
Chapter 1 Modeling Tools

for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation)

to buy or sell one unit of a risky asset at a prespecified fixed price within a

specified period. An option is a financial instrument that allows —amongst

other things— to make a bet on rising or falling values of an underlying

asset. The underlying asset typically is a stock, or a parcel of shares of a

company. Other examples of underlyings include stock indices (as the Dow

Jones Industrial Average), currencies, or commodities. Since the value of an

option depends on the value of the underlying asset, options and other related

financial instruments are called derivatives (−→ Appendix A2). An option is

a contract between two parties about trading the asset at a certain future

time. One party is the writer, often a bank, who fixes the terms of the option

contract and sells the option. The other party is the holder, who purchases the

option, paying the market price, which is called premium. How to calculate a

fair value of the premium is a central theme of this book. The holder of the

option must decide what to do with the rights the option contract grants.

The decision will depend on the market situation, and on the type of option.

There are numerous different types of options, which are not all of interest

to this book. In Chapter 1 we concentrate on standard options, also known

as vanilla options. This Section 1.1 introduces important terms.

Options have a limited life time. The maturity date T fixes the time hori-

zon. At this date the rights of the holder expire, and for later times (t > T )

the option is worthless. There are two basic types of option: The call option

gives the holder the right to buy the underlying for an agreed price K by the

date T . The put option gives the holder the right to sell the underlying for

the price K by the date T . The previously agreed price K of the contract is

called strike or exercise price1. It is important to note that the holder is

not obligated to exercise —that is, to buy or sell the underlying according

to the terms of the contract. The holder may wish to close his position by

selling the option. In summary, at time t the holder of the option can choose

to

1 The price K as well as other prices are meant as the price of one unit of

an asset, say, in $.
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• sell the option at its current market price on some options exchange

(at t < T ),

• retain the option and do nothing,

• exercise the option (t ≤ T ), or

• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy

the underlying for the strike price K, in case the holder chooses to exercise.

The risk situation of the writer differs strongly from that of the holder. The

writer receives the premium when he issues the option and somebody buys

it. This up-front premium payment compensates for the writer’s potential

liabilities in the future. The asymmetry between writing and owning options

is evident. This book mostly takes the standpoint of the holder (long position

in the option).

Not every option can be exercised at any time t ≤ T . For European

options, exercise is only permitted at expiration T . American options can

be exercised at any time up to and including the expiration date. For options

the labels American or European have no geographical meaning; both types

are traded in each continent. Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends

on the price per share of the underlying, which is denoted S. This letter

S symbolizes stocks, which are the most prominent examples of underlying

assets. The variation of the asset price S with time t is expressed by St or

S(t). The value of the option also depends on the remaining time to expiry

T − t. That is, V depends on time t. The dependence of V on S and t is

written V (S, t). As we shall see later, it is not easy to define and to calculate

the fair value V of an option for t < T . But it is an easy task to determine

the terminal value of V at expiration time t = T . In what follows, we shall

discuss this topic, and start with European options as seen with the eyes of

the holder.

S

V

K

Fig. 1.1. Intrinsic value of a call with exercise price K (payoff function)
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The Payoff Function

At time t = T , the holder of a European call option will check the current

price S = ST of the underlying asset. The holder has two alternatives to

acquire the underlying asset: either buying the asset on the spot market

(costs S), or buying the asset by exercising the call option (costs K). For

a rational investor, the decision is easy: the costs are to be minimal. The

holder will exercise the call if and only if S > K. For then the holder can

immediately sell the asset for the spot price S and makes a gain of S−K per

share. In this situation the value of the option is V = S−K. (This reasoning

ignores transaction costs.) In case S < K the holder will not exercise, since

then the asset can be purchased on the market for the cheaper price S. In

this case the option is worthless, V = 0. In summary, the value V (S, T ) of a

call option at expiration date T is given by

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST −K in case ST > K (option is exercised)

Hence

V (ST , T ) = max{ST −K, 0} .

Considered for all possible prices St > 0, max{St−K, 0} is a function of St,

in general for 0 ≤ t ≤ T .2 This payoff function is shown in Figure 1.1. Using

the notation f+ := max{f, 0}, this payoff can be written in the compact form

(St −K)+. Accordingly, the value V (ST , T ) of a call at maturity date T is

V (ST , T ) = (ST −K)+ . (1.1C)

For a European put, exercising only makes sense in case S < K. The

payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

Hence

V (ST , T ) = max{K − ST , 0} ,

or

V (ST , T ) = (K − ST )+ , (1.1P)

compare Figure 1.2.

2 In this chapter, the payoff evaluated at t only depends on the current

value St. Payoffs that depend on the entire path St for all 0 ≤ t ≤ T occur

for exotic options, see Chapter 6.
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S

V

K

K

Fig. 1.2. Intrinsic value of a put with exercise price K (payoff function)

The curves in the payoff diagrams of Figures 1.1 and 1.2 show the option

values from the perspective of the holder. The profit is not shown. For an

illustration of the profit, the initial costs for buying the option at t = t0 must

be subtracted. The initial costs basically consist of the premium and the

transaction costs. Since both are paid upfront, they are multiplied by er(T−t0)

to take account of the time value; r is the continuously compounded interest

rate. Subtracting the costs leads to shifting down the curves in Figures 1.1

and 1.2. The resulting profit diagram shows a negative profit for some range

of S-values, which of course means a loss (see Figure 1.3).

The payoff function for an American call is (St−K)+ and for an American

put (K−St)
+ for any t ≤ T . The Figures 1.1 and 1.2 as well as the equations

(1.1C), (1.1P) remain valid for American type options.

K

S

V
K

Fig. 1.3. Profit diagram of a put

The payoff diagrams of Figures 1.1, 1.2 and the corresponding profit dia-

grams show that a potential loss for the purchaser of an option (long position)

is limited by the initial costs, no matter how bad things get. The situation for

the writer (short position) is reverse. For him the payoff curves of Figures 1.1,

1.2 as well as the profit curves must be reflected on the S-axis. The writer’s

profit or loss is the reverse of that of the holder. Multiplying the payoff of a

call in Figure 1.1 by (−1) illustrates the potentially unlimited risk of a short
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call. Hence the writer of a call must carefully design a strategy to compensate

for his risks. We will come back to this issue in Section 1.5.

A Priori Bounds

No matter what the terms of a specific option are and no matter how the

market behaves, the values V of the options satisfy certain bounds. These

bounds are known a priori. For example, the value V (S, t) of an American

option can never fall below the payoff, for all S and all t. These bounds follow

from the no-arbitrage principle (−→ Appendices A2, A3).

To illustrate the strength of no-arbitrage arguments, we assume for an

American put that its value V Am

P
is below the payoff. V < 0 contradicts the

definition of the option. Hence V ≥ 0, and S and V would be in the triangle

seen in Figure 1.2. That is, S < K and 0 ≤ V < K − S. This scenario would

allow an arbitrage strategy as follows: Borrow the cash amount of S + V ,

and buy both the underlying and the put. Then immediately exercise the

put, selling the underlying for the strike price K. The profit of this arbitrage

strategy is K−S−V > 0. This is in conflict with the no-arbitrage principle.

Hence the assumption that the value of an American put is below the payoff

must be wrong. We conclude for the put

V
Am

P
(S, t) ≥ (K − S)+ for all S, t .

Similarly, for the call

V
Am

C
(S, t) ≥ (S −K)+ for all S, t .

(The meaning of the notations V Am

C
, V Am

P
, V Eur

C
, V Eur

P
is evident.)

Other bounds are listed in Appendix D1. For example, a European put

on an asset that pays no dividends until T may also take values below the

payoff, but is always above the lower bound Ke−r(T−t) − S. The value of

an American option should never be smaller than that of a European option

because the American type includes the European type exercise at t = T and

in addition early exercise for t < T . That is

V
Am ≥ V

Eur

as long as all other terms of the contract are identical. When no dividends

are paid until T , the values of put and call for European options are related

by the put-call parity

S + V
Eur

P
− V

Eur

C
= Ke−r(T−t)

,

which can be shown by applying arguments of arbitrage (−→ Exercise 1.1).

Options in the Market

The features of the options imply that an investor purchases puts when the

price of the underlying is expected to fall, and buys calls when the prices are
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about to rise. This mechanism inspires speculators. An important application

of options is hedging (−→ Appendix A2).

The value of V (S, t) also depends on other factors. Dependence on the

strike K and the maturity T is evident. Market parameters affecting the

price are the interest rate r, the volatility σ of the price St, and dividends

in case of a dividend-paying asset. The interest rate r is the risk-free rate,

which applies to zero bonds or to other investments that are considered free

of risks (−→ Appendices A1, A2). The important volatility parameter σ can

be defined as standard deviation of the fluctuations in St, for scaling divided

by the square root of the observed time period. The larger the fluctuations,

represented by large values of σ, the harder is to predict a future value of the

asset. Hence the volatility is a standard measure of risk. The dependence of

V on σ is highly sensitive. On occasion we write V (S, t; T, K, r, σ) when the

focus is on the dependence of V on market parameters.

Time is measured in years. The units of r and σ2 are per year. Writing

σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate of

5%. Table 1.1 summarizes the key notations of option pricing. The notation

is standard except for the strike price K, which is sometimes denoted X , or

E.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 de-

noting the date when the option is issued and t as a symbol for “today.”

But this book mostly sets t0 = 0 in the role of “today,” without loss of ge-

nerality. Then the interval 0 ≤ t ≤ T represents the remaining life time of

the option. The price St is a stochastic process, compare Section 1.6. In real

markets, the interest rate r and the volatility σ vary with time. To keep the

models and the analysis simple, we mostly assume r and σ to be constant on

0 ≤ t ≤ T . Further we suppose that all variables are arbitrarily divisible and

consequently can vary continuously —that is, all variables vary in the set IR

of real numbers.

Table 1.1. List of important variables

t current time, 0 ≤ t ≤ T
T expiration time, date of maturity, terminal time

r risk-free interest rate, continuously compounded

S, St spot price, current price per share of stock/asset/underlying

σ annual volatility

K strike, exercise price per share

V (S, t) value of an option at time t and underlying price S

The Geometry of Options

As mentioned, our aim is to calculate V (S, t) for fixed values of K, T, r, σ.

The values V (S, t) can be interpreted as a surface over the subset

S > 0 , 0 ≤ t ≤ T
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of the (S, t)-plane. Figure 1.4 illustrates the character of such a surface for

the case of an American put. For the illustration assume T = 1. The figure

depicts six curves obtained by cutting the option surface with the planes

t = 0, 0.2, . . . , 1.0. For t = T the payoff function (K − S)+ of Figure 1.2 is

clearly visible.

S

t

0

V

2

1

T

K

C

C

K

Fig. 1.4. Value V (S, t) of an American put (schematically)

Shifting this payoff curve parallel for all 0 ≤ t < T creates another surface,

which consists of the two planar pieces V = 0 (for S ≥ K) and V = K − S

(for S < K). This payoff surface (K − S)+ is a lower bound to the option

surface, V (S, t) ≥ (K − S)+. Figure 1.4 shows two curves C1 and C2 on

the option surface. The curve C1 is the early-exercise curve, because on the

planar part with V (S, t) = K−S holding the option is not optimal. (This will

be explained in Section 4.5.) The curve C2 has a technical meaning explained

below. Within the area limited by these two curves C1, C2, the option surface

is clearly above the payoff surface, V (S, t) > (K − S)+. Outside that area,

both surfaces coincide. This is strict “above” C1, where V (S, t) = K − S,

and holds approximately for S beyond C2, where V (S, t) ≈ 0 or V (S, t) < ε

for a small value of ε > 0. The location of C1 and C2 is not known, these

curves are calculated along with the calculation of V (S, t). Of special interest

is V (S, 0), the value of the option “today.” This curve is seen in Figure 1.4

for t = 0 as the front edge of the option surface. This front curve may be seen

as smoothing the corner in the payoff function. The schematic illustration of

Figure 1.4 is completed by a concrete example of a calculated put surface in

Figure 1.5. An approximation of the curve C1 is shown.

The above was explained for an American put. For other options the

bounds are different (−→ Appendix D1). As mentioned before, a European

put takes values above the lower bound Ke−r(T−t) − S, compare Figure 1.6

and Exercise 1.1b.
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Fig. 1.5. Value V (S, t) of an American put with r = 0.06, σ = 0.30, K = 10, T = 1

In summary, this Section 1.1 has introduced an option with the following

features: it depends on one underlying, and its payoff is (K − S)+ or (S −
K)+, with S evaluated at the current time instant. This is the standard

option called vanilla option. All other options are called exotic. To clarify the

distinction between vanilla options and exotic options, we hint at ways how

an option can be “exotic.” For example, an option may depend on a basket

of several underlying assets, or the payoff may be different, or the option may

be path-dependent in that V no longer depends solely on the current (St, t)

but on the entire path St for 0 ≤ t ≤ T . To give an example of the latter,

we mention an Asian option, where the payoff depends on the average value

of the asset for all times until expiry. Or for a barrier option the value also

depends on whether the price St hits a prescribed barrier during its life time.

We come back to exotic options later in the book.

1.2 Model of the Financial Market

Ultimately it is the market that decides on the value of an option. Above, we

have been anticipating “surfaces” V (S, t), pretending a value V for any S, t.

In the reality of markets, prices V mar of options are only known for a selection

of discrete values of the underlying’s prices, times, or parameters. Geometri-

cally, the available data form only relatively few points on the anticipated

“surfaces” V . If we try to calculate a reasonable value of the option, we need a

mathematical model of the market. Mathematical models can serve as appro-

ximations and idealizations of the complex reality of the financial world. The
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Fig. 1.6. Value of a European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
The payoff V (S, T ) is drawn with a dashed line. For small values of S the value V
approaches its lower bound, here 9.4 − S.

most prominent example of a model is the model named after the pioneers

Black, Merton and Scholes. Their approaches have been both successful and

widely accepted. This Section 1.2 introduces some key elements of market

models. Based on a chosen mathematical model, the value and the potential

of an option is assessed. This includes both the calculation of V (S, t), and

an analysis of how sensitive V reacts on changes in S, t, or on variations in

the parameters. Of course, the results are subject to the uncertainty of the

model.

It is attractive to define the option surfaces V (S, t) on the half strip S > 0,

0 ≤ t ≤ T as solutions of suitable equations. Then calculating V amounts to

solving the equations. In fact, a series of assumptions allows to characterize

value functions V (S, t) as solutions of certain partial differential equations or

partial differential inequalities. The model of Black, Merton and Scholes is

represented by the famous Black–Scholes equation, which was suggested in

1973.
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Definition 1.1 (Black–Scholes equation)

∂V

∂t
+

1

2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.2)

Equation (1.2) is a partial differential equation (PDE) for the value function

V (S, t) of options. This equation may serve as symbol of the classical market

model. But what are the assumptions leading to the Black–Scholes equation?

Assumptions 1.2 (Black–Merton–Scholes model of the market)

(a) There are no arbitrage opportunities.

(b) The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest

rates for borrowing and lending money are equal, all parties have imme-

diate access to any information, and all securities and credits are available

at any time and in any size.3 Consequently, all variables are perfectly di-

visible —that is, can take any real number. Further, individual trading

will not influence the price.

(c) The asset price follows a geometric Brownian motion.

(This stochastic motion will be discussed in Sections 1.6–1.8.)

(d) r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time

period. The option is European.

These are the assumptions that lead to the Black–Scholes equation (1.2). The

assumptions are rather strong, in particular, the volatility σ being constant.

Some of the assumptions can be weakened. We come to more complex models

later in the text. For brevity, we call the restricted model represented by

Assumptions 1.2 Black–Scholes model, because Merton has also extended it

to include jumps, which are ruled out by (c). A derivation of the Black–Scholes

partial differential equation (1.2) is given in Appendix A4. Admitting all real

numbers t within the interval 0 ≤ t ≤ T leads to characterize the model as

continuous-time model. In view of allowing also arbitrary values of S > 0,

V > 0, we speak of a continuous model.

A value function V (S, t) is not fully defined by merely requesting that it

solves (1.2) for all S and t out of the half strip. In addition to solving this

PDE, the function V (S, t) must satisfy a terminal condition. The terminal

condition for t = T is

V (S, T ) = Ψ(S) ,

where Ψ denotes the payoff function (1.1C) or (1.1P), depending on the type

of option. This terminal condition is no artificial requirement. It is a prime

statement and naturally represents the definition of an option. In theory, (1.2)

3 In particular, this holds for trading the underlying.
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with V (S, T ) = Ψ(S) is a Cauchy problem and completes one possibility of

defining a value function V (S, t).

For computational purposes, the full half strip with S > 0 is typically

truncated, say, to Smin ≤ S ≤ Smax. Then boundary conditions for Smin

and Smax are needed in addition. Sometimes they are given by the financial

terms of the option, for example, for barrier options. But often boundary

conditions are secondary and artificial, and not immediately provided by the

financial construction. Rather, boundary conditions are required to make a

solution of the partial differential equation meaningful. In Chapter 4 we will

come back to the Black–Scholes equation and to boundary conditions.

