
3 Monte Carlo Simulation

with Stochastic Differential Equations

35
40

45
50

55
60

65
70

S 0

0.2

0.4

0.6

0.8

1

t

0

2

4

6

8

10

12

14

16

Fig. 3.1. Illustration of the Monte Carlo approach for a European put, with K = 50,

S0 = 50, T = 1, σ = 0.2, r = 0; five simulated paths in the (S, t)-plane with payoff;

vertical axis: V . The front curve V (S, 0) is shown.

The Sections 1.5 and 1.7.3 have introduced the principle of risk-neutral eva-

luation, which can be summarized by

V (S0, 0) = e−rT

EQ(V (ST , T) | St starting from (S0, 0)) ,

where EQ represents the expectation under a risk-neutral measure. For the

Black–Scholes model, this expectation is an integral as in (1.50). This suggests

two approaches of calculating V . Either approximate the integral, or calculate

the expectation by simulating the underlying stochastic differential equation

(SDE) repeatedly. The latter approach is illustrated in Figure 3.1. Five paths

St are calculated for 0 ≤ t ≤ T in the risk-neutral fashion, each starting from

S0. Then for each resulting ST the payoff is calculated, here for a European

put. The figure illustrates the bulk of the work. (In reality, thousands of

paths are calculated.) It remains the comparably cheap task of calculating

the mean of the payoffs as approximation for EQ. This is the Monte Carlo

approach. The Monte Carlo approach works for general models, for example,

for systems of equations, see Figure 3.2.

Chapter

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_3, © Springer-Verlag London Limited 2012

109

http://dx.doi.org/10.1007/978-1-4471-2993-6_3

This chapter is based on the ability to numerically integrate SDEs. There-

fore a significant part of the chapter is devoted to this topic. Again Xt denotes

a stochastic process and a solution of an SDE (1.31),

dXt = a(Xt, t) dt + b(Xt, t) dWt for 0 ≤ t ≤ T ,

where the driving process W is a Wiener process. We assume a t-grid with

0 = t0 < t1 < For convenience, the step length Δt = tj+1 − tj is taken

equidistant. As is common usage in numerical analysis, we also use the h-

notation, h := Δt. For Δt = h = T/m the index j runs from 0 to m − 1.

The solution of a discrete version of the SDE is denoted yj . That is, yj

should be an approximation to Xtj
, or yt an approximation to Xt. Weaker

requirements will be discussed below. The initial value for t = 0 is assumed

a given constant,

y0 = X0 .

For example, from Algorithm 1.11 we know the Euler discretization{
yj+1 = yj + a(yj , tj)Δt + b(yj, tj)ΔWj , tj = jΔt ,

ΔWj = Wtj+1
− Wtj

= Z
√

Δt with Z ∼ N (0, 1) .
(3.1)

Since an approximation yT also depends on the chosen step length h, we also

write yh

T
. From numerical methods for deterministic ODEs (b ≡ 0) we know

the discretization error of Euler’s method is O(h),

XT − y
h

T
= O(h) .

The Algorithm 1.11 (repeated in equation (3.1)) is an explicit method in that

in every step j → j + 1 the values of the functions a and b are evaluated at

the previous approximation (yj , tj). Evaluating b at the left-hand mesh point

(yj , tj) is consistent with the Itô integral and the Itô process, compare the

notes at the end of Chapter 1.

After we have seen in Chapter 2 how Z ∼ N (0, 1) can be calculated, all

elements of Algorithm 1.11 are known, and we are equipped with a method to

numerically integrate SDEs (−→ Exercise 3.1). In this chapter we learn about

other methods, and discuss the accuracy of numerical solutions of SDEs. The

exposition of Sections 3.1 through 3.3 follows [KlP92]. Readers content with

Euler’s method (3.1) may like to skip these sections.

After a brief exposition on constructing bridges (Section 3.4), we turn to

the main theme, namely, Monte Carlo methods for pricing options. The basic

principle is outlined for European options (Section 3.5). For American options

parametric methods and regression methods are introduced in Section 3.6.

The final Section 3.7 discusses the calculation of sensitivities.

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations110

3.1 Approximation Error

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 0.2 0.4 0.6 0.8 1

Fig. 3.2. Example 1.15, α = 0.3, β = 10, σ0 = ζ0 = 0.2, realization of the volatility

tandem σt, ζt (dashed) for 0 ≤ t ≤ 1, Δt = 0.004

3.1 Approximation Error

To study the accuracy of numerical approximations, we choose the example

of a linear SDE

dXt = αXt dt + βXt dWt, initial value X0 for t = 0 .

For this equation with constant coefficients α, β we derived in Section 1.8 the

analytical solution

Xt = X0 exp
((

α − 1

2
β

2
)
t + βWt

)
. (3.2)

For a given realization of the Wiener process Wt we obtain as solution a

trajectory (sample path) Xt. For another realization of the Wiener process

the same theoretical solution (3.2) takes other values. If a Wiener process Wt

is given, we call a solution Xt of the SDE a strong solution. In this sense the

solution (3.2) is a strong solution. If one is free to select a Wiener process,

then a solution of the SDE is called weak solution. For a weak solution, only

the distribution of X is of interest, not its path.

Assuming an identical sample path of a Wiener process for the SDE and

for a numerical approximation yh

t
, a pathwise comparison of the trajectories

Xt with y
h

t
is possible for all tj . For example, for tm = T the absolute error

111

of a strong solution for a given Wiener process is |XT −yh

T
|. For another path

of the Wiener process the error is somewhat different. We average the error

over “all” sample paths of the Wiener process:

Definition 3.1 (absolute error)

For a strong solution Xt of the SDE with approximation yh

t
the absolute

error at T is ε(h) := E(|XT − yh

T
|).

In practice we represent the set of all sample paths of a Wiener process by

N different simulations.

Example 3.2 (Euler method)

For the SDE with X0 = 50, α = 0.06, β = 0.3, T = 1 we investigate

experimentally how the absolute error of the Euler method (3.1) depends

on h. Starting with a first choice of h we calculate N = 50 simulations

and for each realization the values of XT and yT —that is XT,k, yT,k

for k = 1, ..., N . Again: to obtain pairs of comparable trajectories, also

the theoretical solution (3.2) is fed with the same Wiener process used in

(3.1). Then we calculate the estimate ε̂ of the absolute error ε,

ε̂(h) :=
1

N

N∑
k=1

|XT,k − y
h

T,k
| .

Such an experiment was performed for five values of h. In this way the

first series of results were obtained (first line in Table 3.1). Such a series

of experiments was repeated twice, using other seeds. As Table 3.1 shows,

ε̂(h) decreases with decreasing h, but slower than one would expect from

the behavior of the Euler method applied to deterministic differential

equations. The order can be determined by fitting the values of the table.

We bypass this and test the order O(h1/2) right away. To this end, divide

each ε̂(h) of the table by the corresponding h
1/2. This shows that the

order O(h1/2) is correct, because each entry of the table leads essentially

to the same constant value, here 2.8. Apparently this example satisfies

ε̂(h) ≈ 2.8 h1/2. For another example we would expect a different constant.

Table 3.1. Results of Example 3.2

Table of the ε̂(h) h = 0.01 h = 0.005 h = 0.002 h = 0.001 h = 0.0005

series 1 (with seed1) 0.2825 0.183 0.143 0.089 0.070
series 2 (with seed2) 0.2618 0.195 0.126 0.069 0.062
series 3 (with seed3) 0.2835 0.176 0.116 0.096 0.065

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations112

3.1 Approximation Error

These results obtained for the estimates ε̂ are assumed to be valid for ε.

This leads to postulate

ε(h) ≤ c h
1/2 = O(h1/2).

The order of convergence is worse than the order O(h), which Euler’s method

(3.1) achieves for deterministic differential equations (b ≡ 0). But in view of

(1.28), (dW)2 = h, the order O(h1/2) is no surprise. For a proof of the order,

see [KlP92].

Definition 3.3 (strong convergence)

yh

T
converges strongly to XT with order γ > 0,

if ε(h) = E(|XT − yh

T
|) = O(hγ).

yh

T
converges strongly, if

lim
h→0

E(|XT − y
h

T
|) = 0 .

Hence the Euler method applied to SDEs converges strongly with order 1/2.

Note that convergence refers to fixed finite intervals, here for a fixed value T .

For long-time integration (T → ∞), see the Notes at the end of this chapter.

Strongly convergent methods are appropriate when the trajectory itself is

of interest. This was the case for Figures 1.16 and 1.17. Often the pointwise

approximation of Xt is not our real aim but only an intermediate result in

the effort to calculate a moment. For example, many applications in finance

need to approximate E(XT). A first conclusion from this situation is that of

all calculated yi only the last is required, namely, yT . A second conclusion is

that for the expectation a single sample value of yT is of little interest. The

same holds true if the ultimate interest is Var(XT) rather than XT . In this

situation the primary interest is not strong convergence with the demanding

requirement yT ≈ XT and even less yt ≈ Xt for t < T . Instead the concern is

the weaker requirement to approximate moments or other functionals of XT .

Then the aim is to achieve E(yT) ≈ E(XT), or E(|yT |q) ≈ E(|XT |q), or more

general E(g(yT)) ≈ E(g(XT)) for an appropriate function g.

Definition 3.4 (weak convergence)

yh

T
converges weakly to XT with respect to g with order β > 0,

if E(g(XT)) − E(g(yh

T
)) = O(hβ).

y
h

T
converges weakly to XT with order β,

if this holds for all polynomials g.

The Euler scheme is weakly O(h1) convergent provided the coefficient func-

tions a and b are four times continuously differentiable ([KlP92], Chapter

14). For the special polynomial g(x) = x, (B1.4) implies convergence of the

mean E(x). For g(x) = x2 the relation Var(X) = E(X2) − (E(X))2 implies

convergence of the variance (the reader may check). Proceeding in this way

implies weak convergence with respect to all moments.

113

Since the properties of the integrals on which expectation is based lead

to

|E(X) − E(Y)| = |E(X − Y)| ≤ E(|X − Y |) ,

we confirm that strong convergence implies weak convergence with respect

to g(x) = x.

When weakly convergent methods are evaluated, the outcomes XT and

yT need not be based on the same stochastic process, only their probability

distributions must be close. This allows for a simplification of Euler’s me-

thod. The increments ΔW can be replaced by other random variables ΔŴ

that have the same expectation and variance. ΔWj can be replaced by the

simple approximation ΔŴj = ±
√

Δt, where each sign occurs with probabi-

lity 1/2. The moments match; in particular, expectation and variance of ΔŴ

and ΔW are the same: E(ΔŴ) = 0, E(ΔŴ 2) = Δt. The replacing random

variables ΔŴj are by far easier to evaluate, costs can be saved significantly

(−→ Exercise 3.15). The simplified Euler method is again weakly convergent

with order 1.

