced in Section 1.1 and assume the scenario

characterized by the Assumptions 1.2. In case of European vanilla options

the value function V (S, t) solves the Black–Scholes equation (1.2). It is not

really our aim to solve this partial differential equation for vanilla payoff be-

cause it possesses an analytic solution (−→ Appendix A4). Ultimately our

intention is to solve more general equations and inequalities. In particular,

American options will be calculated numerically. But also European options

without vanilla payoff are of interest; we encounter them for Bermudan op-

tions in Section 1.8.4, and for Asian options in Section 6.3.4. The goal is not

only to calculate single values V (S0, 0) —for this purpose tree methods can

be applied— but also to approximate the curve V (S, 0), or even the surface

defined by V (S, t) on the half strip S > 0, 0 ≤ t ≤ T . Thereby we collect in-

formation on early exercise, and on delta hedging by observing the derivative
∂V

∂S
.

American options obey inequalities of the type of the Black–Scholes equa-

tion (1.2). To allow for early exercise, the Assumptions 1.2 must be weakened.

As a further generalization, the payment of dividends must be taken into ac-

count; otherwise early exercise does not make sense for American calls.

The main part of this chapter outlines a PDE approach based on finite

differences. We begin with unrealistically simplified boundary conditions in

order to keep the explanation of the discretization schemes transparent. Later

sections will discuss appropriate boundary conditions, which turn out to be

tricky in the case of American options. At the end of this chapter we will be

able to implement a finite-difference algorithm for standard American (and

European) options. Note that this assumes constant coefficients. If we work

carefully, the resulting finite-difference computer program will yield correct

approximations. But the finite-difference approach is not necessarily the most

efficient one. Hints on other methods will be given at the end of this chapter.

For nonstandard options we refer to Chapter 6.

The classical finite-difference methods will be explained in some detail

because they are the most elementary approaches to approximate differential

equations. As a side-effect, this chapter serves as introduction to several fun-

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_4, © Springer-Verlag London Limited 2012

155

http://dx.doi.org/10.1007/978-1-4471-2993-6_4

Chapter 4 Standard Methods for Standard Options

damental concepts of numerical mathematics. A trained reader may like to

skip Sections 4.2 and 4.3. The aim of this chapter is to introduce concepts,

as well as a characterization of the free boundary (early-exercise curve), and

of linear complementarity.

In addition to the finite-difference approach, “standard methods” include

analytic methods, which to a significant part are based on nonnumerical ana-

lysis. The Section 4.8 will give an introduction to several such methods, in-

cluding interpolation, a method of lines, and a method that solves an integral

equation.

The broad field of available methods for pricing standard options calls

for comparisons to judge on the relative merits of different approaches. Alt-

hough such an endeavor goes beyond the scope of a text book, we offer some

guidelines in Section 4.9.

4.1 Preparations

We allow for dividends paid with a continuous yield of constant level, because

numerically this is a trivial extension from the case of no dividend. In case of

a discrete dividend with, for example, one payment per year, a first remedy

would be to convert the dividend to a continuous yield (−→ Exercise 4.1).1

A continuous flow of dividends is modeled by a decrease of S in each time

interval dt by the amount

δS dt ,

with a constant δ ≥ 0. This continuous dividend model can be easily built into

the Black–Scholes framework. The standard model of a geometric Brownian

motion represented by the SDE (1.33) is generalized to

dS

S
= (μ− δ) dt + σ dW .

This is the basis for this chapter. The corresponding Black–Scholes equation

for the value function V (S, t) is

∂V

∂t
+

σ2

2
S

2
∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0 . (4.1)

For constant r, σ, δ, this equation is equivalent to the equation

∂y

∂τ
=

∂2y

∂x2
(4.2)

1 But the corresponding solutions V (S, t) and their early-exercise struc-

ture will be different. The Notes and Comments summarize how to correctly

compensate for a discrete dividend payment.

156

4.1 Preparations

for y(x, τ) with 0 ≤ τ , x ∈ IR. The equivalence is proved by means of the

transformations

for constant r, σ, δ :

S = Kex

, t = T −
2τ

σ2
, q :=

2r

σ2
, qδ :=

2(r − δ)

σ2
,

V (S, t) = V
(
Kex

, T − 2τ

σ
2

)
=: v(x, τ) and

v(x, τ) =: K exp
{
− 1

2
(qδ − 1)x−

(
1

4
(qδ − 1)2 + q

)
τ
}

y(x, τ) .

(4.3)

For the case of no dividend payments (δ = 0) the derivation was carried out

earlier (−→ Exercise 1.2). For Black–Scholes-type equations with variable

σ(S, t), see Appendix A6.

The transformation S = Kex is motivated by the observation that the

Black–Scholes equation in the version (4.1) has variable coefficients Sj with

powers matching the order of the derivative with respect to S. That is, the

relevant terms in (4.1) are of the type

S
j
∂jV

∂Sj

, for j = 0, 1, 2 .

The transformed version in equation (4.2) has constant coefficients (=1),

which simplifies implementing numerical algorithms.

In view of the time transformation in (4.3) the expiration time t = T

is determined in the “new” time by τ = 0, and t = 0 is transformed to

τmax := 1

2
σ

2
T . Up to the scaling by 1

2
σ

2 the new time variable τ represents

the remaining life time of the option. And the original domain of the half

strip S > 0, 0 ≤ t ≤ T belonging to (4.1) becomes the strip

−∞ < x < ∞, 0 ≤ τ ≤ 1

2
σ

2
T ,

on which we are going to approximate a solution y(x, τ) to (4.2). After that

calculation we again apply the transformations of (4.3) to derive out of y(x, τ)

the value of the option V (S, t) in the original variables.

Under the transformations (4.3) the terminal conditions (1.1C) and (1.1P)

become initial conditions for y(x, 0). A vanilla call, for example, satisfies

V (S, T) = max{S −K, 0} = K ·max{ex − 1, 0} .

From (4.3) we find

V (S, T) = K exp
{
−

x

2
(qδ − 1)

}
y(x, 0) ,

and thus

157

Chapter 4 Standard Methods for Standard Options

y(x, 0) = exp
{

x

2
(qδ − 1)

}
max{ex − 1, 0}

=

{
exp

{
x

2
(qδ − 1)

}
(ex − 1) for x > 0

0 for x ≤ 0 .

Using

exp
{

x

2
(qδ − 1)

}
(ex − 1) = exp

{
x

2
(qδ + 1)

}
− exp

{
x

2
(qδ − 1)

}
the initial conditions y(x, 0) for vanilla options in the new variables read

call: y(x, 0) = max
{

e
x

2
(qδ+1) − e

x

2
(qδ−1)

, 0
}

(4.4C)

put: y(x, 0) = max
{

e
x

2
(qδ−1) − e

x

2
(qδ+1)

, 0
}

(4.4P)

In Section 4.4 we shall discuss possible boundary conditions needed when the

boundaries x→ −∞ and x → +∞ are truncated.

The equation (4.2) is of the type of a parabolic partial differential equation

and is the simplest diffusion or heat-conducting equation. Both equations

(4.1) and (4.2) are linear in the dependent variables V or y. The differential

equation (4.2) is also written yτ = yxx or ẏ = y′′. The diffusion term is yxx.

In principle, the methods of this chapter can be applied directly to (4.1).

But the equations and algorithms are easier to derive for the algebraically

equivalent version (4.2). Note that numerically the two equations are not

equivalent. A direct application of this chapter’s methods to version (4.1) can

cause severe difficulties. This will be discussed in Chapter 6. These difficulties

will not occur for equation (4.2), which is well-suited for standard options

with constant coefficients. The equation (4.2) is integrated in forward time

—that is, for increasing τ starting from τ = 0. This fact is important for

stability investigations. For increasing τ the version (4.2) makes sense; this

is equivalent to the well-posedness of (4.1) for decreasing t.

4.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied

to the PDE (4.2).

4.2.1 Difference Approximation

Each two times continuously differentiable function f satisfies

f
′(x) =

f(x + h)− f(x)

h
−

h

2
f
′′(ξ) ;

158

4.2 Foundations of Finite-Difference Methods

where ξ is an intermediate number between x and x+h. The accurate position

of ξ is usually unknown. Such expressions are derived by Taylor expansions.

We discretize x ∈ IR by introducing a one-dimensional grid of discrete points

xi with

... < xi−1 < xi < xi+1 < ...

For example, choose an equidistant grid with mesh size h := xi+1 − xi. The

x is discretized, but the function values fi := f(xi) are not discrete, fi ∈ IR.

For f ∈ C2 the derivative f ′′ is bounded, and the term −h

2
f ′′(ζ) can be

conveniently written as O(h). This leads to the practical notation

f
′(xi) =

fi+1 − fi

h
+ O(h) . (4.5a)

Analogous expressions hold for the partial derivatives of y(x, τ), which inclu-

des a discretization in τ . This suggests to replace the neutral notation h by

either Δx or Δτ , respectively. The fraction in (4.5) is the difference quoti-

ent that approximates the differential quotient f ′(xi); the O(hp)-term is the

error. The one-sided (i.e. nonsymmetric) difference quotient (4.5a) is of the

order p = 1. Error orders of p = 2 are obtained by central differences

f
′(xi) =

fi+1 − fi−1

2h
+ O(h2) (for f ∈ C3) (4.5b)

f
′′(xi) =

fi+1 − 2fi + fi−1

h2
+ O(h2) (for f ∈ C4) (4.5c)

or by one-sided differences that involve more terms, such as

f
′(xi) =

−fi+2 + 4fi+1 − 3fi

2h
+ O(h2) (for f ∈ C3) . (4.5d)

Rearranging terms and indices of (4.5d) provides the approximation formula

fi ≈
4

3
fi−1 −

1

3
fi−2 +

2

3
hf
′(xi) , (BDF2)

which is of second order. The latter difference quotient leads to one example

of a backward differentiation formula (BDF). Equidistant grids are advanta-

geous in that algorithms are easy to implement, and error terms are easily

derived by Taylor’s expansion. This chapter works with equidistant grids.

4.2.2 The Grid

Either the x-axis, or the τ -axis, or both can be discretized. If only one of the

two independent variables x or τ is discretized, one obtains a semidiscretiza-

tion consisting of parallel lines. This is used in Exercise 4.10 and in Section

4.8.3. Here we perform a full discretization leading to a two-dimensional grid.

Let Δτ and Δx be the mesh sizes of the discretizations of τ and x. The

step in τ is Δτ := τmax/νmax for τmax = 1

2
σ

2
T and a suitable integer νmax.

159

Chapter 4 Standard Methods for Standard Options

x

x
τ

τ

τ

Δ

Δτ
ν+1

ν

i i+1i−1x x x

Fig. 4.1. Detail and notations of the grid

The choice of the x-discretization is more complicated. The infinite interval

−∞ < x < ∞ must be replaced by a finite interval a ≤ x ≤ b. Here the end

values a = xmin < 0 and b = xmax > 0 must be chosen such that for the

corresponding Smin = Kea and Smax = Keb and the interval Smin ≤ S ≤
Smax a sufficient quality of approximation is obtained.2 For a suitable integer

m the step length in x is defined by Δx := (b − a)/m. Additional notations

for the grid are

τν := ν ·Δτ for ν = 0, 1, ..., νmax

xi := a + iΔx for i = 0, 1, ..., m

yi,ν := y(xi, τν),

wi,ν approximation to yi,ν .

This defines a two-dimensional uniform grid as illustrated in Figure 4.1. Note

that the equidistant grid in this chapter is defined in terms of x and τ , and

not for S and t. Transforming the (x, τ)-grid via the transformation in (4.3)

back to the (S, t)-plane, leads to a nonuniform grid with unequal distances

of the grid lines S = Si = Kexi: The grid is increasingly dense close to Smin.

(This is not advantageous for the accuracy of the approximations of V (S, t).

We will come back to this in Section 5.2.) The Figure 4.1 illustrates only a

small part of the entire grid in the (x, τ)-strip. The grid lines x = xi and

τ = τν can be indicated by their indices (Figure 4.2).

The points where the grid lines τ = τν and x = xi intersect, are called

nodes. In contrast to the theoretical solution y(x, τ), which is defined on a

continuum, the wi,ν are only defined for the nodes. The error wi,ν − yi,ν

depends on the choice of parameters νmax, m, xmin, xmax. A priori we do not

know which choice of parameters matches a prespecified error tolerance. An

example of the order of magnitude of these parameters is given by xmin = −5,

xmax = 5 or smaller, νmax = 100, m = 100. Such a choice of xmin, xmax has

shown to be reasonable for a wide range of r, σ-values and accuracies. The

actual error is then controlled via the numbers νmax and m of grid lines.

2 Too large values of |a| or b lead to underflow or overflow.

160

4.2 Foundations of Finite-Difference Methods

4.2.3 Explicit Method

Substituting the expressions from (4.5)

∂yi,ν

∂τ
=

yi,ν+1 − yi,ν

Δτ
+ O(Δτ)

∂2yi,ν

∂x2
=

yi+1,ν − 2yi,ν + yi−1,ν

Δx2
+ O(Δx

2)

into (4.2) and discarding the error terms leads to the equation

wi,ν+1 − wi,ν

Δτ
=

wi+1,ν − 2wi,ν + wi−1,ν

Δx2

for the approximation w. Solving for wi,ν+1 we obtain

wi,ν+1 = wi,ν +
Δτ

Δx2
(wi+1,ν − 2wi,ν + wi−1,ν) .

With the abbreviation

λ :=
Δτ

Δx2

the result is written compactly

wi,ν+1 = λwi−1,ν + (1− 2λ)wi,ν + λwi+1,ν

(4.6)

The Figure 4.2 accentuates the nodes that are connected by this formula.

Such a graphical scheme illustrating the structure of the equation, is called

stencil (or molecule).

τ

i+1ii-1

ν+1

ν

x

Fig. 4.2. Connection scheme (stencil) of the explicit method

161

Chapter 4 Standard Methods for Standard Options

The equation (4.6) and the Figure 4.2 suggest an evaluation organized by

time levels. All nodes with the same index ν form the ν-th time level. For a

fixed ν the values wi,ν+1 for all i of the time level ν + 1 are calculated. Then

we advance to the next time level. The formula (4.6) is an explicit expression

for each of the wi,ν+1; the values w at level ν +1 are not coupled. Since (4.6)

provides an explicit formula for all wi,ν+1 (i = 0, 1, ..., m), this method is

called explicit method or forward-difference method.

Start: For ν = 0 the values of wi,0 are given by the initial conditions

wi,0 = y(xi, 0) for y from (4.4), 0 ≤ i ≤ m .

Hence we proceed from ν = 0 to ν = 1, and so on. The w0,ν and wm,ν for

1 ≤ ν ≤ νmax are fixed by boundary conditions. For the next few pages, to

simplify matters, we artificially set w0,ν = wm,ν = 0 for all ν. The correct

boundary conditions are deferred to Section 4.4.

For the following analysis it is useful to collect all values w of the time

level ν into a vector,

w
(ν) := (w1,ν , ..., wm−1,ν)tr .

The next step towards a vector notation of the explicit method is to introduce

the constant (m− 1)× (m− 1) tridiagonal matrix

A := Aexpl :=

⎛⎜⎜⎜⎜⎜⎜⎝

1− 2λ λ 0 · · · 0

λ 1− 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

0 · · · 0 λ 1− 2λ

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.7a)

Now the explicit method in matrix-vector notation reads

w
(ν+1) = Aw

(ν) for ν = 0, 1, 2, ... (4.7b)

The formulation of (4.7) with the matrix A and the iteration (4.7b) is needed

only for theoretical investigations. An actual computer program would rather

use the version (4.6). In the vector notation of (4.7), the inner-loop index i

does not occur explicitly.

To illustrate the behavior of the explicit method, we perform an experi-

ment with an artificial example, where initial conditions and boundary con-

ditions are not related to finance.

Example 4.1

yτ = yxx, y(x, 0) = sinπx, x0 = 0, xm = 1, boundary conditions

y(0, τ) = y(1, τ) = 0 (that is, w0,ν = wm,ν = 0).

The aim is to calculate an approximation w for one (x, τ), for example, for

x = 0.2, τ = 0.5. The exact solution is y(x, τ) = e−π
2
τ sin πx, such that

162

4.2 Foundations of Finite-Difference Methods

y(0.2, 0.5) = 0.004227.... We carry out two calculations with the same

Δx = 0.1 (hence 0.2 = x2), and two different Δτ :

(a) Δτ = 0.0005 =⇒ λ = 0.05

0.5 = τ1000, w2,1000

.
= 0.00435

(b)Δτ = 0.01 =⇒ λ = 1,

0.5 = τ50, w2,50

.
= −1.5 ∗ 108 (the actual numbers depend on the

computer)

It turns out that the choice of Δτ in (a) has led to a reasonable approximation,

whereas the choice in (b) has caused a disaster. Here we have a stability

problem!

4.2.4 Stability

Let us perform an error analysis of an iteration w(ν+1) = Aw(ν) + d(ν). The

iteration (4.7) is a special case, with matrix Aexpl, and the vector d(ν) vanishes

for our preliminary boundary conditions w0,ν = wm,ν = 0. In general we use

the same notation w for the theoretical definition of w and for the values

of w that are obtained by numerical calculations in a computer. Since we

now discuss rounding errors, we must distinguish between the two meanings.