For (1.2) an analytic solution is known [equation (A4.10) in Appendix A4].

Note that the partial differential equation (1.2) is linear in the value function

V .4 The partial differential equation is no longer linear when Assumptions

1.2(b) are relaxed. For example, for considering trading intervals Δt and

transaction costs as k per unit, one could add the nonlinear term

−

√
2

π

kσS2

√
Δt

∣∣∣∣∂2V

∂S2

∣∣∣∣
to (1.2), see [WiDH96], and Section 7.1. Also finite liquidity (feedback of

trading to the price of the underlying) leads to nonlinear terms in the PDE.

In the general case, closed-form solutions do not exist, and a solution is cal-

culated numerically, especially for American options. For the American-style

option a further nonlinearity stems from the early-exercise feature (−→ Chap-

ter 4). For solving (1.2) numerically, a variant with dimensionless variables

can be used (−→ Exercise 1.2).

Of course, the calculated value V of an option depends on the chosen mar-

ket model. Writing V (S, t; T, K, r, σ) suggests a focus on the Black–Scholes

equation. This could be made definite by writing V BS, for example. Other

market models may involve more parameters. Then, in general, the correspon-

ding value of the value function V is different from V BS. Since we mostly stick

to the market model of Assumptions 1.2, we drop the superscript. All our

prices V are model prices, not market prices. For the relation between our

model prices V and market prices V mar, see Section 1.10.

Based on the chosen mathematical model, a sensitivity analysis is pos-

sible. We ask, for example, how does the price V change to a value V + dV ,

when the price S of the underlying changes to S +dS? Similarly, what is the

effect of a change dσ in the parameter σ? When the value function V (S, t; . . .)

is smooth, the Taylor expansion

dS =
∂V

∂S
dS +

∂V

∂t
dt +

∂V

∂σ
dσ +

∂V

∂r
dr +

1

2

∂2V

∂S2
(dS)2 + . . . . (1.3)

4 The function V is not linear in S or t. Also the payoff is nonlinear; the

vanilla functions Ψ(S) = (K − S)+ and Ψ(S) = (S −K)+ are convex.
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suggest an answer. The proper partial derivative of V is an amplification

factor. For small enough dt it provides a first-order guess on how sensitive

V may react to changes in the corresponding variable or parameter. In the

finance context, these partial derivatives of V are called “Greeks.” For exam-

ple, “delta” is the name for

Δ :=
∂V

∂S
.

The second-order derivative “gamma” ∂
2
V

∂S
2 is important too, and is included

in the list of first-order terms in (1.3) by reasons that will become clear in Sec-

tions 1.6 and 1.8. Several of these sensitivity parameters or hedge parameters

need to be approximated as well.

At this point, a word on the notation is appropriate. The symbol S for the

asset price is used in different roles: First it comes without subscript in the

role of an independent real variable S > 0 on which the value function V (S, t)

depends, say as solution of the partial differential equation (1.2). Second it is

used as St with subscript t to emphasize its random character as stochastic

process. When the subscript t is omitted, the current role of S becomes clear

from the context.

1.3 Numerical Methods

Applying numerical methods is inevitable in all fields of technology including

financial engineering. Often the important role of numerical algorithms is not

noticed. For example, an analytic formula at hand [such as the Black–Scholes

formula (A4.10)] might suggest that no numerical procedure is needed. But

closed-form solutions may include evaluating the logarithm or the computa-

tion of the distribution function of the normal distribution. Such elementary

tasks are performed using sophisticated numerical algorithms. In pocket cal-

culators one merely presses a button without being aware of the numerics.

The robustness of those elementary numerical methods is so reliable and

the efficiency so high that underlying algorithms almost appear not to exist.

But even for apparently simple tasks the methods are quite demanding (−→
Exercise 1.3). The methods must be carefully designed because inadequate

strategies might produce inaccurate results (−→ Exercise 1.4).

Spoilt by generally available black-box software and graphics packages we

take the support and the success of numerical workhorses for granted. We

make use of the numerical tools with great respect but without further com-

ments, and we just assume an education in elementary numerical methods.

An introduction to important methods and hints on the literature are given

in Appendix C1.

Since financial markets undergo apparently stochastic fluctuations, sto-

chastic approaches provide natural tools to simulate prices. These methods
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1.3 Numerical Methods

are based on formulating and simulating stochastic differential equations.

This leads to Monte Carlo methods (−→ Chapter 3). In computers, related

simulations of options are performed in a deterministic manner. It will be

decisive how to simulate randomness (−→ Chapter 2). Chapters 2 and 3 are

devoted to tools for simulation. These methods can be applied easily even in

case the Assumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified

by the validity of the underlying models. For example it may be advisable to

solve the partial differential equations of the Black–Scholes type. Then one

has to choose among several methods. The most elementary ones are finite-

difference methods (−→ Chapter 4). A somewhat higher flexibility concerning

error control is possible with finite-element methods (−→ Chapter 5). The

numerical treatment of exotic options requires a more careful consideration of

stability issues (−→ Chapter 6). The methods based on differential equations

will be described in the larger part of this book. And beyond Black and

Scholes, even more tools are needed (−→ Chapter 7).

The various methods are discussed in terms of accuracy and speed. Ulti-

mately the methods must give quick and accurate answers to real-time pro-

blems posed in financial markets. Efficiency and reliability are key demands.

Internally the numerical methods must deal with diverse problems such as

convergence order or stability. So the numerical analyst is concerned in error

estimates and error bounds. Technical criteria such as complexity or storage

requirements are relevant for the implementation.

Fig. 1.7. Grid points in the (S, t)-domain

The mathematical formulation benefits from the assumption that all va-

riables take values in the continuum IR. This idealization is practical since

it avoids initial restrictions of technical nature, and it gives us freedom to

impose artificial discretizations convenient for the numerical methods. The
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hypothesis of a continuum applies to the (S, t)-domain of the half strip

0 ≤ t ≤ T , S > 0, and to the differential equations. In contrast to the

hypothesis of a continuum, the financial reality is rather discrete: Neither

the price S nor the trading times t can take any real value. The artificial

discretization introduced by numerical methods is at least twofold:

1.) The (S, t)-domain is replaced by a grid of a finite number of (S, t)-

points, illustrated in Figure 1.7.

2.) The differential equations are adapted to the grid and replaced by a

finite number of algebraic equations.

The restriction of the differential equations to the grid causes discretiza-

tion errors. The errors depend on the coarseness of the grid. In Figure 1.7,

the distance between two consecutive t-values of the grid is denoted Δt.5 So

the errors will depend on Δt and on ΔS. It is one of the aims of numerical

algorithms to control the errors. The left-hand figure in Figure 1.7 shows a

simple rectangle grid, whereas the right-hand figure shows a tree-type grid

as used in Section 1.4. The type of the grid matches the kind of underly-

ing equations. The values of V (S, t) are primarily approximated at the grid

points. Intermediate values can be obtained by interpolation.

The continuous model is an idealization of the discrete reality. But the

numerical discretization does not reproduce the original discretization. For

example, it would be a rare coincidence when Δt represents a day. The deri-

vations that go along with the twofold transition

discrete −→ continuous −→ discrete

do not compensate.

Another kind of discretization is that computers replace the real numbers

by a finite number of rational numbers, namely, the floating-point numbers.

The resulting rounding error will not be relevant for much of our analysis,

except for investigations of stability.

1.4 The Binomial Method

The major part of the book is devoted to continuous models and their dis-

cretizations. With much less effort a discrete approach provides us with a

short way to establish a first algorithm for calculating options. The resulting

binomial method is robust and widely applicable.

In practice one is often interested in the one value V (S0, 0) of an option

at the current spot price S0. Then it can be unnecessarily costly to calculate

5 The symbol Δt denotes a small increment in t (analogously ΔS, ΔW ). In

case Δ would be a number, the product with u would be denoted Δ · u or

uΔ.
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1.4 The Binomial Method

the surface V (S, t) for the entire domain to extract the required information

V (S0, 0). The relatively small task of calculating V (S0, 0) can be comfortably

solved using the binomial method. This method is based on a tree-type grid

applying appropriate binary rules at each grid point. The grid is not prede-

fined but is constructed by the method. For illustration see the right-hand

grid in Figure 1.7, and Figure 1.10.

1.4.1 A Discrete Model

We begin with discretizing the continuous time t, replacing t by equidistant

time instances ti. Let us use the notations

M : number of time steps

Δt := T

M

ti := i ·Δt, i = 0, ..., M

Si := S(ti)

So far the domain of the (S, t) half strip is semidiscretized in that it is replaced

by parallel straight lines with distance Δt apart, leading to a discrete-time

model. The next step of discretization replaces the continuous values Si along

the parallel t = ti by discrete values Sj,i, for all i and appropriate j. For a

better understanding of the S-discretization compare Figure 1.8. This figure

shows a mesh of the grid, namely, the transition from t to t + Δt, or from ti

to ti+1.

−

t i+1

t i

S i+1

Si

t+ Δt

p1−p

SuSd

t
S

t

S

Fig. 1.8. The principle setup of the binomial method
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Chapter 1 Modeling Tools for Financial Options

Assumptions 1.3 (binomial method)

(Bi1) The price S over each period of time Δt can only have two possible

outcomes: An initial value S either evolves “up” to Su, or “down” to

Sd, with 0 < d < u. Here u is the factor of an upward movement and

d is the factor of a downward movement.

(Bi2) The probability of an up movement is p, P(up) = p.

The rules (Bi1) and (Bi2) represent the framework of a binomial process.

Such a process behaves like tossing a biased coin where the outcome “head”

(up) occurs with probability p. At this stage of the modeling, the values of

the three parameters u, d and p are undetermined. They are fixed in a way

such that the model is consistent with the continuous model in case Δt → 0.

This aim leads to further assumptions. The basic idea of the approach is

to equate the expectation and the variance of the discrete model with the

corresponding values of the continuous model. This amounts to require

(Bi3) Expectation and variance of S refer to their continuous counterparts,

evaluated for the risk-free interest rate r.

This assumption leads to equations for the parameters u, d, p. The resulting

probability P of (Bi2) does not reflect the expectations of an individual in the

market. Rather P is an artificial risk-neutral probability that matches (Bi3).6

The expectation E below in (1.4) refers to this probability; this is sometimes

written EP. (We shall return to the assumptions (Bi1), (Bi2), and (Bi3) in

the subsequent Section 1.5.) Let us further assume that no dividend is paid

within the time period of interest. This assumption simplifies the derivation

of the method and can be removed later.

1.4.2 Derivation of Equations

Recall the definition of the expectation for the discrete case, Appendix B1,

equation (B1.13), and conclude

E(Si+1) = pSiu + (1 − p)Sid .

Here Si is an arbitrary value, which develops randomly to Si+1, when ti

proceeds to ti+1, following the assumptions (Bi1) and (Bi2). In this sense, E

is a conditional expectation. As will be seen in Section 1.7.2, the expectation

of the continuous model is

E(Si+1) = Si erΔt (1.4)

Equating gives

6 To distinguish this specific “money market measure” P from other pro-

babilities, one gives it a specific notation. In later sections we shall use the

symbol Q.
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1.4 The Binomial Method

erΔt = pu + (1− p)d . (1.5)

This is the first of three equations required to fix u, d, p. Solved for the risk-

neutral probability p we obtain

p =
erΔt − d

u− d
. (1.6)

To be a valid model of probability, 0 ≤ p ≤ 1 must hold. This is equivalent

to

d ≤ erΔt ≤ u . (1.7)

These inequalities relate the upward and downward movements of the asset

price to the riskless interest rate r. The inequalities (1.7) are no new assump-

tion but follow from the no-arbitrage principle. The assumption 0 < d < u is

sustained.

Next we equate variances. Via the variance the volatility σ enters the

model. From the continuous model we apply the relation

E(S2

i+1
) = S

2

i
e(2r+σ

2
)Δt

. (1.8)

For the relations (1.4) and (1.8) we refer to Section 1.8 (−→ Exercise 1.12).

Recall that the variance satisfies Var(S) = E(S2) − (E(S))2 (−→ Appendix

B1). Equations (1.4) and (1.8) combine to

Var(Si+1) = S
2

i
e2rΔt(eσ

2
Δt − 1) .

On the other hand the discrete model satisfies

Var(Si+1) = E(S2

i+1
)− (E(Si+1))

2

= p(Siu)2 + (1− p)(Sid)2 − S
2

i
(pu + (1− p)d)2 .

Equating variances of the continuous and the discrete model, and applying

(1.5) leads to

e2rΔt(eσ
2
Δt − 1) = pu

2 + (1 − p)d2 − (erΔt)2

e2rΔt+σ
2
Δt = pu

2 + (1 − p)d2 (1.9)

The equations (1.5), (1.9) constitute two relations for the three unknowns

u, d, p. We are free to impose an arbitrary third equation. One example is the

plausible assumption

u · d = 1 , (1.10)

which reflects a symmetry between upward and downward movement of the

asset price. Now the parameters u, d and p are fixed. They depend on r, σ

and Δt. So does the grid, which is analyzed next (Figure 1.9).

The above rules are applied to each grid line i = 0, . . . , M , starting at

t0 = 0 with the specific value S = S0. Attaching meshes of the kind depicted

in Figure 1.8 for subsequent values of ti builds a tree with node values Su
j
d

k
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Chapter 1 Modeling Tools for Financial Options

and j+k = i. In this way, specific discrete values Sj,i of Si and the nodes of the

tree are defined. Since the same constant factors u and d underlie all meshes

and since Sud = Sdu holds, after the time period 2Δt the asset price can only

take three values rather than four: The tree is recombining. It does not matter

which of the two possible paths we take to reach Sud. This property extends

to more than two time periods. Consequently the binomial process defined by

Assumption 1.3 is path independent. Accordingly at expiration time T = MΔt

the price S can take only the (M+1) discrete values SujdM−j , j = 0, 1, ..., M .

By (1.10) these are the values Su2j−M =: Sj,M . The number of nodes in the

tree grows quadratically in M . (Why?)

2 2SuSudSd

SuSd

S

Fig. 1.9. Sequence of several meshes (schematically)

The symmetry of the choice ud = 1 becomes apparent in that after two

time steps the asset value S repeats. (Compare also Figure 1.10.) For ud =

1, the central line of the tree grows vertically. The vertical arrangement is

advantageous for matching a tree to barriers. But to smooth the convergence,

it may be advisable to bend the tree such that its central line ends up at

the strike. (We return to such improvements below.) In a (t, S)-plane the

tree can be interpreted as a grid of exponential-like curves. The binomial

approach defined by (Bi1) with the proportionality between Si and Si+1

reflects exponential growth or decay of S. Since the tree extends from S0d
M

to S0u
M , all grid points have the desirable property S > 0, but for large M

the tree becomes unrealistically wide.

1.4.3 Solution of the Equations

Using the abbreviation α := erΔt we obtain by elimination (which the reader

may check in more generality in Exercise 1.14b) the quadratic equation

0 = u
2 − u(α−1 + αeσ

2
Δt︸ ︷︷ ︸

=:2β

) + 1 ,

with solutions u = β±
√

β2 − 1. By virtue of ud = 1 and Vieta’s Theorem, d

is the solution with the minus sign. In summary the three parameters u, d, p

are given by
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Fig. 1.10. Tree in the (S, t)-plane for M = 32 (data of Example 1.6)

β : =
1

2
(e−rΔt + e(r+σ

2
)Δt)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
erΔt − d

u− d

(1.11)

A consequence of this approach is that up to terms of higher order the relation

u = eσ

√
Δt holds (−→ Exercise 1.6). Therefore the extension of the tree in

S-direction matches the volatility of the asset. So the tree is scaled well and

will cover a relevant range of S-values.

1.4.4 A Basic Algorithm

Next we transform the binomial method into an algorithm.

Forward Phase: Initializing the Tree

Now the factors u and d can be considered as known, and the node values of

S for each ti until tM = T can be calculated. The current spot price S = S0
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Chapter 1 Modeling Tools for Financial Options

for t0 = 0 is the root of the tree. (To adapt the matrix-like notation to the

two-dimensional grid of the tree, this initial price will be also denoted S0,0.)

Each initial price S0 leads to another tree of node values Sj,i.

For i = 1, 2, ..., M calculate :

Sj,i := S0u
j

d
i−j

, j = 0, 1, ..., i

Now the grid points (Sj,i, ti) are fixed, on which approximations to the option

values Vj,i := V (Sj,i, ti) are to be calculated.

Calculating the Option Value, Valuation on the Tree

For tM and vanilla options, the payoff V (S, tM ) is known from (1.1C), (1.1P).