3.2 Stochastic Taylor Expansion

The derivation of algorithms for the integration of SDEs is based on stocha-

stic Taylor expansions. To facilitate the understanding of stochastic Taylor

expansions we confine ourselves to the scalar and autonomous1 case, and

first introduce the terminology by means of the deterministic case. That is,

we begin with d

dt
Xt = a(Xt). The chain rule for arbitrary f ∈ C1(IR) is

d

dt
f(Xt) = a(Xt)

∂

∂x
f(Xt) =: Lf(Xt) .

With the linear operator L this rule in integral form is

f(Xt) = f(Xt0
) +

∫
t

t0

Lf(Xs) ds . (3.3)

This version is resubstituted for the integrand f̃(Xs) := Lf(Xs), which re-

quires at least f ∈ C2, and gives the term in braces:

f(Xt) = f(Xt0
) +

∫
t

t0

{
f̃(Xt0

) +

∫
s

t0

Lf̃(Xz) dz

}

1 An autonomous differential equation does not explicitly depend on the

independent variable, here a(Xt) rather than a(Xt, t). The standard GBM

Model 1.13 of the stock market is autonomous for constant μ and σ.

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations114

3.2 Stochastic Taylor Expansion

=f(Xt0
) + f̃(Xt0

)

∫
t

t0

ds +

∫
t

t0

∫
s

t0

Lf̃(Xz) dz ds

=f(Xt0
) + Lf(Xt0

)(t − t0) +

∫
t

t0

∫
s

t0

L
2
f(Xz) dz ds

This version of the Taylor expansion consists of two terms and the remainder

as double integral. To get the next term of the second-order derivative, apply

(3.3) for L2f(Xz), and split off the term

L
2
f(Xt0

)

∫
t

t0

∫
s

t0

dz ds = L
2
f(Xt0

)
1

2
(t − t0)

2

from the remainder double integral. At this stage, the remainder is a triple

integral. This procedure is repeated to obtain the Taylor formula in integral

form. Each further step requires more differentiability of f .

We now devote our attention to stochastic diffusion and investigate the

Itô-Taylor expansion of the autonomous scalar SDE

dXt = a(Xt) dt + b(Xt) dWt .

Itô’s Lemma for g(x, t) := f(x) is

df(Xt) =
{

a
∂

∂x
f(Xt) +

1

2
b
2

∂2

∂x2
f(Xt)︸ ︷︷ ︸

=:L0
f(Xt)

}
dt + b

∂

∂x
f(Xt)︸ ︷︷ ︸

=:L1
f(Xt)

dWt ,

or in integral form

f(Xt) = f(Xt0
) +

∫
t

t0

L
0
f(Xs) ds +

∫
t

t0

L
1
f(Xs) dWs . (3.4)

This SDE will be applied for different choices of f . Specifically for f(x) ≡ x

the SDE (3.4) recovers the original SDE

Xt = Xt0
+

∫
t

t0

a(Xs) ds +

∫
t

t0

b(Xs) dWs . (3.5)

First apply (3.4) to f = a and to f = b. The resulting versions of (3.4) are

substituted in (3.5) leading to

Xt =Xt0
+

∫
t

t0

{
a(Xt0

) +

∫
s

t0

L
0
a(Xz) dz +

∫
s

t0

L
1
a(Xz) dWz

}
ds

+

∫
t

t0

{
b(Xt0

) +

∫
s

t0

L
0
b(Xz) dz +

∫
s

t0

L
1
b(Xz) dWz

}
dWs

115

with
L

0
a = aa

′ + 1

2
b2a′′

L
1
a = ba

′

L
0
b = ab

′ + 1

2
b2b′′

L
1
b = bb

′
.

(3.6)

Summarizing the four double integrals into one remainder expression R, we

have

Xt = Xt0
+ a(Xt0

)

∫
t

t0

ds + b(Xt0
)

∫
t

t0

dWs + R , (3.7a)

with

R =

∫
t

t0

∫
s

t0

L
0
a(Xz) dz ds +

∫
t

t0

∫
s

t0

L
1
a(Xz) dWz ds

+

∫
t

t0

∫
s

t0

L
0
b(Xz) dz dWs +

∫
t

t0

∫
s

t0

L
1
b(Xz) dWz dWs .

(3.7b)

The order of the terms is limited by the number of repeated integrations. In

view of (1.28), dW 2 = dt, we expect the last of the integrals in (3.7b) to be

of first order (and show this below).

In an analogous fashion the integrands in (3.7b) can be replaced using

(3.4) with appropriately chosen f . In this way triple integrals occur. We

illustrate this for the integral on f = L1b, which is the double integral of

lowest order. The non-integral term of (3.4) allows to split off another “ground

integral” with constant integrand,

R = L
1
b(Xt0

)

∫
t

t0

∫
s

t0

dWz dWs + R̃ .

In view of (3.6) and (3.7a) this result can be summarized as

Xt =Xt0
+ a(Xt0

)

∫
t

t0

ds + b(Xt0
)

∫
t

t0

dWs

+ b(Xt0
)b′(Xt0

)

∫
t

t0

∫
s

t0

dWz dWs + R̃ .

(3.8)

A general treatment of the Itô-Taylor expansion with an appropriate forma-

lism is found in [KlP92].

The next step is to formulate numerical algorithms out of the equations

derived by the stochastic Taylor expansion. To this end the integrals must

be solved. For (3.8) we need a solution of the double integral. For Xt = Wt

the Itô Lemma with a = 0, b = 1 and y = g(x) := x2 leads to the equation

d(W 2

t
) = dt + 2Wt dWt. Specifically for t0 = 0 this is the equation∫

t

0

∫
s

0

dWz dWs =

∫
t

0

Ws dWs = 1

2
W

2

t
− 1

2
t . (3.9)

Another derivation of (3.9) uses

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations116

3.3 Examples of Numerical Methods

n∑
j=1

Wtj
(Wtj+1

− Wtj
) = 1

2
W

2

t
− 1

2

n∑
j=1

(Wtj+1
− Wtj

)2

for t = tn+1 and t1 = 0, and takes the limit in the mean on both sides (−→
Exercise 3.2). The general version of (3.9) needed for (3.8) is∫

t

t0

Ws dWs = 1

2
(Wt − Wt0

)
2 − 1

2
(t − t0) .

With Δt := t−t0 and the random variable ΔWt := Wt−Wt0
this is rewritten

as ∫
t

t0

∫
s

t0

dWz dWs = 1

2
(ΔWt)

2 − 1

2
Δt . (3.10)

Since this double integral is of order Δt, it completes the list of first-order

terms.

Also the three other double integrals∫
t

t0

∫
s

t0

dz ds ,

∫
t

t0

∫
s

t0

dWz ds ,

∫
t

t0

∫
s

t0

dz dWs

are needed for the construction of higher-order numerical methods. The first

integral is elementary, it is of second order and not stochastic. The two others

depend on each other via the equation∫
t

t0

∫
s

t0

dz dWs +

∫
t

t0

∫
s

t0

dWz ds =

∫
t

t0

dWs

∫
t

t0

ds (3.11)

(−→ Exercise 3.3). This indicates that the two remaining double integrals are

of order (Δt)3/2. We will return to these integrals in the following section.

3.3 Examples of Numerical Methods

Now we apply the stochastic Taylor expansion to construct numerical me-

thods for SDEs. First we check how Euler’s method (3.1) evolves. Here we

evaluate the integrals in (3.7a) and substitute

t0 → tj , t → tj+1 = tj + Δt .

This leads to

Xtj+1
= Xtj

+ a(Xtj
)Δt + b(Xtj

)ΔWj + R .

After neglecting the remainder R the Euler scheme of (3.1) results, here for

autonomous SDEs.

To obtain higher-order methods, further terms of the stochastic Taylor

expansions are added. We may expect a “repair” of the half-order O(
√

Δt)

by including the lowest-order double integral of (3.8), which is calculated in

(3.10). The resulting correction term, after multiplying with bb′, is added to

the Euler scheme. Discarding the remainder R̃, an algorithm results, which

is due to [Mil74].

117

Algorithm 3.5 (Milstein)

Start: t0 = 0, y0 = X0, W0 = 0, Δt = T/m

loop j = 0, 1, 2, ..., m− 1 :

tj+1 = tj + Δt

Calculate the values a(yj), b(yj), b′(yj)

ΔW = Z
√

Δt with Z ∼ N (0, 1)

yj+1 = yj + aΔt + bΔW +
1

2
bb
′ · ((ΔW)2 − Δt)

This integration method by Milstein is strongly convergent with order one

(−→ Exercise 3.8). Adding the correction term has raised the strong conver-

gence order of Euler’s method to 1.

Runge–Kutta Methods

A disadvantage of the Taylor-expansion methods is the use of the derivatives

a′, b′, ... Analogously as with deterministic differential equations there is

the alternative of Runge–Kutta–type methods, which only evaluate a or b for

appropriate arguments.

As an example we discuss the factor bb′ of Algorithm 3.5, and see how to

replace it by an approximation. Starting from

b(y + Δy) − b(y) = b
′(y)Δy + O((Δy)2)

and using Δy = aΔt + bΔW we deduce in view of (1.28) that

b(y + Δy) − b(y) = b
′(y)(aΔt + bΔW) + O(Δt)

= b
′(y)b(y)ΔW + O(Δt) .

Applying (1.28) again, we substitute ΔW =
√

Δt and arrive at an O(
√

Δt)-

approximation of the product bb′, namely,

1
√

Δt

(
b[yj + a(yj)Δt + b(yj)

√
Δt] − b(yj)

)
.

This expression is used in the Milstein scheme of Algorithm 3.5. The resulting

variant

ŷ :=yj + aΔt + b
√

Δt

yj+1 =yj + aΔt + bΔW +
1

2
√

Δt
(ΔW

2 − Δt)[b(ŷ) − b(yj)]
(3.12)

is a Runge–Kutta method, which also converges strongly with order one.

Versions of these schemes for nonautonomous SDEs read analogously.

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations118

3.3 Examples of Numerical Methods

Taylor Scheme with Weak Second-Order Convergence.

Next we investigate the method that results when in the remainder term

(3.7b) the ground integrals of all double integrals are split off. This is done

by applying (3.4) for f = L0a, f = L1a, f = L0b, f = L1b . Then the new

remainder R̃ consists of triple integrals. For f = L1b this analysis was carried

out at the end of Section 3.2. With (3.6) and (3.10) the correction term

bb
′
1

2

(
(ΔW)

2 − Δt

)
has resulted, leading to the strong convergence order one of the Milstein

scheme. For f = L0a the integral is not stochastic and the term(
aa
′ +

1

2
b
2
a
′′

)
1

2
Δt

2

is an immediate consequence. For f = L1a and f = L0b the integrals are

again stochastic, namely,

I(1,0) :=

∫
t

t0

∫
s

t0

dWz ds =

∫
t

t0

(Ws − Wt0
) ds ,

I(0,1) :=

∫
t

t0

∫
s

t0

dz dWs =

∫
t

t0

(s − t0) dWs .

Summarizing all terms, the preliminary numerical scheme is

yj+1 = yj + aΔt + bΔW +
1

2
bb
′
(
(ΔW)2 − Δt

)
+

1

2

(
aa
′ +

1

2
b
2
a
′′

)
Δt

2 + ba
′
I(1,0) +

(
ab
′ +

1

2
b
2
b
′′

)
I(0,1) .