Let w(ν) denote the vectors theoretically defined by the iteration. Hence, by

definition, the w(ν) are free of rounding errors. But in computational reality,

rounding errors are inevitable. We denote the computer-calculated vector by

w̄(ν) and the error vectors by

e
(ν) := w̄

(ν) − w
(ν)

,

for ν ≥ 0. The result in a computer can be written

w̄
(ν+1) = Aw̄

(ν) + d
(ν) + r

(ν+1)
.

Here the vectors r(ν+1) denote the rounding errors that occur during the

calculation of Aw̄
(ν) + d

(ν). Let us concentrate on the effect of the rounding

errors that occur for an arbitrary ν, say for ν∗. We ask for the propagation of

this error for increasing ν > ν∗. Without loss of generality we set ν∗ = 0, and

for simplicity take r(ν) = 0 for ν > 1. That is, we investigate the effect the

initial rounding error e(0) has on the iteration. The initial error e(0) represents

the rounding error during the evaluation of the initial condition (4.4), when

w̄(0) is calculated. According to this scenario we have w̄(ν+1) = Aw̄(ν) + d(ν)

for ν > 1. The relation

Ae
(ν) = Aw̄

(ν) −Aw
(ν) = w̄

(ν+1) − w
(ν+1) = e

(ν+1)

between consecutive errors is applied repeatedly and results in

e
(ν) = A

ν

e
(0)

. (4.8)

163

Chapter 4 Standard Methods for Standard Options

For the method to be stable, previous errors must be damped. This leads to

require Aνe(0) → 0 for ν →∞. Elementwise this means limν→∞{(Aν)ij} = 0

for ν →∞ and for any pair of indices (i, j). The following lemma provides a

criterion for this requirement.

Lemma 4.2

ρ(A) < 1 ⇐⇒ A
ν

z → 0 for all z and ν →∞

⇐⇒ lim
ν→∞

{(Aν)i,j} = 0

Here ρ(A) is the spectral radius of A,

ρ(A) := max
i

|μA

i
| ,

where μA

1
, ..., μA

m−1
denote the eigenvalues of A. The proof can be found in

text books on numerical analysis, for example, in [IsK66]. As a consequence

of Lemma 4.2 we require for stable behavior that |μA

i
| < 1 for all eigenvalues,

here for i = 1, ..., m−1. To check the criterion of Lemma 4.2, the eigenvalues

μA

i
of A are needed. To this end we split the matrix A into

A = I − λ ·

⎛⎜⎜⎜⎝
2 −1 0

−1
. . .

. . .
. . .

. . . −1

0 −1 2

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=:G

.

It remains to investigate the eigenvalues μG of the tridiagonal matrix G.3

Lemma 4.3

Let G =

⎛⎜⎜⎜⎝
α β 0

γ
. . .

. . .

. . .
. . . β

0 γ α

⎞⎟⎟⎟⎠ be an N2-matrix.

The eigenvalues μG

k
and the eigenvectors v(k) of G are

μ
G

k
= α + 2β

√
γ

β
cos

kπ

N + 1
, k = 1, ..., N ,

v
(k) =

(√
γ

β
sin

kπ

N + 1
,

(√
γ

β

)2

sin
2kπ

N + 1
, ...,

(√
γ

β

)
N

sin
Nkπ

N + 1

)
tr

.

Proof: Substitute into Gv = μGv.

3 The zeros in the corner of the matrix symbolize the triangular zero struc-

ture of (4.7a).

164

4.2 Foundations of Finite-Difference Methods

To apply the lemma observe N = m − 1, α = 2, β = γ = −1, and the fact

that for β = γ the eigenvectors are the same for A and G. We obtain the

eigenvalues μG and finally the eigenvalues μA of A:

μ
G

k
= 2− 2 cos

kπ

m
= 4 sin2

(
kπ

2m

)
μ

A

k
= 1− λμ

G = 1− 4λ sin2
kπ

2m

Now we can state the stability requirement |μA

k
| < 1 as∣∣∣∣1− 4λ sin2

kπ

2m

∣∣∣∣ < 1, k = 1, ..., m− 1 .

This implies the two inequalities λ > 0 and

−1 < 1− 4λ sin2
kπ

2m
, rewritten as

1

2
> λ sin2

kπ

2m
.

The largest sin-term is sin
(m−1)π

2m
; for increasing m this term grows monoto-

nically approaching 1.

In summary we have shown for (4.7)

For 0 < λ ≤
1

2
the explicit method w

(ν+1) = Aw
(ν) is stable.

In view of λ = Δτ/Δx2 this stability criterion amounts to bounding the Δτ

step size,

0 < Δτ ≤
Δx2

2
(4.9)

This explains what happened with Example 4.1. The values of λ in the two

cases of this example are

(a) λ = 0.05 ≤
1

2

(b) λ = 1 >
1

2

In case (b) the chosen Δτ and hence λ were too large, which led to an

amplification of rounding errors resulting eventually in the “explosion” of

the w-values.

The explicit method is stable only as long as (4.9) is satisfied. As a conse-

quence, the parameters m and νmax of the grid resolution can not be chosen

independent of each other. If the demands for accuracy are high, the step

size Δx will be small, which in view of (4.9) bounds Δτ quadratically. This

situation suggests searching for a method that is unconditionally stable.

165

Chapter 4 Standard Methods for Standard Options

4.2.5 An Implicit Method

Introducing the explicit method in Subsection 4.2.3, we have approximated

the time derivative with a forward difference, “forward” as seen from the ν-th

time level. Now we try the backward difference

∂yi,ν

∂τ
=

yi,ν − yi,ν−1

Δτ
+ O(Δτ) ,

which yields the alternative to (4.6)

−λwi+1,ν + (2λ + 1)wi,ν − λwi−1,ν = wi,ν−1
(4.10)

The equation (4.10) relates the time level ν to the time level ν − 1. For the

transition from ν − 1 to ν only the value wi,ν−1 on the right-hand side of

(4.10) is known, whereas on the left-hand side of the equation three unknown

values of w wait to be computed. Equation (4.10) couples three unknowns.

The corresponding stencil is shown in Figure 4.3. There is no simple explicit

formula with which the unknowns can be obtained one after the other. Rather

a system must be considered, all equations simultaneously. A vector notation

reveals the structure of (4.10): With the matrix

A := Aimpl :=

⎛⎜⎜⎜⎝
1 + 2λ −λ 0

−λ
. . .

. . .
. . .

. . . −λ

0 −λ 1 + 2λ

⎞⎟⎟⎟⎠ (4.11a)

the vector w(ν) is implicitly defined as solution of the system of linear equa-

tions Aw(ν) = w(ν−1). To have a consistent numbering, we rewrite this as

Aw
(ν+1) = w

(ν) for ν = 0, ..., νmax − 1 (4.11b)

Here we have assumed again w0,ν = wm,ν = 0. For each time level ν such a

system of equations must be solved. This method is sometimes called implicit

method. But to distinguish it from other implicit methods, we call it fully

implicit, or backward-difference method, or more accurately backward time

centered space scheme (BTCS). The method is unconditionally stable for all

Δτ > 0. This is shown analogously as in the explicit case (−→ Exercise 4.2).

The costs of this implicit method are low, because the matrix A is constant

and tridiagonal. Initially, for ν = 0, the LR-decomposition (−→ Appendix

C1) is calculated once. Then the costs for each ν are only of the order O(m).

166

4.3 Crank–Nicolson Method

ν−1

i+1ii-1

ν+1

ν

Fig. 4.3. Stencil of the backward-difference method (4.10)

4.3 Crank–Nicolson Method

For the methods of the previous section the discretizations of ∂y

∂τ
are of the or-

der O(Δτ). It seems preferable to use a method where the time discretization

of ∂y

∂τ
has the better order O(Δτ2), and the stability is unconditional. Let us

again consider equation (4.2), the equivalent to the Black–Scholes equation,

∂y

∂τ
=

∂2y

∂x2
.

Crank and Nicolson suggested to average the forward- and the backward

difference method. For easy reference, we collect the underlying approaches

from the above:

forward for ν:

wi,ν+1 − wi,ν

Δτ
=

wi+1,ν − 2wi,ν + wi−1,ν

Δx2

backward for ν + 1:

wi,ν+1 − wi,ν

Δτ
=

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2

Addition yields

wi,ν+1 − wi,ν

Δτ
=

1

2Δx2
(wi+1,ν−2wi,ν+wi−1,ν+wi+1,ν+1−2wi,ν+1+wi−1,ν+1)

(4.12)

The equation (4.12) involves in each of the time levels ν and ν + 1 three

values w (Figure 4.4). This is the basis of an efficient method. Its features

are summarized in Theorem 4.4.

167

Chapter 4 Standard Methods for Standard Options

i+1ii−1

ν

ν+1

Fig. 4.4. Stencil of the Crank–Nicolson method (4.12)

Theorem 4.4 (Crank–Nicolson)

Suppose y is smooth in the sense y ∈ C4. Then:

1.) The order of the method is O(Δτ
2) + O(Δx

2).

2.) For each ν a linear system of a simple tridiagonal structure must be

solved.

3.) Stability holds for all Δτ > 0.

Proof:

1.) order: A practical notation for the symmetric difference quotient of second

order for yxx is

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2
. (4.13)

Apply the operator δxx to the exact solution y. Then by Taylor expansion

for y ∈ C4 one shows

δxxyi,ν =
∂2

∂x2
yi,ν +

Δx2

12

∂4

∂x4
yi,ν + O(Δx

4) .

The local discretization error ε describes how well the exact solution y of (4.2)

satisfies the difference scheme,

ε :=
yi,ν+1 − yi,ν

Δτ
−

1

2
(δxxyi,ν + δxxyi,ν+1) .

Applying the operator δxx of (4.13) to the expansion of yi,ν+1 at τν and

observing yτ = yxx leads to

ε = O(Δτ
2) + O(Δx

2) .

(−→ Exercise 4.3)

2.) system of equations: With λ := Δτ

Δx
2 the equation (4.12) is rewritten

−
λ

2
wi−1,ν+1 + (1 + λ)wi,ν+1 −

λ

2
wi+1,ν+1

=
λ

2
wi−1,ν + (1 − λ)wi,ν +

λ

2
wi+1,ν

(4.14)

168

4.3 Crank–Nicolson Method

The values of the new time level ν + 1 are implicitly given by the system

of equations (4.14). For the simplest boundary conditions w0,ν = wm,ν = 0

equation (4.14) is a system of m− 1 equations. With matrices

A := ACN :=

⎛⎜⎜⎜⎜⎝
1 + λ −λ

2
0

−λ

2

. . .
. . .

. . .
. . . −λ

2

0 −λ

2
1 + λ

⎞⎟⎟⎟⎟⎠ ,

B := BCN :=

⎛⎜⎜⎜⎜⎝
1− λ

λ

2
0

λ

2

. . .
. . .

. . .
. . . λ

2

0 λ

2
1− λ

⎞⎟⎟⎟⎟⎠
(4.15a)

the system (4.14) is rewritten

Aw
(ν+1) = Bw

(ν)
. (4.15b)

The eigenvalues of A are real and lie between 1 and 1+2λ. (This follows from

the Theorem of Gerschgorin, see Appendix C1). This rules out a zero eigen-

value, and so A must be nonsingular and the solution of (4.15b) is uniquely

defined.

3.) stability: The matrices A and B can be rewritten in terms of a constant

tridiagonal matrix,

A = I + λ

2
G, G :=

⎛⎜⎜⎜⎝
2 −1 0

−1
. . .

. . .
. . .

. . . −1

0 −1 2

⎞⎟⎟⎟⎠ , B = I − λ

2
G .

Now the equation (4.15b) reads

(2I + λG︸ ︷︷ ︸
=:C

)w(ν+1) = (2I − λG)w(ν)

= (4I − 2I − λG)w(ν)

= (4I − C)w(ν)
,

which leads to the formally explicit iteration

w
(ν+1) = (4C

−1 − I)w(ν)
. (4.16)

The eigenvalues μC

k
of C for k = 1, ..., m− 1 are known from Lemma 4.3,

μ
C

k
= 2 + λμ

G

k
= 2 + λ(2− 2 cos

kπ

m
) = 2 + 4λ sin2

kπ

2m
.

169

Chapter 4 Standard Methods for Standard Options

In view of (4.16) we require for a stable method that for all k∣∣∣∣ 4

μC

k

− 1

∣∣∣∣ < 1 .

This is guaranteed because of μ
C

k
> 2. Consequently, the Crank–Nicolson

method (4.12)/(4.15) is unconditionally stable for all λ > 0 (Δτ > 0).

Although correct boundary conditions are still lacking, it makes sense to

formulate the basic version of the Crank–Nicolson algorithm for the PDE

(4.2).

Algorithm 4.5 (Crank–Nicolson)

Start: Choose m, νmax; calculate Δx, Δτ

w
(0)

i
= y(xi, 0) with y from (4.4), 0 ≤ i ≤ m

Calculate the LR-decomposition of A

loop: for ν = 0, 1, ..., νmax − 1 :

Calculate c := Bw
(ν) (preliminary)

Solve Ax = c using e.g. the LR-decomposition—

that is, solve Lz = Bw(ν) and Rx = z

w
(ν+1) := x

The LR-decomposition is the symbol for the solution of the system of linear

equations. Later we shall see when to replace it by the RL-decomposition.

It is obvious that the matrices A and B are not stored in the computer. —

Next we show how the vector c in Algorithm 4.5 is modified to realize correct

boundary conditions.

4.4 Boundary Conditions

On the unbounded domain −∞ < x < ∞ the initial-value problem yτ = yxx

with initial condition (4.4) and τ ≥ 0 is well-posed. But the truncation to the

interval xmin ≤ x ≤ xmax changes the type of the problem. To make the PDE-

problem well-posed in the finite-domain case, boundary conditions must be

imposed artificially. They are not stated in the option’s contract, and are not

needed by Monte Carlo methods. Boundary conditions are the price one has

to pay when PDE-based approaches are applied. Since boundary conditions

are often approximations of the reality, the “localized solution” on the finite

170

4.4 Boundary Conditions

domain xmin ≤ x ≤ xmax in general is different from the solution of the pure

initial-value problem. For simplicity, we neglect this difference, and denote

the localized solution again by y. We need to formulate boundary conditions

such that the localized solution is close to the solution of the original problem.

The choice of boundary conditions is not unique.

In the variety of possible boundary conditions there are two kinds so

important and so frequent that they have names. For Dirichlet conditions,

a value is assigned to y, whereas a Neumann condition assigns a value to

the derivative dy/dx. For a call, for example, y(xmin) = 0 is Dirichlet, and
∂y(xmax)

∂x
= 1 is Neumann. More generally, with xb standing for xmin or xmax,

y(xb, t) = α(t)

for some function α(t) is an example of a Dirichlet condition. A discretized

version is w0,ν = α(τν). That is, our preliminary boundary conditions w0,ν =

wm,ν = 0 have been of Dirichlet type. And a Neumann condition would be

∂y(xb, t)

∂x
= β(t)

for some function β(t). On our grid, a second-order approximation (4.5b) for

this Neumann condition is

w1,ν − w−1,ν = β(τν) 2Δx ,

which uses a fictive grid point x−1 outside the interval. The required informa-

tion on w−1,ν is provided by a discretized version of the PDE. Alternatively,

the one-sided second-order difference quotient (4.5d) can be applied. As a

result, one or more entries of the matrix A would change, which makes a

finite-difference realization of a Neumann condition a bit cumbersome. Di-

richlet conditions are easier to cope with. Let us try to analyze V (S, t) for

S = 0 and S →∞ in order to derive Dirichlet conditions

y(x, τ) for x = xmin and xmax , or

w0,ν and wm,ν for ν = 1, ..., νmax ,

consistent with the Black-Scholes model.

The boundary conditions for the expiration time t = T are obvious. They

give rise to the simplest cases of boundary conditions for t < T : As motivated

by the Figures 1.1 and 1.2 and the equations (1.1C), (1.1P), the value VC of

a call and the value VP of a put must satisfy

VC(S, t) = 0 for S = 0, and

VP(S, t) → 0 for S →∞
(4.17)

also for all t < T . This follows, for example, from the integral representation

(3.20), because discounting does not affect the value 0 of the payoff. And

S(0) = 0 implies S(t) = 0 for all t > 0 because of dS = S(μ dt + σ dW);

hence the value VC(0, t) = 0 can be predicted safely. The same holds true for

171

Chapter 4 Standard Methods for Standard Options

S(0)→∞ and V of (1.1P). This holds for European as well as for American

options, with or without dividend payments.

The boundary conditions on each of the “other sides” of S, where V �= 0,

are more difficult. We postpone the boundary conditions for American options

to the next section, and investigate European options in this section.

From (4.17) and the put-call parity (−→ Exercise 1.1) we deduce the

additional boundary conditions for European options. The result is

VC(S, t) = S −Ke−r(T−t) for S →∞

VP(S, t) = Ke−r(T−t) − S for S → 0
(4.18)

(without dividend payment, δ = 0). The lower bounds for European options

(−→ Appendix D1) are attained at the boundaries. In (4.18) for S ≈ 0 we do

not discard the term S, because the realization of the transformation (4.3)

requires Smin > 0, see Section 4.2.2.4 Boundary conditions analogous as in

(4.18) hold for the case of a continuous flow of dividend payments (δ > 0).