The payoff is valid for each S, including Sj,M = SujdM−j , j = 0, ..., M . This

defines the values Vj,M :

Call: V (S(tM ), tM ) = max {S(tM )−K, 0}, hence:

Vj,M := (Sj,M −K)+ (1.12C)

Put: V (S(tM ), tM ) = max {K − S(tM ), 0}, hence:

Vj,M := (K − Sj,M )+ (1.12P)

The backward phase recursively calculates for tM−1, tM−2, ... the option

values V for all ti, starting from Vj,M . The recursion is based on Assumption

1.3, (Bi3). Repeating the equation that corresponds to (1.5) with double

index leads to

Sj,ie
rΔt = pSj,iu + (1− p)Sj,id ,

and

Sj,ie
rΔt = pSj+1,i+1 + (1 − p)Sj,i+1 .

Relating the Assumption 1.3, (Bi3) of risk neutrality to V , Vi = e−rΔtE(Vi+1),

we obtain in double-index notation the recursion

Vj,i = e−rΔt (pVj+1,i+1 + (1− p)Vj,i+1) . (1.13)

So far, this recursion for Vj,i is merely an analogy, which might be seen as a

further assumption. But the following Section 1.5 will give a justification for

(1.13), which turns out to be a consequence of the no-arbitrage principle and

the risk-neutral valuation.

For European options, (1.13) is a recursion for i = M − 1, . . . , 0, starting

from (1.12), and terminating with V0,0. (For an illustration see Figure 1.11.)

The obtained value V0,0 is an approximation to the value V (S0, 0) of the

continuous model, which results in the limit M →∞ (Δt → 0). The accuracy

of the approximation V0,0 depends on M . This is reflected by writing V
(M)

0
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Fig. 1.11. Tree in the (S, t)-plane with (S, t, V )-points for M = 32 (data as in

Figure 1.5)

(−→ Exercise 1.7). The basic idea of the approach implies that the limit of

V
(M)

0
for M →∞ is the Black–Scholes value V (S0, 0) (−→ Exercise 1.8).

For American options, the above recursion must be modified by adding a

test whether early exercise is to be preferred. To this end the value of (1.13) is

compared with the value of the payoff Ψ(S). In this context, the value (1.13)

is the “continuation value,” denoted V
cont

j,i
. And at any time ti the holder

optimizes the position and decides which of the two choices

{ exercise, continue to hold }

is preferable. So the holder chooses the maximum

max{Ψ(Sj,i), V
cont

j,i
} .

This amounts to the dynamic programming principle: The optimality of the

decision policy must be optimal also for the remaining time period. In sum-

mary, the dynamic-programming procedure, based on the equations (1.12)

for i rather than M , combined with (1.13), reads as follows:

V
cont

j,i
:= e−rΔt · (pVj+1,i+1 + (1− p)Vj,i+1)

Vj,i = max
{
(Sj,i −K)+, V

cont

j,i

}
for a call

Vj,i = max
{
(K − Sj,i)

+
, V

cont

j,i

}
for a put

(1.14)
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The resulting algorithm is

Algorithm 1.4 (binomial method, basic version)

input: r, σ, S = S0, T, K, choice of put or call,

European or American, M

calculate: Δt := T/M, u, d, p from (1.11)

S0,0 := S0

Sj,M = S0,0u
j

d
M−j

, j = 0, 1, ..., M

(for American options, also Sj,i = S0,0u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)

valuation: Vj,M from (1.12)

Vj,i for i < M

{
from (1.13) for European options

from (1.14) for American options

output: V0,0 is the approximation V
(M)

0
to V (S0, 0)

1.4.5 Improving the Convergence

The convergence order of the binomial method should be one. Then, ideally,

extrapolation would make sense (−→ Exercise 1.15). But the basic version of

Algorithm 1.4 suffers from the fact that the payoff is not smooth at the strike

K. This affects the accuracy at nodes near the kink (S, t, V ) = (K, T, 0). The

convergence of Algorithm 1.4 can be easily improved in one of two ways.

For S0 �= K the accuracy of the above basic version of Algorithm 1.4 also

depends on how the strike K is grasped by the tree and its grid points. The

error depending on M may oscillate, which is mainly caused by the erratic

way how the point (S, t) = (K, T ) takes its place among the nodes Sj,M .

This can be cured in an easy way. The tree can be bent such that for i = M

the medium grid point falls on the strike value K, no matter what (even)

value of M is chosen. This is possible by generalizing (1.10) to ud = γ for

a suitable value of γ (−→ Exercise 1.14). Corresponding special choices of

u and d smooth the error significantly. This improvement of Algorithm 1.4

is straightforward to implement. With this version, extrapolation does make

sense [LeR96].

Alternatively, certain critical intermediate results can be smoothed. Note

that, even when the option is of the American style, the continuation values

V cont

j,M−1
in the last line i = M−1 are European style. As suggested by [BrD96],

the linear combinations (1.13) for i = M − 1 can be replaced by the Black–

Scholes formula (A4.10) or (A4.11). This only makes sense for a few nodes
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Fig. 1.12. Example 1.5: European-style option. Approximations V (M)
over Δt =

1/M . top left: the basic Algorithm 1.4, linear convergence is hardly visible; top

right: the improved algorithm with ud = γ and γ from Exercise 1.14, linear con-

vergence is clearly visible; bottom left: extrapolated values V (M,extr)
based on two

approximations with M and M/2, V (M,extr)
:= 2V (M)

− V (M/2)
; bottom right:

V (M,extr)
over Δt2 shows quadratic convergence.

around the strike K, since for other j the improvement is not noticeable.

Equation (1.14) must be adapted (−→ Exercise 1.23).

Example 1.5 (European put)

Choose K = 10, S = S0 = 5, r = 0.06, σ = 0.3, T = 1.

Recall that for European-style vanilla options an analytic solution exists,

and Algorithm 1.4 is not needed. Hence, applying Algorithm 1.4 to Ex-

ample 1.5 is only to create an ideal setting for the purpose of investigating

accuracy and convergence. — The Table 1.2 lists approximations V (M)

to V (5, 0), both for ud = 1 and for ud = γ. The two main columns of

Table 1.2 are graphed in the top two illustrations of Figure 1.12. The

convergence towards the Black–Scholes value V (S, 0) is visible; the latter

was calculated by evaluating the analytic solution (A4.10). (In this book

the number of printed decimals illustrates at best the attainable accuracy

and does not reflect economic practice.)

The convergence rate of Algorithm 1.4 is visible in the results of Table

1.2, and in Figure 1.12. The rate is linear, O(Δt) = O(M−1). For S0 �= K

23



Chapter 1 Modeling Tools for Financial Options

and ud = 1 this rate is corrupted and hard to observe. The reader may

wish to investigate more closely how the error of the basic version with

ud = 1 decays with M (−→ Exercises 1.7). It turns out that for the

described basic version of the binomial method the convergence in M is

not monotonic. It will not be recommendable to extrapolate these V
(M)-

data to the limit M → ∞, at least not the data of Table 1.2 (ud = 1).

But the linear convergence rate can be seen well from the much better

results obtained for ud = γ. The linear rate is reflected by the plots V (M)

over M−1, where the values of V (M) lie close to a straight line, which

in this figure represents the linear error decay. Here extrapolation works

well (lower illustrations in Figure 1.12). The convergence rate can also

be calculated from the data (−→ Exercises 1.15). This can be seen from

Table 1.2 in a perfect way.

In case the function V (S, 0) is to be approximated for several S out of

an interval of S-values, other methods should be applied. The Figure 1.6

shows related results obtained by using the methods of Chapter 4.

Table 1.2. Results of Example 1.5, for γ see Exercise 1.14

M V (M)
(5, 0) V (M)

(5, 0) with

for ud = 1 for ud = γ order

8 4.42507 4.43542
16 4.42925 4.43325 0.833
32 4.429855 4.431933 0.923
64 4.429923 4.431218 0.963
128 4.430047 4.430846 0.982
256 4.430390 4.430657 0.991

2048 4.430451 4.430489 0.999

Black–Scholes 4.43046477621

Example 1.6 (American put)

Choose K = 50, S = 50, r = 0.1, σ = 0.4, T = 0.41666... ( 5

12
for 5

months), M = 32.

Here the pricing is at the money, so γ = 1. Figure 1.10 shows the tree for

M = 32. The corresponding approximation to V0 is V (32) = 4.2719, calcu-

lated with Algorithm 1.4; almost three digits are correct. With M = 2048

and extrapolation we obtain 4.2842. At the early-exercise curve the sur-

face V (S, t) is not C2-smooth. As a consequence the convergence order is

not as close to q = 1 as in Example 1.5. — Note again that the function

V (S, 0) can be approximated with the methods of Chapter 4, compare

Figure 4.11.
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1.4.6 Sensitivities

The sensitivity parameters at (S, t) = (S0,0, 0)

delta =
∂V

∂S
, gamma =

∂2V

∂S2
, theta =

∂V

∂t
,

can be approximated by difference quotients. The variations of V with S

and t are expressed by the tree, and therefore information on derivatives

can be obtained as by-product. For example,
V1,1−V0,1

S1,1−S0,1
serves as a rough

approximation for delta. But this quotient is evaluated at t1 = Δt rather

than at t = 0. And a corresponding approximation of gamma requires three

node values, which are available for t2. To improve the accuracy, the difference

quotients should be evaluated at the root node (S, t) = (S0,0, 0). This can be

accomplished with a nice idea [PeV94]. The tree can be extended by starting

it with a root at t = −2Δt rather than at t = 0, with an S-value S−1,−2.

The extended tree follows the rules of Assumptions 1.3 and embeds the core

tree. In this way, two additional lines of nodes are created, one at each side of

the core tree. In particular, this creates two additional nodes at t = 0, with

S-values S−1,0 and S1,0, and corresponding V -values V−1,0 and V1,0. Figure

1.9 may serve as illustration, when Sud stands for S0,0. The approximations

are

delta:
V1,0 − V−1,0

S1,0 − S−1,0

gamma:

V1,0−V0,0

S1,0−S0,0
− V0,0−V

−1,0

S0,0−S
−1,0

(S1,0 − S−1,0)/2

theta:
V0,0 − V−1,−2

2Δt
(for example, when ud = 1)

The costs of calculating these difference quotients can be neglected, because

essentially the tree is not recalculated. This also holds for the extended tree:

Compared with the overall costs of O(M2), the costs of the 2M +5 additional

nodes of the improved version are relatively small as long as M is large.

Algorithm 1.4 needs to be adapted (−→ Exercise 1.23).

Since the above sensitivities with respect to S and t are revealed by one

calculated tree, they can be considered as bargain Greeks. In contrast, the

sensitivities with respect to the parameters σ and r are more costly to appro-

ximate; these are the expensive Greeks because the entire tree must be recal-

culated. For example, to set up a difference quotient for the Greek vega= ∂V

∂σ

requires to recalculate the tree for a parameter value σ1 close to σ. If the

corresponding value of the option obtained by the σ1-tree is denoted V1, then

we have a difference-quotient approximation

vega ≈
V − V1

σ − σ1

.
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In case one wishes an improved accuracy, one might apply a symmetric

difference quotient, and recalculate the tree again on the other side, for

σ2 := 2σ − σ1.

1.4.7 Extensions

The paying of dividends can be incorporated into the binomial algorithm. If

a dividend D is paid at tD the price of the asset drops by the same amount

D. To take this jump into account, the tree is cut at tD and the S-node

values for t < tD are modified appropriately, see the remarks in Chapter 4,

and [Hull00]. To allow for a constant dividend yield δ, replace r in (1.11) by

r − δ, but not in the discounting in (1.13), (1.14). (−→ Exercise 1.22)

An extension of the binomial model is the trinomial model. Here each mesh

offers three outcomes, with probabilities p1, p2, p3 and p1 + p2 + p3 = 1. The

trinomial model allows for higher accuracy. The reader may wish to derive

the trinomial method. For further hints, see Notes and Comments at the end

of Chapter 1.

1.5 Risk-Neutral Valuation

In the previous Section 1.4 we have used the Assumptions 1.3 to derive an

algorithm for valuation of options. This Section 1.5 discusses the assumptions

again, leading to a different interpretation.

The situation of a path-independent binomial process with the two fac-

tors u and d continues to be the basis of the argumentation. The scenario is

illustrated in Figure 1.13. Here the time period is the time to expiration T ,

which replaces Δt in the local mesh of Figure 1.8. Accordingly, this global

model is called one-period model. The one-period model with only two pos-

sible values of ST has two clearly defined values of the payoff, namely, V (d)

(corresponds to ST = S0d) and V (u) (corresponds to ST = S0u). In contrast

to the Assumptions 1.3 we neither assume the risk-neutral world (Bi3) nor

the corresponding probability P(up) = p from (Bi2). Instead we derive the

probability using the no-arbitrage argument. In this section the factors u and

d are assumed to be given.

Let us construct a portfolio of an investor with a short position in one

option and a long position consisting of Δ shares of an asset, where the asset

is the underlying of the option. The portfolio manager must choose the

number Δ of shares such that the portfolio is riskless. That is, a

hedging strategy is needed. To discuss the hedging properly assume that no

funds are added or withdrawn.

By Πt we denote the wealth of this portfolio at time t. Initially the value

is

Π0 = S0 ·Δ− V0 , (1.15)
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T

0

t

V V(u)

S

V

(d)

S

S S u0 0d

0

0

Fig. 1.13. One-period binomial model

where the value V0 of the written option is not yet determined. At the end

of the period the value VT either takes the value V (u) or the value V (d). So

the value of the portfolio ΠT at the end of the life of the option is either

Π
(u) = S0u ·Δ− V

(u)

or
Π

(d) = S0d ·Δ− V
(d)

.

In the no-arbitrage world, Δ is chosen such that the value ΠT is riskless. Then

all uncertainty is removed and Π(u) = Π(d) must hold. This is equivalent to

(S0u− S0d) ·Δ = V
(u) − V

(d)
,

which defines the strategy

Δ =
V (u) − V (d)

S0(u− d)
. (1.16)

With this value of Δ the portfolio with initial value Π0 evolves to the final

value ΠT = Π(u) = Π(d), regardless of whether the stock price moves up or

down. Consequently the portfolio is riskless.

If we rule out early exercise, the final value ΠT is reached with certainty.

The value ΠT must be compared to the alternative risk-free investment of

an amount of money that equals the initial wealth Π0, which after the time

period T reaches the value erT Π0. Both the assumptions Π0e
rT < ΠT and

Π0e
rT > ΠT would allow a strategy of earning a risk-free profit. This is in

contrast to the assumed arbitrage-free world. Hence both Π0e
rT ≥ ΠT and

Π0e
rT ≤ ΠT and equality must hold.7 Accordingly the initial value Π0 of

7 For an American option it is not certain that ΠT can be reached because

the holder may choose early exercise. In this situation we have only the

inequality Π0e
rT ≤ ΠT .
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the portfolio equals the discounted final value ΠT , discounted at the interest

rate r,

Π0 = e−rT

ΠT .

This means

S0 ·Δ− V0 = e−rT (S0u ·Δ− V
(u)) ,

which upon substituting (1.16) leads to the value V0 of the option:

V0 = S0 ·Δ− e−rT (S0uΔ− V (u))

= e−rT {Δ · [S0e
rT − S0u] + V (u)}

= e
−rT

u−d
{(V (u) − V

(d))(erT − u) + V
(u)(u− d)}

= e
−rT

u−d
{V (u)(erT − d) + V

(d)(u − erT )}

= e−rT {V (u) e
rT
−d

u−d
+ V

(d) u−e
rT

u−d
}

= e−rT {V (u)q + V (d) · (1 − q)}

with

q :=
erT − d

u− d
. (1.17)

We have shown that with q from (1.17) the value of the option is given by

V0 = e−rT {V (u)
q + V

(d) · (1− q)} . (1.18)

The expression for q in (1.17) is identical to the formula for p in (1.6), which

was derived in the previous section. Again we have

0 < q < 1 ⇐⇒ d < erT

< u .

Presuming these bounds for u and d, q can be interpreted as a probability Q.

Then qV (u) + (1− q)V (d) is the expected value of the payoff with respect to

this probability (1.17),

EQ(VT ) = qV
(u) + (1− q)V (d)

.

Now (1.18) can be written

V0 = e−rT

EQ(VT ) . (1.19)

That is, the value of the option is obtained by discounting the expected payoff

[with respect to q from (1.17)] at the risk-free interest rate r. An analogous

calculation shows

EQ(ST ) = qS0u + (1 − q)S0d = S0e
rT

.

The probabilities p of Section 1.4 and q from (1.17) are defined by identical

formulas (with T corresponding to Δt). Hence p = q, and EP = EQ. But the

underlying arguments are different. Recall that in Section 1.4 we showed the

implication
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1.5 Risk-Neutral Valuation

E(ST ) = S0e
rT =⇒ p = P(up) =

erT − d

u− d
,

whereas in this section we arrive at the implication

p = P(up) =
erT − d

u− d
=⇒ E(ST ) = S0e

rT

.