(3.13)

It remains to approximate the two stochastic integrals I(0,1) and I(1,0). Setting

ΔY := I(1,0) we have in view of (3.11)

I(0,1) = ΔWΔt − ΔY .

At this state the two stochastic double integrals I(0,1) and I(1,0) are expressed

in terms of only one random variable ΔY , in addition to the variable ΔW

used before. Since for weak convergence only the correct moments are needed,

all occurring random variables (here ΔW and ΔY) can be replaced by other

random variables with the same moments. The normally distributed random

variable ΔY has expectation, variance and covariance

E(ΔY) = 0, E(ΔY
2) =

1

3
(Δt)3, E(ΔY ΔW) =

1

2
(Δt)2 (3.14)

(−→ Exercise 3.4). Such a random variable can be realized by two indepen-

dent normally distributed variates Z1 and Z2,

119

ΔY =
1

2
(Δt)3/2

(
Z1 +

1
√

3
Z2

)
with Zi ∼ N (0, 1), i = 1, 2

(3.15)

(−→ Exercise 3.5). With this realization of ΔY we have approximations of

I(0,1) and I(1,0), which are substituted into (3.13).

Next the random variable ΔW is replaced by other variates for which the

moments match. Choosing ΔW̃ trivalued such that the two values ±
√

3Δt

occur with probability 1/6, and the value 0 with probability 2/3, then the

random variable ΔỸ := 1

2
Δt ΔW̃ has the moments in (3.14) up to terms

of order O(Δt3) (−→ Exercise 3.6). As a consequence, the simplification of

(3.13)

yj+1 = yj + aΔt + bΔW̃ +
1

2
bb
′

(
(ΔW̃)2 − Δt

)
+

1

2

(
aa
′ +

1

2
b
2
a
′′

)
Δt

2 +
1

2

(
a
′
b + ab

′ +
1

2
b
2
b
′′

)
ΔW̃Δt

(3.16)

is second-order weakly convergent.

Higher–Dimensional Cases

In higher-dimensional cases there are additionally mixed terms. We distin-

guish two kinds of “higher–dimensional”:

1.) y ∈ IRn

, a, b ∈ IRn. Then, for instance, replace bb′ by ∂b

∂y
b, where ∂b

∂y
is

the Jacobian matrix of all first-order partial derivatives.

2.) For multiple Wiener processes the situation is more complicated, because

then simple explicit integrals as in (3.9) do not exist. Only the Euler

scheme remains simple: for m Wiener processes the Euler scheme is

yj+1 = yj + aΔt + b
(1)

ΔW
(1) + ... + b

(m)
ΔW

(m)
.

The Figure 3.2 depicts two components of the system of Example 1.15.

Jump Diffusion

Jump diffusion can be simulated analogously as pure diffusion. Thereby the

jump times are not included in the equidistant grid of the jΔt. An alternative

is to simulate the jump times τ1, τ2, . . . separately, and superimpose them on

the Δt-size grid. Then the jumps can be carried out correctly. With such

jump-adapted schemes higher accuracy can be obtained [BrLP06], see also

[HiK05].

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations120

3.4 Intermediate Values

3.4 Intermediate Values

Integration methods as discussed in the previous section calculate approxi-

mations yj only at the grid points tj . This leaves the question how to obtain

intermediate values, namely, approximations y(t) for t
= tj . This situation

is simple for deterministic ODEs. There we have in general smooth soluti-

ons, which suggests to construct an interpolation curve joining the calculated

points (yj , tj). The deterministic nature guarantees that the interpolation is

reasonably close to the exact solution, at least for small steps Δt.

A smooth interpolation is at variance with the stochastic nature of so-

lutions of SDEs. When Δt is small, it may be sufficient to match the “ap-

pearance” of a stochastic process. For example, a linear interpolation is easy

to be carried out. Such an interpolating continuous polygon was used for

the Figures 1.16 and 1.17. Another easily executable alternative would be to

construct an interpolating step function with step length Δt. Such an argu-

mentation is concerned with the graphical aspects of filling, and does not pay

attention to the law given by an underlying SDE.

The situation is different when the gaps between two calculated yj and

yj+1 are large. Then the points that are supposed to fill the gaps should

satisfy the underlying SDE. A Brownian bridge is a proper means to fill the

gaps in Brownian motion. For illustration assume that y0 (for t = 0) and yT

(for t = T) are to be connected. Then the Brownian bridge defined by

Bt = y0

(
1 −

t

T

)
+ yT

t

T
+

{
Wt −

t

T
WT

}
(3.17)

describes the stochastic behavior that matches Brownian motion. The first

two terms represent a straight-line connection between y0 and yT . This line

segment stands for the trend. The term Wt −
t

T
WT describes the stochastic

fluctuation (−→ Exercise 3.7).

Bridges such as the Brownian bridge have important applications. For

example, suppose that for a stochastic process St a large step has been taken

from S0 to some value ST . The question may be, what is the largest value of

St in the gap 0 < t < T ? Or, does St reach a certain barrier B? Of course,

answers can be expected only with a certain probability. A crude method

to tackle the problem would be to calculate a dense chain of Stj
in the gap

with a small step size Δt. This is a costly way to get the information. As

an alternative, one can evaluate the relevant probabilities of the behavior of

bridges directly, without explicitly constructing intermediate points. In this

way, larger steps are possible, and costs are reduced. There are several alter-

native ways to calculate intermediate values, in particular in the multifactor

case [Gla04]. For example, the principal component analysis can be applied to

approximate the bridge. Here the covariance matrix is taken from the vector

(W (t0), . . . , W (tm)), where tm = T .

121

3.5 Monte Carlo Simulation

As pointed out in Section 2.4 in the context of calculating integrals, Monte

Carlo is attractive in high-dimensional spaces. The same characterization

holds when Monte Carlo (MC) is applied to the valuation of options. For sake

of clarity we describe the approach for European vanilla options in context

with the one-dimensional Black–Scholes model. But bear in mind that MC is

broadly applicable, which will be demonstrated by means of an exotic option

at the end of this section.

From Section 1.7.2 we take the one-factor model of a geometric Brownian

motion of the asset price St,

dS

S
= μ dt + σ dW .

Here μ is the expected growth rate. When options are to be priced we assume

a risk-neutral world and replace μ accordingly (by r, or by r − δ in case

of a dividend yield δ, compare Section 1.7.3 and Remark 1.14. Recall the

lognormal distribution of GBM, with density function (1.48).

The Monte Carlo simulation of options can be seen in two ways: either

dynamically as a process of simulating numerous paths of prices St with

subsequent appropriate valuation (as suggested by Figure 3.1), or as the

formal MC approximation of integrals. For the latter view we briefly recall

the integral representation of options in Subsection 3.5.1. Both views are

equivalent; the simulation aspect can be seen as financial interpretation and

implementation of the MC procedure for integrals.

3.5.1 Integral Representation

In the one-period model of Section 1.5 the valuation of an option was sum-

marized in (1.19) as the discounted values of a probable payoff,

V0 = e−rT

EQ(VT) .

For the binomial model we prove for European options in Exercise 1.8 that

this method produces

V
(M)

0
= e−rT

E(VT) ,

where E reflects expectation with respect to the risk-free probability of the bi-

nomial method. And for the continuous-time Black–Scholes model, the result

in (A4.11b) for a put is

V0 = e−rT [K F (−d2) − e(r−δ)T
S F (−d1)] , (3.18)

similarly for a call. Since F is an integral (−→ Appendix D2), equation (3.18)

is a first version of an integral representation. Its origin is either the analytic

solution of the Black–Scholes PDE, or the representation

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations122

3.5 Monte Carlo Simulation

V0 = e−rT

∞∫
0

(K − ST)+ fGBM(ST , T ; S0, r, σ) dST . (3.19)

Here fGBM(ST , T ; S0, μ, σ) is the density (1.48) of the lognormal distribution,

with μ = r, or μ replaced by r − δ to match a continuous dividend yield δ.

It is not difficult to prove that (3.18) and (3.19) are equivalent (−→ Exercise

3.9 for δ = 0). We summarize the integral representation as

V (S0, 0) = e−rT

EQ(V (ST , T) |S0) (3.20)

The risk-neutral expectation EQ is explained in Section 1.5. All these expec-

tations are conditional on paths starting at t = 0 with the value S0.

An integral representation offers another way to calculate V0, namely, via

an approximation by means of numerical quadrature methods (see Appendix

C1), rather than applying MC. Of course, in this one-dimensional situation,

the approximation of the closed-form solution (3.18) is more efficient. But in

higher-dimensional spaces integrals corresponding to (3.19) can be become

attractive for computational purposes. Note that the integrand is smooth

because the zero branch of the put’s payoff (K − ST)+ needs not be inte-

grated; in (3.19) the integration is cut to the interval 0 ≤ ST ≤ K. Any

numerical quadrature method can be applied, such as sparse-grid quadrature

[GeG98], [Rei04], [Que07]. But in what follows, we stay with Monte Carlo

approximations.

3.5.2 Basic Version for European Options

The simulation aspect of Monte Carlo has been described before, see Figure

3.1. The procedure consists in calculating a large number N of trajectories

of the SDE, always starting from S0, and then average over the payoff values

Ψ((ST)k) of the samples (ST)k, k = 1, . . . , N , in order to obtain informa-

tion on the probable behavior of the process. This is identical to the formal

MC method for approximating an integral as (3.19), see Section 2.4. The

equivalence with the simulation aspect is characterized by the convergence

1

N

N∑
k=1

Ψ((ST)k) −→

∫ ∞

−∞

Ψ(ST) fGBM(ST) dST = E(Ψ(ST)),

see (B1.3). The probability distribution of the samples (ST)k must match

the density of the chosen model, here fGBM. For the Black–Scholes model,

these samples are provided by integrating the correct SDE (1.33) under the

risk-neutral measure (μ = r for a non-dividend paying asset). Finally, the

result is discounted at the risk-free rate r to obtain the value for t = 0.

123

After having chosen the three items model, current initial value S0, and

payoff function Ψ , the Monte Carlo method works as follows:

Algorithm 3.6 (Monte Carlo simulation of European options)

(1) For k = 1, ..., N : Choose a seed and integrate the SDE of the underly-

ing model for 0 ≤ t ≤ T under the risk-neutral measure. (for example,

dS = rS dt + σS dW)

Let the final result be (ST)k.

(2) By evaluating the payoff function Ψ one obtains the values

(V (ST , T))k := Ψ((ST)k), k = 1, ..., N.

(3) An estimate of the risk-neutral expectation is

Ê(V (ST , T)) :=
1

N

N∑
k=1

(V (ST , T))k.

(4) The discounted variable

V̂ := e−rT

Ê(V (ST , T))

is a random variable with E(V̂) = V (S0, 0).