We skip the derivation, which can be based on transformation (4.3) and the

additional transformation S = Seδ(T−t) (−→ Exercise 4.4). In summary, the

asymptotic boundary conditions for European options in the (x, τ)-world are

as follows:

Boundary Conditions 4.6 (European options)

y(x, τ) = r1(x, τ) for x → −∞ ,

y(x, τ) = r2(x, τ) for x →∞ , with

call: r1(x, τ) := 0 ,

r2(x, τ) := exp
(

1

2
(qδ + 1)x + 1

4
(qδ + 1)2τ

)
put: r1(x, τ) := exp

(
1

2
(qδ − 1)x + 1

4
(qδ − 1)2τ

)
,

r2(x, τ) := 0

(4.19)

Truncation: As noted above, the theoretical domain −∞ < x <∞ is trunca-

ted to the finite interval

a := xmin ≤ x ≤ xmax =: b .

Although (4.19) is valid only for x → −∞ and x → ∞, we may apply the

dominant terms r1(x, τ) and r2(x, τ) to approximate boundary conditions at

x = a and x = b. This suggests the boundary conditions

w0,ν = r1(a, τν)

wm,ν = r2(b, τν)

for all ν. These approximations are explicit formulas and easy to implement.

To this end return to the Crank–Nicolson equation (4.14), in which some

4 For S = 0 the PDE is no longer parabolic.

172

4.5 American Options as Free Boundary Problems

of the terms on both sides of the equations are known by the boundary

conditions. For the equation with i = 1 these are terms

from the left-hand side: −
λ

2
w0,ν+1 = −

λ

2
r1(a, τν+1)

from the right-hand side:
λ

2
w0,ν =

λ

2
r1(a, τν)

and for i = m− 1

from the left-hand side: −
λ

2
wm,ν+1 = −

λ

2
r2(b, τν+1)

from the right-hand side:
λ

2
wm,ν =

λ

2
r2(b, τν)

These known boundary values are collected on the right-hand side of system

(4.14). So we finally arrive at

Aw
(ν+1) = Bw

(ν) + d
(ν)

d
(ν) : =

λ

2
·

⎛⎜⎜⎜⎜⎝
r1(a, τν+1) + r1(a, τν)

0
...

0

r2(b, τν+1) + r2(b, τν)

⎞⎟⎟⎟⎟⎠
(4.20)

The preliminary version (4.15b) is included as special case, with d(ν) = 0.

The statement in Algorithm 4.5 that defines c is modified to the statement

Calculate c := Bw
(ν) + d

(ν)
.

The methods of Section 4.2 can be adapted by analogous formulas. The ma-

trix A is not changed, and the stability is not affected by adding the vector

d, which is constant with respect to w.

4.5 American Options as Free Boundary Problems

In Sections 4.1 through 4.3 we so far have considered tools for the Black–

Scholes differential equation —that is, we have investigated European opti-

ons. Now we turn our attention to American options. Recall that the value

of an American option can never be smaller than the value of a European

option,

V
Am ≥ V

Eur
.

173

Chapter 4 Standard Methods for Standard Options

In addition, an American option has at least the value of the payoff. So we

have elementary lower bounds for the value of American options, but —as

we will see— additional numerical problems to cope with.

4.5.1 Early-Exercise Curve

A European option can have a value that is smaller than the payoff (compare,

for example, Figure 1.6). This can not happen with American options. Recall

the arbitrage strategy: if for instance an American put would have a value

V Am

P
< (K −S)+, one would simultaneously purchase the asset and the put,

and exercise immediately. An analogous arbitrage argument implies that for

an American call the situation V Am

C
< (S −K)+ can not prevail. Therefore

the inequalities

V
Am

P
(S, t) ≥ (K − S)+ for all (S, t)

V
Am

C
(S, t) ≥ (S −K)+ for all (S, t)

(4.21)

hold. For a put this is illustrated schematically in Figure 4.5. The inequalities

for V make the problem of calculating an American option nonlinear.

(t)fS
S

0

V

possible European option for t<T
possible American option for t<T

payoff function for t=T

K

K

Fig. 4.5. V (S, t) for a put and a t < T , schematically

For American options we have noted in (4.17) the boundary conditions

that prescribe V = 0. The boundary conditions at each of the other “ends”

of the S-axis are still needed. In view of the inequalities (4.21) it is clear that

the missing boundary conditions will be of a different kind than those for

European options, which are listed in (4.18). Let us investigate the situation

of an American put, which is illustrated in Figure 4.5. First discuss the

left-end part of the curve VP(S, t), for small S > 0, and some t < T . Without

the possibility of early exercise the inequality VP(S, t) < K − S holds for

r > 0 and sufficiently small S. But in view of (4.21) the American put should

satisfy VP(S, t) ≡ K − S at least for small S. To understand what happens

for “medium” values of S, imagine to approach from the right-hand side,

174

4.5 American Options as Free Boundary Problems

where V Am

P
(S, t) > (K − S)+. Continuity and monotony of VP suggest the

curve V Am

P
(S, t) hits the straight line of the payoff at some value Sf with

0 < Sf < K, see Figure 4.5. This contact point Sf is defined by

V
Am

P
(S, t) > (K − S)+ for S > Sf(t),

V
Am

P
(S, t) = K − S for S ≤ Sf(t) .

(4.22)

Convexity of V (S, .) guarantees that there is only one contact point Sf for

each t. For S < Sf the value V Am

P
equals the straight line of the payoff and

nothing needs to be calculated. For each t, the curve V Am

P
(S, t) reaches its

left boundary at Sf(t).

The above situation holds for any t < T , and the contact point Sf varies

with t, Sf = Sf(t). For all 0 ≤ t < T , the contact points Sf(t) form a curve

in the (S, t)-half strip. The curve Sf is the boundary separating the area

with V > payoff and the area with V = payoff. The curve Sf of a put is

illustrated in the left-hand diagram of Figure 4.6. A priori the location of the

boundary Sf is unknown, the curve is “free.” This explains why the problem

of calculating V Am

P
(S, t) for S > Sf(t) is called free boundary problem.

hold hold

T

S

stop

t

T

S

call

stop

t

S (T) S (T)

S

put

S
f

f f

f

Fig. 4.6. Continuation region (shaded) and stopping region for American options

For American calls the situation is similar, except that the contact only

occurs for dividend-paying assets, δ �= 0. This is seen from

V
Am

C
≥ V

Eur

C
≥ S −Ke−r(T−t)

> S −K

for δ = 0, r > 0, t < T , compare Exercise 1.1. V Am

C
> S−K for δ = 0 implies

that early-exercise does not pay. American and European calls on assets that

pay no dividends are identical, V
Am

C
= V

Eur

C
. A typical curve V

Am

C
(S, t) for

δ �= 0 contacting the payoff is shown in Figure 4.9. And the free boundary Sf

may look like the right-hand diagram of Figure 4.6.

The notation Sf(t) for the free boundary is motivated by the process of

solving PDEs. But the primary meaning of the curve Sf is economical. The

free boundary Sf is the early-exercise curve. The time instance ts when a

175

Chapter 4 Standard Methods for Standard Options

price process St reaches the early-exercise curve is the optimal stopping time,

compare also the illustration of Figure 3.10. Let us explain this for the case

of a put; for a call with dividend payment the argument is similar.

For a put, in case S > Sf , early-exercise causes an immediate loss, because

(4.22) implies the exercise balance −V +K−S < 0. Receiving the strike price

K does not compensate the loss of S and V . Accordingly, the rational holder

of the option does not exercise when S > Sf . This explains why the area

S > Sf is called continuation region (shaded in Figure 4.6).

On the other side of the boundary curve Sf , characterized by V = K−S,

each change of S is compensated by a corresponding move of V . Here the

only way to create a profit is to exercise and invest the proceeds K at the

risk-free rate for the remaining time period T − t. The resulting profit will be

Ker(T−t) −K ,

which relies on r > 0. (For r = 0 American and European put are identical.)

To maximize the profit, the holder of the option will maximize T − t, and

accordingly exercise as soon as V ≡ K − S is reached. Hence, the boundary

curve Sf is the early-exercise curve. And the area S ≤ Sf is called stopping

region.5

Now that the curve Sf is recognized as having such a distinguished im-

portance as early-exercise curve, we should make sure that the properties of

Sf are as suggested by Figures 4.5 and 4.6. In fact, the curves Sf(t) are con-

tinuously differentiable in t, and monotonous not decreasing / not increasing

as illustrated. There are both upper and lower bounds to Sf(t). For more

details and proofs see Appendix A5. Here we confine ourselves to the bounds

given by the limit t→ T (t < T, δ > 0):

put: lim
t→T

−

Sf(t) = min(K,
r

δ
K) (4.23P)

call: lim
t→T

−

Sf(t) = max(K,
r

δ
K) (4.23C)

These bounds express a qualitatively different behavior of the early-exercise

curve in the two situations 0 < δ < r and δ > r. This is illustrated in Figure

4.7 for a put. For the chosen numbers, for all δ ≤ 0.06 the limit of (4.23P)

is the strike K (lower diagram). Compare to Figures 1.4 and 1.5 to get a

feeling for the geometrical importance of the curve as contact line where two

surfaces merge. For larger values of S the surface V (S, t) approaches 0 in a

way illustrated by Figure 4.8.

5 When a discrete dividend is paid, the stopping area is not necessarily

connected (−→ Exercise 4.1b).

176

4.5 American Options as Free Boundary Problems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Fig. 4.7. Early-exercise curves of an American put, r = 0.06, σ = 0.3, K = 10,

and dividend rates δ = 0.12 (top figure), δ = 0.08 (middle), δ = 0.04 (bottom); raw

data of a finite-difference calculation without interpolation or smoothing

177

Chapter 4 Standard Methods for Standard Options

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

C_1

C_2
-3

-5

-7

Fig. 4.8. Calculated curves of a put matching Figures 1.4, 1.5. C1 is the curve Sf .

The three curves C2 have the meaning V < 10
−k

for k = 3, 5, 7.

4.5.2 Free Boundary Problem

Again we start with a put. For the European option, the left-end boundary

condition is formulated for S = 0. For the American option, the left-end

boundary is given along the curve Sf (Figure 4.5). In order to calculate the

free boundary Sf(t) we need an additional condition. To this end consider the

slope ∂V

∂S
with which V Am

P
(S, t) touches at Sf(t) the straight line K−S, which

has the constant slope−1. By geometrical reasons we can rule out for V Am

P
the

case
∂V (Sf (t),t)

∂S
< −1, because otherwise (4.21) and (4.22) would be violated.

Using arbitrage arguments, the case
∂V (Sf(t),t)

∂S
> −1 can also be ruled out

(−→ Exercise 4.9). It remains the condition ∂V Am

P
(Sf(t), t)/∂S = −1. That

is, V (S, t) touches the payoff function tangentially. This tangency condition

is commonly called the high-contact condition, or smooth pasting. For the

somewhat hypothetical case of a perpetual option (T = ∞) the tangential

touching can be calculated analytically (−→ Exercise 4.8). In summary, two

boundary conditions must hold at the contact point Sf(t):

V
Am

P
(Sf(t), t) = K − Sf(t)

∂V Am

P
(Sf(t), t)

∂S
= −1

(4.24P)

178

4.5 American Options as Free Boundary Problems

As before, the right-end boundary condition VP(S, t) → 0 must be observed

for S →∞.

0

5

10

15

20

0 5 10 15 20 25 30

Fig. 4.9. Value V (S, 0) of an American call with K = 10, r = 0.25, σ = 0.6, T = 1

and dividend flow δ = 0.2. Crosses indicate the corresponding curve of a European

call; the payoff is shown. A special value is V (K, 0) = 2.18728.

For American calls analogous boundary conditions can be formulated.

For a call in case δ > 0, r > 0 the free boundary conditions

V
Am

C
(Sf(t), t) = Sf(t)−K

∂V Am

C
(Sf(t), t)

∂S
= 1

(4.24C)

must hold along the right-end boundary for Sf(t) > K. The left-end boundary

condition at S = 0 remains unchanged. Figure 4.9 shows an American call

on a dividend-paying asset. The high contact on the payoff is visible.

We note in passing that the transformation ζ := S/Sf(t), y(ζ, t) := V (S, t)

allows to set up a Black–Scholes-type PDE on a rectangle. In this way, the

unknown front Sf(t) is fixed at ζ = 1, and is given implicitly by an ordinary

differential equation as part of a nonlinear PDE (−→ Exercise 4.11). Such a

front-fixing approach is numerically relevant; see the Notes on Section 4.7.

179

Chapter 4 Standard Methods for Standard Options

4.5.3 Black–Scholes Inequality

The Black–Scholes equation (4.1) is valid on the continuation region (shaded

areas in Figure 4.6). For the numerical approach of the following Section 4.6

the computational domain will be the entire half strip S > 0, 0 ≤ t ≤ T ,

including the stopping areas. This will allow locating the early-exercise curve

Sf . The approach requires to adapt the Black–Scholes equation in some way

to the stopping areas.

To this end, define the Black–Scholes operator as

LBS(V) :=
1

2
σ

2
S

2
∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV .

With this notation the Black–Scholes equation reads

∂V

∂t
+ LBS(V) = 0 .

What happens with this operator on the stopping regions? To this end we

substitute the payoff into ∂V

∂t
+ LBS(V) for the case of a put. (The reader

may carry out the analysis for the case of a call.) For the put, for S ≤ Sf ,

V = K − S ,
∂V

∂t
= 0 ,

∂V

∂S
= −1 ,

∂2V

∂S2
= 0 .

Hence
∂V

∂t
+ LBS(V) = −(r − δ)S − r(K − S) = δS − rK .

From (4.23P) we have the bound δS < rK, which leads to conclude

∂V

∂t
+ LBS(V) < 0 .

The Black–Scholes equation changes to an inequality on the stopping region.

The same inequality holds for the call. In summary, on the entire half strip

American options must satisfy an inequality of the Black–Scholes type,

∂V

∂t
+

1

2
σ

2
S

2
∂

2
V

∂S2
+ (r − δ)S

∂V

∂S
− rV ≤ 0 . (4.25)

The inequalities (4.21) and (4.25) hold for all (S, t). In case the strict inequa-

lity “>” holds in (4.21), equality holds in (4.25). The contact boundary Sf

divides the half strip into the stopping region and the continuation region,

each with appropriate version of V :

put: V
Am

P
= K − S for S ≤ Sf (stop)

V
Am

P
solves (4.1) for S > Sf (hold)

call: V
Am

C
= S −K for S ≥ Sf (stop)

V
Am

C
solves (4.1) for S < Sf (hold)

180

4.5 American Options as Free Boundary Problems

This shows that also for American options the Black–Scholes equation (4.1)

must be solved, however, with special arrangements because of the free boun-

dary. We have to look for methods that simultaneously calculate V along with

the unknown Sf .

Note that ∂V

∂S
is continuous when Sf is crossed, but ∂

2
V

∂S
2 and ∂V

∂t
are

not continuous. It must be expected that this lack of smoothness along the

early-exercise curve Sf affects the accuracy of numerical approximations.

4.5.4 Penalty Formulation

In this subsection we outline an approach that allows for a unified treatment

of stopping region and continuation region. Note that inequality (4.25) can be

written as an equality by introducing a penalty term p(V) ≥ 0, and requesting

∂V

∂t
+ LBS(V) + p(V) = 0 .

The penalty term p should be zero for the continuation region, and should

be positive for the stopping area. When calculating an approximation V , the

distance to Sf is not known, but the distance V − Ψ of V to the payoff Ψ is

available and serves as decisive building block of a penalty term. There are

several possibilities to construct a penalty p. One classical approach will be

described in Section 7.2. Another way to set up a penalty can be accomplished

by a term such as

p(V) :=
ε

V − Ψ
for a small ε > 0 .

Let V ε denote a solution of the penalty equation. For V ε distinctly above Ψ ,

the term p is close to zero, and the Black–Scholes equation results approxi-

mately. On the other hand, for V ε approaching Ψ , the penalty term p grows

and eventually dominates the Black–Scholes part of the equation.

Note that p and the resulting PDE are nonlinear in V , which complicates

the numerical solution. The penalty formulation is advantageous especially in

cases where an analysis of the early-exercise curve is difficult. See Section 6.7

for an exposition of the penalty approach in the two-dimensional situation.

For the standard options of this Chapter 4, we pursue another method, which

allows to preserve the linear equation.

4.5.5 Obstacle Problem

A brief digression into obstacle problems will motivate the procedure. We

assume an “obstacle” g(x), say with g(x) > 0 for α < x < β, g ∈ C2, g
′′

< 0

and g(−1) < 0, g(1) < 0, compare Figure 4.10. Across the obstacle a function

u with minimal length is stretched like a rubber thread. Between x = α and

x = β the curve u clings to the boundary of the obstacle. For α and β we

181

Chapter 4 Standard Methods for Standard Options

g(x)

α β
x

u(x)

1−1

Fig. 4.10. Function u(x) across an obstacle g(x)

encounter high-contact conditions, where the curve of u touches the obstacle

tangentially. Initially, these two values x = α and x = β are unknown. This

obstacle problem is a simple free boundary problem.

The aim is to reformulate the obstacle problem such that the free boun-

dary conditions do not show up explicitly. This may promise computational

advantages. The function u shown in Figure 4.10 is defined by the require-

ments u ≥ g, u(−1) = u(1) = 0, u ∈ C1[−1, 1], and by:

for − 1 < x < α : u′′ = 0 (then u > g)

for α < x < β : u = g (then u′′ = g′′ < 0)

for β < x < 1 : u
′′ = 0 (then u > g) .

The characterization of the two outer intervals is identical. This manifests a

complementarity in the sense

if u > g, then u
′′ = 0 ;

if u = g, then u
′′

< 0 .