So both statements must be equivalent. Setting the probability of the up

movement equal to p is equivalent to assuming that the expected return on

the asset equals the risk-free rate. This can be rewritten as

e−rT

EP(ST ) = S0 . (1.20)

The important property expressed by equation (1.20) is that of a martingale:

The random variable e−rT ST of the left-hand side has the tendency to remain

at the same level. That is why a martingale is also called “fair game.” A

martingale displays no trend, where the trend is measured with respect to EP.

In the martingale property of (1.20) the discounting at the risk-free interest

rate r exactly matches the risk-neutral probability P of (1.6)/(1.17). The

specific probability for which (1.20) holds is also called martingale measure.

Summary of results for the one-period model: Under the Assumptions 1.2 of

the market model, the choice Δ of (1.16) eliminates the random-dependence

of the payoff and makes the portfolio riskless. There is a specific probability

Q (P in Section 1.4) with Q(up) = q, q from (1.17), such that the value

V0 satisfies (1.19), and S0 the analogous property (1.20). These properties

involve the risk-neutral interest rate r. That is, the option is valued in a risk-

neutral world, and the corresponding Assumption 1.3 (Bi3) is meaningful.

In the real-world economy, growth rates in general are different from r,

and individual subjective probabilities differ from our Q. But the assumption

of a risk-neutral world leads to a fair valuation of options. The obtained value

V0 can be seen as a rational price. In this sense the resulting value V0 applies

to the real world. The risk-neutral valuation can be seen as a technical tool.

The assumption of risk neutrality is just required to define and calculate a

rational price or fair value of V0. For this specific purpose we do not need

actual growth rates of prices, and individual probabilities are not relevant.

But note that we do not really assume that financial markets are actually

free of risk.

The general principle outlined for the one-period model is also valid for

the multiperiod binomial model and for the continuous model of Black and

Scholes (−→ Exercise 1.8).

The Δ of (1.16) is the hedge parameter delta, which eliminates the risk

exposure of our portfolio caused by the written option. In multiperiod models

and continuous models Δ must be adapted dynamically. The expression (1.16)

can be seen as a discretized version of the continuous-case definition

Δ = Δ(S, t) =
∂V (S, t)

∂S
.
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Chapter 1 Modeling Tools for Financial Options

1.6 Stochastic Processes

Brownian motion originally meant the erratic motion of a particle (pollen) on

the surface of a fluid, caused by tiny impulses of molecules. Wiener suggested

a mathematical model for this motion, the Wiener process. But earlier Bache-

lier had applied Brownian motion to model the motion of stock prices, which

instantly respond to the numerous upcoming information similar as pollen

react to the impacts of molecules (Figure 1.14). To model such behavior, we

use stochastic processes.
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Fig. 1.14. The Dow at 500 trading days from September 8, 1997 through August

31, 1999

A stochastic process is a family of random variables Xt, which are defined

for a set of parameters t (−→ Appendix B1). Here we consider the continuous-

time situation. That is, t ∈ IR varies continuously in a time interval I, which

typically represents 0 ≤ t ≤ T . A more complete notation for a stochastic

process is {Xt, t ∈ I}, or (Xt)0≤t≤T . Let the chance “play,” then the resulting

function Xt is called realization or path of the stochastic process.

Special properties of stochastic processes have lead to the following names:

Gaussian process: All finite-dimensional distributions (Xt1
, . . . , Xtk

) are

Gaussian. Hence specifically Xt is distributed normally for all t.
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1.6 Stochastic Processes

Markov process: Only the present value of Xt is relevant for its future

motion. That is, the past history is fully reflected in the present value.8

An example of a process that is both Gaussian and Markov, is the Wie-

ner process. Wiener processes are important building blocks for models of

financial markets, and are the main theme of this section.

1.6.1 Wiener Process

Definition 1.7 (Wiener process, standard Brownian motion)

A Wiener process (or standard Brownian motion; notation Wt or W ) is

a time-continuous process for t ≥ 0 with the properties

(a) W0 = 0

(b) Wt ∼ N (0, t) for all t ≥ 0. That is, for each t the random variable

Wt is distributed normally, with mean E(Wt) = 0 and variance

Var(Wt) = E(W 2

t
) = t.

(c) All increments ΔWt := Wt+Δt −Wt on non overlapping time

intervals are independent: That is, the displacements Wt2
−Wt1

and Wt4
−Wt3

are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.

(d) Wt depends continuously on t.

Generally for 0 ≤ s < t the property Wt−Ws ∼ N (0, t−s) holds, in particular

E(Wt −Ws) = 0 , (1.21a)

Var(Wt −Ws) = E((Wt −Ws)
2) = t− s . (1.21b)

The relations (1.21a,b) can be derived from Definition 1.7 (−→ Exercise 1.9).

The relation (1.21b) is also known as

E((ΔWt)
2) = Δt . (1.21c)

The independence of the increments according to Definition 1.7(c) implies

for tj+1 > tj the independence of Wtj
and (Wtj+1

−Wtj
), but not of Wtj+1

and (Wtj+1
−Wtj

). Wiener processes are examples of martingales —there is

no drift. This process is an integral element of more involved models. For

example, Xt := α + μt + Wt is a general Brownian motion with drift μ.

Discrete-Time Model

Let Δt > 0 be a constant time increment. For the discrete instances tj := jΔt

the value Wt can be written as a sum of increments ΔWk,

8 This assumption together with the assumption of an immediate reaction

of the market to arriving information are called hypothesis of the efficient

market [Bou98].
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WjΔt =

j∑
k=1

(
WkΔt −W(k−1)Δt

)︸ ︷︷ ︸
=:ΔWk

.

The ΔWk are independent and because of (1.21) normally distributed with

Var(ΔWk) = Δt. Increments ΔW with such a distribution can be calculated

from standard normally distributed random numbers Z. The implication

Z ∼ N (0, 1) =⇒ Z ·
√

Δt ∼ N (0, Δt)

leads to the discrete model of a Wiener process

ΔWk = Z
√

Δt for Z ∼ N (0, 1) for each k . (1.22)

We summarize the numerical simulation of a Wiener process as follows:

Algorithm 1.8 (simulation of a Wiener process)

Start: t0 = 0, W0 = 0; Δt

loop j = 1, 2, ... :

tj = tj−1 + Δt

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√

Δt

The drawing of Z —that is, the calculation of Z ∼ N (0, 1)— will be explained

in Chapter 2. The values Wj are realizations of Wt at the discrete points tj .

The Figure 1.15 shows a realization of a Wiener process; 5000 calculated

points (tj , Wj) are joined by linear interpolation.

Almost all realizations of Wiener processes are nowhere differentiable.

This becomes intuitively clear when the difference quotient

ΔWt

Δt
=

Wt+Δt −Wt

Δt

is considered. Because of relation (1.21b) the standard deviation of the nu-

merator is
√

Δt. Hence for Δt → 0 the normal distribution of the difference

quotient disperses and no convergence can be expected.

1.6.2 Stochastic Integral

For motivation, let us suppose that the price development of an asset is

described by a Wiener process Wt. Let b(t) be the number of units of the

asset held in a portfolio at time t. We start with the simplifying assumption

that trading is only possible at discrete time instances tj , which define a

32



1.6 Stochastic Processes

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1.15. Realization of a Wiener process, with Δt = 0.0002

partition of the interval 0 ≤ t ≤ T . Then the trading strategy b is piecewise

constant,

b(t) = b(tj−1) for tj−1 ≤ t < tj

and 0 = t0 < t1 < . . . < tN = T .
(1.23)

Such a function b(t) is called step function. The trading gain for the subin-

terval tj−1 ≤ t < tj is given by b(tj−1)(Wtj
−Wtj−1

), and

N∑
j=1

b(tj−1)(Wtj
−Wtj−1

) (1.24)

represents the trading gain over the time period 0 ≤ t ≤ T . The trading gain

(possibly < 0) is determined by the strategy b(t) and the price process Wt.

We now drop the assumption of fixed trading times tj and allow b to be

arbitrary continuous functions. This leads to the question whether (1.24) has

a limit when with N →∞ the size of all subintervals tends to 0. If Wt would

be of bounded variation than the limit exists and is called Riemann–Stieltjes

integral ∫
T

0

b(t) dWt .
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In our situation this integral generally does not exist because almost all Wie-

ner processes are not of bounded variation. That is, the first variation of Wt,

which is the limit of
N∑

j=1

|Wtj
−Wtj−1

| ,

is unbounded even in case the lengths of the subintervals vanish for N →∞.

Although this statement is not of primary concern for the theme of this

book9, we digress for a discussion because it introduces the important rule

(dWt)
2 = dt. For an arbitrary partition of the interval [0, T ] into N subin-

tervals the inequality

N∑
j=1

|Wtj
−Wtj−1

|2 ≤ max
j

(|Wtj
−Wtj−1

|)
N∑

j=1

|Wtj
−Wtj−1

| (1.25)

holds. The left-hand sum in (1.25) is the second variation and the right-

hand sum the first variation of W for a given partition into subintervals. The

expectation of the left-hand sum can be calculated using (1.21),

N∑
j=1

E(Wtj
−Wtj−1

)2 =

N∑
j=1

(tj − tj−1) = tN − t0 = T .

But even convergence in the mean holds:

Lemma 1.9 (second variation: convergence in the mean)

Let t0 = t
(N)

0
< t

(N)

1
< . . . < t

(N)

N
= T be a sequence of partitions of the

interval t0 ≤ t ≤ T with

δN := max
j

(t
(N)

j
− t

(N)

j−1
) . (1.26)

Then (dropping the (N))

l.i.m.
δN→0

N∑
j=1

(Wtj
−Wtj−1

)2 = T − t0 (1.27)

Proof: The statement (1.27) means convergence in the mean (−→ Appen-

dix B1). Because of
∑

Δtj = T − t0 we must show

E

⎛⎝∑
j

((ΔWj)
2 −Δtj)

⎞⎠2

→ 0 for δN → 0 .

Carrying out the multiplications and taking the mean gives

9 The less mathematically oriented reader may like to skip the rest of this

subsection.
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2
∑

j

(Δtj)
2

(−→ Exercise 1.10). This can be bounded by 2(T−t0)δN , which completes

the proof.

Part of the derivation can be summarized to

E((ΔWt)
2 −Δt) = 0 , Var((ΔWt)

2 −Δt) = 2(Δt)2 .

Symbolically, this property of a Wiener process is written

(dWt)
2 = dt (1.28)

It will be needed in subsequent sections.

Now we know enough about the convergence of the left-hand sum of (1.25)

and turn to the right-hand side of this inequality. The continuity of Wt implies

max
j

|Wtj
−Wtj−1

| → 0 for δN → 0 .

Convergence in the mean applied to (1.25) shows that the vanishing of this

factor must be compensated by an unbounded growth of the other factor, to

make (1.27) happen. So

N∑
j=1

|Wtj
−Wtj−1

| → ∞ for δN → 0 .

In summary, Wiener processes are not of bounded variation, and the integra-

tion with respect to Wt can not be defined as an elementary limit of (1.24).

The aim is to construct a stochastic integral∫
t

t0

f(s) dWs

for general stochastic integrands f(t). For our purposes it suffices to briefly

sketch the Itô integral, which is the prototype of a stochastic integral.

For a step function b from (1.23) an integral can be defined via the sum

(1.24), ∫
t

t0

b(s)dWs :=

N∑
j=1

b(tj−1)(Wtj
−Wtj−1

) . (1.29)

This is the Itô integral over a step function b. In case the b(tj−1) are

random variables, b is called a simple process. Then the Itô integral is again
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defined by (1.29). Stochastically integrable functions f can be obtained

as limits of simple processes bn in the sense

E

[ ∫ t

t0

(f(s)− bn(s))2ds

]
→ 0 for n →∞ . (1.30)

Convergence in terms of integrals
∫

ds carries over to integrals
∫

dWt.

This is achieved by applying Cauchy convergence E
∫
(bn − bm)2ds → 0

and the isometry

E

[( ∫ t

t0

b(s) dWs

)2 ]
= E

[ ∫ t

t0

b(s)2 ds

]
.

Hence the integrals
∫

bn(s)dWs form a Cauchy sequence with respect to

convergence in the mean. Accordingly the Itô integral of f is defined as∫
t

t0

f(s) dWs := l.i.m.n→∞

∫
t

t0

bn(s) dWs ,

for simple processes bn defined by (1.30). The value of the integral is

independent of the choice of the bn in (1.30). The Itô integral as function

in t is a stochastic process with the martingale property.

If an integrand a(x, t) depends on a stochastic process Xt, the function

f is given by f(t) = a(Xt, t). For the simplest case of a constant integrand

a(Xt, t) = a0 the Itô integral can be reduced via (1.29) to∫
t

t0

dWs = Wt −Wt0
.

For the “first” nontrivial Itô integral consider Xt = Wt and a(Wt, t) = Wt.

Its solution will be presented in Section 3.2.

Wiener processes are the driving machines for diffusion models (next sec-

tion). There are other stochastic processes that can be used for modeling

financial markets. For several models jump processes are considered. We turn

to jump processes in Section 1.9.

1.7 Diffusion Models

Many fundamental models of financial markets use Wiener processes as dri-

ving process. These are the diffusion models discussed in this section. We

discuss the main representative geometric Brownian motion, and explain the

risk-neutral valuation in this context. Then we turn to more general proces-

ses, such as mean reversion.
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1.7.1 Itô Process

Phenomena in nature, technology and economy are often modeled by means of

deterministic differential equations ẋ = d

dt
x = a(x, t). This kind of modeling

neglects stochastic fluctuations and is not appropriate for stock prices. If

processes x are to include Wiener processes as special case, the derivative
d

dt
x is meaningless. To circumvent non-differentiability, integral equations are

used to define a general class of stochastic processes. Randomness is inserted

additively,

x(t) = x0 +

∫
t

t0

a(x(s), s)ds + randomness ,

with an Itô integral with respect to the Wiener process Wt. The first integral

in the resulting integral equation is an ordinary (Lebesgue- or Riemann-)

integral. The final integral equation is symbolically written as a “stochastic

differential equation” (SDE) and named after Itô.

Definition 1.10 (Itô stochastic differential equation)

An Itô stochastic differential equation is

dXt = a(Xt, t) dt + b(Xt, t) dWt ; (1.31a)

this together with Xt0
= X0 is a symbolic short form of the integral

equation

Xt = Xt0
+

∫
t

t0

a(Xs, s) ds +

∫
t

t0

b(Xs, s) dWs . (1.31b)

The terms in (1.31) are named as follows:

a(Xt, t): drift term or drift coefficient

b(Xt, t): diffusion coefficient

The integral equation (1.31b) defines a large class of stochastic processes Xt;

solutions Xt of (1.31b) are called Itô process, or stochastic diffusion.

As intended, the Wiener process is a special case of an Itô process, because

from Xt = Wt the trivial SDE dXt = dWt follows, hence the drift vanishes,

a = 0, and b = 1 in (1.31). If b ≡ 0 and X0 is constant, then the SDE becomes

deterministic.

An experimental approach may help to develop an intuitive understanding

of Itô processes. The simplest numerical method combines the discretized

version of the Itô SDE

ΔXt = a(Xt, t)Δt + b(Xt, t)ΔWt (1.32)

with the Algorithm 1.8 for approximating a Wiener process, using the same

Δt for both discretizations. The result is
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Algorithm 1.11 (Euler discretization of an SDE)

Approximations yj to Xtj
are calculated by

Start: t0, y0 = X0, Δt, W0 = 0

loop j = 0, 1, 2, ...

tj+1 = tj + Δt

ΔW = Z
√

Δt with Z ∼ N (0, 1)

yj+1 = yj + a(yj , tj)Δt + b(yj, tj)ΔW

In the simplest setting, the step length Δt is chosen equidistant, Δt = T/m

for a suitable integer m. Of course the accuracy of the approximation depends

on the choice of Δt (−→ Chapter 3). The evaluation is straightforward. In

case the functions a and b are easy to calculate, the greatest effort may be to

calculate random numbers Z ∼ N (0, 1) (−→ Section 2.3). Solutions to the

SDE or to its discretized version for a given realization of the Wiener process

are called trajectories or paths. By simulation of the SDE we understand the

calculation of one or more trajectories. For the purpose of visualization, the

discrete data are mostly joined by straight lines.

Example 1.12 dXt = 0.05Xt dt + 0.3Xt dWt

Without the diffusion term the exact solution would be Xt = X0e
0.05t.

For X0 = 50, t0 = 0 and a time increment Δt = 1/250 the Figure 1.16

depicts a trajectory Xt of the SDE for 0 ≤ t ≤ 1. For another realization

of a Wiener process Wt the solution looks different. This is demonstrated

for a similar SDE in Figure 1.17.