In case the underlying receives a continuous dividend yield δ, replace

the r in step (1) by r − δ. (not in step (4)!) The resulting V̂ is the desired

approximation V̂ ≈ V (S0, 0). In this simple form, the Monte Carlo simulation

can only be applied to European options where the exercise date is fixed. Only

the value V (S0, 0) is obtained, and the lack of other information on V (S, t)

does not allow to check whether the early-exercise constraint of an American

option is violated. For American options a greater effort in simulation is

necessary, see Section 3.6. The convergence behavior corresponds to that

discussed for Monte Carlo integration, see Section 2.4. In practice the number

N must be chosen large, for example, N = 10000. This explains why Monte

Carlo simulation in general is expensive. For standard European options with

univariate underlying that satisfies the Assumption 1.2, the alternative of

evaluating the Black–Scholes formula is by far cheaper. But in principle both

approaches provide the same result, where we neglect that accuracies and

costs are different.

For multivariate options the MC algorithm works analogously, see the

example in Section 3.5.5. But the integration of a system of n SDEs clearly

has costs depending on n. So the costs of MC depend on n. In practice, this

can affect the error. In case the budget in computing time is limited, which

is standard for realtime calculations, a limit on the budget will limit the

number N of paths, and in turn, the error. If one path costs κ seconds, and

the budget for N paths is b seconds, then (2.14a) states that the attainable

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations124

3.5 Monte Carlo Simulation

error is of the order
√

κ/
√

b. In this sense, κ = O(n) does influence the error

of MC considerably.

Note that the above Algorithm 3.6 is a crude version of Monte Carlo simu-

lation, which needs to be refined. Since the simulations are independent, the

confidence intervals provided by the Central Limit Theorem can be applied

(−→ Appendix B1). In this way, a probabilistic error control is incorporated.

Also methods of variance reduction are applied, see Section 3.5.4.

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

0 2000 4000 6000 8000 10000

Fig. 3.3. Ten sequences of Monte Carlo simulations on Example 3.7, each with a

maximum of 10000 paths. horizontal axis: N , vertical axis: mean value V̂ (suffers

from bias, see Section 3.5.3)

Example 3.7 (European put)

Consider a European put with the parameters S0 = 5, K = 10, r =

0.06, σ = 0.3, T = 1. For the linear SDE dS = rS dt + σS dW with

constant coefficients the theoretical solution is known, see equation (1.54).

For the chosen parameters we have

S1 = 5 exp(0.015 + 0.3W1) ,

which requires “the” value of the Wiener process at t = 1. Related values

W1 can be obtained from (1.22) with Δt = T as W1 = Z
√

T , Z ∼ N (0, 1).

But for this illustration we do not take advantage of the analytic solu-

tion formula, because MC is not limited to linear SDEs with constant

125

coefficients. To demonstrate the general procedure we integrate the SDE

numerically with step length Δt < T , in order to calculate an approxi-

mation to S1. Any of the methods derived in Section 3.3 can be applied.

For simplicity we use Euler’s method. Since the chosen value of r is small,

the discretization error of the drift term is small compared to the stan-

dard deviation of W1. As a consequence, the accuracy of the integration

for small values of Δt is hardly better than for larger values of the step

size. Artificially we choose Δt = 0.02 for the time step. Hence each tra-

jectory requires to calculate 50 normal variates ∼ N (0, 1). Figure 3.3

shows the values V̂ ≈ V (S0, 0) for 10 sequences of simulations, each with

a maximum of N = 10000 trajectories, calculated with Algorithm 3.6.

Each sequence has started with a different seed for the calculation of the

random numbers from Section 2.3.

The Example 3.7 is a European put with the same parameters as Example

1.5. This allows to compare the results of the simulation with the more

accurate results from Table 1.2, where we have obtained V (5, 0) ≈ 4.43.

The simulations reported in Figure 3.3 have difficulties to come close to

this value. Since Figure 3.3 depicts all intermediate results for sample sizes

N < 10000, the convergence behavior of Monte Carlo can be observed. For

this example and N < 2000 the accuracy is bad; for N ≈ 6000 it reaches

acceptable values, and hardly improves for 6000 < N ≤ 10000. Note that

the “convergence” is not monotonous, and one of the simulations delivers

a frustratingly inaccurate result. (−→ Exercise 3.11)

3.5.3 Bias

The sampling error of Monte Carlo, which is characterized by the central

limit theorem, was already discussed in Section 2.4. Recall the size of this

error is proportional to N−1/2. In principle, the same error is encountered

when Monte Carlo is applied to option valuation. In case of the Black–Scholes

model, when the closed-form solution (1.54) of the SDE can be used in step (1)

of Algorithm 3.6, the sampling error is basically the only error. But for general

options, approximations are often based on discretizations (as in Example

3.7), and some bias is encountered. As a result, the error deteriorates.

Bias typically occurs when the option is path-dependent —that is, its

value depends on St for possibly all t ≤ T . For example, the volatility may

be local, which means that it depends on St, σ = σ(S). Another example is

furnished by the lookback option, where the valuation depends on

x := E

(
max

0≤t≤T

St

)
.

In both examples, a time discretization may help with a finite number m of

values Stj
, with the notation as used in (3.1). Even if the underlying SDE is

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations126

3.5 Monte Carlo Simulation

such that a closed-form solution is available, the estimator provided by the

discretely sampled maximum

x̂ := max
0≤j≤m

Stj

almost surely underestimates x. That is, the estimator x̂ of x is biased, with

bias(x̂) := E(x̂) − x
= 0 . (3.21)

The lookback option is one example where local information on the indi-

vidual paths is required. Other examples of exotic options requiring Stj
for

several tj are barrier options, and Asian options, see Section 6.1. In these

examples, if applied to the Black–Scholes model, the analytic solution can be

used locally in each step. Two alternatives for a step from t to t + Δt are

St+Δt = St exp[(μ − 1

2
σ

2)Δt + σ ΔW] (unbiased)

St+Δt = St (1 + μ Δt + σ ΔW) (Euler’s step, biased)
(3.22)

For the bias due to the application of Euler’s scheme, see Exercise 3.10.

Compare Figures 3.3 and 3.5 for results with and without bias.

Fortunately, when sufficient computing time is available, this bias can be

made arbitrarily small by taking sufficiently large values of m. There is a

tradeoff between making the variance small (N → ∞), and making the bias

small (m → ∞, Δt → 0). The mean square error

MSE(x̂) := E[(x̂ − x)2] (3.23a)

measures both errors: A straightforward calculation (which the reader may

check) shows

MSE(x̂) = (E(x̂) − x)
2
+ E[(x̂ − E(x̂))2]

= (bias(x̂))2 + Var(x̂)
(3.23b)

The final aim is to make MSE small, and the investigator must balance the

effort in controlling the bias or the sampling error.

We outline this for a Monte Carlo approximation that makes use of a nu-

merical integration scheme such as Euler’s method. For brevity, write again

h for the step Δt. Let x̂ := yh

T
be the result of a weakly convergent discretiza-

tion scheme, see Definition 3.4, with order β and g =identity. Then the bias

of the discretization is of the order β,

bias(x̂) = α1h
β

, α1 a constant.

Since the variance of Monte Carlo is of the order N−1 (N the sample size,

see (2.14a)), (3.23b) leads to model the mean square error as

MSE = α
2

1
h

2β +
α2

N

127

for some constant α2. This error model allows to analyze the tradeoff (N → ∞
or h → 0) more closely (−→ Exercise 3.13). It turns out that for optimally

chosen h, N the error
√

MSE behaves like

√
MSE ∼ C

−
β

1+2β

where C denotes the costs of the approximation. Applying Euler’s method

(β = 1) gives the exponent −1/3, clearly worse than the exponent −1/2 of

an unbiased Monte Carlo. As [Gla04] points out, this result emphasizes the

importance of high-order schemes (β > 1) for high demands of accuracy.

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

0 2000 4000 6000 8000 10000

Fig. 3.4. Ten series of antithetic simulations on Example 3.7

3.5.4 Variance Reduction

To improve the accuracy of simulation and thus the efficiency, it is essential to

apply methods of variance reduction. We explain the methods of the antithetic

variates and the control variates. In many cases these methods decrease the

variances.

Antithetic Variates

If a random variable satisfies Z ∼ N (0, 1), then also −Z ∼ N (0, 1). Let V̂

denote the approximation obtained by Monte Carlo simulation. With little

extra effort during the original Monte Carlo simulation we can run in parallel

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations128

3.5 Monte Carlo Simulation

a side calculation which uses −Z instead of Z. For each original path this

creates a “partner” path, which looks like a mirror image of the original. The

partner paths also define a Monte Carlo simulation of the option, called the

antithetic variate, denoted by V −. The average

VAV := 1

2

(
V̂ + V

−

)
(3.24)

(AV for antithetic variate) is a new approximation, which in many cases is

more accurate than V̂ . Since V̂ and VAV are random variables we can only

aim at

Var(VAV) < Var(V̂) .

In view of the properties of variance and covariance (equation (B1.7)),

Var(VAV) = 1

4
Var(V̂ + V

−)

= 1

4
Var(V̂) + 1

4
Var(V −) + 1

2
Cov(V̂ , V

−) .

(3.25)

From

|Cov(X, Y)| ≤
1

2
[Var(X) + Var(Y)]

(follows from (B1.7)) we deduce

Var(VAV) ≤
1

2
(Var(V̂) + Var(V −)) .

By construction, Var(V̂) = Var(V −) should hold. Hence Var(VAV) ≤ Var(V̂).

This shows that in the worst case only the efficiency is slightly deteriorated

by the additional calculation of V −. The favorable situation is when the co-

variance is negative. Then (3.25) shows that the variance of VAV can become

significantly smaller than that of V̂ . Since we have chosen the random num-

bers −Z for the calculation of V −, the chances are high that V̂ and V − are

negatively correlated and hence Cov(V̂ , V −) < 0. In this situation VAV is a

better approximation than V̂ . Variance reduction by antithetic variates may

not be too effective, but is easily implemented.

In Figure 3.4 we simulate Example 3.7 again, now with antithetic variates.

With this example and the chosen random number generator2 the variance

reaches small values already for small N . Compared to Figure 3.3 the conver-

gence is somewhat smoother. The accuracy the experiment shown in Figure

3.3 reaches with N = 6000 is achieved already with N = 2000 in Figure 3.4.

But in the end, the error has not become really small. The main reason for

the remaining significant error in the experiment reported by Figure 3.4 is

the bias due to the discretization error of the Euler scheme. To remove this

source of error, we repeat the above experiments with the analytical solution

of (1.54). The result is shown in Figure 3.5 for crude Monte Carlo, and in

2 the simple generator of Algorithm 2.7

129

Figure 3.6 for MC with antithetic variates. These figures better reflect the

convergence behavior of Monte Carlo simulation. By the way, applying the

Milstein scheme of Algorithm 3.5 does not improve the picture: No qualita-

tive change is visible if we replace the Euler-generated simulations of Figures

3.3/3.4 by their Milstein counterparts. This may be explained by the fact

that the weak convergence order of Milstein’s method equals that of the Eu-

ler method. — Recall that Example 3.7 is chosen merely for illustration; here

other methods are by far more efficient than Monte Carlo approaches.