In retrospect it is clear that American options are complementary in an ana-

logous way:

if V > payoff, then Black–Scholes equation ∂V

∂t
+ LBS(V) = 0

if V = payoff, then Black–Scholes inequality ∂V

∂t
+ LBS(V) < 0

This analogy motivates searching for a solution of the obstacle problem. The

obstacle problem can be reformulated as⎧⎪⎨⎪⎩
find a function u such that

u
′′(u− g) = 0, −u

′′ ≥ 0, u− g ≥ 0 ,

u(−1) = u(1) = 0, u ∈ C1[−1, 1] .

(4.26)

The key line (4.26) is a linear complementarity problem (LCP). This

formulation does not mention the free boundary conditions at x = α and

x = β explicitly. This will be advantageous because α and β are unknown. If

a solution to (4.26) is known, then α and β are read off from the solution. So

we construct a numerical solution procedure for the complementarity version

(4.26) of the obstacle problem.

182

4.5 American Options as Free Boundary Problems

Discretization of the Obstacle Problem

A finite-difference approximation for u
′′ on the grid xi = −1 + iΔx, with

Δx = 2

m
, gi := g(xi) leads to{

(wi−1 − 2wi + wi+1)(wi − gi) = 0,

− wi−1 + 2wi − wi+1 ≥ 0, wi ≥ gi

}
0 < i < m ,

and w0 = wm = 0. The wi are approximations to u(xi). In view of the signs

of the factors in the first line in this discretization scheme it can be written

using a scalar product. To this end define a vector notation using

G :=

⎛⎜⎜⎜⎝
2 −1 0

−1
. . .

. . .
. . .

. . . −1

0 −1 2

⎞⎟⎟⎟⎠ and w :=

⎛⎝ w1

...

wm−1

⎞⎠ , g :=

⎛⎜⎝ g1

...

gm−1

⎞⎟⎠ .

Then the discretized complementarity problem is rewritten in the form{
(w − g)trGw = 0 ,

Gw ≥ 0 , w ≥ g
(4.27)

To calculate (4.27) one solves Gw = 0 under the side condition w ≥ g. This

will be explained in Section 4.6.2.

4.5.6 Linear Complementarity for American Put Options

In analogy to the simple obstacle problem described above we now derive

a linear complementarity problem for American options. Here we confine

ourselves to American puts without dividends (δ = 0); the general case will

be listed in Section 4.6. The transformations (4.3) lead to

∂y

∂τ
=

∂2y

∂x2
as long as V

Am

P
> (K − S)+ .

Also the side condition (4.21) is transformed: The relation

V
Am

P
(S, t) ≥ (K − S)+ = K max{1− ex

, 0}

leads to the inequality

y(x, τ) ≥ exp{ 1

2
(q − 1)x + 1

4
(q + 1)2τ}max{1− ex

, 0}

= exp{ 1

4
(q + 1)2τ}max{(1− ex)e

1
2
(q−1)x

, 0}

= exp{ 1

4
(q + 1)2τ}max{e

1
2
(q−1)x − e

1
2
(q+1)x

, 0}

=: g(x, τ)

183

Chapter 4 Standard Methods for Standard Options

This function g allows to write the initial condition (4.4) as y(x, 0) = g(x, 0).

In summary, we require yτ = yxx as well as

y(x, 0) = g(x, 0) and y(x, τ) ≥ g(x, τ) ,

and, in addition, the boundary conditions, and y ∈ C1 with respect to x.

For x → ∞ the function g vanishes, g(x, τ) = 0, so the boundary condition

y(x, τ) → 0 for x→∞ can be written

y(x, τ) = g(x, τ) for x→∞ .

The same holds for x → −∞ (−→ Exercise 4.5). In practice, the boundary

conditions are formulated for xmin and xmax. Collecting all expressions, the

American put is formulated as linear complementarity problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
∂y

∂τ
−

∂2y

∂x2

)
(y − g) = 0 ,

∂y

∂τ
−

∂2y

∂x2
≥ 0 , y − g ≥ 0

y(x, 0) = g(x, 0), y(xmin, τ) = g(xmin, τ) ,

y(xmax, τ) = g(xmax, τ) , y ∈ C1 with respect to x .

The exercise boundary is automatically captured by this formulation. An

analogous formulation holds for the American call. Both of the formulations

are comprised by Problem 4.7 below. In Section 5.3 we will return to the

obstacle problem with a version as variational problem.

4.6 Computation of American Options

In the previous sections we have derived a linear complimentarity problem

for both put and call of an American-style option. We summarize the results

into Problem 4.7. This assumes for a put r > 0, and for a call δ > 0; otherwise

the American option is not distinct from the European counterpart.

Problem 4.7 (linear complementarity problem)∣∣∣∣∣∣∣∣∣∣∣

notations of (4.3), including

q =
2r

σ2
, qδ =

2(r − δ)

σ2
,

put: g(x, τ) := exp{ τ

4
((qδ − 1)2 + 4q)}max{e

x

2
(qδ−1) − e

x

2
(qδ+1)

, 0}

call: g(x, τ) := exp{ τ

4
((qδ − 1)2 + 4q)}max{e

x

2
(qδ+1) − e

x

2
(qδ−1)

, 0}

184

4.6 Computation of American Options∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∂y

∂τ
−

∂
2
y

∂x2

)
(y − g) = 0

∂y

∂τ
−

∂2y

∂x2
≥ 0 , y − g ≥ 0

xmin ≤ x ≤ xmax , 0 ≤ τ ≤
1

2
σ

2
T

y(x, 0) = g(x, 0)

y(xmin, τ) = g(xmin, τ) , y(xmax, τ) = g(xmax, τ)

As outlined in Section 4.5, the free boundary problem of American options

is described in Problem 4.7 such that the free boundary condition does not

show up explicitly. We now enter the discussion of the numerical solution of

Problem 4.7.

4.6.1 Discretization with Finite Differences

We use the same grid as in Section 4.2.2, with wi,ν denoting an approximation

to y(xi, τν), and gi,ν := g(xi, τν) for 0 ≤ i ≤ m, 0 ≤ ν ≤ νmax. The backward

difference, the explicit, and the Crank–Nicolson method can be combined

into one formula,

wi,ν+1 − wi,ν

Δτ
= θ

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2
+

(1− θ)
wi+1,ν − 2wi,ν + wi−1,ν

Δx2
,

with the choices θ = 0 (explicit), θ = 1

2
(Crank–Nicolson), θ = 1 (backward-

difference method). This family of numerical schemes parameterized by θ is

often called θ-method.

The differential inequality ∂y

∂τ
− ∂

2
y

∂x
2 ≥ 0 becomes the discrete version

wi,ν+1 − λθ(wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1)

− wi,ν − λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν) ≥ 0 ,
(4.28)

where we use again the abbreviation λ := Δτ

Δx
2 . With the notations

bi,ν := wi,ν + λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν) , i = 2, . . . , m− 2

b1,ν and bm−1,ν incorporate the boundary conditions

b
(ν) := (b1,ν , ..., bm−1,ν)tr

w
(ν) := (w1,ν , ..., wm−1,ν)tr

g
(ν) := (g1,ν , ..., gm−1,ν)tr

185

Chapter 4 Standard Methods for Standard Options

and

A :=

⎛⎜⎜⎜⎜⎝
1 + 2λθ −λθ 0

−λθ
. . .

. . .
. . .

. . .
. . .

0
. . .

. . .

⎞⎟⎟⎟⎟⎠ ∈ IR(m−1)×(m−1) (4.29)

(4.28) is rewritten in vector form as

Aw
(ν+1) ≥ b

(ν) for all ν .

Such inequalities for vectors are understood componentwise. The inequality

y − g ≥ 0 leads to

w
(ν) ≥ g

(ν)
,

and
(

∂y

∂τ
− ∂

2
y

∂x
2

)
(y − g) = 0 becomes(

Aw
(ν+1) − b

(ν)

)
tr
(
w

(ν+1) − g
(ν+1)

)
= 0 .

The initial and boundary conditions are

wi,0 = gi,0 , i = 1, ..., m− 1 , (w(0) = g
(0)) ;

w0,ν = g0,ν , wm,ν = gm,ν , ν ≥ 1

The boundary conditions are realized in the vectors b(ν) as follows:

b2,ν, ..., bm−2,ν as defined above,

b1,ν = w1,ν + λ(1 − θ)(w2,ν − 2w1,ν + g0,ν) + λθg0,ν+1

bm−1,ν = wm−1,ν + λ(1− θ)(gm,ν − 2wm−1,ν + wm−2,ν) + λθgm,ν+1

(4.30)

We summarize the discrete version of the Problem 4.7 into an Algorithm:

Algorithm 4.8 (computation of American options)

For ν = 0, 1, ..., νmax − 1 :

Calculate the vectors g := g(ν+1),

b := b(ν) from (4.29), (4.30).

Calculate the vector w as solution of the problem

Aw − b ≥ 0, w ≥ g, (Aw − b)tr(w − g) = 0. (4.31)

w
(ν+1) := w

This completes the chosen finite-difference discretization.

186

4.6 Computation of American Options

The remaining problem is to solve the complementarity problem in

matrix-vector form (4.31). In principle, how to solve (4.31) is a new topic

independent of the discretization background. But accuracy and efficiency

will depend on the context of selected methods. We pause for a moment to

become aware how broad the range of possible finite-difference methods is.

Recall from Subsection 4.5.3 that V (S, t) is not C2-smooth over the free

boundary Sf . This is a source of possible inaccuracies. The order two of the

basic Crank–Nicolson scheme must be expected to be deteriorated. The effect

caused by lacking smoothness depends on the choice of several items, namely,

the

(1) kind of transformation/PDE (from no transformation over a mere τ :=

T − t to the transformation (4.3)),

(2) kind of discretization (from backward-difference over Crank–Nicolson

to more refined schemes like BDF2),

(3) method of solution for (4.31).

The latter can be a direct elimination method, or an iteratively working in-

direct method. Large systems as they occur in PDE context are frequently

solved iteratively, in particular in high-dimensional spaces. Such approaches

sometimes benefit from smoothing properties. Both an iterative procedure

(following [WiDH96]) and a direct approach (following [BrS77]) will be dis-

cussed below. It turns out that in the one-dimensional scenario of this chapter

(one underlying asset), the direct approach is faster.

4.6.2 Reformulation and Analysis of the LCP

In each time level ν in Algorithm 4.8, a linear complementarity problem (4.31)

must be solved. This is the bulk of work in Algorithm 4.8. Before entering

the numerical solution, we analyze the LCP. Since this subsection is general

numerical analysis independent of the finance framework, we momentarily use

vectors x, y, r freely in other context.6 For the analysis we transform problem

(4.31) from the w-world into an x-world with

x := w − g

y := Aw − b .
(4.32)

Then it is easy to see (the reader may check) that the task of calculating a

solution w for (4.31) is equivalent to the following problem:

6 Notation: In this Subsection 4.6.2 , x does not have the meaning of trans-

formation (4.3), and r not that of an interest rate, and y is no PDE solution.

Here, x, y ∈ IRm−1.

187

Chapter 4 Standard Methods for Standard Options

Problem 4.9 (Cryer)

Find vectors x and y such that for b̂ := b−Ag

Ax− y = b̂ , x ≥ 0 , y ≥ 0 , xtry = 0 .

(4.33)

First we make sure that the above problem has a unique solution. To this

end one shows the equivalence of Problem 4.9 with a minimization problem.

Lemma 4.10

The Problem 4.9 is equivalent to the minimization problem

min
x≥0

G(x), where G(x) :=
1

2
(xtrAx) − b̂trx is strictly convex. (4.34)

Proof. The derivatives of G are Gx = Ax − b̂ and Gxx = A. Lemma 4.3

implies that A has positive eigenvalues. Hence the Hessian matrix Gxx

is symmetric and positive definite. So G is strictly convex, and has a

unique minimum on each convex set in IRn, for example on x ≥ 0. The

Theorem of Kuhn and Tucker minimizes G under Hi(x) ≤ 0, i = 1, . . . , m.

According to this theorem,7 a vector x0 to be a minimum is equivalent to

the existence of a Lagrange multiplier y ≥ 0 with

grad G(x0) +

(
∂H(x0)

∂x

)
tr

y = 0 , ytrH(x0) = 0 .

The set x ≥ 0 leads to define H(x) := −x. Hence the Kuhn–Tucker

condition is Ax− b̂+(−I)try = 0, ytrx = 0, and we have reached equation

(4.33).

An iterative procedure can be derived from the minimization problem stated

in Lemma 4.10. This algorithm is based on the SOR method [Cry71]. For

an introduction to iterative methods for the solution of systems of linear

equations Ax = b we refer to Appendix C2. Note that (4.31) is not in the

easy form of equation Ax = b discussed in Appendix C2; a modification of

the standard SOR will be necessary. The iteration of the SOR method for

Ax = b̂ = b − Ag is written componentwise (−→ Exercise 4.6) as iteration

for the correction vector x
(k) − x

(k−1):

r
(k)

i
:= b̂i −

i−1∑
j=1

aijx
(k)

j
− aiix

(k−1)

i
−

n∑
j=i+1

aijx
(k−1)

j
(4.35a)

7 For the Kuhn–Tucker (or Karush-Kuhn-Tucker) theory we refer to [StW70],

[Str07]. In our context, m− 1.

188

4.6 Computation of American Options

x
(k)

i
= x

(k−1)

i
+ ωR

r
(k)

i

aii

. (4.35b)

Here k denotes the number of the iteration, n = m− 1, and aij is element of

the matrix A. In the cases i = 1, i = m−1 one of the sums in (4.35a) is empty.

The relaxation parameter ωR is a factor chosen in a way that should improve

the convergence of the iteration. The “projected” SOR method for solving

(4.33) starts from a vector x(0) ≥ 0 and is identical to the SOR method up

to a modification on (4.35b) serving for x
(k)

i
≥ 0.

Algorithm 4.11 (PSOR, projected SOR for Problem 4.9)

outer loop: k = 1, 2, . . .

inner loop: i = 1, ..., m− 1

r
(k)

i
as in (4.35a)

x
(k)

i
= max

{
0, x

(k−1)

i
+ ωR

r
(k)

i

aii

}
y
(k)

i
= −r

(k)

i
+ aii

(
x

(k)

i
− x

(k−1)

i

)
(4.36)

We see that this method solves Ax = b̂ for b̂ = b − Ag iteratively by com-

ponentwise considering x(k) ≥ 0. The vector y or the components y
(k)

i
con-

verging against yi, are not used explicitly for the algorithm. But since y ≥ 0

is shown (Aw ≥ b), the vector y serves an important role in the proof of

convergence. Transformed back into the w-world of problem (4.31) by means

of (4.32), the Algorithm 4.11 solves (4.31).

A proof of the convergence of Algorithm 4.11 is based on Lemma 4.10.

One shows that the sequence defined in Algorithm 4.11 minimizes G. The

main steps of the argumentation are sketched as follows:

For 0 < ωR < 2 the sequence G(x(k)) is decreasing monotonically;

Show x(k+1) − x(k) → 0 for k →∞;

The limit exists because x(k) moves in a compact set {x | G(x) ≤ G(x(0))};
The vector r from (4.35) converges toward −y;

Assuming r ≥ 0 and rtrx �= 0 leads to a contradiction to x(k+1)−x(k) → 0.

(For the proof see [Cry71].)

Another formulation has shown to be a basis for a direct solution:

Problem 4.12 (Cryer’s problem restated)

Solve Aw = b componentwise such that

the side condition w ≥ g is obeyed.

189

Chapter 4 Standard Methods for Standard Options

An implementation must be done carefully such that the boundary conditions

and all the LCP requirements in (4.33) are met. The structure of Problem

4.12 is slightly different from the system Aw = b without side condition

[JaLL90].

Recall that a direct method establishes in a first phase an equivalent sys-

tem Ãw = b̃ with a triangular matrix Ã. The elimination of the components

wi is the second phase of a direct method. Obeying the side condition w ≥ g

is easy to arrange for standard options. As analyzed earlier, for a put wi = gi

for small indexes i, and for a call this holds for large indices. In both cases

there is only one index if separating the components with wi = gi from those

with wi > gi. For a put and the unknown index if ,

wi = gi for 1 ≤ i ≤ if , and wi > gi for if < i ≤ m .

The index if marks the location of the free boundary. As suggested by Bren-

nan and Schwartz [BrS77], the elimination procedure runs forward for a put,

starting with i = 1. To have the elimination phase run in a forward loop, the

matrix Ã must be a lower triangular matrix. That is, in the case of a put,

the decomposition of A is a RL-decomposition, and Ã = L (−→ Appendix

C1). After starting with i = 1, the algorithm for i > 1 then always calculates

the next component wi of Ãw = b̃, and corrects wi := gi in case wi < gi.

For the call the elimination phase runs in a backward loop. This requires the

traditional upper triangular matrix Ã as calculated by the LR-decomposition.

In this way, a direct method for solving Problem 4.12 is established, which

is as efficient as solving a standard system of linear equations. (−→ Exercise

4.12) This elegant approach of Brennan and Schwartz allows to treat the

nonlinear problem of valuing an American option as if it were linear.

4.6.3 An Algorithm for Calculating American Options

We return to the original meaning of the variables x, y, r, as used for in-

stance in (4.2), (4.3). It remains to substitute a proper algorithm for (4.31)

into Algorithm 4.8. From the analysis of Subsection 4.6.2, we either apply

the iterative Algorithm 4.11 (−→ Exercise 4.7), or implement the fast direct

method. The resulting algorithm is formulated in Algorithm 4.13 with an

LCP-solving module that implements the iterative version. The implemen-

tation of the direct version is left to the reader (−→ Exercise 4.12). Recall

gi,ν := g(xi, τν) (0 ≤ i ≤ m) and g(ν) := (g1,ν , . . . , gm−1,ν)tr . The Figure 4.11

depicts a result of Algorithm 4.13 for Example 1.6. Here we obtain the con-

tact point with value Sf(0) = 36.3. Figure 4.13 shows the American put that

corresponds to the call in Figure 4.9.