1.7.2 Geometric Brownian Motion

Next we discuss one of the most important continuous models for the motion

of stock prices St. This standard model assumes that the relative change (re-

turn) dS/S of a security in the time interval dt is composed of a deterministic

drift μ dt plus stochastic fluctuations in the form σdWt:

Model 1.13 (geometric Brownian motion, GBM)

dSt = μSt dt + σSt dWt

(1.33, GBM)

This SDE is linear in Xt = St, and a(St, t) = μSt is the drift rate with

the expected rate of return μ, b(St, t) = σSt, σ is the volatility. (Compare

Example 1.12 and Figure 1.16.) The geometric Brownian motion of (1.33) is
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Fig. 1.16. Numerically approximated trajectory of Example 1.12 with a = 0.05Xt,

b = 0.3Xt, Δt = 1/250, X0 = 50

the reference model on which, for example, the Black–Scholes model is based.

To match Assumption 1.2 assume that μ and σ are constant.

A theoretical solution of (1.33) will be given in (1.54). The deterministic

part of (1.33) is the ordinary differential equation

Ṡ = μS

with solution St = S0e
μ(t−t0). For the linear SDE of (1.33) the expectation

E(St) solves Ṡ = μS. Hence

S0e
μ(t−t0) = E(St |St0

= S0)

is the expectation of the stochastic process and μ is the expected continuously

compounded return earned by an investor per year, conditional on starting

at S0. The rate of return μ is also called growth rate. The function S0e
μ(t−t0)

can be seen as a core about which the process fluctuates. Accordingly the

simulated values S1 of the ten trajectories in Figure 1.17 group around the

value 50 · e0.1 ≈ 55.26.

Let us test empirically how the values S1 distribute about their expected

value. To this end calculate, for example, 10000 trajectories and count how

many of the terminal values S1 fall into the subintervals k5 ≤ t < (k + 1)5,
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Fig. 1.17. 10 paths of SDE (1.33) with S0 = 50, μ = 0.1 and σ = 0.2

for k = 0, 1, 2 . . .. Figure 1.18 shows the resulting histogram. Apparently the

distribution is skewed. We revisit this distribution in the next section.

A discrete version of (1.33) is

ΔS

S
= μΔt + σZ

√
Δt , (1.34a)

known from Algorithm 1.11. This approximation is valid as long as Δt is

small and S > 0 (−→ Exercise 1.24). The relative return reflected by the

ratio ΔS

S
is called one-period simple return, where we interpret Δt as one

period. According to (1.34a) this return satisfies

ΔS

S
∼ N (μΔt, σ

2
Δt) . (1.34b)

The distribution of the simple return matches actual market data in a crude

approximation, see for instance Figure 1.21. This allows to calculate estimates

of historical values of the volatility σ.10 Of course this assumes the market

data to be correctly described by GBM. We will return to this in Section 1.8.

10 For the implied volatility see Exercise 1.5.
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Fig. 1.18. Histogram of 10000 calculated values S1 corresponding to (1.33), with

S0 = 50, μ = 0.1, σ = 0.2

1.7.3 Risk-Neutral Valuation

We digress for the length of this subsection and again turn to the topic of a

risk-neutral valuation, now for the continuous-time setting. In Section 1.5 we

have shown

V0 = e−rT

EQ(VT )

for the one-period model. Formally, the same holds true for the market model

based on GBM. But now the understanding of the risk-neutral probability Q

is more involved. This subsection sketches the framework for GBM.

Let us rewrite GBM from (1.33) to get

dSt = rSt dt + (μ− r)St dt + σSt dWt

= rSt dt + σSt

[
μ− r

σ
dt + dWt

]
,

(1.35)

where W is Wiener process under the probability measure P. In the reality

of the market, an investor expects μ > r as compensation for the risk that is

higher for stocks than for bonds. In this sense, the quotient γ of the excess

return μ− r to the risk σ,

γ :=
μ− r

σ
, (1.36)
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is called market price of risk. With this variable γ, (1.35) is written

dSt = rSt dt + σSt[γ dt + dWt] . (1.37)

For γ �= 0 the drifted Brownian motion W
γ

t
defined by

dW
γ

t
= γ dt + dWt (1.38)

is no Wiener process under P. But under certain assumptions on γ there

is another probability measure Q such that the process W
γ

t
is a (standard)

Wiener process under Q.11 Equation (1.37) becomes

dSt = rSt dt + σSt dW
γ

t
. (1.39)

Comparing this SDE to (1.33), notice that the growth rate μ is replaced by

the risk-free rate r. Together the transition consists of

μ → r

P → Q

W → W γ

which is named risk-neutral valuation principle for GBM. To simulate

(1.39) under Q, just apply the standard Algorithm 1.8 for the Wiener pro-

cess W
γ

t
. Then the rate r in (1.39) and W

γ

t
correspond to the “risk-neutral

measure” Q.

What is the reason for adjusting the probability measure P → Q? The

advantage of the risk-neutral measure Q is that the discounted process e−rtSt

is a martingale under Q,

d(e−rt

St) = σe−rt

St dW
γ

t
.

The fundamental theorem of asset pricing states that a market model

is free of arbitrage if and only if there exists a probability measure Q such

that the discounted asset prices are martingales with respect to Q [HaP81].

Hence the property of e−rt
St having no drift is an essential ingredient of a

no-arbitrage market and a prerequisite to modeling options. For a thorough

discussion of the continuous model, martingale theory is used. (Some more

background and explanation is provided by Appendix B3.) Let us summarize

the situation in a remark:

Remark 1.14 (risk-neutral valuation principle)

For modeling options with underlying GBM, the original probability is

adjusted to the risk-neutral probability Q. To simulate the process under

Q, the return rate μ is replaced by the risk-free interest rate r, and W
γ

t

is approximated as Wiener process.

11 Girsanov’s theorem, see Appendix B2. Q and P are equivalent.
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1.7.4 Mean Reversion

The assumptions of a constant interest rate r and a constant volatility σ are

quite restrictive. To overcome this simplification, SDEs for rt and σt have

been constructed that control rt or σt stochastically. One class of models is

based on the SDE

drt = α(R − rt) dt + σrr
β

t
dWt , α > 0 , (1.40)

again with driving force Wt as Wiener process. The drift term in (1.40) is

positive for rt < R and negative for rt > R, which causes a pull to R. This ef-

fect is called mean reversion. A frequency parameter α influences the strength

of the reversion. The parameter R, which may depend on t, corresponds to

a long-run mean of the interest rate over time. SDE (1.40) defines a gene-

ral class of models, including several interesting special cases known under

special names:

β = 0, R = 0 : Ornstein–Uhlenbeck process (OU)

β = 0, R > 0 : Vasicek model

β = 1

2
, R > 0 : Cox–Ingersoll–Ross process (CIR)

Hull and White have extended the Vasicek model incorporating time depen-

dence in the parameters. The CIR model [CoxIR85] is also called square-root

process. Its volatility σr

√
r

t
and with it the stochastic part vanish when rt

tends to zero. An illustration of the mean reversion is provided by Figure

1.19. In a transient phase (until t ≈ 1 in the run documented in the figure)

the relatively large deterministic term dominates, and the range r ≈ R is re-

ached quickly. Thereafter the stochastic term dominates, and r dances about

the mean value R. Figure 1.19 shows this for a Cox–Ingersoll–Ross model.

For a discussion of related models we refer to [LaL96], [Hull00], [Kwok98].

The calibration of the models (that is, the adaption of the parameters to the

data) is a formidable task (−→ Section 1.10).

The SDE (1.40) is of a different kind as the GBM in (1.33). Coupling the

SDE for rt to that for St leads to a system of two SDEs. Even larger systems

are obtained when further SDEs are coupled to define a stochastic process Rt

or to calculate stochastic volatilities. Related examples are given by Examples

1.15 and 1.16 below. In particular for modeling options, stochastic volatilities

have shown great potential. We come back to this in the Examples 1.15 and

1.16 below.

1.7.5 Vector-Valued SDEs

The Itô equation (1.31) is formulated as scalar equation; accordingly the SDE

(1.33) represents a one-factor model. The general multifactor version can be

written in the same notation. Then Xt = (X
(1)

t
, . . . , X

(n)

t
) and a(Xt, t) are

n-dimensional vectors. The Wiener processes of each component SDE need
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Fig. 1.19. Simulation rt of the Cox–Ingersoll–Ross model (1.40) with β = 0.5 for

R = 0.05, α = 1, σr = 0.1, r0 = 0.15, Δt = 0.01

not be correlated. In the general situation, the Wiener process can be m-

dimensional, with components W
(1)

t
, ..., W

(m)

t
. Then b(Xt, t) is an (n ×m)-

matrix, with elements bik. The interpretation of the SDE systems is compo-

nentwise. The scalar stochastic integrals are sums of m stochastic integrals,

X
(i)

t
= X

(i)

0
+

∫
t

0

ai(Xs, s) ds +

m∑
k=1

∫
t

0

bik(Xs, s) dW
(k)

s
, (1.41a)

for i = 1, ..., n, and t0 = 0 for convenience. Or in the symbolic SDE notation,

this system reads

dXt = a(Xt, t) dt + b(Xt, t) dWt , (1.41b)

where b dW is a matrix multiplication. When we take the components of the

vector dW as uncorrelated,

E (dW
(k)dW

(j)) =

{
0 for k �= j

dt for k = j
(1.42)

then possible correlations between the components of dX must be carried by

b.12

12 We come back to this issue in Sections 2.3.3, and 3.5.5, and in Exercise

3.14.
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Example 1.15 (mean-reverting volatility tandem)

We consider a three-factor model [HoPS92] with stock price St, instan-

taneous spot volatility σt and an averaged volatility ζt serving as mean-

reverting parameter:

dS = σS dW
(1)

dσ = −(σ − ζ)dt + ασ dW
(2)

dζ = β(σ − ζ)dt

Here and sometimes later on, we suppress the subscript t, which is pos-

sible when the role of the variables as stochastic processes is clear from

the context. The rate of return μ of S is zero; dW (1) and dW (2) may be

correlated. As seen from the SDE, the stochastic volatility σ follows the

mean volatility ζ and is simultaneously perturbed by a Wiener process.

Both σ and ζ provide mutual mean reversion, and stick together. Accor-

dingly the two SDEs for σ and ζ may be seen as a tandem controlling the

dynamics of the volatility. We recommend numerical tests. For motivation

see Figure 3.2.

Example 1.16 (Heston’s model)

Heston [Hes93] uses an Ornstein–Uhlenbeck process to model a stochastic

volatility σt. Then the variance vt := σ2

t
follows a Cox–Ingersoll–Ross

process (1.40). (−→ Exercise 1.20) The system of Heston’s model is

dSt = μSt dt +
√

vt St dW
(1)

t

dvt = κ(θ − vt) dt + σv

√
vt dW

(2)

t

(1.43)

with two correlated Wiener processes W
(1)

t
, W

(2)

t
and suitable parameters

μ, κ, θ, σv, ρ, where ρ is the correlation between W
(1)

t
, W

(2)

t
. Hidden

parameters might be the initial values S0, v0, if not available. This model

establishes a correlation between price and volatility.

Computational Matters

Stochastic differential equations are simulated in the context of Monte Carlo

methods. Thereby, the SDE is integrated N times, with N large (N = 10000

or much larger). Then the weight of any single trajectory is almost negligible.

Expectation and variance are calculated over the N trajectories. Generally

this costs an enormous amount of computing time. The required instruments

are:

1.) Generating N (0, 1)-distributed random numbers (−→ Chapter 2)

2.) Integration methods for SDEs (−→ Chapter 3)
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1.8 Itô Lemma and Applications

Itô’s lemma is most fundamental for stochastic processes. It may help, for

example, to derive solutions of SDEs (−→ Exercise 1.11). Suppose a “chain”

of two functions Xt and g(Xt, t). When a differential equation for Xt is given,

what is the differential equation for g(Xt, t)?

1.8.1 Itô Lemma

Itô’s lemma is the stochastic counterpart of the chain rule for deterministic

functions x(t) and y(t) := g(x(t), t), which is

d

dt
g(x(t), t) =

∂g

∂x
·
dx

dt
+

∂g

∂t
,

and can be written

dx = a(x(t), t) dt ⇒ dg =

(
∂g

∂x
a +

∂g

∂t

)
dt .

Here we state the one-dimensional version of the Itô lemma; for the multidi-

mensional version see the Appendix B2.

Lemma 1.17 (Itô)

Suppose Xt follows an Itô process (1.31), dXt = a(Xt, t)dt+ b(Xt, t)dWt,

and let g(x, t) be a C2,1-smooth function (continuous ∂g

∂x
,

∂
2
g

∂x
2 ,

∂g

∂t
). Then

Yt := g(Xt, t) follows an Itô process with the same Wiener process Wt:

dYt =

(
∂g

∂x
a +

∂g

∂t
+

1

2

∂2g

∂x2
b
2

)
dt +

∂g

∂x
b dWt (1.44)

where the derivatives of g as well as the coefficient functions a and b in

general depend on the arguments (Xt, t).

For a proof we refer to [Arn74], [Øk98], [Ste01], [Pro04]. Here we confine

ourselves to the basic idea. When t varies by Δt, then X by ΔX =

a · Δt + b · ΔW and Y by ΔY = g(X + ΔX, t + Δt) − g(X, t). The

Taylor expansion of ΔY begins with the linear part ∂g

∂x
ΔX + ∂g

∂t
Δt, in

which ΔX = aΔt + bΔW is substituted. The additional term with the

derivative ∂
2
g

∂x
2 is new and is introduced via the O(Δx2)-term of the Taylor

expansion,
1

2

∂2g

∂x2
(ΔX)2 =

1

2

∂2g

∂x2
b
2(ΔW )2 + t.h.o.

Because of (1.28), (ΔW )2 ≈ Δt, the leading term is also of the order

O(Δt) and belongs to the linear terms. Taking correct limits (similar as

in Lemma 1.9) one obtains the integral equation represented by (1.44).
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1.8.2 Consequences for Geometric Brownian Motion

Suppose the stock price follows a geometric Brownian motion, hence Xt =

St, a = μSt, b = σSt, for constant μ, σ. The value Vt of an option depends

on St, Vt = V (St, t). Assuming a C2-smooth value function V depending on

S and t, we apply Itô’s lemma. For V (S, t) in the place of g(x, t) the result is

dVt =

(
∂V

∂S
μSt +

∂V

∂t
+

1

2

∂2V

∂S2
σ

2
S

2

t

)
dt +

∂V

∂S
σSt dWt . (1.45)

This SDE is used to derive the Black–Scholes equation, see Appendix A4.

As second application of Itô’s lemma consider Yt = log(St), viz g(x, t) :=

log(x), for St solving GBM with constant μ, σ. Itô’s lemma leads to the linear

SDE

d log St = (μ−
1

2
σ

2) dt + σdWt . (1.46)

In view of (1.31) the solution is straightforward:

Yt = Yt0
+ (μ−

1

2
σ

2)

∫
t

t0

ds + σ

∫
t

t0

dWs

= Yt0
+ (μ−

1

2
σ

2)(t− t0) + σ(Wt −Wt0
)

(1.47)

From the properties of the Wiener process Wt we conclude that Yt is distribu-

ted normally. To write down the density function f̂(Yt), the mean μ̂ := E(Yt)

and the variance σ̂ are needed. For this linear SDE (1.46) the expectation

E(Yt) satisfies the deterministic part

d

dt
E(Yt) = μ−

σ2

2
.

The solution of ẏ = μ− σ
2

2
with initial condition y(t0) = y0 is

y(t) = y0 + (μ−
σ2

2
)(t− t0) .

In other words, the expectation of the Itô process Yt is

μ̂ := E(log St) = log S0 + (μ−
σ2

2
)(t− t0) .

Analogously, we see from the differential equation for E(Y 2

t
) (or from the

analytic solution of the SDE for Yt) that the variance of Yt is σ
2(t − t0). In

view of (1.46) the simple SDE for Yt implies that the stochastic fluctuation

of Yt is that of σWt, namely, σ̂2 := σ2(t− t0). So, from (B1.9) with μ̂ and σ̂,

the density of Yt is
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f̂(Yt) :=
1

σ
√

2π(t− t0)
exp

⎧⎪⎨⎪⎩−
(
Yt − y0 −

(
μ− σ

2

2

)
(t− t0)

)2

2σ2(t− t0)

⎫⎪⎬⎪⎭ .