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 3.5. Five series of Monte Carlo simulations on Example 3.7, using the analytic

solution of the SDE (compare to Fig. 3.3)

Control Variates

Again V denotes the exact value of the option and V̂ a Monte Carlo appro-

ximation. For comparison we calculate in parallel another option, which is

closely related to the original option, and for which we know the exact value

V ∗. Let the Monte Carlo approximation of V ∗ be denoted V̂ ∗. This variate

serves as control variate with which we wish to “control” the error. The addi-

tional effort to calculate the control variate V̂ ∗ is small in case the simulations

of the asset S are identical for both options. This situation arises when S0, μ

and σ are identical and only the payoff differs. When the two options are

similar enough one may expect a strong positive correlation between them.

So we expect relatively large values of Cov(V, V ∗) or Cov(V̂ , V̂ ∗), close to its

upper bound,

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations130

3.5 Monte Carlo Simulation

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 3.6. Five series of Monte Carlo simulations on Example 3.7 using the analytic

solution of the SDE and antithetic variates (3.24) (compare to Fig. 3.4)

Cov(V̂ , V̂
∗) ≈

1

2
Var(V̂) +

1

2
Var(V̂ ∗) .

This leads us to define “closeness” between the options as sufficiently large

covariance in the sense

Cov(V̂ , V̂
∗) >

1

2
Var(V̂ ∗) . (3.26)

The method is motivated by the assumption that the unknown error V −V̂ has

the same order of magnitude as the known error V ∗ − V̂ ∗. This anticipation

can be written V ≈ V̂ + (V ∗ − V̂
∗), and leads to define

VCV := V̂ + V
∗ − V̂

∗ (3.27)

as another approximation (CV for control variate). We see from (B1.6) (with

β = V
∗) and (B1.7) that

Var(VCV) = Var(V̂ − V̂
∗) = Var(V̂) + Var(V̂ ∗) − 2Cov(V̂ , V̂

∗) .

If (3.26) holds, then Var(VCV) < Var(V̂). In this sense Var(VCV) is a better

approximation than V̂ .

131

0
2

4
6

8
10

S1 0

2

4

6

8

10

S2

0

0.2

0.4

0.6

0.8

1

0
2

4
6

8
10

S1 0

2

4

6

8

10

S2

0

0.2

0.4

0.6

0.8

1

Fig. 3.7. Example 3.8, binary option. horizontal: (S1, S2)-plane, vertical: V (S1, S2);

top: two paths starting at S1 = S2 = 5 with their payoff values; bottom: N = 1000

terminal points with their payoff values

3.5.5 Application to an Exotic Option

As mentioned before, the error of Monte Carlo methods basically does not

vary with the dimension. As an example we choose a two-dimensional binary

put to illustrate that MC can be applied as easily as in a one-dimensional

situation.

Assume that two underlying assets S1(t), S2(t) obey a two-dimensional

GBM,

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations132

3.5 Monte Carlo Simulation

dS1 = S1 (μ1 dt + σ1 dW
(1))

dS2 = S2 (μ2 dt + σ2 (ρ dW
(1) +

√
1 − ρ2 dW

(2))) .

(3.28)

This makes use of Exercise 2.9: W (1) and W (2) are two uncorrelated Wiener

processes, and the way they interact in (3.28) establishes a correlation ρ

between S1 and S2. The analytic solution of (3.28) is given by

S1(T) = S1(0) exp

(
(μ1 −

1

2
σ

2

1
)T + σ1W

(1)(T)

)
S2(T) = S2(0) exp

(
(μ2 −

1

2
σ

2

2
)T + σ2(ρW

(1)(T) +
√

1 − ρ2 W
(2)(T))

)
,

(3.29)

which generalizes (1.54).

Example 3.8 (2D European binary put)

A two-asset cash-or-nothing put pays the fixed cash amount c in case

S1(T) < K1 and S2(T) < K2 .

We choose the parameters T = 1, K1 = K2 = 5, σ1 = 0.2, σ2 = 0.3,

ρ = 0.3, c = 1, r = 0.1; no dividends, so the “costs of carry” are taken as

μ1 = μ2 = r. The value V (S1, S2, 0) is to be evaluated at S1(0) = S2(0) =

5.

Figure 3.7 illustrates both the payoff of this exotic option and the Monte Carlo

approach. The top figure depicts the box characterizing the payoff. Further,

two paths starting at S1(0) = S2(0) = 5 are drawn. For t = T , one of the

paths ends inside the box; accordingly the payoff value there is V = c = 1.

The other path terminates “outside the strike,” the payoff value is zero. Since

we have the analytic solution (3.29), no paths need to be calculated. Rather,

terminal points (S1(T), S2(T)) are evaluated by (3.29). The lower figure in

Figure 3.7 shows 1000 points calculated in this way. Taking the mean value

and discounting as in Algorithm 3.6, yields approximations to V (5, 5, 0). With

N = 105 simulations we obtain

V (5, 5, 0) ≈ 0.174 ,

using random numbers based on the simple generator of Algorithm 2.7. The

accuracy is almost three digits.3 Using Euler’s method rather than the analy-

tic solution, Example 3.8 offers nice possibilities to conduct empirical studies

in controlling either the bias or the sample error. We conclude Example 3.8

with Figure 3.8, which depicts the entire surface V (S1, S2, 0), calculated with

Algorithm 1.18 [Que07].

3 This example has an analytic solution based on bivariate distribution

functions, see [Haug98].

133

2
4

6
8

10 2
4

6
8

10
0

0.2

0.4

0.6

0.8

1

S2S1

V

Fig. 3.8. Example 3.8: surface V (S1, S2, 0) calculated by Algorithm 1.18. With

kind permission of Sebastian Quecke.

3.6 Monte Carlo Methods for American Options

The equation (3.20) can be generalized to American options. Similar as for

European options, Monte Carlo applied to American options requires simu-

lating paths St of the underlying model. Again, for ease of exposition, we

think of the prototype example of the univariate Black–Scholes model where

we integrate dSt = rSt dt+σSt dWt for t ≥ 0. Whereas for European options

it is clear to integrate until expiration, t = T , the American option requires

to continuously investigate whether early exercise is advisable.

3.6.1 Stopping Time

For motivation, think of a price limit β of an asset, such that a stop-buy

order is to be carried out at that level. The decision is prompted by the event

that St reaches β for some “stopping time” τ . Or, for the life of an American

option, the decisive event is “early exercise,” which amounts to a “stop” in

holding the option. To mimic reality, one must take care that for any t the

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations134

3.6 Monte Carlo Methods for American Options

decision (on early exercise, for example) is only based on the information that

is known so far. This situation suggests defining a stopping time to be not

anticipating. A stochastic process St builds a natural filtration Ft, which is

interpreted as a model of the information available at time t (−→ Appendix

B2). Accordingly, for a stopping time τ we require {τ ≤ t} ∈ Ft for all t ≥ 0,

where the set {τ ≤ t} represents all decisions until time t. That is:

Definition 3.9 (stopping time)

A stopping time τ with respect to a filtration Ft is a random variable

that is Ft-measurable for all t ≥ 0.

Typically, a decision is triggered when τ is reached, such as exercising early.

For any time t we know whether τ ≤ t —that is, whether the decision is made.

Suppose we travel along the path of a specific realization of a stochastic

process St and look up at the event that defines τ . In this way we get a

realization of the random variable τ ; for each path obtain another value.

S
0

T

0

S

τ

β

t

Fig. 3.9. The strategy of Example 3.10 to define a stopping time τ

Two examples should make the concept of a stopping time clearer.

Example 3.10 (hitting time)

For a value β, which fixes a level of S, define

τ := inf{ t > 0 | St ≥ β } ,

and τ := ∞ if such a t does not exist.

This example, illustrated in Figure 3.9, fulfills the requirements of a stopping

time.4 It defines a stopping strategy, “stop when St has reached β.”

The example

t
∗ := moment when St reaches its maximum over 0 ≤ t ≤ T

is no stopping time, because for each t < T it can not be decided whether

t
∗ ≤ t or t

∗
> t; it is not possible to decide whether to stop.

4 For a proof see [HuK00], p.42, or [Shr04], p.341.

135

In the context of American options, of all possible stopping times, the

stopping at the early-exercise curve is optimal (illustrated in Figure 3.10).

This optimal stopping gives the American option its optimal value. From a

practical point of view, the stopping at the early-exercise curve can not be

established as in Example 3.10, because the curve is not known initially. But

the following characterization of the value V (S, 0) of an American option

holds true:

V (S, 0) = sup
0≤τ≤T

EQ(e−rτ

Ψ(Sτ) | S0 = S) ,

where τ is a stopping time and Ψ is the payoff.

(3.30)

This result is a special case for t = 0 of a more general formula for V (S, t),

which is proved in [Ben84]. Clearly, (3.30) includes the case of a European

option for τ := T , in which case taking the supremum is not effective.

S

0

T

0
S K

τ

t

Fig. 3.10. The optimal stopping time τ of a vanilla put. The heavy curve is the

early-exercise curve, and the zigzag symbolizes a path St.

3.6.2 Parametric Methods

A practical realization of (3.30) leads to calculating lower bounds V low(S, 0)

and upper bounds V up(S, 0) such that

V
low(S, 0) ≤ V (S, 0) ≤ V

up(S, 0) . (3.31)

Since by (3.30) V (S, 0) is given by taking the supremum over all stopping

times, a lower bound is obtained by taking a specific stopping strategy. To

illustrate the idea, choose the stopping strategy of Example 3.10 with a level

β, see Figure 3.9. If we denote for each calculated path the resulting stopping

time by τ̃ = τ̃(β), a lower bound to V (S, 0) is given by

V
low(β)(S, 0) := EQ(e−rτ̃

Ψ(Sτ̃) | S0 = S) . (3.32)

This value depends on the parameter β, which is indicated by writing V low(β).

The bound is calculated by Monte Carlo simulation over a sample of N paths,

where the paths are stopped according to the chosen stopping rule. Procedure

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations136

3.6 Monte Carlo Methods for American Options

and costs of such a simulation for one value of β are analogous as in Algorithm

3.6. Repeating the experiment for another value of β may produce a better

(larger) value V low(β).

It is difficult to get a tolerable accuracy when working with only a single

parameter β. The situation can be slightly improved by choosing a finishing

line different from Figure 3.9. A simple but nicely working approximation

uses a parabola in the (S, t)-domain with horizontal tangent at t = T . Again

this approach requires only one parameter β (−→ Exercise 3.12). A result of

this approach is illustrated in Figure 3.11.

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

0 2 4 6 8 10

Fig. 3.11. Monte Carlo approximations V low(β)
(S, 0) (+) for several values of β

(Exercise 3.12, random numbers from [MaN98]). The dashed line represents the

exact value V (S, 0).

There are many examples how to obtain better lower bounds. For instance,

the early-exercise curve can be approximated by pieces of curves or pieces of

straight lines, which are defined by several parameters; β then symbolizes a

vector of parameters. The idea is to optimize in the chosen parameter space,

trusting that

sup
β

V
low(β) ≈ V.