190

4.6 Computation of American Options

Algorithm 4.13 (prototype core algorithm)∣∣

Set up the function g(x, τ) listed in Problem 4.7.

Choose θ (θ = 1/2 for Crank–Nicolson).

For PSOR: choose 1 ≤ ωR < 2 (for example, ωR = 1),

fix an error bound ε (for example, ε = 10−5).

Fix the discretization by choosing xmin, xmax, m, νmax

(for example, xmin = −5, xmax = 5 or 3, νmax = m = 100).

Calculate Δx := (xmax − xmin)/m,

Δτ := 1

2
σ2T/νmax

xi := xmin + iΔx for i = 0, . . . , m

Initialize the iteration vector w with

g(0) = (g(x1, 0), . . . , g(xm−1, 0)).

Calculate λ := Δτ/Δx
2 and α := λθ.

τ-loop: for ν = 0, 1, ..., νmax − 1:

τν := νΔτ

bi := wi + λ(1− θ)(wi+1 − 2wi + wi−1) for 2 ≤ i ≤ m− 2

b1 := w1 + λ(1− θ)(w2 − 2w1 + g0,ν) + αg0,ν+1

bm−1 := wm−1 + λ(1 − θ)(gm,ν − 2wm−1 + wm−2) + αgm,ν+1

LCP solution, directly as in Exercise 4.12, or with PSOR:

| Set componentwise v = max(w, g(ν+1))

| (v is the iteration vector of the projected SOR.)

| PSOR-loop:

| as long as ‖vnew − v‖2 > ε:

| for i = 1, 2, ..., m− 1:

| ρ := (bi + α(vnew

i−1
+ vi+1))/(1 + 2α)

| (with vnew

0
= vm = 0)

| vnew

i
= max{gi,ν+1, vi + ωR(ρ− vi)}

| v := v
new (after testing for convergence)

w
(ν+1) = w = v

European options:

For completeness we mention that it is possible to calculate European opti-

ons with Algorithm 4.13 after some modifications. In the iterative version,

replacing the line

vnew

i
= max{gi,ν+1, vi + ωR(ρ− vi)}

by the line

191

Chapter 4 Standard Methods for Standard Options

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

Fig. 4.11. (Example 1.6) American put, K = 50, r = 0.1, σ = 0.4, T =
5
12

. V (S, 0)
(solid curve) and payoff V (S, T) (dashed). Special value: V (K, 0) = 4.2842

vnew

i
= vi + ωR(ρ− vi)

recovers the standard SOR for solving Aw = b (without w ≥ g). If in addition

the boundary conditions are adapted, then the program resulting from Algo-

rithm 4.13 can be applied to European options. The same holds true for the

direct method. And applying the analytic solution formula should be most

economical, when the entire surface is not required. But for the purpose of

testing Algorithm 4.13 it may be recommendable to compare its results to

something “known.”

Back to American options, we complete the analysis, summarizing how a

concrete financial task is solved with the core Algorithm 4.13, which is formu-

lated in artificial variables such as xi, gi,ν , wi and not in financial variables.

This requires an interface between the real world and the core algorithm.

The interface is provided by the transformations in (4.3). This important

ingredient must be included for completeness. Let us formulate the required

transition between the real world and the numerical machinery of Algorithm

4.13 as another algorithm:

192

4.6 Computation of American Options

Algorithm 4.14 (American options)

Input: strike K, time to expiration T , spot price S0, r, δ, σ

Perform the core Algorithm 4.13.

(The τ -loop ends at τend = 1

2
σ2T .)

For i = 1, . . . , m− 1:

wi approximates y(xi,
1

2
σ2T),

Si = K exp{xi}

V (Si, 0) = Kwi exp{−xi

2
(qδ − 1)} exp{−τend(

1

4
(qδ − 1)2 + q)}

Test for early exercise: Approximate Sf(0):

(in case PSOR was used)

Choose ε∗ = K · 10−5 (for example)

For a put:

if := max{ i | |V (Si, 0) + Si −K| < ε∗ }

S0 < Sif
: stopping region!

For a call:

if := min{ i | |K − Si + V (Si, 0)| < ε∗ }

S0 > Sif
: stopping region!

In case the direct method was used, the index if is known from the algorithm.

The Algorithm 4.14 evaluates the data at the final time level τend, which

corresponds to t = 0. The computed information for the intermediate time

levels can be evaluated analogously. In this way, the locations of Sif
can be

put together to form an approximation of the free-boundary or stopping-time

curve Sf(t). But note that this approximation will be a crude step function.

It requires some effort to calculate the curve Sf(t) with reasonable accuracy,

see the illustration of curve C1 in Figure 4.8.

Modifications

The above Algorithm 4.13 (along with Algorithm 4.14) is the prototype of

a finite-difference algorithm. Improvements are possible. For example, the

equidistant time step Δτ can be given up in favor of a variable time stepping.

A few very small time steps initially will help to quickly damp the influence

of the nonsmooth payoff. The effect of the kink of the payoff at the strike

K is illustrated by Figure 4.12. The turmoil at the corner is seen, but also

the relatively rapid smoothing within a few time steps. Figure 4.12 shows

explicitly the dependence of V on S; implicit in the Figure is the dependence

on t with corresponding oscillations. The effect of the lack of smoothness is

heavier in case the payoff is discontinuous (binary option). In this context it

is advisable to start with a few fully implicit backward time steps (θ = 1)

193

Chapter 4 Standard Methods for Standard Options

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

9.7 9.8 9.9 10 10.1 10.2 10.3

Fig. 4.12. Finite differences, Crank–Nicolson; American put with r = 0.06, σ = 0.3,
T = 1, K = 10; M = 1000, xmin = −2, xmax = 2, Δx = 1/250, Δt = 1/1000, payoff

and V (S, tν) for tν = 1− νΔt, ν = 1, . . . , 10.

before switching to Crank–Nicolson (θ = 1/2). Such a procedure is called

Rannacher stepping, see [Ran84], [PoVF03], and the Notes on Section 4.3.

After one run of the algorithm it is advisable to refine the initial grid to have

a possibility to control the error. This simple strategy will be discussed in

some more detail in Section 4.7.

Practical experience with boundary conditions (4.18) suggests working

with Smin = 0.05 and Smax = 5K. For the transformation (4.3) S = Kex this

amounts to xmin = −3− log K, xmax = 1.6. This is to be modified for other

transformations, see the choice in Figure 7.4.

Sensitivities

The Greeks delta, gamma, theta are easily obtained by difference quotients.

These approximations are formed by the V -values that were calculated on

the finite-difference grid. For vega and rho, a recalculation is necessary, see

Section 1.4.6.

194

4.7 On the Accuracy

4.7 On the Accuracy

Necessarily, each result obtained with the means of this chapter is subjected

to errors in several ways. The most important errors have been mentioned

earlier; in this section we collect them. Let us emphasize again that in ge-

neral the existence of errors must be accepted, but not their magnitude. By

investing sufficient effort, many of the errors can be kept at a tolerable level.

(a) modeling error

The assumptions defining the underlying financial model are restrictive.

The Assumption 1.2, for example, will not exactly match the reality of a

financial market. And the parameters of the equations (such as volatility

σ) are unknown and must be estimated. Hence the equations of the model

are only crude approximations of the “reality.”

(b) discretization errors

Under the heading “discretization error” we summarize several errors that

are introduced when the continuous PDE is replaced by a set of appro-

ximating equations defined on a grid. An essential portion of the dis-

cretization error is the error between differential quotients and difference

quotients. For example, a Crank–Nicolson discretization is of the order

O(Δ2), if Δ is a measure of the grid size, and if the solution function

is sufficiently smooth. Other discretization errors include the localization

error caused by truncating the infinite interval −∞ < x < ∞ to a finite

interval, the implementation of the boundary conditions, or a quantifica-

tion error when the strike (x = 0) is not part of the grid. In passing we

recommend that the strike be one of the grid points, xk = 0 for one k.

(c) error from solving the linear equation

An iterative solution of the linear systems of equation Aw = b means

that the error approaches 0 when k → ∞, where k counts the number

of iterations. By practical reasons the iteration must be terminated at a

finite kmax such that the effort is bounded. Hence an error remains from

the linear equations. The error tends to be small for direct elimination

methods.

(d) rounding error

The finite number of digits l of the mantissa is the reason for rounding

errors.

In general, one has no accurate information on the size of these errors.

Typically, the modeling errors are larger than the discretization errors. For a

stable method, the rounding errors are the least problem. The numerical ana-

lyst, as a rule, has limited potential in manipulating the modeling error. So

the numerical analyst concentrates on the other errors, especially on discreti-

zation errors. To this end we may use the qualitative assertion of Theorem

4.4. But such an a priori result is only a basic step toward our ultimate goal

formulated in Problem 4.15.

195

Chapter 4 Standard Methods for Standard Options

4.7.1 Elementary Error Control

We neglect modeling errors and try to solve the a posteriori error problem:

Problem 4.15 (principle of an error control)

Let the exact result of a solution of the continuous equations be denoted

η∗. The approximation η calculated by a given algorithm depends on a

representative grid size Δ, on kmax, on the word length l of the computer,

and maybe on several additional parameters, symbolically written

η = η(Δ, kmax, l) .

Choose Δ, kmax, l such that the absolute error of η does not exceed a

prescribed error tolerance ε,

|η − η
∗| < ε .

This problem is difficult to solve, because we implicitly assume an efficient

approximation avoiding an overkill with extremely small values of Δ or large

values of kmax or l. Time counts in real-time application. So we try to avoid

unnecessary effort of achieving a tiny error |η−η∗| � ε. The exact size of the

error is unknown. But its order of magnitude can be estimated as follows.

Let us assume the method is of order p. We simplify this statement to

η(Δ)− η
∗ = γΔ

p

. (4.37)

Here γ is a priori unknown. By calculating two approximations, say for grid

sizes Δ1 and Δ2, the constant γ can be calculated. To this end subtract the

two calculated approximations η1 and η2,

η1 := η(Δ1) = γΔ
p

1
+ η

∗

η2 := η(Δ2) = γΔ
p

2
+ η

∗

to obtain

γ =
η1 − η2

Δ
p

1
−Δ

p

2

.

A simple choice of the grid size Δ2 for the second approximation is the

refinement Δ2 = 1

2
Δ1. This leads to

γ

(
Δ1

2

)
p

=
η1 − η2

2p − 1
. (4.38)

Especially for p = 2 the relation

γΔ
2

1
= 4

3
(η1 − η2)

results. In view of the scenario (4.37) the absolute error of the approximation

η1 is given by
4

3
|η1 − η2|

and the error of η2 by (4.38).

196

4.7 On the Accuracy

0

2

4

6

8

10

0 5 10 15 20

Fig. 4.13. Value V (S, 0) of an American put with K = 10, r = 0.25, σ = 0.6,
T = 1 and dividend flow δ = 0.2. For special values see Table 4.1. Crosses mark the

corresponding curve of a European option.

Table 4.1. Results reported in Figure 4.13

m = νmax V (10, 0)

50 1.8562637
100 1.8752110
200 1.8800368
400 1.8812676
800 1.8815842

1600 1.8816652

The above procedure does not guarantee that the error η is bounded by

ε. This flaw is explained by the simplification in (4.37), and by neglecting

the other type of errors of the above list (b)–(c). Here we have assumed γ

constant, which in reality depends on the parameters of the model, for ex-

ample, on the volatility σ. But testing the above rule of thumb (4.37)/(4.38)

on European options shows that it works reasonably well. Here we compare

the finite-difference results to the analytic solution formula (A4.10), the nu-

merical errors of which are comparatively negligible. The procedure works

similar well for American options, although then the function V (S, t) is not

197

Chapter 4 Standard Methods for Standard Options

C2-smooth at Sf(t). (The effect of the lack in smoothness is similar as in

Figure 4.12.) In practical applications of Crank–Nicolson’s method one can

observe quite well that doubling of m and νmax decreases the absolute error

approximately by a factor of four. To obtain a minimum of information on

the error, the core Algorithm 4.13 should be applied at least for two grids

following the lines outlined above. The information on the error can be used

to match the grid size Δ to the desired accuracy.

1.88

1.8802

1.8804

1.8806

1.8808

1.881

1.8812

1.8814

1.8816

1.8818

0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05

Fig. 4.14. Approximations depending on Δ2
, with Δ = (xmax−xmin)/m = 1/νmax;

results of Figure 4.13 and Table 4.1.

Let us illustrate the above considerations with an example, compare Figu-

res 4.13 and 4.14, and Table 4.1. For an American put and xmax = −xmin = 5

we calculate several approximations, and test equation (4.37) in the form

η(Δ) = η∗ + γΔ2. We illustrate the approximations as points in the (Δ2, η)-

plane. The better the assumption (4.37) is satisfied, the closer the calculated

points lie on a straight line. Figure 4.14 indicates that this error-control model

can be expected to work well.

In order to check the error quality of a computer program on standard

American options, one may check the put-call symmetry relation (A5.3). For

example, for the parameters of Figure 4.13 / Table 4.1, the corresponding

call with S = K and switched parameters r = 0.2, δ = 0.25 is calculated, and

the results match very well: For the finest discretization in Table 4.1, about

8 digits match with the value of the corresponding call. But this is only a

198

4.8 Analytic Methods

necessary criterion for accuracy; the number of matching digits of (A5.3) does

not relate to the number of correct digits of V (S, 0).

4.7.2 Extrapolation

The obviously reasonable error model sketched above suggests applying (4.37)

to obtain an improved approximation η at practically zero cost. Such a pro-

cedure is called extrapolation (−→ Exercise 1.15). In a graphical illustration

η over Δ
2 as in Figure 4.14, extrapolation amounts to construct a straight

line through two of the calculated points. The value of the straight line for

Δ2 = 0 gives the extrapolated value from

η
∗ ≈

4η2 − η1

3
. (4.39)

In our example, this procedure allows to estimate the correct value to be

close to 1.8817. Combining, for example, two approximations of rather low

quality, namely, m = 50 with m = 100, gives already an extrapolated appro-

ximation of 1.8815. And based on the two best approximations of Table 4.1,

the extrapolated approximation is 1.881690.8

Typically, the extrapolation formula provided by (4.39) is significantly

more accurate than η2. But we have no further information on the accuracy

from the calculated η1, η2. Calculating a third approximation η3 reveals more

information. For example, a higher-order extrapolation can be constructed

(−→ Exercise 4.13). Figure 4.15 reports on the accuracies.

The convergence rate in Theorem 4.4 was derived under the assumptions

of a structured equidistant grid and a C4-smooth solution. Practical experi-

ments with nonuniform grids and nonsmooth data suggest that the conver-

gence rate may still behave reasonably. But the finite-difference discretization

error is not the whole story. The more flexible finite-element approaches in

Chapter 5 will shed light on convergence under more general conditions.

4.8 Analytic Methods

Numerical methods typically are designed such that they achieve conver-

gence. So, in principle, every accuracy can be reached, only limited by the

available computer time and by hardware restrictions. In several cases this

high potential of numerical methods is not needed. Rather, some analytic

formula may be sufficient that delivers medium accuracy at low cost. Such

“analytic methods” have been developed. Often their accuracy is reasonable

as compared to the underlying modeling error. The limited accuracy goes

8 With m = 20000, our best result was 1.8816935

199

Chapter 4 Standard Methods for Standard Options

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

lo
g

of
 a

bs
ol

ut
e

er
ro

r

log(m)

Fig. 4.15. Finite difference methods, log of absolute error in V (K, 0) over log(m),

where m = νmax, and the basis of the logarithm is 10. Solid line: plain algorithm,

results in Table 4.1; dashed line: extrapolation (4.39) based on two approximations;

dotted line: higher-order extrapolation of Exercise 4.13. Note that the axes in Figure

4.15 are completely different from those of Figure 4.14.

along with a nice feature that is characteristic for analytic methods: their

costs are clear, and known in advance.

In reality there is hardly a clear-cut between numerical and analytic me-

thods. On the one hand, numerical methods require analysis for their deriva-

tion. And on the other hand, analytic methods involve numerical algorithms.

These may be elementary evaluations of functions like the logarithm or the

square root as in the Black–Scholes formula, or may consist of a sub-algorithm

like Newton’s iteration for zero finding. (The latter situation might cause

some uncertainty on the costs.) There is hardly a purely analytic method.

The finite-difference approach, which approximates the surface V (S, t),

requires intermediate values for 0 < t < T for the purpose of approxima-

ting V (S, 0). In the financial practice one is basically interested in values for

t = 0, intermediate values are rarely asked for. So the only temporal input

parameter is the time to maturity T − t (or T in case the current time is

set to zero, t = 0). Recall that also in the Black–Scholes formula, time only

enters in the form T − t (−→ Appendix A4). So it makes sense to write the

formula in terms of the time to maturity τ ,

τ := T − t ,

200

4.8 Analytic Methods

which leads to the compact version of the Black–Scholes formulas (A4.10),

d1(S, τ ; K, r, σ) :=
1

σ
√

τ

{
log

S

K
+

(
r +

σ2

2

)
τ

}
d2(S, τ ; K, r, σ) :=

1

σ
√

τ

{
log

S

K
+

(
r −

σ2

2

)
τ

}
= d1 − σ

√
τ

V
Eur

P
(S, τ ; K, r, σ) = −SF (−d1) + Ke−rτ

F (−d2)

V
Eur

C
(S, τ ; K, r, σ) = SF (d1)−Ke−rτ

F (d2)

(4.40)

(dividend-free case). F denotes the cumulated standard normal distribution

function. For dividend-free vanilla options we only need an approximation

formula for the American put V Am

P
; the other cases are covered by the Black–

Scholes formula.