Back transformation using Y = log(S) and considering dY = 1

S
dS and

f̂(Y )dY = 1

S
f̂(log S)dS = f(S)dS yields the density of St > 0:

fGBM(S, t− t0; S0, μ, σ) :=

1

Sσ
√

2π(t− t0)
exp

⎧⎪⎨⎪⎩−
(
log(S/S0)−

(
μ− σ

2

2

)
(t− t0)

)2

2σ2(t− t0)

⎫⎪⎬⎪⎭ (1.48)

This is the density of the lognormal distribution, conditional on St0
= S0. It

describes the probability of a transition

(S0, t0) −→ (S, t)

under the basic assumption that the stock price St follows a geometric Brow-

nian motion (1.33). The distribution is skewed, see Figure 1.20. Now the

skewed behavior coming out of the experiment reported in Figure 1.18 is

clear. Notice that the parameters in Figures 1.18 and 1.20 match. Figure

1.18 is an approximation of the solid curve in Figure 1.20.

In summary, the assumption of GBM amounts to

St = S0 exp(Yt) , (1.49)

where the log-price Yt is a Brownian motion with drift, Yt = (μ− 1

2
σ2)t+σWt.

— Having derived the density (1.48), we now can prove equation (1.8), with

μ = r according to Remark 1.14 (−→ Exercise 1.12). For vector-valued SDEs

an appropriate version of the Itô lemma is (B2.1).

1.8.3 Integral Representation

An important application of a known density function is that it allows for an

integral representation of European options. This will be revisited in Subsec-

tion 3.5.1, where we show for a European put under GBM

V (S0, 0) = e−rT

∫ ∞
0

(K − ST )+ fGBM(ST , T ; S0, r, σ) dST . (1.50)

Note the risk-free interest rate r as argument in the density. This reflects that

the integral is the conditional expectation of the payoff under the assumed

risk-neutral measure,

EQ =

∫ ∞
0

payoff · density dST .
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Fig. 1.20. Density (1.48) over S for μ = 0.1, σ = 0.2, S0 = 50, t0 = 0 and t = 0.5
(dotted curve with steep gradient), t = 1 (solid curve), t = 2 (dashed) and t = 5

(dotted with flat gradient)

The integral representation for European-style options

V (S0, 0) = e−rT

EQ(V (ST , T ) | St starting from (S0, 0)) . (1.51)

holds for arbitrary payoff functions and density functions of a general class

of valuation models.

1.8.4 Bermudan Options

The integral representation (1.50)/(1.51) for European options can be applied

to approximate American options. To this end, discretize the time interval

0 ≤ t ≤ T into an equidistant grid of time instances ti, similar as done for

the binomial method of Section 1.4:

Δt :=
T

M
, ti := i Δt (i = 0, . . . , M) .

This defines lines in the (S, t)-domain, and cuts it into M slices. An option

that restricts early exercise to specified discrete dates during its life is called a

Bermudan option. The above slicing defines an artificial Bermudan option,
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constructed for the purpose of approximating the corresponding American

option.

Let V Ber(M) denote the value of the Bermudan option in the above setting

of M slices of equal size. Clearly,

V
Eur ≤ V

Ber(M) ≤ V
Am for all M ,

because of the additional exercise possibilities of an otherwise identical op-

tion. Note that the Bermudan options serve as lower bounds for the American

option, and V Eur = V Ber(1). One can show

lim
M→∞

V
Ber(M) = V

Am
.

Hence, for suitable M the value V Ber(M) can be used as approximation to

V Am.

Let us consider the time slice ti ≤ t ≤ ti+1 for any i. For the valuation

of the option’s value at ti, the “inner payoff” is V (S, ti+1) along the line

t = ti+1. Since a Bermudan option can not be exercised for ti < t < ti+1, its

continuation value for ti is given by the integral representation of a European

option. This continuation value is

V
cont(x, ti) = e−r(ti+1−ti)

∫ ∞
−∞

V (ξ, ti+1) f(ξ, ti+1 − ti; x, . . .) dξ (1.52a)

for arbitrary x. Here a value S at line t = ti is represented by x, and the price

at ti+1 by ξ. The dots stand for the parameters of the risk-neutral evaluation

of the chosen model, and f is its density conditional on Sti
= x. For an

n-factor model, the domain of integration is IRn.

Since the Bermudan option can be exercised at ti, its value is again given

by the dynamic programming principle,

V (x, ti) = max {Ψ(x), V
cont(x, ti) } , (1.52b)

where Ψ denotes the payoff. Equations (1.52) define for i = M − 1, . . . , 0 a

backward recursive algorithm. It starts from the given payoff at T , which

provides V (S, tM ). That is, only for the first time level i = M −1, the option

is “vanilla,” whereas for i < M − 1 the inner payoffs are given by (1.52b).

In the algorithm, the evaluation of the integral in (1.52a) is done by nu-

merical quadrature (−→ Appendix C1), and the continuation value functions

V cont are approximated by interpolating functions C(x) based on m nodes in

x-space [Que07]. In the simplest case of a one-factor model (n = 1), the nodes

may represent equidistantly chosen Sj (1 ≤ j ≤ m). The inner payoffs are

denoted gi, and the Bermudan option is to be evaluated at (x, 0) := (S, 0).

Algorithm 1.18 (Bermudan option)

set m nodes x1, . . . , xm ∈ IRn.

gM (x) := V (x, tM ) = V (x, T ) = Ψ(x).
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recursively backwards (i = M − 1, . . . , 0):

(1) input: gi+1

loop (j = 1, . . . , m): calculate by quadrature

qj := e−r(ti+1−ti)

∫
gi+1(ξ) f(ξ, ti+1 − ti; xj , . . .) dξ

output: q1, . . . , qm

(2) interpolate (x1, q1), . . . , (xm, qm). output: C(x)

(3) gi(x) := max {Ψ(x), C(x)}

The final g0(x) is the approximation of V
Ber(M)(x, 0), which in turn appro-

ximates V Am(x, 0). The integral (1.52a) is taken over a suitably truncated

interval ξmin ≤ ξ ≤ ξmax. The method works also for general non-GBM mo-

dels, as long as they are not path-dependent. The order of convergence in Δt

is linear. If necessary, the nodes xj can be readjusted after each i; extrapola-

tion is possible. For example, when two values V Ber(M)(x, 0), V Ber(2M)(x, 0)

are available, an improved approximation is

V̄ = 2 V
Ber(2M)(x, 0)− V

Ber(M)(x, 0) .

For details see [Que07].

1.8.5 Empirical Tests

It is inspiring to test the idealized Model 1.13 of a geometric Brownian motion

against actual empirical data. Suppose the time series S1, ..., SM represents

consecutive quotations of a stock price. To test the data, histograms of the

returns are helpful (−→ Figure 1.21). The transformation y = log(S) is most

practical. It leads to the notion of the log return, defined by13

Ri,i−1 := log
Si

Si−1

. (1.53)

Let Δt be the equally spaced sampling time interval between the quotations

Si−1 and Si, measured in years. Then (1.48) leads to

Ri,i−1 ∼ N ((μ−
σ

2

2
)Δt , σ

2
Δt) .

Comparing with (1.34) we realize that the variances of the simple return

and of the log return are identical. The sample variance σ2Δt of the data

allows to calculate estimates of the historical volatility σ (−→ Exercise 1.13).

But the shape of actual market histograms is usually not in good agreement

with the well-known bell shape of the Gaussian density. The symmetry may

13 Since Si = Si−1 exp(Ri,i−1), the log return is also called continuously

compounded return in the ith time interval [Tsay02].
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be perturbed, and in particular the tails of the data are not well modeled

by the hypothesis of a geometric Brownian motion: The exponential decay

expressed by (1.48) amounts to thin tails. This underestimates extreme events

and hence hardly matches the reality of stock prices.
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Fig. 1.21. Histogram (compare Exercise 1.13): frequency of daily log returns Ri,i−1

of the Dow in the time period 1901-1999.

We conclude this section by listing again the analytic solution of the basic

linear constant-coefficient SDE (1.33)

dSt = μSt dt + σSt dWt

of GBM. From (1.47) or (1.49), the process

St := S0 exp

((
μ−

σ
2

2

)
t + σWt

)
(1.54)

solves the linear constant-coefficient SDE (1.33). Equation (1.54) generalizes

to the case of nonconstant coefficients (−→ Exercise 1.18). As a consequence

we note that St > 0 for all t, provided S0 > 0.
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1.9 Jump Models

The geometric Brownian motion Model 1.13 has continuous paths St. As

noted before, the continuity is at variance with those rapid asset price mo-

vements that can be considered almost instantaneous. Such rapid changes

can be modeled as jumps. This section introduces a basic building block of

a jump process, namely, the Poisson process. Related simulations (like that

of Figure 1.22) may look more authentic than continuous paths. But one has

to pay a price: With a jump process the risk of an option in general can not

be hedged away to zero. And calibration becomes more involved.

To define a Poisson process, denote the time instances for which a jump

arrives τj , with

τ1 < τ2 < τ3 < . . .

Let the number of jumps be counted by the counting variable Jt, where

τj = inf{t ≥ 0 , Jt = j} .

A Bernoulli experiment describes the probability that a jump occurs. For this

local discussion and an arbitrary time instant t, consider n subintervals of

length Δt := t

n
and allow for only two outcomes, jump yes or no, with the

probabilities
P(Jt − Jt−Δt = 1) = λΔt

P(Jt − Jt−Δt = 0) = 1− λΔt
(1.55)

for some λ such that 0 < λΔt < 1. The parameter λ is referred to as the

intensity of this jump process. Consequently k jumps in 0 ≤ τ ≤ t have the

probability

P(Jt − J0 = k) =

(
n

k

)
(λΔt)k(1− λΔt)n−k

,

where the trials in each subinterval are considered independent. A little rea-

soning reveals that for n→∞ this probability converges to

(λt)k

k!
e−λt

,

which is known as the Poisson distribution with parameter λ > 0 (−→ Ap-

pendix B1). This leads to the Poisson process.

Definition 1.19 (Poisson process)

The stochastic process {Jt , t ≥ 0} is called Poisson process if the following

conditions hold:

(a) J0 = 0

(b) Jt − Js are integer-valued for 0 ≤ s < t < ∞ and

P(Jt − Js = k) =
λk(t− s)k

k!
e−λ(t−s) for k = 0, 1, 2 . . .
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(c) The increments Jt2
− Jt1

and Jt4
− Jt3

are independent for all 0 ≤ t1 <

t2 < t3 < t4.

Several properties hold as consequence of this definition:

Properties 1.20 (Poisson process)

(d) Jt is right-continuous and nondecreasing.

(e) The times between successive jumps are independent and exponentially

distributed with parameter λ. Thus,

P(τj+1 − τj > Δτ) = e−λΔτ for each Δτ .

(f) Jt is a Markov process.

(g) E(Jt) = λt, Var(Jt) = λt

Simulating Jumps

Following the above introduction of Poisson processes, there are two possi-

bilities to calculate jump instances τj such that the above probabilities are

met. First, the equation (1.55) may be used together with uniform deviates

(−→ Chapter 2). In this way a Δt-discretization of a t-grid can be easily

exploited by drawing a random number to decide whether a jump occurs in

a subinterval. The other alternative is to calculate exponentially distributed

random numbers h1, h2, . . . (−→ Section 2.2.2) to simulate the intervals Δτ

between consecutive jump instances, and set

τj+1 := τj + hj .

The expectation of the hj is 1

λ
.

The unit amplitudes of the jumps of the Poisson counting process Jt are

not relevant for the purpose of establishing a market model. The jump sizes

of the price of a financial asset should be considered random. This requires

—in addition to the arrival times τj— another random variable.

Let the random variable St jump at τj , and denote τ+ the (infinitesimal)

instant immediately after the jump, and τ− the moment before. Then the

absolute size of the jump is

ΔS = S
τ
+ − S

τ
− ,

which we model as a proportional jump,

S
τ
+ = qS

τ
− with q > 0 . (1.56)

So, ΔS = qS
τ
− − S

τ
− = (q − 1)S

τ
− . The jump sizes equal q − 1 times the

current asset price. Accordingly, this model of a jump process depends on a

random variable qt and is written

dSt = (qt − 1)S
t
− dJt , where Jt is a Poisson process.
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1.9 Jump Models

We assume that qτ1
, qτ2

, ... are i.i.d. The resulting process with the two in-

volved processes Jt, qt is called compound Poisson process.

Jump Diffusion

Next we superimpose the jump process to stochastic diffusion, here to GBM.

The combined geometric Brownian and compound Poisson process is given

by

dSt = S
t
− (μ dt + σ dWt + (qt − 1) dJt ) . (1.57)

Here σ is the same as for the GBM, hence conditional on no jump. Such a

combined model represented by (1.57) is called jump-diffusion process. It

involves three different stochastic driving processes, namely, Wt, Jt, and qt.

We assume that J, q, W are independent of one another. Figure 1.22 shows a

simulation of the SDE (1.57).

An analytic solution of (1.57) can be calculated on each of the jump-

free subintervals τj < t < τj+1 where the SDE is just the GBM diffusion

dS = S(μdt + σdW ). For example, in the first subinterval until τ1, the solu-

tion is given by (1.54). At τ1 a jump of the size

(ΔS)1 := (qτ1
− 1)S

τ
−

1

occurs, and thereafter the solution continues with

St = S0 · exp

((
μ−

σ
2

2

)
t + σWt

)
+ (qτ1

− 1)S
τ
−

1

,

until τ2. The interchange of continuous parts and jumps proceeds in this way,

all jumps are added. So the SDE can be written as

St = S0 +

∫
t

0

Ss(μds + σdWs) +

Jt∑
j=1

S
τ
−

j

(qτj
− 1) , (1.58)

or

St = S0 exp

((
(μ−

σ2

2

)
t + σWt

)
·

Jt∏
j=1

qj .

This is the model based on Merton’s paper [Mer76]. The equation (1.58)

can be rewritten in the log-framework, with Yt := log St. The log-jump sizes

according to model (1.56) are

(ΔY )τ : = Y
τ
+ − Y

τ
− = log(qS

τ
−)− log S

τ
−

= log qτ .

Following (1.54), the model can be written
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Yt = Y0 +

(
μ−

σ
2

2

)
t + σWt +

Jt∑
j=1

(ΔY )τj
(1.59)

—that is the sum of a drift term, a Brownian motion, and a jump process. The

summation term
∑

(ΔY ) in (1.59) is the compound process. Merton assumes

normally distributed ΔY , which amounts to lognormal q. In summary we

emphasize again that the jump-diffusion process has three driving processes,

namely, W, J , and q. As in the GBM case, see (1.49)/(1.54), the price process

is of the form St = S0 exp(Yt).
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Fig. 1.22. Example 1.21: Sample path St of (1.57); jump report in Table 1.3

Example 1.21 (jump-diffusion)

Here we assume an interest rate r = 0.06, and a process St following (1.57)

with diffusion volatility σ = 0.3. For a hypothetical crash modeling, let us

assume Poisson jumps with an intensity rate λ = 0.2, which means that

on the average one jump occurs every 5 years. Following Merton’s model,

we take log(q) ∼ N (μJ, σ
2

J
), and choose μJ = −0.3 and σJ = 0.4. To

get random numbers with distribution ∼ N (μJ, σ
2

J
), we calculate random

numbers Z ∼ N (0, 1) (Chapter 2), and set log q = σJZ + μJ. The chosen

value of μJ corresponds to a mean q = exp(μJ) = 0.7408, which amounts

to an average 26% drop in Sτ at a jump instant τ . For the integration of
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(1.57), a growth rate is chosen such that risk neutrality is achieved. As

will be explained in Section 7.3, the martingale property is satisfied with

μ = r − λ (exp[μJ + 1

2
σ2

J
]− 1) ,

which for our numbers gives the growth rate 0.0995. This rate μ is larger

than r, and —roughly speaking— compensates for the tendency that in

case μJ < 0 down jumps are more likely than up jumps. Now we are

ready to solve (1.57) numerically. In Figure 1.22 we show one calculated

trajectory. We see three jumps, with data in Table 1.3. In this particular

simulation, there are two heavy down jumps within the time interval

0 ≤ t ≤ 10, which are clearly visible in Figure 1.22.

Table 1.3 Jumps in Figure 1.22

τ log(q) q jump

0.99 −0.642 0.526 47% down

4.76 0.0495 1.05 5% up

5.72 −0.534 0.586 41% down

The task of valuing options leads to a partial integro-differential equation

(A4.14), shown in Appendix A4, and in Section 7.3.

The above jump-diffusion process is not the only jump process used in

finance. There are also processes with an infinite number of jumps in finite

time intervals. To model such processes, building blocks are provided by

a more general class of jump processes, namely, the Lévy processes. Simply

speaking, think of relaxing the properties (b), (d) of Definition 1.7 of a Wiener

process such that non-normal distributions and jumps are permitted. Consult

Section 7.3 for some basics on Lévy processes.

1.10 Calibration

Which model should be chosen for a particular application?

This is a truly fundamental question. The question involves two views,

namely, a qualitative and a quantitative aspect.

When one speaks of a “model,” the focus is on its quality. This refers

to the structure and the type of equation. Important ingredients of a model

are, for example, a diffusion term, a jump feature, a specific nonlinearity,

or whether the volatility is considered as a constant or a stochastic process.