As illustrated by Figure 3.11, the corresponding surface to be maximized is

not smooth. Accordingly, an optimization in the parameter space is costly, see

Appendix C4. Recall that each evaluation of V
low(β) for one β is expensive.

137

t

S

0

T

0
S K

Fig. 3.12. No stopping time; maximizing the payoff of a given path

What kind of parametric approximation, and what choice of the parame-

ters can be considered “good” when V (S, t) is still unknown? To this end,

upper bounds V
up can be constructed, and one attempts to push the diffe-

rence V up−V low close to zero in order to improve the approximation provided

by (3.31).5 An upper bound can be obtained, for example, when one peers

into the future. As a crude example, the entire path St for 0 ≤ t ≤ T may be

simulated, and the option is “exercised” in retrospect when

e−rt

Ψ(St)

is maximal. This is illustrated in Figure 3.12. Pushing the lower bounds

V
low(β) towards upper bounds amounts to search in the β-parameter space

for a better combination of β-values. As a by-product of approximating

V (S, 0), the corresponding parameters β provide an approximation of the

early-exercise curve.

The above is just a crude strategy how Monte Carlo can be applied to

approximate American options. In particular, the described simple approach

to obtain upper bounds is not satisfactory. Consult [AnB04] for a systematic

way of constructing reasonable upper bounds. Typically, the upper bounds

are more costly than the lower ones. Bounds are also provided by the stocha-

stic grids of [BrG04].

3.6.3 Regression Methods

One basic idea of regression methods is to approximate the American-style

option by a Bermudan option. A Bermudan option restricts early exercise to

specified discrete dates during its life. As in Section 1.8.4, the time instances

with the right to exercise are created artificially by a finite set of discrete

time instances ti :

5 Since the bounds are approximated by stochastic methods, it may happen

that the true value V (S, 0) is not inside the calculated interval (3.31).

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations138

3.6 Monte Carlo Methods for American Options

0

0.2

0.4

0.6

0.8

1

35 40 45 50 55 60 65 70

Fig. 3.13. Setting for a Bermudan option; schematic illustration with five trajec-

tories and M = 5 exercise times; data as in Figure 3.1; horizontal axis: S, vertical

axis: t. The points (Si,k, ti) are marked.

Δt :=
T

M
, ti := i Δt (i = 0, . . . , M) ,

see the illustration of Figure 3.13. The situation resembles the time discretiza-

tion of the binomial method of Section 1.4. In that semidiscretized setting the

value of the dynamic programming procedure of equation (1.14) generalizes

to

Vi(S) = max{Ψ(S) , V
cont

i
(S)} ,

where the continuation value or holding value V cont

i
is defined by the condi-

tional expectation

V
cont

i
(S) := e−rΔt

EQ(Vi+1(Si+1) | Si = S) .

[On the binomial tree, this is equation (1.13).] EQ is calculated as before

under the assumption of risk neutrality.

In the context of a Bermudan option, we define the continuation value

Ci(x) := e−rΔt

EQ(V (Sti+1
, ti+1) | Sti

= x) . (3.33)

This function needs to be approximated. If we can do it, then the general

recursion is:

139

Principle 3.11 (dynamic programming)

Set VM (x) = Ψ(x). For i = M − 1, ..., 1

calculate Ci(x) for x > 0 and

Vi(x) := V (x, ti) = max {Ψ(x), Ci(x)}
V0 := V (S0, 0) = max {Ψ(S0), C0(S0)}

To calculate an approximation Ĉi(x) for Ci(x), data are generated by

running N simulations. All simulating paths are calculated starting from

S0, according to the underlying risk-neutral model. This creates paths

S1(t), . . . , SN (t) for 0 ≤ t ≤ T (N = 5 in Figure 3.13). At the discrete ti

values, this establishes Si,k := Sk(ti) and assigns (Si,k, ti) to (Si+1,k, ti+1)

for k = 1, . . . , N and all i. Dropping the index k, this amounts to the tran-

sition Si −→ Si+1. On Si+1 a valuation Vi+1 is calculated by the recursion.

Hence N pairs (Si, e
−rΔtVi+1) are provided for each i. These pairs match

(3.33) and form the data basis on which (x, C(x)) is approximated by a sui-

table minimization method such as least squares.6 This sets up the basic

principle of regression methods.

Algorithm 3.12 (regression I)

(a) Simulate N paths S1(t), ..., SN (t). Calculate and store the values

Si,k := Sk(ti) , i = 1, ..., M, k = 1, ..., N .

(b) For i = M set VM,k := Ψ(SM,k) for all k.

(c) For i = M − 1, ..., 1:

Approximate Ci(x) using suitable basis functions φ0, ..., φL (monomi-

als, for example)

Ci(x) ≈
L∑

l=0

alφl(x) =: Ĉi(x)

by least squares over the N points

(xk, yk) := (Si,k, e−rΔt

Vi+1,k) , k = 1, ..., N,

and set

Vi,k := max
{
Ψ(Si,k), Ĉi(Si,k)

}
.

(d) Ĉ0 := e−rΔt 1

N
(V1,1 + ... + V1,N) , V0 = max

{
Ψ(S0), Ĉ0

}
In step (c), the coefficients a0, . . . , aL of the approximation Ĉ result from

a minimization. Step (d) is needed because (c) does not work for i = 0

since all S0,k = S0. In case the S and the x are vectors, the algorithm also

describes the multifactor case. Note that for convergence both N and L must

be increased.

6 For least squares see Appendix C4.

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations140

3.6 Monte Carlo Methods for American Options

The above basic version of regression can be improved in several ways.

[LonS01] has introduced a special version of the regression, incorporating as

a subalgorithm the calculation of the stopping time of each path. Working

with individual stopping times enables to set up an interleaving mechanism

over the time levels for comparing cash flows. The central step in (c) changes

to

Vi,k :=

{
Ψ(Si,k) for Ψ(Si,k) ≥ Ĉi(Si,k)

Vi+1,k for Ψ(Si,k) < Ĉi(Si,k)
(3.34)

This requires to adapt steps (b), (c), (d). Points out-of-the-money do not enter

the regression. To save storage, intermediate values can be filled in by using a

bridging technique. Following [Jon09], a significant speed-up is possible when

working with a cash-flow vector g, and an integer stopping time vector τ (the

integer factors k of τk = kΔt). The resulting algorithm is:

Algorithm 3.13 (regression II)

(a) Simulate N paths as in Algorithm 3.12.

(b) Set gk := Ψ(SM,k), τk = M for k = 1, ..., N .

(c) For i = M − 1, ..., 1:

For the subset of in-the-money-points

(xk, yk) := (Si,k, e−r(τk−i)Δt

gk) ,

approximate Ci(x) by Ĉi(x) ,

and for those k with Ψ(Si,k) ≥ Ĉi(Si,k): update

gk := Ψ(Si,k), τk := i .

(d) Ĉ0 :=
1

N

N∑
k=1

e−rτkΔt

gk , V0 := max{Ψ(S0), Ĉ0}.

Figure 3.14 shows a simple setting as an attempt to illustrate the regres-

sion method, with strike K = 10, and M = 2, N = 5. For i = 1, four of the

paths are in the money. Their continuation values Vi+1,k are denoted a, b, c, d

in Figure 3.14. The heavy line is the regression Ĉ, here a straight line be-

cause it is based only on the two regressors φ0 = 1, φ1 = x. The maximum

max{Ψ, Ĉ} is easy to check: for the points a and b the payoff is larger than

Ĉ(S).

Recently, many refined Monte Carlo methods for the calculation of Ame-

rican options have been suggested. For an overview on related approaches,

consult Chapter 8 in [Gla04]. At current state, the robust regression of [Jon11]

appears to be the most efficient approach; it has priced options on baskets

of up to 30 assets. One basic ingredient of this method is to neglect outliers,

with the effect of a remarkable bias reduction.

141

1 5

a

b

c

d

Ĉ

S

t
0 2 4 6 8 10 12 14 0

0.2
0.4

0.6
0.8

1

0

2

4

6

8

10

Fig. 3.14. Regression; illustration for a put with r = 0, M = 2, K = 10

3.7 Accuracy, and Sensitivity

Monte Carlo simulation is of great importance for general models where no

specific assumptions (as those of Black, Merton and Scholes) have led to

efficient approaches. For example, in case the interest rate r cannot be re-

garded as constant but is modeled by some SDE (such as equation (1.40)),

then a system of SDEs must be integrated. Examples of stochastic volatility

are provided by Example 1.15, compare Figure 3.2, or by the Heston model

(1.43). In such cases, a Monte Carlo simulation can be the method of choice.

Then the Algorithm 3.6 is adapted appropriately. Monte Carlo methods are

especially attractive for multifactor models with high dimension.

The demands for accuracy of Monte Carlo simulation should be kept on

a low level. In many cases an error of 1% must suffice. Recall that it does not

make sense to decrease the Monte Carlo sampling error significantly below the

error of the time discretization of the underlying SDE (and vice versa). When

the amount of available random numbers is too small or its quality poor,

then no improvement of the error can be expected. The methods of variance

reduction can save a significant amount of costs [BoBG97], [ScH97], [Pla99].

Note that different variance-reduction techniques can be combined with each

other. The efficiency of Monte Carlo simulations can be enhanced by suitably

combining several discretizations with different levels of coarseness [Gil08].

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations142

3.7 Accuracy, and Sensitivity

Sensitivity

A great computational challenge is to estimate how the price V changes when

parameters or initial states change, see Section 1.4.6. A sensitivity analysis

based on approximating partial derivatives amounts to calculating Greeks,

and can be used for calibration. Recall that for tree methods and for finite-

difference methods there are easy ways to establish approximations to the

Greeks delta, gamma, and theta, without the need for any recalculations. For

Monte Carlo methods, this task is more costly. When results are required for

slightly changed parameter values, to set up difference quotients, it may be

necessary to rerun Monte Carlo.

As an example we comment on approximating delta= ∂V

∂S
. A simple ap-

proach is to apply two runs of Monte Carlo simulation, one for S0 and one

for a close value S0−ΔS. Then an approximation of delta is obtained by the

difference quotient
V (S0) − V (S0 − ΔS)

ΔS
. (3.35)

The increment ΔS must be chosen carefully and not too small, because (B1.6)

in Appendix B1 tells us that the variance of (3.35) for arbitrary numerator

scales with (ΔS)−2. So it is important to investigate how the numerator de-

pends on ΔS. Simulating the two terms V (S0) and V (S0−ΔS) using common

random numbers improves the situation, see [Gla04]. Computing time can be

saved by working with series of precalculated random numbers. The crude

approach symbolized by (3.35) does not require additional programming, but

the costs are prohibitive for multiasset options.

With some more sophistication, the effort can be reduced. For example,

options are often priced for different maturities. When Monte Carlo is combi-

ned with a bridging technique, several such options can be priced effectively

in a single run [RiW03]. A general reference on estimating sensitivities is

Chapter 7 in [Gla04].