This Section introduces into four analytic methods. The first two (Sub-

sections 4.8.1, 4.8.2) are described in detail such that the implementation

of the algorithms is an easy matter. Of the method of lines (in Subsection

4.8.3) only basic ideas are set forth. More detail is presented on the integral

representation (Subsection 4.8.4). We assume r > 0.

4.8.1 Approximation Based on Interpolation

If a lower bound V low and an upper bound V up on the American put are

available,

V
low ≤ V

Am

P
≤ V

up
,

then the idea is to construct an α aiming at

V
Am

P
= αV

up + (1− α)V low
.

This is the approach of [Joh83]. The parameter α, 0 ≤ α ≤ 1, defines an

interpolation between V low and V up. Since V Am

P
depends on the market data

S, τ, K, r, σ, the single parameter α and the above interpolation can not be

expected to provide an exact value of V Am

P
. (An exact value would mean that

an exact formula for V Am

P
would exist.) Rather a formula for α is developed

as a function of S, τ, K, r, σ such that the interpolation formula αV up + (1−
α)V low provides a good approximation for a wide range of market data. The

smaller the gap between V low and V up , the better is the approximation.

An immediate candidate for the lower bound V
low is the value V

Eur

P
pro-

vided by the Black–Scholes formula,

V
Eur

P
(S, τ ; K) ≤ V

Am

P
(S, τ ; K) .

From (4.18) the left-hand boundary condition of a European put with strike

K̃ is K̃e−rτ . Clearly, for K̃ = Kerτ and S = 0,

V
Am

P
(0, τ ; K) = V

Eur

P
(0, τ ; Kerτ) ,

201

Chapter 4 Standard Methods for Standard Options

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 6 8 10 12 14 16 18 20

Fig. 4.16. Bounds on an American put V (S, t; K) for t = 0 as function of S, with

K = 10, r = 0.06, σ = 0.3, τ = 1. Medium curve: the American put; lower curve:

the European put V Eur
(S, 0; K); upper curve: the European put V Eur

(S, 0; K̃), with

K̃ = Ke
rτ

since both sides equal the payoff value K. From the properties of the Ameri-

can put we conclude that

V
Am

P
(S, τ ; K) ≤ V

Eur

P
(S, τ ; Kerτ)

at least for small S > 0. In fact, this holds for all S, which can be shown with

Jensen’s inequality, see Appendix B1. In summary, the upper bound is

V
up := V

Eur

P
(S, τ ; Kerτ) ,

see Figure 4.16. The resulting approximation formula is

V := αV
Eur

P
(S, τ ; Kerτ) + (1− α)V Eur

P
(S, τ ; K) . (4.41)

The parameter α depends on S, τ, K, r, σ, so does V . Actually, the Black–

Scholes formula (4.40) suggests that α and V only depend on the three di-

mensionless parameters

S/K (“moneyness”) , rτ , and σ
2
τ .

The approximation must be constructed such that the lower bound (K−S)+

of the payoff is obeyed. As we will see, all depends on the free boundary Sf ,

which must be approximated as well.

202

4.8 Analytic Methods

[Joh83] set up a model for α with two free parameters a0, a1, which were

determined by carrying out a regression analysis based on computed values

of V Am

P
. The result is

α :=

(
rτ

a0rτ + a1

)
β

, β :=
ln(S/Sf)

ln(K/Sf)
,

a0 = 3.9649 , a1 = 0.032325 .

(4.42)

The ansatz for α is designed such that for S = K (and hence β = 1) upper

and lower bound behavior and calculated option values can be matched with

reasonable accuracy with only two parameters a0, a1. The S-dependent β is

introduced to improve the approximation for S < K and S > K. Obviously,

S = Sf ⇒ β = 0 ⇒ α = 1, which captures the upper bound. And for the

lower bound, α = 0 is reached for S → ∞, and for rτ = 0. (The reader may

discuss (4.42) to check the assertions.)

The model for α of equation (4.42) involves the unknown free-boundary

curve Sf . To approximate Sf , observe the extreme cases

Sf = K for τ = 0

Sf = K
2r

σ2 + 2r
for T →∞ .

(For the latter case consult Exercise 4.8 and Appendix A5.) This motivates

to set the approximation Sf for Sf as

Sf := K

(
2r

σ2 + 2r

)
γ

, (4.43)

for a suitably modeled exponent γ. To match the extreme cases, γ should

vanish for τ = 0, and γ ≈ 1 for large values of τ . [Joh83] suggests

γ :=
σ2τ

b0σ
2τ + b1

,

b0 = 1.04083 , b1 = 0.00963 .

(4.44)

The constants b0 and b1 were again obtained by a regression analysis.

The analytic expressions of (4.43), (4.44) provide an approximation V of

Sf , and then by (4.42), (4.41) an approximation of V Am

P
for S > Sf , based

on the Black–Scholes formulas (4.40) for V Eur

P
.

Algorithm 4.16 (interpolation)

For given S, τ, K, r, σ evaluate γ, Sf , β based on Sf , and α .

Evaluate the Black–Scholes formula for V
Eur

P

for the arguments in (4.41).

Then V from (4.41) is an approximation to V
Am

P
for S > Sf .

203

Chapter 4 Standard Methods for Standard Options

This purely analytic method is fast and simple. Numerical experiments

show that the approximation quality of Sf is poor. But for S not too close

to Sf the approximation quality of V is quite good. As reported in [Joh83],

the error is small for rτ ≤ 0.125, which is satisfied for average values of the

risk-free rate r and time to maturity τ . For larger values of rτ , when the gap

between lower and upper bound widens, the approximation works less well.

An extension to options on dividend-paying assets is given in [Blo86].

4.8.2 Quadratic Approximation

Next we describe an analytic method due to [MaM86]. Recall that in the

continuation region both V Am

P
and V Eur

P
obey the Black–Scholes equation.

Since this equation is linear, also the difference

p(S, τ) := V
Am

P
(S, τ) − V

Eur

P
(S, τ) (4.45)

satisfies the Black–Scholes equation. The relation V Am ≥ V Eur suggests to

interpret the difference p as early-exercise premium. Since both V Am

P
and

V Eur

P
have the same payoff, the terminal condition for τ = 0 is zero, p(S, 0) =

0. The closeness of p(S, τ) to zero should scale roughly by

H(τ) := 1− e−rτ

. (4.46)

This motivates introducing a scaled version f of p,

p(S, τ) =: H(τ) f(S, H(τ)) (4.47)

For the analysis we repeat the Black–Scholes equation, here for p(S, τ), where

subscripts denote partial differentiation, and q := 2r

σ
2 :

−
q

r
pτ + S

2
pSS + qSpS − qp = 0 (4.48)

Substituting (4.47) and

pS = HfS , pSS = HfSS , pτ = Hτf + HfHHτ

and using
1

r
Hτ = 1−H

yields after a short calculation (the reader may check) the modified version

of the Black–Scholes equation

S
2
fSS + qSfS −

q

H
f
[
1 + H(1−H)

fH

f

]
= 0 . (4.49)

H and q are nonzero for r > 0. Note that (4.49) is the “full” equation, nothing

is simplified yet. No partial derivative with respect to t shows up, but instead

the partial derivative fH .

204

4.8 Analytic Methods

At this point, following [MaM86], we introduce a simplifying approxima-

tion. The factor H(H − 1) for the H varying in the range 0 ≤ H < 1 is a

quadratic term with maximum value of 1/4, and close to zero for τ ≈ 0 and

for large values of τ , compare (4.46). This suggests that the term

H(1−H)
fH

f
(4.50)

may be small compared to 1, and to neglect it in (4.49). (This motivates the

name “quadratic approximation.”) The resulting equation

S
2
fSS + qSfS −

q

H
f = 0 (4.51)

is an ordinary differential equation with analytical solution, parameterized

by H . An analysis similar as in Exercise 4.8 leads to the solution

f(S) = αS
λ

, where λ := −
1

2

{
(q − 1) +

√
(q − 1)2 +

4q

H

}
, (4.52)

for a parameter α. Combining (4.45), (4.47) and (4.52) we deduce for S > Sf

the approximation V

V
Am

P
(S, τ) ≈ V (S, τ) := V

Eur

P
(S, τ) + αH(τ)Sλ (4.53)

The parameter α must be such that V reaches the payoff at Sf ,

V
Eur

P
(Sf , τ) + αHS

λ

f
= K − Sf . (4.54)

Here Sf is parameterized by H via (4.46), and therefore depends on τ . To fix

the two unknowns Sf and α let us warm up the high-contact condition. This

requires the partial derivative of V with respect to S. The main part is

∂V Eur

P
(S, τ)

∂S
= F (d1)− 1

where F is the cumulated normal distribution function, and d1 (and below

d2) are the expressions defined by (4.40). d1 and d2 depend on all relevant

market parameters; we emphasize the dependence on S by writing d1(S).

This gives the high-contact condition

∂V (Sf , τ)

∂S
= F (d1(Sf))− 1 + αλHS

λ−1

f
= −1 ,

and immediately α in terms of Sf :

α = −
F (d1(Sf))

λHS
λ−1

f

. (4.55)

Substituting into (4.54) yields one equation for the remaining unknown Sf ,

205

Chapter 4 Standard Methods for Standard Options

V
Eur

P
(Sf , τ)− F (d1(Sf))

1

λ
Sf = K − Sf ,

which in view of the put-call parity (A4.11a) and F (−d) = 1− F (d) reads

SfF (d1)−Ke−rτ

F (d2)− Sf + Ke−rτ − F (d1)
Sf

λ
−K + Sf = 0 .

This can be summarized to

Sf F (d1(Sf))
[
1−

1

λ

]
+ Ke−rτ

[
1− F (d2(Sf))

]
−K = 0 . (4.56)

Since d1 and d2 vary with Sf , (4.56) is an implicit equation for Sf and must

be solved iteratively. In this way a sequence of approximations S1, S2, ... to

Sf is constructed. We summarize

Algorithm 4.17 (quadratic approximation)

For given S, τ, K, r, σ evaluate q =
2r

σ2
, H = 1− e−rτ

and λ from (4.52).

Solve (4.56) iteratively for Sf .

(This involves a sub-algorithm, from which F (d1(Sf))

should be saved.)

Evaluate V
Eur

P
(S, τ) using the Black–Scholes formula (4.40).

V := V
Eur

P
(S, τ) −

1

λ
SfF (d1(Sf))

(
S

Sf

)
λ

(4.57)

is the approximation for S > Sf ,

and V = K − S for S ≤ Sf .

Note that λ < 0, and λ depends on τ via H(τ). The time-consuming part of

the quadratic-approximation method consists of the numerical root finding

procedure. But here a moderate accuracy suffices, since a very small error in

Sf does not affect the error in V̄ . (−→ Exercise 4.14, Exercise 4.15)

4.8.3 Analytic Method of Lines

In solving PDEs numerically, the method of lines is a well-known approach.

It is based on a semidiscretization, where the domain (here the (S, τ) half

strip) is replaced by a set of lines parallel to the S-axis, each defined by a

constant value of τ . To this end, the interval 0 ≤ τ ≤ T is discretized into

νmax sub-intervals by τν := νΔτ , Δτ := T/νmax, ν = 1, . . . , νmax − 1. To

206

4.8 Analytic Methods

6
8

10
12

14
16

18
S 0

0.2

0.4

0.6

0.8

1

t

0

1

2

3

4

5

Fig. 4.17. Method of lines, situation as in Figure 1.5. The early-exercise curve is

indicated.

deserve the attribute “analytic,” we assume νmax to be small, say, work with

three lines. We write the Black–Scholes equation as in Section 4.5.3,

−
∂V (S, τ)

∂τ
+ LBS(V (S, τ)) = 0 , (4.58)

where the negative sign compensates for the transition from t to τ , and replace

the partial derivative ∂V/∂τ by the difference quotient

V (S, τ) − V (S, τ −Δτ)

Δτ
.

This gives a semidiscretized version of (4.58), namely, the ordinary differential

equation

w(S, τ −Δτ) − w(S, τ) + Δτ LBS(w(S, τ)) = 0 ,

which holds for S > Sf . Here we use the notation w rather than V to indicate

that a discretization error is involved. This semidiscretized version is applied

for each of the parallel lines, τ = τν , ν = 1, . . . , νmax − 1. Figure 4.17 may

motivate the procedure. For each line τ = τν , the function w(S, τν−1) is

known from the previous line, starting from the known payoff for τ = 0. The

equation to be solved for each line τν is

1

2
Δτ σ

2
S

2
∂2w

∂S2
+ Δτ rS

∂w

∂S
− (1 + Δτ r)w = −w(·, τν−1) (4.59)

This is a second-order ordinary differential equation for w(S, τν), with boun-

dary conditions for Sf(τν) and S →∞. The solution is obtained analytically,

207

Chapter 4 Standard Methods for Standard Options

S ()S ()
τ

τ

S

ν ν−1 ν−2

ν−2

ν−1

ν
f f f

f

τ

A C S

τ

τS ()

B

τ

Fig. 4.18. Method of lines, situation along line τν : A: solution is given by payoff;

B: inhomogeneous term of differential equation given by payoff; C: inhomogeneous

term given by −w(., τν−1)

similar as in Exercise 4.8. Hence there is no discretization error in S-direction.

The right-hand function−w(S, τν−1) is known, and is an inhomogeneous term

of the ODE.

The resulting analytic method of lines is carried out in [CaF95]. The above

describes the basic idea. A complication arises from the early-exercise curve,

which separates each of the parallel lines into two parts. Since for the previous

line τν−1 the separation point lies more “on the right” (recall that for a put the

curve Sf(τ) is monotonically decreasing for growing τ), the inhomogeneous

term w(·, τν−1) consists of two parts as well, but separated differently (see

Figure 4.18). Accordingly, neglecting for the moment the input of previous

lines τν−2, τν−3, . . ., the analytic solution of (4.59) for the line τν consists of

three parts, defined on the three intervals

A: 0 < S < Sf(τν) ,

B: Sf(τν) ≤ S < Sf(τν−1) ,

C: Sf(τν−1) ≤ S .

On the left-hand interval A, w equals the payoff; nothing needs to be cal-

culated. For the middle interval B the inhomogeneous term −w(., τν−1) is

given by the payoff. Since the analytic solution involves two integration con-

stants, and since the inhomogeneous terms differ on the intervals B and C,

we encounter together with the unknown Sf(τν) five unknown parameters.

One of the integration constants is zero because of the boundary condition

for S →∞, similar as in Exercise 4.8. The unknown separation point Sf(τν)

is again fixed by the high-contact conditions (4.24P). Two remaining condi-

tions are given by the requirement that both w and dw

dS
are continuous at the

matching point Sf(τν−1). This fixes all variables for the line τν .

Over all lines, νmax type-B intervals are involved, and the only remaining

type-C interval is that for S ≥ Sf(τ0) = K. The resulting formulas are

somewhat complex, for details see [CaF95]. The method is used along with

extrapolation. To this end, carry out the method three times, with νmax =

208

4.8 Analytic Methods

1, 2, 3, and denote the results V 1, V 2, V 3. Then the three-point extrapolation

formula

V :=
1

2
(9V 3 − 8V 2 + V 1) (4.60)

gives rather accurate results.

The method of lines can be carried out numerically [Mey02]. For lines

parallel to the t-axis, see Exercise 4.10 and Figure 4.21.

4.8.4 Integral Representations

Recall for European put options the integral representation (1.50)

V
Eur

P
(S, τ) = e−rτ

∫ ∞

0

(K − ST)+ fGBM(ST , T ; S, r − δ, σ) dST ,

where τ := T − t denotes the remaining time to expiration, and fGBM is the

density function from (1.48). Solving this integral one arrives at the Black–

Scholes formula. We repeat from (4.40) the two functions (here with constant

dividend yield rate δ ≥ 0),

d1(S, τ ; K) :=
log S

K
+
(
r − δ + σ

2

2

)
τ

σ
√

τ
, d2(S, τ ; K) := d1 − σ

√
τ , (4.61)

for τ > 0. With d1, d2 evaluated at S, τ, K, recall

V
Eur

P
(S, τ) = −Se−δτ

F (−d1) + Ke−rτ

F (−d2) ,

where F denotes the standard normal cumulative distribution. (See also Ap-

pendix A4.) Further recall from (4.45) the early-exercise premium p, with

V
Am

P
(S, τ) = V

Eur

P
(S, τ) + p(S, τ) .

As suggested by [Kim90] and others, the premium function p can be re-

presented as an integral over functions depending on the free boundary Sf .

The result is

V
Am

P
(S, τ) = V

Eur

P
(S, τ) +

∫
τ

0

[rKe−rξ

F (−d2(S, ξ; Sf(τ − ξ)))

− δSe−δξ

F (−d1(S, ξ; Sf(τ − ξ)))] dξ .

(4.62)

Note that the integral is identical to∫
τ

0

[rKe−r(τ−ξ)
F (−d2(S, τ − ξ; Sf(ξ)))

− δSe−δ(τ−ξ)
F (−d1(S, τ − ξ; Sf(ξ)))] dξ .