Ideally, the model and its equations represent economical laws. On the other

hand, the quantitative aspect of the model consists in the choice of specific

numbers for the coefficients or parameters of the model. “Modeling” refers to
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the setup of a chosen equation, and “calibration” is the process of matching

the parameters of the chosen model to the data that represent reality.

The distinction between modeling and calibration is not always obvious.

For example, consider the class of mean-reversion models represented by

(1.40). There is the exponent β in the factor r
β

t
. This exponent β can be

regarded either as parameter, or as a structural element of the model. The

three cases

β = 0 : the factor is unity, rβ = 1, it “disappears,”

β = 1 : the factor is linear, it represents a proportionality,

β = 1/2 : the factor
√

r is a specific nonlinearity,

point at the qualitative aspect of this specific parameter. Typically, modeling

sets forth some argument why a certain parameter is preset in a specific way,

and not subjected to calibration. Modeling places emphasis on capturing

market behavior rather than the peculiarities of a given data set.

Let us denote N parameters to be calibrated by c1, . . . , cN . Examples are

the volatility σ in GBM (1.33), or α, R for the mean-reversion term in (1.40),

or the jump intensity λ of a jump-diffusion process. For the mean-reverting

volatility tandem of Example 1.15, the vector to calibrate consists of five

parameters,

c = (α, β, ρ, σ0, ζ0) .

Here ρ is the correlation between the two Wiener processes W
(1)

, W
(2), and

σ0, ζ0 are the initial values for the processes σt, ζt. For the volatility tandem

it makes sense to assume ζ0 = σ0, which cuts down the calibration dimension

N from five to four. The initial stock price S0 is known. The interest rates

r that match a maturity T are obtained, for example, from EURIBOR, and

are not object of the calibration. Any attempt to cut down the calibration

dimension N is welcome because the costs of calibration are significant.

Suppose an initial guess of the calibration vector c. Then the calibration

procedure is based on the three steps

(1) simulate the model —that is, solve it numerically,

(2) compare the calculated results with the market data —that is,

calculate the defect, and

(3) adapt c such that the model better matches the data —that is,

the defect should decrease.

These three steps are repeated iteratively. How to perform step (3) is not ob-

vious; there is no unique way how to decrease the defect. A standard approach

is to minimize the defect in a least-squares fashion.

In our context of calibrating models for finance, data of vanilla options

are available as follows: The price S of the underlying is known as well as

market prices V mar for several strikes K and maturities T . Let the option

prices V mar be observed for M pairs (T1, K1), . . . , (TM , KM ). That is, the

available data are
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S, (Tk, Kk, V
mar

k
), k = 1, . . . , M .

For definiteness of the calibration require sufficiently many data in the sense

M ≥ N . Raw data may be subjected to a smoothing process [GlH10].

First, a model is specified. Then, in step (1), the chosen model is

evaluated for each of the M data (S, Tk, Kk), which gives model prices

V (S; 0; Tk, Kk; c). In general, this valuation process is expensive. An excel-

lent approach for the simultaneous valuation of a large number of European

options is the FFT method of Carr and Madan [CaM99], see Section 7.4. In

step (2), the result of the valuation is compared to the market prices. There

will be a defect. Therefore, in step (3), an iteration is set up to improve

the current fit c. The least-squares approach is to minimize the sum of the

squares of all defects, over all c,

min
c

M∑
k=1

(V mar

k
− V (S, 0; Tk, Kk; c))2 . (1.60)

The sum in (1.60) is a function of c and can be visualized as a surface over the

parameter c-space. It can be modified by weighting the terms appropriately.

Finally, the calibration results in a minimizing c (−→ Appendix C4). In view

of the data error, it hardly makes sense to calculate the minimizing parameter

vector c with high accuracy.

A simple example is provided by the implied volatility, see Exercise 1.5.

Here N = 1, M = 1, c := σ, and it is possible to make the defect vanish —

the minimum in (1.60) becomes zero. But in general the minimum of (1.60)

will be a positive value. It is tempting to regard this value as a measure of

the discrepancy or defect of the chosen model. But this would be misleading;

we come back to this below.

As a numerical example, we calibrate two models on the same data set

of standard European calls on the DAX index observed in the time period

January 2002 through September 2005. For this example, the calibration of

Heston’s model (1.43) results in the five parameters

κ = 1.63 , θ = 0.0934 , σv = 0.473 , v0 = 0.0821 , ρ = −0.8021 ,

with μ = r for the risk-neutrality. This parameter set matches the criterion

2κθ ≥ σv which guarantees v > 0. — The same data are applied to calibrate

the Black-Scholes model: The data are matched by GBM with the constant

σ = 0.239 (from [End08]). This is comparable to the calibration of the Heston

model with its
√

v0 ≈ 0.28.

So far, we have not come close to an answer to the initial question on the

“best” choice of an appropriate model. An attempt to decide on the quality of

a model might be to compare the defects. For instance, compare the values of

the sums in (1.60). In the above experiment, Heston’s model has the smaller

defect; the defect of the Black–Scholes model is five times as large.

59



Chapter 1 Modeling Tools for Financial Options

One might think that one model is better than another one, when the

discrepancy is smaller. But this is a wrong conclusion! Admitting a large

enough number of parameters enables to reach a seemingly best fit with a

small discrepancy. The danger with a large number of parameters is overfit-

ting. Overfitting can be detected as follows: Divide the data into halves, fit

the model on the one half (in-sample fit), and then test the quality of the fit

on the other half of the data (out-of-sample fit). In case the out-of-sample fit

matches the data much worse than the in-sample fit, we have a strong clue on

overfitting. Then any predictive power of the model may be lost. A vanishing

defect might be seen as hint of the model being useless. Overfitting is related

to the stability of parameters. If the parameters c change drastically when

exchanging one data set by a similar data set, then the model is considered

unstable. In order to obtain information on the parameter uncertainty, the

discrepancy must be analyzed more closely around the calculated best fit c.

The defect function (1.60) can exhibit a large flat region. Then significantly

different values of c yield a similar error. In this sense, a calibration problem

can be ill-posed [He06].

There is another test of the quality of a model, namely, how well hedging

works. A hedging strategy based on the model is compared to the reality of

the data. Empirical tests and comparisons in [Dah10], [End08] suggest that

in the context of option pricing, a stochastic volatility may be a more basic

ingredient of a good model than jump processes are. In terms of stability, out-

of-sample fitting, and hedging of options, Heston’s model (Example 1.16)

is recommendable — these conclusions have been based on the prices of

European options on the DAX 2002–2005. In terms of hedging capabilities,

the classical Black–Scholes model is competitive.

To summarize, it is obvious that calibration is a formidable task, in parti-

cular if several parameters are to be fitted. The attainable level of calibration

quality depends on the chosen model. In case the structure of the equation is

not designed properly, an attempt to improve parameters may be futile. For

a given model, it might well happen that a perfect calibration is never found.

It is unlikely that some model eventually might emerge as generally “most

recommendable.” Calibration does not remove the risk of having chosen the

wrong model. With our focus on computational tools, it does make sense

to consider the classical Black–Scholes model as a benchmark. It captures a

significant part of the essence of option markets.
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Notes and Comments

on Section 1.1:

This section presents a brief introduction to standard options. For more com-

prehensive studies of financial derivatives we refer, for example, to [CoR85],

[WiDH96], [Hull00]. Mathematical detail can be found in [LaL96], [MuR97],

[KaS98], [Shi99], [Epps00], [Ste01]. Other books on financial markets include

[ElK99], [Gem00], [MeVN02], [DaJ03]. (All hints on the literature are examp-

les; an extensive overview on the many good books in this rapidly developing

field is hardly possible.)

on Section 1.2:

Black, Merton and Scholes developed their approaches concurrently, with

basic papers in 1973 ([BlS73], [Mer73]; compare also [Mer90]). Merton and

Scholes were awarded the Nobel Prize in economics in 1997. (Black had died

in 1995.) One of the results of these authors is the so-called Black–Scholes

equation (1.2) with its analytic solution formula (A4.10). For reference on

discrete-time models, consult [Pli97], [FöS02]. Transaction costs and market

illiquidity or feedback effects are discussed in Section 7.1.

on Section 1.3:

References on specific numerical methods are given where appropriate. As

computational finance is concerned, most quotations refer to research papers.

Other general text books discussing computational issues include [WiDH96],

[Hig04], [AcP05]; further hints can be found in [RoT97]. For the calculation

of the sample variance (Exercise 1.4) see [ChGL83], [Hig96].

on Section 1.4:

Binomial or trinomial methods are sometimes found under the heading tree

methods or lattice methods. Basic versions of the binomial method were in-

troduced in 1979 by [CoRR79]14 and [ReB79]. [CoRR79] suggested

u := eσ

√
Δt

, d := e−σ

√
Δt

, p̃ :=
1

2
(1 +

r

σ

√
Δt) , (CRR)

where p̃ is a first-order approximation to the p of (1.6) (the reader may

check). The influential paper by Cox, Ross and Rubinstein has coined the

name CRR for their approach. [HuW88] pointed out that (1.11) is slightly

more correct than the CRR choice. [ReB79] suggested the choice p = 1

2
,

which leads to values of u and d (−→ Exercise 1.21). Of course, another set

of parameters u, d, p leads to a different approximation. Example 1.6, which

is from [Hull00], and M = 100 yields V = 4.28041 with the parameter set

14 William Sharpe has been credited for suggesting the advantages of the

discrete-time approach.
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(1.11), and V = 4.27806 with u, d from (CRR). But for M →∞ convergence

is maintained in either case. — The dynamic programming principle is due to

[Bel57]. In the literature, the result of the dynamic programming procedure

is often listed under the name Snell envelope.

The Table 1.2 might suggest that it is easy to obtain high accuracy with

binomial methods. This is not the case; flaws were observed in particular

close to the early-exercise curve [CoLV02]. As illustrated by Figure 1.10, the

described standard version wastes many nodes Sj,i close to zero and far away

from the strike region even for small M .

For advanced binomial methods and for speeding up convergence, con-

sult also [Bre91], [LeR96], [Lei99], [Kla01]. [FiG99] insert a patch of higher

resolution close to (S, t) = (K, T ) into the trinomial tree. The resulting ad-

aptive mesh model exhibits higher accuracy. In order to maintain accuracy

for barrier options one takes care that layers coincide with the barrier, see

for instance [DaL10]. For a detailed account of the binomial method see also

[CoR85]. By correcting the terminal probabilities, which come out of the bi-

nomial distribution (−→ Exercise 1.8), it is possible to adjust the tree to

actual market data [Rub94a], see also the implied tree of [DeK94], outlined

also in [Sey12]. [HoP02] explains how to implement the binomial method in

spreadsheets. Many applications of binomial trees are found in [Lyuu02].

on Section 1.5:

When we expect Δ to be positive, then we should assume the option is a call.

But the argumentation is the same for a put, then Δ < 0. As shown in Section

1.5, a valuation of options based on a hedging strategy is equivalent to the

risk-neutral valuation described in Section 1.4. Another equivalent valuation

is obtained by a replication portfolio. This basically amounts to including

the risk-free investment, to which the hedged portfolio of Section 1.5 was

compared, into the portfolio. To this end, the replication portfolio includes

a bond with the initial value B0 := −(Δ · S0 − V0) = −Π0 and interest rate

r. The portfolio consists of the bond and Δ shares of the asset. At the end

of the period T the final value of the portfolio is Δ · ST + erT (V0 −Δ · S0).

The hedge parameter Δ and V0 are determined such that the value of the

portfolio is VT , independent of the price evolution. By adjusting B0 and Δ

in the right proportion we are able to replicate the option position. This

strategy is self-financing: No initial net investment is required. The result

of the self-financing strategy with the replicating portfolio is the same as

what was derived in Section 1.5. The reader may like to check this. For the

continuous-time case, see Appendix A4.

Frequently discounting is done with the factor (1 + r · Δt)−1. This r

would not be a continuously compounding interest rate. Our e−rΔt or e−rT is

consistent with the approach of Black, Merton and Scholes. For references on

risk-neutral valuation we mention [Hull00], [MuR97], [Kwok98] and [Shr04].
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on Section 1.6:

Introductions into stochastic processes and further hints on advanced lite-

rature can be found in [Doob53], [Fre71], [Arn74], [Bil79], [ReY91], [KlP92],

[Shi99], [Sato99], [Shr04]. In the literature, the terms Wiener process and

Brownian motion are often used as synonyms, and the modifier “standard”

is used to specialize on the drift-free case. Here we follow the convention as

in Definition 1.7, where the term Wiener process is mostly reserved for the

“standard” scalar drift-free Brownian motion. The definition of a Wiener pro-

cess depends on the underlying probability measure P, which enters through

the definition of independence, and by its distribution being Gaussian, see

(B1.1). For more hints on martingales, see Appendix B2. Algorithm 1.8 is

also called “Gaussian random walk.”

For a proof of the nondifferentiability of Wiener processes, see [HuK00].

In contrast to the results for Wiener processes, differentiable functions Wt

satisfy for δN → 0∑
|Wtj

−Wtj−1
| −→

∫
|W ′

s
| ds ,

∑
(Wtj

−Wtj−1
)2 −→ 0 .

The Itô integral and the alternative Stratonovich integral are explained in

[Doob53], [Arn74], [ChW83], [ReY91], [KaS91], [KlP92], [Mik98], [Øk98],

[Sch80], [Shr04]. The class of (Itô-)stochastically integrable functions is cha-

racterized by the properties f(t) is Ft adapted and E
∫

f(s)2ds < ∞. We

assume that all integrals occurring in the text exist. The integrator Wt needs

not be a Wiener process. The stochastic integral can be extended to semimar-

tingales [HuK00].

on Section 1.7:

The Algorithm 1.11 is sometimes named after Euler and Maruyama.

The general linear SDE is of the form

dXt = (a1(t)Xt + a2(t)) dt + (b1(t)Xt + b2(t)) dWt .

The expectation E(Xt) of a solution process Xt of a linear SDE satisfies the

differential equation
d

dt
E(Xt) = a1E(Xt) + a2 ,

and for E(X2

t
) we have

d

dt
E(X2

t
) = (2a1 + b

2

1
)E(X2

t
) + 2(a2 + b1b2)E(Xt) + b

2

2
.

This is obtained by taking the expectation of the SDEs for Xt and X2

t
, the

latter one derived by Itô’s lemma [KlP92], [Mik98]. Combining both differen-

tial equations allows to calculate the variance. [KlP92] in Section 4.4 gives a

list of SDEs that are analytically solvable or reducible.
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A process (1.33) with variable μ(t), σ(t) is called generalized GBM [Shr04].

For CIR of Example 1.16, provided r0 > 0, R > 0, and a strong enough

upward drift in the sense
αR ≥ 1

2
σ

2

r
,

the solution of (1.40) satisfies rt > 0 for all t; this criterion is attributed to

Feller. For a PDE, the Feller condition is replaced by a boundary condition at

r = 0 [EkLT09]. Based on the CIR system and a dependent variable u(S, v, t)

a two-dimensional PDE is presented in [Hes93], see Example 5.7.

The model of a geometric Brownian motion of equation (1.33) is the

classical model describing the dynamics of stock prices. It goes back to Sa-

muelson (1965; Nobel Prize in economics in 1970). Already in 1900 Bachelier

had suggested to model stock prices with Brownian motion. Bachelier used

the arithmetic version, which can be characterized by replacing the left-hand

side of (1.33) by the absolute change dS. This amounts to the process of

the drifting Brownian motion St = S0 + μt + σWt. Here even the theoretical

stock price can become negative. Main advantages of the geometric Brownian

motion are its exponential growth or decay, the success of the approaches of

Black, Merton and Scholes, which is based on that motion, and the existence

of moments (as the expectation). For positive S, the form (1.33) of GBM is

not as restrictive as it might seem, see Exercise 1.18. A variable volatility

σ(S, t) is called local volatility. Such a volatility can be used to make the

Black–Scholes model compatible with observed market prices [Dup94].

on Section 1.8:

The Itô lemma is also called Doeblin-Itô formula, after the early manuscript

[Doe40] was disclosed. The Algorithm 1.18 was suggested by [Que07], inclu-

ding the use of radial basis functions, a tricky control of truncation errors,

and a convergence analysis. The approximation quality of American options

is quite satisfactory even for small values of M .

In view of their continuity, GBM processes are not appropriate to model

jumps, which are characteristic for the evolution of stock prices. Jumps lead

to relatively heavy tails in the distribution of empirical returns (see Figure

1.21)15. As already mentioned, the tails of the lognormal distribution are

too thin. Other distributions match empirical data better. One example is

the Pareto distribution, which has tails behaving like x−α for large x and a

constant α > 0. A correct modeling of the tails is an integral basis for value

at risk (VaR) calculations. For the risk aspect consult [EmKM97], [BaN97],

[Dowd98], [ArDEH99], and the survey [EbFKO07]. For distributions that

match empirical data see [EbK95], [Shi99], [BoP00], [MaRGS00], [BrTT00].