There are alternatives improving accuracy and saving computing time.

For example, Malliavin calculus allows to shift the differencing to the density

function, which leads via a kind of integration by parts to a different integral

to be approximated by Monte Carlo. For references on this technique consult

[FoLLLT99].

Another method that speeds up a sensitivity analysis significantly is the

adjoint method developed by [GiG06], which is described next.

Pathwise Sensitivities

Sensitivities can be approximated in a pathwise fashion. Consider similar as

in (1.41) a system of autonomous SDEs

dXt = a(Xt) dt + b(Xt) dWt (3.36)

where Xt ∈ IRn, and Wt ∈ IRm is a vector of independent Wiener processes.

That is, b is n×m and takes care of possible correlations (−→ Exercise 3.14).

143

For a standard discretization with M steps assume t0 = 0, T = Δt · M ,

tj := jΔt, j = 0, . . . , M , and let Ψ(X(T)) denote the discounted payoff. The

Euler discretization of (3.36) is

y(tj+1) = y(tj) + a(y(tj))Δt + b(y(tj))Z(tj)
√

Δt . (3.37)

We consider one calculated path Xt, 0 ≤ t ≤ T , represented by y(tj),

0 ≤ j ≤ M , and keep its random vectors Z(tj) available. The aim is to

estimate the sensitivity vector

s(0)tr :=
∂Ψ(X(T))

∂X(0)

(taken as a row vector). By the chain rule,

s(0)tr =
∂Ψ(X(T))

∂X(T)

∂X(T)

∂X(0)
. (3.38)

The first factor is easily available. The endeavor is to approximate the matrix
∂X(T)

∂X(0)
. To this end, we use the dynamics as created by the Euler method

(3.37), and calculate the approximation

∂y(T)

∂y(0)
.

As outlined in [Gla04, Section 7.2], we differentiate the ith component of the

Euler formula (3.37) with respect to yk(t0), which gives

∂yi(tj+1)

∂yk(t0)
=

∂yi(tj)

∂yk(t0)
+

n∑
l=1

∂ai(y(tj))

∂yl(tj)

∂yl(tj)

∂yk(t0)
Δt

+
∂

∂yk(t0)

m∑
ν=1

biν(y(tj))Zν(tj)
√

Δt

for all i, k = 1, . . . , n. The last term is

m∑
ν=1

n∑
l=1

∂biν(y(tj))

∂yl(tj)

∂yl(tj)

∂yk(t0)
Zν(tj)

√
Δt .

With

Δik(j) :=
∂yi(tj)

∂yk(t0)

this is written

Δik(j + 1) = Δik(j) +

n∑
l=1

∂ai(y(tj))

∂yl(tj)
Δlk(j)Δt

+

m∑
ν=1

n∑
l=1

∂biν(y(tj))

∂yl(tj)
Δlk(j)Zν(tj)

√
Δt .

(3.39)

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations144

3.7 Accuracy, and Sensitivity

This recursion (3.39) can be written in matrix notation. To this end, we use

the definition (as in [GiG06]) of the entries of (n × n)-matrices D(j)

Dik(j) := δik +
∂ai(y(tj))

∂yk(tj)
Δt +

m∑
ν=1

∂biν(y(tj))

∂yk(tj)
Zν(tj)

√
Δt . (3.40)

(Here δik = 1 for k = i, and = 0 for k
= i, is the Kronecker symbol and no

dividend yield.) The resulting recursion for the (n × n)-matrices Δ(j) with

elements Δik(j) is

Δ(j + 1) = D(j)Δ(j), j = 0, . . . , M − 1, Δ(0) = I . (3.41)

This summarizes the evolution of the path in a forward fashion. After M

matrix products the final matrix Δ(M) is the estimate
∂y(T)

∂y(0)
for

∂X(T)

∂X(0)
.

Then an approximation s̄(0)tr of the sensitivity vector s(0)tr is obtained via

the product (3.38).

Adjoint Method

As suggested by [GiG06], a backward view is possible too. To see this, rewrite

the above as

s̄(0)tr : =
∂Ψ(y(T))

∂y(T)

∂y(T)

∂y(0)
=

∂Ψ(y(T))

∂y(T)
Δ(M)

=
∂Ψ(y(T))

∂y(T)
D(M − 1) · . . . · D(0)

.

The observation of [GiG06] is that s̄(0) can be calculated with a backward

recursion, which operates n-vectors rather than (n × n)-matrices. We start

with the row vector

s̄(M)tr :=
∂Ψ(y(T))

∂y(T)

and obtain

(s̄(M − 1))tr =
∂Ψ

∂y(T)
D(M − 1) ,

or

s̄(M − 1) = (D(M − 1))tr
s̄(M) .

The next row vector is

(s̄(M − 2))tr =
∂Ψ

∂y(T)
D(M − 1)D(M − 2) = (s̄(M − 1))trD(M − 2),

or

s̄(M − 2) = (D(M − 2))tr s̄(M − 1) ,

and so on, which results in the recursion

s̄(j) = (D(j))tr s̄(j + 1), j = M − 1, . . . , 0, s̄(M) =

(
∂Ψ

∂y(T)

)
tr

. (3.42)

145

This backward recursion updates the n components of the vector s for every

j, whereas the forward recursion (3.41) updates the n2 entries of Δ in each

step. Hence the forward recursion (3.41) involves a factor of n more arith-

metic operations than the backward recursion. Consequently, the backward

recursion should be significantly faster for n > 1. But there is one drawback

of the potentially fast backward recursion: Its implementation requires to

store the entire path of the y-vectors with their Z-vectors in order to have

the D-matrices available. For very small step sizes Δt (M large) this dete-

riorates the speed somewhat. And switching to another payoff Ψ requires to

recalculate the backward recursion, whereas the forward recursion can use

the previous Δ(M) again. Observing these two features, the backward recur-

sion (3.42) (“adjoint method”) is highly advantageous. — The above method

approximates pathwise deltas. In a similar way, sensitivities with respect to

parameters can be calculated, see [GiG06].

Example 3.14 (Heston-Hull-White model)

Extending Heston’s model (1.43) by an SDE for the interest rate rt leads

to the system

dSt = rtSt dt +
√

vt St dW̃
(1)

t

dvt = κ(θ − vt) dt + σ2

√
vt dW̃

(2)

t

drt = α(R(t) − rt) dt + σ3 dW̃
(3)

t

(3.43)

The function R in the mean-reversion term for rt can be chosen as to

match the current term structure [HaH10], here chosen as constant for

simplicity:

R ≡ 0.06, α = 0.1, κ = 3, θ = 0.12,

σ2 = 0.04, σ3 = 0.01, T = 1, K = 100.

The mean reversion level θ = 0.12 corresponds to a volatility of about

35%. The Brownian motions W̃
(1)

t
, W̃

(2)

t
, W̃

(3)

t
are assumed (partly) cor-

related:

ρ12 = 0.6, ρ13 = ρ23 = 0 ,

hence W̃
(3)

t
is not correlated with W̃

(1)

t
, W̃

(2)

t
. Accordingly, the Cholesky

decomposition (Section 2.3.3) has a block structure, and Exercise 2.9 can

be applied. To cast it into the framework of (1.41), observe n = 3,

X :=

⎛⎝S

v

r

⎞⎠ , a(X) =

⎛⎝ X1X3

κ(θ − X2)

α(R − X3)

⎞⎠
and

b(X) dWt =

⎛⎝ X1

√
X2 0 0

σ2

√
X2 ρ12 σ2

√
X2

√
1 − ρ2

12
0

0 0 σ3

⎞⎠⎛⎝dW
(1)

t

dW
(2)

t

dW
(3)

t

⎞⎠

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations146

3.7 Accuracy, and Sensitivity

with independent Wiener processes W (i). In the discretization the Wiener

process can be taken as

√
Δt Z1(t),

√
Δt Z2(t),

√
Δt Z3(t)

with Zi ∼ N (0, 1).
√

Δt b(X)Z is a vector, an its partial derivatives enter

(3.40).

For a concrete example, we price a European call. Since the interest rate

is variable, we discount each trajectory with its proper rate. Hence, the

discounted payoff is

exp

(
−

∫
T

0

rt dt

)
(ST − K)+ .

For experiments, we have chosen the starting point

S0 = 95, v0 = θ, r0 = R ,

approximated the discounting integral by the trapezoidal sum (C1.2), and

obtained V (S0, v0, r0, 0) ≈ 13.1 . The reader is encouraged to set up the

matrix D(j) and test the adjoint method.

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 3.15. Quasi Monte Carlo applied to Example 3.7

147

Test with Halton Points

To complete this chapter, we test the Monte Carlo simulation in a fully

deterministic variant. To this end we insert the quasi-random two-dimensional

Halton points into Algorithm 2.13 and use the resulting quasi normal deviates

to calculate solutions of the SDE. In this way, for Example 3.7 acceptable

accuracy is reached already for about 2000 paths, much better than what is

shown in the experiments reported by Figures 3.3 or 3.5.

A closer investigation reveals that normal deviates based on Box-Muller-

Marsaglia (Algorithm 2.13) with two-dimensional Halton points lose the equi-

distributedness; the low discrepancy is not preserved. Apparently the quasi-

random method does not simulate independence [Gen98]. A related visual

inspection resembles Figure 2.6. This sets the stage for the slightly faster

inversion method [Moro95] (−→ Appendix D2), based on one-dimensional

low-discrepancy sequences. Figure 3.15 shows the result. The scaling of the

figure is the same as before.

Notes and Comments

on Sections 3.1, 3.2:

Under suitable assumptions it is possible to prove existence and uniqueness

for strong solutions, see [KlP92]. Usually the discretization error dominates

other sources of error. We have neglected the sampling error (the difference

between ε̂ and ε), imperfections in the random number generator, and roun-

ding errors. Typically these errors are likely to be less significant. Section 3.2

closely follows Section 5.1 of [KlP92].

on Section 3.3:

[KlP92] discusses many methods for the approximation of paths of SDEs,

and proves their convergence. An introduction is given in [Pla99]. Possible

orders of strongly converging schemes are integer multiples of 1

2
whereas the

orders of weakly converging methods are whole numbers. Simple adaptions

of deterministic schemes do not converge for SDEs. For the integration of

random ODEs we refer to [GrK01]. Maple routines for SDEs can be found in

[CyKO01], and MATLAB routines in [Hig01].

For ODEs and SDEs linear stability is investigated. This is concerned

with the long-time behavior of solutions of the test equation dXt = αXt dt+

βXt dWt, where α is a complex number with negative real part. This situation

does not appear relevant for applications in finance. The numerical stability

in the case Re(α) < 0 depends on the step size h and the relation among

the three parameters α, β, h. For this topic and further references we refer to

[SaM96], [Hig01], [Pla99].

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations148

Notes and Comments

on Section 3.4:

For Brownian bridges see, for instance, [KaS91], [ReY91], [KlP92], [Øk98],

[Mor98], [Gla04]. Other bridges than Brownian bridges are possible. For a

Gamma process and a Gaussian bridge this is shown in [RiW02], [RiW03].