(4.63)

209

Chapter 4 Standard Methods for Standard Options

Integral Equation for Sf

Substitute V (Sf(τ), τ) = K − Sf(τ) into (4.62) and obtain

K − Sf(τ) =− Sf(τ) e−δτ

F (−d1(Sf(τ), τ ; K))

+ Ke−rτ

F (−d2(Sf(τ), τ ; K))

+

∫
τ

0

[rKe−rξ

F (−d2(Sf(τ), ξ; Sf (τ − ξ)))

− δSf(τ) e−δξ

F (−d1(Sf(τ), ξ; Sf(τ − ξ)))] dξ

(4.64)

This constitutes an integral equation for the free-boundary function Sf(τ) of

an American put.

Numerical Solution of the Integral Equation

We denote the integrand in (4.64) by g(Sf(τ), Sf(τ−ξ), ξ). (−→ Exercise 4.16)

Let the τ -interval be subdivided by discrete τν into M subintervals, with

τ0 = 0, τM = τ , and with equidistant steps Δτ = τ/M , and tν = νΔτ . The

numerical treatment resembles that for ODE initial-value problems. Basically

the integral is approximated by a composite trapezoidal sum (C1.2). Note

from Appendix A.5 that Sf(τ) for τ → 0+ is known,

Sf0 := lim
τ→0+

Sf(τ) = min{K,
r

δ
K} .

We use the notation Sfν := Sf(τν). Specifically for τ1, the integral and (4.64)

can be approximated by the trapezoidal rule

K − Sf1 = V
Eur

P
(Sf1, τ1) +

Δτ

2
[g(Sf1, Sf1, τ0) + g(Sf1, Sf0, τ1)] , (4.65)

which is solved iteratively for its only unknown Sf1 by any root-finding pro-

cedure. After Sf1 is calculated to sufficient accuracy, the next equation is

K − Sf2 = V
Eur

P
(Sf2, τ2)

+
Δτ

2
[g(Sf2, Sf2, τ0) + 2g(Sf2, Sf1, τ1) + g(Sf2, Sf0, τ2)] ,

which is solved for Sf2. In this way, the composite trapezoidal sum builds up

until we reach the final iteration for Sfn. So, recursively for k = 2, . . . , M

solve

K − Sfk = V
Eur

P
(Sfk, τk)

+
Δτ

2

[
g(Sfk, Sfk, τ0) + 2

k−1∑
ν=1

g(Sfk, Sf(k−ν), τν) + g(Sfk, Sf0, τk)

]
(4.66)

for Sfk. This recursion is run for τ = T to obtain values for t = 0.

The iterative solution of the above nonlinear equations (as (4.65), (4.66))

can be done, for example, by the secant method (C1.5). The error control of

210

4.8 Analytic Methods

the integral equation method represented by (4.66) involves the discretization

error of the trapezoidal sum as well as the error remaining when the secant

iteration is stopped. Recall that the secant method requires two reasonable

initial guesses. Alternatively, we recommend the highly robust bisection me-

thod. There is ample opportunity to test various strategies. (−→ Exercise

4.17)

Evaluation of the Premium

Now, the free boundary Sf is approximated by the chain of points

(τ0, Sf0), (τ1, Sf1), . . . , (τM , SfM) .

Based on this approximation, the evaluation of (4.62) is a simple task. Apply

the analogous trapezoidal sum with the same discretization to approximate

V (S, τ) for τ = τM :

V (S, τ) ≈ V
Eur

P
(S, τ)+

+
Δτ

2
[g(S, SfM , 0) + 2

M−1∑
ν=1

g(S, Sf(M−ν), τν) + g(S, Sf0, τ)] .
(4.67)

The evaluation of (4.67) does not need any further iteration and is much

cheaper than the preceding recursion (4.66).

Calculation of the Greeks

The same holds true for evaluating greeks. After calculating the partial de-

rivatives of (4.62), one obtains corresponding formulas for the greeks. For

example, delta is given by the formula

Δ
Am

P
= −e−δτ

F (−d1)−

∫
τ

0

g
Δ

P
dξ

for a function gΔ

P
defined below. The calculation works as simply as in (4.67);

the free boundary Sf is not calculated again. And similarly, other Greeks are

obtained, both for put and call. The resulting formulas are given in [HuSY96].

With the version of (4.63), and d1 evaluated at the arguments (S, τ−ξ, Sf(ξ)),

g
Δ

P
= δe−δ(τ−ξ)

F (−d1(S, τ − ξ, Sf(ξ))) +
e−d

2
1/2

√
2π

e−δ(τ−ξ)
rK − δSf(ξ)

σSf(ξ)
√

τ − ξ

For these arguments and ξ → τ , |d1| is getting infinite, and

g
Δ

P
=

{
0 for S > Sf

δ for S < Sf

211

Chapter 4 Standard Methods for Standard Options

4.8.5 Other Methods

The early-exercise curve Sf(τ) can be approximated by pieces of exponential

functions

B exp(bτ) for τ1 ≤ τ ≤ τ2 ,

for parameters B, b and suitable intervals for τ . Substituting this expression

for Sf(τ) into d1 and d2 in (4.62) leads to the observation that the inte-

grals can be evaluated analytically in terms of the distribution function F .

The parameters B, b are determined such that the high-contact boundary-

condition condition is satisfied. Depending on the number of pieces of ex-

ponential functions, a good approximation of (4.62) is obtained. This is the

method of [Ju98]. The accuracy of the highly efficient three-piece approxima-

tion corresponds to that of the integral-equation method with about M = 100

subintervals.

[BrD96] established LUBA, an analytic method for American calls. The

derivation is beyond the scope of this textbook, but is worth at least a brief

sketch because of its striking computational power. The method starts from a

capped call, which is basically a vanilla European call, with the exception that

for t < T the option is exercised at the first time t such that St reaches the

cap. The price of the capped call can be replicated with two barrier options.

Their analytical formulas constitute a lower bound LB on the option. This

in turn, via the integral representation (4.62) lends to an upper bound UB.

Then LB and UB are interpolated with a regression ansatz comparable to

the interpolation of Section 4.8.1. The resulting specific approximation of

[BrD96] is called LUBA, which stands for lower upper bound approximation.

4.9 Criteria for Comparisons

In this chapter, we have learned about the basic structure of finite-difference

methods, and we have studied several analytic approaches. How do these

methods compare? As we shall see, this question is difficult to answer. There

are several criteria to judge the performance of a computational method.

The criteria include reliability, range of applicability, amount of information

provided by the method, and speed, and error. Speed and error are relatively

easy to compare, and we shall concentrate on these two criteria.

For the computational arena, we need to define a set of test examples,

based on which we have to calculate a benchmark in high accuracy. Results

of any chosen method will be compared to the benchmark. To measure the

deviation, a suitable error must be defined. This Section 4.9 roughly sketches

the steps of a comparison.

212

4.9 Criteria for Comparisons

Set of Test Examples

We concentrate on the valuation of plain-vanilla options. This restriction to

vanillas has the advantage that all kind of numerical methods are applicable

and can be compared. And we confine ourselves to the valuation of American

put options. The parameters K, S, T, σ, r, δ are chosen

K = 100

S ∈ {90, 100, 110, 150}
T ∈ {0.5, 1, 2}
σ ∈ {0.1, 0.3, 0.5}
r ∈ {0.05, 0.1} for δ = 0; r ∈ {0.15, 0.2} for δ = 0.1

Altogether these are 72 combinations with dividend rate δ = 0 and as many

for δ = 0.1. But for σ = 0.1, in 12 of these cases, either

V (S, 0) ≈ 0 or V (S, 0) = payoff

occurs. In these cases, a relative error is meaningless, or nothing is to be

calculated. Hence we remove theses 12 cases (σ = 0.1, S = 90, S = 150). The

remaining 60 parameter combinations were organized into two files.9

For each set of parameters we calculated V (S, 0) with rather high accu-

racy (7–8 decimal digits). To this end, we applied as reference method an

extrapolation based on finite-difference approximations, as suggested in Sec-

tion 4.7.2. The obtained values complete the benchmark files. Any method

can be compared to the benchmark as long as its relative error is not smaller

than 10−6.

Measure of the Error

To measure performances, we calculate the root mean square relative error

RMS :=

√√√√ 1

60

60∑
i=1

(
V i − Vi

Vi

)2

. (4.68)

Here Vi denotes the “accurate” benchmark value of the ith parameter com-

bination, and V i denotes the value calculated with the method whose per-

formance is to be measured.

Arena of Competing Methods

We have chosen the following prototypical methods:

B-M : binomial method with M time steps, Algorithm 1.4,

M = 12, 25, 50, . . . , 1600;

FD-BS-M : finite differences Brennan-Schwartz, Algorithm 4.14,

with M := m = νmax, M = 200, 400, . . . , 6400;

9 The files BENCHMARK00 for δ = 0 and BENCHMARK01 for δ = 0.1 can be

found on www.compfin.de.

213

Chapter 4 Standard Methods for Standard Options

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

co
m

pu
ta

tio
n

tim
e

RMS relative error

I-50

I-1600

Q

J

FD-BS-400B-800

B-100

FD-BS-ex

Fig. 4.19. Computing times and RMS errors of several methods, see the text.

Points mark calculated RMS errors; corresponding points are connected by lines.

J: Johnson’s interpolation, Algorithm 4.16;

Q: quadratic approximation, Algorithm 4.17;

I-M : integral-equation method with M subintervals, Section 4.8.4,

M = 50, 100, . . . , 3200;

FD-BS-ex: version of FD-BS with two solutions with M and M/2

and extrapolation.

Keep in mind that the above methods provide different amount of informa-

tion; in some sense we compare apples with oranges. The integer M represents

a fineness of discretization, which is consecutively doubled for clarity of ex-

position. Computing times in Figure 4.19 report the time in seconds needed

to valuate all of the 60 options for δ = 0; overhead is subtracted.10 The log

scaling in Figure 4.19 is most practical (−→ Exercise 4.18). For the versions

10 The above methods were implemented in FORTRAN (F90 compiler) and

run on a DS20 processor.

214

4.9 Criteria for Comparisons

with shortest computing time (J), the time is hardly measurable, which is

indicated by a bar of likely computing times.

Preliminary Results

In the sense of Pareto optimization, smaller values in Figure 4.19 are prefer-

red to larger ones. Entries in the lower left part of the figure refer to methods

with higher efficiency. The Pareto frontier in this figure is largely dominated

by the binomial method (B). This holds at least for medium demands for

accuracy. Both the analytic methods (J) and (Q) do not need the evaluation

of the the Black–Scholes formula and hence
√

, log, exp in full accuracy. So

their evaluation can be accelerated. Hence, for low accuracy, Johnson’s inter-

polation method (J) and the quadratic approximation (Q) are competitive.

This is not clear from the figure, where unnecessary accuracy of the underly-

ing Black–Scholes formula falsely suggests that the quadratic approximation

(Q) is dominated by the binomial method. For high demands for accuracy,

the finite-difference method is competitive. The basic version of the binomial

method dominates the basic version of the integral-equation method (I). The

aspect of convergence applies to FD, B, I, but not to the fixed accuracy of

Q, J. This may be seen as distinction between a numerical method and an

analytic method.

Outlook

The above observations should not be considered as definite recommendati-

ons. It is important to realize that the conclusions refer to speed and RMS

error only. Several aspects are neglected and lacking. For example, the finite-

difference method calculates the surface V (S, t), and provides more infor-

mation than the binomial method. Or, the integral-equation method allows

to calculate the Greeks more effectively, and approximates the early-exercise

curve very well (B does not). The above has selected one representative me-

thod of important classes of methods. These basic versions are implemented

and compared. There are more efficient methods not shown in Figure 4.19.

For example, LUBA has shown to dominate the methods with comparable

accuracy. Neither the highly efficient front-fixing methods are shown, nor the

improvement [Hei09] of the integral method, nor the fast approximation by

exponential pieces. Improvements differ in the degree of speedup. Further,

storage requirements are not taken into account. Implementation details do

matter! And applied to a specific type of exotic option, the prototype me-

thods chosen for Figure 4.19 may behave and compare differently. Monte

Carlo methods are not included at all, because their merits are beyond va-

nilla options. So the conclusions of this section aim at basic principles. They

are tentative, and not comprehensive. We do not answer the question, what

might be the “best” method for a particular application. For early compa-

risons, see [BrD96], [AiC97], [BrD97], [KaK03]. More recent developments

have not been compared.

215

Chapter 4 Standard Methods for Standard Options

Notes and Comments

on Section 4.1:

General references on numerical PDEs include [Smi78], [Vic81], [CiL90],

[Tho95], [Mor96]. A special solution of (4.2) is

y(x, τ) =
1

2
√

πτ
exp

(
−

x
2

4τ

)
.

For small values of τ , the transformation (4.3) may take bad values in the

argument of the exponential function because qδ can be too large. The result

will be an overflow. In such a situation, the transformation

τ := 1

2
σ2(T − t)

x := log
(

S

K

)
+
(
r − δ − σ

2

2

)
(T − t)

y(x, τ) := e−rtV (S, t)

can be used as alternative [BaP96]. Again (4.2) results, but initial conditions

and boundary conditions must be adapted appropriately (see also Appendix

A6). The equations also hold for options on foreign currencies. Then δ repres-

ents the foreign interest rate. As will be seen in Section 6.4, the quantities

q and qδ are basically the Péclet number. It turns out that large values of

the Péclet number are a general source of difficulties. For other transformati-

ons see [ZhWC04]. Well-posed means the existence of a unique solution that

depends continuously on the data.

For the valuation of American options in case of discrete dividend pay-

ments there is a big difference between call and put. A call is exercised imme-

diately prior to the dividend date, provided some analytically known criteria

are satisfied [Kwok98]. In contrast, a put must be calculated numerically. By

arbitrage reasons, the stock price jumps at the ex-dividend date tD,

S
t
+

D

= S
t
−

D

−D ,

where D is the amount paid at tD. The price Vt of the put does not jump along

the path St because the option’s holder has no benefit from the payment. This

continuity of V (St, t) can be written

V (S, t
−

D
) = V (S −D, t

+

D
) ,

which amounts to a jump in the value function V (S, t) at tD. For a numerical

implementation, place a node tν at tD, interrupt the integration of the PDE

at tD, and apply interpolation to evaluate V at Si − D in case this is not

a node. Then the PDE is applied again. For a method-of-lines approach see

[Mey02]. Exercise 4.1b provides some insight into the early-exercise structure.

For tD < t < T the early-exercise curve is that of a non-dividend paying stock

[Omb87], [BaW88].

216

Notes and Comments

on Section 4.2:

We follow the notation wi,ν for the approximation at the node (xi, τν), to

stress the surface character of the solution y over a two-dimensional domain.

In the literature a frequent notation is wν

i
, which emphasizes the different

character of the space variable (here x) and the time variable (here τ). Our

vectors w(ν) with components w
(ν)

i
come close to this convention.

Finite differences work also for nonuniform meshes. Then formally the

truncation errors are of first order only. But under mild assumptions on a

slowly varying mesh, second-order accuracy can be obtained [MaW86].

Summarizing the Black–Scholes equation to

∂V

∂t
+ LBS(V) = 0 (4.69)

where LBS represents the other terms of the equation, see Section 4.5.3, mo-

tivates an interpretation of the finite-difference schemes in the light of nume-

rical ODEs. There the forward approach is known as explicit Euler method

and the backward approach as implicit Euler method. The explicit scheme

corresponds to the trinomial-tree method mentioned in Section 1.4 [Hull00].

on Section 4.3:

Crank and Nicolson suggested their approach in 1947 [CrN47]. Theorem 4.4

discusses three main principles of numerical analysis, namely, order of conver-

gence, stability, and efficiency. A Crank–Nicolson variant has been developed

that is consistent with the volatility smile, which reflects the dependence of

the volatility on the strike [AnB97].

In view of the representation (4.12) the Crank–Nicolson approach corre-

sponds to the ODE trapezoidal rule. Following these lines suggests to apply

other ODE approaches, some of which lead to methods that relate more than

two time levels. In particular, backward difference formula (BDF) are of in-

terest, which evaluate L at only one time level. The relevant second-order

discretization is listed in the end of Section 4.2.1. Using this formula (BDF2)

for the time discretization, a three-term recursion involving w(ν+1), w(ν),

w
(ν−1) replaces the two-term recursion (4.15b) (−→ Exercise 4.10). But mul-

tistep methods such as BDF may suffer from the lack of smoothness at the

exercise boundary. This effect is mollified when the inequality is tackled by

a penalty term. But even then it is interesting to consider other alternati-

ves with better stability properties than Crank–Nicolson. Crank–Nicolson is

A-stable, several other methods are L-stable, which better damp out high-

frequency oscillation, see [Cash84], [KhVY07], [IkT07]. For numerical ODEs

we refer to [Lam91], [HaNW93]. From the ODE analysis circumstances are

known where the implicit Euler method behaves superior to the trapezoidal

rule. The latter method may show a slowly damped oscillating error. Accor-

dingly, in several PDE situations the fully implicit method of Section 4.2.5

behaves better than Crank–Nicolson [Ran84], [ZvVF00].