Estimates of future values of the volatility are obtained by (G)ARCH me-

thods, which work with different weights of the returns [Shi99], [Hull00],

15 The thickness is measured by the kurtosis E((X − μ)4)/σ4. The normal

distribution has kurtosis 3. So the excess kurtosis is the difference to 3. Fre-

quently, data of returns are characterized by large values of excess kurtosis.
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[Tsay02], [FrHH04], [Rup04]. Promising are models of behavioral finance

that consider the market as dynamical system [Lux98], [BrH98], [ChDG00],

[BiV00], [MaCFR00], [Sta01], [DiBG01], [BiS06]. These systems experience

the nonlinear phenomena bifurcation and chaos, which require again numeri-

cal methods. Such methods exist, and are explained elsewhere [Sey10].

on Section 1.9:

Section 1.9 concentrates on Merton’s jump-diffusion process. For building

Lévy models we refer to [Sato99], [ConT04], and Section 7.3.

on Section 1.10:

The CIR-based Heston model can be extended to jump-diffusion. This can

be applied to both processes St and vt in (1.43), which defines a general class

of models with 10 parameters [DuPS00]. But applying jumps only for St , one

obtains the same quality with eight parameters [Bat96]. Also the OU-based

Schöbel–Zhu model is recommendable [ScZ99]. Another FFT based valuation

approach is [FeO08]. Artificial smoothing of the least-squares function (1.60)

allows to apply gradient-based methods. This is discussed in [KaMS09]. For

hedging issues and practical aspects, consult [Jos03].

Exercises

Exercise 1.1 Put-Call Parity

Consider a portfolio consisting of three positions related to the same asset,

namely, one share (price S), one European put (value VP), plus a short posi-

tion of one European call (value VC). Put and call have the same expiration

date T , and no dividends are paid.

a) Assume a no-arbitrage market without transaction costs. Show

S + VP − VC = Ke−r(T−t)

for all t, where K is the strike and r the risk-free interest rate.

b) Use the put-call parity to realize

VC(S, t) ≥ S −Ke−r(T−t)

VP(S, t) ≥ Ke−r(T−t) − S .

Exercise 1.2 Transforming the Black–Scholes Equation

Show that the Black–Scholes equation (1.2)

∂V

∂t
+

σ2

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

65



Chapter 1 Modeling Tools for Financial Options

for V (S, t) with constant σ and r is equivalent to the equation

∂y

∂τ
=

∂
2
y

∂x2

for y(x, τ). For proving this, you may proceed as follows:

a) Use the transformation S = Kex and a suitable transformation t ↔ τ to

show that (1.2) is equivalent to

−V̇ + V
′′ + αV

′ + βV = 0

with V̇ = ∂V

∂τ
, V ′ = ∂V

∂x
, α, β depending on r and σ.

b) The next step is to apply a transformation of the type

V = K exp(γx + δτ) y(x, τ)

for suitable γ, δ.

c) Transform the terminal condition of the Black–Scholes equation accordin-

gly.

Exercise 1.3 Standard Normal Distribution Function

Establish an algorithm to calculate

F (x) =
1
√

2π

∫
x

−∞

exp(−
t2

2
) dt .

Hint: Construct an algorithm to calculate the error function

erf(x) :=
2
√

π

∫
x

0

exp(−t
2) dt

and use erf(x) to calculate F (x). Use quadrature methods (−→ Appendix

C1).

Exercise 1.4 Calculating the Sample Variance

An estimate of the variance of M numbers x1, ..., xM is

s
2

M
:=

1

M − 1

M∑
i=1

(xi − x̄)2, with x̄ :=
1

M

M∑
i=1

xi

The alternative formula

s
2

M
=

1

M − 1

⎛⎝ M∑
i=1

x
2

i
−

1

M

(
M∑
i=1

xi

)2
⎞⎠ (�)

can be evaluated with only one loop i = 1, ..., M , but should be avoided

because of the danger of cancellation. The following single-loop algorithm is

recommended instead of (�):
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α1 := x1, β1 := 0

for i = 2, ..., M :

αi := αi−1 +
xi − αi−1

i

βi := βi−1 +
(i− 1)(xi − αi−1)

2

i

a) Show x̄ = αM , s2

M
= βM

M−1
.

b) For the ith update in the algorithm carry out a rounding error analysis.

What is your judgment on the algorithm?

Exercise 1.5 Implied Volatility

For European options we take the valuation formula of Black and Scholes of

the type V = v(S, τ, K, r, σ), where τ denotes the time to maturity, τ := T−t.

For the definition of the function v see Appendix A4, equation (A4.10). If

actual market data V mar of the price are known, then one of the parameters

considered known so far can be viewed as unknown and fixed via the implicit

equation

V
mar − v(S, τ, K, r, σ) = 0 . (∗)

In this calibration approach the unknown parameter is calculated iteratively

as solution of equation (∗). Consider σ to be in the role of the unknown

parameter. The volatility σ determined in this way is called implied volatility

and is zero of f(σ) := V mar − v(S, τ, K, r, σ).

Assignment:

a) Implement the evaluation of VC and VP according to (A4.10).

b) Design, implement and test an algorithm to calculate the implied volatility

of a call. Use Newton’s method to construct a sequence xk → σ. The

derivative f ′(xk) can be approximated by the difference quotient

f(xk)− f(xk−1)

xk − xk−1

.

For the resulting secant iteration invent a stopping criterion that requires

smallness of both |f(xk)| and |xk − xk−1|.
c) Calculate the implied volatilities for the data

T − t = 0.211 , S0 = 5290.36 , r = 0.0328

and the pairs K, V from Table 1.4 (for more data see www.compfin.de).

For each calculated value of σ enter the point (K, σ) into a figure, joining

the points with straight lines. (You will notice a convex shape of the curve.

This shape has lead to call this phenomenon volatility smile.)
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Table 1.4. Calls on the DAX on Jan 4th 1999

K 6000 6200 6300 6350 6400 6600 6800

V 80.2 47.1 35.9 31.3 27.7 16.6 11.4

Exercise 1.6 Price Evolution for the Binomial Method

For β from (1.11) and u = β +
√

β2 − 1 show

u = exp
(
σ
√

Δt

)
+ O

(√
(Δt)3

)
.

Exercise 1.7 Implementing the Binomial Method

Design and implement an algorithm for calculating the value V (M) of a Eu-

ropean or American option. Use the basic version of Algorithm 1.4.

INPUT: r (interest rate), σ (volatility), T (time to expiration in years),

K (strike price), S (price of asset), and the choices

put or call, and European or American.

Control the mesh size Δt = T/M adaptively. For example, calculate V for

M = 8 and M = 16 and in case of a significant change in V use M = 32 and

possibly M = 64.

Test examples:

a) put, European, r = 0.06, σ = 0.3, T = 1, K = 10, S = 5

b) put, American, S = 9, otherwise as in a)

c) call, otherwise as in a)

d) The mesh size control must be done carefully and has little relevance to

error control. To make this evident, calculate for the test numbers a) a

sequence of V (M) values, say for M = 100, 101, 102, . . . , 150, and plot the

error |V (M) − 4.430465|.

Exercise 1.8 Limiting Case of the Binomial Model

Consider a European Call in the binomial model of Section 1.4. Suppose the

calculated value is V
(M)

0
. In the limit M →∞ the sequence V

(M)

0
converges to

the value VC(S0, 0) of the continuous Black–Scholes model given by (A4.10)

(−→ Appendix A4). To prove this, proceed as follows:

a) Let jK be the smallest index j with SjM ≥ K. Find an argument why

M∑
j=jK

(
M

j

)
p

j (1− p)M−j (S0u
j

d
M−j −K)

is the expectation E(VT ) of the payoff. (For an illustration see Figure

1.23.)
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b) The value of the option is obtained by discounting, V
(M)

0
= e−rT E(VT ).

Show

V
(M)

0
= S0BM,p̃(jK)− e−rT

KBM,p(jK) .

Here BM,p(j) is defined by the binomial distribution (−→ Appendix B1),

and p̃ := pue−rΔt.

c) For large M the binomial distribution is approximated by the normal

distribution with distribution F (x). Show that V
(M)

0
is approximated by

S0F

(
Mp̃− α√
Mp̃(1− p̃)

)
− e−rT

KF

(
Mp− α√
Mp(1− p)

)
,

where

α := −
log S0

K
+ M log d

log u− log d
.

d) Substitute the p, u, d by their expressions from (1.11) to show

Mp− α√
Mp(1− p)

−→
log S0

K
+ (r − σ

2

2
)T

σ
√

T

for M →∞. Hint: Use Exercise 1.6: Up to terms of high order the appro-

ximations u = eσ

√
Δt, d = e−σ

√
Δt hold. (In an analogous way the other

argument of F can be analyzed.)

0 5 10 15 20 25
S

0
0.2

0.4
0.6

0.8
1

t

0

2

4

6

8

10

Fig. 1.23. Illustration of a binomial tree and payoff for Exercise 1.8, here for a

put, (S, t) points for M = 8, K = S0 = 10. The binomial density of the risk-free

probability is shown, scaled with factor 10.
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Exercise 1.9

In Definition 1.7 the requirement (a) W0 = 0 is dispensable. Then the requi-

rement (b) reads

E(Wt −W0) = 0 , E((Wt −W0)
2) = t .

Use these relations to deduce (1.21).

Hint: (Wt −Ws)
2 = (Wt −W0)

2 + (Ws −W0)
2 − 2(Wt −W0)(Ws −W0)

Exercise 1.10

a) Suppose that a random variable Xt satisfies Xt ∼ N (0, σ2). Use (B1.4)

to show

E(X4

t
) = 3σ

4
.

b) Apply a) to show the assertion in Lemma 1.9,

E

⎛⎝∑
j

((ΔWj)
2 −Δtj)

⎞⎠2

= 2
∑

j

(Δtj)
2

Exercise 1.11 Analytical Solution of Special SDEs

Apply Itô’s lemma to show

a) Xt = exp
(
λWt −

1

2
λ

2
t
)

solves dXt = λXt dWt

b) Xt = exp (2Wt − t) solves dXt = Xt dt + 2Xt dWt

Hint: Use suitable functions g with Yt = g(Xt, t). In (a) start with Xt = Wt

and g(x, t) = exp(λx − 1

2
λ2t).

Exercise 1.12 Moments of the Lognormal Distribution

For the density function f(S; t− t0, S0) from (1.48) show

a)
∫∞
0

Sf(S; t− t0, S0) dS = S0e
μ(t−t0)

b)
∫∞
0

S2f(S; t− t0, S0) dS = S2

0
e(σ

2
+2μ)(t−t0)

Hint: Set y = log(S/S0) and transform the argument of the exponential

function to a squared term.

In case you still have strength afterwards, calculate the value of S for which

f is maximal.

Exercise 1.13 Return of the Underlying

Let a time series S1, ..., SM of a stock price be given (for example data in the

domain www.compfin.de).

The simple return

R̂i,j :=
Si − Sj

Sj

,
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an index number of the success of the underlying, lacks the desirable property

of additivity

RM,1 =

M∑
i=2

Ri,i−1 . (∗)

The log return

Ri,j := log Si − log Sj .

has better properties.

a) Show Ri,i−1 ≈ R̂i,i−1, and

b) Ri,j satisfies (∗).
c) For empirical data calculate the Ri,i−1 and set up histograms. Calculate

sample mean and sample variance.

d) Suppose S is lognormally distributed. How can a value of the volatility

be obtained from an estimate of the variance?

e) The mean of the 26866 log returns of the time period of 98.66 years of

Figure 1.21 is 0.000199 and the standard deviation is 0.01069. Calculate

an estimate of the historical volatility σ.

Exercise 1.14 Anchoring the Binomial Grid at K

The equation (1.10) has established a kind of symmetry for the grid. As an

alternative, one may anchor the grid by requiring (for even M)

S0u
M/2

d
M/2 = K .

a) Give a geometrical interpretation.

b) Derive from equations (1.5), (1.9) and ud = γ for some constant γ (not

necessarily γ = 1 as in (1.10)) the relation

u = β +
√

β2 − γ for β :=
1

2
(γe−rΔt + e(r+σ

2
)Δt) .

c) Show that the solution is given by

ud = γ := exp

[
2

M
log

K

S0

]
.

Exercise 1.15 Extrapolation

Let η∗ ∈ IR denote the exact solution of an equation, Δ denotes the grid size

of a numerical approximation scheme, and η(Δ) the approximating solution.

Further assume an error model

η(Δ) − η
∗ = c Δ

q

,

with c, q ∈ IR. q is the order of the approximation scheme. Suppose that for

two grid sizes
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Δ1, Δ2 =
1

2
Δ1

approximations η1 := η(Δ1), η2 := η(Δ2) are calculated.

a) For the case of a known η∗ (or η∗ approximated with very high accuracy)

establish a formula for the order q out of η∗, η1, η2.

b) For a known order q show that

η
∗ =

1

2q − 1
(2q

η2 − η1).

In general, the error model holds only approximately. Hence this formula for

η∗ is only an approximation to the exact η∗ (“extrapolation”).

Exercise 1.16 Portfolios

Figure 1.24 sketches some payoffs over S: (a) bull spread, (b) bear spread, (c)

strangle, (d) butterfly spread. For each of these payoffs, construct portfolios

out of two or three vanilla options such that the portfolio meets the payoff.

K2K1

(a)

K1 K2

K1 K2

(d)

(b)

(c)

KK1 K2

Fig. 1.24. Four payoffs, value over S; see Exercise 1.16

Exercise 1.17 Bounds and Arbitrage

Using arbitrage arguments, show the following bounds for the values VC of

vanilla call options:

a) 0 ≤ VC

b) (S −K)+ ≤ V Am

C
≤ S

Exercise 1.18 Positive Itô Process

Let Xt be a positive one-dimensional Itô process for t ≥ 0.

Show that there exist functions α and β such that
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dXt = Xt(αt dt + βt dWt)

and

Xt = X0 exp

{∫
t

0

(αs −
1

2
β

2

s
) ds +

∫
t

0

βs dWs

}

Exercise 1.19 General Black–Scholes Equation

Assume a portfolio

Πt = αtSt + βtBt

consisting of αt units of a stock St and βt units of a bond Bt, which obey

dSt = μ(St, t) dt + σ(St, t) dWt

dBt = r(t)Bt dt

The functions μ, σ, and r are assumed to be known, and σ > 0. Further

assume the portfolio is self-financing in the sense

dΠt = αt dSt + βt dBt ,

and replicating such that ΠT equals the payoff of a European option. (Then

Πt equals the price of the option for all t.) Derive the Black–Scholes equation

for this scenario, assuming Πt = g(St, t) with g sufficiently often differentia-

ble.

Hint: coefficient matching of two versions of dΠt

Exercise 1.20 Ornstein–Uhlenbeck Process

An Ornstein–Uhlenbeck process is defined as solution of the SDE

dXt = −αXt dt + γ dWt , α > 0

for a Wiener process W .

a) Show

Xt = e−αt

(
X0 + γ

∫
t

0

eαsdWs

)
b) Suppose the volatility σt is an Ornstein–Uhlenbeck process. Show that

the variance vt := σ2

t
follows a Cox–Ingersoll–Ross process, namely,

dvt = κ(θ − vt) dt + σv

√
vt dWt .

Exercise 1.21 Binomial Method with p = 0.5

Use the equations (1.5), (1.9) and p = 1/2 to show

u = erΔt (1 +
√

eσ
2
Δt − 1)

d = erΔt (1 −
√

eσ
2
Δt − 1) .
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Exercise 1.22 Dividend Payment and the Binomial Method

A dividend yield δ can be calculated by annualizing a known dividend pay-

ment D per year by setting δ = D/S. For a binomial tree, the effects of

paying either

a) a fixed amount D or

b) a proportional amount δS

are different.

Assume a dividend payment at time tD < T and a node of the tree at tν = tD.

For a share value of S at tν−1 discuss the tree evolution at tν+1 with focus

on recombination, comparing the two scenarios a) and b).

Exercise 1.23 Improved Binomial Tree

The Algorithm 1.4 is to be improved as follows:

a) Apply the anchoring of Exercise 1.14.

b) Extend the tree by starting at −2Δt as discussed in Section 1.4.6, and cal-

culate approximations for the Greeks delta and gamma by using difference

quotients.

Use Example 1.5 to compare these approximations with those from the ana-

lytic values from Appendix A4. Implement this in a computer program.

Exercise 1.24 Negative Prices

Assume Z ∼ N (0, 1), S > 0, σ > 0, and a step (t, S) → (t + Δt, S + ΔS) of

the discretized GBM
ΔS

S
= μΔt + σZ

√
Δt .

What is the probability that the resulting price S + ΔS is negative? Discuss

the result and think about remedy.
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