For the effectiveness of Monte Carlo integration improved with bridging tech-

niques, see [CaMO97]. The probability that a Brownian bridge passes a given

barrier is found in [KaS91], see also [Gla04]. The maximum of a Wiener pro-

cess tied down to W0 = 0, W1 = a on 0 ≤ t ≤ 1 has the distribution F (x)

of Exercise 2.16. And the time instant at which the maximum is attained is

distributed with

F (x) =
2

π
arcsin(

√
x) for 0 ≤ x ≤ 1 .

Another alternative to fill large gaps is to apply fractal interpolation

[Man99].

on Section 3.5:

In the literature the basic idea of the approach summarized by equation

(3.19) is analyzed using martingale theory, compare the references in Chap-

ter 1 and Appendix B2. An early paper suggesting MC for the pricing of

options is [Boy77]. The calculation of risk indices such as value at risk is an

important application of Monte Carlo methods, see the notes on Section 1.8.

The equivalence of the Monte Carlo simulation (representation (3.18)/(3.19))

with the solution of the Black–Scholes equation is guaranteed by the theo-

rem of Feynman and Kac [KaS91], [Nef96], [Reb96], [Øk98], [Bjö98], [TaR00],

[Shr04]. A standard reference on MC in finance is [Gla04].

Monte Carlo simulations can be parallelized in a trivial way: The single

simulations can be distributed among the processors in a straightforward

fashion because they are independent of each other. If M processors are

available, the speed reduces by a factor of 1/M . But the streams of random

numbers in each processor must be independent. For related generators see

[Mas99]. In doubtful and sensitive cases Monte Carlo simulation should be

repeated with other random-number generators, and with low-discrepancy

numbers [Jäc02].

The method of control variates can be modified with a parameter α,

V
α

CV
:= V̂ + α(V ∗ − V̂

∗),

where one tries to find a value of α such that the variance is minimized.

For a discussion of variance reduction and examples, consult Chapter 4

in [Gla04]. For the variance-reduction method of importance sampling, see

[New97], [Gla04]. In particular, a change of drift helps driving the underlying

assets into “important” regions. An optimal drift is possible that reduces the

variance significantly. [Aro03] suggests a truncated version of the Robbins-

Monro algorithm, and [Jon11] reduces the number of insignificant paths for

his robust regression with a deterministic method.

149

on Section 3.6:

For Monte Carlo simulation on American options see also [BrG97], [BoBG97],

[Kwok98], [Rog00], [Fu01], [LonS01], [Gla04]. Note that for multivariate op-

tions of the American style the costs are increasing with the dimension more

significantly than for European options. For parametric methods, the parame-

ter vector β defines surfaces rather than curves. And for regression methods,

the calculation of C or Ĉ is costly and does depend on the dimension. A nice

experiment with a parametric method is given in [Hig04]. Significant savings

are possible when the dimension is reduced by a principle component analysis

(−→ Exercise 2.18).

A first version of regression was introduced by [Til93], where the continua-

tion value was approximated based on subsets of paths. This bundling tech-

nique was modified in [Car96] by an improved regression. As [Til93] points

out, a single set of paths of an underlying asset can be generated and then

used repeatedly to value many different derivatives. Lack of independence

makes it difficult to prove convergence, or to set up confidence intervals. For

these aspects, see [Egl05], and [AnB04] and the references therein.

Exercises

Exercise 3.1 Implementing Euler’s Method

Implement Algorithm 1.11. Start with a test version for one scalar SDE, then

develop a version for a system of SDEs. Test examples:

a) Perform the experiment of Figure 1.17.

b) Integrate the system of Example 1.15 for α = 0.3, β = 10 and the initial

values S0 = 50, σ0 = 0.2, ξ0 = 0.2 for 0 ≤ t ≤ 1.

We recommend to plot the calculated trajectories.

Exercise 3.2 Itô Integral in Equation (3.9)

Let the interval 0 ≤ s ≤ t be partitioned into n subintervals, 0 = t1 < t2 <

... < tn+1 = t. For a Wiener process Wt assume Wt1
= 0.

a) Show

n∑
j=1

Wtj

(
Wtj+1

− Wtj

)
=

1

2
W

2

t
−

1

2

n∑
j=1

(
Wtj+1

− Wtj

)2
b) Use Lemma 1.9 to deduce Equation (3.9).

Exercise 3.3 Integration by Parts for Itô Integrals

a) Show ∫
t

t0

s dWs = tWt − t0Wt0
−

∫
t

t0

Ws ds

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations150

Exercises

Hint: Start with the Wiener process Xt = Wt and apply the Itô Lemma

with the transformation y = g(x, t) := tx.

b) Denote ΔY :=
∫

t

t0

∫
s

t0
dWz ds. Show by using a) that∫
t

t0

∫
s

t0

dz dWs = ΔWΔt − ΔY .

Exercise 3.4 Moments of Itô Integrals for Weak Solutions

a) Use the Itô isometry

E

⎡⎣(∫ b

a

f(t, ω) dWt

)2
⎤⎦ =

∫
b

a

E
[
f

2(t, ω)
]

dt

to show its generalization

E [I(f)I(g)] =

∫
b

a

E[fg] dt , where I(f) =

∫
b

a

f(t, ω) dWt .

Hint: 4fg = (f + g)2 − (f − g)2.

b) For ΔY :=
∫

t

t0

∫
s

t0
dWz ds the moments are

E[ΔY] = 0, E[ΔY
2] =

Δt3

3
, E[ΔY ΔW] =

Δt2

2
and E[ΔY ΔW

2] = 0.

Show this by using a) and E

[∫
b

a
f(t, ω) dWt

]
= 0.

Exercise 3.5

By transformation of two independent standard normally distributed random

variables Zi ∼ N (0, 1), i = 1, 2, two new random variables are obtained by

ΔŴ := Z1

√
Δt, ΔŶ :=

1

2
(Δt)3/2

(
Z1 +

1
√

3
Z2

)
.

Show that ΔŴ and ΔŶ have the moments of (3.14).

Exercise 3.6

In addition to (3.14) further moments are

E(ΔW) = E(ΔW
3) = E(ΔW

5) = 0, E(ΔW
2) = Δt, E(ΔW

4) = 3Δt
2
.

Assume a new random variable ΔW̃ satisfying

P

(
ΔW̃ = ±

√
3Δt

)
=

1

6
, P

(
ΔW̃ = 0

)
=

2

3

and the additional random variable

151

ΔỸ :=
1

2
ΔW̃Δt .

Show that the random variables ΔW̃ and ΔỸ have up to terms of order

O(Δt3) the same moments as ΔW and ΔY .

Exercise 3.7 Brownian Bridge

For a Wiener process Wt consider

Xt := Wt −
t

T
WT for 0 ≤ t ≤ T .

Calculate Var(Xt) and show that√
t

(
1 −

t

T

)
Z with Z ∼ N (0, 1)

is a realization of Xt.

Exercise 3.8 Error of the Milstein Scheme

To which formula does the Milstein scheme reduce for linear SDEs? Per-

form the experiment outlined in Example 3.2 using the Milstein scheme of

Algorithm 3.5. Set up a table similar as in Table 3.1 to show

ε̂(h) ≈ h

for Example 3.2.

Exercise 3.9 Monte Carlo and European Option

For a European put with time to maturity τ := T − t prove that

V (St, t) = e−rτ

∞∫
0

(K − ST)+
1

ST σ
√

2πτ
exp

{
−

[ln(ST /St) − (r − σ
2

2
)τ]2

2σ2τ

}
dST

= e−rτ

KF (−d2) − StF (−d1) ,

where d1 and d2 are defined in (A4.10).

Hints: The second equation is to be shown, the first only collects the terms

of (3.18). Use (K − ST)+ = 0 for ST > K, and get two integrals.

Exercise 3.10 Bias of the Euler Approximation

Given is the SDE dSt = St(μ dt + σ dWt) with constant μ, σ. Let Ŝ denote

an Euler approximation at t2 := 2Δt, calculated with two steps of length Δt,

starting at t0 := 0 with the value S0.

a) Calculate E(Ŝ).

b) Calculate the bias E(Ŝ) − S0 exp[μt2] .

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations152

Exercises

Exercise 3.11 Monte Carlo for European Options

Implement a Monte Carlo method for single-asset European options, based

on the Black–Scholes model. Perform experiments with various values of N

and a random number generator of your choice. Compare results obtained

by using the analytic solution formula for St with results obtained by using

Euler’s discretization. For c) B is the barrier such that the option expires

worthless when St ≥ B for some t.

input: S0, number of simulations (trajectories) N , payoff function Ψ(S), risk-

neutral interest rate r, volatility σ, time to maturity T , strike K.

payoffs:

a) vanilla put, with Ψ(S) = (K − S)+, S0 = 5, K = 10, r = 0.06, σ = 0.3,

T = 1.

b) binary call, with Ψ(S) = 1S>K , S0 = K = σ = T = 0.5, r = 0.1

c) up-and-out barrier: call with S0 = 5, K = 6, r = 0.05, σ = 0.3, T = 1,

B = 8.

Hint: Correct values are: a) 4.43046 b) 0.46220 [Que07] c) 0.0983 [Hig04]

Exercise 3.12 Project: Monte Carlo Experiment

Construct as hitting curve a parabola with horizontal tangent at (S, t) =

(K, T), similar as in Figure 3.10. The parabola is defined by the intersection

with the S-axis, (S, t) = (β, 0). Choose K = 10, r = 0.006, σ = 0.3, and

S0 = 9 and simulate for several values of β the GBM dS = rS dt + σS dW

several thousand times, and calculate the hitting time for each trajectory.

Estimate a lower bound to V (S0, 0) using (3.30). Decide whether an exact

calculation of the hitting point makes sense. (Run experiments comparing

such a strategy to implementing the hitting time restricted to the discrete

time grid.) Think about how to implement upper bounds.

Exercise 3.13 Error of Biased Monte Carlo

Assume

MSE = ζ(h, N) := α
2

1
h

2β +
α2

N

as error model of a Monte Carlo simulation with sample size N , based on a

discretization of an SDE with stepsize h, where α1, α2 are two constants.

a) Argue why for some constant α3

C(h, N) := α3

N

h

is a reasonable model for the costs of the MC simulation.

b) Minimize ζ(h, N) with respect to h, N subject to the side condition

α3N/h = C

for given budget C.

153

c) Show that for the optimal h, N

√
MSE = α4C

−
β

1+2β .

Exercise 3.14 SDE in Standard Form

Let us denote (1.41) as “standard form” of a system of SDEs, with uncorre-

lated Wiener processes W
(1)

t
, . . . , W

(m)

t
. What is the vector a and the matrix

b for

a) the example of equation (3.28),

b) the Heston model of equation (1.43).

For the Heston model, first transform the unknown v0 to the right-hand side

by scaling ṽt := vt/v0.

Exercise 3.15 Binary Random Variate

Let α, β, p with 0 < p < 1 be given numbers. Design an algorithm that

outputs α with probability p and β with probability 1 − p.

 Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations154