217

Chapter 4 Standard Methods for Standard Options

on Section 4.4:

The boundary condition VC(0, t) = 0 in (4.17) can be shown independently

of any underlying model [Mer73]. If European options are evaluated via the

analytic formula (A4.10), the boundary conditions in (4.19) are of no practical

interest. When boundary conditions are not clear, it sometimes helps to set

VSS = 0 (or yxx = 0), which amounts to assume linear behavior. See [TaR00]

for a discussion, and for the effect of boundary conditions on accuracy and

stability. For bounds on the error caused by truncating the infinite x- or S-

interval, see [KaN00]. Boundary conditions for a term structure equation are

discussed in [EkLT09].

on Section 4.5:

For a proof of the Black–Scholes inequality, see [LaL96], p.111. The obstacle

problem in this chapter is described following [WiDH96]. Also the smooth

pasting argument of Exercise 4.9 is based on that work. For other arguments

concerning smooth pasting see [Moe76], and [Kwok98]. There you find a dis-

cussion of Sf(t), and of the behavior of this curve for t→ T . There are several

different possibilities to implement the boundary conditions at xmin, xmax,

see [TaR00], p. 122. The accuracy can be improved with artificial boundary

conditions [HaW03]. For direct methods, see also [DeHR98], [IkT07]. Front-

fixing goes back to Landau 1950, see [Cra84]. For front-fixing applications to

finance, consult, for example, [NiST02], [ZhWC04], [HoY08], and the com-

ments on Section 4.7.

The general definition of a linear complementarity problem is

AB = 0 , A ≥ 0 , B ≥ 0 ,

where A and B are abbreviations of more complex expressions. This can be

also written
min(A, B) = 0 .

A general reference on free boundaries and on linear complementarity is

[ElO82].

Figure 4.20 shows a detail of approximations to an early-exercise curve.

The finite-difference calculated points are connected by straight lines (das-

hed). The figure also shows a local approximation valid close to maturity:

For t < T and t → T , the asymptotic behavior of Sf can be approximated

by, for example,

Sf(t) ∼ K

(
1− σ

√
(t− T) log(T − t)

)
for an American put without dividends [BaBRS95], [MuR97]. For other asym-

ptotic formulas, see [GoO02], [ChC03], [ChC07]. Discrete dividend payments

change the early-exercise curve [Mey02].

For a proof of the high-contact condition or smooth-pasting principle see

[Moe76], p.114. For a discussion of the smoothness of the free boundary Sf

see [MuR97] and the references therein.

218

Notes and Comments

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 8 8.5 9 9.5 10

Fig. 4.20. Approximations of an early-exercise curve of an American put

(T = 1, σ = 0.3, K = 10); dashed: finite-difference approximation, solid: asym-

ptotic behavior for t ≈ T . The validity of the asymptotic curve is much smaller

than shown here.

on Section 4.6:

By choosing the θ in (4.28) one fixes at which position along the time axis

the second-order spatial derivatives are focused. With

θ =
1

2
−

1

12

Δx2

Δτ

a scheme results that is fourth-order accurate in x-direction. The applica-

tion on American options requires careful compensation of the discontinuities

[Mayo00]. One possibility of a variable Δτ -time stepping is to set the nodes

τν := τmax

ν2

ν2
max

,

suggested by [HoY08].

Based on the experience of this author, an optimal choice of the relaxation

parameter ωR in Algorithm 4.13 can not be given. The simple strategy ωR = 1

appears recommendable. The method of Brennan and Schwartz has been

analyzed in [JaLL90].

219

Chapter 4 Standard Methods for Standard Options

on Section 4.7:

Since the accuracy of the results is not easily guaranteed, it does seem ad-

visable to hesitate before exposing wealth to a chance of loss or damage.

After having implemented a finite-difference algorithm it is a must to com-

pare the results with the numbers obtained by means of other algorithms.

The lacking smoothness of solutions near (S, t) ≈ (K, T) due to the nons-

mooth payoff can be largely improved by solving for the difference function

V Am

P
(S, τ)−V Eur

P
(S, τ), see also Section 4.8.2. The lacking smoothness along

the early-exercise curve can be diminished by using a front-fixing approach,

which can be applied to the above difference. But one mast pay a price.

Note that the nonlinearity has entered the front-fixing equation (4.72) (−→
Exercise 4.11). The success of the front-fixing approach depends on whe-

ther the corresponding root-finding iteration finds a solution. Further, in

our experience the lack of smoothness is only hidden and might lead to in-

stabilities, such as oscillations in the early-exercise curve. A transformation

such as log(S/Sf) does not lead to constant coefficients because one of the

factors depends on the early-exercise curve. The alternative front-fixing ap-

proach of [HoY08] first applies the transformation S = Kex, τ = T − t.

Then the infinite (x, τ)-strip is truncated to a finite domain by the function

a(τ) := xf(τ)−L for large enough |L| (L > 0 for a put, L < 0 for a call), where

xf(τ) := log(Sf(T − τ)/K) denotes the transformed early-exercise curve. The

final boundary-value problem localized on a rectangle is obtained by trans-

forming the independent variable x to z := x− a(τ) (for a put). Front-fixing

approaches have shown to be highly efficient.

The question how accurate different methods are has become a major

concern in recent research; see for instance [CoLV02]. Clearly one compares

a finite-difference European option with the analytic formula (A4.10). The

latter is to be preferred, except the surface is the ultimate object. The cor-

rectness of codes can be checked by testing the validity of symmetry relations

(A5.3).

Greeks such as delta= ∂V

∂S
can be calculated accurately by solving specific

PDEs that are derived from the Black–Scholes equation by differentiating.

But delta can be approximated easily based on the a calculated approxima-

tion of V . To this end, calculate an interpolating Lagrange polynomial L(S)

on the line t = 0 based on three to five neighboring nodes (Appendix C1),

and take the derivative L′(S).

We have introduced finite differences mainly in view of calculating stan-

dard American options. For exotic options PDEs occur, the solutions of which

depend on three or more independent variables [WiDH96], [Bar97], [TaR00];

see also Chapter 6.

on Section 4.8:

There are many analytic methods. Classical approaches include [GeJ84],

[BuJ92]. The quadratic approximation method has been extended to the more

general situation of commodity options, where the cost of carry is involved

220

Exercises

[BaW87], and a more ambitious initial guess is constructed. Integral repre-

sentations are based on an inhomogeneous differential equation as that in

Section 4.5.3. Kim’s integral representation (4.62) can be derived via Mel-

lin’s transformation [PaS04], or via Duhamel’s principle [Kwok98], see also

[Jam92]. A condition number is derived by [Hei07]. For implementations and

improvements, see [KaK03], [Hei09]. The exponential function has been used

for approximating the early-exercise curve already in [Omb87]. There are

other approaches with integral equations. From the Black–Scholes equation

and the high-contact condition we recommend to derive

∂VP(Sf(t), t)

∂t
= 0 .

This equation enables an effective construction of the the early-exercise curve

[ChC03], [ChC07].

A calculator that applies the analytic methods of this chapter can be found

on the website www.compfin.de. This calculator may be used for tests, for

example, using the data of Figures 4.11 (Example 1.6), and of Figure 4.13

(Table 4.1).

on other methods:

Here we give a few hints on methods neither belonging to this chapter on

finite differences, nor to Chapters 5 or 6. General hints can be found in

[RoT97], in particular with the references of [BrD97]. Closely related to linear

complementarity problems are minimization methods. An efficient realization

by means of methods of linear optimization is suggested in [DeH99]. The

uniform grid can only be the first step toward more flexible approaches, such

as the finite elements to be introduced in Chapter 5. For grid stretching

and coordinate transformations see [Int07], [LeO08]. For spectral methods

consult [ZhWC04]. For penalty methods we refer to [FoV02], [NiST02], and

to Section 6.7. Another possibility to enhance the power of finite differences

is the multigrid approach; for general expositions see [Hac85], [TrOS01]; for

application to finance see [ClP99], [Oos03]. An irregular grid based on Sobol

points is suggested in [BeS08].

Exercises

Exercise 4.1 Discrete Dividend Payment

Assume that a stock pays a dividend D at ex-dividend date tD, with 0 <

tD < T .

a) Assume that a known dividend is paid once per year. Calculate a corre-

sponding continuous dividend rate δ under the assumptions

Ṡ = (μ− δ)S , μ = 0, S(1) = S(0)−D > 0 .

221

Chapter 4 Standard Methods for Standard Options

Generalize the result to general growth rates μ and arbitrary tD. (To

apply for options, note that this assumes T = 1.)

b) Define for an American put with strike K

t̃ := tD −
1

r
log

(
D

K
+ 1

)
.

Assume S = 0, r > 0, D > 0, and a time instant t in t̃ < t < tD. Argue

that instead of exercising early it is reasonable to wait for the dividend.

Note: For t̃ > 0, depending on S, early exercise may be reasonable for

0 ≤ t < t̃.

Exercise 4.2 Stability of the Fully Implicit Method

The backward-difference method is defined via the solution of the equation

(4.11). Prove the stability.

Hint: Use the results of Section 4.2.4 and w(ν) = A−1w(ν−1).

Exercise 4.3 Crank–Nicolson Order

Let the function y(x, τ) solve the equation

yτ = yxx

and be sufficiently smooth. With the difference quotient

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

the local discretization error ε of the Crank–Nicolson method is defined

ε :=
yi,ν+1 − yi,ν

Δτ
−

1

2
(δxxyi,ν + δxxyi,ν+1) .

Show

ε = O(Δτ
2) + O(Δx

2) .

Exercise 4.4 Boundary Conditions of a European Call

Show that under the transformation (4.3)

Se−δ(T−t) −Ke−r(T−t) =

exp
{

x

2
(qδ + 1) +

τ

4
(qδ + 1)2

}
− exp

{
x

2
(qδ − 1) +

τ

4
(qδ − 1)2

}
holds, and prove (4.19).

Hints: Either transform the Black–Scholes equation (4.1) with

S := S̄ exp(δ(T − t))

into a dividend-free version to obtain the dividend version (A4.11a) of (4.18),

or apply the dividend version of the put-call parity.

222

Exercises

Exercise 4.5 Boundary Conditions of American Options

Show that the boundary conditions of American options satisfy

lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ) ,

where g is defined in Problem 4.7.

Exercise 4.6 Gauß–Seidel as Special Case of SOR

Let the n×n matrix A = ((aij)) additively be partitioned into A = D−L−U ,

with D diagonal matrix, L strict lower triangular matrix, U strict upper

triangular matrix, x ∈ IRn, b ∈ IRn. The Gauß–Seidel method is defined by

(D − L)x(k) = Ux
(k−1) + b

for k = 1, 2, Show that with

r
(k)

i
:= bi −

i−1∑
j=1

aijx
(k)

j
−

n∑
j=i

aijx
(k−1)

j

and for ωR = 1 the relation

x
(k)

i
= x

(k−1)

i
+ ωR

r
(k)

i

aii

holds. For general 1 < ωR < 2 this defines the SOR (successive overrelaxa-

tion) method.

Exercise 4.7

Implement Algorithms 4.13 and 4.14.

Test example: Example 1.6 and others.

Exercise 4.8 Perpetual Put Option

For T →∞ it is sufficient to analyze the ODE

σ
2

2
S

2
d2

V

dS2
+ (r − δ)S

dV

dS
− rV = 0 .

Consider an American put with high contact to the payoff V = (K − S)+ at

S = Sf . Show:

a) Upon substituting the boundary condition for S →∞ one obtains

V (S) = c

(
S

K

)
λ2

, (4.70)

where λ2 = 1

2

(
1− qδ −

√
(qδ − 1)2 + 4q

)
, q = 2r

σ
2 , qδ =

2(r−δ)

σ
2

and c is a positive constant.

Hint: Apply the transformation S = Kex. (The other root λ1 drops out.)

223

Chapter 4 Standard Methods for Standard Options

b) V is convex.

For S < Sf the option is exercised; then its intrinsic value is K − S. For

S > Sf the option is not exercised and has a value V (S) > K − S. The

holder of the option decides when to exercise. This means, the holder makes

a decision on the high contact Sf such that the value of the option becomes

maximal [Mer73].

c) Show: V ′(Sf) = −1, if Sf maximizes the value of the option.

Hint: Determine the constant c such that V (S) is continuous in the contact

point.

Exercise 4.9 Smooth Pasting of the American Put

Suppose a portfolio consists of an American put and the corresponding un-

derlying. Hence the value of the portfolio is Π := V Am

P
+ S, where S satisfies

the SDE (1.33). Sf is the value for which we have high contact, compare

(4.22).

a) Show that

dΠ =

⎧⎨⎩
0 for S < Sf(

∂V Am

P

∂S
+ 1

)
σS dW + O(dt) for S > Sf .

b) Use this to argue

∂V Am

P

∂S
(Sf(t), t) = −1 .

Hint: Use dS > 0 ⇒ dW > 0 for small dt. Assume ∂V

∂S
> −1 and

construct an arbitrage strategy for dS > 0.

Exercise 4.10 Semidiscretization, Method of Lines

For a semidiscretization of the Black–Scholes equation (1.2) consider the se-

midiscretized domain

0 ≤ t ≤ T , S = Si := iΔS , ΔS :=
Smax

m
, i = 0, 1, . . . , m

for suitable values of Smax > K and m. On this set of lines parallel to the t-

axis define for τ := T − t and 1 ≤ i ≤ m−1 functions wi(τ) as approximation

to V (Si, τ).

a) Using the standard second-order difference schemes of Section 4.2.1, derive

the ODE system ẇ = Bw that up to boundary conditions approximates

(1.2). Here w is the vector (w1, . . . , wm−1)
tr and ẇ denotes differentiation

w.r.t. τ . Show that B is a tridiagonal matrix, and calculate its coefficients.

b) For a European option assume Dirichlet boundary conditions for w0(τ)

and wm(τ) and set up a vector c such that

ẇ = Bw + c (4.71)

224

Exercises

 0
 5

 10
 15

 20

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

S

t

Fig. 4.21. Method of lines for a binary call option, compare Exercise 4.10 (K =

10, T = 1, r = 0.06, δ = 0, σ = 0.3). With kind permission of Miriam Weingarten.

realizes the ODE system with correct boundary conditions, and with in-

itial conditions from the payoff.

c) Use the BDF2 formula of Section 4.2.1, and implement this scheme for

the initial value problem with (4.71) and a European call option. (See

Figure 4.21 for an illustration.)

Exercise 4.11 Front-Fixing for American Options

Apply the transformation

ζ :=
S

Sf(t)
, y(ζ, t) := V (S, t)

to the Black–Scholes equation (4.1).

a) Show

∂y

∂t
+

σ2

2
ζ
2
∂2y

∂ζ2
+
[
(r − δ)−

1

Sf

dSf

dt

]
ζ
∂y

∂ζ
− ry = 0 (4.72)

b) Set up the domain for (ζ, t) and formulate the boundary conditions for

an American call. (Assume δ > 0.)

c) (Project) Set up a finite-difference scheme to solve the derived boundary-

value problem. The curve Sf(t) is implicitly defined by the above PDE,

with final value Sf(T) = max(K,
r

δ
K).

225

Chapter 4 Standard Methods for Standard Options

Exercise 4.12 Brennan–Schwartz Algorithm

Let A be a tridiagonal matrix as in (C1.6), and b and g vectors. The system

of equations Aw = b is to be solved such that the side condition w ≥ g is

obeyed componentwise. Assume for the case of a put wi = gi for 1 ≤ i ≤ if

and wi > gi for if < i ≤ n, where if is unknown.

a) Formulate an algorithm similar as in (C1.7) that solves Aw = b in the

backward/forward approach. In the final forward loop, for each i the cal-

culated candidate w̃i is tested for wi ≥ gi: Set wi := max{w̃i, gi} .

b) Apply the algorithm to the case of a put with A, b, g from Section 4.6.1.

For the case of a call adapt the forward/backward algorithm (C1.7). In-

corporate this approach into Algorithm 4.13 by replacing the PSOR-loop.

Exercise 4.13 Extrapolation of Higher Order

Similar as in Section 4.7 assume an error model

η
∗ = η(Δ) − γ1Δ

2 − γ2Δ
3

and three calculated values

η1 := η(Δ) , η2 := η

(
Δ

2

)
, η3 := η

(
Δ

4

)
.

Show that

η
∗ =

1

21
(η1 − 12η2 + 32η3) .

Exercise 4.14

a) Derive (4.49).

b) Derive (4.56).

Exercise 4.15 Analytic Method for the American Put

(Project) Implement both the Algorithm 4.16 and Algorithm 4.17. For Al-

gorithm 4.17 choose as initial guess the average of the strike and the lower

bound (A5.1). A secant method (C1.5) is a good choice for the iteration.

Think of how to combine Algorithms 4.16 and 4.17 into a hybrid algorithm.

Exercise 4.16

Consider the functions d1 and d2 of (4.61). For the three cases S < Sf(τ),

S = Sf(τ), S > Sf(τ), calculate the limit for ξ → 0+ of

rKe−rξ

F (−d2(S, ξ; Sf(τ − ξ))) − δSf(τ) e−δξ

F (−d1(S, ξ; Sf(τ − ξ)))

Exercise 4.17 Project

Implement Kim’s integral equation method (Section 4.8.4).

226

Exercises

Exercise 4.18 Complexity

With n underlyings and time t an option problem comprises n+1 independent

variables. Assume that we discretize each of the n+1 axes with M grid points,

then Mn+1 nodes are involved. Hence the complexity C of the n-factor model

is

C := O(Mn+1) ,

which amounts to an exponential growth with the dimension, nicknamed

curse of dimension. Depending on the chosen method, the error E is of the

order M−�,

E := O

(
1

M �

)
.

Argue

log C = −
n + 1

�
log E + γ

for a method-dependent constant γ.

227

